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Particle Dynamics in Cosmological Spacetime

Nathan Michael Herring, PhD

University of Pittsburgh, 2020

This thesis studies the evolution of quantum fields in the curved spacetime of the ex-

panding early universe, focusing on applications to open questions in cosmology, with special

concentration on particle theories of dark matter. Particularly, the processes of particle pro-

duction and decay are analyzed in detail.

The usual calculation of particle decay rates proceeds by a perturbative approach which

supposes global energy conservation, a property not manifest for expanding universes. We

demonstrate how the decay law of scalar particles decaying during the radiation dominated

epoch of the standard cosmology can be obtained by introducing an adiabatic approxima-

tion valid for degrees of freedom with sub-particle horizon wavelengths. The cosmological

expansion is treated consistently, through non-perturbative methods borrowed from quan-

tum optics and adapted for cosmology. Both scalar to scalar and scalar to fermion (with

Yukawa couplings) decays are studied. The effects of cosmic expansion, leading to salient

differences from the usual static spacetime results, are highlighted. We suggest implications

for very long-lived particles (such as DM) and baryogenesis.

We also present our study of non-adiabatic cosmological production of dark matter. By

stipulating that the dark matter be a spectator field in its vacuum state during inflation

and concentrating on super-particle horizon modes immediately after inflation, the particle

production for scalar and fermionic dark matter is analytically computed. In both cases, the

distribution of produced particles is peaked at low comoving momentum. We obtain the full

energy momentum tensor, show explicitly its equivalence with the fluid-kinetic one in the

adiabatic regime, and extract the abundance, equation of state and free streaming length for

the dark matter. We show how this mechanism yields a cold dark matter particle consistent

with astronomical observations, without any coupling to Standard Model species, and with

solely gravitational interactions. Thus, these models represent theories of the darkest of dark

matter. We argue that this abundance yields a lower bound on generic scalar (ULDM) and
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axion-like particles (ALP) to be included in any assessment of (ULDM)/(ALP) dark matter

candidates. For fermions, this production surprisingly leads to a nearly thermal distribution

with an emergent temperature, which warrants further analysis.
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Preface
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target audience for such a document? Given that experts can already obtain and study the

published works, reproducing the results for themselves, merely compiling the articles into

a single document seems redundant at best and superfluous at worst. To that end, perhaps

selfishly, I have decided to write this dissertation in a way that will be useful to myself, at the

very least, but I hope it will also be useful to other graduate students. To achieve this goal I

have included a rather large chapter, titled background physics, which is an independent set

of notes on the topics of cosmology and quantum field theory, focusing on the aspects most

necessary to understand/reproduce the original content of this document. This chapter is

not a textbook. However, it should be sufficient for an intermediate graduate student to get

“up to speed” with the conceptual toolkit and physics language used in particle cosmology.

It has been sequestered after the introductory first chapter so as to not inundate the more

expert (or only marginally curious) readers with too much review.

One of the customary functions of a preface is to provide space for the author to ac-

knowledge the many persons who have been invaluable to the completion of this dissertation

process. I am truly elated to have such space to thank my mentors, friends, and family.

Firstly, I am greatly indebted to my thesis advisors Andrew Zentner and Daniel Boy-

anovsky. Andrew, thank you for permitting me to pursue research in the aspects of physics

that I found most intriguing, for being a tireless source of optimism and advice, and for

genuinely showing interest in my interests, within physics and beyond. Dan, I am indebted

to your patience and masterful pedagogical skill; it is a rare gift to be able to answer a

student’s questions in a manner that makes him feel intelligent and capable while learning

something novel, a gift you possess. Your lifelong passion for learning, undaunted after years

of scholarship, is truly inspiring. My long conversations with these two men are among my

fondest memories in education and my gratitude towards them cannot be overstated.

Secondly, I would like to thank my high school physics teacher Daniel McGrail, a former
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committee: Brian Batell, Matthew Walker, and Vladimir Savinov for valuable feedback,

constructive criticism, and stimulating discussions throughout my graduate career. I also

extend a heartfelt thanks to Rachel Bezanson, Arthur Kosowsky, Chandralekha Singh, and

Michael Wood-Vasey for providing guidance and insight about physics, academia, and life in

general. To Leyla Hirschfeld I give special thanks for handling the bureaucratic nightmares

of the graduate school process.

To my coauthor, colleague, and friend Brian Pardo, thank you for passionately engaging

with me in spirited yet friendly debate; I am a better physicist for it. To my oldest of

friends, Talbot Hook and Quincey Smail, thank you for supporting me with humor, games,

and most importantly conversation; you are truly candles in the darkest of nights. I am also

delighted to acknowledge my friends Cat Fielder, Brian Flores, Olivia Lanes, Justin Stickel,

and Kevin Wilk; your stalwart friendship in the toughest of times and happiest of moments

has been a necessary, vitalizing force in these long years, and I look forward to continued

friendship. I must particularly thank Cat, Brian, and Olivia for enduring the early years

of graduate school with me. Our late nights of study with algebra-filled white boards are

treasured memories, and I would do it all again with you guys.
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the thesis writing process. You are truly the best discovery I have made at the University
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1.0 Introduction

In this first chapter, the current open questions in theoretical cosmology, which moti-

vate the research content of this thesis, are introduced. Subsequently, a brief summary of

the main results of the work is provided. A pedagogical review of the relevant background

physics, which further contextualizes this work, is reserved for chapter 2, and the interested

reader is directed there. Chapters 3-6 provide the original research content of this thesis.

Each is associated with a published journal article as indicated in Table 1. They are written

to function self-sufficiently, so each begins with a brief introduction and ends with a sum-

mary, while the technical details are discussed in between and in the appendices. Readers

uninterested in the technicalities are encouraged to read the introduction and summary of

each of these chapters to glean the salient aspects. Of course, highly curious readers should

delve into the body and the detailed discussion section for each chapter of interest. The final

chapter provides an executive summary of the main outcomes, focusing on both technical

results and broader conclusions.

1.1 Open Questions in Theoretical Cosmology

The end of the 20th century and beginning of the 21st have witnessed incredible ac-

complishments in the fields of cosmology and particle physics. Our understanding of the

evolution of the Universe, from an initial uniform singularity to a vast, expanding void,

populated with myriad clusters of galaxies has been crystallized in the concordance ΛCDM

cosmological model bulwarked by tremendous observational data. In high energy physics, we

now have a complete, experimentally vindicated, theory of elementary particle interactions:

the Standard Model. Furthermore, these two pillars of physics both rest on the remarkable

power of gauge field theories to describe the interactions of the natural world. However,

important and confounding challenges remain. Observations of distant galaxies and analysis

of the cosmic microwave background radiation (CMB) strongly suggest the presence of a
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previously unknown, dark material in astrophysical environments referred to as dark mat-

ter [121, 46]. Moreover, the relatively recent observation that the universe is undergoing

an accelerated expansion defies the expectation the we inhabit a cosmology whose energy

is dominated by matter and radiation [167, 71]. Accounting for this increasingly rapid ex-

pansion is relatively straightforward by introducing an additional substance, with a pressure

equal to negative its energy density, and which pervades all of space. However, no empiri-

cally confirmed precise theory of this dark energy, with its aberrant equation of state, exists.

Finally, the observed asymmetry between matter and anti-matter, evinced by the fact that

our ordinary macroscopic world is composed entirely out of the former and not the latter,

requires explanation. The ordinary interactions of the Standard Model provide no mecha-

nism for producing unequal abundances, to the degree required, of matter and anti-matter,

and thus the correct mechanism for baryogenesis remains an open question [121, 122, 79].

1.1.1 Dark Matter

Cold dark matter (CDM) is presently believed to constitute ∼25% of the energy density

of the Universe [5, 71]. This statement is based on a number of independent observations: the

rotation curves of galaxies, gravitational lensing, the existence of large scale structure in the

universe and its formation history, and the cosmic microwave background power spectrum.

Spiral galaxies have a flat, rotating disk composed of interstellar gas, dust, and of course

star systems. This rotation is driven by the gravitational attraction of the mass interior

to the orbit. As a star in the disk completes its orbit, it sweeps out an approximately

elliptical trajectory. According to basic Newtonian mechanics, increasing the radius of the

orbit will decrease the orbital velocity of the star unless such an increase results in more mass

inside the orbit’s circumference. By measuring the velocity of stars at different orbital radii,

astronomers can construct a galactic rotation curve. However, these empirically constructed

rotation curves do not agree with theoretical predictions if only the luminous mass of the

galaxy is considered [171, 179, 121]. Yet, by including additional dark mass which extends

beyond the visible component, forming a so-called halo, agreement between theory and

observation can be reestablished.
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The presence of dark matter can also be gleaned from gravitational lensing wherein

the trajectories of light rays are distorted when passing by a gravitational source which

curves spacetime in accordance with General Relativity. Most famously this technique was

used in mapping the mass distribution of the Bullet Cluster [146]. The Bullet Cluster

refers to an extragalactic structure formed from the collision of two galaxy clusters. The

system gravitationally lenses the light from distant galaxies behind the merging clusters. A

combination of visible light and x-ray astronomy confirmed that the stars of the colliding

galaxies passed by each other unimpeded, while the interstellar gas and dust, having been

slowed by ordinary electromagnetic interactions, became concentrated at the center of the

collision. Yet, the lensing effect is strongest on the exterior poles of the merger, away from the

visible material. Thus, a large amount of invisible matter must be sourcing the gravitational

lensing, and moreover must comprise the majority of each galaxy clusters’ mass. These

clouds of dark matter, one from each colliding cluster, appear spatially separated from the

radiating ordinary (baryonic) material, indicating that they bypassed each other, and the

gas and dust, during the collision. This outcome suggests that if the dark matter possesses

any interactions beyond gravitation, they are very weak.

The growth of galactic structures is itself further evidence of the existence of dark matter.

In large N-body simulations of galaxy formation, with only the requisite amount of baryonic

matter, interacting gravitationally, structure growth proceeds far too slowly for our own

Milky Way galaxy to have formed by the present day [66]. However, in simulations with

non-relativistic (cold) dark matter, the CDM acts as form of gravitational soil, collapsing

under its own gravitational attraction to form large scale structures with deep gravitational

potential wells upon which galaxies can form.

Finally, the CMB itself contains an imprint of dark matter. Temperature fluctuations in

the cosmic microwave background are a remnant of acoustical oscillations in the plasma at

the time when the photons decoupled. Precision analysis of these fluctuations as a function

of angular size on the night sky (the so-called CMB power spectrum) connects them to the

energy content of the universe [5]. In order to reproduce the correct power spectrum, our

universe must contain nearly five times as much dark matter as ordinary, baryonic matter.

DM candidates can largely be separated into two categories: macroscopic and micro-

3



scopic. Macroscopic candidates for dark matter, known as Massive Compact Halo Objects

(MACHOs) are brown dwarfs, neutron stars, black holes, and planets disassociated from

a star system. These objects are ultimately comprised of baryonic matter and are merely

referred to as ”dark” since they may not be included in the observed luminous mass of

their host galaxy. MACHO dark matter can be detected through gravitational microlensing

where the compact object acts a gravitational lens as it passes in front of a star, bending

the star’s light rays and giving an apparent enhancement to its luminosity. MACHOs have

been heavily constrained due to the vastly insufficient number of gravitational microlensing

events [184, 7].

Elementary particle candidates for dark matter are numerous. A plausible particle dark

matter candidate most have three properties [46, 121]: 1.) Stability : the particle cannot de-

cay on time scales shorter than the age of the universe. Stability ensures that the dark matter

can survive throughout the period of galactic structure growth. 2.) Darkness : the parti-

cle must have negligible interactions with electromagnetic radiation; otherwise its presence

would be detected directly by astronomical observations. 3.) Collsionless : If the particle

interacts beyond mere gravitation, these interactions must be sufficiently weak as to not

inhibit to formation of the extended dark matter halo. No particle within the Standard

Model has all three of these necessary properties. Thus, particle dark matter necessarily

represents Beyond the Standard Model (BSM) physics. The most popular forms of BSM,

particle dark matter are axions, sterile neutrinos, and weakly interacting massive particles

(WIMPs). Axions/axion-like particles, are sub-eV mass scalar or pseudoscalar degrees of

freedom [147]. They are naturally occurring in string theories and were originally proposed

to solve the Strong CP problem. Sterile neutrinos are a fourth, heavier flavor of neutrino

which does not couple directly to the other particles of the Standard Model, and is thus

inert, but can mix with the three SM neutrino flavors [72]. It emerges naturally in mecha-

nisms which provide the conventional neutrinos their small masses. Finally WIMPs are any

BSM dark matter particle which participates in the weak nuclear force (or any novel force

of weaker strength) and are motivated by models of supersymmetry [121].

Particle theories of dark matter necessarily require some production mechanism to gen-

erate the required energy density/abundance. Such production mechanisms usually require
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adding interactions between the dark matter candidate(s) and the Standard Model or other

degrees of freedom. In this way, interactions between these coupled degrees of freedom in the

early universe then provide a channel for producing a relic abundance of dark matter. Ther-

mal freeze-out is an example of such a production mechanism [121]; in the early universe the

interactions between the dark matter and the degrees of freedom to which it couples are in

local thermodynamic equilibrium (LTE). However, as the universe expands and the coupled

sector cools, these interactions eventually become energetically prohibitive in one direction

(if there is a difference in total invariant rest mass between the two sides of the reaction).

As the expansion continues, the coupled sector becomes too dilute for even energetically

allowed reactions to proceed, and a relic abundance is obtained. As an alternative example,

one may consider a thermal freeze-in [100] wherein the dark matter does not begin in LTE.

Rather, the dark matter is periodically, gradually produced (perhaps as a decay product or

through feeble interactions) by the degrees of freedom to which it couples. In this scenario,

eventually the universe cools, and there is insufficient energy for the production to continue

generating a relic abundance.

Model parameters of particle theories of dark matter can therefore be constrained by

their effect on the production of a relic abundance. Additionally, if the interactions required

to produce the dark matter involve Standard Model particles, then in principle it may be

detected either directly or indirectly [26]. Direct detection experiments seek to either produce

the dark matter in a particle physics collider, thereby observing its presence as missing energy,

or detect the particle scattering off a nucleon (as the Earth moves through ambient CDM),

therefore causing observable nuclear recoil. In indirect detection, the DM particle annihilates

or decays into SM particles (e.g. charged leptons) which are then observed.

In summary, the dark matter hypothesis rests on observational evidence from sub-galactic

to extra-galactic distance scales and from early universe to late universe time scales. While,

modifications to our theory of gravity may explain each of these phenomena independently, no

such unique modification has been proposed which can account for all of them simultaneously

[46]. Particle theories of dark matter, therefore, remain the most promising explanation,

and determining the identity of the elusive dark matter, a significant task in contemporary

physics.
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1.1.2 Dark Energy

In the concordance ΛCDM cosmology, approximately 70% of the Universe’s energy den-

sity is contained within a mysterious form, perhaps associated with empty space itself, known

as dark energy [71, 46, 5]. In the concordance model, dark energy is characterized by a neg-

ative equation of state (P = −ρ). Consequently, the dark energy has a repulsive effect on

the cosmology, driving an accelerating expansion of the Universe.

This expansion can be detected by studying the cosmic redshift and luminosity relation

of distant astronomical sources whose rest frame brightness and spectral features are reliably

predictable and ergo standardizable. Such objects are known as ”standard candles” of which

the stellar explosions of white dwarf stars, called Type Ia supernovae, are the prime example

[167]. By creating a plot of redshift versus luminosity, populated by observations of standard

candles, one can glean the expansion rate of the Universe, since higher redshift objects are

recessing away from us more rapidly, and dimmer standard candles are farther away. By

fitting these data with a model cosmology one can infer the amount of dark energy in the

Universe.

Precision analysis of the temperature fluctuations in the cosmic microwave background

are also sufficient for measuring the amount of dark energy. As discussed above with regards

to dark matter, the CMB anisotropies can be decomposed into a power spectrum: fluctuation

plotted versus angular scale. The resulting spectrum has multiple peaks. The position of

the first and largest of these peaks is determined by the total energy density in the Universe

which consequently determines its spatial geometry. Detailed measurement and analysis of

this spectrum strongly suggest that the Universe is spatially flat, but the amount baryonic

matter, dark matter, and radiation sum to only ∼ 30% of the energy required for such

negligible spatial curvature [5, 180]. Consequently, the remaining energy density must exist

in a different form.

The temperature fluctuations in the CMB are sourced by density inhomogenities in the

baryon-photon plasma and the dark matter [121, 71]. The overdensities cause local gravi-

tational attraction while the scattering interactions in the plasma produce a large amount

of pressure. These countervailing effects generate acoustical oscillations which propagate
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through the plasma as spherical waves with a finite wave speed. By the time the photons

decouple from the plasma, these acoustical waves have traveled a finite distance known as

the sound horizon. After decoupling, the oscillations cease due to the absence of pressure.

Because there are many such overdensities in the primordial plasma, multiple spherical waves

are produced akin to the pattern of ripples produced on the surface of a pond when stones

are dropped in a different positions. The resulting density pattern in the plasma persists

both in the CMB, but also, naturally, in the baryons themselves after decoupling. As the

baryons collapse to form galaxies, the clustering of galaxies is framed by this density pattern.

Accordingly, large voids, the size of the sound horizon, are expected between galaxy clusters

since the density waves only had time to travel this finite distance, displacing material along

the way.

Astronomical observations of the large scale clustering of galaxies can measure the present

day sound horizon of the Universe. In an expanding Universe, the physical distance of the

sound horizon increases. Thus, by comparing the present size of the sound horizon to its

predicted size at the time of recombination (when the photons decouple from the plasma),

the expansion rate of the Universe can be measured and the amount of dark energy inferred

[75].

Our theoretical descriptions of the expansion of the Universe are based on solutions of

the Einstein-Hilbert action of General Relativity. Accommodating an accelerated expansion

is straightforward since the action need only be invariant under general coordinate transfor-

mations. Thus the action freely admits the addition of an overall constant:

A = AEH +

∫
d4x
√−g

[ −Λ

8πGN

]
(1)

where AEH is the usual Einstein-Hilbert action, GN is Newton’s gravitational constant, and

Λ is the cosmological constant. By extremizing the action we derive the equations of motion.

Examining the variation of the new addition:

δAλ = +

∫
d4x
[ −Λ

8πGN

]
δ
√−g =

∫
d4x
√−g

[ +Λ

16πGN

gµν

]
δgµν (2)
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We see that a new contribution is added to the Einstein-Field equations:

1

8πGN

Rµν −
1

32πGN

Rgµν +
Λ

16πGN

gµν −
1

2
Tµν = 0→ Rµν −

R

2
gµν = 8πGN(Tµν −

Λ

8πGN

gµν)

(3)

Recalling that the left-hand side of the Einstein equations is the geometry of the spacetime

while the right-hand side is the energy-momentum tensor of the material in spacetime, it

is apparent, from this form of the equations, that adding an overall constant effectively

supplies an additional contribution the effective energy-momentum tensor. The inclusion

of this term, referred to as the cosmological constant, supplies the requisite energy density

(with the correct equation of state) to drive the accelerated expansion, acting as the dark

energy.

While the inclusion of a cosmological constant in General Relativity is simple enough,

providing the correct, dynamical explanation for its presence is more challenging. The cosmo-

logical constant can be interpreted as the energy density of the vacuum. The amount of this

vacuum energy required to be consistent with the observation of the accelerated expansion

is ρvac ' (10−3eV)4 [46]. In quantum field theory, our fundamental framework for describing

elementary particle interactions, particles are described as excitations of underlying quantum

fields. These fields, even in their ground/vacuum states, contribute non-vanishing energy.

We can compute this energy:

〈ρ〉 ∼
∫
d3k ω(k) ∼

∫ ∞
0

dk k2
√
k2 +m2 (4)

Where ω(k) is the frequency of the quantum field mode, k is the momentum which must be

integrated over, and m is the mass of the particle described by the field. This integral is

of course formally divergent, but one can introduce a cutoff M , integrating up to a certain

energy/momentum scale beyond which we suspect BSM physics to activate and modify the

result. For instance, we can integrate up to 1 TeV, an energy scale regularly probed by the

Large Hadron Collider giving the result: 〈ρ〉 ∼
∫M

0
dk k3 ∼ M4 = (1012eV)4. Clearly the

resulting vacuum contribution is enormous compared to the amount required for dark energy.
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We can attempt to make the result more palatable by renormalizing the bare parameter of

the cosmological constant:

ρvac =ρbarevac + 〈ρ〉 (5)

10−12 eV4 = (−1048 eV4+10−12 eV4) + 1048 eV4 (6)

While this does give the correct result for the dark energy, it requires the value of the bare

parameter of the theory to be finely tuned to at least 60 decimal places. As the cutoff is

placed at higher scales, the fine-tuning worsens, thus giving rise to the cosmological constant

problem and motivating alternative explanations for the dark energy [46, 191].

1.1.3 Baryogenesis

Antiparticles are a natural prediction of the Dirac equation which describes the behavior

of fermions like the electron and neutrino. However, despite the natural presence of antipar-

ticles in the Standard Model, the presence of antiparticles on Earth is all but constrained to

the particle physics laboratories where they are actively created. At the level of our solar

system, antimatter is also prohibitively rare, a fact most trivially established by the abil-

ity for our various space probes (composed of matter) to interact with the many asteroids,

moons, and planets without annihilating instantly.

The study of cosmic rays incident on the Earth’s atmosphere reveals that our galaxy

is also composed entirely of matter. Only ∼ .01% of incident cosmic rays are antiparticles

(namely antiprotons) which is perfectly consistent with such antimatter being the secondary

product of high energy cosmic ray collisions in the upper atmosphere [31]. Noting that there

are cosmic ray sources throughout the Milky Way, we have strong evidence of a maximal

asymmetry between matter and antimatter at galactic scales [121]. At extragalactic scales,

x-ray astronomy provides evidence of a continued asymmetry. The intracluster gasses within

galaxy clusters are a source of x-ray emissions, with a negligible gamma-ray component; if

galaxy clusters contained both matter and anti-matter galaxies, one would expect a de-

tectable gamma-ray flux from pair annihilation reactions in the intracluster material, and

thus the matter/antimatter asymmetry exists at least on nearby, galaxy cluster scales (a few
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Mpc) [49]. These observations motivate the baryon asymmetry problem: why and how is

our observable Universe dominated by matter over antimatter?

In order to resolve the problem, it must first be quantified. In cosmology, the useful

quantity for discussing particle populations is the ratio of Y = n
s
, where n is the number

of some species of particle per comoving volume (number density) and s is the amount of

entropy per comoving volume (entropy density). Since the Universe undergoes isentropic

expansion, Y can only change if the number of some species of particles in a comoving

volume changes (i.e. particle creation or annihilation). Moreover, since n and s are both

with respect to a comoving volume, Y is a dimensionless quantity which effectively counts

the number of particles in the comoving volume. The utility of this expression is apparent

after introducing the following [121]:

nγ '
2.4

π2
T 3 (7)

s =
2π2

45
g∗s T

3 (8)

Where nγ is the number density of photons (computed from the Bose-Einstein distribution),

s is the entropy density of relativistic degrees of freedom in the Universe, g∗s is the effective

number of relativistic degrees of freedom, and T is the temperature of the photons. The rel-

ativistic species overwhelmingly contribute to the entropy density (since the non-relativistic

species are exponentially suppressed.) Using these quantities:

s

nγ
= 1.8g∗s (9)

nB
nγ
≡ η = 1.8g∗s

nB
s

= 1.8g∗s YB (10)

Consequently the number density of baryons, nB (and therefore YB) can be related to the

baryon to photon ratio, η. During the early universe, g∗s decreases as particle species be-

come non-relativistic and/or decouple from the photon/baryon plasma due to the expansion

of space. After the decoupling of neutrinos (at T < 1 MeV), η ' 7YB. The value of η is

constrained by successful calculations of the primordial atomic abundances (big bang nucle-

osynthesis) so that η ' 6× 10−10 [71, 159, 160]. Thus to be consistent with nucleosynthesis,
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the effective number of baryons in a comoving volume must be, YB ' 10−11. It is out of

these baryons that our visible galaxies are composed.

The first natural question to ask is, can this baryon abundance be produced from a

universe with initially equal amounts of matter and antimatter, i.e. a symmetric universe,

through the ordinary interactions of the Standard Model? In the hot, early phases of such

a universe, baryons and antibaryons interact with each other through pion exchange. This

pion mediator has a mass of 135 MeV, and as the universe expands and cools below several

MeV, these interactions effectively freeze-out. Consequently, a relic abundance of baryons

(and antibaryons) is left over. Through the Boltzmann equation, this abundance can be

computed yielding YB ' 7 × 10−20 [121, 160]. After these interactions cease, YB should be

conserved, and thus the resulting abundance is roughly 9 orders of magnitude smaller than

allowed by nucleosynthesis. One possible solution to this crisis is the introduction of a novel

physical mechanism which acts before baryon/antibaryon freeze-out to segregate the particle

populations. However, the size of the particle horizon (the causally connected region of space)

of the Universe when temperatures were ∼ 20 MeV was ∼ 106 meters, meaning causality

would only permit segregation on these distance scales. Such a partitioning scale is far

below the at least 1 Mpc scale at which maximal baryon asymmetry is observed. Therefore,

the Universe, as we observe it must have a matter/antimatter asymmetry manifest at early

times.

The physics mechanism which can provide the required baryon abundance is known

as baryogenesis. The ingredients required for a physics model to provide the necessary

baryon/antibaryon asymmetry are threefold [71, 121, 160]: 1. Baryon number violation:

This condition is the most obvious as without the existence of some interactions which do

not conserve baryon number, only baroque initial conditions can provide the required asym-

metry. The ordinary, perturbative interactions of the Standard Model do not violate baryon

number and no laboratory observations confirm the existence of baryon number violation

[160]. 2. Non-LTE physics: In local thermodynamic equilibrium (LTE) between parti-

cle/antiparticles, the establishment of a chemical equilibrium causes the chemical potentials

to vanish (since the sum of the chemical potentials on both sides of the reaction must be

equivalent µ1 +µ̄1 = 2µγ = 0.) Consequently, the thermal distribution functions depend only
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on mass and temperature. Since particles and their antiparticle partners have the same mass,

LTE guarantees that the number density of each species will be equal (reactions producing

baryon number will be counteracted by those that deplete it). Therefore, a significant de-

parture from LTE is required to produce an asymmetric number of baryons and antibaryons.

3. C and CP violation: The physical charges of a particle are inverted under the charge (C)

operator. Thus, the charge operator conjugates particles to antiparticles. The parity (P)

operator inverts spatial direction, thus x → −x, left → right. In the Standard Model, the

electromagnetic and strong nuclear forces are invariant under both C, P and CP (simultane-

ous charge and parity) operators; exchanging the sign of all the particles’ charges, inverting

left/right, or both does not alter the particle interactions [183]. On the contrary, C and P

are both, separately, maximally violated by the weak nuclear force (e.g. only left chirality

neutrinos and right chirality antineutrinos participate in weak interactions) [183]. Small CP

violation is also present in the weak force, namely in the decay behavior of the neutral kaon

meson [160]. Since the CP odd, neutral kaon eigenstate preferentially decays to positrons

over electrons, the CP operator provides an unambiguous distinction between electrons and

antielectrons and consequently matter/antimatter. The baryogenesis mechanism must also

violate CP, otherwise baryon production and antibaryon production will occur at the same

rate preventing the accumulation of a baryon asymmetry.

Taken together the above criteria are known as the Sakharov conditions, and any physics

mechanism which aims to generate a baryon asymmetry from an initially symmetric universe

must meet them. None of the perturbative interactions of the Standard Model sufficiently

satisfy all three conditions. However, there exist non-perturbative interactions which can, in

principle, violate conservation of baryon number and which then leverage the small CP vio-

lation endemic to the weak sector, and the departure from LTE during the electroweak phase

transition, to simultaneously satisfy all three criteria. Known as electroweak baryogenesis,

this model is heavily constrained by the apparently insufficient departure from equilibrium

during the phase transition, and thus extensions to the Standard Model are required to

salvage the mechanism [148]. In going beyond the Standard Model, so-called grand unified

theories (GUTs), attempt to describe the quarks and leptons of the SM as all participating

in the interaction of a single force (thereby unifying the strong force with the electroweak
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force.) These GUTs generically predict baryon number violations through perturbative inter-

actions and can easily admit CP violation; therefore, they are attractive theories for studying

baryogenesis, using out of equilibrium decays as a means to evade LTE [160, 121]. Unfortu-

nately, GUT models generically predict proton decay, and are consequently constrained by

its experimentally validated long lifetime; moreover, there are theoretical reasons to worry

about GUT baryogenesis as the resulting asymmetry can be destroyed by the known non-

perturbative effects present during the electroweak phase transition.

Out of equilibrium decays in the early universe are a widely used method of meeting

the 2nd Sakharov condition, and rely on a heavy particle decaying to significantly lighter

states in the early universe [122, 79]. They are also used in leptogenesis models, where a

lepton asymmetry is first established with particle decay and then subsequently transferred

to the baryons through non-perturbative interactions [69]. These decay rates are typically

calculated using the traditional methods of quantum field theory as defined in the static,

Minkowski spacetime. Given that out of equilibrium decays occur deep in the rapidly ex-

panding, radiation dominated epoch of the Universe, computing the proper decay rate, while

consistently treating the expanding cosmology, is vital to properly understanding this mech-

anism as a model building tool for baryogenesis.

1.2 Thesis Goals and Summary of Main Results

The nature of dark matter, dark energy, and baryogenesis are not the only open ques-

tions in theoretical cosmology. However, these topics share a commonality in that they all

admit of particle physics solutions. Specifically, they can in principle be addressed in the

language of quantum field theory via the introduction of novel interactions and/or particles.

Many of these new interactions/fields are motivated as Standard Model extensions which

simultaneously address technical problems present in particle physics. Thus these questions

lie at the intersection between cosmology and particle physics. Yet, despite multi-decade,

theoretical developments and experimental probes of solutions of this kind, no empirically

validated answers have emerged to any of these problems. This simultaneously motivates
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the considering of new approaches and the reconsidering of old assumptions.

The research content of this thesis proceeds in light of this motivation. In particular,

I focus primarily on the question of dark matter, although applications to baryogenesis

are also highlighted. Phenomenological models of dark matter and baryogenesis generally

compute interaction processes in static (Minkowski) spacetime (using an S-matrix inspired

approach) despite the fact that our cosmology is most properly described by an expanding

Friedmann-Robertson-Walker (FRW) spacetime. Moreover, the free field solutions for the

quantum fields used in these models, are taken to be positive-frequency plane waves:

e±ik
axa ; kaxa = ωk t− ~k · ~x (11)

where ωk and k are the mode’s energy and momentum respectively. Such solutions have

the advantage of being naturally interpreted as free particle states with an associated vac-

uum (zero-particle) state which is invariant under Lorentz transformations. In Minkowski

spacetime, these solutions represent a natural choice since the spacetime is completely flat,

and the spacetime interval is invariant under Lorentz transformations and space/time trans-

lations. Therefore, the appropriate choice of solutions (and therefore vacuum) is one that

reflects these symmetries. However, in an expanding spacetime not all of these symmetries

are present since the metric depends explicitly on time, rendering the use of such states

dubious.

The use of Minkowski spacetime descriptions for quantum effects in cosmology is also

evident in the Boltzmann equation which describes the out of equilibrium evolution of pop-

ulations of interacting particles,

L̂f(~p, t) = C[f(~p, t)] (12)

where ~p is the particle’s momentum, f is their distribution, and t is time [24, 71, 121].

The left-hand side of the equation features a differential operator L̂ known as the Liouville

operator which is obtained purely from general relativity and FRW spacetime. Meanwhile,

the right-hand side is known as the collision term which is a complicated functional of the

distribution functions (those of the particle population and all populations with which it is

interacting). The collision term accounts for all relevant interaction processes and is obtained
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using quantum field theory techniques in Minkowski spacetime. Clearly the spacetime is not

treated consistently.

There are multiple arguments given for why the flat, Minkowksi spacetime intuition can

be be used in the curved, FRW spacetime with regards to quantum processes:

• 1. The equivalence principle of general relativity states that a local inertial frame (with

Minkowski spacetime properties) can always be found at each point in spacetime, on

sufficiently small scales. Particle physics processes happen on such scales.

• 2. There is a wide separation in scales between the characteristic timescale of cosmic

expansion and the characteristic timescale for particle dynamics.

• 3. Minkowski spacetime intuition in cosmology has been enormously successful when

used in the theories of big bang nucleosynthesis and recombination both of which are

part of the contemporary cosmological paradigm.

However, while ostensibly valid, each of these arguments has important caveats and rebuttals

• 1. Particles are states of quantum fields. Quantum fields are extended objects defined

on the entire spacetime manifold. Therefore, their evolution is sensitive to the entire

spacetime structure/history [28]. The identification of ”particles” (and how many there

are) is a frame-dependent statement.

• 2. This is precisely a statement of the adiabatic approximation [28, 158]. If one wishes

to operationalize this intuition, they must carefully treat the problem under this ap-

proximation. The adiabatic approximation description is not equivalent to a Minkowski

spacetime description.

• 3. This is true, but these results may be special cases since they both involve particles

which are at non-relativistic energies, and the relevant processes occur when the expan-

sion rate is much smaller than the typical timescale for field oscillation (H � E ' m).

These responses highlight the vulnerabilities of Minkowksi spacetime intuition with regards

to early universe particle cosmology. In this thesis, the assumed veracity of this intuition is

revisited.

The central goal of this thesis can be tersely stated: rather than using Minkowksi space-

time reasoning, treat the expansion of spacetime consistently in the calculation of particle
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dynamics; this requires the development of novel and interdisciplinary methods of quan-

tum field theory (QFT). Subsequently, employ these methods to provide new solutions to

the aforementioned open questions of cosmology. In adopting this strategy, a two-point ap-

proach is followed: (1) study the evolution of quantum fields in Friedmann-Robertson-Walker

(FRW) spacetime, computing the salient effects of an expanding background cosmology on

the dynamics of particle states and understand where these effects lead to significant depar-

tures from the usual Minkowski results. (2) Leverage these differences to further understand

and constrain new physics, with a particular emphasis on phenomenological models of dark

matter.

As an application of point (1), the process of particle decay in cosmological settings is

studied. Next, the uniquely, curved spacetime phenomenon of gravitational/cosmological

particle production is investigated as means of producing light dark matter, representing an

application of point (2). This work has resulted in four articles [105, 36, 104, 103] each of

which comprises a chapter and whose primary results I briefly summarize in the following

sections. Table 1 indicates the connection between chapters and published results.

Chapter Article Arxiv

3 Phys. Rev. D 98, 083503 (2018) arXiv:1808.02539

4 Phys. Rev. D 100, 023531 (2019) arXiv:1904.12343

5 Phys. Rev. D 101, 083516 (2020) arXiv:1912.10859

6 Phys. Rev. D 101, 123522 (2020) arXiv:2005.00391

Table 1: Thesis Chapters and Associated Articles. Each of these chapters is based on an

associated journal article. The chapters are written to function self-sufficiently from the

rest of the thesis, so that they may be read in any order according to the reader’s interest.

1.2.1 Cosmological Particle Decay Laws

Particle decay is a ubiquitous process wherein one type of particle spontaneously trans-

mutes into particles of a different species (e.g. a neutron → proton + electron + anti-
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neutrino) and is vital to understanding the production and depletion of particle populations.

In early universe cosmology, leptogenesis and baryogenesis (the processes which produce

the fundamental constituents of matter) invoke this process [122, 79]. Particle theories of

dark matter (DM) also typically require understanding decay, since stable DM must have a

production mechanism and is constrained to have long-lifetimes [196].

Particle decay is a quantum mechanical process whose occurrence rate is typically cal-

culated using the framework of QFT. These decay rates are normally obtained through the

perturbative, QFT S-matrix by constructing a unitary time evolution operator out of the

interacting Hamiltonian of the theory, taking the infinite time limit, and computing the el-

ement of this matrix using the initial and final states of the system (which are defined in

the asymptotic past and future respectively). By defining the transition probability as this

S-Matrix element squared, the energy conserving delta function ensures that the transition

amplitude is linear in total elapsed time. Dividing by the total elapsed time and summing

over the final state momenta gives the decay rate.

While such an approach is highly effective for terrestrial particle physics analysis, it

fails, in general, when performing calculations in dynamic spacetimes since the S-matrix

necessitates global energy conservation which is not present in an expanding universe, like

ours. Historically, physicists have ignored the effect of cosmic expansion in astro-particle

calculations, and have recycled techniques like the S-matrix.

Not only are such approaches inconsistent, they are explicitly blind to the surprising

consequences of an expanding universe. One such effect is cosmological particle production,

where particle/anti-particle states spontaneously erupt from the vacuum as the spacetime

expands [153, 154, 155]. Furthermore, in rapidly expanding spacetimes, normally prohibited

phenomena have been encountered such as the “self-decay” of massive particles (i.e. a

particle decaying into copies of itself) [38, 33, 34]. Given the wide range of phenomenological

consequences for particle decay in cosmology and the inability to consistently compute decay

laws for such processes in expanding/curved spactimes, the ultimate goal of this first project

was to construct and implement an original QFT framework, that consistently includes

the effects of cosmic expansion, and can be applied to the gamut of known field theory

interactions.
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In chapter 3, we adapt the quantum optics technique known as the Wigner–Weisskopf

framework and apply it for the first time in cosmology to study the decay of spinless particles

in the post-inflationary epoch of the Universe. These calculations reveal new effects including

the attenuation of particle decay rates by cosmic redshift and the peculiar capability of lighter

particles to decay into more massive species through channels which close and open based

on the expansion rate.

In chapter 4, we extend the methods of the previous chapter to the study of a more

physical scenario which is present in the Standard Model: the decay of a Higgs like scalar

with Yukawa couplings to fermions. Unlike the previous study, this model is a renormalizable

theory (the self-energy is divergent), and the study of cosmic particle decay into fermionic

channels introduces a novel physics phenomenon related to the renormalization: the for-

mation and subsequent decay of a quasiparticle state (i.e. a state dressed by fermion/anti-

fermion pairs.) We implement a renormalization procedure which permits one to separate

the dynamics of dressed-state formation from the decay dynamics since these two processes

are separated by a large time scale. The decay law and survival probability of the decaying

probability are obtained. As in the scalar-to-scalar case, the decay rate is redshifted and the

particle lives longer than generically predicted in a static spacetime. Unlike in the previous

case, however, the confluence of a renormalizable theory with the redshifting of the decaying

particle state’s momentum (by cosmic expansion) allows ”memory” of the transient dynam-

ics associated with the formation of the dressed state to persist and imprint on the decay

law.

1.2.2 Cosmological Particle Production

ΛCDM cosmology assumes a cold dark matter abundance which coalesces to form struc-

tures known as dark matter halos within which the luminous galaxies form from ordinary

(baryonic) matter. While numerical simulations of cold dark matter models successfully

reproduce the observed large scale structure of the universe, they fail to capture the ob-

served features at the scale of galactic and sub-galactic structures [46]. Furthermore, the

lack of direct confirmation, despite multi-decade searches, of the leading candidate CDM
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particle, weakly interacting massive particles (WIMPs), has impelled theorists to consider

more exotic models. These structural and direct detection problems suggest the need for a

new DM paradigm. One possible solution is the introduction of ultra-light, spinless, dark

matter known as fuzzy dark matter (FDM). These tiny scalar particles, m = O(10−22eV ),

form a halo-sized Bose-Einstein condensate and exhibit collective motion which matches the

large scale behavior of CDM; while on smaller scales quantum effects, like pressure from the

uncertainty principle, slow the formation of structure [136, 111].

Cosmological analysis of FDM physics usually treats the particles non-relativistically

using modifications of the Schrödinger equation. However, given the extremely small masses

of these particles, during early cosmological epochs the expansion rate of the universe is larger

than the local energy of a non-relativistic FDM particle (H
E
> 1). For such conditions, the

adiabatic condition is violated, and one naively expects large amounts of cosmological particle

production coming from the expansion of the universe. Such a production mechanism could

yield the necessary abundance of DM particles for structure formation without requiring

the dark matter to couple to other degrees of freedom or the addition of other terms to

the Lagrangian as is typically done [111]. The goal of this second project was to study the

cosmological particle production of an ultralight dark matter field coupled only to gravity.

Such a generic and conservative model can, in a sense, be considered the simplest and darkest

possible dark matter candidate; however, it is also akin to the various axion-like dark matter

models proposed (such as FDM).

In chapter 5, we study the cosmological production of an ultralight scalar field in detail

for both conformal and minimal coupling to gravity. We proceed under a modest set of

assumptions: 1. Our dark matter field does not couple to the inflaton and does not drive

inflation. 2. We consider our field to be in its vacuum state at the beginning of inflation, and

we focus on field fluctuations with wavelengths longer than the particle horizon at the end of

inflation. 3. By considering such long wavelength modes, we are able to assume a smooth but

instantaneous transition from the end of inflation to the beginning of the post-inflationary

epoch since these modes are outside of the causally connected region of the Universe during

this time and insensitive to any dynamics transpiring inside. As a result, our conclusions are

not reheating model-dependent. 4. We consider dark matter particle masses for which the
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field evolution will be non-adiabatic, even during much of the post-inflationary, radiation-

dominated epoch, and hence substantial particle production can occur. Our field does not

drive the expansion of the Universe during this epoch. For the given masses of interest, the

non-adiabatic evolution ends by the onset of matter-domination.

With these assumptions in place we solve the equations of motion for the field exactly

during and post inflation considering solutions which asympotically approach the adiabatic

evolution. We use these solutions to compute the energy-momentum tensor (EMT) and

extract the energy density and pressure at the onset of matter-domination, when the modes

are well-described by an adiabatic approximation. Our results demonstrate that a relic

abundance of cold, ultralight, spinless dark matter, m = O(10−5eV ), whose properties agree

with astrophysical observations, can be produced purely through this previously unstudied,

non-adiabatic channel. We argue that this production mechanism yields a generic lower

bound on ultralight scalar dark matter, in principle applicable to any axion-like particle.

In chapter 6, we consider the cosmological particle production a dark fermion field under

the same set of assumptions as the previous chapter. Following the same procedure we

are able to compute the abundance and equation of state for the produced dark fermions.

Our analysis shows that a dark fermion of m = O(108 GeV) can be produced in sufficient

quantities to saturate the necessary dark matter abundance and has a cold equation of

state. Again this production mechanism relies only on gravitational interactions; the field

does not couple to any other degrees of freedom. Surprisingly, unlike in the bosonic case,

these particles are produced with a nearly thermal distribution with an effective, emergent

temperature T ' 10−36 eV.
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2.0 Background Physics

This second chapter provides a pedagogical overview of the background physics pertinent

to understanding the original research content of the thesis. The level of presentation is

aimed at an intermediate graduate student who has had some exposure to cosmology and

quantum field theory. This section also serves to remind the more experienced reader of the

relevant frameworks, concepts, and developments which are fundamental to a contemporary

understanding of particle cosmology. A note to the reader, natural units, ~ = c = 1 are used

unless otherwise stated.

2.1 Cosmology

The field of cosmology is the branch of physics concerned with the origins and evolution

of the Universe. In the last century this discipline has developed from a speculative field to a

rigorous science. The material presented here outlines the theoretical framework undergird-

ing modern research in cosmology. A conventional treatment of this material is presented

following the standard literature [71, 121, 160].

2.1.1 FLRW Spacetime

The General Theory of Relativity describes how the structure of spacetime is determined

by the energy contained within it, giving rise to the gravitational interaction. This statement

is codified in the Einstein field equations:

Rµν −
R

2
gµν = 8πGN(Tµν −

Λ

8πGN

gµν) (13)

Here, gµν , Rµν , and R are the spacetime metric, Ricci curvature tensor, and Ricci scalar

respectively. Together they describe the geometric structure of spacetime. Tµν is the energy-

momentum tensor, encapsulating the energy-momentum contained within the spacetime.
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GN is Newton’s universal gravitational constant. These equations can be derived via the

variational principle applied to the Einstein-Hilbert action, which admits the addition of a

constant scalar; thus I have included this cosmological constant, Λ.

The Universe is represented as a solution to these non-linear equations: a particular

form of energy-momentum tensor generates an associated spacetime metric. On the largest

scales, the Universe appears statistically homogeneous and isotropic. We can thus describe

the energy-momentum tensor as a perfect fluid:

Tµν = (ρ+ P )uµuν + Pgµν (14)

Where ρ, P , and uµ are the energy density, pressure, and relative 4-velocity (3 space + 1

time) between the fluid and the observer. In the frame at rest with fluid (the comoving

frame), uµ = (1,~0). The spacetime metric for a homogeneous and isotropic universe is

described by the Friedmann-Lemâıtre-Robertson-Walker metric, which when expressed in

comoving, spherical coordinates gives the following invariant spacetime interval:

ds2 = gµνdx
µdxν = dt2 − a2(t)

[ dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
(15)

The FLRW metric features a parameter, k = −1, 0,+1 which describes an open, flat, or

closed spatial curvature as well as the dimensionless scale factor, a(t), which, as it increases,

uniformly increases physical distances in the space. Consequently, the functional form of

a(t) determines the expansion history of the Universe. From this metric, we can compute

the Ricci scalar and non-vanishing elements of the Ricci tensor:

R00 = −3
ä

a
(16)

Rij =
( ä
a

+ 2
ȧ2

a2
+ 2

k

a2

)
gij (17)

R = 6
( ä
a

+
ȧ2

a2
+
k

a2

)
(18)

Where the Latin indices run over 1− 3, the spatial dimensions. Inserting equations 14, 16,

17, and 18 into the Einstein equations gives the constraint conditions for which the FLRW

metric is a solution for a Universe filed with a homogeneous and isotropic energy-momentum;

these constraint equations are known as the Friedmann equations.
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2.1.1.1 The Friedmann Equations Upon the insertion of the perfect fluid energy-

momentum tensor and FLRW metric, both in comoving coordinates, the Einstein equations

reduce to a pair of differential equations determining the scale factor’s evolution:

H2 ≡
( ȧ
a

)2

=
8πGN

3
ρ− k

a2
(19)

ä

a
=
−4πGN

3

(
ρ+ 3P

)
(20)

Where Λ has been absorbed into the energy density and pressure, and H is defined as the

Hubble parameter which characterizes the expansion rate. Additionally, covariant conser-

vation of the energy momentum tensor, ∇µT
µ
ν = 0, supplies a third constraining equation:

ρ̇+ 3
ȧ

a

(
ρ+ P

)
= 0 (21)

Equations 19-21 constitute the equations of motion for the scale factor (note, however, that

they are not a set of linearly independent equations). Solutions to these equations describe

different cosmologies, which are determined by the energy density and pressure.

We recall from thermodynamics that the energy density and pressure of a perfect fluid

can be related through an equation of state, P = wρ, where w is known as the equation

of state parameter. In cosmology we are concerned with three fluid types comprising the

energy-momentum of the Universe: radiation (relativistic material), matter (non-relativistic

material), and vacuum energy. Here I present a heuristic argument for the equation of state

parameter for each type.

Consider a finite volume cube, of side length L, containing a perfect fluid, e.g. an ideal

gas of particles, each with mass m. We place a barometer on the right wall of the container.

An individual particle travels from the left edge of the container to right edge and elastically

collides with the wall of the container, supplying a pressure: P i = F1

L2 = 2p1

∆t L2 , where the

subscript 1 refers to the horizontal direction, p1 is the particle’s horizontal momentum, and

superscript i indicates the contribution from a single particle. If the particle has a horizontal

velocity component, β1, then these collisions occur at a rate, ∆t = 2L
β1

. Thus, if there are N

such particles then,

P =
N∑
i

P i =
N∑
i

2pi1
∆t L2

=
N∑
i

mγi1 (βi1)2

L3
= nm〈γβ2

1〉 = nm
1

3
〈γ|~β|2〉 (22)
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where γ is the Lorentz factor. In the last step we have introduced the number density n

and averaged over all 3 spatial dimensions, 〈γ|~β|2〉 =
∑3

j=1〈γβ2
j 〉 = 3〈γ|β1|2〉 since the gas is

isotropic. For non-relativistic species, γ ' 1 and 〈|~β|〉| � 1. Meanwhile for the relativistic

case, 〈mγ |~β|2〉 = 〈|~p||~β|〉 ' 〈|~p|〉 = 〈E〉. Consequently,

P = 0 ρm Matter (23)

P =
1

3
ρR Radiation (24)

The above relations can be verified from the statistical mechanics of ideal gases.

For the vacuum energy, we consider an empty version of the same cube and replace the

barometer with a movable piston. The energy of the vacuum is proportional to the amount

of vacuum in the container, namely E ∝ V . However, if an agent adiabatically increases

the volume of the container, by moving the piston, they must supply energy ∆E = P∆V .

Therefore by energy conservation:

∆E = 0 = ρ∆V + P∆V (25)

P = −ρΛ Vacuum Energy (26)

Alternatively, by noting that the vacuum energy must be a frame-independent quantity,

we see its energy-momentum tensor cannot depend on the relative 4-velocity, uµ, and so

equation 14 gives the same equation of state.

Inserting the equation of state for a particular energy density into equation 21 yields a

linear, first order differential equation the solution of which gives the functional dependence

of that energy density on the scale factor, ρ(a). Equation 19 can then be used with ρ(a)

to determine a(t) and H(t) thus determining how the Universe evolves when driven by a

particular form of energy density. Table 2 (below) summarizes these results, where the factor

of k in the Friedmann equations was neglected.

Notice in all cases, the scale factor increases in time. However, it is only in the case of a

Universe driven by vacuum energy that the Hubble rate is not decreasing with time; rather

the Universe exponentially increases in size while the Hubble parameter remains constant.

Additionally the energy density of matter decreases as the scale factor increases, purely due
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Radiation Matter Vacuum

w 1/3 0 −1

ρ(a) ∝ a−4 ∝ a−3 Constant

a(t) ∝ t1/2 ∝ t2/3 ∝ eH t

H(t) 1/2t 2/3t Constant

Table 2: Cosmological Solutions. The equation of state parameter, energy density, scale

factor, and Hubble parameter are show for each type cosmological solution. Spatial

curvature has been neglected.

to volumetric dilution, while the energy density of radiation decreases by an extra power of

the scale factor, a consequence of cosmic redshift.

Of course the actual Universe contains all three sources of energy density. In order to

describe a multi-component Universe, it is useful to introduce the critical density, ρc = 3H2

8πGN
,

in terms of which Friedmann equation 19 becomes

1 = ΩR + Ωm + ΩΛ + Ωk (27)

Where Ωk ≡ − k
(aH)2 is defined as the curvature density parameter and Ωj=R,m,Λ ≡ ρj

ρc
are

the density parameters of each of the three sources of energy density. When expressed in

this form, the Friedmann equation naturally reveals the connection between the total energy

density in the Universe and its spatial curvature:∑
j

Ωj < 1→ Ωk > 0→ k = −1 Open (28)

∑
j

Ωj = 0→ Ωk = 0→ k = 0 Flat (29)

∑
j

Ωj > 1→ Ωk < 0→ k = +1 Closed (30)

Finally, by leveraging the relationship between energy density and scale factor, ρ(a), for

each form of energy density and setting the present day scale factor to unity (a0 = 1), the
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same Friedmann equation (19) can also be written in terms of the present day values of each

density parameter (Ω0,j=R,m,Λ ≡ ρ0,j

ρ0,c
, ρ0,c =

3H2
0

8πGN
):

H2(a) = H2
0

[ΩR,0

a4
+

Ωm,0

a3
+ ΩΛ,0 +

Ωk,0

a2

]
(31)

2.1.1.2 Cosmological Epochs In view of equation 31, one of the central projects for

observational cosmology is to determine the value of each of the present day density pa-

rameters thereby determining the evolution of the Universe. Detailed probes of the cosmic

microwave background, galaxy clustering and distribution surveys, analysis of nucleosynthe-

sis, and studies of gravitational lensing have allowed cosmologists to constrain the values

of the density parameters. Table 3 (below) gives the present day values for each of these

parameters as inferred from observation. Note for the rest of this thesis we will drop the ”0”

from the density parameters thereby defining Ωj as the present day value.

Component Parameter Present Value

Curvature Ωk 0.0008± 0.0013

Radiation ΩR 9.17± 1.90× 10−6

Baryonic Matter ΩB 0.0486± 0.0010

Dark Matter ΩDM 0.2589± 0.0057

Dark Energy ΩΛ 0.6911± 0.0062

Table 3: Cosmological Parameters as Determined by the Planck Collaboration [5].

Examining Table 3, reveals that our observable Universe has negligible spatial curvature 

(effectively flat), and is dominated by matter (specifically dark matter) and dark energy 

which differ in contribution by a roughly a factor of 3. This incarnation of the FLRW 

model is consequently referred to as the ΛCDM cosmology (Λ, dark energy; CDM, cold dark 

matter).
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Inserting the ΛCDM values into the Friedmann equation 31 gives an equation with no

closed form, analytic solution. However, the relative values of the density parameters allow

partitioning of the expansion history into cosmological epochs, as the various energy density

components scale with a(t) differently, implying that for certain ranges of the scale factor

the expansion is effectively driven primarily by a single component. These ranges can be

straightforwardly computed by solving for the scale factor at which the various terms are

equivalent:

Radiation Domination (RD) a� aeq =
ΩR

Ωm

' 10−5 (32)

Matter Domination (MD) a� ade =
(Ωm

ΩΛ

)1/3

' 0.76 (33)

Evidently, at early times the expansion of the Universe was driven by ΩR until the energy

density in radiation was sufficiently redshifted, and the the non-relativistic matter became

the dominant contribution to the total energy density. This period of matter domination

continued until the Universe was roughly 76% its present size corresponding to a time of ∼ 9

Gyrs at which point the dilution of energy density in baryons and cold dark matter rendered

their contribution subdominant to the dark energy, initiating the current Λ domination era.

2.1.1.3 Conformal Time and Particle Horizons The FLRW metric admits of a sim-

ple coordinate transformation,

dη ≡ dt

a(t)
(34)

in terms of which the spacetime interval of the spatially flat FLRW metric 15 becomes

ds2 = gµνdx
µdxν = a2(η)

[
dη2 − d~x2

]
= a2(η)ηµνdx

µdxν (35)

In terms of these new comoving variables, the metric is revealed to be conformal to the

Minkowski spacetime metric, ηµν ≡ diag
[
1,−1,−1,−1

]
, thus dη is referred to as conformal

time. Working in conformal time is often convenient for complex calculations in FLRW
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spacetime. By rewriting the Friedmann equation 31 in conformal time and considering

specific cosmic epochs, one can determine a(η):

a(η) = H0

√
ΩR η RD (36)

a(η) = H2
0 Ωm

η2

4
MD (37)

a(η) =
−1

H0

√
ΩΛ η

ΛD (38)

One immediate advantage of conformal time concerns causality. In either Special or General

Relativity, events in spacetime are characterized by the interval, ds2, separating them. For

space-like intervals, ds2 < 0, it is possible to transform to a coordinate system where two

events are simultaneous (dt2 = 0) since the spacetime interval is invariant under general

coordinate transformations. However, such events would necessarily be separated by a non-

zero distance and as such (d~x
dt

)2 � 1, and thus outside the light-cone defined by d~x
dt

= 1 (in

natural units). Consequently, no signal traveling at the speed of light could connect any

two such events, so they are said to be causally disconnected. As a corollary, the boundary

of causally connected regions of spacetime is determined null/light-like intervals, ds2 = 0,

since causally connected events may, at maximum, have such separation. Considering, a null

interval traversed by a light ray in the FLRW metric,

ds2 = 0→
∫
dr =

∫
dη → rH(η(t)) = η(t) =

∫
dt

a(t)
(39)

we therefore see that the size of causally connected regions of the Universe, known as the

comoving particle horizon, rH , is a function of (comoving) time and is equivalent to the

conformal time. Therefore, finding η(t) is tantamount to computing the particle horizon. As

an example consider radiation domination:

rH(t) = η(t) =
a(t)

H0

√
ΩR

=

√
2t

H0

√
ΩR

(40)

where the last line follows from computing a change of variables (ȧ = a
′

a
). Equation 40

demonstrates that the size of the causally connected Universe also grows with time. Express-

ing the comoving particle horizon as a proper distance is straightforward, dH(t) = a(t) rH(t).

During RD, the proper distance particle horizon is therefore, dH(t) = 2t = 1/H(t), and

consequently is determined by the Hubble rate (and of finite size).
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2.1.2 The Standard Cosmological Picture

The ΛCDM cosmological model represents a particular FLRW solution to the Einstein

equations for a homogeneous and isotropic universe. As a description of the observable

Universe, ΛCDM makes a number of precise predictions regarding phenomena throughout

the expansion history. These predictions have been tested through astronomical observations

which provide empirical support for the cosmic history implied by the model.

In this history, the hot early Universe is characterized by a primordial plasma of funda-

mental particles which cools to form nucleons and ultimately trace amounts of the lightest

elements as space expands in a process known as big bang nucleosynthesis. This expansion is

driven primarily by the energy density in relativistic species which comprises the dominant

contribution to the total energy density of the Universe. At a scale factor a ∼ 10−4, the

matter dominated phase of cosmic expansion begins as the energy density in non-relativistic

matter becomes dominant. During this phase, the opaque baryon-photon plasma sufficiently

cools for neutral hydrogen to form while the photons fall out of equilibrium with matter,

decoupling from the plasma. Thus, the Universe becomes transparent to electromagnetic

radiation through this process referred to as recombination. The radiation produced during

the recombination event, which occurs at t ' 300 kyrs, is presently detectable as the cosmic

microwave background radiation. As the expansion continues, the growth of extragalactic

structure, seeded by the gravitational collapse of the dark matter, proceeds and the matter

dominated era concludes with the formation of the first generation of stars and quasars. At

t ' 9Gyrs, the matter energy density is sufficiently diluted by expansion such that dark

energy becomes the dominant contribution to the expansion, initiating the present era of

accelerated expansion detectable through the cosmic redshifting of distant light sources.

In this section the evidence for this cosmological picture, painted by ΛCDM, is reviewed

by studying the major astrophysical phenomenology associated with the model.

2.1.2.1 Cosmological Redshift As the scale factor increases physical distances between

objects on in the Universe also increase uniformly on extragalactic scales. To an observer

in the Universe, this expansion causes distant objects, in all directions, to appear to be
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recessing away. Astronomical observations of this recession constitute an important probe

of our cosmological model. To understand the origin of this effect, consider the trajectory

taken by a light ray emitted from a distant source at a comoving time t = t0 and which

arrives here on Earth at t = t1:

ds2 = 0→
∫ t1

t0

dt

a(t)
=

∫ r1

0

dr (41)

where we have considered a FLRW spacetime with negligible spatial curvature. If a second

light signal is emitted at a time t = t0 + δt0, it will arrive at the same comoving position r1

at t = t1 + δt1. Therefore, ∫ t1+δt1

t0+δt0

dt

a(t)
= r1 =

∫ t1

t0

dt

a(t)
(42)

and by writing both sides of eqn. 42 as a sum of two integrals we find∫ t1+δt1

t1

dt

a(t)
=

∫ t0+δt0

t0

dt

a(t)
(43)

δt1
a(t1)

=
δt0
a(t0)

(44)

where the last line follows from δtj � tj. Given that δt0[δt1] is the time between the emission

[detection] of successive light pulses, it follows that

a(t1)

a(t0)
=
δt1
δt0

=
ν0

ν1

=
λ1

λ0

≡ 1 + z (45)

where ν and λ are the frequency and wavelength of the signal. The identity of z as the

Doppler shift, becomes apparent by solving eqn. 45

z =
λ1 − λ0

λ0

=
∆a

a(t0)
(46)

Since the scale factor increases with time in an expanding universe, z > 1, and so z is

known as the cosmic redshift. Notice that since the present day scale factor is set to unity

(a(t1) = 1), the redshift can be computed as z = 1
a
− 1. Thus redshift can be used in place

of the scale factor for describing the expansion history of the Universe.
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Incidentally, since da
dt

1
a

= H, the age of the Universe can be computed using redshift:∫ t0

t∗

dt′ =

∫ a0

a∗

da

aH(a)
=

∫ z(a∗)

z(a0)

dz

(1 + z)H(z)
(47)

where a∗ is the scale factor at the beginning of the Universe (typically taken to be 0 with

t∗ = 0) and a0 is the present day scale factor (typicall set to unity). H(z) is given by the

Friedmann equation (eqn. 31). Consequently, cosmic redshift can also be used as a proxy

for the age of the Universe.

Having introduced the cosmic redshift endemic to an expanding universe, we can now

construct the relationship between the redshift of an extragalactic light source and its dis-

tance from Earth. Consider an astrophysical, light-emitting source. In a static universe, if

such an object emits light isotropically, with a luminosity L, then the apparent luminosity l

as seen by an observer a distance d away is given by

l =
L

4πd2
(48)

since the light is spread out over a spherical surface area. In astronomy, one typically uses

absolute magnitude M and apparent magnitude m as measures of luminosity:

L = 10
−2M

5 × 3.02× 1035erg s−1 (49)

l = 10
−2m

5 × 2.52× 10−5erg cm−2s−1 (50)

From these relations, the distance measure d in eqn. 48 becomes

d =
[ L

4πl

]1/2

= 10[1+(m−M)/5]pc (51)

which is referred to as the luminosity distance. Astronomical observation directly probe

m−M known as the distance modulus thus measuring the luminosity distance indirectly:

m−M = 5(log
d

1 pc
− 1) (52)

Including the effects of cosmic expansion will modify the luminosity distance in three ways:

• The spherical surface area over which the light dissipates must computed as a proper

distance, d = a(t) r

31



• The absolute luminosity is energy per unit time (∆E
∆t

). Cosmic expansion redshifts the

energy of the emitted light, ∆E1 = ∆E0

1+z
(see eqn. 45).

• The absolute luminosity is energy per unit time (∆E
∆t

). The rate of arrival of the photons

is also attenuated by the same cosmic redshift factor, ∆t1 = ∆t0(1 + z) (see eqn. 45).

The confluence of these effects modifies eqn. 48 yielding

l =
L

4πr2
1a(t1)2 (1 + z)2

→ dL ≡ r1a(t1) (1 + z) (53)

Where dL is the analogously defined luminosity distance in an expanding universe. What is

immediately apparent from eqn. 53 is the prediction that in such an expanding cosmology

higher redshift light sources should be farther away. We can recast this relationship into a

more useful form by considering light sources at relatively low redshift (z � 1):

a(t0) ' a(t1) + (t0 − t1)ȧ(t1) +
1

2
(t0 − t1)2ä(t1) + . . . (54)

a(t0) ' a(t1)
[
1 + (t0 − t1)H(t1)− 1

2
(t0 − t1)2H2(t1)q(t1) . . .

]
(55)

1 + z =
a(t1)

a(t0)
' 1− (t0 − t1)H(t1) +

1

2
(t0 − t1)2H2(t1)q(t1) + (t0 − t1)2H2(t1) + . . . (56)

z ' (t1 − t0)H(t1) +
1

2
(t1 − t0)2H2(t1)[q(t1) + 2] + . . . (57)

where q(t) ≡ − ä(t)

H(t)a(t)
(58)

where we have treated (t1 − t0)H(t1) as the small parameter and defined the deceleration

parameter q(t). Next we compute r1 by considering the light ray trajectory (eqn. 41) and

leveraging eqn. 56

r1 =

∫ t1

t0

dt

a(t)
' 1

a(t1)

∫ t1

t0

dt
[
1 + (t0 − t1)H(t1)

]
(59)

r1 =
1

a(t1)

[
(t1 − t0) +

1

2
(t1 − t0)2H(t1)

]
. (60)
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The combination (t1 − t0)H(t1) can be expressed in terms of q(t) and z by inverting the

series in eqn. 57, giving (t1 − t0)H(t1) = z − 1
2
[q(t1) + 2]z2. Now the luminosity distance dL

can be expressed in terms of z, H(t1), and q(t1) by plugging eqn. 60 into eqn. 53:

dL = (1 + z)
([

(t1 − t0) +
1

2
(t1 − t0)2H(t1)

])H(t1)

H(t1)
(61)

=
(1 + z)

H(t1)

(
z − 1

2
[q(t1) + 2]z2 +

1

2
z2 + . . .

)
(62)

dL =
1

H(t1)

(
z +

1

2
(1− q(t1))z2 + . . .

)
(63)

Recall t1 is the time when the light signal arrives at the location of the observer. Calling

this the present time, and introducing the recessional velocity v ≡ zc, where c = 1 is the

spend of light, gives the familiar Hubble’s law:

dL =
1

H0

(
v +

1

2
(1− q0)v2 +O(v3)

)
(64)

where H0 and q0 are the present day Hubble parameter and deceleration parameter respec-

tively. To leading order in the recessional velocity (and redshift), one obtains the canonical

form H0dL = v for Hubble’s law. The eqn. 64 is a valid approximation for the luminosity

distance at low redshift z � 1. Notice the z2 term is sensitive to the radiation, matter,

and dark energy density parameters of the cosmological model through the deceleration pa-

rameter, q ∝ ä. Consequently to constrain the model parameters, observations must probe

distance scales at higher redshift. This requires extending the calculation of the luminosity

distance dL beyond the asymptotic form given above. Making no assumptions on the spatial

curvature and using eqns. 41, 47, and 31, this procedure is straightforward:∫ r

0

dr′√
1− kr′2

=

∫ z

0

1

a(z′)

dz′

(1 + z′)H(z′)
=

∫ z

0

dz′

H(z′)
(65)

r(z) = S
(∫ z

0

dz′

H0

[
ΩΛ + Ωk(1 + z)2 + ΩM(1 + z)3 + ΩR(1 + z)4

]−1/2
)

(66)

Where S(y) = (sin y, y, sinh y) for k = (1, 0,−1) (67)

r(z) =

√
−k

H0

√
Ωk

S
(√

Ωk√
−k

I[z]

)
=

1

H0

√
Ωk

sinh
√

Ωk I[z] (68)
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where the last line follows from using the present day curvature density parameter
√

Ωk =
√
−k
H0

and the properties i sin−iy = sinh y and sinhαy ' αy for α � 1. The integral over

redshift, I[z] does not have a closed, analytic form and must be evaluated numerically. With

the comoving distance computed, the luminosity distance becomes (see eqn. 53)

dL = a0r(z)(1 + z) =
1 + z

H0

√
Ωk

sinh
√

Ωk I[z] (69)

I[z] =

∫ z

0

dz′
[
ΩΛ + Ωk(1 + z)2 + ΩM(1 + z)3 + ΩR(1 + z)4

]−1/2

(70)

By inserting eqn. 69 into eqn. 52 one obtains the magnitude-redshift relation which in

principle can constrain the model parameters of the cosmology each of which enters into the

equation with different powers of redshift. This constraining is done by fitting a distance

modulus versus redshift plot populated by astronomical observations of astrophysical ”stan-

dard candles”(objects with known absolute magnitude). Such a plot is known as a Hubble

diagram.

Type Ia Supernovae (SNIa) are known to be reliable standard candles given that their

intrinsic brightness is correlated with their dimming timescale [175]. The Supernova Cosmol-

ogy Project and High-z Supernovae Search Team have both utilized the magnitude-redshift

relation with observations of SNIa to constrain the density parameters of the Universe. Fig-

ure 1 (below) shows their data along with multiple theoretical projections based on model

cosmologies. It is worth mentioning that since at low redshift, z � 1, the luminosity distance

is well approximated by eqn. 64, and the linear term of this equation is only sensitive to

the Hubble constant, the magnitude-redshift relation also provides an empirical probe of the

present day Hubble parameter, insensitive to the cosmological density parameters [169].

2.1.2.2 Nucleosynthesis Big bang nucleosynthesis (BBN) provides one of the earliest

probes of the big bang cosmology and ΛCDM in particular. Using Standard Model particle

interactions in conjunction with the expanding FLRW framework, one is able to predict

the primordial abundances of the lightest chemical elements; predictions which can then be

compared with astronomical observations. The process of nucleosynthesis proceeds through

multiple stages, but let us first consider initial conditions.
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Figure 1: The Magnitude-redshift relation using type Ia supernovae as standard candles

produced by High-z SN Search Team with data from the SCP [168]. Different black lines

represent distinct model cosmologies. While all are consistent in the low redshift range,

ΛCDM cosmology provides the best fit for high redshift behavior.

Once the early Universe has cooled, through expansion, below T . 20 MeV (baryon

freeze-out [121]), a plasma of coupled nucleons, leptons, and photons persists in (very nearly)

local thermodynamic equilibrium (LTE). This equilibrium is maintained by the following

weak interactions:

νe + n↔ e− + p (71)

ν̄e + p↔ e+ + n (72)

n→ p+ e− + ν̄e (73)
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At MeV scale temperatures, the nucleons (n, p) in the above reactions are non-relativistic

(m� T ) while the leptons are ultra-relativistic (m� T ). Consequently, the number density

of each type of nucleon will be given by

nnuc ' 2
(mnucT

2π

)3/2

e−(mnuc−µnuc)/T (74)

where µnuc is the chemical potential of the nucleon. The ratio of neutrons to protons is

therefore

nn
np

=
(mn

mp

)3/2

e−(mn−mp)/T e(µn−µp)/T ' e−Q/T e(µe−µν)/T ; Q ≡ mn−mp = 1.293MeV (75)

where we have used the fact that mn
mp
∼ 1 and the relationship between chemical potentials

implied by eqn. 71. Incidentally, the charge neutrality of the Universe implies that ne− n̄e =

np − n̄p ' η nγ, where η is the present day baryon to photon ratio (since most baryons

today are protons). Moreover, for ultra-relativistic particles, the combination, n − n̄ is

proportional to T 3( µ
T

). Using these two facts and recalling the photon number density leads

to the following relation,

η nγ = η
2.4

π2
T 3 = ne − n̄e ∝ T 3

(µe
T

)
→ η ' µe

T
. (76)

As we will soon see nucleosynthesis constrains η � 1, a result also confirmed by analysis

of the cosmic microwave background power spectrum [23]. Therefore, the result of eqn. 76

along with a similar argument for µν
T

justify dropping the chemical potential dependence from

eqn. 75, thus giving a simple temperature dependence for the neutron-proton ratio while

the species are in LTE. This ratio plays a key role in determining the BBN abundances. We

now consider it’s value at the onset of BBN after neutron freeze-out.

As the Universe continues expanding and cooling, the reactions 71 and 72 become in-

efficient at maintaining equilibrium between protons and neutrons. The temperature (Tf )

at which this thermal freeze-out occurs is properly computed through the Boltzmann equa-

tion; however, it can be reliably estimated using the decoupling criterion (H(Tf ) ' W (Tf ))

36



where H and W are the Hubble parameter and interaction rate (of the process decoupling)

respectively. First the interaction rate for the process 71 can be estimated [121]:

W = ne 〈σ[pe→ nν] · (v ' c = 1)〉 (77)

σ ' 5.76 (GF )2 p2
f ; ne '

1

π2
T 3 , (T > Q) (78)

W ' (GF )2T 5 (79)

where GF is Fermi’s constant, v is the velocity of the relativistic electron flux, σ is the

scattering cross section typical of a weak force interaction when the center of mass energy is

below the mass of the W-boson mediator. pf is the magnitude of the outgoing momentum

in the center of mass frame, and the number 5.76 comes from the axial vector coupling of

nucleons. The number density of the electrons comes from the Fermi-Dirac distribution. In

the above estimate, p2
f ∼ T 2, and consequently, the interaction rate scales with T 5. Mean-

while, the Hubble rate comes from noting that BBN occurs during the radiation dominated

epoch:

H2 =
8πGN

3
ρR ; ρR =

π2

30
g∗T

4 (80)

H =
1.66T 2

Mpl

√
g∗ (81)

where g∗ is the effective number of relativistic degrees of freedom and Mpl is the Planck mass.

Setting eqns. 79 and 81 equal to each other gives as a freeze out temperature Tf ' 1MeV.

This result is approximate however, and when all of the relevant effects are properly included

in the evaluation of the scattering cross-section, the freeze-out temperature is found to be

Tf = 0.8MeV [160, 121]. Evaluating the neutron-proton ratio at this temperature (see eqn.

75, dropping the chemical potentials) yields

r0 ≡
nn
np

(T = 0.8MeV) = 0.2 (82)

which is the initial condition for the onset of BBN. After freeze-out, the neutron-proton

ratio still decreases since the beta decay process 73 continues. The lifetime of the neutron is
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τn ' 880 s [183, 159]; therefore at time t after neutron freeze-out, the neutron-proton ratio

is
nn
np

(t) ≡ r(t) =
r0e
−t/τn

1 + r0(1− e−t/τn)
. (83)

While the neutron abundance is slowly depleting due to beta decay, other nuclear processes

involving neutrons can proceed. Of particular importance is the production of deuterium:

n+ p↔ 2H + γ ; Eγ ' 2.2MeV (84)

where 2.2 MeV is the deuterium binding energy. The deuterium abundance is of vital impor-

tance to nucleosynthesis since the nuclear production of all other elements proceed through a

deuterium channel. Thus deuterium production is known as stage one of BBN. A relic abun-

dance of deuterium will accumulate once the reaction decouples. The temperature at which

the deuterium freeze-out occurs can again be estimated through the decoupling criterion

(H(Tf ) ' W (Tf )). However, this reaction proceeds via an electromagnetic interaction and

consequently has a much larger scattering cross section, σ[γ 2H → np] ' 2.57× 10−7 MeV−2

[160]. Additionally, since the binding energy is larger than the temperature of the plasma

(2.2 Mev > 0.8 MeV), only photons in the tail of Bose-Einstein distribution will be able

to photodisintegrate the deuterium nucleus; accordingly the relevant nγ must be computed

by integrating the distribution over the relevant domain. Accounting for these factors, the

decoupling criterion gives an approximate freeze-out temperature of Tf ' 0.06 MeV.

The time at which the Universe reaches this temperature can be computed via eqn. 81

and Table 2
ȧ

a
=

1

2t
= H =

1.66T 2

Mpl

√
g∗ (85)

which for T = 0.06 MeV gives tdec ∼ 300 seconds, for the age of the Universe in comoving

time. Computing the neutron-proton ratio, r(t), at this time yields

r(tdec) ' 0.14. (86)

After the synthesis of a deuterium abundance, stage two and three of nucleosynthesis can

rapidly proceed through a cascade of fusions, leading to the production of helium-4, beryl-

lium, and lithium. Helium-4 has the largest binding energy of all the primordial nuclei
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produced through BBN and consequently the majority of the frozen-out neutron abundance

ends up in this isotope. The 4He mass fraction can be estimated,

Yp ≡
ρHe

ρHe + ρp
(87)

Yp '
4nHe

4nHe + np
=

2nn(tdec)

2nn(tdec) + np
(88)

np = np(tdec)− 2nHe = np(tdec)− nn(tdec) (89)

where we have noted that the species are all non-relativistic and treated their mass as

m = mn ×N , where N is the number of nucleons in the species. Finally, we have assumed

1
2
nn(tdec) ' nHe), namely that nearly all the neutrons become helium-4. Finally, combining

eqns. 88, 89, and 86 we obtain

Yp =
2nn(tdec)

nn(tdec) + np(tdec)
=

2r(tdec)

2r(tdec) + 1
(90)

Yp ' 0.245 (91)

The Helium-4 mass fraction can be measured astronomically by observing low metallicity

environments such as globular clusters, extragalactic dust clouds, and planetary nebulae

[121, 159, 160]. Although helium-4 is produced in stellar cores of main sequence stars, the

amount synthesized increases the helium-4 abundance only at ∼ 1% level [160]. Thus, given

the stability of the isotope, the helium-4 abundance represents a stringent test of BBN and

by extension our cosmological model.

As previously mentioned, nucleosynthesis also accounts for the primordial production of

deuterium, helium-3, and lithium. A rigorous computation of these primordial abundances,

requires numerically solving the coupled Boltzmann equations for the various particle species’

distribution functions, tracking their evolution through time. Figure 2 below shows the

results of such an analysis and a comparison with observations. Two important points

remain in our discussion of nucleosynthesis. First, BBN represents the only real means of

producing deuterium in the Universe since it functions only as an intermediate stage in

the nuclear reactions of stellar interiors [160, 159]. Therefore any detection of deuterium

translates into a lower bound on its primordial abundance. Second, of particular importance

is the strong sensitivity of all the abundances save for 4He on the baryon to photon ratio η
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(see fig. 2). Assuming the three standard model flavors of neutrino (which effects the value

of g∗), η represents the only true independent variable in the nucleosynthesis analysis [159].

The success of BBN calculations at predicting the primordial abundances, whose mass

fractions span nearly 9 orders of magnitude, is an important achievement in the physics of the

early Universe. Using equation 85 and Tf ' 1 MeV for the neutron freeze-out temperature

gives an age of the Universe of ∼ 1 s. The ability to accurately describe the physics of such

an extraordinarily young, Universe motivates the extrapolation to even earlier times.

Figure 2: The primordial abundances for 4He, D, 3He, and 7Li as predicted by Standard

Model nucleosynthesis [159]. The bands show 95% CL range. Boxes indicate regions

consistent with astronomical observation. Narrow vertical band indicates CMB

observations of baryon-photon ratio. The wider vertical band is the BBN concordance

region. The major source of discrepancy is the lithium abundance which prefers an η range

differing by roughly a factor of 2.
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2.1.2.3 The Cosmic Microwave Background: Recombination The Cosmic Mi-

crowave Background radiation (CMB) refers to the isotropic electromagnetic radiation which

is detectable in the microwave frequency range, and permeates the Universe. The CMB is

the result of the rapid transition of the early Universe’s state from an opaque plasma of

tightly coupled baryons, electrons, and photons to a gas of mostly neutral hydrogen and

freely propagating photons. To an observer inhabiting this Universe, the transition from

opaque to transparent, appears as a gradual enlarging of a transparent spherical volume,

centered on the observer, and whose comoving radius is determined by the speed of light

times amount of time elapsed since the transition. At the edge of this visible volume is

an opaque, radiating surface. This so-called surface of last scattering looks like how the

Universe appeared at the time of this opacity transition (albeit cosmically redshifted), since

those photons are just now reaching the observer. The ”glow” of this surface is the CMB.

In this section we discuss its formation through the confluence of recombination and photon

decoupling, its redshifted thermal spectrum, and the significance of the anisotropies in that

spectrum.

