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Abstract 

The Accuracy of Causal Learning over 24 Days 

 

Ciara Louise Willett, M.S. 

 

University of Pittsburgh, 2020 

 

 

 

 

Humans often rely on past experiences stored in long-term memory to predict the outcome 

of an event. In traditional lab-based experiments (e.g., causal learning, probability learning, etc.), 

these observations are compressed into a successive series of learning trials. The rapid nature of 

this paradigm means that completing the task relies on working memory. In contrast, real-world 

events are typically spread out over longer periods of time, and therefore long-term memory must 

be used. We conducted a 24-day smartphone study to assess how well people can learn causal 

relationships in extended timeframes. Surprisingly, we found few differences in causal learning 

when subjects observed events in a traditional rapid series of 24 trials as opposed to one trial per 

day for 24 days. Specifically, subjects were able to detect causality for generative and preventive 

datasets and also exhibited illusory correlations in both the short-term and long-term designs. We 

discuss theoretical implications of this work.  
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1.0 Introduction 

Every day we use our experiences to guide our actions. For example, determining whether 

or not a new medication is improving an ailment (or causing a negative side-effect) could influence 

whether a patient decides to continue to use the medication. Or, determining whether meditating 

has a positive impact on one’s mental health could influence their decision to continue to meditate. 

If we can accurately detect the relations between our experiences and their associated outcomes, 

we can then predict the outcomes of future actions and use this information to behave adaptively 

in the world.  

The goal of the current study is to compare trial-by-trial learning in a paradigm in which 

the trials are presented fairly quickly (often just a few seconds per trial), with learning in which 

the trials are spaced out once per day. Whereas working memory is believed to support learning in 

short timeframes, long-term memory must take over when learning occurs over many days. The 

question then becomes how effectively people are able to learn cue-outcome relations across 

multiple days. In the current study we investigated trial-by-trial learning in a long timeframe by 

adapting a standard causal learning paradigm.  

In the rest of the introduction, we first talk about the pervasiveness of trial-by-trial learning 

paradigms across many areas of psychology, and the need for research on trial-by-trial learning 

over longer durations of time. We then talk about prior research on how people learn causal 

relations and the role of working memory in accurately learning the strength of causal relations.  
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1.1 The Timing of Trial-by-Trial Learning 

Trial-by-trial learning is an extremely common learning paradigm in which participants are 

presented with one cue (or many cues) and an outcome in a series of trials to learn the relation(s) 

between the cue(s) and outcome. The trial-by-trial paradigm simulates how individuals learn 

through trial and error while experiencing a temporal stream of events. Originally used in the 

behaviorist tradition, trial-by-trial learning is used pervasively across many fields including causal 

learning (e.g., Spellman, 1996; Waldmann, 2000), correlation detection (e.g., Jenkins & Ward, 

1965; Kao & Wasserman, 1993), reinforcement learning (e.g., Daw, O'Doherty, Dayan, Seymour, 

& Dolan, 2006; Delgado, Nystrom, Fissell, Noll, & Fiez, 2000), category learning (Kruschke, 

1992; Nosofsky, 1986), fear learning (e.g., LaBar, Gatenby, Gore, LeDoux, & Phelps, 1998; 

Schiller et al., 2010), stereotype formation (Hamilton & Gifford, 1976; LePelley et al., 2010), and 

many other sub-fields.  

One common aspect of the trial-by-trial paradigm is that the data is presented rapidly. 

Typically, each trial lasts a couple of seconds with only a couple of seconds between trials. 

However, we contend that there are few real-world learning situations that involve experiencing 

repeated cue-outcome pairs separated by seconds, perhaps with a few exceptions (e.g., an 

admissions counselor flipping through records of students and looking at relations between 

variables such as grades and SAT, or other situations with previously-compiled records). Instead, 

most of our experiences that involve learning cue-outcome associations occur over considerably 

longer periods of time. For example,  stereotypes are not learned rapidly on the order of seconds, 

but through experiences with in-group and out-group members that are most likely spaced out over 

days, weeks, months, or longer. Similarly, learning about potential food allergies or the 

effectiveness of a medication, common cover stories in the field of causal learning, is based on 
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experiences that are spaced out over days and weeks. In the current study, we compare rapid trial-

by-trial learning with learning that occurs one trial per day. Day-by-day learning simulates many 

natural processes that often occur or do not occur once on a given day (e.g., does a medicine that 

can be taken once per day have an influence on a health outcome, does exercising on some days 

have an influence on sleep, etc.).  

Only a few studies that have investigated learning over longer periods of time by modifying 

certain aspects of the learning and testing paradigms. For example, one study tested the effect of 

inter-trial interval length on depressive realism in causal learning (Msetfi, Murphy, Simpson, & 

Kornbrot, 2005), but the maximal inter-trial interval was still only 15 seconds. Many studies within 

the animal learning literature have manipulated the inter-trial interval, but the longest ITIs that we 

know of were still less than 30 minutes (e.g., Carranza-Jasso, Urcelay, Nieto, & Sánchez-Carrasco, 

2014; Holland & Morell, 1996; Mustaca, Gabelli, Papini, & Balsam, 1991; Sheffeld, 1950; 

Stanley, 1952). Animal conditioning studies of this nature are also difficult to translate to many 

human paradigms because a longer ITI is typically represented as a longer period in which the cue 

and outcome are both absent. In human learning studies, often the cue and outcome are explicitly 

presented as present or absent, such that each trial is presented for the same length of time and a 

longer ITI is simply a longer time between learning (cf., Msetfi et al., 2005). Other studies have 

used training over multiple days, but during each day the training involved many trials with short 

inter-trial intervals (e.g., de Wit et al., 2018; Frey, Mata, & Hertwig, 2015; Tricomi, Balleine, & 

O’Doherty, 2009; Wunderlich, Dayan, & Dolan, 2012; Wimmer, Li, Gorgolewski, & Poldrack, 

2018). In sum, we know of no trial-by-trial learning studies in which the trials are spaced out 

considerably over time. 
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Another set of literature that is relevant to the current study is research on the spacing effect 

(also called the ‘lag effect’ or the ‘distributed practice effect’) in memory. Prior research suggests 

that distributed practice enhances performance in verbal recall (Cepeda, Pashler, Vul, Wixted, & 

Rohrer, 2006), skill learning (Donovan & Radosevich, 1999), and categorical induction (Vlach, 

Sandhofer, & Kornell, 2008) tasks. A typical spacing paradigm involves two practice sessions and 

a third test session, and the length of time between the study sessions and between the second study 

session and the testing session are varied. Cepeda et al.’s (2006) meta-review of the verbal recall 

literature found significant improvements when the study sessions were farther apart in time. 

