Development of small molecule modifiers of microRNA functions and targeted activation of caged morpholino oligomers

by

Rohan Surendra Kumbhare

B.S. Chemistry, IISER Pune, India 2013
M.S. Chemistry, IISER Pune, India 2013

Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy

University of Pittsburgh

2020
This dissertation was presented
by

Rohan Surendra Kumbhare

It was defended on

June 18, 2020

and approved by

Paul Floreancig, Professor, Department of Chemistry

Seth Horne, Associate Professor, Department of Chemistry

Subha Das, Assistant Professor, Department of Chemistry, Carnegie Mellon University

Dissertation Director: Alexander Deiters, Professor, Department of Chemistry
MicroRNAs (miRNAs) are small non-coding RNA molecules (~22-nucleotides long) and constitute up to 60% of human genes. miRNAs are primarily involved in gene silencing by binding to the 3’-untranslated region (3’-UTR) of messenger RNAs (mRNAs), leading to translational inhibition or mRNA cleavage. The liver-specific miR-122 plays a critical role in the replication of Hepatitis C virus (HCV) while the progression of many cancer types is affected by the downregulation of miR-21. The first part of the thesis focuses on the design, synthesis, and identification of small molecule inhibitors of miR-122 and miR-21. Upon identification of the hit molecules identified by high throughput screening of small molecule libraries by, previously developed, miR-122 and miR-21 reporter assays, structure-activity relationship (SAR) studies were undertaken and lead molecules exhibiting improved activity were selected. The lead molecules were further explored for their mode of action in the modulation of miR-122 and miR-21.

In the second part of the thesis, strategies for selective activation of gene regulation by morpholino oligomers (MOs) were explored. Topologically constrained or caged MOs exhibit poor to none target sequence binding by Watson-Crick base-pair complementarity. Caging of MOs can be achieved by construction of bi-functional linkers for joining both the ends of linear MOs. Gene silencing with spatiotemporal resolution can be achieved by targeted activation and
linearization of these caged MOs. In this study, a number of projects with small molecule-mediated and selective enzyme (β-lactamase)-mediated activation strategies were undertaken.

In the final part of the thesis, other methodologies utilizing light activation to mediate gene regulation were explored. The maturation process of nascent mRNAs proceeds by attaching the mRNA 5′-end with a modified guanosine triphosphate cap and polyadenylation on the 3′-end. The mRNA translation can be modulated by modifications to the 5′-cap as the cap interactions with initiation factors like eIF4E are crucial for the assembly of translational machinery. A closer look at eIF4E and 5′-cap interactions revealed multiple positions of caging with a photocleavable group for light-mediated activation of mRNA translation. Strategies involving the incorporation of two caged cap analogs and caged guanosine triphosphate were pursued.
Table of contents

1.0 Introduction to microRNAs ... 1

1.1 MicroRNA biogenesis .. 1

1.2 MicroRNAs as potential drug targets .. 5

1.3 Nucleic acid and small molecule modifiers of miRNA function ... 9

1.4 Small molecule modifiers of microRNA-122 ... 21

 1.4.1 Introduction to microRNA-122 .. 21

 1.4.2 Synthesis and SAR studies of a sulfonamide series of miR-122 inhibitors 31

 1.4.2.1 Summary and future work ... 54

 1.4.2.2 Experimentals ... 56

 1.4.3 Synthesis and SAR studies of non-sulfonamide series of miR-122 inhibitors 89

 1.4.3.1 Summary and future work ... 96

 1.4.3.2 Experimentals ... 96

 1.5 Small molecule modifiers of microRNA-21 ... 104

 1.5.1 Introduction to microRNA-21 .. 104

 1.5.2 Synthesis and SAR studies of miR-21 inhibitors .. 116

 1.5.2.1 Secondary assays to confirm activity of miR-21 inhibitors 122

 1.5.2.2 Identification of preliminary mode of action ... 125

 1.5.2.3 Functional studies of 112 ... 128

 1.5.2.4 Summary ... 131

 1.5.2.5 Experimentals ... 131
2.0 Introduction to caged morpholinos (cMO) .. 143

2.1 Small molecule-based activation of cMOs .. 156

2.1.1 Introduction .. 156

2.1.2 Tetrazine-trans-cyclooctene bioorthogonal reaction .. 158

2.1.3 Synthesis of aryl-trans-cycloocten-2-ol linker for tetrazine-activated cMOs 165

2.1.4 Synthesis of a bifunctional trans-bicyclo-nonene for ‘click-to-release’ applications 175

2.1.5 Synthesis of trans-bicyclo-nonene linker for tetrazine-activated cMOs 182

2.1.6 Summary and future work .. 185

2.1.7 Experimentals ... 187

2.2 Enzyme-based activation of cMOs ... 205

2.2.1 Introduction .. 205

2.2.2 Linker synthesis for β-lactamase activated cMOs ... 209

2.2.3 Analysis of cleavage of β-lactamase activated linker ... 217

2.2.4 Summary and future work .. 220

2.2.5 Experimentals ... 222

3.0 Caged mRNA 5’-cap for spatiotemporal activation of mRNA translation 229

3.1 Introduction .. 229

3.2 Synthesis of an N1-caged mRNA 5’-cap analog .. 241

3.3 Synthesis and analysis of N1-caged GTP as capping reagent ... 247

3.4 Synthesis of N2-caged mRNA 5’-cap analog ... 250

3.5 Summary and future work .. 253
3.6 Experimentals ... 255

Bibliography ... 266
List of tables

Table 1-1 Structures and activity of derivatives 39-45 .. 33
Table 1-2 Structures and activity of derivatives 46-52 .. 35
Table 1-3 Structures and activity of derivatives 53-57 .. 37
Table 1-4 Structures and activity of derivatives 58-62 .. 39
Table 1-5 Structures and activity of derivatives 63-70 .. 41
Table 1-6 Structures and activity of derivatives 71-76 .. 43
Table 1-7 Structures and activity of derivatives 77-83 .. 92
Table 1-8 Structures and activity of derivatives 84-90 .. 94
Table 1-9 Structures and activity of derivatives 91-97 .. 95
List of figures

Figure 1-1 The canonical pathway of miRNA biogenesis.. 4
Figure 1-2 Involvement of miRNAs in cancer. ... 8
Figure 1-3 Structures of chemical modifications for AMOs. .. 10
Figure 1-4 Limitations and advantages of miRNA targeting technologies. 11
Figure 1-5 Structures of small molecule miRNA inhibitors identified by biochemical assays.... 14
Figure 1-6 Two different cat-ELCCA (catalytic enzyme-linked click chemistry assay) approaches for high-throughput screening.. 16
Figure 1-7 Cell-based reporter assay design.. 18
Figure 1-8 Structures of small molecule modifiers of miRNA function identified in cell-based reporter assays.. 18
Figure 1-9 Structures of small molecules identified through rational design and computational approaches... 20
Figure 1-10 miR-122 assay... 25
Figure 1-11 Validation of hits 19 and 20... 26
Figure 1-12 SAR data for compounds 19, 20 and 21. ... 27
Figure 1-13 Combination effect of miR-122 antagonir and small molecule 20. 29
Figure 1-14 Synthetic route to the initial hit compound 39.. 32
Figure 1-15 Chemical structures of isomers A and B of 76 with atom numbers. 46
Figure 1-16 Luciferase dose-response curves for inhibitors 66 and 76 in the Huh7-psiCHECK-miR122 stable cell line... 47
Figure 1-17 Effect of compounds 66 and 76 on different targets.. 49
Figure 1-18 miR-122 promoter assay. ... 50
Figure 1-19 miR-122 promoter assay. ... 52
Figure 1-20 Effect of 66 and 76 on HCV RNA replication. 54
Figure 1-21 1H and 13C (1D NMR) spectra of 76. .. 83
Figure 1-22 1H-1H correlation spectroscopy (COSY) spectrum of 76............... 84
Figure 1-23 1H-1H total correlation spectroscopy (TOCSY) spectrum of 76. 85
Figure 1-24 1H-13C heteronuclear single quantum correlation (HSQC) spectrum of 76........ 86
Figure 1-25 1H-13C heteronuclear multiple bond correlation (HMBC) spectrum of 76. 87
Figure 1-26 2D rotational frame nuclear Overhauser effect spectroscopy (ROESY) spectrum of 76... 88
Figure 1-27 Synthetic route for synthesis of non-sulfonamide series of miR-122 inhibitors...... 90
Figure 1-28 miR-21 assay .. 107
Figure 1-29 Discovered miR-21 inhibitor 95 and SAR investigation of 95 and 14. 108
Figure 1-30 Design strategy of compounds 96 and 97. ... 110
Figure 1-31 Mode of action studies of inhibitor 15. ... 112
Figure 1-32 Specificity and dose-response characteristics of inhibitors 98, 99, 100, and 17.... 114
Figure 1-33 miR-21 assay and hit compound 101. .. 116
Figure 1-34 Synthetic route to ether-amide miR-21 inhibitors............................. 117
Figure 1-35 Activity of compounds 101 and 106–114 in the HeLa-miR21-Luc assay. 118
Figure 1-36 Synthetic route to miR-21 inhibitors 119 and 123. 119
Figure 1-37 Activity of compounds 116–123 in the HeLa-miR21-Luc assay......... 119
Figure 1-38 Activity of compounds 124–129 in the HeLa-miR21-Luc assay............ 120
Figure 1-39 Synthetic route to ether-amide miR-21 inhibitors 128 and 129. 120
Figure 1-40 Activity of compounds 130–140 in the HeLa-miR21-Luc assay.............................. 122

Figure 1-41 Treatment of HeLa-miR21-Luc stable reporter cells with varying concentrations of inhibitor 112, 130, 138, and 139 followed by a Bright-Glo assay................................. 123

Figure 1-42 Evaluation of selectivity of lead compounds.. 124

Figure 1-43 Effect of 112 on different targets.. 126

Figure 1-44 Effect of 112 on different cell lines.. 126

Figure 1-45 Melting curves for pre-miR-21 in the absence and presence of 112.................... 127

Figure 1-46 Functional studies of 112 in HeLa cells.. 129

Figure 1-47 Treatment of HEK293T cells with a dilution series of 112................................. 129

Figure 1-48 Representative images from clonogenic assays following 2-week treatment of HeLa cells with a dilution series of 112. .. 130

Figure 2-1 First example of caged MO targeting ntl gene in zebrafish embryos.................... 147

Figure 2-2 Photo-MOs for regulation of ntlA gene function... 150

Figure 2-3 Effects of MO containing caged morpholino monomers on zebrafish embryos. 152

Figure 2-4 Comparative studies on hairpin cMO and cyclic cMO.. 154

Figure 2-5 Studies on wavelength-selective activation of cMOs... 155

Figure 2-6 Penetration depth of different wavelengths of light into human skin.................... 157

Figure 2-7 Frontier orbital model of Diels-Alder cycloadditions.. 160

Figure 2-8 Tetrazine-mediated decaging strategy and proposed mechanism.......................... 161

Figure 2-9 Optimization of tetrazines for “click-to-release” applications............................... 162

Figure 2-10 Mechanistic insights into the tetrazine—trans-cycloocten-2-ol ligation and elimination reaction. .. 164
Figure 2-11 Amino-functionalized tetrazines for “click-to-release” applications with a wider pH range.. 165
Figure 2-12 Schematic representation of tetrazine-mediated activation of trans-cycloocten-2-ol containing cMO 142 ... 166
Figure 2-13 Synthesis of cis-cycloocten-2-ol 168 and compound 174 in the tetrazine-mediated activation strategy ... 167
Figure 2-14 Synthesis of compound 177 .. 169
Figure 2-15 Screening of reaction conditions for the formation of carbamate linkage with trans-cycloocten-2-ol to the cMO linker scaffold ... 171
Figure 2-16 Different linkers with varying linker lengths and reactive groups attempted for linker design optimization .. 174
Figure 2-17 Synthesis of the functionalized trans-cycloocten-2-ol 189 .. 176
Figure 2-18 High reactivity of substituted bicyclo[6.1.0]non-4-yn-9-ylmethanol scaffolds with tetrazines ... 177
Figure 2-19 Synthetic route to bifunctional trans-bicyclo-nonenes 207 and 208 ... 179
Figure 2-20 Rate constants of trans-bicyclo-nonene intermediates with tetrazine ... 180
Figure 2-21 Synthesis of bifunctional trans-bicyclo-nonene 217 .. 181
Figure 2-22 Synthesis of the final linker 221 from trans-bicyclo-nonene 217 ... 183
Figure 2-23 Synthesis of ntla cMO 224 with the novel trans-bicyclo-nonene linker 221 ... 184
Figure 2-24 Classes of β-lactams antibiotics with different ring systems ... 205
Figure 2-25 Mechanism of cyclic amide hydrolysis by a serine β-lactamase and metallo-β-lactamase (MBL). ... 208
Figure 2-26 The esterified fluorescent probe CCF2-AM .. 209
Figure 2-27 β-lactamase activated linker design and proposed mechanism of cMO linearization. ... 210
Figure 2-28 Synthesis of the cephalosporin-containing linker intermediate 232. 211
Figure 2-29 Synthetic attempts for selective acetate hydrolysis of intermediate 232. 213
Figure 2-30 Synthetic attempts to install the spacer with an NHS ester on compound 240..... 215
Figure 2-31 Synthesis of the final linker 258 containing chloroacetamide and azide handles... 216
Figure 2-32 Synthesis of ntlα cMO 260 with t-buty1 protected linker 254. Synthesis performed by
Kristie Darrah .. 217
Figure 2-33 Initial in vitro studies with the t-buty1 protected linker 254 and recombinant β-
lactamase monitored by LCMS at different time points ... 218
Figure 2-34 Nitrocefin assay for β-lactamase activity ... 220
Figure 3-1 Schematic representation of translation initiation complex ... 231
Figure 3-2 The biochemical synthetic pathway of capping nascent mRNA. 232
Figure 3-3 Ribavirin capped mRNA prepared by Vaccinia capping enzyme. 234
Figure 3-4 Schematic representation of a co-transcriptional capping reaction 236
Figure 3-5 Synthetic scheme for the synthesis of standard cap 263 .. 237
Figure 3-6 Modifications to the m7G cap with improved stability and translational efficiency. 238
Figure 3-7 Schematic representation of 2-meta-methyl-phenylazo 5’-cap 239
Figure 3-8 Light-mediated activation of mRNA translation .. 241
Figure 3-9 Synthetic scheme for the synthesis of N1-caged protected guanosine 282 242
Figure 3-10 Attempts for the synthesis of N1-caged GMP 284 .. 244
Figure 3-11 Optimized synthetic route for the synthesis of N1-caged GMP 284 245
Figure 3-12 Synthetic attempt for the synthesis of N1-caged cap analog 273 246
Figure 3-13 Synthetic route for the synthesis of N1-caged GTP 292 .. 248
Figure 3-14 Compound 292 as a substate for capping Renilla luciferase mRNA with the Vaccinia capping kit .. 250
Figure 3-15 Synthetic scheme for the failed synthesis of N2-caged cap analog 300 252
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2’-fluoro-RNA</td>
<td>2’-fluoro-modified RNA</td>
</tr>
<tr>
<td>2’-O-alkyl-RNA</td>
<td>2’-O-alkyl-RNA</td>
</tr>
<tr>
<td>2DCS</td>
<td>two-dimensional combinatorial screening</td>
</tr>
<tr>
<td>3’-UTR</td>
<td>3’-untranslated region</td>
</tr>
<tr>
<td>5’-UTR</td>
<td>5’-untranslated region</td>
</tr>
<tr>
<td>AdoMet</td>
<td>S-adenosylmethionine</td>
</tr>
<tr>
<td>AGO2 (Ago2)</td>
<td>Argonaute2</td>
</tr>
<tr>
<td>AMOs</td>
<td>anti-miRNA oligonucleotides</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator Protein 1</td>
</tr>
<tr>
<td>ARCA</td>
<td>anti-reverse cap analog</td>
</tr>
<tr>
<td>AREs</td>
<td>AU-rich elements</td>
</tr>
<tr>
<td>ASOs</td>
<td>antisense oligonucleotides</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>Bcl2</td>
<td>B-cell lymphoma 2</td>
</tr>
<tr>
<td>B-CLL</td>
<td>B-cell chronic lymphocytic leukemia</td>
</tr>
<tr>
<td>C. elegans</td>
<td>Caenorhabditis elegans</td>
</tr>
<tr>
<td>CAL B</td>
<td>Candida Antarctica Lipase B</td>
</tr>
<tr>
<td>CAT-1</td>
<td>cationic amino acid transporter 1</td>
</tr>
<tr>
<td>cat-ELCCA</td>
<td>catalytic enzyme-linked click chemistry assay</td>
</tr>
<tr>
<td>CDI</td>
<td>1,1’-carbonyldiimidazole</td>
</tr>
<tr>
<td>CDKN1A</td>
<td>cyclin-dependent kinase inhibitor 1A</td>
</tr>
<tr>
<td>cMO</td>
<td>caged morpholino oligomer</td>
</tr>
<tr>
<td>c-MYC</td>
<td>cellular myelocytomatosis</td>
</tr>
<tr>
<td>COSY</td>
<td>¹H-¹H Correlation Spectroscopy</td>
</tr>
<tr>
<td>CuAAC</td>
<td>Copper(I)-catalysed Azide-Alkyne Cycloaddition</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N’-Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DCP2</td>
<td>decapping protein 2</td>
</tr>
<tr>
<td>DEACM</td>
<td>7-(diethylamino)coumarin caging group</td>
</tr>
<tr>
<td>DEACM-MN</td>
<td>diethylaminocoumaryldenemalononitrilemethyl caging group</td>
</tr>
<tr>
<td>DEAEE</td>
<td>diethylaminoethanol</td>
</tr>
<tr>
<td>DGCR8</td>
<td>DiGeorge syndrome critical region</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DIAD</td>
<td>diisopropyl azodicarboxylate</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N-Diisopropylethylamine</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMEDA</td>
<td>N,N’-Dimethylethylenediamine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMNB</td>
<td>4,5-dimethoxy-2-nitrobenzyl caging group</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DSC</td>
<td>N,N’-Disuccinimidyld carbonate</td>
</tr>
<tr>
<td>dsRNAs</td>
<td>double-stranded RNAs</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>EDC</td>
<td>1-ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>EDG</td>
<td>electron donating group</td>
</tr>
<tr>
<td>EGFP</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>eIF4E</td>
<td>Eukaryotic Translation Initiation Factor 4E</td>
</tr>
<tr>
<td>EMSA</td>
<td>electrophoretic mobility shift assay</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>Et3N</td>
<td>triethylamine</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>FRET</td>
<td>fluorescence resonance energy transfer</td>
</tr>
<tr>
<td>FXR1</td>
<td>fragile-X-mental-retardation-related protein 1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GDP</td>
<td>guanosine diphosphate</td>
</tr>
<tr>
<td>GMP</td>
<td>guanosine monophosphate</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>HATU</td>
<td>1-[Bis(dimethylmino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCTU</td>
<td>O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate</td>
</tr>
<tr>
<td>HCV</td>
<td>hepatitis C virus</td>
</tr>
<tr>
<td>HIC1</td>
<td>hypermethylated in cancer 1</td>
</tr>
<tr>
<td>HMBC</td>
<td>H13C Heteronuclear Multiple Bond Correlation</td>
</tr>
<tr>
<td>HNFs</td>
<td>hepatocyte nuclear factors</td>
</tr>
<tr>
<td>HOBt</td>
<td>Hydroxybenzotriazole</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxide</td>
</tr>
<tr>
<td>HSQC</td>
<td>1H-13C Heteronuclear Single Quantum Correlation</td>
</tr>
<tr>
<td>HTS</td>
<td>high-throughput screen</td>
</tr>
<tr>
<td>iEDDA</td>
<td>inverse electron-demand Diels-Alder</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>IRES</td>
<td>Internal Ribosomal Entry Site</td>
</tr>
<tr>
<td>IVT</td>
<td>in vitro transcription</td>
</tr>
<tr>
<td>JAK-STAT</td>
<td>Janus kinase-signal transducer and activator of transcription</td>
</tr>
<tr>
<td>LCMS</td>
<td>Liquid chromatography–mass spectrometry</td>
</tr>
<tr>
<td>LETFs</td>
<td>liver-enriched transcription factors</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>lithium hexamethyldisilazide</td>
</tr>
<tr>
<td>LiOH</td>
<td>lithium hydroxide</td>
</tr>
<tr>
<td>LNA</td>
<td>locked nucleic acid</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>Matrix-Assisted Laser Desorption/Ionization time-of-flight</td>
</tr>
<tr>
<td>MBL</td>
<td>metallo-β-lactamase</td>
</tr>
<tr>
<td>MeI</td>
<td>iodomethane</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>microRNPs</td>
<td>miRNA-protein complexes</td>
</tr>
<tr>
<td>miRISC</td>
<td>miRNA-induced silencing complex</td>
</tr>
<tr>
<td>miRNA (miR)</td>
<td>microRNA</td>
</tr>
<tr>
<td>MNI</td>
<td>4-methoxy-7-nitroindoline</td>
</tr>
<tr>
<td>MO</td>
<td>morpholino oligomer</td>
</tr>
<tr>
<td>MRE</td>
<td>miRNA response element</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MRSA</td>
<td>methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MSN</td>
<td>mesoporous silica nanoparticles</td>
</tr>
<tr>
<td>NAG</td>
<td>N-acetylglucosamine</td>
</tr>
<tr>
<td>NAM</td>
<td>N-acetylmuramic acid</td>
</tr>
<tr>
<td>NASH</td>
<td>non-alcoholic steatohepatitis</td>
</tr>
<tr>
<td>NB</td>
<td>2-nitrobenzyl caging group</td>
</tr>
<tr>
<td>NHS</td>
<td>N-Hydroxysuccinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NPOM</td>
<td>6-nitropiperonyloxymethyl caging group</td>
</tr>
<tr>
<td>ntl (ntla)</td>
<td>no tail</td>
</tr>
<tr>
<td>PAIN</td>
<td>pan-assay interference</td>
</tr>
<tr>
<td>PBPs</td>
<td>penicillin-binding proteins</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PD</td>
<td>pharmacodynamics</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PDCD4</td>
<td>programmed cell death protein 4</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>PK</td>
<td>pharmacokinetics</td>
</tr>
<tr>
<td>Pol II</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>pre-miRNA</td>
<td>precursor miRNA</td>
</tr>
<tr>
<td>pri-miRNAs</td>
<td>primary microRNAs</td>
</tr>
<tr>
<td>PS-DNA</td>
<td>phosphorothioate-modified DNA</td>
</tr>
<tr>
<td>PTEN</td>
<td>phosphatase and tensin homolog</td>
</tr>
<tr>
<td>RECK</td>
<td>reversion-inducing cysteine-rich protein with Kazal motifs</td>
</tr>
<tr>
<td>RISC</td>
<td>RNA-induced silencing complex</td>
</tr>
<tr>
<td>Rluc</td>
<td>Renilla luciferase</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>ROESY</td>
<td>¹H-¹H Rotational Frame Nuclear Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>RT-qPCR</td>
<td>Quantitative reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>SAR</td>
<td>structure-activity relationship</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>snRNAs</td>
<td>small nuclear RNAs</td>
</tr>
<tr>
<td>snRNPs</td>
<td>small nuclear ribonucleoproteins</td>
</tr>
<tr>
<td>SPAAC</td>
<td>Strain-Promoted Azide-Alkyne Cycloaddition</td>
</tr>
<tr>
<td>SPRY2</td>
<td>Sprouty2</td>
</tr>
<tr>
<td>StARTS</td>
<td>SAR studies through sequencing</td>
</tr>
<tr>
<td>TBAB</td>
<td>tetrabutylammonium bromide</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetra-n-butylammonium fluoride</td>
</tr>
<tr>
<td>TBDMSCI</td>
<td>tert-butyl(trimethylsilyl) chloride</td>
</tr>
<tr>
<td>TBPSCI</td>
<td>tert-butyl(diphenyl)silyl chloride</td>
</tr>
<tr>
<td>TBHP</td>
<td>tert-butyl hydroperoxide</td>
</tr>
<tr>
<td>TBTA</td>
<td>Tris[[1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine</td>
</tr>
<tr>
<td>TCEP</td>
<td>tris(2-carboxyethyl)phosphine</td>
</tr>
<tr>
<td>TEAB</td>
<td>triethylammonium bicarbonate</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>T_m</td>
<td>melting temperature</td>
</tr>
<tr>
<td>TNFα</td>
<td>cytokine tumor necrosis factor α</td>
</tr>
<tr>
<td>TOCSY</td>
<td>1H-1H Total Correlation Spectroscopy</td>
</tr>
<tr>
<td>TRBP</td>
<td>transactivation response element RNA-binding protein</td>
</tr>
<tr>
<td>TsOH</td>
<td>p-toluene sulfonic acid</td>
</tr>
<tr>
<td>TSTU</td>
<td>N,N',N',N'-Tetramethyl-O-$($N-succinimidyl$)$uronium tetrafluoroborate</td>
</tr>
<tr>
<td>VMP1</td>
<td>Vacuole Membrane Protein 1</td>
</tr>
<tr>
<td>XPO5</td>
<td>Exportin 5</td>
</tr>
<tr>
<td>XRN1</td>
<td>exoribonuclease 1</td>
</tr>
<tr>
<td>XTT</td>
<td>2,3-Bis-(2-methoxy-4-nitro-5-sulphenyl)-2H-tetrazolium-5-carboxanilide</td>
</tr>
<tr>
<td>γPNA</td>
<td>gamma-modified peptide nucleic acid</td>
</tr>
</tbody>
</table>
1.0 Introduction to microRNAs

MicroRNAs (miRNAs) are small non-coding single-stranded RNA molecules 20-25 nucleotides in length which are involved in posttranscriptional gene regulation.\(^1\) With over 2,654 miRNAs reported in humans,\(^2\) miRNAs control up to 21% of the protein-coding genes.\(^3\) These act by binding to 3’-untranslated region (UTR) of mRNAs which results in repression of transcription and gene silencing.\(^4\) In 1993, \textit{lin}-4 was the first miRNA to be discovered by Ambros and co-workers.\(^4\) \textit{Lin}-4 was found to be regulated in the early development of \textit{Caenorhabditis elegans} (\textit{C. elegans}) larvae. The \textit{lin}-4 gene encoded 2 short oligonucleotide transcripts (22 and 61 nucleotides in length) which bind to the 3’-UTR of \textit{lin}-14 mRNA via an antisense RNA-RNA interaction. In 2000, the Ruvkun lab reported another \textit{C. elegans} microRNA, \textit{let}-7.\(^5\) The Ruvkun lab determined that a 21-nucleotide RNA encoded by \textit{let}-7 gene is complementary to elements in the 3’-UTR of the regulatory heterochronic genes \textit{lin}-14, \textit{lin}-28, \textit{lin}-41, \textit{lin}-42 and \textit{daf}-12, which specify the timing of \textit{C. elegans} developmental events.\(^5\) These miRNAs were subsequently found to be a subset of small non-coding RNAs in \textit{C. elegans}, \textit{Drosophila}, and humans.\(^6-8\)

1.1 MicroRNA biogenesis

In the canonical pathway, miRNAs are usually transcribed by RNA polymerase II or III (Pol II or Pol III) from independent genomic transcription units or from introns of protein coding genes (\textbf{Figure 1-1}).\(^9\) Pol II/III produces miRNAs (pri-miRNAs) which are 100- to 1,000-nucleotide long double-stranded RNAs (dsRNAs).\(^10\) These long RNA molecules are recognized
by a ‘Microprocessor’ protein complex comprised of RNase III endonuclease (Drosha) and dsRNA-binding protein (DiGeorge syndrome critical region, DGCR8) in the nucleus, which cleaves pri-miRNA to a ~70-100 nucleotide precursor miRNA (pre-miRNA) having a 3’ overhang of 2 nucleotides with 5’ and 3’ termini with phosphate and hydroxyl groups, respectively (Figure 1-1). DGCR8 recognizes N6-methyladenylated GGAC and other motifs within the pri-miRNA. Pre-miRNA is exported by Exportin 5 (XPO5) with the help of RanGTP. The double-stranded pre-miRNA is protected by the XPO5:RanGTP complex during nuclear export and is cleaved by another RNase III endonuclease, Dicer, in conjunction with transactivation response element RNA-binding protein (TRBP), resulting in removal of the terminal loop which liberates a ~22 nucleotide miRNA-miRNA* duplex in the cytoplasm. This duplex is loaded into an Argonaute (AGO) protein complex in an ATP-dependent manner. AGO protein in addition to Dicer:TRBP complex forms the RNA-induced silencing complex (RISC) containing the single-stranded mature miRNA (guide strand), while miRNA* (passenger strand) is expelled and degraded in the intermediate maturation steps. The strand with lower 5’-stability or with 5’-uracil is preferentially loaded onto AGO2 as the guide strand, forming the miRNA-induced silencing complex (miRISC). miRNAs direct the miRISC to the 3’-UTR of target mRNA containing the complementary sequence, called the miRNA response element (MRE). MREs containing miRNAs with exact complementarity to 3’-UTR lead to mRNA degradation induced by AGO2 endonuclease activity. More commonly, partial miRNA:MRE complementarity results in translational repression, mRNA poly(A)-deadenylation (initiated by poly(A)-deadenylase PAN2/3 and completed by CCR4-NOT complexes), and decapping (facilitated by decapping protein 2, DCP2, and associated proteins, followed by 5’–3’ degradation by exoribonuclease 1, XRN1) (Figure 1-1). In many cases, a functional miRNA:MRE duplex forms via the 5’seed
region (nucleotides 2-8), and additional pairing at the 3’ end improves the stability and specificity of the miRNA:MRE complex. A single miRNA can bind to hundreds of mRNAs, giving each miRNA powerful control over gene regulation.

Other modes of action include silencing effects of gene regulation by binding to 5’-UTR and coding regions, while transcriptional activation via miRNAs bound to the promoter region have been reported. Two miRNA-protein complexes (microRNPs), fragile-X-mental-retardation-related protein 1 (FXR1) and AGO2, are associated with the upregulation of translation in AU-rich elements (AREs) present in the 3’-UTR in serum-starved HEK293 cells. Under cell cycle arrest induced by serum starvation, the cytokine tumor necrosis factor α (TNFα) AREs are upregulated by FXR1 and AGO2 with the help of several miRNAs including let-7; however, these microRNPs repress translation in proliferating cells.
Figure 1-1 The canonical pathway of miRNA biogenesis.

The endogenous miRNA gene is transcribed and processed into mature miRNA, which is then loaded onto RISC complex. This mature RISC complex binds to the target mRNA and leads to translational repression or degradation of mRNA. Adapted from *Nat. Rev. Drug Discovery*, 2010, 9 (10), 775.34
1.2 MicroRNAs as potential drug targets

miRNAs are dysregulated in hundreds of human diseases.35-36 In particular, miRNAs play a variety of roles in cancer development and proliferation.37 A study of solid tumor samples from 540 patients including lung, breast, stomach, prostate, colon and pancreatic cancers have shown abnormal miRNA expression profiles.38 Furthermore, miRNA expression profiling studies show signature patterns associated with various tumor types, which helps identify common gene targets of deregulated miRNAs.39 These signature patterns can classify human cancers by developmental lineage and differentiation state (\textbf{Figure 1-2}).40

Individual miRNAs have been found to promote or to suppress tumorigenesis. The involvement of miRNAs in human cancers was first found in the study to identify tumor suppressor genes in B-cell chronic lymphocytic leukemia (B-CLL) by the Croce group; miR-15 and miR-16 genes are located at frequently deleted region 13q14 in the majority of B-CLL cases.41 Later it was found out that the miR15a-miR16-1 cluster represses B-cell lymphoma 2 (Bcl2) protein, in turn inducing apoptosis in B-CLL cells.42 A study showed that knockdown of miR-15a resulted in tumorigenesis in the mouse prostate, while restoration in expression of miR-15a and miR-16-1 was marked by tumor growth arrest, apoptosis, and regression in mouse prostate tumor xenografts.41 The miR-17-92 gene cluster is responsible for the upregulation of cellular myelocytomatosis (c-MYC) resulting in the activation of transcription factor E2F1, which promotes excessive cell proliferation.43 Restoring the process of cell aging and apoptosis was achieved by inhibition of miR-17-92 activity. Additionally, hypermethylated in cancer 1 (HIC1) was observed to be downregulated by oncomiR miR-128, resulting in increased cell invasion, proliferation, and reduced apoptosis in breast cancer tissues.44 These studies suggest that tumor
suppressor miRNAs downregulate tumor promoting genes or oncogenes, while oncomiRs inhibit translation of tumor suppressor genes.

Along with the role of miRNAs in cancer progression, several viral miRNAs have been identified. The first viral-encoded miRNAs were cloned from a Burkitt’s lymphoma cell line infected by Epstein-Barr virus (EBV). Several other viral miRNAs have also been discovered in adenovirus, polyoma virus, and several subtypes from the herpesvirus family. Viruses are also capable of regulating miRNAs endogenous to the host cells for their own benefit. In the case of EBV infection, the cellular level of miR-155 is upregulated. Higher expression of miR-155 may prevent cellular apoptosis. Even if miRNAs are not directly regulated by viruses, cellular expression of miRNAs are important for maintaining viral replication. In resting CD4+ T cells, miR-28, miR-125b, miR-150, miR-223, and miR-382 expression is maintained at high levels as compared to activated CD4+ T cells, making activated cells more susceptible to HIV-1 infection. Taken together, these results show that miRNAs play a crucial role in viral infection and replication.

Correlations between autoimmune, hepatic, and neurodegenerative diseases and cellular miRNAs have been studied. miRNA expression profiles of multiple sclerosis (MS) patients and healthy controls have revealed multiple miRNA signatures. Specifically, miR-145 was found to be upregulated in controls, whereas increased expression of miR-34a, miR-155, and miR-326 was observed in MS patients. Abnormal levels of miR-29c, miR-34a, miR-155, and miR-200b were observed in a non-alcoholic steatohepatitis (NASH) mouse model of along with 23 more miRNAs identified in tissue samples from NASH human patients. miRNA’s role in neurodegenerative diseases is poorly understood. miRNA expression profiling revealed abnormal levels of miR-30b, miR-30c, and miR-26a in patients of Parkinson’s disease compared to healthy
Similarly, in patients with Alzheimer’s disease, the expression levels of miR-29a, miR-29b-1, and miR-9 were found to be significantly decreased, implying a functional relevance of miRNA-mediated regulation in disease pathogenesis. From 2004 to 2009, a study indicated that among 192 dysregulated miRNAs in human cancers, almost 168 of them are overexpressed.

In general, miRNAs serve as important factors in various regulatory pathways, and miRNA dysregulation has been implicated in several disease initiation and progression. Typically, as miRNAs do not require exact sequence complementarity for gene regulation, a single miRNA can regulate different gene networks resulting in tumorigenesis and metastasis. For example, in case of hepatic cancer stem cells, a gene regulatory map shows that 7 upregulated miRNAs results in 274 downregulated genes, while 9 downregulated miRNAs results in 62 upregulated genes. The control that these few miRNAs exert over many genes emphasizes the importance of targeting miRNAs as an appealing strategy for cancer therapies.
<table>
<thead>
<tr>
<th>MicroRNA</th>
<th>Genomic location</th>
<th>Expression in patients</th>
<th>Derelegation mechanism</th>
<th>Function</th>
<th>Targets</th>
<th>Experimental data</th>
<th>Therapeutic strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-15a-1</td>
<td>13q31</td>
<td>Down in CLL**, prostate cancer*, pituitary adenomas*</td>
<td>Genomic loss**, mutations*; positive regulation by p53 (REF. 59)</td>
<td>Tumour suppressor</td>
<td>BCL-2 (REF. 61), MCL1 (REF. 61)</td>
<td>In vitro overexpression induces apoptosis in CLL and prostate cancer cells**; in vivo silencing causes CLL in mice*</td>
<td>Mice: vector-based (viral); drugs</td>
</tr>
<tr>
<td>miR-16-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let-7a-2</td>
<td>11q24</td>
<td>Down in lung*, colon*, breast**, ovarian**, stomach cancer**</td>
<td>Negative regulation by MYC*</td>
<td>Tumour suppressor</td>
<td>KRAS, NRAS, CDK6, CDC25A**, p53 (REF. 124), MYC*</td>
<td>In vitro overexpression reduces cell growth in lung, breast, and colon cancer cells**; in vivo overexpression reduces breast and lung tumour burden in mice**</td>
<td>Mice: vector-based (viral); drugs</td>
</tr>
<tr>
<td>miR-29b-1</td>
<td>7q32</td>
<td>Down in NPM1 wild-type AML, CLL*, lung**, breast cancer*, cholangiocarcinoma**, lymphoma**, hepatocarcinoma**, and rhabdomyosarcoma**</td>
<td>Genomic loss**, negative regulation by MYC*; positive regulation by p53 (REF. 59)</td>
<td>Tumour suppressor</td>
<td>MCL1, CDK6 (REFS. 4, 65), TCF1, DMM1, DMMT1 (REFS. 118–125), DMMT6, DMMT3**</td>
<td>In vitro overexpression induces apoptosis, inhibits cell proliferation and induces LNA hypomethylation in several cancers**; in vivo overexpression inhibits tumour growth in AML, liver and lung cancer in mice**</td>
<td>Mice: vector-based (viral); drugs</td>
</tr>
<tr>
<td>miR-29b-2</td>
<td>1q31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-29c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-34a</td>
<td>1p36</td>
<td>Down in colon, lung, breast, kidney and bladder cancer, neuroblastoma and melanoma cell lines*</td>
<td>Methylated regulation by p53 (REFS. 58–59), deletion</td>
<td>Tumour suppressor</td>
<td>CDK4, CDK6, CCNE2, CCNE1 (REFS. 127–129, MET, MYC*), CREB, E2F3 (REFS. 130, 131, BCL-2 (REF. 132)</td>
<td>In vitro overexpression induces cell cycle arrest, apoptosis and inhibits cell proliferation*</td>
<td>Mice: vector-based (viral); drugs</td>
</tr>
<tr>
<td>miR-34b</td>
<td>11q23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-34c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-26a</td>
<td>3p22</td>
<td>Down in liver cancer*</td>
<td>Negative regulation by MYC*</td>
<td>Tumour suppressor</td>
<td>CCND2, CCNE2 (REF. 93)</td>
<td>Restoration of miR-26 inhibits MYC-induced liver cancer*</td>
<td>Mice: vector-based (viral); drugs</td>
</tr>
<tr>
<td>miR-155</td>
<td>21q21</td>
<td>Up in high risk CLL**, AML*, lung**, colon**, breast cancer** and in lymphomas**</td>
<td>Positive regulation by NF-κB**</td>
<td>Oncogene</td>
<td>SHIP1, CEBPβ**</td>
<td>Overexpression in HSC-induced myeloid proliferation and blocks erythropoiesis in mice**; in vivo overexpression in lymphocytes induces pre-B-leukaemia and leukaemia in mice*</td>
<td>Anti-sense oligonucleotides: miR-maks; miRNA sponges; drugs</td>
</tr>
<tr>
<td>miR-17-92</td>
<td>13q22</td>
<td>Up in lung**, breast**, colon** and stomach cancer*</td>
<td>Amplification*; positive regulation by E2F and MYC**</td>
<td>Oncogene</td>
<td>BMI1, PTEN**, CDX1**</td>
<td>Cooperates with MYC to induce lymphoma**; in vivo overexpression in lymphocytes induces lymphoid proliferation and autoimmune in mice*</td>
<td>Anti-sense oligonucleotides: miR-maks; miRNA sponges; drugs</td>
</tr>
<tr>
<td>miR-21</td>
<td>17q23</td>
<td>Up in pancreas**, lung**, breast**, prostate and stomach cancer**, CLL**, AML*, myeloma** and glioblastoma**</td>
<td>Positive regulation by IL-6 and GF**</td>
<td>Oncogene</td>
<td>PDCD4, PTEN**, IP3** (REF. 156)</td>
<td>In vitro silencing enhances apoptosis in glioblastoma, lung, breast and hepatocarcinoma cell lines**</td>
<td>Anti-sense oligonucleotides: miR-maks; miRNA sponges; drugs</td>
</tr>
<tr>
<td>miR-372</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-373</td>
<td>19q13</td>
<td>Up in testicular germ cell tumours and in breast cancer**</td>
<td>Unknown</td>
<td>Oncogene</td>
<td>LAT52 (REF. 157)</td>
<td>Neutralizes the p53 pathway in vitro; in vivo overexpression stimulates cancer cell invasion**</td>
<td>Anti-sense oligonucleotides: miR-maks; miRNA sponges; drugs</td>
</tr>
<tr>
<td>AML: acute myeloid leukaemia; BCL-2: B-cell lymphoma protein-2; CCN: cyclin; CDC: cell division cycle; CDKN1A: cyclin-dependent kinase inhibitor 1A; CEBPβ, CCNA1:enhancer binding protein β, CCNA1: chronic lymphocytic leukaemia; CREB, CAMP response element-binding protein; DMM1, DNA methyltransferase; HMG2: high mobility group AT-hook 2; HSC, haematopoietic stem cells; IL-6, interleukin-6; KAS, v-Ki-ras Kirsten rat sarcoma viral oncogene homologue; LAT52, LAT3: large tumour suppressors, homologue 2, 3; MCL1, myeloid cell leukaemia sequence 1 (BCL-2-related); NF-κB, nuclear factor-κB; NPM1, nucleophosphin (nuclear phosphoprotein B23, tumor-initiator); NRAS, neuroblastoma RAS viral (v-ras) oncogene homologue; PDCD4, programmed cell death 4; PTEN, phosphatase and tensin homologue; SHIP1, Src homology 2 domain-containing inositol 5-phosphatase 1; FIP1, tuberin 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1-2 Involvement of miRNAs in cancer.

Adapted from *Nat. Rev. Drug Discovery, 2010, 9 (10), 775.*
1.3 Nucleic acid and small molecule modifiers of miRNA function

In light of the crucial role of miRNAs in cancer development and progression, directed efforts to target specific miRNAs have been evaluated as therapeutics. A large subset of miRNAs are overexpressed in cancer cells;36 hence, strategies to downregulate these oncogenic miRNA are of considerable interest.34, 61 A common approach is the use of antisense oligonucleotides. Antisense oligonucleotides (ASOs), specifically antagonirs or anti-miRNA oligonucleotides (AMOs) in this context, are synthetic oligonucleotides which have exact base-pair complementarity with the target miRNA. These oligonucleotides bind to the target mature miRNA, rendering the miRNA ineffective or inducing miRNA degradation.62 As an example, this strategy was successfully shown to target miR-2 and miR-13 in Drosophila embryos.63 To further increase stability, nuclease resistance, and binding specificity, 2'-O-methyl oligonucleotides,64-65 2'-O-methyl-modified cholesterol-conjugated single-stranded RNA analogs with phosphorothioate linkages,66 and 2'-F modified oligonucleotides67 have been employed (Figure 1-3). Exceptional hybridization affinity towards miRNAs is seen in Locked Nucleic Acids (LNA) constructs. LNA nucleosides have a “locked” ribose ring, freezing the sugar-phosphate backbone in a C3’-endo, RNA-like conformation. LNA constructs have been successfully used in mice as anti-miR-15568 and anti-miR-12269 agents. Santaris Pharma is pursuing LNA anti-miR-122 drug as a hepatitis C treatment, named Miravirsen (SPC3649); this has become the first microRNA-targeted drug to enter clinical trials (Phase 2).70 Morpholinos are synthetic oligomer molecules containing DNA bases attached to a backbone of methylenemorpholine rings linked through phosphoramidate groups (Figure 1-3).
In another strategy for targeting oncogenic miRNAs, multiple binding sites for a target miRNA are transcribed in tandem in mammalian expression vectors, creating miRNA sponges or decoys. On injected into cells, these constructs compete with the target miRNA binding sites on mRNAs for binding to the endogenous miRNA. As these sponges have multiple binding sites for the target miRNA, they “soak up” the cognate miRNA, making it unavailable to hybridize with the 3’-UTR of mRNAs. A strategy developed by Choi and coworkers used antisense morpholinos complementary to miR-430 binding sites to target mRNA, acting as “miRNA-masks.” These morpholinos compete with miRNAs for binding to target mRNA, thus inhibiting miRNA’s repression of mRNA expression.

In addition to these strategies for suppressing oncogenic miRNAs, several non-viral and viral strategies have been developed to deliver tumor-suppressing miRNAs in cells. The non-viral strategies include liposome-, nanoparticle-, antibody-, hydrogel-, and polymer-based miRNA
delivery. Synthetic modification of the DNA backbone with phosphorothioate linkages is the most widely studied modification. miRNA mimics and small molecule activators are other non-viral strategies. Adenovirus-associated viral vectors coding for miRNAs have been used in viral-based strategies (Figure 1-4).

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Limitations</th>
<th>Advantages</th>
<th>Experimental data</th>
<th>Solutions and future directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2′-O-methyl phosphorothioate oligonucleotides</td>
<td>Delivery: short serum half-life; poor cellular uptake; off-target effects; limited biological effects</td>
<td>Safe; improved stability; nuclease resistance; increased binding affinity</td>
<td>In vitro and in vivo data; animal models; Phase I, Phase II and Phase III clinical trials</td>
<td>Improve delivery</td>
</tr>
<tr>
<td>2′-O-methyl phosphorothioate oligonucleotides with cholesterol backbone</td>
<td>Toxicity; requires high doses</td>
<td>Good bioavailability</td>
<td>In vitro and in vivo (animals)</td>
<td>Improve safety profile</td>
</tr>
<tr>
<td>Locked nucleic acid</td>
<td>Off-targets effects; potential dose toxicity effects</td>
<td>Safe; good biodistribution; effective</td>
<td>In vitro and in vivo (mice and chimpanzees); human trials ongoing</td>
<td>Detailed pharmacokinetic, pharmacodynamic and toxicity studies in humans; develop tissue-specific delivery</td>
</tr>
<tr>
<td>Liposome–oligonucleotide complexes</td>
<td>Toxicity; hypersensitivity; potential dose toxicity effects</td>
<td>Improved stability and delivery</td>
<td>In vitro and in vivo (animals)</td>
<td>Develop better formulations</td>
</tr>
<tr>
<td>Polymer–nanoparticle oligonucleotide complexes</td>
<td>Off-target effects; potential dose toxicity effects</td>
<td>Improved stability and delivery; minimal toxicity</td>
<td>In vitro and in vivo (animals)</td>
<td>Develop tissue-specific delivery (antibody tagging)</td>
</tr>
<tr>
<td>miR-mask</td>
<td>Limited scope (one target); delivery</td>
<td>Effects are gene-specific; no off-target effects</td>
<td>In vitro studies</td>
<td>Achieve delivery in vivo; assess activity in vivo</td>
</tr>
<tr>
<td>miRNA sponge</td>
<td>Delivery; off-targets effects</td>
<td>Able to silence a family of miRNAs</td>
<td>In vitro studies</td>
<td>Achieve delivery in vivo; assess activity in vivo</td>
</tr>
<tr>
<td>Adenovirus-associated vectors coding for miRNAs</td>
<td>Potential dose toxicity effects; off-target effects</td>
<td>Safe; efficient transduction; long-term expression</td>
<td>In vitro and in vivo (animals); human trials for small interfering RNA (Phase I, Phase II and Phase III trials)</td>
<td>More extensive animal data is needed (in particular with other tumours)</td>
</tr>
</tbody>
</table>

Figure 1-4 Limitations and advantages of miRNA targeting technologies.

Strategies including phosphorothioate oligonucleotides to miRNA sponges inhibit oncogenic miRNAs while adenovirus-associated vectors are technologies implemented for upregulating tumor suppressor miRNAs. Adapted from *Nat. Rev. Drug Discovery*, 2010, 9 (10), 775.

Although ASOs have shown therapeutic potential, a number of challenges stem from their poor bioavailability, difficult delivery, limited cell penetration, and toxicity. Toxicity from ASOs mostly comes from the immunostimulatory off-target effects of oligonucleotide therapeutics. A number of carriers have been developed including nanoparticles and liposomes, but these
technologies are far from perfect. For example, Gilleron and co-workers conducted an analytical imaging-based study using fluorescence and electron microscopy to track transport and release of siRNAs from lipid nanoparticles. They showed that only 1-2\% of siRNA payload was released into cytosol.75

Conversely, small molecules are a unique strategy for targeting specific miRNAs. Small molecules, usually with molecular weight < 800 Da, can be tuned to have ideal drug properties, good solubility, high cellular uptake, good bioavailability, and an ideal pharmacokinetics/pharmacodynamics (PK/PD) profile.56 miRNAs exist as a number of structures with grooves, pockets and hairpin loops on the surface, which can act as potential targets for small molecules. As explained in miRNA biogenesis, miRNAs are processed in a multi-step manner with a number of enzymes involved. Thus, small molecules can target miRNA processing at 3 levels: pre-transcriptional, transcriptional and posttranscriptional, unlike ASOs which only target mature miRNAs.

Over the years, RNA molecules were not considered an attractive target for small molecule therapeutics because of their structural flexibility, highly electronegative surfaces, and the lack of miRNA X-ray structural information. However, a number of approaches have been employed recently to discover new small molecules controlling miRNA function, broadly classified as biochemical assays, cell-based assays, or computational and rational design.76 The small molecule modifiers target various key intermediates and processes in the miRNA biogenesis pathway, namely, inhibition of transcription; inhibition of pri-miRNA, and pre-miRNA processing in the nucleus; inhibition of Dicer processing; and inhibition of mature miRNA function in the cytoplasm.76
The development of *in vitro* biochemical assays to monitor miRNA maturation has helped enable discovery of small molecule inhibitors of miRNA activity. Prominent advantages of biochemical assays include high throughput and robust screening procedures with few components required for these assays, especially in comparison to cell-based screening assays. These assays detect direct small molecule binding to key RNA intermediates in the biogenesis pathway. Secondary assays have been constructed to monitor the enzymatic functions of the protein machinery involved in the biogenesis pathway. These efforts have led to the development of fluorescence-based assays, catalytic chemiluminescence-based assays, and microarray assays. Microarray technology is important in the high-throughput monitoring of small molecule-RNA interactions. In this technology, a small molecule library is covalently immobilized onto a microarray plate and incubated with a fluorescently-labelled RNA molecule. Following washing steps, the fluorescence can be monitored to identify the bound RNA. This strategy has been utilized for screening peptide and peptoid-based miRNA inhibitors. A recent approach developed by the Schneekloth lab involved screening a small molecule library against a Cy5-labelled pre-miR-21 hairpin immobilized onto a microarray plate. Compounds 1 and 2 were identified to bind to pre-miR-21 by measuring the melting temperature ($K_D = 2.3 \, \mu M$ and $700 \, nM$, respectively) (Figure 1-5). The Disney lab designed and developed a unique platform for probing RNA-motifs and chemical interactions simultaneously, named the microarray-based two-dimensional combinatorial screening (2DCS) approach. In the 2DCS approach, a collection of azide-modified small molecules were immobilized onto an agarose-containing microarray slide and incubated with a 32P-labelled RNA library with modifications at specific locations on RNA. The bound RNAs were excised from the slide and then amplified and sequenced. Four aminoglycosides were identified to bind to specific RNA motifs: neomycin preferentially bound to GA pairs,
tobramycin preferred internal loops with GG pairs, kanamycin A preferred internal loops containing pyrimidine–pyridimine pairs, and neamine preferred various internal loops, especially GA pairs. Other studies utilizing microarray-based approaches helped identify compound 3 to be a potent topoisomerase inhibitor binding the Dicer cleavage site on pre-miR-21 (Figure 1-5).

![Figure 1-5 Structures of small molecule miRNA inhibitors identified by biochemical assays.](image)

Adapted from *MicroRNAs in Diseases and Disorders*, **2019**, 323.

Fluorescence resonance energy transfer (FRET) assays were also developed to identify small molecule inhibitors of miRNA maturation. The Arenz lab was the first to develop FRET assays using fluorophore-labeled precursor miRNAs, similar to molecular beacons.

Installation of a 5′ fluorophore and a 3′ fluorescence quencher at the termini of a pre-miRNA hairpin enabled efficient FRET monitoring of Dicer-mediated cleavage. This assay was employed to identify RNA-binding aminoglycosides. Hall and co-workers developed tailored FRET
assays for targeting specific miRNA-protein interactions, which were utilized to identify compound 4 as an inhibitor of abnormal cell lineage protein 28 (LIN28)-pre-let-7 interaction (Figure 1-5).90 Another FRET assay entailing site-specific incorporation of an unnatural amino acid for fluorescent labelling of the LIN28 protein and a FRET acceptor was developed by Park and co-workers.91 Upon screening 4500 drug-like compounds in this assay, 5 (IC_{50} = 4 \mu M) was identified as an inhibitor of the LIN28-pre-let-7 interaction (Figure 1-5). In alternate FRET-based approaches, compounds 6, 7,92 9, and 1093 were also identified as small molecule inhibitors of the LIN28-pre-let-7 interaction, while 8 was identified as an inhibitor of miRNA-RISC loading (Figure 1-5).94

The Garner lab designed and developed the unique approach of the catalytic enzyme-linked click chemistry assay (cat-ELCCA) (Figure 1-6).95 In this assay, biotin-labeled pre-miRNAs containing a click chemistry handle (e.g., trans-cyclooctene) within the loop-region are immobilized onto streptavidin-coated microtiter plates. To identify inhibitors of Dicer processing, these pre-miRNAs are treated with Dicer in presence of library of compounds. Covalent labelling with a horseradish peroxide (HRP)-tetrazine conjugate enables a robust readout via catalytic HRP-based chemiluminescence. The Garner lab utilized this methodology to a two-dimensional screen for identification of pre-miR-21 and pre-let-7d Dicer processing inhibitors.96 Using this assay, two small molecules (11 and 12) were identified from a library of 127,007 small molecules (Figure 1-5).97
Figure 1-6 Two different cat-ELCCA (catalytic enzyme-linked click chemistry assay) approaches for high-throughput screening.

(A) cat-ELCCA for Dicer-mediated pre-miRNA processing and the identification of inhibitors. (B) cat-ELCCA for identification of small molecule inhibitors of the LIN28–pre-let-7d interaction. Adapted from *MicroRNAs in Diseases and Disorders*, 2019, 323.76

Cell-based assays have distinct advantages over the biochemical screens as biochemical assays do not account for factors that may impact the efficacy of a potential hit compound in cells, such as toxicity, cell permeability, and stability. Also, as the number of factors involved is limited in biochemical approaches, cell-based assays can target unknown factors inside the cells enabling the discovery of novel biological pathways. In a typical cell-based reporter assay, the miRNA binding sequence is cloned on the 3’-UTR of the reporter gene. Secondary assays are necessary for validation of potential hit compounds.98-100 Jin and co-workers utilized a HEK293 cell line
expressing an enhanced green fluorescent protein (EGFP) reporter together with a stably expressed short hairpin RNA (shRNA) targeting the EGFP mRNA in order to identify small molecule modifiers of the RNA interference (RNAi) pathway (Figure 1-7). Following a screen of 2000 compounds, 13 (EC$_{50}$ = 30 µM) was selected and found to modulate TRBP in the RISC complex as a suggested mode of inhibition (Figure 1-8). In 2008, the Deiters lab, in collaboration with the Huang lab, developed a cell-based reporter assay for the identification of miR-21 inhibitors. Using this assay on a pilot screen of > 1000 small molecules, 14 (EC$_{50}$ = 2 µM) was discovered to reduced mature miR-21 (78% reduction at 10 µM) as well as pri-miR-21 levels (87% reduction at 10 µM), indicating that 14 acts at a transcriptional level in the miR-21 biogenesis pathway (Figure 1-8). Further SAR studies on 14 by Lu and co-workers resulted in discovery of 15, which elicited a 90% reduction in mature miR-21 levels at 10 µM concentration (Figure 1-8). Another high-throughput screening of 333,519 compounds in the HeLa-miR-21 reporter cell line and a successful SAR study revealed 16 as a potent inhibitor (Figure 1-8). Further studies revealed 16 (10 µM) to sensitize A498 renal carcinoma cells to topotecan (1 µM) treatment by ~11-fold. Another lead compound identified in this high-throughput screening led to the discovery of 17 (Figure 1-8). Maiti and co-workers developed a similar luciferase-based reporter plasmid by cloning the 3′-UTR of programmed cell death protein 4 (PDCD4), a known target of miR-21, and utilized this assay to screen aminoglycosides in MCF-7 cells. Compound 18 was selected from this screening and subsequent studies revealed 18 to inhibit Dicer processing of pre-miR-21 (Figure 1-8). Similar screening by cell-based assays were employed to identify small molecule inhibitors (19 and 20) and an activator (21) of miR-122; an activator (22) of miR-34a; inhibitors (23 and 24) of miR-4644; an inhibitor (25) of miR-1; and modulators (26, 27 and 28) of let-7 function (Figure 1-8).
A miRNA target sequence is cloned in the 3′ untranslated region of a luciferase or enhanced green fluorescent protein (EGFP) reporter gene. (A) Binding of a complementary miRNA to the target site results in repression of the reporter. (B) Treatment with a small molecule inhibitor of miRNA function leads to an increase in reporter expression. (C) Induction of miRNA expression or stabilization of miRNA function elicits further reduction in reporter expression.