Recombination and photon decoupling:

Photons are held in equilibrium with the early Universe plasma through electromag-

netic scattering interactions which have much larger cross sections than the weak nuclear

interactions that lead to neutron freeze-out. Therefore, photon decoupling happens after

nucleosynthesis. At this phase of the cosmic evolution, the Universe consists of a baryon-

electron-photon plasma and ostensibly an abundance of dark matter which has negligible

interactions with the plasma. Note that we are neglecting the products of nucleosynthesis

(4 He, etc.) which are still subdominant compared to the number of free protons. By this

time, the temperature of this plasma is much lower than even the electron mass T � 0.5

MeV. Consequently, all of the species comprising the coupled plasma may be treated non-

relativistically with number densities given by

ni = gi

(miT

2π

) 3
2

exp
(µi −mi

T

)
; i = e, p,H (92)

where e, p, and H refer to free electrons, free protons, and neutral hydrogen respectively

each with a mass mi, chemical potential µi, and internal degrees of freedom gi. Hydrogen
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atoms are kept in equilibrium by the process

p+ e↔ H + γ (93)

and consequently, µp + µe = µH (photons have zero chemical potential). Moreover since we

are discounting the small abundances yielded by nucleosynthesis, the number of hydrogen

atoms and free protons essentially determine the number of baryons: nB ' np + nH . Using

these relations along with the number densities given by eqn. 92, the number density of

neutral hydrogen can be expressed as

nH =
gH
gegp

npne

(meT

2π

)−3/2

exp
(
B/T

)
; B ≡ mp +me −mH (94)

where we have treated the hydrogen and proton mass as equal everywhere except for in the

exponential function, and B = 13.6 eV is the binding energy of hydrogen. Given the low

binding energy of hydrogen, one should not expect a significant abundance of H atoms to

form until the plasma cools significantly, T ∼ 1 eV. To find the temperature of recombination,

it is convenient to introduce the ionization fraction χe ≡ np
nB

. Eqn. 94 can then be rewritten

in terms of this new variable

nH
nB

=
nB − np
nB

= χ0
e χ

0
enB

(meT

2π

)−3/2

exp
(
B/T

)
(95)

1− χ0
e

(χ0
e)

2
= η nγ

(meT

2π

)−3/2

exp
(
B/T

)
(96)

1− χ0
e

(χ0
e)

2
=

4
√

2ζ(3)√
π

η
( T
me

)3/2

exp
(
B/T

)
(97)

where charge neutrality ne = np = χenB has been used along side the baryon-photon ratio,

η = nB
nγ

. Additionally we have noted that ge = gp = 2 and gH = 4. Finally in the last line

the photon number density coming from the Bose-Einstein distribution has been inserted

with ζ(3) referring to the Riemann zeta function. The derived eqn. 97 is known as the Saha

equation for the thermal equilibrium ionization fraction (to which the superscript 0 refers).

The Saha equation describes the change in the fractional ionization of the coupled plasma,

and thus ultimately the amount of free charge carriers.

Recombination refers to the point in the cosmic evolution where virtually all free electrons

have been captured by the protons in the plasma thereby forming an abundance of hydrogen
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gas. By convention, this is defined to correspond to the equilibrium ionization fraction falling

to χ0
e = 0.1, namely 90% of electrons have been captured. Inserting this value into eqn. 97

along with a baryon-photon ratio η ' 10−10, consistent with nucleosynthesis, yields the

temperature at which recombination occurs:

Trec = 0.3 eV. (98)

Since the Universe undergoes an isentropic expansion, and the entropy density scales with

the photon temperature s ∝ T 3 [121], we can relate the temperature and scale factor

S = s · a3 ∝ T 3 → T ∝ a−1 (99)

and therefore noting the present day temperature photon temperature is T0 = 2.35×10−4 eV

[71], the scale factor of recombination is

arec = T0/Trec ' 7.8× 10−4 (100)

which in accordance with eqn. 32 indicates that recombination occurs during the matter

dominated epoch.

In order to propagate freely and thus source an isotropic background radiation, the pho-

tons must decouple from the early Universe thermal plasma. The most significant scattering

process maintaining their equilibrium with the other coupled degrees of freedom is

e+ γ → e+ γ (101)

namely Thomson scattering. As previously stated, this is an electromagnetic interaction

with a large scattering cross section σ[eγ → eγ] ' 1.7× 10−3MeV−2 [121, 183]. Given their

small mass, electrons remain relativistic throughout most of the early Universe meaning

their number density is not Boltzmann factor suppressed. Accordingly, the large scattering

cross section and large electron number density make Thomson scattering very efficient

at maintaining local thermodynamic equilibrium (LTE), and thus photon decoupling will

only begin to happen after the free electron number density begins to decrease, i.e. during

recombination. The decoupling temperature can be estimated by comparing the Hubble rate

43



and interaction via the decoupling criterion, H(T ) ' W (T ). First, we can consider the Saha

eqn. (97) under χ0
e � 1,

χde '
[

4
√

2 ζ(3)√
π

η
( T
me

)3/2

exp
(
B/T

)]−1/2

(102)

where χde refers to the equilibrium ionization fraction during decoupling. Next the interaction

rate is estimated,

W = W = ne 〈σ[eγ → eγ] · (v ' c = 1)〉 (103)

σ '
(αem
me

)2

; ne = np = χdenB = χdenγ η (104)

W ' χde η
(αem
me

)2 2ζ(3)

π2
T 3 =

(αem
me

)2
[

4
ζ(3)

π2
T 3
(meT

2π

)3/2

e−B/T

]1/2

(105)

where αem is the electromagnetic fine structure constant, and we have again used the ion-

ization fraction. Also note that here I have estimated the scattering cross section by noting

that Thomson scattering is a non-relativistic quantum electrodynamics process. The exact

value for this cross section, from the limit of the Klein-Nishina formula, is quoted on the

previous page.

Turning our attention to the Hubble rate, since we anticipate photon decoupling to occur

during the matter dominated epoch using eqns. 31, 32, and 99 we find

H2(a) ' H2
0

ΩM

a3

[
1 +

ΩR

ΩM

1

a

]
(106)

H(T ) =

(
H2

0 ΩM

( T
T0

)3[
1 + aeq

( T
T0

)])1/2

(107)

H(T ) ' H0

√
ΩM

( T
T0

)3/2

(108)

where in the last line we have expanded (aeq
T
T0
� 1) and kept the leading order term.

Now setting eqns. 105 and 108 equal to each other, and solving for T gives the decoupling

temperature and scale factor

Tdec ' 0.28 eV → adec ' 8.3× 10−4. (109)
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The above calculation was an estimate, since it utilized the equilibrium ionization fraction

coming from the Saha equation. In reality, after the onset of recombination, the electrons

rapidly fall out of equilibrium, and thus the ionization fraction must be tracked by solving

the Boltzmann equation for the electron number density which changes under the process

93 [71]. Computing the evolution of the ionization fraction in this manner and using it in

place of χde in eqn. 105 modifies the result of the decoupling criterion and yields [121]

Tdec = 0.26 eV → adec ' 9.09× 10−4. (110)

Comparing results 100 and 110 indicates, as expected, that recombination and photon decou-

pling occur sequentially and at nearly the same moment in the expansion history, specifically

at comoving times (using eqn 108 and 3) trec ∼ 3.8× 105 yrs and tdec ∼ 4.1× 105 yrs.

Redshifted thermal spectrum:

The photon spectrum observed on the surface of last scattering still exhibits a nearly

thermal blackbody spectrum despite photons decoupling billions of years ago. This relic,

thermal nature can be explained as follows: prior to decoupling, the photons were in LTE

with the plasma, and thus with an associated number density,

n(ν, T ) dν =
8πν2 dν

exp( ν
T

)− 1
(111)

namely a Planck distribution (Bose-Einstein distribution with zero chemical potential),

where ν is the frequency and T is the temperature of the plasma (the integral over all

frequencies is implied). If the photon decoupling is abrupt, then the form of the distribution

is preserved. After this process the Universe becomes transparent, with the transparent

volume as seen by an observer increasing yet always bounded by the last scattering surface.

The photons traveling from the last scattering surface, to the observer’s detector experience

cosmic redshift, and accordingly the distribution redshifts with the change in the scale factor.

Consequently, for a photon observed with frequency ν0 and arriving at the detector at time

t0,

n0(ν0, T ) dν0 =
(a(tdec)

a(t0)

)3

ndec

(
ν0
a(t0)

adec
, T
) a(t0)

adec
dν0 (112)

n0(ν0, T ) dν0 =
8πν2

0 dν0

exp( ν0 a(t0)
T a(tdec)

)− 1
=

8πν2
0 dν0

exp( ν0

T (t0)
)− 1

(113)
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where a combination of two effects has resulted in the last line: the number density decreases

as the scale factor enlarges the comoving volume, and the emitted frequency (νdec) is larger

than the observed frequency (ν0) as specified in eqn. 45. The external ratios of the scale

factor mutually cancel, leaving only the ratio inside the argument of the exponential which

in turn can be absorbed into the temperature leading to

T (t0) = T
a(tdec)

a(t0)
(114)

which is the same temperature scaling as seen in eqn. 99. Evidently, the photons observed

from the last scattering surface will have a thermal distribution with redshifted temperature.

Normalizing the present day scale factor to unity, and using the results of eqn. 110 this yields

an observed blackbody spectrum with

T (t0) ≡ T0 = 2.4× 10−4 eV (115)

and consequently peaked in the microwave frequency range as advertised before [71]. Given

it’s present day, nearly thermal distribution function, measurements of the CMB spectrum

allow one to compute the present day photon energy density by integrating the distribution,

yielding ∫ ∞
0

ν0

(2π)3
n(ν0)dν0 = ρ0,γ =

2π2

30
T 4

0 → Ωγ = 5.04× 10−5 . (116)

Figure 3 (below) shows the observations of the last scattering surface, and therefore the CMB,

as detected by the Planck satellite and expressed as a map of temperature anisotropies. These

observations confirm the presence of an exceedingly isotropic thermal spectrum, with tiny

temperature fluctuations (δT/T ∼ O(10−5)).
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Figure 3: The CMB temperature anisotropy map produced by the Planck collaboration [3].

The different colors correspond to temperature fluctuations (about 1 part in 105) around

the mean temperature of T ' 2.72 K. In ΛCDM during matter domination, points with an

angular separation θ ≤ 2◦ are contained within the particle horizon and are therefore

causally connected. These observations show that the entire CMB is highly isotropic,

across scales much larger than this, indicating that the entire surface must have been

somehow causally connected in the past.

2.1.2.4 The Cosmic Microwave Background: Anisotropies While the CMB spec-

trum displays a large degree of homogeneity and isotropy, and can be well characterized by

a thermal, Planck spectrum, the small anisotropies present must be explained. The theory

of cosmological perturbations offers a precise, dynamical explanation of these anisotropies

and connects these fluctuations to the cosmological parameters of our FLRW model. Cos-

mological perturbation theory, as applied to the analysis of the CMB, is thoroughly and

pedagogically explained in [139]; in this section I provide a qualitative overview of the sub-

ject following the treatment discussed therein.

Observational analysis of the CMB anisotropies is carried out by studying the the angular

temperature anisotropy power spectrum. To introduce this object, we begin by defining the
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spectrum of temperature fluctuations

δT

T̄
≡ Θ(η0, ~x0, η̂) =

∑
l,m

almYlm(η̂) (117)

where η0 is the present day conformal time, ~x0 describes the observer’s location, and looking

in a direction −η̂ such that the CMB photons are traveling in direction η̂. This function

is expanded in spherical harmonics, (Ylm) which form a complete set of functions in spher-

ical coordinates, a natural choice when studying the last scattering surface as viewed from

Earth. In practice it is easier to work with the spatial Fourier transform of the temperature

fluctuation

Θ(η0, ~x0, η̂) =

∫
d3k

(2π)3
Θ(η0, ~k, θ) e

i~k· ~x0 (118)

where we have used the fact that statistical isotropy guarantees that the equation of motion

for Θ will only depend on the combination ~k · η̂ = k cos(θ), and so we have opted to use

the relative angle, θ, between the line of sight and wave vector instead of η̂. Incidentally,

this exact form of angular dependence allows one to perform a multipole expansion of the

temperature anisotropy

Θ(η0, ~k, θ) =
∑
l

(−i)l(2l + 1)Θl(η0, ~k)Pl(cos θ) (119)

where Pl(cos θ) are the associated Legendre polynomials. Insert equations 118 and 119 into

equation 117, and using the relations between the associated Legendre polynomials and the

spherical harmonics yields (choosing the detector to be at ~x0 = 0)

alm = (−i)l
∫

d3k

2π2
Ylm(k̂)Θl(η0, ~k) ;

~k

k
= k̂ (120)

which can then be used to compute the two-point correlation function

〈alm a∗l′m′〉 = δmm′δll′
1

2π2

∫
dk

k
Θ2
l (η0, k)PR(k) (121)

Cl ≡=
1

2π2

∫
dk

k
Θ2
l (η0, k)PR(k) (122)
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where the Kronecker deltas arise from the orthogonality of the spherical harmonics and are

encoding the statistical homogeneity. The resulting correlation function has been written in

terms of a dimensionless power spectrum PA(k) which is defined as∫
d3k

(2π)3
PA(k) f(k) ≡

∫
dk

k
PA(k)f(k). (123)

A number of comments should be made about the equation 122, which is the angular tem-

perature anisotropy power spectrum we were seeking to derive. First, the result does not

depend on the subscript m. This is unsurprising given the form of the polynomial expansion

in eqn. 119; however, on physical grounds this is expected as a consequence of the Uni-

verse being statistically isotropic. Second, because of statistical isotropy the temperature

anisotropy power spectrum only depends on the magnitude k = |~k|. Third, the dimensionless

power spectrum used to write the correlation function in this form is the primordial curva-

ture power spectrum PR(k) which represents the initial spatial curvature of spacetime. This

particular quantity is chosen because its conserved on super-horizon scales under adiabatic

initial conditions (see below) [71]. Finally, in this form the function Θ2
l (η0, k) is known as the

transfer function for a given mode, l, and it describes the linear evolution of the probability

distribution for that particular mode.

The reason for the introduction of probablities into this discussion owes to the theory of

cosmological perturbations being stochastic. Consequently, each temperature fluctuation at

a point in spacetime is given by a probability distribution. Since we will restrict ourselves to

linear perturbations, the evolution of the initial probability distribution will also linear, hence

the role of the transfer function. The brackets in equation 121 represent an averaging over

many identically prepared initial states, i.e. ”universes”. However, since we only have a single

Universe and ergo CMB to study, one may question the validity of this approach. However,

because of the lack of azimuthal dependence (m) in the temperature power spectrum, one

can measure many alm’s with the same multipole moment l but different m’s resulting in

many outcomes for the same random variable (see [139]).

In light of equation 122, the remaining theoretical task becomes clear: 1.) a primordial

power spectrum must postulated or derived from a model of even earlier Universe physics,

2.) the transfer functions for all multipole moments must be computed. The former may be
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provided by the theory of inflation. The latter is an involved process which requires solving

the Einstein-Boltzmann hierarchy of equations. Here I summarize the procedure, which is

explained in detail in [139]:

• Perturb the Einstein Equations: The anisotropies in the CMB represent small departures

from the homogeneity and isotropy of the FLRW metric. Accordingly we consider per-

turbations gµν = ḡµν + δgµν and Tµν = T̄µν + δTµν , the bar being the spatially averaged

result, namely the usual FLRW metric and perfect fluid EMT. The perturbations can

be decomposed into scalar, vector, and tensor perturbations. The vectors represent the

response of the metric to vorticity in the fluid material, and thus rapidly decay in FLRW.

The tensors represent gravitational wave disturbances and decouple (at first order) from

the scalars which themselves represent local changes in the gravitational potential due to

inhomogeneities in the fluid material distribution. Since temperature is a scalar quantity,

it is the scalar perturbations are the most significant for studying the CMB fluctuations.

There are four scalar perturbation quantities from the EMT: energy density perturba-

tions (δρ), pressure perturbations (δp), velocity potential (v), and anisotrpoic stress (σ).

Additionally there are four quantities from perturbing the metric: the gravitational po-

tential ψ, local distortions in the average scale factor φ, and finally δg0i and the traceless

piece of δgij.

• Choose a Gauge: Since General Relativity is invariant under general coordinate trans-

formations, there is gauge freedom in how the metric perturbations are written. While

one may compute gauge invariant quantities, in general it is easier to work in a particu-

lar gauge. In the Newtonian gauge only φ and ψ are non-vanishing quantities, and the

perturbed metric becomes

gµν = diag
[
(1 + 2ψ)a2,−(1− 2φ)a2,−(1− 2φ)a2,−(1− 2φ)a2)

]
(124)

working with the spatially flat FLRW metric in conformal time as the unperturbed

background. For this perturbative scheme, to first order, one obtains four Einstein

equations relating the geometric and energy momentum perturbations. Because of the
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gauge choice, only two are needed (′ ≡ ∂
∂η

):

2

3

(k
a

)2

(φ− ψ) = 8πGN

∑
x

(ρ̄x + p̄x)σx (125)

2a−2

[
(k)2φ+ 3

a′

a

(
φ′ +

a′

a
ψ
)]

= −8πGN

∑
x

δρx (126)

where the sum over x is the sum over each species contributing to the EMT (baryons,

photons, etc.) and k is the wave number.

• Specific Equations of Motion: The energy momentum tensor of this system is com-

prised of several components which can be classified generically as relativistic versus

non-relativistic, and coupled versus uncoupled. Cold dark matter (CDM) is treated as

both non-relativistic and uncoupled. Neutrinos are relativistic, and in this stage in the

cosmic history uncoupled. Baryons and electrons are non-relativistic and interpolate

between coupled and uncoupled regimes. Finally, the photons are relativistic and also

transition from the coupled to the uncoupled regime. Given that each component is

described by four parameters (δρ, δp, v, σ) a total of four equations of motion are re-

quired, for each component, to close the system. For each uncoupled component, there

is covariant conservation of that species’ EMT: ∇µT
µ
ν,x = 0. While for coupled species,

the previous relation must be modified with a source term accounting for the change

in energy-momentum from interactions. Either way, this relation provides two scalar

equations of motion for each individual component. For strongly coupled components,

an ideal fluid description can be used on account of the rapid microphysical interactions

imposing thermodynamic equilibrium. Consequently, they exhibit no anistropic stress

σx = 0 and have a sound speed cx such that δpx = c2
xδρx which provide the missing

two equations. CDM is modeled as completely collisionless with negligible anisotropic

stress, and so may treated effectively as a perfect fluid with δpCDM = 0 → cCDM = 0.

Meanwhile for decoupled species, a fluid description is insufficient, and the Boltzmann

equation must be solved instead.

• Adiabatic Initial Conditions: We specify initial conditions during the time when all

Fourier modes of interest (those actually observable in the CMB) have physical wave-

lengths outside the particle horizon 2π
k
a� 1

H
. Such modes are causally disconnected from
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small scale interactions, and therefore only reflect whatever mechanism initally seeds the

inhomogeneities. Additionally, for superhorizon modes, the EMT is necessarily diagonal

and has the fluid-kinetic form diag(δρ,−δp,−δp,−δp), which can be demonstrated by

expanding the EMT in powers of k/(aH). This means the initial conditions are specified

solely in terms of the energy density and pressure. Adiabatic initial conditions are chosen

by the following ansatz:

ρx(η, ~x) = ρ̄x(η) + ρ̄′x(η)δη(~x) (127)

px(η, ~x) = p̄x(η) + p̄′x(η)δη(~x) (128)

which is appropriate if we imagine the perturbations arise from a single inhomogeneous

degree of freedom perturbing all others at some moment in conformal time. Combin-

ing this ansatz with ∇µT
µ
ν,x = 0 which holds for super-horizon modes (since they are

effectively uncoupled by causality) yields:

ρ̄′x = −3
a′

a
(ρ̄x + p̄x) (129)

δρx
(ρ̄x + p̄x)

= −3
a′

a
δη (130)

Notice the right-hand side of equation 130 does not depend on the species label. The

consequence of this statement is that the left-hand sides of eqn. 130 for each species are

equal. Therefore, using eqns. 23 and 24

δρb
ρ̄b

=
δρcdm

¯ρcdm
=

3

4

δρν
ρ̄ν

=
3

4

δργ
ρ̄γ

(131)

where we made use of the fact that baryons and CDM are non-relativistic while neutrinos

and photons are ultra-relativistic. The consequence of this result is that the initial

conditions for all of the species can be set by a single parameter. As a final note, since

under these conditions the initial anisotropic stress σ = 0, eqn. 125 then guarantees

that φ = ψ initially. When the perturbed Einstein equations are solved under this

constraint, in radiation domination (with the assistance of 19), one obtains the solution

φ = const. [71]. Subsequently, as a result of 126, the relation −2ψ = δρ̄tot
ρtot

is manifest.

Consequently, only one parameter is needed to fix the metric perturbations as well. This

is the power of adiabatic initial conditions: they lead to static super-horizon metric and

density fluctuations, and all initial conditions can be related to one parameter.
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• Integrate the Boltzmann Equation: We are now able to compute the temperature fluc-

tuation, Θ(η, ~x, η̂) and ultimately the transfer function. First, the Boltzmann equation

(in Newtonian gauge) for the fluctuation is written

Θ′ + η̂ · ~∇Θ− φ′ + η̂ · ~∇ψ = −W × (Θ−Θ0 − η̂ · ~ve) (132)

where the collision term is determined by the Thomson scattering interaction rate W ,

the bulk velocity of the electrons, ~ve, and Θ0 is the temperature fluctuation monopole.

Notice the terms on the left-hand side of the equation correspond to free streaming, local

dilation of the scale factor, and gravitational redshift respectively. Next we introduce

the combination B = e−τΘ(η, ~x, η̂), where τ =
∫ η
η0
W dη is the optical depth, which

represents the opacity of the Universe at a particular time when viewed today. Computing

the total derivative of B with respect to η along the trajectory of CMB photons yields:

d

dη
B = e−τΘ′ + e−τ η̂ · ~∇Θ− τ ′e−τ (133)

with the gradient coming from the chain rule. Fourier transforming equation 132 and

inserting it into the Fourier transformed eqn. 133 gives an equation, which when inte-

grated over conformal time (from initial conditions ηi to the present η0), produces an

integral expression for the Fourier transformed temperature fluctuation,

Θ(η0, ~k) =

∫ η0

ηi

dη ei
~k·η̂(ηi−η0)

[
e−τ
(
φ′ + ψ′

)
+We−τ

(
Θ0 + ψ − 1

k
v′e

)]
(134)

since the optical depth at the time of initial conditions ηi is zero, while today τ(η0) = 1.

Note, that to obtain the prior result, an integration by parts was done for any terms

proportional to ~k · η̂ with the surface terms vanishing at the limits. Finally, in order to

formally compute the the transfer function, the result 134 must be written in terms of

spherical harmonics [177]

Θ(η0, ~k)l =

∫ η0

ηi

dη

[
g
(

Θ0 + ψ
)
− g 1

k
v′e + e−τ

(
φ′ + ψ′

)]
jl(kη0 − kη) (135)

where g = We−τ is defined as the visibility function and jl are the spherical Bessel

functions.
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The result 135 is the formal solution for the multipole transfer functions which was obtained

from a line of sight type calculation. However, in practice, eqn. 132 can be solved numerically.

Yet the integral form of the solution is of conceptual value since by inspection we see the

transfer function depends on three terms (shown in the square brackets). In order these

contributions are known as the Sachs-Wolfe, Doppler, and Integrated Sachs-Wolfe effects.

The Doppler contribution is a correction to the observed anisotropies due to the bulk motion

of the baryon-photon fluid, hence the dependence on ve. Note ve = vb due to the tight

coupling between baryons and electrons via Coulomb scattering. The other two effects are

the result of gravitational perturbations, namely the changes to the gravitational potential

that the photons encounter on their path to the observer. If one assumes that photon

decoupling is almost instant g ' δ(η − ηdec) the transfer function simplifies,

Θ(η0, ~k)l '
(

Θ0(ηdec, k) + ψ(ηdec, k)
)
jl(η0 − ηdec) + vb(ηdec)j̇l(kη0 − kηdec)+∫ η0

ηdec

(
φ′ + ψ′

)
jl(η0 − η) dη (136)

where the dot over jl indicates a derivative with respect to its argument, a consequence of

integrating that term by parts. In this form the difference between the Sachs-Wolfe and

Integrated Sachs-Wolfe effects is made clear: the former is associated with the gravitational

potential well an incident CMB photon must overcome at the last scattering surface; the

latter encodes the blue/redshifting the traveling photon experiences as it traverses through

the metric inhomogeneities on its journey to the detector.

In order to get a sense of how the various terms in the transfer function impact the

temperature anisotropy power spectrum 122, consider just the Sachs-Wolfe contribution.

First note the function jl(x) and )j̇l(x) are both peaked, for large l, as x → l. In this

case x = k(η0 − ηdec) = k∆η, meaning the Bessel function is peaked for k = l/(∆η). This

result also has a geometric interpretation. The Cl’s describe the correlation structure of

temperature fluctuations as seen on the last scattering surface, under an angle θ = π/l

(since for spherical harmonics this is the angle between a maxima and a minima). Given

a proper distance, dA (known as the angular diamater distance) from the observer to the

last scattering surface, the product θ · dA gives the arc length between a maximum and

minimum. This maxima/minima pattern is seeded by Fourier modes which have a physical

54



wavelength λ = 2π a(ηdec)
k

and distance between maxima and minima, λ/2. Computing the

aforementioned proper distance dA using eqns. 41 and 39, and combining these geometric

arguments gives,

dA = a(ηdec)(η0 − ηdec) (137)

λ

2
=
πa(ηdec)

k
= θdA =

π

l
a(ηdec)(η0 − ηdec) (138)

k = l/(∆η) (139)

which is the same result before. The result is that for large multipole moments (and con-

sequently small angular scales), the Fourier modes have simple relationship with l. Addi-

tionally, since in this regime the Bessel function is approximately maximal, the temperature

power spectrum (from solely the Sachs-Wolfe contribution) is

Cl'k∆η ∼
(

Θ0(ηdec, k) + ψ(ηdec, k)
)2

PR(k) (140)

where Θ0(ηdec, k) and ψ(ηdec, k) are determined by the adiabatic initial conditions (see eqn.

131)

δργ
ρ̄γ

∣∣∣∣
ηdec

= 4
δT

T
= 4Θ0(ηdec, k) (141)

−2ψ(ηdec, k) =
δρtot
ρ̄tot

' δρCDM
ρ̄CDM

=
3

4

δργ
ρ̄γ

∣∣∣∣
ηdec

(142)

Θ(η0, ~k)l ' −
1

8

δργ
ρ̄γ

∣∣∣∣
ηdec

(143)

where we have made use of the fact that decoupling occurrs during matter domination

and the last line is in reference to eqn. 136. Notice these results imply that for large

multipoles the Sachs-Wolfe contribution is set by the photon energy fluctuations at the time

of decoupling. Additionally, the relative minus sign between the density fluctuation and the

temperature fluctuation indicates that over densities cause local decreases in the temperature

while for under densities the opposite occurs. An analysis of the this type, for the Sachs-Wolfe

contribution, can be extended to the Doppler and Integrated Sachs-Wolfe contributions as

well (see [139] for details). However, ultimately the composite angular temperature power
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Figure 4: The CMB temperature anisotropy power spectrum measured by the Planck

collaboration [74]. This graph displays the temperature fluctuations in the Cosmic

Microwave Background detected by Planck at different angular scales on the sky. The

multipole moments associated with various angular scales are indicated at the top of the

graph. The red dots are measurements made with Planck shown with measurement and

estimated uncertainty error bars. The green curve represents the best fit of λCDM

cosmology. The pale green area around the curve shows the predictions of all the variations

of this standard model that best agree with the data. Observations on small and

intermediate angular scales are extremely consistent with model predictions. However on

angular scales between 90◦ and 6◦ the agreement is about 10% weaker. These may

represent challenges to ΛCDM.

spectrum is the result of each of the three terms squared and three cross terms, since the

power spectrum depends on the transfer function squared.

The observed angular CMB temperature anisotropy power spectrum as measured by

Planck is shown in Figure 4. Recall that this analysis studies the anisotropies through Fourier

modes which start outside the particle horizon (and therefore with trivial time evolution)

but then cross into the horizon, one after another, as the Universe expands. Accordingly,

smaller scale modes correspond to scales that crossed the horizon earlier. As a particular
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mode enters, its evolution is determined by the transfer function 135 which encodes the

effect of metric perturbations which are sourced by density inhomogeneities. These initial

density inhomogeneities are encapsulated in the primordial power spectrum, PR(k). As the

Universe evolves, these primordial overdensities propagate as acoustic waves originating from

oscillations in the plasma material. The oscillations are the result of the opposing forces of

local increases in the attractive, gravitational potential and repulsive pressure (generated by

electromagnetic scattering processes). This process can continue until recombination and

photon decoupling at which point the CMB power spectrum is fixed. Consequently there

is a physically relevant distance scale, namely how far an acoustical wave front can travel

before decoupling,

ds ≡ a(ηdec)

∫ ηdec

ηi

csdη (144)

known as the sound horizon, with cs referred to as the sound speed in the baryon-photon

fluid. ηi is the conformal time when initial conditions are set. We expect points separated by

this distance to be at least partially correlated since density waves will have traveled from one

point to another. This correlation is reflected in the angular power spectrum (constructed

in spherical harmonics) as correlation features at scales π/l ∼ ds(ηdec)/dA(ηdec) (where dA is

defined in eqn. 137). Additionally, since we are working in Fourier space, the harmonics of

this scale should also exhibit correlation features. To see this effect consider the effect of the

fluid oscillations on Θ0(η, ~x) the temperature fluctuation monopole [71],

c2
s =

δpγ + δpb
δργ + δρb

' 1

3(1 +R)
; R ≡ 4ρ̄b

3ρ̄γ
(145)

Θ′′0 +
R′

1 +R
Θ′0 + k2c2

sΘ0 = −k
2

3
ψ +

R′

1 +R
φ′ + φ′′ (146)

where eqns. 131 and the equations of state for non-relativistic and relativistic particles was

used to derive the sound speed. Considering R′ = 0 and neglecting the metric perturbations,

this equation of motion is that of an harmonic oscillator with solutions Θ0 = Θi cos(kcsη+α).

Recall that super-horizon modes (kη � 1) are static, which mandates that the phase α = 0

and also indicates that kcsη � 1 → λ � ds is the limit of no oscillations. Consequently,

only modes with wavelength less than the sound horizon oscillate.
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Returning to Figure 4, we see the temperature anisotropy power spectrum features mul-

tiple peaks. The first of these peaks corresponds to modes just crossing the sound horizon

at the time of decoupling. Consequently they experience a resonant enhancement, a conse-

quence of forced oscillation by the metric perturbations (which now begin to decay due to

horizon crossing). We can see this effect by inspecting eqn. 146 in which the term propor-

tional to ψ acts as a driving term. Keeping only this gravitational term in the equation and

setting all derivatives of the monopole to zero, yields

Θeq
0 =

−1

3c2
s

ψ = −(1 +R)ψ (147)

consequently the zero-point of oscillations is shifted. For the smaller modes we observe the

aforementioned acoustic oscillations, alternating rarefaction and compression. Each mode

that is either at a moment of maximum compression or minimum compression (rarefaction)

at the moment of decoupling provides a peak since the power spectrum involves the square

of the transfer function. The second oscillatory pattern is damped due to the friction term

in equation 146, which becomes more significant during matter domination as it grows with

baryon energy density. These modes have been within the horizon for longer during matter

domination and are consequently more significantly impacted.

Precise analysis of the shape of the temperature anisotropy power spectrum can constrain

cosmology parameters in a number of ways [139]. Here, I briefly discuss four important

effects. 1. Position of the First Peak: All the peaks are harmonics of a single distance

scale in coordinate (physical) space, the sound horizon. The location of the first peak is

determined by the ratio of the sound horizon at decoupling ds(ηdec) and the angular diameter

distance at decoupling dA(ηdec). The first distance is a function of the matter energy density

Ωm since it is determined by when matter/radiation equality occurs, and also a function

of the baryon energy density Ωb which determines the baryon-photon sound speed. The

second distance is determined by the expansion history and geometry of the Universe and

thus probes the Hubble constant H0 and curvature density parameter Ωk. 2. Overall Peak

Amplitude: The amplitude of the peaks is determined by the time when matter/radiation

equality occurs since during matter domination, but before decoupling, the baryon sourced

friction term damps oscillations. If equality happens earlier in the cosmic history, then the
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damping will be increased and the amplitude of all peaks will decrease. Consequently peak

amplitude probes the matter energy density Ωm. 3. Odd/Even Peak Ratio: The first

peak is enhanced relative to the second due to the displacing of the zero-point of oscillations

(eqn. 147) for those modes which are crossing the sound horizon at decoupling. The ratio

of these two peaks therefore probes the strength of this enhancement which is governed by

R ∝ Ωb, the baryon density. 4. Global Amplitude: Finally, the overall amplitude of the

entire spectrum is an obvious measure of the scalar primordial power spectrum PR(k) since

the transfer function evolves the distribution from this initial function. This represents a

probe of pre-ΛCDM cosmological evolution, e.g. inflation.

2.1.3 Inflation

The notion of an early phase of exponential cosmic expansion, known as inflation, was

originally introduced as a means of diluting and sequestering unobserved relic particles such

as magnetic monopoles; however, this phase was soon realized to provide a natural resolution

to perennial problems with the ΛCDM cosmology [98]. These are known as the Horizon and

Flatness problems. Additionally, inflation driven by scalar field dynamics provides a mecha-

nism for producing the fundamental density inhomogeneities, namely the primordial power

spectrum. This quantity is an input into the calculation of the cosmic microwave background

(CMB) temperature anisotropies by the theory of cosmological perturbations (see eqn. 122).

In this section we review the Horizon and Flatness problems, their solution by a period of

inflationary expansion, how that expansion can be generated by a primordial scalar field,

and finally how in turn that scalar field can generate a primordial power spectrum. This

review is primarily qualitative following the treatment of [71, 120]. For the more curious

reader, a detailed pedagogical overview of inflation is provided in [170].

2.1.3.1 Horizon and Flatness Problems Previously the concept of the particle hori-

zon was introduced in order to describe the size of the causally connected region of spacetime

in an FLRW cosmology, in comoving coordinates. Using eqns. 39 and 37, one can compute
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the proper distance particle horizon (dH) during the matter dominated epoch

rMD
H (t) = ηMD(t) =

( 4a(t)

H2
0 Ωm

)1/2

≡
√
a(t)

Hm

(148)

dMD
H (a) = a rH(a) = a η(a) =

a3/2

Hm

. (149)

This distance scale will be visible on the last scattering surface of the CMB. Using the

angular diameter distance given by eqn. 137, one can compute the angle subtended by a

patch, of particle horizon size, on the last scattering surface

dA(adec) = adec(η(a0)− η(adec)) = adec

(1−√adec
Hm

)
(150)

δθ =
dMD
H (adec)

dA(adec)
=

a
1/2
dec

1− (adec)1/2
. (151)

Recalling that the scale factor at decoupling is adec ' 9.09×10−4 (see eqn. 110), the angular

size of horizon-sized patches on the CMB is

δθ ' 0.31 rad ' 2◦ (152)

which is far smaller than the scale of homogeneity and isotropy manifest on the last scattering

surface (see Figure 3). This is the statement of the Horizon problem: how does the early

Universe exhibit homogeneity and isotropy on scales far larger than the particle horizon (as

evinced by the CMB) since such regions would have been causally disconnected?

One possibility is that the initial conditions of the universe were homogeneous to one

part in a million. However, this raises an issue of fine-tuning. A dynamical explanation for

this widespread homogeneity can be achieved if the particle horizon is in fact significantly

larger than suggested by matter (or radiation) dominated expansion. The idea is to consider

a period of exponential expansion wherein the scale factor obeys

a(t) = a(t∗)e
HI(t−t∗) (153)

where t∗ is defined to be the beginning of the exponentially expanding phase, and HI is the

Hubble rate during this phase, which is constant. It is more convenient to express this in

terms of the time when this phase ends, tI

a(tI) = a(t∗)e
HI(tI−t∗) → a(t∗) = a(tI)e

−HI(tI−t∗) → a(t) = a(tI)e
HI(t−tI) . (154)
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Now computing the particle horizon by the time of photon decoupling

dH(tdec) = a(tdec)

[∫ tI

t∗

dt′

a(t′)
+

∫ tdec

tI

dt′

a(t′)

]
(155)

' a(tdec)

∫ tI

t∗

dt′
e−HI(t−tI)

a(tI)
=

a(tdec)

a(tI)HI

(
eHI(tI−t∗) − 1

)
(156)

dH(tdec) '
a(tdec)

a(tI)HI

(
eNe − 1

)
(157)

where we have assumed that the exponential phase is the dominant contribution to the

particle horizon. Ne ≡ HI(tI − t∗) is the number of e-folds of exponential expansion. Thus

the angle subtended by the inflated particle horizon is

δθ =
dH(tdec)

dA(a(tdec))
' dH(tdec)

Hm

a(tdec)
' dH(tdec)

H0

a(tdec)
(158)

→ δθ ' H0

a(tI)HI

(
eNe − 1

)
(159)

δθ � 1→ eNe � a(tI)HI

H0

(160)

where in the first line eqn. 150 has been used in conjunction with the fact that a(tdec)� 1

and Hm = H0
√

Ωm
2
' H0. The last line gives the condition on the number of e-folds needed

to resolve the Horizon problem. We will return to this condition later.

As seen in Table 3, the ΛCDM cosmology sets the value of the present day curvature

density, Ωk � 1; accordingly the Universe can be regarded as spatially flat. Recall the

definition of this parameter

Ωk(a) = − k

(H(a) a)2
= Ωk(a0 = 1)

H2
0

a2H2(a)
=

Ωk(a0 = 1)ΩR a
2 RD

Ωk(a0 = 1)Ωm a MD

 ; k = −1, 0,+1

(161)

where in the final equality the Friedmann eqn. 31 has been used to study the dependence of

the parameter on the scale factor during both radiation and matter domination. Inspecting

this result reveals that however small the present day curvature density parameter is, it

would have had to be even smaller in the past. To make explicit this concern consider what

the value of the curvature density parameter would have been at the time of nucleosynthesis

(anuc ∼ 10−10)

Ωk(anuc) = Ωk(a0 = 1)ΩR a
2
nuc ∼ 10−28 (162)
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using values from Table 3. Evidently any small deviation from flatness will be amplified as

the Universe grows to its present size. Consequently, a spatially flat Universe represents an

unstable solution. This is the statement of Flatness problem: why is the spatial curvature

so small initially?

In order to avoid fine-tuning, a phase of exponential expansion can be invoked. This is

because such an expansion the dilutes curvature density parameter

ΩI
k(a) =

k

H2
I a

2(tI)
e−2HI(t−tI) (163)

where eqn. 154 has been used. Suppose that initially the parameter is Ωa(t∗) ' O(1) at the

onset of the exponential expansion. Then by the end of the expansion,

Ωk(a(tI)) = Ωk(a(t∗))e
−2HI(tI−t∗) ' e−2Ne (164)

where the previous result has been used. However, this value can also be obtained using eqn.

161 yielding,

Ωk(a(tI)) = Ωk(a0 = 1)
H2

0

a2
IH

2
I

. (165)

Equating these two expressions gives

e−2Ne = Ωk(a0 = 1)
H2

0

a2
IH

2
I

→ Ωk(a0 = 1) =
H2

0

a2
IH

2
I

e2Ne (166)

Ωk(a0 = 1)� 1→ eNe � a(tI)HI

H0

(167)

and we see that the condition for the number of e-folds needed to solve the Flatness problem is

the same as in the Horizon problem case (see eqn. 160). Thus the same period of exponential

expansion can simultaneously solve both problems.

Investigating this constraint on the required number of e-folds, consider an instantaneous,

smooth, continuous transition from the exponential phase to the radiation dominated epoch.

Namely,

a(tI)HI = aRD(tI)H(aRD(tI)) ≡ aRH(aR) (168)

which is known as the instantaneous reheating approximation. During the RD epoch the

Friedmann eqn. 31 gives

H(aR) = H0

(ΩR

a4
R

)1/2

→ aR =
( H0

H(aR)

)1/2

(ΩR)1/4 . (169)
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Inserting this result into the e-fold condition yields,

eNe � (ΩR)1/4
(H(aR)

H0

)1/2

=
(

ΩR
ρ(aR)

ρ0,c

)1/4

' (ρ(aR))1/4

0.03 eV
(170)

where eqn. 19 and the critical density, ρ0,c =
3H2

0

8πGN
have been used. In the final equality the

values from Table 3 have been used. The quantity ρ(aR) is the energy density at the end of

the exponential expansion.

The value of this quantity is uncertain although it certainly scales as ρ ∝ T 4 since the

subsequent epoch is radiation dominated, and we are considering the instantaneous reheating

approximation. Given the success of nucleosynthesis, ρ(T = 1 MeV) . ρ(aR). However,

the energy scale could in principle be substantially higher. A rough upper bound is the

Planck scale ρ(aR) . ρ(T = 1019 GeV) since beyond the scale quantum gravitational effects

certainly cannot be ignored. This gives the range on the necessary number of e-folds (under

the instantaneous reheating assumption)

17 < Ne < 68 (171)

thus, provided sufficiently long period of exponential expansion, the Horizon and Flatness

problems can be solved, and then the Universe can transition into the hot, primordial RD

phase of the big bang. This period of exponential expansion is known as inflation.

2.1.3.2 Single-field Inflation Having seen that an initial period of inflation can resolve

problems with ΛCDM, the natural question to ask is what mechanism can achieve this

exponential expansion. Consulting Table 2 reveals that an exponentially growing scale factor

is obtained when the Universe’s energy density is dominated by vacuum energy (with negative

pressure equal to the energy density, (P = −ρ). Using eqns. 19 and 20, under vacuum energy

domination yields

ρ̇vac = 0→ H2 =
( ȧ
a

)2

= const. ≡ H2
I (172)

ln
[ a

a(t∗)

]
= HI(t− t∗) = Ne (173)

which is precisely the functional form of the scale factor required (see eqn. 150) for infla-

tionary expansion.
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The simplest, and canonical, model for realizing an early epoch of vacuum energy dom-

ination is through the introduction of classical scalar field, suffusing spacetime, and known

as the inflaton (Φ). The inflaton action, in comoving coordinates, is given by1,

S =

∫
d4x
√

(−g)
1

2

(
gµν∂µΦ∂νΦ− V (Φ)

)
(174)

where (−g) ≡ −det(gµν) and V (Φ) is the inflaton potential. Extremizing the above action

with respect to variations of the inflaton and the metric gives the inflaton equations of motion

and energy-momentum tensor respectively,

δS

δΦ
= 0→ 1√−g∂ν

√−g gµν∂µΦ− dV

dΦ
= 0 (175)

Tµν =
−2√−g

δS

δgµν
= ∂µΦ∂νΦ− gµν

(1

2
gαβ∂αΦ∂βΦ− V (Φ)

)
. (176)

Reflecting the properties of the FLRW spacetime, the inflaton is treated as a spatially ho-

mogeneous field such that Φ(t, ~x) = Φ(t). Inserting the spatially flat FLRW metric (eqn. 15

with k = 0) and this ansatz for the inflaton into the energy-momentum tensor gives

T00 =
1

2
Φ̇2 + V (Φ) = ρ ; T0j = 0 ; Tji = a2δji

(1

2
Φ̇2 − V (Φ)

)
= Pδji (177)

showing that the energy-momentum tensor is diagonal and has the structure of a perfect

fluid (fluid kinetic form). Using these results, the equation of state parameter w for the

inflaton can be computed

w ≡ P

ρ
=

1
2
Φ̇2 − V (Φ)

1
2
Φ̇2 + V (Φ)

→ w ' −1 forV (Φ)� 1

2
Φ̇2 (178)

and consequently if the inflaton potential dominates over the kinetic energy of the field, the

correct equation of state for exponential expansion is obtained. Inserting the inflaton energy

density into the Friedmann equation 19 gives the evolution of the Hubble parameter

H2 =
( ȧ
a

)2

=
8πGN

3

(1

2
Φ̇2 + V (Φ)

)
' 8πGN

3
V (179)

1The topic of scalar fields in curved spacetimes is discussed in detail in section 2.2.2; in this section some
of the results therein will be used.
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where the last equality assumes potential energy domination. Meanwhile, the equations of

motion for a spatially homogeneous inflaton field on the spatially flat FLRW metric become

Φ̈ + 3HΦ̇ +
dV

dΦ
= 0 . (180)

The introduction of the above inflaton model provides a dynamical schematic for how a

period of exponential expansion can be generated. However if the field configuration lies at

at the global minimum of its potential, V (Φ0) and if this potential is positive V (Φ0) > 0,

then the stipulation of V (Φ0) � Φ̇2
0 implies that the field will trapped in this minimum

configuration indefinitely. Accordingly, inflation will never end.

In order to avoid infinite inflation, the field must be allowed to evolve towards its true

ground state, for which V (Φ0) = 0. The canonical class of single field models which achieve

this outcome are known as single field slow-roll inflation [141]. In these models, the inflaton

field is initially displaced from its global potential minimum, and slowly ”rolls” down its

potential gradient towards the zero-energy ground state. These models are characterized

by two slow-roll parameters (εV , ηV ) which together constrain the necessary features of the

inflaton potential.

The first parameter εV ensures that inflationary phase is exponential and can be intro-

duced as follows:

Ḣ =
ä

a
−H2 → ä

a
= H2(1− εV ) ; εV ≡ −

Ḣ

H2
(181)

where we have merely differentiated the definition of the Hubble parameter with respect to

time. Note if εV � 1, then the above equation for the scale factor yields an exponential

solution. Incidentally, the definition of εV can also be expressed in terms of the inflaton and

its potential by using the Friedmann equations 19 and 20,

Ḣ =
ä

a
−H2 = −4πGN

3

(
2Φ̇2 − 2V (Φ)

)
− 8πGN

3

(1

2
Φ̇2 + V (Φ)

)
= −4πGN Φ̇2 (182)

εV ≡ −
Ḣ

H2
=

3Φ̇2

Φ̇2 + 2V (Φ)
→ εV � 1→ Φ̇2 � V (Φ) (183)

and so the slow roll parameter enforces potential energy domination. Therefore under this

limit, differentiating eqn. 179 gives

Ḣ =
4πGN

3H

dV

dΦ
Φ̇ (184)
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and so the first slow roll parameter can also be expressed as

εV = −4πGN

3H3
V ′Φ̇ ; ′ ≡ d

dΦ
. (185)

The second parameter ηV ensures that the inflationary epoch is sufficiently prolonged,

namely that the fractional change in the inflaton velocity is small over the age of the Universe

∆t ∼ 1
H

|∆Φ̇|
|Φ̇|

=
|Φ̈|∆t
|Φ̇|

' |Φ̈|
H |Φ̇|

≡ ηV � 1 (186)

which ultimately guarantees that the inflaton does not evolve towards its potential minimum

too quickly, hence the name slow roll. Enforcing this second parameter simplifies the inflaton

equation of motion eqn. 180

Φ̇ ' −V ′ 1

3H
(187)

which can then be inserted into eqn. 185 for the first slow roll parameter giving

εV =
4πGN

9H4
(V ′)2 =

M2
pl

16π

(V ′
V

)2

� 1 (188)

where eqn. 179 has been used in the final equality, and M2
pl = 1

GN
is the Planck mass.

Meanwhile the approximate equation of motion 187 can be differentiated

Φ̈ = −V
′′ Φ̇

3H
+
V ′

3

Ḣ

H2
' −V

′′ Φ̇

3H
(189)

which when inserted into the equation for the second slow roll parameter (eqn. 186) produces

the constraint

ηV =
V ′′

3H2
=
M2

pl

8π

V ′′

V
� 1 (190)

where again eqn. 179 has been used.

The equations for the slow roll parameters (eqns. 188,190) provide the conditions for a

nearly exponential expansion of the Universe. Once the condition εV = 1 is satisfied, the slow

roll criteria are violated, and the inflationary phase ends. The number of e-folds of expansion

produced by slow roll inflation can be computed using the first slow roll parameter,

dNe =
da

a
= H dt =

H

Φ̇
dΦ = −3H2

V ′
dΦ = − 8π

M2
pl

V

V ′
dΦ (191)

Ne(Φ) =
2
√
π

Mpl

∫ Φ

Φe

dΦ√
εV (Φ)

(192)

where eqns. 187, 179, and 188 have been used.
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2.1.3.3 Perturbations In the previous section a single scalar field, with particular con-

straints on the form of its potential, was shown to be able to drive a period of inflationary

expansion. However, this field was treated as classical and homogeneous. A complete picture

of inflation must include inhomogeneous fluctuations, and the theory must be quantized. Re-

markably, instantiating this more complete description leads to a natural explanation for the

initial density inhomogeneities of the early universe which evolve into the observed anistropies

in the CMB and the present locally overdense regions of matter in space, namely galaxies.

Below we discuss the emergence of these primordial fluctuations.

To begin with the inflaton field is written as

φ(t, ~x) = Φ(t) + δφ(t, ~x) (193)

where Φ is the homogeneous background inflaton field, whose properties were discussed in

the last section, and δφ(t, ~x) is the fluctuation. Inserting this field decomposition into the

inflaton equations of motion (see eqn. 175 with the spatially flat FLRW metric) yields the

equations

Φ̈ + 3HΦ̇ + V ′(Φ) = 0 (194)

δ̈φ+ 3H ˙δφ− ∇
2 δφ

a2
+ δφV ′′(Φ) ; ′ ≡ d

dφ
(195)

where we have expanded the derivative of potential (V ′(φ)) and only kept terms linear in

the fluctuation δφ. The first of these equations is just the previously encountered equation

of motion for the homogeneous background (eqn. 180). Meanwhile the second equation

describes the behavior of the fluctuation. In seeking to understand its behavior, it is con-

venient to work in conformal time dη ≡ dt
a

and to introduce the conformally rescaled field

χ(η, ~x) ≡ a(η) δφ. In terms of this new variable eqn. 195 becomes

1

a3

(∂2χ

∂η2
−∇2χ− 2χ

η2
+

V ′′

H2η2
χ
)

= 0 (196)

where we have used the fact that during exponential expansion the scale factor in conformal

time obeys

a(η) = − 1

Hη
; H = HI ; −∞ < η < 0 . (197)
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Because the spacetime is spatially flat the equations of motion for the fluctation can be

solved via Fourier transform yielding,

∂2χk
∂η2

+
[
k2 − 1

η2

(
ν2
χ −

1

4

)]
χk = 0 ; ν2

χ ≡
9

4
− V ′′

H2
(198)

where χk is the Fourier transform of χ. The resulting equation, written in this form, is

readily identified as a Bessel differential equation. Since the field fluctuation is real-valued,

and the differential equation is second order, the solutions will be gk(η) and it’s complex

conjugate. These solutions must satisfy the Wronksian condition

dgk
dη

g∗k − gk
dg∗k
dη

= −i . (199)

so that the Fourier expansion coefficients, once promoted to quantum mechanical operators

in the quantized theory, obey canonical commutation relations [28]. In particular, one set

of solutions are Hankel functions, H
(1)
νχ (−kη). The Hankel functions have the following

asymptotic form [170]

lim
−kη→∞

H(1)
νχ (−kη) =

e−ikη√−kη · e
−iπ

2
(νx+1/2) ·

√
2

π
(200)

and so it is customary to write the solutions as

gk(η) =
1

2
e+iπ

2
(νx+1/2)

√−π ηH(1)
νχ (−kη) (201)

lim
−kη→∞

gk(η)→ e−ikη√
2k

(202)

which under this limit have the behavior of plane waves in Minkowski spacetime. Notice

what the above limit physically entails,

−kη =
−kηa
a

=
2π

λphys
· dH →∞ −→ dH � λphys (203)

where λphys = −aλ is the physical/proper wavelength and dH = aη is the proper distance

particle horizon. Therefore, the limit −kη →∞ corresponds to Fourier modes whose phys-

ical wavelengths are deep inside the particle horizon of the expanding universe. Hence the

Minkowski behavior is a consequence of the Einstein equivalence principle.
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Recalling eqn. 186, we see that V ′′/H2 = 3ηV . Therefore assuming the second slow roll

parameter is small, then in the Fourier transformed equation of motion (eqn. 196) νχ ' 3/2,

and upon inserting the corresponding Hankel function, the solution becomes

gk(η) =
e−kη√

2k

[
1− i

kη

]
. (204)

Notice that in the limit −kη →∞, the same Minkowski plane wave behavior emerges as it

must. However, in the opposite limit, namely −kη → 0, the solution rapidly grows. Thus,

this solution features an infrared enhancement. Writing the full solution for the fluctuation

field, one obtains

χ̂(~x, η) =
1√
V

∑
k

[
âk gk(η)ei

~k·~x + â†k g
∗
k(η)e−i

~k·~x
]

(205)

where the field has been quantized by promoting the expansion coefficients to creation and

annihilation operators. Note, the discrete volume/box normalization (with comoving volume

V ) has been introduced for the Fourier transform. The vacuum state annihilated by these

operators (which in turn are directly associated with the solutions gk(η))

âk|0〉 = 0 (206)

is known as the Bunch-Davies vacuum, which is the state observed by an observer comoving

with the cosmic expansion. It is this vacuum state which is used with both the homogeneous

field and the fluctuation field operators, which have the following vacuum expectation values

〈0|φ̂(t, ~x)|0〉 = 〈0|Φ̂(t)|0〉+ 〈0|δ̂φ(t, ~x)|0〉 = Φ(t) + 0 (207)

namely, only the homogeneous piece has a non-zero vacuum expectation value (VEV). In the

nearly vacuum energy dominated epoch of inflationary expansion, the spacetime is approx-

imately de Sitter, hence the exponential expansion2. The use of the Bunch-Davies vacuum

allows for a correspondence between the inflationary mode solutions gk(η) and the positive

2A de Sitter spacetime is a type of FLRW spacetime which expands exactly exponentially, driven by a
positive constant energy density. Slow roll inflationary models source a nearly de Sitter spacetime, but are
not exactly de Sitter because of the kinetic energy contribution of the inflaton field.
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frequency plane waves of Minkowski spacetime. It is for this reason, that we have cho-

sen the Hankel function solution to the equations of motion since they in turn select the

Bunch-Davies vacuum.

Having solved for the behavior of the fluctuation, we now must connect these inhomo-

geneities in the inflaton (which source inhomogeneities in the energy-momentum tensor) to

inhomogeneities in the spacetime. Assuming the perturbations are small, the perturbed

FLRW metric is

gµν = diag
[
(1 + 2ψ)a2,−(1− 2ψ)a2,−(1− 2φ)a2,−(1− 2φ)a2)

]
(208)

working in the Newtonian gauge in conformal time (also note there is no anisotropic stress

since the spacetime is nearly de Sitter). These small perturbations distort the scale factor

locally such that δa(t, ~x) = a(t)ψ(t, ~x). The perturbations of the geometry tensor δGµν are

connected to the perturbations of the energy-momentum tensor δT µν through the perturbed

Einstein equations

δGµν = 8πGNδT
µν (209)

which is a daunting proposal. The approximate scheme is to treat the homogeneous back-

ground inflaton as the quantity which sources the FRW spacetime, thereby establishing a

set of global comoving coordinates (most importantly comoving time). Then δφ(t, ~x) sources

local gravitational potentials which vary the time coordinate:

t→ t+ δt(~x) (210)

φ(t+ δt, ~x) ' Φ(t) + Φ̇δt = Φ(t) + δφ(t, ~x) (211)

δt(~x) =
δφ(t, ~x)

Φ(t)
(212)

where in the second line we have used the field decomposition eqn. 193. These perturbations

in the time coordinate adjust the scale factor accordingly

a(t+ δt) = a(t) + ȧδt = a(t) + δa(t, ~x) = a(t) + a(t)ψ(t, ~x) (213)

ψ(t, ~x) =
δa

a
=
ȧ

a
δt (214)
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and so combining this result with the expression for the local time variation we obtain

ψ(t, ~x) = H
δφ(t, ~x)

Φ(t)
(215)

which exhibits the connection between the local gravitational distortions and the inflaton

fluctuations.

The spectrum of these inhomogeneities can be obtained by computing the two-point

correlation function of the inflaton fluctuations

〈0|δφ(t, ~x) δφ(t, ~y)|0〉 ≡ C(~x, ~y, t) (216)

which, since the Bunch-Davies vacuum state is rotationally and translationally invariant,

can be expressed in the form of a power spectrum. Namely,

C(~x, ~y, t) =

∫
d3k

(2π)3
P (k, t) ei

~k·(~x−~y) =

∫
k2 dk

2π2
P (k, t)

sin kr

kr
≡
∫
dk

k
P(k, t)

sin kr

kr
(217)

where ~r ≡ ~x−~y and in the final equality the result has been written in terms of a dimension-

less power spectrum (see eqn. 123). Using the field expansion for the conformally rescaled

fields (eqn. 205) the two-point function can be straightforwardly computed

〈0|δφ(t, ~x) δφ(t, ~y)|0〉 =
1

a2
〈0|χ(t, ~x)χ(t, ~y)|0〉 =

∫
d3k

(2π)3
|gk(η)|2 ei~k·(~x−~y) (218)

and therefore the dimensionless power spectrum can be directly read off

P(k, η) =
k3

2π2 a2
|gk(η)|2 =

H2

4π2
k2η2

[
1 +

1

k2η2

]
(219)

where eqns. 204 and 197 have been used. Notice that for the superhorizon limit (λphys � dH)

the power spectrum becomes

lim
−kη→0

P(k, η) =
(H

2π

)2

. (220)

Accordingly, the power spectrum for modes outside the particle horizon is ”frozen” and scale

invariant. We can use this quantity to compute the superhorizon mode power spectrum for

the curvature perturbations ψ. Using eqn. 215

lim
−kη→0

Pψ(k) =
H2

Φ̇2

(H
2π

)2

=
H2

πM2
pl εV

(221)
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where for the last equality eqns. 187 and 188 have been used.

The resulting picture of each inflationary perturbation mode is thus: 1. Each mode

begins inside the particle horizon and oscillates. 2. As the scale factor exponentially expands,

the physical wavelengths of the modes become larger than particle horizon. These modes

become acausal, unable to effect microphysics within the horizon, and their power spectrum

becomes frozen. 3. After inflation ends, the Universe continues to expand, and the modes

begin to re-enter the particle horizon producing local gravitational disturbances that cause

density fluctuations in the now present baryon-photon plasma. Therefore the curvature

power spectrum acts as the primordial power spectrum (Pψ = PR) which is used in the

analysis of CMB temperature anisotropies (see eqn. 122). Bluntly speaking, it is the therefore

inflaton fluctuations which are the source of primordial inhomogeneities. A key result of

the above analysis is that the superhorizon modes are scale invariant. As a result, the

temperature anisotropy power spectrum should reflect this scale invariance on the largest

scales, since these correspond to modes which had not yet re-entered the particle horizon by

the time of recombination. In examining Figure 4, the nearly flat tail at the far left of the

spectrum is consistent with this analysis.

Measurements of the primordial power spectrum serve to constrain models of inflation.

For the purposes of comparing with observations it is useful to work with the following form

of the primordial curvature power spectrum [71, 170]

Pψ(k) =
(H

2π

)2

=
H2

πM2
pl εV

[ k
k0

]ns−1

(222)

where ns is known scalar spectral index and is a function of the slow roll parameters, and k0

is a so-called pivot scale (which is a reference scale used to define ns). The above equation

can be derived if one carries out the calculation of the power spectrum keeping all powers of

the slow roll parameters.

When the metric tensor is perturbed, the perturbations can be decomposed into scalar,

vector and tensor perturbations [71]. As was discussed in section 2.1.2.4, vector perturba-

tions represent the response of the metric to vorticity in the energy momentum tensor, and

are thus insignificant in conventional inflaton models which have small perturbations about

a homogeneous and isotropic field sourcing a de Sitter spacetime. Thus far we have focused
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exclusively on the scalar perturbations sourced by the inflaton fluctuations. Given that

scalar perturbations are of principle interest in the analysis of the CMB temperature power

spectrum, since temperature is a scalar quantity, this is appropriate. However, tensor per-

turbations, which represent primordial gravitational waves, can induce subtle anisotropies in

the polarization of the CMB. The measuring of these so-called B-modes, therefore, represents

another important probe of inflation.

The calculation of the power spectrum of tensor metric perturbations is discussed at

length in [71, 170]. As with the scalar metric perturbations, the power spectrum is propor-

tional to the square of the mode functions (eqn. 204) and thus under the superhorizon limit

(−kη → 0), power spectrum becomes scale invariant,

lim
−kη→0

Ph(k) =
16

π

H2

M2
pl

(223)

to leading order in the slow roll parameters. Notice, unlike for the scalar curvature power

spectrum, this result depends only on the Hubble parameter during inflation (which is es-

sentially constant) and the Planck mass. Consequently, a measurement of primordial gravi-

tational waves, from inflation, would represent a direct probe of the scale of inflation. Addi-

tionally, when comparing to observations, it is customary to introduce the tensor index nT

and associated pivot scale k0

Ph(k) =
16

π

H2

M2
pl

[ k
k0

]nT
. (224)

Incidentally, computing the tensor to scalar power spectra ratio yields the first slow roll

parameter,
Ph(k)

Pψ(k)
≡ r ' 16εV (225)

and so a measurement of both power spectra would allow one to constrain the shape of the in-

flaton potential. Recent observations of the CMB temperature and polarization anisotropies

place constraints on the model parameters of inflation. These results are summarized in

Table 4 below. The parameters suggest a very nearly scale invariant scalar curvature power

spectrum and place an upper bound on the tensor to scalar ratio. The combination of these

values in conjunction with eqns. 221 and 225 place an upper bound on scale of inflation

at HI ≤ 1014 GeV. The only reasonable lower bound comes from nucleosynthesis which as
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we have seen occurs at T ' 1 MeV. Thus the scale of inflation and the precise inflationary

model remain open questions. Despite these concerns, the success of inflation in simulta-

neously resolving the Horizon and Flatness problems while elegantly providing a source of

the primordial inhomogeneities, has made the theory a reasonable extension to the ΛCDM

cosmological paradigm.

Parameter Measured Value

Pψ 2.141± 0.049× 10−9

ns 0.9667± 0.0040

r < 0.07 (95%)

Table 4: Primordial Power Spectra Parameters. The parameters of the primordial power

spectrum as measured by Planck and BICEP/Keck [4]. The observations indicate the

scalar power spectrum is very nearly scale invariant, and place an upper bound on the

tensor to scalar ratio. These values consider a pivot scale k0 = 0.05 Mpc−1.

2.2 Quantum Field Theory

Quantum field theory (QFT) is a theoretical physics framework which synthesizes rel-

ativistic dynamics, quantum mechanics, and the field concept into a single structure and

which sees ubiquitous usage in contemporary physics. In QFT, the dynamics of particles

are governed by the interactions of extended objects known as fields which are quantized

in a particular spacetime. The fields have specific equations of motion which govern their

time evolution. The particles are then excited states of these underlying fields. Within the

QFT framework, one can construct myriad theories, each with different numbers of fields

and interactions between them. The Standard Model of particle physics represents a partic-

ular instantiation of QFT; one which has been enormously successful in explaining particle

physics experiments. In this section a pedagogical review of QFT in general is presented
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following conventional textbooks[161] and [95], and in the later sections, [28] and [158]. We

begin by studying QFT in the limit where gravitational effects can be neglected (i.e. consid-

ering only special relativity) before discussing gravitational effects, later on. This section is

only meant to review the concepts that are pertinent to understanding the original research

content of the later chapters.

2.2.1 QFT in Minkowski Spacetime

The spacetime geometry implied by the Special Theory of Relativity is known as Minkowski

spacetime and is characterized by the following metric, here shown via the invariant space-

time interval written in Cartesian coordinates:

ds2 = ηµνdx
µdxν = dt2 − dx2 − dy2 − dz2 (226)

The Minkowski metric, ηµν ensures, by construction, that the interval is invariant under

Lorentz transformations, Λν
µ (velocity boosts and rotations) such that

ηµνdx
′µdx′ν = ηµνΛ

µ
αΛν

βdx
αdxβ (227)

and moreover

ηαβ = Λµ
αΛν

βηµν (228)

One may consider infinitesimal Lorentz transformations which can be written in the form of

a generalized rotation

x′µ = xµ + ωµνxν (229)

Λν
µ = ηνµ + ωνµ (230)

where the matrix ωµν depends on the rotation angles. Note condition 228 requires that this

matrix be anti-symmetric. The equation 230 can be parameterized in terms of 6, 4×4, anti-

symmetric matrices (Iαβ) (where the two indices collectively define each of the 6 matrices)
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known as the infinitesimal generators of the transformation. Using these generators we

obtain [95]

Λν
µ = ηνµ +

1

2
ωαβ(Iαβ)νµ (231)

[Iµν , Iστ ] = ηνσIµτ − ηµσIντ + ηντIµσ − ηµτIνσ (232)

where the last line defines the Lie algebraic relations of the generators which any matrix

representation must satisfy [?]. In QFT, physical fields φr(x) are functions of spacetime co-

ordinate, x, and are classified based on their transformation under Lorentz transformations.

Using eqn. 231 leads to the infinitesimal Lorentz transformation of such a field,

φ′r(x
′) = φr(x) +

1

2
ωµν(I

µν)rsφs(x) (233)

where we see that the matrices (Iµν)rs mix the various components (referred to with Latin

indices for clarity) of the multi-component physical field. As we will see later on, the above

result is deeply connected to the angular momentum/spin of a field. For scalars (spin-0),

fermions (spin-1/2), vectors (spin-1), etc. the infinitesimal Lorentz transformation law will

look very different as each type of field will have a different representation of the generators.

The Standard Model contains fields of the scalar, fermion, and vector types. In this section

we will restrict ourselves to the scalar and fermion cases, as these are the field types studied

in the later chapters.

2.2.1.1 Scalar Field Quantization The procedure for developing a quantum field the-

oretic description of a system begins with a classical field theory. Let us first consider a

real, scalar field φ(x) which is defined at all points of Minkowski spacetime. The field is

considered scalar because of its behavior under Lorentz transformations,

φ′(x′) = φ′(Λx) = φ(x) (234)

where the Lorentz indices have been suppressed for brevity. Notice by eqn. 233, the above

result implies that the generators are trivially null for the scalar field. The action for this

scalar field is given by

S =

∫
L d4x =

∫
1

2

(
ηµν∂µφ∂νφ−m2φ2

)
d4x (235)

76



where ∂µ ≡ (∂t,∇) is the 4-gradient, and m is to be interpreted as the mass of the associated

field quanta, once the field is quantized. The equations of motion are found by demanding

that variations of the action with respect of φ vanish, leading to the Euler-Lagrange equation,

which for the scalar field is (
�+m2

)
φ = 0 ; � ≡ ηµν∂µ∂ν (236)

and is known as the Klein-Gordon equation. This is a second order partial differential

equation akin to the wave equation. Since the Minkowski spacetime upon which this field is

defined is spatially flat, one may solve the spatial part of the differential equation through a

Fourier transform

φ(t, ~x) =
1√
V

∑
k

φk(t)e
i~k·~x ≡

∑
k

φk(t)uk (237)

where for the time being we are considering the field to be bounded by a large box/cube of

volume, V = L3 and are considering periodic boundary conditions eikL = 1 (consequently

k takes on discrete integer values). Note the factor of
√
V is introduced for normalization

purposes: ∫
d3xuk u

∗
k′ = δkk′ . (238)

Inserting this Fourier form into eqn. 236 gives the second order, linear differential equation(
∂2
t + ω2

k

)
φk(t) = 0 ; ω2

k ≡ k2 +m2 (239)

which because the field φ is real must have a general solution of the form

φk(t) = bk gk(t) + b∗k g
∗
k(t) (240)

where the gk’s are known as mode functions. Because the frequencies, ωk are time-independent,

eqn. 239 can be straightforwardly solved with complex exponential mode functions. Thus,

the solution for the classical, real scalar field is

φ(t, ~x) =
1√
V

∑
k

bke
−i(ωt−~k·~x) + C.C. (241)
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where C.C. refers to the complex conjugate. Associated with this field is the canonical

conjugate momentum field

π(t, ~x) =
∂L
∂φ̇

= φ̇(t, x) (242)

where the dot refers to a time derivative. In conjunction with Lagrangian density in eqn.

235 one can obtain the Hamiltonian,

H =

∫
d3xH =

∫
d3x π φ̇− L =

∫
1

2

(
π2 + (∇φ)2 +m2φ2

)
d3x . (243)

So far this discussion has concerned classical fields. In order to move to a quantum me-

chanical discussion, field φ must be quantized. This can be done by following the canonical

quantization procedure. First the coefficients bk (b∗k) are isolated using the orthogonality of

the terms in the Fourier series

bk gk(t) =
1

2

∫
d3xu∗k

(
φ(t, ~x) +

i

ωk
π(t, ~x)

)
(244)

b∗k g
∗
k(t) =

1

2

∫
d3xuk

(
φ(t, ~x)− i

ωk
π(t, ~x)

)
. (245)

Next, the Poisson brackets

{a, b}PB ≡ ∂φa ∂πb− ∂πa ∂φb (246)

are computed for the coefficients,

{bk gk(t), b∗k′ g∗k′(t)}PB → {bk , b∗k′}PB =
i

4

∫
d3xu∗kuk′

{
(φ+π/ωk), (φ−π/ω′k)

}
PB

= −iδkk′
2ωk

.

(247)

Similarly in can be shown that

{bk, bk}PB = {b∗k, b∗k}PB = 0 (248)

Finally, canonical quantization requires that the coefficients be promoted to operators with

equal time commutation relations equal to i times the value of the Poisson brackets of the

coefficients (i{a, b}PB = [â, b̂]). Therefore,

bk → âk/
√

2ωk ; b∗k → â†k/
√

2ωk (249)

[âk, â
†
k′ ] = 2ωk · i{bk , b∗k′}PB = δkk′ (250)

[âk, âk′ ] = [â†k, â
†
k′ ] = 0 (251)
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where we have elected to make the operators dimensionless and have normalized their com-

mutator by splitting off the factor
√

2ωk. These operators (â†k, âk) are referred to as creation

and annihilation operators for reasons which will become apparent below. Using these op-

erators, the solution for the quantized real, scalar field takes the form

φ̂(t, ~x) =
1√

2ωkV

∑
k

âke
−i(ωt−~k·~x) + h.c. (252)

where h.c. stands for Hermitian conjugate. Note the field is now a time-evolving operator

consistent with the Heisenberg picture of quantum mechanics. In this picture, the quantum

states of the operator are time-independent, and span a Hilbert space. In QFT, the most

convenient basis of states to work in is the so-called Fock representation which is the sum

of Hilbert spaces representing one particle states, two particle states, etc. whereby particles

we strictly mean identical particles. Beginning with the vacuum state, (henceforth, I will

suppress the hats over operators)

ak|0〉 = 0 ∀k (253)

which is annihilated by all ak operators, the many particle states of the Fock representation

may be constructed from the vacuum

|1k1 , 1k2 , 1k3 , ..., 1kj〉 = a†k1
a†k2

a†k3
... a†kj |0〉 (254)

where the state on the left is interpreted as containing one particle of momentum ~k1, one

particle of momentum ~k2, etc. Since scalar particles are bosons, creation operators for the

same momentum may be applied repeatedly yielding,

a†k|nk〉 = (n+ 1)1/2|(n+ 1)k〉 (255)

ak|nk〉 = (n)1/2|(n− 1)k〉 (256)

where the prefactors in front of the states follow from the commutation relations. One may

also count the number of particles in a state by introducing the number operator, Nk ≡ aka
†
k

whose expectation value is given by,

〈nk|Nk|nk〉 = nk . (257)
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Thus, the Fock states are eignestates of the number operator, and we may interpret nk as

counting the number of quanta with momentum k. Using the field solution eqn. 252, and

the creation/annihilation operator commutation relations leads to the following commutation

relations

[φ(t, ~x), φ(t, ~x′)] = 0 (258)

[π(t, ~x), π(t, ~x′)] = 0 (259)

[φ(t, ~x), π(t, ~x′)] = iδ3(~x− ~x′) . (260)

Finally inserting the field solution into the Hamiltonian eqn. 243 yields

H =
∑
k

(a†kak +
1

2
)ωk (261)

which reveals that the energy in a particular state is proportional to the number particles in

the state (though importantly, the zero particle/vacuum state does not have zero energy).

Hence the the reason for names creation and annihilation operators becomes apparent: the

application a†k to the vacuum state changes the state and increases the energy stored in the

field by an amount ωk which is precisely the energy of a quanta of mass m with momentum

k. Meanwhile the operator ak has the opposite effect when acting on a state |nk〉.

2.2.1.2 Fermion Field Quantization Quantum fields of half-integer spin are used in

the Standard Model to describe the elementary, matter particles (e.g. electrons, quarks).

These fermion fields are also the second type of quantum field considered at length in this

thesis. Here I provide a brief review of only the most salient aspects of the quantum field

theory of fermions; standard texts such as [95], [161] provide much greater detail for the

curious reader. As with scalar bosons, we proceed by specifying a classical field theory and

then performing a canonical quantization. Fermion fields, ψ(t, ~x) are described by the Dirac

action

S =

∫
L d4x =

∫
d4x ψ̄

(
iγµ∂µ −m

)
ψ (262)
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where the ψ̄ = ψ†γ0 is known as the Dirac adjoint. Additionally, the matrices γµ ; µ =

0, 1, 2, 3 are known as the Dirac matrices. They satisfy the anti-commutation relations:

γµγν + γνγµ = 2ηµν . (263)

The simplest possible matrix representation of this algebra is a set of 4 × 4 matrices. The

standard Dirac representation uses block diagonal matrices composed of the Pauli matrices

σi,

γ0 =

1 0

0 −1

 , γj =

 0 σj

−σj 0

 (264)

σ1 ≡

0 1

1 0

 , σ2 ≡

0 −i
i 0

 , σ3 ≡

1 0

0 −1

 . (265)

Using eqn. 263, it is possible to prove the following commutation relations:

Sµν ≡=
1

4
[γµ, γν ] =

 0 µ = ν

1
2
γµγν µ 6= ν

 (266)

[Sµν , γρ] = γµηνρ − γνηρµ (267)

[Sµν , Sρτ ] = ηνρSµτ − ηµρSντ + ηντSµρ − ηµτSνρ (268)

where the result of each line follows directly from the one proceeding it. Notice that the

last line has the exact same form as the relation 232. Consequently, Sµν are the representa-

tion of the generators of Lorentz transformations for fermion fields, and therefore eqn. 233

proscribes the transformation of ψ under infinitesimal Lorentz transformations; ψ must be a

4-component spinor (a fact also immediately evinced by the form of the Dirac Lagrangian).

By varying the action 262 with respect to ψ̄ (or ψ), the equations of motion for ψ (or ψ̄)

are obtained

(iγµ∂µ −m)ψ = 0 (269)

i∂µψ̄γ
µ +mψ̄ = 0 . (270)

Unsurprisingly, the first and second lines are known as the Dirac equation and adjoint Dirac

equation respectively. There is no immediately obvious argument for why this first order,
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partial differential equation, of unusual form, is the necessary one for describing spin-1/2

particles. The historical motivation and development of the equation is discussed at length

in [183]. Regardless, once properly understood, the Dirac equation has elegant and profound

implications. For now we begin by deriving the associated conjugate momentum fields

πψ =
∂L
∂ψ̇

= iψ† (271)

which interestingly is not proportional to a derivative of the fermion field, but rather it’s

conjugate. Accordingly, the phase space for a Dirac spinor field is fully parameterized by ψ

and it’s Hermitian conjugate meaning it is 8 dimensional (2 sets of 4 components). Since

the number of degrees of freedom of a system is one half the dimensionality of the associated

phase space, the fermion field has 4 real degrees of freedom (of course fields are extended ob-

jects with infinite degrees of freedom, here we are specifically counting degrees of freedom at

each spacetime point). Using the conjugate momentum allows one to obtain the Hamiltonian

H =

∫
d3xH =

∫
d3x πψ ψ̇ − L =

∫
d3x ψ̄(−iγj∂j +m)ψ =

∫
d3x iψ̄γ0ψ̇ (272)

where the Dirac equation was used for the last equality. One can solve the Dirac equation

by making an ansatz similar to the solution of the Klein-Gordon equation, namely using a

Fourier transform:

ψ(t, ~x) =
1√
V

∑
p

Us(p, t)e
i~p·~x (273)

where we again are considering the field to be bound by a large box/cube of volume V and

periodic boundary conditions. Note the object Up,s(t) is a time-dependent, 4-component

spinor (the subscript s = 1, 2, 3, 4 labels the components). Inserting this expression into eqn.

269 yields

(iγ0∂t − ~γ · ~p−m)Us(p, t) = 0 (274)

Us(p, t) ≡ (iγ0∂t − ~γ · ~p+m)fp(t)us = 0 (275)

(∂2
t + (p2 +m2))fp(t) = 0 (276)

where in the second line, the spinor has been written in terms of the product of a mode

function fp(t) and a time-independent spinor us. The third line then follows from inserting
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the second into the first. Notice the resulting equation for the time-dependence is the same

second order, linear differential equation encountered for the scalar case (see eqn. 239), and

thus the solution will be the same. Note, there are two solutions to this equation:

f (1)
p (t) = e−iωpt ; f (2)

p (t) = e+iωpt (277)

with ω2
p ≡ p2 + m2. Meanwhile, for the time-independent spinors, we are free to choose the

form:

u†1 = (χ1, 0) , u†2 = (χ2, 0); , u†3 = (0, φ1) , u†4 = (0, φ2) (278)

where χj and φj are 2-spinors

χ1 =

1

0

 , χ2 =

0

1

 ; φ1 = χ2 , φ2 = χ1 (279)

and so u1 and u4 describe spin-up states while u2 and u3 describe spin-down states. Now,

eqn. 275 can be used to determine the form of the full U spinors. Inserting the us spinors,

mode functions, and Dirac matrices into this equation yields

Uλ(p) =

(ωp +m)χλ

(~σ · p)χλ

 · f (1)
p (t) , λ = 1, 2 (280)

where for the moment we have restriced ourselves to s = λ = 1, 2 and have matched those

solutions with the first mode function solution. Incidentally these spinors can be normalized

since

U †λ(p)Uλ′(p) = 2ωp(ωp +m)δλλ′ (281)

and therefore the normalized spinor takes the form,

Uλ(p) =

 χλ
(~σ·p)
ωp+m

χλ

 · f (1)
p (t)√

2ωp
, λ = 1, 2 . (282)

The result 282 represents one of two solutions to the Dirac equation. Insertion of this result

into eqn. 272 for the Hamiltionian leads to H ∝ ωp. Evidently this is a positive energy

solution since ωp > 0.

83



Turning our attention to other solution, eqn. 275 can be used, while considering s = 3, 4,

with the second mode function to obtain

Vλ(p) =

 (~σ·p)
(ωp+m)

φλ

φλ

 · f (2)
p (t) , λ = 1, 2 (283)

where the symbol Vλ(p) is used to distinguish these spinors from the previous solution, and

the normalization has already been imposed. One can also readily verify that these two

types of spinor solutions are orthogonal

U †λ′(p)Vλ(p) = V †λ′(p)Uλ(p) = 0 (284)

Superfically this second solution, Vλ(p) seems parsimonious. However, once inserted into

the Hamiltonian (see eqn. 272) we discover H ∝ −ωp; these spinors correspond to negative

energy solutions. Given that were are solving the equations of motion for a completely

free field, the negative energy solutions are problematic since excitations of this field (once

quantized) ought correspond to freely propagating particles. The problem of negative energy

solutions becomes even more exacerbated when considering the Hamiltonian including both

solutions. First we write the general free field solution:

ψ =
1√
V

∑
p,λ

1√
2ωp

(
c+
p,λuλ(p) e

−iωpt + c−p,λvλ(p) e
+iωpt

)
ei~p·~x (285)

where the lower case spinors uλ(p) and vλ(p) refer to the capital case spinors Uλ(p) and

Vλ(p) without the mode function and
√

2ωp factors, since these have been written explicitly.