Subsequent research has found that for longer delays before test, the optimal inter-study-interval 

increases. Though there are small decrements if the inter-study-interval is too long, in general “the 

penalty for a too-short gap is far greater than the penalty for a too-long gap” (Cepeda et al., 2009). 

This literature is relevant because it has investigated inter-study-intervals of various times from 

very short delays to multiple days. 

However, there are several differences between the tasks used in this literature and our 

paradigm that make it hard to make specific predictions about the influence of spacing in a trial-

by-trial causal learning task. First, spaced learning in this literature (e.g., Cepeda et al., 2006) 

typically involves two (or a few) training sessions, and within each training session the subject 

learns about many items. In contrast, in our spaced causal learning task there are 24 spaced out 

learning opportunities with a single item. Second, paired associate verbal recall tasks are purely 

memory tasks, whereas causal learning and other probability and reinforcement learning tasks 

involve inferring the statistical relationship between two cues. A more conceptually similar task 

is that of categorical induction (e.g., learning to categorize paintings of different artists), which 

also exhibits spacing effects (Metcalfe & Xu, 2016; Vlach et al., 2008). In categorical induction 
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studies, however, spaced intervals are on the matter of seconds as opposed to days. Overall, though 

the distributed practice literature is different from our study in many ways, it appears to support a 

prediction of superior learning in the long-term task as opposed to short-term task in the current 

experiment.  

In summary, we believe that many important real-world learning situations involve 

learning in which the experiences are spaced out roughly one day apart, or at least often hours 

apart. However, we know of no studies that have investigated this type of learning with substantial 

delays. 

1.2 Trial-by-Trial Causal Learning 

The current study is a causal learning study in which participants learn the statistical 

relationship between a cause and an outcome, both of which can be either present or absent. Stimuli 

of this nature are typically conceived of in a 2x2 table where each cell A-D represents the number 

of times that the cause/outcome combination occurs for a particular dataset (see Figure 1). After 

observing the entire dataset, subjects judge the degree to which the cause influences the outcome. 

 

Figure 1 A 2x2 table depicting the four possible types of data in a traditional binary design. 

 

When learning the strength of the relation between a cue and outcome, there are two basic 

questions. First, are people able to detect a true statistical relation between the cue and outcome? 
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Second, are people able to detect the true absence of a statistical relation? There are a number of 

‘normative’ statistical models used as benchmarks against which human judgments can be 

compared (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005). In the current paper we use the 

simplest normative model, the P rule (Allan, 1980), which compares the probability of the 

outcome in the presence of the cause and the probability of the outcome in the absence of the 

cause: P = p(o|c) – p(o|~c) = A/(A+B) – C/(C+D). When P is positive, the causal relationship 

is generative such that the cause produces the outcome. When P is negative, the causal 

relationship is preventive such that the cause inhibits the outcome. If P is equal to 0, the 

relationship is non-causal.  

Although prior research suggests that people are able to adequately detect some important 

aspects of causation such as discriminating between generative and preventive causal relationships 

(Shaklee & Mims, 1982), individuals sometimes exhibit biases in causal reasoning. One such bias, 

“illusory correlation” or “illusory causation”, occurs when people inaccurately infer causation 

when no causal relationship exists. In this paper, we study two types of illusory correlations, the 

A-cell bias and the outcome-density bias.  

An A-cell bias is said to occur when individuals believe that a causal relation exists merely 

because of a high number of A-cell trials (e.g., Allan & Jenkins, 1980; Kao & Wasserman, 1993; 

Blanco, Matute, & Vadillo, 2013). In the A-cell bias condition in Table 1, even though there is 

zero relation between the cue and outcome (the outcome occurs with a chance of .625 regardless 

of whether the cue is present or absent, so P = 0), people tend to infer that they are positively 

correlated. Similarly, an outcome density bias is said to occur when people incorrectly assign 

causation to a dataset in which the overall probability of the outcome is high (Table 1), even though 

the probability of the outcome is the same (.75) whether the cause is present or absent, so P = 0 
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(e.g., Buehner, Cheng, & Clifford, 2003; Jenkins & Ward, 1965). In this research, we studied the 

four datasets in Table 1 to see whether people’s ability to appropriately learn the relation between 

the cue and outcome differed in short vs. long timeframes. 

Table 1 Frequencies for Datasets in Current Study 

Dataset A B C D p(o=1|c=1) p(o=1|c=0) P 

Generative 9 3 3 9 .75 .25 0.5 

Preventive 3 9 9 3 .25 .75 -0.5 

Outcome-Density 9 3 9 3 .75 .75 0 

A-cell 10 6 5 3 .625 .625 0 

 

Note. The frequencies for the A-cell and outcome-density datasets (the illusory correlation 

datasets) are the same as those used by Kao and Wasserman (1993).  

1.3 Causal Learning and Memory 

How might learning be influenced when the experiences are spaced out over longer periods 

of time, such as once per day, as opposed to massed together and separated? Theoretically, whereas 

short-term memory must be used in typical studies, long-term memory must be used to keep track 

of the relation between the cue and outcome when spaced out over many days. However, keeping 

track of the relation is likely to be challenging for long-term memory. For example, imagine 

learning whether going to yoga improves your mood; some days you do yoga and other days you 

do not. After a few weeks, would you be able to remember the days you did or did not do yoga? 

Could you remember your mood on those days? How might your memories for these events impact 

your ability to detect causation? Would you be more susceptible to biases such as illusory 

correlations?  
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Models of causal learning make different predictions about the role of memory in causal 

judgments. Rule-based accounts of causality (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005; 

Hattori & Oaksford, 2007), assume that individuals use their memories for the events to judge 

causality. Thus, accurate memories for the number of observations in each of the four cells of the 

contingency table are necessary to make accurate judgments of the strength of the relation.  

In contrast, reinforcement-learning and associative accounts of causal learning, such as the 

Rescorla-Wagner Model (1972), do not require accurate memories of the events. Instead, 

associative accounts suggest that individuals update their belief about the strength of the 

relationship between the cue and outcome when presented with new evidence. All that needs to be 

remembered from one point of time to the next is a single value, the associative strength. Thus, 

according to reinforcement-learning and associative accounts, people should be able to make fairly 

accurate estimates of causal strength even with fairly minimal memory resources, and without 

accurate memories of the experienced events. The current experiment is not meant to arbitrate 

between rule-based and associative accounts of causal learning (see Waldmann, 2000), but instead 

to understand how people learn causal relations when the learning is mediated through short-term 

vs. long-term memory due to the sort vs. long-term nature of the task.  