Adapted from MicroRNAs in Diseases and Disorders, 2019, 323.76
In rational design approaches, the ability to predict the RNA secondary structures and tertiary motifs accurately from sequences and guide the small molecule design can accelerate drug discovery efforts.113 However, these approaches rely upon structural information for the target and the potential small molecules, in comparison to cell-based assays where the mode of action of the inhibitors is unknown at the time of screening.114 With a view to overcome these limitations, the Disney lab developed a new approach of lead identification, called Inforrna, which utilizes the RNA-small molecule binding information generated by 2DCS (explained above) and integrates it with a statistical approach that enables identification of RNA motifs and the rate of occurrence of specific RNA motifs in the entire RNA library, which is named SAR studies through sequencing (StARTS).115 The Inforrna platform can facilitate the identification of specific small molecule–miRNA pairs based upon tight binding interactions. The Inforrna approach revealed that 29 (40 \(\mu\)M) binds to the Drosha cleavage site of pre-miR-96 and reduced mature miR-96 levels by 90% in MCF-7 cells and that 29 binds to the Dicer cleavage site on pre-miR-210 with a \(K_D\) of 200 nM (Figure 1-9). An additional bis-benzimidazole identified via Inforrna that bind to the Drosha site of pre-miR-96 was conjugated to 29 through a peptoid backbone yielding the dimeric compound 30, generating a more potent inhibitor (Figure 1-9).116 With a spacer of 2 glycine residues, 30 was observed to reduce mature miR-96 levels by 50% at 50 nM concentration (\(K_D = 85\) nM). In contrast to 29 and 30 binding the Drosha processing site of pre-miR-96, compound 31 was identified via Inforrna to bind the Dicer cleavage site on pre-miR-210 with a \(K_D\) of 200 nM (Figure 1-9). Inforrna was also utilized for identification of small molecules which bind to pre-miR-544 (32)117 and pre-miR-525 (33) (Figure 1-9).118 Other rational design and in silico screening methods included targeting bulges in double-stranded RNA in pre-miR-29a (34),119 inhibiting Dicer processing in
miR-372/373 (35), inhibiting (36 and 37) of AGO2-miR-122 complex, and targeting Dicer binding site on pre-miR-21 (38) (Figure 1-9).

![Figure 1-9 Structures of small molecules identified through rational design and computational approaches.](image)

Adapted from *MicroRNAs in Diseases and Disorders*, 2019, 323.

The approaches of *in vitro* biochemical assays, cellular assays and rational design for identification of small molecules targeting miRNAs each have their advantages and disadvantages. Future studies have been undertaken with an objective of identification of more potent small molecules and determination of new targets to achieve modulation of miRNAs of therapeutic value. Here, we chose to develop new specific miRNA small molecule regulators by cell-based assays for the following reasons: (a) to develop new classes of molecules with specific miRNA modulation ability for therapeutic purposes, (b) to elucidate the gene pathways and to unravel role of miRNAs in disease development and progression, and (c) to study the role of different enzymes in miRNA biogenesis.
1.4 Small molecule modifiers of microRNA-122

1.4.1 Introduction to microRNA-122

MicroRNA-122 (miR-122) is a 22-nucleotide long miRNA that is generally found in liver tissue and constitutes one of the most abundant miRNAs in liver;122 it is conserved in all vertebrates.123 Among other tissues, negligible expression of miR-122 in the human respiratory system was observed only by RNA-sequencing.123 miR-122 was first discovered by cloning and sequencing tissues from mice and found to be highly specific to the murine liver.124 It has been observed that miR-122 expression starts at the development of the liver bud and maximizes at birth.125 In situ hybridization in zebrafish detected miR-122 expression only in the liver.126

Being the most abundant among hepatic miRNAs,122 miR-122 plays a critical role in diverse liver functions and suppresses non-hepatic genes; its inhibition results in liver fibrosis127 and dysregulation of iron homeostasis, differentiation of hepatocytes, and systemic and hepatic lipid metabolism.128-129 Progeny of miR-122 germline knockout mice developed overt abnormalities in liver development.130 Antisense-mediated inhibition of miR-122 results in delayed hepatic development in zebrafish131 and downregulated expression of genes involved in fatty acid metabolism and cholesterol biosynthesis in mice.66, 132 Restoration of miR-122 levels reversed liver inflammation in miR-122 KO mice.130 In adult stem cells of human and mouse origin, multiple studies showed that ectopic expression of miR-122 promoted hepatocyte-like differentiation,133-135 indicating that miR-122 expression is a crucial factor for maintaining a hepatic gene expression signature during development.

Consistent with its absence causing liver inflammation, miR-122 is classified as a tumor suppressor miRNA,136 with decreased miR-122 levels associated with hepatocellular carcinoma
HCC is one of the five most common types of cancers, and accounts for around 75% of all cases of liver cancers. HCC is often detected at later stages, and decreased miR-122 levels are associated with metastasis and poor prognosis. Interestingly, long-term loss-of-function of miR-122 or reduced miR-122 expression have been associated with hepatosteatosis, hepatitis, and the development of tumors resembling HCC in miR-122 knockout mice. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Additionally, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting miR-122’s classification as a tumor suppressor. Interestingly, high endogenous levels of miR-122 are observed in Huh7 cells in comparison to other HCC-derived cell lines such as Hep3B and HepG2 as determined by RT-qPCR analysis.

The biogenesis of miR-122 follows the canonical pathway, with a huge variability observed in the pri-miR-122 sequence, while the mature miR-122 sequence is conserved. In the livers of developing mouse embryos and in human HCC cell lines, miR-122 gene expression is activated by several liver-enriched transcription factors (LETFs), e.g. CCAAT/enhancer-binding protein (C/EBPα), and hepatocyte nuclear factors (HNFs) — HNF1α, HNF3β, HNF4α and HNF6. One of the first identified miR-122 targets was the cationic amino acid transporter 1 (CAT-1) or Slc7a1. CAT-1 is expressed in many adult tissue types and strongly expressed in fetal liver, but under normal (unstressed) circumstances, is repressed in adult hepatocytes. miR-122 binds to the 3’-UTR to repress CAT-1 expression and the CAT-1 mRNA is targeted to P-bodies for mRNA decay. In humans, this repression can be relieved by the protein HuR which is released by the nucleus under cellular stress. HuR releases the CAT-1 mRNA from P-bodies by binding to the 3’-UTR leading to the resumption of the protein translation. Interestingly, an
important indirect miR-122 target, c-MYC mRNA, exhibits reciprocal regulation with miR-122 in HCC.143 miR-122 suppresses c-MYC transcription by regulating transcriptional activators E2f1 and Tfd2, while c-MYC suppresses miR-122 by directly binding to the miR-122 promoter region and indirectly affecting binding of LETFs.144 Another miR-122 target, CUTL1,141 is a key transcriptional regulator of factors like WNT5A, which positively regulates tumor cell motility and tumor progression.145 In HCC cells, the oncogene cyclin G1 is silenced by miR-122, resulting in the modulation of p53 protein stability and increased sensitivity to doxorubicin-induced apoptosis.146 A number of other targets of miR-122 have also been identified, including anti-apoptotic and carcinogenic genes Bcl-w, ADAM10, IGF1R, SRF (which promotes tumorigenesis), and proto-oncogene Wnt1; all these genes are shown to be involved in hepatocarcinogenesis and angiogenesis.136, 147

miR-122 plays a crucial role in the replication of hepatitis C virus (HCV) RNA.148 About 170 million people are affected by hepatitis C worldwide, resulting in chronic liver disease, cirrhosis, and even death. There are six genotypes of HCV known with individual subtypes and the current treatments depend upon identification of the HCV genotype.149 Contrary to the role of miRNAs in downregulating gene expression by binding to 3’-UTR of mRNAs, miR-122 directly pairs with two adjacent binding sites in the 5’-UTR of the viral RNA, thus enhancing viral replication.150 Studies have shown that binding of miR-122 to the 5’-UTR enhances the association of ribosomes with HCV genome,151 and the binding of AGO proteins with RISC complex protects the genome from exonucleases.152 In turn, HCV sequesters miR-122 binding to cognate mRNAs, creating a ‘sponge’ effect.153 Such sequestration of miR-122 plays a role in the development of steatosis, followed by fibrosis, subsequent cirrhosis of the liver and finally, leading to HCC.154 The first proof-of-concept study with a modified LNA anti-miR-122 SPC3649 (Miravirsen) was
carried out on chronically-infected chimpanzees. The inhibitor reduced HCV levels with no evidence of viral resistance or side effects in the treated animals during the treatment phase of 10 days at 5 mg/kg dose.149 Furthermore, the miR-122 seed sites in the HCV genotypes are conserved in all genotypes. So, this treatment is expected to be genotype-independent. In phase 2a clinical trials, several patients were injected with Miravirsen up to a maximum dose of 7 mg/kg in human trials.155 These patients showed almost undetectable HCV infection after 5 weeks.

Development of small molecule modifiers of miR-122 activity is of considerable interest. As upregulation and downregulation of miR-122 levels have therapeutic potential, small molecules capable of precisely modulating miR-122 levels have great potential as new treatments. Small molecule activators can be employed to elucidate the gene pathways that miR-122 regulates, and to develop new treatments for HCC. Ultimately, small molecule inhibitors will enable us to develop new therapies for HCV.

In 2010, our lab published two specific small molecule inhibitors of miR-122 (19 and 20) and one specific small molecule activator of miR-122 (21).108 We developed an assay for screening small molecules based on the psiCHECK-2 reporter plasmid (\textbf{Figure 1-10}). This reporter plasmid expresses both \textit{Renilla} luciferase and firefly luciferase. This allows for normalization to account for variable transfection efficiency and cell viability. The reported values are normalized as relative luciferase units (RLU). The plasmid consists of the miR-122 target sequence inserted downstream of the \textit{Renilla} luciferase gene. Just as miRNAs are known to bind to the 3'-UTR to downregulate target genes, mature miR-122 downregulates luciferase expression upon binding the 3'-UTR. Thus, an increase in luciferase signal or RLU indicates miR-122 inhibition, while decreased luciferase signal indicates miR-122 activation. The ability of this reporter construct to detect endogenous miR-122 levels was confirmed by transfecting this psiCHECK-miR122
construct into HeLa and Huh7 cells. Huh7 cells express high levels of miR-122,132 while miR-122 is not expressed in HeLa cells.156 Upon assaying the cells with a Dual Luciferase Assay kit after 24 h, the construct elicited a > 15-fold reduced luciferase activity (RLU) in Huh7 cells compared to HeLa cells. Also, luciferase activity was recovered by co-transfecting Huh7 cells with the reporter and a miR-122 antagonir, further confirming that this reporter is a functional cellular screen for miR-122 levels. Another construct, psiCHECK-control, which contains an empty multicloning site, showed no change in RLU.

![miR-122 assay diagram](image)

Figure 1-10 miR-122 assay.

(A) Binding of mature miR-122 represses luciferase expression in this reporter construct. (B) miR-122 inhibitors lead to repression of miR-122 inhibition, thereby increasing luciferase signal. Adapted from \textit{J. Am. Chem. Soc.}, \textbf{2010}, \textit{132} (23), 7976.108

 psiCHECK-miR122 was further used for screening small molecules in Huh7 cells to discover miR-122 inhibitors and activators. Initially, a set of 1,364 compounds from Diversity Set II, NCI Development Therapeutics Program was screened in 96-well format using psiCHECK-miR122-Huh7 cells. These cells were exposed to each compound (10 \(\mu \)M) and assayed using a Dual Luciferase Assay Kit after 48 h. Two compounds (19 and 20) showed 773\% and 1,251\% increases in luciferase activity, respectively (\textbf{Figure 1-11A}). The data were confirmed by replicating this assay and treating Huh7 cells containing psiCHECK-control vector with 19 and 20 to test for non-miRNA specific activity. Negligible luciferase activity was observed in this assay.
These small molecules were also assayed using a miR-21 reporter construct103 in HeLa cells; they did not induce luciferase expression reported, indicating that \textit{19} and \textit{20} specifically inhibit miR-122 (\textbf{Figure 1-11B}). A structure-activity relationship (SAR) analysis was undertaken for both these compounds (\textbf{Figure 1-12}).

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{figure11.png}
 \caption{Validation of hits \textit{19} and \textit{20}.}
 \footnotesize{(A) Validation of hits \textit{19} and \textit{20} (10 µM) in the NCI Diversity Set screen in Huh7 cells. (B) Specificity of \textit{19} and \textit{20} (10 µM) in miR-21 assay compared to specific miR-21 inhibitor \textit{14} (10 µM) in HeLa cells. Adapted from J. Am. Chem. Soc., \textbf{2010}, 132 (23), 7976.108}
\end{figure}
SAR data for compounds 19, 20 and 21 shows the various structural modifications performed on 19, 20 and 21 and the resulting changes in activity. Adapted from *J. Am. Chem. Soc.*, 2010, 132 (23), 7976.108

With these two miR-122 inhibitors, the screening results were also analyzed for reductions in luciferase activity. Several compounds were selected and re-assayed in psiCHECK-miR122-Huh7 and psiCHECK-empty-Huh7 cells to identify miR-122 activators. Compound 21 induced a 7-fold reduction in luciferase activity (RLU). As control experiments established the specific activity of 21 towards miR-122 activation (as mentioned in the previous paragraph), this compound was also taken up for SAR analysis (Figure 1-12).

A dose-response curve for these compounds revealed EC50 values for miR-122 inhibitors, 19 and 20, to be 3 μM and 0.6 μM, respectively, while for miR-122 activator 21, EC50 was 3 μM. The effects of the small molecule modifiers on miR-122 levels was quantified by RT-qPCR. The psiCHECK-miR122-Huh7 cells were exposed to these three small molecule modifiers for 48 h, followed by RNA isolation and RT-qPCR analysis. Consistent with the chemiluminescence data, the miR-122 inhibitor 20 induced a 72% knock-down of mature miR-122 levels, while 19 induced a 45% knock-down compared to DMSO-treated control cells. The miR-122 activator 21 elicited a
438% increase in miR-122 levels. Similarly, RT-qPCR analysis of HeLa cells containing miR-21 plasmid was performed, and no change in miR-21 levels was observed upon treatment with the compounds. This further confirmed the high specificity of these small molecules for miR-122.

Preliminary studies were conducted to further assess the mode of action of these compounds. Melting experiments with a miR-122 oligonucleotide revealed that these molecules do not interact directly with pre-miR-122. RT-qPCR analysis to quantify pri-miR-122 levels was performed (using primers unique to the pri-miR-122 sequence), showing a significant downregulation of pri-miR-122 levels to 22% and 3% of baseline levels for 19 and 20, respectively. Thus, miR-122 inhibitors 19 and 20 are targeting miRNA-122 biogenesis at the transcriptional level. Interestingly, pri-miR-122 levels reduced further than mature miR-122 levels. A possible explanation for this result could be faster processing of pri-miRNA to mature miRNA compared to transcription of miRNA gene in presence of these molecules. Also, miR-122 activator 12 upregulated pri-miR-122 levels, suggesting transcriptional-level regulation by these compounds. An interesting study by the Yao group showed a combination inhibition achieved by a miR-122 antagomir and small molecule 20.157 The two mechanistically distinct inhibitors, a miR-122 antagomir (inhibition at mature miRNA level) and 20 (inhibition at transcriptional level on miRNA synthesis pathway) were delivered to psiCHECK-miR122-Huh7 cells by mesoporous silica nanoparticles (MSN) with surfaces modified by PEG-linker-RGD peptide. RGD peptide with PEG linker increases cellular uptake.158 On simultaneous delivery of miR-122 antagomir (200 nM) and 20 (2 µM), an additive effect was observed as monitored by luciferase activity and RT-qPCR experiments (Figure 1-13).157
Figure 1-13 Combination effect of miR-122 antagomir and small molecule 20.

Luciferase activity and RT-qPCR analysis shows an additive effect of two mechanistically distinct miR-122 inhibitors (Ant = antagomir, MSN = mesoporous silica nanoparticles, sm = small molecule). Adapted from Angew. Chem. Int. Ed., 2015, 127 (36), 10720.157

As explained earlier, HCV replication is highly dependent on miR-122 levels in hepatocytes, and decreased miR-122 impedes HCV replication. A LNA anti-miR-122 antagomir, SPC3649, induced significant reductions in HCV levels in animal and human studies.149,155 Thus, 19 and 20 were tested for their ability to inhibit HCV replication. Huh7 cells were transfected with pHtat2Neo/QR/KR/FV/SI plasmid (used to generate genotype 1a H77c RNA) for this study. These cells were also transfected with miR-122 antagomir (positive control), while DMSO-treated cells constituted the negative control. As reported in the literature, HCV RNA levels dropped by 80% in presence of miR-122 antagomir.148 The small molecule inhibitors 19 and 20 induced a 52% and 53% decrease in HCV RNA levels, respectively.
Hepatocellular carcinoma (HCC) is characterized by low levels of miR-122 compared to normal liver tissue, as discussed above. In particular, in Hep3B and HepG2 cell lines, the anti-apoptotic gene and miR-122 target \(Bcl-w \) is abnormally upregulated when of miR-122 is decreased. In HepG2 cells, introducing the miR-122 duplex downregulated \(Bcl-w \) and — as a consequence — caspase-3 activity was restored, resulting in the induction of apoptosis in these diseased cells.\(^{147}\) Treatment of HepG2 cells with miR-122 activator 21 (10 µM) led to a 20-fold increase in caspase-3 and caspase-7 activity. This suggests the ability of these cells to undergo apoptosis upon the introduction of 21. In comparison, in Huh7 cells, which express significantly higher levels of miR-122 at baseline, only a slight decrease in cell viability was observed. Thus, compound 21 was successful in inducing apoptosis in cells with aberrantly low levels of miR-122. Taken together, these results suggest the therapeutic potential of specific small molecule modifiers of miR-122 expression.

After the encouraging discovery of small molecules 19 and 20 as specific miR-122 inhibitors and of 21 as an activator, attempts to discover new modifiers of miR-122 expression were undertaken. Using the same luciferase reporter psiCHECK-miR122-Huh7 stable cell line, a primary screen of 336,006 compounds from by combining the Broad Institute’s Diversity Oriented Synthesis (DOS) collection (71,424 compounds) with the NIH’s Molecular Libraries Probe Production Center Network (MLPCN) library (264,582 compounds) was conducted. The primary screen yielded 1,023 compounds as active inhibitors (0.3% hit rate). Active compounds were further screened through pan-assay interference (PAIN) analysis to identify compounds as potential false-positives for their promiscuous behavior in biological assays. Compounds with functional groups that were chemically reactive, metabolically unstable, pH sensitive, hydrolytically labile, or otherwise not amenable to SAR studies were eliminated as well. The
remaining 825 compounds were further tested in a dose-response assay in the stable cell line, and only 406 compounds, eliciting EC$_{50}$ values less than 10 µM, were shortlisted. Next, these compounds were cross-referenced with active compounds obtained from a high-throughput screen (HTS) for miR-21 inhibitors using the MLCPN library (PubChem AID 2289), and analogs found active in both assays were disregarded. Then, solid samples of the remaining 65 compounds were re-tested in the stable cell line. Compound 39 was identified as one of the promising hits among 34 hits that also passed the powder re-test.

1.4.2 Synthesis and SAR studies of a sulfonamide series of miR-122 inhibitors

Following the identification of the parent compound 39, an SAR study was initiated to improve the potency of 39 and to better understand the chemical functionalities required for its activity. Compound 39 was resynthesized in 3 steps from a commercially available precursor (4-isopropyl-3-methylphenol). 4-Isopropyl-3-methylphenol (39a) was methylated by dimethyl carbonate ((MeO)$_2$CO) in the presence of potassium carbonate (K$_2$CO$_3$) and tetrabutylammonium bromide (TBAB) under reflux conditions for 24 h, affording the corresponding methylated phenol 39b in quantitative yields (Figure 1-14). This procedure was optimized by Meryl Thomas and the analytical data is in agreement with the literature reports.159 Sulfonylation using chlorosulfonic acid (HSO$_3$Cl) in CHCl$_3$ at 0 °C for 1.5 h delivered the corresponding sulfonyl chloride 39c in good yields (74%). The sulfonyl chloride 39c was used as a reactant for the synthesis of a number of analogs with the same benzenesulfonyl part. The sulfonyl chloride 39c was reacted with 4-methylimidazole in DCM to yield the parent compound 39 in 72% yield. Compound 39 was formed exclusively while the formation of other isomer, 1-((5-isopropyl-2-methoxy-4-
methylphenyl)sulfonyl)-5-methyl-1H-imidazole, was not observed. This result can be attributed to the formation of the sulfonamide 39 with the methyl group positioned farther from the sulfonyl end to minimize steric interactions.160 For preparing the analogs, a modular approach was adopted and two parts of 39 were altered: the benzenesulfonyl and the imidazole. Substituting the 4-methylimidazole with a dimethylamine (40) or an ethylamine group (41) resulted in a significant loss in activity (\textbf{Table 1-1}). Drastic reductions in activity were also observed when replacing the 4-methylimidazole with a structurally-similar pyrrole (42), 3-methylpyrrole (43), 4-methylpyrazole (44), or 3-methylpyrazole (45), indicating the importance of the imidazole motif. Compounds 42, 43, 44 and 45 were synthesized using NaH in THF conditions in 72\%, 37\%, 48\% and 78\% yields, respectively.161-162

![Figure 1-14 Synthetic route to the initial hit compound 39.](image)

Synthetic route to the initial hit compound 39 starting from commercially available phenol 39a in three steps with an overall yield of 53\%. Other sulfonamides were synthesized from the sulfonyl chloride 39c.
Table 1-1 Structures and activity of derivatives 39-45.

*RLU values represent *Renilla* luciferase luminescence signal in the Huh7-miR122 stable cell line and are first normalized to firefly luciferase (dual reporter system) and then normalized to the activity of the original hit 39.

In vitro Renilla luciferase data are normalized to DMSO.

*pCpCHECK-empty assay data are normalized to DMSO. Data for all assays represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

Compounds 40 (PubChem CID 16644736) and 41 (PubChem CID 20105566) were used directly from the Broad Institute compound library without resynthesis.

<table>
<thead>
<tr>
<th>compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)<sup>a</sup></th>
<th>Renilla luciferase assay<sup>b</sup></th>
<th>psiCHECK-empty assay<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td></td>
<td>100 ± 3%</td>
<td>80%</td>
<td>127%</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>42 ± 3%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>42 ± 3%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>29 ± 1%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>57 ± 4%</td>
<td>87%</td>
<td>--</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>32 ± 1%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>44 ± 1%</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
We next studied the requirement for the methyl group itself through substitution of 4-methylimidazole with an imidazole (46), 4-phenylimidazole (47), or 4-nitroimidazole (48) (Table 1-2). Removal of the methyl group or replacement with a phenyl moiety resulted in a large decrease in activity, while the nitro group elicited a more modest reduction. Analog 46 was synthesized with similar conditions as 39, while compounds 47 and 48 were synthesized by refluxing the sulfonyl chloride with 4-nitroimidazole in DCM overnight.163 Virtually complete loss of activity was also observed for 2-ethyl- (49) or 4,5-dichloro-imidazole (50) modifications. Further substitutions of the imidazole by more sterically demanding benzimidazole (51) and indole (52) motifs also led to a decrease in activity compared to 39, again indicating the importance of the small 4-methylimidazole (Table 1-2). Both of these compounds (49 and 50) were synthesized by treating the sulfonyl chloride with corresponding imidazoles in DCM with triethylamine as base.163 The indole analog (52) was prepared in a reaction of the sulfonyl chloride 39c with indole in the presence of NaOH and TBAB in DCM.164
Table 1-2 Structures and activity of derivatives 46-52.

^aR LU values represent *Renilla* luciferase luminescence signal in the Huh7-miR122 stable cell line and are first normalized to firefly luciferase (dual reporter system) and then normalized to the activity of the original hit 39.

^b*In vitro* *Renilla* luciferase data are normalized to DMSO.

^c*psiCHECK*-empty assay data are normalized to DMSO. Data for all assays represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

Compound 51 (PubChem CID 4175330) was used directly from the Broad Institute compound library without resynthesis, and 46, and 47 were synthesized by Dr. Meryl Thomas.

<table>
<thead>
<tr>
<th>compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)<sup>a</sup></th>
<th>Renilla luciferase assay<sup>b</sup></th>
<th>psiCHECK-empty assay<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td></td>
<td>33 ± 4%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>35 ± 1%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>61.1 ± 0.4%</td>
<td>67%</td>
<td>--</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>40 ± 1%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>4 ± 1%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>75 ± 3%</td>
<td>45%</td>
<td>--</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>55 ± 1%</td>
<td>94%</td>
<td>--</td>
</tr>
</tbody>
</table>

Focusing our attention on the benzenesulfonyl moiety, a series of analogs were synthesized while keeping the 4-methylimidazole constant. Replacing the isopropyl group with a hydrogen...
(53) or a methyl group (54) reduced activity. The rotationally-restricted 1,2,3,4-tetrahydronaphthamidyl analog (55) also showed a significant loss in activity. Furthermore, O-ethyl (56) and O-propargyl (57) analogs elicited reduced activity (Table 1-3). Analogs 53 and 54 were synthesized using a similar synthetic route as is reported for 55 (Figure 1-14). Thus, changes to the benzenesulfonyl part reduced activity, with the initial hit 39 still being the best analog.163
Table 1-3 Structures and activity of derivatives 53-57.

\[^a\]RLU values represent Renilla luciferase luminescence signal in the Huh7-miR122 stable cell line and are first normalized to firefly luciferase (dual reporter system) and then normalized to the activity of the original hit 39.

\[^b\]In vitro Renilla luciferase data are normalized to DMSO.

\[^c\]psiCHECK-empty assay data are normalized to DMSO. Data for all assays represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

Compounds 54 (PubChem CID 20105692) and 56 (PubChem CID 163831221) were used directly from the Broad Institute compound library without resynthesis, and 53 was synthesized by Dr. Meryl Thomas.

<table>
<thead>
<tr>
<th>compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)(^a)</th>
<th>Renilla luciferase assay(^b)</th>
<th>psiCHECK-empty assay(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td></td>
<td>24 ± 3%</td>
<td>80%</td>
<td>--</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>32 ± 5%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>33.3 ± 0.5%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>74 ± 10%</td>
<td>70%</td>
<td>--</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>50 ± 3%</td>
<td>97%</td>
<td>--</td>
</tr>
</tbody>
</table>

It was recently reported that sulfonamide derivatives and many other small molecule inhibitors may be prone to increasing Renilla luciferase concentration in cells via ligand-based stabilization, possibly creating false-positive hits in high-throughput screens.\(^{165}\) Conversely, biochemical evaluation of the same inhibitors causes a significant decrease in luciferase signal. Thus, the analogs that elicited ≥ 50% activity of the parent compound 39 in the initial screen were
tested in a biochemical *Renilla* luciferase (Rluc) assay. Here, 48, 51, and 56 induced ≥ 30% decrease in *Renilla* luminescence, while analogs 49, 53, and 57 only showed modest enzyme inhibition. To further validate the specificity of these inhibitors for acting through the miRNA pathway, Huh7 cells were transfected with a psiCHECK-empty reporter (where the miR-122 binding site was replaced with a linker not targeted by any known miRNAs) and exposed to each analog at 10 µM for 48 h. The parent compound 39 induced a 27% increase in the psiCHECK-empty assay, consistent with Rluc inhibition observed in the *in vitro* assay (*Table 1-1*).

A complete scaffold change of the imidazole motif was also investigated. A series of analogs with pyridin-2-amines and anilines were synthesized. Both the unsubstituted pyridine ring (58) and methylation at the 2-position (59) showed 89% activity relative to the parent compound, while 3-methyl-pyridin-2-amine (60) elicited a significant increase in activity (*Table 1-4*). Aniline (61) and 2-methylaniline (62) analogs showed a reduction in activity. Unfortunately, when assessed in the *in vitro* Rluc assay, 58-60 induced significant reductions in luminescence signal indicating they did not display enhanced miRNA-122 inhibition activity (*Table 1-4*). The sulfonyl chloride, upon treatment with pyridine-2-amines with pyridine as a base, in DCM or THF at reflux yielded the corresponding analogs, while aniline analogs were prepared by stirring the sulfonyl chloride with the corresponding anilines in trimethylamine and THF at a variety of temperatures.
Table 1-4 Structures and activity of derivatives 58-62.

"RLU values represent Renilla luciferase luminescence signal in the Huh7-miR122 stable cell line and are first normalized to firefly luciferase (dual reporter system) and then normalized to the activity of the original hit 39.

"In vitro Renilla luciferase data are normalized to DMSO.

"psiCHECK-empty assay data are normalized to DMSO. Data for all assays represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

<table>
<thead>
<tr>
<th>compound</th>
<th>chemical structure</th>
<th>primary screen (RLU) a</th>
<th>Renilla luciferase assay b</th>
<th>psiCHECK-empty assay c</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td></td>
<td>88 ± 1%</td>
<td>8%</td>
<td>--</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>89 ± 11%</td>
<td>2%</td>
<td>--</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>135 ± 4%</td>
<td>17%</td>
<td>--</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>47 ± 3%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>32 ± 3%</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

The next modification made was methylation of the secondary amine in the sulfonamide. On inspecting in vitro Renilla luciferase assay data and analogs bearing imidazole and pyrazole motifs, we hypothesized that a tertiary sulfonamide would minimize Rluc inhibition, because secondary sulfonamides comprise a subset of known Rluc inhibitors.168 In order to convert 58-60 to the tertiary sulfonamides 63-65, these analogs were N-methylated; a methyl substituent was chosen as it was the smallest possible change, minimizing further steric perturbation that might have had a negative impact on miR-122 inhibition. The analogs 58-60 were treated with methyl
iodide in the presence of NaH in THF or DMF with overnight stirring at room temperature to yield compounds 63-65. Compound 63 showed a modest reduction in activity, while 64 elicited a 7% increase compared to the parent compound. Unfortunately, 65 induced a disappointing 64% activity relative to 39, but all three compounds showed no Rluc inhibition, supporting our hypothesis (Table 1-5). Gratifyingly, replacement of the pyridine moiety in 64 and 65 with a benzene ring in compounds 66 and 67 yielded 104% and 122% activity, respectively. Compound 66 showed no Rluc inhibition, while 20% inhibition was observed with 67. Methylation of the aniline ring at the para position (68) yielded a modest decrease in activity compared to 39, while 2,3-dimethyl- (69) and 2,5-dimethyl- (70) aniline derivatives showed 80% activity relative to the parent compound. Unfortunately, while 68-70 showed no inhibition in the in vitro assay, all three compounds displayed > 200% activity in the psiCHECK-empty assay, indicating that they increase luciferase activity by non-miRNA dependent mechanisms in cells. Furthermore, compounds 64 and 66 showed little to no inhibition in the psiCHECK-empty assay, consistent with Rluc inhibition observed in the in vitro assay (Table 1-5).
Table 1-5 Structures and activity of derivatives 63-70.

a RLU values represent Renilla luciferase luminescence signal in the Huh7-miR122 stable cell line and are first normalized to firefly luciferase (dual reporter system) and then normalized to the activity of the original hit 39.

b In vitro Renilla luciferase data are normalized to DMSO.

c psiCHECK-empty assay data are normalized to DMSO. Data for all assays represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

<table>
<thead>
<tr>
<th>compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)a</th>
<th>Renilla luciferase assayb</th>
<th>psiCHECK-empty assayc</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td></td>
<td>89 ± 4%</td>
<td>100%</td>
<td>88%</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>107 ± 1%</td>
<td>100%</td>
<td>117%</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>64 ± 12%</td>
<td>100%</td>
<td>87%</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>104 ± 7%</td>
<td>100%</td>
<td>90%</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>122 ± 1%</td>
<td>78%</td>
<td>103%</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>82 ± 1%</td>
<td>100%</td>
<td>218%</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>80 ± 4%</td>
<td>93%</td>
<td>225%</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>77 ± 1%</td>
<td>100%</td>
<td>245%</td>
</tr>
</tbody>
</table>

While 64 and 66 exhibited an excellent activity profile, poor solubility of the inhibitors presented a limitation of potential applications in animal studies. Because compound 66 elicited
less of a response in the psiCHECK-empty assay, further modifications were pursued on the N-methyl part of 66 (Table 1-6). Compound 71 containing an epoxide showed comparable activity to 66, however, 71 exhibited water solubility similar to 66. Installation of a carboxylic acid or corresponding isostere, such as tetrazole, has been shown to enhance the water solubility of small molecules. An introduction of the carboxy group in 72 significantly increased the water solubility. But 72 showed a 61% reduction in luminescence signal compared to 66. Various tetrazoles were investigated and compound 73, bearing a methyl tetrazole, yielded a higher luminescence signal compared to 66. However, 73 showed a significant reduction in Renilla luminescence upon assessing in the in vitro Rluc assay. Analogs 74 and 75, bearing a phenyl-tetrazole and pyrimidyl-tetrazole respectively, exhibited a 23% and 25% decrease in activity while no decrease in luciferase signal was observed in the in vitro Rluc assay. Surprisingly, analog 76, containing a pyridyl-tetrazole moiety, induced an unexpected increase in luciferase signal compared to compounds 39 and 66. Compound 76 elicited no inhibition in the in vitro Rluc assay. However, 76 induced an 80% increase in luminescence in the psiCHECK-empty assay compared to DMSO suggesting it is capable of activating luciferase in cells through an unknown mechanism (Table 1-6). Unfortunately, water solubility of compound 76 was not significantly improved compared to 66.
Table 1-6 Structures and activity of derivatives 71-76.

a RLU values represent Renilla luciferase luminescence signal in the Huh7-miR122 stable cell line and are first normalized to firefly luciferase (dual reporter system) and then normalized to the activity of the original hit 39.

b In vitro Renilla luciferase data are normalized to DMSO.

c psiCHECK-empty assay data are normalized to DMSO. Data for all assays represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

<table>
<thead>
<tr>
<th>compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)a</th>
<th>Renilla luciferase assayb</th>
<th>psiCHECK-empty assayc</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td></td>
<td>98 ± 9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>39 ± 1%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>121 ± 10%</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>77 ± 4%</td>
<td>106%</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>75 ± 2%</td>
<td>103%</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>580 ± 25%</td>
<td>102%</td>
<td>178%</td>
</tr>
</tbody>
</table>
Compound 76 was synthesized from epoxide 71 and 2-(1H-tetrazol-5-yl)pyridine in DMF with K$_2$CO$_3$ as a base. This reaction can potentially yield two isomers (A and B; Figure 1-15). To determine the exact structure of 76, 1H and 13C NMR spectra were recorded (Figure 1-21). A primary analysis of the 1H NMR spectrum indicates the presence of two conformers (or rotamers), or a mixture of two isomers as evidenced by fractional integral values of peaks at 5.3 – 5.4 ppm (ratio: 0.54:0.46, total: 1 H) and peaks at 2.23 ppm and 2.45 ppm (ratio: 1.54:1.46, total: 3 H). However, one-dimensional (1D) spectroscopy (1H and 13C NMRs) were unable to distinguish between both isomers A and B and a structure elucidation was carried out by two-dimensional (2D) correlation spectroscopy. Initially, a 1H-1H COSY spectrum was recorded (Figure 1-22). The COSY spectrum was used to determine the J-coupled protons within each ring system. The presence of cross peaks showed the identities of protons separated by 3 chemical bonds. Using this information, a scalar (J) coupling correlation network was identified based on the structures under investigation. The COSY spectrum revealed the location of H35, H36, H37, and H38 individually. In addition to COSY, a 1H-1H TOCSY spectrum yields through bond correlations with multiple bonds and was used to determine the different spin systems present in these structures. The different spin systems are highlighted in the TOCSY spectrum (Figure 1-23). However, aromatic protons H3, H6, H19, H20, H21, H21’, H22, and H22’ and aliphatic protons H24 and H25 were difficult to recognize due to resonance overlap, multiple couplings, and merging of peaks. To help further identify these peaks, 1H-13C HSQC and HMBC spectra were recorded (Figures 1-24 and 1.25B). The 1H-13C HSQC spectrum provides correlation between carbon and its attached protons ($^1J_{CH}$ couplings), while the 1H-13C HMBC spectrum shows long-range correlation between carbon and protons separated by 2 or 3 chemical bonds (in some cases, four bond correlations are also observed). First, carbon and its attached protons were pointed out from the 1H-13C HSQC spectrum.
and finally, the 1H-13C HMBC spectrum was used for recognition of the ambiguous protons and carbons. In particular, H3 correlates to C1, C5, C10, and C4 (two bond correlation). H6 correlates to C2, C4, C7, and C1 (two bond correlation). H19 correlates to C11, C17, and C21. Upon identification of H19, protons H20, H21, and H22 were recognized by analysis of the COSY spectrum. Aliphatic proton H24 correlates to C26 and C25 (two-bond correlation), while H25 does not correlate to any carbon.

Furthermore, a 1H-1H ROESY spectrum was recorded (Figure 1-26B). The ROESY spectrum (1H-1H correlation) was utilized to ascertain the through space correlation between different protons. Upon analyzing the ROESY spectrum, the cross peaks for H26, H26’, and H26” are all in the same phase (opposite phase to the diagonal). This analysis indicates that the ROE cross peaks arise from direct dipole interactions and not from spin diffusion or chemical exchange over the NMR time scale. Thus, the cross peaks correlate the resonance frequencies of H26 and H26’ in two different conformers (ratio: 54:46) and not a mixture of two different isomers.

To differentiate between isomers A and B, 1H-13C HMBC spectrum and ROESY spectrum were utilized. Upon analyzing the chemical structures of isomer A, protons H26, H26’, and H26” were anticipated to show three correlation peaks in 1H-13C HMBC spectrum – H26 ↔ C24 (three-bond correlation), H26 ↔ C31 (δ 142.74 ppm) (three-bond correlation), and H26 ↔ C25 (two-bond correlation) (Figure 1-25A). In comparison, only two correlation peaks in 1H-13C HMBC spectrum were expected in isomer B – H26 ↔ C24 (three-bond correlation) and H26 ↔ C25 (two-bond correlation). The 1H-13C HMBC spectrum revealed only two correlation peaks between H26 ↔ C24 and H26 ↔ C25 suggesting the presence of isomer B (Figure 1-25B). The isomers can also be distinguished by the analyzing the chemical structures of A and B for spatially close protons. Protons H8 (or H9) and H10 are spatially close to each other and are expected to show a
cross peak in the ROESY spectrum (Figure 1-26A). For reference, such a cross peak for H8 ↔ H10 (or H9 ↔ H10) is observed in the ROESY spectrum (Figure 1-26B). Upon inspection of chemical structures of isomers A and B, H26 and H38 appear to be spatially close in isomer B, whereas H26 and H38 are far apart from each other in isomer B. In the ROESY spectrum, no cross peak between H26 ↔ H38 was observed strongly indicating the presence of isomer B (Figure 1-26B). Compound 76 possibly exists as a mixture of two rotamers with a hindered rotation around the N16 – C24 bond at room temperature. Additional studies are required to determine the exact structures of these rotamers. In the future, X-ray crystallography will be utilized for further confirmation of the chemical structure and possible rotamers of 76.

The best analogs identified through structural modifications of 39 were tested in a dose-response assay in Huh7-miR122 cells (Figure 1-16). The inhibitor 66 had an EC₅₀ of ~12.5 µM, while analog 76 showed an improved EC₅₀ value of ~3.8 µM. The inhibitors, 66 and 76, were
further investigated in RT-qPCR experiments measuring mature miRNA levels. Huh7 cells were exposed to a DMSO control (0.1%) or to the inhibitors at 25 µM for 48 h, total RNA was isolated using the miRNeasy kit (Qiagen), and RT-qPCR was performed in triplicate using TaqMan probes for miR-122 and RNU19 (control). The data were then normalized to the DMSO and RNU19 controls using the 2^{-ΔΔCt} method. Compound 66 exhibited a 38% decrease in miR-122 levels while analog 76 elicited an 87% reduction in miR-122 expression, concomitant with their relative activity in the primary screen (Figure 1-17A).

![Figure 1-16 Luciferase dose-response curves for inhibitors 66 and 76 in the Huh7-psiCHECK-miR122 stable cell line.](image)

(A) An EC_{50} of ~12.5 µM was observed for inhibitor 66. (B) Compound 76 elicited an EC_{50} of ~3.8 µM. All data is normalized to DMSO and error bars represent standard deviations from three independent experiments. Data generated by Dr. Nicholas Ankenbruck.

In order to begin elucidating the mode of action of inhibitors 66 and 76, several preliminary experiments were performed. A HeLa cell line that stably expresses a miR-21 reporter (HeLa-miR21) was used to further confirm that the compounds are not general inhibitors of the miRNA pathway, since no increase in luciferase signal was observed (Figure 1-17B). To investigate cellular effects of these inhibitors, expression of E-cadherin was monitored in Huh7 cells following
treatment with 66 and 76. E-cadherin is regulated by Wnt1, a known target of miR-122. Endogenous E-cadherin levels are high in Huh7 cells due to Wnt1 repression by miR-122. Thus, treatment with a small molecule inhibitor was expected to lead to a reduction in E-cadherin protein levels. Treatment with DMSO alone elicited no inhibition of E-cadherin expression as expected, whereas reductions in E-cadherin levels were observed upon treatment with 66 and 76, indicating suppression of the protein via miR-122-mediated induction of Wnt1 (Figure 1-17C). Pri-miR-122 expression was assessed by RT-qPCR to determine if these compounds inhibited miR-122 transcription. The miR-122 inhibitor 66 (25 µM) elicited up to a ~59% decrease in pri-miR-122 expression (Figure 1-17D), while 76 induced a more potent ~80% reduction, suggesting that both small molecules affect transcriptional or pre-transcriptional regulation, rather than downstream steps of the miRNA pathway.
Figure 1-17 Effect of compounds **66** and **76** on different targets.

(A) Mature miR-122 levels in Huh7 cells were evaluated via RT-qPCR following 48 h treatment with compounds **66** and **76** (25 µM). Expression of miR-122 was normalized to a DMSO control. RNU19 expression was used as an internal control to account for variation between experiments. (B) HeLa-miR21 reporter cells were treated with **66** and **76** at 10 µM. After 48 h, luminescence was measured and normalized to a DMSO control. (C) E-cadherin expression was assessed in Huh7 cells via Western blot following treatment with **66** (25 µM) or **76** (10 µM) for 48 h. GAPDH expression was monitored as a loading control. (D) Primary miR-122 levels were evaluated via RT-qPCR in Huh7 cells following 48 h treatment with compounds **66** and **76** (25 µM). Expression of pri-miR-122 following small molecule treatment was normalized to a DMSO control. GAPDH expression was used as an internal control to account for variation between experiments. Data represent the averages ± standard deviations from three independent experiments. Data generated by Dr. Nicholas Ankenbruck.

To investigate the possibility of targeting miR-122 transcription and related proteins, a reporter plasmid in which a firefly luciferase gene was placed under the control of the miR-122 promoter was developed (**Figure 1-18A**). Briefly, the miR-122 promoter sequence was PCR
amplified from Huh7 genomic DNA and ligated into a multi-cloning site upstream of the firefly luciferase gene in the pGL3-basic plasmid. As expected, almost no luminescence was observed for the control pGL3-basic reporter, while a significant level of luciferase expression was detected in Huh7 cells transfected with the pGL3-miR122promoter construct (Figure 1-19A). Treatment with the small molecule inhibitors 66 and 76 led to a reduction in miR-122 promoter activity (Figure 1-18B), consistent with the observed decrease in pri-miR-122 levels.

Figure 1-18 miR-122 promoter assay.

(A) Individual transcription factor binding sites within the miR-122 promoter sequence were mutated or deleted to attempt to identify the potential transcription factor target of 66 and 76. Huh7 cells were treated with 66 and 76 at 25 µM following transfection with the pGL3-miR122 promoter plasmid. (B) Huh7 cells were transfected with the parent reporter plasmid or reporter plasmids in which transcription factor binding sites were mutated/deleted, then treated with compounds 66 and 76 at 25 µM. After 48 h, a Bright-Glo assay was performed. Luciferase expression was normalized to cell viability and the DMSO control. Data represent the averages ± standard deviations from three independent experiments. Data generated by Dr. Nicholas Ankenbruck.
After confirming that 66 and 76 inhibited the activity of the miR-122 promoter, a more detailed study was performed to identify the primary upstream transcription factor that is being influenced. Liver-enriched transcription factors, HNF1α, HNF3β, HNF4α, and HNF6 have been reported to regulate miR-122 transcription. Additionally, the AP-1 transcription factor was predicted to bind to the miR-122 promoter. In order to study the effect of 66 and 76 on each individual transcription factor, reporter plasmids were developed in which a single transcription factor binding site in the natural miR-122 promoter sequence was mutated or deleted while the remaining binding sites were maintained (Figure 1-18B). Because there is overlap between the HNF1α and HNF3β binding sequences, only a single mutant plasmid was generated for both. The mutated miR-122 promoter constructs were individually tested in Huh7 cells. All mutated constructs showed significant reductions in luciferase activity compared to the parent reporter (Figure 1-18B), suggesting that the interactions between the transcription factors and their corresponding promoters were diminished by the introduction of mutations. As expected, mutation of the HNF1α/HNF3β and HNF4α binding sites led to a 70% and 60% decrease in promoter activity respectively, indicating these transcription factors significantly contribute to miR-122 expression. AP-1 and HNF6 mutants elicited only 30% reductions in activity. While the modest impact of HNF6 on miR-122 promoter activity reflects previous results, we have found no reports demonstrating the effect of AP-1 on miR-122. Following transfection of HNF1α/HNF3β, HNF6, and AP-1 mutant reporters and subsequent treatment with 66 and 76, up to 40% further reduction in luciferase activity was observed, indicating that the compounds are still able to inhibit transcription and thus must impact transcriptional activation independently of the mutated promoter (Figure 1-18B). However, in combination with the HNF4α mutant, 66 and 76 elicited ~6% and 41% less inhibition, respectively, compared with the parent construct, indicating that the
inhibitors may have an effect on the function of HNF4α-driven transcription of the miR-122 gene. Furthermore, small molecules bearing a similar sulfonamide scaffold have been reported to bind HNF4α and inhibit its function, providing further support for this hypothesis.180-181

![Figure 1-19 miR-122 promoter assay.](image)

(A) Huh7 cells were transfected with pGL3-basic or pGL3-miR122promoter, then a Bright-Glo luciferase assay was performed after 48 h. (B) Transcription factor binding sites were deleted within the miR-122 promoter sequence. The resulting reporter plasmids were transfected into Huh7 cells. Luciferase activity was evaluated after 48 h using a Bright-Glo Assay. All data is normalized to DMSO and error bars represents standard deviations of three independent experiments. Data generated by Dr. Nicholas Ankenbruck.

Antisense oligonucleotide-mediated knockdown of miR-122 has previously been shown to inhibit HCV replication.155, 182 Additionally, combination treatment of human liver cells stably expressing HCV replicons with an anti-miR-122 oligonucleotide and interferon-α2b resulted in additive antiviral activity.183 Binding of miR-122 to the 5’ terminus protects the HCV viral genome from degradation by the exonuclease XRN1, thereby stabilizing HCV RNA (Figure 1-20A).184-185 Several additional mechanisms for miR-122-mediated promotion of HCV replication have also been proposed. For example, the 48S ribosomal complex association is enhanced in the presence
of miR-122 in rabbit reticulocyte lysate suggesting a potential mechanism for miR-122-mediated regulation of translation;186 however, conflicting results support an alternative mechanism whereby miR-122 promotes translation via binding to the IRES independently of ribosome binding.187 Furthermore, it has been hypothesized that miR-122 disrupts binding of cellular factors essential for viral translation, enhancing viral replication188 and suggesting that miR-122 may promote or inhibit interactions with additional RNA-binding proteins. Additionally, miR-122 was proposed to augment positive-strand RNA synthesis by displacing the positive strand from the 3’ terminus of the negative strand to be used as a template.189 Finally, miR-122 been shown to enhance HCV RNA synthesis in association with Ago2,190 potentially through recruitment of viral RNA to replication complexes;191 however, this mechanism is not completely understood.

Because compounds \textbf{66} and \textbf{76} were able to inhibit miR-122 function, both compounds were investigated for their effect on HCV replication. Huh7.5 cells, which have a RIG-1 mutation for enhanced HCV replication, were pre-treated with \textbf{66} and \textbf{76} (10 µM) or DMSO (negative control) for one hour, then infected with HCV. After 48 h, total RNA was extracted and HCV RNA was analyzed via RT-qPCR. Inhibitors \textbf{66} and \textbf{76} elicited an 88% and 90% reduction in viral RNA expression, respectively (\textbf{Figure 1-20B}), suggesting that they may be promising candidates for HCV therapies. Furthermore, Huh7 cells treated with \textbf{66} and \textbf{76} for 48 h showed no reduction in cell viability at 10 or 25 µM, indicating they are capable of inhibiting miR-122 without toxicity (\textbf{Figure 1-20C}).
Figure 1-20 Effect of 66 and 76 on HCV RNA replication.

(A) Ago2-mediated miR-122 binding (green) to the 5-UTR of the HCV genome protects the viral RNA from Xrn1 (blue) degradation and PCBP2 (gray) binding, resulting in HCV RNA stabilization and enhanced replication. (B) Huh7.5 cells were pre-treated with 66 and 76 at 10 µM, then infected with HCV. After 48 h, RT-qPCR was performed to evaluate HCV replication. Relative expression of HCV RNA for small molecule treated cells was normalized to a DMSO control and 18S ribosomal RNA expression. (C) Huh7 cells were treated with 66 and 76 for 48 h, then an XTT assay was performed to evaluate cell viability. All data are normalized to DMSO and represents the averages ± standard deviations from three independent experiments. Data generated by Dr. Nicholas Ankenbruck.

1.4.2.1 Summary and future work

In summary, a new bis-arylsulfonamide class of small molecule miR-122 inhibitors was identified from a high-throughput screen of > 300,000 compounds. Several analogs were evaluated
in comprehensive structure-activity relationship studies, demonstrating that 5-isopropyl, 2-methoxy, and 4-methyl groups on the central benzene ring were important for miR-122 inhibitory activity. Replacement of the imidazole moiety led to the identification of several pyridine and aniline derivatives with excellent activity. Unfortunately, many of these compounds were also identified as false-positives through ligand-based stabilization of the Renilla luciferase (Rluc) enzyme in cells. By implementing a series of secondary assays to evaluate Rluc activity in the presence of potential hit compounds, we established that a tertiary sulfonamide moiety was required to prevent luciferase inhibition — a concept that may be generally applicable to other sulfonamides identified in screens using Rluc reporters. The miRNA inhibitor 66 was found to selectively induce downregulation of miR-122 in the Huh7-miR122 reporter cell line, while having no effect on Rluc activity in biochemical and cell-based control experiments. Furthermore, 66 did not inhibit miR-21 in the HeLa-miR21 reporter cell line, indicating that it is not a general inhibitor of the miRNA pathway. In an attempt to improve aqueous solubility of 66, we synthesized the analog 76. While 76 and several other analogs that we synthesized, did not improve water solubility significantly, the inhibitor displayed increased activity. Western blot analysis confirmed that the inhibitors were capable of reducing expression of E-cadherin by relieving translational repression of Wnt1 via miR-122 inhibition. Compounds 66 and 76 were shown to reduce cellular miR-122 levels to 62% and 13% at 25 µM as a result of inhibiting pri-miR-122 transcription, since pri-miR-122 levels were reduced as well. This is further supported by the observed inhibitory effects of the both compounds in a miR-122 native promoter assay. Moreover, deletion of individual transcription factor recognition sites within the miR-122 gene promoter sequence led to the discovery that compounds 66 and 76 decrease miR-122 expression presumably by inhibiting HNF4α-driven promoter activity. Since these small molecule inhibitors act at the transcriptional
level, they may be useful probes for the regulation of miR-122 expression. Most importantly, both miR-122 inhibitors 66 and 76 blocked viral HCV RNA replication in human liver cells by ~90%, indicating they may have therapeutic potential for treating HCV infection. miR-122 presents an attractive target for treatment of HCV infections because as a host component, it is much less susceptible to induction of drug resistance, and a corresponding therapeutic should be effective against all HCV genotypes, in contrast to agents that directly target viral components. Beyond applications in viral infection, small molecule-mediated inhibition of miR-122 could help further elucidate its role in metabolism and may present novel opportunities for the treatment of metabolic disorders.

In the future, additional studies such as electrophoretic mobility shift assay (EMSA) or fluorescence polarization to monitor the direct binding of inhibitors 66 and 76 to HNF4α will be important. Moreover, further modifications to 76 to increase the water solubility should be attempted. A number of prodrugs approaches to increase water solubility are reported, which utilize activation by selective enzymes such as esterases, phosphatases, and amidases to generate the active compound inside cells, can be pursued.

1.4.2.2 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Reactions were followed by thin layer chromatography (TLC) using glass-backed silica gel plates (Sorbent technologies, 250 μm thickness). Anhydrous THF and acetonitrile were purchased from Acros and anhydrous DMF was purchased from Alfa Aesar. Triethylamine was purchased from Fisher. Yields refer to pure compounds unless otherwise stated. Silica gel
flash column chromatography was performed on silica gel (60 Å, 40-63 μm, 230 × 400 mesh, Sorbtech) as a stationary phase. High resolution mass spectral analysis (HRMS) was performed on a Q-Exactive (Thermo Scientific) mass spectrometer. The ¹H NMR and ¹³C NMR spectra were recorded on a 300 MHz, 400 MHz, or a 500 MHz Varian NMR spectroscopy. Chemical shifts are given in δ units (ppm) for ¹H NMR spectra and ¹³C NMR spectra relative to the respective solvent residual peaks (CDCl₃: 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR; CD₃OD: 3.31 ppm for ¹H NMR and 49.00 ppm for ¹³C NMR; (CD₃)₂SO: 2.50 ppm for ¹H NMR and 39.52 ppm for ¹³C NMR).¹⁹⁷

Compounds 40 (PubChem CID 16644736), 41 (PubChem CID 20105566), 51 (PubChem CID 4175330), 54 (PubChem CID 20105692), and 56 (PubChem CID 163831221) were used directly from the Broad Institute compound library without re-synthesis.

1-Isopropyl-4-methoxy-2-methylbenzene (39b). To a solution of 39a (2.0 g, 13.31 mmol, 1.0 eq) in dimethyl carbonate (11 mL, 0.133 mol, 10 eq), potassium carbonate (1.4 g, 10.13 mmol, 0.8 eq) and tetrabutylammonium bromide (2.2 g, 6.82 mmol, 0.5 eq) were added at room temperature. This suspension was refluxed for 36 h. Water (20 mL) was added to the reaction mixture and dimethyl carbonate was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 20 mL). The combined ethyl acetate layers were washed with brine (20 mL), dried over sodium sulfate (5 g), filtered, and concentrated under reduced pressure to afford 39b as a pale-yellow clear oil (2.2 g, quantitative yield). ¹H NMR (300 MHz, CDCl₃) δ 7.19 (d, J=8.31 Hz, 1 H), 6.71 – 6.81 (m, 2 H), 3.81 (s, 3 H), 3.12 (sep, J=6.82 Hz, 1 H), 2.36 (s, 3 H), 1.24 (d, J=6.80 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 157.37, 139.22, 136.42, 125.74, 115.92, 111.37, 55.26, 28.76, 23.57, 19.61; HRMS (ESI) calcd. for C₁₁H₁₇O (M+H)⁺ 165.1274, found: 165.1275.
5-Isopropyl-2-methoxy-4-methylbenzenesulfonyl chloride (39c). 1-Isopropyl-4-methoxy-2-methylbenzene (1.0 g, 6.09 mmol, 1.0 eq) was dissolved in chloroform (6 mL) and the solution was cooled to 0 °C. Chlorosulfonic acid (1.2 mL, 18.02 mmol, 3.0 eq) was added dropwise to the reaction mixture and the reaction was stirred at 0 °C for 2.5 h. The reaction was poured into ice-water mixture (50 mL) and the chloroform layer was separated. The aqueous layer was washed with chloroform (3 × 20 mL). The combined chloroform layers were washed with brine (20 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure to yield 39c as a white solid (1.2 g, 74% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.76 (s, 1 H), 6.87 (s, 1 H), 4.01 (s, 3 H), 3.10 (sep, $J=6.85$ Hz, 1 H), 2.43 (s, 3 H), 1.23 (d, $J=6.85$ Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.94, 146.31, 139.54, 129.71, 126.22, 115.02, 56.66, 29.03, 23.21, 20.31.