Moreover, the c+/− are the coefficients for the positive/negative energy solutions. Upon

inserting this solution and the associated expression for ψ† into eqn. 272, and using the

orthonormality relations of the spinors, one finds

H =
∑
p,λ

(
ωp c

†+
p,λc

+
p,λ − ωp c†−p,λc−p,λ

)
(286)

which makes the problem of negative energies manifest: if the coefficients are promoted

to creation and annihilation operators in order to quantize the theory, the energy of the

system is not bounded from below. Namely as the number of negative energy particles

(N− = c†−c−) increases, the energy of the field plunges towards negative infinity. Fortunately
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this conundrum can be solved. First, the coefficients are promoted to operators using the

following convention

c+
p,λ → bp,λ ; c†−p,λ → dp,λ (287)

where bp,λ and dp,λ are referred to as particle and antiparticle annihilation operators re-

spectively (hats are suppressed). Second, these operators are made to obey canonical anti-

commutation relations

{bp,λ, b†p′,λ′} = {dp,λ, d†p′,λ′} = δ3(~p− ~p′) δλλ′ (288)

{bp,λ, bp′,λ′} = {dp,λ, dp′,λ′} = 0 . (289)

Using these new results, the free field Hamiltonian becomes

H =
∑
p,λ

ωp

(
b†p,λbp,λ + d†p,λdp,λ

)
+ E0 (290)

where the anti-commutation relations have permitted us to flip the sign of the antiparticle

contribution (albeit at the expense of introducing a positive zero-point energy, E0). Thus,

the Hamiltonian is a positive definite operator. The free field general solution for the fermion

field operator is also recast as

ψ =
1√
V

∑
p,λ

1√
2ωp

(
bp,λuλ(p) e

−ipµxµ + d†−p,λvλ(−p) e+ipµxµ
)

(291)

where we have introduced the antiparticle spinors, vλ(p) = vλ(p), ~p → −~p, namely an-

tiparticles of positive energy are described as particles propagating backwards in time [183].

Concluding our discussion of Fermion fields, through the anti-commutation relations of the

creation and annihilation operators it is possible to prove the following relations

{ψ(t, ~x), ψ̄(t, ~x′)} = δ3(~x− ~x′) (292)

{ψ(t, ~x), ψ(t, ~x′)} = {ψ̄(t, ~x), ψ̄(t, ~x′)} (293)

which hold for equal time t. Additionally, since

bp,λbp,λ = −bp,λbp,λ (294)
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by anti-commutation, evidently (bp,λ)
2 = (b†p,λ)

2 = 0, and the same holds for antiparticle

operators. This result necessarily prevents two fermions from being in the same Fock state,

and hence the Pauli exclusion principle emerges naturally. Mindful of this critical difference

from the bosonic case, the Fock basis is still a convenient choice of states to use when working

with fermionic field operators. Finally, we note that it is often expedient to choose the 2-

spinors χj and φj (see eqn. 279) to be eigenstates of the helicity operator ~σ · ~p such that

~σ · ~p ξ± = ±pξ± , λ = (1, 2)→ (ξ+, ξ−) (295)

which simplifies algebraic manipulations involving Dirac spinors and is convenient for most

particle physics calculations. Earlier we noted that fermion fields have 4 real degrees of

freedom per spacetime point. We can now clearly see these are the result of 2 spin states

(spin-up/spin-down) plus two charge states (particle/antiparticle).

2.2.1.3 The S-Matrix Thus far we have described the time evolution of non-interacting

quantum fields using the Heisenberg picture of quantum mechanics, where the states are

time-independent, and the operators are time-dependent, obeying the Heisenberg equation

of motion

∂tA(t, ~x) = −i[A,H] (296)

where A is a quantum field operator, and H is the field Hamiltonian. While in the previous

sections we choose to derive the equations of motion for the fields through a Lagrangian

formalism, one can readily show that for real scalar fields (A = φ), and with the Hamiltonian

given in equation 243, the Heisenberg equation yields the Klein-Gordon equation (eqn. 236).

Similarly one can obtain the Dirac equation (6.2.11) through the Hamiltonian defined in

equation 272 and the Heisenberg equation of motion.

In practice, however, one is concerned not merely with free fields, but those which interact

since such couplings lead to the rich dynamics we observe in nature. In the Standard Model

(SM), the matter fields feature specific gauge symmetries which, when described as local

gauge symmetries, proscribe the exact mathematical form of these interactions (see [161]).

In general, however, one may consider interactions between fields which are motivated on

phenomenological grounds.
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Regardless of the motivation for considering a particular form of interaction, the task at

hand is to understand the time evolution of a field operator when interactions are included.

Mathematically, this is tantamount to including more complicated terms in the Lagrangian.

Generically, this leads to a non-linear field theory which is difficult to solve (and often

cannot be solved exactly). However, if the interactions are small, namely their coupling is

weak (λ � 1), then a perturbative approach can be used to obtain reliable, approximate

solutions. This is exactly the situation for the SM interactions (under most, but not all of

the scenarios of calculational interest), and it is generally true of new physics extensions.

Consequently, in this section, we shall consider exclusively this perturbative approach to

interactions, made possible via the scattering matrix (or S-matrix for short).

To begin with, we write the Hamiltonian of each interacting field divided into two parts:

H = H0 +HI (297)

where H0 is the free field Hamiltonian (i.e. the Hamiltonian of the non-interacting theory)

and HI is the interacting Hamiltonian (i.e. the perturbation term). We then define operators

and states in the interaction picture as:

OI(t) ≡ eiH0tOS e−iH0t (298)

|α, t〉I ≡ eiH0t|α〉S = eiH0t e−iHt|α〉H (299)

where the superscripts I,H, S refer to the interaction, Heisenberg, and Schrodinger pictures

respectively. Recall, that in the Schrodinger picture, the operators are time-independent

while states evolve according to the Schrodinger equation
(
i∂t|ψ(x, t)〉S = H|ψ(x, t)〉S

)
. If

one computes an operator matrix element:

I〈α, t|OI(t)|β, t〉I = H〈α|eiHtOS e−iHt|β〉H (300)

I〈α, t|OI(t)|β, t〉I = H〈α|OH(t)|β〉H = S〈α, t|OS|β, t〉S (301)

we see that the result is equivalent in all three pictures. This is naturally expected since the

Hamiltonian is an Hermitian operator and these transformations from picture to picture are

therefore unitary. Differentiating equation 298 respect to time yields

∂tO
I(t) = iH0O

I(t)− iOI(t)H0 = −i[OI(t), H0] (302)
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and so evidently the operators in the interaction picture obey the Heisenberg equation of

motion with the free field Hamiltonian (compare with eqn. 296). Thus, in the interaction

picture the fields obey their free field equations of motion, and we do not need to solve any

new equations of motion. Meanwhile, differentiating the interaction picture states (eqn. 299)

produces

∂t|α, t〉I = −iHI |α, t〉I (303)

implying these states evolve according to the Schrodinger equation albeit exclusively in terms

of the interacting Hamiltonian. Thus, the states of the interacting theory will feature a non-

trivial time-evolution since HI is in principle time-dependent. In order to formally solve for

this time-evolution, one may construct a unitary time-evolution operator

|α, t〉I = UI(t, t0)|α, t0〉I (304)

which when inserted into the interaction picture Schrodinger equation yields

∂t|α, t〉I = −iHI |α, t〉I → ∂tUI(t, t0)|α, t0〉I = −iHI UI(t, t0)|α, t0〉I (305)

∂tUI(t, t0) = −iHI UI(t, t0) . (306)

The resulting differential equation can be unfolded into integral form

UI(t, t0) = 1− i
∫ t

t0

dt′HI(t
′)U(t′, t0) (307)

which can solved iteratively, by successive reinsertion of the left-hand side, giving rise to the

Neumann series

UI(t, t0) = 1 + (−i)
∫ t

t0

dt1HI(t1) + (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) + . . . (308)

The resulting series involves a ever increasing products of HI with each successive factor

evaluated at a prior time (t1 > t2 > t3 etc.) Accordingly, the domains of integration are

over ever smaller intervals in time and with the upper limit of one integral serving as the
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integration variable for the next integral. These successive integrations can be simplified via

the introduction of the time ordered product (T {A(x1)A(x2)} ≡ A(x1)A(x2) +A(x2)A(x1)):

UI(t, t0) = 1 + (−i)
∫ t

t0

dt1HI(t1) +
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2 T {HI(t1)HI(t2)}+

(−i)3

3!

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3 T {HI(t1)HI(t2)HI(t3)}+ . . . (309)

UI(t, t0) =
∞∑
n=0

(−i)n
n!

∫ t

t0

dt1· · ·
∫ t

t0

dtn T {HI(t1) . . . HI(tn)} (310)

leading to a perturbation series for the time evolution operator.

Armed with a perturbative expansion for the time evolution operator one can construct

the scattering matrix, which describes the probability amplitude for a quantum mechanical

transition from an initial state (prepared in the asymptotic past) to a final state (observed

in the asymptotic future) under the influence of an interaction,

Sfi = lim
t0→−∞

lim
t→∞
〈f |UI(t, t0)|i〉 = 〈f |UI(∞,−∞)|i〉 (311)

where |i〉 and 〈f | are Fock states of the quantum field theory. Naturally, the S-matrix

can be used to compute the probability amplitudes for a variety of transition processes.

Of particular interest to this thesis is particle decay, whereby one particle transmutes into

multiple quanta of a different species. Incidentally such a process represents the simplest,

non-trivial S-matrix calculation wherein one can obtain the decay rate of the process as

follows:

Sfi = 〈f |UI(∞,−∞)|i〉 ' Mfi δ(
2∑

f=1

~pf − ~pi) δ(
2∑

f=1

Ef − Ei) (312)

where here we are considering a two-particle final state. Mfi refers to a matrix element

whose form is dependent on the nature of the interacting Hamiltonian. The momentum

conserving delta functions arise naturally from integrating the Hamiltonian density over 3-

spatial dimensions to obtain the Hamiltonian and are a direct consequence of the Fourier

series in the free field operator solution. The energy conserving delta function is a distinct

consequence of the infinite time limit and the complex exponential mode functions. By
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defining the transition probability as this S-Matrix squared, the energy conserving delta

function ensures that the transition amplitude is linear in total elapsed time,

Tfi ≡ |Sfi|2 ' |Mfi|2 δ(
2∑

f=1

~pf − ~pi) δ(
2∑

f=1

Ef − Ei)T . (313)

Finally, dividing by the total elapsed time and summing over the final state momenta gives

the decay rate:

Γ =
∑
p1

∑
p2

Tfi
T
. (314)

As an example of this formalism, consider the decay of a massive, real scalar boson into two,

real, massless scalars through the interaction Hamiltonian density HI = λφ1(φ2)2 where λ

is the coupling constant. The Fock states of interest are

|i〉 = |1φ1
p1
〉 ; |f〉 = |1φ2

p2
1φ2
p3
〉 . (315)

Based on these states and the form of the interacting Hamiltonian, the lowest order contri-

bution to the perturbative S-matrix is

Sfi = (−i)
∫ ∞
−∞

dt1

∫
d3xλ〈1φ2

p2
1φ2
p3
|φ1(φ2)2|1φ1

p1
〉 (316)

The free field solution for these fields is given by eqn. 252. Inserting those expressions into

the above equation yields

Sfi =
−2iλ√

2E1 2E2 2E3

(2π)4

√
V 3

δ(~p1 − ~p2 − ~p3) δ(E1 − E2 − E3) (317)

and squaring the S-matrix gives the transition probability,

Tfi = |Sfi|2 =
4λ2

2E1 2E2 2E3

(2π)4 V T

V 3
δ(~p1 − ~p2 − ~p3) δ(E1 − E2 − E3) . (318)

and subsequently inserting the result into eqn. 314 gives the decay rate

Γ =
(2π)4

2E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

4λ2 δ(~p1 − ~p2 − ~p3) δ(E1 − E2 − E3) (319)

where we have passed from box normalization to the continuum description via 1
V

∑
k →∫

d3p
2π3 . This integral is over the Lorentz invariant phase space (see [183]), and thus one is free
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to evaluate the result in any frame connected by a Lorentz transformation. A convenient

choice is the rest frame of parent particle ~p1 = 0, E1 = m1 which gives

Γ =
2λ2

32π2m1

∫
δ
(
m1 −

√
m2

2 + p2
2 −

√
m2

3 + p2
2

)p2
2 dp2dΩ

E2E3

. (320)

where we have integrated over the momentum conserving delta function, and passed to

spherical coordinates hence the solid angle dΩ. Additionally the result has been multiplied by

1/2 since the outgoing particles are indistinguishable. Finally, integrating over the remaining

delta function and the solid angle yields

Γ = 2λ2 |~p∗|
8πm2

1

; |~p∗| = 1

2m1

√
[m2

1 − (m2 +m3)2][m2
1 − (m2 −m3)2] (321)

and taking the massless limit for the daughter particles m2,3 → 0,

Γ =
λ2

8πm1

(322)

which is the final result for the decay rate of a massive scalar to two massless scalars,

computed in the rest frame of the decaying particle in the Minkowski spacetime. Although

this was a specific example, the phase space integral result is very generic and will hold for

any two-body decay.

While the perturbative S-matrix is a powerful tool for computing transition amplitudes,

notice that its effectiveness is predicated on the both the infinite time limit and global energy

conservation. These properties are a manifest result of the time translational symmetry

of Minkowski spacetime. In chapters 3 and 4 we will develop and utilize an alternative

framework, which is not dependent on these properties, for general use in cosmological

settings.
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2.2.2 QFT in Curved Spacetime

The theory of fields quantized in the flat Minkowski spacetime of special relativity de-

scribes a special case: the study of relativistic quantum systems in regimes with negligible

gravitational effects. At first glance this may seem to be a restrictive consideration since

essentially all particle physics experiments occur in the gravitational field of the Earth. How-

ever, a simple argument of scales can readily convince one of the insignificance of the local

gravitational field in terrestrial particle dynamics. In general relativity, an approximately

spherical mass like the Earth sources a warped spacetime described by the Schwarzschild

metric. This metric features a departure from the, flat, Minkowski spacetime determined

by the Schwarzschild radius, RS = 2GNM
c2

(GN is the Newton’s gravitational constant, M

is the mass of the spherical body, and c is the speed of light). For the Earth, RE
S ' 1cm.

Accordingly, only quantum modes with very long wavelengths (λ ≥ RE
S ) will ”see” the spa-

tial curvature and experience relevant gravitational effects. Even for a non-relativistic free

electron, with kinetic energy Ekin, λ = 2π
p
' 2π√

2mEKin
∼ 1.2 × 10−7( 1eV

Ekin
)1/2 cm, so local

gravitational effects can be safely neglected.

One may, however, be concerned about treating the gravitational field classically, through

general relativity, rather than quantum mechanically. After all, QFT aims to provide a quan-

tum description of all the classical fields of nature, and this ought extend to gravity. However,

if one treats the gravitational field as small, quantum excitations (called gravitons) on a flat

spacetime background, then the gravitational coupling constant is GN~
c3

= GN in natural units

[28]. The resulting coupling constant therefore has units of GeV−2, and so it is customary

to write it as 1
M2
pl

where Mpl ≡
√

~c
GN

= 1.22 × 1019 GeV in natural units, and is known

as the Planck mass. Consequently, unlike in the case of the Standard Model interactions

(which have dimensionless coupling constants [183],[160]), the gravitational interaction has

a minuscule, dimension-full coupling, and therefore quantum gravitational effects become

important only as the energy scales of quantum processes approach the Planck mass. Below

this large energy scale, gravity can be treated semiclassically3.

3Strictly speaking there are two problems with this reasoning. Firstly, the strong equivalence principle
requires that gravity couple to gravitons as it does to photons, matter, etc. Therefore strong gravity effects
on matter/radiation also effect gravitons which then in principle backreact on the curvature. One can avoid
this complication by linearizing the perturbed metric and including it in the energy-momentum piece of the

92



Even in the regime where quantum effects of gravity are ostensibly unimportant, there

exist scenarios where the macroscopic, general relativistic form of gravitation leads to im-

portant effects for microscopic, quantum physics. The rapidly expanding early Universe is

precisely such a place. The quantifying of these effects on particle dynamics (and the im-

plications of those effects) associated with cosmic expansion is the primary concern of the

subsequent chapters of this thesis. Therefore, in order to study these phenomena one must

understand how to quantize field theories in the general spacetimes of general relativity.

2.2.2.1 Field Quantization Previously, we defined the spin of a quantum field based

on its infinitesimal Lorentz transformation properties, namely the representation of its gen-

erators (see eqn. 232). This poses a problem in moving to curved spacetime since in general

relativity the action is invariant under general coordinate transformations and not Lorentz

transformations. This is the principle of general covariance. By general coordinate transfor-

mations we mean

dx̃µ =
∂x̃µ

∂xν
dxν (323)

g̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ (324)

where the tilde refers to a different arbitrary set of coordinates, and gµν is a general spacetime

metric. The problem then is how to maintain contact with the group of Lorentz transforma-

tions used to define the spin-type of quantum fields while obeying the principle of general

covariance. To resolve this conundrum, we recall that the equivalence principle permits any

observer to describe their frame as locally inertial, and therefore described by the Minkowski

metric. Operationally this is done by introducing tetrads, eaµ, which are a set of four space-

time basis vectors which connect the local inertial frame to a more general coordinate system

via

gµν = eaµe
b
νηab ; eaµ ≡

∂ya

∂xµ
(325)

Einstein equations. Therefore, gravitons are treated as sources and not curvature. Secondly, since GR is a
non-renormalizable theory, one must truncate the perturbation series (see S-matrix section) at a particular
order. Both of these problems are discussed at length in chapter 1 of [28].
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where the Latin indices are associated with the Minkowski metric indices and the Greek

indices refer to the general spacetime. ya are a set of normal coordinates which transform

under Lorentz transformations in the usual fashion. Accordingly, each observer in spacetime

carries a set of tetrads used to define their local inertial frame. The transformation properties

of the tetrads are

ẽaµ =
∂x̃µ

∂xν
eaν (326)

e′aµ = Λa
be
b
µ (327)

and thus the tetrad transforms as a covariant vector under general coordinate transforma-

tions and a contravariant vector under local Lorentz transformations. Finally, a generally

contravariant vector Aµ contracted with a tetrad yields

Aa = eaµA
µ (328)

and thus transforms as a scalar under general coordinate transformations, but as a vector

under local Lorentz transformations. The power of tetrads is there ability to convert general

tensors into local, Lorentz-transforming tensors, by passing the remaining spacetime depen-

dence into the tetrad. In order to use these objects in field theory, we promote the tetrad

into a field known as a vierbein

eaµ → eaµ(x) (329)

such that at every spacetime point x there exists a set of normal coordinates defining a local

inertial reference frame. Recall that the Lagrangian densities of field theory depend on the

fields (φ) themselves as well as their derivatives (∂aφ) both of which have defined transforma-

tions under Lorentz transformations. In order to maintain the local Lorentz transformation

properties of the fields and their derivatives while moving to curved spacetime the general

covariant derivative is introduced

Da ≡ eµa(x)(∂µ + Γµ) (330)

Γµ ≡
1

2
Iabeνa(x)

(
∂µebν(x)− Γλµνebν(x)

)
(331)
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where Γµ is known as the spin-connection [191, 28]. The spin-connection is defined in terms

of the Lorentz transformation generators Iab (see 232) associated with each field’s represen-

tation (scalar, spinor, vector, etc.). Note, Γλµν are the associated Christoffel symbols for the

spacetime on which the field is defined. Also notice that in defining the general covariant

derivative we have used the corollaries of eqn. 325

gµν = eµae
ν
bη

ab ; ebν = gµνe
µ
b . (332)

By introducing the general covariant derivative Da, any field which transforms as a tensor

under Lorentz transformations will necessarily transform as a tensor of the same rank un-

der general coordinate transformations. Thus, a scalar field in Minkowski spacetime under

Lorentz transformations remains a scalar field in a general spacetime under general coordi-

nate transformations. So, the Lagrangian density of the field can be generalized to curved

spacetime by replacing the derivative with the general covariant derivative (∂a → Da) and by

contracting all field vectors and higher rank tensors into vierbiens (e.g. Aa → eµaAµ). Table

5 below shows the spin connections and general covariant derivatives for scalar and fermion

fields defined on a generic, curved spacetime (recall that the generator representations were

discussed in the previous sections).

Field Generators (Iab) Spin Connection (Γµ) Covariant Derivative (Da)
Scalar 0 0 eµa(x)∂µ

Fermion 1
4
[γb, γc] 1

8
[γb, γc]eνb (∂µecν − Γλµνecλ) eµa(x)(∂µ + 1

8
[γb, γc]eνb (∂µecν − Γλµνecλ))

Table 5: General Covariant Derivatives for Fields.

To see concretely how this works, we write the real, scalar field action (from eqn. 235)

in curved spacetime using the results of Table 5:

S =

∫
L d4x =

∫
d4x
√

(−g)
1

2

(
ηabeµa∂µφe

ν
b∂νφ−m2φ2

)
=

∫
d4x
√

(−g)
1

2

(
gµν∂µφ∂νφ−m2φ2 − εRφ2

)
(333)
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where in the final expression we have used eqn. 325 to simplify the expression and have

included the only additional geometric scalar that can be added to the Lagrangian εR,

where R is the Ricci scalar. Additionally the factor
√

(−g) ≡
√
−det(gµν) = det(eaµ) is the

Jacobian included to ensure the action is a scalar under general coordinate transformations.

Having formally developed the language necessary to construct field theories in curved

spacetimes out of their Minkowski analogs, the next steps are to 1.) obtain the classical

equations of motion by the variation principle (or through Hamilton’s equations), 2.) solve

the classical equations of motion through an expansion in a complete set of mode functions,

3.) promote the expansion coefficients to quantum mechanical annihilation and creation

operators which obey canonical commutation relations (or anti-commutation relations for

fermions), and 4.) work in the Fock basis states which are eigenstates of the number operator.

Considering the case of a real, scalar field φ(x) the result has the generic form

φ(x) =
∑
j

(
aj uj(x) + a†j u

∗
j

)
(334)

[aj, a
†
j′ ] = δjj′ ; 0 = aj|0〉,∀j ; |1j〉 = a†j|0〉 (335)

however, in the curved spacetime case there are two challenges, one conceptual and the other

technical.

The essence of the conceptual challenge lies in the connection between the extra symme-

tries of Minkowski spacetime and the identification of free particle mode functions [28, 158].

Recall that in Minkowski spacetime we always obtained free field mode functions of the form

e±ik
axa ; kaxa = ωk t− ~k · ~x (336)

namely plane waves in Cartesian coordinates. The spatial mode function was a result of

expanding in Fourier series, a step allowed by the spatially flat nature of the metric. The

temporal mode function has a more nuanced origin. Since the Minkowksi metric does not

depend on time t, there is a Killing vector associated with the operator ∂t and an associated

conserved quantity given by the eigenvalue of that operator (−iωk) specifically the energy

(Ek = ωk , ωk > 0) [191, 28]. Therefore the complex exponential temporal mode functions
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are the eigenfunctions of this operator. Thus, the mode functions 336 emerge as the nat-

ural choice in Minkowski spacetime precisely because the spacetime interval in Minkowski

spacetime is invariant under Lorentz transformations and space/time translations. Since the

mode functions determine the expansion coefficients (aj) and these coefficients (once pro-

moted to operators) determine the vacuum state, the mode functions dictate the vacuum.

Consequently, the natural vacuum state is also invariant under Lorentz transformations and

space/time translations 4.

Yet, for general metrics one cannot make general statements about Killing vectors or

special symmetries, and so there are in principle no natural mode functions to expand the

free field in since there are no privileged coordinates. This is precisely in accordance with

the central claim of general relativity (i.e. the principle of covariance): physics phenomena

are independent of coordinate systems. In light of this insight, we expect that in general a

different complete set of mode functions exists for the field φ

φ(x) =
∑
k

(
ãk ũk(x) + ã†k ũ

∗
k(x)

)
(337)

which specify a new vacuum and Fock space

0 = ãk|0̃〉,∀k ; |1̃k〉 = ã†k|0̃〉 . (338)

Since both sets of mode functions are complete, they can be expanded in terms of each other

ũk(x) =
∑
j

(
Akjuj(x) +Bkju

∗
j(x)

)
(339)

which is known as the Bogoliubov transformation, and A,B are known as Bogoliubov coef-

ficients. Since, as a complete set, the mode functions feature orthonormality relations when

integrated appropriately over the spacetime. Consequently by equating eqns. 334 and 337,

inserting the Bogoliubov transformation, and noting the orthonormality of the modes one

obtains

aj =
∑
k

(
ãkAkj + ã†kB

∗
kj

)
(340)

4To be clear, Minkowksi spacetime does not feature a unique vacuum. Rather, the mode functions of
eqn. 336 define a vacuum state that all inertial observers will measure (since it is invariant under Lorentz
transformations and space/time translations). Thus it is the natural vacuum choice.
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and of course taking the Hermitian conjugate gives the expansion for the operator a†j. Since

all of the creation and annihilation operators obey their own canonical commutation rela-

tions, evidently

[aj, a
†
j] = 1 =

∑
k

(
|Akj|2 − |Bkj|2

)
(341)

[aj, aj′ ] = 0 =
∑
k

(
AjkB

∗
j′k −B∗jkAj′k

)
. (342)

The result of eqn. 340 has profound and subtle implications. So long as |Bjk| 6= 0,

aj|0̃〉 =
∑
k

B∗jk|1̃k〉 6= 0 (343)

which means the vacuum of the ũk modes is not annihilated by the operator aj meaning it

must contain quanta associated with the uj modes. To reiterate, if the Bogoliubov coefficient

|Bjk| 6= 0, the vacuum state of one Fock space contains particles associated with another. If

one has physical reasons for regarding one set of modes as the proper description in a region

of spacetime, but in another region of spacetime a second set of modes constitutes the correct

physical description, then an observer in either region will measure the appropriate vacuum

state to be populated by quanta (if the Bogoliubov coefficient connecting these modes does

not vanish). This result is known as gravitational particle production and is the principle

subject of chapters 5 and 6 of this thesis.

Returning to the aformentioned technical problem, the spacetime mode functions uj(x)

(or ũk(x)) can be extremely complicated objects based on the nature of the spacetime on

which the field is defined. In many cases of interest the modes cannot be written down in a

closed form. Even in the cases where they can be analytically obtained, computing quantities

with the mode functions is often a daunting proposition unless simplifying assumptions can

be made. Thus one often resorts to obtaining the mode functions approximately.
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2.2.2.2 The Adiabatic Approximation Approximate mode function solutions are of-

ten desired either because the equations of motion do not have a closed-form analytic solution

or the resulting solutions are far too difficult to manipulate. Additionally, there are physi-

cal situations where the spacetime appears exceeingly close to Minkowski, suggesting that

the mode functions should also approach the Minkowski form. Moreover, the Minkowski

spacetime mode functions have the advantage of an unambiguous definition of particle num-

ber since their associated vacuum is agreed upon by all inertial observers. The question is

therefore, are there approximate mode function solutions, valid for certain spacetime con-

figurations, which are approximately Minkowksi? The answer is yes, and in the case where

the only non-trivial dependence of the spacetime metric is on time (such as in an expanding

universe), or at the very least the spatial part is homogeneous/isotropic, they are known as

adiabatic mode functions and constitute the adiabatic approximation.

The adiabatic approximation can be introduced by considering the metric of an FLRW

spacetime. Working in conformal time (η), the spacetime metric for a spatially flat, homo-

geneous, and isotropic universe is given by eqn. 35

ds2 = gµνdx
µdxν = a2(η) ηµνdx

µdxν (344)

and because of the spatial homogeneity of this metric one can again employ the Fourier

transform as a means of isolating and obtaining the spatial dependence of the modes. In the

case of a real, scalar field, this then leads to second order, ordinary differential equation for

the time-dependence

φ′′k(η) + ω2
k(η)φk(η) = 0 ; ω2

k ≡ k2 +M2(η) (345)

where ′ ≡ ∂η. Notice the resulting equation is highly similar to the one encountered in

Minkowski spacetime (see eqn. 239), albeit with a time-dependent frequency originating

from the effective mass term M2(η). The derivation of this equation has not been presented

here, but is presented in full in chapter 3. Suffice it to say this equation arises directly

from working with the real, conformally-coupled (ε = 1/6) scalar field action defined on the

FLRW metric in conformal time, and the time-dependence of the effective mass term is due

to the scalar factor. However, for present purposes, the point of introducing eqn. 345 is
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to provide an example of a situation where the equation of motion for the temporal mode

functions is almost identical to the Minkowksi spacetime result, but for the time-dependent

frequency. Since φ is a real-valued field, we seek mode functions gk(η) such that

φk(η) = ak gk(η) + a†k g
∗
k(η) (346)

g′′k(η) + ω2
k(η)gk(η) = 0 (347)

where I’ve anticipated that the coefficients will become quantum mechanical operators. The

above differential equation for the mode functions can be solved with a WKB ansatz [28]

gk(η) =
1√
2Wk

e−i
∫ η Wk(η′) dη′ (348)

which when inserted into the differential equation yields a contraint equation for the Wk(η)

W 2
k (η) = ω2

k(η)− 1

2

(
W ′′
k

Wk

− 3

2

(W ′
k

Wk

)2
)
. (349)

This equation can then be solved iteratively, first taking Wk(η) ' ωk(η) and inserting back

into the equation, which generates a series expansion

W 2
k (η) = ω2

k(η)

[
1− 1

2

ω
′′

k (η)

ω3
k(η)

+
3

4

(
ω
′

k(η)

ω2
k(η)

)2

+ · · ·
]

(350)

which is known as the adiabatic expansion. Notice that if ω2
k � ω′k, then the higher order

terms are small, and this expansion will be effective. Thus this condition defines the adiabatic

criterion
ω′k
ω2
k

≡ δ � 1 (351)

which is a statement about the rate of change of the mode frequencies. δ also defines the

adiabatic order, ergo two derivatives of the frequency is a second-order contribution. If the

spacetime is varying sufficiently slowly so that the derivative of the frequency satisfies the

above criterion, then the modes are well described by adiabatic modes. Taking the zeroth

order solution for example

φk(η) = ak
e−i

∫ η ωk(η) dη′√
2ωk(η)

+ h.c. (352)
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and clearly the approximate solution bears a striking similarity to the Minkowski mode

functions. In fact if the time interval is small enough, then the time-dependent frequency can

be pulled outside of the integral and the mode function has the usual complex exponential

form of ∼ e−iωk ∆η. Note however, that this result will not hold over all times, and in

general even the zeroth order adiabatic mode function is not identical to the Minkowksi

mode functions since the frequencies are time-dependent. The important consequences of

this statement are explored in chapters 3 and 4.

In closing the discussion of the adiabatic approximation there are three important points

to make. 1.) The adiabatic approximation operationalizes the intuition that if there is a wide

separation between the particle physics time scale and the gravitational time scale, namely if

the spacetime is changing slowly compared to the particle frequency, then the quantum modes

should not be very sensitive to the gravitational effects and should approach the Minkowski

modes. 2.) Although, this derivation was motivated by the spacetime of an expanding

cosmology, the adiabatic approximation can be implemented whenever the mode functions

are separable into spatial and temporal pieces, and the temporal mode functions obey an

equation of motion for a harmonic oscillator with a time-dependent frequency (see eqn. 345)

[28]. 3.) Whenever the spacetime configuration warrants an adiabatic approximation, one

can parameterize the exact mode function solutions in terms of the adiabatic mode functions

via time-dependent Bogoliubov coefficients α, β

gk(η) = α
(δ)
k (η) g

(δ)
k (η) + β

(δ)
k (η) g

(δ)∗
k (η) (353)

where g
(δ)
k (η) are the adiabatic mode functions at a particular adiabatic order δ. The vacuum

state associated with these modes is referred to as the adiabatic vacuum which is not an

approximate state, despite the adiabatic mode functions themselves being approximate, since

it is the exact mode function gk which will be quantized and hence define the vacuum. Rather,

the adiabatic vacuum refers only to a particular choice of vacuum state identified by matching

the exact mode functions with the adiabatic ones (at a particular adiabatic order) [28]. Yet,

parameterizing the mode functions in this fashion does introduce a time-dependent number

operator. The subtle issues of the adiabatic vacuum and time-dependent number operator

are addressed in chapters 3 and 5.
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2.3 Quantum Kinetics

In many physical situations one is concerned with following the dynamics of particle

populations which have efficient interactions between them. These interactions allow for

depletion and/or augmentation of each coupled species’ number density. For example, in

early universe cosmology, the primordial plasma is characterized by large numbers of the

various Standard Model degrees of freedom which are interacting with each other (e.g. elec-

tron/positron pairs annihilating into photons, photons pair producing muons, etc.). The

broad, quantum mechanical framework for studying the evolution of particle populations

(which may evolve into and/or out of local thermodynamic equilibrium) is known as quan-

tum kinetics. While quantum kinetics is a subject with myriad applications, in this section

I aim to briefly highlight the most important features of the theory which are relevant for

particle cosmology and the subsequent chapters of this thesis. To that end, the important

result of detailed balance is first discussed, highlighting its natural emergence from perturba-

tive quantum field theory in Minkowski spacetime. Subsequently, the ubiquitous Boltzmann

equation is introduced, first in general, and then in its more specialized form as used in early

universe cosmology to study the effect of particle number changing interactions on particle

populations. Throughout this section I closely follow the treatments of [24, 71, 121] unless

otherwise stated.

2.3.1 Detailed Balance in QFT

To demonstrate the efficacy of quantum kinetics and derive the principle of detailed

balance, consider a toy model scenario where two real, scalar particles χ, φ of mass M,m

respectively interact through the interaction Hamiltonian density

HI = λχφ2 . (354)
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Assume the underlying fields for these quanta are quantized in Minkowski spacetime. Ac-

cordingly, these fields have free field solutions given by eqn. 252

φ̂(t, ~x) =
1√

2ωkV

∑
k

âke
−i(ωkt−~k·~x) + h.c. (355)

χ̂(t, ~x) =
1√

2ωkV

∑
k

b̂ke
−i(ωkt−~p·~x) + h.c. (356)

Suppose we wish track the evolution of nχ(k, t), the number density of quanta associated

with the φ field. We anticipate the number of particles of each momentum k will vary,

so nχ(k, t) is a distribution. We begin the quantum kinetic treatment by considering an

ordinary differential equation for the rate of change of this quantity,

dnχ(k, t)

dt
= ΓGk − ΓLk (357)

where ΓGk (ΓLk ) is the gain (loss) term representing the effect of particle number changing

processes that increases (decreases) the number of χ quanta. The above equation is a simple

example of a quantum master equation. These equations constitute the equations of motion

for particle populations in quantum kinetics. In order to solve this equation, we must

compute the required gain and loss terms, which can be done via the S-matrix.

Beginning with the loss term, we wish to compute the transition amplitude for particle

number changing processes which increase the nχ. Based on the form of the interaction

Hamiltonian, the lowest order, non-vanishing S-matrix contribution to the loss process is

χ→ φφ, namely a decay process. In quantum kinetics one is usually working in conditions

with large occupation numbers, so we will stipulate our initial and final state for the loss

process as

|i〉 = |nk , np , nq〉 ; |f〉L = |nk − 1 , np + 1 , nq + 1〉 (358)

where nk refers to the number of χ particles with momentum k, while np,q refers to the

number of φ particles with momentum p and q respectively (remember the two daughter phi
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particles in principle will not be produced with equal momentum). Computing the S-matrix

element between these two states yields

〈nk − 1 , np + 1 , nq + 1|UI(∞,−∞)|nk , np , nq〉 = SLfi (359)

SLfi =
−2iλ√

2Ek 2Ep 2Eq

(2π)4

√
V 3

δ(~k − ~p− ~q) δ(Ek − Ep − Eq)
√
nk
√

1 + np
√

1 + nq (360)

where we have made use of equation 310 to first order, and the square root factors are the

result of the action of the creation/annihilation operators on the Fock state. Squaring the

S-matrix element gives the transition amplitude, which once integrated over the outgoing

momenta (p, q) yields

ΓLk =
|SLfi|2
T

=
λ2

8π2

∫
d3p

δ(Ek − Ep − Eq)
EkEpEq

nk(1 + np)(1 + nq) ; ~q = ~k − ~p (361)

where the result has been multiplied by a factor of 1/2 since the outgoing particles are

indistinguishable, the result has been divided by the total time T in order to extract a rate.

Notice, that in the limit nk → 1 ; np,q → 0 the result is exactly a decay rate (compare

with eqn. 319). Accordingly, the elementary process of particle decay plays a vital role in

quantum kinetics.

The gain term can be computed similarly. The lowest order, non-vanishing S-matrix

contribution to the gain process is φφ → χ, namely an inverse decay rate. We consider the

same initial state, but this process produces a different final state

|i〉 = |nk , np , nq〉 ; |f〉G = |nk + 1 , np − 1 , nq − 1〉 . (362)

Computing the S-matrix element between these two states, squaring the element, dividing

by the total elapsed time, and integrating over the outgoing momentum yields

ΓGk =
|SGfi|2
T

=
λ2

8π2

∫
d3p

δ(Ek − Ep − Eq)
EkEpEq

(1 + nk)npnq ; ~q = ~k − ~p (363)

where again the result has been multiplied by 1/2 due to indistinguishable outgoing particles.

Comparing equations 363 and 361 we see the first is proportional to 1 +nk while the second

is proportional to nk. Therefore we define,

ΓGk = (1 + nk)Γ̃
G
k ; ΓLk = (nk)Γ̃

L
k (364)
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and so eqn. 357 becomes (replacing nk → nχ(k, t) for clarity)

dnχ(k, t)

dt
= −γk

(
nχ −Nk

)
; γk ≡ Γ̃Lk − Γ̃Gk ; Nk ≡

Γ̃Gk
γk

(365)

where γk is known as the relaxation rate. In order to solve this master equation initial

conditions must be specified. Consider that the φ particles are in local thermodynamic

equilibrium such that their distributions are of the Bose-Einstein form

np =
1

eEp/T − 1
(366)

eEp/T np = 1 + np (367)

which when inserted into the expression for Γ̃Lk (for np and nq) gives

Γ̃Lk =
λ2

8π2

∫
d3p

δ(Ek − Ep − Eq)
EkEpEq

npnqe
(Ep+Eq)/T (368)

which by virtue of the energy conserving delta function (e(Ep+Eq)/T = eEk/T ) and comparison

with the gain term (eqn. 363) leads to,

Γ̃Lk = Γ̃Gk e
Ek/T . (369)

The resulting expression is known as the detailed-balance relation, and is a consequence of

1.) energy conservation and 2.) the local thermodynamic equilibrium (LTE) of the particles

to which χ is coupled. Inserting this relation into the master equation for the χ particle

number density (eqn. 365) results in

Nk ≡
Γ̃Gk

Γ̃Gk e
Ek T − Γ̃Gk

=
1

eEk/T − 1
= neqχ (370)

dnχ(k, t)

dt
= −γk

(
nχ − neqχ

)
(371)

where neqχ is the LTE distribution for the χ particles. Solving the master equation is now

straightforward and yields,

nχ(k, t) = neqχ +
(
nχ(k, 0)− neqχ

)
e−γk t (372)

where γk = Γ̃Gk (eEk/T − 1) (373)
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with nχ(k, 0) being the initial χ particle number density. Notice as t → ∞ nχ ' neqχ .

This final result illustrates the result of detailed balance; a population of particles that are

coupled to degrees of freedom, which themselves are in local thermodynamic equilibrium,

will asymptotically approach local thermodynamic equilibrium on a time scale 1/γk. Thus,

a process and its inverse (gain and loss) obtain a chemical equilibrium.

In early universe cosmology, the primordial plasma is composed of elementary particles

whose interactions maintain LTE between all of the coupled species; the principle of detailed

balance provides an analytic description of how a coupled species can rapidly evolve into

LTE through its interactions with already thermalized degrees of freedom. It is paramount,

however, to emphasize that the detailed balance result only obtains under the conservation

of energy.

2.3.2 The General Boltzmann Equation

In physics, the set of all states, permitted by the equations of motion, in which a system

may exist is known as phase space. In classical physics, the set of canonical coordinates (qi)

and their conjugate momenta (pi) are sufficient to span this space. Thus, a the specific state

of a system, is completely specified the value of these variables and therefore its position

in phase space. As the system evolves in time, it traces out a trajectory in phase space as

dictated by the equations of motion. In the case of an ensemble of identical systems (e.g.

a swarm of identical particles) the many individual systems can have unique phase space

positions each of which is consistent with the same value of a macroscopic observable (e.g.

temperature). In this case, it becomes expedient to introduce a function which describes

the distribution of the individual systems in phase space known as a phase space density

function, f(q, p, t). Once properly normalized, f maybe convolved with another physical

quantity over phase space to give the average value of that function. As an example, in the

case of an amalgam of identical particles in three spatial dimensions,

〈g〉 =

∫
g(~q, ~p)f(~q, ~p, t) d3qd3p (374)

106



where we are integrating over a single particle phase space. Through the Hamilton equations

and the continuity equation, it is possible to prove

df

dt
=
∂f

∂t
+ {f,H}PB = 0 (375)

where H is the Hamiltonian of the system, and {}PB are the Poisson brackets. This result

is known as Liouville’s theorem, and it holds under the assumption that no members of the

ensemble are being created or destroyed.

In the case of particle populations, the system is an individual particle and the ensemble

is the particle amalgam. In order to generalize Liouville’s theorem to the case where particles

can be added or subtracted we first compute the total derivative of f(~q, ~p, t). Considering

Newtonian mechanics,

df =
∂f

∂t
dt+ (∇qf) · d~q + (∇pf) · d~p (376)

df

dt
=
( ∂
∂t

+
~p

m
· ∇q + ~F · ∇p

)
f ≡ L̂ f (377)

where d~q = ~p
m
dt and ~F = d~p

dt
have been used. In the final line, the resulting differential

operator L̂ is known as the Liouville operator which includes (in order) the effects of ex-

plicit time-dependence, diffusion, and external forces acting on the system. Inserting this

expression into Liouville’s theorem produces the collisionless Boltzmann equation,

L̂ f(~q, ~p, t) = 0 (378)

which describes the evolution of the distribution function. With an eye towards using the

Boltzmann equation to describe particle populations in cosmology, we seek a covariant,

relativistic generalization. Writing the distribution function in terms of general contravariant

4-vectors as f(xµ, pµ)

df =
∂f

∂xµ
dxµ +

∂f

∂pµ
dpµ (379)

df

dλ
=

∂f

∂xµ
pµ − Γµαβp

αpβ
∂f

∂pµ
= L̂f (380)

where in the last line we have used an affine parameter λ and the geodesic equation hence

the Christoffel symbols Γµαβ [71].
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So far we have been considering the Boltzmann equation in the case of constant particle

number. Further generalizing the Boltzmann equation to the case where interactions can add

or subtract particles from the collection requires the introduction of the collision operator Ĉ

resulting in the general, covariant Boltzmann equation

∂f

∂xµ
pµ − Γµαβp

αpβ
∂f

∂pµ
= Ĉ f(xµ, pµ) . (381)

The particular form of the collison term on the right-hand side will depend on the type of

interaction. In general, it is the result of a quantum kinetics/master equation type calculation

where one considers gain and loss terms which are computed via the perturbative S-matrix.

This equation sees widespread use in early universe cosmology to study the evolution of

particle distribution functions. In this case, a copy is written for every coupled species thus

producing a system of coupled Boltzmann equations. It is also one half of the Einstein-

Boltzmann hierarchy which is used to study inhomogeneities. In this case, one considers

small perturbations in the spacetime metric which are connected with small perturbations

in the energy momentum tensor of the Universe via the perturbed, linearized Einstein field

equations. The energy momentum tensor perturbations are then directly associated with

inhomogeneities in the energy/number densities of particles; the equations of motion for

those densities are precisely the Boltzmann equation [71, 139]. In most cases the Boltzmann

equations can only be solved numerically.

2.3.3 The Annihilation Boltzmann Equation

One particular form of the Boltzmann equation 381 is frequently used to study the

evolution of particle number densities in the early universe. Specifically, the equation is used

to compute the abundances of particles, formerly in local thermodynamic equilibrium, after

they fallout of equilibrium (referred to as decoupling or freeze-out). Using the Christoffel

symbols of the FLRW metric the covariant Boltzmann equation can be written [121],

E
df

dt
− ȧ

a
|~p|2 ∂f

∂E
= Ĉf(E, t) (382)

where E refers to the energy of the particle, p its momentum, and a is the scale factor.

Note, ˙≡ ∂t. Notice that the distribution function does not depend on spatial coordinates or
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momentum in a homogenous and isotropic universe. Next, we formally define the particle

number density,

n(t) ≡ g

(2π)3

∫
d3p f(E, t) (383)

where g is the number of internal degrees of freedom. This quantity corresponds to the

number of particles per comoving volume. Changing variables ∂f
∂E
→ ∂p

∂E
∂f
∂p

, dividing by E,

and integrating over d3p in equation 382 yields

ṅ+ 3Hn =
g

(2π)3

∫
d3p

E
Ĉf(E, t) (384)

where we have integrated by parts to the get the second term on the left hand side (dropping

the vanishing surface term) and introduced the Hubble parameter H = ȧ/a. Next, we scale

out the effect of cosmic expansion by defining

Y =
n

s
(385)

where is s is the comoving entropy density sa3 = S. Taking the time derivative

ṅ = ṡY + Ẏ s → ṅ+ 3Hn = sẎ (386)

where we have used the fact that S is constant in a comoving volume even as the Universe

expands. Then, we define the variable x ≡ m/T where m and T are the mass of the

particle associated with the number density, and the temperature of the primordial plasma

respectively. This permits us to write,

Ẏ =
1.66m2

Mplx

√
g∗
dY

dx
≡ H(m)

x

dY

dx
(387)

where we have used eqn. 85 (Mpl is the Planck mass and g∗ is the effective number of

relativistic degrees of freedom). Finally inserting eqns. 386 and 387 into the integrated

Boltzmann equation 384 results in

dY

dx
=

x

sH(m)

g

(2π)3

∫
d3p

E
Ĉf(E, t) . (388)

Now we focus on the collision term on the right hand side. As previously mentioned, this

object is usually computed in a quantum kinetics framework using an S-matrix approach.

To obtain the presently desired form of the Boltzmann equation, consider the interaction to
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be a 2 to 2 process: ZZ̄ ↔ XX̄ where X,Z are two different particles, and the bar refers to

their anti-partner. Assuming the number density we are tracking is for the X particle, our

initial state, final (gain) state, and final (loss) state are

|i〉 = |nX , nX̄ , nZ , nZ̄〉 (389)

|f〉G = |nX + 1 , nX̄ + 1 , nZ − 1 , nZ̄ − 1〉 ; |f〉L = |nX − 1 , nX̄ − 1 , nZ + 1 , nZ̄ + 1〉 .
(390)

Therefore, the resulting collision term has the form

g

(2π)3

∫
d3p

E
Ĉf(E, t) = −

∫
d3pX
2EX

d3pX̄
2EX̄

d3pZ
2EZ

d3pZ̄
2EZ̄

(2π)4δ(4)(PX + PX̄ − PZ − PZ̄)
{

|M|2LfXfX̄(1± fZ)(1± fZ̄)− |M|2GfZfZ̄(1± fX)(1± fX̄)
}
(391)

where the 1± is the refers to fermion/boson particles respectively, and |M |2 is a matrix

element coming from an S-matrix field theory calculation whose specific form will depend

on the particular fields involved and their coupling. Four assumptions are then made to

simplify the collision term: 1.) We assume very large occupation numbers so that we can

drop the Pauli-blocking and condensation factors, 1 ± f ' 1. 2.) Any thermal distribu-

tions are Maxwell-Boltzmann (f eq = eµ/T e−E/T ) since we are interested in scenarios where

the temperature is much lower than the average particle energy (and chemical potential µ).

3.) CPT invariance implying the QFT matrix element for the gain and loss contributions

are equivalent (|M|2L = |M|2G = |M|2). 4.) The Z particles are in thermal equilibrium

(via other efficient scattering interactions), so that in combination with the energy conserv-

ing delta function detailed balance is achieved. These considerations lead to the following

simplifications

fZfZ̄ = e(µZ+µZ̄)/T e−(EZ+EZ̄)/T = e(µZ+µZ̄)/T e−(EX+EX̄)/T = e(µZ+µZ̄)/Tf eqX f
eq

X̄
(392)

fXfX̄ − fZfZ̄ = f eqX f
eq

X̄

( fXfX̄
f eqX f

eq

X̄

− f eqZ f
eq

Z̄

f 0
Zf

0
Z̄

)
; f 0 ≡ e−E/T . (393)

110



Finally, the thermally averaged cross-section is introduced

〈σ v〉 ≡ (neqX )−2

∫
d3pX
2EX

d3pX̄
2EX̄

d3pZ
2EZ

d3pZ̄
2EZ̄

(2π)4δ(4)(PX + PX̄ − PZ − PZ̄)|M|2e−(EX+EX̄)/T

(394)

and thus using these simplifications, and the thermally averaged cross-section, we obtain the

full, integrated Boltzmann equation

ṅ+ 3Hn = −(neqX )(neq
X̄

)〈σ v〉
(nXnX̄
neqXn

eq

X̄

− neqZ n
eq

Z̄

n0
Zn

0
Z̄

)
(395)

dYX
dx

= − x s

H(m)
(Y eq

X )(Y eq

X̄
)〈σ v〉

( YXYX̄
Y eq
X Y eq

X̄

− Y eq
Z Y eq

Z̄

Y 0
ZY

0
Z̄

)
; x ≡ mX/T (396)

where in the second line we have simply written the equation in terms of the variables

Y, x. The resulting equation is known as the integrated annihilation Boltzmann equation

for a species X and is frequently used in early universe physics to understand the out of

equilibrium dynamics of particle populations. For the sake of clarity, it should be mentioned

that the second form of the equation above explicitly assumes the radation dominated epoch

(hence the usage of 85 in defining dY/dx). This equation (or ones very similar to it) can

be used to study dark matter relic abundances, neutrino decoupling, nucleosynthesis, and

recombination/photon decoupling, etc. [71, 121]. In practice, this requires one to solve

a system of such Boltzmann equations numerically as the above equation does not have

a simple analytic solution. In many of these scenarios, one can argue that the chemical

potential of the Z particles is negligible (µZ/T � 1) (e.g. see eqn. 76). Under that extra

assumption, neqZ ' n0
Z and the equation can be further simplified,

x

YX,eq

dYX
dx

=
−WX

H(T )

(Y 2
X,eq

Y 2
X

− 1
)

; WX ≡ neqX 〈σ v〉 ; Y 2
X ≡ YXYX̄ (397)

where we have inserted the expression for H(m) from eqn. 387 and again used eqn. 85. In

writing eqn. 397, the annihilation interaction rate for the X particles, WX has been intro-

duced. This form of the integrated annihilation Boltzmann equation reveals a particularly

salient piece of physics, if WX � H, then the right-hand side terms will be much larger than

the left-hand side. In this situation, only nX ' neqX can maintain an equality between both

sides. Meanwhile, if WX � H then the right-hand side of the equation becomes very small,
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and consequently the rate of change in the abundance of X particles approaches zero. The

conclusion then, is that while the interaction rate is large compared to the expansion rate,

the X particles maintain local thermodynamic equilibrium (chemical and kinetic) with the

Z particles. However, when the expansion rate becomes larger, the number of X particles

stabilizes, becoming nearly constant, and they fall out of equilibrium. This result is known

as thermal freeze-out or decoupling. This analysis consequently justifies the heuristic decou-

pling criteria, W (Tdec ' H(Tdec)) where Tdec defines the temperature of the plasma at which

decoupling occurs.

As a final comment, we note that the Boltzmann equation analysis which is successfully

employed in the study of early universe physics does not treat spacetime consistently. The

left-hand side, relies on the generally covariant Liouville operator constructed in FLRW

spacetime. Meanwhile, the right-hand side results from a quantum kinetic analysis in

Minkowski spacetime. The nature of this inconsistency and its implications are discussed in

chapters 3 and 4.
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3.0 Particle Decay in Post-inflationary Cosmology

3.1 Introduction

Particle decay is an ubiquitous process that has profound implications in cosmology, for

baryogenesis [122, 79], leptogenesis [43, 69], CP violating decays [127], big bang nucleosyn-

thesis (BBN) [196, 116, 115, 118, 119, 82, 114, 112, 163, 164, 165, 172], and dark matter (DM)

where large scale structure and supernova Ia luminosity distances constrain the lifetimes of

potential, long-lived candidates [196, 189, 190, 188, 30, 166, 12]. Most analyses of particle

decay in cosmology use decay rates obtained from S-matrix theory in Minkowski spacetime.

In this formulation, the decay rate is obtained from the total transition probability from a

state prepared in the infinite past (in) to final states in the infinite future (out). Dividing this

probability by the total time elapsed enables one to extract a transition probability per unit

time. Energy conservation emerging in the infinite time limit yields kinematic constraints

(thresholds) for decay processes.

The decay rate so defined, and calculated, is an input in analyses of cosmological pro-

cesses. In an expanding cosmology with a time-dependent gravitational background, there

is no global time-like Killing vector; therefore, particle energy is not manifestly conserved,

even in spatially flat Friedmann-Robertson-Walker (FRW) cosmologies, which do supply

spatial momentum conservation. Early studies of quantum field theory in curved space-

time revealed a wealth of unexpected novel phenomena, such as particle production from

cosmological expansion [153, 154, 155, 194, 195, 86, 29, 47, 28, 87, 149, 158, 157, 88] and

the possibility of processes that are forbidden in Minkowski space time as a consequence of

energy/momentum conservation. Pioneering investigations of interacting quantum fields in

expanding cosmologies generalized the S-matrix formulation for in-out states in Minkowski

spacetimes for model expansion histories. Self-interacting quantized fields were studied with

a focus on renormalization aspects and contributions from pair production to the energy

momentum tensor [29, 47]. The decay of a massive particle into two massless particles con-

formally coupled to gravity was studied in Ref. [15, 16, 14] within the context of in-out

113



S-matrix for simple cosmological space times. Particle decay in inflationary cosmology (near

de Sitter space-time) was studied in Refs. [38, 33, 34, 40, 41], revealing surprising phenomena,

such as a quantum of a massive field decaying into two (or more) quanta of the same field.

The lack of a global, time-like Killing vector, and the concomitant absence of energy conser-

vation, enables such remarkable processes that are forbidden in Minkowski spacetime. More

recently, the methods introduced in Ref. [15] were adapted to study the decay of a massive

particle into two conformally massless particles in radiation and “stiff” matter dominated

cosmology, focusing on extracting a decay rate for zero momentum [133, 135]. The results

of Ref. [133, 135] approach those of Minkowski spacetime asymptotically in the long-time

limit.

Motivation, goals and summary of results:

The importance and wide range of phenomenological consequences of particle decay in

cosmology motivate us to study this process within the realm of the standard post inflationary

cosmology, during the radiation and matter dominated eras. Our goal is to obtain and

implement a quantum field theory framework that includes consistently the cosmological

expansion and that can be applied to the various interactions and fields of the standard

model and beyond.

Brief summary of results:

We combine a physically motivated adiabatic expansion with a non-perturbative method

that is the quantum field theoretical version of the Wigner-Weisskopf theory of atomic line-

widths[192] ubiquitous in quantum optics [176]. This method is manifestly unitary, and has

been implemented in both Minkowski spacetime and inflationary cosmology [138, 137, 37],

and provides a systematic framework to obtain the decay law of the parent along with the

production probability of the daughter particles. One of our main results, to leading order in

this adiabatic expansion, is a cosmological Fermi’s Golden Rule wherein the particle horizon

(proportional to the Hubble time) determines an uncertainty in the (local) comoving energy.

We find that the parent survival probability may be written in terms of an effective time-

dependent decay rate which includes the effects of (local) time dilation and cosmological

redshift, resulting in a delayed decay. This effective rate depends crucially on a transition

time, tnr, between the relativistic and non-relativistic regimes of the parent particle, and
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is always smaller than that in Minkowski spacetime, becoming equal only in the limit of a

parent particle always at rest in the comoving frame. An unexpected consequence of the

cosmological expansion is that the uncertainty implied by the particle horizon opens new

decay channels to particles heavier than the parent. As the expansion proceeds this channel

closes and the usual kinematic thresholds constrain the phase space for the decay process.

While in this study we focus on the radiation dominated (RD) era, our results can be simply

extended to the subsequent matter dominated (MD) and dark energy dominated eras. In

appendix ( A.1) we implement the Wigner-Weisskopf method in Minkowski spacetime to

provide a basis of comparison which will enable us to highlight the major differences with

the cosmological setting.

3.2 The Standard Post-Inflationary Cosmology

We focus on the decay of particles in the post-inflationary universe, described by a

spatially flat (FRW) cosmology with the metric in comoving coordinates given by

gµν = diag(1,−a2,−a2,−a2) . (3.2.1)

The standard cosmology post-inflation is described by three distinct stages: radiation (RD),

matter (MD) and dark energy (DE) domination; we model the latter by a cosmological

constant. Friedmann’s equation is( ȧ
a

)2

= H2(t) = H2
0

[
ΩM

a3(t)
+

ΩR

a4(t)
+ ΩΛ

]
, (3.2.2)

where the scale factor is normalized to a0 = a(t0) = 1 today. We take as representative the

following values of the parameters [23, 181, 3]:

H0 = 1.5× 10−42 GeV ; ΩM = 0.308 ; ΩR = 5× 10−5 ; ΩΛ = 0.692 . (3.2.3)

It is convenient to pass from “comoving time,” t, to conformal time η with dη = dt/a(t), in

terms of which the metric becomes (a ≡ a(η))

gµν = diag(a2,−a2,−a2,−a2) . (3.2.4)
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With (
′ ≡ d

dη
) we find

a′(η) = H0

√
ΩM

[
r + a+ s a4

]1/2

, (3.2.5)

with

r =
ΩR

ΩM

' 1.66 × 10−4 ; s =
ΩΛ

ΩM

' 2.25 . (3.2.6)

Hence the different stages of cosmological evolution, namely radiation domination (RD),

matter domination (MD), and dark energy domination (DE), are characterized by

a� r ⇒ RD ; r � a . 0.76⇒ MD ; a > 0.76⇒ DE . (3.2.7)

In the standard cosmological picture and the majority of the most well-studied variants, most

of the interesting particle physics processes occur during the RD era and so we focus most

of our attention on this epoch; however, we also contemplate the possibility of long-lived

dark matter particles that would decay on time scales of the order of 1/H0. The RD and

MD epochs cover approximately half of the age of the Universe and during these stages the

evolution of the scale factor can be written as

a(η) = HR η +
H2
M

4
η2 ; HR = H0

√
ΩR, ; HM = H0

√
ΩM , (3.2.8)

which facilitates the explicit analytical study of the decay laws. In turn, the conformal time

at a given scale factor a is given by

η(a) =
2
√
r

HM

[√
1 +

a

r
− 1

]
. (3.2.9)

During the (RD) stage the relation between conformal and comoving time is given by

η =
( 2 t

HR

) 1
2 ⇒ a(t) =

[
2 tHR

] 1
2
, (3.2.10)

a result that will prove useful in the study of the decay law during this stage.
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3.3 The Model

We consider two interacting scalar fields φ1, φ2 in the FRW cosmology determined by the

metric (3.2.1), with action given by

A =

∫
d4x
√
|g|
{

1

2
gµν ∂µφ1∂νφ1−

1

2

[
m2

1+ξ1R
]
φ2

1+
1

2
gµν ∂µφ2∂νφ2−

1

2

[
m2

2+ξ2R
]
φ2

2−λφ1 : φ2
2 :

}
(3.3.1)

where

R = 6
[ ä
a

+
( ȧ
a

)2]
(3.3.2)

is the Ricci scalar, and ξ1,2 are couplings to gravity, with ξ = 0, 1/6 corresponding to minimal

or conformal coupling, respectively. We identify φ1 as the field associated with the decaying

(“parent”) particle, and φ2 as that of the decay product (“daughter”) particles.

Expressing the action of Eq. (3.3.1) in terms of the usual spatial coordinates and the

conformal time, while rescaling the fields as

φ1,2(t) =
χ1,2(η)

a(η)
; a(η) = a(t(η)) , (3.3.3)

yields

A =

∫
d3x dη

{∑
j=1,2

[
1
2

(dχj
dη

)2

− 1
2

(
∇χj

)2 − 1
2
χ2
jM2

j(η)
]
− λ a(η)χ1 : χ2

2 :

}
(3.3.4)

neglecting surface terms as usual, where

M2
j(η) = m2

j a
2(η)− a′′

a
(1− 6ξj) ; j = 1, 2 . (3.3.5)

For the standard cosmology, using (3.2.5)

a′′

a
=

H2
M

2 a(η)

[
1 + 4sa3(η)

]
. (3.3.6)

Quantization:

We begin with the quantization of free fields [28, 87, 149, 158, 29] (λ = 0) as a prelude
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to the interacting theory. The Heisenberg equations of motion for the conformally rescaled

fields in conformal time are

d2

dη2
χj(~x, η)−∇2χj(~x, η) +M2

j(η)χj(~x, η) = 0 ; j = 1, 2 . (3.3.7)

It is convenient to consider the spatial Fourier transform in a comoving volume V , namely,

χ(~x, η) =
1√
V

∑
~k

χ~k(η) e−i
~k·~x , (3.3.8)

leading to

d2

dη2
χ~k(η) +

[
ω2
k(η)− a′′

a
(1− 6ξj)

]
χ~k(

~k, η) = 0 ; ω2
k(η) = k2 +m2

j a
2(η) , (3.3.9)

for either field, respectively.

Although solutions of (3.3.9) can be found for separate stages or model expansion

histories[133, 135], solving for the exact mode functions for the standard cosmology with the

different stages, even when neglecting the term with a′′/a, is not feasible. Instead we focus on

obtaining approximate solutions in an adiabatic expansion[28, 87, 149, 158, 29, 64, 65, 193]

that relies on a separation of time scales between those of the particle physics process and

that of the cosmological expansion. As an example, let us consider a physically motivated

setting wherein the decaying particle has been produced (“born”) early during the radiation

dominated stage by the decay of heavier particle states at the Grand Unification (GUT)

scale ' 1015 GeV. Assuming that the mass of the (DM) particle is much smaller than

this scale, the production process will endow the (DM) particle with a physical momen-

tum kp(η) = k/a(η) ' 1015 GeV with k being the comoving momentum. If the environ-

mental temperature of the plasma is T ' TGUT ' 1015 GeV and neglecting the processes

that reheat the photon bath by entropy injection from massive degrees of freedom, then

TGUT ' TCMB/a(ηi) implying that the scale factor at the GUT scale a(ηi) ' 10−28. In turn

this estimate implies that the comoving wavevector k with which the (DM) is produced is

k ' 10−13 GeV.

The result (3.3.6) suggests that when considering initial conditions at the GUT scale

(or below) corresponding to a(ηi) ≥ 10−28 the term a′′/a in (3.3.9) can be neglected for

ωk(ηi) � 10−30 GeV for scalar fields minimally coupled to gravity (or for any |ξj| ' O(1)),
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since ω2
k(ηi) � H2

m

2a(ηi)
. This condition is most certainly realized for particles produced from

processes at the GUT scale, since as argued above such processes would yield comoving

wavectors k ' 10−13 GeV, hence ωk(ηi) ≥ 10−13 GeV for (DM) particles (or daughters) with

masses below the GUT scale. Therefore under these conditions we can safely ignore the term

with a′′/a in (3.3.9). Below (see eqn. (3.3.26) and following comments) we show explicitly

that this term is of second order in the adiabatic expansion and can be ignored to leading

order. The mode equations (3.3.9) now become

d2

dη2
χ~k(η) + ω2

k(η)χ~k(η) = 0 . (3.3.10)

Field quantization is achieved by writing

χ~k = a~k gk(η) + a†
−~k
g∗k(η) , (3.3.11)

where the mode functions gk(η) obey the equation of motion

d2

dη2
gk(η) + ω2

k(η) gk(η) = 0 , (3.3.12)

with the Wronskian condition

g
′

k(η)g∗k(η)− g∗ ′k (η)gk(η) = −i (3.3.13)

so that the annihilation a~k and creation a†~k operators are time independent and obey the

canonical commutation relations [a~k, a
†
~k′

] = δ~k,~k′ .

Writing the solution of this equation in the WKB form[28, 87, 149, 158, 29]

gk(η) =
e
−i

∫ η
ηi
Wk(η′) dη′√

2Wk(η)
, (3.3.14)

and inserting this ansatz into (3.3.10) it follows that Wk(η) must be a solution of the

equation[28]

W 2
k (η) = ω2

k(η)− 1

2

[
W
′′

k (η)

Wk(η)
− 3

2

(
W
′

k(η)

Wk(η)

)2]
. (3.3.15)

This equation can be solved in an adiabatic expansion

W 2
k (η) = ω2

k(η)

[
1− 1

2

ω
′′

k (η)

ω3
k(η)

+
3

4

(
ω
′

k(η)

ω2
k(η)

)2

+ · · ·
]
. (3.3.16)
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We refer to terms that feature n-derivatives of ωk(η) as of n-th adiabatic order. The nature

and reliability of the adiabatic expansion is revealed by considering the term of first adiabatic

order for generic mass m:
ω
′

k(η)

ω2
k(η)

=
m2 a(η)a

′
(η)[

k2 +m2 a2(η)
]3/2

, (3.3.17)

this is most easily recognized in comoving time t, introducing the local energy Ek(t) and

Lorentz factor γk(t) measured by a comoving observer in terms of the physical momentum

kp(t) = k/a(t)

Ek(t) =
√
k2
p(t) +m2 (3.3.18)

γk(t) =
Ek(t)

m
, (3.3.19)

and the Hubble expansion rate H(t) = ȧ(t)
a(t)

= a
′
/a2. In terms of these variables, the first

order adiabatic ratio (3.3.17) becomes

ω
′

k(η)

ω2
k(η)

=
H(t)

γ2
k(t)Ek(t)

. (3.3.20)

In similar fashion the higher order terms in the adiabatic expansion can be constructed

as well:

ω
′′

k (η)

ω3
k(η)

=
m2
(
(a
′
(η))2 + a(η)a

′′
(η)
)

ω4
k(η)

− m4a2(η)(a
′
(η))2

ω6
k(η)

=
1

γ2
k(t)

( R(t)

6E2
k(t)

+
H2(t)

E2
k(t)

)
− H2(t)

γ4
k(t)E

2
k(t)

, (3.3.21)

where R(t) is the Ricci scalar (3.3.2). Consequently, (3.3.16) takes the form:

W 2
k (t) = a2(t)E2

k(t)
[
1− 1

2γ2
k(t)

( R(t)

6E2
k(t)

+
H2(t)

E2
k(t)

)
+

5

4

H2(t)

γ4
k(t)E

2
k(t)

+ · · ·
]
. (3.3.22)

Consider that the decaying (parent) particle is produced during the radiation dominated

stage at the GUT scale with T ' 1015 GeV, with m � T and kp ' T corresponding to

Ek(t) ' T and γk � 1 (ultrarelativistic). With the number of ultrarelativistic degrees of

freedom geff ' 100 the expansion rate is

H(t) ' 1.66
√
geff

T 2(t)

MPl

' 10−2 T (t) , (3.3.23)
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and it follows that
ω
′

k(η)

ω2
k(η)

� 1 . (3.3.24)

This analysis clarifies the separation of scales: the Hubble expansion rate H(t) � Ek(t),

namely there are many oscillations of the field during a Hubble time and the ratio is further

suppressed by large local Lorentz factors. This ratio becomes smaller as the scale factor grows

and the Hubble rate slows, thereby improving the reliability of the adiabatic expansion. For

example, today H(t0) ' H0 ' 10−42 GeV, which is much smaller than the typical particle

physics scales even for very light axion-like (DM) candidates.

Therefore we adopt the ratio
H(t)

Ek(t)
� 1 , (3.3.25)

as the small, dimensionless adiabatic expansion parameter. The physical interpretation of

this (small) ratio is clear: typical particle physics degrees of freedom feature wavelengths

that are much smaller than the particle horizon proportional to the Hubble radius at any

given time (see discussion section below for caveats).

Consequently, when considering the term a′′/a in the equation of motion (3.3.9), we find

that

a′′

aω2
k

= 2
( Ḣ

2E2
k

+
H2

E2
k

)
= α

H2

E2
k

; α ' 0 (RD) ; α ' 1

2
(MD) . (3.3.26)

Therefore the ratio a′′/ω2
ka is of second adiabatic order and can be safely neglected to the

leading adiabatic order which we will pursue in this study, justifying the simplification of

the mode equations to (3.3.10).

In this article we consider the zeroth-adiabatic order with the mode functions given by

gk(η) =
e
−i

∫ η
ηi
ωk(η′) dη′√

2ωk(η)
(3.3.27)

postponing to future study higher adiabatic corrections (see discussion section below). The

phase of the mode function has an immediate interpretation in terms of comoving time and

the local comoving energy (3.3.18), namely

e
−i

∫ η
ηi
ωk(η′) dη′

= e
−i

∫ t
ti
Ek(t′) dt′

, (3.3.28)

which is a natural and straighforward generalization of the phase of positive frequency particle

states in Minkowski space-time.
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3.4 Particle interpretation: Adiabatic Hamiltonian

Unlike in Minkowski space-time where the full Lorentz group unambiguously leads to a

description of particle states associated with Fock states that transform irreducibly and are

characterized by mass and spin, the definition of particle states in an expanding cosmology

without a global time-like Killing vector is more subtle[28, 87, 149, 158, 29, 153].

Our goal is to study particle decay implementing the adiabatic approximation described

above, focusing on the leading, zeroth order contribution with the mode functions (3.3.27).

Field quantization in terms of these modes entail that the creation and annihilation operators

of the adiabatic particle states depend on time so that the quantum field obeys the (free field)

Heisenberg equations of motion. Passing to the interaction picture to obtain the transition

amplitudes and probabilities, we would need the explicit time dependence of the creation

and annihilation operators. In this section we show explicitly that to leading adiabatic order

the operators that create and annihilate the adiabatic states are time independent. This is an

important simplification that allows the calculation of matrix elements in a straightforward

manner.

In order to establish a clear identification of the zeroth order adiabatic modes with

particles we analyze the free-field Hamiltonian, which in terms of the conformally rescaled

field operators is given by

H(η) =
1

2

∫
d3x {π2 + (∇χ)2 +M2(η)χ2} . (3.4.1)

Writing the field operators in terms of their Fourier expansions, we have

χ(~x, η) =
1√
V

∑
k

[akgk(η)ei
~k·~x + a†kg

∗
k(η)e−i

~k·~x], (3.4.2)

π(~x, η) = χ′(~x, η) =
1√
V

∑
k

[akg
′
k(η)ei

~k·~x + a†kg
∗
k
′(η)e−i

~k·~x] . (3.4.3)

Integrating over d3x, gathering terms and neglecting the term a′′/a in (3.3.9) as discussed

above, we find

H(η) =
1

2

∑
k

{
a†kak

(
|g′k|2 + ω2

k(η) |gk|2
)

+ aka−k
(
(g′k)

2 + ω2
k(η)(gk)

2
)

+ h.c.
}

(3.4.4)

≡ 1

2

∑
k

{
Ωk(η)a†kak + ∆k(η)aka−k + h.c.

}
. (3.4.5)
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We can now expand these coefficients Ωk(η) and ∆k(η) in terms of the functions Wk(η) by

using the explicit form of the mode functions

gk(η) =
e−i

∫ ηWk(η′) dη′√
2Wk(η)

; g′k(η) = −iWk(η)gk(η)
[
1− i W

′
k(η)

2W 2
k (η)

]
(3.4.6)

and using the relation (3.3.15) the frequencies Ωk(η); ∆k(η) can be written as

Ωk(η) = |gk|2
(

2W 2
k +

W ′′
k

2Wk

− W ′
k

2

2W 2
k

)
, ∆k(η) = (gk)

2
( W ′′

k

2Wk

− W ′
k

2

2W 2
k

− iW ′
k

)
. (3.4.7)

It is convenient to introduce

αk(η) ≡ W ′′
k

2Wk

− W ′
k

2

2W 2
k

, (3.4.8)

which allows us to rewrite the Hamiltonian as

H(η) =
1

2

∑
k

(
a†k a−k

)|gk|2(αk + 2W 2
k ) (g∗k)

2(αk + iW ′
k)

(gk)
2(αk − iW ′

k) |gk|2(αk + 2W 2
k )

 ak

a†−k

 (3.4.9)

This Hamiltonian can be diagonalized by a time-dependent Bogoliubov transformation. We

do this in two steps. First we write

ãk(η) = ak e
−i

∫ ηWk(η′) dη′ e−iθk(η)/2 , (3.4.10)

and choose θk(η) to absorb the phase of ∆k, i.e., tan θk(η) = W ′
k(η)/αk(η). Then

H(η) =
1

2

∑
k

(
ã†k ã−k

) Ωk(η) |∆k|(η)

|∆k|(η) Ωk(η)

 ãk

ã†−k

 , (3.4.11)

where

Ωk(η) =
1

2Wk

(αk(η) + 2W 2
k (η)) ; |∆k| =

1

2Wk

√
α2
k(η) + (W ′

k(η))2 . (3.4.12)

We introduce the Bogoliubov transformation to a new set of creation and annihilation oper-

ators b̂†~k, b̂~k as

ã†~k = uk(η) b̂†~k + vk (η)b̂−~k ; ã~k = uk(η) b̂~k + vk(η) b̂†
−~k
, (3.4.13)
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noting that uk, vk are real functions of η and |~k| only. For the b̂~k, b̂
†
~k

to obey the canonical

commutation relations, it follows that u2
k − v2

k = 1. Then the Hamiltonian can be written

H(η) =
1

2

∑
k

(
b̂†~k b̂−~k

)uk vk

vk uk

 Ωk |∆k|
|∆k| Ωk

uk vk

vk uk

 b̂~k

b̂†
−~k

 (3.4.14)

=
1

2

∑
k

(
b̂†~k b̂−~k

)(u2
k + v2

k)Ωk + 2ukvk|∆k| (u2
k + v2

k)|∆k|+ 2ukvkΩk

(u2
k + v2

k)|∆k|+ 2ukvkΩk (u2
k + v2

k)Ωk + 2ukvk|∆k|

 b̂~k

b̂†
−~k

 ,

(3.4.15)

and the uk and vk chosen to make off-diagonal terms vanish. Then writing uk = coshφk and

vk = sinhφk, we find

tanh 2φk = −|∆k|
Ωk

. (3.4.16)

In the second step we absorb the fast phases into the redefinition

b̂~k = e−i
∫ ηWk(η′) dη′ b~k ; b̂†~k = ei

∫ ηWk(η′) dη′ b†~k , (3.4.17)

in terms of which the Hamiltonian can be written as

H(η) =
∑
k

ωk(η)
(
b†~k(η)~k b~k(η) + 1

2

)
. (3.4.18)

This is a remarkable result: the new operators b†~k, b~k define a Fock Hilbert space of adiabatic

eigenstates, the exact frequencies of which are the zeroth order adiabatic frequencies ωk(η) =√
k2 +m2 a2(η). We emphasize that b†~k(η), b~k(η) depend explicitly on time because the

Bogoliubov coefficients uk(η), vk(η) depend on time, while the original operators a~k, a
†
~k

are

time independent in the Heisenberg picture. This is also clear by inverting the relations

(3.4.13), and using (3.4.10) the redefinition (3.4.17) along with u2
k − v2

k = 1, we find

b†~k(η) = uk(η) e−iθk(η)/2 a†~k + vk(η) eiθk(η)/2 e−2i
∫ ηWk(η′) dη′ a−~k (3.4.19)

b~k(η) = uk(η) eiθk(η)/2 a~k + vk(η) e−iθk(η)/2 e2i
∫ ηWk(η′) dη′ a†

−~k
. (3.4.20)

Using (3.3.15) and the adiabatic expansion (3.3.16) it is straightforward to find that

uk(η) = 1 +O
(

(ω′k(η))2, ω
′′

k (η)
)

; vk(η) ' O
(

(ω′k(η))2, ω
′′

k (η)
)
. (3.4.21)
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Hence, to zeroth order in the adiabatic expansion b~k = a~k and the annihilation and creation

operators of adiabatic particle states are independent of time. Time dependence of the

operators b~k, b
†
~k

emerges at second order in the adiabatic expansion.

Therefore, the study in this section justifies our identification of particle states to leading

(zeroth) order in the adiabatic expansion, namely the time independent operators a†, a create

and annihilate zeroth order adiabatic particle states of time dependent frequency ωk(η). This

is important because below we cast the interaction picture in terms of these operators and the

mode functions gk(η). The analysis above explicitly shows the consistency of this approach

to leading order in the adiabatic approximation. In higher order the time evolution of the

operators b, b† entail particle production[153, 28, 87, 149, 158, 29, 64, 65, 193], an important

aspect that will be relegated to future study (see discussion section below). In the analysis

that follows we will consider the leading (zeroth) order adiabatic modes.

3.5 The Interaction Picture in Cosmology

The creation and annihilation operators a~k, a
†
~k

for each respective field define Fock states,

with a vacuum state |0〉 defined by a~k |0〉 = 0. Since to leading order in the adiabatic

approximation a, a† coincide with b, b† associated with single particle adiabatic states, it

follows that a†~k |0〉 are identified (to this order) with the single particle states associated with

the mode functions(3.3.27).

In the Schrödinger picture, quantum states obey

i
d

dη
|Ψ(η)〉 = H(η)|Ψ(η)〉 , (3.5.1)

where in general the Hamiltonian carries explicit η dependence. The solution of (3.5.1) is

given in terms of the unitary time evolution operator U(η, η0), taking the particular form

|Ψ(η)〉 = U(η, η0)|Ψ(η0)〉. Therefore, U(η, η0) obeys

i
d

dη
U(η, η0) = H(η)U(η, η0) ; U(η0, η0) = 1 . (3.5.2)
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Consider a Hamiltonian that can be written as H(η) = H0(η) + Hi(η), where H0(η)

is the free theory Hamiltonian and Hi(η) the interaction Hamiltonian. In the absence of

interactions with Hi = 0, the time evolution operator of the free theory U0(η, η0) obeys

i
d

dη
U0(η, η0) = H0(η)U0(η, η0), −i d

dη
U−1

0 (η, η0) = U−1
0 (η, η0)H0(η), U(η0, η0) = 1 .

(3.5.3)

It is convenient to pass to the interaction picture, where the operators evolve with the

free field Hamiltonian and the states carry the time dependence from the interaction, namely

|Ψ(η)〉I = U−1
0 (η, η0) |Ψ(η)〉 , (3.5.4)

and their time evolution is given by

|Ψ(η)〉I = UI(η, η0) |Ψ(η0)〉I ; UI(η, η0) = U−1
0 (η, η0)U(η, η0) . (3.5.5)

The unitary time evolution operator in the interaction picture UI(η, η0) obeys

i
d

dη
UI(η, η0) = HI(η)UI(η, η0) HI(η) = U−1

0 (η, η0)Hi(η)U0(η, η0) ; UI(η0, η0) = 1 .