One basis for making hypotheses about causal learning in long timeframes is research on 

learning over short timeframes with increased working memory (WM) demands. Studies have 

found stronger illusory correlations in a rapid trial-by-trial paradigm (higher WM demands) than 

in a “summary” paradigm (lower WM demands) in which all the trials are presented to participants 

simultaneously, somewhat similar to the summary of frequencies in Figure 1 (Kao & Wasserman, 

1993). Adding a distractor task on top of the trial-by-trial paradigm leads to less accurate 

judgments (Shaklee & Mims, 1982) and older adults with lower WM abilities exhibit less accurate 
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causal learning (Mutter & Pliske, 1996). If causal learning is worse when WM is taxed, one 

hypothesis is that learning might get even worse when long-term memory must be used to assess 

causation instead of short-term memory. If the short vs. long timeframe task reflects the same 

differences between lower vs. higher WM demands, then the judgments of causal strength would 

be closer to zero for the generative and preventative datasets in the long timeframe condition, and 

they would exhibit more ‘illusory correlation’ in the A-cell bias and the outcome-density 

conditions in the long timeframe condition. 

Another potential hypothesis is that memories will be noisier in the long timeframe 

condition due to greater opportunity for memory decay. Specifically, if noise is injected into the 

remembered tallies of the four types of events A-D, assuming that the noise is equally distributed 

across the four cells, the more noise, the closer the causal strength judgment would be to zero. 

Therefore, this noise-based account makes the same prediction as the WM analogy for generative 

and preventative datasets, that the causal strength judgment will be closer to zero in the long 

timeframe condition. Furthermore, noisier memories in the long timeframe condition would also 

predict that the judgments are closer to zero (i.e., weaker illusory correlation) in the A-cell and the 

outcome-density datasets in the long-term condition. This prediction is actually the opposite of the 

findings from studies that have manipulated working memory demand. 

Still, people are often able to navigate the world successfully, suggesting a reasonable 

causal-learning ability when relying on long-term memories to make inferences. This raises the 

question: how well can we learn causal relations across many days? If people are able to learn 

cause-effect relations fairly well over long time periods, this could suggest a couple of different 

possibilities. First, they might simply learn the associative strength and forget the experienced 
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events. Or they might remember a distribution of the four type of events, but not store episodic 

memories of each individual event over the 24 days. 

1.4 Summary of Current Study 

In the current study, we investigated the implications of learning a cause-effect relationship 

quickly from a rapid sequence of trials vs. learning the same relationship over an extended period 

of time – one trial per day for 24 days. We investigated how subjects learned about four causal 

relations using different datasets: generative, preventative, ‘outcome-density’, and ‘A-cell’ (see 

Table 1). There are a variety of potential predictions. Research on spaced vs. massed learning 

could be interpreted to predict better learning in the long timeframe (though this study does not 

involve delayed recall). Research on working memory predicts worse performance in the long 

timeframe condition if it is analogous to increased WM demand. A memory decay perspective 

predicts noisier judgments in the long timeframe condition, which would lead to less accurate 

judgments for the generative and preventative datasets but more accurate judgments for the two 

zero contingency datasets. More generally, it is crucial to know whether people are able to 

accurately learn causal relations in long timeframes. 
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2.0 Methods 

2.1 Participants 

There were 476 participants (mean age = 21 years, 97% under 30 years old). The main 

requirements were owning a smartphone and intending to complete the entire study; however, we 

mainly targeted college students to have a similar sample to most other causal learning studies and 

since they frequently use smartphones. Participants were paid $30 if they successfully completed 

the entire study. Our goal was to have around 400 participants, 100 for each of the 4 datasets in 

the long timeframe condition. The large number was used because the four datasets need to be 

analyzed separately, and to have power to detect small effects. The final data analyses included 

409 participants after dropping 13 participants who admitted to writing down data during the study, 

1 who admitted to not trying during the task, 39 due to a programming error, and 14 who skipped 

too many days of the long timeframe task.  

2.2 Datasets and Design 

Participants learned about five datasets: four short-timeframe (generative, preventative, A-

cell, and outcome density) and one long-timeframe (one of the four from the short-timeframe 

condition). This design allowed for a within-subjects comparison of one of the four datasets across 

the long vs. short conditions (see Table 1 for the cell frequencies in each dataset and Table 2 for 

an example of the five tasks). By having subjects learn all four datasets in the short timeframe 
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condition, it also reduces the likelihood that subjects were aware that one of the short timeframe 

datasets was the same as the long timeframe dataset.  

Each dataset consisted of 24 trials ordered randomly. The two illusory correlation datasets 

were previously used by Kao and Wasserman (1993). Participants were randomly assigned to 

observe one of the four datasets, with the order of the matched short-version randomized to appear 

before or after the corresponding long-term task. For the set of two tasks preceding and following 

the long-term task, one was contingent (generative or preventive) and one was non-contingent 

(outcome density or A-cell). 

Table 2 Example Order of Tasks for a Subject 

Task Order Day Length Dataset Context Valence Authenticity 

1 1 Short A-cell* Restaurant Positive* Real* 

2 1 Short Preventive House Negative Vitamin 

3 1-24 Long A-cell* Library Positive* Real* 

4 25 Short Generative Street Positive Vitamin 

5 25 Short Outcome density Park Negative Real 

 

Note. * indicates a task in which the dataset, cover story valence, and cover story authenticity were 

matched, but the length of the task was either short or long.  

2.3 Procedure 

2.3.1 Overall Procedure 

Participants completed the entire study on their own smartphones by logging into our 

website created with our PsychCloud.org framework. The procedure for the short-term and long-

term tasks were identical, except that subjects observed one trial per day in the long timeframe 
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condition, and they did trials back-to-back in the short timeframe condition. On Day 1 of the study, 

participants completed two short-term tasks and began Day 1 of the long-term task. On Days 2 – 

24, participants received automated text-message reminders at 10am, 3pm, and 8pm to complete 

their daily trial for the long-term task and stopped receiving reminders if they had already 

participated that day. They returned to the lab on Day 25 to complete the remaining short-term 

tasks and receive payment. 