1-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-4-methyl-1H-imidazole (39). To a solution of A (50 mg, 0.19 mmol, 1.0 eq) in anhydrous DCM (3 mL), 4-methylimidazole (47 mg, 0.57 mmol, 3.0 eq) was added at room temperature and the reaction was stirred at room temperature for 3 h. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 2:5 ethyl acetate/hexanes) to yield 39 as a white solid (42 mg, 72%). 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (s, 1 H), 7.83 (s, 1 H), 6.93 (s, 1 H), 6.73 (s, 1 H), 3.82 (s, 3 H), 3.09 (sep, $J=6.89$ Hz, 1 H), 2.38 (s, 3 H), 2.17 (s, 3 H), 1.23 (d, $J=6.90$ Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.94, 145.62, 139.94, 139.79, 137.63, 126.75, 123.18, 114.59, 113.70, 56.25, 28.99, 23.28, 20.18, 13.73; HRMS (ESI) calcd. for C$_{15}$H$_{21}$O$_3$N$_2$S (M+H)$^+$ 309.1267, found: 309.1282.
1-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-1H-pyrrole (42). Pyrrole (10 μL, 0.13 mmol, 1.1 eq) was dissolved in anhydrous THF (3 mL) and this solution was cooled to 0 °C. NaH (5 mg, 0.13 mmol, 1.1 eq, 60% dispersion in mineral oil) was added to the solution at 0 °C and the resulting suspension was stirred at 0 °C for 15 min. Compound 39c (30 mg, 0.11 mmol, 1.0 eq) was added to this suspension at 0 °C and the reaction mixture was stirred overnight while allowing the reaction to warm to room temperature. Water (3 mL) was slowly added to the reaction mixture while stirring at room temperature and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 5 mL) and the combined ethyl acetate layers were washed with brine (3 mL), dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 42 as a white solid (24 mg, 72%).

1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1 H), 7.19 (d, J=1.00 Hz, 2 H), 6.71 (s, 1 H), 6.24 (d, J=1.00 Hz, 2 H), 3.80 (s, 3 H), 3.06 (sep, J=6.89 Hz, 1 H), 2.35 (s, 3 H), 1.20 (d, J=6.78 Hz, 6 H); 13C NMR (101 MHz, CDCl3) δ 154.84, 144.46, 139.60, 126.30, 124.56, 121.50, 114.62, 111.87, 56.19, 28.92, 23.26, 20.02; HRMS (ESI) calcd. for C15H20O3NS (M+H)+ 294.1158, found: 294.1173.

1-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-3-methyl-1H-pyrrole (43). 3-Methylpyrrole (11 μL, 0.13 mmol, 1.1 eq) was dissolved in anhydrous THF (3 mL) and this solution was cooled to 0 °C. NaH (5 mg, 0.13 mmol, 1.1 eq, 60% dispersion in mineral oil) was added to the solution at 0 °C and the resulting suspension was stirred at 0 °C for 15 min. Compound 39c (30 mg, 0.11 mmol, 1.0 eq) was added to this suspension at 0 °C and the reaction mixture was stirred overnight while allowing the reaction to warm to room temperature. Water (3 mL) was slowly added to the reaction mixture while stirring at room temperature and THF was evaporated...
under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 5 mL) and the combined ethyl acetate layers were washed with brine (3 mL), dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 43 as a white solid (13 mg, 37%). 1H NMR (400 MHz, CDCl$_3$) δ 7.62 (s, 1 H), 7.12 (br s, 1 H), 6.89 (s, 1 H), 6.71 (s, 1 H), 6.04 – 6.10 (m, 1 H), 3.81 (s, 3 H), 3.06 (sep, J = 6.84 Hz, 1 H), 2.35 (s, 3 H), 2.04 (s, 3 H), 1.20 (d, J = 6.90 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.82, 144.15, 139.54, 126.26, 124.87, 122.91, 121.83, 118.34, 114.64, 113.97, 56.22, 28.94, 23.27, 20.02, 11.99; HRMS (ESI) calcd. for C$_{16}$H$_{22}$O$_3$NS (M+H)$^+$ 308.1315, found: 308.1331.

1-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-4-methyl-1H-pyrazole (44). 4-Methyl-1H-pyrazole (11 μL, 0.13 mmol, 1.1 eq) was dissolved in anhydrous THF (3 mL) and this solution was cooled to 0 °C. NaH (5 mg, 0.13 mmol, 1.1 eq, 60% dispersion in mineral oil) was added to the solution at 0 °C and the resulting suspension was stirred at 0 °C for 15 min. Compound 39c (30 mg, 0.11 mmol, 1.0 eq) was added to this suspension at 0 °C and the reaction mixture was stirred overnight while allowing the reaction to warm to room temperature. Water (3 mL) was slowly added to the reaction mixture while stirring at room temperature and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 5 mL) and the combined ethyl acetate layers were washed with brine (3 mL), dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 44 as a white solid (17 mg, 48%). 1H NMR (400 MHz, CDCl$_3$) δ 7.94 – 7.99 (m, 1 H), 7.92 (s, 1 H), 7.51 (s, 1 H), 6.69 (s, 1 H), 3.74 (s, 3 H), 3.07 (sep, J = 6.81 Hz, 1 H), 2.36 (s, 3 H), 2.10 (s, 3 H),
1.23 (d, J=6.90 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 155.03, 145.91, 145.30, 139.77, 130.52, 127.80, 122.43, 117.89, 114.54, 56.23, 29.07, 23.18, 20.16, 8.88; HRMS (ESI) calcd. for C$_{15}$H$_{21}$O$_3$N$_2$S (M+H)$^+$ 309.1267, found: 309.1282.

1-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-3-methyl-^{1}H-pyrazole (45). 3-Methyl-^{1}H-pyrazole (46 μL, 0.57 mmol, 1.5 eq) was dissolved in anhydrous DMF (3 mL) and this solution was cooled to 0 °C. NaH (23 mg, 0.57 mmol, 1.5 eq, 60% dispersion in mineral oil) was added to the solution at 0 °C and the resulting suspension was stirred at 0 °C for 15 min. Compound 39c (100 mg, 0.38 mmol, 1.0 eq) was added to this suspension at 0 °C and the reaction mixture was stirred overnight while allowing the reaction to warm to room temperature. Water (30 mL) was slowly added to the reaction mixture while stirring at room temperature and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 10 mL) and the combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:4 ethyl acetate/hexanes) to yield 45 as a white solid (86 mg, 73%). 1H NMR (400 MHz, CDCl$_3$) δ 8.04 (d, J=2.69 Hz, 1 H), 7.85 (s, 1 H), 6.63 (s, 1 H), 6.09 (d, J=2.69 Hz, 1 H), 3.67 (s, 3 H), 3.00 (sep, J=6.89 Hz, 1 H), 2.29 (s, 3 H), 2.18 (s, 3 H), 1.16 (d, J=6.85 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.82, 154.41, 145.09, 139.59, 133.67, 127.65, 122.40, 114.36, 107.79, 56.02, 28.96, 23.04, 20.04, 14.01; HRMS (ESI) calcd. for C$_{15}$H$_{21}$O$_3$N$_2$S (M+H)$^+$ 309.1267, found: 309.1277.

1-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-4-nitro-^{1}H-imidazole (48). To a solution of 39c (30 mg, 0.11 mmol, 1.0 eq) in anhydrous THF (5 mL), 4-nitroimidazole (26 mg,
0.23 mmol, 2.0 eq), and triethylamine (64 μL, 0.46 mmol, 4.0 eq) were added at room temperature. The reaction was heated to 60 °C and stirred overnight at 60 °C. The reaction mixture was concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 48 as a white solid (38 mg, 98%). 1H NMR (400 MHz, CDCl$_3$) δ 8.81 (s, 1 H), 8.01 (d, J=0.8 Hz, 1 H), 7.87 (s, 1 H), 6.794 (s, 1 H), 3.88 (s, 3 H), 3.12 (sep, J=6.8 Hz, 1 H), 2.42 (s, 3 H), 1.26 (d, J=6.8 Hz, 6 H); 13C NMR (100 MHz, CDCl$_3$) δ 154.96, 147.64, 140.63, 136.25, 126.90, 121.06, 117.76, 114.73, 76.71, 56.39, 28.93, 23.12, 20.27; HRMS (ESI) calcd. for C$_{14}$H$_{18}$O$_5$N$_3$S (M+H)$^+$ 340.0967, found: 340.0976.

2-Ethyl-1-((5-isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-1H-imidazole (49). To a solution of 39c (30 mg, 0.11 mmol, 1.0 eq) in anhydrous DCM (3 mL), 2-ethylimidazole (33 mg, 0.34 mmol, 3.0 eq) was added and the solution was cooled to 0 °C. Triethylamine (32 μL, 0.23 mmol, 2.0 eq) was added to this solution at 0 °C and the reaction was stirred for 4 h while allowing the reaction to warm to room temperature. The reaction mixture was concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 49 as a clear gum (39 mg, quantitative). 1H NMR (400 MHz, CDCl$_3$) δ 7.82 (s, 1 H), 7.40 (d, J=1.6 Hz, 1 H), 6.85 (d, J=1.6 Hz, 1 H), 6.71 (s, 1 H), 3.74 (s, 3 H), 3.09 (sep, J=6.8 Hz, 1 H), 2.76 (q, J=7.6 Hz, 2 H), 2.37 (s, 3 H), 1.16 – 1.23 (m, 9 H); 13C NMR (100 MHz, CDCl$_3$) δ 154.93, 150.69, 145.54, 139.70, 126.93, 126.35, 123.06, 120.79, 114.55, 56.13, 28.85, 23.27, 21.66, 20.13, 11.57; HRMS (ESI) calcd. for C$_{16}$H$_{23}$O$_3$N$_2$S (M+H)$^+$ 323.1429, found: 323.1442.

62
4,5-Dichloro-1-((5-isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-1H-imidazole (50). To a solution of 39c (30 mg, 0.11 mmol, 1.0 eq) in anhydrous DCM (3 mL), 4,5-dichloro-1H-imidazole (33 mg, 0.34 mmol, 3.0 eq) was added and the solution was cooled to 0 °C. Triethylamine (32 μL, 0.23 mmol, 2.0 eq) was added to this solution at 0 °C and the reaction was stirred for 6 h while allowing the reaction to warm to room temperature. The reaction mixture was concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:4 ethyl acetate/hexanes) to yield 50 as a yellow gum (41 mg, 99%).

1H NMR (400 MHz, CDCl3) δ 8.10 (s, 1 H), 7.93 (s, 1 H), 6.75 (s, 1 H), 3.79 (s, 3 H), 3.11 (sep, J = 6.84 Hz, 1 H), 2.41 (s, 3 H), 1.24 (d, J = 6.78 Hz, 6 H); 13C NMR (101 MHz, CDCl3) δ 155.06, 147.02, 140.06, 137.21, 129.22, 128.61, 120.64, 114.47, 112.35, 56.39, 28.93, 23.28, 20.36; HRMS (ESI) calcd. for C14H17O3N2Cl2S (M+H)+ 363.0332, found: 363.0350.

1-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-1H-indole (52). To a suspension of indole (22 mg, 0.19 mmol, 1.0 eq) and NaOH (23 mg, 0.57 mmol, 3.0 eq) in anhydrous DCM (5 mL), tetrabutylammonium bromide (15 mg, 0.05 mmol, 0.25 eq) was added and the resulting suspension was cooled to 0 °C. Compound 39c (50 mg, 0.19 mmol, 1.0 eq) was added to the reaction mixture at 0 °C and the reaction was stirred for 36 h while allowing the reaction mixture to warm to room temperature. Water (10 mL) was added to the reaction mixture and the DCM layer was separated. The aqueous layer was washed with DCM (3 × 5 mL) and the combined DCM layers were washed with brine (10 mL), dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 52 as a white solid (35 mg, 54%).

1H NMR (400 MHz, CDCl3) δ 7.92 (s, 1 H), 7.75 (d, J = 7.91 Hz, 1 H), 7.66
(d, \(J\)=3.76 Hz, 1 H), 7.49 – 7.58 (m, 1 H), 7.19 (m, 2 H), 6.56 – 6.63 (m, 2 H), 3.65 (s, 3 H), 3.06 (sep, \(J\)=6.81 Hz, 1 H), 2.30 (s, 3 H), 1.23 (d, \(J\)=6.90 Hz, 6 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.90, 144.37, 139.35, 134.81, 130.56, 128.19, 127.19, 123.85, 123.75, 122.77, 121.18, 114.46, 113.36, 106.31, 55.96, 28.86, 23.31, 19.99; HRMS (ESI) calcd. for C\(_{19}\)H\(_{22}\)O\(_3\)NS (M+H)\(^+\) 344.1315, found: 344.1332.

1-((3-Methoxy-5,6,7,8-tetrahydronaphthalen-2-yl)sulfonyl)-4-methyl-1H-imidazole (55). To a solution of 5,6,7,8-tetrahydronaphthalen-2-ol (500 mg, 3.4 mmol, 1.0 eq) in anhydrous acetonitrile (10 mL), iodomethane (252 µL, 4.1 mmol, 1.2 eq) was added at room temperature. Cesium carbonate (1.3 g, 4.1 mmol, 1.2 eq) was added to this solution at room temperature and the reaction mixture was stirred overnight at room temperature. Water (20 mL) was added to the reaction mixture and acetonitrile was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 \(\times\) 15 mL). The combined ethyl acetate layers were washed with brine (15 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography (elution with 1:20 ethyl acetate/hexanes) to afford 6-methoxy-1,2,3,4-tetrahydronaphthalene as a clear yellow oil (521 mg, 95% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.98 (d, \(J\)=8.41 Hz, 1 H), 6.59 – 6.70 (m, 2 H), 3.78 (s, 3 H), 2.73 (br d, \(J\)=18.95 Hz, 4 H), 1.74 – 1.82 (m, 4 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 157.50, 138.30, 130.06, 129.40, 113.81, 111.90, 55.38, 29.86, 28.69, 23.58, 23.31; HRMS (ESI) calcd. for C\(_{11}\)H\(_{15}\)O (M+H)\(^+\) 163.1117, found: 163.1119.

6-Methoxy-1,2,3,4-tetrahydronaphthalene (50 mg, 0.31 mmol, 1.0 eq) was dissolved in chloroform (5 mL) and the solution was cooled to 0 °C. Chlorosulfonic acid (60 µL, 0.93 mmol, 3.0 eq) was added dropwise to the reaction mixture and the reaction was stirred at 0 °C for 2 h.
The reaction mixture was poured into ice-water mixture (20 mL) and the chloroform layer was separated. The aqueous layer was washed with chloroform (3 × 5 mL). The combined chloroform layers were washed with brine (10 mL), dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure to yield 3-methoxy-5,6,7,8-tetrahydronaphthalene-2-sulfonyl chloride as a white solid (80 mg, quantitative). \(^1H \) NMR (400 MHz, CDCl\(_3\)) δ 7.64 (s, 1 H), 6.78 (s, 1 H), 3.99 (s, 3 H), 2.71 – 2.87 (m, 4 H), 1.81 (dt, \(J = 6.39, 3.35 \) Hz, 4 H); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) δ 154.90, 148.12, 130.17, 129.64, 129.36, 113.53, 56.64, 30.36, 28.43, 22.87, 22.50.

To a solution of 3-methoxy-5,6,7,8-tetrahydronaphthalene-2-sulfonyl chloride (30 mg, 0.11 mmol, 1.0 eq) in anhydrous DCM (3 mL), 4-methylimidazole (29 mg, 0.34 mmol, 3.0 eq) was added at room temperature and the reaction was stirred at room temperature for 3 h. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 55 as a white solid (23 mg, 65%). \(^1H \) NMR (300 MHz, CDCl\(_3\)) δ 8.01 (s, 1 H), 7.73 (s, 1 H), 6.96 (s, 1 H), 6.67 (s, 1 H), 3.84 (s, 3 H), 2.73 – 2.84 (m, 4 H), 2.18 – 2.21 (m, 3 H), 1.82 (dt, \(J = 6.47, 3.28 \) Hz, 4 H); \(^{13}C\) NMR (75 MHz, CDCl\(_3\)) δ 154.83, 147.27, 137.47, 130.67, 129.90, 122.81, 113.58, 112.99, 56.09, 30.11, 28.33, 22.77, 22.39, 13.56; HRMS (ESI) calcd. for C\(_{15}\)H\(_{19}\)O\(_3\)N\(_2\)S (M+H)\(^+\) 307.1129, found: 307.1127.

1-((5-Isopropyl-4-methyl-2-(prop-2-yn-1-yloxy)phenyl)sulfonyl) 4-methyl-1H-imidazole (57). To a solution of 39a (300 mg, 2.0 mmol, 1.0 eq) in anhydrous acetonitrile (10 mL), propargyl bromide (358 µL, 2.4 mmol, 1.2 eq, 80 wt% solution in toluene) and cesium carbonate (782 mg, 2.4 mmol, 1.2 eq) were added at room temperature. The resultant suspension was stirred overnight at room temperature. Water (20 mL) was added to the reaction mixture and acetonitrile was
evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 15 mL) and the combined ethyl acetate layers were washed with brine (20 mL), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography (elution with 1:20 ethyl acetate/hexanes) to afford 1-isopropyl-2-methyl-4-(prop-2-yn-1-yloxy)benzene as a pale-yellow oil (330 mg, 88% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.17 (d, J=8.53 Hz, 1 H), 6.76 – 6.84 (m, 2 H), 4.67 (d, J=2.38 Hz, 2 H), 3.09 (sep, J=6.86 Hz, 1 H), 2.52 (t, J=2.38 Hz, 1 H), 2.33 (s, 3 H), 1.21 (d, J=6.90 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 155.36, 140.19, 136.58, 125.78, 116.87, 112.25, 79.10, 75.35, 55.88, 28.80, 23.53, 19.65.

1-Isopropyl-2-methyl-4-(prop-2-yn-1-yloxy)benzene (250 mg, 1.33 mmol, 1.0 eq) was dissolved in chloroform (5 mL) and the solution was cooled to 0 °C. Chlorosulfonic acid (265 µL, 4.0 mmol, 3.0 eq) was slowly added to the reaction mixture and the reaction was stirred at 0 °C for 45 min. The reaction mixture was poured into ice-water mixture (20 mL) and the chloroform layer was separated. The aqueous layer was washed with chloroform (3 × 10 mL). The combined chloroform layers were washed with brine (20 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure to yield 5-isopropyl-4-methyl-2-(prop-2-yn-1-yloxy)benzenesulfonyl chloride as a white solid (253 mg, 66% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.78 (s, 1 H), 7.04 (s, 1 H), 4.91 (d, J=2.26 Hz, 2 H), 3.11 (dt, J=13.68, 6.84 Hz, 1 H), 2.59 (t, J=2.32 Hz, 1 H), 2.39 – 2.48 (m, 3 H), 1.24 (d, J=6.90 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 152.78, 146.06, 140.56, 130.53, 126.34, 116.52, 57.11, 29.12, 23.18, 20.33.

To a solution of 5-isopropyl-4-methyl-2-(prop-2-yn-1-yloxy)benzenesulfonyl chloride (30 mg, 0.10 mmol, 1.0 eq) in anhydrous DCM (3 mL), 4-methylimidazole (26 mg, 0.32 mmol, 3.0 eq) was added at room temperature and the reaction was stirred at room temperature for 3 h. The reaction mixture was concentrated under reduced pressure. The product was purified from the
crude residue by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 57 as a white solid (15 mg, 43%). 1H NMR (400 MHz, CDCl$_3$) δ 8.01 (s, 1 H), 7.85 (s, 1 H), 6.98 (s, 1 H), 6.83 (s, 1 H), 4.70 (d, $J=2.26$ Hz, 2 H), 3.09 (sep, $J=6.86$ Hz, 1 H), 2.57 (t, $J=2.13$ Hz, 1 H), 2.38 (s, 3 H), 2.17 (s, 3 H), 1.24 (d, $J=6.90$ Hz, 6 H); 1C NMR (101 MHz, CDCl$_3$) δ 152.82, 145.45, 140.94, 137.60, 126.89, 124.06, 115.80, 113.91, 56.90, 29.06, 23.23, 20.19, 13.71; HRMS (ESI) calcd. for C$_{17}$H$_{21}$O$_3$N$_2$S (M+H)$^+$ 333.1267, found: 333.1278.

5-Isopropyl-2-methoxy-4-methyl-N-(pyridin-2-yl)benzenesulfonamide (58). 2-Aminopyridine (12 mg, 0.12 mmol, 1.1 eq) was dissolved in anhydrous pyridine (1 mL) and the solution was cooled to 0 °C. Compound 39c (30 mg, 0.11 mmol, 1.0 eq) was added to this solution at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 58 as a white solid (8 mg, 22%). 1H NMR (300 MHz, CDCl$_3$) δ 10.82 (br s, 1 H), 8.20 (br d, $J=4.72$ Hz, 1 H), 7.76 (s, 1 H), 7.45 – 7.52 (m, 1 H), 7.29 (d, $J=8.69$ Hz, 1 H), 6.76 (t, $J=6.42$ Hz, 1 H), 6.60 (s, 1 H), 3.60 (s, 3 H), 2.98 (sep, $J=6.89$ Hz, 1 H), 2.25 (s, 3 H), 1.13 (d, $J=6.80$ Hz, 6 H); 1C NMR (101 MHz, CDCl$_3$) δ 159.47, 154.23, 153.14, 143.00, 139.04, 126.94, 124.83, 117.39, 114.10, 89.97, 56.06, 29.72, 28.74, 23.20, 19.88; HRMS (ESI) calcd. for C$_{16}$H$_{19}$O$_3$N$_2$S (M−H)$^-$ 319.1111, found: 319.1116.

5-Isopropyl-2-methoxy-4-methyl-N-(6-methylpyridin-2-yl)benzenesulfonamide (59). To a solution of 2-amino-6-picoline (25 mg, 0.12 mmol, 1.1 eq) and pyridine (18 μL, 0.23 mmol, 2.0 eq) in anhydrous DCM (5 mL), 39c (30 mg, 0.11 mmol, 1.0 eq) was added at room temperature.
The reaction was heated to reflux and stirred overnight. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 59 as a white solid (23 mg, 60%).

1H NMR (400 MHz, CDCl$_3$) δ 7.79 (s, 1 H), 7.39 – 7.44 (m, 1 H), 7.01 (br d, J=8.41 Hz, 1 H), 6.63 – 6.70 (m, 2 H), 3.82 (s, 3 H), 3.04 (sep, J=6.89 Hz, 1 H), 2.38 (s, 3 H), 2.32 (s, 3 H), 1.19 (d, J=6.90 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.28, 142.67, 139.25, 126.94, 114.14, 56.30, 28.88, 23.29, 23.08, 19.98; HRMS (ESI) calcd. for C$_{17}$H$_{21}$O$_3$N$_2$S (M−H)$^-$ 333.1267, found: 333.1274.

5-Isopropyl-2-methoxy-4-methyl-N-(3-methylpyridin-2-yl)benzenesulfonamide (60).

Compound 39c (30 mg, 0.11 mmol, 1.0 eq) and 2-amino-3-methylpyridine (23 μL, 0.23 mmol, 2.0 eq) were dissolved in anhydrous DCM (5 mL) and the solution was cooled to 0 °C. Pyridine (18 μL, 0.23 mmol, 2.0 eq) was added to this solution at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 60 as a white solid (23 mg, 60%). 1H NMR (400 MHz, CDCl$_3$) δ 7.91 (s, 1 H), 7.37 – 7.52 (m, 2 H), 6.65 (s, 1 H), 6.52 (br t, J=6.53 Hz, 1 H), 3.58 (s, 3 H), 3.06 (sep, J=6.86 Hz, 1 H), 2.33 (s, 3 H), 2.14 (s, 3 H), 1.22 (d, J=6.90 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.63, 140.99, 139.25, 126.94, 114.14, 139.00, 125.84, 113.73, 55.64, 29.02, 23.29, 19.87, 18.03; HRMS (ESI) calcd. for C$_{17}$H$_{21}$O$_3$N$_2$S (M−H)$^-$ 333.1267, found: 333.1279.
5-Isopropyl-2-methoxy-4-methyl-N-phenylbenzenesulfonamide (61). Compound 39c (30 mg, 0.11 mmol, 1.0 eq) and aniline (13 µL, 0.14 mmol, 1.2 eq) were dissolved in anhydrous DCM (5 mL) and the solution was cooled to 0 °C. Triethylamine (24 µL, 0.17 mmol, 1.5 eq) was added to this solution at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:4 ethyl acetate/hexanes) to yield 61 as a white solid (26 mg, 71%). 1H NMR (300 MHz, CDCl$_3$) δ 7.56 (s, 1 H), 7.06 – 7.16 (m, 2 H), 6.93 – 7.03 (m, 3 H), 6.85 (s, 1 H), 6.65 (s, 1 H), 3.90 (s, 3 H), 2.92 (sep, J=6.80 Hz, 1 H), 2.25 (s, 3 H), 1.06 (d, J=6.80 Hz, 6 H); HRMS (ESI) calcd. for C$_{17}$H$_{22}$O$_3$NS (M+H)$^+$ 320.1315, found: 320.1335.

5-Isopropyl-2-methoxy-4-methyl-N-(o-tolyl)benzenesulfonamide (62). To a solution of 39c (200 mg, 0.76 mmol, 1.0 eq) and o-toluidine (100 µL, 0.91 mmol, 1.2 eq) in anhydrous THF (5 mL), triethylamine (160 µL, 1.15 mmol, 1.5 eq) was added at room temperature. The reaction was heated to reflux and stirred overnight. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:4 ethyl acetate/hexanes) to yield 62 as a white solid (207 mg, 82%). 1H NMR (300 MHz, CDCl$_3$) δ 7.66 (s, 1 H), 7.17 – 7.24 (m, 1 H), 6.92 – 7.13 (m, 3 H), 6.74 (s, 2 H), 3.94 (s, 3 H), 3.02 (sep, J=6.87 Hz, 1 H), 2.34 (s, 3 H), 2.25 (s, 3 H), 1.15 (d, J=6.80 Hz, 6 H); 13C NMR (75 MHz, CDCl$_3$) δ 153.71, 142.95, 139.64, 135.48, 130.85, 130.12, 127.43, 126.87, 125.22, 124.93, 121.76, 114.13, 56.37, 28.91, 23.20, 20.00, 17.69; HRMS (ESI) calcd. for C$_{18}$H$_{24}$O$_3$NS (M+H)$^+$ 334.1471, found: 334.1491.
5-Isopropyl-2-methoxy-N,4-dimethyl-N-(pyridin-2-yl)benzenesulfonamide (63). Compound 39c (50 mg, 0.19 mmol, 1.0 eq) and 2-(methylamino)pyridine (39 μL, 0.38 mmol, 2.0 eq) were dissolved in anhydrous DCM (5 mL) and the solution was cooled to 0 °C. Pyridine (31 μL, 0.38 mmol, 2.0 eq) was added to this solution at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. The reaction mixture was concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 63 as a white solid (55 mg, 86%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 8.28 (d, \(J=4.72\) Hz, 1 H), 7.77 (s, 1 H), 7.56 – 7.66 (m, 2 H), 6.95 – 7.04 (m, 1 H), 6.62 (s, 1 H), 3.47 (s, 3 H), 3.35 (s, 3 H), 3.06 (sep, \(J=6.82\) Hz, 1 H), 2.33 (s, 3 H), 1.20 (d, \(J=6.99\) Hz, 6 H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) δ 154.56, 154.38, 147.30, 143.11, 139.09, 137.15, 128.42, 123.39, 119.54, 118.45, 114.08, 55.82, 35.03, 28.87, 23.33, 19.95; HRMS (ESI) calcd. for C\(_{17}\)H\(_{23}\)O\(_3\)N\(_2\)S (M+H)\(^+\) 335.1424, found: 335.1436.

5-Isopropyl-2-methoxy-N,4-dimethyl-N-(6-methylpyridin-2-yl)benzenesulfonamide (64). Compound 59 (15 mg, 0.04 mmol, 1.0 eq) was dissolved in anhydrous THF (1 mL) and this solution was cooled to 0 °C. NaH (5 mg, 0.09 mmol, 2.0 eq, 60% dispersion in mineral oil) was added to the reaction mixture at 0 °C and the resulting suspension was stirred for 15 min at 0 °C. Iodomethane (15 μL, 0.23 mmol, 5.0 eq) was added to the reaction at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. Water (3 mL) was added to the reaction at room temperature and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 5 mL) and the combined ethyl acetate layers were washed with brine (5 mL), dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column
chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 64 as a white solid (5 mg, 32%).

1H NMR (400 MHz, CDCl$_3$) δ 7.79 (s, 1 H), 7.43 – 7.50 (m, 1 H), 7.33 (d, J=8.19 Hz, 1 H), 6.83 (d, J=7.34 Hz, 1 H), 6.63 (s, 1 H), 3.52 (s, 3 H), 3.38 (s, 3 H), 3.06 (sep, J=6.85 Hz, 1 H), 2.41 (s, 3 H), 2.33 (s, 3 H), 1.21 (d, J=6.85 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 156.37, 154.54, 153.56, 142.82, 138.98, 137.46, 128.31, 124.04, 118.75, 114.64, 114.00, 55.77, 37.79, 35.06, 28.88, 24.28, 23.36, 19.98; HRMS (ESI) calcd. for C$_{18}$H$_{25}$O$_3$N$_2$S (M+H)$^+$ 349.1580, found: 349.1598.

5-Isopropyl-2-methoxy-N,4-dimethyl-N-(3-methylpyridin-2-yl)benzenesulfonamide (65).

Compound 60 (15 mg, 0.04 mmol, 1.0 eq) was dissolved in anhydrous THF (1 mL) and this solution was cooled to 0 °C. NaH (5 mg, 0.09 mmol, 2.0 eq, 60% dispersion in mineral oil) was added to the reaction mixture at 0 °C and the resulting suspension was stirred for 15 min at 0 °C. Iodomethane (15 μL, 0.23 mmol, 5.0 eq) was added to the reaction at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. Water (3 mL) was added to the reaction at room temperature and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 5 mL) and the combined ethyl acetate layers were washed with brine (5 mL), dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 65 as a white solid (11 mg, 70%).

1H NMR (400 MHz, CDCl$_3$) δ 8.08 (br d, J=3.55 Hz, 1 H), 7.52 – 7.58 (m, 2 H), 7.05 (dd, J=7.46, 4.77 Hz, 1 H), 6.66 (s, 1 H), 3.57 (s, 3 H), 3.12 (s, 3 H), 2.99 (sep, J=6.85 Hz, 1 H), 2.47 (s, 3 H), 2.30 (s, 3 H), 1.09 (d, J=6.85 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.79, 149.89, 142.61,
138.66, 128.55, 123.14, 122.75, 114.17, 55.79, 37.20, 29.72, 28.73, 23.20, 19.88, 18.69; HRMS (ESI) calcd. for C\textsubscript{18}H\textsubscript{25}O\textsubscript{3}N\textsubscript{2}S (M+H)+ 349.1580, found: 349.1599.

5-Isopropyl-2-methoxy-N,4-dimethyl-N-(o-tolyl)benzenesulfonamide (66). Compound 62 (150 mg, 0.45 mmol, 1.0 eq) was dissolved in anhydrous DMF (5 mL) and this solution was cooled to 0 °C. NaH (20 mg, 0.50 mmol, 1.1 eq, 60% dispersion in mineral oil) was added to the reaction mixture at 0 °C and the resulting suspension was stirred for 15 min at 0 °C. Iodomethane (40 μL, 0.64 mmol, 1.4 eq) was added to the reaction at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. Water (50 mL) was added to the reaction at room temperature and the aqueous layer was washed with ethyl acetate (3 × 15 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 66 as a white solid (133 mg, 85%). 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.49 (s, 1 H), 7.22 – 7.25 (m, 1 H), 7.15 (td, J=7.46, 1.22 Hz, 1 H), 6.94 – 7.02 (m, 1 H), 6.80 (s, 1 H), 6.68 – 6.72 (m, 1 H), 3.91 (s, 3 H), 3.28 (s, 3 H), 2.96 – 3.09 (m, 1 H), 2.38 (m, 6 H), 1.09 (d, J=6.85 Hz, 6 H); 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 154.41, 142.31, 140.48, 139.17, 138.94, 131.42, 128.57, 128.24, 128.20, 126.42, 125.58, 114.14, 56.04, 39.72, 28.85, 23.20, 19.98, 18.20; HRMS (ESI) calcd. for C\textsubscript{19}H\textsubscript{26}O\textsubscript{3}NS (M+H)+ 348.1628, found: 348.1649.

5-Isopropyl-2-methoxy-N,4-dimethyl-N-(m-tolyl)benzenesulfonamide (67). To a solution of 39c (200 mg, 0.76 mmol, 1.0 eq) in anhydrous THF (10 mL), m-toluidine (98 μL, 0.91 mmol, 1.2 eq) and triethylamine (160 μL, 1.14 mmol, 1.5 eq) were added at room temperature. The reaction
was heated to 60 °C and stirred overnight at 60 °C. The reaction mixture was concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 5-isopropyl-2-methoxy-4-methyl-N-(m-tolyl)benzenesulfonamide as a white solid (159 mg, 63% yield). ¹H NMR (300 MHz, CDCl₃) δ 10.49 (br s, 1 H), 7.66 (s, 1 H), 7.02 – 7.08 (m, 1 H), 6.91 (s, 1 H), 6.79 – 6.86 (m, 2 H), 6.71 (s, 1 H), 3.96 (s, 3 H), 3.00 (sep, J=6.80 Hz, 1 H), 2.31 (s, 3 H), 2.23 (s, 3 H), 1.14 (d, J=6.88 Hz, 6 H); HRMS (ESI) calcd. for C₁₈H₂₄O₃NS (M+H)⁺ 334.14714, found: 334.14644.

5-Isopropyl-2-methoxy-4-methyl-N-(m-tolyl)benzenesulfonamide (100 mg, 0.30 mmol, 1.0 eq) was dissolved in anhydrous DMF (5 mL) and this solution was cooled to 0 °C. NaH (18 mg, 0.45 mmol, 1.5 eq, 60% dispersion in mineral oil) was added to the reaction mixture at 0 °C and the resulting suspension was stirred for 15 min at 0 °C. Iodomethane (28 μL, 0.45 mmol, 1.5 eq) was added to the reaction at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. Water (50 mL) was added to the reaction at room temperature and the aqueous layer was washed with ethyl acetate (3 x 15 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 67 as a white solid (86 mg, 83%). ¹H NMR (300 MHz, CDCl₃) δ 7.57 (s, 1 H), 6.91 – 7.15 (m, 4 H), 6.71 (s, 1 H), 3.74 (s, 3 H), 3.31 (s, 3 H), 3.02 (sep, J=6.82 Hz, 1 H), 2.35 (s, 3 H), 2.27 (s, 3 H), 1.12 (d, J=6.80 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 154.52, 142.50, 142.13, 139.05, 138.58, 128.59, 128.53, 127.08, 126.51, 124.26, 122.46, 114.03, 55.92, 38.45, 28.80, 23.23, 21.45, 19.90; HRMS (ESI) calcd. for C₁₉H₂₆O₃NS (M+H)⁺ 348.1628, found: 348.1643.
5-Isopropyl-2-methoxy-\textit{N},4-dimethyl-\textit{N}\textbf{-}(p-tolyl)benzenesulfonamide (68). To a solution of 39c (200 mg, 0.76 mmol, 1.0 eq) in anhydrous THF (10 mL), p-toluidine (98 mg, 0.91 mmol, 1.2 eq) and triethylamine (160 μL, 1.14 mmol, 1.5 eq) were added at room temperature. The reaction was heated to 60 °C and stirred overnight at 60 °C. The reaction mixture was concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 5-isopropyl-2-methoxy-4-methyl-\textit{N}\textbf{-}(p-tolyl)benzenesulfonamide as a white solid (164 mg, 65% yield). 1H NMR (300 MHz, CDCl$_3$) δ 7.60 (s, 1 H), 6.91 – 6.99 (m, 4 H), 6.73 (s, 1 H), 3.98 (s, 3 H), 2.91 – 3.07 (m, 1 H), 2.32 (s, 3 H), 2.22 (s, 3 H), 1.12 (d, J=6.79 Hz, 6 H); HRMS (ESI) calcd. for C$_{18}$H$_{24}$O$_3$NS (M+H)$^+$ 334.14714, found: 334.14633.

5-Isopropyl-2-methoxy-4-methyl-\textit{N}\textbf{-}(p-tolyl)benzenesulfonamide (100 mg, 0.30 mmol, 1.0 eq) was dissolved in anhydrous DMF (5 mL) and this solution was cooled to 0 °C. NaH (18 mg, 0.45 mmol, 1.5 eq, 60% dispersion in mineral oil) was added to the reaction mixture at 0 °C and the resulting suspension was stirred for 15 min at 0 °C. Iodomethane (28 μL, 0.45 mmol, 1.5 eq) was added to the reaction at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. Water (50 mL) was added to the reaction at room temperature and the aqueous layer was washed with ethyl acetate (3 × 15 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 68 as a white solid (82 mg, 79%). 1H NMR (400 MHz, CDCl$_3$) δ 7.54 (s, 1 H), 7.00 – 7.10 (m, 4 H), 6.71 (s, 1 H), 3.75 (s, 3 H), 3.30 (s, 3 H), 3.01 (sep, J=6.85 Hz, 1 H), 2.35 (s, 3 H), 2.28 (s, 3 H), 1.11 (d, J=6.85 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 154.49, 142.45, 139.54, 139.02, 136.33, 129.42,
N-(2,3-dimethylphenyl)-5-isopropyl-2-methoxy-N,4-dimethylbenzenesulfonamide (69). To a solution of 39c (200 mg, 0.76 mmol, 1.0 eq) in anhydrous THF (10 mL), 2,3-dimethylaniline (113 μL, 0.91 mmol, 1.2 eq) and triethylamine (160 μL, 1.14 mmol, 1.5 eq) were added at room temperature. The reaction was heated to 60 °C and stirred overnight at 60 °C. The reaction mixture was concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:2 ethyl acetate/hexanes) to yield N-(2,3-dimethylphenyl)-5-isopropyl-2-methoxy-4-methylbenzenesulfonamide as a white solid (143 mg, 54% yield). 1H NMR (300 MHz, CDCl3) δ 10.53 (br s, 1 H), 7.61 (s, 1 H), 6.85 – 6.94 (m, 3 H), 6.77 (s, 1 H), 3.97 (s, 3 H), 3.02 (sep, J=6.83 Hz, 1 H), 2.36 (s, 3 H), 2.24 (s, 3 H), 2.19 – 2.22 (m, 3 H), 1.13 (d, J=6.88 Hz, 6 H); HRMS (ESI) calcd. for C19H26O3NS (M+H)+ 348.16279, found: 348.1639.

N-(2,3-dimethylphenyl)-5-isopropyl-2-methoxy-4-methylbenzenesulfonamide (50 mg, 0.14 mmol, 1.0 eq) was dissolved in anhydrous DMF (5 mL) and this solution was cooled to 0 °C. NaH (9 mg, 0.22 mmol, 1.5 eq, 60% dispersion in mineral oil) was added to the reaction mixture at 0 °C and the resulting suspension was stirred for 15 min at 0 °C. Iodomethane (14 μL, 0.22 mmol, 1.5 eq) was added to the reaction at 0 °C and the reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. Water (50 mL) was added to the reaction at room temperature and the aqueous layer was washed with ethyl acetate (3 × 15 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the crude
residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 39 as a white solid (47 mg, 90%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.52 (s, 1 H), 7.11 (d, \(J=7.70\) Hz, 1 H), 6.94 – 7.00 (m, 1 H), 6.81 (s, 1 H), 6.52 (s, 1 H), 3.91 (s, 3 H), 3.27 (s, 3 H), 3.04 (sep, \(J=6.80\) Hz, 1 H), 2.39 (s, 3 H), 2.27 (m, 6 H), 1.11 (m, 6 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.42, 142.20, 140.29, 139.13, 135.97, 135.39, 131.12, 128.96, 128.73, 128.48, 125.72, 114.14, 56.01, 39.51, 28.82, 23.22, 20.80, 19.95, 17.66; HRMS (ESI) calcd. for C\(_{20}\)H\(_{28}\)O\(_3\)NS (M+H)\(^+\) 362.1784, found: 362.1792.

\(N\)-(2,5-dimethylphenyl)-5-isopropyl-2-methoxy-\(N\),4-dimethylbenzenesulfonamide (70). To a solution of 39e (200 mg, 0.76 mmol, 1.0 eq) in anhydrous THF (10 mL), 2,5-dimethylaniline (115 \(\mu\)L, 0.91 mmol, 1.2 eq) and triethylamine (160 \(\mu\)L, 1.14 mmol, 1.5 eq) were added at room temperature. The reaction was heated to 60 °C and stirred overnight at 60 °C. The reaction mixture was concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:2 ethyl acetate/hexanes) to yield \(N\)-(2,5-dimethylphenyl)-5-isopropyl-2-methoxy-4-methylbenzenesulfonamide as a white solid (157 mg, 59% yield). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.71 (s, 1 H), 7.06 (s, 1 H), 6.95 (d, \(J=7.70\) Hz, 1 H), 6.72 – 6.77 (m, 2 H), 3.93 (s, 3 H), 3.03 (sep, \(J=6.83\) Hz, 1 H), 2.34 (s, 3 H), 2.17 (s, 6 H), 1.16 (d, \(J=6.88\) Hz, 6 H); HRMS (ESI) calcd. for C\(_{19}\)H\(_{26}\)O\(_3\)NS (M+H)\(^+\) 348.16279, found: 348.16225.

\(N\)-(2,5-dimethylphenyl)-5-isopropyl-2-methoxy-4-methylbenzenesulfonamide (50 mg, 0.14 mmol, 1.0 eq) was dissolved in anhydrous DMF (5 mL) and this solution was cooled to 0 °C. NaH (9 mg, 0.22 mmol, 1.5 eq, 60% dispersion in mineral oil) was added to the reaction mixture at 0 °C and the resulting suspension was stirred for 15 min at 0 °C. Iodomethane (14 \(\mu\)L, 0.22 mmol, 1.5 eq) was added to the reaction at 0 °C and the reaction was stirred overnight while
allowing the reaction mixture to warm to room temperature. Water (50 mL) was added to the reaction at room temperature and the aqueous layer was washed with ethyl acetate (3 × 15 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to yield 70 as a white solid (48 mg, 92%).

1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1 H), 7.04 (d, J=7.46 Hz, 1 H), 6.87 (t, J=7.70 Hz, 1 H), 6.81 (s, 1 H), 6.54 (d, J=7.82 Hz, 1 H), 3.91 (s, 3 H), 3.25 (s, 3 H), 3.03 (sep, J=6.85 Hz, 1 H), 2.39 (s, 3 H), 2.30 (s, 3 H), 2.12 (s, 3 H), 1.11 (d, J=6.90 Hz, 6 H); 13C NMR (101 MHz, CDCl3) δ 154.26, 142.10, 140.24, 139.03, 138.53, 137.46, 129.57, 128.43, 125.58, 125.42, 114.01, 55.93, 39.89, 28.73, 23.15, 23.02, 20.58, 19.85, 14.52; HRMS (ESI) calcd. for C20H28O3NS (M+H)+ 362.1784, found: 362.1794.

5-Isopropyl-2-methoxy-4-methyl-N-(oxiran-2-ylmethyl)-N-(o-tolyl)benzene sulfonamide (71). To a stirred suspension of 62 (250 mg, 0.75 mmol, 1.0 eq) and potassium carbonate (210 mg, 1.52 mmol, 2.0 eq) in anhydrous acetonitrile (10 mL), (±)-epichlorohydrin (90 µL, 1.15 mmol, 1.5 eq) was added at room temperature. The resulting suspension is heated to 60 °C and stirred overnight. Water (30 mL) was added to the reaction and acetonitrile was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 20 mL). The combined ethyl acetate layers were washed with brine (20 mL), dried over sodium sulfate (5 g), filtered, and concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:3 ethyl acetate/hexanes) to obtain 71 as a white solid (181 mg, 0.45 mmol, 62% yield).

1H NMR (500 MHz, CDCl3) δ 7.43 (s, 1 H), 7.23 – 7.24 (m, 1 H), 7.15 – 7.18 (m, 1 H), 6.99 (br s, 1 H), 6.71 – 6.81 (m, 2 H), 4.01 – 4.19 (m, 1 H), 3.93
(s, 3 H), 3.52 – 3.68 (m, 1 H), 3.18 – 3.19 (m, 1 H), 3.01 (sep, \(J = 6.84 \) Hz, 1 H), 2.65 – 2.70 (m, 1 H), 2.23 – 2.38 (m, 7 H), 1.05 – 1.09 (m, 6 H); \(^{13}\)C NMR (126 MHz, CDCl₃) \(\delta \) 154.14, 142.47, 139.52, 139.21, 131.27, 129.47, 128.60, 128.39, 126.31, 125.30, 114.14, 56.00, 55.23, 50.71, 49.97, 45.94, 28.70, 23.03, 19.81, 18.19; HRMS (ESI) calcd. for C\(_{21}\)H\(_{28}\)O\(_4\)NS (M+H)\(^+\) 390.1734, found: 390.1744.

N-((5-Isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-N-(o-tolyl)glycine (72). Compound 66 (50 mg, 0.15 mmol, 1.0 eq) was dissolved in anhydrous DMF (2 mL) and this solution was cooled to 0 °C. NaH (9 mg, 0.22 mmol, 1.5 eq, 60% dispersion in mineral oil) was added to the reaction at 0 °C and the resulting suspension was stirred at 0 °C for 15 min. Ethyl bromoacetate (50 μL, 0.45 mmol, 3.0 eq) was added to the reaction at 0 °C while stirring. The reaction was stirred overnight while allowing the reaction mixture to warm to room temperature. Water (20 mL) was added to the reaction mixture and the aqueous layer was washed with ethyl acetate (3 × 10 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography (elution with 1:4 ethyl acetate/hexanes) to afford ethyl \(N-\)\((5\text{-isopropyl}-2\text{-methoxy}-4\text{-methylphenyl})\)sulfonyl)-\(N-\)\((o\text{-tolyl})\)glycinate as a white solid (51 mg, 81%). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 7.44 (s, 1 H), 7.09 – 7.20 (m, 3 H), 6.97 – 7.08 (m, 1 H), 6.77 (s, 1 H), 4.23 – 4.91 (m, 2 H), 4.12 (q, \(J = 7.13 \) Hz, 2 H), 3.88 (s, 3 H), 3.01 (sep, \(J = 6.87 \) Hz, 1 H), 2.37 (s, 3 H), 2.28 (s, 3 H), 1.22 (t, \(J = 7.15 \) Hz, 3 H), 1.07 (d, \(J = 6.85 \) Hz, 6 H); \(^{13}\)C NMR (101 MHz, CDCl₃) \(\delta \) 169.41, 154.24, 142.55, 139.17, 138.92, 138.49, 131.24, 130.81, 128.54, 128.26, 126.24, 125.81, 114.06, 61.18, 55.99, 52.92, 28.80, 23.18, 19.99, 17.97, 14.21; HRMS (ESI) calcd. for C\(_{22}\)H\(_{30}\)NO\(_5\)S (M+H)\(^+\) 420.18392, found: 420.18379.
To a solution of \(N\)-(5-isopropyl-2-methoxy-4-methylphenyl)sulfonyl)-\(N\)-(o-tolyl)glycinate (20 mg, 0.05 mmol, 1.0 eq) in THF (1 mL), 2 N aqueous LiOH solution (1 mL) was added at room temperature. The resulting mixture was vigorously stirred at room temperature for 2 h. THF layer was separated and the aqueous layer was washed with ethyl acetate (2 × 2 mL). The ethyl acetate layers were discarded. The aqueous layer was then acidified with 1 M dilute HCl solution (3 mL) to a pH of 2. The aqueous layer was washed with ethyl acetate (3 × 5 mL). The combined ethyl acetate layers were dried over sodium sulfate (500 mg), filtered, and concentrated under reduced pressure to yield 72 as a yellow solid (12 mg, 64%). \(^1\)H NMR (400 MHz, CD\(_3\)OD) \(\delta\) 7.34 (s, 1 H), 7.10 − 7.21 (m, 3 H), 6.99 − 7.05 (m, 2 H), 4.48 (br s, 2 H), 3.93 (s, 3 H), 3.07 (sep, \(J=6.85\) Hz, 1 H), 2.40 (s, 3 H), 2.22 (s, 3 H), 1.07 (d, \(J=6.85\) Hz, 6 H); \(^13\)C NMR (101 MHz, CD\(_3\)OD) \(\delta\) 155.98, 144.57, 115.56, 56.53, 29.85, 23.63, 19.86, 18.27; HRMS (ESI) calcd. for C\(_{20}\)H\(_{26}\)O\(_5\)NS (M+H)\(^+\) 392.15262, found: 392.15261.

\(N\)-(2-hydroxy-3-(5-methyl-2\(H\)-tetrazol-2-yl)propyl)-5-isopropyl-2-methoxy-4-methyl-\(N\)-(o-tolyl)benzenesulfonamide (73). To a solution of 71 (60 mg, 0.15 mmol, 1.0 eq) in anhydrous DMF (2 mL), 5-methyl-1\(H\)-tetrazole (19 mg, 0.23 mmol, 1.5 eq), synthesized by a reported procedure,\(^{198}\) and potassium carbonate (43 mg, 0.31 mmol, 2.0 eq) were added at room temperature. The reaction was heated to 100 °C and stirred overnight at 100 °C. The reaction was cooled to room temperature and water (30 mL) was added to the reaction mixture. The aqueous layer was washed with ethyl acetate (3 × 10 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography (elution with 2:1 ethyl acetate/hexanes) to yield 73 as a white solid (26 mg, 36%). \(^1\)H NMR (400
N-(2-hydroxy-3-(5-phenyl-2H-tetrazol-2-yl)propyl)-5-isopropyl-2-methoxy-4-methyl- \(N-(o\text{-tolyl}) \)benzenesulfonamide (74). To a solution of 71 (125 mg, 0.32 mmol, 1.0 eq) in anhydrous DMF (3 mL), 5-phenyl-1H-tetrazole (55 mg, 0.38 mmol, 1.2 eq), synthesized by a reported procedure,198 and potassium carbonate (67 mg, 0.49 mmol, 1.5 eq) were added at room temperature. The reaction was heated to 100 °C and stirred overnight at 100 °C. The reaction was cooled to room temperature and water (30 mL) was added to the reaction mixture. The aqueous layer was washed with ethyl acetate (3 × 15 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield 74 as a white solid (112 mg, 65%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.09 (br d, \(J=3.67 \) Hz, 2 H), 7.99 (s, 1 H), 7.44 – 7.49 (m, 2 H), 7.36 (s, 1 H), 7.13 – 7.24 (m, 2 H), 7.00 (br t, \(J=6.72 \) Hz, 1 H), 6.75 – 6.86 (m, 2 H), 5.08 (dd, \(J=14.06, 3.18 \) Hz, 1 H), 4.77 – 5.14 (m, 1 H), 4.68 – 4.76 (m, 1 H), 4.21 – 4.33 (m, 1 H), 4.08 – 4.18 (m, 1 H), 3.90 (d, \(J=11.86 \) Hz, 3 H), 3.68 – 3.84 (m, 1 H), 2.95 – 3.04 (m, 2 H), 2.31 – 2.39 (m, 6 H), 0.98 – 1.10 (m, 6 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 165.26, 162.75, 154.20, 143.15, 139.45, 138.88, 138.33,
N-(2-hydroxy-3-(5-(pyrimidin-2-yl)-2H-tetrazol-2-yl)propyl)-5-isopropyl-2-methoxy-4-methyl-N-(o-tolyl)benzenesulfonamide (75). To a solution of 71 (62 mg, 0.16 mmol, 1.0 eq) in anhydrous DMF (3 mL), 2-(1H-tetrazol-5-yl)pyrimidine (29 mg, 0.19 mmol, 1.2 eq), synthesized by a reported procedure, and potassium carbonate (35 mg, 0.25 mmol, 1.5 eq) were added at room temperature. The reaction was heated to 100 °C and stirred overnight at 100 °C. The reaction was cooled to room temperature and water (30 mL) was added to the reaction mixture. The aqueous layer was washed with ethyl acetate (3 × 15 mL). The combined ethyl acetate layers were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography (elution with 2:1 ethyl acetate/hexanes) to yield 75 as a white solid (30 mg, 95%). 1H NMR (400 MHz, CDCl$_3$) δ 8.87 (br s, 2 H), 7.24 – 7.47 (m, 2 H), 7.04 – 7.17 (m, 2 H), 6.93 (q, J=7.50 Hz, 1 H), 6.65 – 6.84 (m, 2 H), 4.87 – 5.38 (m, 1 H), 4.68 – 4.85 (m, 1 H), 3.58 – 4.37 (m, 6 H), 2.85 – 2.96 (m, 2 H), 2.16 – 2.32 (m, 6 H), 0.97 (br dd, J=15.89, 6.72 Hz, 6 H); 13C NMR (101 MHz, CDCl$_3$) δ 158.07, 153.89, 143.15, 139.30, 138.54, 138.01, 131.14, 129.55, 129.07, 128.81, 128.68, 128.60, 126.70, 124.34, 121.78, 114.10, 68.24, 60.51, 57.38, 56.52, 56.28, 55.43, 28.77, 23.11, 19.97, 18.43; HRMS (ESI) calcd. for C$_{28}$H$_{34}$N$_5$O$_4$S (M+H)$^+$ 536.23260, found: 536.23278.

N-(2-hydroxy-3-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)propyl)-5-isopropyl-2-methoxy-4-methyl-N-(o-tolyl)benzenesulfonamide (76). Compound 71 (124 mg, 0.32 mmol, 1.0 eq) was added to a
stirred suspension of 2-(1H-tetrazol-5-yl)pyridine (56 mg, 0.38 mmol, 1.2 eq), synthesized by a reported procedure,198 and potassium carbonate (66 mg, 0.48 mmol, 1.5 eq) in anhydrous DMF (5 mL) at room temperature. The resulting suspension was heated to 100 °C and stirred overnight. Water (50 mL) was added to the reaction mixture and the aqueous layer was washed with ethyl acetate (3 × 15 mL). The combined ethyl acetate layers were washed with brine (15 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the residual solid by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to yield \textbf{76} as a white solid (99 mg, 58% yield). 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 8.68 (br s, 1 H), 8.26 – 8.33 (m, 1 H), 7.96 (dt, \(J=15.14, 7.76\) Hz, 1 H), 7.48 – 7.55 (m, 1 H), 7.34 (br d, \(J=7.63\) Hz, 1 H), 7.09 – 7.24 (m, 2 H), 6.74 – 7.07 (m, 3 H), 5.20 – 5.43 (m, 1 H), 4.90 – 5.02 (m, 1 H), 3.67 – 4.34 (m, 7 H), 2.98 (sep, \(J=6.79\) Hz, 1 H), 2.20 – 2.47 (m, 6 H), 0.98 – 1.08 (m, 6 H); 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 154.19, 148.95, 144.11, 139.27, 138.45, 131.47, 131.40, 129.31, 128.91, 128.70, 128.36, 126.52, 126.40, 125.32, 114.22, 69.71, 69.25, 56.77, 56.33, 56.13, 52.76, 52.52, 28.67, 23.03, 19.83, 18.59, 18.05; HRMS (ESI) calcd. for C\textsubscript{27}H\textsubscript{33}O\textsubscript{4}N\textsubscript{6}S (M+H)+ 537.2278, found: 537.2265.
Figure 1-21 1H and 13C (1D NMR) spectra of 76.
Figure 1-22 ¹H-¹H correlation spectroscopy (COSY) spectrum of 76.