(3.5.6)

For the conformal action (3.3.4) it follows that

HI(η) = λ a(η)

∫
d3x χ1(~x, η) : χ2

2(~x, η) : , (3.5.7)

where the fields are given by the free field expansion (3.3.11) with the mode functions so-

lutions of (3.3.12,3.3.13) and time independent creation and annihilation operators for the

respective fields. The perturbative solution of eqn. (3.5.6) is

UI(η, η0) = 1− i
∫ η

η0

HI(η1) dη1 + (−i)2

∫ η

η0

∫ η1

η0

HI(η1)HI(η2) dη1 dη2 + · · · (3.5.8)

Amplitudes and probabilities in perturbation theory:

Before we consider the non-perturbative Wigner-Weisskopf method, we study the transi-

tion amplitudes and probabilities in perturbation theory as this will yield a clear interpre-

tation of the results.
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Let us consider the amplitude for the decay process χ1 → 2χ2 given by

A1→22(η, ηi) = 〈1(2)
~p , 1

(2)
~q |UI(η, ηi) |1

(1)
~k
〉 , (3.5.9)

where |1(a)
~p 〉, a = 1, 2 are the single particle states associated with the respective fields. With

the expansion (3.5.8) we find to lowest order in perturbation theory,

A1→22(η, ηi) = −iλ
∫ η

ηi

dη′ a(η′)

∫
d3x 〈1(2)

~p , 1
(2)
~q |χ1(~x, η′)χ2

2(~x, η′) |1(1)
~k
〉

= −2i
λ

V 1/2

∫ η

ηi

dη′ a(η′) g
(1)
k (η′) (g(2)

p (η′))∗ (g(2)
q (η′))∗ δ~k,~p+~q . (3.5.10)

The total transition probability is given by

P1→22(η, ηi) =
1

2!

∑
~p

∑
~q

|A1→22(η, ηi)|2 , (3.5.11)

and taking the continuum limit yields

P1→22(η, ηi) =

∫ η

ηi

dη2

∫ η

ηi

dη1 Σk(η2; η1) , (3.5.12)

where

Σk(η; η′) = 2λ2a(η) a(η′) (g
(1)
k (η))∗ g

(1)
k (η′)

∫
d3p

(2π)3 g
(2)
p (η) g

(2)
q (η) (g

(2)
k (η′))∗ (g

(2)
q (η′))∗ ;

q = |~k − ~p| . (3.5.13)

Noting the property

(Σk(η; η′))∗ = Σk(η
′; η) , (3.5.14)

and introducing the identity Θ(η2 − η1) + Θ(η1 − η2) = 1, relabelling terms and using the

property (3.5.14), we find

P1→22(η, ηi) = 2

∫ η

ηi

dη2

∫ η2

ηi

dη1 Re[Σk(η2; η1)] . (3.5.15)

We define the transition rate

Γ(η) ≡ d

dη
P1→22(η, ηi) = 2

∫ η

ηi

dη1 Re[Σk(η; η1)] . (3.5.16)

We emphasize to the reader that in typical S-matrix calculations in Minkowski spacetime,

the presence of a time-like Killing vector (and the implementation of the infinite time limit)

lead to a time independent transition rate and subsequently a standard exponential decay

law. In FRW spacetime, this approach is in general invalid. Rather, the transition rate

introduced above will define the decay law obtained within the non-perturbative Wigner-

Weisskopf framework described below.
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3.6 Wigner–Weisskopf Theory in Cosmology

The quantum field theoretical Wigner-Weisskopf method has been introduced in refs.[138,

137, 37], where the reader is referred to for more details. As discussed in these references,

this method is manifestly unitary and leads to a non-perturbative systematic description

of transition amplitudes and probabilities directly in real time. Here we describe the main

aspects of its implementation within the cosmological setting. Consider an interaction picture

state |Ψ(η)〉I =
∑

nCn(η)|n〉, expanded in the Hilbert space of the free theory; these are the

Fock states associated with the annihilation and creation operators a~k, a
†
~k

of the free field

expansion (3.4.2) for each field. Inserting into (3.5.6) yields an exact set of coupled equations

for the coefficients

i
d

dη
Cn(η) =

∑
m

Cm(η)〈n|HI(η)|m〉. (3.6.1)

In principle this is an infinite hierarchy of integro-differential equations for the coefficients

Cn(η); progress can be made, however, by considering states connected by the interaction

Hamiltonian to a given order in the interaction. Consider that initially the state is |A〉 so that

CA(ηi) = 1 ; Cκ(ηi) = 0 for |κ〉 6= |A〉, and consider a first order transition process |A〉 →
|κ〉 to intermediate multiparticle states |κ〉 with transition matrix elements 〈κ|HI(η)|A〉.
Obviously the state |κ〉 will be connected to other multiparticle states |κ′〉 different from |A〉
via HI(η). Hence for example up to second order in the interaction, the state |A〉 → |κ〉 →
|κ′〉. Restricting the hierarchy to first order transitions from the initial state |A〉 ↔ |κ〉
results in a coupled set of equations

i
d

dη
CA(η) =

∑
κ

Cκ(η)〈A|HI(η)|κ〉 (3.6.2)

i
d

dη
Cκ(η) = CA(η)〈κ|HI(η)|A〉 ; CA(ηi) = 1 ; Cκ(ηi) = 0 . (3.6.3)

These processes are depicted in fig. (5).

Equation (3.6.3) with Cκ(ηi) = 0 is formally solved by

Cκ(η) = −i
∫ η

ηi

〈κ|HI(η
′)|A〉CA(η′) dη′ , (3.6.4)
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|A〉
|κ〉 |κ〉

|A〉

〈κ|HI |A〉 〈A|HI |κ〉

Figure 5: Transitions |A〉 ↔ |κ〉 in first order in HI .

and inserting this solution into equation (3.6.2) we find

d

dη
CA(η) = −

∫ η

ηi

dη′ΣA(η, η′) CA(η′) , (3.6.5)

where we have introduced the self-energy

ΣA(η; η′) =
∑
κ

〈A|HI(η)|κ〉〈κ|HI(η
′)|A〉 . (3.6.6)

This integro-differential equation with memory yields a non-perturbative solution for the

time evolution of the amplitudes and probabilities. In Minkowski space-time and in fre-

quency space, this is recognized as a Dyson resummation of self-energy diagrams, which upon

Fourier transforming back to real time, yields the usual exponential decay law[138, 137, 37].

Introducing the solution for CA(η) back into (3.6.3) yields the build-up of the population of

“daughter” particles.

The equation (3.6.5) is in general very difficult to solve, but progress can be made under

the weak coupling assumption by invoking the Markovian approximation. A systematic

implementation of this approximation begins by introducing

EA(η, η′) ≡
∫ η′

ηi

ΣA(η, η′′) dη′′ , (3.6.7)

such that
d

dη′
EA(η, η′) = ΣA(η, η′) , (3.6.8)

with the condition

EA(η, ηi) = 0 . (3.6.9)
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Then (3.6.5) can be written as

d

dη
CA(η) = −

∫ η

ηi

dη′
d

dη′
EA(η, η′)CA(η′) (3.6.10)

which can be integrated by parts to yield

d

dη
CA(η) = −EA(η, η)CA(η) +

∫ η

ηi

dη′ EA(η, η′)
d

dη′
CA(η′). (3.6.11)

Since EA ∝ O(H2
I ) the first term on the right hand side is of order H2

I , whereas the second

is O(H4
I ) because dCA(η)/dη ∝ O(H2

I ). Therefore to leading order in the interaction, the

evolution equation for the amplitude becomes

d

dη
CA(η) = −EA(η, η)CA(η) , (3.6.12)

with solution

CA(η) = exp
(
−
∫ η

ηi

EA(η′, η′) dη′
)
CA(ηi) . (3.6.13)

This expression clearly highlights the non-perturbative nature of the Wigner-Weisskopf ap-

proximation. The imaginary part of the self energy ΣA yields a renormalization of the

frequencies which we will not pursue here[37, 138, 137], whereas the real part gives the decay

rate, with

|CA(η)|2 = e
−

∫ η
ηi

ΓA(η′)dη′ |CA(ηi)|2 ; ΓA(η) = 2

∫ η

ηi

dη1 Re [ΣA(η, η1)] . (3.6.14)

Finally, the amplitude for the decay product state |κ〉 is obtained by inserting the am-

plitude (3.6.13) into (3.6.4), and the population of the daughter particles is |Cκ(η)|2.

In our study the state |A〉 is a single particle state of momentum ~k of the decaying parent

particle.
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3.6.1 Disconnected Vacuum Diagrams

Before we set out to obtain the self-energy and decay law for a single particle state of

the field χ1 into two particles of the field χ2 we must clarify the nature of the vacuum

diagrams. Consider the initial single particle state |A〉 = |1(1)
~k
〉 and the set of intermediate

states connected to this state by the interaction Hamiltonian to first order. There are two

different contributions: a): the decay process |1(1)
~k
〉 → |1(2)

~p ; 1
(2)
~k−~p
〉 in which the initial state

is annihilated and the two particle state produced, and b): a four particle state in which the

initial state evolves unperturbed and a three particle state |1(2)
~p ; 1

(2)
~q ; 1

(1)
−~p−~q〉 is created out of

the vacuum by the perturbation. These contributions are depicted in fig. (6).

(a)particle decay (b)vacuum diagram

1
(1)
~k
1
(1)
~k

1
(2)
~p

1
(2)
~k−~p

1
(1)
~k

1
(2)
~p

1
(2)
~q

1
(1)
−~p−~q

Figure 6: Decay and vacuum diagrams for |A〉 = |1(1)
k 〉 to first order in HI . Solid lines

single particle states of the field χ1, dashed lines are single particle states of the field χ2.

These processes yield two different contributions to
∑

κ〈1
(1)
~k
|HI(η)|κ〉〈κ|HI(η

′)|1(1)
~k
〉, de-

picted in fig. (7).

The second disconnected diagram (b) corresponds to the “dressing” of the vacuum. This

is clearly understood by considering the initial state to be the non-interacting vacuum state

|0〉; it is straightforward to repeat the analysis above to obtain the closed set of leading

order equations that describe the build-up of the full interacting vacuum state. One finds

that diagram (b) without the non-interacting single particle state precisely describes the

“dressing” of the vacuum state. Clearly, similar disconnected diagrams enter the evolution

of any initial state. In the case under consideration, namely the decay of single particle
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(a) : self energy (b) : vacuum

Figure 7: Contributions to the self-energy for decay (a) and vacuum diagram (b) for

|A〉 = |1(1)
k 〉 to first order in HI with the same notation as in fig.(6).

states, the disconnected diagram (b) does not contribute to the decay but to the definition

of a single particle state obtained out of the full vacuum state. In S-matrix theory these

disconnected diagrams are cancelled by dividing all transition matrix elements by 〈0|S|0〉.
Within the Wigner-Weisskopf framework, we write the amplitude for the single particle state

|A〉 = |1(1)
~k
〉 as

CA(η) = C̃A(η) C̃0(η) (3.6.15)

where C̃0(η) is the amplitude for the interacting vacuum state obeying

d

dη
C̃0(η) = −E0(η, η) C̃0(η) , (3.6.16)

where

E0(η, η′) ≡
∫ η′

ηi

Σ
(b)
A (η, η′′) dη′′ , (3.6.17)

and Σ
(b)
A (η, η′′) is the vacuum self-energy diagram (b) in figure (7). With the total self energy

given by the sum of the decay (a) and vacuum (b) diagrams as in figure (7), it follows that

the amplitude C̃A(η) obeys

d

dη
C̃A(η) = −E (a)

A (η, η)C̃A(η) , (3.6.18)
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where E (a)
A is determined only by the connected (decay) self energy diagram (a). This is

precisely the same as dividing by the vacuum matrix element in S-matrix theory where

similar diagrams arise in Minkowski space time with a similar interpretation[37, 138, 137].

This is tantamount to redefining the single particle states as built from the full vacuum state.

Therefore we neglect diagram (b). We emphasize that this is in contrast with the method

proposed in ref.[133, 135] wherein following ref.[15] the disconnected diagram (b) is kept in

the calculation of the decay process.

Now we are able to calculate the general form of the decay law by considering the decay

process χ1 → 2χ2 in the interacting theory with HI(η) given by (3.5.7) to leading order in λ

and keeping only the connected diagrams.

The initial state corresponds to single particle state of the χ1 field |A〉 = |1(1)
k 〉, and the

decay process corresponds to a transition to the state |κ〉 = |1(2)
~p ; 1

(2)
~q 〉. Then

〈1(2)
~p ; 1

(2)
~q |HI(η

′)|1(1)
k 〉 =

2λ a(η′)

V 1/2
g

(1)
k (η′)g(2)

p
∗(η′)g(2)

q
∗(η′) δ~k,~p+~q,

〈1(1)
k |HI(η)|1(2)

~p ; 1
(2)
~q 〉 =

2λ a(η)

V 1/2
g

(1)
k
∗(η)g(2)

p (η)g(2)
q (η) δ~k,~p+~q . (3.6.19)

Taking the continuum limit, summing over intermediate states, and accounting for the Bose

symmetry factor in the final states yields

Σk(η, η
′) =

1

2!

∑
~p,~q

〈1(1)
k |HI(η)|1(2)

~p ; 1
(2)
~q 〉〈1

(2)
~p ; 1

(2)
~q |HI(η

′)|1(1)
k 〉

=
4λ2

2!
a(η)a(η′)g

(1)
k (η′) (g

(1)
k (η))∗

∫
d3p

(2π)3
g(2)
p (η) g

(2)

|~k−~p|
(η) (g(2)

p (η′))∗ (g
(2)

|~k−~p|
(η′))∗ .(3.6.20)

This is precisely the self-energy (3.5.13) obtained in the perturbative description of the

transition probability and amplitude, equation (3.5.12), which enters in the evolution equa-

tion (3.6.5) for the single (parent) particle. Following the steps of the Markovian approxi-

mation leading up to the final result (7.1.1), we find

|CA(η)|2 = |CA(ηi)|2 exp

(
−
∫ η

ηi

Γk(η
′)dη′

)
; Γk(η

′) = 2

∫ η′

ηi

dη′′Re Σk(η
′, η′′) . (3.6.21)

This expression for the probability makes manifest the non-perturbative nature of the Wigner-

Weisskopf method.
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3.7 Decay Law in Leading Adiabatic Order

In this article we study the decay law in the theory described above to leading adiabatic

order, namely zeroth order. The study of higher adiabatic order effects, primarily associated

with the production of particles by the cosmological expansion, is relegated to a future article

(see discussion section below).

In the leading (zeroth) order adiabatic approximation the mode functions are given by

gk(η) =
e
−i

∫ η
ηi
ωk(η′)dη′√

2ωk(η)
, ωk(η

′) =
√
k2 +m2a2(η′) , (3.7.1)

and Σk takes the following form

Σk(η, η
′) =

2λ2 a(η)a(η′)√
2ω

(1)
k (η)2ω

(1)
k (η′)

∫
d3p

(2π)3

e
i
∫ η
η′

[
ω

(1)
k (η′′)−ω(2)

p (η′′)−ω(2)
q (η′′)

]
dη′′√

2ω
(2)
p (η)2ω

(2)
p (η′)2ω

(2)
q (η)2ω

(2)
q (η′)

, (3.7.2)

where q = |~k − ~p|. Obviously even to this order both the time and momentum integrals

are daunting. However, progress is made by first considering the case of a massive parent

particle decaying into two massless daughter particles. This study will reveal a path forward

to the more general case of all massive particles.

3.7.1 Massive Parent, Massless Daughters in RD Cosmology

Setting m2 = 0, the self energy becomes

Σk(η, η
′) =

2λ2 a(η)a(η′) e
i
∫ η
η′ ωk(η′′)dη′′√

2ω
(1)
k (η)2ω

(1)
k (η′)

∫
d3p

(2π)3

e−i(p+q)(η−η
′)

2p 2q
; q = |~k − ~p| . (3.7.3)

The momentum integral in (3.7.3) is carried out exactly by introducing a convergence

factor after which it becomes

I =
1

16π2

∫ ∞
0

p2 dp

p

∫ 1

−1

d(cos(θ))

q
e−i(p+q)(s−iε), ε→ 0+, s ≡ η − η′ (3.7.4)

Changing integration variables from d(cos(θ)) to q = |~k − ~p| this integral becomes

I =
1

16π2k

∫ ∞
0

dp e−ip(s−iε)
∫ |k+p|

|k−p|
dq e−iq(s−iε) =

−ie−ik (η−η′)

16π2(η − η′ − iε) ; ε→ 0+ , (3.7.5)
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yielding

Σk(η, η
′) =

λ2 a(η) a(η′) e
i
∫ η
η′ ωk(η′′) dη′′

e−ik(η−η′)

16π2

√
ω

(1)
k (η)ω

(1)
k (η′)

[
− iP

( 1

η − η′
)

+ πδ(η − η′)
]
, (3.7.6)

where the Sokhotski-Plemelj theorem has been used in the last line. This expression is

similar to that obtained in appendix ( A.1) in Minkowski space-time, where the scale factor

is set to one and the frequencies are time independent (see eqn. ( A.1.3)). The explicit time

dependence obtained in Minkowski space-time in appendix ( A.1) cannot be gleaned in the

usual calculations of decay rates via S-matrix theory where the initial and final times are

taken to ∓∞, respectively.

The decay width Γk(η) is obtained from eqn. (3.6.21), and is given by

Γk(η) =
λ2 a2(η)

8π ω
(1)
k (η)

1

2

[
1 + S(η)

]
, (3.7.7)

where a factor of 1
2

originates from the integration of the delta function in η (the “prompt”

term), and

S(η) =
2

π

∫ η

0

P [η, η′]
sin
[
A(η, η′)

]
η − η′ dη′ , (3.7.8)

where we set ηi = 0 and introduce

P [η, η′] =
a(η′)

a(η)

[
ω

(1)
k (η)

ω
(1)
k (η′)

]1/2

, (3.7.9)

A(η, η′) =

∫ η

η′
ωk(η

′′) dη′′ − k(η − η′) . (3.7.10)

The expression for S can be simplified substantially, revealing a hierarchy of time scales

associated with the adiabatic expansion in radiation domination, during which

a(η) = HR η ; HR = H0

√
ΩR . (3.7.11)

First we address the integral

Jk[η, η
′] =

∫ η

η′
ω

(1)
k (η′′) dη′′ =

∫ η

η′

√
k2 +m2

1 a
2(η′′) dη′′ . (3.7.12)
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To begin with we introduce the dimensionless variable (in what follows we suppress the η

dependence of z to simplify notation)

z = ωk(η) η = Ek(t) a(η) η =
Ek(t)

H(t)
� 1 (3.7.13)

where Ek(t) =
√
k2
p(t) +m2 is the physical energy measured locally by a comoving observer

with kp(t) = k/a(η) the physical momentum, and H(t) = a′(η)/a2(η) = 1/(η a(η)) during

radiation domination, while H(t) = 2/(η a(η)) during matter domination. The dimension-

less ratio (3.7.13) is the inverse of the adiabatic ratio H(t)/Ek(t) (we have suppressed the

momentum and η dependence in z to simplify notation). The inequality in (3.7.13) is a con-

sequence of the adiabatic approximation wherein the physical wavelengths are much smaller

than the Hubble radius (∝ the particle horizon). Next, we write η′′ = η
[
1− (η− η′′)/η

]
and

introduce

ω
(1)
k (η) (η − η′′) = x ; ω

(1)
k (η) (η − η′) = τ , (3.7.14)

in terms of which

a(η′′) = a(η)
[
1− x

z

]
; a(η′) = a(η)

[
1− τ

z

]
. (3.7.15)

This relation allows us to write

(
ω

(1)
k (η′′)

)2
=
(
ω

(1)
k (η)

)2
+m2

1a
2(η)

[(
1− x

z

)2

− 1
]

=
(
ω

(1)
k (η)

)2
R2[x] , (3.7.16)

where we introduced

R[x; η] =

[
1− 2x

γ2
k(η) z

(
1− x

2z

)]1/2

, (3.7.17)

with the local Lorentz factor given by

1

γk(η)
=
m1 a(η)

ω
(1)
k (η)

=
m1

E
(1)
k (t)

. (3.7.18)

During (RD) the Lorentz factor can be written as

γk(η) =

[( anr
a(η)

)2

+ 1

]1/2

=

[(ηnr
η

)2

+ 1

]1/2

; ηnr =
k

m1HR

≡ anr
HR

, (3.7.19)
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the conformal time ηnr determines the time scale at which the parent particle transitions

from relativistic η � ηnr to non-relativistic η � ηnr. In the following analysis we suppress

the η-dependence of γk, z for simplicity.

We emphasize that the relations (3.7.15,3.7.16) are exact in a radiation dominated cos-

mology. Changing integration variables from η′′ to x given by (3.7.14) and using the above

variables we find that the integral (3.7.12) simplifies to the following expression

Jk[η, η
′] ≡ Jk[τ ; η] =

∫ τ

0

[
1− 2x

γ2
k z

(
1− x

2z

)]1/2

dx , (3.7.20)

obtaining

Jk[τ ; η] = τ + δk(τ ; η) , (3.7.21)

where δk(τ) is of adiabatic order ≥ 1 and given by

δk(τ ; η) =
z

2

{(
1−2 τ

z

)
−
(

1− τ
z

)
R[τ ; η]

}
− z

2γk
(γ2
k−1) ln

[
γk R[τ ; η] +

(
1− τ

z

)
1 + γk

]
, (3.7.22)

where we recall that both z and γk depend explicitly on η. Inserting these results into

(3.7.8,3.7.9,3.7.10), and using the new variables z, τ given by eqns. (3.7.13,3.7.14) we find

S(η) =

∫ z

0

P [τ ; η]
sin[A(τ ; η)]

τ
dτ , (3.7.23)

where

P [τ ; η] =

[
1− τ

z

]
√
R[τ ; η]

, (3.7.24)

and

A[τ ; η] = τ

[
1−

(
1− 1

γ2
k

)1/2
]

+ δk(τ ; η) , (3.7.25)

where the term in the bracket follows from k/ω
(1)
k (η) = (1−1/γ2

k)
1/2. The expression (3.7.23)

is amenable to straightforward numerical analysis. However, before we pursue such study,

it is important to recognize several features that will yield to a simplification in the general

case of massive daughters. The various factors above display a hierarchy of (dimensionless)
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time scales widely separated by 1/z � 1 in the adiabatic approximation: the “fast” scale τ ,

the “slow” scale τ/z etc. It is straightforward to find that

δk(τ ; η) = − τ 2

2γ2
k z

+ · · · , (3.7.26)

confirming that δk is of first and higher adiabatic order. This has a simple, yet illuminating

interpretation in terms of an adiabatic expansion of the integral (3.7.12). If the frequencies

ω
(1)
k were independent of time, this integral would simply be Jk(η, η

′) = ω
(1)
k (η − η′) ≡ τ .

Therefore an expansion of Jk[η, η
′] around η′ = η would necessarily entail derivatives of ω

(1)
k ,

namely terms of higher adiabatic order. Consider such an expansion:

Jk[η, η
′] = 0 +

d

dη′
Jk[η, η

′]

∣∣∣∣∣
η′=η

(η − η′) +
1

2

d2

dη′ 2
Jk[η, η

′]

∣∣∣∣∣
η′=η

(η − η′)2 + · · ·

= ω
(1)
k (η) (η − η′)− 1

2
ω
′ (1)
k (η) (η − η′)2 + · · · (3.7.27)

In terms of τ = ω
(1)
k (η) (η − η′), this expansion becomes

Jk[η, η
′] = τ − τ 2

2γ2
k z

+ · · · (3.7.28)

where we used (3.3.20) and (3.7.13). The second term is precisely the leading contribution

to δk (3.7.26). This analysis makes explicit that an expansion of the integral (3.7.12) in

powers of η−η′ is precisely an adiabatic expansion in terms of derivatives of the frequencies.

Since the n-th power of η − η′ in such expansion is multiplied by the n− 1 derivative of the

frequencies, and when (η−η′) is replaced by τ/ω
(1)
k (η) the n−1 derivative of the frequencies

is divided by (ω
(1)
k (η))n yielding a dimensionless ratio of adiabatic order n− 1.

Let us now consider the full integral expression for S(η) given by (3.7.23) with the

corresponding expressions for P [τ ] and δk(τ). For z � 1 the terms of the form τ/z, τ 2/z2

will be negligible in most of the integration region but for the region of τ ≈ z where these

terms become of O(1). However, because of the factor τ in the denominator of the integrand

in (3.7.23), a consequence of the momentum integration, this region is suppressed by a

factor 1/z � 1 yielding effectively a contribution of first (and higher) adiabatic order.

Therefore the contribution from adiabatic corrections, proportional to powers of τ/z are, in
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fact, subleading. This argument suggests that the zeroth order adiabatic approximation to

S(η), namely

S0(η) =
2

π

∫ z

0

sin[A0(τ ; η)]

τ
dτ ; A0[τ ; η] = τ

[
1−

(
1− 1

γ2
k

)1/2
]
, (3.7.29)

should be a very good approximation to the full function S(η) for z � 1 with closed form

expression

S0(η) =
2

π
Si[A0(z(η); η)] . (3.7.30)

where Si[x] is the sine-integral function with asymptotic behavior Si[x]→ π/2− cos(x)/x+

· · · as x → ∞. This function rises and begins to oscillate around its asymptotic value at

x ' π. This behavior implies that the rise-time of Si[A0(z; η)] to its asymptotic value in the

ultrarelativistic case γk � 1 increases ∝ γ2
k. In fact one finds that the full function S(η) and

its first order adiabatic approximation S0(η) vanish as γk → ∞. Namely, the contribution

from S0 (and similarly from S) is negligible while the particle is ultrarelativistic. This

expectation is verified numerically.
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Figure 8: S[z] and S[z]− S0[z] vs. z for γk = 1.

Figures (8,9) display S(z) and S(z) − S0(z) vs. z for the non-relativistic limit γk = 1

and for the relativistic regime γk = 10. In both cases these figures confirm that the zeroth

adiabatic approximation S0(z) is excellent for z � 1. They also confirm the slow rise of this
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Figure 9: S(z) and S(z)− S0(z) vs. z for γk = 10.

contribution in the ultrarelativistic case, note the scale on the horizontal axis for the case

γk = 10 compared to that for γk = 1. For γk > 1 we have displayed the results for a fixed

value of γk to illustrate the main behavior for the non-relativistic and relativistic limits and

highlight that the relativistic case features a larger rise-time. Obviously a detailed numerical

study including the η dependence of γk will depend on the particular values of k,m1.

Replacing the function S(η) by the zeroth order approximation S0(η) is also consistent

with our main approximation of keeping only the zeroth order adiabatic contribution in the

mode functions. Therefore consistently with the zeroth adiabatic order, we find that the

decay rate for the case of a massive parent decaying into two massless daughters is given by

Γk(η) =
λ2 a2(η)

8π ω
(1)
k (η)

1

2

[
1 +

2

π
Si[A0(z(η); η)]

]
; A0(z(η); η) = z(η)

[
1−

(
1− 1

γ2
k(η)

)1/2
]
.

(3.7.31)

We emphasize that although in several derivations leading up to the results (3.7.23,

3.7.24,3.7.25) we have used the scale factor during the RD dominated era, for example in

eqns. (3.7.15,3.7.16), only the explicit dependence of δk(τ, η) and the prefactor P [τ ; η] on

τ, η depend on this choice. However, as shown above the leading adiabatic order corresponds

to taking δk = 0 and P [τ, η] = 1, namely δk and the τ, η dependent terms in P [τ, η] yield
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contributions of higher adiabatic order. Therefore, the leading (zeroth) adiabatic order given

by (3.7.31) is valid either for the (RD) or (MD) dominated eras.

Remarkably, this result is similar to that in Minkowski space time obtained in appendix

( A.1) with the only difference being the scale factor and explicit time dependence of the

frequency.

The decay law of the probability, given by (3.6.21) requires the integral of the rate

(3.7.31). It is now convenient to pass to comoving time in terms of which we find (again

setting ηi = 0) ∫ η

0

Γk(η) dη ≡ Γ0

∫ t

0

F(t′)

γk(t′)
dt′ , (3.7.32)

where

Γ0 =
λ2

8πm1

; F(t′) =
1

2

[
1 +

2

π
Si[A0(t′)]

]
, (3.7.33)

where Γ0 is the decay rate of a particle at rest in Minkowski space-time and γk(t) the time

dilation factor, which depends explicitly on time as a consequence of the cosmological redshift

of the physical momentum.

Up to the factor F(t′), the decay rate in comoving time has a simple interpretation:

Γk(t) '
Γ0

γk(t)
, (3.7.34)

namely a decay width at rest divided by the time dilation factor. During (RD) it follows

that

γk(t) =
[
1 +

tnr
t

]1/2

; tnr =
k2

2m2
1HR

, (3.7.35)

where tnr(k) is the transition time scale between the ultrarelativistic (t � tnr) and non-

relativistic (t � tnr) regimes, assuming that the transition occurs during the (RD) era,

which is a suitable assumption for masses larger than a few eV.

In the (RD) era we find (using 3.7.13, 3.7.18, 3.7.19, and 3.7.31)

z(t) =

[
k2

m1HR

][
t

tnr

(
1 +

t

tnr

)]1/2

, (3.7.36)

A0(t) =

[
k2

m1HR

]√
t

tnr

[(
1 +

t

tnr

)1/2

− 1

]
. (3.7.37)
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In Minkowski space time, the calculation of the decay rate in S-matrix theory takes the

initial and final states at t = ∓∞ respectively, in which case the Si function attains its

asymptotic value and F = 1. The derivation of the decay rate in Minkowski space-time but

in real time implementing the Wigner-Weisskopf method is described in detail in appendix

( A.1) and offers a direct comparison between the flat and curved space time results.

In general the integral in (3.7.32) must be obtained numerically. However, in order to

understand the main differences resulting from the cosmological expansion we first focus on

the non-relativistic and the ultra-relativistic limits respectively.

Non-relativistic limit:

In this limit we set k = 0 with γk(t) = 1 and for simplicity we take the Si function to have

reached its asymptotic value, therefore replacing F(t′) ' 1 inside the integrand yielding1

∫ η

0

Γk=0(η′) dη′ =
λ2

8πm1

t . (3.7.38)

This is precisely the decay law in Minkowski space time and coincides with the results

obtained in ref.[133, 135]. However this is the case only if the parent particle is “born” at

rest in the comoving frame, otherwise the time dilation factor modifies (substantially, see

below) the decay rate and law.

Ultra-relativistic limit:

In this limit we set m1 = 0 corresponding to γk →∞ in the argument of the Si function,

in which case its contribution vanishes identically, yielding F(t′) = 1/2 and

∫ η

0

Γk(η) dη ≡ λ2

16π

∫ t

0

1

kp(t′)
dt′ , (3.7.39)

with physical wavevector kp(t) = k/a(η(t)). During (RD) this result yields the following

decay law of the probability

∣∣∣C(1)
~k

(t)
∣∣∣2 = e−(t/t∗)3/2

; t∗ =

[
λ2 (2HR)1/2

24π k

]−2/3

. (3.7.40)

1Keeping the function F in the integrand yields a subdominant constant term in the long time limit. A
similar term is found in ref.[133, 135].
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This decay law is a stretched exponential, it is a distinct consequence of time dilation com-

bined with the cosmological redshift of the physical momentum.

Although obtaining the decay law throughout the full range of time entails an intense nu-

merical effort and depends in detail on the various parameters k,m1, HR etc. We can obtain

an approximate but more clear understanding of the transition between the ultrarelativistic

and non-relativistic regimes by focusing solely on the time integral of the inverse Lorentz

factor, because the contribution from F is bound 1/2 ≤ F ≤ 1. Therefore, setting F = 1

and during (RD) we find∫ t

0

Γk(t
′) dt′ = Γ0 tnrGk(t)

Gk(t) =

[
t

tnr

(
1 +

t

tnr

)]1/2

− ln

[√
1 +

t

tnr
+

√
t

tnr

]
. (3.7.41)

For the ultrarelativistic regime t� tnr we find the result (3.7.40) up to a factor 1/2 because

we have set F = 1, whereas in the non-relativistic regime, for t � tnr, we obtain the

transition probability ∣∣∣C(1)
~k

(t)
∣∣∣2 = e−Γ0 t

( t

tnr

)Γ0tnr/2

, (3.7.42)

again, the extra power of time is a consequence of the cosmological redshift in the time

dilation factor. For k = 0, namely tnr = 0, we obtain the non-relativistic result (3.7.38).

The function Gk(t) interpolates between the ultrarelativistic case ∝ t3/2 for t� tnr and

the non-relativistic case ∝ t for t� tnr and encodes the time dependence of the time dilation

factor through the cosmological redshift.

In Minkowski space time the result of the integral in (3.7.41) is simply Γ0t which is

conveniently written as as Γ0tnr (t/tnr). Because Gk is a function of t/tnr, a measure of the

delay in the cosmological decay compared to that of Minkowski space time is given by the

ratio Gk(x)/x with x ≡ t/tnr. This ratio is displayed in fig. (10), it vanishes as x → 0 as

x1/2 and Gk(x)/x→ 1 as x→∞, in particular Gk(1) =
√

2− ln[1 +
√

2] = 0.533.

This analysis suggests that the effect of the cosmological expansion can be formally

included by defining a time dependent effective decay rate,

Γ̃k(t) = Γ0 (Gk(x)/x) ; x = t/tnr , (3.7.43)
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Figure 10: The ratio Gk(x)/x for x = t/tnr.

and tnr depends on k (see (3.7.41)), so that the decay law for the survival probability of the

parent particle becomes

P (t) = e−Γ̃k(t) t . (3.7.44)

This effective decay rate is always smaller than the Minkowski rate for k 6= 0 as a consequence

of time dilation and its time dependence through the cosmological redshift, coinciding with

the Minkowski rate at rest only for k = 0, namely particles born and decaying at rest in the

comoving frame.

Finally, the effect of the function F must be studied numerically for a given set of param-

eters k,m1. However, we can obtain an estimate during the (RD) era from the expression

(3.7.37) for the argument of the Si-function. Writing

[
k2

m1HR

]
≡ β ' 1016

[(
k/10−13 GeV

)2(
m1/100 GeV

) ] , (3.7.45)

it follows that A0(t) � 1 for t/tnr � 1/β2/3 and A0(t) > 1 for t/tnr > 1/β2/3. Because

Si[x] ∝ x as x→ 0 and approaches π/2 for x ' π the large pre-factor in (3.7.45) for typical
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values of k,m1 entails that the transition between these regimes is fairly sharp, therefore we

can approximate the function F(t′) as

F(t′) ≈ 1

2
Θ
(
β−2/3 − t′/tnr

)
+ Θ

(
t′/tnr − β−2/3

)
. (3.7.46)

3.7.2 Massive Parent and Daughters

We now consider the self energy (3.7.2) for the case of massive daughters. Unlike the

case of massless daughters, in this case neither the time nor the momentum integrals can

be done analytically. However, the study of massless daughters revealed that the adiabatic

approximation in the time integrals is excellent when the adiabatic conditions H(t)/Ek(t)�
1 are fulfilled for all species. The analysis of the previous section has shown that inside the

time integrals we can replace a(η′) → a(η) ; ωk(η
′) → ωk(η) since the difference is at

least first order (and higher) in the adiabatic approximation (see the results for the factor

P (τ) in eqn. (3.7.23)). Furthermore, carrying an adiabatic expansion of the time integrals

of the frequencies is tantamount to expanding these in powers of η − η′, with the first

term, proportional to η − η′ yielding the zeroth adiabatic order and the higher powers of

η − η′ being of higher adiabatic order. Replacing η − η′ = τ/ω
(1)
k (η) associates the higher

powers of τ with higher orders in the adiabatic expansion as discussed above. However, this

argument by itself does not guarantee the reliability of the adiabatic expansion because for

τ ' z = Ek/H each term in this expansion becomes of the same order. What guarantees

the reliability of the adiabatic expansion is the momentum integral that suppresses the large

η−η′ regions. This is manifest in the 1/τ suppression of the integrand in the case of massless

daughters (see eqn. (3.7.23)). This can be understood from a simple observation. Consider

the momentum integral in the full expression (3.7.2), setting η = η′ in the exponent yields

a linearly divergent momentum integral. This is the origin of the singularity as η → η′ in

(3.7.5). The contributions from regions with large η−η′ oscillate very fast and are suppressed.

Therefore the momentum integral is dominated by the region of small η − η′. In appendix

( A.2) we provide an analysis of the first adiabatic correction and confirm both analytically

and numerically that it is indeed suppressed by the momentum integration also in the case

of massive daughters.
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Therefore we consider the leading adiabatic order that yields

Γk(η) = 2λ2 a2(η)

ω
(1)
k (η)

∫
d3p

(2π)3
1

2ω
(2)
p (η) 2ω

(2)
q (η)

sin

[(
ω

(1)
k (η)−ω(2)

p (η)−ω(2)
q (η)

)
η

]
(
ω

(1)
k (η)−ω(2)

p (η)−ω(2)
q (η)

) (3.7.47)

q = |~k − ~p|

It is convenient to recast this expression in terms of the physical (comoving) energy and

momenta: ωk(η) = a(η)Ek(t) absorbing the three powers of a(η) in the denominator in the

momentum integral in (3.7.47) into the measure d3p → d3pph where pph(η) ≡ p/a(η) is the

physical momentum, keeping the same notation for the integration variables (dropping the

subscript “ph” from the momenta) to simplify notation, we obtain

Γk(η) = 2λ2 a(η)

E
(1)
k (η)

∫
d3p

(2π)3
1

2E
(2)
p (η) 2E

(2)
q (η)

sin

[(
E

(1)
k (η)−E(2)

p (η)−E(2)
q (η)

)
T̃

]
(
E

(1)
k (η)−E(2)

p (η)−E(2)
q (η)

) (3.7.48)

q = |~k − ~p|

The variable

T̃ = a(η) η ≡ 1

H̃
=

{
1
H

(RD)

2
H

(MD)
, (3.7.49)

corresponds to the physical particle horizon, proportional to the Hubble time. Obviously the

momentum integrals cannot be done in closed form, however (3.7.48) becomes more familiar

with a dispersive representation, namely

Γk(η) =

∫ ∞
−∞

dk0 ρ(k0, k)
sin
[(
k0 − E(1)

k (η)
)
T̃
]

π
(
k0 − E(1)

k (η)
) , (3.7.50)

with the spectral density

ρ(k0, k; η) =
λ2 a(η)

E
(1)
k (η)

∫
d3p

(2π)3

(2π) δ
[
k0 − E(2)

p (η)− E(2)
q (η)

]
2E

(2)
p (η) 2E

(2)
q (η)

, (3.7.51)

we refer to (3.7.50) the cosmological Fermi’s Golden Rule. In the formal limit T̃ →∞

sin
[(
k0 − E(1)

k (η)
)
T̃
]

π
(
k0 − E(1)

k (η)
) −→ δ(k0 − E(1)

k (η)) . (3.7.52)
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The density of states (3.7.51) is the familiar two body decay phase space in Minkowski space-

time for a particle of energy k0 into two particles of equal mass. It is given by (see appendix

( A.1)),

ρ(k0, k; η) =
λ2 a(η)

8π E
(1)
k (η)

[
1− 4m2

2

k2
0 − k2

]1/2

Θ(k2
0 − k2 − 4m2

2) Θ(k0) , (3.7.53)

where k ≡ kph(η) is the the physical momentum, and the theta function describes the reaction

threshold.

Before we proceed to the study of Γk(η) for m2 6= 0, we establish a direct connection

with the results of the previous section for m2 = 0, where the momentum integration was

carried out first. Setting m2 = 0 in (3.7.53), inserting it into the dispersive integral (3.7.50)

and changing variables (k0 − E(1)
k (η)) T̃ → x we find

Γk(η) =
λ2 a(η)

8π E
(1)
k (η)

∫ ∞
−
(
E

(1)
k (η)−k

)
T̃

sin(x)

π x
dx =

λ2 a(η)

8π E
(1)
k (η)

1

2

[
1 +

2

π
Si
[(
E

(1)
k (η)− k

)
T̃
]]
,

(3.7.54)

which is precisely the result (3.7.31) displaying the “prompt” (1) and “raising” (Si) terms

inside the bracket.

Restoring m2 6= 0, and taking formally the infinite time limit (3.7.52), the rate (3.7.50)

becomes

Γ(η) =
λ2 a(η)

8π E
(1)
k (η)

[
1− 4m2

2

m2
1

]1/2

Θ(m2
1 − 4m2

2) , (3.7.55)

revealing the usual two particle threshold m1 ≥ 2m2.

Threshold relaxation:

However, before taking the infinite time limit we recognize important physical con-

sequences of the rate (3.7.50). The Hubble time T̃ introduces an uncertainty in energy

∆E ' 1/T̃ ≡ H̃ which allows physical processes that violate local energy conservation on

the scale of this uncertainty. In particular, this uncertainty allows a particle of mass m1 to

decay into heavier particles, as a consequence of the relaxation of the threshold condition via

the uncertainty. This remarkable feature can be understood as follows. The sine function

in (3.7.50) features a maximum at k0 = E
(1)
k (η) with half-width (in the variable k0) ≈ πH̃,

narrowing as T̃ increases. The spectral density ρ(k0, k; η) has support above the threshold at

147



k∗0 =
√
k2 + 4m2

2, it is convenient to write this threshold as k∗0 =

√
(E

(1)
k (η))2 + (4m2

2 −m2
1).

For 4m2
2 −m2

1 < 0 the position of the peak of the sine function, at k0 = E
(1)
k (η) lies above

the threshold, but for 4m2
2 −m2

1 > 0 it lies below it. In this latter case, if the condition(
E

(1)
k (η) + πH̃

)2

� (E
(1)
k (η))2 + (4m2

2 −m2
1) (3.7.56)

is fulfilled, the “wings” of the sine function beyond the peak feature a large overlap with

the region of support of the spectral density. This is displayed in figs. (11,12 ). This

phenomenon entails the opening of unexpected new channels for a particle to decay into two

heavier particles as a consequence of the energy uncertainty determined by the Hubble time.

k

0

0 2 4 6 8 10

ρ

(

k

0

)

,

 

S

(

k

0

)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

k

0

0 2 4 6 8 10

ρ

(

k

0

)

,

 

S

(

k

0

)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: The functions ρ(k0, k) (dashed line) and S(k0) = sin[(k0 − E)T ]/[(k0 − E)T ] in

units of m1. Left panel: E = 2, 4m2
2 = 4, T = 10 corresponding to E below threshold.

Right panel: E = 1, 4m2
2 = 0.2, T = 10 corresponding to E above threshold.

In the adiabatic approximation with E
(1)
k (η)� H̃ the overlap condition (3.7.56) reads

2π E
(1)
k (η) H̃(η)� 4m2

2 −m2
1 , (3.7.57)

which shows that this condition becomes more easily fulfilled for a relativistic parent. This

is clearly displayed in fig. (12).
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Figure 12: The functions ρ(k0, k) (dashed line) and S(k0) = sin[(k0 − E)T ]/[(k0 − E)T ] in

units of m1 for E = 15, 4m2
2 = 10, T = 10 corresponding to an ultrarelativistic parent with

E below threshold.

To gain better understanding of this condition, let us consider the specific case of an

ultrarelativistic parent with mass m1 ' 100 GeV with a GUT-scale comoving energy Ek '
1015 GeV decaying into two daughters with mass m2 ' 1 TeV for illustration. We can then

replace Ek ' k/a(η) with k ' 10−13 GeV being the comoving momentum that yields a

physical momentum kph ' 1015 GeV (with a(ηi) ' 10−28), furthermore with H̃ ' HR/a
2(η)

and HR = H0

√
ΩR ' 10−44 GeV one finds that the condition (3.7.57) implies that this decay

channel will remain open within the window of scale factors

10−28 ≤ a(η)� 10−21 , (3.7.58)

corresponding to the temperature range 108 GeV < T (t) ≤ 1015GeV during the (RD) dom-

inated era. In this temperature regime, the heavier daughter particles in this example are

also typically ultrarelativistic.

149



Under these circumstances the results from eqns. (3.7.39,3.7.40) are valid during the time

interval in which this decay channel remains open, determined by the inequality (3.7.58).

Eventually, however as the expansion proceeds both the local energy and expansion rate

diminish and this channel closes. The detailed dynamics of this phenomenon must be studied

numerically for a given range of parameters.

The integration of the convolution of the spectral density with the sine function and the

further integration to obtain the decay law is extremely challenging and time consuming

because of the wide separation of scales and the rapid oscillations. In a more realistic

model with specific parameters such endeavor would be necessary for a detailed assessment

of the contribution from the new open channels. Here we provide a “proof of principle” by

displaying in fig. (13) the result of the integral (see 3.7.50 and 3.7.51)

R(E) =

∫ ∞
k∗0

dk0

[
k2

0 − E2 − (4m2
2 −m2

1)

k2
0 − E2 +m2

1

]1/2 sin
[(
k0 − E

)
T
]

(
k0 − E

) ; k∗0 =
√
E2 + (4m2

2 −m2
1)

(3.7.59)

for 4m2
2 > m2

1 so that E is below threshold.
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Figure 13: The integral R(E) vs. E, for m2/m1 = 2 ; T̃ = 10 in units of m1.
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The range of E, T are chosen to comply with the validity of the adiabatic condition

ET � 1. This figure shows that the uncertainty “opens” the threshold to decaying into

heavier particles, the example in the figure corresponds to m2 = 2m1. We have numerically

confirmed that as T increases R(E) diminishes as a consequence of a smaller overlap. As

the scale factor increases these new decay channels close, allowing only the two body decay

for m1 > 2m2 and the decay rate is given by the long time limit (3.7.55)

Γ(η) = Γ0
a(η)

γk(η)
; Γ0 =

λ2

8πm1

[
1− 4m2

2

m2
1

]1/2

Θ(m2
1 − 4m2

2) , (3.7.60)

where Γ0 is the usual decay rate at rest in Minkowski space time. Following the analysis of

the previous section, one now finds a decay law similar to that in eqn. (3.7.41) but with Γ0

now given by (3.7.60).

Daughters pair probability:

With the solution for the amplitude of the single particle state, we can now address

the amplitude for the decay products from the result (3.6.4) with |κ〉 = |1(2)
~p , 1

(2)
~q 〉 and

|A〉 = |1(1)
~k
〉. The decay product is a correlated pair of daughter particles. The corresponding

matrix element is given by (3.6.19) in terms of the zeroth order adiabatic mode functions

(3.7.1). Writing the solution for the decaying amplitude

C
(1)
~k

(η) = e
−

∫ η
ηi
E(1)
k (η′′)dη′′

(3.7.61)

where Re
[
E (1)
k (η)

]
= Γk(η)/2, and neglecting the contribution from the imaginary part which

amounts to a renormalization of the frequencies[138, 137, 37], we find (using 3.6.4)

C
(2)
~p,~q (η) = −i 2λ

V 1/2

∫ η

ηi

e
i
∫ η′
ηi

[
ω

(2)
~p

(η′′)+ω
(2)
~q

(η′′)−ω(1)
~k

(η′′)

]
dη′′[

2ω
(2)
~p (η′) 2ω

(2)
~q (η′)2ω

(1)
~k

(η′)

]1/2
e
−

∫ η′
ηi

Γk(η′′)/2 dη′′
dη′ ; ~q = ~k − ~p .

(3.7.62)

The time integral is extremely challenging and can only be studied numerically. We can

make progress by implementing the same approximations discussed above. Since Γk depends

on the slowly varying frequency, it itself varies slowly, therefore we will consider an interval in

η so that the decay rate remains nearly constant, replacing the exponentials by their lowest
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order expansion in η′ − ηi. During this interval we find the following approximate form of

the daughter pair probability,

|C~p,~k(η)|2 ≈ λ2

2ω
(1)
k (η)ω

(2)
p (η)ω

(2)
q (η)V

∣∣∣∣∣1− e−Γk(η)η/2 e−i
(
ω

(1)
k (η)−ω(2)

p (η)−ω(2)
q (η)

)
η

∣∣∣∣∣
2

(
ω

(1)
k (η)− ω(2)

p (η)− ω(2)
q (η)

)2
+

Γ2
k(η)

4

; ~q = ~k−~p ,

(3.7.63)

where we set ηi = 0. This expression is only valid in restricted time interval, its main merit

is that it agrees with the result in Minkowski space time (see appendix A.1) and describes

the early build up of the daughters population from the decay of the parent particle. The

occupation number of daughter particles is obtained by calculating the expectation value of

the number operators a†~qa~q ; a†~pa~p in the time evolved state, it is straightforward to find

〈a†~qa~q〉 = 〈a†~pa~p〉 = |C~p,~k(η)|2 , (3.7.64)

the fact that these occupation numbers are the same is a consequence of the pair correlation.

A more detailed assessment of the population build up and asymptotic behavior requires

a full numerical study for a range of parameters.

3.8 Discussion

There are several aspects and results of this study that merit further discussion.

Spontaneous vs. stimulated decay:

We have focused on the dynamics of decay from an initial state assuming that there is no

established population of daughter particles in the plasma that describes an (RD) cosmology.

If there is such population there is a contribution from stimulated decay in the form of extra

factors 1 + n for each bosonic final state where n is the occupation of the particular state.

These extra factors enhance the decay. On the other hand, if the particles in the final state

are fermions (a case not considered in this study), the final state factors are 1− n for each

fermionic daughter species and the decay rate would decrease as a consequence of Pauli
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blocking. The effect of an established population of daughter particles on the decay rate

clearly merits further study.

Medium corrections:

In this study we focus on the corrections to the decay law arising solely from the cosmo-

logical expansion as a prelude to a more complete treatment of kinetic processes in the early

Universe. In this preliminary study we have not included the effect of medium corrections to

the interaction vertices or masses. Finite temperature effects, and in particular in the early

radiation dominated stage, modify the effective couplings and masses, for example a Yukawa

coupling to fermions or a bosonic quartic self interaction would yield finite temperature cor-

rections to the masses ∝ T 2. These modifications may yield important corrections to the

spectral densities and may also modify threshold kinematics. However, the dynamical effects

such as threshold relaxation, consequences of uncertainty and delayed decay (relaxation) as

a consequence of cosmological redshift of time dilation are robust phenomena that do not

depend on these aspects. Our formulation applies to the time evolution of (pure) states. In

order to study the time evolution of distribution functions it must be extrapolated to the

time evolution of a density matrix, from which one can extract the quantum kinetic equa-

tions including the effects of cosmological expansion described here. This program merits

a deeper study beyond the scope of this article. We are currently pursuing several of these

aspects.

Cosmological particle production:

Our study has focused on the zeroth adiabatic order as a prelude to a more comprehensive

program. We have argued that at the level of the Hamiltonian, the creation and annihilation

operators introduced in the quantization procedure create and destroy particles as identified

at leading adiabatic order and diagonalize the Hamiltonian at leading (zero) order. Beyond

the leading order, there emerge contributions that describe the creation (and annihilation)

of pairs via the cosmological expansion. We have argued that these processes are of higher

order in the adiabatic expansion, therefore can be consistently neglected to leading order.

For weak coupling, including these higher order processes of cosmological particle production

(and annihilation) in the calculation of the decay rate (and decay law) will result in higher

order corrections to the rate of the form λ2× (higher order adiabatic). However, once these
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processes are included at tree level, namely at the level of free field particle production,

they may actually compete with the decay process. It is possible that for weak coupling,

cosmological particle production (and annihilation) competes on similar time scales with

decay, thereby perhaps “replenishing” the population of the decaying particle. The study of

these competing effects requires the equivalent of a quantum kinetic description including

the gain from particle production and the loss from decay (and absorption of particles into

the vacuum). Such study will be the focus of a future report.

Validity of the adiabatic approximation:

The adiabatic approximation relies on the ratio H(t)/Ek(t)� 1 (3.3.25). In a radiation

dominated cosmology the Hubble radius (H−1(t)) grows as a2(t) and during matter domina-

tion it grows as a3/2(t) whereas physical wavelengths grow as a(t), with a(t) the scale factor.

During these cosmological eras, physical wavelengths become deeper inside the Hubble ra-

dius and the ratio H(t)/Ek(t) diminishes fast. Therefore if the condition H(t)/Ek(t)� 1 is

satisfied at the very early stages during radiation domination, its validity improves as the

cosmological expansion proceeds.

Modifications to BBN?

The results obtained in the previous sections show potentially important modifications

to the decay law during the (RD) cosmological era. An important question is whether these

corrections affect standard BBN. To answer this question we focus on neutron decay, which

is an important ingredient in the primordial abundance of Helium and heavier elements. The

neutron is “born” after the QCD confining phase transition at TQCD ' 150 MeV at a time

tQCD ' 10−5 s hence neutrons are “born” non-relativistically. With a mass MN ' 1 GeV and

a typical physical energy ' TQCD the transition time tnr ' 10−6 s ' tQCD. The neutron’s

lifetime ' 900 s implies that Γ0 tnr/2 ' 10−9 and the modifications from the decay law

determined by the extra factor in (3.7.42) are clearly irrelevant. Therefore it is not expected

that the modifications of the decay law found in the previous sections would affect the

dynamics of BBN and the primordial abundance of light elements. There is, however, the

possibility that other degrees of freedom, such as, sterile neutrinos for example, whose decay

may inject energy into the plasma with potential implications for BBN. Such a possibility

has been raised in refs.[116]-[172] with regard to the abundance of 7Li. The decay law of
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these other species of particles (such as sterile neutrinos beyond the standard model) could

be modified and their efficiency for energy injection and potential impact on BBN may be

affected by these modifications. Such possibility remains to be studied.

Wave packets:

We have studied the decay dynamics from an initial state corresponding to a single

particle state with a given comoving wavector. However, it is possible that the decaying

parent particle is not created (“born”) as a single particle eigenstate of momentum, but in a

wave packet superposition. Taking into account this possibility is straightforward within the

Wigner-Weisskopf method, and it has been considered in Minkowski space time in ref.[138,

137]. Consider an initial wave packet as a linear superposition of single particle states of

the parent field, namely |1(1)〉 =
∑

~k C
(1)
~k

(ηi)|1(1)
~k
〉, where C

(1)
~k

(ηi) are the Fourier coefficients

of a wavepacket localized in space (for example a Gaussian wave-packet). Implementing

the Wigner-Weisskopf method, the time evolution of this state leads to the solution (3.6.13)

for the coefficients with CA(ηi) = C
(1)
~k

(ηi), and by Fourier transform one obtaines the full

space-time evolution of the wavepacket[138, 137]. Such an extension presents no conceptual

difficulty, however, the major technical complication would be to extract the decay law: as

pointed out in the previous section, the main difference with the result in Minkowski space

time is that the time dilation factors depend explicitly on time through the cosmological

redshift. In a wave packet description, each different wavector component features a different

time dilation factor with a differential red-shift between the various components. This will

modify the evolution dynamics in several important ways: there is spreading associated with

dispersion, the different time dilation factors for each wavevector imply a superposition of

different decay time scales, and finally, each different time dilation factor features a different

time dependence through the cosmological redshift. All these aspects amount to important

technical complexities that merit further study.

Caveats:

The main approximation invoked in this study, the adiabatic approximation, relies on

the physical wavelength of the particle to be deep inside the physical particle horizon at any

given time, namely, much smaller than the Hubble radius. If the decaying parent particle is

produced (“born”) satisfying this condition, this approximation becomes more reliable with
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cosmological expansion as the Hubble radius grows faster than a physical wavelength during

an (RD) or (MD) cosmology. However, it is possible that such particle has been produced

during the inflationary, near de Sitter stage, in which case the Hubble radius remains nearly

constant and the physical wavelength is stretched beyond it. In this situation, the adiabatic

approximation as implemented in this study breaks down. While the physical wavelength

remains outside the particle horizon, the evolution must be obtained by solving the equations

of motion for the mode function. During the post inflationary evolution well after the physical

wavelength of the parent particle re-enters the Hubble radius the adiabatic approximation

becomes reliable. However, it is possible that while the physical wavelength is outside the

particle horizon during (RD) (or (MD)) the parent particle has decayed substantially with

the ensuing growth of the daughter population. The framework developed in this study

would need to be modified to include this possibility, again a task beyond the scope and

goals of this article.

3.9 Conclusions and Further Questions

Motivated by the phenomenological importance of particle decay in cosmology for physics

within and beyond the standard model, in this article we initiate a program to provide a

systematic framework to obtain the decay law in the standard post inflationary cosmology.

Most of the treatments of phenomenological consequences of particle decay in cosmology

describe these processes in terms of a decay rate obtained via usual S-matrix theory in

Minkowski space time. Instead, recognizing that rapid cosmological expansion may modify

this approach with potentially important phenomenological consequences, we study particle

decay by combining a physically motivated adiabatic expansion and a non-perturbative quan-

tum field theory method which is an extension of the ubiquitous Wigner-Weisskopf theory of

atomic line widths in quantum optics[176]. The adiabatic expansion relies on a wide separa-

tion of scales: the typical wavelength of a particle is much smaller than the particle horizon

(proportional to the Hubble radius) at any given time. Hence we introduce the adiabatic

ratio H(t)/Ek(t) where H(t) is the Hubble rate and Ek(t) the (local) energy measured by a
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comoving observer. The validity of the adiabatic approximation relies on H(t)/Ek(t) � 1

and is fulfilled under most general circumstances of particle physics processes in cosmology.

The Wigner-Weisskopf framework allows to obtain the survival probability and decay

law of a parent particle along with the probability of population build-up for the daughter

particles (decay products). We implement this framework within a model quantum field

theory to study the generic aspects of particle decay in an expanding cosmology, and compare

the results of the cosmological setting with that of Minkowski space time.

One of our main results is a cosmological Fermi’s Golden Rule which features an energy

uncertainty determined by the particle horizon (∝ 1/H(t)) and yields the time dependent

decay rate. In this study we obtain two main results: i) During the (RD) stage, the survival

probability of the decaying (single particle) state may be written in terms of an effective time

dependent rate Γ̃k(t) as P (t) = e−Γ̃k(t) t. The effective rate is characterized by a time scale

tnr (3.7.41) at which the particle transitions from the relativistic regime (t � tnr) when

P (t) = e−(t/t∗)3/2
to the non-relativistic regime (t � tnr) when P (t) = e−Γ0 t

(
t
tnr

)Γ0tnr/2

where Γ0 is the Minkowski space-time decay width at rest. Generically the decay is slower

in an expanding cosmology than in Minkowski space time. Only for a particle that has

been produced (“born”) at rest in the comoving frame is the decay law asymptotically the

same as in Minkowski space-time. Physically the reason for the delayed decay is that for

non-vanishing momentum the decay rate features the (local) time dilation factor, and in an

expanding cosmology the (local) Lorentz factor depends on time through the cosmological

redshift. Therefore lighter particles that are produced with a large Lorentz factor decay with

an effective longer lifetime. ii) The second, unexpected result of our study is a relaxation of

thresholds as a consequence of the energy uncertainty determined by the particle horizon.

A distinct consequence of this uncertainty is the opening of new decay channels to decay

products that are heavier than the parent particle. Under the validity of the adiabatic ap-

proximation, this possibility is available when 2πEk(t)H(t) � 4m2
2 −m2

1 where m1,m2 are

the masses of the parent, daughter particles respectively. As the expansion proceeds this

channel closes and the usual kinematic threshold constrains the phase space available for

decay. Both these results may have important phenomenological consequences in baryoge-

nesis, leptogenesis, and dark matter abundance and constraints which remain to be studied
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further.

Further questions:

We have focused our study on a simple quantum field theory model that is not directly

related to the standard model of particle physics or beyond. Yet, the results have a com-

pelling and simple physical interpretation that is likely to transcend the particular model.

However, the analysis of this study must be applied to other fields in particular fermionic

degrees of freedom and vector bosons. Both present new and different technical challenges

primarily from their couplings to gravity which will determine not only the scale factor de-

pendence of vertices but also the nature of the mode functions (spinors in particular). As

mentioned above, cosmological particle production is not included to leading order in the

adiabatic approximation but must be consistently included beyond leading order. The results

of this study point to interesting avenues to pursue further: in particular the relaxation of

kinematic thresholds from the cosmological uncertainty opens the possibility for unexpected

phenomena and possible modifications to processes, such as inverse decays, the dynamics of

thermalization and detailed balance. These are all issues that merit a deeper study, and we

expect to report on some of them currently in progress.
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4.0 Cosmological Decay of Higgs-like Scalars into a Fermion Channel

4.1 Introduction

The decay and scattering of particles are some of the most fundamental processes in

particle physics, within and beyond the Standard Model, with profound impact in cosmology.

These processes are ultimately responsible for establishing a state of local thermodynamic

and chemical equilibrium and are fundamental ingredients in kinetic processes in the early

universe[123, 141, 24]. Particle decay is not only ubiquitous, but it plays an important role in

big bang nucleosynthesis (BBN)[123, 182, 174, 83, 82, 112, 163, 116, 115], and the generation

of the baryon and lepton asymmetries[185, 123, 44, 42]. The decay of long-lived dark matter

particles is constrained by various cosmological and astrophysical probes[189, 188, 30, 166,

12], and recently it has been suggested that the two body decay of a long lived dark matter

particle may relieve the tension between distance ladder and cosmic microwave background

measurements of the Hubble constant[186].

Most treatments of particle decay (and/or inverse decay) in cosmology implement the

S-matrix quantum field theory approach as in Minkowski space-time. In this framework, the

unstable decaying state is prepared at a time far in the past (t→ −∞), and one obtains the

transition amplitude to a given final state far in the future (t→∞). Taking the infinite time

limit in the transition amplitude yields a total energy conserving delta function. Squaring

this delta function to obtain the transition probability yields a total energy conservation delta

function multiplied by the total elapsed time. Dividing by this large time and summing over

all the final states for a given decay channel gives the total transition probability per unit

time, namely a decay rate. Energy conservation, a consequence of the infinite time limit,

yields kinematic constraints (thresholds) for decay and scattering processes.

In an expanding cosmology such an approach is at best approximate and at worst unre-

liable when the Hubble expansion rate is large even during a post-inflationary early stage of

a radiation dominated cosmology. In a spatially flat Friedmann-Robertson-Walker (FRW)

cosmology there are three space-like Killing vectors associated with spatial translational in-
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variance and spatial momentum conservation, however, as a consequence of cosmological

expansion there is no global time-like Killing vector, therefore particle energy is not mani-

festly conserved in scattering or decay processes.

A consistent formulation of dynamic processes in an expanding cosmology requires im-

plementing methods of quantum field theory in curved space time[154, 195, 86, 29, 47,

28, 87, 149, 158]. Early studies revealed a wealth of novel phenomena such as particle

production[153, 154, 29, 47] and processes that are forbidden in Minkowski space time as

consequence of strict energy conservation.

S-matrix theory was extended to simple cosmological space times to study the decay of a

massive particle into two massless particles conformally coupled to gravity in ref.[15, 16, 14].

In references[133, 132] these methods were adapted to calculate the decay of a massive

bosonic particle at rest into two massless bosonic particles conformally coupled to gravity

and into massless fermions Yukawa coupled to a scalar.

More recently[105] the decay of bosonic particles into two other bosonic degrees of free-

dom during a radiation dominated era was studied by implementing a non-perturbative

method. This method was adapted to quantum field theory from the study of linewidths in

quantum optics[138, 37], combined with a physically motivated adiabatic expansion. While

the results of this reference agreed with those obtained in ref.[133] for a particle decaying at

rest in the comoving frame in the long time limit, they revealed new phenomena for highly

relativistic decaying particles as a consequence of the cosmological redshift, and the relax-

ation of kinematic thresholds as a consequence of energy uncertainties determined by the

Hubble scale.

Our study in this article is a natural extension of that in ref.[105] focusing on decay of a

heavy bosonic particle into fermions, a more relevant case for standard model physics (and

probably beyond) since most of the fermionic degrees of freedom in the standard model (with

the possible exception of neutrinos) are Yukawa coupled to the Higgs boson.

Brief summary:

The study of fermionic degrees of freedom as decay products introduces several concep-

tually important distinctions with the bosonic case studied in refs.[133, 105] that results in

novel aspects of cosmological decay. First, fermionic degrees of freedom couple to the back-

160



ground gravitational field via the spin connection[191, 153, 73, 50, 28, 158, 144, 18, 68, 67,

19, 81, 35, 17]. Secondly, fermions Yukawa coupled to a bosonic degree of freedom yield a

renormalizable theory. Recently the decay of a bosonic particle Yukawa coupled to fermions

was studied within a non-perturbative real time framework in Minkowski space-time[32].

This study revealed novel transient dynamics associated with the dressing of the decaying

particle by fermion-antifermion pairs into a quasiparticle state, which decays on a longer

time scale. Such “dressing” leads to the necessity of an ultraviolet divergent renormalization

of the decaying state and a detailed understanding of the various time scales to separate

the many-particle dynamics of renormalization and dressing from that of the actual decay

of the quasiparticle. Such dynamical effects cannot be addressed within an S-matrix frame-

work since these effects are not secular in time and their contribution vanishes when the

transition probability is divided by the total time in the infinite time limit. The dynamics of

dressing and quasiparticle formation have been recently addressed in ref.[61] for a consistent

interpretation of the reduction formula in asymptotic quantum field theory.

We introduce a dynamical renormalization that absorbs the ultraviolet divergences asso-

ciated with fermion pairs into a renormalized survival probability at a renormalization time

scale tb. The survival probability obeys a dynamical renormalization group equation with

respect to tb. The cosmological redshift encodes the memory of the transient dynamics of

quasiparticle formation in the decay law not seen in Minkowski space-time. If the decay-

ing particle is ultrarelativistic, the decay dynamics depends crucially on tnr, the time scale

at which it becomes non-relativistic as a consequence of the cosmological redshift. An S-

matrix inspired, phenomenologically motivated, Minkowski-like decay law is shown to under

estimate the lifetime of the decaying state. Section (II) introduces the model and the adia-

batic approximation, section (III) summarizes the non-perturbative framework to obtain the

time evolution of the survival probability. In section (IV) we obtain the decay function for

massless fermions during radiation domination, section (V) describes the dynamical renor-

malization method, section (VI) analyzes the decay dynamics of the renormalized survival

probability during radiation domination, compares the results to an S-matrix inspired decay

function, and introduces an upper bound to the decay function for very long lived, very

weakly coupled particles valid all throughout the expansion history. Section (VII) discusses
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the various results analyzing their regime of validity and highlighting several implications.

Section (VIII) presents our conclusions summarizing the main results. Various appendices

contain technical details, in particular appendix ( B.2) derives the decay law in Minkowski

space time, highlighting the renormalization aspects to compare to the curved space-time

case.

4.2 The Model

We consider a Higgs-like scalar field Yukawa coupled to one Dirac fermion in a spatially

flat Friedmann-Robertson-Walker (FRW) cosmology with scale factor a(t) in comoving time.

Generalizing to include Majorana fermions and/or more fermionic species is straightforward.

In comoving coordinates, the action is given by

S =

∫
d3x dt

√−g
{

1

2
φ̇2− (∇φ)2

2a2
− 1

2

[
M2 + ξ R

]
φ2 + Ψ

[
i γµ Dµ−mf − Y φ

]
Ψ

}
, (4.2.1)

where

R = 6
[ ä
a

+
( ȧ
a

)2]
, (4.2.2)

is the Ricci scalar, and ξ is the coupling to gravity, with ξ = 0, 1/6 corresponding to minimal

or conformal coupling, respectively. Introducing the vierbein field eµa(x) defined as

gµ ν(x) = eµa(x) eνb (x) ηab ,

where ηab is the Minkowski space-time metric, the curved space time Dirac gamma- matrices

γµ(x) and the fermionic covariant derivative Dµ are given by[191, 28, 73, 50]

γµ(x) = γaeµa(x) , {γµ(x), γν(x)} = 2 gµν(x) , (4.2.3)

where the γa are the Minkowski space time Dirac matrices, chosen to be in the standard

Dirac representation, and the covariant derivative Dµ is given in terms of the spin connection

by

Dµ = ∂µ +
1

8
[γc, γd] eνc

(
∂µedν − Γλµν edλ

)
, (4.2.4)
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where Γλµν are the usual Christoffel symbols.

For an (FRW) in conformal time dη = dt/a(t), the metric becomes

gµν = C2(η) ηµν , C(η) ≡ a(t(η)) , (4.2.5)

where ηµν = diag(1,−1,−1,−1) is the flat Minkowski space-time metric, and the vierbeins

eµa are given by

eµa = C−1(η) δµa ; eaµ = C(η) δaµ . (4.2.6)

The fermionic part of the action in conformal coordinates now becomes

Sf =

∫
d3x dη C4(η) Ψ(~x, η)

[
i
γ0

C(η)

( d
dη

+3
C
′
(η)

2C(η)

)
+i

γi

C(η)
∇i−mf−Y φ

]
Ψ(~x, η) . (4.2.7)

The Dirac Lagrangian density in conformal time simplifies to

√−g Ψ
(
i γµ DµΨ−mf−Y φ

)
Ψ =

(
C3/2(η) Ψ(~x, η)

) [
i 6∂−(mf+Y φ) C(η)

](
C3/2(η) Ψ(~x, η)

)
,

(4.2.8)

where i6∂ = γa∂a is the usual Dirac differential operator in Minkowski space-time in terms

of flat space time γa matrices. Introducing the conformally rescaled fields

C(η)φ(~x, t) = χ(~x, η) ; C
3
2 (η) Ψ(~x, t) = ψ(~x, η) , (4.2.9)

and neglecting surface terms, the action becomes

S =

∫
d3x dη

{
L0[χ] + L0[ψ] + LI [χ, ψ]

}
, (4.2.10)

with

L0[χ] =
1

2

[
χ′

2 − (∇χ)2 −M2(η) χ2
]
, (4.2.11)

L0[ψ] = ψ
[
i 6∂ −M2

f (η)
]
ψ , (4.2.12)

LI [χ, ψ] = −Y χψ ψ . (4.2.13)

The effective time dependent masses are given by

M2(η) = m2
φC

2(η)− C ′′(η)

C(η)
(1− 6ξ) , (4.2.14)
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and

Mf (η) = mf C(η) . (4.2.15)

In the non-interacting case, Y = 0, the Heisenberg equations of motion for the spatial

Fourier modes with comoving wavevector ~k for the conformally rescaled scalar field are

χ′′~k(η) +
[
k2 +M2(η)

]
χ~k(η) = 0 . (4.2.16)

The Heisenberg fields are quantized in a comoving volume V , the real scalar field χ is

expanded as

χ(~x, η) =
1√
V

∑
~k

[
a~k gk(η) ei

~k·~x + a†~k g
∗
k(η) e−i

~k·~x
]
, (4.2.17)

where the mode functions gk(η) obey[ d2

dη2
+ k2 +M2(η)

]
gk(η) = 0 . (4.2.18)

The mode functions are chosen to obey the Wronskian condition

g
′

k(η)g∗k(η)− g∗ ′k (η)gk(η) = −i , (4.2.19)

and a, a† obey the usual canonical commutation relations.

For Dirac fermions the field ψ(~x, η) is expanded as

ψ(~x, η) =
1√
V

∑
~k,λ=1,2

[
b~k,λ Uλ(

~k, η) ei
~k·~x + d†~k,λ Vλ(

~k, η) e−i
~k·~x
]
, (4.2.20)

where the spinor mode functions U, V obey the Dirac equations[144, 18, 68, 67, 19, 81, 35, 17][
i γ0 ∂η − ~γ · ~k −Mf (η)

]
Uλ(~k, η) = 0 , (4.2.21)[

i γ0 ∂η + ~γ · ~k −Mf (η)

]
Vλ(~k, η) = 0 . (4.2.22)

These equations become simpler by writing

Uλ(~k, η) =

[
i γ0 ∂η − ~γ · ~k +Mf (η)

]
fk(η)Uλ , (4.2.23)

Vλ(~k, η) =

[
i γ0 ∂η + ~γ · ~k +Mf (η)

]
hk(η)Vλ , (4.2.24)
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with Uλ;Vλ being constant spinors[35, 17] obeying

γ0 Uλ = Uλ , γ0 Vλ = −Vλ . (4.2.25)

Inserting (4.2.23,4.2.24) into the Dirac equations (4.2.21,4.2.22) and using (4.2.25), it follows

that the mode functions fk(η);hk(η) obey the equations[
d2

dη2
+ k2 +M2

f (η)− i M ′
f (η)

]
fk(η) = 0 , (4.2.26)[

d2

dη2
+ k2 +M2

f (η) + i M ′
f (η)

]
hk(η) = 0 . (4.2.27)

Multiplying the Dirac equations on the left by γ0, it is straightforward to confirm that

d

dη
(U †λ(q, η)Uλ(q, η)) = 0 ;

d

dη
(V †λ (q, η)Vλ(q, η)) = 0 . (4.2.28)

We choose the normalizations

U †λ(q, η)Uλ′(q, η) = V †λ (q, η)Vλ′(q, η) = δλ,λ′ , (4.2.29)

so that the operators b, b†, d, d† obey the canonical anticommutation relations. Furthermore,

we will choose particle-antiparticle boundary conditions so that hk(η) = f ∗k (η) (see below).

We note that for mf = 0 the conformally rescaled fermi fields obey the same equations as in

Minkowski space-time but in terms of conformal time, whereas this only occurs for bosons if

they are conformally coupled to gravity, namely with ξ = 1/6, or for a radiation dominated

cosmology (see below). The equivalence of massless fermions to those in Minkowski space-

time will allow a direct comparison with the case of decay in flat space time studied in

ref.[32] and summarized in appendix ( B.2), and to interpret the differences with the curved

space-time case.
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4.2.1 Adiabatic Approximation in Post-inflationary Cosmology

The standard (post-inflation) cosmology is described by radiation (RD), matter (MD)

and dark energy (DE) dominated stages, we take the latter to be described by a cosmological

constant. Friedmann’s equation in comoving time is

( ȧ
a

)2

= H2(t) = H2
0

[
ΩM

a3(t)
+

ΩR

a4(t)
+ ΩΛ

]
, (4.2.30)

where the scale factor is normalized to a0 = a(t0) = 1 today. We take as representative the

following values of the parameters [23, 181, 3]:

H0 = 1.5× 10−42 GeV ; ΩM = 0.308 ; ΩR = 5× 10−5 ; ΩΛ = 0.692 . (4.2.31)

Passing to conformal time η with dη = dt/a(t), where the metric is given by (4.2.5) and

C(η) ≡ a(t(η)), it follows that

dC(η)

dη
= H0

√
ΩM

[
aeq + C(η) + sC4(η)

]1/2

, (4.2.32)

with

aeq =
ΩR

ΩM

' 1.66 × 10−4 ; s =
ΩΛ

ΩM

' 2.25 , (4.2.33)

aeq is the scale factor at matter-radiation equality.

Hence the different stages of cosmological evolution, namely (RD), (MD), and (DE), are

characterized by

C(η)� aeq ⇒ RD ; aeq � C(η) . 0.76⇒ MD ; C(η) > 0.76⇒ DE . (4.2.34)

We will begin the study the dynamics of particle decay during the (RD) dominated era,

generalizing afterwards to the case of a very long lived, very weakly coupled particle. During

(RD) and (MD) we find,

C(η) = HR η

[
1 +

HR η

4 aeq

]
, (4.2.35)

where

HR = H0

√
ΩR ' 10−44 GeV , (4.2.36)
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and conformal time in terms of the scale factor is given by

η(C) =
2 aeq
HR

[√
1 +

C

aeq
− 1

]
. (4.2.37)

During the (RD) stage

C(η) ' HR η , (4.2.38)

and the relation between conformal and comoving time is given by

η =
( 2 t

HR

) 1
2 ⇒ a(t) =

[
2 tHR

] 1
2
, (4.2.39)

a result that will prove useful in the study of the decay law during this stage.

Bosonic fields:

Solving the mode equations (4.2.18,4.2.26,4.2.27) with the cosmological scale factor (4.2.35)

is obviously very challenging, instead we implement a physically motivated adiabatic expan-

sion. To highlight the nature of the expansion let us consider first the bosonic mode equation

(4.2.18). The term proportional to C ′′/C in (4.2.18) vanishes identically in a radiation dom-

inated cosmology or for conformally coupled bosonic fields for which ξ = 1/6. We argue

below that we can consistently neglect this term to leading order in the adiabatic expan-

sion all throughout the cosmological evolution during (RD) and (MD) (see eqn. (4.2.54)).

Neglecting this term, the mode equation (4.2.18) becomes[ d2

dη2
+ ω2

k(η)
]
gk(η) = 0 ; ω2

k(η) = k2 +m2
φC

2(η) . (4.2.40)

We recognize that

ωk(η) = C(η)Ek(t) , (4.2.41)

where

Ek(t) =
√
k2
p(t) +m2

φ ; kp(t) = k/a(t) , (4.2.42)

is the local energy measured by a comoving observer, and kp(t) is the physical wavevector

redshifting with the cosmological expansion.

Writing the solution of (4.2.40) in the WKB form[28, 87, 149, 158, 29]

gk(η) =
e
−i

∫ η
ηi
Wk(η′) dη′√

2Wk(η)
, (4.2.43)
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and inserting this ansatz into (4.2.40) it follows that Wk(η) must be a solution of the

equation[28]

W 2
k (η) = ω2

k(η)− 1

2

[
W
′′

k (η)

Wk(η)
− 3

2

(
W
′

k(η)

Wk(η)

)2]
. (4.2.44)

This equation can be solved in an adiabatic expansion

W 2
k (η) = ω2

k(η)

[
1− 1

2

ω
′′

k (η)

ω3
k(η)

+
3

4

(
ω
′

k(η)

ω2
k(η)

)2

+ · · ·
]
. (4.2.45)

We refer to terms that feature n-derivatives of ωk(η) as of n-th adiabatic order. The nature

and reliability of the adiabatic expansion is revealed by considering the term of first adiabatic

order
ω
′

k(η)

ω2
k(η)

=
m2
φC(η)C

′
(η)[

k2 +m2
φC

2(η)
]3/2

, (4.2.46)

this is most easily recognized in comoving time t in terms of the comoving local energy

(4.2.41,4.2.42) and the Hubble expansion rate

H(t) =
ȧ(t)

a(t)
=
C
′
(η)

C2(η)
. (4.2.47)

In terms of these variables, the first order adiabatic ratio (4.2.46) becomes[105]

ω
′

k(η)

ω2
k(η)

=
H(t)

γ2
k(t)Ek(t)

. (4.2.48)

where

γk(t) =
Ek(t)

mφ

, (4.2.49)

is the local Lorentz factor.

The adiabatic approximation relies on the smallness of the (time dependent) adiabatic

ratio
H(t)

Ek(t)
� 1 , (4.2.50)

corresponding to the physical wavelength ∝ 1/kp(t) and/or the Compton wavelength of the

particle 1/mφ being much smaller than the size of the particle horizon dH(t) ∝ 1/H(t) at a

given time. During (RD) the particle horizon grows as a2(t) and during (MD) it grows as

a3/2(t) whereas the physical wavelength grows as a(t). Therefore, if at a given initial time the
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adiabatic approximation is valid and H(t)� Ek(t) the reliability of the adiabatic expansion

improves with the cosmological expansion.