2.3.2 Within A Trial 

Each task consisted of 24 trials in which participants were told whether or not the putative 

cause was present or absent. A number of procedures were taken to facilitate encoding, including 

asking subjects to verify the state of the cause and effect (rather than just observe them), and to 

spend extra time to look each image. Each trial proceeded as described in the following example, 

which uses the ‘Facebook’ cover story – other cover stories are explained below. In the Facebook 

cover story, subjects were asked to judge whether using Facebook during their lunch break 

improves or worsens or has no influence on their mood, based on the hypothetical dataset.  

At the beginning of each trial, subjects were shown a contextual image. These images 

allowed us to ask a number of episodic memory questions that are not analyzed in this report. In 

the Facebook cover story, they saw an image from the inside of a restaurant and were told “This 

is the scene from your lunch break.” After three seconds, an icon and text were superimposed over 

the contextual image to show the presence or absence of the cause (e.g., whether they used or did 

not use Facebook during their lunch break). They pressed a radio button to confirm the state of the 

cause and could not move on until selecting the correct button (e.g., Facebook vs. No Facebook). 

Next, they pressed a radio button to predict the effect as present or absent (e.g., Very Sad Mood 



 14 

vs. Normal Mood). They received text feedback for whether their prediction was correct or 

incorrect and an icon representing the effect was superimposed on the image. After clicking the 

correct radio button to verify the state of the effect, subjects were instructed to “Take a couple of 

seconds to imagine this scene”, which was displayed for an additional four seconds (see Figure 2).  

At the end of a trial in the short timeframe condition, subjects were permitted to move on 

to the next trial. In the long timeframe condition, subjects were told that their task was over and to 

come back to the website the following day. Once a trial was over, the website did not allow 

subjects to see the data for that trial or prior trials, not even by clicking the back button on their 

web browser. 

 

Figure 2 Screenshot of the end of a trial in which participants observe the data for at least 4 seconds before 

the task is completed. 
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2.3.3 Dependent Variables 

2.3.3.1 Causal Strength 

Participants judged the strength of the causal relation at three times. In the short timeframe 

condition this happened between Trials 8-9, 16-17, and immediately after Trial 24. In the long 

timeframe condition, this happened at the beginning of Days 9 and 17, and on Day 25. 

First, they answered whether the cause (Facebook) “improves or worsens or has no 

influence” on the effect (mood). If participants said the cause had no influence, they were assigned 

a causal judgment of 0. If they responded “improve” or “worsen”, they answered “How strongly 

does [the cause] [improve/worsen] [the effect]?” on a scale of 1 (very weak) to 10 (very strong), 

which produced a scale from -10 to +10.  

2.3.3.2 Frequency Judgments 

Participants provided memories of the counts of the A-D cells at four times. In the short 

timeframe condition this happened between Trials 4-5, 12-13, 20-21, and after the causal strength 

judgment after Trial 24. In the long timeframe condition, this happened at the beginning of Days 

5, 13, 21, and after the causal strength judgment on Day 25. 

First, they recalled how many times the cause was present out of the trials that had been 

seen (e.g., “You have experienced [4, 12, 20, or 24] days. Out of these [4, 12, 20, or 24] days, how 

many days did you use Facebook?”). Suppose they answered 14. Their response was piped into 

two follow up questions to assess their memories for the number of times the effect was present 

when the cause was present (e.g., “Of the [14] days you did use Facebook, how many days were 

you in a very sad mood?”) and how many days the effect was present when the cause was absent 

(e.g., “Of the [10] days you did not use Facebook, how many days were you in a very sad mood?”). 
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From their responses, we were able to calculate their memories for cells of types A, B, C, and D 

of the contingency table.  

2.3.3.3 Episodic Memories 

Participants also made a number of judgments about the memories for the contextual 

images after Trial 24. These measures will not be analyzed in the current report. 

2.3.4 Cover Stories 

Since subjects learned about five cause-effect relations, we created five ‘contexts’ so that 

each task was viewed as a separate learning task (see Table 3). We chose these five cover stories 

such that it would be plausible for the cause to either improve or worsen the outcome. Because 

this study is the first to use a long timeframe paradigm, is unlikely to be replicated, and is focused 

on external validity, we manipulated two aspects of the cover stories: the “authenticity” and 

“valence”. These manipulations were performed so that, we could rule out some potential 

explanations if subjects in the long timeframe condition exhibited very poor learning, and also to 

provide guidance for future studies with long timeframes. 

For the matched short-term and long-term datasets, we assigned the same valence and 

authenticity conditions. Of the four short-term conditions, two had one version and two had the 

other version for both the valence and authenticity manipulations (see Table 2). Because these 

manipulations are not of primary importance, they are reported in the Appendix. 
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Table 3 Five Cover Stories used for Different Tasks 

 

Authentic Cause and Context Positive Valence  Negative Valence  

Using Facebook during lunch in a restaurant Very good mood vs. 

Normal mood 

Very bad mood vs. 

Normal mood 

Eating healthy dinner at a friend’s house Stomach feels great 

vs. Normal digestion 

Upset stomach vs. 

Normal digestion 

Using notecards to study for a quiz in a library Very good grade vs. 

Normal grade 

Very bad grade vs. 

Normal grade 

Biking to work in city streets Very productive vs. 

Normal productivity 

Very unproductive vs. 

Normal productivity 

Bringing your dog on a daily walk in the park Very Relaxed vs. 

Feeling normal 

Very Stressed vs. 

Feeling normal 

 

Note. In the ‘authentic’ condition, participants learned about abstract relations. In the ‘novel’ 

condition, the contexts were the same, but the cause was replaced with a novel vitamin. The 

outcome for each cover story had either a positive or negative valence.  

2.3.4.1 Authenticity vs. Novelty 

We wanted to have cover stories that were both ‘authentic’ and ‘novel’. Causal learning 

studies typically to use entirely novel cover stories (e.g., the effect of Medication X on sleep) to 

minimize the influence of prior beliefs, and we wanted to be able to replicate this typical paradigm. 

However, we also wanted to use authentic cover stories. We were worried that participants in the 

long timeframe condition might perform poorly with novel cover stories. In a short timeframe task, 

suspect subjects can often use other cues (e.g., the position of stimuli on the screen) rather than the 

semantic meanings of the cues. We worried that these alternative methods of learning might be 

less salient in the long timeframe condition. We thought that semantically meaningful cause-effect 

relations might be easier to remember and also have higher external validity.  