The cross peaks represent ¹H-¹H three-bond correlation between different protons.
Figure 1-23 1H-1H total correlation spectroscopy (TOCSY) spectrum of 76.

TOCSY spectrum shows correlations between all protons within a given spin system. The spin systems are highlighted by boxes.
Figure 1-24 1H-13C heteronuclear single quantum correlation (HSQC) spectrum of 76.

HSQC spectrum shows correlations between carbons and its attached protons ($^1J_{CH}$ couplings). The 1H-13C correlations are identified and highlighted by corresponding ppm values with 1H spectrum on the horizontal axis and 13C spectrum on the vertical axis.
Figure 1-25 1H-13C heteronuclear multiple bond correlation (HMBC) spectrum of 76.

(A) Chemical structures of isomers A and B with the expected correlation peaks in the 1H-13C heteronuclear multiple bond correlation (HMBC) spectrum shown by arrows. (B) HMBC spectrum of 76. HMBC spectrum gives long-range correlations between carbons and protons that are two or three chemical bonds apart. The 1H-13C correlations between H26 ↔ C24 (three-bond correlation) and H26 ↔ C24 (two-bond correlation) are pointed out, while no H26 ↔ C31 (three-bond correlation) was observed in the spectrum (region highlighted by box) indicating the presence of isomer B. The 1H spectrum is on the horizontal axis and 13C spectrum on the vertical axis with corresponding scales (ppm).
Figure 1-26 2D rotational frame nuclear Overhauser effect spectroscopy (ROESY) spectrum of 76.

(A) Chemical structures of isomers A and B with the spatially close protons highlighted by left right arrows. (B) 2D rotational frame nuclear Overhauser effect spectroscopy (ROESY) spectrum of 76. The red and blue colors represent opposite phases of the peaks. For reference, H8 ↔ H10 cross peak was observed in the spectrum. (highlighted by arrows). No such cross peaks were observed between H26 ↔ H38 (highlighted by box) suggesting the presence of isomer B.
1.4.3 Synthesis and SAR studies of non-sulfonamide series of miR-122 inhibitors

Among the final 34 shortlisted compounds from the high-throughput screening of small molecules in the miR-122 assay, many with sulfonamide scaffolds were found to be *Renilla* luciferase inhibitors. A powder re-test of these 34 compounds from the Broad Institute was conducted by Dr. Meryl Thomas and revealed 77 to be a potent miR-122 inhibitor without a sulfonamide scaffold. The lead compound 77 exhibited a 423% increase in luciferase activity compared to DMSO-treated control cells (Huh7-miR122 stable cell line), but unfortunately elicited a ~2-fold increase in luciferase signal in the psiCHECK-empty assay, suggesting that 77 can induce non-specific inhibition. In dose-response studies, 77 exhibited an EC₅₀ value of 196 nM. An *in vitro* Renilla luciferase (Rluc) assay revealed that 77 decreased *Renilla* luciferase activity by 31%, indicating some degree of Rluc inhibition shown by 77 (*Table 1-5*). A RT-qPCR analysis showed that miR-122 levels decreased by 15% after treatment with 77 (10 µM), suggesting that 77 is a potential miR-122 inhibitor and a good candidate to conduct SAR studies with a view to increase the miR-122 inhibition and reduce the extent of Rluc binding.

To elucidate the SAR, the piperazine ring was kept constant and changes to either end of the ring — the ethoxybenzene part and the biphenyl part — were made. The small molecule inhibitor 77 was synthesized by direct amide coupling between piperazine 77c and carboxylic acid 77b with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a coupling agent, in the presence of triethylamine and 4-dimethylaminopyridine (DMAP) in DCM (*Figure 1-27*). The pure product was obtained only by HPLC purification on a portion of the reaction mixture in 46% yield. Otherwise, the general synthetic route was to activate the carboxylic acid 78a on the biphenyl part by formation of acid chloride using oxalyl chloride and catalytic DMF in DCM solvent. This reaction mixture was concentrated under reduced pressure to obtain the acid chloride
This acid chloride was directly used in the next reaction with different phenylpiperazines in the presence of triethylamine as a base in DCM as the solvent to yield analogs of compound 77 (compounds 78–99, Figure 1-27).

Figure 1-27 Synthetic route for synthesis of non-sulfonamide series of miR-122 inhibitors.

(A) The ester 77a was hydrolyzed to obtain carboxylic acid 77b, which was then coupled to piperazine 77c to yield initial hit 77. (B) Analogs for SAR studies were synthesized by activating the carboxylic acids 78a with oxalyl chloride to obtain the acid chlorides 78b, and then addition to piperazines 78c. (C) Compound 94 was synthesized by substitution reaction between 77c and 94a.

In the first set of analogs (78 and 79), the hydroxy group on the biphenyl part was replaced with trifluoromethyl and methyl groups (Table 1-7). The methyl group constitutes a space-filling,
non-H-bonding substitute for hydroxy group, while the CF$_3$ group substitutes for the hydroxyl group with polar F-bonding (similar to H-bonding) capabilities with similar spatial constraints. Both the substitutions resulted in significant loss of activity – the activity decreased to 59% and 29% for methyl and CF$_3$ analog in the primary screen, respectively. The omission of the hydroxyl group (replacement of OH by H) in compound 80 gave the second-best analog in this series, with 80% activity compared to initial hit 77. Next, a series of analogs were made by altering the substitutions of the biphenyl group. The different orientations for the biphenyl group in compounds 81 and 82 imparted 20% and 18% activity compared to 77. Thus, the 1,3-isomer of the biphenyl group in 77 is important for activity. A diphenyl ether modification at the place of biphenyl group (83) is tolerable, with comparable activity to 80. Gratifyingly, in vitro Rluc activity of 83 was observed to be 99%, indicating no undesired Renilla luciferase inhibition.
RLU values represent *Renilla* luciferase luminescence signal in the Huh7-psiCHECK-miR122 stable cell line normalized to firefly luciferase and relative to 77.

In vitro *Renilla* luciferase and psiCHECK-empty assay data are normalized to DMSO.

Data represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

<table>
<thead>
<tr>
<th>compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)</th>
<th>Renilla luciferase assay</th>
<th>psiCHECK-empty assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td></td>
<td>100 ± 9%</td>
<td>69%</td>
<td>1.8-fold</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>59 ± 12%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>29 ± 4%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>80 ± 7%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>20.4 ± 0.9%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>18 ± 1%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>72 ± 8%</td>
<td>99%</td>
<td>--</td>
</tr>
</tbody>
</table>

Compounds 84-87 were synthesized and tested to measure the effect of changes on the ethoxybenzene part (Table 1-8). The removal of the ethoxy group in 84 resulted in significant reduction in activity. Analogs 85, 86, 87 and 88 exhibited lower activity (55%, 61%, 48% and 50%, respectively) than 77 and 80. Further, modifying the ethyl part of the ethoxy group to methyl
(89) resulted in loss of the activity compared to 80, indicating the importance of ethoxy group. To study the orientation of ethoxy group, compounds 89 and 90 were synthesized and tested with a methoxy group as a substitute for ethoxy group. Both analogs 89 and 90 elicited an activity of 26% and 36% respectively, compared to 55% activity by 85. Thus, 1,2-orientation of methoxy (or ethoxy) group relative to the piperazine core is beneficial to maintain potency.
Table 1-8 Structures and activity of derivatives 84-90.

RLU values represent *Renilla* luciferase luminescence signal in the Huh7-psiCHECK-miR122 stable cell line normalized to firefly luciferase and relative to 77.

In vitro *Renilla* luciferase and psiCHECK-empty assay data are normalized to DMSO.

Data represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

<table>
<thead>
<tr>
<th>Compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td></td>
<td>45 ± 3%</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>55 ± 4%</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>61.1 ± 0.5%</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>48 ± 2%</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>50 ± 2%</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>26 ± 2%</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>36.0 ± 0.3%</td>
</tr>
</tbody>
</table>

Another set of analogs was synthesized and tested to study the importance of the biphenyl substituent. Analog 91, having a hydroxyphenyl group, exhibited a huge loss of activity, reduced to 29% of the activity showed by 77 (Table 1-9). Moreover, substitution of the biphenyl group with a phenyl group in 92 reduced activity to levels comparable with 91. Modifying the biphenyl
moiety with a fused naphthalene ring in compound 93 elicited a deleterious effect, with 26% activity. Finally, a non-amide analog 94 with an alkyl amine modification elicited a 36% activity compared to 77. Compound 94 was synthesized by piperazine 77c substitution with alkyl bromide 94a (Scheme 1.2C).

Table 1-9 Structures and activity of derivatives 91-97.

RLU values represent Renilla luciferase luminescence signal in the Huh7-psiCHECK-miR122 stable cell line normalized to firefly luciferase and relative to 77.

In vitro Renilla luciferase and psiCHECK-empty assay data are normalized to DMSO.

Data represents the average ± standard deviation from at least three independent experiments.

Data generated by Dr. Nicholas Ankenbruck.

<table>
<thead>
<tr>
<th>Compound</th>
<th>chemical structure</th>
<th>primary screen (RLU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td></td>
<td>29 ± 2%</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>28 ± 5%</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>26 ± 2%</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>36 ± 3%</td>
</tr>
</tbody>
</table>

Two of the top analogs, 77 and 83, were further studied for miR-122 inhibitory activity. A dose-response study showed EC_{50} values of compounds 77 and 83 to be 2.0 µM and 9.6 µM, respectively in the Huh7-psiCHECK-miR122 stable cell line.
1.4.3.1 Summary and future work

In summary, a high-throughput screening and powder re-test revealed 77 as a lead compound for miR-122 inhibition. The SAR studies were conducted with the objective of improving the potency of the lead compound for miR-122 inhibition and reducing off-target Rluc inhibition. The SAR studies targeted various moieties in compound 77 while keeping the piperazine core as a constant. It was established that the hydroxy group in 77 and the 1,3-position of the biphenyl group are important to maintain activity. Furthermore, the presence and position of the ethoxy group was crucial for miR-122 inhibition. Replacement of biphenyl group with substituted phenols and fused ring systems resulted in loss of miR-122 inhibitory activity. Moreover, non-amide linkages also diminished activity. Unfortunately, none of the analogs synthesized were better than the lead compound, and further modifications will be necessary for lead optimization.

Upon close investigation of the current SAR and analysis of the top three inhibitors, 83 shows that a diphenyl ether is tolerable in comparison to biphenyl group and this can be the path forward to pursue for the further analog synthesis. Importantly, 83 showed minimum Rluc inhibition as observed by Renilla luciferase assay indicating that this modification holds promise for further SAR analysis. In addition, in vitro Renilla luciferase and psiCHECK-empty assay data of some of the best analogs like 80 and 83 needs to be recorded.

1.4.3.2 Experimentals

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and
stirred magnetically. Reactions were followed by thin layer chromatography (TLC) using glass-
backed silica gel plates (Sorbent Technologies, 250 μm thickness). Anhydrous acetonitrile and
tetrahydrofuran (THF) were purchased from Acros and anhydrous toluene and
dimethylformamide (DMF) were purchased from Alfa Aesar. Silica gel flash column
chromatography was performed on silica gel (60 Å, 40–63 μm, 230 × 400 mesh, Sorbtech) as a
stationary phase. High resolution mass spectral analysis (HRMS) was performed on a Q-
Exactive (Thermo Scientific) mass spectrometer. The 1H NMR and 13C NMR spectra were
recorded on a 300 MHz or 400 MHz Varian NMR spectroscope. Chemical shifts are given in δ
units (ppm) for 1H NMR spectra and 13C NMR spectra relative to the respective solvent residual
peaks (CDCl3: 7.26 ppm for 1H NMR and 77.16 ppm for 13C NMR; CD3OD: 3.31 ppm for 1H
NMR and 49.00 ppm for 13C NMR; (CD3)2SO: 2.50 ppm for 1H NMR and 39.52 ppm for 13C
NMR).197

(4-(2-Ethoxyphenyl)piperazin-1-yl)(4'-hydroxy-[1,1'-biphenyl]-3-yl)methanone (77). 1-
Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (70 mg, 0.36 mmol, 1.5 eq) was
added to a stirred solution of 77c (50 mg, 0.24 mmol, 1.0 eq) and 77b (52 mg, 0.24 mmol, 1.0 eq)
in anhydrous DCM (5 mL) at room temperature. Triethylamine (100 µL, 0.73 mmol, 3.0 eq) and
DMAP (3 mg, 0.02 mmol, 0.1 eq) were subsequently added at room temperature and the reaction
mixture was stirred overnight at room temperature. Water (10 mL) was added to the reaction
mixture and the DCM layer was separated. The aqueous layer was washed with ethyl acetate (3 ×
5 mL). The combined ethyl acetate layers were washed with brine (5 mL), dried over sodium
sulfate (2 g), filtered, and concentrated under reduced pressure. Purification of the product by silica
gel column chromatography was unsuccessful. So, product 77 (2.3 mg) was purified by reverse-
phase HPLC from a portion (5.0 mg) of crude 77 (46% yield). 1H NMR (300 MHz, CDCl$_3$) δ 7.48 – 7.56 (m, 2 H), 7.23 – 7.43 (m, 1 H), 7.21 – 7.44 (m, 3 H), 6.72 – 7.11 (m, 6 H), 5.99 – 6.29 (m, 1 H), 4.02 (q, J=6.92 Hz, 4 H), 3.47 – 3.83 (m, 2 H), 2.81 – 3.33 (m, 4 H), 1.39 (br t, J=6.89 Hz, 4 H). LRMS (ESI) calcd. for C$_{25}$H$_{27}$O$_3$N$_2$ (M+H)$^+$ 403.20, found: 403.00.

General procedure for synthesis of compounds 78-97.

Oxalyl chloride (0.36 – 0.44 mmol, 2.0 eq) was added dropwise to a solution of carboxylic acids 78a (0.18 – 0.22 mmol, 1.0 eq) in anhydrous DCM (5 mL) at room temperature. DMF (0.04 mmol, 0.1 eq) was added to this solution and the reaction mixture was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure. The residual acid chloride 78b was confirmed by NMR and used in the next reaction without any purification. Compounds 78b were dissolved in anhydrous DCM (5 mL) and this solution was cooled to 0 °C. Piperazines 78c (0.22 – 0.26 mmol, 1.2 eq) and triethylamine (0.27 – 0.33 mmol, 1.5 eq) were added dropwise to this solution at 0 °C, and the reaction mixture was warmed to room temperature, and stirred overnight at room temperature. On complete consumption of 78b as confirmed by TLC, the reaction mixture was concentrated under reduced pressure and the residual mass was loaded onto silica gel column. Compounds 78-97 were purified by elution with 1:5 ethyl acetate/hexanes in 25-95% yields.

(4-(2-Ethoxyphenyl)piperazin-1-yl)(4′-methyl-[1,1′-biphenyl]-3-yl)methanone (78). 84 mg, 87% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.61 – 7.68 (m, 2 H), 7.46 – 7.54 (m, 3 H), 7.37 – 7.42 (m, 1 H), 7.25 – 7.30 (m, 3 H), 7.02 (br s, 1 H), 6.84 – 6.97 (m, 3 H), 3.94 – 4.13 (m, 4 H), 3.66
(br s, 2 H), 3.19 (br s, 2 H), 2.93 – 3.12 (m, 2 H), 2.41 (s, 3 H), 1.46 (t, J=6.91 Hz, 3 H); 13C NMR (101 MHz, CDCl$_3$) δ 170.56, 151.68, 141.65, 137.74, 137.57, 137.51, 136.45, 129.76, 129.09, 128.33, 127.10, 125.68, 121.18, 112.60, 63.78, 21.25, 15.05; HRMS (ESI) calcd. for C$_{26}$H$_{29}$O$_2$N$_2$(M+H)$^+$ 401.2224, found: 401.2219.

(4-(2-Ethoxyphenyl)piperazin-1-yl)(4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl) methanone (79). 79 mg, 72% yield; 1H NMR (300 MHz, CDCl$_3$) δ 7.58 – 7.82 (m, 6 H), 7.42 – 7.58 (m, 2 H), 6.83 – 7.05 (m, 4 H), 3.93 – 4.17 (m, 4 H), 3.65 (br s, 2 H), 3.19 (br s, 2 H), 2.95 – 3.13 (m, 2 H), 1.45 (t, J=6.89 Hz, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 170.00, 151.61, 143.80, 140.26, 136.77, 130.06, 129.63, 129.20, 128.49, 127.48, 126.72, 126.04, 125.87, 123.51, 121.08, 118.58, 118.52, 112.60, 63.68, 14.94; HRMS (ESI) calcd. for C$_{26}$H$_{26}$O$_2$N$_2$F$_3$(M+H)$^+$ 455.1941, found: 455.1935.

[1,1'-Biphenyl]-3-yl(4-(2-ethoxyphenyl)piperazin-1-yl)methanone (80). 78 mg, 83% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.51 – 7.60 (m, 4 H), 7.28 – 7.45 (m, 5 H), 6.77 – 6.96 (m, 4 H), 3.88 – 4.04 (m, 4 H), 3.57 (br s, 2 H), 3.11 (br s, 2 H), 2.89 – 3.04 (m, 2 H), 1.37 (t, J=6.97 Hz, 3 H); 13C NMR (101 MHz, CDCl$_3$) δ 170.37, 151.58, 141.62, 140.64, 140.31, 136.45, 129.03, 128.93, 128.90, 128.41, 127.75, 127.18, 125.88, 125.80, 123.45, 121.05, 118.48, 112.48, 77.27, 63.64, 51.26, 50.54, 48.16, 42.46, 42.38, 14.96; HRMS (ESI) calcd. for C$_{25}$H$_{27}$O$_2$N$_2$(M+H)$^+$ 387.2067, found: 387.2073.

[1,1'-Biphenyl]-4-yl(4-(2-ethoxyphenyl)piperazin-1-yl)methanone (81). 49 mg, 52% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.57 – 7.68 (m, 4 H), 7.50 – 7.57 (m, 2 H), 7.43 – 7.50 (m, 2 H), 7.35 – 7.42 (m, 1 H), 6.79 – 7.13 (m, 4 H), 4.09 (q, J=6.97 Hz, 2 H), 3.80 – 4.03 (m, 2 H), 3.56 – 3.80
(m, 2 H), 3.18 (br s, 2 H), 2.94 – 3.13 (m, 2 H), 1.46 (t, J=6.91 Hz, 3 H); 13C NMR (101 MHz, CDCl$_3$) δ 170.43, 151.69, 142.79, 140.75, 140.38, 134.67, 130.71, 129.02, 127.92, 127.86, 127.43, 127.35, 127.29, 127.19, 123.55, 121.16, 118.56, 112.60, 63.76, 15.05; HRMS (ESI) calcd. for C$_{25}$H$_{27}$O$_2$N$_2$ (M+H)$^+$ 387.2067, found: 387.2070.

[1,1'-Biphenyl]-2-yl(4-(2-ethoxyphenyl)piperazin-1-yl)methanone (82). 26 mg, 28% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.37 (br s, 1 H), 7.30 – 7.56 (m, 10 H), 6.90 – 7.02 (m, 1 H), 6.77 – 6.90 (m, 2 H), 6.64 (br d, J=6.85 Hz, 1 H), 4.00 (q, J=6.93 Hz, 2 H), 3.87 (br s, 1 H), 3.53 – 3.77 (m, 1 H), 3.10 – 3.20 (m, 1 H), 3.00 – 3.09 (m, 1 H), 2.90 – 3.00 (m, 1 H), 2.64 – 2.74 (m, 1 H), 2.52 – 2.64 (m, 1 H), 1.87 (br s, 1 H), 1.38 (t, J=6.97 Hz, 3 H); HRMS (ESI) calcd. for C$_{25}$H$_{27}$O$_2$N$_2$ (M+H)$^+$ 387.2067, found: 387.2071.

(4-(2-Ethoxyphenyl)piperazin-1-yl)(3-phenoxyphenyl)methanone (83). 33 mg, 34% yield; 1H NMR (400 MHz, CDCl$_3$) δ 7.32 – 7.39 (m, 3 H), 7.32 – 7.39 (m, 1 H), 7.10 – 7.18 (m, 3 H), 6.98 – 7.08 (m, 6 H), 6.84 – 6.96 (m, 3 H), 4.07 (q, J=6.97 Hz, 2 H), 3.94 (br s, 2 H), 3.56 – 3.69 (m, 2 H), 3.14 (br s, 2 H), 3.01 (br s, 2 H), 1.45 (t, J=6.97 Hz, 3 H); HRMS (ESI) calcd. for C$_{25}$H$_{27}$O$_3$N$_2$ (M+H)$^+$ 403.2016, found: 403.2016.

[1,1'-Biphenyl]-3-yl(4-phenylpiperazin-1-yl)methanone (84). 69 mg, 83% yield; 1H NMR (300 MHz, CDCl$_3$) δ 7.25 – 7.72 (m, 10 H), 6.89 – 7.04 (m, 2 H), 3.99 (br s, 1 H), 3.48 – 3.83 (m, 2 H), 3.22 (br s, 3 H); 13C NMR (75 MHz, CDCl$_3$) δ 170.59, 170.44, 150.71, 142.71, 141.70, 141.61, 140.23, 140.02, 136.09, 132.19, 130.05, 129.32, 129.05, 128.93, 128.82, 128.59, 127.81, 127.78, 127.18,
127.16, 125.88, 125.84, 120.98, 116.92, 50.05; HRMS (ESI) calcd. for C_{23}H_{23}ON_{2} (M+H)^{+} 343.1805, found: 343.1812.

[1,1'-Biphenyl]-3-yl(4-(o-tolyl)piperazin-1-yl)methanone (85). 83 mg, 93% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.58 – 7.70 (m, 4 H), 7.36 – 7.53 (m, 5 H), 7.16 – 7.23 (m, 2 H), 7.00 – 7.05 (m, 2 H), 3.98 (br s, 2 H), 3.56 – 3.81 (m, 2 H), 3.01 (br s, 2 H), 2.88 (br s, 2 H), 2.34 (s, 3 H); 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 170.51, 150.84, 141.72, 140.39, 136.51, 132.82, 131.34, 129.13, 129.03, 128.52, 127.85, 127.27, 126.83, 125.96, 125.89, 123.97, 119.35, 17.95; HRMS (ESI) calcd. for C_{24}H_{25}ON_{2} (M+H)^{+} 357.1961, found: 357.1969.

2-(4-([1,1'-Biphenyl]-3-carbonyl)piperazin-1-yl)benzonitrile (86). 68 mg, 76% yield; 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.35 – 7.70 (m, 11 H), 6.95 – 7.14 (m, 2 H), 3.88 – 4.10 (m, 2 H), 3.73 (br s, 2 H), 3.24 (br s, 4 H); 13C NMR (75 MHz, CDCl\textsubscript{3}) δ 170.44, 155.12, 141.74, 140.23, 136.12, 134.35, 133.90, 128.91, 128.58, 127.77, 127.15, 125.83, 125.86, 119.07, 118.02, 106.80, 77.76, 76.79; HRMS (ESI) calcd. for C_{24}H_{22}ON_{3} (M+H)^{+} 368.1757, found: 368.1761.

[1,1'-Biphenyl]-3-yl(4-(2-nitrophenyl)piperazin-1-yl)methanone (87). 41 mg, 44% yield; 1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.79 (dd, J=8.12, 1.51 Hz, 1 H), 7.37 – 7.67 (m, 10 H), 7.09 – 7.21 (m, 2 H), 3.97 (br s, 2 H), 3.50 – 3.81 (m, 2 H), 2.84 – 3.32 (m, 4 H); 13C NMR (75 MHz, CDCl\textsubscript{3}) δ 170.58, 145.69, 144.40, 141.82, 140.32, 136.20, 133.72, 129.17, 129.04, 128.94, 128.70, 127.90, 127.27, 125.94, 123.25, 121.80; HRMS (ESI) calcd. for C_{23}H_{22}O_{3}N_{3} (M+H)^{+} 388.1656, found: 388.1659.
[1,1'-Biphenyl]-3-yl(4-(2-methoxyphenyl)piperazin-1-yl)methanone (88). 78 mg, 81% yield;
\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.58 - 7.68 (m, 4 H), 7.35 - 7.52 (m, 5 H), 6.87 - 6.97 (m, 1 H), 6.86 - 7.08 (m, 1 H), 6.85 - 7.09 (m, 1 H), 6.79 - 7.14 (m, 1 H), 6.76 - 7.17 (m, 1 H), 3.58 - 4.11 (m, 7 H), 3.18 - 3.76 (m, 4 H);
\(^13\)C NMR (101 MHz, CDCl\(_3\)) δ 170.42, 152.36, 141.73, 140.69, 140.41, 136.48, 129.13, 129.04, 128.53, 127.86, 127.29, 125.99, 125.91, 123.77, 121.21, 118.63, 111.46, 55.56, 53.57, 51.39, 50.79; HRMS (ESI) calcd. for C\(_{20}\)H\(_{28}\)O\(_3\)NS (M+H)\(^+\) 362.1784, found: 362.1792.

[1,1'-Biphenyl]-3-yl(4-(4-methoxyphenyl)piperazin-1-yl)methanone (90). 19 mg, 20% yield;
\(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 7.56 - 7.73 (m, 4 H), 7.33 - 7.55 (m, 5 H), 6.81 - 7.06 (m, 4 H), 3.44 - 4.26 (m, 7 H), 2.88 - 3.33 (m, 4 H);
\(^13\)C NMR (75 MHz, CDCl\(_3\)) δ 170.47, 141.85, 140.36, 129.19, 129.07, 128.73, 127.92, 127.30, 126.02, 125.97, 119.48, 114.81, 55.73; HRMS (ESI) calcd. for C\(_{24}\)H\(_{25}\)O\(_2\)N\(_2\) (M+H)\(^+\) 373.1911, found: 373.1926.

(4-(2-Ethoxyphenyl)piperazin-1-yl)(3-hydroxyphenyl)methanone (91). 62 mg, 64% yield;
\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.78 (br s, 1 H), 7.17 - 7.24 (m, 1 H), 6.76 - 7.12 (m, 7 H), 4.08 (q, \(J=6.89\) Hz, 2 H), 3.98 (br s, 2 H), 3.63 (br s, 2 H), 3.17 (br s, 2 H), 2.90 - 3.10 (m, 2 H), 1.45 (t, \(J=6.97\) Hz, 3 H);
\(^13\)C NMR (101 MHz, CDCl\(_3\)) δ 170.94, 157.08, 151.67, 136.26, 129.82, 121.21, 118.25, 117.65, 114.80, 76.99, 63.82, 15.05; HRMS (ESI) calcd. for C\(_{19}\)H\(_{23}\)O\(_3\)N\(_2\) (M+H)\(^+\) 327.1703, found: 327.1713.

(4-(2-Ethoxyphenyl)piperazin-1-yl)(naphthalen-2-yl)methanone (93). 63 mg, 70% yield;
\(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 7.83 - 7.94 (m, 5 H), 7.51 - 7.60 (m, 4 H), 6.84 - 6.96 (m, 3 H), 4.08
(q, J=6.92 Hz, 4 H), 3.70 (br s, 2 H), 3.20 (br s, 2 H), 2.93 – 3.14 (m, 2 H), 1.45 (t, J=6.99 Hz, 3 H); HRMS (ESI) calcd. for C_{23}H_{25}O_{2}N_{2} (M+H)^{+} 361.1911, found: 361.1917.

(4-(2-Ethoxyphenyl)piperazin-1-yl)(phenyl)methanone (92). Benzoyl chloride (34 µL, 0.29 mmol, 1.2 eq) was added to a stirred solution of 77c (50 mg, 0.24 mmol, 1.0 eq) in anhydrous DCM (5 mL) at 0 °C. Triethylamine (51 µL, 0.36 mmol, 1.5 eq) was added dropwise to this solution at 0 °C and the resulting reaction mixture was stirred overnight while allowing to warm to room temperature. On complete consumption of 77c as confirmed by TLC, the reaction mixture was concentrated under reduced pressure and the residual mass was loaded onto a silica gel column. Compound 92 was purified as a white solid by elution with 1:4 ethyl acetate/hexanes (61 mg, 79% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.54 (m, 5 H), 6.83 – 7.05 (m, 4 H), 3.91 – 4.13 (m, 3 H), 3.62 (br s, 2 H), 3.16 (br s, 2 H), 2.91 – 3.11 (m, 2 H), 1.45 (t, J=6.89 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 170.59, 151.74, 135.99, 129.82, 128.64, 127.25, 123.60, 121.20, 112.72, 63.81, 15.06; HRMS (ESI) calcd. for C_{19}H_{23}O_{2}N_{2} (M+H)^{+} 311.1754, found: 311.1760.

1-((1,1'-Biphenyl)-3-ylmethyl)-4-(2-ethoxyphenyl)piperazine (94). Compound 94a (90 mg, 0.364 mmol, 1.5 eq) was added to a stirred solution of 77c (50 mg, 0.242 mmol, 1.0 eq) in anhydrous DCM (5 mL) at 0 °C. Triethylamine (70 µL, 0.48 mmol, 2.0 eq) was added dropwise to this solution at 0 °C and the resulting reaction mixture was stirred overnight while allowing to warm to room temperature. On complete consumption of 77c as confirmed by TLC, the reaction mixture was concentrated under reduced pressure and the residual mass was loaded onto a silica gel column. Compound 94 was purified as a white solid by elution in 1:5 ethyl acetate/hexanes (89 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.66 (m, 3 H), 7.34 – 7.54 (m, 6 H), 6.84 –
1.5 Small molecule modifiers of microRNA-21

1.5.1 Introduction to microRNA-21

MicroRNA-21 (miR-21) is a 22-nucleotide long miRNA and was one of the first microRNAs to be discovered in humans. The role of miR-21 in cardiovascular biology is well-studied, and dysregulation of miR-21 is found to be involved in proliferative vascular disease, cardiac hypertrophy, ischemic heart disease, and human cardiovascular diseases. Along with its role as an anti-apoptotic and pro-survival factors, high expression levels of miR-21 are a common feature of pathological cell growth or cell stress. Upregulation of miR-21 may be a characteristic of cancer cells and is commonly found in breast, colon, lung, pancreas, prostate, and gastric cancer. In a large-scale miRNA profiling study on solid tumors of 540 human samples derived from 363 specimens, miR-21 was the only miRNA found to be upregulated.

Human miR-21 was mapped to chromosome 17q23.2, where the gene overlaps with Vacuole Membrane Protein 1 (VMP1 or TMEM49), a human homolog of rat vacuole 42 membrane protein. However, these overlapping genes are transcribed independently, with pri-miR-21 transcription facilitated by a promoter in the intron of the overlapping gene codon. In the
human genome, the Activator Protein 1 (AP-1) transcription factor, comprising c-Fos and c-Jun proteins, interacts with the miR-21 promoter region for miR-21 gene expression.211 A well-known target of miR-21 is a tumor suppressor gene, programmed cell death protein 4 (PCPD4), which contains the target binding site of miR-21.212 PCPD4 is implicated in the progression of glioma,213 breast,214 and colorectal cancers.214 A consequence of miR-21 overexpression in cancer cells is the downregulation of PCPD4 (miR-21 binds directly to the 3’-UTR of PCPD4 at 228-249 nt215). Interestingly, PCPD4 inhibits transcription of AP-1,216 which further results in downregulation of miR-21. Thus, miR-21 is capable of auto-regulation and maintaining its own levels through a miR-21, PCPD4, and AP-1 feedback loop.217 One of the targets of miR-21 is the reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK is a tumor suppressor gene and a negative regulator for matrix metalloproteinase-9, a key enzyme involved in tumor invasion and metastasis.218 RECK is downregulated in gastric cancer cells with upregulation of miR-21.219 Another miR-21 target, Sprouty2 (SPRY2) is a protein that affects cellular outgrowths, branching, and migration and is downregulated as a result of higher miR-21 expression in SW480 colon cancer cells.220 Additionally, phosphatase and tensin (PTEN) homolog, which is a tumor suppressor, is also downregulated by miR-21 in colorectal cancer cells.221 Silencing of PTEN can lead to chemoresistance via activation of the Akt and ERK pathways.

A study by Shi, et al. showed the involvement of miR-21 in mediating chemoresistance towards docetaxel in prostate cancer PC3 cells.222 Ectopic expression of miR-21 was observed to increase the docetaxel resistance of these cancer cells. However, ASO-mediated silencing of miR-21 led to sensitization of PC3 cells to docetaxel treatment. Here, chemoresistance towards docetaxel was also attributed to low expression of PDCD4.222 Si, et al. reported growth inhibition of breast cancer MCF-7 cells, injected into mice, by anti-miR-21 ASOs.223 These mice showed
slow tumor growth for 2 weeks following anti-miR-21 treatment. In 2010, Slack’s group demonstrated for the first time the *in vivo* importance of miR-21 in cancer.224 With the help of Cre and Tet-off technologies, they generated mice conditionally expressing miR-21 (doxycycline-induced miR-21 expression). miR-21 levels were normal for mice fed with doxycycline, whereas high expression of miR-21 was observed in mice fed normal chow. However, on withdrawal of doxycycline, a ten-fold increase in the level of miR-21 was observed, which led to development of lymphoma. Retreatment with doxycycline returned miR-21 levels back to normal and surprisingly, tumors completely regressed within a week. Also, knockdown of miR-21 by anti-miR-21 ASOs led to the activation of caspase 3/7, further leading to induction of apoptosis in A172, LN229, LN428, LN308, U87, and U373 glioblastoma cells.203 Taken together, these data indicate the importance and dependency of tumor initiation and maintenance of malignancies on miR-21.224 Thus, small molecule inhibitors of miR-21 present a unique opportunity for therapeutic use, and can provide effective means for elucidating genetic networks involving miR-21 in targeted cancer therapy.

In 2008, our lab (in collaboration with Prof. Qihong Huang at the Wistar Institute) reported the first small molecule modifier of miR-21 activity.103 For screening small molecules, a lentiviral reporter construct was assembled using sequences complementary to mature miR-21 (Figure 1-28). Additionally, two constructs, one with mature miR-30 as a specificity control, and another with a negative-control linker sequence (a sequence with no detectable natural miRNA binding) were built, and plasmids were transfected into HeLa cells. HeLa cells express high levels of miR-21 but relatively low levels of miR-30.225 Similar to the aforementioned miR-122 reporter construct, these mature miRNA binding sequences were present downstream of a luciferase reporter gene. In the case of high mature miR-21 levels, reduction of luciferase signal is be
observed, while in the case of low miR-21 levels, high luciferase activity would be present. To study the miRNA specificity of these reporter plasmids, cells containing the luciferase miR-30A (Luc-miR-30A) reporter plasmid and a construct encoding exogenous primary miR-30 were assayed (Figure 1-28). These cells showed a diminished luciferase signal compared to cells containing a mismatched combination of Luc-miR-30A reporter and miR-21. These results study indicate that Luc-miR-21 and Luc-miR-30A reporter plasmids are specific and only respond to the complementary miRNAs. These constructs detected endogenous miRNAs as expected. HeLa cells containing the Luc-miR-21 plasmid exhibited almost 90% decrease in the intensity of luciferase signal, confirming the ability of these constructs to detect endogenous miR-21. Cells containing the Luc-miR-30A reporter construct showed a slight decrease in luciferase signal, indicating low levels of miR-30 in HeLa cells.

The reporter construct consists of a miR-21 binding site downstream of the luciferase gene. In the presence of high levels of miR-21, luciferase transcription is downregulated, reducing chemiluminescence. Small molecules which increase luciferase activity are selected. The reporter plasmid with the miR-30 binding sequence constitutes the negative control for determining the specificity of inhibitors for miR-21. Adapted from *Angew. Chem. Int. Ed.*, 2008, 47 (39), 7482.103
Subsequently, a primary screen of more than 1,000 compounds from the Deiters Lab compound collection and from the Library of Pharmacologically Active Compounds (LOPAC, Sigma-Aldrich) were conducted at a compound concentration of 10 µM. Compound 95 was initially identified as a hit compound with a 251% increase in luciferase signal compared to DMSO-treated control cells. Further, an SAR analysis was undertaken (Figure 1-29), revealing compound 14 to be the most active compound. Compound 14 elicited a 485% increase in luciferase signal at a concentration of 10 µM. Furthermore, compound 14 did not display cytotoxic effects at the EC50 value of 2 µM.

![Figure 1-29](image)

Figure 1-29 Discovered miR-21 inhibitor 95 and SAR investigation of 95 and 14. Modifications on compounds 95 and 14 are highlighted along with the outcome. Adapted from *Angew. Chem. Int. Ed.*, 2008, 47 (39), 7482.103

As a control experiment, HeLa cells transfected with the Luc-linker (control) did not show any alterations in luciferase signal upon exposure to compound 14. Also, small molecule 14 did not elicit any increase in luciferase signal in cells co-transfected with both the Luc-miR-30A reporter plasmid and the miR-30 plasmid. These data confirm the action of compound 14 as a specific miR-21 inhibitor, and not as a general inhibitor of miRNAs. A RT-qPCR analysis revealed miR-21 expression in HeLa cells is reduced by 78% compared to DMSO-treated cells. Mode of action studies were carried out similarly to the aforementioned work in miR-122 reporter cells.
RT-qPCR experiments with primers specific for the primary miR-21 (pri-miR-21) sequence revealed pri-miR-21 levels to be decreased by 87% in cells treated with 14. This strongly suggests that compound 14 acts on the transcriptional level in the miRNA biogenesis pathway. The role of small molecule 14 as a robust miR-21 inhibitor was further confirmed by successful reduction of miR-21 levels on exposing 14 to three other cell lines — MCF-7, A172 and MDA-MB-231, which expresses high levels of miR-21.

This study was followed up by Jiang, et al. For simplifying modifications and SAR development, the (E)-1,2-diphenylazene scaffold was replaced by N-phenylbenzamide. Thus, compound 14 can be envisioned as structurally similar 4-benzyolamino-N-(prop-2-yn-1-yl)-benzamides (96) and 4-phenylaminocanbonyl-N-(prop-2-yn-1-yl)benzamides (97). These two classes of small molecules were independently modified to produce individual SARs (Figure 1-30). All of these compounds were used for stem-loop RT-qPCR analysis and analogs of 96 were found to be more active than 97. Compound 15 was one of the analogs more potent than compound 14, and was selected for further analysis (Figure 1-30).
miR-21 inhibitor 14 was modified to compounds with a similar geometric configuration (96 and 97). Compound 15 (1j) was selected as the most promising analog for miR-21 inhibition. Adapted from Bioorg. Med. Chem., 2015, 23, 6510.104

Subsequently, functional studies were carried out comparing compounds 15 and 14. 15 showed a higher enhancement in rescuing PCPD4, a tumor suppressor protein and direct target of miR-21, compared to 14. The compound 15 induced increased apoptosis in HeLa and U-87 MG cells compared to DMSO-treated control cells, and induced much higher apoptosis in 50 µM H2O2-treated cells. A study by Cheng, et al. demonstrated the role of miR-21 in protecting cardiac myocytes against H2O2-induced injury.226 Downregulation of miR-21 in H2O2-treated cells led to higher cell death, while upregulation of miR-21 levels by transfection with pre-miR-21 led to protective effect on cardiac myocyte injury. In addition, proliferation tests performed on HeLa cells (and on 50 µM H2O2-treated HeLa cells), using CFSE staining with detection by FACS, revealed a slower decrease in mean fluorescence intensity (MFI) on treatment of HeLa cells with 15, indicating a decreased proliferation with miR-21 inhibition by 15. Here, an enhanced anti-proliferative effect was observed on H2O2-treated cells. Additionally, cell doubling time was also increased in HeLa cells and H2O2-treated HeLa cells by 0.5 h and 1 h, respectively, on exposing
to 15. There is increasing evidence about higher intracellular H$_2$O$_2$ concentration in providing a conducive environment for apoptotic cell death in tumor cells.227 Thus, the effect of 15 as miR-21 inhibitor that is more effective in conjunction with H$_2$O$_2$ treatment suggested its potential for synergistic use with chemotherapeutic agents in future.

To determine the specificity of 15, a detailed miRNA profile comprising 11 inflammatory miRNAs (let-7a, miR-25, miR-26, miR-126, miR-133, miR-143, miR-145, miR-146, miR-148, miR-152 and miR-195) showed no significant difference in miRNA levels on treatment with 15 (10 µM) for 24 h (Figure 1-31A). In addition, the key genes in the miRNA biogenesis pathway, including DROSHA, TARBP2, DGCR8, XPO5, DICER1 and AGO2, were quantified using RT-qPCR and showed no significant difference upon exposure to 15, indicating the specificity of small molecule 15 (Figure 1-31B).
Compound 15 did not elicit any activity against all the 11 miRNAs tested, indicating specificity of 15 towards miR-21. (B) Genes controlling miRNA biosynthesis did not show any significant transcriptional changes upon exposure to 15, indicating that 15 is a specific miR-21 inhibitor and does not influence the whole miRNA synthesis pathway. Adapted from *Bioorg. Med. Chem.*, 2015, 23, 6510.

In 2015, our lab published a series of aryl amides as a new class of specific miR-21 inhibitors. Similar to previous studies, an initial hit compound was identified with the aforementioned luciferase-based reporter assay. The hit compound was further subjected to SAR analysis, through which 4 analogs (98, 99, 100, and 17) were selected (Figure 1-32A). Subsequently, these compounds were scrutinized for specific miR-21 activity. When the Huh7-psiCHECK-miR122 cell line was treated with 98, 99, 100, and 17, no effect on luciferase signal was observed, while these compounds exhibited more than doubled luciferase signal in a HeLa-
miR21-Luc cell line (Figure 1-32B). A RT-qPCR analysis showed that HeLa cells treated with these compounds at 10 µM for 48 hours did not show altered miR-21, miR-125b, miR-17-5p and miR-222 levels. Compounds 98, 99, 100, and 17 showed EC$_{50}$ values of 10.8 µM, 6.1 µM, 2.3 µM and 0.86 µM, respectively (Figure 1-32C). Moreover, a RT-qPCR analysis of primary miR-21 revealed almost no effect on pri-miR-21 levels, thus indicating a mode of action downstream of transcription of miR-21 gene (i.e., in miRNA maturation or effector function). This mode of action is novel compared to extant inhibitors. To confirm this further, a reporter construct with an endogenous miR-21 promoter was cloned upstream of luciferase gene in pGL4 vector in such a way that luciferase reporter was placed under the control of the miR-21 promoter. No effect was seen on luciferase signal in this pGL4-miR21P construct in HeLa cells on exposure to 98, 99, 100, and 17, thereby supporting the role of these compounds in the miRNA maturation pathway.
Building from the foundation of the few classes of specific miR-21 inhibitors reported in the literature, studies to identify and develop new structurally diverse miR-21 inhibitors were undertaken. A pilot screen using the same luciferase-based reporter assay under the regulation of miR-21 was used to identify small molecule inhibitors. An extensive high-throughput screen (HTS) of 333,519 compounds was performed (PubChem AID 2289), which identified 3,282 hits (1% hit rate). Subsequently, 124 of the top-ranking compounds were identified and assayed in secondary screens for their specificity and selectivity. These compounds were subjected to a cell-based reporter assay with the miR-30A reporter (PubChem AID 2507); compounds active in both the assays were not considered to be specific miR-21 inhibitors, but instead were considered to be general miRNA inhibitors and were discarded. Another cell-based assay with the luciferase gene
construct was conducted on the remaining compounds to identify luciferase inhibitors considered to be false-positives (PubChem AID 493175). Finally, 58 small molecules were confirmed as miR-21-specific inhibitors and subjected to dose-dependent studies.

In 2018, our lab published the development of oxadiazole series of miR-21 inhibitors. From these 58 hit molecules, 2 small molecules were selected with similar structural features and lead compound 16 was selected as the optimized miR-21 inhibitor after a detailed SAR study. A dose-dependent inhibition study of 16 in a HeLa-miR-21-Luc assay revealed an EC$_{50}$ value of 5.3 µM. However, upon RT-qPCR analysis, 16 showed no significant decrease in mature miR-21 and pri-miR-21 levels in HeLa cells, as well as mature miR-21 levels in A498, SKOV3, and A549 cells at 10 µM concentration after 48 h. Treatment of 16 in HeLa cells transfected with luciferase reporter construct pGL4-miR21P which monitors miR-21 promoter activity revealed no changes in the reporter gene expression. Furthermore, no change in melting temperature was observed with mature miR-21 in presence of 16, thereby establishing no direct binding of miR-21 with 16. Although mode of action studies is still under investigation, 16 (10 µM) exhibited sensitization of A498 cells (renal cell carcinoma) towards topotecan exposure in a concentration-dependent treatment (IC$_{50}$ of topotecan alone is 1 µM, IC$_{50}$ of topotecan+16 is 90 nM – a ~11-fold increase in potency). In addition, this effect of 16 was specific towards A498 cells.

From these 58 hit small molecules, benzoxazole 101 (PubChem CID 71233585) was selected for further investigation based on its promising activity and synthetic accessibility.
1.5.2 Synthesis and SAR studies of miR-21 inhibitors

Figure 1-33 miR-21 assay and hit compound 101.

(A) Design of a luciferase-based live-cell reporter for high-throughput screening of small molecule modulators of miR-21 function. miR-21 binds to a complementary sequence in the 3′-UTR of the luciferase gene, inhibiting translation and resulting in a decrease in luciferase expression. The presence of a small molecule inhibitor of miR-21 transcription relieves translational repression of the reporter, resulting in an increase in luciferase levels. (B) Chemical structure of hit compound 101 identified in the high-throughput screen.

Analogs of the initial hit 101 were synthesized using a synthetic route that allowed for facile functionalization of numerous positions across the structure (Figure 1-34). Commercially available ortho-substituted anilines 102 were readily reacted with 103 via a condensation reaction in polyphosphoric acid to obtain the resulting benzimidazoles, benzothiazoles, and benzoazoles 104. Subsequent reaction with chloroacetyl chloride provided the linker region in 105 which readily underwent nucleophilic substitution with phenols, thiols and anilines in the presence of cesium carbonate to yield the final products.
Figure 1-34 Synthetic route to ether-amide miR-21 inhibitors.

(a) polyphosphoric acid, 170 °C; (b) chloroacetyl chloride, toluene, 90 °C; (c) sat. NaHCO₃, rt; (d) Cs₂CO₃, CH₃CN, rt; Ar = phenyl, naphthyl, benzothiazolyl.

Using this synthetic route, a small panel of analogs was generated and their biological activity was evaluated using the HeLa-miR21-Luc cell line (Figure 1-35). The initial hit 101 demonstrated modest activity, inducing a 1.55-fold increase in luciferase signal following treatment at 10 µM for 48 h. Absence of the iodide in 106 resulted in only a very minor improvement in activity, while loss of the iodide along with introduction of a para-methoxy group in 107 had little to no effect on activity. Turning towards modifying the benzothiazole ring, the benzoxazole derivative of 101 yielded 108, which maintained the same activity as the parent compound. Keeping the benzoxazole and removal of the iodide resulted in 109, which showed no change in activity, while introduction of a para-methoxy to yield 110 abolished all activity. Expanding upon 109, addition of a 5-chloro modification to the benzoxazole led to in 111, which demonstrated an 85% enhancement in activity compared to the initial hit 101. Furthermore, addition of a para-methoxy substitution to 111 to yield 112 further enhanced activity, eliciting a 314% improvement compared to 101. Continuing from the promising results obtained from 111 and 112, analogs containing benzimidazoles (113 and 114) were synthesized, however, only a loss in activity was observed in both cases.
Figure 1-35 Activity of compounds 101 and 106–114 in the HeLa-miR21-Luc assay.

Values represent fold-changes in luminescence signal in the HeLa-miR21-Luc stable cell line normalized to cell viability and relative to a DMSO control. Data represent the averages ± standard deviations from at least three independent experiments. Luminescence data generated by Dr. Nicholas Ankenbruck.

To build upon the improvement in activity seen in 111 and 112, an additional round of analogs was generated containing further modification to each respective compound. For 111, moving the 5-chloride to the 6-position yielded 116, which had only a minor impact on activity. Changing the ether-amide linker from the para- to the meta-position yielded analogs 117 and 118, which resulted in a loss of activity. The importance of the ether-amide linker was investigated by synthesizing 119 bearing a shorter carbamate linker (Figure 1-36). Compound 119 elicited a 35% increase in activity relative to 111 and a 249% increase relative to the initial hit 101. Analogous modifications were also made to 112 to produce 120, 121, 122, and 123, however, only reduced activity was observed in this set of analogs (Figure 1-37).
Figure 1-36 Synthetic route to miR-21 inhibitors 119 and 123.

a) Et₃N, DCM, 0 °C – rt.

Figure 1-37 Activity of compounds 116–123 in the HeLa-miR21-Luc assay.

Values represent fold-changes in luminescence signal in the HeLa-miR21-Luc stable cell line normalized to cell viability and relative to a DMSO control. Data represent the averages ± standard deviations from at least three independent experiments. Luminescence data generated by Dr. Nicholas Ankenbruck.

With 112 remaining the most potent inhibitor identified thus far, we decided to investigate further modifications to its structure. To this end, analogs containing modifications to the etheramide linker and the central aniline ring were synthesized and their activity was tested in the HeLa-miR21-Luc stable cell line (Figure 1-34). Replacement of the etheramide linker with a thioetheramide linker produced analog 124 which exhibited a 54% decrease in activity relative to 112.
(Figure 1-38). Furthermore, incorporation of an amino-amide linker in place of the ether-amide linker resulted in 125 and completely abolished activity. Replacement of the central aniline ring with a naphthalene (126) or benzothiazole (127) was also detrimental to activity. Lastly, alkylation of the amide nitrogen in 112 with a methyl or propargyl group, 128 and 129 respectively (Figure 1-39), abolished activity compared to the parent compound 112. Taken together, these results confirmed the importance of the ether-amide linker to activity and thus we decided to maintain this moiety moving forward with additional analogs.

![Figure 1-38 Activity of compounds 124–129 in the HeLa-miR21-Luc assay.](image)

Values represent fold-changes in luminescence signal in the HeLa-miR21-Luc stable cell line normalized to cell viability and relative to a DMSO control. Data represent the averages ± standard deviations from at least three independent experiments. Luminescence data generated by Dr. Nicholas Ankenbruck.

![Figure 1-39 Synthetic route to ether-amide miR-21 inhibitors 128 and 129.](image)

(a) LiHMDS, MeI, THF, 0 °C – rt (for R = Me); NaH, propargyl bromide, DMF, 0 °C – rt (for R = propargyl).
Building upon the generated structure-activity information, we decided to synthesize an additional set of analogs based on 112, but containing more diverse changes to the two distal ring systems while maintaining the structure of the central region of the scaffold. To this end, additional analogs were synthesized and tested in the miR-21 luciferase reporter (Figure 1-40). Moving the para-methoxy to the meta-position resulted in 130, which displayed similar activity to 112. Replacement of the para-methoxy with a nitrile (131), fluorine (132), nitro (133), or phenyl (134) group all resulted in losses of activity. Similarly, introduction of a para-isopropyl in conjunction with a meta-methyl group (135) led to a 46% decrease in activity. Interestingly, replacement of the 5-chloro with a 5-fluoro in conjunction with (136) or without (137) the para-methoxy group also reduced activity, providing evidence that the 5-position may be highly sensitive to modifications. To further support this, introduction of a bromine at the 5-position (138) resulted in a 27% increase in activity compared to the parent compound 112. Surprisingly, introduction of a phenyl group at the 5-position (139) had an even greater impact on activity, demonstrating a 62% improvement in activity compared to 112, and a 508% increase in activity relative to the initial hit 101. Conversion of the benzoxazole to a pyridinyloxazole (140) led to a loss in activity compared to 101 and further supports the critical nature of the 5-position on the benzoxazole.
Figure 1-40 Activity of compounds 130–140 in the HeLa-miR21-Luc assay.

Values represent fold-changes in luminescence signal in the HeLa-miR21-Luc stable cell line normalized to cell viability and relative to a DMSO control. Data represent the averages ± standard deviations from at least three independent experiments. Luminescence data generated by Dr. Nicholas Ankenbruck.

Overall, the SAR studies suggest several key positions on the inhibitor that appear sensitive to modification, including the ether-amide linker core and the 5-position on the benzoxazole ring system. With the promising and improved candidates 112, 130, 138, and 139 in hand, we next evaluated their biological activity and confirmed their function as miR-21 inhibitors.

1.5.2.1 Secondary assays to confirm activity of miR-21 inhibitors

Firstly, the HeLa-miR21-Luc reporter cell line was treated with a dilution series of the most promising analogs, and 112, 130, 138, and 139 all demonstrated reporter activation in a dose-dependent fashion with EC$_{50}$ values of 6.7 µM, 4.7 µM, 6.4 µM, and 3.5 µM, respectively (Figure 1-41).
Luciferase signal was first normalized to cell viability and then to a DMSO control. Errors bars represent standard deviations from three independent experiments. EC$_{50}$ values were determined by fitting data to a nonlinear regression analysis in GraphPad Prism software. Luminescence data generated by Dr. Yuta Naro.

Firefly luciferase inhibitors have been previously identified as false positive hits in high-throughput screens due to luciferase enzyme stabilization in cells. Because this is a documented concern when using luciferase reporter assays, we decided to evaluate the effect of 112, 130, 138, and 139 on luciferase activity in a biochemical assay. Treatment with the positive control firefly luciferase inhibitor PTC-124 led to a 94% reduction in enzyme activity. While treatment with 112 elicited no significant reduction in luciferase activity, treatment with 130, 138, and 139 all led to 44%, 38%, and 27% reductions in luminescence signal, respectively (Figure 1-42A). To further validate whether these inhibitors act on the miRNA pathway, we transfected HeLa cells with a psiCHECK-empty reporter (containing a sequence not targeted by any known miRNA) followed by treatment with the compounds at 10 µM for 48 h. The positive control PTC-124 and compounds 130, 138, and 139 induced an increase in luminescence signal ranging from 1.5 to 1.8-fold, while compound 112 only showed a minor increase in luciferase activity (Figure 1-42B). These biochemical and cell-based results indicate that 130, 138, and 139 may have inflated activity profiles in the HeLa-miR21-Luc assay due to off-target binding to the firefly luciferase enzyme.
Taking both the dose-response and *in vitro* firefly luciferase data into account, we decided to carry **112** forward as the primary candidate for further biological testing.

![Figure 1-42 Evaluation of selectivity of lead compounds.](image)

(A) Incubation of recombinant firefly luciferase with inhibitors **112**, **130**, **138**, and **139** at 10 µM, followed by a Bright-Glo assay. PTC-124, a known firefly luciferase inhibitor, was included as a positive control. (B) Transfection of HeLa cells with the psiCHECK-empty plasmid followed by treatment with compounds **112**, **130**, **138**, and **139** or the positive control at 10 µM. A dual luciferase assay was performed after 48 h. RLU values represent firefly luciferase luminescence signal normalized to *Renilla* luciferase luminescence signal. (C) Treatment of Huh7-miR122 stable cells with **112** (10 µM) or positive control **20** (10 µM). A dual luciferase assay was performed after 48 h. RLU values represent *Renilla* luciferase luminescence signal normalized to firefly luciferase luminescence signal. All data were normalized to DMSO treatment (negative control) and errors bars represent standard deviations from three independent experiments. Statistical significance was determined using an unpaired t-test, *P < 0.05, ns P ≥ 0.05. Luminescence data in A and C generated by Dr. Yuta Naro and in B generated by Dr. Nicholas Ankenbruck.

Next, we tested if **112** is a general miRNA pathway inhibitor or if it has selectivity for miR-21. To this end, we employed an additional stable reporter cell line, Huh7-miR122, which places *Renilla* luciferase expression under the control of miR-122 activity. Treatment with **112** (10 µM) elicited only a minor 0.2-fold reduction in *Renilla* luciferase signal, demonstrating that **112** does not inhibit miR-122 activity (Figure 1-42C). As a positive control, cells were also treated
with 20, a known miR-122 inhibitor,108 which induced a > 3.5-fold increase in luminescence, confirming functionality of the assay. Taken together, these results indicate that 112 shows some level of selectivity for miR-21 and is not a general miRNA pathway inhibitor.