To understand the origin of this approximation consider that the decaying particle is

produced in the (RD) stage during which

H(t) ' 1.66
√
geff

T 2(t)

MPl

, (4.2.51)

where geff . 100 is the number of ultrarelativistic degrees of freedom. Therefore,

H(t)

Ek(t)
.

[
T (t)

Ek(t)

][
T (t)

GeV

]
× 10−18 . (4.2.52)

An upper bound on this ratio is obtained by considering that the decaying particle is

produced at the scale of grand unification with T ' 1015 GeV, assuming that this scale

describes the onset of the (RD) era. Taking a typical comoving energy Ek(t) ' T (t), one

finds that H(t)/Ek(t) . 10−3 and diminishes with cosmological expansion and diminishing

temperature. This argument suggests that for typical particle physics processes the adiabatic

ratio H(t)/Ek(t)� 1 throughout the post-inflation thermal history.

In terms of this adiabatic ratio, we find

ω
′′

k (η)

ω3
k(η)

=
1

γ2
k(t)

( R(t)

6E2
k(t)

+
H2(t)

E2
k(t)

)
− H2(t)

γ4
k(t)E

2
k(t)

, (4.2.53)

where R(t) is the Ricci scalar (3.3.2). Furthermore, it is straightforward to find that

C ′′

C ω2
k

= 2
( Ḣ

2E2
k

+
H2

E2
k

)
= α

H2

E2
k

; α ' 0 (RD) ; α ' 1

2
(MD) , (4.2.54)

therefore, this ratio is of second adiabatic order and can be safely neglected to the leading

adiabatic order pursued in this study, justifying the simplification of the mode equations to

(4.2.40) even for non-conformal coupling to gravity.

In this study we consider the zeroth-adiabatic order with the mode functions given by

gk(η) =
e
−i

∫ η
ηi
ωk(η′) dη′√

2ωk(η)
. (4.2.55)

Since the decay function is ∝ Y 2, keeping the zeroth adiabatic order yields the leading

contribution to the decay law. Furthermore, as shown in detail in ref.[105] particle production
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as a consequence of cosmological expansion is an effect of higher order in the adiabatic

expansion, thus it can be safely neglected to leading order.

The phase of the mode function has an immediate interpretation in terms of comoving

time and the local comoving energy (4.2.41,4.2.42), namely

e
−i

∫ η
ηi
ωk(η′) dη′

= e
−i

∫ t
ti
Ek(t′) dt′

, (4.2.56)

which is a natural generalization of the phase of positive frequency particle states in Minkowski

space-time.

During the (RD) era with C(η) given by (4.2.38) we find that the criterion (4.2.50) for

the validity of the adiabatic approximation implies

ωk(η) η =
Ek(t)

H(t)
� 1 . (4.2.57)

Fermi fields:

The adiabatic expansion is straightforwardly applied to the fermionic case and has

been discussed in the literature[18, 68, 67, 19, 81]. Beginning with the mode equations

(4.2.26,4.2.27) with M ′
f (η) = mf C

′(η) and, now with ω2
k(η) = k2 +M2

f (η), it follows that

M ′
f (η)

ω2
k(η)

=
H(t)

γk(t)Ek(t)
, (4.2.58)

therefore the purely imaginary term in these mode equations are of first adiabatic order and

will be neglected to leading (zeroth) adiabatic order. Hence, to leading order we find

fk(η) = h∗k(η) =
e
−i

∫ η
ηi
ωk(η′) dη′√

2ωk(η)
. (4.2.59)

In what follows we will refer to ω2
k(η) = k2 +M2(η) for both bosonic and fermionic degrees

of freedom with M2(η) = m2C2(η) for either case. To leading (zeroth) order in the adiabatic

expansion the Dirac spinor solutions in the standard Dirac representation and with the

normalization conditions (4.2.29) are found to be

Uλ(~k, η) =
e
−i

∫ η
ηi
ωk(η′) dη′√

2ωk(η)

 √
ωk(η) +Mf (η)χλ

~σ·~k√
ωk(η)+Mf (η)

χλ

 ; χ1 =

 1

0

 ; χ2 =

 0

1

 ,

(4.2.60)
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and

Vλ(~k, η) =
e
i
∫ η
ηi
ωk(η′) dη′√

2ωk(η)

 ~σ·~k√
ωk(η)+Mf (η)

ϕλ√
ωk(η) +Mf (η)ϕλ

 ; ϕ1 =

 0

1

 ; ϕ2 = −

 1

0

 .

(4.2.61)

To leading adiabatic order these spinors satisfy the completeness relations

∑
λ=1,2

Uλ,a(~k, η)Uλ,b(~k, η
′) =

e
−i

∫ η
η′ ωk(η1) dη1

2
√
ωk(η)ωk(η′)

Λ+
~k,ab

(η, η′)

∑
λ=1,2

Vλ,a(~k, η
′)V λ,b(~k, η) =

e
−i

∫ η
η′ ωk(η1) dη1

2
√
ωk(η)ωk(η′)

Λ−~k,ab(η
′, η) , (4.2.62)

where the projector operators at different times Λ+
k (η, η′) ; Λ−k (η′, η) and their properties are

given in appendix ( B.1).

4.3 Non-Perturbative Approach to the Decay Law

In Minkowski space-time, the decay rate of a particle is typically computed via S-matrix

theory by obtaining the transition probability per unit time from an in-state prepared in

the infinite past to an out-state in the infinite future. Obviously, such an approach – taking

the infinite time limit– is not suitable in a time dependent gravitational background. An

alternative approach in Minkowski space-time considers the Dyson-resummed propagator in

frequency space that includes radiative corrections through the self-energy. The imaginary

part of the self-energy evaluated on the mass shell in frequency space is identified with the

decay rate, and a Breit-Wigner approximation to the full propagator, namely approximating

the self-energy near the (complex) pole yields the exponential decay law. Again such an

approach is not available in an expanding cosmological background where the lack of a time-

like Killing vector prevents Fourier transforms in time-frequency, and makes the self-energy

explicitly dependent on two time arguments, not only on the difference.

Instead we implement a quantum field theory method that complements and extends

the Wigner-Weisskopf theory of atomic linewidths, that is particularly suited to study time
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evolution in time dependent situations. This method is manifestly unitary and yields a

non-perturbative description of transition amplitudes and probabilities directly in real time.

We summarize below the main aspects of the method as it applies to this study, referring

the reader to[105, 138, 37] for details. The total Hamiltonian in conformal time is given by

H0 +HI where H0 is the free field Hamiltonian and

HI(η) = Y

∫
d3xχ(~x, η)ψ(~x, η)ψ(~x, η) (4.3.1)

is the interaction Hamiltonian in the interaction picture. Passing to the interaction picture

wherein a given state is expanded in the Fock states associated with the creation and an-

nihilation operators a, a†, b, d, etc. of the free theory, namely |Φ(η)〉I =
∑

n Cn(η)|n〉, the

amplitudes obey the coupled equations

i
d

dη
Cn(η) =

∑
m

Cm(η)〈n|HI(η)|m〉 . (4.3.2)

This is an infinite hierarchy of integro-differential equations for the coefficients Cn(η).

Consider that initially the state is |Φ〉 so that CΦ(ηi) = 1 ; Cκ(ηi) = 0 for |κ〉 6= |Φ〉, and

consider a first order transition process |Φ〉 → |κ〉 to intermediate multiparticle states |κ〉
with transition matrix elements 〈κ|HI(η)|Φ〉. Obviously the state |κ〉 will be connected to

other multiparticle states |κ′〉 different from |Φ〉 via HI(η). Hence for example up to second

order in the interaction, the state |Φ〉 → |κ〉 → |κ′〉. Restricting the hierarchy to first order

transitions from the initial state |Φ〉 ↔ |κ〉, and neglecting the contribution from vacuum

diagrams which just yield a re-definition of the vacuum state1 (see discussion in ref.[105])

results in the following coupled equations

i
d

dη
CΦ(η) =

∑
κ

Cκ(η)〈Φ|HI(η)|κ〉 (4.3.3)

i
d

dη
Cκ(η) = CΦ(η)〈κ|HI(η)|Φ〉 ; CΦ(ηi) = 1 ; Cκ(ηi) = 0 . (4.3.4)

Equation (3.6.3) with Cκ(ηi) = 0 is formally solved by

Cκ(η) = −i
∫ η

ηi

〈κ|HI(η
′)|Φ〉CΦ(η′) dη′ , (4.3.5)

1This is one of the main differences with the method used in references[15, 133, 132] where a disconnected
vacuum diagram is also included in the transition amplitude.
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and inserting this solution into equation (3.6.2) we find

d

dη
CΦ(η) = −

∫ η

ηi

dη′ΣΦ(η, η′) CΦ(η′) , (4.3.6)

where we have introduced the self-energy

ΣΦ(η; η′) =
∑
κ

〈Φ|HI(η)|κ〉〈κ|HI(η
′)|Φ〉 . (4.3.7)

We study the decay of a single particle bosonic state into a fermion-anti-fermion pair

to leading order in the Yukawa coupling and the adiabatic approximation. Therefore the

initial state is a single particle bosonic state with momentum ~k, namely |Φ〉 ≡ |1χ~k〉. The set

of states |κ〉 with a non-vanishing matrix element of HI with this single particle state are

|κ〉 ≡ |1f~p,λ, 1f ~q,λ′〉 where λ, λ′ are the polarization of the fermion and antifermion states. The

matrix elements entering in the evolution of the amplitudes are

〈1χ~k |HI(η)|1f~p,λ, 1f ~q,λ′〉 =
V δ~k,~p+~q
V 3/2

∑
a

Uλ,a(~p, η)V λ′,a(~q, η) g∗k(η)

〈1f~p,λ, 1f ~q,λ′|HI(η
′)|1χ~k〉 =

V δ~k,~p+~q
V 3/2

∑
b

Vλ′,b(~q, η
′)Uλ,b(~p, η

′) gk(η
′) , (4.3.8)

and the self-energy (4.3.7) to leading order in the adiabatic expansion becomes

Σχ(k, η, η′) =
∑
~p,~q

∑
λ,λ′

[
〈1χ~k |HI(η)|1f~p,λ, 1f ~q,λ′〉〈1f~p,λ, 1f ~q,λ′ |HI(η

′)|1χ~k〉
]

=

Y 2 e
i
∫ η
η′ ω

φ
k (η1)dη1

2
√
ωφk (η)ωφk (η′)

∫
d3p

(2π)3

e
−i

∫ η
η′ (ω

ψ
p (η1)+ωψq (η1))dη1

4
√
ωψp (η)ωψp (η′)

√
ωψq (η)ωψq (η′)

Tr
[
Λ+
~p (η, η′)Λ−~q (η′, η)

]
,(4.3.9)

where ~q = ~k − ~p. This is the fermionic one-loop self energy in curved space time to leading

order in the adiabatic expansion.

Obviously the differential equation (4.3.6) cannot be solved exactly with the above self-

energy. In Minkowski space time the self-energy is a function of the time difference allowing a

solution via Laplace transform[138, 37]. However, in a time dependent expanding cosmology

such an approach is not available. This is a consequence of the lack of a global time-like

Killing vector. Instead for weak coupling we resort to a Markov approximation[105]. While
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details are available in ref.[105, 37, 138] to which the reader is referred, we summarize here

the main aspects of this approximation.

We begin by introducing

EΦ(η, η′) ≡
∫ η′

ηi

ΣΦ(η, η′′) dη′′ , (4.3.10)

such that
d

dη′
EΦ(η, η′) = ΣΦ(η, η′) , (4.3.11)

with the condition

EΦ(η, ηi) = 0 . (4.3.12)

Then (4.3.6) can be written as

d

dη
CΦ(η) = −

∫ η

ηi

dη′
d

dη′
EΦ(η, η′) CΦ(η′) , (4.3.13)

which can be integrated by parts to yield

d

dη
CΦ(η) = −EΦ(η, η)CΦ(η) +

∫ η

ηi

dη′ EΦ(η, η′)
d

dη′
CΦ(η′) . (4.3.14)

Since EΦ ∝ O(Y 2) the first term on the right hand side of (4.3.14) is of order Y 2, whereas the

second is O(Y 4) because d CΦ(η)/dη ∝ Y 2. Therefore up to O(Y 2) the evolution equation

for the amplitude CΦ becomes

d

dη
CΦ(η) = −EΦ(η, η) CΦ(η) , (4.3.15)

with solution

CΦ(η) = exp
(
−
∫ η

ηi

EΦ(η′, η′) dη′
)
CΦ(ηi) . (4.3.16)

This expression clearly highlights the non-perturbative nature of the Wigner-Weisskopf ap-

proximation. The imaginary part of the self energy ΣΦ yields a renormalization of the adi-

abatic frequencies and will not be addressed here[37, 138], whereas the real part determines

the decay law

PΦ(η) ≡ |CΦ(η)|2 = e
−

∫ η
ηi

ΓΦ(η′)dη′ PΦ(ηi) ; ΓΦ(η) = 2

∫ η

ηi

dη1 Re [ΣΦ(η, η1)] , (4.3.17)

where we introduced the survival probability PΦ(η) with PΦ(ηi) = |CΦ(ηi)|2. This final

expression for the survival probability directly exhibits the non-perturbative nature of the

method. The self-energy is given by (4.3.9) to leading order in Yukawa coupling.
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4.4 Massless Fermions

Our goal in this article is to study the decay of a heavy Higgs-like scalar field into much

lighter fermions, neglecting the fermion masses. This is a suitable scenario for the standard

model where the Higgs scalar can decay into all the charged leptons and quarks but for the

top, and the quark and lepton masses may be safely neglected. Such scenario also includes

the possibility of decay into neutrinos in the case that neutrino masses originate in Yukawa

couplings to a Higgs-like scalar beyond the standard model. We postpone the study of decay

into heavier fermionic degrees of freedom to a companion article. Focusing on the case of

massless fermions allows a direct comparison with results in Minkowski space time, which

are summarized in appendix ( B.2). Furthermore, understanding this simpler case provides

a pathway towards the more general case of massive fermions to be studied elsewhere.

For massless fermions ωψk (η) = k, in this case the projector operators Λ± in (4.3.9) are

given by eqn. ( B.1.12) in appendix ( B.1), and the self-energy (4.3.9) can be written in

dispersive form as

Σχ(k, η, η′) = Y 2 e
i
∫ η
η′ ω

φ
k (η1)dη1

2
√
ωφk (η)ωφk (η′)

∫
ρ(k0, k) e−ik0(η−η′) dk0

2π
, (4.4.1)

where the spectral density is given by

ρ(k0, k) = 8π

∫
d3p

(2π)3

δ(k0 − p− |~k − ~p|)
4p |~k − ~p|

[
p |~k − ~p| − ~p · (~k − ~p)

]
, (4.4.2)

with the result

ρ(k0, k) =
1

4π
(k2

0 − k2) Θ(k0 − k) . (4.4.3)

We carry out the k0 integral in (4.4.1) by introducing an upper (comoving) ultraviolet cutoff

Λ and a short time convergence factor η − η′ → η − η′ − iε with ε → 0+ and replacing

k2
0 → −d2/dη

′ 2 yielding the final result for the self-energy

Σχ(k, η, η′) = −i Y
2

16π2

e
i
∫ η
η′ ω

φ
k (η1)dη1√

ωφk (η)ωφk (η′)

[
d2

dη ′ 2
+ k2

][
e−iΛ(η−η′−iε) − e−ik(η−η′−iε)

(η − η′ − iε)

]
. (4.4.4)
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In our analysis we will keep Λ fixed but large and take the limit ε → 0+ first, clearly this

is the correct limit when the theory is considered as an effective field theory valid below a

cutoff Λ. We note that the flat space time limit is obtained by replacing η → t, and the

frequency ωφk to be time independent (see appendix ( B.2)).

It remains to perform the time integrals to obtain ΓΦ(η) and
∫ η
ηi

ΓΦ(η′) dη′ given by eqn.

(4.3.17). The total time derivative in (4.4.4) is integrated by parts and consistently with

keeping the leading order in the adiabatic expansion, terms of the form ω′/ω2 are neglected

since these yield higher order adiabatic corrections. In the limit ε→ 0+ for fixed Λ we find

the decay function∫ η

ηi

ΓΦ(η′) dη′ =
Y 2

8π2
I(Λ, k, η) ; I(Λ, k, η) ≡

[
I1(Λ, k, η)+I2(Λ, k, η)+I3(Λ, k, η)

]
, (4.4.5)

where

I1(Λ, k, η) =
Λ− k
ωφk (ηi)

{
1−
√
ωφk (ηi)

ωφk (η)

[
sin
( ∫ η

ηi

(
Λ− ωφk (η′)

)
dη′
)

(Λ− k)(η − ηi)
+

sin
( ∫ η

ηi

(
ωφk (η′)− k

)
dη′
)

(Λ− k)(η − ηi)

]}
,

(4.4.6)

I2(Λ, k, η) =

∫ η

ηi

[√
ωφk (η′)

ωφk (ηi)
+

√
ωφk (ηi)

ωφk (η′)

]
×
[

1− cos
( ∫ η′

ηi

(
ωφk (η1)− Λ

)
dη1

)
η′ − ηi

−
1− cos

( ∫ η′
ηi

(
ωφk (η1)− k

)
dη1

)
η′ − ηi

]
dη′ ≡ I2a(Λ, k, η) + I2b(k, η) , (4.4.7)

I3(Λ, k, η) = m2
φ

∫ η

ηi

1√
ωφk (η′)

{ ∫ η′

ηi

C2(η1)√
ωφk (η1)

[
sin
( ∫ η′

η1

(
Λ− ωφk (η2)

)
dη2

)
η′ − η1

+
sin
( ∫ η′

η1

(
ωφk (η2)− k

)
dη2

)
η′ − η1

]
dη1

}
dη′ ≡ I3a(Λ, k, η) + I3b(k, η) . (4.4.8)

In obvious notation the contributions I2b(k, η), I3b(k, η) are the Λ independent terms in

I2,3 respectively. These three contributions are studied separately below, analyzing their

cutoff dependent and independent terms extracting the different physics of each term.
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4.4.1 Analysis of I1,2,3

In the following analysis we will take the cutoff Λ to be the largest of all scales, in

particular Λ� ωk(η) at all times.

I1: I1 vanishes identically as η → ηi and the oscillatory terms become negligibly small

for Λ(η − ηi)� 1, therefore I1 grows to its asymptotic value

I1 =
Λ− k
ωφk (ηi)

(4.4.9)

very rapidly, on a time scale η − ηi ' 1/Λ. This divergent contribution corresponds to a

renormalization of the amplitude and is similar to a linearly divergent renormalization in

Minkowski space time[32] (see appendix ( B.2)).

I2: The technical details of the analysis of I2 are relegated to appendix ( B.4). The main

result is that for Λ (η − ηi)� 1

I2(Λ, k, η) = 2
[

ln
[
Λ (η − ηi)

]
+ γE

]
+ I2b(k, η) (4.4.10)

where γE = 0.577 · · · is Euler’s constant and I2b(k, η) is given by equation ( B.4.5) in

appendix ( B.4) where this contribution is analyzed in detail. We discuss this contribution

in further detail in sections (4.5,4.6) below.

I3: With Λ � ωk the argument of the sine function in the first term in eqn. (4.4.8),

namely in I3a(Λ, k, η), simplifies to Λ (η′ − η1), therefore

I3a(Λ, k, η) = m2
φ

∫ η

ηi

1√
ωφk (η′)

{ ∫ η′

ηi

C2(η1)√
ωφk (η1)

sin
(

Λ (η′ − η1)
)

η′ − η1

dη1

}
dη′ . (4.4.11)

Defining σ = Λ (η′ − η1) ; σf = Λ (η′ − ηi), and taking the limits Λ→∞ ; σf →∞, the

integral over η1 in eqn. (4.4.11) becomes∫ ∞
0

C2(η′ − σ/Λ)√
ωφk (η′ − σ/Λ)

sinσ

σ
dσ −−−−→

Λ→∞
π

2

C2(η′)√
ωφk (η′)

, (4.4.12)

therefore in this limit we find

I3a(k, η) =
π

2
m2
φ

∫ η

ηi

C2(η′)

ωφk (η′)
dη′ =

π

2
mφ

∫ t

ti

1

γk(t′)
dt′ (4.4.13)
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where we used ωφk (η) = C(η)Eφ
k (t) = mφC(η) γk(t) and C(η)dη′ = dt′, with γk(t) =√

1 + k2
p(t)/m

2 being the Lorentz factor whose time dependence is a consequence of the

cosmological redshift.

In appendix ( B.5) we provide the analysis for I3b, gathering both terms we find that

I3(k, η) =
π

2
m2
φ

∫ η

ηi

C2(η′)

ωφk (η′)

[
1 + S(k, η′)

]
dη′ , (4.4.14)

where S(k, η′) is given by ( B.5.25) with asymptotic limit S(k, η′)→ 1 for large η′. Therefore

I3 = I3a + I3b does not depend on Λ in the limit Λ → ∞. This is similar to the case in

Minkowski space time (see appendix ( B.2) where the equivalent term is called T3(k, t), eqn.

( B.2.7)).

4.5 Renormalization: Dynamics of “Dressing”

The final result for the decay function in (4.4.5), I(Λ, k, η) is given by ,

I(Λ, k, η) =
Λ− k
ωφk (ηi)

+ 2 ln
[
Λ ηi e

γE
]

+ Ifin(k, η) , (4.5.1)

where Ifin(k, η) is independent of the cutoff Λ in the limit Λ→∞, and for (η − ηi)� 1/Λ

it is given by

Ifin(k, η) = 2 ln
[ η
ηi
− 1
]

+ I2b(k, η) + I3(k, η) . (4.5.2)

The linear and logarithmic dependence on the cutoff Λ are exactly the same as in Minkowski

space time[32], as obtained in the appendix ( B.2). This similarity is expected as the cutoff

dependence arises from the short distance behavior of the self-energy correction which should

be insensitive to the curvature of space time. As discussed in ref.[32] the origin of this

divergence is the “dressing” of the bare single particle state by a cloud of fermion-anti-

fermion pairs into a renormalized quasiparticle state. In a renormalizable theory the growth

of the density of states at high energy implies that this cloud of excitations contains high

energy states. The dynamical build-up of the cloud of excitations occurs on a time scale

η − ηi ' 1/Λ at which the divergent contributions to I1,2 saturate, see eqn. (4.4.6) and the

discussion in appendix ( B.4).
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The “dressing” of the bare into the physical renormalized quasiparticle state is accounted

for by the wave-function renormalization of the amplitude[32]. For large cutoff scale Λ and

for a weakly coupled theory with Y 2 � 1 there is a wide separation betweeen the time

scales of formation of the dressed renormalized state η − ηi ' 1/Λ, the time scale of typical

oscillations η− ηi ' 1/ωφk (η) and finally the decay time scale η− ηi ∝ 1/Y 2ωφk (η), which for

weak coupling is the longest scale. Therefore, we can evolve the initial state in time up to an

intermediate time scale ηb with (ηb−ηi)� 1/Λ, but much smaller than the typical decay time

scale ∝ 1/Y 2ωφk (ηi), so that the initial state had enough time to be “dressed” by fermion-

antifermion pairs into the renormalized quasiparticle state, but did not have time to decay.

For example, taking ηb−ηi = 1/ωφk (ηi) fulfills the conditions of time scale separation because

ωφk � Λ, and because for Y 2 � 1 there will be many oscillations of the field before it decays.

Taking this renormalization scale is tantamount to an “on-shell” renormalization scheme.

We identify ηb as the time of formation – or “birth” – of the “dressed” or quasiparticle

state[32], which after formation decays on a much longer time scale.

The time evolution of the “bare” single particle state until it is renormalized or “dressed”

is implemented by the following procedure. Writing

I(Λ, k, η) ≡ I(Λ, k, ηb) + IS(k, η, ηb) ; IS(k, η, ηb) = I(Λ, k, η)− I(Λ, k, ηb) , (4.5.3)

where, taking (ηb − ηi)� 1/Λ, the subtracted quantity

IS(k, η, ηb) = 2 ln
[ η − ηi
ηb − ηi

]
+ I2b(k, η, ηb) + I3S(k, η, ηb) , (4.5.4)

is independent of Λ for η > ηb and Λ(ηb−ηi)� 1. The subtracted contributions I2b(k, η, ηb) ;

I3S(k, η, ηb) are defined as follows

I2b(k, η, ηb) ≡ I2b(k, η)− I2b(k, ηb) ; I3S(k, η, ηb) ≡ I3(k, η)− I3(k, ηb) , (4.5.5)

and are obtained explicitly in appendices ( B.4, B.5) respectively. During (RD) we find (see

appendix ( B.4) for definitions and eqn. ( B.4.12))

I2b(k, η, ηb) = −
∫ ξ

ξb

[√
W [ξ′] +

1√
W [ξ′]

] [
1− cos[J(ξ′)]

] dξ′
ξ′
, (4.5.6)
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with

ξ = (η − ηi)/ηi ; ξb = (ηb − ηi)/ηi

W [ξ] =
1

γi

[
(γ2
i − 1) + (1 + ξ)2

] 1
2

; γi ≡ γ(ηi) , (4.5.7)

J(ξ′) is given by eqn. ( B.4.9) in appendix ( B.4), and

I3S(k, η, ηb) =
π

2
mφ

∫ η

ηb

C(η′)

γk(η′)

[
1 + S(η′)

]
dη′ , (4.5.8)

where S(η) is given by eqn. ( B.5.25) in appendix ( B.5). The contribution from I(Λ, k, ηb)

is absorbed into wave-function renormalization Z as follows. Writing equation (4.3.17) as

PΦ(η) = e
−

∫ η
ηi

ΓΦ(η′)dη′ PΦ(ηi) ≡ e
−

∫ η
ηb

ΓΦ(η′)dη′ PΦ,r(ηb) , (4.5.9)

where the renormalized probability is given by

PΦ,r(ηb) = Z(ηb)PΦ(ηi) ; Z(ηb) = e
−

∫ ηb
ηi

ΓΦ(η′)dη′
. (4.5.10)

The exponent in the wave function renormalization Z(ηb) is given by∫ ηb

ηi

ΓΦ(η′)dη′ =
Y 2

8π2
I(Λ, k, ηb) , (4.5.11)

yielding an ultraviolet divergent wave function renormalization. The renormalized probabil-

ity obeys

PΦ,r(η) = e
−

∫ η
ηb

ΓΦ(η′)dη′ PΦ,r(ηb) . (4.5.12)

The decay function that describes the time evolution of the renormalized survival prob-

ability is given by ∫ η

ηb

ΓΦ(η′)dη′ =
Y 2

8π2
IS(k, η, ηb) , (4.5.13)

it is finite and independent of Λ in the large cutoff limit. The time scale ηb acts as a renormal-

ization scale, obviously the survival probability PΦ,r(η) is independent of this renormalization

scale, hence it obeys a dynamical renormalization group equation, namely

∂

∂ηb
PΦ,r(η) = 0 . (4.5.14)
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The solution of this equation is, obviously2,

PΦ,r(ηA) = e
−

∫ ηA
ηB

ΓΦ(η′)dη′ PΦ,r(ηB) . (4.5.15)

PΦ,r(ηb) describes the probability of the renormalized quasiparticle state. This “dressed”

state decays with the finite and cutoff independent decay function
∫ η
ηb

ΓΦ(η′)dη′ on time scales

much longer than the “dressing” or renormalization scale ηb.

In the following analysis we will drop the subscript r from PΦ,r to simplify notation since

we will be strictly dealing with the renormalized survival probability.

The decay function (4.5.13) depends explicitly on the initial time ηi (see explicit expres-

sions in appendix ( B.4)). However, PΦ,r(ηb) is defined at the renormalization scale ηb and it

is taken to be the initial probability of the fully renormalized state after all the short time

transient dynamics that result in the “dressing” of the bare into the renormalized quasipar-

ticle state have subsided. Therefore, the dependence of the contributions (4.5.6,4.5.8) on ηi

must be traded for a dependence on ηb.

Let us write

ηb − ηi =
β

Λ
, (4.5.16)

with β � 1 so that the Λ dependent terms in I1,2 reached their asymptotic behavior. For

example, the “on-shell” renormalization scheme corresponds to β ≡ Λ/ωk(ηi). Therefore, in

terms of the Hubble rate and the physical cutoff Λph(ηi) = Λ/C(ηi) at the initial time H(ηi)

we find in (RD)
ηb
ηi

= 1 + β
H(ηi)

Λph(ηi)
. (4.5.17)

Since the cutoff scale Λ is taken to be much larger than any of the energy scales and the adi-

abatic condition requires that H(η)/Ek(η)� 1 at all times, it follows that H(ηi)/Λph(ηi)�
H(η)/Ek(η)� 1. Furthermore, we find that

ωk(ηi) = ωk(ηb)
[
1− β ω

′

k(ηb)

ω2
k(ηb)

ωk(ηb)

Λ
+ · · ·

]
, (4.5.18)

the second term in the bracket is at most of first adiabatic order, this is the case for the

“on-shell” renormalization scheme for which β ωk(ηb)/Λ = 1. Hence, to leading adiabatic

2Note the similarity with the usual renormalization group function associated with the running of the
wave function renormalization that yields anomalous dimensions.
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order we can safely replace ωk(ηi)→ ωk(ηb) in the expressions. Using the results of appendix

( B.4) we find that similar arguments justify the replacement γk(ηi) → γk(ηb) along with

ηi → ηb in all the quantities that enter in the decay function. In the limit of large cutoff Λ the

trade-off between the variables at the initial time and those at the renormalization scale ηb

does not depend on the cutoff as it must be for a consistent effective field theory description

well below the cutoff scale. We note that the adiabatic approximation plays an important

role in this separation and is a necessary ingredient because the frequencies depend on time

unlike in Minkowski space-time. In particular for the “on-shell” renormalization scheme

ηb
ηi
− 1 =

1

ωk(ηi) ηi
� 1 , (4.5.19)

because the adiabatic condition (during (RD)) corresponds to ωk(ηi) ηi � 1 (see equation

(4.2.57)).

4.6 Dynamics of Decay

Once we have absorbed the ultraviolet divergences into a renormalization of the ampli-

tude, we now proceed to analyze the main physical aspects of the decay dynamics leveraging

the adiabatic approximation.

4.6.1 Decay During Radiation Domination

We assume that the decaying particle has been produced early during the (RD) stage

by some (unspecified) particle physics process at a high energy/temperature scale, focusing

first on the dynamics of decay during this era. The subtracted decay function IS(k, η, ηb)

(4.5.4) can be written in a compact manner amenable to a numerical study as

IS(k, η, ηb) = IRS (k, η, ηb) + I3S(k, η, ηb) , (4.6.1)

with

IRS (k, η, ηb) = 2 ln
[ ξ
ξb

]
−
(
F1[ξ, ξb]− F2[ξ, ξb]

)
, (4.6.2)
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and

I3S(k, ξ) =
π

2

ωiηi
γi

∫ ξ

ξb

(1 + ξ′)2
[
1 + S(ξ′)

]
√

(γ2
i − 1) + (1 + ξ′)2

dξ′ , (4.6.3)

where ξ,W [ξ] are defined in eqn. (4.5.7), and we have introduced the following functions

(see appendices B.4, B.5)

F1[ξ, ξb] =

∫ ξ

ξb

[√
W [ξ′] +

1√
W [ξ′]

]
dξ′

ξ′
, (4.6.4)

F2[ξ, ξb] =

∫ ξ

ξb

[√
W [ξ′] +

1√
W [ξ′]

]
cos[J(ξ′)]

dξ′

ξ′
, (4.6.5)

where J [ξ] is defined in eqn. ( B.4.9) in appendix ( B.4). To leading adiabatic order (see

appendix ( B.5))

S(ξ′) =
2

π
Si
[
α(ξ′)

]
; α(ξ′) =

ωi ηi
γi

ξ′

[√
(γ2
i − 1) + (1 + ξ′)2 −

√
(γ2
i − 1)

]
, (4.6.6)

where Si[x] is the sine-integral function (see equation ( B.5.26) and discussion in appendix

( B.5)).

We highlight that the contribution IRS is a distinct feature of the renormalizable Yukawa

interaction and of the fermionic density of states, whereas I3S in (4.5.8) is very similar to

the decay function found in the scalar case studied in ref.[105].

As discussed above, to leading adiabatic order we set ηb = ηi in I3S and obtain (see

appendix ( B.5))

I3S(k, η, ηb) =
π

4
ωiηi

{
(1 + ξ)W [ξ]− 1− (γ2

i − 1)

γi
ln

[
γiW [ξ] + (1 + ξ)

1 + γi

]}
+ Ĩ3S(k, η, ηb) ,

(4.6.7)

Ĩ3S(k, η, ηb) =
π

2

ωiηi
γi

∫ ξ

ξb

(1 + ξ′)2 S(ξ′)√
(γ2
i − 1) + (1 + ξ′)2

dξ′ , (4.6.8)

where Ĩ3S(k, η, ηb) must be obtained numerically.

However, before we engage in a numerical study we analyze the different contributions

to extract a physical picture of which terms dominate at different time scales. In order to

analyze the behavior in the different regimes, we write the Lorentz factor both in terms of
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the variable ξ = η
ηi
− 1 (see appendix ( B.3)) as well as in terms of comoving time with the

equivalence 1 + ξ ≡
√
t/ti (see also appendix ( B.3)),

γ(ξ) =

[
(γ2
i − 1)

(1 + ξ)2
+ 1

] 1
2

≡
[

(γ2
i − 1)(
t
ti

) + 1

] 1
2

=

[
tnr
t

+ 1

] 1
2

≡ γ(t) , (4.6.9)

where tnr is the comoving time scale at which the decaying particle becomes non-relativistic,

given by

tnr = ti (γ
2
i − 1) =

k2

2m2
φHR

. (4.6.10)

Whence the limits

(γ2
i − 1)� (1 + ξ)2 ⇒ Non− relativistic ; (γ2

i − 1)� (1 + ξ)2 ⇒ Ultra− relativistic

tnr � t ⇒ Non− relativistic ; tnr � t⇒ Ultra− relativistic . (4.6.11)

Let us focus first on the contribution IRS (k, η, ηb) given by (4.6.2). In Minkowski space-

time the frequencies are time independent, therefore W [ξ′] = 1 and J(ξ′) = (ωk−k)ηi ξ
′. The

analysis of appendix ( B.2) shows that in Minkowski space time for ξ � 1 the second term in

(4.6.2), namely F1− F2, yields 2 ln[ξ/ξb] + constant, thereby cancelling the logarithmic time

dependence of the first term (see appendix ( B.2)). Such cancellation only occurs during a

limited interval in time in the expanding cosmology as a consequence of the time dependence

of the frequencies. This follows from the analysis of appendix ( B.4) which shows that there

are three distinct stages:

i) ξ . ξm: where ξm given by ( B.4.15, B.4.16) is the time scale at which F2[ξ, ξb] reaches

a maximum. During this interval F1 − F2 in (4.6.2) is negligible and IRS ' 2 ln[ξ/ξb].

ii) ξm < ξ . γi: during this interval the function F1[ξ, ξb] continues to rise monotonically

whereas F2[ξ, ξb] oscillates around its constant asymptotic value F2[ξ, ξb] ' F2[ξm, ξb] '
2 ln[ξm/ξb], a behavior summarized by figure (30) and equation ( B.4.19) in appendix ( B.4).

For ωiηi � 1 the results ( B.4.15, B.4.16) show that ξm � γi for all values of γi ≥ 1.

Therefore, for γi � 1, during the interval ξm ≤ ξ < γi it follows that W [ξ′] ' 1 and

F1 ' 2 ln[ξ/ξb] thereby (approximately) cancelling the logarithm from the first term in IRS ,

whereas F2 ' 2 ln[ξm/ξb] remains constant, yielding a plateau in IRS . This approximate
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cancellation is effective during a time interval that increases for γi � 1 (see discussion in

appendix ( B.4)). According with eqn. (4.6.9) and the limits (4.6.11) during this interval,

wherein IRS is approximately constant, the decaying particle is in the ultrarelativistic regime.

In this stage the constancy of IRS is expected because in the ultrarelativistic regime the

frequencies are nearly time independent since ωk(η) ' k ' ωi. Therefore W [ξ] ' 1 yielding

F1 ' 2 ln[ξ/ξb] thereby cancelling the logarithmic time dependence of the first term in (4.6.2),

similarly to Minkowski space-time.

If γi � 1 the decaying particle is “born” ultrarelativistically and there is a (long) time

window ξm < ξ < γi within which
√
W [ξ′] ' 1 and F1[ξ, ξb] ' 2 ln[ξ/ξb] thereby approxi-

mately cancelling the first term in IRS whereas F2[ξ, ξb] remains nearly constant. Therefore

for γi � 1 it follows that IRS (k, η, ηb) rises rapidly on a time scale ' ξm reaching a maximum

and remaining nearly constant IRS ' 2 ln[ξm/ξb] until ξ ' γi.

iii) ξ � γi: The cosmological redshift eventually makes the decaying particle to become

non-relativistic when ξ � γi � 1. During this stage the particle is non-relativistic as a

consequence of the cosmological redshift. The time dependence of the frequency now yields√
W [ξ′] + 1/

√
W [ξ′] � 2, hence F1 > 2 ln[ξ]. In this stage it follows that W [ξ] ≈ ξ/γi,

therefore for ξ � γi � 1 we find that F1[ξ] ' 2
√
ξ/γi and F2[ξ, ξb] ' 2 ln[ξm/ξb]. For ξ � γi,

the integral for F1[ξ, ξb] is estimated by splitting it into the stages ξb ≤ ξ ≤ γi and ξ > γi.

The first stage yields 2 ln[γi/ξb] since during this (ultrarelativistic) stage W [ξ′] ' 1, and the

second yields (approximately) 2
√
ξ/γi since during this (non-relativistic) stage W [ξ] ≈ ξ/γi.

In summary, for a particle that is “born” ultrarelativistically, namely with γi � 1, the

contribution IRS rises rapidly up to a value ' 2 ln[ξm/ξb] on a time scale ξm � γi given by

( B.4.16), remains nearly constant up to a time scale ξ ' γi at which the particle becomes

non-relativistic, and begins to fall-off as −2
√
ξ/γi for ξ � γi.

In the opposite limit when γi ' 1 the decaying particle is non-relativistic already at

the initial time and ωk(η) ' mφC(η). In this case F2[η, ηb] saturates rapidly, on a scale

ξm ' π/ωi ηi � 1, and F1[η, ηb] grows faster than logarithmically, hence F1 − F2 becomes

larger than the logarithm in the first term of IRS and negative. This behavior leads to an

early suppression of decay.

This analysis is approximately summarized during the ultrarelativistic (UR) and non-
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relativistic (NR) regimes, by (see eqn. ( B.4.19) in appendix ( B.4)),

IRS (k, η, ηb) '
{

2 ln
[
ξ
ξb

]
Θ(ξm − ξ) + 2 ln

[
ξm
ξb

]
Θ(ξ − ξm) , for γi > ξ (UR)

2 ln
[
ξm
ξb

]
+ 2 ln

[
ξ
γi

]
− 2

√
ξ
γi

, for ξ � γi > ξm (NR) .
(4.6.12)

The main aspects of this analysis are confirmed by a numerical study summarized in figures

(14) and (15) for γi = 2, 10 respectively. Notice the different scales in the figures highlighting

the emergence of the plateau and the crossover to a diminishing (negative) square root

behavior at a scale ξ ' γi.
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Figure 14: The contribution IRS , eqn. (4.6.2), for ωiηi = 100, ξb = 0.01, γi = 2.

Decay at rest:

For a very massive particle “born” and decaying at rest in the comoving frame, namely

for γi = 1, and ωiηi � 1 we can provide an analytic form of the decay function for time

scales ξ � ξb ' 1/ωiηi for on-shell renormalization. As discussed in appendices ( B.4, B.5),

F2[η, ηb] reaches its asymptotic limit on a time scale ξ ' π/2ωiηi � 1 (see equation ( B.4.15)
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in appendix ( B.4)). Furthermore, the function S(ξ′) in (4.6.3) reaches its asymptotic value

S ' 1 at a time scale ξ′ ' π/ωiηi � 1. Therefore for ξ′ � 1/ωiηi we can neglect the

contribution from F2 and set S(ξ′) = 1 in (4.6.3), hence I3S[k, η, ηb] is given by the first term

in eqn. (4.6.7) with γi = 1 and multiplied by a factor 2 to account for S = 1. Gathering all

terms we find in this case (γi = 1 ; ωiηi � 1 ; ξ � 1/ωiηi),

IS(0, η, ηb) = 2

{
ln[ξ]− ln

[√
1 + ξ − 1√
1 + ξ + 1

]
−
√

1 + ξ

}
+
π

2
ωiηi

[(
1 + ξ)2

]
− 1

]
, (4.6.13)

where we have neglected a constant term of O(1). This expression displays all the features

described above. Note that for ξ � 1 the logarithmic time dependence cancels out, but for

ξ � 1 the first logarithm in (4.6.13) continues to grow, however the negative square root

eventually dominates the contribution of the first terms within brackets. These are precisely
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the terms arising form the renormalization and their time dependence is a consequence of

the time dependence of the frequencies.

To compare to the decay law in Minkowski space time it is convenient to cast the result

(4.6.13) in terms of comoving time, using 1 + ξ = η/ηi, with η =
√

2t/HR (see eqn. (4.2.39)

valid in (RD)), and the relation

ωiηi
γi

= mφHR η
2
i = 2mφ ti . (4.6.14)

Setting ηi = ηb to leading adiabatic order, we find for γi = 1 and t� tb

IS(0, t) ' ln
[ t
tb

]
− 2

[
t

tb

] 1
4

+ πmφ (t− tb) , (4.6.15)

leading to the survival probability for t� tb

PΦ(t) =
[ t
tb

]− Y 2

8π2

e
Y 2

4π2

(
t/tb

)1/4

e−Γ0 (t−tb) PΦ(tb) ; Γ0 =
Y 2

8π
mφ . (4.6.16)

This is one of the important results of this study. Remarkably Γ0 is the same as the decay

width at rest in Minkowski space time, however the power law with “anomalous dimension”

Y 2/8π2 and the stretched exponential with the power law (t/tb)
1/4 are a consequence of the

renormalization and the time dependence of the frequencies, manifestly a consequence of

the expanding cosmology. The combined effect of these two terms yields a slowing down

of the decay as compared with the case of Minkowski space time with a concomitant en-

hancement of the lifetime of the decaying particle as compared to Minkowski space-time.

This is a noteworthy result: as a consequence of the cosmological expansion the contribution

from the renormalization and quasiparticle formation slows down the decay leading to an

enhancement of the lifetime of the initial state.

Decay of particles with γi � 1:

These are particles that are “born” ultrarelativistically. For γi � 1 the contribution from

IRS (k, η, ηb) has been summarized by eqn (4.6.12) and is displayed in fig. (15): a rapid rise

on a time scale ξm � γi given by ( B.4.16) up to IRS ' 2 ln[ξm/ξb] followed by a near plateau

during the stage while ξ . γi. This contribution falls off slowly as −
√
ξ/γi during the non-

relativistic stage, ξ ≥ γi (see eqn. (4.6.12)). While a quantitative analysis of I3S requires a
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numerical study, we can obtain a fairly accurate estimate as follows. The contribution from

S to I3S (see equation (4.6.3)) is discussed in appendix ( B.5), and can be approximately

summarized as: S ≈ 0 for ξ < ξs and S(η) ≈ 1 for ξ > ξs with ξs given by ( B.5.28, B.5.29).

With γi � 1, the ultrarelativistic stage corresponds to γi � ξ, during the stage γi �
ξs � ξ it follows that S ≈ 0, using 1 + ξ =

√
t/ti, and eqns. (4.6.10,4.6.14), during this

stage I3S is given in comoving time t by

I3S(t) =
π

2
mφ tnr

[
G
[ t
tnr

]
−G

[ tb
tnr

]]
, (4.6.17)

where

G[x] =
[
x(1 + x)

]1/2

− ln
[√

1 + x−√x
]
, (4.6.18)

also describes the decay function in the case of a scalar field decaying into two massless

scalars[105]. During this stage for t� tnr we find

I3S(t) =
π

3
mφ tnr

( t

tnr

) 3
2

[
1−

(tb
t

) 3
2

+ · · ·
]
. (4.6.19)

For γi � ξ � ξs it follows that S ' 1, therefore the above result is multiplied by a factor

2. Hence, during the ultrarelativistic stage with γ(t)� 1, or t� tnr, and S = 1 in (4.6.3),

it follows that

I3S(t) ' 2π

3
mφ tnr

( t

tnr

)3/2
[

1−
(tb
t

) 3
2

+ · · ·
]
, (4.6.20)

which when combined with the result (4.6.12) yields in this ultrarelativistic regime, for

γi � ξ � ξs, ξm

IS(t) ' 2 ln
[ξm
ξb

]
+

2π

3
mφ tnr

( t

tnr

)3/2
[

1−
(tb
t

) 3
2

+ · · ·
]
. (4.6.21)

Neglecting the perturbatively small non-secular constant in the decay function from the

first term in (4.6.21)3 , we find in the time interval for tnr � t � tb during which the

decaying particle is ultrarelativistic and the transient dynamics of quasiparticle formation

has saturated

PΦ(t) = e−
2
3

Γ0 tnr (t/tnr)3/2 PΦ(tb) . (4.6.22)

3Or absorbing it in a finite perturbatively small time independent wave function renormalization of PΦ.
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We can now use the property (4.5.15) and write for t > tnr

PΦ(t) = e−
∫ η
ηnr

ΓΦ(η′) dη′ PΦ(tnr) , (4.6.23)

where ∫ η

ηnr

ΓΦ(η′) dη′ =
Y 2

8π2

[
IS(k, η, ηb)− IS(k, ηnr, ηb)

]
. (4.6.24)

After the decaying particle becomes non-relativistic for ξ � γi or t� tnr when γ(t) ' 1,

the contribution S ' 1 and I3S(ξ)− I3S(ξnr) becomes

I3S(t)− I3S(tnr) = πmφ t

[
1− tnr

t
− tnr

2 t
ln
[ t
tnr

]
+ · · ·

]
, (4.6.25)

the dots in the above expression stand for terms of higher order in the ratio tnr/t.

Finally, combining with the result given by eqn. (4.6.12), the total decay function after

the particle has become non relativistic ξ � γi (or t� tnr � tb) is given in comoving time

by

IS(t)− IS(tnr) ' ln
[ t
tnr

]
− 2

[
t

tnr

] 1
4

+ πmφ t

[
1− tnr

t
− tnr

2 t
ln
[ t
tnr

]
+ · · ·

]
, (4.6.26)

where we have neglected a perturbatively small constant term and approximated tiγ
2
i ' tnr

for γi � 1. Hence for t� tnr � tb we find

PΦ(t) =
[ t
tnr

]− Y 2

8π2

e
Y 2

4π2

(
t/tnr

)1/4 [ t
tnr

]Γ0tnr/2

e−Γ0 (t−tnr) PΦ(tnr) . (4.6.27)

It would be expected that after tnr when the particle has become non-relativistic as

a consequence of the cosmological redshift, the time evolution of the survival probability

would be similar to that of a particle born and decaying at rest. However, the result (4.6.27)

features an extra power law with exponent Γ0tnr/2 as compared to the decay function for the

particle born at rest, eqn. (4.6.16). This difference reflects the memory of the past evolution

in the form of the integral (4.6.24).

We can provide a measure of the impact of curved space time effects on the decay function

by comparing the results above to a phenomenological, S-matrix inspired Minkowski decay
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law allowing for a local time dilation factor to account for the cosmological redshift, namely

P(M)
Φ (t) = e−

Γ0
γ(t)

(t−ti)P(M)
Φ (ti) , (4.6.28)

where Γ0 =
Y 2mφ

8π
is the decay width at rest in Minkowski space time, and γ(t) the local

Lorentz factor (4.6.9). The comparison to the cutoff independent subtracted decay function

(4.6.1) is facilitated by introducing

IM(t) =
πmφ t

γ(t)

[
1− ti

t

]
, (4.6.29)

so that the Minkowski-like decay function is given by

Γ0

γ(t)
(t− ti) ≡

Y 2

8π2
IM(t) , (4.6.30)

where a factor is included in (4.6.30) to ensure that IM(ti = tb) = 0 consistently with the

subtraction definining (4.6.1). For t� ti this phenomenological decay function is interpreted

as that of Minkowski space-time but with the instantaneous Lorentz time dilation factor.

For t � ti it provides a “benchmark” to compare the results obtained above for the decay

function to an S-matrix inspired instantaneous Minkowski decay law.

Before we engage in a numerical comparison, it is illuminating to analyze the cases

discussed above.

Non-relativistic: γ(t) = 1

For this case the IS(t) is given by (4.6.15), the last term of which is precisely IM(t) for

γ(t) = 1. The first two terms in (4.6.15) yield a negative contribution for t � tb = ti,

therefore the cosmological decay function is smaller in this case than the phenomenological

Minkowski function, leading to a longer lifetime.

Ultra-relativistic: γi � 1

During the ultrarelativistic regime γ(t) � 1 (t � tnr), taking the time large enough so

that the transient build-up of S in eqn. (4.6.3) has saturated, the cosmological decay function

is given by (4.6.21) whereas IM(t) ' πmφt
(
t/tnr

)1/2
. The logarithmic term in (4.6.21) could

be fairly large for large γi thereby yielding IS(t) > IM(t) during a time interval. This can

be understood from the following argument.
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As discussed above and in appendix ( B.4), for γi � 1 the contribution IRS (see eqn.

(4.6.2)) rises on a time scale ξm ' (3πγ2
i /ωiηi)

1/3 up to a maximum ' 2 ln(ξm/ξb) after

which it remains nearly constant up to ξ ' γi yielding the logarithmic term in (4.6.21).

For example, for γi ' 200 , ωiηi ' 100 and “on-shell” renormalization with ξb = 1/ωiηi,

the contribution from IRS rises up to a value ' 4
3

ln[
√

3πγiωiηi] ' 14.7 on a comoving time

scale tm/ti ≈ 240. Since the Hubble time scale 1/H(t) = 2t during (RD), it follows that IRS

rises up to the plateau over ' 240 Hubble times, with the possibility that during this time

IS(t) > IM(t). However, after the particle has become non-relativistic, namely for t � tnr,

the cosmological decay function IS(t) is given by (4.6.26) whereas

IM(t) ' πmφ t
[
1− tnr

2t
+ · · ·

]
, (4.6.31)

showing that IS(t) � IM(t) for t � tnr. This suggests a crossover behavior for very large

values of γi: there is an early time window during the ultrarelativistic stage wherein the

cosmological decay function may be larger than the Minkowski one, however as the decay-

ing particle eventually becomes non-relativistic the latter will ultimately dominate. This

behavior is borne out by a detailed numerical study.

Figures (16,17,18) show a comparison between the phenomenological Minkowski decay

function (4.6.29), the total contribution IS (4.6.1) along with I3S (4.6.3) for on-shell renor-

malization with ωiηi = 100 and γi = 10, 50, 200 respectively. For these values the transition

time to the non-relativistic behavior is tnr/ti ' 102, 2.5 × 103, 4 × 104 respectively. For

γi = 10, 50 figs. (16,17) show that IS and I3S are nearly indistinguishable, namely IRS (4.6.2)

is subleading in these cases, and that the phenomenological IM is always larger than IS.

However, for γi = 200 fig. ( 18) shows that the contribution from IRS dominates at early

time, rising on a time scale t/ti ' 100. In this case IM is smaller than IS during a substantial

time window, ≈ 500 Hubble times from the “birth” of the quasiparticle, before crossing over

to becoming the largest decay function.

Therefore we conclude that in the ultrarelativistic case, for very large values of γi, the

decay function is larger than the phenomenological Minkowski one within a substantial

time interval but eventually becomes smaller at a time scale that depends on the various

parameters. In either case, at long time the decaying particle lives longer than predicted
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Figure 16: Comparison between IM , IS, I3S for on-shell subtraction with

ωiηi = 100, γi = 10, tnr/ti = 99.

by a Minkowski decay law extrapolated to the expanding cosmology. This is a generic

result: after an intermediate time scale that depends on γi, the cosmological decay function

is smaller than the phenomenological Minkowski-like one. Therefore the S-matrix inspired

phenomenological Minkowski decay law under estimates the lifetime of the decaying particle.

4.6.2 Long Lived Particles: Decay During Matter Domination or Beyond

The discussion above focused on decay during the radiation dominated era that lasts

until C(η) = aeq ' 10−4 corresponding to an ambient temperature T ' eV at a time

teq ≈ 1012 secs. If the decaying particle is very long lived as would befit a dark matter

candidate, it would continue to decay during the matter and perhaps dark energy dominated

eras. This case corresponds to an extremely small Yukawa coupling, which allows to safely
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Figure 17: Comparison between IM , IS, I3S for on-shell subtraction with

ωiηi = 100, γi = 50,tnr/ti = 2499.

neglect early transient effects that saturate at early times. The general form of the decay

function after renormalization is given by eqns. (4.5.13,4.5.4). Under the assumption of

very weak Yukawa coupling we can neglect the contribution from the cosine term in I2b,

eqn. (4.5.6) (the contribution F2 in eqn. (4.6.5)) and we can set S = 1 in eqn. (4.5.8).

This is because both terms saturate on short time scales therefore they yield perturbatively

small corrections to the decay function for very weak Yukawa coupling as compared to the

terms that continue to grow in time. Hence, neglecting these perturbatively small transient

contributions for very weak Yukawa couplings, the decay function simplifies to∫ η

ηb

ΓΦ(η′) dη′ =
Y 2

8π2

[
2 ln

[ ξ
ξb

]
− F1[ξ, ξb] + πmφ

∫ η

ηb

C(η′)

γk(η′)
dη′

]
+ · · · , (4.6.32)
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Figure 18: Comparison between IM , IS, I3S for on-shell subtraction with

ωiηi = 100, γi = 200, tnr/ti ' 4× 104.

where ξ = (η − ηi)/ηi and F1 is given by (4.6.4) and the dots in (4.6.32) stand for constant

terms that are of O(Y 2).

For general scale factor W [ξ] is given by

W [ξ] =
1

γi

[
(γ2
i − 1) +

C2(η)

C2(ηi)

] 1
2

. (4.6.33)

Let us analyze each term separately in order to understand their behavior at long time

during the (MD) era, taking as an upper bound C(η) ' O(1), or, upon using eqn. (4.2.37)

η ' √aeq/HR. With “on-shell” renormalization (ξb = 1/ωiηi), we find

ln
[ ξ
ξb

]
' ln

[ωi√aeq
HR

]
' ln[1042C(ηi)

]
+ ln

[
γi

( mφ

GeV

)]
. (4.6.34)
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Taking the initial time to correspond to an initial temperature 1015 GeV yields C(ηi) ' 10−28

therefore the logarithm contribution to the decay function for η ' √aeq/HR yields

Y 2

4π2
ln
[ ξ
ξb

]
' 0.82Y 2 +

Y 2

4π2
ln

[
γi

( mφ

GeV

)]
. (4.6.35)

Obtaining the contribution from F1 over the whole history from early (RD) into (MD)

can be done numerically, although this is a rather challenging task because of the enormous

dynamic range with the scale factor varying over twenty four orders of magnitude. However,

we can provide a simple estimate of the remaining two terms of the decay function at long

time during the (MD) era and/or beyond. If the particle remains ultrarelativistic, then as

discussed in the previous sections the contribution from F1 cancels the logarithmic time

dependence of the first term, hence the combination of the first two terms saturates (this

is the plateau in fig. (15)) and yields a perturbatively small time independent contribution

to the decay function. Hence during this ultrarelativistic stage the last term in (4.6.32)

dominates the decay function.

After the particle has become non-relativistic then W [ξ] ' C(η)/γiC(ηi)� 1 and

F1[ξ, ξb] '
1√

γiC(ηi)

∫ η
√
C(η′)

η′
dη′ , (4.6.36)

during (MD) using eqn. (4.2.35) and taking as an upper bound η ' √aeq/HR we find

F1[ξ, ξb] '
1

2
√
γiC(ηi)

' 1014

√
γi
. (4.6.37)

Finally, we can estimate the last term in (4.6.32) during the stage when the particle is

non-relativistic and (MD) dominated, taking γ(η′) ' 1 and taking η ' √aeq/HR, we find

mφ

∫ η C(η′)

γk(η′)
dη′ ' 1042

(
mφ

GeV

)
. (4.6.38)

Since during the ultrarelativistic stage the time dependence of the first and second term

cancel out and the last term dominates the decay dynamics, we conclude that the last term in

(4.6.32) dominates the decay dynamics of a very long-lived particle with very weak Yukawa

coupling, all throughout the time evolution. Since the first (logarithmic) term is always

subdominant, and the second term is negative, larger in magnitude than the logarithmic
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term but also subdominant at late time, the last term in (4.6.32) yields an upper bound to

the decay function throughout all the expansion history. It can be written as a function

of the redshift by recalling that C(η) dη = dt, and using dt = da/(aH(a)) with H(a)

the Hubble expansion rate given by eqn. (4.2.30). Writing the local Lorentz factor as

γ(a(t))) =
[
a2
nr

a2(t)
+ 1
]1/2

; anr ≡ k/mφ, we find that the upper bound to the decay function

at redshift z is given by ∫ η

ηb

ΓΦ(η′) dη′ ' Γ0

H0

Υ(z, zb) , (4.6.39)

where Γ0 = Y 2mφ/8π is the decay rate at rest in Minkowski space time, and

Υ(z, zb) =

∫ 1/(1+z)

1/zb

da√
a2
nr + a2

[
ΩM
a3 + ΩR

a4 + ΩΛ

]1/2
, (4.6.40)

depends solely on the cosmological parameters and anr = k/mφ the scale factor at which

the decaying particle transitions from ultrarelativistic to non-relativistic, and we have taken

zb � 1.

The redshift evolution of the survival probability all throughout the expansion history is

summarized concisely as

PΦ(z) & e
− Γ0
H0

Υ(z,zb)PΦ(zb) . (4.6.41)

The inequality in eqn. (4.6.41) reflects that eqn. (4.6.39) yields an upper bound to the

decay function. For anr = 0, namely when the decaying particle is “born” at rest, it follows

that Υ(z, zb) = H0(t − tb) independently of the cosmology, and we can compare the result

(4.6.39) for anr = 0 to the case of the particle decaying at rest given by eqn. (4.6.15) valid

during the (RD) era. The discussion on dominant terms above clarifies that the last term in

(4.6.15) dominates the decay dynamics, whereas the first two terms combine into a negative

contribution which becomes subleading at long time for very weak Yukawa couplings. Hence

it is clear that for very weak Yukawa coupling and long time (4.6.39) becomes the leading

contribution and yields an upper bound to the decay function for long-lived particles decaying

at rest. Furthermore, for a� anr, namely when the decaying particle is ultrarelativistic and

taking this regime to be during the (RD) era with a ∝ t1/2 it follows that

Υ(z, zb) ∝ t3/2 , (4.6.42)
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in agreement with the decay law (4.6.22) during the ultrarelativistic regime in (RD). This

analysis confirms the validity of the decay law (4.6.41) with (4.6.40) as an upper bound to

describe the evolution of the survival probability for very weakly coupled, long lived particles

all throughout the cosmological evolution, under the assumption that the fermionic decay

products can be considered massless in the decay process.

4.7 Discussion

The final form of the renormalized decay function, eqn. (4.6.1) describing the time evo-

lution of the survival probability of the quasiparticle state is amenable to a straightforward

numerical study. The analysis of section (4.6) reveals a very rich dynamical evolution with

various different time scales. The shortest time scales describe the build-up of the quasi-

particle; this early transient dynamics is absorbed into a wave function renormalization of

the quasiparticle survival probability at a time scale tb. After this short time transient there

remain the time scales over which F2 (4.6.5) saturates at a constant value and S (4.6.6)

rapidly approaches S ' 1. The detailed dynamics over these scales was studied analytically

and numerically in appendices ( B.4) and ( B.5)) respectively. The evolution of the survival

probability on the intermediate and long time scales becomes simpler and can be summa-

rized succinctly. Furthermore, because the short time transients saturate to constant values,

for weak Yukawa coupling the largest contributions to the decay dynamics arises from terms

that are secular (grow in time) over the intermediate and long time scales.

Decay at rest in the comoving frame (γi = 1):

The time evolution of the survival probability is given by

PΦ(t) =
[ t
tb

]− Y 2

8π2

e
Y 2

4π2

(
t/tb

)1/4

e−Γ0 (t−tb) PΦ(tb) , (4.7.1)

where Γ0 = Y 2

8π
mφ is the decay width of a particle at rest in Minkowski space-time. The

power law and stretched exponentials are both a remnant of the renormalization, or “dress-

ing” of the bare into the quasiparticle state and a distinct consequence of the cosmological

redshift. Indeed, in Minkowski space-time the terms that give rise to these contribution
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become time independent after the transient dynamics, whereas, in curved space-time, the

origin of these contributions is the time dependence of the frequencies via the cosmological

redshift.

The methods that we implemented in this study, a non-perturbative formulation com-

bined with a physically motivated adiabatic expansion including a consistent treatment of

renormalization, are very different from those implemented in ref.[132]. The decay law of

a particle at rest (4.7.1) is also very different from that reported in ref.[132]. The origin of

the discrepancy is not clear to us. However, since the power law and stretched exponentials

originate precisely from the contributions to the renormalization of the survival probability,

we suspect that the discrepancy originates in the treatment of the ultraviolet divergences.

These are of the same form as in Minkowski space-time (see appendix ( B.2) and ref.[32]) as

expected since these are short distance divergences, but have not been discussed or addressed

in ref.[132]. As explained above, the time dependence of the frequency yields an unexpected

contribution to the decay law on longer time scales that originates in the dynamics of quasi-

particle formation.

Born ultrarelativistically:

If the particle is “born” or produced ultrarelativistically, namely with γi � 1 during

(RD), an important time scale is tnr = k2

2m2
φH0
√

ΩR
, which determines when the particle

transitions from being ultrarelativistic (γ(t) � 1 or t � tnr) to non-relativistic (γ(t) ' 1

or t � tnr) as a consequence of the cosmological redshift. The dynamical evolution of the

survival probability is different in these stages. a) ultrarelativistic stage: (γ(t) � 1, or

tb � t� tnr )

PΦ(t) = e−
2
3

Γ0 tnr (t/tnr)3/2 PΦ(tb) . (4.7.2)

b) non-relativistic stage (t� tnr or γ(t) ' 1),

PΦ(t) =
[ t
tnr

]− Y 2

8π2

e
Y 2

4π2

(
t/tnr

)1/4 [ t
tnr

]Γ0tnr/2

e−Γ0 (t−tnr) PΦ(tnr) . (4.7.3)

Although for t � tnr the particle has become non-relativistic because of the cosmological

redshift, as compared to the case of decay at rest (4.7.1), this decay law features a new power

with exponent Γ0tnr/2. Its origin is the memory of the decay function manifest in the form of

the integral of the cosmological redshift in (4.5.8) over the whole history of the decay process.
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Therefore, even well after the decaying particle has become non-relativistic, the survival

probability features an enhancement factor that “knows” about the past history when the

particle was ultrarelativistic. The dynamics during the transition from the ultrarelativistic

to the non-relativistic behavior must be studied numerically, and the previous section shows

such study for several values of the parameters.

Massless fermions vs massless bosons:

Ref.[105] studied the decay of a scalar into two massless scalars, therefore we can now

compare the results of that study to those obtained here for the case of scalar decay into

massless fermions. The main difference is in the contribution IRS in eqn.(4.6.1) which is given

by eqn. (4.6.2). The contribution from I3S to the decay function is the same for fermions

and bosons, for example the function G[x] is the same that enters in scalar decay[105]. The

extra contribution, namely IRS has the same origin as the ultraviolet divergent contributions

that are absorbed in wave function renormalization. This is also the case in Minkowski

space-time[32] as shown in appendix ( B.2). Whereas in Minkowski space time this con-

tribution becomes time independent after a short time transient and is absorbed into wave

function renormalization, in a FRW cosmology, it is time dependent as a consequence of the

cosmological redshift and becomes important for non-relativistic particles. Namely, IRS is a

remnant of the physical process of quasiparticle formation. There is no such contribution

in the case of decay into two scalars because the theory in this case is superrenormalizable,

hence there is no equivalent of the IRS term. This contribution suppresses the decay func-

tion at long time, thereby enhancing the lifetime of the decaying particle. This behavior

is yet another source of discrepancy with the results of ref.[132], which finds a larger rate

in the fermionic case. The source of this discrepancy are precisely the “anomalous” power

and stretched exponential which are a consequence of the quasiparticle formation and wave

function renormalization. Although the decay probability requires an ultraviolet divergent

wave function renormalization even in Minkowski space-time, this seems to be an aspect

missing in the treatment of ref.[132]. The cumulative effect of these differences results in

that a meaningful comparison to our study has eluded us.

“Benchmarking” the decay law:

The decay laws obtained above are very different from the usual exponential decay fa-
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miliar in Minkowski space time, one of the reasons for the difference being the cosmological

redshift. Thus a natural question arises: would an S-matrix inspired, phenomenologically

motivated exponential decay law with a time dependent Lorentz factor to account for the

cosmological redshift describe even approximately the decay of the particle?. This motivates

the comparison of the previous results to the following Minkowski-like decay law (in (RD))

P(M)
Φ (t) = e−

Γ0
γ(t)

(t−ti)P(M)
Φ (ti) ; γ(t) =

[tnr
t

+ 1
]1/2

. (4.7.4)

For decay at rest γ(t) = 1, this decay law misses the power with anomalous dimension

and the stretched exponential, whose combination is negative. Therefore the Minkowski-like

decay law over-estimates the suppression of the survival probability in the case of decay at

rest. For a particle that is produced ultrarelativistically, during the stage wherein γ(t)� 1,

namely t� tnr one finds

P(M)
Φ (t) = e−Γ0tnr(t/tnr)3/2 P(M)

Φ (ti) , (4.7.5)

which is smaller than (4.7.2). For t � tnr when the decaying particle has become non-

relativistic

P(M)
Φ (t) = e−Γ0

(
t−tnr/2

)
P(M)

Φ (ti) . (4.7.6)

Comparing this result with (4.7.3) clearly shows that the phenomenological Minkowski decay

law including the instantaneous Lorentz factor over-estimates the suppression of the survival

probability, namely under estimates the lifetime of the decaying state. The discrepancies with

the cosmological decay law, both the factor 2/3 in (4.7.2) along with the powers and stretched

exponential in (4.7.3) are traced to i) the memory of quasiparticle formation, ii) the memory

of the past evolution in the integral of the time dilation factor. None of these can be captured

by a phenomenological Minkowski-like decay law including an instantaneous Lorentz factor

as such description has no memory of the past evolution. We draw two important conclusions

from this comparison: i) a phenomenological, S-matrix inspired Minkowski decay law under

estimates the lifetime of the decaying particle since it over estimates the suppression of the

survival probability, ii) describing particle decay in cosmology in terms of a decay rate, even

one that includes the cosmological redshift in the time dilation factor, is not only not useful
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but is misleading insofar as missing important physical processes and yielding a substantial

under estimate of the lifetime of the decaying particle.

Modifications to BBN?

Although the results obtained in this study do not apply directly to neutron decay,

since we focused on scalar decay Yukawa coupled to massless fermions, and the small phase

space available for three body neutron decay is a result of the small neutron-proton mass

difference, let us explore the consequences of the results on this process, with all these caveats.

First: the neutron is “born” after the QCD phase transition at TQCD ' 150 MeV at a time

tb ' 10−5 secs, because the neutron mass MN ' GeV � TQCD it is “born” at rest in the

plasma. Let us identify the dimensionless coupling Y 2/8π ≡ ΓN/MN where ΓN ' 10−3 secs−1

is the neutron’s lifetime. Hence Y 2/8π ' 10−21, and taking t/tb ' 1/ΓN tb ' 108 we see that

the power law with “anomalous” dimension and the stretched exponential correction to the

usual exponential decay law in eqn. (4.6.16) for decay at rest are all but negligibly small

and would not affect the dynamics of neutron decay during (BBN). Of course, there are the

above mentioned caveats to this conclusion which should only be taken as an extrapolation

and as a gross estimate of the effects. This analysis also suggests that the corrections to

the decay law are more important for particles “born” very early during (RD) and very long

lived a situation that befits most descriptions of a dark matter candidate.

Caveats:

We have focused on studying scalar decay into massless fermion pairs, a situation that

approximates most of the fermionic decay channels of a Higgs scalar in the standard model.

An important aspect of this decay process is that it does not feature thresholds. Includ-

ing the mass for the decay products introduces kinematic thresholds, a consequence of strict

energy-momentum conservation. In ref.[105] it was argued that the Hubble rate of expansion

introduces a natural energy uncertainty leading to a relaxation of the kinematic thresholds,

thereby allowing processes that are forbidden in Minkowski space-time by energy conserva-

tion. Furthermore, ref.[32] has shown that energy uncertainties associated with transient

non-equilibrium aspects of the decay allow decay into heavier particles during a time in-

terval. In an expanding cosmology these effects may combine with the energy uncertainty

from Hubble expansion to enhance the decay by opening up novel channels that would be
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otherwise forbidden by strict energy conservation. These aspects associated with the masses

of the decay products will be the subject of further study.

The inclusion of masses for the decay products becomes a more pressing issue in the

case of decay of very long lived particles studied in section (4.6.2) where we have extended

the results obtained for the (RD) era to provide an upper bound on the decay function all

throughout the expansion history. Therefore, the decay law (4.6.41) with the decay function

(4.6.40) must be understood within the context of decay of a heavy particle into massless or

nearly massless fermionic channels with the caveat that such an approximation may be of

limited validity during the (MD) or (DE) eras and should be interpreted as indicative of the

decay dynamics.

In this study we have neglected finite temperature corrections to decay vertices and

masses, their inclusion requires studying the time evolution of an initial density matrix.

Furthermore, if the decay products thermalize with the medium, their population build-up

will lead to Pauli blocking factors thereby suppressing the decay of the parent particle. These

effects remain to be studied but are beyond the scope and goals of this article.

Possible implications:

The time dependence of the decay function reveals non-equilibrium aspects that have

not been previously recognized, not only from the transient build-up of the quasiparticle but

also the memory effects that yield the unexpected power laws and stretched exponentials.

These novel non-equilibrium effects may lead to interesting and perhaps important dynamics

relevant to baryogenesis and leptogenesis. In particular, we envisage corrections to quantum

kinetic processes for particle production and their inverse processes. Typically quantum

kinetics inputs transition rates perhaps with finite temperature contributions but ultimately

obtained from S-matrix theory. Namely, such transition rates are obtained in the infinite

time limit and the forward and backward probabilities input strict energy conservation, and

as a consequence, obey detailed balance . The richer time dependence of the decay function

revealed by this study, with the hitherto unexplored novel non-equilibrium aspects, suggests

that similar dynamical processes may enter in a modified quantum kinetic description in the

early universe. We expect to report on these and other related issues in future studies.

203



4.8 Summary, Conclusions and Further Questions

In this article we studied the decay of a bosonic particle into massless fermions via a

Yukawa coupling in post-inflation cosmology. The approximation of massless fermions is

warranted for a heavy Higgs-like scalar within or beyond the standard model decaying into

most charged leptons or quarks (but for the top) of the standard model. We implemented

a non-perturbative method that yields the time evolution of the survival probability PΦ(t)

combined with a physically motivated adiabatic expansion. This expansion is justified when

H(t)/Ek(t) � 1 where H(t) is the Hubble rate and Ek(t) the local energy of the particle

as measured by a comoving observer. We have argued that this approximation is valid

for typical particle physics processes during the radiation dominated era and beyond. In

a standard cosmology the reliability of this approximation improves with the cosmological

expansion, therefore if the adiabatic condition is fulfilled at the initial time when the decaying

particle is produced, its reliability improves along the expansion history.

Particle decay into fermionic channels introduces novel phenomena associated with ultra-

violet divergences requiring renormalization that result into two different physical processes:

i) the build-up of a quasiparticle state out of the bare initial state by dressing with fermion-

antifermion pairs, ii) the decay of this quasiparticle state via the emission of fermion pairs.

These two different processes occur on widely separated time scales. We introduced a dy-

namical renormalization method that allows to separate the dynamics of formation of the

quasiparticle from its decay on longer time scales. It relies on introducing a renormalization

time scale tb to absorb the transient dynamics of formation into the wave function renormal-

ization of the quasiparticle state. The survival probability obeys a dynamical renormalization

group equation with respect to tb. The decay function of this renormalized state is ultraviolet

finite and cutoff independent.

We carried out a detailed analytic and numerical study of the decay function during the

radiation dominated era. The dynamics of decay depends crucially on whether the particle

is non-relativistic or relativistic. For a particle that is “born” at rest in the comoving frame
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during (RD) we find that after short time transients, the survival probability is given by

PΦ(t) =
[ t
tb

]− Y 2

8π2

e
Y 2

4π2

(
t/tb

)1/4

e−Γ0 (t−tb) PΦ(tb) ; Γ0 =
Y 2

8π
mφ . (4.8.1)

where Y is the Yukawa coupling and Γ0 is the decay rate at rest in Minkowski space-time. The

scale tb is an intermediate time scale that describes the build-up of the quasiparticle state,

and P(tb) is the renormalized probability of such state. The power of t/tb with “anomalous”

dimension and the stretched exponential with power 1/4 are both a remnant of the formation

of the quasiparticle on long time scales as a consequence of the cosmological redshift.

For the case in which the decaying particle is “born” ultrarelativistically the time evo-

lution over the whole history during (RD) must be obtained numerically. Different regimes

emerge depending on whether the particle is ultrarelativistic for t � tnr or non-relativistic

for t� tnr where tnr = k2/(2m2
φH0

√
ΩR) is the time scale at which the decaying particle of

mass mφ that is born ultrarelativistically with comoving momentum k transitions to being

non-relativistic as a consequence of the cosmological redshift. During the ultrarelativistic

regime (t� tnr) we find for t� tb that the decay function is a stretched exponential

PΦ(t) = e−
2
3

Γ0 tnr (t/tnr)3/2 PΦ(tb)

whereas for t� tb and after the particle has become non-relativistic (t� tnr) we find

PΦ(t) =
[ t
tnr

]− Y 2

8π2

e
Y 2

4π2

(
t/tnr

)1/4 [ t
tnr

]Γ0tnr/2

e−Γ0 (t−tnr) PΦ(tnr) .

The extra power of t/tnr as compared to the case when the particle is born at rest (see eqn.

(4.8.1)) is a consequence of the memory of the decay function on the past history during the

ultrarelativistic stage.

The cosmological decay law is compared to a phenomenological Minkowski-like, S-matrix

inspired decay law with an instantaneous Lorentz time dilation factor

P(M)
Φ (t) = e−

Γ0
γ(t)

(t−ti)P(M)
Φ (ti) , (4.8.2)

we found that this phenomenological law describes at long times a much faster decay thereby

under estimating the lifetime of the decaying particle.
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The decay dynamics revealed by this study during (RD) allows us to extrapolate to the

case of very long lived, i.e. very weakly coupled particles. We obtain a decay function that

yields an upper bound to the survival probability all throughout the expansion history under

the assumption of two body decay into a massless fermions, it is given by

PΦ(z) & e
− Γ0
H0

Υ(z,zb)PΦ(zb) , (4.8.3)

where Υ(z, zb) is given by (4.6.39) and depends only on the cosmological parameters and the

scale factor at which the particle transitions from ultrarelativistic to non-relativistic.

One important conclusion from these results is that using a decay rate as measure of the

decay dynamics is not a useful concept and misses the correct dynamical evolution. An S-

matrix calculation of transition amplitudes or probabilities, where the time interval is taken

to infinity not only it does not capture the various different dynamical scales and temporal

behaviour of the survival probability, but substantially under estimates the lifetime of the

decaying state.

An important corollary of this study is that the S-matrix approach to describe quantum

decay in the cosmological setting is in general inadequate, while it may yield a good approx-

imation for processes of decay at rest for weakly coupled particles late in the cosmological

history, it misses important non-equilibrium dynamics. The non-equilibrium effects revealed

by our study, from the transient dynamics of the formation to the quasiparticle, to the mem-

ory of the decay function on the past history of the decaying particle could be relevant in the

quantum kinetics of processes in the very early universe. These could have potential impact

in CP-violating non-equilibrium dynamics, baryogenesis and leptogenesis and merit further

study.
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5.0 Non-adiabatic Cosmological Production of Ultra-light Dark Matter

5.1 Introduction

Despite a large effort on the direct detection of weakly interacting massive particles in

the mass range of few to 100 GeV with weak interactions cross sections, no particle beyond

the Standard Model with these properties has been found[25]-[60]. This lack of evidence

is motivating the study of alternative light or ultra-light (DM) candidates, such as sterile

neutrinos, axions or axion-like particles, “fuzzy” dark matter (FDM), light dark scalars and

dark vector bosons[147]-[80]. An (FDM) candidate with mass m ' 10−22 eV, and de-Broglie

wavelength ' kpc could be a cold-dark matter (CDM) candidate with the potential for

solving some small scale aspects of galaxy formation[109]-[150]. All of these candidates are

characterized by very small masses and couplings to Standard Model degrees of freedom.

Lyman-α[113, 151] and pulsar timing[162] provide constraints on the mass range of (ultra)

light dark matter (ULDM). Light dark matter (DM) candidates are not only probed by

their gravitational properties[45] but there are various proposals for direct detection, from

high energy colliders[62] to “table-top” experiments[187]-[11]. There are several proposed

mechanisms of production of light or ultra-light dark matter[147, 178, 1, 70, 106, 22, 8, 80].

Particle production in a dynamical cosmological background was studied in pioneering

work in refs.[153, 154, 155, 156, 28, 84, 87, 158, 149]. Gravitational production of (DM)

candidates was studied for various candidates and within different settings: heavy (DM)

particles[55, 52, 54, 124], production from inflaton oscillations or oscillatory backgrounds

[173, 77, 76], for “stiff” equations of state in[134], or during reheating[102, 131]. These

previous studies considered heavy (DM) candidates and often invoked the adiabatic approx-

imation valid for large masses and/or wavevectors.