The ‘authentic’ cover stories are listed in Table 3. In the ‘novel’ cover stories, we replaced 

the causes with a hypothetical vitamin that the subject took on some days but not others (e.g., does 
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Vitamin X have an influence on mood, upset stomach, etc.). For the matched short and long 

timeframe datasets, we matched the authenticity of the cause. 

2.3.4.2 Valence 

Most studies on causal learning use cues that are either present or absent. Presence/absence 

of the cause and the effect is theoretically important in some theories of causal learning (e.g., 

Cheng, 1997). Further, the definition of the cells as A-D only makes sense with cues that are 

present/absent (not “high”/“low” or “2”/“1”, etc.; see Figure 1). In order to mirror prior studies 

and to be able to study the A-cell bias, we used present/absent cues.  

However, one consequence of using presence/absence is that most outcomes have an 

implicit valence of being good or bad. For example, many prior studies have used outcomes like 

the presence/absence of a headache (bad) or of a flower blooming (good). We did not want to 

arbitrarily use outcomes of one particular valence, or to confound valence with cover story. This 

is especially important because, valence can influence the strength of illusory correlations (Mullen 

& Johnson, 1990; Derringer, 2019). Thus, even though we are not primarily interested in valence, 

we counterbalanced the valence of the cover story.  

The absence of the effect was always described as normal (e.g., normal mood, normal grade 

on a quiz, etc.). The presence of the effect was described as either very good or very bad (e.g., very 

happy or very sad; very good grade or very bad grade, etc.). For participants in the negative valence 

condition, we reverse coded their causal strength judgments, so positive causal strength means 

“improved” for the positive valence condition and “worsened” for the negative valence condition. 

The matched short-term and long-term datasets were assigned the same valence.  
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2.3.5 Participation 

Before starting the experiment, participants were told that if they missed more than three 

days in the long timeframe task, the study would be terminated and that they would not be paid. 

462 (97%) participants successfully completed the study. On any given day, 83% of subjects 

participated before the 3pm reminder, 96% before the 8pm reminder, and 99% by midnight. If a 

subject missed one, two, or three days, the subsequent days were automatically pushed back the 

appropriate number of days.  

In the long timeframe condition, the most important dependent measures occurred during 

the second in-lab testing session. We worked hard to have subjects come back to the lab for the 

second in-lab testing session on Day 25, one day after the last trial in the long timeframe condition. 

Of the 409 subjects in the final analyses, 83% returned to the lab on Day 25. If they skipped one 

day of the long timeframe task, sometimes this session occurred on the same day as their 24th trial 

(13%). If the session had to be moved, sometimes it occurred two (3%) or three (1%) days after 

the last trial. Overall, the protocol was followed with high fidelity.  
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3.0 Results 

3.1 Measures of Strength 

We analyzed three measures of strength: the causal strength question, the trial-by-trial 

predictions converted into a measure of strength, and the frequency judgments converted into a 

measure of strength. For all of these, we only analyzed data from the matched short-term and long-

term conditions so that we could do within-subject tests. Tests were conducted separately for the 

generative (N = 98), preventive (N = 102), A-cell (N = 105), and outcome density (N = 104) 

conditions.  

For each dataset and measure of causal strength, we conducted one-sample t-tests to see if 

short-term and long-term strength judgments were significantly different from zero. Next, we 

conducted paired-samples t-tests to assess whether there were significant differences between 

short-term and long-term judgments for each dataset. Because we observed non-normal 

distributions in the measures of strength, we also conducted non-parametric tests (Wilcoxon 

signed-rank). We also calculated Bayes Factors (BF) for each t-test, where a BF > 1 is support for 

the alternative hypothesis and a BF < 1 is support for the null. Often BFs > 10 (or < 1/10) are 

considered “strong” evidence for the alternative (or null), BFs > 30 or < 1/30 are considered “very 

strong” and BFs >100 or < 1/100 are considered “extreme” (e.g., Lee & Wagenmakers, 2013). 
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3.2 Order Effects 

Half of the participants completed the short-term task before, and half after the long-term 

task. To test for possible order effects in each measure of strength and timeframe condition, we 

conducted independent-sample t-tests between participants who saw the short-term task before the 

long-term task and participants who saw the short-term task after the long-term task. For example, 

we compared participants who did the short-generative task on Day 1 vs. participants who did the 

short-generative task on Day 25. We performed this t-test for each of the three measures of causal 

strength, and each of the four datasets, resulting in 12 tests. We also did a parallel analysis of the 

long-term judgments. For example, we compared the participants who did the long-generative task 

before the short-generative to those who did the long-generative after the short-generative, which 

produced another 12 tests. 

Out of the 24 tests, only one was significant and only at p=.016. Because no systematic 

patterns in order effects appeared, and because we conducted 24 tests, so the likelihood of a Type 

I error is high, we concluded that there was no evidence for order effects. Thus, we did not change 

our strategy for analyzing strength judgments by doing within-subjects tests.  

3.3 Causal Strength 

Causal strength judgments were participants’ explicit strength judgments after observing 

the 24 trials (e.g., “How strongly does Facebook improve your mood?”), transformed to be on a 

scale of -1 to +1 and reverse coded in the negative valence conditions. See Table 4 for frequentist, 

non-parametric, and Bayesian analyses. 
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3.3.1 Generative and Preventive Conditions 

First, we wanted to assess whether participants were capable of detecting causation in the 

generative and preventive conditions (Figure 3A). Causal strength was significantly different from 

zero in both the short-term and long-term conditions for both the generative and preventive 

datasets, suggesting that participants did learn in both the short and long timeframe conditions. 

We predicted that for both the generative and preventive datasets, causal judgments would 

be closer to zero in the long-term condition because participants’ memories would be noisier or 

due to difficulty learning. However, the tests revealed no significant differences between 

judgments in the short-term and long-term conditions for either the generative or preventive 

datasets. In fact, the BFs were about 8 to 1 in favor of the null hypothesis. Thus, participants were 

just as capable of detecting causation in the short and long timeframe conditions. 