\section*{1.5.2.2 Identification of preliminary mode of action}

To explore the mechanism by which 112 inhibits miR-21 function, levels of mature miR-21 were measured via reverse transcription quantitative PCR (RT-qPCR) after treatment with 112. To ensure that the effects were not cell line dependent, three different cancer cell lines were tested. These cell lines included the parental line of the HeLa-miR21-Luc stable reporter cell line, HeLa cervical carcinoma cells, along with A549 non-small cell lung carcinoma cells, and SKOV3 ovarian cancer cells. Each cell line was treated with 112 (10 µM) or DMSO (0.1%) for 48 h, followed by miRNA isolation and RT-qPCR analysis. In HeLa cells, a 57\% reduction was observed (\textbf{Figure 1-43A}), while in A549 and SKOV3 cells, 33\% and 31\% reductions were detected, respectively (\textbf{Figure 1-44}). These results support a mechanism by which treatment with 112 results in depletion of mature miR-21 and subsequent reduction of miR-21 regulatory functions. To determine if 112 inhibits miR-21 maturation via binding directly to pre-miR-21, melting curve analyses were carried out in the presence of DMSO or 112. The melting temperature of pre-miR-21 in the presence of DMSO control was measured to be 56.0 °C. The presence of 112 (10 µM) had no effect on melting temperature yielding a T_m of 56.2 °C (\textbf{Figure 1-45}). These results indicate that 112 does not directly interact with miR-21 RNA and that miR-21 levels are likely impacted via an alternative mechanism.
Figure 1-43 Effect of 112 on different targets.

(A) Treatment of HeLa cells with 112 (10 µM) for 48 h, followed by RT-qPCR analysis of mature miR-21 or primary miR-21 (pri-miR-21). (B) Transfection of HeLa cells with a miR-21 promoter gene expression reporter followed by treatment with 112 (10 µM). A Bright-Glo assay was performed after 48 h. Data were normalized to DMSO treatment (negative control) and errors bars represent standard deviations from three independent experiments. Statistical significance was determined using an unpaired t-test, *P < 0.05. Data in A generated by Dr. Nicholas Ankenbruck and in B generated by Dr. Yuta Naro.

Figure 1-44 Effect of 112 on different cell lines.

Treatment of A549 (NSCLC) or SKOV3 (ovarian carcinoma) with DMSO or 112 (10 µM), followed by qPCR analysis of mature miR-21 RNA levels elicited a 33 and 31% decrease, respectively. All data was normalized to DMSO treatment (negative control) and errors bars represent standard deviations from three independent experiments. Statistical significance was determined using an unpaired t-test, *P < 0.05, ns P ≥ 0.05.
Figure 1-45 Melting curves for pre-miR-21 in the absence and presence of 112. Differentiation of the melting curves (right) reveals no change in melting temperatures in the presence ($T_m = 56.2 ^\circ C$) or absence ($T_m = 56.0 ^\circ C$) of 112. Errors bars represent standard deviations from three independent experiments. Data generated by Dr. Nicholas Ankenbruck.

To further investigate what step of the miR-21 biogenesis pathway our inhibitor may be targeting, primary miR-21 levels were analyzed via RT-qPCR in HeLa cells after treatment with 112 (10 µM) for 48 h. Interestingly, a marked 79% decrease in primary miR-21 levels was observed following treatment (Figure 1-43A). This result supports a mechanism by which 112 inhibits transcription of the miR-21 gene, resulting in depletion of primary miR-21 levels. To confirm that compound 112 inhibits miR-21 transcription, HeLa cells were transfected with a previously described luciferase reporter construct that monitors miR-21 promoter activity, pGL4-miR21P, and were treated with DMSO or 112 (10 µM) for 48 h. As expected, treatment with 112 resulted in a 78% decrease in miR-21 promoter activity compared to DMSO control (Figure 1-43B). This result directly supports the drastic reduction in primary miR-21 levels observed via RT-qPCR and further suggests a mechanism of action by which 112 inhibits transcription of the miR-21 gene.
1.5.2.3 Functional studies of 112

Next, we evaluated whether 112-mediated inhibition of miR-21 could elicit a therapeutic response in HeLa cells by subjecting them to a cell viability study using an XTT assay. Following treatment with the compound for 72 h, 112 demonstrated a disappointing \(IC_{50} > 50 \mu M \) (Figure 1-46A). Additionally, treatment of HEK293T cells, which do not express miR-21, with a serial dilution of compound 112 did not inhibit cell viability, supporting our hypothesis that the compound reduces HeLa cell viability in a miR-21-dependent manner (Figure 1-47). To further explore this response and determine if 112-induced limited cell death was due to triggering of apoptosis, we examined caspase-3/7 activation in HeLa cells. Antisense oligonucleotide-mediated inhibition of miR-21 has been previously shown to inhibit cell proliferation and increase apoptosis of HeLa cells.33 Treatment of HeLa cells with 112 (10 \(\mu M \)) for 24 h elicited a modest 50% increase in caspase-3/7 activity, while a 2-fold increase was observed at an increased concentration of 50 \(\mu M \) (Figure 1-46B). This suggests that knockdown of miR-21 by 112 leads to a reduction in cell viability by inducing apoptosis, consistent with previous reports.

230-234
Figure 1-46 Functional studies of 112 in HeLa cells.

(A) Treatment of HeLa cells with 112 for 72 h, followed by a cell viability assay. (B) Treatment of HeLa cells with 112 for 24 h, followed by a caspase-3/7 activity assay. (C) Treatment of HeLa cells with 112 in a two-week clonogenic assay. Data were normalized to DMSO treatment (negative control) and errors bars represent standard deviations from three independent experiments. Data in A and C were generated by Dr. Nicholas Ankenbruck and in B generated by Cole Emanuelson.

Figure 1-47 Treatment of HEK293T cells with a dilution series of 112.

Treatment of HEK293T cells with a dilution series of 112 for 72 h, followed by a cell viability assay. Data was normalized to DMSO treatment (negative control) and errors bars represent standard deviations from three independent experiments. Data generated by Dr. Nicholas Ankenbruck.
We further explored the therapeutic potential of 112 by investigating the ability of the small molecule to elicit long-term effects in reducing microtumor formation in a clonogenic assay. Oligonucleotide silencing of miR-21 has been shown to inhibit clonogenicity in several cancer cell models\(^{235-237}\) including cervical cancer.\(^{231, 238}\) Briefly, HeLa cells were suspended in low melt agarose and exposed to a dilution series of 112 for two weeks at 37 °C prior to imaging (Figure 1-48). Interestingly, while treatment with 112 only inhibited cell viability at high concentrations, the compound was capable of reducing colony formation of HeLa cells with an EC\(_{50}\) of 7.3 µM (Figure 1-46C). This inhibition of microtumor formation is in good agreement with previous reports that have shown similar results using antisense oligonucleotide-mediated knockdown of miR-21.\(^{231, 235, 239-240}\) Furthermore, it was also reported that inhibition or knockout of miR-21 with genetic tools had limited or no effect on cell viability, depending on the cell line,\(^{241-242}\) while connections between miR-21 and metastasis and tumorigenesis have been observed in a variety of cancers.\(^{224, 243-245}\)

![Figure 1-48](image)

Figure 1-48 Representative images from clonogenic assays following 2-week treatment of HeLa cells with a dilution series of 112.

Images were cropped to 4 tiles each in the center of the well from the extended depth of focus image. Data generated by Dr. Nicholas Ankenbruck.
1.5.2.4 Summary

In summary, a high-throughput screen for small molecule modulators of miR-21 function led to the identification of a new ether-amide scaffold, and a subsequent structure-activity relationship study of the initial hit compound 101 resulted in the identification of the improved miR-21 inhibitor 112. Through a biochemical and cell-based firefly luciferase assays as well as a miR-122 reporter cell line, we determined that compound 116 showed selectivity for inhibiting miR-21 function. Furthermore, 112 was found to inhibit transcription of the miR-21 gene resulting in significant reductions in primary and mature miR-21 levels. This mechanism of action is in contrast to other classes of miR-21 inhibitors which appear to inhibit maturation of pre-miR-2180, 83, 106, 246 as well as oxadiazole-based inhibitors which appear to inhibit the function of mature miR-21 without affecting miR-21 levels.105 However, the ether-amide class does appear to follow a similar mechanism to a previously reported azobenzene-based miR-21 inhibitor.103 Pre-therapeutic evaluation of the lead compound using toxicity and caspase activation assays showed that miR-21 inhibition mediated by 112 reduces cell viability in HeLa cells by inducing apoptosis, although high concentrations are required. However, treatment of HeLa cells with 112 in a long-term clonogenic assay effectively inhibited microtumor formation at low micromolar doses, suggesting that the inhibitor 112 may have potential as a therapeutic for treating miR-21-related diseases.

1.5.2.5 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically. Reactions were followed by thin layer chromatography (TLC) using glass-
backed silica gel plates (Sorbent Technologies, 250 μm thickness). Anhydrous acetonitrile and tetrahydrofuran (THF) were purchased from Acros and anhydrous toluene and dimethylformamide (DMF) were purchased from Alfa Aesar. Silica gel column chromatography was performed on silica gel (60 Å, 40–63 μm, 230 × 400 mesh, Sorbtech) as a stationary phase. High resolution mass spectral analysis (HRMS) was performed on a Q-Exactive (Thermo Scientific) mass spectrometer. The 1H NMR and 13C NMR spectra were recorded on a 300 MHz or 400 MHz Varian NMR spectroscope. Chemical shifts are given in δ units (ppm) for 1H NMR spectra and 13C NMR spectra.

Polyphosphoric acid (10 g) was added to a mixture of 2-aminophenols (or 2 aminothiols or 2-phenylenediamines) 102 (7–9 mmol, 1.0 eq) and carboxylic acids 103 (1.0 eq) at room temperature and heated to 170 °C (dissolution of the reactants and effective stirring was observed at elevated temperatures). The reaction mixture was stirred at 170 °C for 3 h and was then allowed to cool to room temperature. The viscous reaction mixture was slowly diluted with ice-water (200 mL), neutralized (to pH 7) by adding saturated NaHCO$_3$, and extracted with multiple portions of ethyl acetate (3 × 50 mL). The combined organic extracts were washed with brine (50 mL), dried over sodium sulfate (30 g), filtered, and concentrated to yield compounds 104 in 24–91% yields as colored solids.

Further, compounds 104 (0.35–0.50 mmol, 1.0 eq) were heated with chloroacetyl chloride (3.0 eq) in anhydrous toluene (10 mL) to 90 °C for 2 h. This reaction mixture was concentrated under reduced pressure and the residue was triturated with diethyl ether (10 mL). The product was filtered and subsequently washed with multiple portions of diethyl ether (3 × 5 mL) and dried to
recover colored solids. The solids were vigorously stirred in a saturated solution of NaHCO₃ (10 mL) for 30 min, acidified to neutral pH with aqueous 1 M HCl solution, and then extracted with multiple portions of ethyl acetate (5 × 10 mL) until the aqueous layer turned colorless. The combined organic extracts were washed with brine (10 mL), dried over sodium sulfate (10 g), were filtered and concentrated to yield pure amides 105 as colored solids in 70–90% yield.

To a solution of amides 105 (0.08–0.44 mmol, 1.0 eq) in anhydrous acetonitrile (5 mL), the indicated phenols, thiophenols, or anilines (1.2 eq) and Cs₂CO₃ (1.2 eq) were added and the reaction mixture was stirred overnight at room temperature. The reaction was quenched by adding water (10 mL) and extracted with ethyl acetate (5 × 10 mL). The combined ethyl acetate extracts were washed with brine (10 mL), dried over sodium sulfate (10 g), filtered, and concentrated under reduced pressure. The residual solid was purified by silica gel column chromatography eluted with 1:9–7:3 ethyl acetate/hexanes to yield compounds 101, 106–114, 116–118, 120–123, 125–135 in 23% to quantitative yield.

Compounds 106 (PubChem CID 871321) and 107 (PubChem CID 82391) have been previously characterized.

N-(4-(Benzo[d]oxazol-2-yl)phenyl)-2-(2-iodophenoxy)acetamide (108). 58 mg, 39% yield; ¹H NMR (300 MHz, CHCl₃-d) δ 9.07 (s, 1H), 8.28 (d, J = 8.8 Hz, 1H), 7.89–7.76 (m, 4H), 7.61–7.58 (m, 1H), 7.40–7.32 (m, 2H), 6.88 (t, J = 14.4 Hz, 2H), 6.83–6.76 (m, 2H), 4.69 (s, 2H). HRMS (ESI) calcd. for C₂₁H₁₅N₂O₃I (M+H)⁺ 471.0206, found: 471.0226.

N-(4-(Benzo[d]oxazol-2-yl)phenyl)-2-phenoxyacetamide (109). 35 mg, 90% yield; ¹H NMR (300 MHz, CHCl₃-d) δ 8.47 (s, 1H), 8.26 (d, J = 8.7 Hz, 2H), 7.82–7.75 (m, 3H), 7.61–7.55 (m,
1H), 7.40–7.33 (m, 3H), 7.08–7.00 (dd, J = 15.6, 6.6 Hz, 3H), 4.66 (s, 2H). HRMS (ESI) calcd. for C_{21}H_{16}N_{2}O_{3} (M+ H)^{+} 345.1239, found: 345.1269.

\textbf{N-(4-(Benzo[d]oxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)acetamide (110).} 16 mg, 52\% yield; 1H NMR (400 MHz, DMSO-\textit{d}_6) \delta 8.48 (s, 1H), 8.26 (d, J = 8.4 Hz, 2H), 7.76–7.80 (m, 3H), 7.57–7.58 (m, 1H), 7.34–7.36 (m, 2H), 6.80–6.96 (m, 4H), 4.59 (s, 2H), 3.79 (s, 3H); HRMS (ESI) calcd. for C_{22}H_{17}O_{4}N_{2} (M+H)^{+} 373.1183, found: 373.1187.

\textbf{N-(4-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-phenoxyacetamide (111).} 21 mg, 56\% yield; 1H NMR (400 MHz, DMSO-\textit{d}_6) \delta 8.47 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 2.2 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 7.37–7.39 (m, 2H), 7.32–7.33 (m, 1H), 7.00–7.08, 3H), 4.65 (s, 2H); HRMS (ESI) calcd. for C_{21}H_{16}O_{3}Cl (M+H)^{+} 379.0796, found: 379.0798.

\textbf{N-(4-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)acetamide (112).} 20 mg, 52\% yield; 1H NMR (400 MHz, CHCl_{3}-\textit{d}_3) \delta 8.48 (s, 1H), 8.23 (d, J = 8.2 Hz, 2H), 7.81–7.79 (m, 2H), 7.72 (d, J = 2.2 Hz, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.30–7.33 (m, 1H), 6.88–6.96 (m, 4H), 4.60 (s, 2H), 3.79 (s, 3H); 13C NMR (100 MHz, CHCl_{3}-\textit{d}_3) \delta 166.73, 162.59, 155.14, 151.00, 150.74, 142.16, 139.80, 128.73, 125.03, 124.61, 123.37, 119.90, 119.86, 116.01, 115.02, 110.55, 68.56, 55.73; HRMS (ESI) calcd. for C_{22}H_{16}O_{3}N_{2}Cl (M+H)^{+} 407.0793, found: 407.0796.

\textbf{N-(4-(5-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)-2-(4-methoxyphenoxy)acetamide (113).} 22 mg, 58\% yield; 1H NMR (400 MHz, DMSO-\textit{d}_6) \delta 13.01 (br s, 1H), 10.29 (s, 1H), 8.08–8.15 (m, 2H), 7.80–7.87 (m, 2H), 7.47–7.69 (m, 2H), 7.21 (dd, J = 8.4, 1.8 Hz, 1H), 6.85–7.01 (m, 4H),
4.67 (s, 2H), 3.70 (s, 3H); HRMS (ESI) calcd. for C$_{22}$H$_{19}$O$_3$N$_3$Cl (M+H)$^+$ 408.1109, found: 408.1120.

N-(4-(5-Chloro-1H-benzo[di]imidazol-2-yl)phenyl)-2-phenoxacetamide (114). 21 mg, 60% yield; 1H NMR (400 MHz, DMSO-d_6) δ 13.01 (d, $J = 12.4$ Hz, 1H), 10.35 (s, 1H), 8.09–8.16 (m, 2H), 7.50–7.54 (m, 1H), 7.30–7.36 (m, 2H), 7.21 (ddd, $J = 9.9$, 8.3, 2.0 Hz, 1H), 6.96–7.04 (m, 3H), 4.75 (s, 2H); HRMS (ESI) calcd. for C$_{21}$H$_{17}$O$_3$N$_3$Cl (M+H)$^+$ 378.1004, found: 378.1007.

N-(4-(6-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-phenoxacetamide (116). 12 mg, 32% yield; 1H NMR (300 MHz, DMSO-d_6) δ 10.41 (s, 1H), 8.15 (d, $J = 8.6$ Hz, 2H), 7.89–7.99 (m, 3H), 7.79 (d, $J = 8.5$ Hz, 1H), 7.45 (dd, $J = 8.4$, 2.0 Hz, 1H), 6.86–7.01 (m, 4H), 4.69 (s, 2H), 3.70 (s, 3H); HRMS (ESI) calcd. for C$_{21}$H$_{16}$O$_3$N$_2$Cl (M+H)$^+$ 379.08440, found: 379.0862.

N-(3-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-phenoxacetamide (117). 23 mg, 62% yield; 1H NMR (300 MHz, DMSO-d_6) δ ppm 8.35–8.52 (m, 1H), 8.31 (s, 1H), 7.90–8.03 (m, 2H), 7.71 (d, $J = 1.7$ Hz, 1H), 7.42–7.56 (m, 2H), 7.22–7.38 (m, 3H), 6.96–7.09 (m, 2H), 4.63 (s, 2H); HRMS (ESI) calcd. for C$_{21}$H$_{14}$O$_3$N$_2$Cl (M+H)$^+$ 377.0688, found: 377.0697.

N-(3-(Benzo[d]oxazol-2-yl)phenyl)-2-phenoxacetamide (118). 38 mg, 97% yield; 1H NMR (400 MHz, DMSO-d_6) δ 10.41 (s, 1H), 8.6 (t, $J = 1.8$ Hz, 1H), 7.9 (dt, $J = 7.6$, 1.3 Hz, 1H), 7.79–7.85 (m, 3H), 7.67–7.79 (m, 1H), 7.58 (t, $J = 7.9$ Hz, 1H), 7.41–7.47 (m, 2H), 7.30–7.37 (m, 2H),
6.97–7.07 (m, 3H), 4.76 (s, 2H); HRMS (ESI) calcd. for C_{21}H_{17}O_{2}N_{2} (M+H)^{+} 345.1233, found: 345.1249.

N-(4-(6-Chlorobenzodioxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)acetamide (120). 25 mg, 65% yield; ^1^H NMR (300 MHz, DMSO-<d>) δ 10.41 (s, 1H), 8.15 (d, J = 8.6 Hz, 2H), 7.89–7.99 (m, 3H), 7.79 (d, J = 8.5 Hz, 1H), 7.45 (dd, J = 8.4, 2.0 Hz, 1H), 6.86–7.01 (m, 4H), 4.69 (s, 2H), 3.70 (s, 3H); HRMS (ESI) calcd. for C_{22}H_{18}O_{4}N_{2}Cl (M+H)^{+} 409.0949, found: 409.0964.

N-(3-(5-Chlorobenzodioxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)acetamide (121). 35 mg, 89% yield; ^1^H NMR (300 MHz, DMSO-<d>) δ 10.36 (s, 1H), 8.68 (s, 1H), 7.81–7.98 (m, 4H), 7.45–7.62 (m, 2H), 6.86–7.03 (m, 4H), 4.68 (s, 2H), 3.70 (s, 3H); HRMS (ESI) calcd. for C_{22}H_{18}O_{4}N_{2}Cl (M+H)^{+} 409.0949, found: 409.0963.

N-(3-(Benzodioxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)acetamide (122). 35 mg, 89% yield; ^1^H NMR (400 MHz, DMSO-<d>) δ ppm 10.36 (s, 1H), 8.67 (t, J = 1.8 Hz, 1H), 7.93 (d, J = 7.7 Hz, 1H), 7.85 (br s, 1H), 7.79–7.88 (m, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.41–7.46 (m, 2H), 6.88–7.01 (m, 4H), 4.69 (s, 2H); HRMS (ESI) calcd. for C_{22}H_{19}O_{4}N_{2} (M+H)^{+} 375.1339, found: 375.1353.

N-(4-(5-Chlorobenzodioxazol-2-yl)phenyl)-2-((4-methoxyphenyl)thio)acetamide (124). 24 mg, 60% yield; ^1^H NMR (400 MHz, DMSO-<d>) δ ppm 10.49 (s, 1H), 8.12–8.17 (m, 2H), 7.77–7.85 (m, 4H), 7.39–7.47 (m, 3H), 6.90–6.96 (m, 2H), 3.73–3.76 (m, 5H); HRMS (ESI) calcd. for C_{22}H_{18}O_{3}N_{2}ClS (M–H)^{−} 423.0576, found: 423.0565.
N-(4-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-((4-methoxyphenyl)amino)acetamide (125). 11 mg, 29% yield; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) ppm 10.60 (s, 1H), 8.16–8.22 (m, 3H), 7.80–7.95 (m, 4H), 7.44–7.46 (m, 2H), 6.89–7.06 (m, 2H), 4.38 (s, 1H), 4.09 (s, 2H), 3.70 (s, 3H); HRMS (ESI) calcd. for C\(_{22}\)H\(_{19}\)O\(_3\)N\(_3\)Cl (M+H)\(^+\) 408.1109, found: 408.1090.

N-(6-(5-Chlorobenzo[d]oxazol-2-yl)naphthalen-2-yl)-2-phenoxyacetamide (126). 32 mg, 87% yield; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) 10.48 (s, 1H), 8.76 (s, 1H), 8.45 (s, 1H), 8.10–8.28 (m, 2H), 8.04 (d, \(J = 8.7\) Hz, 1H), 7.94 (d, \(J = 2.1\) Hz, 1H), 7.69–7.90 (m, 2H), 7.49 (dd, \(J = 8.6, 2.1\) Hz, 1H), 7.34 (dd, \(J = 8.6, 7.1\) Hz, 2H), 6.93–7.10 (m, 3H), 4.79 (s, 2H); HRMS (ESI) calcd. for C\(_{25}\)H\(_{18}\)O\(_3\)N\(_2\)Cl (M+H)\(^+\) 429.1000, found: 429.1012.

N-(5-(5-Chlorobenzo[d]oxazol-2-yl)benzo[d]thiazol-2-yl)-2-(4-methoxyphenoxy) acetamide (127). 29 mg, 78% yield; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 12.98 (s, 1H), 8.90 (d, \(J = 1.6\) Hz, 1H), 8.25 (dd, \(J = 8.4, 1.6\) Hz, 1H), 7.91–7.96 (m, 3H), 7.79–7.84 (m, 2H), 7.48–7.78 (m, 2H), 6.92 (m, 1H), 4.51 (s, 2H); HRMS (ESI) calcd. for C\(_{23}\)H\(_{17}\)O\(_4\)N\(_3\)ClS (M+H)\(^+\) 466.0623, found: 466.0615.

N-(4-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-(3-methoxyphenoxy)acetamide (130). 23 mg, 60% yield; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) 10.46 (s, 1H), 8.17 (br d, \(J = 8.4\) Hz, 2H), 7.86–7.95 (m, 3H), 7.81 (d, \(J = 8.6\) Hz, 1H), 7.45 (dd, \(J = 8.6, 2.1\) Hz, 1H), 7.22 (t, \(J = 8.4\) Hz, 1H), 6.53–6.65 (m, 3H), 4.75 (s, 2H), 3.74 (s, 3H); \(^{13}\)C NMR (75 MHz, DMSO-\(d_6\)) \(\delta\) 167.11, 163.63, 160.44, 158.93, 148.96, 142.94, 142.00, 130.01, 128.94, 128.44, 125.16, 120.79, 119.76, 119.23, 112.11,
106.93, 106.72, 101.15, 67.23, 55.12; HRMS (ESI) calcd. for C_{20}H_{14}O_{3}N_{2}Cl (M+H)^{+} 407.0793, found: 407.0790.

N-(4-(5-Chlorobenzodioxazol-2-yl)phenyl)-2-(4-cyanophenoxy)acetamide (131). 21 mg, 53% yield; 1H NMR (300 MHz, DMSO-d_6) δ 10.56 (s, 1H), 8.17 (d, $J = 8.7$ Hz, 2H), 7.89–7.95 (m, 6H), 7.44 (dd, $J = 8.7$, 2.1 Hz, 1H), 7.18 (d, $J = 8.7$ Hz, 2H), 4.91 (s, 2H); HRMS (ESI) calcd. for C_{22}H_{15}O_{3}N_{3}Cl (M+H)^{+} 404.0797, found: 404.0803.

N-(4-(5-Chlorobenzodioxazol-2-yl)phenyl)-2-(4-fluorophenoxy)acetamide (132). 37 mg, 94% yield; 1H NMR (300 MHz, DMSO-d_6) δ 10.47 (s, 1H), 8.17 (d, $J = 8.6$ Hz, 2H), 7.86–7.95 (m, 3H), 7.81 (d, $J = 8.6$ Hz, 1H), 7.45 (dd, $J = 8.6$, 2.1 Hz, 1H), 7.11–7.20 (m, 2H), 7.00–7.09 (m, 2H), 4.75 (s, 2H); HRMS (ESI) calcd. for C_{21}H_{15}O_{3}N_{3}ClF (M+H)^{+} 397.0750, found: 397.0769.

N-(4-(5-Chlorobenzodioxazol-2-yl)phenyl)-2-(4-nitrophenoxy)acetamide (133). 10 mg, 23% yield; 1H NMR (300 MHz, DMSO-d_6) δ 10.43 (s, 1H), 8.13–8.20 (m, 1H), 7.79–8.00 (m, 5H), 7.61–7.66 (m, 1H), 7.39–7.51 (m, 3H), 7.26–7.38 (m, 1H), 7.11 (d, $J = 8.8$ Hz, 2H), 4.36 (s, 2H); HRMS (ESI) calcd. for C_{21}H_{15}O_{3}N_{3}Cl (M+H)^{+} 424.0695, found: 424.0674.

2-((1,1′-Biphenyl)-4-yloxy)-N-(4-(5-chlorobenzodioxazol-2-yl)phenyl)acetamide (134). 27 mg, 61% yield; 1H NMR (400 MHz, DMSO-d_6) δ ppm 10.54 (s, 1H), 8.16–8.20 (m, 1H), 7.79–8.00 (m, 5H), 7.61–7.66 (m, 1H), 7.39–7.51 (m, 3H), 7.26–7.38 (m, 1H), 7.11 (d, $J = 8.8$ Hz, 2H), 4.83 (s, 1H); HRMS (ESI) calcd. for C_{27}H_{20}O_{3}N_{2}Cl (M+H)^{+} 455.1157, found: 455.1153.
N-(4-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-(4-isopropyl-3-methylphenoxy) acetamide (135). 41 mg, 96% yield; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) ppm 10.45 (s, 1H), 8.17 (d, \(J = 8.8\) Hz, 2H), 7.79–7.98 (m, 4H), 7.45 (dd, \(J = 8.7, 2.1\) Hz, 1H), 7.16 (d, \(J = 9.3\) Hz, 1H), 6.77–6.83 (m, 2H), 4.71 (s, 2H), 3.03 (sep, \(J = 6.9\) Hz, 1H), 2.27 (s, 3H), 1.14 (d, \(J = 6.9\) Hz, 6H); HRMS (ESI) calcd. for C\(_{25}\)H\(_{24}\)O\(_3\)N\(_2\)Cl (M+H)+ 435.1470, found: 435.1462.

N-(4-(5-Fluorobenzo[d]oxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)acetamide (136). 37 mg, 96% yield; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) 10.43 (s, 1H), 8.16 (d, \(J = 8.6\) Hz, 2H), 7.91 (d, \(J = 8.6\) Hz, 2H), 7.80 (dd, \(J = 8.9, 4.4\) Hz, 1H), 7.66 (dd, \(J = 8.8, 2.6\) Hz, 1H), 7.27 (td, \(J = 9.3, 2.6\) Hz, 1H), 6.85–7.01 (m, 4H), 4.69 (s, 2H), 3.70 (s, 3H); HRMS (ESI) calcd. for C\(_{22}\)H\(_{18}\)O\(_4\)N\(_2\)F (M+H)+ 393.1245, found: 393.1264.

N-(4-(5-Fluorobenzo[d]oxazol-2-yl)phenyl)-2-phenoxyacetamide (137). 39 mg, quantitative yield; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) 10.48 (s, 1H), 8.17 (d, \(J = 8.5\) Hz, 2H), 7.91 (d, \(J = 8.5\) Hz, 2H), 7.80 (dd, \(J = 8.9, 4.4\) Hz, 1H), 7.66 (dd, \(J = 8.8, 2.6\) Hz, 1H), 7.22–7.39 (m, 3H), 6.95–7.07 (m, 3H), 4.76 (s, 2H); \(^13\)C NMR (75 MHz, DMSO-\(d_6\)) \(\delta\) 167.44, 163.42, 153.87, 151.74, 149.33, 143.42, 142.04, 128.44, 127.87, 122.14, 120.73, 119.76, 116.68, 115.72,
114.60, 112.60, 67.93, 55.35; HRMS (ESI) calcd. for C_{22}H_{16}O_{4}N_{2}Br \ (M−H)^− 451.0288, found: 451.0307.

2-(4-Methoxyphenoxy)-N-(4-(phenylbenzod]oxazol-2-yl)phenyl)acetamide (139). 28 mg, 70% yield; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) 10.40–10.46 (m, 1H), 8.20 (br d, \(J = 8.5\) Hz, 2H), 8.03 (d, \(J = 1.7\) Hz, 1H), 7.89–7.97 (m, 2H), 7.84 (d, \(J = 8.6\) Hz, 1H), 7.67–7.77 (m, 3H), 7.46–7.54 (m, 2H), 7.35–7.42 (m, 1H), 6.86–7.01 (m, 4H), 4.69 (s, 2H), 3.70 (s, 3H); \(^{13}\)C NMR (75 MHz, DMSO-\(d_6\)) \(\delta\) 167.40, 153.88, 151.76, 149.77, 142.40, 141.76, 140.02, 137.54, 128.94, 128.24, 127.34, 127.08, 124.34, 119.79, 117.53, 115.72, 114.61, 110.96, 67.95, 55.35, 40.22; HRMS (ESI) calcd. for C_{22}H_{16}O_{4}N_{2}Cl \ (M−H)^− 407.0793, found: 407.0790.

2-(4-Methoxyphenoxy)-N-(4-(5-chloro-oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide (140). 29 mg, 74% yield; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) 10.48 (s, 1H), 8.54 (dd, \(J = 4.8, 1.4\) Hz, 1H), 8.20–8.28 (m, 3H), 7.95 (d, \(J = 8.6\) Hz, 2H), 7.45 (dd, \(J = 8.1, 4.8\) Hz, 1H), 6.87–7.02 (m, 4H), 4.71 (s, 2H), 3.72 (s, 3H); HRMS (ESI) calcd. for C_{21}H_{18}O_{4}N_{3} \ (M+H)^+ 376.1292, found: 376.1297.

Phenyl (4-(5-chlorobenzo[d]oxazol-2-yl)phenyl)carbamate (119). To a solution of 4-(5-chlorobenzo[d]oxazol-2-yl)aniline (50 mg, 1 eq) in anhydrous DCM (5 mL) at 0 °C, phenyl chloroformate (31 µL, 1.2 eq) and triethylamine (42 µL, 1.5 eq) was added. The reaction mixture was warmed to room temperature and stirred for 3 h. The reaction was quenched with water (10 mL) and extracted with multiple portions of ethyl acetate (3 \(\times\) 5 mL). The combined organic extracts were combined, washed with a saturated solution of sodium bicarbonate (10 mL) followed by brine (10 mL), dried over sodium sulfate (10 g), filtered, and concentrated. Compound 123 was
purified by silica gel column chromatography in 50% ethyl acetate/hexanes to yield a white solid (62 mg, 83% yield). 1H NMR (400 MHz, DMSO-d_6) δ ppm 10.72 (s, 1H), 8.15–8.20 (m, 2H), 7.89 (d, $J = 2.1$ Hz, 1H), 7.81 (d, $J = 8.6$ Hz, 1H), 7.74–7.78 (m, 2H), 7.42–7.48 (m, 3H), 7.25–7.34 (m, 3H); HRMS (ESI) calcd. for C$_{21}$H$_{16}$ClO$_4$N$_2$ (M+H)$^+$ 365.0688, found: 365.0694.

4-Methoxyphenyl (4-(5-chlorobenzo[d]oxazol-2-yl)phenyl) carbamate (123). To a solution of 4-(5-chlorobenzo[d]oxazol-2-yl) aniline (50 mg, 1 eq) in anhydrous DCM (5 mL) at 0 °C, 4-methoxyphenyl chloroformate (36 µL, 1.2 eq) and triethylamine (42 µL, 1.5 eq) was added. The reaction mixture was warmed to room temperature and stirred for 3 h. The reaction was quenched by water (10 mL) and extracted with multiple portions of ethyl acetate (3 × 5 mL). The combined organic extracts were combined, washed with saturated solution of sodium bicarbonate (10 mL) and brine (10 mL), dried over sodium sulfate (10 g), filtered, and concentrated. Compound 127 was purified by silica gel column chromatography in 50% ethyl acetate/hexanes to yield a white solid (81 mg, 79% yield). 1H NMR (400 MHz, DMSO-d_6) δ 10.66 (s, 1H), 8.16 (s, 1H), 7.89 (d, $J = 2.1$ Hz, 1H), 7.82 (d, $J = 8.6$ Hz, 1H), 7.73–7.78 (m, 2H), 7.45 (dd, $J = 8.6, 2.2$ Hz, 1H), 7.16–7.22 (m, 2H), 6.96–7.01 (m, 2H), 3.78 (s, 3H); HRMS (ESI) calcd. for C$_{21}$H$_{16}$ClO$_4$N$_2$ (M+H)$^+$ 395.0793, found: 395.0792.

N-(4-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)-N-methyl acetamide (128). To a solution of 116 (10 mg, 1.0 eq) in anhydrous THF (1 mL) at 0 °C, LiHMDS (30 µL, 1.2 eq, 1 M in THF) was added the suspension was stirred for 30 min. Methyl iodide (5 µL, 3.3 eq) was added to this solution at 0 °C and the reaction mixture was warmed to room temperature and stirred overnight. Upon complete consumption of 12, the reaction mixture was concentrated.
Compound 132 was purified by silica gel column chromatography using 30% ethyl acetate/hexanes to yield a white solid (8.9 mg, 86% yield). 1H NMR (400 MHz, DMSO-d$_6$) δ 8.23 (d, $J = 8.4$ Hz, 2H), 7.94 (d, $J = 2.0$ Hz, 1H), 7.84 (d, $J = 8.4$ Hz, 1H), 7.66 (d, $J = 8.4$ Hz, 2H), 7.48 (dd, $J = 8.7, 2.4$ Hz, 1H), 6.76–6.82 (m, 4H), 4.63 (br s, 3H), 3.66 (s, 3H), 3.30 (s, 3H); HRMS (ESI) calcd. for C$_{23}$H$_{20}$O$_4$N$_2$Cl (M+H)$^+$ 423.1106, found: 423.1110.

N-(4-(5-Chlorobenzo[d]oxazol-2-yl)phenyl)-2-(4-methoxyphenoxy)-N-(prop-2-yn-1-yl)acetamide (129). To a solution of 116 (50 mg, 1.0 eq) in anhydrous DMF (3 mL) at 0 °C, sodium hydride (6 mg, 60% suspension in mineral oil, 1.2 eq) was added the suspension was stirred for 15 min. Propargyl bromide (22 µL, 1.2 eq, 80 wt% solution in toluene) was added dropwise to this solution at 0 °C and the reaction mixture was warmed to room temperature and stirred overnight. Upon complete consumption of 12, the reaction mixture was quenched by ice-water mixture (5 mL) and extracted with multiple portions of ethyl acetate (3 × 5 mL). The combined organic extracts were combined, washed with brine (10 mL), dried over sodium sulfate (10 g), filtered and concentrated. Compound 133 was purified by silica gel column chromatography with 30% ethyl acetate/hexanes to yield a yellow solid (24 mg, 44% yield). 1H NMR (300 MHz, DMSO-d$_6$) δ 8.07 (d, $J = 8.9$ Hz, 2H), 7.82 (d, $J = 2.1$ Hz, 1H), 7.76 (d, $J = 8.7$ Hz, 1H), 7.39 (dd, $J = 8.6, 2.2$ Hz, 1H), 7.08 (d, $J = 9.1$ Hz, 2H), 6.84–6.90 (m, 4H), 4.31 (d, $J = 2.3$ Hz, 3H), 3.57–3.65 (m, 1H), 3.23 (t, $J = 2.1$ Hz, 2H); HRMS (ESI) calcd. for C$_{25}$H$_{20}$O$_4$N$_2$Cl (M+H)$^+$ 447.1106, found: 447.1105.
2.0 Introduction to caged morpholinos (cMO)

Over the years, gene knockdown tools have improved in terms of specificity and reduced off-target effects.247 A reverse genetics approach of RNA silencing requires high sequence specificity without non-antisense-mediated interactions with other biomolecules. The introduction of first antisense agent was reported by Stephenson and Zamecnik in 1978. The authors utilized a 13-nucleotides long single-stranded DNA (ssDNA) complementary to the 3’ and 5’-terminal sequences of Rous sarcoma virus 35S RNA in chick embryo fibroblast tissue culture infected with Rous sarcoma virus.248 The ssDNA and modifications like phosphorothioate-DNA (PS-DNA) constitute the first generation of antisense agents. These antisense agents suffer from nuclease cleavage and potential cellular toxicity.249-250 In additions, PS-DNAs have a high affinity for proteins because of the sulfur-containing backbone.251 For example, these oligonucleotides interact with a number of proteins including laminin, protein kinase C, DNA polymerase, and telomerase, etc.251 To address these issues, second generation antisense agents were developed. These antisense agents include DNAs and RNAs with 2’-O-alkyl modifications. These modifications provide resistance to nuclease cleavage and less toxicity, along with better binding affinity with the target mRNA compared to the first-generation agents. The third-generation of antisense agents comprises of oligonucleotides with a significant change in the structures of nucleobases from the first- and second-generation agents. The third generation of antisense agents include peptide nucleic acids (PNA), locked nucleic acids (LNA), and morpholino oligomers (MO). PNAs are oligomers with repeating N-(2-aminoethyl)-glycine units linked by peptide bonds and nucleobases are linked to the backbone as an amide linkage with a methylene bridge. PNAs have been utilized in a variety of applications like DNA decoys, antagomirs, PCR primers, and antisense agents.
PNAs are resistant to endogenous nucleases as well as peptidases, and exhibit higher binding affinity to the complementary target sequences. LNAs are oligomers with modifications to the ribose ring and provide a better affinity to the target mRNAs along with better cellular uptake than the first- and second-generation antisense agents.

Morpholino oligomers (MOs) are synthetic phosphorodiamidate morpholino oligomers used as antisense agents for silencing gene function and function by binding to RNA molecules following Watson-Crick base-pairing rules. MOs have a backbone of methylenemorpholine bridges with phosphorodiamidate linkages (Figure 33A). These oligomers contain DNA nucleobases attached to individual morpholine units. MOs are usually characterized by their high specificity, resistance to nucleases, stability in biological systems, and predictable targeting. Due to the presence of non-charged phosphorodiamidate groups in the backbone, MOs are less likely to nonselectively bind to cellular proteins. Additionally, the complex formed is a MO–RNA heteroduplex and is quite stable (more stable than DNA–RNA or PS-DNA–RNA duplex, but weaker than LNA–RNA duplex). An MO with 25-bases long is generally used for antisense applications and a long MO provides high specificity towards target RNA sequences. MOs have been used to target mature miRNAs and the miRNA maturation pathway.

Conventionally, MOs were utilized to target the translational start codon of mRNAs of genes of interest. MOs targeted to the 5’-untranslated region (5’-UTR) of the start codon prevent binding of the translational machinery to mRNA. MOs have been used with great effect to understand genetic pathways in several vertebrates. Effects of developmental signaling genes including no tail (ntl), chordin, one-eyed pinhead, and sonic hedgehog were studied with rapid ‘knockdown’ of these genes by MOs in zebrafish. Erickson and colleagues used MOs directed against transcription factor FoxD3 in chick embryos. Angerer and co-workers used MOs
designed to block SpKr1, a transcription factor for β-catenin regulation, in sea urchin embryos.261 These examples point towards the precise targeting of MOs in producing mutant phenotypes with temporal control.253 Moving beyond temporal control, spatiotemporal control with MOs was achieved by conditional gene silencing, first demonstrated by the Chen Lab.262

In 2007, the Chen lab from Stanford University reported a study on light-controlled MO-based gene silencing in zebrafish embryos.262 To study conditional gene silencing using an MO caging strategy, they selected no tail (ntl) gene. The \textit{Ntl} is zebrafish homologue of mouse Brachyury, a T-box transcription factor. The \textit{Ntl} transcription factor is required for formation of the tail and notochord, and is expressed during gastrulation in the germ ring, shield, and chordamesoderm.263-264 This gene is restricted to the notochord and tailbud during somitogenesis. Phenotypes associated with zebrafish \textit{ntl} mutants include loss of notochord cells and posterior structures. Also, a rounded-off, U-shaped morphology is seen in \textit{ntl} mutants and morphants, compared to the V-shaped wild-type morphology.263-264

Photocontrol was achieved by tethering a 3'-azide functionalized \textit{ntl} MO to an 5'-alkyne-modified antisense inhibitor (a decamer MO) by Huisgen 1,3-dipolar cycloaddition (\textbf{Figure 2-1A}). The inhibitor-\textit{ntl} MO structure forms a hairpin caged MO (hairpin cMO). The structure also contains a photocleavable dimethoxynitrobenzyl (DMNB) group on the 5'-tether side and a fluorescein moiety on the 3'-end for visualization by fluorescence microscopy (\textbf{Figure 2-1B}). Wild-type zebrafish embryos were injected with \textit{ntl} cMO and were either globally irradiated with 360-nm UV light at 4 hours post-fertilization (4 hpf), or were cultured in dark. At 24 hpf, the non-irradiated embryos developed normally, while most of the irradiated embryos exhibited a loss in posterior structures, lack of notochord cells, and U-shaped morphology typical of \textit{ntl} mutants. As
controls, non-injected embryos and 5’-DMNB-tethered decamer MO inhibitor injected embryos were not affected upon irradiation (Figures 2-1C–2-1J).
Figure 2-1 First example of caged MO targeting ntl gene in zebrafish embryos.

(A) Schematic diagram for light activation of hairpin cMO. (B) Structure of caged MO. (C, D) Identical phenotypes of ntl^{tc41} mutant and ntl morphant. (E, F) Phenotypes observed with ntl cMO without and with 360-nm light irradiation. No particular phenotypic change compared to wild-type is observed in ntl cMO without light irradiation. (G, H) Fluorescence imaging confirms a uniform reagent distribution. (I, J) Light irradiation does not significantly affect wild-type embryos. Adapted from *Nat. Chem. Biol.*, 2007, 3 (10), 650.262
Furthermore, ntl cMO was activated at various stages of embryo development. Irradiation at the 16-cell stage (1.5 hpf) produced a phenotype similar to the ntl mutant. Irradiation at the sphere stage (4 hpf) led to missing notochord cells and U-shaped somites, but a significant proportion of those embryos exhibited limited posterior development. This could be attributed to some ntl protein present even after ntl gene silencing. At 12 hpf, irradiation produced embryos with incompletely vacuolated notochord cells, V-shaped somites, and a shortened anterior-posterior axis. This study demonstrated a spatiotemporal control over gene silencing with photocontrollable MO construct.

In another approach, a sense RNA inhibitor strand consisting of two complementary RNA strands connected by a nitrobenzyl-based linker was utilized to suppress antisense MO function. The active antisense MO can be released from the MO–RNA inhibitor duplex by UV irradiation that cleaves and separates the sense inhibitor strand. Among various other targets studied, this technology was utilized to conditionally target ras homolog enriched in brain (rheb) gene. The time course of uncaging was monitored by RT-qPCR and the uncaging was monitored at 24 hpf, 48 hpf, and 72 hpf. At 72 hpf, the gene knockdown was less pronounced due to inefficient caging at later time points. Furthermore, a large excess (5-fold) of the caging strand was required to completely inactivate the antisense MO indicating weak base-pairing interactions of the MO–RNA inhibitor duplex.

In 2012, two photo-MO technologies were reported – sense-photo-MOs (S-photo-MOs) with a stable MO-MO inhibitor duplex (replacing the instable MO-RNA inhibitor duplex) and an antisense-photo-MO (AS-photo-MOs) containing a nitrobenzyl-based photocleavable group that can be cleaved by UV irradiation (Figure 2-2). It was shown that to cleave and separate the MO inhibitor from the active antisense MO, either a MO inhibitor with a 21-nucleotides long or 25-
nucleotides long with 4 mismatches was necessary for a 25-nucleotides long antisense MO. Additionally, a strict stochiometric (1:1) ratio of the antisense MO and the MO-MO inhibitor duplex was important for optimal binding and dissociation properties. Using this technology, a number of genes were targeted including ntlα, gal4, and sox10. An advantage of this methodology is the ease of synthesis of the MO–MO inhibitor duplex in comparison to the hairpin cMO.
Figure 2-2 Photo-MOs for regulation of *ntla* gene function.

(A) Diagram detailing the mode of action of antisense-photo-MOs (AS-photo-MOs). (B) Diagram detailing the mode of action of sense-photo-MOs (S-photo-MOs). (C) Structures of MOs and nitrobenzyl-based photocleavable linker. (D, E) Wildtype and *ntla* morphant phenotype. (F, G, H, I) Overlays showing bright field and anti-Ntla labeling (green) in injected embryos at 26-28 hpf. Examples of severe (F), medium (G), mild (H) and normal (I) phenotypes. (J, K) Graphs showing percentage of embryos injected with MOs and photo-MOs and the phenotype observed with or without UV irradiation. S21-photo-MO: *ntla*-sense-photo-MOs of a length of 21 nucleotides, S25-photo-MO: *ntla*-sense-photo-MOs of a length of 25 nucleotides with 4 mismatches, AS-2mis-photo-MO: *ntla*-antisense-photo-MOs with 2 mismatches, AS-4mis-photo-MO: *ntla*-antisense-photo-MOs with 4 mismatches. Introducing 2 mismatches on either side of the photo-subunit (AS-4mis-photo-MO) significantly improved dissociation rate from the target sequence. Adapted from *Development*, 2012, 139, 1691.
In 2010, the Deiters Lab in collaboration with the Yoder Lab demonstrated a more direct approach to photoactivation of caged morpholino monomers in MOs to regain RNA-binding ability. Here, 6-nitropiperonyloxymethyl (NPOM) caged morpholino monomers were incorporated into an MO sequence targeting the *chordin* gene in zebrafish and *Xenopus* embryos (Figure 2-3A). The presence of the NPOM group hinders the ability of the MO sequence to hybridize with the target gene. This was evident from the melting temperature experiments in which T_ms for RNA-MO duplexes were compared to T_ms for RNA-MO4 duplexes with four NPOM-caged monomers. T_m for the EGFP-MO4 duplex showed a 30 °C decrease in comparison to EGFP-MO0 duplex with no caging groups, and T_m for the *chordin*-MO4 duplex showed a 10 °C decrease compared to *chordin*-MO0 duplex. Thus, this approach is unique as neither external inhibitors nor topological constraints are necessary to effect a light-activated regulation of gene function.

Knockdown of the *chordin* gene is characterized by a shrunken head and a ventralized tail by 24–28 hpf when *chordin*-MO0 is injected during 1-4-cell stage. In embryos injected with *chordin*-MO4, 365-nm UV-light activation resulted in > 90% embryos exhibiting the *chordin* knockdown phenotype (Figures 2-3B–2-3I). In the case of *Xenopus* frog embryos, a single cell at the 8-16-cell stage was co-injected with synthetic EGFP mRNA, EGFP-MO4 and synthetic mCherry mRNA. It was observed that EGFP expression went down only after brief UV exposure, with mCherry expression unaffected. Thus, the authors successfully demonstrated gene regulation in this caging strategy.
Figure 2-3 Effects of MO containing caged morpholino monomers on zebrafish embryos.

(A) Schematic representation of mode of action of MO containing caged morpholino monomers. NPOM caging group represented by box. (B, C, D, E) Classification of phenotypes in zebrafish embryos 24-28 hpf. (F, G) Zebrafish embryos are not affected by brief UV exposure in the absence of MO. (H, I) UV exposure on chordin-MO injected embryos exhibit the reported aberrant phenotype, while the normal phenotype is observed in chordin-MO injected embryos without UV exposure. Adapted from *J. Am. Chem. Soc.*, 2010, 132 (44), 15644.267

Two years later, the Chen group published another report on caging techniques for MOs and introduced a new topology for cMOs: a cyclic structure for cMOs without the use of an inhibitor for hairpin cMOs.268 The cyclic structure was attained by joining both the ends of the MO to a linker through orthogonal reactions. The photocleavable DMNB-linker contained an N-hydroxysuccinimide (NHS) ester on one end and a chloroacetamide group on the other, which would react specifically towards a 5’-amine and 3’-disulfide-containing MO. For testing the effectiveness of cyclic cMOs, again *ntl* gene in zebrafish embryos was targeted. The cyclic MOs
elicited similar response to hairpin MOs, with 90% of the embryos exhibiting the *ntl* morphant phenotype on irradiation 3 hpf (Figure 2-4A–2-4C). Another experiment comparing cyclic cMOs to hairpin cMOs was performed with pancreas exocrine-specific *pancreas transcription factor 1 alpha (ptf1a)* in zebrafish embryos as a target. Almost 95% of embryos injected with cyclic cMOs, upon irradiation, exhibited no formation of pancreatic exocrine cells after 72 hpf, whereas embryos injected with hairpin cMOs showed partial disruption of pancreatic exocrine cells possibly due to linker degradation or linearization of hairpin cMOs during 72 h, highlighting the advantages of the topology of cyclic cMOs over hairpin cMOs for conditional gene silencing studies. Additionally, cyclic cMOs eliminates the need of inhibitor strand, which, upon photocleavage, the inhibitor strand and the MO strand separates and the presence of the inhibitor strand can trigger off-target cytotoxic effects.268
Later in 2014, the Deiters Lab in collaboration with the Chen Lab published a study on gene silencing by wavelength-selective light activated cyclic cMOs. In this study, four wavelength-specific linkers containing DMNB, 2-nitrobenzyl (NB), 7-(diethylamino)coumarin (DEACM) and diethylaminocoumaryldenemalononitrilemethyl (DEACM-MN) groups were synthesized, and here as well, ntl MO was optically controlled with these linkers. These linkers are photocleaved specifically at 365 nm, 405 nm, and 470 nm, respectively. A wavelength-specific activity profile of these cMOs revealed NB and DMNB linkers to be quite selective towards 365
nm light, whereas DEACM and DEACM-MN linkers to be activated by both 405 nm and 470 nm light (Figure 2-5). Furthermore, NB and DEACM cyclic cMOs were employed in examining the timing of mesoderm patterning.269

![Figure 2-5 Studies on wavelength-selective activation of cMOs.](image)

(A) Schematic diagram of ntl*-expressing embryos highlighting axial mesoderm and tailbud. (B) Classification of phenotypes at 24 hpf upon irradiation of cMO. (C) Phenotypic distribution observed in wavelength-selective activation of ntl* cMOs at 3.5 hpf. Adapted from \textit{Angew. Chem. Int. Ed.}, \textbf{2014}, 126 (38), 10278.269

The same year, Chen lab reported a nitroreductase-activatable cyclic cMOs as a first example of enzyme trigger for activation.270 Here as well, they targeted ntl* gene as it is a well-studied gene with a known phenotype. A similar linker \textbf{142} (Figure 2-12A) was prepared, with a 4-nitrobenzyl group in place of the DMNB group, and a nitroreductase (nfsB-mCherry) mRNA construct was transfected into embryos. Subsequent studies established nitroreductase as an effective and an alternative trigger to light activation.
2.1 Small molecule-based activation of cMOs

2.1.1 Introduction

Photoactivatable linkers are limited to samples into which light can penetrate for effective spatial control. Tissues with complex 3D morphology and depth are almost inaccessible to light of any wavelength (Figure 2-6). Most of the reported photoactivatable linkers can be uncaged by UV light, making deep tissues unaccessible. Two-photon uncaging with IR photons rather than the customary single UV photons helps to focus activation in the z-dimension improves penetration depth, but often requires elaborate instrumental setup. As another limiting factor, cells with rapid movements are challenging to target for spatial control using optical methods.
UV light has the lowest penetrative depth (< 1 mm), while red and near-infrared light penetrates 5 mm. Small molecules and enzymes can also trigger cMO activation. These triggers solve the aforementioned problems with light activation. Small molecules may be modified easily for increased efficiency towards activating cMOs. Bioorthogonal chemistry can be viewed as a promising technology towards this goal.
2.1.2 Tetrazine-trans-cyclooctene bioorthogonal reaction

“Bioorthogonal reaction” is a term coined by Prof. Carolyn Bertozzi and refers to any reaction which is mutually exclusive to other reactions and can occur within living systems without interfering with natural biochemical processes. To date, a number of bioorthogonal pairs have been reported, including phosphine-azide, isonitrile-tetrazine, etc. The first bioorthogonal reaction to be developed was the phosphine-azide reaction. In this study, Prescher et al. developed the century-old Staudinger reaction (phosphine-mediated reduction of azides to amines) to achieve ligation. Ligation was achieved by trapping of the ‘aza-ylide’ intermediate by a nearby electrophilic trap (methyl ester) to yield an amide, linking the two partners. Here, cells containing an azide-modified unnatural sugar effected remodelling of cell surface glycans and enabled cell identification and sorting by use of specific antibodies to study glycosylation patterning.

Although the Staudinger reduction exhibit high bioorthogonality, this reaction suffers from slow reaction kinetics (second-order rate constant in the low 10^{-3} M$^{-1}$s$^{-1}$ range) and potential for off-target redox chemistry. In particular, the phosphines are prone to air oxidation or metabolic enzymes and react with disulfides (can be overcome by large excess of phosphines), while azides undergo reduction with disulfides.