In this article we study the gravitational production of ultra-light (DM) with important

differences from previous studies:

i) We study the non-adiabatic gravitational production of ultra-light dark matter (ULDM)

as a consequence of cosmological expansion during the inflationary and post-inflationary ra-
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diation dominated era until matter-radiation equality. We obtain the abundance, equation

of state and free-streaming length (cutoff scale in the matter power spectrum) to assess

whether this candidate describes cold, warm or hot (DM).

ii) We consider a real free scalar field describing the (ULDM) as a spectator field dur-

ing inflation, namely it does not couple to the inflaton, it does not acquire an expectation

value, hence it does not contribute to linear isocurvature perturbations that couple to long-

wavelength metric perturbations[92, 48, 20]. We discuss the issue of non-linear entropy

perturbations in section(5.6). This scalar field is in its (Bunch-Davies) vacuum state dur-

ing inflation. A vanishing expectation value of the field precludes a “misalignement” type

production mechanism.

iii) This field does not feature self-interactions or interactions with any other field, it

only interacts gravitationally.

iv) We focus on scales that are well outside the horizon at the end of inflation, since

these are the scales of cosmological relevance for structure formation, and we assume a rapid

transition from the inflationary stage to a radiation dominated (RD) era.

v) We obtain the full energy momentum tensor; its expectation value in the “in” Bunch-

Davies vacuum yields the energy density and pressure. We show that in the asymptotic

regime when the evolution becomes adiabatic, the zeroth-order adiabatic energy momentum

tensor coincides with the usual fluid-kinetic one. We obtain the abundance, equation of state

and free-streaming length near matter-radiation equality to assess whether this candidate

describes cold, warm or hot (DM). Imposing the observed (DM) abundance yields a bound

on the mass of the (ULDM) particle which only depends on cosmological parameters.

We discuss (ULDM) minimally and conformally coupled to gravity. Although we expect

negligible production of an (ULDM) particle conformally coupled to gravity, its detailed

study provides an explicit quantitative confirmation of this expectation and highlights the

main differences with the case of minimal coupling. The comparison between the minimally

and conformally coupled cases allow us to conclude that in the minimal coupling scenario,

substantial particle production occurs during inflation after the corresponding wavelengths

become super-horizon.
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Summary of main results:

For a minimally coupled light scalar field taken as spectator in its Bunch-Davies vacuum

state during inflation, non-adiabatic particle production yields a distribution function peaked

at small comoving momentum Nk ∝ 1/k3. The low momentum enhancement is a distinct

remnant of the infrared enhancement of light minimally coupled fields during inflation. As-

suming the upper bound on the scale of inflation established by Planck[59], we find that a

mass ' 10−5 eV yields the correct dark matter abundance. Furthermore, we find that this

(DM) candidate, despite being very light is extremely cold; its equation of state parameter

at matter-radiation equality is w ' 10−14 and features a free streaming length (cutoff scale in

the matter power spectrum) λfs ' 70 pc. Conformally coupled (ULDM) features a negligible

abundance.

The results of this study apply also to axion-like particles, albeit with no other inter-

actions but gravitational. The abundance, equation of state, and clustering properties only

depend on cosmological parameters and the mass, therefore this study provides the simplest

scenario for particle production of (ULDM), and for a long-lived (DM) candidate a lower

bound on the abundance. This lower bound on the abundance from non-adiabatic cosmo-

logical production should enter in any assessment of (ULDM) candidates, even those with

interactions.

The model of (ULDM) is introduced in section (5.2). Section (5.3) discusses the “in”

states and define the “out” particle states, obtaining the number of asymptotic “out” par-

ticles produced non-adiabatically for minimal and conformal coupling to gravity. In section

(5.4) we discuss the non-adiabatic nature of particle production. Section (5.5) analyzes the

energy momentum tensor, discusses renormalization aspects, establishes the relation with

the fluid-kinetic energy momentum tensor in the adiabatic regime and defines the energy

density and pressure of the asymptotic particle states. In this section we obtain the relation

between the dark matter abundance, the particle’s mass and cosmological parameters. We

also obtain the equation of state and free-streaming length and establish that non-adiabatic

production of (ULDM) yields a cold dark matter candidate. In section (5.6) we discuss

linear and non-linear entropy perturbations. Section (5.7) discusses various aspects and

caveats suggesting further questions and avenues of study, and section (5.8) summarizes our
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conclusions. Two appendices provide technical details.

5.2 The Model for the (ULDM) Scalar

We consider a free real ultra-light scalar degree of freedom as a dark matter candidate

(ULDM) and invoke the following main assumptions:

i:) It is a spectator field during inflation. Namely, it does not interact with any other field,

including the inflaton, and it does not acquire a vacuum expectation value, therefore it does

not drive inflation. Because it does not acquire an expectation value it does not contribute

to linear isocurvature perturbations that source long-wavelength metric perturbations[92,

48, 20]. See section (5.6) for a discussion on non-linear entropy perturbations.

ii:) The inflationary stage is described by an exact de Sitter space-time, the ultralight

field is in the Bunch-Davies vacuum state and we consider field fluctuations with superhorizon

wavelengths at the end of inflation, since these are the wavelengths of cosmological relevance

for structure formation.

iii:) We assume instantaneous reheating: namely we consider an instantaneous transition

from the inflationary to a radiation dominated stage post-inflation. There is as yet an

incomplete understanding of the non-equilibrium dynamics of reheating. Reheating dynamics

depend crucially on various assumptions on couplings with the inflaton and/or other fields,

and thermalization processes[9] in an expanding cosmology. The question of how the nearly

' 100 degrees of freedom of the Standard Model attain a state of local thermodynamic

equilibrium after inflation and on what time scales is still unanswered. Most studies model

the couplings and dynamics; therefore any model of reheating is at best tentative and very

approximate. We bypass the inherent ambiguities and model dependence of the reheating

dynamics, and assume instantaneous reheating after inflation to a radiation dominated (RD)

era. The physical reason behind this assumption is that we are primarily concerned with

wavevectors that have crossed the Hubble radius during inflation well before the transition

to (RD) and are well outside the horizon during this transition, hence causally decoupled

from microphysics. These modes feature very slow dynamics at the end of inflation, and
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the assumption that they are frozen during the reheating time interval seems physically

warranted (see further discussion in section (5.7)). We assume that both the scale factor

and the Hubble rate are continuous across the transition. Along with the continuity of the

mode functions and their time derivative across the transition (see below), this, in fact,

entails the continuity of the energy density obtained from the energy momentum tensor (see

below).

iv:) Unlike previous studies that invoked the adiabatic approximation, we study non-

adiabatic cosmological production of (ULDM). This is a direct consequence of a very small

mass and field fluctuations with superhorizon wavelengths after inflation.

v:) The (RD) era is dominated by a large number ' 100 of ultrarelativistic degrees

of freedom justifying taking the space time metric during this era as a background and

neglecting the contribution from the single scalar degree of freedom.

In comoving coordinates, the action for the real (ULDM) scalar field is given by

S =

∫
d3x dt

√−g
{

1

2
φ̇2 − (∇φ)2

2a2
− 1

2

[
m2 + ξ R

]
φ2

}
(5.2.1)

where

R = 6
[ ä
a

+
( ȧ
a

)2]
, (5.2.2)

is the Ricci scalar, (here the dot stands for derivatives with respect to comoving time t) and

ξ is the coupling to gravity, with ξ = 0, 1/6 corresponding to minimal or conformal coupling,

respectively, we will study both cases separately. We consider a spatially flat Friedmann-

Robertson-Walker (FRW) cosmology in conformal time coordinate, with the metric given

by

gµν = a2(η) ηµν , (5.2.3)

where ηµν = diag(1,−1,−1,−1) is the flat Minkowski space-time metric.

Introducing the conformally rescaled fields

φ(~x, t) =
χ(~x, η)

a(η)
, (5.2.4)
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with

R = 6
a′′(η)

a3(η)
, (5.2.5)

the primes now refer to derivatives with respect to conformal time. The action becomes

(neglecting an irrelevant surface term that does not affect the equations of motion or energy

momentum tensor),

S =

∫
d3x dη

1

2

[
χ′

2 − (∇χ)2 −M2(η) χ2
]
, (5.2.6)

where

M2(η) = m2 a2(η)− a′′(η)

a(η)
(1− 6ξ) . (5.2.7)

The inflationary stage is described by a spatially flat de Sitter space time (thereby ne-

glecting slow roll corrections) with a scale factor

a(η) = − 1

HdS(η − 2ηR)
, (5.2.8)

where HdS is the Hubble constant during de Sitter and ηR is the (conformal) time at which

the de Sitter stage transitions to the (RD) stage.

During the radiation dominated (RD) stage the scale factor is given by

a(η) = HR η (5.2.9)

with

HR = H0

√
ΩR ' 10−35 eV , (5.2.10)

and matter radiation equality occurs at

aeq =
ΩR

ΩM

' 1.66 × 10−4 . (5.2.11)

We model the transition from de Sitter to (RD) at a (conformal) time ηR by requiring

that the scale factor and the Hubble rate be continuous across the transition at ηR, assuming

self-consistently that the transition occurs deep in the (RD) era so that a(ηR) = HR ηR � aeq.

Continuity of the scale factor and Hubble rate at the instantaneous reheating time results in

212



that the energy density, namely the expectation value of T 0
0 is continuous at the transition.

This important aspect is discussed further in section (5.5).

Using H(η) = a′(η)/a2(η), continuity of the scale factor and Hubble rate at ηR imply

that

adS(ηR) =
1

HdS ηR
= HR ηR ; HdS =

1

HR η2
R

, (5.2.12)

yielding

ηR =
1√

HdS HR

. (5.2.13)

The most recent constraints from Planck on the tensor-to-scalar ratio is[59]

HdS/MPl < 2.5× 10−5 (95%) CL . (5.2.14)

We take as a representative value HdS = 1013 GeV, from which it follows that

adS(ηR) = HR ηR =

√
HR

HdS

' 10−28 � aeq . (5.2.15)

This scale corresponds to an approximate ambient radiation temperature after the transition

from de Sitter to (RD)

T (ηR) ' T0

aRD(ηR)
' 1015 GeV (5.2.16)

where T0 ∝ 10−4 eV is the CMB temperature today.

We also define the mass of the (DM) particle in units of eV as

mev ≡
m

(eV)
, (5.2.17)

which for ultra-light (DM) particles we define as mev � 1.
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5.3 “In-Out” States, Adiabatic Mode Functions, and Particle States

5.3.1 Asymptotic “In-Out” States

The quantization of the real (ULDM) scalar field in a finite comoving volume V proceeds

by writing

χ(~x, η) =
1√
V

∑
~k

[
a~k gk(η) e−i

~k·~x + a†~k g
∗
k(η) ei

~k·~x
]
, (5.3.1)

where ~k are comoving wave vectors. The mode functions gk(η) are solutions of the equations

of motion

g′′k(η) +
[
k2 +m2 a2(η)− a′′(η)

a(η)
(1− 6ξ)

]
gk(η) = 0 , (5.3.2)

and are normalized to obey the Wronskian condition

g′k(η) g∗k(η)− gk(η) g′
∗
k(η) = −i (5.3.3)

so that a~k, a
†
~k

obey canonical commutation relations.

A familiar interpretation of the mode equation follows by writing (5.3.2) as

− d2

dη2
gk(η) + V (η)gk(η) = k2gk(η) ; V (η) = −m2a2(η) + (1− 6ξ)

a′′(η)

a(η)
, (5.3.4)

namely a Schroedinger equation for a wave function gk with a potential V (η) and “energy”

k2. The potential V (η) and/or its derivative are discontinuous at the transition ηR; however

gk(η) and g′k(η) are continuous at ηR. Defining

gk(η) =

{
g<k (η) ; for ; η < ηR

g>k (η) ; for ; η > ηR
, (5.3.5)

the matching conditions are

g<k (ηR) = g>k (ηR)

d

dη
g<k (η)

∣∣∣
ηR

=
d

dη
g>k (η)

∣∣∣
ηR
. (5.3.6)

As is discussed below (see section (5.5)), these continuity conditions on the mode func-

tions, along with the continuity of the scale factor and Hubble rate at the transition ensures

that the energy density is continuous at the transition from inflation to (RD).
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5.3.1.1 Inflationary Stage We consider that the (ULDM) scalar is in the Bunch-Davies

vacuum state during the inflationary stage, which corresponds to the mode functions gk(η)

fulfilling the boundary condition

gk(η) −−−−−→
η→−∞

e−ikη√
2k

, (5.3.7)

and the Bunch-Davies vacuum state |0〉 is such that

a~k|0〉 = 0 ∀~k . (5.3.8)

We refer to this vacuum state as the in vacuum.

We will consider both cases: conformal coupling (CC) ξ = 1/6 and minimal coupling

(MC) ξ = 0.

During the de Sitter stage (η < ηR), with the scale factor given by eqn. (5.2.8), the mode

equation becomes
d2

dτ 2
g<k (τ) +

[
k2 − ν2 − 1/4

τ 2

]
g<k (τ) = 0 , (5.3.9)

where

τ = η − 2ηR ; ν2 =

{
9
4
− m2

H2
dS

for ξ = 0 (MC)

1
4
− m2

H2
dS

for ξ = 1/6 (CC)

}
. (5.3.10)

The solution with the boundary condition (5.3.7) is given by

g<k (τ) =
1

2

√
−πτ eiπ2 (ν+1/2)H(1)

ν (−kτ) (5.3.11)

where H
(1)
ν is a Bessel function. We note that with HdS ' 1013 GeV it follows that m/HdS '

mev 10−22 � 10−22 and can be safely ignored in the expression for ν. Therefore, neglecting

the mass of the (ULDM) scalar, we find

g<k (τ) =

{
e−ikτ√

2k

[
1− i

kτ

]
for ξ = 0 (MC)

e−ikτ√
2k

for ξ = 1/6 (CC)

}
. (5.3.12)

With HdS ' 1013 GeV we find that ηR ' 106 eV−1 ' 0.2 meters. In what follows we will

consider that all the modes of cosmological interest are well outside the Hubble radius at

the end of inflation, namely

k ηR � 1 , (5.3.13)
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for the value of HdS assumed above, with ηR ' 106 (eV)−1 the superhorizon condition (5.3.13)

corresponds to comoving wavevectors k � µeV or comoving wavelengths � 1 meters, obvi-

ously including all astrophysically relevant scales.

The “in” state is the Bunch-Davies vacuum defined by equation (5.3.8) and the mode

functions (5.3.12) during the inflation stage, taken to be de Sitter space-time, thereby ne-

glecting small slow-roll corrections.

5.3.1.2 Radiation Dominated Era During the radiation era for η > ηR, with a(η) =

HRη we set a′′ = 0, and the mode equation (5.3.2) becomes

d2

dη2
g>k (η) +

[
k2 +m2H2

R η
2
]
g>k (η) = 0 , (5.3.14)

the general solutions of which are linear combinations of parabolic cylinder functions[2,

152, 21, 145]. As “out” boundary conditions, we impose that such a combination should

describe asymptotically positive frequency “particle” states and their hermitian conjugate.

This identification relies on a WKB form of the asymptotic mode functions.

Let us consider a particular solution of (5.3.14) of the WKB form

fk(η) =
e
−i

∫ η
ηR

Wk(η′) dη′√
2Wk(η)

. (5.3.15)

Upon inserting this ansatze in the mode equation (5.3.14) one finds that Wk(η) obeys

W 2
k (η) = ω2

k(η)− 1

2

[
W
′′

k (η)

Wk(η)
− 3

2

(
W
′

k(η)

Wk(η)

)2]
, (5.3.16)

where

ω2
k(η) = k2 +m2H2

R η
2 . (5.3.17)

When ωk(η) is a slowly-varying function of time the WKB eqn. (5.3.16) may be solved

in a consistent adiabatic expansion in terms of derivatives of ωk(η) with respect to η divided

by appropriate powers of the frequency, namely

W 2
k (η) = ω2

k(η)

[
1− 1

2

ω
′′

k (η)

ω3
k(η)

+
3

4

(
ω
′

k(η)

ω2
k(η)

)2

+ · · ·
]
. (5.3.18)
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We refer to terms that feature n-derivatives of ωk(η) as of n-th adiabatic order. During the

time interval of rapid variations of the frequencies the concept of particle is ambiguous, but

at long time the frequencies evolve slowly and the concept of particle becomes clear.

We want to identify “particles” (dark matter “particles”) near the time of matter radia-

tion equality, so that entering in the matter dominated era we can extract the energy density

and pressure (energy momentum tensor) associated with dark matter particles. Therefore,

we seek to clearly define the concept of particles near matter-radiation equality namely

a(η) ' aeq ' 10−4.

The condition of adiabatic expansion relies on the ratio

ω
′

k(η)

ω2
k(η)

� 1 . (5.3.19)

An upper bound on this ratio is obtained in the very long wavelength (superhorizon) limit,

taking ωk(η) = ma(η), in an (RD) cosmology leads to the condition

a′(η)

ma2(η)
=

HR

ma2(η)
� 1 =⇒ a(η)� 10−17

√
mev

. (5.3.20)

Therefore, even for mev ' 1 corresponding to to a(η) ' 10−17 there is a long period of

non-adiabatic evolution since the end of inflation a(ηR) ' 10−29 � 10−17/
√
mev, during

which the ωk(η) varies rapidly. However, even for an ultra-light particle with mev ' 10−22

yielding a much longer period of non-adiabatic evolution, the adiabatic condition is fulfilled

well before matter-radiation equality. The adiabaticity condition becomes less stringent for

non-vanishing wavevectors with k � ma(η).

In conclusion, the evolution of the mode functions becomes adiabatic well before matter

radiation equality. During the adiabatic regime the WKB mode function (5.3.15) asymptot-

ically becomes

fk(η)→ e−i
∫ η ωk(η′) dη′√
2ωk(η)

, (5.3.21)

we refer to the mode functions with this asymptotic boundary condition as “out” particle

states which obey the Wronskian condition

f
′

k(η) f ∗k (η)− fk(η) f
′∗
k (η) = −i . (5.3.22)
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The definition of these mode functions as describing particle states merits discussion. Our

space time is not Minkowski space time; dark energy entails that the cosmology describing

our space time is nearly de Sitter (if dark energy is in the form of a cosmological constant),

and Minkowski space time is a local approximation valid on scales much smaller than the

Hubble scale. The conformal and (local) comoving energy are related by

ωk(η) =
√
k2 +m2a2(η) = a(η)Ek(η) , (5.3.23)

with

Ek(η) =
√
k2
ph(η) +m2 ; kph(η) ≡ k2

a2(η)
, (5.3.24)

where kph(η) is the physical momentum.

Consider the asymptotic phase of the mode function fk(η) given by eqn. (5.3.21), using

the relations (5.3.23, 5.3.24) and a(η) dη = dt with t being cosmic time, it follows that∫ η

η0

ωk(η
′) dη′ =

∫ t

t0

Ek(t
′) dt′ . (5.3.25)

Expanding around the lower limit and integrating we find∫ t

t0

Ek(t
′) dt′ = Ek(t0) (t− t0)

[
1− 1

2
β2
k(t0)H(t0) (t− t0) + · · ·

]
, (5.3.26)

where

βk(t0) =
kph(t0)

Ek(t0)
; H(t0) =

ȧ(t0)

a(t0)
, (5.3.27)

with H(t0) the Hubble expansion rate at t0. Therefore it is clear that the phase is associated

with particle states over a time scale t − t0 � 1/H(t0) ' 13 Gyr. Thus on these time

scales Minkowski space-time particle states are a valid description. This, of course is just a

consequence of the equivalence principle.

The general solution of equation (5.3.14) is

g>k (η) = Ak fk(η) +Bk f
∗
k (η) , (5.3.28)
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where fk(η) are the solutions of the mode equation (5.3.14) with asymptotic boundary con-

ditions (5.3.21) and Ak and Bk are Bogoliubov coefficients. Since g>k (η) obeys the Wronskian

condition (5.3.3) and so does fk(η), it follows that the Bogoliubov coefficients obey

|Ak|2 − |Bk|2 = 1 . (5.3.29)

Using the Wronskian condition (5.3.22) and the matching condition (5.3.6), we find that

the Bogoliubov coefficients are determined from the following relations,

Ak = i
[
g
′<
k (ηR) f ∗k (ηR)− g<k (ηR) f

′ ∗
k (ηR)

]
Bk = −i

[
g
′<
k (ηR) fk(ηR)− g<k (ηR) f

′

k(ηR)
]
. (5.3.30)

Since the mode functions g<k (η) also fulfill the Wronskian condition (5.3.3), it is straightfor-

ward to confirm the identity (5.3.29).

For η > ηR the field expansion (5.3.1) yields

χ(~x, η) =
1√
V

∑
~k

[
a~k g

>
k (η) e−i

~k·~x+a†~k g
∗>
k (η) ei

~k·~x
]

=
1√
V

∑
~k

[
b~k fk(η) e−i

~k·~x+b†~k f
∗
k (η) ei

~k·~x
]
,

(5.3.31)

where

b~k = ak Ak + a†
−~k
B∗k ; b†~k = a†~k A

∗
k + a−~k Bk . (5.3.32)

We refer to b~k, b
†
~k

as the annihilation and creation operators of out particle states respectively.

They obey canonical quantization conditions as a consequence of the relation (5.3.29). In

the Heisenberg picture the field operators evolve in time but the states do not. The vacuum

state |0〉 is the Bunch-Davies vacuum state (5.3.8) in which the number of out-particles is

given by

Nk = 〈0|b†~kb~k|0〉 = |Bk|2 . (5.3.33)

We identify Nk with the number of dark matter particles produced asymptotically from

cosmic expansion. Only in the asymptotic adiabatic regime can Nk be associated with the

number of particles. This point will be discussed further in section (5.7).

It remains to obtain the solutions fk(η) of the mode equations (5.3.14) with asymptotic

“out” boundary condition (5.3.21) describing asymptotic particle states.
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It is convenient to introduce the dimensionless variables

x =
√

2mHR η ; α = − k2

2mHR

, (5.3.34)

in terms of which the equation (5.3.14) is identified with Weber’s equation[2, 152, 21, 145]

d2

dx2
g(x) +

[x2

4
− α

]
g(x) = 0 (5.3.35)

whose real solutions are Weber’s parabolic cylinder functions[152, 2, 21, 145]:

W [α;±x] =
1

23/4

[√
G1

G3

Y1(α;x)∓
√

2G3

G1

Y2(α;x)

]
, (5.3.36)

where

G1 =

∣∣∣∣∣Γ(1

4
+ i

α

2

)∣∣∣∣∣ ; G3 =

∣∣∣∣∣Γ(3

4
+ i

α

2

)∣∣∣∣∣ (5.3.37)

and[2, 152]

Y1(α;x) = 1 + α
x2

2!
+
(
α2 − 1

2

) x4

4!
+ · · · (5.3.38)

Y2(α;x) = x
[
1 + α

x2

3!
+
(
α2 − 3

2

) x4

5!
+ · · ·

]
. (5.3.39)

With these real solutions we construct the complex solution that satisfies the Wronskian

condition (5.3.22) and features the asymptotic “out-state” behavior (5.3.21) with ω2
k(η) =

x2

4
−α. It is straightforward to confirm that such a solution is given by (see appendix ( C.1))

fk(η) =
1

(8mHR)1/4

[ 1√
κ
W [α;x]− i√κW [α;−x]

]
; κ =

√
1 + e−2π|α| − e−π|α| . (5.3.40)

It is shown in appendix ( C.1) that these solutions do indeed satisfy the asymptotic “out”

boundary condition (5.3.21) and fulfill the Wronskian condition (5.3.22).

The Bogoliubov coefficients are obtained from eqns. (5.3.30), where the mode functions

during the de Sitter era g<k (η) are given by eqn. (5.3.12) (with τ = η − 2ηR).

For ηR = 1/
√
HdS HR (see eqn. (5.2.13)) it follows that

x(ηR) =

√
2m

HdS

'
√

2mev 10−11 ; − αx2(ηR) = (k ηR)2 � 1 , (5.3.41)
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therefore for η ' ηR we can set Y1(x) ' 1;Y2(x) ' x in order to obtain the Bogoliubov

coefficients from equation (5.3.30).

We note that the condition x(η)� 1 implies that

1

mHR η2
=

a′(η)

ma2(η)
� 1 . (5.3.42)

Therefore, comparing with the condition for adiabaticity (5.3.20) we see that the mode

functions after the transition are strongly non-adiabatic.

The regime of non-adiabatic evolution is where particle production is most effective

(see discussion in section (5.7)). Furthermore, particle production is enhanced at longer

wavelengths because these modes feature the strongest departure from adiabaticity.

We emphasize that while we assume an instantaneous transition from the inflationary to

the (RD) stage, the scale factor, the Hubble rate, the mode functions and their (conformal)

time derivatives are all continuous across the transition and this continuity implies a con-

tinuous process of particle production. As a consequence of these continuity conditions the

transition does not induce a burst of particle production, nor is there any discontinuity in

the production dynamics. This important aspect will be highlighted again in sections (5.4)

and (5.5) below in more detail.

5.3.2 Minimal Coupling

We begin by studying the case of minimal coupling (MC), namely ξ = 0. The mode

functions during the inflationary (de Sitter) era are given by (5.3.12) for (MC) and during

(RD) the general solution of the mode equations is given by (5.3.28) in terms of the solutions

(5.3.40) with out (particle) boundary conditions.

For the minimally coupled case (MC) we find from eqn. (5.3.12)

g<k (ηR) =
eikηR√

2k

[
1 +

i

k ηR

]
(5.3.43)

d

dη
g<k (η)

∣∣∣
ηR

= −ik e
ikηR

√
2k

[
1 +

i

k ηR
− 1

(k ηR)2

]
. (5.3.44)

Since kηR � 1 we keep the leading order terms in the superhorizon limit k ηR → 0 writing
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g<k (ηR) =
i√
2k δ

(5.3.45)

d

dη
g<k (η)

∣∣∣
ηR

=
i
√
k√

2 δ2
; δ = k ηR . (5.3.46)

From eqn. (5.3.41) we find

fk(ηR) =
1

(8mHR)1/4

[ 1√
κ
− i√κ

]
W [α; 0] (5.3.47)

d fk(η)

dη

∣∣∣
ηR

=

√
2mHR

(8mHR)1/4

[ 1√
κ

+ i
√
κ
]
W ′[α; 0] , (5.3.48)

with

W ′[a, 0] = −1

2
W [a, 0] . (5.3.49)

Using these results with the matching conditions (5.3.30) yield the Bogoliubov coeffi-

cients,

Ak =
i

4 δ

{
√
κ

(
Rk −

2

Rk δ

)
+

i√
κ

(
Rk +

2

Rk δ

)}
, (5.3.50)

Bk =
i

4 δ

{
√
κ

(
Rk −

2

Rk δ

)
− i√

κ

(
Rk +

2

Rk δ

)}
(5.3.51)

where

Rk =
23/4

|α|1/4

∣∣∣∣∣Γ
(

3
4
− i |α|

2

)
Γ
(

1
4
− i |α|

2

)∣∣∣∣∣
1/2

. (5.3.52)

Therefore, the distribution function of produced particles is given by

Nk = |Bk|2 =
1

4R2
k δ

4

[
κ
(R2

kδ

2
− 1
)2

+
1

κ

(R2
k δ

2
+ 1
)2
]
. (5.3.53)

It is convenient to extract the relevant scales, hence define

√
|α| = k√

2mHR

≡ z , (5.3.54)

in terms of which it follows that

δ = k ηR = z

√
2m

HdS

, (5.3.55)
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yielding

R2
k δ = 23/2

∣∣∣∣∣Γ
(

3
4
− i z2

2

)
Γ
(

1
4
− i z2

2

)∣∣∣∣∣
√

2m

HdS

1

R2
k δ

4
=

1

z3

(
HdS

m

)2
1

8
√

2

∣∣∣∣∣Γ
(

1
4
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with
HdS

m
=

1

mev

[
HdS

1013 (GeV)

]
1022 . (5.3.57)

Using Stirling’s approximation we find that the asymptotic behavior of the ratio of

Gamma functions in eqn.(5.3.56) is given by∣∣∣∣∣Γ
(

1
4
− i z2

2

)
Γ
(

3
4
− i z2

2

)∣∣∣∣∣ −−−−→z →∞
√

2

z
. (5.3.58)

We focus on wavelengths that are superhorizon at the end of inflation, namely kηR � 1

which results in the following condition

kηR = z

√
2m

HdS

� 1 . (5.3.59)

For large z the product

R2
k δ → 2 z

√
2m

HdS

= 2 k ηR , (5.3.60)

therefore in the regime of validity of the superhorizon approximation k ηR � 1, the product

R2
k δ � 1 and can be safely neglected. Hence we can approximate the distribution function

as

Nk '
1

16
√

2

(
HdS

m

)2
D(z)

z3
. (5.3.61)

where

D(z) =
√

1 + e−2πz2

∣∣∣∣∣Γ
(

1
4
− i z2

2

)
Γ
(

3
4
− i z2

2

)∣∣∣∣∣ . (5.3.62)

Figs. (19, 20) display D(z) and zD(z)/
√

2 vs z respectively.

The number of produced particles Nk is strongly peaked at low momentum Nk ∝ 1/k3.

This infrared enhancement and the factor H2
dS are both remnants of the infrared behavior of
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Figure 19: The function D(z) vs. z.

light minimally coupled scalars during the de Sitter era. Because D(z) →
√

2/z for z � 1

it follows that for large comoving wavevectors Nk → 1/k4. The small and large momentum

limits of the distribution function are summarized as follows:

Nk ∝
{

1/k3 ; k � √2mHR

1/k4 ; k � √2mHR

. (5.3.63)

5.3.3 Conformal Coupling

Massless particles conformally coupled to gravity are not affected by the cosmological

expansion. Therefore, we expect that very light particles with conformal coupling will not be

substantially produced. However, in order to fully compare with the minimally coupled case,

we study the production in the conformal case and focus on establishing the main aspects

of the difference.
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Figure 20: The function z√
2
D(z) vs. z displaying the asymptotic behavior (5.3.58).

For conformal coupling the mode functions during the inflationary stage are given by

(5.3.12) for ξ = 1/6. With kηR � 1 we find

g<k (ηR) =
1√
2k

(5.3.64)

d

dη
g<k (η)

∣∣∣
ηR

=
−i
√
k√

2
. (5.3.65)

During the (RD) era the mode functions are given by (5.3.28) with fk(η) given by (5.3.40).

The Bogoliubov coefficients are found in the same manner as for the minimal coupling by

equating the functions and η− derivatives at η = ηR.

We find

Ak =
1

4

{(
√
κRk +

2√
κRk

)
+ i

(
Rk√
κ

+
2
√
κ

Rk

)}
, (5.3.66)

Bk =
1

4

{(
√
κRk −

2√
κRk

)
− i
(
Rk√
κ
− 2
√
κ

Rk

)}
, (5.3.67)
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where κ and Rk is given by (5.3.40,5.3.52) respectively. It is straightforward to confirm the

identity (5.3.29). A comparison with the Bogoliubov coefficients of the minimally coupled

case, (5.3.50,5.3.51) reveals that Ak, Bk for minimal coupling feature the denominators with

δ = k ηR � 1. These denominators are a direct consequence of the infrared enhancement

of the mode functions for nearly massless minimally coupled scalar fields in de Sitter space

time, as evident in eqns. (5.3.12) and (5.3.43,5.3.44).

The distribution function of produced particles is

Nk = |Bk|2 =
1

8

{√
1 + e−2π|α|

(
R2
k +

4

R2
k

)
− 4

}
. (5.3.68)

Using the asymptotic properties of the Gamma functions, we find thatNk → 1/(32α2)2 ∝
1/k8 for k →∞ and as k → 0

Nk ∝
1√
|α|
∝ 1

k
(5.3.69)

therefore particles are produced primarily with very small momentum k � √mHR.
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Figure 21: Nk vs. z =
√
|α| = k√

2mHR
for conformal coupling.
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The distribution function Nk is solely a function of z = k/
√

2mHR, fig. (21) displays Nk

vs. z = |α|1/2 = k/
√

2mHR. It is then convenient to define the distribution function

N (z) ≡ Nk , (5.3.70)

N (z) is peaked at low momentum and vanishes fast for z > 1, for example N (z = 1) '
10−3;N (z = 10) ' 10−7. As a corollary, the particles are produced non-relativistically at

the time of matter-radiation equality, since

k

maeq
.

√
2HR

ma2
eq

' 10−13

√
mev

, (5.3.71)

hence, even for mev ' 10−22 it follows that k/maeq . 10−2. Therefore for m & 10−22 eV the

produced particles are non-relativistic at all times after matter-radiation equality.

Although the distribution function is peaked at low momentum, there is a striking dif-

ference between the minimal and conformal coupling cases. In the (MC) case Nk ' 1/k3

whereas for (CC) Nk ' 1/k as k → 0. This difference can be traced to the difference in mode

functions during the inflationary stage as displayed by eqn. (5.3.12), because during the (RD)

era a′′ = 0 and the mode equation and mode functions are the same for (MC) and (CC).

During the inflationary stage a′′ 6= 0 and minimally coupled fields with masses m � HdS

feature an infrared enhancement, which propagates through the matching conditions into

the Bogoliubov coefficients.

Note that unlike the (MC) case, in the (CC) case the Bogoliubov coefficients Ak, Bk do not

depend on the scale of inflation HdS, this is also a consequence of the infrared enhancement

of (MC) light fields during inflation, encoded in the factors 1/kη in the (MC) mode functions.

During the (RD) era both minimally and conformally coupled fields obey the same equa-

tions of motion because a′′ = 0 in (RD), hence the mode functions fk(η) are obviously the

same in both cases. The difference in behavior for η > ηR emerges from the different match-

ing conditions with the mode functions during inflation. This leads us to conclude that most

of the difference in particle production between these cases is a consequence of the evolution

during the inflationary stage.
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5.4 Non-Adiabatic Particle Production

In the expansion of the field in terms of the exact mode functions (5.3.1) the annihilation

and creation operators a~k, a
†
~k

are time independent. Following [153, 156, 28, 84, 99, 64] we

can introduce time dependent operators by expanding in the basis of adiabatic “out” particle

states. Introduce the zeroth-order adiabatic modes

f̃k(η) =
e−i

∫ η ωk(η′) dη′√
2ωk(η)

; ωk(η) =
√
k2 +m2 a2(η) , (5.4.1)

and expand the exact mode functions gk(η) as

gk(η) = Ãk(η) f̃k(η) + B̃k(η) f̃ ∗k (η) (5.4.2)

and the η− derivative (canonical momentum)[153, 156, 99, 64]

g′k(η) = Qk(η) Ãk(η) f̃k(η) +Q∗k(η) B̃k(η) f̃ ∗k (η) . (5.4.3)

With

Qk(η) = −iωk(η) + Vk(η) , (5.4.4)

with Vk(η) a real function it follows that the Wronskian condition (5.3.3) yields

|Ãk(η)|2 − |B̃k(η)|2 = 1 . (5.4.5)

Inserting the ansatz (5.4.2,5.4.3) into the mode equations yields the coupled equations

of motion for the coefficients Ãk(η), B̃k(η), obtained in references [99, 64]. The relations

(5.4.2,5.4.3) can be inverted to yield the coefficients[99]

Ãk(η) = i f̃ ∗k (η)
[
g′k(η)−Q∗k(η) gk(η)

]
(5.4.6)

B̃k(η) = −i f̃k(η)
[
g′k(η)−Qk(η) gk(η)

]
. (5.4.7)

Different choices of the real functions Vk(η) yield different dynamics for coefficients Ãk(η),

B̃k(η) [99, 64]. Taking, for example Vk(η) = 0 corresponds to the lowest (zeroth) adiabatic

order, another choice, Vk(η) = ω′k(η)/2ωk(η) yields a first adiabatic order correction [99, 64].

For both of these values, the continuity of a(η), H(η), gk(η), g′k(η) across the inflation to (RD)
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transition implies the continuity of the coefficients Ãk(η), B̃k(η). Namely particle production

is a continuous process across the transition, and not a consequence of the assumption of

instantaneous reheating.

The difference in the η- dependence of the coefficients Ã, B̃ for these two choices has

been studied in ref.[64]. Introducing the expansion (5.4.2) into (5.3.1) yields

a~k gk(η) + a†
−~k
g∗k(η) = c~k(η) f̃k(η) + c†

−~k
(η) f̃ ∗k (η) , (5.4.8)

where

c~k(η) = a~k Ãk(η) + a†
−~k
B̃∗k(η) ; c†~k(η) = a†~k Ã

∗
k(η) + a−~k B̃k(η) . (5.4.9)

Therefore the number of adiabatic particles at a given time η is

Ñk(η) = 〈0|c†~k(η) c~k(η)|0〉 = |B̃k(η)|2 . (5.4.10)

We now choose to expand in the basis of the zeroth-order adiabatic “out” particle states,

by setting Vk(η) = 0. Note that if gk(η) coincides exactly with the adiabatic mode function

f̃k(η) then Ãk(η) = 1; B̃k(η) = 0 and there is no particle production.

During the inflationary stage with a(η) = 1/HdS(η−2ηR) and η < ηR, the mode functions

gk(η) are g<k (η) given by (5.3.12). As η → −∞ (η � ηR ) these approach the adiabatic mode

functions f̃k(η), hence it is straightforward to find that

Ãk(η)→ 1 ; B̃k(η)→ 0 , (5.4.11)

yielding as η → −∞
Ñk(η → −∞) = 0 , (5.4.12)

namely the initial vacuum state. For super-horizon wavelengths, kη � 1, the exact mode

functions for minimal coupling (MC) in eqn. (5.3.12) differ drastically from the adiabatic

ones leading to non-adiabatic particle production when the wavelengths cross the horizon

during the inflationary stage.

During the (RD) stage, for η > ηR, the mode functions are g>k (η) given by (5.3.28)

where fk(η) are solutions of Weber’s equations with “out” boundary conditions (5.3.21). At

early times after the transition η & ηR, the Weber functions fk(η) differ drastically from
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f̃k(η), however, asymptotically at long time fk(η) coincide with f̃k(η) because of the “out”

boundary conditions (5.3.21). Therefore, for η � ηR at asymptotically long time during

(RD), it is also straightforward to show that

Ãk(η)→ Ak +O
(
ω′k/ω

2
k

)
; B̃k(η)→ Bk +O

(
ω′k/ω

2
k

)
, (5.4.13)

hence the interpolating time dependent number of particles yields asymptotically during

(RD)

Ñk(η � ηR) = |Bk|2 = Nk . (5.4.14)

This analysis highlights that the “out” particles are produced during the time regimes where

the exact mode functions depart from the adiabatic ones. During inflation particle pro-

duction is substantially enhanced after horizon crossing in the minimally coupled case, and

continues non-adiabatically into the (RD) era during the regime of non-adiabatic evolution

(5.3.20). As clearly discussed in ref.[64], different choices of the real function Vk(η) yield

different time dependence of the interpolating particle number during the non-adiabatic

stages, precisely when particles are produced. Nevertheless, the asymptotic number of par-

ticles coincide with Nk for any definitions of Vk that involve a higher adiabatic ratio[64].

For example, choosing Vk(η) = ω′k(η)/2ω2
k(η) as in ref.[99], the asymptotic in and out be-

havior as η → −∞ and η � ηR remain the same because the adiabatic ratio vanishes in

the asymptotic limits. Therefore, whereas the definition of particles and the evolution of

the time dependent interpolating particle number depends on the particular choice of basis

vectors (adiabatic order) and the real function Vk(η), the aymptotic (out) particle number

Nk is independent of such choice.

During inflation, for a minimally coupled light scalar field the mode functions are not

adiabatic after the corresponding wavelength becomes superhorizon, namely as kη � 1 as

evidenced by the exact mode functions for the (MC) case given by eqn. (5.3.12). As we

have stated above, during the (RD) era after inflation, the Weber mode functions are also

non-adiabatic after the transition for superhorizon wavelengths. The production of “out”

particles occurs primarily during the non-adiabatic evolution and is continuous across the

transition from inflation to (RD) domination. As discussed above, this is a consequence of the
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continuity of scale factor, Hubble rate, mode functions and their conformal time derivative

across the transition.

For a conformally coupled (CC) light particle, and with m/HdS � 1 the mode function

in the inflationary era, given by eqn. (5.3.12) (CC), does not differ substantially from f̃k(η),

hence there is very little production during the inflationary era, unlike the minimally coupled

case. Hence we expect, that the (CC) case will yield a much smaller abundance, an expecta-

tion that is confirmed by the analysis of the energy momentum tensor below. Furthermore,

during (RD) both minimally and conformally coupled fields obey the same equations of

motion, while the corresponding mode functions are drastically different during inflation.

Therefore, the difference in the evolution for η > ηR between these cases is imprinted from

the inflationary stage through the matching conditions.

While there is a quantitative difference in the dynamics for different choices of Vk(η),

the above statements remain true for any choice consistent with the adiabatic expansion, as

demonstrated in the study of ref.[64]. Furthermore, regardless of the precise definition of

an interpolating time dependent particle number, ultimately what is needed to understand

the production of dark matter and its cosmological impact is the energy momentum tensor

associated with the (ULDM) field.

5.5 The Energy Momentum Tensor: Renormalization and Abundance

The energy momentum tensor for the real scalar field φ(x) with generic coupling to

gravity is given by

Tµν = (1− 2ξ)φ,µφ,ν −
1

2
(1− 4ξ)gαβ φ,αφ,β gµν − 2ξ φ φ;µ;ν +

1

2
(1− 6ξ)m2 φ2 gµν

+
ξ

2
gµνφ�φ− ξ

[
Rµν −

1

2
(1− 6ξ)Rgµν

]
φ2 . (5.5.1)

Writing φ(x) in terms of the conformally rescaled field χ(x) as in eqn. (5.2.4) and with

the mode expansion (5.3.1) the expectation value of the energy momentum tensor in the
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Bunch-Davies vacuum state defined by eqn. (5.3.8) in the spatially flat FRW cosmology is

given by1

〈0|T 0
0|0〉 = ρ(η) =

1

4π2 a4(η)

∫ ∞
0

k2dk

{
|g′k(η)|2 + ω2

k(η) |gk(η)|2

− (1− 6ξ)

[
a′

a

(
gk(η)g

′∗
k (η) + g

′

k(η)g∗k(η)− a′

a
|gk(η)|2

)}
, (5.5.2)

〈0|T µµ|0〉 = ρ(η)− 3P (η) =
1

2π2 a4(η)

∫ ∞
0

k2dk

{
m2 a2(η) |gk(η)|2

− (1− 6ξ)

[
|g′k(η)|2 − ω2

k(η) |gk(η)|2 − a′(η)

a(η)

(
gk(η)g

′∗
k (η) + g

′

k(η)g∗k(η)

)

−
(
a′′(η)

a(η)
−
(a′(η)

a(η)

)2
)
|gk(η)|2 + (1− 6ξ) |gk(η)|2 a

′′(η)

a(η)

]}
, (5.5.3)

where ρ(η), P (η) are the energy density and pressure respectively. Using the mode equations

(5.3.2) it is straightforward to show the covariant conservation of 〈0|T µν |0〉. We note that

the continuity of the scale factor, the Hubble rate and the mode functions and their confor-

mal time derivatives at the inflation-(RD) transition at ηR guarantees the continuity of the

energy density 〈0|T 0
0|0〉 as is evident from eqn. (5.5.2). Hence particle production is not

a consequence of the approximation of a sudden transition but rather a consequence of the

non-adiabatic evolution, as emphasized previously.

The instantaneous reheating approximation, with the continuity of mode functions, scale

factor and Hubble rate across the transition, cannot yield a continuity in a′′. The reason

for this is physically clear: the expectation value of the energy momentum tensor of the

background in the homogeneous and isotropic Bunch-Davies vacuum is of the ideal fluid

form 〈0|T µν |0〉 = diag(ρ,−P,−P,−P ) with 〈0|T µµ|0〉 = ρ − 3P . The Ricci scalar R =

6a′′/a3 ∝ 〈0|T µµ|0〉 = ρ− 3P , during the inflationary stage the equation of state is P = −ρ
yielding 〈0|T µµ|0〉 6= 0 whereas in an (RD) era P = ρ/3 and 〈0|T µµ|0〉 = 0 hence a vanishing

Ricci scalar2. Therefore instantaneous reheating implies a discontinuity in the Ricci scalar,

hence a′′. For the scalar (DM) particle 〈0|T µµ|0〉 given by (5.5.3) depends explicitly on a′′,

1We take the infinite volume limit with 1
V

∑
~k →

∫
d3k

(2π)3 .
2This neglects the conformal anomaly[47, 10].
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therefore, while the energy density is continuous, the pressure features a discontinuity as a

consequence of the change in the background equation of state for instantaneous reheating.

During the inflationary stage η < ηR the mode functions are g<k (τ) given by (5.3.11

) corresponding to the “in” Bunch-Davies vacuum state. Therefore during this stage the

energy density is simply the zero point energy density associated with the Bunch-Davies

vacuum.

For η > ηR, the mode functions in (5.5.2,5.5.3) are gk(η) = g>k (η) = Ak fk(η) +Bk f
∗
k (η),

with the Bogoliubov coefficients given by eqns. (5.3.30) obeying the relation (5.3.29). We now

write 〈0|T µν |0〉 in terms of the mode functions fk(η) describing the asymptotic particle states

with “out” boundary conditions. Since we are interested in the energy momentum tensor

near matter radiation equality we average over rapidly varying phases in the interference

terms of the form ff, f ∗f ∗ (and derivatives). We find

〈0|T 0
0|0〉 = ρ(η) =

1

4π2 a4(η)

∫ ∞
0

k2dk
(

1 + 2Nk
){
|f ′k(η)|2 + ω2

k(η) |fk(η)|2

− (1− 6ξ)

[
a′

a

(
fk(η)f

′∗
k (η) + f

′

k(η)f ∗k (η)− a′

a
|fk(η)|2

)}
, (5.5.4)

〈0|T µµ|0〉 =
1

2π2 a4(η)

∫ ∞
0

k2dk
(

1 + 2Nk
){

m2 a2(η) |fk(η)|2

− (1− 6ξ)

[
|f ′k(η)|2 − ω2

k(η) |fk(η)|2 − a′(η)

a(η)

(
fk(η)f

′∗
k (η) + f

′

k(η)f ∗k (η)

)

−
(
a′′(η)

a(η)
−
(a′(η)

a(η)

)2
)
|fk(η)|2 + (1− 6ξ) |fk(η)|2 a

′′(η)

a(η)

]}
, (5.5.5)

where Nk = |Bk|2 and used the relation (5.3.29). The next step consists of expanding Wk(η)

defining the WKB form of the mode functions (5.3.15) in the adiabatic expansion (5.3.18).

We follow the steps in ref.[47, 10, 99] and expand the expectation values of the energy

momentum tensor up to fourth order in the adiabatic expansion, with the result

ρ(η) = ρ(0)(η) + ρ(2)(η) + ρ(4)(η) + · · · (5.5.6)

〈0|T µµ|0〉 = T (0)(η) + T (2)(η) + T (4)(η) + · · · (5.5.7)
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where the superscripts refer to the order in the adiabatic expansion. The respective contri-

butions are similar to the results of ref.([47, 10]) but with the extra factor 1 + 2Nk in the

integrand.

Of particular interest for this study are the zeroth adiabatic order energy density and

pressure, which are given by

ρ(0)(η) =
1

4π2 a4(η)

∫ ∞
0

k2 [1 + 2Nk]ωk(η) dk , (5.5.8)

T (0)(η) =
1

4π2 a4(η)

∫ ∞
0

k2 [1 + 2Nk]
m2 a2(η)

ωk(η)
dk , (5.5.9)

yielding

P (0)(η) =
1

3

[
ρ(0)(η)− T (0)(η)

]
=

1

12π2 a4(η)

∫ ∞
0

[1 + 2Nk]
k4

ωk(η)
dk . (5.5.10)

The energy momentum tensor features ultraviolet divergences that must be regularized

and renormalized. This is explicit at zeroth adiabatic order given by eqns. (5.5.8,5.5.9), the

higher order adiabatic corrections can be found in ref.[47, 10] by multiplying the integrand

in momentum by the factor 1 + 2Nk. Appendix ( C.2) shows some second order adiabatic

contributions that yield ultraviolet divergences in 〈T µν 〉 for Nk = 0. These adiabatic terms

feature inverse powers of ωk as befits the adiabatic expansion, in particular 1/ωk; 1/ω3
k which

yield quadratic and logarithmic ultraviolet divergences.

For the minimally coupled case Nk ∝ k−4 at large momenta (see eqn. (5.3.63)) . There-

fore the terms with Nk for the higher adiabatic orders do not contribute to the ultraviolet

divergences. Consider for example the second adiabatic corrections ρ(2), explicitly given in

appendix ( C.2), as compared to the zeroth order contribution during the radiation domi-

nated area near matter radiation equality (5.5.8) it is suppressed by a factor

∝
( a′

ma

)2

'
( HR

maeq

)2

'
(

10−31

mev

)2

, (5.5.11)

with much larger suppression factors for the terms of higher adiabatic order. The same

argument holds for T (2), for which several contributions are explicitly given in appendix (

C.2).
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Renormalization:

The ultraviolet divergences in the energy momentum tensor must be regularized and

renormalized. For Nk = 0 such a program is well established and has been thoroughly

studied and implemented in refs.[28, 157, 89, 108, 47, 10, 99, 27]. As discussed in detail

in these references, the ultraviolet divergences are absorbed into renormalizations of the

cosmological constant, Newton’s constant G and into the geometric tensors H
(1,2)
µν which

result from the variational derivative of a gravitational action that includes higher curvature

terms ∝ R2, RµνRµν . These higher curvature terms are added in the action multiplied by

counterterms, which are then required to cancel the coefficients of the geometric tensors in

such a way that the renormalized action is the Einstein-Hilbert action.

Since our focus is to study the contribution from particle production, namely Nk 6= 0

we absorb the full energy momentum tensor for Nk = 0 into these renormalizations, this is

tantamount to subtracting the zero point or vacuum energy density during the inflation and

radiation eras. After this subtraction and renormalization, only the terms proportional to

Nk in (5.5.8) and (5.5.7) are considered.

Since, as shown explicitly in eqn. (5.3.63) Nk ∝ 1/k4 as k → ∞ for the minimally

coupled case, the corrections of second adiabatic order and higher do not feature ultraviolet

divergences, and are suppressed by factors of order 10−62/m2
ev near matter-radiation equality.

Hence, we keep solely the contribution of zeroth adiabatic order from particle production.

After renormalization and to leading adiabatic order we find the contributions to the energy

density and pressure from particle production to be given by

ρ(pp)(η) =
1

2π2 a4(η)

∫ ∞
0

k2Nk ωk(η) dk , (5.5.12)

P (pp)(η) =
1

2π2 a4(η)

∫ ∞
0

1

3
k vk(η)Nk k2dk ; vk(η) =

k

ωk(η)
. (5.5.13)

This result is noteworthy: the density and pressure are exactly the diagonal components of

a kinetic energy momentum tensor describing a (perfect) fluid. Note that the integrals are

over comoving momentum, in terms of the physical (local) energy Ek(η) =
√
k2
ph(η) +m2

and physical momenta kph(η) = k/a(η) these expressions can be written as
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ρ(pp)(η) =
1

2π2

∫ ∞
0

F
[
a(η) kph

]
Ek(η) k2

ph dkph , (5.5.14)

P (pp)(η) =
1

2π2

∫ ∞
0

1

3
kph

kph
Ek(η)

F
[
a(η) kph

]
k2
phdkph , (5.5.15)

where

F
[
a(η) kph

]
≡ Nk , (5.5.16)

is a frozen, i.e. a time independent distribution function of produced particles. It is straight-

forward to show covariant conservation, namely

ρ̇(pp)(t) + 3
ȧ(t)

a(t)

(
ρ(pp)(t) + P (pp)(t)

)
= 0 . (5.5.17)

We highlight this result: the usual fluid-kinetic energy momentum tensor emerges as

the leading order (zeroth order) in the adiabatic expansion after subtracting the “vacuum”

contribution which is absorbed in the renormalization of the cosmological and Newton’s con-

stant, and cancel counterterms that multiply higher curvature terms in the action. The full

expectation value of the energy momentum tensor during the non-adiabatic stage cannot be

written in the kinetic form in terms of the distribution function; such simplification is only

available during adiabatic evolution.

As discussed above, in the minimally coupled case the distribution function Nk ∝ 1/k4

in the large k limit, therefore both, the energy density (5.5.12) and pressure (5.5.13) at

zeroth adiabatic order feature a priori ultraviolet logarithmic divergences. However, these

divergences are actually beyond the realm of validity of two of our main approximations,

i:) superhorizon wavelengths at the end of inflation, namely kηR � 1. As discussed in

section (5.3), taking the upper bound on the scale of inflation this condition implies that

k � µeV, this is hardly an ultraviolet large cutoff in momentum. Therefore, in principle and

for consistency, the momentum integrals must be cutoff at this scale, thus the “divergences”

associated with particle production are not physical. ii:) as discussed in detail in section (5.7)

the assumption of instantaneous reheating will definitely not be warranted for sub-horizon

wavelengths, and the distribution function for these (large) wavevectors (with k � µeV) may

differ drastically from that of the wavevectors that are super-Hubble at the end of inflation.
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Hence, consistency with our main assumptions imply that the contributions from particle

production to the energy momentum tensor must be cut-off at a comoving momentum scale

' √HRHdS ' µeV for HdS ' 1013 GeV, which corresponds to wavelengths longer than a

meter.

Therefore, we regularize the integrals featuring Nk by introducing a comoving upper mo-

mentum cutoff kmax . 1/ηR =
√
HRHdS. Because the distribution function Nk is enhanced

at low momentum we also include a lower momentum cutoff kmin ' H0 corresponding to

horizon-sized wavelengths today. Hence the energy density and pressure from particle pro-

duction are given by

ρ(pp)(η) =
1

2π2 a4(η)

∫ kmax

kmin

Nk ωk(η) k2 dk , , (5.5.18)

P (pp)(η) =
1

6π2 a4(η)

∫ kmax

kmin

Nk
k2

ωk(η)
k2dk . (5.5.19)

The abundance Ω(a) and the equation of state w(a) are, respectively,

Ω(a) =
ρ(pp)(η)

ρc
; ρc =

3H2
0

8π G
' 0.4 × 10−10 (eV)4 , (5.5.20)

w(a) =
P (pp)(η)

ρ(pp)(η)
. (5.5.21)

5.5.1 Minimal Coupling

For the minimal coupling case Nk is given by eqn. (5.3.61) in terms of the variable z

defined by eqn. (5.3.54), in this case we find the abundance (5.5.20)

Ω(a) =
m

ρc a3(η)

(
HdS

m

)2 (
mHR

)3/2 1

16 π2

∫ zM

zm

D(z)

[
z2

a2(η)

(2HR

m

)
+ 1

]1/2
dz

z
. (5.5.22)

The minimum zm provides an infrared cutoff, with kmin ' H0, it follows that zm = H0√
2mHR

.

Values of comoving momentum k � m inside the integral of the distribution function yield

contributions that redshift as 1/a4(η) hence contributing to the radiation component. The
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matter contribution for a(η) & aeq is extracted from contributions to the integrals from

comoving momenta k . maeq, hence we introduce an upper cutoff zM ≤ maeq/
√

2mHR.

Therefore for a(η) > aeq we find the contribution to the (DM) abundance

Ω(a) ' 0.5

√
mev

a3(η)

[ HdS

1013 GeV

]2
∫ zM

zm

D(z)

z
dz ≡ Ωpp

a3(η)
. (5.5.23)

Taking as the maximum comoving wavevector k ' maeq and the minimum k ' H0 it

follows that zM '
√
mev × 1013 � 1 and zm ' H0/

√
2mHR ' 10−16/

√
mev � 1, hence

D(zM) ' 10−13/
√
mev � 1 and D(zm) '

√
2

Γ( 1
4

)

Γ( 3
4

)
. Upon integration by parts the integral in

(5.5.23) is given by∫ zM

zm

D(z)

z
dz ' −

√
2

Γ(1
4
)

Γ(3
4
)

ln
[ H0√

2mHR

]
−
∫ ∞

0

ln(z)
dD(z)

dz
dz︸ ︷︷ ︸

'0.6

, (5.5.24)

where in the second term (integral) we have taken zm → 0; zM →∞ because the integrand

vanishes fast at both limits, and the remaining integral is carried out numerically. Therefore

to leading order we find

Ω(a) =
Ωpp

a3(η)
; Ωpp = 2.09

√
mev

[ HdS

1013 GeV

]2

ln
[√2mHR

H0

]
. (5.5.25)

For a given value of mev this equation yields the contribution to the dark matter abun-

dance as a function of mev and the only uncertain cosmological parameter HdS. Requiring

that the abundance Ωpp = ΩDM = 0.25 gives the dependence of the mass that yields the

correct abundance on HdS, namely

√
mev

[
ln
[√
mev

]
+ 36

]
= 0.12

[
1013GeV

HdS

]2

. (5.5.26)

For HdS ' 1013 GeV we find that the correct (DM) abundance yields the value

m ' 1.5× 10−5 eV . (5.5.27)

The super-horizon approximation k ηR � 1 entails a maximum value of the mass for

which the approximations involved are consistent. We have set the maximum value of the

momentum integral as kM ' maeq so as to capture all the values of momenta that contribute

to the (non-relativistic) matter contribution. For this upper limit to be consistent with the
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superhorizon approximation it follows that the mass of the (ULDM) particle is constrained

by the upper limit

maeq ηR . 1⇒ m . 0.02

[
HdS

1013GeV

]1/2

eV . (5.5.28)

Fig. (22) displays ln
[

Ωpp
ΩDM

]
with ΩDM = 0.25 vs. ln[mev] for HdS = 1013 GeV.

10-17 10-12 10-7 10-2
m (eV)

10-7

10-5

0.001

0.100

10

�pp/�DM

Figure 22: ln
[

Ωpp
ΩDM

]
vs. ln[mev] for HdS = 1013 GeV. The blue-shaded region corresponds

to under abundance and the red-shaded to overabundance (colors online).

The pressure and equation of state are given by eqns. (5.5.19,5.5.21) respectively. For the

non-relativistic component describing a matter dominated “fluid” we take ωk(η) = ma(η) in

the integrands. The remaining integrals are similarly obtained with the above cutoffs. The

equation of state parameter is given by

w(a) =
2

3

HR

ma2(η)

∫ zM
zm

D(z) z dz∫ zM
zm

D(z)
z
dz

, (5.5.29)

taking zM = maeq/
√

2mHR and zm ' H0/
√

2mHR we find

w(a) ' 2 Γ(3/4)

3 Γ(1/4)

(
HR

2ma2
eq

)1/2

ln
[√

2mHR
H0

] ( aeq
a(η)

)2

. (5.5.30)
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Taking the value of the mass as given by (5.5.27) with HdS ' 1013 GeV we find

w(aeq) ' 2.5× 10−14 . (5.5.31)

For a non-relativistic species we find

〈V 2(η)〉 =

∫
Nk k2

m2a2(η)
k2dk∫

Nk k2dk
≡ 3

P (η)

ρ(η)
= 3w(a) . (5.5.32)

Therefore, indeed this is a very cold dark matter candidate despite being so light. The

main reason is that the distribution function strongly peaks at small values of momentum.

The redshift behavior of w(a) is that expected for a non-relativistic component.

Free streaming length:

The comoving free streaming wave-vector is defined in analogy with the Jeans wavevector

in the fluid description of perturbations, namely[39]

k2
fs(η) =

4π Gρm(η)

〈V 2(η)〉 a2(η) =
3

2

H2
0 Ωm

〈V 2
eq〉 a2

eq

a(η) , (5.5.33)

where 〈V 2(η)〉 is given by eqn. (5.5.32), which we have written as

〈V 2(η)〉 = 〈V 2
eq〉
( aeq
a(η)

)2

. (5.5.34)

As shown in ref.[39] the cutoff scale in the power spectrum is the comoving free streaming

length

λfs ≡
2π

kfs(aeq)
= 2π

[2 〈V 2
eq〉 aeq

3 ΩM

]1/2

dH , (5.5.35)

where dH = 1/H0 = 3 Gpc/h is the Hubble distance. This definition differs from the usual

definition of the comoving free streaming distance lfs during matter domination by factors

of O(1):

lfs =

∫ η0

ηeq

√
〈V 2(η)〉 dη =

√
〈V 2

eq〉 aeq
∫ η0

ηeq

dη

a(η)
. (5.5.36)

During the matter dominated era it follows that

dη =
1

H0

√
ΩM

da

a1/2
, (5.5.37)
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hence the free streaming distance from matter-radiation equality until a0 ' O(1) is given by

lfs = 2
[〈V 2

eq〉 aeq
ΩM

]1/2

dH . (5.5.38)

Using the results (5.5.31,5.5.32)) corresponding to HdS ' 1013 GeV, we find

λfs ' lfs ' 70 pc . (5.5.39)

This is the cutoff scale in the matter power spectrum; thus we see that even for a very light

(DM) candidate with m ' 10−5 eV the cosmological production yields a very cold species

with a rather small free streaming length comparable to that of heavy weakly interacting

massive particles.

5.5.2 Conformal Coupling

For the case of conformal coupling, the distribution function Nk that enters in the abun-

dance and equation of state (5.5.18-5.5.21) is given by (5.3.68). The integral for the density,

eqn. (5.5.18), cannot be obtained in closed form. However, Nk is solely a function of

z = k/
√

2mHR and localized in the region 0 ≤ z ≤ 1 as discussed in section (5.3.3) and dis-

played in fig. (21). Furthermore for a(η) ' aeq this region of comoving momenta correspond

to non-relativistic particles and we can safely replace ωk(η) ' ma(η) inside the integrand in

(5.5.18), yielding (near matter radiation equality)

ρ(pp)(η) =
m

a3(η)

∫
Nk k2 dk

2π2
, (5.5.40)

therefore the low momentum peak of the distribution function entails that the density red-

shifts as non-relativistic matter.

Changing variables to z and writing Nk ≡ N (z), we find

ρ(pp)(η) =
1

2π2

m4

a3(η)

[2HR

m

]3/2
∫ zM

0

N (z) z2 dz , (5.5.41)

where zM . maeq/
√

2mHR and the lower limit can be taken to zero because the integrand

does not feature an infrared divergence.
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The remaining integral is rapidly convergent and is carried out numerically with an upper

limit z ' 20 (with N (20) ' 10−20), for which the integral yields the value ' 0.01. Hence we

find the abundance

Ω(a) ' 1.3× 1

a3(η)

[ m

(eV)

]4 [2HR

m

]3/2

× 107 ' (mev)
5/2

a3(η)
× 10−46 . (5.5.42)

Thus, even for m ' (eV) the dark matter abundance for conformally coupled particles is

negligible. This is in qualitative agreement with our expectations of very small abundance

in this case, but implementing the framework described in the previous section allowed us

to obtain a quantitative understanding of the abundance in this case.

The main differences with the minimally coupled case can be traced back to the factors

δ = kηR in eqns. (5.3.50,5.3.50). These are a result of the behavior ∝ 1/(kηR) of the (MC)

mode functions during the inflationary stage (see eqn. (5.3.12), a hallmark of the infrared

enhancement of correlations of nearly massless particles minimally coupled to gravity in de

Sitter space time. These factors result in the infrared enhancement Nk ∝ 1/k3 and the factor

H2
dS for the (MC) case vs. Nk ∝ 1/k for the (CC) case.

5.6 On Entropy Perturbations

Adiabatic and entropy perturbations from inflation have been thoroughly studied in

refs.[92, 48, 20], and we refer the readers to these for details. In ref.[92, 48] the case of two

fields is studied in detail; this is the case that is most relevant for our discussion: one of the

fields is the inflaton, the other is the (ULDM) field with action given by (5.2.1). While the

inflaton field develops an expectation value that drives the inflationary stage, the (ULDM)

does not acquire an expectation value, and is taken to be in its Bunch-Davies vacuum state.

In ref.[92] “adiabatic” and “entropy” fields are obtained from the fluctuations of the two fields

around their expectation value, by introducing a “mixing” angle that depends explicitly on

the time derivative of the expectation values of both fields. The “adiabatic” field represents

a fluctuation along the background trajectory, while the “entropy” field is the orthogonal

combination in terms of the “mixing” angle. We identify the (ULDM) field with the second
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(χ)-field in ref.[92]. Since in our case this field does not acquire an expectation value, it

follows that the “mixing” angle vanishes identically. In this case, the inflaton fluctuations are

the “adiabatic” field and the (ULDM) field is identified with the “entropy” field. Therefore,

considering perturbations linear in the fluctuations, the vanishing of the mixing angle implies

that the entropy perturbation does not source the long-wavelength evolution of the comoving

curvature perturbation, nor is there any cross correlation between the adiabatic and entropy

perturbations (see for example eqns.(47,48,52,55) and comment below eqn. (50) in ref.[92]).

Ref.[56] focused on superheavy dark matter, and following on previous study in ref.[140]

recognized that in the case in which the dark matter field does not acquire an expectation

value the treatment of isocurvature perturbations must be modified substantially. The au-

thors of ref.[56] also recognized that when the superheavy dark matter field does not acquire

an expectation value (background) there is no mixing between the fluctuations of this and

the inflaton field to linear order3.

The treatment advocated in ref.[56] defines the energy density perturbation of the dark

matter field as

δρ(dm)(~x) =
: T

(dm)
00 (~x) : −〈: T (dm)

00 (~x) :〉
ρ(dm)

(5.6.1)

ρ(dm) = 〈: T (dm)
00 (~x) :〉 , (5.6.2)

where normal ordering is referred to the Bogoliubov rotated vacuum state (see ref.[56] for

details), and identifies the power spectrum of entropy perturbations from the spatial Fourier

transform of the connected correlation function, namely∫
d3r

(2π)3
ei
~k·~r 〈δρ(dm)(~x) δρ(dm)(~x+ ~r)〉 ∝ P(dm)(k) . (5.6.3)

In free field theory the connected correlator in eqn. (5.6.3) is a one loop diagram.

In ref.[56] the expectation value ρ(dm) depends explicitly on the Bogoliubov coefficient

β associated with particle production during inflation, and vanishes identically when this

coefficient vanishes, which is the case in our study.

The above definitions do not apply to our case since during the inflationary stage the

quantum state in our treatment is the Bunch-Davies vacuum state and consequently, the

3See the discussion prior to eqn. (87) in ref.[56].
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energy momentum tensor during this stage describes the zero point energy density of this

vacuum state. There is no Bogoliubov coefficient β and as per the result eqn. (90) in ref.[56]

the energy density ρ(dm) given by (5.6.2) vanishes identically. Furthermore, as discussed

in section (5.5) we have renormalized the energy momentum tensor by subtracting the full

contribution from the zero point energy density during inflation and the radiation eras.

Therefore the definition (5.6.1) cannot be applicable to our study.

There is another important caveat in the interpretation of entropy perturbations advo-

cated in ref.[56]: as we discussed in detail in section (5.5) the expectation value of the energy

momentum tensor features quartic, quadratic and logarithmic divergences and requires sub-

tractions up to fourth adiabatic order to be renormalized. These aspects had already been

addressed in references[47, 153, 156, 10, 108]. The various divergences are absorbed into

renormalizations of the cosmological and Newton constants, but also in higher curvature

counterterms in the bare action (corresponding to the tensors H
(1.2)
µν [47]).

Different regularizations (subtractions) yield different finite contributions to the en-

ergy density, therefore the finite contribution to the expectation value yielding ρ(dm) is not

uniquely defined and depends on the subtraction scheme. As discussed in section (5.5) we

substract the full zero point energy all throughout the evolution. In fact this procedure sub-

tracts completely the zero point contribution during inflation and radiation eras, hence in our

case ρ(dm) vanishes identically during inflation after renormalization. This is the usual proce-

dure in semiclassical gravity, for example during inflation only the background (expectation

value) contribution is considered and in radiation domination only the finite temperature

(kinetic) contributions to the energy momentum tensor are considered. Furthermore, there

are several other caveats associated with the definition of the power spectrum (5.6.3) pro-

posed in ref.[56] (see eqn. (96) in ref.[56]): i:) it is straightforward to show that the kinetic

term contribution to the energy momentum tensor yields an ultraviolet divergence with the

fifth power of an ultraviolet cutoff to P(dm)(k). In ref.[56] this divergence in the kinetic

contribution is not manifest because this contribution is evaluated near the end of inflation

when the mode functions are dominated by the superhorizon contributions and the integrals

have been cutoff in the ultraviolet, with an upper momentum aeHe. But the leading ul-

traviolet divergences are similar to those in Minkowski space time and dominate the earlier
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dynamics. ii:) even for the mass term contribution of the energy momentum tensor, the

one-loop connected diagram that yields P(dm)(k) still features a linear ultraviolet divergence,

which was neglected in ref.[56] because it is multiplied by a function of time that becomes

vanishingly small near the end of inflation. iii:) unlike the renormalization of the energy

momentum tensor whose subtractions are absorbed systematically into the parameters of

the total action (including higher curvature terms), there is no natural manner to absorb the

divergences in the power spectrum (5.6.3). In ref.[56] all the divergent integrals are cutoff at

wavevectors ' aeHe, namely those that cross the horizon at the end of inflation. However,

a complete treatment should include a proper renormalization of the divergences and the

zero point energy. In our study, the fact that during inflation the full energy density is

the zero point corresponding to the Bunch-Davies vacuum makes the framework to describe

non-linear entropy perturbations advocated in ref.[56] not applicable to our case. Some of

these caveats have been recognized in ref.[56]4.

Entropy perturbations post-inflation:

The discussion above has focused on the generation of entropy perturbations during in-

flation and the applicability of the framework introduced in ref.[56]. However, the important

aspect is the impact of entropy (isocurvature) perturbations upon the (CMB). In the usual

approach to cosmological perturbations, adiabatic and isocurvature perturbations during in-

flation provide the initial conditions of the respective perturbations upon horizon re-entry

during the radiation (or matter) dominated era. As discussed in detail in refs.[20, 48], the ini-

tial conditions of isorcurvature perturbations are determined by the set of transfer functions

discussed in ref.[48]. These, in turn, are proportional to the “mixing” (or correlation) angle

associated with the expectation value of the entropy field (see for example eqns. (44, 45)

in [20]), which in our case vanishes identically. Furthermore, the framework introduced in

ref.[56] does not apply to our case as discussed above. Therefore, for the case that we study,

the initial conditions for isocurvature perturbations during the radiation dominated era can-

not be determined in the inflationary stage. As discussed above, the energy momentum

tensor during inflation describes the vacuum zero point energy and is completely subtracted

out by renormalization. In the post-inflationary stage it features three contributions: the

4See for example the comments after eqn. (86) in ref.[56].
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vacuum contribution is subtracted out in the renormalization procedure, the interference

term is rapidly oscillating in the adiabatic regime and therefore its expectation value aver-

ages out on short time scales, and the contribution from particle production, which in the

adiabatic regime features the kinetic fluid form. It is this latter term that is the relevant one

(after renormalization) to understand dark matter perturbations, the distribution function

is completely determined by the Bogoliubov coefficient |Bk|2. The influence of isocurvature

perturbations on the (CMB) is a result of solving the system of Einstein-Boltzmann equa-

tions for linear cosmological perturbations, in which |Bk|2 is the distribution function of

the unperturbed (DM) component, and ρpp (5.5.18) describes the background density. This

set of Einstein- Boltzmann equations must be appended with initial conditions, which are

determined from the respective super-horizon perturbations at the end of inflation. From

the above discussion, it is clear that in the case that we study, the proper initial conditions

for isocurvature perturbations remain to be understood at a deeper level.

The corollary of this discussion is that a proper definition of the power spectrum of

entropy perturbations in the case when the fields do not acquire expectation values remains

to be understood at a deeper level. The caveats associated with the renormalization of the

energy momentum tensor along with its correlations remain to be clarified in a consistent and

unambiguous manner. These include a proper account of the fact that there is no natural

manner to renormalize the divergences in a power spectrum obtained from the connected

correlation function of the energy momentum tensor. These remain even when the zero

point contribution to the energy density is completely subtracted. The contribution of zero

point energy correlations to non-linear perturbations merits deeper scrutiny, since even the

fluctuations of the inflaton yield zero point contributions to the energy density and all other

fields that are either produced or excited post-inflation presumably also contribute to the zero

point energy density during inflation. A satisfactory resolution of these important issues,

necessary to quantify reliably the impact of non-linear entropy perturbations is still lacking,

and is clearly well beyond the scope of this study.
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5.7 Discussion and Caveats

On reheating:

Reheating dynamics, namely the non-equilibrium processes that lead to a (RD) dom-

inated era after the inflationary stage are still being vigorously studied. Most studies of

reheating necessarily input particular forms for the inflaton potential and model the cou-

plings of (standard model) particles to the inflaton and/or other degrees of freedom thereby

yielding model dependent descriptions with widely different time scales depending on un-

known couplings and masses[9].

One of our main assumptions is that the transition from the inflationary stage to the

(RD) dominated stage is instantaneous. The main physical reason behind this approximation

is that we focus on wavelengths that are superhorizon at the end of inflation. The dynam-

ics of the mode functions for these wave-vectors is on long time scales, hence insensitive to

the reheating dynamics occurring on much shorter time scales. Furthermore, in principle,

wavelengths larger than the particle horizon are causally disconnected from the causal mi-

crophysical processes of thermalization. While this assumption seems physically reasonable,

it must be tested quantitatively. However, this requires studying a particular model of re-

heating dynamics. While conclusions of a particular model will not be universally valid,

perhaps a simple model that dynamically and continuously interpolates (with continuous

scale factor and Hubble rate) between a near de Sitter inflationary stage and a post-inflation

(RD) stage would illuminate the validity of the instantaneous approximation. Most likely

such study would require a substantial numerical effort to solve the mode equations during

the transition and matching to the solutions in the subsequent (RD) era. Clearly such study

is beyond the scope of this article but merits further attention.

Inflationary particle production:

During the (RD) era the equations of motion are the same for (MC) and (CC) fields

because a′′(η) = 0. However, during inflation the equations of motion for the two cases are

very different, yielding the drastically different solutions given by eqn. (5.3.12). Whereas

the mode functions for the (CC) case are “close” to the adiabatic mode functions, those of

the (MC) depart substantially when the wavelength becomes superhorizon kη � 1. This
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difference is imprinted on the evolution of the mode functions for η > ηR through the

matching conditions (continuity of function and derivative at ηR). The results from the

(CC) case confirm negligible particle production in this case, this leads us to conclude that

the largest contribution to particle production in the (MC) case occurs during the inflationary

stage. This conclusion is bolstered by the analysis of section (5.4), where it is shown that the

(MC) mode functions depart substantially from the adiabatic ones for superhorizon modes

thus resulting in substantial particle production, whereas those for the (CC) case are similar

to the adiabatic ones with little particle production.

Bose Einstein condensate vs. distribution function:

We have shown that for minimally coupled ultra-light particles the distribution function

peaks at very low comoving momentum withNk ∝ 1/k3. As discussed in the previous section

the distribution function of the produced particles “inherits” the infrared enhancement of

the mode functions of minimally coupled ultra-light particles during the inflationary era

(taken to be a de Sitter space-time). This enhancement, however, does not imply Bose

Einstein condensation, particle number of the real scalar field is not conserved, and the

field does not acquire a vacuum expectation value. Namely, there is no off-diagonal long

range order and no expectation value that would break a U(1) symmetry both of which are

typically associated with Bose-Einstein condensation. The description of this (ULDM) is

in terms of the contributions to the energy momentum tensor. This is very different from

the phenomenological Schroedinger-Poisson equation advocated for “fuzzy” dark matter[109,

110, 111] which relies on a “many-body” Schroedinger-like wave function for a classical order

parameter field akin to the Gross-Pitaevskii equation (non-linear Schroedinger equation) for

a superfluid. In many body physics such equation is typically obtained from a variational

derivative of the expectation value of a many-body Hamiltonian in a coherent state[130].

Self-consistency and backreaction:

We have taken the cosmological expansion as a (RD) background, neglecting the contri-

bution of the (ULDM) to the radiation component. Such contribution is obtained from the

momentum region with k � maeq in the integrals for the density and pressure. In princi-

ple this contribution modifies the ulrarelativistic content of the plasma contributing a term

that redshifts like radiation ∝ 1/a4(η) and, in principle, should be treated self-consistently.
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However, we consider that the (RD) era is dominated by the ' 100 ultrarelativistic degrees

of freedom of the standard model (and possibly beyond), therefore the contribution of one

extra degree of freedom, can be neglected as a first approximation.

Lower bound on abundance:

Including possible interactions with either the inflaton or other fields within or beyond

the standard model entails additional production mechanisms for a very long lived (DM)

particle. Production from reheating or from other mechanisms only increases the abundance,

and loss mechanisms, such as decay, will occur on time scales comparable to or larger than

the Hubble time today. Therefore, this study yields a baseline for the production of ultra-

light dark matter particles; any other production mechanism will increase the abundance.

This is an important corollary of our study: this simplest of models describing the darkest

of dark matter (only gravitational interactions) yields an abundance from non-adiabatic

particle production which must be accounted for in any model of (ULDM) particles featuring

interactions. Thus the abundance resulting from this mechanism is a lower bound to the

abundance of any interacting species of long-lived (ULDM), and applies, for example to

axion-like candidates.

Similarities and differences with vector dark matter production:

The production of a massive vector boson during inflation has been recently studied in

ref.[94]. The authors show that the longitudinal component behaves similarly to a massive,

minimally coupled scalar field, whereas the transverse components are conformally coupled

to gravity. Remarkably, in this reference it is found that the abundance of the longitudinal

component is very similar to the result eqn. (5.5.25) above (up to logarithmic contributions).

While the equivalence between the longitudinal component and a massive, minimally coupled

scalar field is, perhaps expected, the origin of the similarity in the abundance is by no means

clear to us.

In particular we match the mode functions with “in” (Bunch-Davies vacuum) boundary

conditions during inflation to the exact mode equations in the radiation dominated era

with “out” boundary conditions determined by the positive adiabatic frequencies at long

time near matter radiation equality, with the matching conditions described in section (5.3).

Furthermore we obtain the full energy momentum tensor, confirm covariant conservation and
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identify the particle production contribution after the proper renormalization and well into

the adiabatic regime when the renormalized energy momentum tensor attains the kinetic

form in terms of the distribution function. Finally, the total matter density is obtained

from the integral of this distribution function, which again is extracted during the adiabatic

regime. While perhaps all of these aspects are somehow included in the scaling argument

in ref.[94], we have not been able to find the proper equivalence between our treatment and

the framework of ref.[94]. However, this aspect notwithstanding, the similarities between the

abundance in both results is remarkable.