3.3.2 Illusory Correlation Conditions 

Consistent with our predictions, we found significant illusory correlations in both 

timeframe conditions for the A-cell and outcome-density datasets; both were greater than zero. We 

further hypothesized that the illusory correlations could be either exacerbated or diminished in the 

long timeframe condition. However, we did not find any differences between the short vs. long 

timeframe conditions. The BF for the A-cell condition was about 8 to 1 in favor of the null. There 

was a marginal effect for outcome-density but was not technically significant and the BF is actually 

slightly in favor of the null. Overall, these results suggest that illusory correlations in the long 

timeframe task are similar to the traditional trial-by-trial paradigm. 
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Table 4 Comparisons of Causal Strength Judgments for Short-Term and Long-Term Against Zero and for 

Short-Term vs. Long-Term 

Dataset  t-test  Bayes Factor  Wilcoxon Test 

  t df p d  BF  V p 

Short-Term           

Generative  11.27 97 <.001 1.14  2.13*1016  3248 <.001 

Preventative  -9.03 101 <.001 -0.89  5.72*1011  193.0 <.001 

A-cell  7.13 104 <.001 0.70  6.75*107  1273.5 <.001 

Outcome Density  2.73 103 .008 0.27  3.60  317.0 .010 

           

Long-Term           

Generative  11.53 97 <.001 1.17  7.37*1016  2931.5 <.001 

Preventative  -7.13 101 <.001 -0.71  6.05*107  252.0 <.001 

A-cell  6.11 104 <.001 0.60  6.36*105  1684 <.001 

Outcome Density  4.23 103 <.001 0.41  3.41*102  925.0 <.001 

           

Short vs. Long           

Generative  -0.37 97 .707 -0.04  0.12  1358.0 .587 

Preventative  -0.33 101 .741 -0.03  0.12  1605.5 .946 

A-cell  -0.58 104 .563 -0.06  0.13  1386.0 .442 

Outcome Density  -1.72 103 .089 -0.17  0.45  643.5 .068 
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Figure 3 Average causal strength, predictive strength, and frequency strength judgments in the matched 

short-term and long-term conditions for the four datasets.  

Significance markers above each column indicate whether the value was significantly different from zero. The 

significance marker above the horizontal lines indicates whether the judgments in the short and long-term 

conditions were significantly different from each other. Error bars indicate standard error.  
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3.4 Predictive Strength 

We used participants trial-by-trial predictions of the effect to calculate a measure of their 

beliefs about the strength of the cause-effect relation which we call ‘predictive strength’. We 

subtracted the probability that they predicted the outcome would be present given the absence of 

the cause from the probability that they predicted the outcome would be present given the presence 

of the cause. This measure is conceptually similar to ΔP: p(predict effect present|cause present) – 

p(predict effect present|cause absent). To ensure that participants had observed enough experiences 

to make predictions, we analyzed the predictions from Trials 13 – 24 (Table 5, Figure 3). 
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Table 5 Comparisons of Predictive Strength Judgments for Short-Term and Long-Term against Zero, and 

for Short-Term vs. Long-Term 

Dataset  t-test  Bayes Factor  Wilcoxon Test 

  t df p d  BF  V p 

Short-Term           

Generative  11.58 97 <.001 1.17  9.01*1016  3254.5 <.001 

Preventative  -11.87 101 <.001 -1.18  6.77*1017  280.5 <.001 

A-cell  3.66 104 <.001 0.36  51.08  3384.5 <.001 

Outcome Density  -2.24 103 .028 -0.22  1.17  1476.0 .031 

           

Long-Term           

Generative  12.47 97 <.001 1.26  6.32*1018  4181.0 <.001 

Preventative  -9.38 101 <.001 -0.93  3.12*1012  405.5 <.001 

A-cell  3.66 104 <.001 0.36  50.64  3448.5 <.001 

Outcome Density  2.13 103 .036 0.21  0.94  2732.0 .036 

           

Short vs. Long           

Generative  -0.36 97 .718 -0.04  0.12  1801.0 .634 

Preventative  -0.49 101 .623 -0.05  0.12  2286.5 .747 

A-cell  -0.66 104 .512 0.06  0.13  2278.5 .189 

Outcome Density  -3.60 103 <.001 -0.35  42.20  1567.5 <.001 

3.4.1 Generative and Preventive Conditions  

We found very similar results using subjects’ predictions to assess learning as from their 

causal strength judgments (see Figure 4). In the generative and preventive conditions, predictive 

strength was significantly different from zero for both the short-term and long-term conditions. 

Again, we found no difference in predictive strength between the short-term and long-term 

conditions for either the generative or preventive datasets.  

3.4.2 Illusory Correlation Conditions 

In the A-cell bias condition, we found a similar pattern of results to the causal strength 

judgments. Subjects did infer an illusory correlation; they were more likely to predict the effect as 
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present when the cause was present in both the short-term and long-term condition. Furthermore, 

we found no difference between predictions in the short-term vs. long-term conditions for the A-

cell bias dataset.  

We did observe a significant difference between short-term and long-term judgments for 

the outcome density dataset, although not in the direction we expected. In the long-term condition, 

we observed a small but significant illusory correlation. In the short-term condition, however, 

outcome-density judgments were negative and significantly different from zero in the short-term 

condition. Participants exhibited the opposite of an outcome density effect in the short-term 

condition in which predictive strength was negative and significantly different from zero. This 

pattern is inconsistent with prior rapid trial-by-trial studies and therefore, we are hesitant to 

interpret the significant difference between the short-term and long-term conditions. 

3.5 Frequency Strength 

We used participants memories of the frequencies of the four types of events to calculate a 

measure of their beliefs about the strength of the cause-effect relation which we call ‘frequency 

strength’ (Table 6, Figure 3). Frequency strength was calculated from subjects’ memories for the 

frequencies of each cell type after Trial 24, using the ΔP formula: A/(A+B) – C/(C+D).1  

 

1 In the outcome-density condition, we dropped one participant from analyses (see Table 6) 

because they gave judgments of A = 0, B = 0, C = 0, and D = 24, making it impossible to calculate 

frequency strength using ΔP and likely reflecting a desire to finish the task quickly. 
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Table 6 Comparisons of Frequency Strength Judgments for Short-Term and Long-Term against Zero, and 

for Short-Term vs. Long-Term 

Dataset  t-test  Bayes Factor  Wilcoxon Test 

  t df p d  BF  V p 

Short-Term           

Generative  14.46 97 <.001 1.46  6.35*1022  4308.0 <.001 

Preventative  -13.46 101 <.001 -1.33  1.44*1021  140.0 <.001 

A-cell  2.94 104 .004 0.29  6.13  3081.0 .001 

Outcome Density  0.36 102 .718 0.04  0.12  2020.0 .521 

           

Long-Term           

Generative  12.94 97 <.001 1.31  5.83*1019  4321.0 <.001 

Preventative  -10.92 101 <.001 -1.08  6.27*1015  286.5 <.001 

A-cell  3.66 104 <.001 0.36  0.74  2534.5 .030 

Outcome Density  2.53 102 .013 0.25  2.23  2590.0 .016 

           

Short vs. Long           

Generative  -1.21 97 .230 -0.12  0.23  1915.0 .232 

Preventative  -0.46 101 .650 0.05  0.12  2639.0 .568 

A-cell  -0.66 104 .512 0.06  0.11  2427.0 .997 

Outcome Density  -3.60 103 <.001 -0.35  0.70  1871.0 .050 

 

3.5.1 Generative and Preventive Conditions 

Subjects’ frequency strength followed the same pattern as we found in causal and 

predictive strength. Frequency strength was significantly different than zero for both timeframes 

and datasets, with no significant differences between the short-term and long-term conditions. 