Tetrazines’ reaction with alkenes and alkynes has been exploited before for different bioorthogonal ligation approaches; the tetrazine-trans-cyclooctene pair is of particular interest. The tetrazine-trans-cyclooctene pair is distinguished among the bioorthogonal pairs known by faster reaction kinetics and relative non-toxicity of the reactants and by-products. The reaction of 1,2,4,5-tetrazine (hereafter referred to as “tetrazine”) with trans-cyclooctene is an example of the inverse electron-demand Diels-Alder (iEDDA) reaction. As opposed to the “normal” electron-demand Diels-Alder reactions involving an electron rich diene and an electron poor
dienophile, iEDDA reactions comprise an electron rich dienophile and electron deficient diene. Frontier molecular orbital analysis reveals “normal” electron-demand Diels-Alder reactions to be facile based on the small separation in energy between the HOMO\textsubscript{dien}–LUMO\textsubscript{dienophile} orbitals (Figure 2-7). On the contrary, in iEDDA reactions, reactivity is dominated by HOMO\textsubscript{dienophile}–LUMO\textsubscript{dien} orbital gap. Here, the tetrazines constitutes the electron deficient diene, and trans-cyclooctene constitutes the dienophile.279 The particular reason for utilizing trans-cyclooctene is the inherent strain in the eight-membered ring. The ring strain in eight-embered rings has a precedence of solving problems for bioorthogonal chemistry. A class of reactions called copper(I)-catalysed Azide-Alkyne Cycloaddition (CuAAC) utilizes copper(I) catalysts to promote 1,3-dipolar azide-alkyne reactions (also known as the Huisgen 1,3-dipolar cycloaddition). CuAAC was employed for many ligation applications.280 These reactions, however, were limited to \textit{in vitro} applications due to the toxicity of the copper(I) catalyst (and its potential for oxidation in many conditions). These limitations were addressed by the development of Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) reactions. Azide-cyclooctyne forms a SPAAC pair, where the reaction is promoted by inherent strain in the cyclooctyne eight-membered ring, eliminating the need for copper(I) catalysts.281 SPAACs have been used in many \textit{in vivo} ligation applications, but the kinetics and biocompatibility often are suboptimal. Tetrazine-\textit{trans}-cyclooctene chemistry employs similar principles with faster reaction kinetics, once again taking advantage of ring strain for use in bioorthogonal chemistry.
Traditionally, these bioorthogonal reactions have been used to link molecules. However, these reactions may also be used for spatiotemporally-controlled release of bioactive substances — a “click-to-release” approach. In 2013, Versteegen et al. reported a nearly instantaneous release of caged doxorubicin on ligation of trans-cycloocten-2-ol with tetrazine. Doxorubicin attached to trans-2-cyclooctenol through a carbamate linkage is specifically released on reaction and subsequent rearrangement and elimination with tetrazines (Figure 2-8A). As an example, doxorubicin conjugated to trans-cycloocten-2-ol (143) was released within minutes in 79% yield on reaction with 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (144). Subsequently, a year later, Chen’s group published a detailed study of these reactions, demonstrating tetrazine-mediated release of the amino acid lysine (Figure 2-8B). Trans-2-cyclooctene-conjugated lysine (145) was incorporated into firefly luciferase in HEK293T cells, and a 90% rescue of enzymatic activity was observed when treated with 3,6-dimethyl-1,2,4,5-tetrazine (146, 100 µM) for 60 min (Figure 2-
They reported two isomers of trans-2-cyclooctenol-conjugated lysines (Figure 2-15), axial (180a) and equatorial (180e), with the axial isomer having faster reaction kinetics; specifically, the axial isomer reacted to completion with tetrazine 146 within 5 min, while the equatorial isomer required > 3 h to reach saturation. A number of tetrazines were screened, with dimethyl tetrazine 146 giving the best results – a 92% yield of lysine (147) released from the axial isomer 180a, and 98% yield of lysine (147) released from the equatorial isomer 180e.109

![Diagram of tetrazine-mediated decaging strategy and proposed mechanism.](image)

(A) First example of tetrazine-mediated decaging with trans-cycloocten-2-ol caged-doxorubicin 143 and tetrazine 144. Adapted from Angew. Chem. Int. Ed., 2013, 52 (52), 14112. (B) Possible mechanism of tetrazine (146)-mediated decaging of axial and equatorial isomer-lysine-conjugate (145a and 145e). (C) Kinetics of 145a and 145e decaging by tetrazine 146, demonstrating the superiority of the axial isomer. Adapted from Nat. Chem. Biol., 2014, 10, 12, 1003.109
After this initial work, a detailed study of tetrazine optimization for bioorthogonal decaging was reported by Chen and co-workers. A library of tetrazines were screened against fluorogenic trans-cycloocten-2-ol-caged-coumarin (148) for coumarin (149) release (Figure 2-9A). From the screening data, the authors concluded that asymmetrical tetrazines showed enhanced decaging activities compared to symmetrical ones. The presence of an electron-withdrawing group (EWG) is necessary to accelerate the cycloaddition step, while a while the para position must not be electron deficient for efficient elimination (Figure 2-9B). Tetrazine 150 showed excellent decaging efficiency in vitro, whereas tetrazine 151 exhibited the highest decaging activity in HEK293T cells (> 90% coumarin recovery with 50 µM 151 within 4 min) (Figure 2-9C).

Figure 2-9 Optimization of tetrazines for “click-to-release” applications.
(A) Trans-cycloocten-2-ol-coumarin conjugate (148) releases coumarin (149) after tetrazine reaction. (B) Guidelines for tetrazine design for “click-to-release” applications. (C) Tetrazines 150 and 151, which demonstrate faster kinetics and better efficiency of trans-cycloocten-2-ol decaging for in vitro and in vivo applications, respectively. (EDG = electron donating group, EWG = electron withdrawing group). Adapted from Angew. Chem. Int. Ed., 2016, 55, 45, 14046.

The Weissleder lab investigated the crucial features of this reaction with the goal of attaining higher efficiency. The authors found that the release rate and kinetics are highly
sensitive to pH and to the functional groups present on the tetrazine, as well as the \textit{trans}-cycloocten-2-ol linkage. For favorable release, rapid tautomerization to the pre-release intermediate was enhanced by acid-functionalized tetrazines. This is evident from a complete release of the fluorophore upon incubating diacid tetrazine \textbf{PA}_2 with \textbf{152} (Figure 2-10A). The acid group is proposed to coordinate with the pre-release complex to facilitate elimination and release of the payload. However, the acid-functionalized tetrazines are dependent on pH, with higher rate of release of the payload observed at low pH owing to the feasibility of the formation of pre-release complex. In general, it was discovered that alkyl containing tetrazines are sensitive to pH; the payload release by tetrazine \textbf{146} was completed within an hour under acidic conditions (pH 5.0), whereas it takes several hours for complete release under physiological conditions (pH 7.0).285 To optimize the \textit{trans}-cycloocten-2-ol, undesirable cyclization with no release of the payload was minimized (Figure 2-10B).284 Cargo linked via a \textit{N}-methyl carbamate eliminates the formation of the “tricyclic” dead-end by intramolecular cyclization.
Figure 2-10 Mechanistic insights into the tetrazine—*trans*-cycloocten-2-ol ligation and elimination reaction.

(A) A complete decaging and release of the fluorophore is observed upon treating 152 with acid-functionalized tetrazine PA2. An acid group in PA2 coordinates and directs tautomerization to the pre-release complex. (B) The undesirable cyclization and formation of the ‘dead-end’ complex is blocked by *N*-methylation in Sar-rTCO (154) as compared to Gly-rTCO (153), resulting in complete release of the amino acid. Adapted from *J. Am. Chem. Soc.*, 2018, 140, 3603.284

A follow-up study was undertaken to optimize tetrazine 150 to tolerate a wider pH range.285 Amino-functionalized tetrazines 155 and 156 exhibit reaction kinetics independent of pH in the acidic to physiological range (3-7.4) (Figure 2-11). At pH values below the pK\textsubscript{a}, protonation of the amino group is proposed to induce similar intramolecular coordination as with the acid-functionalized tetrazines. Moreover, the pH-independent tetrazine 156 exhibits a rate enhancement of 23-fold over the pH-dependent tetrazine 150 at pH = 7.4. Unfortunately, these amino-tetrazines could only release coumarin from *trans*-cyclooctenol-caged-coumarin in ~50% yields.
Figure 2-11 Amino-functionalized tetrazines for “click-to-release” applications with a wider pH range.

(A) Chemical structures of amino-functionalized tetrazines 155 and 156. (B) Coumarin 149 release proceeds rapidly, but incompletely, in a pH-independent manner, as monitored by the reaction of tetrazines 155 and 156 with trans-cycloocten-2-ol-coumarin conjugate (148). Adapted from Chem. Eur., 2018, 24, 68, 18075.285

With all this information in hand, we proposed a linker conjugated to trans-cycloocten-2-ol for cyclizing MOs that is specifically activated by small molecules (tetrazines) as triggers for releasing an active, linear MO. The ntlα MO will be cyclized with this linker and injected in zebrafish embryos to target ntlα gene.

2.1.3 Synthesis of aryl-trans-cycloocten-2-ol linker for tetrazine-activated cMOs

Inspired by the nitroreductase-activated linker 142 for linearization of cyclic cMOs, linker 161 was envisioned to open a cMO using small molecule tetrazines as triggers (Figure 2-12B). As discussed previously, this linker contained two orthogonal reactive handles — an N-hydroxysuccinimide (NHS) ester and a chloroacetamide group — for selective reaction with 5’-amine and 3’-disulfide-modified ends of an MO. Linker 142 has been modified to have a trans-2-cyclooctene (or trans-cycloocten-2-ol) functionality via a carbamate linkage in place of the 4-
nitrobenzyl group. A schematic representation of the caged cMO and subsequent activation and linearization of MO in the presence of a tetrazine via iEDDA “click-to-release” chemistry is shown (Figure 2-12C).

Figure 2-12 Schematic representation of tetrazine-mediated activation of trans-cycloocten-2-ol containing cMO 142. (A) Structure of nitroreductase-activatable linker 142. Adapted from ACS Chem. Biol., 2014, 9 (9), 1985.270 (B) Structure of trans-cycloocten-2-ol-containing-linker 157. (C) Proposed mechanism of activation of cMO 158 by tetrazine 146 to afford linear MO 163.
Initially, synthesis of cis-cycloocten-2-ol was undertaken. First, diphenyl diselenide (164) was treated with sulfuryl chloride (SO$_2$Cl$_2$) to yield phenylselenyl chloride (165) (Figure 2-13A).286 Commercially available cis-cyclooctene (166) was then reacted with 165 in CH$_3$CN/H$_2$O, and was stirred for 24 h at room temperature to furnish 2-(phenylselenyl)cyclooctan-1-ol (167) in 74% yield.286 A tert-butyl hydroperoxide (TBHP)-mediated selenoxide elimination (Grieco elimination) yielded cis-cycloocten-2-ol (168) in 72% yield (Figure 2-13B).287 A batch of cis-cycloocten-2-ol (168) was shipped to the Fox lab (Prof. Joseph Fox, Department of Chemistry, University of Delaware) for conversion to its trans-isomers.288 Both the isomers, axial and equatorial trans-cycloocten-2-ol, were obtained in 33% and 32% yields, respectively and separated by silica gel flash column chromatography.

![Diagram of synthesis](image)

Figure 2-13 Synthesis of cis-cycloocten-2-ol 168 and compound 174 in the tetrazine-mediated activation strategy.

(A) Synthesis of cis-cycloocten-2-ol (168) from cis-cyclooctene (166). (B) Synthesis of linker intermediate 174.
Following the nitroreductase-activated linker synthesis,270 4-nitrobenzaldehyde (169) was treated with allyltributyltin and zinc chloride in CH\textsubscript{3}CN/H\textsubscript{2}O (4:1 v/v) conditions and stirred overnight at ambient temperature to obtain the homoallylic addition product 170 in 98\% yield (\textbf{Figure 2-13B}), which was protected with TBDMSCl to deliver the alkene 171. Compound 172 was obtained in 86\% yield by ozonolysis and subsequent sodium borohydride reduction. Activation of terminal alcohol in 172 with mesyl chloride and subsequent substitution with methylamine yielded the amine 173. A series of conditions were screened for the addition of methyl adipoyl chloride, with the use of cesium carbonate in acetonitrile delivering compound 174 in 70\% yield (\textbf{Figure 2-13B}). Reduction of the nitro group in 174 to an amine group was challenging (\textbf{Figure 2-14}). A number of conditions were tested as product degradation was observed, making the reaction optimization difficult. A possible reason for the product degradation was the fragmentation of the linker intermediate similar to 162 (\textbf{Figure 2-12}). However, we were unable to characterize the fragmented product by NMR spectroscopy. Mild hydrogenation using ammonium formate as a heterogenous hydrogen source and Pd/C as the catalyst worked the best with 82-86\% yields and minimal product degradation.289 The product 175 was purified by flash chromatography and quickly used for further reactions (it was necessary to use 175 quickly in the next reaction as presence of fragmented product was observed by NMR spectroscopy after overnight storage (data not shown)).

A \textit{cis}-cycloocten-2-ol substitute was used to generate 177 as a model compound. The synthesis of the isocyanate 176 was achieved by heating the the amine in a solution of triphosgene in toluene at 100 °C for 10 min. Without further purification of the isocyanate, carbamate formation with \textit{cis}-cycloocten-2-ol (168) was attempted by screening a few conditions. We were unable to characterize the isocyanate product by NMR spectroscopy. Thus, to optimize the reaction
conditions for the synthesis of the desired carbamate, cyclohexanol was used as a commercially available substitute for cis-cycloocten-2-ol. After screening a few reaction conditions, the cyclohexanol carbamate was obtained in 50% yield with DIPEA as a base in toluene and heating the reaction at 80 °C for 2 h (data not shown). Unfortunately, these reaction conditions failed to produce 177. After many optimization attempts with cis-cycloocten-2-ol, NaH in THF allowed for conversion of 175 to 177, albeit with very low yields (< 10%) (Figure 2-14). Other attempts with cis-cycloocten-2-ol chloroformate failed to afford the desired carbamate (data not shown). The majority of the reactant was believed to be decomposed under these conditions and we were unable to characterize the decomposed reactant by NMR spectroscopy.

Finally, a phenylcarbamate 179 was synthesized by treating aniline 175 with the commercially available phenylchloroformate (178) using pyridine as the base (Figure 2-15A). The
desired product 179 was synthesized in 67% yield by an alcohol-exchange between phenylcarbamate 179 and 168, catalyzed by dibutyltin dilaurate at 100 °C for 2 h (data not shown). To translate these conditions for the use of trans-cycloocten-2-ol isomers, we needed to address the high reaction temperature and longer reaction times given the instability of trans-cyclooctenes. For effective heating, the reactions were set up in a microwave reactor. A number of conditions were screened with varying temperatures and reaction times. No product was isolated in the reaction of 179 with the axial isomer (180a) in a number of conditions tested (Figure 2-15B). In some of the reaction conditions, the amine 175 was isolated from hydrolysis of the reactant 179. Complete decomposition of 179 was observed at 100 °C with overnight stirring and the decomposed product was unable to be characterized by NMR spectroscopy. A proposed reason for the inability of 180a to react with 179 was the conformational and steric interactions close to the hydroxyl group, similar to 1,3-diaxial interactions in substituted cyclohexanes (Figure 2-15D). Gratifyingly, the equatorial conformer was prepared in 78% yield by microwave-assisted heating of phenylcarbamate 179 and 180e to 100 °C in toluene for 20 min in the presence of dibutyltin dilaurate (Figure 2-15C). The selected conditions were utilized for the synthesis of the trans-cycloocten-2-ol-conjugated linkers.
Figure 2-15 Screening of reaction conditions for the formation of carbamate linkage with \textit{trans}-cycloocten-2-ol to the cMO linker scaffold.

(A) Synthesis of the phenylcarbamate 179. (B) Unsuccessful attempts to synthesize 181a with 179 and axial-\textit{trans}-cycloocten-2-ol (180a). (C) The equatorial-\textit{trans}-cycloocten-2-ol (180e) reacted with 179 to afford product 181e in high yields. (D) The inability of axial-\textit{trans}-cycloocten-2-ol (180a) was proposed to the presence of 1,3-diaxial interactions near the hydroxy group.

Since the linker intermediate 181a was the desired product due to its faster reaction kinetics with tetrazines compared to the equatorial isomer 180e (Figure 2-15), a sample of compound 177 was sent to the Fox lab for late-stage photoisomerization. However, the Fox lab reported only a 7% conversion to the \textit{trans}-isomers 181a and 181e, with the inability to separate the \textit{trans}-isomers from the starting material 177 (data not shown).

The Chen lab demonstrated the tetrazine-mediated decaging of axial and equatorial \textit{trans}-cycloocten-2-ol caged-lysine (145a and 145e) with the axial isomer showing faster decaging
kinetics. In this case, although the synthesis of axial isomer (181a) with faster decaging kinetics was unsuccessful, we were able to synthesize the linker intermediate with the equatorial isomer (181e). We decided to complete the linker synthesis with linker intermediate (181e), as 181e can undergo tetrazine-mediated decaging albeit with slower kinetics as compared to 181a. The TBDMS group in 181e was deprotected using TBAF (data not shown). However, the installation of the chloroacetamide handle for conjugation to a thiol-modified MO was unsuccessful. Here again, a number of reaction conditions were screened, but none of the conditions yielded the desired product (data not shown). A shorter length variant 182 of the original linker 157 was considered, with the position of the reactive handles switched (Figure 2-16A). The linker synthesis was successful up to the ultimate step of NHS activation. Synthesis of several variants (183–187) of the linker 157 were attempted with varying linker lengths and reactive groups. Here, cis-cycloocten-2-ol (168) was utilized instead of the trans-isomers (180a and 180e) for optimization of linker design and synthesis. Unfortunately, the syntheses of all these linkers failed (Figure 2-16A). For the linkers 182, 184, and 185, the final NHS activation of these linkers were unsuccessful. In this case, the NHS ester was found to be easily hydrolyzed to the acid and thus, purification and storage of 182, 184, and 185 was not successful. In the case of 183 and 186, the installation of the arm containing the chloroacetamide and the maleimide proved difficult on the corresponding alcohol (177a, Figure 2-16B, obtained by TBDMS deprotection of 177 by TBAF). In particular, the synthesis of the chloroacetamide part in 183 was attempted by three-step one-pot synthesis, as reported for the synthesis of 146. Unfortunately, this procedure failed to yield the desired chloroacetamide. The reason for this failure could not be determined as we were unable to characterize the by-products formed by NMR spectroscopy. Additionally, for the synthesis of 183, a two-step procedure was also attempted (Figure 2-16B). However, in this procedure, the desired
product 183b was not formed and a possible reason for this failure is the intramolecular reaction of 183a in presence of a base to form a cyclized amide (Figure 2-16B). Similarly, the failure to synthesize the linker intermediate 186b could be because of the intramolecular aza-Michael reaction in 186a in presence of a base (Figure 2-16C). In the case of linker 187, the NHS carbonate in 187 was found to be easily hydrolyzed to the alcohol and thus, purification of 187 was not successful.
Figure 2-16 Different linkers with varying linker lengths and reactive groups attempted for linker design optimization.

(A) Structures of linkers 182–187. (B) Unsuccessful attempt at the synthesis of 183a, a precursor to linker 183. (C) Unsuccessful attempt at the synthesis of 186a, a precursor to linker 186.
2.1.4 Synthesis of a bifunctional \textit{trans}-bicyclo-nonene for ‘click-to-release’ applications

After the unsuccessful attempts to synthesize linker 157, the design of this linker was reconsidered. As all the parts of the linker were optimized, it was important to eliminate the aryl-\textit{trans}-cycloocten-2-ol carbamate linkage. Although other linkages like carbonate, ester, and ether are reported,293 such linkages were not considered to connect \textit{trans}-cycloocten-2-ol and aryl part of the linker as the failure to synthesize the axial-\textit{trans}-cycloocten-2-ol linker intermediate 181a could be possibly due to steric factors (\textbf{Figure 2-15D}). Thus, a complete revision of the linker design was necessary.

In order to eliminate the aryl-\textit{trans}-cycloocten-2-ol linkage, we envisaged a linker with bifunctional-\textit{trans}-cycloocten-2-ol analog to accommodate the chloroacetamide and the NHS ester arms of the linker. In 2016, Robillard and co-workers reported the synthesis of a bifunctional-\textit{trans}-cycloocten-2-ol (189) for a selective activation of drug release from an antibody–drug conjugate with tetrazines (\textbf{Figure 2-17}).294 Compound 189 was synthesized in 6 steps from (Z)-cyclooct-4-ene-1-carboxylic acid (188). A methyl group was introduced geminal to the carboxylic acid to prevent epimerization. The hydroxy group in 189 was converted to an NHS carbonate and the carboxylic acid was converted to an NHS ester to afford 190. The NHS carbonate in 190 was selectively reacted with doxorubicin while the NHS ester was selectively reacted with monoclonal antibody CC49 to generate the antibody–drug conjugate 190a. It was established that equatorial isomer of 189 was 156-fold less reactive towards tetrazine 144 as compared to axial isomer of 189 towards 144, possibly due to steric hindrance and electronic effects of the hydroxyl group. Additionally, axial-\textit{trans}-cycloocten-2-ol 180a reacts with tetrazine 144 with rate constant of 57.7 M−1s−1, which is \textasciitilde20-fold lower in comparison to the reaction of axial-\textit{trans}-cycloocten-4-ol with 144 (rate constant: 1,140 M−1s−1).282
Figure 2-17 Synthesis of the functionalized trans-cycloocten-2-ol 189.

Synthesis of 189 starting from (Z)-cycloct-4-ene-1-carboxylic acid (188), and activation to compound 190. The NHS carbonate in 190 was selectively reacted with doxorubicin while the NHS ester was selectively reacted with monoclonal antibody CC49 to generate the antibody–drug conjugate 190a. Adapted from Bioconjugate Chem. 2016, 27, 7, 1697.

In 2011, the Fox lab reported bicyclo[6.1.0]non-4-yn-9-ylmethanol (192), a strained trans-cyclooctene analog with faster reaction kinetics as compared to conventional trans-cyclooctene towards tetrazine ligation. The authors reported that 192 reacts 160-fold faster with 3,6-diphenyl-1,2,4,5-tetrazine (191) (rate constant: 3,100 M$^{-1}$s$^{-1}$) in comparison to trans-cyclooctene (194) reaction with 191 (rate constant: 19 M$^{-1}$s$^{-1}$) in MeOH at 25 °C (Figure 2-18A). The higher reactivity of 192 towards tetrazines can be attributed to the additional ring strain in this fused bicyclic system and the cyclopropane moiety locking the cyclooctene ring in the reactive “half-chair” conformer (Figure 2-18B). Additionally, in aqueous solution at 25 °C, it was found that a PEG-conjugated bicyclo[6.1.0]non-4-yn-9-ylmethanol (196) reacts with PEG-conjugated dipyridyltetrazine (197) with a rate constant as high as 3,300,000 M$^{-1}$s$^{-1}$ (Figure 2-18C). Based on all these results, we proposed novel bifunctional trans-bicyclo-nonenes 207 and 208 (Figure 2-19B) for rapid “click-to-release” reactions with tetrazines.
Figure 2-18 High reactivity of substituted bicyclo[6.1.0]non-4-yn-9-ylmethanol scaffolds with tetrazines.

(A) Rate constants and reaction products of 3,6-diphenyl-1,2,4,5-tetrazine (191) with bicyclo[6.1.0]non-4-yn-9-ylmethanol (192) and trans-cyclooctene (194) in MeOH at 25 °C. Adapted from J. Am. Chem. Soc., 2011, 133, 25, 9646.295 (B) Confirmations of trans-cyclooctenes 194 and 192. The higher reactivity of 192 towards tetrazines can be attributed to the ‘half-chair’ conformation. Adapted from J. Am. Chem. Soc., 2011, 133, 25, 9646.295 (C) Rate constant and reaction product of PEG-conjugated-3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (197) with PEG-conjugated-bicyclo[6.1.0]non-4-yn-9-ylmethanol (196) in H2O at 25 °C. Adapted from Chem. Sci., 2014, 5, 3770.296

For the synthesis of 207 and 208, we first constructed the epimeric compounds 205 and 206 (Figure 2-19A). The novel trans-bicyclo-nonenes 207 and 208 can be produced by Z-to-E photoisomerization by UV irradiation (254 nm) of compounds 205 and 206 (Figure 2-19B).288 In the first batch, commercially available ethyl diazoacetate (200) was treated with 1,5-
cyclooctadiene (203) in the presence of Rh\(_2\)(OAc)\(_4\) to afford diastereomers 201 and 202, which were separated by silica gel flash chromatography (Figure 2-19A). Each of the diastereomers were individually converted to bifunctional cis-bicyclo-nonene intermediates 205 and 206 via the same route (which is illustrated here for the synthesis of compound 205 from diastereomer 201 (Figure 2-19A)). Alkene 201 was treated with PhSeCl (165) in an acetonitrile/H\(_2\)O mixture to afford the mixture of compounds 203. TBHP-mediated selenoxide elimination yielded the alcohol intermediate 204. The hydroxy group was protected with TBDMSCl, and the ethyl ester was reduced with LiAlH\(_4\) to afford the alcohol 205. Compounds 205 and 206 were sent to the Fox lab for Z-to-E photoisomerization.

TBDMS-protected trans-bicyclo-nonene intermediates, 207 and 208, were prepared by photoisomerization of 205 and 206 by the Fox lab in < 20% yield (Figure 2-19B). Yixin Xie from the Fox lab tested these intermediates’ reactivities with tetrazines with UV-Vis absorption spectroscopy.\(^{278}\) Compound 207 (200 – 400 µM) reacted with tetrazine 211 (40 µM) in MeOH at 25 °C, and a rate constant of 153 M\(^{-1}\)s\(^{-1}\) was observed (Figure 2-20). In this case, the tetrazine addition is likely hindered by the presence of bulky TBDMS group. Compound 209 was obtained by TBAF-mediated deprotection of 208. The diol 209 indeed reacted faster with tetrazine 211 (40 µM), with a higher rate constant of 250 M\(^{-1}\)s\(^{-1}\). For reference, equatorial trans-cycloocten-5-ol (210) reacted with the same tetrazine with a comparable rate constant of 358 M\(^{-1}\)s\(^{-1}\). As mentioned before, a ~20-fold reduction in reactivity was observed in case of 180a reacting with tetrazine 144 as compared to axial trans-cycloocten-5-ol.\(^{282}\) Thus, the new trans-bicyclo-nonene analogs 207 and 209 are expected to react an order of magnitude faster than axial trans-cycloocten-2-ol (180a).
Figure 2-19 Synthetic route to bifunctional trans-bicyclo-nonenes 207 and 208.

(A) Synthesis of cis-bicyclo-nonene 205. Synthesis of epimer 206 followed a similar route. (B) TBDMS-protected cis-bicyclo-nonenes 205 and 206 were photoisomerized to their respective trans-isomers 207 and 208 by the Fox lab.
Figure 2-20 Rate constants of trans-bicyclo-nonene intermediates with tetrazine.

Rate constants of trans-bicyclo-nonene intermediates (207 and 209) (200–400 µM) with tetrazine 211 (40 µM) determined by UV-Vis absorption spectroscopy at 262 nm. The kinetics were measured in triplicate. The equatorial trans-cycloocten-5-ol (210) was utilized as a reference. Data generated by Yixin Xie from the Fox lab.

Both the diastereomers were found to have comparable rate constants and thus, either of the diastereomers can be utilized for the trans-bicyclo-nonene linker synthesis. Compound 215 was selected as an intermediate for the trans-bicyclo-nonene linker synthesis due to its synthetic accessibility and scalability (Figure 2-21A). A synthetic route was devised according to reported procedure. To this end, the Rh-catalyzed cyclopropanation of commercially available reagents ethyl diazoacetate (200) and 1,5-cyclooctadiene (199) yielded compounds 201 and 202 as a mixture of diastereomers in 89% yield. Potassium tert-butoxide-mediated ester hydrolysis and epimerization of the diastereomeric mixture afforded (1R,8S,9R,Z)-bicyclo[6.1.0]non-4-ene-9-
carboxylic acid (212) as a single diastereomer in 85% yield. Next, 212 was reduced with LiAlH₄ to yield alcohol 213 in 67% yield, as reported earlier.²⁹⁷ As explained above (Figure 2-13), PhSeCl (165) addition followed by TBHP-mediated elimination afforded the diol 215 in 64% yield (over two steps). Furthermore, the primary alcohol in 215 was selectively protected with TBDPSCI to give the TBDPS-protected cis-bicyclo-nonene intermediate 216 in 61% yield, which was sent to the Fox lab for Z-to-E photoisomerization.²⁸⁸ All these reactions were carried out in multigram scale, indicating the scalability of this synthetic route.

Figure 2-21 Synthesis of bifunctional trans-bicyclo-nonene 217.

(A) Revised synthetic route for the synthesis of bifunctional cis-bicyclo-nonene 215 and TBDPS-protected compound 216. (B) The TBDPS-protected bifunctional trans-bicyclo-nonene 217 (inset) is utilized for the final linker synthesis.

The Fox lab carried out Z-to-E photoisomerization reaction on 216 to afford the trans-isomer 217 in 18% yield (Figure 2-21B). Multiple attempts at this photoisomerization with varied conditions and scale of this reaction failed to improve the yield, with <20% product (217) isolated (data not shown). The underlying reason for the poor yield and the fate of the majority of the reactant are still not determined and currently under investigation. In this case, the photoisomerization yielded two isomers — axial and equatorial. However, separation of these
diastereomers was not possible. Thus, 217 was utilized for the synthesis of the final linker without any purification, as a diastereomeric mixture (dr 2:1) as determined by NMR spectroscopy. However, the identity of the diastereomeric mixture is yet to be determined.

2.1.5 Synthesis of \textit{trans}-bicyclo-nonene linker for tetrazine-activated cMOs

The \textit{trans}-bicyclo-nonene linker synthesis was initiated from the \textit{trans}-isomer 217 (Figure 2-22). The secondary alcohol in 217 was activated as an imidazole carbamate using CDI in DCM. The imidazole was displaced with DMEDA, and subsequent reaction with methyl adipoyl chloride afforded amide 218 in 51\% yield (over three steps). With this arm in place (for later installation of an NHS ester), our focus was turned to installation of the chloroacetamide arm. TBAF-mediated deprotection of 218 yielded alcohol 219. Activation with CDI, addition of DMEDA, and treatment with chloroacetyl chloride gave compound 220 in 28\% yield (over three steps). The activation of methyl ester as an NHS ester was carried out by LiOH-mediated hydrolysis of the methyl ester and activation of the crude carboxylic acid as an NHS ester using TSTU in acetonitrile in presence of DIPEA as a base. The final linker 221 was purified by silica gel flash chromatography in 45\% yield.
The synthesis of this new linker took into account the pitfall of trans-cyclooctene instability, and the design principles for higher release yields with faster kinetics. The potential instability of trans-cyclooctene at higher temperatures and acidic pHs was avoided by carrying out all reactions at room temperature under neutral or alkaline conditions. In the final reaction sequence, in which the methyl ester was hydrolysed by LiOH, the workup was performed with aqueous citric acid solution to recover the carboxylic acid at pH > 3. During the synthesis of the bifunctional cis-bicyclo-nonene (215), a methyl group was introduced geminal to the carboxylic acid to prevent epimerization. As an alternative, in this new linker design, the carboxylic acid group in 212 was reduced to the alcohol by LiAlH₄ reduction, affording a single diastereomer 213 with no possibility of epimerization. The Weissleder lab has found that that the presence of the N-methylated carbamate prevents intramolecular cyclization and the formation of a tricyclic “dead-end” with no release (Figure 2-10). This observation was incorporated in this linker design by using DMEDA to produce the desired N-methyl carbamate. For rapid activation of cMOs prepared using this linker, a library of tetrazines with various functionalities previously reported for “click-to-release” applications were synthesized.
The final linker 221 was used for cyclization of an ntlα MO by Kristie Darrah (Figure 2-23). The commercially available ntlα MO 222 has a 5’-amino modification and a 3’-thiol protected as a disulfide. The 5’-amine end reacts readily with the NHS ester group on the linker 221 in 0.1 M Tris buffer (pH 8) at room temperature. The formation of the conjugated amido-ntlα MO 223 was monitored by MALDI-TOF-MS, and was purified by reversed-phase HPLC. The 3’-disulfide was reduced to a thiol using immobilized TCEP, and subsequent reaction with the chloroacetamide end of the linker in 0.1 M Tris buffer (pH 8) at room temperature afforded the cMO 224. The formation of the ntlα cMO 229 was monitored by MALDI-TOF-MS and purified by reverse-phase HPLC.

Figure 2-23 Synthesis of ntlα cMO 224 with the novel trans-bicyclo-nonene linker 221. The reactions were monitored by MALDI-TOF-MS with the expected mass and observed mass in agreement within < 0.05% error. Data generated by Kristie Darrah.
2.1.6 Summary and future work

In summary, small molecule activation for cMO linearization was envisioned with the iEDDA reaction of tetrazine and trans-cycloocten-2-ol, with subsequent elimination to linearize the ntlacMO in zebrafish embryos. Based on the reported nitroreductase linker, the linker design consisted of trans-cycloocten-2-ol conjugated to an aniline precursor through a carbamate linkage. The trans-cycloocten-2-ol-containing linker 157 has two reactive handles — an NHS ester and a chloroacetamide — to covalently link the 5’-amine and the 3’-thiol end of the ntlacMO for cyclization. The cis-cycloocten-2-ol trigger was synthesized in two steps, and a Z-to-E photoisomerization was carried out by the Fox lab to afford two isomers — axial and equatorial (180a and 180e, respectively). During the linker synthesis, the reduction of nitro group in 174 to an amine and subsequent carbamate synthesis to covalently link trans-cycloocten-2-ol to the amine group was initially challenging, but dibutyltin dilaurate-catalyzed carbamate formation delivered the desired aryl-phenyl carbamate in a rapid microwave-assisted reaction. Upon using these conditions with both trans-cycloocten-2-ol isomers (180a and 180e) as substrates, only the equatorial isomer was successfully used to generate a carbamate. Although the equatorial isomer is the slower for ‘click-to-release’ applications among the two isomers, the linker intermediate 181e was taken forward for synthesis of the final linker. Unfortunately, the synthesis of the originally designed linker as well as several variants of the final linker were unsuccessful (Figure 2.13). This necessitated for a change in the aryl-trans-cycloocten-2-ol linker design. A novel bifunctional trans-bicyclo-nonene was conceptualized with two alcohol functionalities for containing two reactive ends of the linker. The synthesis of the bifunctional trans-bicyclo-nonene was carried out on 2 isomers (205 and 206), and the isomers were sent to the Fox lab for Z-to-E photoisomerization. The resulting trans-bicyclo-nonenes (207 and 209) were tested for reaction.
kinetics with tetrazine 211; it is expected that these analogs exhibit faster reaction kinetics compared to the known trans-cycloocten-2-ol analogs. As both the trans-bicyclo-nonene analogs showed comparable reaction kinetics, 217 was selected based upon the ease of synthesis and scalability. One arm of the linker with 217 was constructed in 3 steps on the unprotected alcohol, while the chloroacetamide end of the linker was synthesized in 3 steps on the primary alcohol after TBDPS deprotection. Finally, the methyl ester on the first arm was hydrolyzed and activated as the NHS ester. The 5’-amine end of the ntlacMO was conjugated to the NHS ester, and the TCEP-mediated thiol deprotection and subsequent reaction with the chloroacetamide afforded the ntlacMO. Along with this synthesis, a library of previously identified tetrazines were synthesized.

Hereafter, the ntlacMO will be injected into zebrafish embryos. The ntlacMO produces a distinct phenotype in zebrafish embryos, we expect tetrazine-dependent induction of this phenotype in embryos injected with the ntlacMO. The tetrazine will be chosen with several considerations for optimization. The permeability of tetrazines in zebrafish embryos needs to be established. Low-permeability tetrazines can be injected into the embryos along with the ntlacMO. The toxicity of tetrazines will also be tested at various concentrations. After the initial proof-of-principle with the ntlacMO, the linker can theoretically be utilized to cyclize any antisense MO to dissect gene function with rapid temporal control. Finally, a novel bifunctional trans-bicyclo-nonene (217) for “click-to-release” purposes was developed as a part of this study. Compound 217 can be viewed as a novel example of decaging group with fast reaction kinetics that is activatable by small molecules, and can be utilized for various applications like controlled drug release.
2.1.7 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere with magnetic stirring. Reactions were followed by thin layer chromatography (TLC) using glass-backed silica gel plates (EMD Millipore TLC Silica Gel 60 F254: 25 Glass Plates 20x20 cm, 250 μm thickness). Anhydrous THF and acetonitrile were purchased from Acros and anhydrous DMF was purchased from Alfa Aesar. Yields refer to pure compounds unless otherwise stated. Flash chromatography was performed with silica gel (60 Å, 40-63 μm, 230 × 400 mesh, Sorbtech) as the stationary phase. High resolution mass spectrometry (HRMS) analysis was performed on a Q-Exactive (Thermo Scientific) mass spectrometer. 1H NMR and 13C NMR spectra were recorded on a 300 MHz or a 400 MHz Bruker NMR spectroscope. Chemical shifts are given in δ units (ppm) for 1H NMR spectra and 13C NMR spectra relative to the respective solvent residual peaks (CDCl$_3$: 7.26 ppm for 1H NMR and 77.16 ppm for 13C NMR; CD$_3$OD: 3.31 ppm for 1H NMR and 49.00 ppm for 13C NMR; (CD$_3$)$_2$SO: 2.50 ppm for 1H NMR and 39.52 ppm for 13C NMR).197

((1R,8S,9R,Z)-Bicyclo[6.1.0]non-4-en-9-yl)methanol (213) (from 199),297 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (144),298 3,6-diphenyl-1,2,4,5-tetrazine (191),298 2-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)ethan-1-aminium chloride (155),285 and 2-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)ethan-1-aminium chloride (156)285 were synthesized according to a reported procedures.

Phenylselenyl chloride (165). Diphenyl diselenide (5.54 g, 17.75 mmol, 1.0 eq) was dissolved in anhydrous DCM (30 mL), and the solution was cooled in an ice-water mixture. Sulfuryl chloride (1.40 mL, 17.75 mmol, 1.0 eq) was slowly added to this solution at 0 °C, and the resulting dark red solution was stirred for 1 h at 0 °C. The reaction was warmed to room temperature and the
volatiles were evaporated under reduced pressure. Compound 165 was obtained as an orange solid (6.75 g, 99%). 1H NMR (400 MHz, CDCl$_3$) δ 7.89 – 7.78 (m, 2H), 7.40 – 7.38 (m, 3H). The NMR data obtained was in accordance with the reported data.299

2-(Phenylselanyl)cyclooctan-1-ol (167). Compound 166 (100 mg, 0.91 mmol, 1.0 eq) was dissolved in acetonitrile (5 mL) and water (1 mL) was added to this solution. Compound 165 (174 mg, 0.91 mmol, 1.0 eq) was added to the solution, and the reaction mixture was stirred at room temperature for 24 h. Acetonitrile was evaporated under reduced pressure, and the residue was resuspended in ethyl acetate (5 mL) and H$_2$O (5 mL) mixture. The ethyl acetate layer was separated, and the aqueous layer was extracted with ethyl acetate (2 × 5 mL). The combined organic extracts were dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The product was purified from the residue by silica gel flash column chromatography (elution with 1:9 ethyl acetate/hexanes) to afford 167 as a white solid (190 mg, 74%). The NMR data obtained was in accordance with the reported data.300

(Z)-Cyclooct-2-en-1-ol (168). Compound 167 (100 mg, 0.35 mmol, 1.0 eq) was dissolved in THF (4 mL), and tert-butyl hydroperoxide (TBHP, 1 mL, 70 wt% in H$_2$O) was added to this solution at room temperature. The reaction mixture was stirred at room temperature for 20 h. The reaction was quenched with aqueous saturated sodium bicarbonate solution (5 mL), and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 5 mL), and the combined organic extracts were dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column
chromatography (elution with 1:4 ethyl acetate/hexanes) to yield 168 as a colorless oil (32 mg, 72%). The NMR data obtained was in accordance with the reported data.287

Tert-butyldimethyl((1-(4-nitrophenyl)but-3-en-1-yl)oxy)silane (171). Tert-butyldimethyl chlorosilane (TBDMSCl, 624 mg, 4.14 mmol, 2.0 eq) was added to a stirred solution of 170 (400 mg, 2.07 mmol, 1.0 eq) in anhydrous DMF (10 mL). To this solution, imidazole (423 mg, 6.21 mmol, 3.0 eq) was added and the reaction mixture was stirred overnight at room temperature. On consumption of 170 as confirmed by TLC, the reaction was diluted with water (100 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with brine (20 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography in 1:20 ethyl acetate/hexanes to obtain 155 as a yellow oil (610 mg, 96%). 1H NMR (300 MHz, CDCl$_3$) δ 8.18 (d, J=8.50 Hz, 2 H), 7.47 (d, J=8.69 Hz, 2 H), 5.65 − 5.80 (m, 1 H), 4.94 − 5.07 (m, 2 H), 4.80 (t, J=5.95 Hz, 1 H), 2.34 − 2.51 (m, 2 H), 0.86 − 0.93 (m, 10 H), 0.00 − 0.12 (m, 3 H), −0.10 (s, 3 H); HRMS (ESI) calcd. for C$_{16}$H$_{26}$O$_3$NSi (M+H)$^+$ 308.1677, found: 308.1686.

3-((Tert-butyldimethylsilyl)oxy)-3-(4-nitrophenyl)propan-1-ol (172). Compound 171 (2.0 g, 6.50 mmol, 1.0 eq) was dissolved in MeOH (100 mL) and this solution was cooled to −78 °C in a dry ice-acetone bath. Ozone gas was passed till the solution was saturated as seen by dark blue color of the solution and the gas flow was maintained for another 15 min. The gas flow was stopped and NaBH$_4$ (1.2 g, 32.52 mmol, 5.0 eq) was very slowly added to this solution at −78 °C over 30 min to keep the effervescence to a minimum. After complete addition of NaBH$_4$, the solution was stirred at room temperature for 1 h while allowing the solution to warm to room temperature. The
reaction was quenched by ice-water mixture (20 mL) and MeOH was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 20 mL). The combined organic extracts were washed with brine (20 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The residual oil was loaded onto a silica gel column and the product was eluted out in 1:4 ethyl acetate/hexanes to yield 157 as a pale-yellow oil (1.7 g, 86%).

1H NMR (400 MHz, CDCl$_3$) δ 8.33 (d, J=8.80 Hz, 2 H), 7.63 (d, J=8.56 Hz, 2 H), 5.17 (dd, J=7.34, 4.40 Hz, 1 H), 3.78 − 3.92 (m, 2 H), 1.97 − 2.12 (m, 3 H), 1.01 − 1.05 (m, 9 H), 0.19 − 0.22 (m, 3 H), −0.02 − 0.01 (m, 3 H); HRMS (ESI) calcd. for C$_{15}$H$_{26}$O$_4$NSi (M+H)$^+$ 312.1626, found: 312.1635.

3-((Tert-butyldimethylsilyl)oxy)-N-methyl-3-(4-nitrophenyl)propan-1-amine (173). To a solution of 172 (500 mg, 1.61 mmol, 1.0 eq) in anhydrous DCM (20 mL), mesyl chloride (190 µL, 2.46 mmol, 1.5 eq) was added at room temperature. This solution was cooled to 0 °C and triethylamine (340 µL, 2.46 mmol, 1.5 eq) was dropwise added. The resulting solution was warmed to room temperature and stirred at room temperature for 3 h. On consumption of 172 as confirmed by TLC, the reaction was concentrated under reduced pressure. The residual oil was loaded on a silica gel column and the product was eluted out in 1:6 ethyl acetate/hexanes to yield 3-((tert-butyldimethylsilyl)oxy)-3-(4-nitrophenyl)propyl methanesulfonate as a pale-yellow oil (570 mg, 91%). This oil (570 mg, 1.46 mmol, 1.0 eq) was further dissolved in THF (20 mL) and 40% aqueous solution of methylamine (20 mL, 234 mmol, 160 eq, 40% aq. solution) was added to the solution at room temperature. The reaction mixture was heated to 50 °C and stirred overnight to 50 °C. The reaction was cooled to room temperature and diluted with water (20 mL). The reaction mixture was extracted with ethyl acetate (3 × 10 mL) and the combined extracts were washed with
brine (20 mL), dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The product was purified from the residual mass by silica gel flash column chromatography in 1:1 ethyl acetate/hexanes to yield 173 as a pale-yellow oil (445 mg, 75% from 172). 1H NMR (400 MHz, CDCl$_3$) δ 8.32 (d, J=8.80 Hz, 2 H), 7.62 (d, J=8.56 Hz, 2 H), 5.80 (br s, 1 H), 5.04 (dd, J=7.34, 4.65 Hz, 1 H), 2.94 – 2.95 (m, 1 H), 2.93 (d, J=4.89 Hz, 7 H), 2.69 – 2.87 (m, 2 H), 2.56 (s, 3 H), 2.11 (s, 9 H), 1.94 – 2.07 (m, 2 H), 1.03 (s, 9 H), 0.20 (s, 3 H), 0.00 (s, 3 H); HRMS (ESI) calcd. for C$_{16}$H$_{29}$O$_3$N$_2$Si (M+H)$^+$ 325.1942, found: 325.1954.

Methyl 6-((3-((tert-butyldimethylsilyloxy)-3-(4-nitrophenyl)propyl)(methyl)amino)-6-oxohexanoate (174). Methyl adipoyl chloride (0.96 mL, 6.16 mmol, 1.0 eq) was added to a solution of 173 (2.0 g, 6.16 mmol, 1.0 eq) in anhydrous acetonitrile (30 mL) at room temperature. Cesium carbonate (2.4 g, 7.40 mmol, 1.2 eq) was added to this solution and the resultant suspension was stirred at room temperature for 24 h. After stirring for 24 h at room temperature, the reaction mixture was diluted by water (30 mL) and acetonitrile was evaporated under reduced pressure. The aqueous layer was extracted with multiple portions of ethyl acetate (3 × 20 mL). The combined organic extracts were washed with brine (10 mL), dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The residual oil was loaded onto a silica gel column and the product was eluted out in 1:3 ethyl acetate/hexanes to obtain 174 as a yellow oil (1.91 g, 70%). 1H NMR (400 MHz, CDCl$_3$) δ 8.13 – 8.22 (m, 2 H), 7.49 (d, J=8.56 Hz, 2 H), 4.77 – 4.85 (m, 1 H), 3.60 – 3.66 (m, 3 H), 3.42 – 3.55 (m, 1 H), 3.21 – 3.34 (m, 2 H), 2.79 – 2.94 (m, 3 H), 2.26 – 2.35 (m, 2 H), 2.23 (br s, 2 H), 1.77 – 1.98 (m, 3 H), 1.62 – 1.73 (m, 2 H), 0.84 – 0.93 (m, 9 H), 0.01 – 0.08 (m, 3 H), -0.19 – -0.13 (m, 3 H). HRMS (ESI) calcd. for C$_{16}$H$_{26}$O$_3$NSi (M+H)$^+$ 467.2572, found: 467.2569.
Methyl 6-((3-(4-aminophenyl)-3-((tert-butyldimethylsilyl)oxy)propyl)(methyl)amino)-6-oxohexanoate (175). Ammonium formate (68 mg, 1.07 mmol, 10.0 eq) was added to a solution of 174 (50 mg, 0.11 mmol, 1.0 eq) in a mixture of anhydrous THF (1 mL) and anhydrous MeOH (1 mL) at room temperature. Pd/C (1 mg, 0.01 mmol, 0.1 eq) was added to this suspension and the reaction flask was sealed. The reaction mixture was allowed to stir at room temperature for 30 min. The reaction flask was opened carefully and the reaction mixture was diluted by ethyl acetate (5 mL). The suspension was filtered over a column of celite (packed in a glass pipette). The ethyl acetate layer was washed with water (5 mL), brine (5 mL), dried over sodium sulfate (200 mg), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography to obtain 175 as a colorless oil (40 mg, 85%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.01 − 7.11 (m, 2 H), 6.60 − 6.68 (m, 2 H), 4.54 − 4.64 (m, 1 H), 3.65 (d, \(J=4.40\) Hz, 3 H), 3.11 − 3.51 (m, 4 H), 2.86 (d, \(J=15.77\) Hz, 3 H), 2.27 − 2.35 (m, 2 H), 2.13 − 2.27 (m, 2 H), 1.73 − 1.92 (m, 2 H), 1.54 − 1.68 (m, 4 H), 0.86 (d, \(J=9.54\) Hz, 9 H), 0.00 (d, \(J=7.83\) Hz, 3 H), −0.18 (d, \(J=6.97\) Hz, 3 H); HRMS (ESI) calcd. for C\(_{23}\)H\(_{41}\)O\(_4\)N\(_2\)Si (M+H)\(^+\) 437.2830, found: 437.2830.

Methyl (Z)-6-((3-((tert-butyldimethylsilyl)oxy)-3-4-((cyclooct-2-en-1-yloxy)carbonyl)amino)phenyl)propyl)(methyl)amino)-6-oxohexanoate (177). Triphosgene (15 mg, 0.05 mmol, 0.5 eq) was added to a solution of 175 (45 mg, 0.10 mmol, 1.0 eq) in anhydrous toluene (5 mL) at room temperature. This solution was heated to 100 °C and stirred for 10 min. The reaction mixture was concentrated to yield a 176 as a pale-yellow oil (42 mg, 90%). This oil was quickly dissolved in anhydrous THF (1 mL). A solution of 168 in anhydrous THF (1 mL) was prepared in another
vial and cooled to 0 °C. Sodium hydride (1.2 eq) was added to the solution of 168 with stirring at 0 °C and the suspension was stirred at 0 °C for 15 min. The solution of 176 (in THF) was slowly added to the reaction mixture containing 168 at 0 °C and the resulting reaction mixture was stirred for 2 h while allowing to warm to room temperature. The reaction was quenched with ice-water mixture (5 mL) and the aqueous layer was washed with ethyl acetate (3 × 5 mL). The combined organic extracts were washed with brine (10 mL), dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. Compound 177 was purified from the residual oil by silica gel flash column chromatography in 1:3 ethyl acetate/hexanes as a yellow oil (6.0 mg, 10% yield from amine 175). 1H NMR (400 MHz, CDCl3) δ 7.29 – 7.38 (m, 1 H), 7.30 (br s, 1 H), 7.20 – 7.25 (m, 2 H), 6.59 – 6.73 (m, 1 H), 5.61 – 5.73 (m, 2 H), 5.44 – 5.56 (m, 1 H), 4.63 – 4.74 (m, 1 H), 3.66 (d, J=4.89 Hz, 3 H), 3.14 – 3.57 (m, 2 H), 2.86 (d, J=14.31 Hz, 3 H), 2.26 – 2.35 (m, 3 H), 2.08 – 2.21 (m, 3 H), 2.00 (br d, J=3.79 Hz, 2 H), 1.82 – 1.93 (m, 3 H), 1.63 – 1.75 (m, 4 H), 1.52 (br s, 3 H), 1.40 (br dd, J=4.83, 2.87 Hz, 2 H), 0.88 (br d, J=10.39 Hz, 9 H), 0.02 (d, J=8.44 Hz, 3 H), –0.17 (d, J=8.80 Hz, 3 H); HRMS (ESI) calcd. for C32H53O6N2Si (M+H)+ 589.3667, found: 589.3660.

Methyl 6-((3-((tert-butyldimethylsilyl)oxy)-3-(4-((phenoxy carbonyl)amino)phenyl)propyl)(methyl)amino)-6-oxohexanoate (179). Compound 175 (45 mg, 0.10 mmol, 1.0 eq) was dissolved in anhydrous DCM (5 mL) and this solution was cooled in ice-water bath. Compound 178 (20 µL, 0.16 mmol, 1.5 eq) and, subsequently, pyridine (20 µL, 0.26 mmol, 2.5 eq) was added to the solution at 0 °C while stirring. The reaction mixture was stirred for 30 min while allowing to warm to room temperature. A white precipitate was observed in the reaction mixture after pyridine addition. The precipitate was filtered by a glass pipette with a cotton plug. The white
precipitate was washed with DCM (3 mL) and the filtrate was concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography (elution with 1:1 ethyl acetate/hexanes) to afford **167** as a colorless oil (53 mg, 92%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 6.79 – 7.41 (m, 10 H), 4.67 – 4.74 (m, 1 H), 3.64 – 3.68 (m, 3 H), 3.40 – 3.55 (m, 1 H), 3.17 – 3.28 (m, 2 H), 2.76 – 2.90 (m, 3 H), 2.16 – 2.24 (m, 2 H), 2.25 (br s, 2 H), 1.76 – 2.02 (m, 3 H), 1.59 – 1.69 (m, 2 H), 0.80 – 0.92 (m, 9 H), 0.00 – 0.07 (m, 3 H), -0.18 – -0.13 (m, 3 H); LRMS (ESI) calcd. for C\(_{30}\)H\(_{45}\)O\(_6\)N\(_2\)Si (M+H)\(^+\) 557.30, found: 557.00.

Methyl \((E)\)-6-(((3-((tert-butyldimethylsilyl)oxy)-3-((cyclooct-2-en-1-yloxy)carbonyl)amino)phenyl)propyl)(methyl)amino)-6-oxohexanoate (181e). To a 10 mL microwave reactor vial equipped with a stir bar, **179** (110 mg, 0.20 mmol, 1.0 eq) was added and dissolved in anhydrous toluene (5 mL). Compound **180e** (30 mg, 0.24 mmol, 1.2 eq) and dibutyltin dilaurate (150 mg, 0.24 mmol, 1.2 eq) was added to this vial at room temperature and the vial was sealed. The vial was heated to 100 °C in a microwave reactor and the reaction was stirred at 100 °C for 20 min. The vial was allowed to cool to room temperature and the vial was carefully opened. The reaction mixture was concentrated under reduced pressure. The residual oil was loaded on a silica gel column and the product was eluted out in 1:1 ethyl acetate/hexanes to afford **181e** as a pale-yellow oil (91 mg, 78%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.32 – 7.38 (m, 2 H), 7.22 – 7.26 (m, 2 H), 6.82 – 6.84 (m, 1 H), 6.20 – 6.26 (m, 1 H), 5.80 – 5.88 (m, 1 H), 5.48 – 5.58 (m, 1 H), 4.66 – 4.75 (m, 1 H), 3.69 (d, \(J=4.57 \) Hz, 3 H), 3.23 – 3.66 (m, 2 H), 2.99 (d, \(J=12.78 \) Hz, 3 H), 2.36 – 2.46 (m, 3 H), 2.23 – 2.32 (m, 3 H), 2.18 (br d, \(J=4.12 \) Hz, 2 H), 1.89 – 1.99 (m, 3 H), 1.66 – 1.83 (m, 4 H), 1.55 (br s, 3 H), 1.46 (m, 2 H), 0.95 (br d, \(J=10.21 \) Hz, 9 H), 0.04 (d, \(J=8.65 \) Hz, 3 H).
-0.17 (d, J=8.99 Hz, 3 H); HRMS (ESI) calcd. for C_{32}H_{53}O_{6}N_{2}Si (M+H)^{+} 589.3667, found: 589.3679.

Ethyl (1S,8R,9S,Z)-5-hydroxybicyclo[6.1.0]non-3-ene-9-carboxylate (204). Compound 201 (3.50 g, 18.02 mmol, 1.0 eq) was dissolved in acetonitrile (50 mL), and water (10 mL) was added to this solution. Compound 165 (4.14 g, 21.62 mmol, 1.2 eq) was added to this solution, and the reaction mixture was stirred at room temperature for 24 h. Acetonitrile was evaporated under reduced pressure, and the residue was resuspended in ethyl acetate (50 mL) and H_{2}O (50 mL) mixture. The ethyl acetate layer was separated, and the aqueous layer was extracted with ethyl acetate (2 × 30 mL). The combined organic extracts were dried over sodium sulfate (10 g), filtered, and concentrated under reduced pressure to yield a yellow gum (6.20 g). The yellow gum was dissolved in THF (40 mL), and tert-butyl hydroperoxide (TBHP, 10 mL, 70 wt% in H_{2}O) was added to this solution at room temperature, and the reaction mixture was stirred for 24 h. The reaction was quenched with aqueous saturated NaHCO_{3} (40 mL), and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 30 mL), and the combined organic extracts were dried over sodium sulfate (10 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography, eluting with ethyl acetate/hexanes (1:4) to yield 204 as a colorless viscous oil (2.48 g, 70%). 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 5.72 – 5.81 (m, 1 H), 5.63 – 5.71 (m, 1 H), 4.31 – 4.39 (m, 1 H), 4.05 – 4.14 (m, 2 H), 2.32 – 2.43 (m, 2 H), 1.83 – 1.92 (m, 1 H), 1.61 – 1.80 (m, 4 H), 1.33 – 1.44 (m, 2 H), 1.21 – 1.28 (m, 4 H); LRMS (ESI) calcd. for C_{12}H_{18}O_{3} (M+H)^{+} 211.13, found: 211.00.
((1S,8R,9S,Z)-5-((tert-butyldimethylsilyl)oxy)bicyclo[6.1.0]non-3-en-9-yl)methanol (205).