Caveats:

The result (5.5.26) implies that for a very low inflation scale, namely with HdS �
1013 GeV and for a fixed, given mass mev the (ULDM) gravitationally produced yields a

much smaller abundance. Or, equivalently, the value of the mass that yields the correct

(DM) abundance increases substantially, whereas consistency of the approach requires the

upper bound given by (5.5.28). Since there is a large uncertainty on the scale of inflation,

to be resolved by a clear measurement of primordial gravitational waves (or the tensor-to-

scalar ratio), it is possible that a very low scale would lead to a revision of the assumption

on instantaneous reheating. Furthermore, the only direct observational evidence of a (RD)

era is from Big Bang Nucleosynthesis via the primordial abundance of light elements; this

scale, however, corresponds to a few MeV. Thus it is possible that the reheating temper-

ature is as low as a few MeV[101]. If this were the case, a very large discrepancy between

the scale of inflation and the reheating temperature cannot be accommodated within the

instantaneous reheating approximation because modes that are superhorizon during infla-

tion may re-enter during the dynamical evolution between the end of inflation and the (RD)

stage, thus modifying the final distribution function even for long wavelengths. Such large

discrepancy will require a fundamental understanding of the cosmological evolution between

the two eras suggesting that there may be a long epoch after the end of inflation that is not

described by a (RD) cosmology. This scenario would invalidate one of our main assumptions

and require a completely different approach to describing cosmological production, and at

the fundamental level, a complete revision of assumptions on post-inflationary cosmology.
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5.8 Conclusions

We have studied the non-adiabatic cosmological production of ultra-light dark matter

particles under a minimal set of assumptions: a single ultra-light real scalar field that only in-

teracts with gravity and no other field, it is a spectator field in its Bunch-Davies vacuum state

during inflation, it does not contribute to the inflationary dynamics nor to any linear metric

perturbation (such as isocurvature). We focus on superhorizon wavelengths after inflation,

since these are the cosmologically relevant scales for structure formation, and assume an in-

stantaneous reheating into a (RD) cosmology. The cases of minimal and conformal coupling

to gravity are analyzed separately. The mode equations in either case are solved exactly both

in the inflationary and the (RD) eras with a continuous matching of scale factor, Hubble rate,

mode functions and conformal time derivative at the transition. These continuity conditions

imply the continuity of the energy density across the transition. The “out” particle states

are carefully defined in terms of the zeroth-order adiabatic states at asymptotically long time

after the transition, these states are locally identified with particle states as in Minkowski

space-time. The matching conditions at the transition between inflation and (RD) yield

the Bogoliubov coefficients from which we obtain the distribution function of produced par-

ticles. We establish a correspondence with a (conformal) time dependent particle number

by introducing an adiabatic basis of “out” particle states and show explicitly that particle

production is a direct consequence of non-adiabatic cosmological evolution during inflation

and well into the (RD) era. We show that for a mass 10−22 eV . m cosmological evolution

becomes adiabatic well before matter-radiation equality. The number of produced particles

only depends on cosmological parameters. Whereas a conformally coupled light scalar par-

ticle is produced with negligible abundance, there is substantial production for minimally

coupled light particles with masses much smaller than the Hubble scale during inflation.

The distribution function of minimally coupled light fields feature an infrared enhancement

“inherited” from the inflationary stage yielding a behavior Nk ∝ 1/k3 at small comoving

wavevectors. We obtain the full energy momentum tensor for the (ULDM) from which we

obtain the energy density and pressure near matter-radiation equality after renormalization,

which is performed by subtracting the zero point energy density during inflation and ra-
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diation domination. An important result is that the fully renormalized energy momentum

tensor coincides with the fluid-kinetic one at zeroth-order in the adiabatic expansion. The

abundance and equation of state depend solely on the mass and cosmological parameters,

in particular the scale of inflation for the minimally coupled case. The main results of this

study are the following, for a minimally coupled (ULDM): the ratio of the abundance of

produced particles Ωpp to ΩDM is given by

Ωpp

ΩDM

= 8.36

{
√
mev

[
ln
[√
mev

]
+ 36

]}[ HdS

1013GeV

]2

where mev = m/(eV ) and HdS the Hubble scale during inflation. For the upper bound on

the scale of inflation from Planck[59] HdS ' 1013 GeV, we find that the produced particles

saturate the (DM) abundance for

m ' 1.5 × 10−5 eV .

For this value of the mass we find the equation of state parameter at matter-radiation equality

w(aeq) ' 2.5× 10−14 ,

and a free streaming length (cutoff scale of the matter power spectrum)

λfs ' 70 pc . (5.8.1)

Therefore the produced particles while very light are a cold dark matter candidate with a

free streaming length comparable to that of weakly interacting massive particles.

This is the simplest model for the darkest of (ULDM) since this particle only features

gravitational interactions. As such, the results for the abundance provide a lower bound and

a baseline for the abundance of any (ULDM) candidate with a lifetime equal to or longer

than 1/H0. Interactions with degrees of freedom of the standard model or beyond that

leads to particle production will only increase the abundance. This lower bound applies to

axion-like particles and must be accounted for in the (DM) contribution of any (ULDM)

candidate. A study of cosmological production of fermionic degrees of freedom will be

reported elsewhere[103].
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We have also discussed the caveats associated with a proper treatment of isocurvature

perturbations in the case when the (ULDM) (entropy) field does not acquire an expectation

value, suggesting that a deeper understanding of this case is needed for a reliable estimate of

isocurvature perturbations from the (ULDM) field. We note that such an analysis has not

been done even for the inflaton fluctuations.
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6.0 Gravitational Production of Nearly-thermal Fermionic Dark Matter

6.1 Introduction

While the cosmological and astrophysical evidence for, and necessity of, Dark Matter

(DM) is compelling, it is abundantly clear that a particle physics candidate must be sought

in extensions beyond the Standard Model. A multi decade effort for direct detection of

various possible candidates has not yet led to the identification of a (DM) particle[25, 26,

117, 142, 58]. A theoretical challenge in proposing a suitable particle physics candidate is to

identify a production mechanism that yields the correct abundance and equation of state to

satisfy the cosmological and astrophysical constraints and whose lifetime is of the order of,

or larger than, the age of the Universe.

Particle production as a consequence of cosmological expansion is a remarkable phe-

nomenon that was studied in pioneering work in refs.[153, 84, 96, 97, 28, 87, 158, 149]. An

important aspect of this production mechanism is that it is naturally a consequence of the

dynamical gravitational background, and if the particle only interacts with gravity and no

other degrees of freedom, its abundance is determined solely by the particle mass, its cou-

pling to gravity, and cosmological parameters, independent of hypothetical couplings beyond

the Standard Model.

Gravitational production has been studied for various candidates and different cosmo-

logical backgrounds: heavy particles produced during inflation[55, 52, 54, 124, 125], via

inflaton oscillations[173, 77, 76], reheating[102, 132], or via cosmological expansion during

an era with a particular equation of state[135], and more recently ultralight bosonic particles

cosmologically produced during inflation and a post-inflation radiation era[105].

The study of cosmological production of a fermionic species has received far less attention.

Early work[85, 13] addressed this important cosmological production channel within the con-

text of standard cosmology, which was later extended to various inflationary scenarios[143,

53, 6, 78, 124, 125, 126].

In this article we focus on studying in detail the cosmological production of a fermionic
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species that only interacts with gravity, setting up initial conditions during a de Sitter

inflationary era and matching onto a post-inflation radiation dominated (RD) era, with

important differences from previous studies [53]:

i:)We consider the non-adiabatic gravitational production of a fermionic degree of free-

dom throughout the inflationary and post-inflationary radiation dominated era until matter-

radiation equality. The fermion mass m is taken to be much smaller than the Hubble scale

during inflation, but is otherwise arbitrary. We solve exactly the Dirac equation during infla-

tion and radiation domination with the proper boundary conditions, and match the solutions

at the transition from inflation to radiation domination (RD).

ii:) This fermionic degree of freedom does not couple to the inflaton or any other field,

it only interacts gravitationally, and is in its Bunch-Davies vacuum state during inflation,

which is taken to be described by a de Sitter space-time.

iii:) We focus on super-Hubble wavelengths at the end of inflation, since these are

the cosmologically relevant scales. Since these modes are outside the particle horizon and

describe slow dynamics causally disconnected from sub-horizon microphysics, we assume

a rapid transition from de Sitter inflation on to a radiation dominated stage. We obtain

exactly the distribution function of the produced particles, and establish consistently that

the superhorizon modes at the end of inflation yield the largest contribution to the final

abundance and equation of state.

iv:) We do not invoke the adiabatic approximation to obtain a particle number. Instead,

we obtain the full energy momentum tensor, and its expectation value in the “in” Bunch-

Davies vacuum state. We discuss in detail its renormalization and unambiguously extract

the contribution from particle production near matter radiation equality. We show that the

asymptotic regime becomes adiabatic well before matter radiation equality and show that

in this adiabatic regime the renormalized energy momentum tensor features the kinetic-fluid

form after subtraction of the zero point contribution.

Summary of main results:

We consider one fermionic species in a cosmological background from de Sitter inflation

followed by a radiation dominated (RD) era. This fermion has a mass m much smaller than

the Hubble scale during inflation, HdS, and does not couple to any other field. We focus
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on wavelengths that are much larger than the particle horizon at the end of inflation; these

modes describe slow evolution and are causally decoupled from the microphysics thereby

justifying the assumption of a rapid transition from the de Sitter inflationary stage to a

radiation dominated (RD) era. The fermionic field is in its Bunch-Davies vacuum state

during inflation. The mode functions for the spinor solutions of the Dirac equation are

found exactly during inflation and (RD) with proper asymptotic boundary conditions, and

matched continuously across the transition. We consider space-time as a background : during

inflation cosmological dynamics is dominated by the inflaton, and during (RD) by the & 100

degrees of freedom of the standard model (and beyond). Thus the (DM) contribution is

negligible during these eras until near matter radiation equality. We do not introduce an

interpolating number operator based on some adiabatic approximation; instead we obtain

the exact energy momentum tensor valid during and post-inflation. We discuss in detail its

renormalization and extract the contribution from particle production near matter radiation

equality, when the adiabatic approximation is valid. In this regime we find that the particle

production contribution to the energy momentum tensor is of the kinetic fluid form with

a distribution function of the produced particles |Bk|2 = 1
2

[
1 − (1 − e

− k2

2mTH )1/2
]

with k

the comoving wavevector and an emergent temperature TH = H0

2π

√
ΩR ' 10−36 eV, with

H0,ΩR the Hubble expansion rate and radiation fraction today. This distribution function

is remarkably similar to a Maxwell-Boltzmann distribution for a non-relativistic particle

in thermal equilibrium at temperature TH and vanishing chemical potential. The energy

density near matter-radiation equality is given by ρpp ' m(mTH)3/2/a3, with an abundance

Ωpp
ΩDM

'
(

m
108 GeV

)5/2
and equation of state w(a) '

(
TH
ma2

)
. We confirm, self-consistently,

that the contribution to the abundance and equation of state is completely dominated by

wavevectors that were well outside the horizon at the end of inflation. We discuss subtle

aspects of isocurvature perturbations. A comparison between fermionic and bosonic fields

conformally coupled to gravity is also discussed.

This article is organized as follows: in section (4.2) we introduce the model and main

assumptions. In section (6.3) we obtain the exact fermionic spinors with “in” and “out”

boundary conditions during inflation and (RD) respectively, matching them at the end of

inflation, and obtain the Bogoliubov coefficients. In section (6.4) we obtain the full energy
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momentum tensor, discuss in detail its renormalization and show explicitly that in the adia-

batic regime the contribution from particle production features the kinetic-fluid form, with a

distribution function determined by the Bogoliubov coefficients. This distribution function

exhibits an “emergent” temperature and is remarkably similar to the Maxwell-Boltzmann

distribution function for a non-relativistic degree of freedom thermalized at this tempera-

ture. In this section we determine the (DM) abundance from this fermionic species and

its equation of state parameter w. In section (6.5) we discuss important and subtle issues

associated with isocurvature perturbations in the case under study. Section (6.6) presents

a discussion of various aspects and comparison with previous work and the bosonic case.

Section (6.7) summarizes our results and conclusions. Several appendices provide various

technical details.

6.2 The Model

We consider a free Dirac fermion of mass m as a dark matter candidate ( generalization

to Majorana fermions is straightforward) and invoke the following main assumptions:

i:) It does not interact with any other field, including the inflaton or any other field that

drives inflation. It only interacts gravitationally. It is light as compared to the Hubble scale

during inflation HdS, and we focus on superhorizon wavelengths at the end of inflation, since

these are the most relevant for structure formation. The small dimensionless parameters

ε =
√
m/HdS � 1 and kηR � 1 with ηR the horizon scale at the end of inflation, furnish

two small parameters that allow for an exact solution of Bogoliubov coefficients (see below).

ii:) The inflationary stage is described by an exact de Sitter space-time, thereby neglect-

ing slow roll corrections, and the fermion field is in its Bunch-Davies vacuum state during

this stage.

iii:) We assume instantaneous reheating: namely we consider an instantaneous transition

from the inflationary to a radiation dominated stage post-inflation. There is as yet an

incomplete understanding of the non-equilibrium dynamics of reheating. Reheating dynamics

depend crucially on various assumptions regarding couplings with the inflaton and/or other
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fields, and on thermalization processes in an expanding cosmology; see the review[9] for

further references. The question of how the nearly ' 100 degrees of freedom of the Standard

Model attain a state of local thermodynamic equilibrium after inflation and on what time

scales is still unanswered. Most studies model the couplings and dynamics; therefore any

model of reheating is at best tentative and very approximate. We bypass the inherent

ambiguities and model dependence of the reheating dynamics, and assume instantaneous

reheating after inflation to a radiation dominated (RD) era. The physical reason behind this

assumption is that we are primarily concerned with wavevectors that have crossed the Hubble

radius during inflation well before the transition to (RD) and are well outside the horizon

during this transition; hence they are causally decoupled from the microphysics of reheating.

These modes feature very slow dynamics at the end of inflation, and the assumption that they

are nearly frozen during the reheating time interval seems physically warranted (see further

discussion in section (6.6)). We assume that both the scale factor and the Hubble rate are

continuous across the transition. Along with the continuity of fermion wave functions across

the transition, this, in fact, entails the continuity of the energy momentum tensor. These

aspects will be discussed in detail below.

iv:) Unlike previous studies that invoked the adiabatic approximation, we study non-

adiabatic cosmological production. This is a direct consequence of a very small mass com-

pared to the Hubble scale during inflation and field fluctuations with superhorizon wave-

lengths after inflation.

v:) Inflation is generically driven by a scalar field whose expectation value dominates

the energy momentum tensor that sources gravity. The (RD) era is dominated by a large

number & 100 of ultrarelativistic degrees of freedom, therefore neglecting the back reaction

of the (DM) degree of freedom is justified. Therefore, we take the space time metric during

these eras as a background.

In comoving coordinates, the action is given by

S =

∫
d3x dt

√−gΨ
[
i γµ Dµ −m

]
Ψ . (6.2.1)

For Majorana fermions the action is multiplied by a factor 1/2 (see appendix ( D.1)).
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Introducing the vierbein field eµa(x) defined as

gµ ν(x) = eµa(x) eνb (x) ηab ,

where ηab = diag(1,−1,−1,−1) is the Minkowski space-time metric, the curved space time

Dirac gamma- matrices γµ(x) are given by

γµ(x) = γaeµa(x) , {γµ(x), γν(x)} = 2 gµν(x) , (6.2.2)

where the γa are the Minkowski space time Dirac matrices, chosen to be in the standard

Dirac representation. The fermion covariant derivative Dµ is given in terms of the spin

connection by[191, 50, 158, 28]

Dµ = ∂µ +
1

8
[γc, γd] eνc

(
∂µedν − Γλµν edλ

)
, (6.2.3)

where Γλµν are the usual Christoffel symbols.

For a spatially flat Friedmann-Robertson-Walker cosmology in conformal time dη =

dt/a(t), the metric becomes

gµν = a2(η) ηµν , (6.2.4)

and the vierbeins eµa are given by

eµa = a−1(η) δµa ; eaµ = a(η) δaµ . (6.2.5)

The fermionic part of the action in conformal coordinates now becomes

Sf =

∫
d3x dη a4(η) Ψ(~x, η)

[
i
γ0

a(η)

( d
dη

+ 3
a
′
(η)

2a(η)

)
+ i

γi

a(η)
∇i −m

]
Ψ(~x, η) . (6.2.6)

The Dirac Lagrangian density in conformal time simplifies to

√−g Ψ
(
i γµ DµΨ−m

)
Ψ =

(
a3/2(η) Ψ(~x, η)

) [
i 6∂ −m a(η)

](
a3/2(η) Ψ(~x, η)

)
, (6.2.7)

where i6∂ = γa∂a is the usual Dirac differential operator in Minkowski space-time in terms

of flat space time γa matrices. Introducing the conformally rescaled fields

a
3
2 (η) Ψ(~x, t) = ψ(~x, η) , (6.2.8)
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the action becomes

S =

∫
d3x dη ψ

[
i 6∂ −M(η)

]
ψ , (6.2.9)

with

M(η) = ma(η) . (6.2.10)

The Dirac equation for the conformally rescaled fermi field becomes[
i 6∂ −M(η)

]
ψ = 0 . (6.2.11)

We consider Dirac fermions (Majorana fermions are a straightforward generalization), and

expand ψ(~x, η) in a comoving volume V as

ψ(~x, η) =
1√
V

∑
~k,s

[
b~k,s Us(

~k, η) + d†
−~k,s

Vs(−~k, η)
]
ei
~k·~x , (6.2.12)

and the spinor mode functions U, V obey the Dirac equations[
i γ0 ∂η − ~γ · ~k −M(η)

]
Us(~k, η) = 0 (6.2.13)[

i γ0 ∂η − ~γ · ~k −M(η)

]
Vs(−~k, η) = 0 . (6.2.14)

Multiplying the above equations both by γ0 we find that

d

dη

(
U †s (~k, η)Us(~k, η)

)
= 0 ;

d

dη

(
V †s (−~k, η)Vs(−~k, η)

)
= 0 ;

d

dη

(
U †s (~k, η)Vs(−~k, η)

)
= 0 .

(6.2.15)

We choose to work with the standard Dirac representation of the (Minkowski) γa matrices.

It proves convenient to write

Us(~k, η) =

[
i γ0 ∂η − ~γ · ~k +M(η)

]
fk(η)us (6.2.16)

Vs(−~k, η) =

[
i γ0 ∂η − ~γ · ~k +M(η)

]
gk(η) vs (6.2.17)

with us , vs being constant spinors obeying

γ0 us = us , γ0 vs = −vs . (6.2.18)
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We choose the spinors us ; vs as

us =

 ξs

0

 ; vs =

 0

ξs

 , (6.2.19)

where the two component spinors ξs are chosen to be helicity eigenstates, namely

~σ · ~k = s k ξs ; s = ±1 . (6.2.20)

Inserting the ansatz (6.2.16,6.2.17) into the Dirac equations (6.2.13,6.2.14) we find that the

mode functions fk(η); gk(η) obey the following equations of motion[
d2

dη2
+ k2 +M2(η)− i M ′(η)

]
fk(η) = 0 , (6.2.21)[

d2

dη2
+ k2 +M2(η) + i M ′(η)

]
gk(η) = 0 . (6.2.22)

where primes stand for derivatives with respect to η.

We will adopt “in” boundary conditions for wave vectors deep inside the Hubble radius

during inflation, so that as −kη →∞

fk(η) → e−ikη ; gk(η) → eikη . (6.2.23)

With these boundary conditions, it follows from equations (6.2.21,6.2.22) that

gk(η) = f ∗k (η) . (6.2.24)

Finally, the spinor solutions with “in” boundary conditions are

Us(~k, η) = N

 Fk(η) ξs

k fk(η) s ξs

 , (6.2.25)

Vs(−~k, η) = N

 −k f ∗k (η) s ξs

F∗k (η) ξs

 , (6.2.26)

where we introduced

Fk(η) = if ′k(η) +M(η)fk(η) , (6.2.27)
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and N is a (constant) normalization factor.

The spinor solutions are normalized as follows

U †s (~k, η)Us′(~k, η) = δs,s′ ; V †s (−~k, η)Vs′(−~k, η) = δs,s′ , (6.2.28)

yielding

|N |2
[
F∗k (η)Fk(η) + k2f ∗k (η) fk(η)

]
= 1 . (6.2.29)

With these normalization conditions the operators b~k,s, d~k,s in the field expansion (6.2.12)

obey the usual canonical anticommutation relations.

Furthermore, it is straightforward to confirm that

U †s (~k, η)Vs′(−~k, η) = 0 . (6.2.30)

The spinors Us, Vs furnish a complete set of four independent solutions of the Dirac

equation.

The inflationary stage is described by a spatially flat de Sitter space time (thereby ne-

glecting slow roll corrections) with a scale factor

a(η) = − 1

HdS(η − 2ηR)
, (6.2.31)

where HdS is the Hubble constant during de Sitter and ηR is the (conformal) time at which

the de Sitter stage transitions to the (RD) stage.

During the (RD) stage

H(η) =
1

a2(η)

da(η)

dη
= 1.66

√
g

T 2
0

MPl a2(η)
, (6.2.32)

where g is the effective number of ultrarelativistic degrees of freedom, which varies in time as

different particles become non-relativistic. We take g = 2 corresponding to radiation today.

As discussed in detail in section (5.7) by taking g = 2 we obtain a lower bound on the (DM)

abundance and equation of state, differing by a factor of O(1) from the abundance if the

(RD) era is dominated only by standard model degrees of freedom.

With this approximation the scale factor is given by

a(η) = HR η , (6.2.33)
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with

HR = H0

√
ΩR ' 10−35 eV , (6.2.34)

and matter radiation equality occurs at

aeq =
ΩR

ΩM

' 1.66 × 10−4 . (6.2.35)

The result (4.2.36) corresponds to the value of the fraction density ΩR today, thereby

neglecting the change in the number of degrees of freedom contributing to the radiation

density fraction. If there are g effective ultrarelativistic degrees of freedom, eqn. (4.2.36)

must be multiplied by
√
g/2. However, as discussed in detail in section (5.7) accounting

for ultrarelativistic degrees of freedom of the standard model at the time of the transition

between inflation and (RD) modifies the final abundance by a factor of O(1).

We model the transition from de Sitter to (RD) at a (conformal) time ηR by requiring

that the scale factor and the Hubble rate be continuous across the transition at ηR, assuming

self-consistently that the transition occurs deep in the (RD) era so that a(ηR) = HR ηR � aeq.

Using H(η) = a′(η)/a2(η), continuity of the scale factor and Hubble rate at ηR imply

that

adS(ηR) =
1

HdS ηR
= HR ηR ; HdS =

1

HR η2
R

, (6.2.36)

yielding

ηR =
1√

HdS HR

. (6.2.37)

The most recent constraints from Planck[59] on the tensor-to-scalar ratio yields

HdS/MPl < 2.5× 10−5 (95%) CL . (6.2.38)

We take as a representative value HdS = 1013 GeV, from which it follows that

adS(ηR) = HR ηR =

√
HR

HdS

' 10−28 � aeq . (6.2.39)

This scale corresponds to an approximate ambient radiation temperature after the transition

from de Sitter to (RD)

T (ηR) ' T0

aRD(ηR)
' 1015 GeV (6.2.40)
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where T0 ∝ 10−4 eV is the CMB temperature today.

We focus on the case when the fermion is “light” as compared to the scale of inflation,

namely m� HdS, but otherwise arbitrary, and introduce the dimensionless ratio

ε =

√
m

HdS

� 1 , (6.2.41)

which will play an important role in the analysis.

6.2.1 Matching Conditions

Defining ψ<(~x, η) and ψ>(~x, η) the fermion field for η < ηR and η > ηR respectively, and

because the Dirac equation (6.2.11) is first order in time the Dirac field is continuous across

the transition, the matching condition is

ψ<(~x, ηR) = ψ>(~x, ηR) . (6.2.42)

This continuity condition along with the continuity of the scale factor and Hubble rate at

ηR results in that the energy density, namely the expectation value of T 0
0 is continuous at

the transition. This important aspect is discussed further in section (6.4).

Introducing the Dirac spinors during the inflationary (η < ηR) and radiation-dominated

(η > ηR) dominated stages as U< , V < and U> , V > respectively, it follows from the matching

condition (6.2.42) that

U<
s (~k, ηR) = U>

s (~k, ηR) , (6.2.43)

V <
s (−~k, ηR) = V >

s (−~k, ηR) . (6.2.44)
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6.2.2 Adiabatic vs. Non-adiabatic Evolution, Asymptotic “Out” Particle States

Our goal is to solve exactly the mode equations during the inflationary and (RD) stages

and implement the matching conditions (6.2.42,6.2.43,6.2.44). During inflation the mode

equations are solved with the “in” boundary conditions (6.2.23) corresponding to the fermi

fields being in the Bunch-Davies vacuum state (see next section). We now need to determine

the boundary conditions on the mode functions during (RD).

Let us consider solving the mode equation (6.2.21) in a Wentzel-Kramers-Brillouin (WKB)

adiabatic expansion, writing

fk(η) = e−i
∫ η Ωk(η′) dη′ , (6.2.45)

we find that Ωk(η) obeys

Ω2
k(η) + iΩ′k(η)− ω2

k(η) + iM ′(η) = 0 ; ω2
k(η) = k2 +M2(η) . (6.2.46)

Expanding Ωk(η) = Ω
(0)
k (η)+Ω

(1)
k (η)+ · · · where the superscript implies order in a derivative

adiabatic expansion, we find up to first order (see Appendix ( D.4))

Ωk(η) = ωk(η)
[
1− i ω

′
k(η)

2ω2
k(η)

− i M
′(η)

2ω2
k(η)

+ · · ·
]
, (6.2.47)

where the dots stand for terms with higher order derivatives with respect to η. We refer

to terms with n-derivatives as n − th order adiabatic. We note that the term M ′(η) in the

mode equation (6.2.21) is formally first order adiabatic, as is manifest in eqn. (6.2.47). This

adiabatic expansion is reliable and useful provided that terms of higher adiabatic order are

smaller order by order. To assess the reliability, consider the first order corrections displayed

in (6.2.47), and writing them as follows

M ′(η)

ω2
k(η)

=
H(η)

m

1

γ2
k(η)

;
ω′k(η)

ω2
k(η)

=
H(η)

m

1

γ3
k(η)

, (6.2.48)

where H(η), γk(η) are the Hubble expansion rate and local Lorentz factor respectively,

namely

H(η) =
a′(η)

a2(η)
; γk(η) =

[
1 +

( k

ma(η)

)2
]1/2

. (6.2.49)
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During inflation and for superhorizon wavelengths, it follows that

M ′(η)

ω2
k(η)

' ω′k(η)

ω2
k(η)

' HdS

m
' 1

ε
� 1 . (6.2.50)

Therefore, the adiabatic approximation fails during the inflationary stage for superhorizon

wavelengths and m� HdS.

During the (RD) era and for very long-wavelength modes,

M ′(η)

ω2
k(η)

' ω′k(η)

ω2
k(η)

' HR

ma2(η)
, (6.2.51)

therefore the adiabatic expansion becomes reliable for

a(η)� 10−17√
m/(eV)

. (6.2.52)

Even for m as small as 10−22 eV the adiabatic expansion becomes reliable prior to matter

radiation equality. We anticipate that the most interesting range for fermionic (DM) is

m� GeV (see section (6.4) below), hence the adiabatic approximation becomes very reliable

for a(η)� 10−22. Two important points follow from this analysis: i:) during inflation and in

the early stages of (RD) following the transition from inflation, the adiabatic approximation

is not reliable in the range 10−28 . a(η) . 10−22, ii:) near matter radiation equality

(aeq ' 10−4) the adiabatic approximation to zeroth order is very reliable. Therefore, the

mode functions both during inflation and the early stages after the transition to (RD) must

be found exactly, and the asymptotic “out” boundary conditions for these modes during

(RD) can be reliably defined in the asymptotic adiabatic regime. Appendix ( D.4) provides

more technical details on the nature of the adiabatic expansion for Fermi fields.

In summary: we do not invoke the adiabatic approximation during inflation or the early

stages after the transition to (RD), solving exactly for the mode functions during these

stages. However, we do invoke it to determine the asymptotic “out” boundary conditions

on the mode functions and spinors during the (RD) era. We refer to the solutions of eqn.

(6.2.21) for the mode functions fk(η) during the (RD) era obeying the asymptotic “out”

boundary conditions just prior to aeq, as asymptotic “out” particle states.

fk(η) → e−i
∫ η ωk(η′) dη′ = e−i

∫ t Ek(t′) dt′ , (6.2.53)
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where in comoving time

Ek(t) =
√
k2
ph(t) +m2 ; kph(t) = k/a(η(t)) . (6.2.54)

In the next section we will solve exactly for the mode functions fk(η) and the spinor

solutions of the Dirac equation both during inflation and radiation domination with the “in”

and “out” (particle) asymptotic boundary conditions,

fk(η) −−−−−−→
−kη→∞ e−ikη IN (inflation) , (6.2.55)

fk(η) −−−−−−→
a(η)'aeq

e−i
∫ η ωk(η′) dη′ OUT (RD) , (6.2.56)

identifying the solutions with this “out” boundary conditions as describing particle states.

The mode functions gk(η) = f ∗k (η) and the corresponding spinors are associated with the

anti-particle “out” states. We then match the respective solutions at η = ηR via the matching

conditions (6.2.43,6.2.44).

6.3 Exact Solutions

6.3.1 Inflationary Stage

We consider that the inflationary stage is described by an exact de Sitter space time

with scale factor given by eqn. (6.2.31) and that the fermionic degrees of freedom are in the

Bunch-Davies vacuum state during inflation. This implies that consistently with (6.2.23)

the solutions Us(~k, η);Vs(−~k, η) obey the “in” boundary conditions

Us(~k, η)→ e−ikη ; Vs(~k, η)→ eikη , (6.3.1)

for wavevectors deep inside the Hubble radius −kη →∞, given by (6.2.25,6.2.26) along with

b~k,s|0〉 = 0 ; d−~k,s|0〉 = 0 , (6.3.2)
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The equations (6.2.21,6.2.22) for the mode functions becomes[
d2

dτ 2
+ k2 − ν2 − 1/4

τ 2

]
fk(τ) = 0 ; τ = η − ηR ; ν =

1

2
− i ε2 . (6.3.3)

in terms of the dimensionless ratio (6.2.41). The solution with “in” boundary conditions

(6.2.55), namely fk(η)→ e−ikη for sub-Hubble modes, is given by

fk(τ) =

√
−πkτ

2
eiπ(ν+1/2)/2 H(1)

ν (−kτ) ; gk(τ) = f ∗k (τ) , (6.3.4)

where H
(1)
ν is a Hankel function.

Therefore with Bunch-Davies boundary conditions, the spinors U<(~k, η) ; V <(−~kη) are

given by the expressions (6.2.25,6.2.26) with fk(η) given by (6.3.4). In the superhorizon limit

the solution (6.3.4) behaves as

fk(τ) ∝
[
− kτ

]iε2
, (6.3.5)

therefore unlike the case of bosonic degrees of freedom, these mode functions are not en-

hanced for superhorizon wavelengths with the modulus remaining O(1). Furthermore, as

it will become clear below, the relevant dimensionless comoving momentum is (see below)

q = k/
√
mHR from which it follows that at the end of inflation kηR = q ε � 1. It will be

shown below (see section (6.4)) that the abundance of produced (DM) particles is dominated

by the region q ' 1 hence the phase in (6.3.5) is very slowly varying at the end of inflation

for the relevant modes.

6.3.2 Radiation Dominated Stage

We define the mode functions during (RD) as hk(η) to distinguish them from the solutions

during the inflationary era. These obey the mode equations[
d2

dη2
+ ω2

k(η)− imHR

]
hk(η) = 0 ; ω2

k(η) = k2 +m2H2
Rη

2 . (6.3.6)

During the (RD) stage we introduce the spinors U ,V that describe asymptotic particle

and anti-particle “out” states at long time respectively. These are solutions of the Dirac
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equation during the (RD) era satisfying the asymptotic “out” boundary conditions (6.2.56)

yielding

U(~k, η)→∝ e−i
∫ η ωk(η′) dη′ ; V(~k, η)→∝ ei

∫ η ωk(η′) dη′ . (6.3.7)

This “out” boundary condition corresponds to the mode functions hk(η) solutions of (6.3.6)

with the asymptotic behavior (6.2.56), namely

hk(η)→ e−i
∫ η ωk(η′) dη′ . (6.3.8)

With these boundary conditions we find that these particle-antiparticle spinors are given

by

Us(~k, η) = Ñ

 Hk(η) ξs

k hk(η) s ξs

 , (6.3.9)

Vs(−~k, η) = Ñ

 −k h∗k(η) s ξs

H∗k(η) ξs

 , (6.3.10)

where we have introduced

Hk(η) = ih′k(η) +M(η)hk(η) , (6.3.11)

and Ñ is a (constant) normalization factor chosen so that

U †s (~k, η)Us′(~k, η) = δs,s′ ; V†s(−~k, η)Vs′(−~k, η) = δs,s′ , (6.3.12)

yielding

|Ñ |2
[
H∗k(η)Hk(η) + k2h∗k(η)hk(η)

]
= 1 . (6.3.13)

Again, it is straightforward to confirm that

U †s (~k, η)Vs′(−~k, η) = 0 . (6.3.14)

These form a complete set of four solutions of the Dirac equation (s = ±1) during (RD).

It is convenient to introduce the following dimensionless combinations,

z =
√
mHR η ; q =

k√
mHR

; λ = q2 − i (6.3.15)
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in terms of which eqn. (6.3.6) becomes

d2

dz2
hk(z) + (z2 + λ)hk(z) = 0 , (6.3.16)

the solutions of which are the parabolic cylinder functions[93, 2, 152, 21, 145]

Dα[
√

2eiπ/4z] ; Dα[
√

2e3iπ/4z] ; α = −1

2
− iλ

2
= −1− i q

2

2
. (6.3.17)

The solution that fulfills the “out” boundary condition (6.3.8) (see appendix A) is given by

hk(η) = Dα[
√

2eiπ/4z] . (6.3.18)

The general solution for the spinor wave functions U>, V > during the (RD) era are linear

combinations of the four independent solutions (6.3.9,6.3.10). In principle, with four indepen-

dent solutions during inflation matching onto four independent solutions during (RD) there

would be a 4 × 4 matrix of Bogoliubov coefficients, however, because helicity is conserved,

the linear combinations are given by

U>
s (~k, η) = Ak,s Us(~k, η) +Bk,s Vs(−~k, η) (6.3.19)

V >
s (−~k, η) = Ck,s Vs(−~k, η) +Dk,s Us(~k, η) . (6.3.20)

The Bogoliubov coefficients Ak,s · · ·Dk,s are obtained from the matching conditions (6.2.43,

6.2.44) and the relations (6.3.12,6.3.14). We find

Ak,s = U †s (~k, ηR)U<
s (~k, ηR) = NÑ

[
H∗k Fk + k2h∗kfk

]
η=ηR

(6.3.21)

Bk,s = V†s(−~k, ηR)U<
s (~k, ηR) = NÑ s

[
− khkFk + kfkHk

]
η=ηR

(6.3.22)

Ck,s = V†s(−~k, ηR)V <
s (−~k, ηR) = NÑ

[
k2hkf

∗
k +Hk F∗k

]
η=ηR

(6.3.23)

Dk,s = U †s (~k, ηR)V <
s (−~k, ηR) = NÑ s

[
− kf ∗kH∗k + kh∗kF∗k

]
η=ηR

. (6.3.24)

From these relations we find the important corollary

Dk,s = −B∗k,s ; Ck,s = A∗k,s , (6.3.25)
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which guarantees the orthogonality

U>
s
†
(~k, η)V >

s (−~k, η) = 0 . (6.3.26)

Furthermore the normalization conditions (6.2.28,6.2.30,6.3.12,6.3.14) yield the following

relations between Bogoliubov coefficients

|Ak,s|2 + |Bk,s|2 = |Ck,s|2 + |Dk,s|2 = 1 , (6.3.27)

which can be confirmed straightforwardly from the expressions (6.3.21-6.3.24) and the nor-

malization conditions.

During the (RD) era, with Us ≡ U>
s ;Vs ≡ V >

s with U>, V > given by (6.3.19,6.3.20) the

field expansion (6.2.12) becomes

ψ(~x, η) =
1√
V

∑
~k,s

[
b̃~k,s Us(~k, η) + d̃ †

−~k,s
Vs(−~k, η)

]
ei
~k·~x , (6.3.28)

where

b̃~k,s = b~k,sAk + d†
−~k,s

Dk,s (6.3.29)

d̃ †
−~k,s

= d†
−~k,s

Ck,s + b~k,sBk,s . (6.3.30)

The relations (6.3.27, 6.3.25) entail that the new operators b̃, d̃ obey the canonical anti-

commutation relations. The operators b̃ and d̃ create asymptotic particle and antiparticle

states respectively. In particular we find that the number of asymptotic “out” particle and

antiparticle states in the Bunch-Davies vacuum state (6.3.2) are given by

〈0|̃b†~k,sb̃~k,s|0〉 = |Dk,s|2 = 〈0|d̃†
−~k,s

d̃−~k,s|0〉 = |Bk,s|2 . (6.3.31)

We identify |Bk,s|2 with the distribution function of produced particles. The relation (6.3.27)

implies that

|Bk,s|2 ≤ 1 , (6.3.32)

for each polarization s, consistent with Pauli exclusion.
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6.3.3 Bogoliubov Coefficients

The Bogoliubov coefficients are obtained from the relations (6.3.21-6.3.24) where the

scalar products of spinors are evaluated at the transition time η = ηR. For light fermions

with m/HdS � 1 (ε� 1) these can be greatly simplified with the following approximations:

i:) During the inflationary era and taking ν = 1/2 for ε � 1 in the solutions (6.3.4))

yields

fk(ηR) = eikηR ' 1 , (6.3.33)

where we have considered modes that are super-Hubble at the transition time, namely

|kηR| � 1. Furthermore, with

M(ηR) =
mHR√
HRHdS

= ε
√
mHR , (6.3.34)

the normalization constant N in the spinors (6.2.25,6.2.26) is obtained by normalizing the

spinors at η = ηR. In terms of the dimensionless ratio q = k/
√
mHR to lowest order in ε at

η = ηR these spinors are given by

U<
s (~k, ηR) =

1√
2q(q + ε)

 (q + ε) ξs

q s ξs

 (6.3.35)

V <
s (−~k, ηR) =

1√
2q(q + ε)

 q s ξs

(q + ε) ξs

 . (6.3.36)

ii:) During radiation domination, it follows from the definitions (6.3.15) that at the

transition time,

zR =

√
mHR

HRHdS

= ε� 1 , (6.3.37)

and for z � 1 the parabolic cylinder functions feature an expansion in zR and q zR = kηR � 1

(see appendix ( D.2)) for superhorizon wavevectors. Therefore we can safely approximate

zR = 0 in the argument of the parabolic cylinder functions yielding the following identities,

hk(ηR) =

√
π/2 2−iq

2/4

Γ[1 + i q
2

4
]

, (6.3.38)

h′k(ηR) = −
√

2π eiπ/42−iq
2/4
√
mHR

Γ[1
2

+ i q
2

4
]

. (6.3.39)
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iii:) The result |Bk,s|2 ≤ 1 implies that there are no infrared divergences in the dis-

tribution function of particles, and in integrals, the small k region is suppressed by phase

space. Furthermore, we anticipate, and prove below self-consistently, that in typical inte-

grals involving |Bk,s|2 the most relevant region is k ' √mHR, namely q ' 1 (see below).

Therefore, consistently with neglecting the O(ε) terms in (6.3.38,6.3.39) we set ε→ 0 in the

spinors (6.3.35,6.3.36). With these results, the normalization constant Ñ is obtained from

the normalization conditions (6.3.12) at η = ηR, it is given by (see appendix ( D.3))

Ñ =
e−πq

2/8

√
2mHR

. (6.3.40)

With the approximations discussed above, and from the result (6.3.22) we find

|Bk,s|2 =
1

2

[
1− Ñ q

√
mHR

(
H∗k(ηR)hk(ηR) +Hk(ηR)h∗k(ηR)

)]
. (6.3.41)

The calculation of the second term in the bracket is discussed in detail in appendix ( D.3)

with the result,

|Bk,s|2 =
1

2

[
1−

(
1− e−πq2

)1/2
]
, (6.3.42)

yielding the behaviour

|Bk,s|2 −−→
k→0

1

2
; |Bk,s|2 −−−−−−−→

k�
√
mHR

1

4
e
− 2π k2

2mHR ≡ 1

4
|Bmb(k)|2 . (6.3.43)

The long-wavelength limit agrees with ref.[53]. Remarkably, up to the prefactor 1/4, for

k &
√
mHR the Bogoliugov coefficient yields a Maxwell-Boltzmann distribution function

(|Bmb(k)|2) for a non-relativistic particle at an “emergent” temperature

TH =
HR

2π
' 10−36 eV , (6.3.44)

and vanishing chemical potential in agreement with the result (6.3.31) which indicates that

the number of produced particles equals that of anti-particles. Figs. (23; 24) display |B(q)|2

and q2|B(q)|2 vs. q respectively.

Writing the distribution function as

|Bk,s|2 =
1

2

[
1−

(
1− e−

k2

2mTH

)1/2
]

(6.3.45)
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Figure 23: The distribution function of produced particles |Bk,s|2 ≡ |B(q)|2 vs

q = k/
√
mHR.

makes manifest the striking similarity with a Maxwell-Boltzmann distribution function of a

non-relativistic particle in thermal equilibrium at temperature TH and vanishing chemical

potential, up to an overall normalization. Clearly the similarity does not hold for the longest

wavelengths, which however are suppressed by the phase space factor, but for k2

2m
& TH the

difference is small. Fig. (25) compares K2|Bk,s|2 to K2

4
|Bmb(k)|2 ≡ K2

4
e−K

2
vs. K = k√

2mTH
.

The maximum difference is . 10 %, and occurs at low momenta.

An important note is that the distribution function is localized in the region q ' 1,

namely in the range of momenta k ' √mHR, for which kηR .
√

mHR
HdSHR

. ε� 1. Therefore,

the largest contribution to the distribution function, hence the abundance and equation of

state, is from wavelengths that are well outside the horizon at the end of inflation. This

analysis confirms self-consistently the validity of one of the main assumptions, namely that

of focusing on superhorizon wavelengths at the end of inflation.
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Figure 24: The integrand for the total abundance q2|Bk,s|2 vs q = k/
√
mHR. The

abundance is dominated by typical momenta k ' √mHR.

6.4 Energy Momentum Tensor: Renormalization and Asymptotics

6.4.1 Energy Density and Pressure

The energy momemtum tensor for Dirac fields is given by [158]

T µν =
i

2

(
Ψγµ

↔
Dν Ψ

)
+ µ↔ ν (6.4.1)

The expectation value of the energy momentum tensor in the Bunch-Davies vacuum state

is given by

〈0|T µν |0〉 = diag
(
ρ(η),−P (η),−P (η),−P (η)

)
. (6.4.2)

In terms of conformal time and the conformally rescaled fields (6.2.8) The energy density ρ

and pressure P are given by

ρ(η) = 〈0|T 0
0 |0〉 =

i

2a4(η)
〈0|
(
ψ†(~x, η)

d

dη
ψ(~x, η)− d

dη
ψ†(~x, η)ψ(~x, η)

)
|0〉 , (6.4.3)
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Figure 25: The distributions K2|Bk,s|2 and K2

4
|Bmb(k)|2 = K2

4
e−K

2
vs K = k/

√
2mTH . The

near agreement in the region of momenta k ' √2mTH , which dominates the integrals,

entails a near thermal abundance.

P (η) = −1

3

∑
j

〈0|T jj |0〉 =
−i

6a4(η)
〈0|
(
ψ†(~x, η) ~α · ~∇ψ(~x, η)− ~∇ψ†(~x, η) · ~αψ(~x, η)

)
|0〉 ,

(6.4.4)

where ~α = γ0 ~γ and the expectation value is in the Bunch-Davies vacuum state. With the

field expansion (6.2.12) we find

ρ(η) =
i

2a4(η)

∫ ∞
0

∑
s

[
V †s (−~k, η)

d

dη
Vs(−~k, η)− d

dη
V †s(−~k, η)Vs(−~k, η)

]
d3k

(2π)3
, (6.4.5)

P (η) =
1

3 a4(η)

∫ ∞
0

∑
s

V †s (−~k, η) ~α · ~k Vs(−~k, η)
d3k

(2π)3
. (6.4.6)
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Using the Dirac equation, it is straightforward to confirm covariant energy conservation,

and also that ρ(η) can be written as

ρ(η) =
1

a4(η)

∫ ∞
0

∑
s

V †s (−~k, η)
[
~α · ~k + γ0M(η)

]
Vs(−~k, η)

d3k

(2π)3
, (6.4.7)

yielding

〈0|T µµ |0〉 =
m

a3(η)

∫ ∞
0

∑
s

V s(−~k, η)Vs(−~k, η)
d3k

(2π)3
. (6.4.8)

Furthermore, the continuity of the scale factor and Hubble rate and the continuity con-

dition (6.2.42) ensure that the energy momentum tensor is continuous across the transition

from inflation to radiation domination.

During the inflationary stage the V spinors are given by (6.2.26) with (6.3.4) and the

energy momentum tensor yields the Bunch-Davies vacuum energy density and pressure,

which will be fully subtracted in the renormalization of the energy momentum tensor (see

below) .

During the (RD) stage the spinors Vs ≡ V >
s are given by (6.3.20) in terms of the Bo-

goliubov coefficients and the spinors U ,V with particle and anti-particle “out” boundary

conditions. Both the energy density and pressure feature three distinct terms:

ρ(η) = ρvac(η) + ρint(η) + ρpp(η) (6.4.9)

P (η) = Pvac(η) + Pint(η) + Ppp(η) , (6.4.10)

where

ρvac =
1

a4(η)

∫ ∑
s=±1

[
V†s(−~k, η) Σ(~k, η) Vs(−~k, η)

] d3k

(2π)3
, (6.4.11)

ρint = − 1

a4(η)

∫ ∑
s=±1

[
Ak,sB

∗
k,s V†s(−~k, η) Σ(~k, η) Us(~k, η) + h.c.

] d3k

(2π)3
, (6.4.12)

ρpp =
1

a4(η)

∫ ∑
s=±1

|Bk,s|2
[
U †s (~k, η) Σ(~k, η) Us(~k, η)− V†s(−~k, η) Σ(~k, η) Vs(−~k, η)

] d3k

(2π)3
,

(6.4.13)
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where

Σ(~k, η) = ~α · ~k + γ0M(η) , (6.4.14)

is the conformal time instantaneous Dirac Hamiltonian, and

Pvac =
1

3a4(η)

∫ ∑
s=±1

[
V†s(−~k, η) ~α · ~k Vs(−~k, η)

] d3k

(2π)3
, (6.4.15)

Pint = − 1

3a4(η)

∫ ∑
s=±1

[
Ak,sB

∗
k,s V†s(−~k, η) ~α · ~k Us(~k, η) + h.c.

] d3k

(2π)3
, (6.4.16)

Ppp =
1

3a4(η)

∫ ∑
s=±1

|Bk,s|2
[
U †s (~k, η) ~α · ~k Us(~k, η)− V†s(−~k, η) ~α · ~k Vs(−~k, η)

] d3k

(2π)3
,

(6.4.17)

where we have used the identities (6.3.25,6.3.27).

The terms ρvac, Pvac are the vacuum contributions during (RD); that this is the case

should be clear from the fact that the spinors V are the solutions during (RD) with “out”

boundary conditions associated with asymptotic anti-particle states.

The terms ρint, Pint describe the interference between positive and negative (asymptotic)

energy solutions akin to the phenomenon of Zitterbewegung, and the last terms ρpp, Ppp

describe the contributions from particle production with |Bk,s|2 being identified as the dis-

tribution function of the produced particles.

Renormalization:

The expectation value of the energy momentum tensor in a gravitational background

features ultraviolet divergences that must be renormalized. The renormalization program

has been thoroughly studied in refs.[47, 157, 89, 108, 107, 10, 27, 99, 28, 158], and extended

for spin 1/2 degrees of freedom in refs.[68, 81, 19, 90, 63, 129, 128].

The vacuum terms, namely those for Bk,s = 0, feature quartic, quadratic and logarithmic

ultraviolet divergences that are renormalized by subtractions. The program to renormalize

these divergences is well established and has been implemented in refs.[28, 158, 157, 89, 108,

107, 47, 10, 99, 27, 68, 81, 19, 90, 63, 129, 128]. As discussed in detail in these references,

the ultraviolet divergences are absorbed into renormalizations of the cosmological constant,

Newton’s constant G, and into the geometric tensors H
(1,2)
µν which result from the variational
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derivative with respect to the metric of a gravitational action that includes higher curvature

terms ∝ R2, RµνRµν · · · . These higher curvature terms are added in the action multiplied

by counterterms, which are then required to cancel the coefficients of the geometric tensors

in such a way that the renormalized action is the Einstein-Hilbert action. The subtractions

necessary to renormalize the (expectation value) of the energy momentum tensor, not only

include the ultraviolet divergent terms but depending on the renormalization prescription

may also subtract finite terms. Therefore, the finite renormalized energy momentum tensor

is not unique and depends on the renormalization prescription.

Since |Bk,s| is exponentially suppressed at large momentum, the interference and particle

production contributions in the (RD) era are ultraviolet finite, and originate, distinctly

in the particle production mechanism, whereas the vacuum terms both during (RD) and

inflation feature the ultraviolet divergences and are independent of particle production as

these are, simply, the zero point contributions. We renormalize the theory by completely

subtracting the vacuum contribution to the energy momentum tensor, both during inflation

and the (RD) stage.

6.4.2 Asymptotics: Kinetic Fluid Form of T µν , (DM) Abundance and Equation

of State

After subtraction of the vacuum terms, the renormalized 〈0|T µν |0〉 vanishes identically

during inflation and features only the particle production terms proportional to the Bogoli-

ubov coefficient Bk during (RD). In this latter era, the cosmological dynamics is dominated

by the thermalized relativistic degrees of freedom of the standard model (and possibly be-

yond). Hence, the contribution of the (DM) degree of freedom can be neglected until it begins

to dominate near matter radiation equality. As discussed in section (6.2.2) the adiabatic ap-

proximation becomes reliable well before matter radiation equality for masses m� 10−22 eV.

In the adiabatic regime the exact solution of the mode equation (6.3.6) for the spinors

U ,V evolves into the WKB adiabatic solution (6.3.8) as discussed in section (6.3.2) and

described in detail in appendix ( D.4).

Therefore, we can study the contribution of the energy momentum tensor in this regime
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by implementing the adiabatic expansion of the mode functions discussed in (6.2.2) and

appendix ( D.4). We will show self-consistently below that the mass range of interest for

(DM) abundance is certainly of the order of several GeV making the adiabatic approximation

very reliable for a(η)� 10−22 well before matter-radiation equality.

The solution to leading adiabatic order (zeroth order) with “out” boundary conditions

(6.3.6) is given by (see Appendix ( D.4))

hk(η) ∝ e−i
∫ η ωk(η′) dη′ ; ωk(η) =

√
k2 +m2H2

Rη
2 , (6.4.18)

in terms of which, the zeroth order normalized spinor solutions are given by (we suppress

the conformal time argument for ease of notation)

Us(~k, η) =
e−i

∫ η ωk(η′) dη′√
2ωk(ωk +M)

 (ωk +M) ξs

k s ξs

 , (6.4.19)

Vs(−~k, η) =
ei

∫ η ωk(η′) dη′√
2ωk(ωk +M)

 −k s ξs
(ωk +M) ξs

 . (6.4.20)

These spinors are eigenstates of the instantaneous conformal time Dirac Hamiltonian ~α ·~k+

γ0M(η) with eigenvalues ±ωk(η) respectively.

The spinors U>, V > are given in terms of these by the relations (6.3.19,6.3.20), and the

Bogoliubov coefficients are obtained in the previous section. For masses as large as a few

GeV these solutions are an excellent approximation for a(η) � 10−22 � aeq ' 10−4, with

corrections � O(10−54) (see appendix ( D.4)).

In appendix ( D.4) we find up to second adiabatic order (see eqns. ( D.4.18, D.4.19)),

V †(−~k, η) Σ(~k, η)V (−~k, η) = −U †(−~k, η) Σ(~k, η)U(−~k, η) = −ω
[

1− 1

8

( a′

ma2

)2 ( k

γ2 ω

)2
]
,

(6.4.21)

V †(−~k, η) ~α · ~k V (−~k, η) = −U †(~k, η) ~α · ~k U(~k, η) = −k
2

ωk

{
1− 1

8 γ4

( a′

ma2

)2

× (1 +
1

γ
)
[
1− 1

γ
+ 2(1 +

1

γ
)
( γ − 2

(1 + γ)2

)]}
(6.4.22)
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where γ ≡
√

1 + (k/ma)2 is the local Lorentz factor. The second terms inside the brackets

are proportional to
(

a′

ma2

)2

' 10−54/(m/eV)2 near matter radiation equality, and can be

safely neglected. Therefore near matter radiation equality it is justified to keep only the

leading (zeroth) order term in the adiabatic expansion for the spinors.

The leading adiabatic order spinors (6.4.19,6.4.20) imply that the inteference terms fea-

ture the oscillatory factors

e±2i
∫ η ωk(η′) dη′ = e±2i

∫ t Ek(t′) dt′ ; Ek(t) =
√
k2
p(t) +m2 ; kp(t) =

k

a(η(t))
, (6.4.23)

therefore, the interference terms average out by dephasing on (comoving) time scales . 1/m.

Using the leading order spinors (6.4.19,6.4.20) in the adiabatic regime during (RD) and

the relations (6.3.25,6.3.27) among Bogoliubov coefficients, and, neglecting the interference

terms by averaging over their rapid oscillations 1, we find

ρ(η) = − 2

2π2a4(η)

∫ ∞
0

k2dk ωk(η)︸ ︷︷ ︸
zero point energy density

+
4

2π2a4(η)

∫ ∞
0

k2dk |Bk,s|2 ωk(η)︸ ︷︷ ︸
particle production

, (6.4.24)

P (η) = − 2

6π2a4(η)

∫ ∞
0

k2dk
k2

ωk(η)︸ ︷︷ ︸
zero point pressure

+
4

6π2a4(η)

∫ ∞
0

k2dk |Bk,s|2
k2

ωk(η)︸ ︷︷ ︸
particle production

. (6.4.25)

The zero point energy density and pressure coincide with those obtained in [68]. It is

straightforward to show covariant conservation of energy:

ρ̇+ 3
ȧ

a
(P + ρ) = 0 , (6.4.26)

where the dot stands for derivative with respect to comoving time t. This identity holds

separately for the vacuum and the particle production components. We have purposely kept

the vacuum terms to highlight the ultraviolet divergence. For example for the vacuum

contribution to the energy density, expanding ωk(η) ' k + M2(η)/2k − 3M4(η)/8k3 + · · ·
1It turns out that at zeroth adiabatic order the interference terms ρint vanish identically for each helicity

separately, but not for Pint.
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displays the quartic, quadratic and logarithmic divergences ubiquitous in the energy momen-

tum tensor. Considering higher order adiabatic contributions to ρvac;Pvac it is found that

these feature ultraviolet divergences up to quartic adiabatic order[68, 81, 90, 63, 129, 128],

therefore the vacuum contribution to the energy momentum tensor must be subtracted up

to fourth adiabatic order. However, because |Bk,s|2 falls off exponentially at large momenta

the contribution from particle production is ultraviolet finite.

We renormalize the energy momentum tensor by fully subtracting the zero point, vacuum

contributions to all orders in the adiabatic expansion. See discussion on this point in section

(6.6). Because covariant conservation (6.4.26) holds separately for both the zero point and

particle production contributions, the subtraction of the zero point contribution does not

affect covariant conservation of the particle production term.

Remarkably, the contribution from particle production is identified with the kinetic form

of the energy density and pressure, where |Bk,s|2 is the distribution function. The factors 4

in the numerator of the contribution from particle production of (6.4.24,6.4.25) arise from

two polarizations and particle and antiparticle states, namely four degrees of freedom.

The contributions from particle production are obtained by changing variables to k =

q
√
mHR. The Bogoliubov coefficient |Bk,s|2 is solely a function of q and is exponentially

suppressed for q > 1; the product q2|Bk,s|2 peaks at q ' 0.6 and drops-off exponentially.

This behavior is displayed in figs. (23,24). Writing

ωk(η) = ma(η)
[
1 +

q2

a2(η)

HR

m

]1/2

(6.4.27)

near matter radiation equality a ' 10−4 and with HR/m ' 10−35(eV)/m and q ' 1 it follows

that we can safely approximate ωk(η) ' ma(η) for m ≥ 10−29 eV, implying that this is a

non-relativistic species. Furthermore, consistently with the approximation of superhorizon

modes, the momentum integrals in (6.4.24,6.4.25) must be cutoff at a scale kc ' 1/ηR =
√
HRHdS, in terms of the variable q this implies a cutoff qc '

√
HdS/m = 1/ε� 1, however,

because |Bk,s|2 is exponentially suppressed for q > 1 the upper limit can be safely taken to

infinity. Therefore, the particle production contributions to the energy density and pressure
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are given in terms of the “emergent” temperature TH by

ρpp(η) =
4
√

2m√
π a3(η)

[
mTH

]3/2
∫ ∞

0

q2 |B(q)|2 dq︸ ︷︷ ︸
0.023

, (6.4.28)

Ppp(η) =
8
√

2π

3ma5(η)

[
mTH

]5/2
∫ ∞

0

q4 |B(q)|2 dq︸ ︷︷ ︸
0.01

. (6.4.29)

If |B(q)|2 in the integrands of (6.4.28,6.4.29) is replaced by 1
4
e
− k2

2mTH we find the numeri-

cal values in these expressions to be 0.02 , 0.0095 respectively. This similarity has a remark-

able consequence: noticing that the pre-factor 1/4 that multiplies the Maxwell-Boltzmann

distribution in the asymptotic limit of |B(q)|2 in (6.3.43) cancels the factor 4 in the particle-

production contributions to (6.4.24,6.4.25) leads us to conclude that the abundance and

the equation of state differ only by ' 10% from those obtained with a Maxwell-Boltzmann

distribution function for a single non-relativistic degree of freedom at temperature TH and

vanishing chemical potential consistent with particles and antiparticles being produced with

equal abundance.

Since the energy density redshifts as matter, we obtain (with ρc = 3H2
0/8πG ' 0.4 ×

10−10 (eV)4, and Ωdm ' 0.25)

Ωpp

Ωdm

= a3(η)
ρpp(η)

0.25 ρc
'
( m

3 .108 GeV

)5/2

. (6.4.30)

The equation of state parameter is given by

w(a) =
Ppp(η)

ρpp(η)
' 2π

6 a2(η)

(TH
m

)
. (6.4.31)

These results differs by . 10% from those obtained for a single a non-relativistic degree of

freedom with a Maxwell-Boltzmann distribution function with a temperature TH = HR/2π

since for non-relativistic particles w '< v2 > /3 where < v2 > is the velocity dispersion.

These results suggest that this nearly thermal fermionic species with m ' 108 GeV can be

produced with the correct dark matter abundance and features the equation of state of cold

dark matter. Such value of the mass is consistent with our main approximation m/HdS � 1

and the upper bound from Planck for 108 GeV� HdS . 1013 GeV.
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We also note the following consistency aspects :

i:) range of momenta: The integrals for the abundance and pressure are domi-

nated by the range q ' 1, namely, momenta k ' √mHR. Therefore for momenta in this

range it follows that kηR '
√
m/HdS = ε � 1 for the values of m that saturate the dark

matter abundance and HdS in the above range. Therefore the integrals are dominated by

wavelengths that are superhorizon at the end of inflation, consistently with one of our main

approximations.

ii:) neglect of O(ε) terms: In the calculation of the Bogoliubov coefficients we have

neglected O(ε) terms both in the spinors and the functions F ,H. Since the integrals are

dominated by the region q ' 1 � ε and is suppressed at small momenta by phase space

∝ q2, neglecting these terms is warranted. Including these terms yields corrections of O(ε).

6.5 Isocurvature Perturbations

6.5.1 During Inflation

In the case of bosonic theories, adiabatic and entropy perturbations from inflation have

been studied in refs.[92, 48, 20] in the case where the bosonic fields associated with curvature

and entropy perturbations both acquire expectation values. Adiabatic and isocurvature

perturbations result from linear combinations of fluctuations of the different bosonic fields

around their respective expectation values. The case in which only the inflaton field acquires

an expectation value was addressed in ref.[56] within the context of (bosonic) superheavy dark

matter produced during the inflationary era. This study recognized that in the case in which

the dark matter field does not acquire an expectation value the treatment of isocurvature

perturbations must be modified substantially. In particular, in absence of an expectation

value for the entropy field there is no mixing between the fluctuations of this and the inflaton

field and no cross correlations between adiabatic and isocurvature perturbations to linear

order. Several subtleties on the interpretation of isocurvature perturbations in the bosonic

case have been discussed in ref.[104].
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A similar situation arises in the case of fermionic fields since these cannot acquire an

expectation value. Fermionic isocurvature fluctuations were studied in ref.[57] within a

model that couples fermions to another scalar field via a Yukawa coupling. Although the

comoving isocurvature perturbations are defined by the following correlation function of the

(DM) energy momentum tensor∫
d3r

(2π)3
ei
~k·~r 〈δ(~x) δ(~x+ ~r)〉 ∝ P(dm)(k) , (6.5.1)

where

δ(~x) =
T

(dm)
00 (~x)− 〈0|T (dm)

00 (~x)|0〉
ρ(dm)

(6.5.2)

ρ(dm) = 〈0|T (dm)
00 (~x)|0〉 , (6.5.3)

the authors of ref.([57]) only consider the correlations involving the composite operator mψψ

and take ρ(dm) ≡ m〈ψ ψ〉 .

The case that we study here departs from the model studied in ([57]) in several crucial

aspects: i:) we do not consider any coupling of the fermionic fields to any other bosonic

field, ii:) the fermion field in our case is in the Bunch-Davies vacuum state. As we discussed

in detail in the previous section, we renormalize the energy momentum tensor by completely

subtracting the vacuum contribution, hence during inflation the renormalized ρ(dm) = 0.

Therefore, the (DM) energy density perturbation (6.5.3) cannot even be defined in the case

that we study here.

As discussed in section (6.4) and in more detail in refs.[28, 157, 89, 108, 107, 47, 10, 99,

27, 68, 81, 19, 90, 129] the expectation value of the energy momentum tensor features quar-

tic, quadratic and logarithmic divergences, these are renormalized by subtractions absorbed

in the counterterms in the gravitational action described in section (6.4). The finite part

of 〈0|Tµν |0〉 is not unique and depends on the renormalization prescription. When the field

acquires an expectation value (background) the identification of ρ(dm) as that from the back-

ground energy momentum tensor, and δ as the contribution to the energy momentum tensor

linear in the fluctuations of the field are unambiguous. However, in absence of a background

expectation value, the energy momentum tensor is at least quadratic in the fluctuations and
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its renormalization yields a finite part that depends on the renormalization procedure. In

this scenario ρ(dm) and δρ are not uniquely defined. Because we subtract the full expectation

value of the energy momentum tensor in the Bunch-Davies vacuum state, it follows that

ρ(dm) = 0 during inflation in our renormalization scheme.

Therefore, neither the analysis of ref.([56]) nor that of ref.([57]) which specifically con-

siders fermionic degrees of freedom, applies to the case that we study here.

6.5.2 Post Inflation

The discussion above has focused on the generation of entropy perturbations during infla-

tion and the applicability of the framework introduced in ref.[56, 57]. However, the relevant

aspect is how entropy (isocurvature) perturbations affect the temperature power spectrum of

the (CMB). In the usual approach to cosmological perturbations, adiabatic and isocurvature

perturbations during inflation provide the initial conditions of the respective perturbations

upon horizon re-entry during the radiation (or matter) dominated era. As discussed in detail

in refs.[20, 48], the initial conditions of isorcurvature perturbations are determined by the set

of transfer functions discussed in ref.[48]. These, in turn, are proportional to the “mixing”

(or correlation) angle which is determined by the expectation value of the entropy field, and

vanishes identically in the fermionic case.

Furthermore, as we discussed above the framework introduced in ref.[57] cannot be ap-

plied directly to the case that we study because the renormalization procedure that we follow

subtracts the full expectation value of the energy momentum tensor in the Bunch-Davies

vacuum during inflation. Therefore the background density vanishes identically in our case.

This directly implies that the initial conditions for isocurvature perturbations during the ra-

diation dominated era cannot be determined during the inflationary stage. In the radiation

era the energy density and pressure feature three contributions: the vacuum contribution is

subtracted out in the renormalization procedure, the interference term is rapidly oscillating

in the adiabatic regime ( for the energy density it vanishes at the leading adiabatic order) and

therefore its expectation value averages out on short time scales, and the contribution from

particle production, which in the adiabatic regime features the kinetic fluid form. It is this
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latter term that is the relevant one (after renormalization) to understand dark matter per-

turbations, the distribution function is completely determined by the Bogoliubov coefficient

|Bk|2. The influence of isocurvature perturbations on the (CMB) is a result of solving the

system of Einstein-Boltzmann equations for linear cosmological perturbations, in which |Bk|2

is the distribution function of the unperturbed (DM) component, and ρpp (6.4.24) describes

the background density. This set of Einstein- Boltzmann equations must be appended with

initial conditions, which are determined from the respective super-horizon perturbations at

the end of inflation. From the above discussion, it is clear that in the case of fermions, the

proper initial conditions for isocurvature perturbations remain to be understood.

The corollary of this discussion is that a proper definition of the power spectrum of

entropy perturbations in the case when the fields do not acquire expectation values remains

to be understood at a deeper level. The caveats associated with the renormalization of the

energy momentum tensor along with its correlations remain to be clarified in a consistent and

unambiguous manner. These include a proper account of the fact that there is no natural

manner to renormalize the divergences in a power spectrum obtained from the connected

correlation function of the energy momentum tensor. These remain even when the zero

point contribution to the energy density is completely subtracted. The contribution of zero

point energy correlations to non-linear perturbations merits deeper scrutiny, since even the

fluctuations of the inflaton yield zero point contributions to the energy density and all other

fields that are either produced or excited post-inflation presumably also contribute to the zero

point energy density during inflation. A satisfactory resolution of these important issues,

necessary to quantify reliably the impact of non-linear entropy perturbations is still lacking,

and is clearly well beyond the scope of this study.

6.6 Discussion

On reheating:

The non-equilibrium reheating dynamics leading to a (RD) dominated era after inflation,

is still a subject of much research. Reheating dynamics is not universal, as a large body of

287



studies show, depending on particular forms for the inflaton potential and the couplings

of particles within and beyond the standard model to the inflaton and/or other degrees of

freedom, thereby yielding model dependent descriptions with widely different time scales

depending on generally unknown couplings and masses. See ref.[9] for a review.

One of our main assumptions is to focus on wavelengths that are superhorizon at the end

of inflation. Two aspects of this assumption justify one of our main approximations, that

of instantaneous reheating: the dynamics of the mode functions for these wave-vectors is on

long time scales, hence insensitive to the reheating dynamics occurring on much shorter time

scales. Furthermore, in principle, wavelengths larger than the particle horizon are causally

disconnected from the microphysical processes of thermalization. While this assumption

seems physically reasonable, it must be tested quantitatively. This requires studying a par-

ticular model of reheating dynamics, which however, would yield conclusions that would not

be universally valid. Perhaps a simple model that dynamically and continuously interpolates

(with continuous scale factor and Hubble rate) between a near de Sitter inflationary stage

and a post-inflation (RD) stage would illuminate the validity of the instantaneous approxi-

mation. Such study would, undoubtedly, require a substantial numerical effort to solve the

mode equations during the transition and matching to the solutions in the subsequent (RD)

era. Clearly such a study is beyond the scope of this article but merits further attention.

Radiation density vs number of degrees of freedom:

During (RD) the Hubble rate is proportional to
√
g with g the effective number of

ultrarelativistic degrees of freedom. In our analysis we took ΩR to be the radiation component

today, corresponding to 2. Therefore the value of HR (6.2.34) and consequently of TH in

(6.4.28,6.4.28) scales as
√
g/2. For a fixed value of the mass m the ratio (6.4.30) is multiplied

by a factor (g/2)3/4. If we assume only standard model degrees of freedom being thermalized

after reheating, g ' 100, in turn this implies that the numerator in the bracket of (6.4.30)

is replaced by m → ' 3m. Hence the value of the mass that saturates the (DM)

abundance is replaced by m ' 108 GeV, a simple rescaling by a factor O(1). Therefore, just

taking the radiation fraction to be today’s value yields a lower bound on the abundance and

upper bound on the mass that saturates the (DM) abundance. In any extension beyond the

standard model g will be larger, this implies that the ratio (6.4.30) must be multiplied by
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(g
2
)3/4 and the equation of state w → w

√
g/2. The main conclusions remain the same with

only a quantitative change: in the case of the standard model with g ' 100, by a factor of

O(1) in the mass bound and abundance, and a factor ' 10 in the equation of state, which,

however will still describe cold dark matter.

When are particles produced?

This question does not have a unique answer. As discussed in refs.[99, 64] a time depen-

dent number operator for produced particles depends on the basis to define these particles.

Different definitions or basis correspond to including higher adiabatic orders. While all these

definitions yield the same number of particles asymptotically at long time when the adia-

batic approximation becomes reliable, they differ in the production dynamics during the

non-adiabatic stages. This fact has been discussed in detail in ref.[104] and illustrated with

various examples in ref.[64]. We emphasize that we do not introduce a number operator

associated with a particular definition, instead we study the full energy momentum tensor

and unambiguously extract the contribution of produced particles asymptotically when the

adiabatic approximation is very reliable. During the non-adiabatic stages at the end of infla-

tion and early (RD) era, different definitions will yield very different dynamics. Furthermore,

as emphasized above, the continuity of the solutions of the Dirac equation, along with the

continuity of the scale factor and Hubble rate at the transition from inflation to (RD) ensure

that the energy momentum tensor is continuous across the transition. Therefore there is no

“burst” of particle production at the transition.

Renormalization:

We have emphasized that the renormalization scheme that we implement subtracts com-

pletely the zero point contribution both during inflation and in (RD). Such scheme is, in

fact, completely consistent with the usual working assumptions in (semiclassical) cosmology

during and after inflation. For example, in the case of the inflaton, the background con-

tribution to the energy momentum tensor is separated and assumed to drive inflation, the

linearized perturbation of the energy momentum tensor around the background sources linear

metric perturbations, but the quadratic and higher terms in the fluctuations are generically

neglected. However, these terms feature the ultraviolet divergences that must be renormal-

ized; in not including this contribution in Einstein’s equations, it is effectively completely
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subtracted out. Furthermore, if the standard model degrees of freedom are truly funda-

mental, they all contribute to the energy momentum tensor during inflation as well, when,

presumably, all of these fields are in their (Bunch-Davies) vacuum state and their contribu-

tion amounts to zero point energy density and pressure. Not including their contribution

in the dynamics of the geometry is tantamount to subtracting completely their contribution

to the energy momentum tensor. In the (RD) era, the energy density of particles in ther-

mal equilibrium is the expectation value of the Hamiltonian in the thermal density matrix

and features the zero temperature zero point energy, which is ultraviolet divergent and is

subtracted out. Therefore, the renormalization scheme that we adopt is consistent with the

usual subtraction of zero point energies in cosmology.

Comparison to previous work:

In refs. [53, 126] the gravitational production of fermions was studied. Our independent

analysis agrees with some of these results while also presenting crucial differences. Regarding

points of agreement: 1.) The long wavelength limit of the Bogoliubov coefficient |Bk,s|2 →
1/2 as k → 0 is consistent with the Pauli blocking term in Fermi-Dirac distribution and

confirms a similar limit in ref.[53]. 2.) For m� HdS, we find that the final abundance does

not feature any dependence on the inflationary stage in agreement with the results of ref.[53].

Moreover we find that this abundance has an overall dependence on the mass scale of the

fermion species consistent with the result of [126]. 3.) The abundance we obtain saturates

the necessary dark matter energy density at the same mass scale as obtained in [53, 126].

We note that this is likely a consequence of m and HR (the Hubble scale during RD) being

the only relevant scales in the m� HdS scenario.

However, we also recognize important differences in our results from the literature: 1.)

For large k, our distribution given by (6.3.45) is in stark contrast to the behavior shown in

fig. (1) of [53] (see m � HdS case). The authors quote a power law |Bk,s|2 ' k−4 for large

k regarding modes which are super-horizon at the end of inflation. This disagrees with our

description of Maxwell-Boltzmann-like exponential behavior for these same modes. We do

not understand the origin of this important difference. 2.) The matching conditions employed

in [53] for enforcing continuity of the mode functions from inflation to RD are quite distinct

from our procedure. We perform an in-out calculation, analytically solving the equations of
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motion for the mode functions in the m� HdS limit. While the solution in the inflationary

regime is fixed by our initial condition (BD vacuum, in-state), the solution in RD regime must

be the general solution constructed out of a linearly-independent combination of solutions.

Each particular solution of this linear combination smoothly, asymptotically matches onto

our adiabatic, out-states (i.e. our particle and anti-particle states with associated u-type

and v-type spinors.) Thus our matching condition leads to (6.3.19,6.3.20) where a u-type

spinor in inflation is a linear combination of u-type and v-type spinors in RD. In [53], the

u-type spinors of inflation are matched with solely u-type spinors during RD. We believe

this important difference is a result of the authors in [53] using a time-dependent particle

number which we do not resort to for reasons discussed above. 3.) Neither [53] nor [126]

obtain the energy density or pressure. Given their result of |B|2 ∝ 1/k4 these quantities

would depend logarithmically on HdS as discussed above. 4.) In [53], the authors introduce

an upper bound on the mass of the dark fermion candidate for their calculation to be

consistent. When this upper bound is imposed the produced particle abundance becomes

negligible and cannot saturate the necessary dark matter abundance. Conversely, in our

calculation we do not find any upper bound more restrictive than m � HdS making our

result (6.4.30) robust and general. To be clear, we have shown self-consistently, that only

the low momentum, superhorizon modes contribute to the abundance and equation of state;

therefore, our instantaneous reheating approximation is well-justified and our results are

insensitive to any reheating model-dependent parameters.

Fermions vs Bosons:

Ref. [104] studied the cosmological particle production of scalar particles both minimally

(MC) and conformally (CC) coupled to gravity focusing on ultralight dark matter candidates

(m� HdS) under the same assumption of an instantaneous transition to the (RD) era. Thus

we can now compare the results of that study with the analysis conducted here. The result

for the abundance in the bosonic (CC) case given by eqn. (V.42) in ref.[104] is remarkably

similar to the fermionic abundance (6.4.30) after the proper rescaling of the energy units.

However, the similarity of the results conceals very important differences between the bosonic

and fermionic cases.

First we highlight the differences in the produced particle distribution (focusing on the
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asymptotic regimes) using equations (6.3.43) and (III.63, III.69 from [104]):

k �
√
mHR :

Nk,s '
1

2
(Fermions) Nk ∝

1

k
(CC) Nk ∝

1

k3
(MC)

k �
√
mHR :

Nk,s ' e
− k2

2mTH (Fermions) Nk ∝
1

k8
(CC) Nk ∝

1

k4
(MC)

In all three cases the distribution function is peaked at low co-moving wave vectors. However,

in the fermion case it is bound by Pauli blocking at very low momentum reaching the

maximum value 1/2 and is exponentially suppressed for large momenta by the thermal factor,

while in the bosonic case the distribution function diverges as a power law in the infrared

and falls off with a different power law at large momentum. The distribution functions for

the bosonic (CC) and the fermionic case are displayed in Fig. (26)).

For minimally coupled bosons extracting the matter-like contribution to the energy den-

sity (the component which redshifts as 1/a3(η)) requires introducing an upper integration

bound (k . maeq). When combined with the stipulation of superhorizon modes at the end of

inflation (kηR � 1), this results in an upper mass bound m . 1
aeqηR

' 0.01 eV for ultralight,

non-adiabatic particle production. One does not obtain this bound in the case of fermions

as the exponential suppression of the distribution function permits one to integrate over all

momenta self-consistently as discussed above. Thus, one can consider non-adiabatic particle

production of TeV-scale fermions (or even higher) with only m� HdS required.

The comparison between fermions and conformally coupled bosons is more apt as both

cases obey the same de Sitter mode equation for superhorizon modes (for m� HdS) (6.3.3).

This is unsurprising since in either case there is no direct coupling between the scalar cur-

vature and the quantum fields. However, despite these similarities with conformally cou-

pled bosons, the fermion mode functions do not feature an infrared enhancement (compare

(6.3.33) with (III.12) of [104]) unlike those of either bosonic case. This discrepancy is a

consequence of the normalization of the fermion spinors, and ultimately the canonical anti-

commutation relations and Pauli blocking, and explains the differences in the low momentum
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Figure 26: The produced particle distributions N(q) where q = k
mHR

for conformally

coupled bosons (blue) and fermions (gold). (Colors available online.)

behavior of the distribution functions (see Fig. (26)). These differences in the distribution

function are not a just a formal issue, the moments of the distribution function will be

very different. These moments enter in the Boltzmann hierarchy for the coupled radiation-

matter-gravitational perturbations during the (RD) era prior to matter radiation equality.

Therefore, despite the similarity in the abundance between the bosonic (CC) and fermionic

cases, we expect substantial modifications in the transfer functions obtained from Boltzmann

codes from the two very different distribution functions. These aspects remain to be studied

further, however they are beyond the scope of this article.

On thermality:

A noteworthy aspect of our result is a near thermal distribution of produced particles

with the distribution function (6.3.45). It yields a near thermal abundance and equation

of state very similar to that of one non-relativitistic degree of freedom with a Maxwell-

Boltzmann distribution at the “emergent temperature” TH . The surprising emergence of this

temperature is unexpected because an (RD) cosmology does not feature an event horizon,

hence this temperature cannot be identified with Gibbons-Hawking radiation[91]. Aspects

of thermality in the distribution of particles produced via cosmological expansion were also
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revealed in early work in refs.[13, 51] in very different cosmological settings. Ref.[13] studied

cosmological production in a radiation dominated cosmology including and extending the

singularity, the authors find a distribution of particles that is also non-relativistic with

en effective temperature (see also [28] section 3.5). A similar conclusion was reached in

ref.[51] that studied cosmological particle production in a path-integral framework but with

a different cosmological model with scale factor ∝ t (t being comoving time), and an effective

temperature that is ∝ a(t). Our results apply to a very different situation since we consider

fermion fields, initial “in” conditions during inflation, and match onto (RD). Furthermore,

the “emergent temperature” that we find, TH , is independent of time. Therefore, while the

results of the early references [13, 51] suggest a general “thermality” aspect of the distribution

of produced particles, the relationship to our results, if any, and the physical origin of the

near thermal spectrum is not clear to us.

Pair annihilation into gravitons:

Because we are considering that the dark matter candidate only couples to gravity, the

process of particle anti-particle pairs annihilating into gravitons could lead to a depletion

of the (DM) abundance. Fundamentally, to understand the dynamics of this process one

would set up a Boltzmann-like equation with a loss term determined by the annihilation

process, assuming a negligible abundance of gravitons one can, in principle, neglect the

inverse process. Such an equation would feature the six-dimensional momentum integrals of

the distribution functions for the annihilating pairs multiplied by the transition probability

obtained from the time evolution via the interaction picture. For the case of annihilation into

gravitons, writing the metric as gµν = gµν − hµν
MPl

with gµν being the background metric and

hµν the canonically normalized quantum fluctuations of the gravitational field, the coupling

to gravitons is given by
hµν
MPl

T µν . (6.6.1)

This is the interaction vertex that is required in the interaction picture to obtain the tran-

sition probability. The usual implementation of S-matrix theory taking the long time limit

to obtain the transition probability (per unit time) is unreliable for the following conceptual

and technical reasons.