3.5.2 Illusory Correlation Conditions 

For the A-cell dataset, we again found significant illusory correlations in both the short-

term and long-term conditions with no significant difference between the two timeframes. For the 

outcome density dataset, frequency strength was significantly different from zero in the long-term 
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but not the short-term condition. There was no significant difference in frequency strength between 

the short-term and long-term conditions for the outcome-density. In sum, the results are extremely 

reliable except there for one condition – the long-term outcome-density condition. In this condition 

sometimes the judgments were greater than, sometimes less than, and sometimes roughly equal to 

zero. We briefly address potential explanations in the discussion section. 

3.6 Measures of Strength over Time 

In addition to the cumulative causal, predictive, and frequency strength judgments, we also 

collected data from these measures of strength at different points during the 24 learning trials 

(Figure 4). These judgments occurred every eight trials for the causal strength judgments (starting 

after Trial 8) and frequency strength judgments (starting after Trial 4). We calculated predictive 

strength every eight trials (starting on Trial 8), using the predictions participants made for the prior 

eight trials. We did not conduct quantitative analyses for the intermediary learning measures as we 

did for the cumulative ones to avoid problems associated with multiple comparisons given the 

number of tests for each measure of strength.  

Qualitatively, the three measures of strength over time are quite similar between the short-

term and long-term conditions. Figure 4 also shows that substantial learning has already occurred 

by Trial 8 for causal strength and predictive strength: the generative and preventive conditions are 

already separated. The frequency strength panel suggests that the long-term participants may have 

had a bit of difficulty remembering the prior evidence at Trial 4; the judgments are more extreme 

for the generative and preventative datasets in the short than long timeframe. However, by Trial 

12 the short and long timeframes look similar. 
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Figure 4 Measures of strength over time for each dataset in the short-term and long-term conditions. 
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4.0 Discussion 

We sought to evaluate the external validity of traditional trial-by-trial causal learning 

experiments by comparing trial-by-trial learning when presented rapidly vs. one trial per day for 

24 days. Presumably the former relies on working memory, whereas the latter requires long term 

memory. Our findings suggest that people are capable of learning generative and preventive causal 

relationships and also exhibit illusory correlations when learning causal relations over 24 days. 

Critically, we found few differences between the short-term and long-term tasks, and in fact most 

of the Bayes factors were roughly 8 to 1 in favor of the null. 

Overall, we found support for a null effect of task length on subjects’ judgments across the 

three measures of causal strength. We did, however, observe some inconsistencies in judgments 

for the outcome density dataset. In the long-term conditions, causal, predictive, and frequency 

strength were positive and significantly different from zero, consistent with illusory correlations 

found in prior research. We also found a significant illusory correlation for causal strength 

judgments in the short-term condition. However, short-term predictive and frequency judgments 

for the outcome-density dataset were inconsistent – predictive strength was significantly negative 

(the opposite of an illusory correlation) and frequency strength was not significantly different from 

zero for the short-term task. In the predictive strength condition, negative judgments in the short-

term version of the outcome-density dataset resulted in a small but significant difference between 

the short-term and long-term tasks. 

Outcome density effects are pervasive in prior research, which exclusively used short-term 

designs (e.g., Allan et al., 2005; Buehner et al., 2003; Crump et al., 2007; Musca et al., 2010). 

Thus, we are unsure why we found some inconsistencies in the outcome-density condition. Our 
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primary goal for this study was to determine whether there are differences in the strength of illusory 

correlations in a long-term design. Given that the single significant effect of task length for the 

outcome density dataset is isolated to predictive strength and due to judgments that are 

contradictory with prior research, we suggest that there are little to no differences when using a 

short-term vs. long-term design. Furthermore, we found null effects for task-length differences 

across all measures of causal strength in the generative, preventive, and outcome-density datasets, 

supporting the external validity of short-term designs. 

From a practical perspective, this research provides an optimistic perspective on the 

validity of the trial-by-trial paradigm as a simulation of causal learning that occurs in the real world 

across longer periods of time. Using a large sample of participants, we found little to no differences 

in judgments between the short-term and long-term tasks. Assessing the external validity of this 

paradigm is important given that it has been used in hundreds of published studies on causal 

learning, and many thousands of studies when including studies of all sorts of probability learning 

tasks other related topics.  

From a theoretical perspective, we find it striking that there are so few differences in 

learning across the short and long timeframe condition. We intentionally used large samples to 

have the power to detect small effects. The robust learning in the long timeframe condition is 

surprising considering that participants completed the long-term trials outside of the lab and likely 

participated with many distractors and interruptions, comparable to everyday causal learning. Still, 

we hypothesized that the learning in the long timeframe condition would be plagued by 

considerably worse learning due to noisy memories. The fact that we found few differences raises 

a number of questions.  
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One question has to do with how learning occurs (e.g., Bornstein et al., 2017). Are subjects 

recording individual episodic memories and using them for causal learning? Or are they merely 

encoding them as generic events of the four cell types? Or are they using a process more similar 

to reinforcement learning in which an estimate of the strength of the relation between the cause 

and outcome gets updated as new evidence is experienced? Though these theories are often 

extremely difficult to differentiate because they all predict similar learning, we can at least assess 

whether or not participants are able to recall episodic memories of the experienced events with our 

contextual image memory questions.  

Another question is how well long-term memory can support other types of learning. It is 

possible that a single cause-effect relation is simple enough for long-term memory to robustly 

support learning, but that long-term memory might not be able to support more complex cause-

effect relations (e.g., with multiple causes or long delays). We are actively studying such questions. 