Procedure A: Compound 204 (5.0 g, 23.78 mmol, 1.0 eq) was dissolved in anhydrous DMF (30 mL) and imidazole (4.9 g, 71.34 mmol, 3.0 eq) was added to this solution. Tert-butyldiphenylchlorosilane (TBDMSCl, 5.4 g, 35.67 mmol, 1.5 eq) was added to this solution at room temperature. The reaction mixture was stirred overnight at room temperature. The reaction mixture was poured into water (200 mL) and the aqueous layer was washed with ethyl acetate (3 × 50 mL). The combined organic extracts were dried over sodium sulfate (20 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography (elution with 1:20 ethyl acetate/hexanes) to afford a clear oil. The oil was dissolved in anhydrous diethyl ether (30 mL) and this solution was cooled to 0 °C. Lithium aluminum hydride (LiAlH₄, 2.6 g, 37.95 mmol, 3.0 eq) was added to this solution at 0 °C with stirring. The resulting suspension was stirred at 0 °C for 1 h. Saturated aqueous ammonium chloride solution (50 mL) was slowly added to the reaction mixture at 0 °C with the formation of a white precipitate. The white precipitate was filtered and the diethyl ether layer was separated. The aqueous layer was washed with diethyl ether (3 × 30 mL). The combined diethyl ether layers were washed with brine (20 mL), dried over sodium sulfate (10 g), filtered, and concentrated under reduced pressure. The product was purified from the residual oil by silica gel flash column chromatography, eluting with ethyl acetate/hexanes (1:4) to yield 205 as a colorless oil (6.0 g, 92%).

1H NMR (300 MHz, CDCl₃) δ 5.58 – 5.75 (m, 2 H), 4.26 (br d, $J=9.63$ Hz, 1 H), 3.44 (dd, $J=6.70, 1.61$ Hz, 2 H), 2.23 – 2.38 (m, 2 H), 1.48 – 1.87 (m, 3 H), 1.06 – 1.26 (m, 1 H), 0.78 – 0.93 (m, 12 H), 0.58 – 0.71 (m, 1 H), 0.01 – 0.08 (m, 6 H); LRMS (ESI) calcd. for C₁₆H₃₁O₂Si(M+H)$^+$ 283.2, found: 283.00.
((1S,8R,9R,Z)-5-((tert-butyldimethylsilyl)oxy)bicyclo[6.1.0]non-3-en-9-yl)methanol (206).

Procedure A, 5.4 g, 89%. 1H NMR (300 MHz, CDCl$_3$) δ 5.56 – 5.77 (m, 2 H), 4.29 (br d, $J=$9.82 Hz, 1 H), 3.73 – 3.90 (m, 2 H), 2.02 – 2.18 (m, 2 H), 1.65 – 1.93 (m, 3 H), 1.04 – 1.45 (m, 5 H), 0.88 (s, 9 H), 0.04 (s, 6 H); LRMS (ESI) calcd. for C$_{16}$H$_{31}$O$_2$Si (M+H)$^+$ 283.21, found: 283.00.

(1R,8S,9S,Z)-9-(Hydroxymethyl)bicyclo[6.1.0]non-5-en-4-ol (215). Compound 213 (5.20 g, 34.16 mmol, 1.0 eq) was dissolved in acetonitrile (100 mL), and water (20 mL) was added to this solution. Compound 165 (6.74 g, 35.18 mmol, 1.0 eq) was added to this solution, and the reaction mixture was stirred at room temperature for 24 h. Acetonitrile was evaporated under reduced pressure, and the residue was resuspended in ethyl acetate (50 mL) and H$_2$O (50 mL) mixture. The ethyl acetate layer was separated, and the aqueous layer was extracted with ethyl acetate (2 x 50 mL). The combined organic extracts were dried over sodium sulfate (20 g), filtered, and concentrated under reduced pressure to yield crude mixture 214 as a yellow gum (HRMS (ESI) calcd. for C$_{16}$H$_{23}$O$_2$Se (M+H)$^+$ 327.08578, found: 327.08472). The yellow gum 214 was dissolved in THF (100 mL), and tert-butyl hydroperoxide (TBHP, 25 mL, 70 wt% in H$_2$O) was added to this solution at room temperature, and the reaction mixture was stirred for 24 h. The reaction was quenched with aqueous saturated NaHCO$_3$ (50 mL), and THF was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (5 x 50 mL), and the combined organic extracts were dried over sodium sulfate (20 g), filtered, and concentrated under reduced pressure. The product was purified from the crude residue by silica gel flash column chromatography, eluting with MeOH/DCM (1:9) to yield 215 as a white solid (3.69 g, 64%). 1H NMR (400 MHz, CDCl$_3$) δ 5.66 – 5.83 (m, 1 H), 5.60 – 5.66 (m, 1 H), 4.29 – 4.38 (m, 1 H), 3.39 – 3.47 (m, 2 H), 2.26 – 2.38 (m, 2 H), 1.68 – 1.89 (m, 4 H), 1.57 (td, $J=$12.17, 10.03 Hz, 1 H), 1.14 – 1.30 (m, 1
H), 0.79 – 0.91 (m, 2 H), 0.58 – 0.79 (m, 1 H); 13C NMR (101 MHz, CDCl$_3$) δ 137.50, 129.56, 73.46, 66.51, 41.09, 29.58, 28.16, 27.23, 26.94, 20.35; HRMS (ESI) calcd. for C$_{10}$H$_{17}$O$_2$ (M+H)$^+$ 169.12231, found: 169.12241.

(1R,8S,9S,Z)-9-(((Tert-butyldiphenylsilyl)oxy)methyl)bicyclo[6.1.0]non-5-en-4-ol (216).

Compound 215 (3.69 g, 21.93 mmol, 1.0 eq) was dissolved in anhydrous DMF (30 mL), and imidazole (2.99 g, 43.87 mmol, 2.0 eq) was added to this solution. The resulting solution was cooled in an ice-water mixture, and tert-butyldiphenylchlorosilane (TBDMSCl, 5.70 mL, 21.93 mmol, 1.0 eq) was slowly added dropwise to this solution at this temperature. The reaction mixture was stirred for 3 h while allowing the reaction mixture to warm to room temperature. The reaction was quenched with water (300 mL), and the aqueous layer was washed with ethyl acetate (3 × 50 mL). The combined organic extracts were dried over sodium sulfate (20 g), filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography, eluting with ethyl acetate/hexanes (1:4) to yield 216 as a clear oil (5.40 g, 61%).

1H NMR (400 MHz, CDCl$_3$) δ 7.66 – 7.71 (m, 4 H), 7.36 – 7.45 (m, 6 H), 5.69 – 5.74 (m, 1 H), 5.59 – 5.63 (m, 1 H), 4.32 – 4.35 (m, 1 H), 3.48 – 3.60 (m, 2 H), 2.18 – 2.35 (m, 2 H), 1.81 – 1.87 (m, 1 H), 1.66 – 1.74 (m, 2 H), 1.52 – 1.57 (m, 1 H), 1.13 – 1.22 (m, 1 H), 1.05 – 1.07 (m, 9 H), 0.68 – 0.81 (m, 2 H), 0.52 – 0.56 (m, 1 H); 13C NMR (101 MHz, CDCl$_3$) δ 137.21, 135.74, 134.25, 129.91, 129.66, 127.69, 73.55, 67.07, 41.28, 29.41, 28.21, 27.29, 27.00, 26.84, 20.09, 19.34; HRMS (ESI) calcd. for C$_{26}$H$_{35}$O$_2$Si (M+H)$^+$ 407.24008, found: 407.23874.

Methyl 6-(((2-(((1R,8S,9S,E)-9-(((Tert-butyldiphenylsilyl)oxy)methyl)bicyclo[6.1.0]non-5-en-4-yl)oxy)carbonyl)(methyl)amino)ethyl)(methyl)amino)-6-oxohexanoate (218).
Compound 217 (50 mg, 0.18 mmol, 1.0 eq) was dissolved in anhydrous DCM (3 mL), and 1,1'-carbonyldiimidazole (CDI, 57 mg, 0.35 mmol, 2.0 eq) was added to this solution and stirred for 3 h at room temperature. N,N'-Dimethylethylenediamine (DMEDA, 95 µL, 0.88 mmol, 5.0 eq) was added to the reaction mixture at room temperature, and the reaction was stirred at room temperature for another 3 h. The volatiles were evaporated under reduced pressure to yield crude amine intermediate as a yellow oil (HRMS (ESI) calcd. for C\textsubscript{31}H\textsubscript{45}O\textsubscript{3}N\textsubscript{2}Si (M+H)+ 521.31940, found: 521.31902). The crude residue was dissolved in anhydrous acetonitrile (5 mL), and cesium carbonate (290 mg, 0.88 mmol, 5.0 eq) was added to this reaction at room temperature. Methyl adipoyl chloride (83 µL, 0.53 mmol, 3.0 eq) was added to this suspension at room temperature, and stirred for 24 h. The reaction was quenched with water (20 mL), and the acetonitrile was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (3 × 10 mL) and the combined organic extracts were dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography, eluted with ethyl acetate/DCM (1:1) to yield 222 as a yellow oil (48 mg, 51%). 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.63 – 7.65 (m, 4 H), 7.34 – 7.41 (m, 6 H), 5.14 – 5.75 (m, 2 H), 3.64 – 3.66 (m, 3 H), 3.34 – 3.56 (m, 5 H), 2.99 (s, 2 H), 2.91 – 2.96 (m, 4 H), 2.19 – 2.38 (m, 6 H), 1.82 – 2.04 (m, 2 H), 1.53 – 1.73 (m, 6 H), 1.14 – 1.33 (m, 2 H), 0.99 – 1.06 (m, 9 H), 0.69 – 0.91 (m, 2 H), 0.45 – 0.57 (m, 1 H); HRMS (ESI) calcd. for C\textsubscript{38}H\textsubscript{55}O\textsubscript{6}N\textsubscript{2}Si (M+H)+ 663.38239, found: 663.38213.

Methyl 6-(((2-(((1R,8S,9S,E)-9-(hydroxymethyl)bicyclo[6.1.0]non-5-en-4-yl)oxy)carbonyl)-(methyl)amino)ethyl)-(methyl)amino)-6-oxohexanoate (219). Compound 218 (80 mg, 0.12 mmol, 1.0 eq) was dissolved in anhydrous THF (5 mL), and TBAF (0.8 mL, 0.80 mmol, 6.7 eq, 1 M in THF) was added to this solution at room temperature. The reaction mixture was stirred at
room temperature for 3 h. The solvent was evaporated under reduced pressure and the residue was suspended in ethyl acetate (5 mL) and H₂O (5 mL). The ethyl acetate layer was separated and the aqueous layer was washed with ethyl acetate (2 × 5 mL). The combined organic fractions were dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography, eluted with MeOH/ethyl acetate (1:20) to yield **219** (39 mg, 76%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.05 – 6.06 (m, 2 H), 3.62 – 3.63 (m, 3 H), 3.29 – 3.48 (m, 5 H), 2.96 – 2.99 (m, 2 H), 2.89 – 2.92 (m, 4 H), 2.56 – 2.82 (m, 1 H), 2.22 – 2.39 (m, 6 H), 1.85 – 1.99 (m, 1 H), 1.54 – 1.67 (m, 6 H), 1.14 – 1.36 (m, 2 H), 0.83 – 0.95 (m, 2 H), 0.60 – 0.66 (m, 1 H); HRMS (ESI) calcd. for C₂₂H₃₇O₆N₂ (M+H)⁺ 425.26461, found: 425.26478.

Methyl 6-((2-(((1R,8S,9S,E)-9-(((2-(2-chloro-N-methylacetamido)ethyl)(methyl)carbamoyl)oxy)methyl)bicyclo[6.1.0]non-5-en-4-yl)oxy)carbonyl)(methyl)amino)ethyl)(methyl)amino)-6-oxohexanoate (220). Compound **219** (39 mg, 0.09 mmol, 1.0 eq) was dissolved in anhydrous DCM (3 mL) and 1,1'-carbonyldiimidazole (CDI, 23 mg, 0.14 mmol, 1.5 eq) was added to this solution and stirred at room temperature for 3 h. N,N'-Dimethylethlenediamine (DMEDA, 50 µL, 0.47 mmol, 5.0 eq) was added to the reaction mixture, and stirred at room temperature for another 5 h. The volatiles were evaporated under reduced pressure to yield crude amine intermediate as a yellow oil (HRMS (ESI) calcd. for C₂₇H₄₇O₇N₄ (M+H)⁺ 539.34393, found: 539.34440). The crude residue was dissolved in anhydrous acetonitrile (3 mL), and cesium carbonate (307 mg, 0.94 mmol, 10.0 eq) was added to this solution at room temperature. The suspension was cooled in an ice-water mixture, and chloroacetyl chloride (38 µL, 0.47 mmol, 5.0 eq) was slowly added at 0 °C. The reaction was stirred for 4 h while allowing
the reaction mixture to warm to room temperature. The reaction was quenched with water (10 mL), and acetonitrile was evaporated under reduced pressure. The aqueous layer was washed with ethyl acetate (5 × 5 mL), and the combined organic extracts were dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography, eluting with ethyl acetate/DCM (1:1) to yield 220 (16 mg, 28%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 4.94 – 6.14 (m, 2 H), 3.78 – 4.33 (m, 3 H), 3.65 (s, 3 H), 3.24 – 3.60 (m, 8 H), 3.07 – 3.22 (m, 2 H), 2.96 – 3.04 (m, 4 H), 2.89 – 2.96 (m, 5 H), 2.22 – 2.40 (m, 6 H), 1.80 – 2.21 (m, 2 H), 1.64 (br d, J=2.93 Hz, 6 H), 1.14 – 1.37 (m, 3 H), 0.79 – 1.04 (m, 2 H), 0.71 (br dd, J=4.34, 2.75 Hz, 1 H). HRMS (ESI) calcd. for C29H48O8N4Cl (M+H)+ 615.31552, found: 615.31503.

2,5-Dioxopyrrolidin-1-yl 6-(((1R,8S,9S,E)-9-(((2-(2-chloro-N-methylacetamido)ethyl)-(methyl)carbamoyloxy)methyl)bicyclo[6.1.0]non-5-en-4-yl)oxy)carbonyl)-(methyl)amino)-ethyl)-(methyl)amino)-6-oxohexanoate (221). Compound 220 (8.0 mg, 0.013 mmol, 1.0 eq) was dissolved in THF (0.5 mL), and 2 M aqueous LiOH solution (0.5 mL) was slowly added to this solution at room temperature, and the resulting mixture was vigorously stirred at room temperature for 3 h. The reaction mixture was diluted with water (2 mL), and the aqueous phase was washed with Et2O (3 × 1 mL). The aqueous layer was acidified with 1 M aqueous citric acid to a pH of 3-4. The aqueous phase was washed with ethyl acetate (3 × 2 mL). The combined organic extracts were dried over sodium sulfate (200 mg), filtered, and concentrated under reduced pressure to afford the crude acid as a colorless oil (5.6 mg, 72%). The acid was dissolved in anhydrous acetonitrile (1 mL), and the solution was cooled in an ice-water mixture. TSTU (4.2 mg, 0.014 mmol, 1.5 eq) and then N,N-diisopropylethylamine (3.3 µL, 0.019 mmol, 2.0 eq) was added to this
solution at 0 °C. The reaction mixture was stirred for 30 min while allowing the reaction mixture to warm to room temperature. The reaction mixture was concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography, eluting with MeOH/ethyl acetate (1:20) to yield 221 as a colorless oil (2.9 mg, 45%). 1H NMR (400 MHz, CDCl$_3$) δ 5.11 – 5.80 (m, 2 H), 4.06 (s, 1 H), 3.84 – 3.94 (m, 1 H), 3.64 – 3.75 (m, 2 H), 3.33 – 3.60 (m, 5 H), 3.09 – 3.16 (m, 3 H), 2.98 – 3.04 (m, 2 H), 2.91 – 2.97 (m, 4 H), 2.79 – 2.89 (m, 4 H), 2.69 – 2.78 (m, 1 H), 2.59 – 2.69 (m, 2 H), 2.27 – 2.38 (m, 4 H), 2.09 – 2.17 (m, 1 H), 1.84 – 1.95 (m, 1 H), 1.67 – 1.83 (m, 4 H), 1.47 – 1.54 (m, 6 H), 1.24 – 1.27 (m, 2 H), 0.81 – 0.99 (m, 2 H), 0.64 – 0.79 (m, 1 H); LRMS (ESI) calcd. for C$_{32}$H$_{49}$ClN$_5$O$_{10}$ (M+H)$^+$ 698.32, found: 698.00.

Representative procedure for the synthesis of tetrazines.

Synthetic procedure for the synthesis of 3-methyl-6-(pyridin-2-yl)-1,2,4,5-tetrazine and 3,6-dimethyl-1,2,4,5-tetrazine. The procedure was adapted from a reported procedure. 301 2-Cyanopyridine (300 mg, 2.88 mmol, 1.0 eq) and acetonitrile (1.5 mL, 28.82 mmol, 10.0 eq) were dissolved in absolute ethanol (3 mL) and 3-mercaptopropanoic acid (250 µL, 2.88 mmol, 1.0 eq) was added to this solution at room temperature. Hydrazine monohydrate (2.8 mL, 57.63 mmol, 20.0 eq) was slowly added to this solution at room temperature and the reaction was stirred at room temperature for 72 h. The resulting orange-colored solution was transferred to a 100 mL round bottom flask and this solution was cooled in ice-water mixture. Aqueous 1 M citric acid solution (10 mL) was added to this solution at 0 °C until the pH of the solution is 3–4. Solid sodium nitrite (10 eq) was slowly added in portions at 0 °C and effervescence was observed during this time. After complete sodium nitrite addition, the solution was stirred at 0 °C for 4 h to yield a bright red
solution. The solution was transferred to a separatory funnel and saturated with solid sodium chloride. The organic fractions were extracted with ethyl acetate (3 × 20 mL) or until the red color in aqueous solution almost vanished. The combined organic extracts were dried over sodium sulfate (5 g), filtered, and concentrated under reduced pressure. The residual mass was loaded on a silica gel column and the products were eluted out in the following solvent mixtures. The symmetrical tetrazine (3,6-dimethyl-1,2,4,5-tetrazine) was eluted out in 1:10 ethyl acetate/hexanes and obtained as a red solid (110 mg, 22%). The unsymmetrical tetrazine (3-methyl-6-(pyridin-2-yl)-1,2,4,5-tetrazine) was eluted out in 1:1 ethyl acetate/hexanes and then the crude product was filtered with DCM. 3-Methyl-6-(pyridin-2-yl)-1,2,4,5-tetrazine was obtained as a red solid (140 mg, 11%).

3,6-Dimethyl-1,2,4,5-tetrazine (146). Procedure B, 110 mg, 22% yield. 1H NMR (400 MHz, CDCl$_3$) δ 3.05 (s, 3 H). The NMR data obtained was in accordance with the reported data.282

2,2’-(1,2,4,5-Tetrazine-3,6-diyl)bis(ethan-1-ol). Procedure B, 202 mg, 9% yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.27 (t, J=5.75 Hz, 2 H), 3.59 (t, J=5.81 Hz, 2 H), 2.17 (br s, 2 H). The NMR data obtained was in accordance with the reported data.302

3-Methyl-6-(pyridin-2-yl)-1,2,4,5-tetrazine. Procedure B, 140 mg, 11% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.93 – 8.96 (m, 1H), 8.59 (d, J=7.95 Hz, 1H), 7.89 (td, J=7.87, 1.73 Hz, 1H), 7.51 (ddd, J=7.59, 4.83, 1.19 Hz, 1H), 3.17 (s, 3H). The NMR data obtained was in accordance with the reported data.282
3-Methyl-6-(pyrimidin-2-yl)-1,2,4,5-tetrazine (151). Procedure B, 54 mg, 4% yield. 1H NMR (400 MHz, CDCl$_3$) δ 9.11 (d, J=4.89 Hz, 2 H), 7.58 (t, J=4.89 Hz, 1 H), 3.20 (s, 3 H). The NMR data obtained was in accordance with the reported data.303

2-(6-(Pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)ethan-1-ol. Procedure B, 257 mg, 44% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.85 − 8.90 (m, 1 H), 8.57 (d, J=7.95 Hz, 1 H), 7.94 (td, J=7.76, 1.71 Hz, 1 H), 7.52 (ddd, J=7.58, 4.77, 0.98 Hz, 1 H), 4.29 (t, J=5.87 Hz, 2 H), 3.54 − 3.72 (m, 3 H). The NMR data obtained was in accordance with the reported data.285

2-(6-(Pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)ethan-1-ol (150). Procedure B, 60 mg, 10% yield. 1H NMR (400 MHz, CDCl$_3$) δ 9.13 (d, J=4.89 Hz, 1 H), 7.60 (t, J=4.89 Hz, 1 H), 4.35 (t, J=5.81 Hz, 2 H), 3.75 (t, J=5.80 Hz, 2 H), 2.09 (br s, 2 H). The NMR data obtained was in accordance with the reported data.285

Tert-butyl (2-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)ethyl)carbamate. Procedure B, 435 mg, 50% yield. 1H NMR (300 MHz, CDCl$_3$) δ 8.87 − 8.93 (m, 1 H), 8.58 (d, J=7.98 Hz, 1 H), 7.94 (td, J=7.79, 1.74 Hz, 1 H), 7.52 (ddd, J=7.59, 4.79, 1.01 Hz, 1 H), 3.76 (q, J=5.75 Hz, 2 H), 3.54 − 3.64 (m, 2 H), 1.32 (s, 9 H). The NMR data obtained was in accordance with the reported data.285

Tert-butyl (2-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)ethyl)carbamate. Procedure B, 187 mg, 22% yield. 1H NMR (300 MHz, CDCl$_3$) δ 9.09 (d, J=4.95 Hz, 2 H), 7.57 (t, J=4.91 Hz, 1 H), 3.74 − 3.84 (m, 2 H), 3.58 − 3.74 (m, 2 H), 1.32 − 1.37 (m, 9 H). The NMR data obtained was in accordance with the reported data.285

204
2.2 Enzyme-based activation of cMOs

2.2.1 Introduction

β-lactam antibiotics are the most frequently used antibiotics in hospitals due to their broad spectrum of activity, efficacy, and safety. The antibacterial nature of penicillin was discovered by Dr. Alexander Fleming in 1928. Due to the difficulty of purification, the first animal experiment with penicillin did not begin until 1940; in this study, penicillin proved effective in treating a streptococcal infection in a mice model in 1940. Hodgkin et al. later described the penicillin’s chemical structure by X-ray crystallography. The currently available β-lactam antibiotics all have a 4-membered strained cyclic amide. In three of the four classes of β-lactam antibiotics — penicillins, cephalosporins, and carbapenems — the lactam further elaborated as part of a bicyclic ring system, whereas in monobactams, only the single four-membered ring is present (Figure 2-24). A number of antibiotics have been approved by FDA in each of these categories.

![Figure 2-24 Classes of β-lactams antibiotics with different ring systems.](image)

β-lactam antibiotics have bactericidal activity and inhibit the synthesis of the peptidoglycan layer in the bacterial cell wall. Bacteria require the peptidoglycan layer is
necessary to maintain the structural integrity of the cell wall. The integrity of the cell wall is important to maintain cell shape and osmotic stability. The cell wall consists of alternating \(N\)-acetylmuramic acid (NAM) and \(N\)-acetylglucosamine (NAG) units. A pentapeptide is attached to each NAM unit. The rigidity of the cell wall is conferred by crosslinking of these pentapeptides, and the final step of transpeptidation is facilitated by transpeptidases, which act as the targets of \(\beta\)-lactams (penicillin-binding proteins (PBPs)). \(\beta\)-lactams act by acylation of a conserved serine residue in the active site of these PBPs. The acylation is irreversible during the lifetime of a bacterial cell, leading to inactivation of the PBPs.

There are four mechanisms of resistance that bacteria have developed to counter the action of \(\beta\)-lactam antibiotics.\(^{307-308}\) First, resistance has been achieved by changes to the active site of PBPs to reduce the binding affinity of these antibiotics. This type of resistance is seen in methicillin-resistant \textit{Staphylococcus aureus} (MRSA).\(^{309}\) Second, porin channels that \(\beta\)-lactam antibiotics must pass through to enter the periplasm have been observed to mutate to exclude these antibiotics, as seen in \textit{Pseudomonas aeruginosa}.\(^{310}\) This mechanism of resistance has rendered some strains of gram-negative bacteria resistant toward powerful carbapenem antibiotics.\(^{308}\) Third, some strains, particularly of gram-negative species, have evolved drug efflux pumps capable of exporting a wide range of substrates, decreasing susceptibility to penicillins, cephalosporins, and carbapenems.\(^{308}\) Fourth, the most common mechanism of \(\beta\)-lactam antibiotics resistance is by the production of \(\beta\)-lactamases.\(^{307-308}\)

\(\beta\)-lactamases are enzymes produced and secreted by gram-negative bacteria, especially when \(\beta\)-lactam antibiotics are present in the surroundings. The first \(\beta\)-lactamase was identified in \textit{Escherichia coli} before the clinical use of penicillin.\(^{311}\) The significance of \(\beta\)-lactamases was later realized observed when a strain \textit{S. aureus} found to have developed resistance to penicillin. Later,
as more β-lactam antibiotics were developed, resistance to multiple antibiotics was observed. A multitude of β-lactamases have evolved in general, such as *Klebsiella*, *Enterobacter*, and *P. aeruginosa*. To date, > 2,000 β-lactamases have been identified.

β-lactamases are bacterial hydrolases that bind and acylate β-lactam antibiotics, resulting in the hydrolysis of the 4-membered β-lactam ring before the antibiotics reach their target. Similar to PBPs, the activity is initiated by nucleophilic attack of serine on the carbonyl carbon in the β-lactam (Figure 2-25). Next, a water molecule deacylates the intermediate to a carboxylic acid and an active serine residue. This process deactivates the antibiotic molecule and regenerates the enzyme, which can go on to inactivate additional antibiotic molecules. The transition state for the initial serine acylation step requires activation of the serine nucleophile. β-lactamases have been classified based on which nearby residue activates serine; glutamic acid, a lysine and tyrosine pair, and carbamylated lysine may all serve this function. An interesting alternative mechanism is found in metallo-β-lactamase (MBL), in which a hydroxide group coordinated to two Zn$^{2+}$ ions is responsible for β-lactam cleavage. One Zn$^{2+}$ is held in place by three histidine residues and the other Zn$^{2+}$ by cysteine, histidine and aspartic acid. These classes of β-lactamases specifically target penicillins, cephalosporins, and carbapenems.
In 1998, the Tsien lab developed a fluorescent probe for β-lactamase activity. The probe, CCF2, contains a cephalosporin core elaborated with two fluorophores — hydroxycoumarin and fluorescein — forming a fluorescence resonance energy transfer (FRET) pair (Figure 2-26). The FRET pair is separated in the presence of β-lactamase, which hydrolyzes the lactam ring to generate the free amine, that eliminates and separates the acceptor fluorophore. This separation of the FRET pair is detected by a substantial change in fluorescence emission profile. Upon analyzing different ring systems activated by β-lactamase, only cephalosporins were found to respond through this elimination pathway. Moreover, β-lactamase expression was also monitored in live zebrafish embryos utilizing CCF2, indicating that the probe functions in live zebrafish embryos. Thus, β-lactamase can act as an enzyme-based trigger for cMO linearization in zebrafish embryos.
CCF2-AM is hydrolyzed by cytoplasmic esterases to CCF2 upon entering a cell. The hydroxycoumarin is excited at 409 nm, and a green fluorescence of 518 nm is emitted by fluorescein due to FRET. After β-lactamase cleavage, the FRET pair is separated, and a blue fluorescence of 447 nm from hydroxycoumarin is emitted upon excitation at 409 nm. Ac: acetyl; Bt: butyryl; AM: acetoxymethyl. Adapted from *BioTechniques*, 2007, 42 (1), 91-96.

2.2.2 Linker synthesis for β-lactamase activated cMOs

As described in previous sections, the cephalosporin-containing linker 225 was envisioned to undergo selective activation by β-lactamase (Figure 2-27). The original cMO linker design contained two orthogonal reactive ends — an NHS carbonate for 5’-amine conjugation (via a carbamate, which serves as a leaving group for linearization), and a chloroacetamide for conjugation to a 3’-thiol-modified MO. The proposed mechanism of cMO linearization is β-lactamase-mediated amide hydrolysis of the lactam ring, leading to the formation of amine 227.
The amine in 227 is expected to undergo an elimination with the carbamate (228) to release the 5’-amine end of the morpholino leading to linearization of the cMO (229).

Figure 2-27 β-lactamase activated linker design and proposed mechanism of cMO linearization.

(A) The proposed cephem-containing linker 225 with chloroacetamide and NHS carbonate reactive ends. (B) Proposed mechanism of β-lactamase activation and cMO linearization.

Synthesis of the linker was initiated from commercially available 7-aminocephalosporanic acid (230) (Figure 2-28). Compound 230 was treated with t-butyl acetate in presence of p-toluene sulfonic acid (TsOH) and concentrated sulfuric acid (H$_2$SO$_4$) to obtain the t-butyl ester 231.\(^{321}\) The addition of chloroacetyl chloride to the amine in 231 afforded the chloroacetamide 232. After optimization of reaction conditions, a biphasic mixture of 231 in DCM with aqueous sodium hydrogen carbonate with slow addition of chloroacetyl chloride was found to yield the best results. Next, the selective hydrolysis of the acetate group in the presence of the t-butyl ester was attempted to obtain the alcohol for subsequent activation as the NHS carbonate. However, both the esters (t-
butyl ester as well as acetate) were susceptible to base-mediated hydrolysis with NaOH or KOH (data not shown). Even with using substoichiometric amounts of the base, both the esters were affected.

Synthesis of 232 was initiated from 7-aminocephalosporanic acid (230), and the chloroacetamide end of the linker was installed in two steps.

This result necessitated the use of a different acid protecting group. Compound 236 was synthesized with a diphenylmethanol protecting group, according to a reported procedure.321 Diazodiphenylmethane (234) was generated by treating diphenylhydrazone with HgO in basic conditions, and it was added to a solution of acid 235 to yield the ester 236 (Figure 2-29A). However, the base-mediated hydrolysis once again failed to selectively cleave the acetate in 236 (data not shown). Next, hydrolysis of the acetate group in 235 was attempted by potassium hydroxide, followed by protection of the acid group with 234. Unfortunately, isolation of the hydrolyzed product 236 was unsuccessful. As an alternative, the photocleavable protecting group, 4-methoxy-7-nitroindoline (MNI, 238), was explored as a potential option. Because this strategy would protect the acid as an amide, it was expected to be stable to treatment with base. The MNI group was synthesized according to the reported protocol.322 A number of reaction conditions were screened with the use of different peptide coupling agents (Figure 2-29B). However, none of the conditions were successful in the synthesis of the MNI-protected acid (239).
Selective acetate cleavage can be achieved by lipase-mediated hydrolysis. Acetate hydrolysis was reported on a similar scaffold by *Candida Antarctica* Lipase B (CAL B).\(^{321}\) CAL B is a serine hydrolase extracted from a yeast species, *Candida antarctica*. Upon modifying the reported reaction conditions, the acetate was incubated with CAL B at 50 °C in THF/hexanes mixture under anhydrous conditions, maintained by molecular sieves (Figure 2-29C). The alcohol, 2-butanol, was added as a cofactor for transesterification. Using this chemoenzymatic strategy, the desired alcohol 240 was obtained in 80% yield.
Figure 2-29 Synthetic attempts for selective acetate hydrolysis of intermediate 232.

(A) Diazodiphenylmethane (234) was synthesized from hydrazone 233 and utilized in the synthesis of compound 236. However, selective acetate hydrolysis of 236 was unsuccessful. Hydrolysis of the acetate in 235 followed by protection of the acid group with 234 was unsuccessful in the synthesis of compound 237. (B) Failed attempts to synthesize amide 239 from acid 235. (C) Successful synthesis of compound 240 with CAL B-mediated acetate hydrolysis of 232.

The alcohol 242 was treated with N,N'-disuccinimidyl carbonate (DSC) in presence of DMAP in an attempt to generate the corresponding NHS carbonate. However, the synthesis and
purification of the NHS carbonate was unsuccessful due to its instability to air exposure, probably due to hydrolysis of the carbonate (data not shown). Consequently, the linker design was altered to use an NHS ester as an alternative handle. A variety of spacers with an ester linkage were attempted to install the acid end to be converted into the necessary NHS ester. Various attempts at addition of a terephthalic acid spacer proved futile (data not shown).

Next, a carbamate linkage was considered for the addition of a spacer with the acid end. The alcohol 240 was treated with succinic anhydride and glutamic anhydride to install spacers containing succinic and glutaric acid motifs (Figure 2-30A). However, these efforts were unsuccessful in the synthesis of these compounds (242 and 243, respectively). We were unable to determine the characterize the by-products formed in this reaction by NMR spectroscopy. Inspired from the trans-cycloocten-2-ol-linker synthesis, a three-step synthesis comprising CDI activation, DMEDA addition, and methyl adipoyl chloride was tried (Figure 2-30B). Unfortunately, the route did not yield the desired methyl ester 244 and we were unable to characterize the obtained by-products by NMR spectroscopy. To optimize the reaction conditions for installation of carbamate linkages, a number of reaction conditions were screened with methyl 4-isocyanatobenzoate (245, synthesized from methyl 4-aminobenzoate). Finally, the use of dibutyltin dilaurate allowed for installation of the carbamate under mild conditions (Figure 2-30C). Compound 246 was synthesized from the alcohol 240 and the isocyanate 245 in 76% yield.
Figure 2-30 Synthetic attempts to install the spacer with an NHS ester on compound 240.

(A) Unsuccessful attempts to synthesize compounds 242 and 243 from the alcohol 240 with succinic and glutaric acid as spacers. (B) Unsuccessful attempts to synthesize compound 244 with an adipic acid spacer from the alcohol 240. (C) The carbamate 246 was synthesized from 240, but the synthesis of acid product 247 was not successful. (D) The carbamate 249 was synthesized from 240, but the synthesis of acid product 249 was not successful.

The Nicolaou lab reported trimethyltin hydroxide-mediated selective hydrolysis of a methyl ester on various scaffolds. Unfortunately, the desired acid 247 was not obtained using this methodology (Figure 2-30C) and we were unable to determine the identity of the products formed by NMR spectroscopy. A one-pot synthesis with the generation of the acid 250 and subsequent conversion to an NHS ester was attempted using DSC (data not shown). However, this strategy did not yield the activated NHS ester of the acid 247. In another strategy, trimethylsilylethyl ester 249 was synthesized from 240 (Figure 2-30D). An orthogonal
deprotection using TBAF for ester hydrolysis of the spacer was attempted on 249, but this procedure did not afford the desired acid 250. Unfortunately, we were unsuccessful in determination of the identity of the by-products formed in this reaction.

Since no carboxylate-containing intermediate could be isolated for the installation of an NHS ester handle, the linker design (255) was revised to contain an azide handle instead (Figure 2-31). Concurrently, the MO was modified with an alkyne on the 5’ end for linker conjugation via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). For the synthesis of azide end, 3-azidopropan-1-amine (252) was synthesized from the corresponding alkyl chloride 254 by a reported protocol. Compound 252 was converted to the isocyanate 253 by treatment with diphosgene in 78% yield. The isocyanate 253 was added to a solution of the alcohol 240 in the presence of dibutyltin dilaurate. This procedure yielded carbamate 254 with an azide handle. The final step of t-butyl ester deprotection was accomplished by treating 254 with trifluoroacetic acid (TFA) in DCM in the presence of triethylsilane (Et3SiH) to afford the final linker 255.

![Chemical structure](image)

Figure 2-31 Synthesis of the final linker 258 containing chloroacetamide and azide handles.

Cyclization of an alkyne/disulfide-modified ntla MO with the t-butyl protected linker 254 and preliminary studies for monitoring the cleavage of the linker were performed by Kristie Darrah (Figure 2-32). The commercially available ntla MO (222) has a 5’-amine and a 3’-disulfide. To
construct the necessary alkyne handle on the amine end of *ntla* MO, pent-4-ynoic acid (256) was activated to NHS ester 257 using TSTU in acetonitrile with Et$_3$N as a base. The *ntla* MO (222) was treated with 257 in 0.1 M Tris buffer (pH 8.5) to yield alkyne-functionalized MO 258. The t-butyl protected linker 254 was conjugated by CuAAC with Cu(II)-TBTA complex as the catalyst to yield the triazole product 259. Deprotection of the protected thiol using immobilized TCEP yielded the 3’-thiol, and subsequent macrocyclization with the chloroacetamide handle occurred spontaneously. The deprotection and cyclization afforded the cMO 260. All the intermediates and the products were purified by reversed-phase HPLC and characterized by MALDI-TOF-MS.

![Chemical structures](image)

Figure 2-32 Synthesis of *ntla* cMO 260 with t-butyl protected linker 254. Synthesis performed by Kristie Darrah.

2.2.3 Analysis of cleavage of β-lactamase activated linker

In an initial experiment, we monitored the cleavage of the t-butyl protected linker 254 by β-lactamase (Figure 2-33). For this purpose, recombinant β-lactamase was generated by Kristie...
Upon incubation of the linker 254 with recombinant β-lactamase, the enzyme completely cleaved 254 in 24 h, as monitored by LCMS. In comparison, the linker 254 was not hydrolyzed in absence of the enzyme.

![Diagram](image)

Figure 2-33 Initial *in vitro* studies with the *t*-butyl protected linker 254 and recombinant β-lactamase monitored by LCMS at different time points.

Gradual consumption of 254 (blue arrow) was observed after incubation with the enzyme, resulting in the formation of the hydrolyzed and cleaved product 261 (red arrow). Hydrolysis of β-lactam in 254 was not observed in absence of the enzyme. Data generated by Kristie Darrah.

Kristie Darrah validated β-lactamase activity in a test tube, in lysed mammalian cells, and in lysed zebrafish embryos using a nitrocefin assay (Figure 2-34). Nitrocefin (262) is a chromogenic β-lactamase substrate with cephalosporin core. Compound 262 exhibits a yellow color ($\lambda_{\text{max}} = 390$ nm at pH 7.0), but upon hydrolysis of the β-lactam ring (263), a color change to
red ($\lambda_{\text{max}} = 486$ nm at pH 7.0) is observed (Figure 2-34A). Recombinant β-lactamase (0.01 µg/µL) completely cleaved the 262 in ~12 min (Figure 2-34B). Next, HA-tagged β-lactamase was cloned into a PCS2 vector and transfected into HEK293T cells (Figure 2-34C). The cells were lysed, and the cell lysate was incubated for 2 min with 262 before readout of β-lactamase activity by the nitrocefin assay. The readout revealed a ~3-fold increase in A_{486}, indicating the β-lactamase can be detected in a cell lysate. Finally, HA-β-lactamase mRNA (400 pg) was injected into the yolk sac of 1- to 2-cell stage zebrafish embryos, which were incubated for 24 hpf before manual dechorionation and lysis. The embryo lysate was incubated with 262 for 60 min before readout. The readout revealed a ~2-fold increase in A_{486} (Figure 2-34D). Thus, the recombinant β-lactamase is active in the lysate from zebrafish embryos, although further studies are necessary to optimize the increase in the readout.
Figure 2-34 Nitrocefin assay for β-lactamase activity.

(A) A yellow-to-red color change is observed in the nitrocefin assay in proportion to β-lactamase activity. (B) In vitro nitrocefin assay to detect recombinant β-lactamase activity (enzyme concentration = 0.01 µg/µL). (C) Lysate from HEK293T cells transfected with PCS2-HA-β-lactamase was incubated with 262 for 2 min before readout for β-lactamase activity, which was elevated ~3-fold above that of an empty vector control. (D) HA-β-lactamase mRNA (400 pg) was injected into 18 zebrafish embryos, which were incubated for 24 hpf then manually dechorionated and lysed. The embryo lysate was incubated with 262 for 60 min before readout for β-lactamase activity. Data generated by Kristie Darrah.

2.2.4 Summary and future work

In summary, a β-lactamase activatable linker 225 for caging MOs was developed for linearization of ntlα MO in zebrafish embryos. Taking inspiration from the FRET-based fluorescent probe CCF2, the original linker design (225) comprised of a cephalosporin core with a chloroacetamide reactive handle for covalently linking to the 3’-thiol end and an NHS carbonate for linking to the 5’-amine end of the ntlα MO. The linker synthesis began with
commercially available 7-aminoccephalosporanic acid (230), and the chloroacetamide-containing intermediate 232 was synthesized in two steps. A roadblock was encountered during selective hydrolysis of the acetate group in 232 in presence of the t-butyl ester. After many attempts, a lipase, CAL B, was identified to selectively cleave the acetate group in 232 yielding the necessary alcohol 240. The alcohol 240 was converted to an NHS carbonate, but the purification of this linker intermediate proved unsuccessful due to the potential instability of the NHS carbonate group. Attempts were made to install a spacer with an NHS ester as the reactive group, but synthesis of an ester linkage was unsuccessful. Subsequently, a carbamate linkage was proposed to install the spacer, and after trying out different conditions, a dibutyltin dilaurate-catalyzed carbamate linkage formation was successful. Later, the hydrolysis of the terminal ester in compounds 246 and 249 posed some problems, and the idea to activate this ester to the NHS ester was scrapped. Finally, in the new linker design, a spacer containing an azide group was envisioned, as it could be conjugated to ntlia MO modified with a terminal alkyne by CuAAC. The new azide-containing linker 254 was synthesized from the alcohol 240 and 3-azidopropan-1-amine (252) in two steps. The t-butyl group in 254 was deprotected with TFA to yield the final linker 255. On the 5’-amine end of ntlia MO, an alkyne handle was installed, and the cyclization of the ntlia MO was carried out with the t-butyl protected linker 254 in three steps. A test cleavage reaction with the isolated linker 254 revealed a successful hydrolysis using recombinant β-lactamase after 24 h. β-lactamase activity of the recombinant enzyme as well as lysates from mammalian cells and zebrafish embryos expressing the enzyme was confirmed by nitrocefin assay.

Along with the confirmation of cleavage of the t-butyl protected linker 254 with β-lactamase, the synthesis of the ntlia cMO with the final linker 255 is currently underway, using similar conditions as used for preparation of cMO 260. The final cMO will be injected into
zebrafish embryos (embryos injected with mRNA for HA-β-lactamase). The phenotypic effects of *ntla* knockdown in zebrafish embryos has been well-documented, and the reported phenotype is expected from the embryos with β-lactamase cleaved and linearized *ntla* cMO. Furthermore, other MOs with known phenotypic effects in zebrafish embryos can be cyclized with the final linker 255.

2.2.5 Experimental

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and were stirred magnetically. Reactions were followed by thin layer chromatography (TLC) using glass-backed silica gel plates (EMD Millipore TLC Silica Gel 60 F254: 25 Glass Plates 20x20 cm, 250 μm thickness). Anhydrous THF and acetonitrile were purchased from Acros, and anhydrous DMF was purchased from Alfa Aesar. Yields refer to pure compounds unless otherwise stated. Flash column chromatography was performed with silica gel (60 Å, 40–63 μm, 230 × 400 mesh, Sorbtech) as a stationary phase. High resolution mass spectral analysis (HRMS) was performed on a Q-Exactive (Thermo Scientific) mass spectrometer. 1H NMR and 13C NMR spectra were recorded on a 300 MHz or a 400 MHz Bruker NMR spectroscopy. Chemical shifts are given in δ units (ppm) for 1H NMR spectra and 13C NMR spectra relative to the respective solvent residual peaks (CDCl₃: 7.26 ppm for 1H NMR and 77.16 ppm for 13C NMR; CD₃OD: 3.31 ppm for 1H NMR and 49.00 ppm for 13C NMR; (CD₃)₂SO: 2.50 ppm for 1H NMR and 39.52 ppm for 13C NMR).¹⁹⁷

Compounds 23¹, ²³¹ ²³⁴,³²⁷ and ²⁵²²⁵ were synthesized according to reported procedures.
Tert-butyl (6R,7R)-3-(acetoxymethyl)-7-(2-chloroacetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylate (232). Compound 231 (500 mg, 0.91 mmol, 1.0 eq) was suspended in a mixture of DCM (10 mL) and saturated aqueous NaHCO₃ (10 mL). Chloroacetyl chloride (600 μL, 7.61 mmol, 5.0 eq) was added in ten fractions of 0.5 eq each with 15 min intervals between each fraction. The resulting suspension was stirred overnight at room temperature. The organic layer was separated, and the aqueous layer was extracted with DCM (3 × 5 mL). The combined DCM layers were washed with brine (10 mL), dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography, eluting with ethyl acetate/hexanes (1:4) to yield compound 232 as a white solid (352 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (br d, J=9.05 Hz, 1 H), 5.82 (dd, J=9.17, 5.01 Hz, 1 H), 4.99 – 5.09 (m, 2 H), 4.82 (d, J=13.20 Hz, 1 H), 4.12 (s, 2 H), 3.54 – 3.61 (m, 1 H), 3.37 – 3.43 (m, 1 H), 2.09 (s, 3 H), 1.54 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 170.78, 166.46, 160.34, 127.54, 123.58, 84.18, 63.18, 59.27, 56.93, 42.38, 27.91, 26.51, 20.92; HRMS (ESI) calcd. for C₁₆H₂₀O₆N₂ClS (M–H)⁻ 403.07251, found: 403.07346.

(6R,7R)-3-(Acetoxymethyl)-7-(2-chloroacetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (235). To a solution of 230 (500 mg, 1.84 mmol, 1.0 eq) in a mixture of acetone (4 mL) and saturated aqueous sodium bicarbonate solution (16 mL), chloroacetyl chloride (300 μL, 3.76 mmol, 2.0 eq) was slowly added over a period of 15 min at room temperature. The reaction was stirred at room temperature for 16 h. The reaction mixture was acidified with 1 N aqueous HCl solution (20 mL) to a pH of 2. The DCM layer was separated and the aqueous layer was washed with DCM (3 × 10 mL). The combined DCM layers were dried over sodium sulfate (2 g), filtered, and concentrated under reduced pressure. The product was purified from the residual
solid by silica gel flash column chromatography (elution with 1:4 ethyl acetate/DCM) to yield 235 as a pale-yellow solid (615 mg, 96%). 1H NMR (400 MHz, (CD$_3$)$_2$SO) δ 9.25 (br s, 1H), 5.73 (dd, J=9.11, 5.05 Hz, 1H), 4.91 – 5.07 (m, 2 H), 4.73 (d, J=13.03 Hz, 1 H), 4.06 (s, 2 H), 3.59 – 3.61 (m, 1 H), 3.35 – 3.40 (m, 1 H), 2.05 (s, 3 H).

Benzhydryl (6R,7R)-3-(acetoxyethyl)-7-(2-chloroacetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (236). A solution of 234 (1.7 g, 8.60 mmol, 2.0 eq) in DCM (10 mL) was prepared and slowly added, at room temperature, to a solution of 235 (1.5 g, 4.30 mmol, 1.0 eq) in ethyl acetate (10 mL) over a period of 15 min with stirring. Effervescence was observed during addition with the solution turning pink in color. After overnight stirring at room temperature, silica gel (1.0 g) was added to the reaction mixture and stirred for another 2 h at room temperature. The pink color was seen to be vanished after stirring for 2 h at room temperature. The reaction mixture was concentrated under reduced pressure and the product was purified from the silica gel residue by silica gel flash column chromatography (elution with 1:4 ethyl acetate/hexanes) to afford 236 as a pale-yellow solid (2.0 g, 94%). 1H NMR (400 MHz, CDCl$_3$) δ 7.20 – 7.36 (m, 11 H), 6.92 (s, 1H), 5.78 (dd, J=9.15, 4.93 Hz, 1 H), 4.95 – 5.12 (m, 2 H), 4.78 (d, J=13.15 Hz, 1 H), 4.10 (s, 2 H), 3.54 – 3.59 (m, 1H), 3.33 – 3.43 (m, 1 H), 2.07 (s, 3 H).

Tert-butyl (6R,7R)-7-(2-chloroacetamido)-3-(hydroxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylate (240). Compound 232 (300 mg, 0.74 mmol, 1.0 eq) was dissolved in anhydrous THF (2.4 mL) and hexanes (22.6 mL) was added to the THF solution, forming a colorless gel. Lipase acrylic resin (CAL B, Sigma Aldrich Cat. No. L4777) (200 mg, 67 wt%), 2-butanol (1.2 mL, 13 mmol, 18 eq) and 4 Å mol. sieves (300 mg, 1.0 eq) were added to
this suspension at room temperature. The resulting suspension was heated to 50 °C and stirred for 5 days. The reaction mixture was filtered, the residue was washed with ethyl acetate (30 mL), and the filtrate was concentrated under reduced pressure. The resulting residue was purified by silica gel flash column chromatography, eluting with ethyl acetate/hexanes (1:1) to yield 240 as a pale-yellow solid (215 mg, 80%). 1H NMR (400 MHz, CDCl$_3$) δ 7.41 (br d, J=8.56 Hz, 1 H), 5.83 (br dd, J=8.74, 4.71 Hz, 1 H), 4.97 (br d, J=4.52 Hz, 1 H), 4.49 (br d, J=12.59 Hz, 1 H), 4.11 (s, 2 H), 3.80 – 4.02 (m, 1 H), 3.51 – 3.68 (m, 2 H), 2.78 (s, 1 H), 1.54 (s, 9 H); 13C NMR (101 MHz, CDCl$_3$) δ 166.63, 163.90, 161.56, 130.18, 126.83, 84.38, 62.15, 59.25, 56.71, 42.37, 27.92, 27.62; HRMS (ESI) calcd. for C$_{14}$H$_{18}$O$_5$N$_2$ClS (M−H)$^-$ 361.06195, found: 361.05946.

Tert-butyl (6R,7R)-7-(2-chloroacetamido)-3-(((4-(methoxycarbonyl)phenyl)carbamoyl)oxy)methyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (246). To a solution of 240 (30 mg, 0.08 mmol, 1.0 eq) in a mixture of anhydrous toluene (1 mL) and anhydrous DCM (1 mL), 245 (18 mg, 0.10 mmol, 1.2 eq) was added at room temperature with stirring. Dibutyltin dilaurate (63 mg, 0.10 mmol, 1.2 eq) was added to the reaction mixture at room temperature and the reaction mixture was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was loaded on a silica gel column. The product was eluted out in 1:1 ethyl acetate/hexanes to afford 246 as a pale-yellow solid (34 mg, 76%). 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, J=8.80 Hz, 2 H), 7.46 (d, J=8.80 Hz, 2 H), 7.22 – 7.26 (m, 1 H), 7.11 (s, 1 H), 5.83 (dd, J=9.05, 4.89 Hz, 1 H), 5.17 (d, J=13.08 Hz, 1 H), 5.01 (d, J=5.01 Hz, 1 H), 4.87 – 4.99 (m, 1 H), 4.12 – 4.13 (m, 2 H), 3.89 – 3.90 (m, 3 H), 3.60 (d, J=18.46 Hz, 1 H), 3.41 – 3.54 (m, 1 H), 1.55 (s, 9 H); LRMS (ESI) calcd. for C$_{23}$H$_{25}$O$_8$N$_5$ClS (M−H)$^-$ 538.10, found: 538.00.
Tert-butyl (6R,7R)-7-(2-chloroacetamido)-8-oxo-3-(((4-((2-(trimethylsilyl)ethoxy)carbonyl)-phenyl)carbamoyl)oxy)methyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (249). To a solution of 240 (30 mg, 0.08 mmol, 1.0 eq) in a mixture of anhydrous toluene (1 mL) and anhydrous DCM (1 mL), 248 (26 mg, 0.10 mmol, 1.2 eq) was added at room temperature with stirring. Dibutyltin dilaurate (63 mg, 0.10 mmol, 1.2 eq) was added to the reaction mixture at room temperature and the reaction mixture was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was loaded on a silica gel column. The product was eluted out in 1:1 ethyl acetate/hexanes to afford 246 as a pale-yellow oil (33 mg, 64%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.99 (d, \(J=8.68\) Hz, 2 H), 7.46 (br d, \(J=8.68\) Hz, 2 H), 7.32 (d, \(J=9.17\) Hz, 1 H), 7.22 (s, 1 H), 5.82 (dd, \(J=9.11, 4.95\) Hz, 1 H), 5.16 (d, \(J=13.08\) Hz, 1 H), 4.97 – 5.04 (m, 1 H), 4.93 (d, \(J=12.96\) Hz, 1 H), 4.32 – 4.47 (m, 2 H), 4.11 (s, 2 H), 3.59 (d, \(J=18.34\) Hz, 1 H), 3.40 – 3.53 (m, 1 H), 1.54 (s, 9 H), 1.08 – 1.15 (m, 2 H), 0.07 (s, 9 H); LRMS (ESI) calcd. for C\(_{27}\)H\(_{35}\)O\(_8\)N\(_3\)ClS (M–H)\(^−\) 624.16, found: 624.00.

1-Azido-3-isocyanatopropane (253). Compound 255 (50 mg, 0.5 mmol, 0.5 eq) was suspended in a mixture of DCM (1 mL) and saturated aqueous NaHCO\(_3\) solution (1 mL), and cooled in an ice-water mixture. Diphosgene (240 μL, 2.0 mmol, 2.0 eq) was added to this solution at room temperature, and the suspension was stirred at room temperature for 3 h. The DCM layer was separated and washed with saturated aqueous NaHCO\(_3\) solution (2 × 1 mL). The DCM layer was dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. Compound 255 was obtained as a clear oil and was used further without purification (49 mg, 78%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.41 – 3.48 (m, 4 H), 1.84 (quin, \(J=6.42\) Hz, 2 H).
Tert-butyl (6R,7R)-3-(((3-azidopropyl)carbamoyl)oxy)methyl)-7-(2-chloroacetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate (254). Compound 240 (50 mg, 0.14 mmol, 1.0 eq) was dissolved in DCM (3 mL) and toluene (3 mL). The isocyanate 253 (86 mg, 5.0 eq) was added to this solution at room temperature. Dibutyltin dilaurate (40 μL, 0.069 mmol, 0.5 eq) was added to the reaction mixture, which was stirred overnight at room temperature. The reaction mixture was concentrated and purified by silica gel flash column chromatography, eluting with Et₂O/DCM (1:10) to yield 254 as a yellow oil (49 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.29 (m, 1 H), 5.81 (dd, <i>J</i>=9.11, 4.95 Hz, 1 H), 4.96 – 5.07 (m, 3 H), 4.82 (br d, <i>J</i>=13.20 Hz, 1 H), 4.11 (s, 2 H), 3.49 – 3.60 (m, 1 H), 3.35 – 3.47 (m, 3 H), 3.22 – 3.35 (m, 2 H), 1.79 (quin, <i>J</i>=6.54 Hz, 3 H), 1.54 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.51, 84.10, 59.25, 56.96, 42.37, 27.94, 26.35; HRMS (ESI) calcd. for C₁₈H₂₄O₆N₆ClS (M−H)[−] 487.11611, found: 487.11476.

(6R,7R)-3-(((3-Azidopropyl)carbamoyl)oxy)methyl)-7-(2-chloroacetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (255). Compound 254 (19 mg, 0.039 mmol, 1.0 eq) was dissolved in anhydrous DCM (0.5 mL), and triethylsilane (12 μL, 0.078 mmol, 2.0 eq) was added to this solution at room temperature. TFA (0.5 mL) was added to the reaction and the reaction mixture was stirred at room temperature for 1 h. The volatiles were evaporated under reduced pressure, and the remaining TFA was co-evaporated with MeOH. The residue was dissolved in MeOH (0.5 mL) and precipitated with Et₂O (5 mL). The precipitated solid was centrifuged at 5000 rpm to a pellet. The supernatant was discarded. This process was repeated twice, and the solid pellet was dried under reduced pressure to yield 255 as a yellow solid (13 mg, 77%). ¹H NMR (400 MHz, CD₃OD) δ 5.74 (d, <i>J</i>=4.65 Hz, 1 H), 5.02 – 5.20 (m, 2 H), 4.83 (br d, <i>J</i>=13.33 Hz, 1 H), 4.12 (s, 2 H), 3.58 – 3.72 (m, 2 H), 3.44 – 3.57 (m, 2 H), 3.36 (t, <i>J</i>=6.72 Hz, 2
H), 3.18 (t, J=6.72 Hz, 2 H), 2.97 – 3.05 (m, 1 H), 1.86 – 1.94 (m, 1 H), 1.75 (quin, J=6.69 Hz, 2 H); 13C NMR (101 MHz, CD$_3$OD) δ 169.87, 165.61, 64.53, 60.72, 58.66, 42.63, 39.16, 38.47, 30.08, 27.92, 26.89; HRMS (ESI) calcd. for C$_{14}$H$_{16}$O$_6$N$_6$ClS (M–H)$^-$ 431.05351, found: 431.05149.
3.0 Caged mRNA 5’-cap for spatiotemporal activation of mRNA translation

3.1 Introduction

Messenger RNA (mRNA) processing initiates on the nascent RNA molecules during the transcription process when RNA molecules reach a length of 25-30 nucleotides. A modified guanosine cap is installed on the 5’-end of the pre-mRNA transcript. In eukaryotic and viral systems, the mRNA contains a cap structure which is a N7-methylated guanosine (m7G, Figure 3-4) attached to the first nucleotide of the RNA molecule by an inverted 5’ to 5’ triphosphate bridge. Cap formation is the first co-transcriptional 5′-end modification of nascent messenger RNA (mRNA). The 5’-cap is a characteristic feature of eukaryotic and viral mRNAs, while being absent in bacterial and archaeal transcripts. Before the identification of the mRNA cap, it was believed that 5’-ends of eukaryotic mRNAs and bacteriophage mRNA had triphosphorylated pppN modifications. Biochemical analyses carried out in the mid-1970s by Wei et al. and Furuichi et al. revealed the presence of methylated guanosine residues on the 5’-end of mRNA in HeLa cells and reoviruses, respectively.