In transverse-traceless gauge, the graviton field is expanded into canonical creation and
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annihilation operators for each polarization (+,×) and mode functions solutions of the Klein-

Gordon equation for a massless field minimally coupled to gravity. Conceptually the notion

of particles is physically unambiguous only in the asymptotic long time regime. Using the

basis of fermion “out” states entails that during the non-adiabatic regime, during which most

of the particle production takes place, the mode functions for these states are the parabolic

cylinder functions, not the usual Minkowski type exponentials e±iωt. The mode functions

for gravitons during (RD) are actually of the form e±ikη/a(η), and while spatial momentum

is conserved (in a spatially flat metric with three space-like Killing vectors) energy is not

conserved. Taking the infinite time limit in the transition amplitudes as is implicit in an

S-matrix calculation, is obviously unreliable in a rapidly expanding cosmological setting.

Therefore a calculation even to lowest order is very different from that in Minkowski space

time and confronts daunting technical challenges, that to the best or our knowledge have

not yet been discussed, much less worked out in the literature. For example, even during

the adiabatic regime the correct assessment of particle decay in an expanding cosmology

is technically challenging as can be gleaned from the work in refs. [105, 36] with results

which are generally very different from those expected in Minkowski space time. A similar

calculation for annihilation has not been carried out in the literature even in the adiabatic

regime.

Therefore, in light of these conceptual and technical challenges it should be clear that

a reliable quantitative assessment of the influence of pair annihilation in the expanding

cosmology is well outside the main scope of this article and must await the development

of new techniques. Here we can at best provide a very preliminary and rough estimate for

the depletion from pair annihilation into two gravitons at second order in the interaction

based on a Minkowski intuition and the main scales involved. Assuming (without warrant)

that Minkowski-like dynamics provides a useful guide, the main ingredients in this argument

are the following: i) there are initially no gravitons so that the inverse process does not

occur (this by itself is a major assumption since gravitons are produced during and post

inflation), ii) the strength of the vertex (for the spatial components) (6.6.1) is determined

by the typical momentum in the distribution functions ' √mHR, and the typical energy

scale ' m, which we take as the main scale for the fermionic degrees of freedom. Therefore
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the effective coupling in this vertex is ' m/Mpl ' 10−10 for m ' 108 GeV which saturates

the bound for (DM) abundance (6.4.30). The intermediate state yields a fermion propagator

with a typical scale 1/m, the comoving number density is n ' (mHR)3/2 and the probability

for pair annihilation is ∝ n2. Thus we are led to conclude that on dimensional grounds, and

within the assumption of the validity of a Minkowski space-time estimate, at second order

in the vertex
δn

δt
' n2

m2

( m

MPl

)4

, (6.6.2)

integrating this expression during a time interval ∆t ' 1/HR yielding a total depletion

∆n = δn/HRδt, we find

∆n

n
'
(HR

m

)1/2 ( m

MPl

)4

' 10−65 . (6.6.3)

Therefore, this assessment suggests that pair annihilation into gravitons will not affect the

abundance. However this result should be interpreted as a guide with all of the caveats

discussed above, a more detailed assessment with new methods that can describe consistently

the time evolution of annihilation during the non-adiabatic regime is needed. Such method

should not rely on the usual S-matrix approximations of taking the long time limit with

manifest energy conservation and should input the correct mode functions. The program

to develop these new methods and applying them consistently to the calculation of pair

annihilation is well beyond the scope of this article and merits a detailed study.

6.7 Conclusions and Further Questions

We have studied the gravitational production of fermionic dark matter during inflation

and radiation domination under a minimal set of assumptions: i) its mass m is much smaller

than the Hubble scale during inflation, described as de Sitter space time, ii) only interact

gravitationally, iii) fermions are in the Bunch-Davies vacuum state during inflation, iv) focus

on wavelengths that are well outside the Hubble radius at the end of inflation, v) a rapid

transition from inflation to (RD).
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We solve exactly the Dirac equation during inflation and radiation domination with

“in” and “out” boundary conditions and match the solutions at the transition. Particle-

antiparticle pairs are produced non-adiabatically with a distribution function |B(k)|2 =

1
2

[
1−
(
1−e−

k2

2mTH

)1/2
]

exhibiting an emergent temperature TH = H0

√
ΩR/2π ' 10−36 eV with

H0,ΩR the Hubble expansion rate and radiation fraction today respectively. This distribution

function is remarkably similar to a Maxwell-Boltzmann distribution for a non-relativistic

species with vanishing chemical potential, in agreement with the fact that particles and

antiparticles are produced with the same distribution.

With the exact solution we obtain the full energy momentum tensor, discuss in detail its

renormalization and extract unambiguously the contribution from particle production near

matter radiation equality. We show that after renormalization this contribution features the

kinetic-fluid form with |B(k)|2 as the distribution function. We obtain the energy density

ρpp, pressure Ppp and equation of state parameter w(a) of the produced particles factor a

ρpp = 0.074
m

a3

[
mTH

]3/2
Ppp = 0.067

[
mTH

]5/2
ma5

w(a) =
Ppp
ρpp
'
[ TH
ma2

]
,

where a is the scale factor. Remarkably these correspond to a nearly thermal non-relativistic

species in equilibrium at temperature TH and vanishing chemical potential, with the equation

of state function related to the velocity dispersion for this species as w(a) ' 〈V 2〉/3. The

departure from an exactly thermal non-relativistic single species with a Maxwell-Boltzmann

distribution at temperature TH is . 10%. The reason behind this small discrepancy is the

behavior of |B(k)|2 as k → 0.

The ratio of the abundance of produced particles to the dark matter abundance is given

by
Ωpp

Ωdm

=
( m

3 .108 GeV

)5/2

. (6.7.1)

Therefore, a fermionic particle with mass ' 108 GeV can be produced gravitationally, with

the correct dark matter abundance and constitutes cold dark matter.
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The integrals yielding ρpp, Ppp are dominated by wavevectors k .
√

2mTH and these

correspond to wavelengths that are well outside the Hubble radius at the end of inflation,

confirming self-consistently the validity of the main approximation of focusing solely on these

wavevectors for the matching conditions from inflation to (RD).

We discuss important aspects of renormalization during both the inflationary and (RD)

era which imply subtle uncertainties associated with an unambiguous determination of

isocurvature perturbations from gravitationally produced fermions. These uncertainties are

not only a characteristic of fermionic degrees of freedom, but apply generally to fields that

do not acquire an expectation value during inflation and whose energy momentum tensor

feature ultraviolet divergences of the zero point contributions that must be renormalized by

proper subtractions. These subtractions depend on the particular renormalization scheme,

therefore the finite part of the energy density and pressure arising from the renormalization

of the zero point contributions would be scheme dependent. Our procedure is to subtract

completely the zero point contributions, and we argue that this procedure is implicitly imple-

mented in all treatments of inflationary dynamics. However, the corollary of this subtraction

is that the initial conditions for isocurvature perturbations during radiation or matter dom-

ination cannot be defined during the inflationary epoch. The resolution of these aspects

remains a subject of further study.

The origin of thermality in the distribution function is also an aspect that merits further

understanding, since it cannot be identified with a Gibbons-Hawking temperature because

an (RD) cosmology does not feature an event horizon.
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7.0 Conclusions

It is a remarkable fact that the physics of elementary particle interactions, which describes

nature at the smallest scales, plays an important role in understanding the evolution of the

entire Universe. Our present understanding of cosmology indicates that the Universe evolved

from an extremely compact, high temperature initial state. After a brief period of inflation-

driven exponential expansion, processes described by the Standard Model of particle physics

were responsible for producing the observed primordial abundances of light elements and the

cosmic microwave background radiation. The success of these predictions, complemented

by astronomical observations of distant galaxies has lead to a paradigmatic cosmological

model, ΛCDM. However, the nature of the dark matter and energy which together comprise

the majority of the Universe’s present energy content remains elusive. Additionally, the

mechanism responsible for the observed asymmetric abundance of matter over anti-matter is

also unknown. Particle physics models have been the most popular candidate explanations

for these cosmological quandaries. Yet, most of these models, particularly in the case of dark

matter and baryogenesis, neglect the effects of the expanding spacetime on the evolution of

quantum fields, instead leveraging static, Minkowski spacetime descriptions.

The overarching goal of this thesis was to develop and employ a consistent, quantum field

theoretic treatment of the dynamics of particles inhabiting the expanding early universe.

After quantifying and understanding the effects of this expansion, this novel phenomenology

was applied to provide new insights regarding the open questions of particle cosmology, with

an emphasis on theories of dark matter. To facilitate this goal, the canonical process of

particle decay, albeit in the post-inflationary cosmological epoch, was studied in chapters

3 and 4. Implications for dark matter and baryogenesis were also discussed. In chapters

5 and 6, the process of non-adiabatic, gravitational/cosmological particle production was

investigated as a dark matter production mechanism . Here we summarize the main findings

of these two projects.
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7.1 Cosmological Particle Decay

The goal of this project was to obtain the decay law for a massive scalar particle produced

in the early universe. This particle is described as an excited state of a field quantized in

FRW spacetime. The main assumptions and methods of the analysis are as follows:

• Conformal Time: The FRW metric is conformal to the Minkowski metric. Working in

conformal time dη = dt
a(t)

is more convenient for many calculations (a(η) is the scale

factor).

• Adiabaticity: The equations of motion for even free scalar fields quantized in FRW

spacetime are difficult to solve. Exact solutions only exist for separate stages of cosmology

(e.g. Matter Domination) or for model expansion histories. We instead focus on obtaining

approximate solutions using the adiabatic expansion [28]. This expansion is valid for as

δ = H(t)

γ2
k(t)Ek(t)

� 1 Where γk, H, and Ek are the Lorentz factor (measured by a comoving

observer), Hubble parameter, and local energy of the quanta respectively. We obtain

approximation solutions to 0th adiabatic order in our analysis.

• Radiation Domination: We restrict ourselves primarily to the cosmological epoch of

radiation domination (RD) where most of the interesting particle physics processes occur.

However our methods can be extended to matter domination (MD) as well, in principle.

Additionally, in RD, the scale factor depends linearly on conformal time which simplifies

several calculations, a(η) = H0

√
ΩR η where H0 and ΩR are the Hubble Parameter and

present day energy density of radiation.

• Finite Time Evolution of States: Since the usual S-matrix approaches are in general

invalid for FRW spacetime, we obtain the decay law using a non-perturbative formalism

ubiquitous in quantum optics. In this method the state kets are expanded in the complete

set of 0th order adiabatic particle states (|ψ〉 =
∑

nCn(η)|n〉), and the interaction picture

Schrodinger equation (i∂η|ψ(η)〉 = HI |ψ(η)〉) is used to carry out the time evolution

yielding coupled differential equations. By choosing the field to be initially in a single

particle state (CA(ηi) = 1), the decay law and rate can be obtained analytically and are
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given by

|CA(η)|2 = e
−

∫ η
ηi

ΓA(η′)dη′ |CA(ηi)|2 ; ΓA(η) = 2

∫ η

ηi

dη1 Re [ΣA(η, η1)] . (7.1.1)

where |CA(η)|2 is the survival probability of the initial state.

ΣA(η; η′) =
∑
κ

〈A|HI(η)|κ〉〈κ|HI(η
′)|A〉 (7.1.2)

is known as the self-energy, with HI being the interaction Hamiltonian of the theory,

and is summed over momenta. Note the lack of the infinite time limit.

7.1.1 Massive Scalar to Scalar Decay

The analysis presented in chapter 3 studied the decay of a massive scalar field, φ1 = χ1

a(η)
,

coupled to a second scalar field with the following interaction Lagrangian density

LI = −λa(η)χ1χ
2
2 (7.1.3)

The field operators are of course quantized in FRW spacetime, and the methods and as-

sumptions stated previously are employed. The principle findings can be summarized as

follows:

• The survival probability of the decaying parent particle is obtained and may be written as

an effective time-dependent decay rate P (t) = e−Γ̃k(t)t. The effective rate is characterized

by a timescale tnr. For t� tnr the decaying particle is relativistic and

P (t) = e−
1
3

Γ0tnr(
t
tnr

)
3
2

; (7.1.4)

while for t� tnr the decaying particle is non-relativistic and

P (t) = (
t

tnr
)

Γ0tnr
2 e−Γ0t . (7.1.5)

In both regimes, Γ0 refers to the usual Minkowski spacetime decay rate at rest. Gener-

ically speaking, the decay of the particle is slowed by the expanding spacetime. The

reason for this delayed decay is the cosmic redshifting of the particle’s local Lorentz fac-

tor. Thus, particles ”born” with a large local Lorentz factor live longer in an expanding

FRW spacetime.

301



• The expansion of spacetime introduces a new energy uncertainty associated with and

determined by the particle horizon ( 1
H(t)

). This effect is encapsulated in a result we

call the Cosmological Fermi’s Golden Rule. A distinct consequence of this new energy

uncertainty is the relaxing of decay thresholds, permitting the decay to daughter particles

heavier than the parent. These channels close as the expansion proceeds, and the usual

kinematic thresholds seen in laboratory experiments today obtain.

7.1.2 Massive Scalar to Fermion Decay

In chapter 4 we extended the above results to the study of a more physical model: the

decay of a Higgs like scalar (φ) with Yukawa couplings to fermions (Ψ).

LI = −Y χψ̄ψ ; χ = φ a(η) ; ψ = a
3
2 (η)Ψ (7.1.6)

Unlike in the previous study, this model is renormalizable theory (the self-energy is divergent)

which complicates the calculation tremendously. Therefore, in order to simplify the analysis

we consider massless fermion daughters. This assumption is well warranted for a heavy

Higgs-like scalar within or beyond the Standard Model decaying to any charged lepton or

quark (except the top.)

The study of cosmic particle decay into fermionic channels introduces a novel physics

phenomenon related to the renormalization: the formation and subsequent decay of a quasi-

particle state (i.e. a state dressed by fermion/anti-fermion pairs.) We implement a renor-

malization procedure which permits one to separate the dynamics of dressed-state formation

from the decay dynamics since these two processes are separated by a large time scale. The

key step is the introduction of a renormalization time scale (tb) which is larger than the

dressing time scale yet smaller than the lifetime of the particle. The time dependent decay

function is evaluated at this tb and then subtracted from the general result yielding a finite

decay function (Γ̃(t)− Γ̃(tb) = Γ̃S(t; tb)). The survival probability of the quasiparticle state

(defined at time, tb) is then given by this new finite decay function

Pr(t) = e−Γ̃S(t;tb) Pr(tb) (7.1.7)
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The renormalized survival probability then obeys a dynamical renormalization group equa-

tion ∂
∂tb
Pr(t) = 0 and is ultraviolet finite.

Using this dynamical renormalization scheme in conjunction with the methods and as-

sumptions discussed previously we obtain the following results:

• The survival probability of the parent particle is obtained and characterized by a timescale,

tnr as in the scalar to scalar case. During the regime tb � t� tnr, the decaying particle

is relativistic, and the survival probability is

P (t) = e−
2
3

Γ0tnr(
t
tnr

)
3
2

(7.1.8)

and nearly identical to the decay to scalars case. Again Γ0 is the usual Minkowski

spacetime decay rate at rest.

• However, for t � tnr (and tb) cosmic redshift has rendered the decaying particle non-

relativistic, and its survival probability is given by

P (t) = [
t

tnr
](
−Y 2

8π2 ) e
Y 2

8π2 (t/tnr)
1
4

[
t

tnr
]

Γ0tnr
2 e−Γ0(t−tnr)P (tnr) . (7.1.9)

The power of t
tnr

with anomalous dimension and the stretched exponential with power 1/4

are remnants of the formation of a quasiparticle state encoded into the decay function

by cosmic redshift. These factors are the prominent difference between the bosonic

daughter particles case studied previously. Their presence is a result of the confluence

of a renormalizable theory in an expanding spacetime. Specifically, in an expanding

spacetime, even at leading adiabatic order, the particle state frequencies (ωk) are time-

dependent unlike in Minkowski spacetime. This time-dependence allows ”memory” of

the transient dynamics associated with the formation of a dressed state to persist and

imprint on the decay law.

• In the case of very long lived particles (Y ≪ 1), we can place an upper bound on the

survival probability of a Higgs like scalar produced in the early universe and decaying

well into matter domination or beyond. The result is

P (z) ≥ e
−Γ0
H0

Υ(z,zb) P (zb) . (7.1.10)
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Here the survival probability has been written as a function of redshift, z with zb being

the renormalization scale redshift. The function Υ has the following form

Υ(z, zb) =

∫ 1
1+z

1
zb

da√
a2
nr + a2

√
ΩMa−3 + ΩRa−4 + ΩΛ

. (7.1.11)

This function depends only on cosmological parameters and the value of the scale factor

at which the decaying particle transitions to being non-relativistic (anr).

In studying the decay of particles produced in the early universe, while consistently treating

the expanding spacetime, two important conclusions can be inferred from these results:

1.) Using decay rates computed in Minkowski spacetime as a measure of decay dynamics

is at best an approximation, but in general is problematic since it underestimates the lifetime

and misses the various temporal behaviors of the survival probability.

2.) Minkowski spacetime inspired approaches are quite handicapped in cosmological

settings, for while they are sufficient for describing weakly coupled particles decaying at rest

at late times in the expansion history, they clearly miss non-equilibrium dynamics manifest

in renormalizable theories. Such dynamics can, in principle, effect baryogenesis, leptogenesis,

and other early universe quantum kinetic processes. In particular, the usual result of detailed

balance in quantum kinetics in Minkowski spacetime results from the consideration of decay

and inverse decay processes and as direct consequence of energy conservation. The lack of

energy conservation, and the modification of the decay laws in FRW spacetime motivate a

future investigation of detailed balance in cosmology, a result which is usually assumed in

the physics of the early universe.

7.2 Cosmological Particle Production

The goal of this second project was to study the cosmological particle production of a

dark matter field coupled only to gravity. Such a generic and conservative model can, in a

sense, be considered the simplest possible dark matter candidate. The particle production is

the result of the highly non-adiabatic evolution of the field during even the post-inflationary

epoch of the cosmic expansion. The main assumptions of this investigation follow:
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• Spectator light field during inflation: We consider the dark matter to be described by

quantum field, quantized in FRW spacetime, that does not couple to any other degrees

of freedom beyond gravity. It does not acquire an expectation value and therefore does

not contribute to perturbations in the metric. The particle mass of the field is light

compared to the scale of inflation m
HdS
� 1

• Low momentum modes in Bunch-Davies vacuum: We consider the inflationary stage to

be exactly de Sitter spacetime. The dark matter field is assumed to be in the Bunch-

Davies vacuum state (the ground state seen by a comoving observer.) We focus on field

fluctuations with long wavelengths (∼ 1m � λ � 1
H0

) which include all astrophysical

scales. Such modes have the property that they are outside the particle horizon of the

Universe at the onset of reheating.

• Instantaneous reheating: We consider an instantaneous, smooth transition from the in-

flationary stage to the radiation dominated epoch occurring at a conformal time ηR. This

allows us to avoid reheating model-dependent conclusions and is consistent with our at-

tention on superhorizon modes which evolve very slowly post-inflation (while outside the

horizon) compared to the reheating time-scale.

• Non-adiabaticity: We consider particle production coming from non-adiabatic evolution.

For small masses and low momentum modes, the adiabatic condition
ω′k
ω2
k
� 1, (where ωk

is the comoving mode frequency) is violated even during the RD epoch.

• No Backreaction: The RD epoch is dominated by a large number (∼ 100) of Standard

Model degrees of freedom which are insensitive to our DM. We therefore neglect any

contribution from our single field to the radiation component of the energy density in

this phase. Consequently, the spacetime metric is regarded as a true background upon

which our field is quantized.

With these assumptions in place we then proceed to compute the particle production in 5

steps. 1.) Solve the equations of motion for the scalar field during inflation exactly, choosing

Bunch-Davies initial conditions as previously described. 2.) Solve exactly the equations

of motion during RD, obtaining a general solution which, while distinct, asymptotically

approaches the adiabatic mode functions in the long time limit. These adiabatic mode

functions are identified as particle states which match the free field theory states of Minkowski
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spacetime. 3.) Match the inflationary and RD solutions at conformal time ηR enforcing a

smooth transition. The matching coefficients, are Bogoliubov coefficients, and yield the

amount of particle production. 4.) Compute the energy momentum tensor of our dark

matter field. By the onset of the matter dominated epoch, our modes are now well described

by the adiabatic approximation. We therefore proceed according to [10] and expand the

vacuum expectation values of the tensor to fourth order in the adiabatic expansion before

performing a renormalization of the tensor, fully subtracting away the zero-point energy. 5.)

Focusing on the dominant, leading order term, we identify the contribution to the energy

density and pressure coming from the particle production, compute the relic abudance Ωpp

and compare it to the observed dark matter abundance ΩDM .

7.2.1 Scalar Dark Matter

In chapter 5, we studied the cosmological particle production of ultralight scalar dark

matter (m � 1 eV) in the early universe. At such a small mass scale, the field exhibits

non-adiabatic evolution until the scale factor, a � 10−17, so there is a long window for

this evolution even after the end of inflation a ' 10−29. We considered both conformal and

minimal couplings to the scalar curvature. Using the previously discussed assumptions and

procedure, the following results are obtained:

• For both conformal coupling (ξ = 1/6) and minimal coupling (ξ = 0) the produced

particle distribution Nk is peaked at low comoving momentum (k)

k �
√
mHR :

Nk ∝
1

k
(CC) Nk ∝

1

k3
(MC) (7.2.1)

k �
√
mHR :

Nk ∝
1

k8
(CC) Nk ∝

1

k4
(MC) (7.2.2)

but the minimally coupled case features a significant infrared enhancement, a relic from

their inflationary mode function behavior.
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• Obtaining the matter-like contribution to the produced particle energy density (the com-

ponent which redshifts as 1/a3(η)) requires introducing an upper integration bound

(k . maeq). In combination with requirement of superhorizon modes at the end of

inflation, this results in an upper mass bound m . 1
aeqηR

' 0.01 eV for ultralight, non-

adiabatic particle production.

• For conformally coupled scalars, the produced dark matter abundance is negligible in

the mass range of interest. For the minimally coupled case, the produced abundance is

significant,

Ωpp

ΩDM

= 8.36

{
√
mev

[
ln
[√
mev

]
+ 36

]}[ HdS

1013GeV

]2

(7.2.3)

wheremev is the particle mass in eV andHdS is the scale of inflation. Thus, the abundance

depends only on cosmological parameters and the particle mass. The required dark mat-

ter abundance is saturated by a minimally coupled scalar with mass m ' 1.5× 10−5 eV.

For this mass, we also obtain the equation of state parameter (at matter-radiation equal-

ity) and the free streaming length which are w(aeq) ' 2.5 × 10−14 and λfs ∼ 70 pc

respectively. Accordingly, the produced ultralight bosons are still very cold and have a

free streaming length comparable to weakly interacting massive particles.

7.2.2 Fermionic Dark Matter

In chapter 6, the process of cosmological particle production was investigated with a

fermionic dark matter field subject to the same main assumptions as in the previously stud-

ied bosonic case. Fermions require the introduction of spinors which obey orthonormality

relations. These relations are used, in tandem with the assumptions and 5 step method

discussed previously, to yield the following results:

• Non-adiabatic production of particle-antiparticle pairs yields the distribution function,

Nk =
1

2

[
1−

(
1− e−

k2

2mTH

)1/2
]

(7.2.4)

possessing an emergent temperature TH = H0

√
ΩR/2π ' 10−36 eV with H0,ΩR being the

Hubble expansion rate and radiation fraction of today respectively.
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• The temporal equation of motion for the fermion fields (for m � HdS) during inflation

is the same as that for conformally coupled scalars. This is expected, since both types of

quantum fields feature no direct dependence on the scalar curvature in their equations of

motion. However, despite this similarity, the distribution function for the fermions does

not possess the power law scaling seen in the conformally coupled bosonic distribution

function, in either limit.

• In the low momentum limit, k � (mH0

√
ΩR)1/2 the distribution is maximized at the

constant Nk ' 1/2. Like the bosonic case, the distribution is largest at low comoving

momentum. However, the fermion case is effected by Pauli blocking, a direct consequence

of the anticommutation relations enjoyed by the fermion creation/annihilation operators,

which produces an upper bound and the distinct low momentum behavior.

• The distribution function, in the large momentum limit k � (mH0

√
ΩR)1/2, is highly

similar to a Maxwell-Boltzmann distribution for a non-relativistic species albeit with

vanishing chemical potential,

Nk ' e
− k2

2mTH . (7.2.5)

The absence of a chemical potential is indicative of the fact that the particles and an-

tiparticles are produced with the same distribution.

• Because of the exponential suppression of the distribution function, one can integrate

the distribution over all momenta, when extracting the matter-like contribution to the

produced particle energy density. Therefore, contrary to the bosonic case, an upper

mass bound (beyond m� HdS) is not introduced; this permits the production of much

heavier quanta while still considering superhorizon modes. The resulting energy density,

pressure, and equation of state parameter are

ρpp = 0.074
m

a3

[
mTH

]3/2
(7.2.6)

Ppp = 0.067

[
mTH

]5/2
ma5

(7.2.7)

w(a) =
Ppp
ρpp
'
[ TH
ma2

]
, (7.2.8)

which surprisingly nearly correspond to a non-relativistic species in thermal equilibrium

at temperature TH with vanishing chemical potential. The discrepancy with the results as
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obtained from non-relativistic Maxwell-Boltzmann distribution at the same temperature

is . 10% as consequence of the low momentum behavior in the fermionic produced

particle distribution.

• The produced particle abundance as compared with observed dark matter abundance is

Ωpp

Ωdm

=
( m

3 .108 GeV

)5/2

. (7.2.9)

such that dark fermions of mass ' 108 GeV can be produced purely through gravitational

interactions, with the correct abundance and a cold equation of state (w(aeq) ' 10−49).

The results of these studies of purely gravitational particle production, as a direct conse-

quence of protracted non-adiabatic evolution, imply four important conclusions:

1.) Provided the particles are ultralight compared to the scale of inflation m� HdS, non-

adiabatic production is a competition between the mass of the particle and the scale factor

range for which non-adiabatic evolution is observed. Increasing the particle mass closes this

window earlier, but each produced particle contributes more to the matter energy density.

In all studied cases, the particle mass is the more important parameter, and increasing the

mass always increases the produced abundance Ωpp. Thus in general a wide mass range

admits of non-adiabatic gravitational production. However in the bosonic case, the form of

the distribution, in combination with the considering of exclusively superhorizon modes at

the end of inflation, imposes a cutoff on the particle mass at m . 0.1 eV. Considering heavier

bosons violates the assumptions of the calculation.

2.) The assumptions for which these calculation hold are mild. In all cases the distribu-

tion is peaked for precisely post-inflation superhorizon modes, exhibiting self-consistency in

the calculation. Moreover these calculations focus on the darkest of matter, namely parti-

cles with purely gravitational interactions. Including interactions with the inflaton, or other

fields in the Standard Model or beyond, will introduce additional production mechanisms

for a stable (on Hubble scales) dark matter candidate. These production mechanisms will

increase the abundance. Therefore, crucially, the abundances calculated above represent a

baseline for dark matter production. Any dark matter model featuring interactions must

account for this production mechanism, and hence these abundances represent a generic

lower bound for any interacting species of long-lived dark matter. In the bosonic case, the
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salient mass range for non-adiabatic production is comparable to that of axion-like particle

dark matter (ALPs). Since ALP models necessarily entail some production mechanism, the

phenomenology of gravitational production in conjunction with that mechanism, should be

investigated and in principle can constrain the model’s parameter space.

3.) For the minimally-coupled bosons, the produced particle abundance was directly

sensitive to the scale of inflation. This is a consequence of their equation of motion during

the inflationary phase. Accordingly, the detection of minimally coupled dark bosons would

in principle represent a probe of the Hubble parameter during inflation, which is presently

unknown and is only tightly bound from above.

4.) For fermions, a nearly thermal distribution function was produced via this mecha-

nism. This is surprising since the initial field configuration is in its vacuum state which is

zero entropy. However, the final abundance corresponds to a high entropy, thermal distribu-

tion with an emergent temperature set by present day cosmological parameters. The origin

of this thermality is unclear. This temperature cannot be interpreted as a Gibbons-Hawking

temperature (as, for example, in the case of a black hole), since the radiation dominated cos-

mological epoch has a finite particle horizon, and therefore does not have an event horizon.

This aspect merits further study.
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Appendix A Supplement for Scalar Decay Products

A.1 Particle Decay in Minkowski Spacetime

In order to understand more clearly the decay law in cosmology, it proves convenient to

study the decay of a massive particle into two particles in Minkowski space time implementing

the Wigner-Weisskopf method.

Integrating in momentum first: massless daughters:

This is achieved from the expression (3.7.3) by simply taking

η → t ; a(η)→ 1 , g
(1)
k (η)→ e−iEk t√

2Ek
; g

(2)
k (η)→ e−ik t√

2k
, (A.1.1)

with Ek =
√
k2 +m2, leading to

Σk(t− t′) =
λ2

Ek

∫
d3p

(2π)3

ei(Ek−p−q)(t−t
′)

2p 2q
; q = |~k − ~p| . (A.1.2)

The integral over p can be done by writing d3p = p2dp d(cos(θ)) and changing variables

from cos(θ) to q =
√
k2 + p2 − 2kp cos(θ) with d(cos(θ))/q = −dq/k p, and introducing a

convergence factor t− t′ → (t− t′ − iε) with ε→ 0+. We find

Σk(t− t′) =
−i λ2

16π2Ek

ei(Ek−k)(t−t′)

(t− t′ − iε) =
λ2

16π2Ek
ei(Ek−k)(t−t′)

[
− iP

(
1

t− t′

)
+ π δ(t− t′)

]
,

(A.1.3)

and

ReΣk(t− t′) =
λ2

16π2Ek

{
π δ(t− t′) +

sin
[
(Ek − k)(t− t′)

]
(t− t′)

}
. (A.1.4)

This expression yields a time dependent decay rate Γ(t) given by

Γ(t) = 2

∫ t

0

ReΣk(t− t′) dt′ =
λ2

8π Ek

1

2

[
1 +

2

π
Si[(Ek − k)t]

]
, (A.1.5)

where Si[x] is the sine-integral function with asymptotic limit Si[x]→ π/2 for x→∞. The

time scale to reach the asymptotic behavior

tasy ∝
1

Ek − k
, (A.1.6)
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therefore the approach to asymptotia and to the full width takes a much longer time for an

ultrarelativistic particle with tasy ∝ 2k/m2, whereas it is much shorter in the non-relativistic

case tasy ∝ 1/m. In S-matrix theory in Minkowski space time one takes t→∞, and obviously

in this limit the Si− function reaches its asymptotic value, therefore the time dependence

of the rate cannot be gleaned.

Integrating in time first: massive particles and Fermi’s Golden rule:

Let us consider now the full dispersion relations for the daughter particles, calling Ek

that of the parent decaying particle and ωp =
√
p2 +m2

2 that of the daughter. From (3.6.7)

and (3.6.21), we need

Ek[t; t] =

∫ t

0

Σk(t− t′) dt′ ; Γk(t) = 2 ReEk[t, t] . (A.1.7)

We find

Γk(t) =
2λ2

Ek

∫
d3p

(2π)3

sin
[
(Ek − ωp − ωq) t

]
2ωp 2ωq

[
(Ek − ωp − ωq)

] ; q = |~k − ~p| , (A.1.8)

the asymptotic long time limit

sin
[
(Ek − ωp − ωq) t

][
(Ek − ωp − ωq)

] −−−−→
t→∞ π δ

(
Ek − ωp − ωq

)
, (A.1.9)

yields

Γk(t) −−−→
t→∞

λ2

Ek

∫
d3p

(2π)3 2ωp 2ωq
(2π) δ

(
Ek − ωp − ωq

)
, (A.1.10)

this is simply Fermi’s Golden rule which yields the standard result for the decay rate

Γk =
λ2

8π Ek

[
1− 4m2

2

E2
k − k2

]1/2

Θ(E2
k − k2 − 4m2

2) . (A.1.11)

Although E2
k − k2 = m2

1 we have left the result in the form shown to make use of it in the

cosmological case and to highlight the threshold.

Before taking the limit t→∞ the real time rate ( A.1.8) can be conveniently written in

a dispersive form, namely

Γk(t) =

∫ ∞
−∞

ρ(k0, k)
sin
[
(k0 − Ek) t

][
π (k0 − Ek)

] dk0 (A.1.12)
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with the spectral density

ρ(k0, k) =
λ2

Ek

∫
d3p

(2π)3

(2π) δ(k0 − ωp − ωq)
2ωp 2ωq

; q = |~k − ~p| , (A.1.13)

which, following the steps leading up to ( A.1.11) is given by

ρ(k0, k) =
λ2

8π Ek

[
1− 4m2

2

k2
0 − k2

]1/2

Θ(k2
0 − k2 − 4m2

2) Θ(k0) . (A.1.14)

The case of massless daughter’s particles m2 = 0 is particularly simple, yielding

Γk(t) =
λ2

8π2Ek

∫ ∞
−(Ek−k)t

sin(x)

x
dx =

λ2

8π Ek

1

2

[
1 +

2

π
Si[(Ek − k)t]

]
. (A.1.15)

This expression of course agrees with eqn. ( A.1.5) and clarifies the emergence of a prompt

term given by δ(t− t′) in ( A.1.3) and the “rising” term, namely the Si function that reaches

its asymptotic value π/2 over a time scale ≈ 1/(Ek − k), by integrating in time first.

Using the result (3.6.4) adapted to Minkowski space time, with the state |κ〉 = |1(2)
~p , 1

(2)
~q 〉

the amplitude for daughter particles becomes

C~p,~k(t) = −i〈1(2)
~p 1

(2)
~q |HI |1(2)

~k
〉
∫ t

0

e−i
(
Ek−ωp−ωq

)
t′ e−Γkt

′/2 dt′ (A.1.16)

with the probability given by

|C~p,~k(t)|2 =
λ2

2ω
(1)
k ω

(2)
p ω

(2)
q V

∣∣∣1− e−Γkt/2 e−i
(
Ek−ωp−ωq

)
t
∣∣∣2[

(Ek − ωp − ωq)2 +
Γ2
k

4

] ; ~q = ~k − ~p . (A.1.17)
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A.2 First Order Adiabatic Correction for Massive Daughters

There are two contributions of first adiabatic order in the time integrals up to η of

equation (3.7.2): 1) keeping the quadratic term (η − η′)2 multiplied by derivatives of the

frequencies in the exponential (see eqn. (3.7.27)). With the substitution τ = ω
(1)
k (η) (η− η′)

this term is proportional to τ 2, and 2) in the first order expansion of the scale factor and

the frequencies obtained from the expression (3.7.24), this term is proportional to τ . Both

terms are of first adiabatic order, hence are multiplied by H(t)/Ek(t) ≡ 1/z where we have

taken the frequency of the parent particle as reference frequency. The contributions to the

integral (here we set ηi = 0) ∫ η

0

Σk(η, η
′) dη′

are of the form

1

z

∫ z

0

(a τ + i b τ 2) e
i

[
1−ω

(2)
p (η)

ω
(1)
k

(η)
−ω

(2)
q (η)

ω
(1)
k

(η)

]
τ

dτ

where a, b are z-independent coefficients but depend on the momenta. Introducing the dis-

persive form of the momentum integrals as in equation (3.7.50) and introducing

ε =
k0 − E(1)

k

E
(1)
k

, (A.2.1)

we find the following contributions to the corrections to ReΣk:

Re

∫ z

0

τeiετdτ = f1(ε, z) =
d

dε

[(1− cos(ε z)

ε

]
(A.2.2)

Re

∫ z

0

i τ 2eiετdτ = f2(ε, z) =
d2

dε2

[(1− cos(ε z)

ε

]
. (A.2.3)

Changing integration variables from k0 to ε in the dispersive form and writing the spectral

density ρ(k0, k) ≡ ρ(ε) to simplify notation the corrections to the rate Γk(η) to first adiabatic

order are determined by the following integrals

I1,2(z) =
1

z

∫ ∞
−∞

ρ(ε)f1,2(ε, z) dε , (A.2.4)
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for comparison, in terms of the same variables, the zeroth order adiabatic term is given by

I0(z) =

∫ ∞
−∞

ρ(ε)
sin(εz)

ε
dε . (A.2.5)

The function f0(ε, z) is the usual function of Fermi’s Golden Rule: for large z it is sharply

localized near ε ' 0 with total area = π, it becomes a delta function in the large z limit,

probing the region ε ' 0 of the spectral density. The function f1(ε, z) is even in ε and for

large z is also localized near ε ' 0 but in this limit it becomes the difference of delta functions

multiplied by z plus subdominant terms. Because this function is a total derivative the total

integral area is independent of z and vanishes in the integration domain −∞ < ε < ∞. If

m1 is above the threshold the total integral does not vanish but becomes independent of z

and small as z → ∞, thus we expect I1(z) to fall off rapidly with z. Finally, the function

f2(ε, z) is odd in ε and for large z is also localized near ε ' 0 but vanishing at ε = 0 and

rapidly varying in this region, averaging out the integral over the spectral density. Thus we

also expect that I2(z) falls off with z with nearly zero average because of being odd in ε.

Figures (27, 28) display I0, I1, I2 for a representative set of parameters. The main features are

confirmed by a comprehensive numerical study for a wide range of parameters for m1 > 2m2

(above threshold). If m1 is below the two particle threshold, the spectral density vanishes in

the region of support of the functions f1, f2 thereby yielding rapidly vanishing integrals for

large z. We have confirmed numerically that both I1, I2 vanish very rapidly as a function

of z in this case, remaining perturbatively small when compared to I0. Therefore this study

confirms that the first order adiabatic corrections are indeed subleading as compared to the

leading (zeroth) order contribution for large z = Ek(t)/H(t).
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Figure 27: The integral I0(z) vs. z, for m2/m1 = 0.25 , k = 0 .
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Figure 28: The integrals I1(z), I2(z) vs. z, for m2/m1 = 0.25 , k = 0.
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Appendix B Supplement for Fermion Decay Products

B.1 Projectors

Introducing the notation

Ωk(η) ≡
√
ωψk (η) +Mf (η) ; ωψk (η) =

√
k2 +M2

f (η) , (B.1.1)

with the zeroth-adiabatic order spinors (4.2.60,4.2.61), the projector operators are given by

equations (4.2.62). We find

Λ+
~k

(η, η′) =

 Ωk(η)Ωk(η
′) I − ~σ · ~k Ωk(η)

Ωk(η′)

~σ · ~k Ωk(η′)
Ωk(η)

− k2

Ωk(η)Ωk(η′)
I

 , (B.1.2)

Λ−~k (η′, η) =

 k2

Ωk(η)Ωk(η′)
I − ~σ · ~k Ωk(η)

Ωk(η′)

~σ · ~k Ωk(η′)
Ωk(η)

− Ωk(η)Ωk(η
′) I

 , (B.1.3)

where I is the 2×2 identity matrix. These expressions can be written more compactly intro-

ducing the following functions (suppressing the momentum and conformal time arguments),

λ0 =
1

2

(
Ωk(η)Ωk(η

′) +
k2

Ωk(η)Ωk(η′)

)
(B.1.4)

λ1 =
1

2

( Ωk(η)

Ωk(η′)
+

Ωk(η
′)

Ωk(η)

)
(B.1.5)

λ2 =
1

2

( Ωk(η)

Ωk(η′)
− Ωk(η

′)

Ωk(η)

)
(B.1.6)

λ3 =
1

2

(
Ωk(η)Ωk(η

′)− k2

Ωk(η)Ωk(η′)

)
, (B.1.7)

as

Λ+
~k

(η, η′) = γ0 λ0 − ~γ · ~k λ1 + ~γ · ~k γ0 λ2 + λ3 (B.1.8)

Λ−~k (η′, η) = γ0 λ0 − ~γ · ~k λ1 + ~γ · ~k γ0 λ2 − λ3 . (B.1.9)
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Two relevant cases:

1:) Equal time, η = η′,

Λ+
~k

(η, η) = γ0ωψk (η)− ~γ · ~k +Mf (η)

= a(t)
[
6K(t) +mf

]
; Kµ(t) = (Eψ

k (t),−~kp(t)) , (B.1.10)

Λ−~k (η, η) = γ0ωψk (η)− ~γ · ~k −Mf (η)

= a(t)
[
6K(t)−mf

]
. (B.1.11)

2:) Massless fermions,

Λ+
~k

= Λ−~k = γ0k − ~γ · ~k . (B.1.12)

B.2 Minkowski Space-time: mψ = 0

The Minkowski space-time limit is obtained by replacing η → t and the frequencies are

time independent. The self-energy in this case becomes[32]

Σχ(k, t, t′) =
Y 2

16π2

eiω
φ
k (t−t′)

ωφk

∫
dk0ρ(k0, k)e−ik0(t−t′) ; ρ(k0, k) = (k2

0−k2) Θ(k0−k) . (B.2.1)

Replacing k2
0 → −d2/dt

′ 2, and introducing a convergence factor ε→ 0+ yields

Σχ(k, t, t′) = −i Y
2

16π2

eiω
φ
k (t−t′)

ωφk

[
d2

dt ′ 2
+ k2

][
e−iΛ(t−t′−iε) − e−ik(t−t′−iε)

(t− t′ − iε)

]
, (B.2.2)

and the decay function∫ t

0

Γk(t
′) dt′ = 2

∫ t

0

{∫ t′

0

Re
[
Σχ(k, t′, t

′′
]
dt
′′

}
dt′ . (B.2.3)

Integrating by parts twice the derivative term in ( B.2.2) we find∫ t

0

Γφk(t′) dt′ =
Y 2

8π2 ωφk

[
T1(Λ, k, t) + T2(Λ, k, t) + T3(k, t)

]
, (B.2.4)
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where

T1(Λ, k, t) =
1

ε

(
e(ωφk−k)ε − e(ωφk−Λ)ε

)
−

sin
(

(Λ− ωφk )t
)

t
−

sin
(

(ωφk − k)t
)

t
, (B.2.5)

T2(Λ, k, t) = 2ωφk

∫ t

0

[
1− cos

(
(Λ− ωφk )t′

)
t′

−
1− cos

(
(k − ωφk )t′

)
t′

]
dt′ (B.2.6)

T3(k, t) = m2
φ

∫ t

0

[
Si
(

(Λ− ωφk ) t′
)

+ Si
(

(ωφk − k) t′
)]
dt′ , (B.2.7)

where Si(t) =
∫ t

0
sin(x)/xdx. Taking ε→ 0+ and keeping Λ large but finite yields

T1(Λ, k, t) = (Λ− k)

[
1−

sin
(

(Λ− ωφk ) t
)

(Λ− k) t
−

sin
(

(ωφk − k) t
)

(Λ− k) t

]
, (B.2.8)

T2(Λ, k, t) = 2ωφk

[
ln
(Λ− ωφk
ωφk − k

)
− Ci

[
(Λ− ωφk ) t

]
+ Ci

[
(ωφk − k) t

]]
, (B.2.9)

and

T3(k, t) = m2
φ

{
t
[
Si
[
(Λ− ωφk ) t

]
+ Si

[
(ωφk − k) t

]]
−

[
1− cos

[
(Λ− ωφk ) t

]]
(Λ− ωφk )

−

[
1− cos

[
(ωφk − k) t

]]
(ωφk − k)

}
,

(B.2.10)

where for Λt → ∞ it follows that Si
[
(Λ − ωφk ) t

]
→ π/2, and Ci

[
(Λ − ωφk ) t

]
→ 0. Taking

the limit Λ→∞ yields∫ t

0

Γφk(t′)dt′ =
Y 2

8π2 ωφk

{
Λ− k + 2ωφk ln

[
Λ

ωφk − k

]
+m2

φ t
[π

2
+ Si

[
(ωφk − k) t

]]

+ Ci
[
(ωφk − k) t

]
−

[
1− cos

[
(ωφk − k) t

]]
(ωφk − k)

+O(1/t)

}
. (B.2.11)

This is exactly the same result as obtained in ref.[32] integrating in k0 first.
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B.3 Useful Identities

In this appendix we gather some useful identities valid during the radiation dominated

stage (see also appendix ( B.4)).

ω(η) =
[
k2 +m2H2

R η
2
]1/2

=
[
k2 +m2H2

R η
2
i +m2H2

R (η2 − η2
i )
]1/2

≡ ωi
γi

[
γ2
i − 1 +

η2

η2
i

]1/2

ωi = ω(ηi) ; γi = γ(ηi) . (B.3.1)

The local Lorentz factor in conformal time is given by

γ(η) =

[
(γ2
i − 1)(
η
ηi

)2 + 1

]1/2

=

[
k2

m2H2
R η

2
+ 1

]1/2

≡
[η2

nr

η2
+ 1
]1/2

=
(ηi
η

) [
γ2
i − 1 +

η2

η2
i

]1/2

γ2
i = 1 +

η2
nr

η2
i

; ηnr =
k

mHR

= ηi

√
γ2
i − 1 , (B.3.2)

yielding the identity

γ2(η)− 1 =
(ηi
η

)2

(γ2
i − 1) . (B.3.3)

The relationship with comoving time t is obtained via eqn. (4.2.39), namely

γ(η(t)) =

[
(γ2
i − 1)(
t
ti

) + 1

]1/2

≡
[
tnr
t

+ 1

]1/2

. (B.3.4)

The conformal and comoving time scales ηnr , tnr respectively, determine the scale at which

the decaying particle transitions from relativistic with γ(η) � 1 for η � ηnr or t � tnr to

non-relativistic with γ(η) ' 1 for η ≥ ηnr or t ≥ tnr. In terms of η, ηi we find,

ω(η) η =
ωi ηi
γi

( η
ηi

) [
γ2
i − 1 +

η2

η2
i

]1/2

. (B.3.5)
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B.4 Analysis of I2: Eqn. (4.4.7)

Consider the first term in I2 eqn. (4.4.7),

I2,a(Λ, k, η) =

∫ η

ηi

[√
ωφk (η′)

ωφk (ηi)
+

√
ωφk (ηi)

ωφk (η′)

]
×
[

1− cos
( ∫ η′

ηi

(
ωφk (η1)− Λ

)
dη1

)
η′ − ηi

]
dη′ , (B.4.1)

For Λ� k,mφ the argument of the cosine becomes simply Λ (η′−ηi). Define x = Λ (η′−ηi),
and change integration variable to x, with xf = Λ (η − ηi), yielding

I2,a(Λ, k, η) =

∫ xf

0

[√
ωφk (ηi + x/Λ)

ωφk (ηi)
+

√
ωφk (ηi)

ωφk (ηi + x/Λ)

]
×
[

1− cos(x)

x

]
dx . (B.4.2)

In the limit Λ→∞ we find

I2,a → 2
[

ln(xf ) + γE − Ci(xf )
]

(B.4.3)

where γE = 0.577 · · · is Euler’s constant and for xf � 1 we find Ci(xf ) = sin(xf )/xf + · · · .
We confirmed the result ( B.4.3) numerically. Therefore for Λ� k,mφ, 1/(η − ηi) we find

I2,a = 2 ln
[
Λ eγE (η − ηi)

]
. (B.4.4)

Let us now consider

I2,b(k, η) = −
∫ η

ηi

[√
ωφk (η′)

ωφk (ηi)
+

√
ωφk (ηi)

ωφk (η′)

]
×
[

1− cos
( ∫ η′

ηi

(
ωφk (η1)− k

)
dη1

)
η′ − ηi

]
dη′ . (B.4.5)

Using the identities obtained in appendix ( B.3) for a radiation dominated cosmology,

we write

ωφk (η) =
√
k2 +m2

φH
2
R η

2 =

{
k2 +m2

φH
2
R η

2
i +m2

φH
2
R η

2
i

[(
1 +

η − ηi
ηi

)2

− 1
]}1/2

= ωiW [ξ] , (B.4.6)

where we introduced the definitions

W [ξ] =
1

γi

[
γ2
i − 1 + (1 + ξ)2

]1/2

, (B.4.7)
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ωi ≡ ωφk (ηi) ; ξ =
( η
ηi
− 1
)

; γi =
ωi

mφHR ηi
≡ Eφ

k (ti)

mφ

, (B.4.8)

and γi is the local Lorentz factor at time ηi.

In terms of these variables we find

J [ξ′] ≡
∫ η′

ηi

[
ωφk (η1)− k

]
dη1 =

ωi ηi
2

{(
1 + ξ′

)
W [ξ′]− 1− 2

ξ′

γi

√
γ2
i − 1

+

(
γ2
i − 1

)
γi

ln

[
γiW [ξ′] + 1 + ξ′

1 + γi

]}
. (B.4.9)

We note that the fulfillment of the adiabatic condition at all times implies that

ωi ηi =
Eφ
k (ηi)

H(ηi)
� 1 . (B.4.10)

For ξ′ � 1 it is straightforward to find that J [ξ′] features the expansion

J [ξ′] = ωi ηi ξ
′

[
1−

√
1− 1

γ2
i

+
1

2

ξ′

γ2
i

+ · · ·
]
. (B.4.11)

In terms of these variables we find that the subtracted integral I2b(k, η, ηb) defined by

eqn. (4.5.4) is given by

I2,b[k, η, ηb] = −
∫ ξ

ξb

[√
W [ξ′] +

1√
W [ξ′]

][
1− cos[J(ξ′)]

ξ′

]
dξ′ . (B.4.12)

Consider the two contributions to this function,

F1(ξ) =

∫ ξ

ξb

[√
W [ξ′] +

1√
W [ξ′]

]
dξ′

ξ′
(B.4.13)

F2(ξ) =

∫ ξ

ξb

[√
W [ξ′] +

1√
W [ξ′]

]
cos[J(ξ′)]

ξ′
dξ′ . (B.4.14)

During the time scale when J(ξ′) � 1 the term cos[J(ξ′)] ' 1 therefore F2(ξ) ' F1(ξ)

and I2b ' 0. Figures (29, 30) display F1,2(ξ) for ωiηi = 100 and γi = 2, 10 respectively for

ξb = 1/ωiηi. F2(ξ) grows up to a maximum at ξm at which J(ξm) = π/2 and begins damped

oscillations reaching a plateau. During the rise-time up to the maximum F2(ξ) ' F1(ξ)

thereby yielding I2b(k, η, ηb) ' 0 during the interval ξb ≤ ξ . ξm.
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Figure 29: The contributions F1(ξ), F2(ξ), for ξb = 0.01, γi = 2, ωiηi = 100.

Although in general the value of ξm must be obtained numerically, for ωiηi � 1 there

are two limits that afford an analytic estimate: a:) for ωiηi � 1 and γi ' 1, we assume, self

consistently that ξm � 1, therefore from eqn. ( B.4.11) we obtain

ξm '
π

2

{
ωiηi

[
1−

√
1− 1

γ2
i

]}−1

for γi ' 1 , (B.4.15)

this expression confirms the assumption that ξm � 1 for γi ' 1. b:) for γi � 1, it is

convenient to carry out the integral ( B.4.9) by expanding ωφk (η1) ' k + m2
φC

2(η1)/k + · · ·
and keeping the leading order term, we find

ξm '
{[

1 +
3 πγ2

i

ωi ηi

] 1
3

− 1

}
for γi � 1 . (B.4.16)

This latter expression is fairly accurate even for γi ' 2, 3. We have confirmed numerically

the validity of these approximate values of the maxima of F2(ξ) (see figures (29,30)). In both

cases we find that for ωiηi � 1 the value at the maxima fulfill ξm/γi � 1. In summary, we
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Figure 30: The contributions F1(ξ), F2(ξ), for ξb = 0.01, γi = 10, ωiηi = 100.

find that during the time interval ξb < ξ < ξm F1(ξ) ' F2(ξ) ' 2 ln[ξ/ξb] and I2b[k, η, ηb] ' 0.

For ξ > ξm the contribution F2(ξ) ' F2(ξm) ' 2 ln[ξm/ξb] remaining constant while F1(ξ)

increases monotonically. The above analysis shows that for ωiηi � 1 it follows that ξm � γi

in the whole range of γi, therefore during the interval ξm < ξ < γi and W [ξ′] ' 1, hence

F1(ξ) ' F1(ξm) + 2 ln
[ ξ
ξm

]
; ξm < ξ < γi , (B.4.17)

with F1(ξm) ' F2(ξm) ' 2 ln[ξm/ξb]. For ξ � γi the function
√
W [ξ] + 1√

W [ξ]
≥ 2 as shown

in fig. (31) hence F1[ξ] > 2 ln[ξ], with asymptotic behavior

F1[ξ] ' 2 ln
[γi
ξb

]
+ 2

√
ξ

γi
; for ξ � γi . (B.4.18)
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The behavior of F1,2 in the ultrarelativistic case γi � 1 is summarized as follows:

F1[ξ] ' F2[ξ] ' 2 ln
[ ξ
ξb

]
for ξb . ξ . ξm ,

F1[ξ] ' 2 ln
[ ξ
ξb

]
; F2[ξ] ' 2 ln

[ξm
ξb

]
for ξm . ξ . γi ,

F1[ξ] ' 2 ln
[γi
ξb

]
+ 2

√
ξ

γi
; F2[ξ] ' 2 ln

[ξm
ξb

]
for ξ � γi . (B.4.19)

0 20 40 60 80 100

2

4

6

8

10

12

C

[

ξ

]

 

ξ

γ

i

 =1 

γ

i

 =10 

Figure 31: The function C[ξ] = W 1/2[ξ] + 1/W 1/2[ξ] vs ξ, for γi = 1, 10.

B.5 Analysis of I3b(k, η, ηb): Eqn. (4.4.8)

Let us now consider the following integral in I3b, namely the second contribution to eqn.

(4.4.8):

I(η′) =

∫ η′

ηi

C2(η1)√
ωφk (η1)

sin
( ∫ η′

η1

(
ωφk (η2)− k

)
dη2

)
η′ − η1

dη1 , (B.5.1)

this integral is similar to the case of decay into bosonic particles studied in ref.[105].
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Following the treatment in this reference we introduce the following definitions

ωφk (η′) η′ = z(η′)� 1 , (B.5.2)

along with

ωφk (η′) (η′ − η2) = x ; ωφk (η′) (η′ − η1) = τ . (B.5.3)

In terms of these variables, it follows that

ωφk (η2) = ωφk (η′)R[x; z] , (B.5.4)

with

R[x; z] =

[
1− 2x

z γ2
+

x2

z2 γ2

]1/2

, (B.5.5)

where there is an implicit η′ dependence in z and γ.

The argument of the sine function in ( B.5.1) becomes

A(τ, η′) =

∫ τ

0

R[x; z] dx− k τ

ωφk (η′)
= τ

[
1−

(
1− 1

γ2

)1/2
]

+ δk(τ ; η′) , (B.5.6)

with

δ(τ ; η′) =
z

2

{(
1− 2 τ

z

)
−
(

1− τ

z

)
R[τ ; z]− (γ2 − 1)

γ
ln

[
γ R[τ ; z] +

(
1− τ

z

)
1 + γ

]}
, (B.5.7)

where z ≡ z(η′) ; γ ≡ γk(η
′) . Writing

C2(η1)√
ωφk (η1)

=
C2(η′)√
ωφk (η′)

P [η′, η1] , (B.5.8)

and using ( B.5.4) it is straightforward to find

P [τ ; η′] =

[
1− τ

z

]2

√
R[τ ; z]

. (B.5.9)

We finally obtain

I(η′) =
C2(η′)√
ωφk (η′)

∫ z̃

0

P [τ ; η′]
sin[A(τ, η′)]

τ
dτ , (B.5.10)
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where z̃ = ωφk (η′) (η′ − ηi). Gathering together this result with eqn. (4.4.13) for I3a we find

I3(k, η) =
π

2
mφ

∫ η

ηi

C(η′)

γk(η′)

[
1 + S(η′)

]
dη′ , (B.5.11)

where

S(η′) =
2

π

∫ z̃

0

P [τ ; η′]
sin[A(τ, η′)]

τ
dτ ; z̃ = ωφk (η′) (η′ − ηi) . (B.5.12)

For η′ � ηi and z(η′)� 1 the integral in ( B.5.10) has an adiabatic expansion, for τ � z

we find

δk(τ ; η′) = − τ 2

2γ2 z
+ · · · , (B.5.13)

therefore δk is of adiabatic order one and higher, furthermore,

R[τ ; z] = 1− τ

z γ2
+ · · · (B.5.14)

and to leading (zeroth) adiabatic order we can replace P [τ ; η′] = 1. The τ integral in ( B.5.10)

is dominated by the region τ ' 0, and the region for which τ ' z yields a contribution ∝ 1/z,

hence of first adiabatic order or smaller. Therefore to leading (zeroth) adiabatic order we

neglect δk in ( B.5.6) and replace P → 1 in ( B.5.10).

Although the variables ( B.5.2,3.7.14) allow an explicit identification of the nature of the

adiabatic expansion, the most suitable variables to merge the results for I3b with those of

the contributions from I2b are those introduced in appendices ( B.3) and ( B.4). We now

recast the results for I3b in terms of these variables. Introducing

t =
η′ − η1

ηi
; y =

η′

ηi
= 1 + ξ′ , (B.5.15)

in terms of which we find using ( B.3.1)

ωφk (η′) =
ωi
γi
f(y) ; f(y) =

√
γ2
i − 1 + y2 . (B.5.16)

Similarly, using ( B.3.3) we obtain

γk(η
′) ≡ γ(y) =

√(
γ2
i − 1

)
y2

+ 1 =
f(y)

y
, (B.5.17)
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and the variables z, τ introduced in eqns. ( B.5.2)) and (3.7.14) respectively are given by

z(η′) =
ωi ηi
γi

f(y) y ; τ =
ωi ηi
γi

f(y) t , (B.5.18)

which fulfill the identity

z(η′)

γk(η′)
(γ2
k(η
′)− 1) =

ωi ηi
γi

(γ2
i − 1) . (B.5.19)

Using these results we find

R[τ, z] ≡ R[t, y] =
1

γ(y)

[
(γ2
i − 1)

y2
+
(

1− t

y

)2
]1/2

, (B.5.20)

and the ratio ( B.5.9) becomes

P [τ, η′] ≡ P [t, y] =

(
1− t

y

)2

√
R[t, y]

, (B.5.21)

and δ(τ, η′) in eqn. ( B.5.7) becomes

δ(τ, η′) ≡ ∆[t, y] =
ωi ηi
γi

{
y f(y)

[(
1− 2

t

y

)
−
(

1− t

y

)
R[t, y]

]

(γ2
i − 1) ln

[
γ(y)R[t, y] +

(
1− t

y

)
1 + γ(y)

]}
. (B.5.22)

Finally the function A(τ, η′) given by eqn. ( B.5.6), becomes

A(τ, η′) ≡ A[t, y] = A0[t, y] + ∆[t, y] , (B.5.23)

with

A0[t, y] =
ωi ηi
γi

t

[√
(γ2
i − 1) + y2 −

√
(γ2
i − 1)

]
, (B.5.24)

and the integral ( B.5.12) becomes

S(η′) =
2

π

∫ ξ′

0

P [t, y]
sin[A(t, y)]

t
dt ; y = 1 + ξ′ ; ξ′ = (

η′

ηi
− 1) . (B.5.25)

We have argued above in this appendix that for ωφk (η′) η′ � 1 the term δ ≡ ∆ is higher

order in the adiabatic approximation and can be neglected, and that to leading order in this

approximation we can set P ≡ P → 1. We now test this assertion numerically in terms of
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the new variables. Since in the new variables the product ωφk (η′) η′ = ωi ηi
γi

y f(y) it follows

that ωφk (η′) η′ � 1 at all times implies that ωi ηi � 1 which is precisely the statement of

the validity of the adiabatic approximation at the initial time. Fig. (32) compares sin[A0[y,t]]
t

and P [y, t] sin[A[y,t]]
t

for γi = 5, ωi ηi = 100, y = 10, confirming the validity of the adiabatic

approximation. We have explored a wide range of parameters with similar results.
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Figure 32: Comparison of S0[y, t] = sin[A0[y,t]]
t

and S[y, t]× P [y, t] with S[y, t] = sin[A[y,t]]
t

for

γi = 5, ωi ηi = 100, y = 10, confirming the validity of the adiabatic approximation.

Therefore to leading order in the adiabatic approximation we can replace the argument

of the integral in ( B.5.25) by sin[A0[y,t]]
t

, yielding to lowest adiabatic order

S(ξ′) =
2

π
Si
[
α(ξ′)

]
; α(ξ′) =

ωi ηi
γi

ξ′

[√
(γ2
i − 1) + (1 + ξ′)2 −

√
(γ2
i − 1)

]
, (B.5.26)

where Si[x] is the sine-integral function, with Si[x] ' x as x → 0, reaches a maximum at

x = π and Si[x]→ π/2 for x & π. The maximum of S(ξ) occurs when

α(ξ) = π , (B.5.27)
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beyond which S(ξ) ' 1.

In particular for γi = 1 (the particle decaying at rest) and ωiηi � 1, S(ξ′) reaches a

maximum at ξ′ = ξs ' π/ωiηi + O(1/(ωiηi)
2) with S(ξs) ' 1. In the opposite limit, for

an ultrarelativistic particle with γi � 1 and ωiηi � 1 we find self-consistently that S(ξ′)

reaches a maximum at ξs with α(ξs) = π, where ξs is a solution of

ξs (1 + ξs)
2 =

2π γ2
i

ωiηi
. (B.5.28)

For 2π γ2
i /ωiηi � 1 we find

ξs '
[

2π γ2
i

ωiηi

]
−
[

2π γ2
i

ωiηi

]2

+ · · · , (B.5.29)

and for 2π γ2
i /ωiηi � 1

ξs '
[

2π γ2
i

ωiηi

] 1
3

− 2

3
+ · · · . (B.5.30)

In both cases we find that ξs
γi
� 1 whenever γi � 1. Fig. (33) displays the behavior of S(ξ)

for ωi = 100; γi = 2, 10.

Using the relations derived in appendix ( B.3) along with the identities

C(η′) = C(ηi) (η′/ηi) = C(ηi) (1 + ξ′) and mφC(ηi) = ωi/γi, it follows that I3(k, η) given

by ( B.5.11) can be written in terms of the same variables as I2, namely ξ = η/ηi − 1 and

ηb = ηb/ηi − 1. We find

I3(k, ξ) =
π

2

ωiηi
γi

∫ ξ

ξb

(1 + ξ′)2
[
1 + S(ξ′)

]
√

(γ2
i − 1) + (1 + ξ′)2

dξ′ . (B.5.31)

The contribution from the term with S in the integrand must be done numerically, however,

the first term can be done analytically, yielding

I3A(k, ξ) =
π

4
ωiηi

{
(1 + ξ)W [ξ]− 1− (γ2

i − 1)

γi
ln

[
γiW [ξ] + (1 + ξ)

1 + γi

]}
, (B.5.32)

where we have set ξb = 0 to leading adiabatic order.
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Figure 33: S[y, t] for γi = 2, 10 and ωiηi = 100.

The function S[α(ξ)] has the following behavior for ξ � ξs and ξ � ξs, corresponding

to α(ξ)� π and α(ξ)� π respectively:

S[α(ξ)] ' 2

π

[
α− α3

18
+

α5

600
+ · · ·

]
; α� π (ξ � ξs) (B.5.33)

S[α(ξ)] ' 2

π

[
1− cos[α]

α
− sin[α]

α2
+ · · ·

]
; α� π (ξ � ξs) (B.5.34)
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Appendix C Supplement for Scalar Particle Production

C.1 The Mode Functions (5.3.40) and WKB Asymptotics

The mode functions (5.3.40) can be written as

fk(η) =
|F(x, α)|

(8mHR)1/4
e−iϕ(x,α) , (C.1.1)

with x, α defined in eqn. (5.3.34). For |α| � x2 the Weber function features the asymptotic

behavior[2]

|F(x, α)| =
1

|α|1/4
[
1− x2

16|α| + · · ·
]

=
(2mHR)1/4

√
k

[
1− 1

4
m2H2

R η
2 + · · ·

]
ϕ(x, α) =

π

4
+
√
|α|x

[
1 +

2x2

48 |α| + · · ·
]

=
π

4
+ k η

[
1 +

m2H2
R η

2

6 k2
+ · · ·

]
.(C.1.2)

And for x2 � |α|

|F(x, α)| =

√
2√
x

[
1− |α|

x2
+ · · ·

]
=

√
2

(2mHR)1/4
√
η

[
1− k2

4m2H2
R η

2
+ · · ·

]
ϕ(x, α) =

x2

4
+ |α| ln(x) + · · · = 1

2
mHR η

2 +
k2

2mHR

ln[η
√

2mHR] + · · · (C.1.3)

Up to an overall constant phase these expansions coincide with the expansions of

fk(η) =
e−i

∫ η ωk(η′) dη′√
2ωk(η)

(C.1.4)

in both limits k � mHR η and k � mHR η respectively.
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C.2 Second Order Adiabatic Contributions to Tµν

We gather the results of second adiabatic order for the expectation value of the energy

momentum tensor (see [10, 47]).

ρ(2)(η) =
[ a′
ma

]2 1

4π2 a4(η)

∫ ∞
0

k2dkm
(

1 + 2Nk
) [m5 a4

8ω5
k

+
1

2
(1− 6ξ)

(m
ωk

+
m3a2

ω3
k

)]
.

(C.2.1)

T (2)(η) =
1

4π2 a4(η)

∫ ∞
0

k2dk
(

1 + 2Nk
){m6 a4

4ω5
k

[
a′′

m2 a
+
( a′

ma

)2
]

− 5m8 a6

8ω7
k

( a′

ma

)2

+ (1− 6ξ)

[
m2

ωk

(
a′′

m2 a
−
( a

′

ma

)2
)

+
m4a2

2ω3
k

(
2
a′′

m2 a
−
( a

ma

)2
)
− 3m6 a4

ω5
k

( a′

ma

)2
]}

(C.2.2)

The terms with 1/ωk; 1/ω3
k yield ultraviolet divergences for Nk = 0, which are subtracted

and absorbed into the renormalization counterterms as discussed in section (5.5), whereas

the term proportional to Nk yields ultraviolet finite contributions because Nk . 1/k4 at

large k. During the (RD) dominated era and near matter-radiation equality, these terms are

suppressed by a factor

'
( a′

ma

)2

' 10−62

m2
ev

, (C.2.3)

with respect to the zeroth-adiabatic order contributions (5.5.9,5.5.10). A similar analysis

confirms that the terms of fourth adiabatic order which feature Nk in the integrand are

much further suppressed and can be safely neglected.
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Appendix D Supplement for Fermion Particle Production

D.1 Majorana Fermions

In this appendix we gather the main features for the quantization of Majorana fermions.

With the solutions of the Dirac equation obtained in section (4.2), we construct self-conjugate

Majorana fermions as follows.

Introducing

w(k, η) = i
f ′k(η)

fk(η)
+M(η) (D.1.1)

where ′ = d/dη, the Dirac spinors are written as

Uλ(~k, η) = N fk(η)

 w(k, η)χλ

~σ · ~k χλ

 ; χ1 =

 1

0

 ; χ2 =

 0

1

 , (D.1.2)

and

Vλ(~k, η) = N f ∗k (η)

 ~σ · ~k ϕλ
w∗(k, η)ϕλ

 ; ϕ1 =

 0

1

 ; ϕ2 = −

 1

0

 . (D.1.3)

These spinors are normalized

U †λUλ′ = V †λVλ′ = δλ,λ′ , (D.1.4)

yielding the same normalization factor as obtained in section (4.2), and fulfill the orthogo-

nality condition

U †λ(~k, η)Vλ′(−~k, η) = 0 ; λ, λ′ = 1, 2 . (D.1.5)

It is straightforward to confirm that the U and V spinors ( D.1.2, D.1.3) obey the charge

conjugation relation

iγ2U∗λ(~k, η) = Vλ(~k, η) : iγ2V ∗λ (~k, η) = Uλ(~k, η) ; λ = 1, 2 . (D.1.6)
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In terms of these spinor solutions we can construct Majorana (charge self-conjugate) fields

obeying1

ψcM(~x, η) = C(ψM(~x, η))T = ψM(~x, η) ; C = iγ2γ0 (D.1.7)

and given by

ψM(~x, η) =
1√
V

∑
~k,λ

[
b~k,λ Uλ(

~k, η) ei
~k·~x + b†~k,λ Vλ(

~k, η) e−i
~k·~x
]
. (D.1.8)

In the case of Majorana fields the Lagrangian density, and the energy momentum tensor

must be multiplied by a factor 1/2 since a Majorana field has half the number of degrees

of freedom of the Dirac field. Furthermore, one can take linear combinations of the Weyl

spinors χ1,2;ϕ1,2 and construct helicity eigenstates. The steps leading to the final form of the

abundance and equation of state are the same as for the Dirac case, with the only difference

being a factor 2 instead of the factor 4 because for a Majorana field particles are the same

as antiparticles, thereby halving the number of degrees of freedom.

D.2 Properties of the Solution (6.3.18)

During the (RD) stage the solution of the mode functions is given by (6.3.18) with z, α

given by eqns. (6.3.15,6.3.17) respectively. Using the properties of the parabolic cylinder

functions[2, 152, 21, 145] we find for |z| � |α|

Dα[
√

2eiπ/4 z] ' e−i
z2

2

[√
2eiπ/4 z

]α[
1 + · · ·

]
, (D.2.1)

and for |α| � |z| � 1

Dα[
√

2eiπ/4 z] ' eπq
2/8√
2q2

e−izq
[
1 + · · ·

]
, (D.2.2)

Up to an overall phase and normalization, these limits describe the asymptotic WKB solution

(6.4.18) yielding the spinor solutions (6.4.19,6.4.20) valid in the adiabatic limit. Note that

1We set the Majorana phase to zero as it is not relevant for the discussion.
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the term eπq
2/8 cancels the normalization factor (6.3.40) in this limit, yielding the correct

normalization of the spinors (6.4.19,6.4.20).

Since the matching condition is evaluated at ηR, in terms of the variable z it follows that

zR =
√
mHR/

√
HRHdS = ε� 1. For z ' 0 we find

Dα[ϑ] = Dα[0]
[
1 +

1

2
(1 + iq2)ϑ2 + · · ·

]
+

d

dϑ
Dα[ϑ]

∣∣∣
ϑ=0

ϑ
[
1 +

1

12
(1 + iq2)ϑ2 + · · ·

]
. (D.2.3)

At the transition time η = ηR it follows that

q2z2
R =

k2

mHR

mHR η
2
R = (kηR)2 � 1 , (D.2.4)

for superhorizon wavelengths at the end of inflation. Therefore, for ε� 1, and kηR � 1 we

can reliably approximate

Dα(zR) ' Dα(0) ;
d

dη
Dα(z)|zR '

d

dη
Dα(z)|z=0 . (D.2.5)

D.3 Calculation of |Bk,s|2

Neglecting terms of O(ε) the spinors U ,V are given by

Us(~k, η) ' Ñ

 ih′k ξs

k hk s ξs

 , (D.3.1)

Vs(−~k, η) ' Ñ

 −k h∗k s ξs
−ih∗′k ξs

 . (D.3.2)

The normalization constant is determined by

|Ñ |2
[
|h′k(ηR|2 + k2|hk(ηR|2

]
= 1 , (D.3.3)

using the identities[2]∣∣∣Γ(
1

2
+ i

q2

4
)
∣∣∣2 =

π

cosh[πq2/4]
;
∣∣∣Γ(1 + i

q2

4
)
∣∣∣2 =

π(q2/4)

sinh[πq2/4)]
. (D.3.4)
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we find

|Ñ |2 =
e−πq

2/4

2mHR

. (D.3.5)

The final form of |Bk,s|2 is given by eqn. (6.3.41), neglecting terms of O(ε) as discussed

in section (6.3.3) we find

H∗k(ηR)hk(ηR) +Hk(ηR)h∗k(ηR) =
eiπ/4

Γ(1
2
− i q2

4
) Γ(1 + i q

2

4
)

+
e−iπ/4

Γ(1
2

+ i q
2

4
) Γ(1− i q2

4
)
. (D.3.6)

Using the doubling formula for Gamma functions[2, 21, 145], and defining q2/4 ≡ y

Γ(1 + iy) Γ(
1

2
− iy) = 2

√
π y eiπ/2 e2iy ln(2) Γ(−2iy)

Γ(iy)

Γ(−iy)
, (D.3.7)

and writing

Γ(−2iy)
Γ(iy)

Γ(−iy)
=
∣∣∣Γ(−2iy)

∣∣∣ eiΦ(y) ;
∣∣∣Γ(−2iy)

∣∣∣ =

[
π

2y sinh[2πy]

]1/2

, (D.3.8)

where

Φ(y) = Im

{
ln[Γ(−2iy)] + ln[Γ(iy)]− ln[Γ(−iy)]

}
. (D.3.9)

Using the identity[2, 21, 145]

ln[Γ(z)] =
(
z − 1

2

)
ln(z)− z +

1

2
ln(2π) +

∫ ∞
0

[
1

2
− 1

t
+

1

et − 1

]
e−iz

t
dt , (D.3.10)

we find

Φ(y) = −π
4
− 2y ln(2) , (D.3.11)

which, combined with the normalization factor (6.3.40) yields the final result (6.3.42).
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D.4 Adiabatic Expansion for Fermi Fields

In this appendix we provide a discussion of the adiabatic approach to fermionic degrees

of freedom which is alternative to the framework discussed in refs.[68, 81, 19, 90, 129], with

the advantage that it yields more compact expressions for the energy density and pressure.

We write generically the spinors as U , V with the understanding that during (RD) these are

to be identified with the solutions U ; V .

Consider the mode equation (we suppress the momentum label and conformal time ar-

guments for ease of notation)

h
′′

+ (ω2 − iM ′)h = 0 (D.4.1)

and propose the solution

h(η) = e−i
∫ η Ω(η′) dη′ ; Ω = ΩR + iΩI . (D.4.2)

Introducing this ansatz into the mode equation ( D.4.1) yields

Ω2 + iΩ′ − ω2 + iM ′ = 0 , (D.4.3)

separating the real and imaginary parts yields the coupled system of equations

Ω2
R − Ω2

I − Ω
′

I − ω2 = 0 (D.4.4)

2ΩRΩI + (Ω
′

R +M ′) = 0 ⇒ ΩI = −(Ω
′
R +M ′)

2ΩR

. (D.4.5)

The above equations can be solved in a consistent adiabatic expansion in derivatives of ω,M

with respect to conformal time. A corollary of these equations is that ΩR,ΩI feature an

adiabatic expansion even and odd in the number of derivatives (adiabatic order) respectively,

with

Ω
(0)
R = ω ; Ω

(0)
I = 0 ; Ω

(1)
R = 0 ; Ω

(1)
I = −(ω′ +M ′)

2ω
; Ω

(2)
R =

(Ω
(1)
I )2 + (Ω

(1)
I )′

2ω
; Ω

(2)
I = 0 · · · .

(D.4.6)

To highlight the nature of the adiabatic expansion, consider the dimensionless ratio

Ω
(1)
I

Ω
(0)
R

= − a′

ma2

[ 1

γ2
+

1

γ3

]
(D.4.7)
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γ =

√
k2

m2a2
+ 1 ≥ 1 (D.4.8)

is the local Lorentz factor. The ratio ( D.4.7) highlights that the adiabatic approximation

becomes reliable for long wavelengths for a′/ma2 � 1.

In the representation ( D.4.2) it follows that the spinors can be written compactly as

Us(~k, η) = N e−i
∫ η ωk(η′)dη′

 (Ω +M) ξs

k s ξs

 , (D.4.9)

Vs(−~k, η) = N ei
∫ η Ω∗k(η′)dη′

 −k s ξs
(Ω∗ +M) ξs

 , (D.4.10)

with N a normalization constant. The orthogonality conditions U †sUs′ = 0, V †s Vs′ = 0 for

s 6= s′ and U †s Vs′ = 0 for all s, s′ are evident. Furthermore, using the equations ( D.4.4,

D.4.5) it is straightforward to show that

d

dη

(
U †s Us

)
= 0 ;

d

dη

(
V †s Vs

)
= 0 , (D.4.11)

therefore normalizing the spinors U †sUs′ = δs,s′ = V †s Vs′ it follows that

|N |2 e2
∫ η ΩI(η′)dη′

[
Ω2
R + Ω2

I + ω2 + 2MΩR

]
= 1 . (D.4.12)

Up to an overall constant phase this equation yields

N =
e−

∫ η ΩI(η′)dη′[
Ω2
R + Ω2

I + ω2 + 2MΩR

]1/2
. (D.4.13)

Using this result, the general form of the normalized spinors is given by

Us(~k, η) =
e−i

∫ η ΩR(η′)dη′[
Ω2
R + Ω2

I + ω2 + 2MΩR

]1/2

 (Ω +M) ξs

k s ξs

 , (D.4.14)

Vs(−~k, η) =
ei

∫ η ΩR(η′)dη′[
Ω2
R + Ω2

I + ω2 + 2MΩR

]1/2

 −k s ξs
(Ω∗ +M) ξs

 . (D.4.15)
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To leading (zeroth) adiabatic order with ΩR = ω,ΩI = 0 we find the spinors given in eqns.

(6.4.19,6.4.20).

It is straightforward to find the general result (for each polarization s) (Σ = α ·~k+γ0M)

V †(−~k, η) Σ(~k, η)V (−~k, η) = −U †(~k, η) Σ(~k, η)U(~k, η) = −M(Ω2
R + Ω2

I + ω2) + 2ω2ΩR[
Ω2
R + Ω2

I + ω2 + 2MΩR

] .

(D.4.16)

V †(−~k, η) ~α · ~k V (−~k, η) = −U †(~k, η) ~α · ~k U(~k, η) = − 2k2
(
ΩR +M

)[
Ω2
R + Ω2

I + ω2 + 2MΩR

] . (D.4.17)

These results imply that the adiabatic expansion for both energy density and pressure

is even in adiabatic derivatives confirming some results in ref.[68].

Up to second order in the adiabatic expansion we find

V †(−~k, η) Σ(~k, η)V (−~k, η) = −U †(~k, η) Σ(~k, η)U(~k, η) = −ω
[

1− 1

8

( a′

ma2

)2 ( k

γ2 ω

)2
]
,

(D.4.18)

V †(−~k, η) ~α · ~k V (−~k, η) = −U †(~k, η) ~α · ~k U(~k, η) = −k
2

ωk

{
1− 1

8 γ4

( a′

ma2

)2

× (1 +
1

γ
)
[
1− 1

γ
+ 2(1 +

1

γ
)
( γ − 2

(1 + γ)2

)]}
(D.4.19)

where γ ≡
√

1 + (k/ma)2 is the local Lorentz factor. These results agree with those in

ref.[68].

For a ' aeq ' 10−4 it follows that( a′

ma2

)2

' 10−54

(m/eV)2
. (D.4.20)

At leading (zeroth) adiabatic order ΩR = ω; ΩI = 0 the spinors are instantaneous eigen-

states of the instantaneous conformal time Dirac Hamiltonian Σ(~k, η), namely,

Σ(~k, η)U(~k, η) = ω U(~k, η) ; Σ(~k, η)V (~k, η) = −ω V (~k, η) . (D.4.21)

Consequently the interference terms ρint (6.4.12) vanish identically at zeroth adiabatic order,

however, this is not the case for the interference terms in the pressure.
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