This research also has potential implications for whether learning and memory processes 

are fundamentally the same for shorter vs. longer timeframes. In associative learning, there is a 

debate about “timescale independence or invariance” (Gallistel & Gibbon, 2000; Kello et al., 2010; 

Brown, Neath, & Chater; 2007), in which learning phenomena tend to replicate if the sequence is 

stretched or compressed. In memory, there are debates about the similarities and differences in 

short vs. long-term memory (e.g., Cowan, 2008) and whether memories across short and long 

timespans can be modeled with the same forgetting curves (e.g., Averell & Heathcote, 2010; 

Wixted & Ebbesen, 1991). These debates are complex and technical, and though the current study 

was not designed specifically to address either, perhaps researchers invested in those debates may 

be able to use incorporate these results. 
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More generally, we believe that the current research provides an important step towards 

generalizing current learning paradigms to more real-world settings. The current findings are 

optimistic in terms of how well the paradigm generalizes; however, future research may also reveal 

areas in which standard learning paradigms generalize poorly.  
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Appendix A  

Appendix A.1 Cover Story Authenticity 

In both the matched short and long timeframe tasks, participants were randomly assigned 

to either a ‘novel’ (e.g., effect of taking Vitamin AQ46 on mood) or ‘authentic’ (e.g., effect of 

using Facebook on mood) cover story. We conducted separate ANOVA’s using Type III error for 

each of the four datasets and three measures of causal strength to test for possible main effects of 

or interaction between cover story authenticity (between subjects) and task length (within 

subjects).  

Out of the 12 significance tests of authenticity, only one was significant (Table A1). The 

causal strength judgments were stronger in the novel condition (M = 0.30, SD = 0.36) than in the 

authentic condition (M = 0.17, SD = 0.37) for the A-cell bias dataset. Thus, we conclude that there 

is no evidence of systematic effects of authenticity. 

Out of the 12 significance tests of task length, only one test was significant; frequency 

strength illusory correlations were slightly stronger in the long-term task (M = 0.06, SD = 0.23) 

than in the short-term task (M = 0.00, SD = 0.16) for outcome density. This is the same finding 

already reported in the main paper. 
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Appendix Table 1 Effects of Coverstory Authenticity and Task Length on Measures of Strength 

  
 

 Causal  

Strength 

Predictive 

Strength 

Frequency 

Strength 

 Dataset Predictor dfNum dfDen    F p F p F p 

Generative Authenticity 1 190 1.28 .259 1.82 .178 0.02 .897 

 Task Length 1 190 0.04 .849 1.00 .319 1.49 .224 

 Interaction 1 190 2.66 .104 0.69 .407 1.71 .193 

Preventive Authenticity 1 198 0.53 .467 0.00 .967 1.30 .256 

 Task Length 1 198 < 0.00 .950 0.45 .504 0.91 .341 

 Interaction 1 198 0.01 .906 0.02 .884 0.00 .968 

A-cell Authenticity 1 206 6.38 .012* 1.01 .317 0.03 .871 

 Task Length 1 206 1.38 .242 0.40 .528 0.20 .652 

 Interaction 1 206 1.04 .309 0.39 .535 0.24 .623 

Outcome Authenticity 1 204 0.17 .684 0.27 .606 0.10 .751 

Density Task Length 1 204 0.24 .620 0.75 .387 3.95 .048* 

 Interaction 1 204 2.15 .144 0.57 .451 1.83 .178 

Note. * and boldface indicates that the effect was significant at p < .05. 

Appendix A.2 Cover Story Valence 

Prior research suggests that illusory correlations and strength judgments may be stronger 

for outcomes that have negative than positive valence (Derringer, 2019; Mullen & Johnson, 1990). 

There is also some evidence that people may learn generative and preventive relations faster or 

give stronger judgments for negative than positive valenced outcomes (Baumeister, Bratslavsky, 

Finkenauer, & Vohs, 2001; Ohman & Mineka, 2001; Rozin & Royzman, 2001). 

In both the matched short and long timeframe tasks, the present effect had either a positive 

or negative valence (e.g., ‘Very Good Mood’ vs. ‘Very Bad Mood’). We conducted separate 

ANOVA’s using Type III error for each of the four datasets and three measures of causal strength 

to test for possible main effects of or interaction between cover story valence (between subjects) 

and task length (within subjects) (Table A2).  
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Consistent with our authenticity analyses, we found a single, barely-significant effect of 

task length that was isolated to frequency strength for the outcome-density bias dataset. 

For the illusory correlation datasets, only one of the six tests was significant and was in the 

opposite direction as predicted; the predictive strength measure for outcome density was slightly 

higher for the positive (Mpositive = 0.06, SDpositive = 0.45) than negative (Mnegative = -0.05, SDnegative 

= 0.41) condition. 

For the causal datasets, the findings were mixed. For the preventive dataset, we observed 

a pattern consistent with prior research in which predictive strength was significantly stronger in 

the negative valence condition (M = 0.63, SD = 0.38) than in the positive valence condition (M = 

0.45, SD = 0.49). However, for the generative dataset, predictive strength was significantly 

stronger for the positive than the negative valence condition in both the generative (Mpositive = 0.63, 

SDpositive = 0.38, Mnegative = 0.45, SDnegative = 0.49). Three of other findings for the other measures 

of strength were non-significant, and one was marginal.  

In sum, unlike some prior studies, we did not see strong and reliable patterns effects of 

valence for either the short or long timeframes.  
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Appendix Table 2 Effects of Coverstory Valence and Task Length on Measures of Strength 

  
 

 Causal  

Strength 

Predictive 

Strength 

Frequency 

Strength 

 Dataset Predictor dfNum dfDen F p F p F p 

Generative Valence 1 190 0.29 .589 7.84 .006* 1.39 .240 

 Task Length 1 190 0.04 .850 1.04 .310 1.49 .223 

 Interaction 1 190 < 0.00 .979 2.28 .133 0.73 .394 

Preventive Valence 1 198 3.75 .054 5.63 .019* 1.30 .256 

 Task Length 1 198 < 0.00 .951 0.46 .498 0.91 .341 

 Interaction 1 198 0.05 .830 0.17 .683 < 0.00 .964 

A-cell Valence 1 206 0.14 .705 2.03 .156 1.98 .161 

 Task Length 1 206 1.33 .240 0.39 .535 0.21 .650 

 Interaction 1 206 0.40 .526 0.90 .343 1.28 .260 

Outcome Valence 1 204 0.49 .486 4.58 .034* 0.53 .468 

Density Task Length 1 204 0.25 .620 0.77 .383 3.95 .048* 

 Interaction 1 204 1.41 .237 0.03 .857 1.53 .217 
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