The mRNA cap plays essential roles in regulation of mRNA stability, mRNA maturation, mRNA export from the nucleus to cytoplasm, and translation initiation. The cap physically protects the mRNA from 5’ → 3’ exonucleases, thus contributing to its stability. The cap must be removed by enzymes like Dcp2 (mRNA-decapping enzyme 2) to generate a 5’-monophosphorylated RNA which can be a substrate for 5’ → 3’ exoribonucleases such as Xrn1/Rat1. Additionally, the 5’-cap is necessary for effective mRNA splicing. An important and specific interaction between the nuclear cap-binding complex and m7G-cap promotes efficient
interactions between small nuclear ribonucleoproteins (snRNPs) and 5'-splice sites. The interaction between the nuclear cap-binding complex and the 5'-cap also facilitates the formation of spliceosome assembly for packaging and exporting mRNA to the cytoplasm.

The most important function of the m7G-cap is the initiation of protein synthesis. The presence of the cap serves as an anchor for directing the translational machinery to the 5'-end of the protein coding mRNA and the 5' to 3' looping of mRNA during translation. The recruitment of the 40S ribosomal subunit to the 5'-end of mRNA is the rate-limiting step. Eukaryotic initiation factor 4E (eIF4E) directly binds to the m7G mRNA cap (Figure 3-1). Once the eIF4E/mRNA complex is formed, it then binds to the scaffolding protein eIF4G and the DEAD-box RNA helicase eIF4A forming the eIF4F complex. Additionally, the eIF4G protein binds to poly-A-binding protein (PABP). The eIF4F complex binds the cap structure via the eIF4E subunit, and is thought to subsequently unwind the mRNA 5' untranslated region (5'-UTR) secondary structure to facilitate 40S ribosomal subunit binding. The 40S subunit, eIF3, and the ternary complex (consisting of eIF2, GTP, and methionine-tRNA-initiator) forms the 43S complex.
Figure 3-1 Schematic representation of translation initiation complex.

The interaction between eIF4F complex, 43S, and the mRNA is shown. The eIF4F complex is formed by eIF4G, eIF4A, and eIF4E. The 43S complex is formed by 40S subunit, eIF3, and the ternary complex (consisting of eIF2, GTP, and methionine-tRNA-initiator). Adapted from Viruses, 2015, 7(2), 739.

The biochemical pathway for the synthesis of the m7G cap proceeds through three steps and each step is catalyzed sequentially by RNA triphosphatase, RNA guanylyltransferase and RNA guanine-N7 methyltransferase (Figure 3-2). RNA triphosphatase is the first enzyme to act on nascent mRNAs (pγ-pβ-pα-RNA) by removing the γ-phosphate on the 5’-end to yield a diphosphorylated end (pβ-pα-RNA). RNA triphosphatases differ in terms of structure and catalytic mechanism and are classified into two families: metal-dependent RNA triphosphatases (for e.g., Cet1 from budding yeast) and metal-independent triphosphatases. The Cet1 active site is composed of several basic residues that are presumed to coordinate the triphosphate moiety on the 5’-end and several acidic residues that coordinate two metal ions which further interact with the triphosphate moiety. Metal-independent RNA triphosphatases catalyze removal of the γ-phosphate through a two-step reaction through a covalent protein-cysteinyl-S-phosphate intermediate and subsequent hydrolysis of this intermediate to liberate inorganic phosphate. In the second step...
reaction, the 5’ diphosphorylated end is then capped by RNA guanylyltransferase which acts by transferring guanosine monophosphate (GMP) from a guanosine triphosphate (GTP) substrate to the 5’-end to form capped RNA (G-pα-pβ-pα-RNA). This transfer proceeds in a two-step reaction involving formation of a covalent enzyme-(lysyl-N)-GMP intermediate and transfer of the GMP to the diposphorylated end of the RNA. In the third reaction, the guanosine cap is methylated at the N7-position by RNA guanine-N7 methyltransferase through transferring the methyl group from a methyl donor, S-adenosylmethionine (AdoMet) to complete the synthesis of the 5’-cap (m7G-pα-pβ-pα-RNA).

Figure 3-2 The biochemical synthetic pathway of capping nascent mRNA. RNA-triphosphatase removes the γ-phosphate (Pγ) from the 5’-triphosphate end. Next, RNA guanylyltransferase transfers a GMP from the GTP substrate to the 5’-end with the expulsion of inorganic pyrophosphate (PPi). Finally, RNA guanine-N7 methyltransferase transfers a methyl group on the N7-position of the guanosine cap to generate the cap0 structure. The cap1 structure was produced by 2’-OH methylation on the first nucleotide of the mRNA by 2’-O-ribose methyltransferase. Both methylation reactions utilize AdoMet as a methyl donor. Adapted from Beilstein J. Org. Chem., 2017, 13, 2819.
Along with \(m^7 \)G-capped RNA (\(m^7 \)G-\(\alpha \)-\(\beta \)-\(\gamma \)-RNA or \(m^7 \)GpppNpNp-), other cap structures also exist. The native cap (\(m^7 \)GpppNpNp-, also denoted as cap0) is further methylated by 2′-O-ribose methyltransferase on the 2′-OH of the first mRNA nucleotide to generate a cap1 structure (\(m^7 \)Gppp-\(m^2 \)-ONpNp-). This process is \(m^7 \)G-cap dependent and occurs in the nucleus. In addition to the cap1 structure, cap2 structures have also been reported, where the first two mRNA nucleotides are methylated at the 2′-OH group (\(m^7 \)Gppp-\(m^2 \)-ONp-\(m^2 \)-ONp-). Subsequent methylations of the \(m^7 \)G-capped RNA are catalyzed by RNA methyltransferases and utilize the AdoMet methyl donor. These modifications provide significant resistance against 5′-exonucleases. Hypermethylation of the cap structures is observed in trypanosomatids (\textit{Leishmania} and \textit{Trypanosoma}) with the first four nucleotides of the nascent mRNA methylated to generate the cap4 structure.347 Unique 5′-cap structures are found in non-coding small nuclear RNAs (snRNAs). Sm-class snRNAs (snRNAs that bind to Sm proteins) are characterized by hypermethylated 5′-trimethylguanosine caps while LSm-class snRNAs (snRNAs that bind to LSm proteins) contain monomethylphosphate caps.348 In bacteria, some RNAs are capped with NAD\(^+\), NADH, or 3′-dephospho-coenzyme A.349-350

In addition to the biochemical pathway for the synthesis of 5′-capped mRNAs, \textit{in vitro} synthesis of 5′-capped mRNAs are classified into three categories – enzymatic, chemical, and chemoenzymatic methods.346 \textit{In vitro} enzymatic preparation of large RNA molecules can be achieved by \textit{in vitro} transcription (IVT) using a DNA template, while shorter RNA sequences can be synthesized by solid-phase synthesis. IVT produces RNA molecules with uncapped 5′-triphosphate ends and a 5′-cap can be installed on these RNA transcripts either by post-transcriptional capping or co-transcriptional capping. In the case of solid-phase synthesis, the cap can be installed during the synthesis of the RNA sequence.
In post-transcriptional capping, the RNA from IVT is subjected to a dedicated enzymatic
capping reaction. These enzymes originate from different eukaryotic organisms or DNA viruses
and are expressed recombinantly in *E. coli*.* A pioneering work by the Rosenberg group
described the use of capping enzymes isolated from Vaccinia virus for capping RNA transcripts
in vitro. These capping enzymes are still in use for post-transcriptional mRNA capping and
consists of two viral proteins D1 and D12. The large protein D1 is primarily responsible for the
capping reaction with the triphosphatase and guanylyltransferase activity present in the N-terminal
half of the protein while the methyltransferase activity is present in the C-terminal half.* The
small protein D12 is responsible for the activation of D1. These enzymes are reported to be
inefficient in capping mRNAs* and the capping reactions are limited to a small scale.* To
address these scalability issues, Fuchs et al. have developed an expression and purification protocol
for the Vaccinia enzymes. The substrate specificity for these enzymes is relaxed with cap
modifications and non-natural cap analogs identified as substrates for guanylyltransferase activity.
For example, ribavirin was utilized as a substrate by the Vaccinia capping enzyme to generate a
ribavirin-capped mRNA; however, other synthetic caps were not tested with this enzyme (Figure 3-3).

![Ribavirin capped mRNA](image)

Figure 3-3 Ribavirin capped mRNA prepared by Vaccinia capping enzyme.

Ribavirin was identified as a substrate for guanylyltransferase activity. Adapted from *J. Biol. Chem.*, **2004**, 279 (21), 22124.
In co-transcriptional capping, the cap analogs are directly added to the IVT process. Due to the relaxed substrate specificity of RNA polymerases from bacteriophages (such as T3, T7, and SP6), the cap analog acts as a substrate for RNA polymerization and the cap is incorporated at the 5’-end of the mRNA transcript. The most commonly used cap analog is m\(^7\)GpppG (263) as RNA polymerases can utilize this cap analog as a substrate (Figure 3-4). In this case, RNA polymerases initiate the RNA elongation on the guanosine end with m\(^7\)G acting as a 5’-cap. Interestingly, the cap analog competes with GTP present in the IVT mix for initiation of transcription. GTP as an initiator nucleotide produces uncapped mRNAs and these mRNAs will not be translated. This issue can be resolved by reducing the GTP concentration or by digesting the uncapped mRNA with triphosphate on the 5’-end by 5’-phosphatase-mediated exonuclease activity. Another concern with the cap analog 263 is the possibility of initiation of RNA elongation from the other end of the cap analog. The polymerization on the 3’-OH of the m\(^7\)G group produces a miscapped RNA. This problem can be resolved by synthesis of anti-reverse cap analog (ARCA). ARCAs contain a methylated or deoxygenated 3’-OH on the m\(^7\)G group (m\(^2\),\(^3\)-O-GpppG, 264 or m\(^7\),\(^3\)-dGpppG) which prevents the RNA polymerization in the ‘wrong direction’. Interestingly, methylation at the 2’-OH end of m\(^7\)G also prevented reverse incorporation of the cap analog. The orientation problem can also be circumvented by the another cap analog m\(^7\)GpppA with T7 class II promoter phi2.5 for higher 5’-capping homogeneity as ATP is used as an initiator.
There are two possibilities of capping with 263 in IVT – correctly capped RNA and miscapped RNA. The reverse orientation capping of mRNA can be eliminated by utilizing ARCA 264, which produces only correctly capped RNA. Adapted from Beilstein J. Org. Chem., 2017, 13, 2819.346

The cap analog m\(^7\)GpppG (263) is chemically synthesized from GMP (267) and guanosine diphosphate (GDP, 266) as the triphosphate can be achieved by coupling these parts (Figure 3-5).367 Compounds 266 and 267 can be synthesized by phosphorylation of guanosine. Compound 267 is activated as a GMP-imidazolide (269). Methylation of 266 yields N\(^7\)-methylated-GDP (m\(^7\)Gpp, 268) with high regioselectivity. Here, 268 acts as a nucleophile and the activated 269 as an electrophile with imidazole as a leaving group. The final coupling step to synthesize the cap analog 263 is achieved with Lewis acids like ZnCl\(_2\) as a catalyst.
Over the years, various modifications to the m\(^7\)G cap with improved stability and translational efficiency has been pursued. These properties are important in the efforts to develop potential mRNA therapeutics.\(^{368}\) A cap with a locked nucleic acid (m\(^7\)(LNA)GpppG) exhibited 1.61-fold, 1.28-fold and 4.23-fold higher stability as compared to standard cap (m\(^7\)GpppG, 263), ARCA (m\(_2\)\(^7,3'\)-O)GpppG, 264), and uncapped (pppG) RNA, respectively, as demonstrated using luciferase mRNA (\textit{in vitro} transcription carried out by T7 RNA polymerase).\(^{369}\) Additionally, luciferase mRNA capped with m\(^7\)(LNA)GpppG (270) translated with higher efficiency (3.2-fold) as compared to 263 (\textbf{Figure 3-6}). Another cap analog containing 3'-\textit{O}-propargyl modification (271) exhibited a 3-fold higher translational efficiency in comparison to the standard cap (263) (\textbf{Figure 3-6}, \textit{in vitro} transcription carried out by T7 RNA polymerase).\(^{370}\) Both these cap analogs produced correctly capped RNA similar to ARCA. A N7-modified ARCA cap analog, N7-(4-chlorophenoxyethyl)-m\(^3'\)-O)GpppG (272), was studied by Kore et al. (\textbf{Figure 3-6}).\(^{371}\) A higher translational efficiency (> 1.5-fold) was observed in the case of luciferase mRNA capped with this
as compared to the standard cap \((in\;vitro\;transcription\;carried\;out\;by\;T7\;RNA\;polymerase)\). Additionally, a number of other cap analogs with modifications including tetraphosphate \((in\;vitro\;transcription\;carried\;out\;by\;T7\;RNA\;polymerase)\)372 and tetraphosphates with methylene(bisphosphonate) moieties \((in\;vitro\;transcription\;carried\;out\;by\;SP6\;RNA\;polymerase)\)373 were reported with improved binding to eIF4E and higher translational efficiency. Furthermore, cap analogs containing phosphorothioate linkages displayed higher affinity to eIF4E, improved stability, and translationally activity \((in\;vitro\;transcription\;carried\;out\;by\;T7\;RNA\;polymerase)\).374-375

Figure 3-6 Modifications to the \(^{m7}G\) cap with improved stability and translational efficiency.

Over the years, strategies to disrupt the eIF4E/mRNA cap interactions for translational inhibition were pursued. A study by Wendel et al. identified eIF4E as a potent oncogene.376 The oncogenic activity of eIF4E is activated by phosphorylation of Ser 209 in mouse models. Phospho-eIF4E promotes tumorigenesis by suppressing apoptosis via regulation of its downstream target, the anti-apoptotic protein Mcl-1. In 2012, a detailed SAR study and identification of a guanine-based potent small molecule eIF4E inhibitor was reported by Chen et al.377 Other studies to
modulate eIF4E activity include a cap analog with N7-benzyl and 5’-phosphate modifications.378 Interestingly, light-mediated reversible activation of protein translation was reported with 2-meta-methyl-phenylazo cap on the 5’-end of the Venus (an improved version of yellow fluorescent protein) mRNA (Figure 3-7).379 The author demonstrated that the phenylazo cap could control mRNA translation in a reversible manner by cis-trans photoisomerization with 370 nm and 430 nm light. In zebrafish embryos, the cis-form of the 5’-cap was translationally active with 7-fold higher translational efficiency while the trans-form was inactive. The C2-position of the phenylazo moiety was selected to modulate the eIF4E/mRNA cap interactions.}

![Figure 3-7 Schematic representation of 2-meta-methyl-phenylazo 5’-cap.](image)

The trans-isomer is translationally inactive with unfavorable eIF4E/mRNA cap interactions, while the eIF4E binds to the cis-isomer and ‘turns-on’ mRNA translation. The cis and trans-isomers can be reversibly switched by illumination with 370 nm and 430 nm light. Adapted from ACS Chem. Biol., 2017, 12, 2, 351.379

Utilizing this information, we propose a method for light-mediated spatiotemporal activation of mRNA translation. We envision an N1-caged 5’-cap analog 273 with a photocleavable caging group present at the N1-position (Figure 3-8A). This cap analog is expected to interfere with the eIF4E/mRNA cap interactions. A closer inspection at the crystal structure of eIF4E and m7GTP (PDB code: 1IPC, Figure 3-8B) revealed polar interactions between
neighboring residues and the m7G moiety. The eIF4E/m7GTP interactions consist of hydrogen-bonds between N_1 and N^2-groups and a glutamic acid residue at the 103 position (E103) while the negatively charged phosphate groups are in close proximity with positively charged arginine and lysine residues forming a salt bridge. Furthermore, the m7G moiety has stabilizing pi stacking interactions with tryptophan residues at positions 56 and 102 (W56 and W102). Thus, we propose that the caging group present at the N_1 and N^2-positions can effectively disrupt the eIF4E/mRNA cap interactions and lead to translational inhibition. A light-mediated removal of the caging group will lead to the generation of a standard 5$'$-cap structure with a translational activation of the caged cap mRNA.
Figure 3-8 Light-mediated activation of mRNA translation.

(A) A mRNA cap analog 273 proposed for light-mediated activation of mRNA translation. (B) A closer look at the crystal structure of eIF4E bound to m7GTP (PDB code: 1IPC). The N1 and N2-positions on m7G group has stabilizing hydrogen-bonded interactions with E103 residue in eIF4E, while the m7G moiety has stabilizing pi stacking interactions with W56 and W102 (highlighted by red boxes). The N1 and N2-positions are selected for caging with a photocleavable group. Adapted from *J. Med. Chem.*, 2012, 55, 3837.

3.2 Synthesis of an N1-caged mRNA 5'-cap analog

A 2-nitrobenzyl caging group was modified and installed with a methylene spacer, as reported (Figure 3-9). The synthesis of this caging group was initiated from commercially
available 6-nitropiperonal (274) following published reports. The aldehyde 274 was then converted to the secondary alcohol 275 in excellent yield. The methylene spacer was added to the alcohol 275 as a thioether to afford 276. The thioether 276 was further converted into compound 277. The chloride 276 was utilized in the addition reaction to the N1-position of guanosine. For selective N1-caging of the guanosine by 277, all the groups other than N1 were protected (Figure 3-9). All the hydroxy groups on the ribose moiety in guanosine (278) were protected by TBDMS groups to yield compound 279.\(^{381}\) Next, the N2-position in 279 was protected through reaction with N,N-dimethylformamide dimethyl acetal to afford the formimidamide 280. Compound 277 was added to the N1-position on protected guanosine 280 by utilizing DBU as a base. The caged nucleoside 281 was obtained in 67% yield. TBAF deprotection of all TBDMS groups in 281 delivered 282 in good yield.

![Synthetic scheme](image)

Figure 3-9 Synthetic scheme for the synthesis of N1-caged protected guanosine 282.

The formimidamide protection was removed by methylamine and ammonium hydroxide treatment to afford the N1-caged guanosine (283, Figure 3-10A). Attempts were made to
phosphorylate the 5’-OH group in 283 (Figure 3-10B). The conventional method of utilizing POCl₃ (285) in PO(OMe)₃ at 0 °C to phosphorylate guanosine was utilized here. However, this procedure resulted in uncaging of the NPOM group with the formation of GMP (270) observed upon monitoring the reaction with LCMS. This uncaging was likely attributed to the acidic nature of the reaction mixture. Hence, the subsequent efforts were targeted to achieve this transformation in a basic reaction mixture. A number of organic bases were added to the reaction, however, these reaction conditions either facilitated uncaging of the reactant 283 followed by mono-phosphorylation to yield the uncaged GMP (270) or consumption of the reactant with unknown products formed. Thus, our initial assumption of NPOM group uncaging due to acidic nature of the reaction mixture proved false and the exact mechanisms of the uncaging of NPOM group in 285 could not be determined. Even attempts to add the organic phosphates (such as dibenzyl phosphorochloridate and diphenyl phosphorochloridate) to the 5’-OH failed to produce the desired product (data not shown). Finally, replacing 285 with an alternate reagent for phosphorylation was tried to achieve this conversion.
Figure 3-10 Attempts for the synthesis of N1-caged GMP 284.

(A) The N1-caged guanosine 283 was synthesized from the protected guanosine 282. (B) A number of reaction conditions were tried for the synthesis of 284, but were unsuccessful in yielding the desired product. The products in some of these conditions were not determined while the rest resulted in separation of the caging group to yield uncaged GMP (270).

Kulikowski and co-workers reported a triazole-based reagent 287 for phosphorylation of thiol-modified nucleosides. The reagent 287 was prepared and utilized for the synthesis of 284 (Figure 3-11). The reagent 287 was prepared by treating 285 and 1,2,4-triazole (286) with Et₃N as a base in dioxane solvent, as adapted from the reported procedure. The above reaction mixture was filtered and the filtrate was added directly to the solution of 283 in acetonitrile and dioxane at 0 °C. The identity of 287 could not be confirmed by NMR spectroscopy and LCMS as the reagent was readily hydrolysable even with air moisture (as evidenced by formation of a white precipitate; utilization of the hydrolyzed reagent for the synthesis of 284 was found to affect the yield of 284, data not shown). Thus, the reaction mixture containing 287 was directly added to the solution
containing 283 even without concentration of the filtrate. This procedure afforded the desired product 284 in 77% yield and purified by DEAE Sephadex ion exchange column chromatography.

Figure 3-11 Optimized synthetic route for the synthesis of N1-caged GMP 284.

Then, the N7-methylation of 284 was carried out with methyl iodide in DMSO (Figure 3-12A). However, due to lower polarity of 288, DEAE Sephadex ion exchange column was ineffective in the purification of 288. The nature of impurities formed in this reaction include multiple instances of GMP methylation and other impurities of similar polarity. Furthermore, attempts at reverse phase HPLC purification of 288 were unsuccessful probably due to minimal change in the structure and polarity of 288 from the impurities. Thus, 288 was used without purification in the subsequent reactions. The identity of 288 could not be confirmed by NMR spectroscopy as multiple signals were present at the expected N7-Me signal (δ ~ 4.0 ppm) in the 1H NMR spectrum of the impure sample of 288, while the product mass was observed in LRMS of this sample (LRMS (ESI) calcd. for C$_{21}$H$_{24}$O$_{13}$N$_6$P (M–H)$^-$ 599.11, found: 599.00). For the construction of the other end of the mRNA cap analog 273, GDP (269) was utilized to form the triphosphate bridge. Compound 269 was activated to the GDP-imidazolide 289 by treating with triphenylphosphine, 2,2′-dipyridyldisulfide, and imidazole with Et$_3$N as a base in DMF in 90%
Compound 289 was purified by precipitation as a sodium salt in acetone solution and obtained in > 90% purity as determined by NMR spectroscopy, following reported procedure.365

Figure 3-12 Synthetic attempt for the synthesis of N1-caged cap analog 273.

(A) Synthesis of 288 and 289. (B) The final coupling step of 288 and 289 with ZnCl\textsubscript{2} as a catalyst was unsuccessful.

Subsequently, 289 was reacted with impure 288 in the presence of ZnCl\textsubscript{2} for the final coupling reaction (Figure 3-12B). However, multiple attempts at this reaction did not yield the N1-caged cap analog 273. To optimize the reaction conditions for the final coupling reaction, the
reaction conditions were screened for the synthesis of the native mRNA cap analog 266 (data not shown). In these efforts, the addition of ZnCl$_2$ as a catalyst proved to be the best conditions for the final coupling. Again, translating these exact reaction conditions for the final coupling of 288 and 289 were unsuccessful. Moreover, a number of catalysts such as MgCl$_2$, MnCl$_2$ and Zn(OTf)$_2$ were screened without a positive outcome. With the synthesis of N_1-caged cap 273 proving difficult, the process of capping mRNAs was revisited.

3.3 Synthesis and analysis of N_1-caged GTP as capping reagent

A dedicated capping reaction on nascent mRNA has been achieved by Vaccinia virus capping enzymes. This viral capping reaction involves a three-step process of removal of γ-phosphate (RNA triphosphatase) leaving a diphosphate, GMP transfer to the 5’-end of mRNA from GTP (RNA guanylyltransferase), and N_7-methylation of the guanosine cap using AdoMet as a methyl donor (RNA guanine-N_7 methyltransferase).341 As GTP is utilized as a substrate for capping mRNA, the Vaccinia capping enzyme system was employed for installing N_1-caged 5’-cap with N_1-caged GTP (292) as a substrate.

Synthesis of 292 was initiated from the N_1-caged GMP (284) (Figure 3-13). Compound 284 was activated to the imidazolide 290, analogous to the reaction conditions described for the synthesis of 289. The pyrophosphate 291 was added to the imidazolide 290 to yield 292 in 29% yield.
Compound 284 was activated as an imidazolide 290 and further reacted with pyrophosphate 291 to afford the N1-caged GTP 292.

Compound 292 was utilized for \textit{in vitro} capping of \textit{Renilla} luciferase (Rluc) mRNA (Figure 3-14). These experiments were performed by Wes Brown. The \textit{in vitro} capping reaction was carried out with 292 and the native cap (263) and each mRNA was loaded onto 0.8% agarose gel containing ethidium bromide. (Figure 3-14A; Ladder is Tridye 1 kbp ladder (NEB). Lane 1 – mMessage mMachine was used to synthesize native capped Rluc mRNA following standard manufacturer protocol; Lane 2 – SP6 megascript was used to transcribe non-capped Rluc mRNA following standard manufacturer protocol; Lane 3 – GTP (1.5 mM) : 263 (6 mM) ratio used in SP6 megascript reaction following manufacturer protocol; Lane 4 – GTP (0.68 mM) : 263 (6.82 mM) used in SP6 megascript reaction following manufacturer protocol; Lane 5 – 292 (0.5 mM) used in vaccinia capping reaction (Manufacturer: New England Biolabs, Inc. (NEB), catalog # M2080S) of Rluc mRNA generated from SP6 megascript transcription). Compound 292 (0.5 mM in DMSO solution) was added in place of GTP (0.5 mM in DMSO solution) to the Vaccinia capping kit (NEB) for installing the \textit{N}1-caged cap to the Rluc mRNA. Along with 0.5 mM concentration of
a higher concentration (2.0 mM) was also utilized for the *in vitro* capping reaction. The capped mRNA was isolated and injected into zebrafish embryos at one-cell stage. An uncapped luciferase mRNA was injected as a control. Some of the injected embryos was exposed to UV light (365 nm) for 5 min directly after injection. The embryos were collected at 24 hpf, lysed, and analyzed in the luciferase assay. Upon analyzing the luciferase readout, no significant difference was observed in Rluc expression with or without exposure to UV light ([Figure 3-14B](#)). The negative control of uncapped mRNA produced minimal Rluc expression. The possible explanation for such a result could be the inability of Vaccinia capping enzymes to utilize the N1-caged GTP as a substrate for guanylyltransferase activity. Also, GTP may be present as a contaminant in the enzyme mix in this kit and the Rluc mRNA produced were capped with the standard m7G cap. Further studies are necessary to ascertain the reasons for this result.
Figure 3-14 Compound 292 as a substate for capping Renilla luciferase mRNA with the Vaccinia capping kit.

(A) The in vitro capping reaction was carried out by 292 and the native cap (263) and each mRNA was loaded onto 0.8% agarose gel containing ethidium bromide. The Rluc mRNA appears as two distinct bands (due to folding differences) demonstrating the integrity of the mRNA across the multiple conditions mentioned. (B) The negative control of uncapped mRNA (No cap) produced low Rluc expression. The isolated Rluc mRNA was injected in zebrafish embryos. Some of the embryos were exposed to 365 nm UV light at 1 hpf and all the embryos were lysed at 24 hpf. The lysate was analyzed in a luciferase assay. No significant difference is observed in Rluc expression with or without UV light exposure. Errors bars represent standard deviations from three independent experiments. Data generated by Wes Brown.

3.4 Synthesis of N^2-caged mRNA 5’-cap analog

In addition to the efforts for installing $N1$-caged 5’-cap with the Vaccinia capping system and 292 as a substrate, synthesis of the N^2-caged cap analog 300 was attempted. The crystal structure of eIF4E and m^7GTP revealed the presence of hydrogen-bonded interactions between $N1$
and N2-groups on the m7G moiety with the glutamic acid residue at 103 position (E103) stabilizing the binding interactions between eIF4E and m7GTP (Figure 3-8). Thus, light-mediated translational activation was also envisioned to be achieved by caging the N2-position with a photocleavable group.

Synthesis of the N2-caged 5’-cap analog 300 was initiated with the protection of the N1-position to install the caging group selectively on the N2-position (Figure 3-15). As the N1-position is an amide, the protecting group was placed on the oxygen end. In order to minimize the synthetic steps for N2-caged guanosine 297, 2-(trimethylsilyl)ethan-1-ol (294) was used as a protecting group. The protecting group 294 can be deprotected in the same step as TBDMS deprotection by TBAF. Compound 295 was synthesized by Mitsunobu reaction conditions from 279 and 294 using triphenylphosphine and DIAD in THF solvent. Furthermore, the caging group 275 was activated as an imidazole carbamate by the reaction with CDI to yield 293. Compound 293 was reacted with protected guanosine 295 in the presence of NaH to afford the N2-caged protected guanosine 296 in 75% yield. Finally, N2-caged guanosine 297 was obtained by a global TBAF deprotection to remove all silyl-protecting groups.
Figure 3-15 Synthetic scheme for the failed synthesis of N^2-caged cap analog 300.

The final step of coupling 289 and 299 with ZnCl$_2$ as a catalyst was unsuccessful.

The N^2-caged guanosine 297 was monophosphorylated at the 5'-OH group by the similar procedure optimized for the synthesis of 284 (Figure 3-15). Compound 297 was treated with the triazole reagent 286 in dioxane and acetonitrile mixture to yield the N^2-caged GMP 298. Compound 298 was obtained in 23% yield with ~60% purity as determined by 1H NMR spectroscopy (13C NMR not recorded due to low purity of 298, while LCMS analysis showed the
desired product mass – LRMS (ESI) calcd. for C_{20}H_{20}O_{14}N_{6}P (M–H)^− 599.08, found: 599.00). In this reaction, 60% of the reactant 297 was recovered back. Subsequently, compound 298 was N7-methylated by methyl iodide in DMSO solution to afford the 299. In this case as well, the purification of 299 by DEAE Sephadex ion exchange column was not successful. Again, for the construction of the other end of the mRNA cap analog, GDP-imidazolide 289 was utilized. The final step of coupling 289 and 299 was attempted in the presence of ZnCl₂ as a catalyst. However, the initial efforts at this coupling reaction were unsuccessful.

3.5 Summary and future work

A caged cap analog with a photocleavable caging group was proposed upon analyzing the eIF4E/m⁷GTP interactions (Figure 3-8). The N1-position was selected to be caged by a photocleavable group as it was expected to disrupt hydrogen-bond interactions between the m⁷G cap and Glu103 residue of eIF4E.³⁷⁷ To selectively cage the N1-position on guanosine, all the hydroxy groups on the ribose were protected with TBDMS groups and the N2-position as a formimidamide 280. The N1-position was caged by a previously reported photocleavable caging group 277.³⁸⁰ Final steps of deprotection of all the protecting groups yielded the N1-caged guanosine. Further attempts were carried out for the synthesis of N1-caged GMP 284, as many of the conventional methods of phosphorylation failed. Finally, a milder triazole-based reagent 287 was successful in yielding 284 in good yields. Compound 288 was further methylated at the N7-position. For the construction of the other end of the cap analog, GDP (269) was activated as a GDP-imidazolide 289. Unfortunately, the final coupling of 288 and 289 was unsuccessful with ZnCl₂ as a catalyst. Efforts to synthesize the N1-caged cap analog 273 with different Lewis acids
as catalysts also failed. Another approach consisted of utilizing N_1-caged GTP 292 as a substrate for Vaccinia virus capping enzyme system. Compound 292 was synthesized from N_1-caged GMP-imidazolide 290 and a pyrophosphate 291. However, after numerous efforts, the installation of the N_1-caged cap on luciferase mRNA was unsuccessful. Further efforts are necessary to ascertain the reasons for this result and to circumvent this problem. Another approach was pursued with the synthesis of N^2-caged cap analog 300. The synthesis of the N^2-caged guanosine end of the cap analog was initiated with 279. To selectively cage the N^2-position, the N_1-amide was protected with 2-(trimethylsilyl)ethan-1-ol (294) to afford the protected guanosine 295. The N^2-position was caged with an activated imidazole carbamate of the caging group 293 to yield 296. A global TBAF deprotection on 296 yielded the N^2-caged guanosine 297. The mono-phosphorylation and N^7-methylolation was carried out with similar procedures as utilized for the synthesis of 284. Again, in this case, the final step of coupling 289 and 299 to synthesize the N^2-caged cap analog 300 was unsuccessful with ZnCl$_2$ as a catalyst.

In the future, to resolve the problem of final coupling in the synthesis of 300, different activating groups on the GDP end can be tried. GDP can be activated with cyanuric chloride or triisopropylbenzenesulfonyl chloride and the final coupling can be achieved by MgBr$_2$ as a catalyst. GDP can also be activated with sulfonylimidazolium salts for phosphate coupling. Although the catalyst used for such couplings are ZnCl$_2$ or MgCl$_2$, these coupling reactions can be completed within minutes. The use of ZnCl$_2$ or MgCl$_2$ can also be eliminated by the activation of phosphates as phosphoromorpholidates. The activated phosphoromorpholidates can undergo diphosphate bond formation with phosphates in the presence of tetrazoles. The reaction conditions selected for the diphosphate bond formation can be translated to the triphosphate bond formation.
in the synthesis of 300. Additionally, utilizing 292 as a substrate for the N1-caged mRNA capping with the Vaccinia capping system will be pursued further.

3.6 Experimentals

All reactions were performed in flame-dried glassware under a nitrogen atmosphere and stirred magnetically unless otherwise stated. Reactions were followed by thin layer chromatography (TLC) using glass-backed silica gel plates (EMD Millipore TLC Silica Gel 60 F254: 25 Glass Plates 20x20 cm, 250 μm thickness) and LCMS (Shimadzu Ultra Fast Liquid Chromatography with electro spray ionization (ESI) on positive and negative modes). Anhydrous THF, DMSO, and dioxane were purchased from Acros. Yields refer to pure compounds unless otherwise stated. Organic compounds were purified by silica gel flash column chromatography, performed on silica gel (EMD Millipore TLC Silica Gel 60 F254: 25 Glass Plates 20x20 cm, 250 μm thickness) as a stationary phase. Nucleotides were separated by ion-exchange chromatography on a DEAE Sephadex A-25 (HCO$_3^-$ form) using a step-wise gradient of TEAB buffer, pH 7.5. Eluates containing product fractions were evaporated to dryness by co-evaporation with absolute ethanol and acetonitrile. High resolution mass spectral analysis (HRMS) was performed on a Q-Exactive (Thermo Scientific) mass spectrometer. Sonication was performed by VWR Ultrasonic Bath (model number: 150D). The 1H NMR and 13C NMR spectra were recorded on a 400 MHz Varian NMR instrument. Chemical shifts are given in δ units (ppm) for 1H NMR spectra and 13C NMR spectra relative to the respective solvent residual peaks (CDCl$_3$: 7.26 ppm for 1H NMR and 77.16 ppm for 13C NMR; CD$_3$OD: 3.31 ppm for 1H NMR and 49.00 ppm for 13C NMR; (CD$_3$)$_2$SO: 2.50 ppm for 1H NMR and 39.52 ppm for 13C NMR).
Ion-exchange column purification: Triethylammonium bicarbonate (TEAB) buffer (1 M, pH = 7.5) was prepared by bubbling CO₂ (obtained by sublimation of dry ice) through an aqueous solution of triethylamine. The dry DEAE Sephadex A-25 resin (3 g) was suspended in start buffer (10 mM TEAB, 50 mL) resulting in swelling of the resin. The resin was packed in an ISCO flash chromatography load cartridge (careful to keep the resin wet). The resin was washed with 3 column volumes of elution buffer (10 mM TEAB + 1 M NaCl). Finally, the resin was again washed with 3 column volumes of start buffer to prepare the column for purification. For purification of a sample, the sample was dissolved in water and filtered before addition to the column. Upon addition of the sample, the column was washed with 3 column volumes of start buffer to remove the non-polar impurities. The column was then eluted by increasing step-wise gradient of TEAB buffer starting from 0.1 M to 1.0 M with 3 column volumes of each concentration. The column was washed with 3 column volumes of elution buffer. The column was regenerated again with 3 column volumes of start buffer (For storage, the column was washed with 3 column volumes of 20% aqueous ethanol and regenerated again with 3 column volumes of start buffer). The fractions collected were analyzed by LCMS and the fractions containing the desired product were collected together. The solvent was co-evaporated with ethanol and acetonitrile under reduced pressure.

Compounds 279\(^{381}\) and 289\(^{365}\) were synthesized according to a known procedures.

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1-((1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)methyl)-1,9-dihydro-6H-purin-6-one (283). To a solution of 282 (120 mg, 0.21 mmol, 1.0 eq) in MeOH (1 mL), ammonium hydroxide (1 mL, 26 mmol, 120 eq) and methylamine (1 mL, 12 mmol, 55 eq, 40 wt% in H₂O) were added at room
temperature. The reaction mixture was stirred at room temperature for 24 h. The volatiles were evaporated under reduced pressure to yield 283 as a yellow oil (108 mg, quantitative). 1H NMR (400 MHz, CD$_3$OD) δ 7.79 (d, J=16.26 Hz, 1 H), 7.21 (d, J=9.05 Hz, 1 H), 7.02 (d, J=3.79 Hz, 1 H), 5.87 - 6.02 (m, 2 H), 5.68 (dd, J=12.96, 5.75 Hz, 1 H), 5.58 (dd, J=19.99, 11.80 Hz, 1 H), 5.18 - 5.30 (m, 2 H), 4.41 - 4.54 (m, 1 H), 4.17 - 4.23 (m, 1 H), 3.99 (dq, J=6.25, 3.13 Hz, 1 H), 3.70 - 3.80 (m, 1 H), 3.60 - 3.69 (m, 1 H), 1.41 (dd, J=6.30, 1.16 Hz, 3 H); 13C NMR (101 MHz, CD$_3$OD) δ 158.30, 155.68, 153.61, 148.62, 143.45, 138.30, 107.17, 105.56, 104.79, 90.05, 87.40, 75.92, 75.22, 72.38, 71.82, 63.70, 63.32, 59.65, 53.74, 24.01; HRMS (ESI) calcd. for C$_{20}$H$_{23}$O$_{10}$N$_6$ (M+H)$^+$ 507.14702, found: 507.14656.

((2R,3S,4R,5R)-5-(2-Amino-1-((1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)methyl)-6-oxo-1,6-dihydro-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate (284). Compound 286 (90 mg, 1.30 mmol, 12 eq) was dissolved in anhydrous dioxane (2.5 mL) and triethylamine (140 µL, 0.96 mmol, 10 eq) was added to this solution with cooling in an ice-water bath. In another vial, 285 (30 µL, 0.32 mmol, 3.0 eq) was dissolved in anhydrous dioxane (0.5 mL) and was added to the first solution at 0 °C. The reaction was stirred vigorously for 1 h while allowing the reaction mixture to warm to room temperature, while a white suspension forms. The suspension was filtered (with a cotton filter in a glass pipette and the filtrate was collected in a vial) and the filtrate containing 287 was taken up in a 3 mL syringe. In another vial, 283 (50 mg, 0.10 mmol, 1.0 eq) was dissolved in acetonitrile (3 mL) in an open vial and this solution was cooled in an ice-water bath with stirring. The filtrate in the syringe was slowly added dropwise to this solution at 0 °C, over a period of 15 min. The reaction was stirred in an open vial for another 15 mins. The reaction was added to water (3 mL) and the solvents dioxane and acetonitrile were
evaporated under reduced pressure. The product was purified from the residual aqueous solution
by DEAE Sephadex ion-exchange column chromatography and elution with 0.3 M TEAB buffer
to yield 284 as a pale-yellow oil (44 mg, 77%). 1H NMR (400 MHz, CD3OD) δ 7.95 (s, 1 H), 7.23
(d, J=1.96 Hz, 1 H), 7.05 (d, J=7.21 Hz, 1 H), 5.90 - 6.02 (m, 2 H), 5.67 - 5.78 (m, 1 H), 5.48 -
5.62 (m, 1 H), 5.20 - 5.32 (m, 2 H), 4.52 - 4.66 (m, 1 H), 4.22 - 4.31 (m, 1 H), 3.83 (dt, J=7.27,
5.10 Hz, 1 H), 3.62 - 3.67 (m, 1 H), 3.37 - 3.42 (m, 1 H), 1.42 (d, J=6.24 Hz, 3 H); HRMS (ESI)
calcd. for C20H24O13N6P (M+H)+ 587.11335, found: 587.11346.

((2R,3S,4R,5R)-5-(2-Amino-1-((1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)methyl)-6-oxo-1,6-
dihydro-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate (288).

Compound 285 (30 mg, 0.05 mmol, 1.0 eq) was dissolved in anhydrous DMSO (0.5 mL) and
methyl iodide (30 µL, 0.51 mmol, 10 eq) was added to this solution at room temperature. The
reaction was stirred for 5 h at room temperature and added to water (3 mL). The aqueous solution
was washed with diethyl ether (3 × 1 mL). The aqueous solution was concentrated under reduced
pressure by co-evaporation with absolute ethanol and acetonitrile. The crude product 288 was
obtained as a yellow residue (27 mg, 87%). LRMS (ESI) calcd. for C21H24O13N6P (M–H)− 599.11,
found: 599.00.

2-Amino-9-(((2R,3R,4S,5R)-5-(((2R,3S,4R,5R)-5-(2-amino-6-oxo-1,6-dihydro-9H-purin-
9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)(hydroxy)phosphoryl-
(oxido)phosphoryl(oxido)phosphoryl)(oxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-7-methyl-1-((1-
(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)methyl)-6-oxo-6,9-dihydro-1H-purin-7-ium (273).

Compounds 289 (10 mg, 0.02 mmol, 1.0 eq) and 288 (18 mg, 0.03 mmol, 1.5 eq) were suspended
in anhydrous DMF (0.3 mL), and ZnCl$_2$ (11 mg, 0.08 mmol, 4.0 eq) was added to the suspension at room temperature with vigorous stirring. After 15 min of vigorous stirring to dissolve the reactants, the reaction was stirred at room temperature with normal stirring for 4 days. LCMS analysis did not reveal the formation of 273.

$((2R,3S,4R,5R)-5-(2$-Amino-1-((1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)methyl)-6-oxo-1,6-
dihydro-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl hydrogen (1H-imidazol-1-yl)phosphonate (290). To a solution of 284 (50 mg, 0.08 mmol, 1.0 eq) in anhydrous DMF (3 mL), triphenylphosphine (67 mg, 0.26 mmol, 3.0 eq), imidazole (58 mg, 0.85 mmol, 10 eq), and 2,2'-dipyridyl disulfide (56 mg, 0.26 mmol, 3.0 eq) were added at room temperature. The reaction mixture was stirred for 24 h at room temperature. The reaction mixture was then added to a solution of sodium perchlorate (42 mg, 0.34 mmol, 4.0 eq) dissolved in 30 mL acetone. The resulting suspension was added to a 50 mL ultracentrifuge tube and spun down at 5000 rpm for 10 mins. The supernatant liquid was decanted and the solid pellet was suspended in 30 mL acetone. This process was repeated twice. The solid pellet was dried under vacuum over phosphorus pentoxide to yield 290 as a yellow solid (53 mg, 94%). 1H NMR (400 MHz, (CD$_3$)$_2$SO) δ 7.82 (d, J=16.36 Hz, 1 H), 7.67 (s, 1 H), 7.25 (d, J=8.96 Hz, 1 H), 7.16 (d, J=7.12 Hz, 1 H), 7.08 (d, J=7.19 Hz, 1 H), 6.87 (d, J=7.21 Hz, 1 H), 5.94 - 6.06 (m, 2 H), 5.73 - 5.82 (m, 1 H), 5.53 - 5.67 (m, 1 H), 5.21 - 5.30 (m, 2 H), 4.50 - 4.61 (m, 1 H), 4.22 - 4.30 (m, 1 H), 3.86 (m, 1 H), 3.63 - 3.69 (m, 1 H), 3.37 - 3.43 (m, 1 H), 1.41 (d, J=6.32 Hz, 3 H); HRMS (ESI) calcd. for C$_{23}$H$_{26}$O$_{12}$N$_8$P (M+H)$^+$ 637.14023, found: 637.14031.
((2R,3S,4R,5R)-5-(2-Amino-1-((1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)methyl)-6-oxo-1,6-dihydro-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl triphosphate (292).

Compound 290 (120 mg, 0.18 mmol, 1.0 eq) and tetrakis(triethylamine) diphosphate (151 mg, 0.55 mmol, 3.0 eq) were suspended in anhydrous DMF (4 mL), and the suspension was cooled in ice-water mixture. ZnCl$_2$ (250 mg, 1.82 mmol, 10 eq) was added to the suspension at 0 °C with vigorous stirring. After 30 min of vigorous stirring to dissolve the reactants while allowing the reaction to warm to room temperature, the reaction was stirred at room temperature with normal stirring for 24 h. The reaction mixture was then added to a solution of sodium perchlorate (200 mg, 1.64 mmol, 9 eq) dissolved in 40 mL acetone. The resulting suspension was added to a 50 mL ultracentrifuge tube and spun down at 5000 rpm for 10 mins. The supernatant liquid was decanted and the solid pellet was suspended in 20 mL acetone. This process was repeated twice. The solid pellet was dried under vacuum. Compound 292 (2.3 mg, 29%) was purified by reverse phased-HPLC from a portion of the pellet (8.0 mg) and obtained as a white solid. 1H NMR (400 MHz, (CD$_3$)$_2$SO) δ 7.81 (m, 1 H), 7.27 (d, J=9.06 Hz, 1 H), 7.05 (m, 1 H), 5.93 - 6.07 (m, 2 H), 5.73 - 5.82 (m, 1 H), 5.54 - 5.69 (m, 1 H), 5.29 - 5.36 (m, 2 H), 4.53 - 4.62 (m, 1 H), 4.22 - 4.29 (m, 1 H), 3.88 (m, 1 H), 3.61 - 3.71 (m, 1 H), 3.34 - 3.44 (m, 1 H), 1.42 (d, J=7.24 Hz, 3 H); HRMS (ESI) calcd. for C$_{23}$H$_{26}$O$_{12}$N$_8$P (M+H)$^+$ 747.04601, found: 747.04586.

1-(6-Nitrobenzo[d][1,3]dioxol-5-yl)ethyl-1H-imidazole-1-carboxylate (293). Compound 275 (50 mg, 0.24 mmol, 1.0 eq) was dissolved in anhydrous THF (3 mL). 1,1'-Carbonyldiimidazole (58 mg, 0.36 mmol, 1.5 eq) was added to this solution at room temperature. The reaction mixture was stirred overnight at room temperature. The solvent was evaporated under reduced pressure with an oily residue remaining and the product was purified from this residue by silica gel flash
column chromatography, elution with ethyl acetate/DCM (1:1) to yield 275 as a pale-yellow solid (63 mg, 87%). 1H NMR (400 MHz, CDCl$_3$) δ 8.11 (s, 1 H), 7.46 (s, 1 H), 7.39 (s, 1 H), 7.03 (s, 1 H), 6.98 – 7.01 (m, 1 H), 6.56 (q, J=6.44 Hz, 1 H), 6.10 (dd, J=7.76, 1.04 Hz, 2 H), 1.75 (d, J=6.36 Hz, 3 H); 13C NMR (101 MHz, CDCl$_3$) δ 152.65, 147.81, 147.59, 141.80, 137.02, 133.16, 130.84, 117.09, 105.46, 105.41, 103.40, 72.86, 21.83. HRMS (ESI) calcd. for C$_{13}$H$_{12}$O$_6$N$_3$ (M+H)$^+$ 306.07206, found: 306.07164.

9-((2R,3R,4R,5R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-5-(((tert-butyldimethylsilyl)oxy)-methyl)-tetrahydrofuran-2-yl)-6-((2-(trimethylsilyl)ethoxy)-9H-purin-2-amine (295). Compounds 279 (628 mg, 2.40 mmol, 5.0 eq) and 294 (340 μL, 2.40 mmol, 5.0 eq) were dissolved in anhydrous THF (5 mL) and diisopropyl azodicarboxylate (470 μL, 2.40 mmol, 5.0 eq) was slowly added to this solution at room temperature. The reaction mixture was sonicated at room temperature for 3 h and then stirred overnight at room temperature. The volatiles were evaporated under reduced pressure to an oily residue. The product was purified from this residue by silica gel flash column chromatography, elution with ethyl acetate/hexanes (1:10) to yield 295 as a white solid (262 mg, 75%). 1H NMR (400 MHz, CDCl$_3$) δ 7.90 (s, 1 H), 5.91 (d, J=5.87 Hz, 1 H), 5.36 (br s, 2 H), 4.48 – 4.59 (m, 2 H), 4.46 (dd, J=5.62, 4.65 Hz, 1 H), 4.25 (dd, J=4.16, 3.06 Hz, 1 H), 4.07 (q, J=2.73 Hz, 1 H), 3.93 (dd, J=11.37, 3.55 Hz, 1 H), 3.75 (dd, J=11.25, 2.45 Hz, 1 H), 1.19 – 1.25 (m, 2 H), 0.92 (d, J=3.06 Hz, 18 H), 0.76 (s, 9 H), 0.11 (dd, J=7.15, 3.61 Hz, 12 H), 0.06 (s, 9 H), –0.07 (s, 3 H), –0.22 (s, 3 H); 13C NMR (101 MHz, CDCl$_3$) δ 161.39, 159.60, 153.76, 137.35, 115.71, 87.23, 85.61, 76.61, 72.50, 64.83, 62.93, 26.19, 26.00, 25.79, 18.62, 18.20, 18.05, 17.63, –1.29, –4.12, –4.61, –4.63, –4.98, –5.27, –5.33; HRMS (ESI) calcd. for C$_{33}$H$_{68}$O$_5$N$_5$Si$_4$ (M+H)$^+$ 726.42920, found: 726.42716.
1-(6-Nitrobenzo[d][1,3]dioxol-5-yl)ethyl (9-((2R,3R,4R,5R)-3,4-bis((tert-butyldimethylsilyl)-oxy)-5-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydrofuran-2-yl)-6-(2-(trimethylsilyl)-ethoxy)-9H-purin-2-yl)carbamate (296). Compound 295 (250 mg, 0.34 mmol, 1.0 eq) was dissolved in anhydrous THF (10 mL) and this solution was cooled in ice-water mixture. Sodium hydride (17 mg, 0.41 mmol, 1.2 eq, 60% in mineral oil) was added to the solution containing 295 at 0 °C while stirring. The resulting suspension was stirred at 0 °C for 15 min. Compound 293 (210 mg, 0.69 mmol, 2.0 eq) was added to the reaction mixture with stirring at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 24 h at room temperature. The reaction was slowly quenched by adding water (5 mL) and the organic fractions were extracted with ethyl acetate (3 × 15 mL). The combined organic extracts were dried over sodium sulfate (1 g), filtered, and concentrated under reduced pressure. The product was purified by silica gel flash column chromatography, elution with ethyl acetate/hexanes (1:5) to yield 296 as a pale yellow solid (247 mg, 75%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 8.08 (d, \(J=12.10\) Hz, 1 H), 7.51 (d, \(J=2.69\) Hz, 1 H), 7.34 (d, \(J=4.52\) Hz, 1 H), 7.08 – 7.21 (m, 1 H), 6.39 – 6.49 (m, 1 H), 6.05 – 6.10 (m, 2 H), 5.86 – 5.98 (m, 1 H), 4.66 – 4.82 (m, 1 H), 4.60 – 4.66 (m, 2 H), 4.24 – 4.28 (m, 1 H), 4.04 – 4.10 (m, 1 H), 3.94 – 4.03 (m, 1 H), 3.75 (dd, \(J=11.19, 2.14\) Hz, 1 H), 1.66 (dd, \(J=6.36, 0.98\) Hz, 3 H), 1.21 – 1.28 (m, 3 H), 0.91 (dd, \(J=6.24, 4.40\) Hz, 18 H), 0.75 (d, \(J=7.09\) Hz, 9 H), 0.06 – 0.11 (m, 21 H), –0.10 (d, \(J=8.68\) Hz, 3 H), –0.32 (d, \(J=10.51\) Hz, 3 H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) δ 161.21, 152.68, 152.55, 151.65, 150.02, 147.23, 141.55, 140.70, 136.16, 118.80, 105.95, 105.42, 103.12, 88.33, 85.85, 75.18, 72.37, 69.72, 65.89, 62.85, 26.18, 25.96, 25.77, 22.37, 18.37, 17.79, –1.29, –4.37, –4.67, –4.50, –5.06, –5.35; HRMS (ESI) calcd. for C\(_{43}\)H\(_{77}\)O\(_{11}\)N\(_6\)Si\(_4\) (M+H)\(^+\) 963.45654, found: 963.45423.
1-(6-Nitrobenzo[d][1,3]dioxol-5-yl)ethyl (9-(((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxy-methyl)-tetrahydrofuran-2-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)carbamate (297). Compound 296 (200 mg, 0.20 mmol, 1.0 eq) was dissolved in anhydrous THF (6 mL) and TBAF (2.08 mL, 2.1 mmol, 10 eq, 1 M in THF) was added to this solution at room temperature. The reaction mixture was stirred for 2 h at room temperature. The volatiles were evaporated under reduced pressure to an oily residue. The product was purified from this residue by silica gel flash column chromatography, elution with MeOH/DCM (1:9) to yield 297 as a yellow oil (71 mg, 66%).

1H NMR (400 MHz, CD$_3$OD) δ 8.24 (s, 1 H), 7.52 (s, 1 H), 7.18 (d, J=1.34 Hz, 1 H), 6.40 (q, J=6.40 Hz, 1 H), 6.13 – 6.18 (m, 2 H), 5.95 (d, J=5.14 Hz, 1 H), 4.49 – 4.56 (m, 1 H), 4.32 (td, J=4.71, 1.96 Hz, 1 H), 4.07 (q, J=3.55 Hz, 1 H), 3.85 (dd, J=12.29, 3.12 Hz, 1 H), 3.71 – 3.81 (m, 1 H), 3.21 – 3.27 (m, 1 H), 1.70 (d, J=6.36 Hz, 3 H); 13C NMR (101 MHz, CD$_3$OD) δ 155.36, 154.14, 150.77, 149.18, 143.19, 139.67, 135.29, 120.97, 89.66, 86.87, 76.31, 71.77, 62.61, 59.51, 54.08, 22.06; LRMS (ESI) calcd. for C$_{20}$H$_{21}$O$_{11}$N$_6$ (M+H)$^+$ 521.13, found: 521.00.

$^{((2R,3S,4R,5R)-3,4-Dihydroxy-5-(2-(((1-(6-nitrobenzo[d][1,3]dioxol-5-yl)ethoxy)carbonyl)-amino)-6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-2-yl)methyl phosphate (298). Compound 286 (90 mg, 1.30 mmol, 12 eq) was dissolved in anhydrous dioxane (2.5 mL) and triethylamine (140 µL, 0.96 mmol, 10 eq) was added to this solution with cooling in an ice-water bath. In another vial, 285 (30 µL, 0.32 mmol, 3.0 eq) was dissolved in anhydrous dioxane (0.5 mL) and was added to the first solution at 0 °C. The reaction was stirred vigorously for 1 h while allowing the reaction mixture to warm to room temperature, while a white suspension forms. The suspension was filtered (with a cotton filter in a glass pipette and the filtrate was collected in a
vial) and the filtrate containing 287 was taken up in a 3 mL syringe. In another vial, 297 (50 mg, 0.096 mmol, 1.0 eq) was dissolved in acetonitrile (3 mL) in an open vial and this solution was cooled in an ice-water bath with stirring. The filtrate in the syringe was slowly added dropwise to this solution at 0 °C, over a period of 5 min. The reaction was stirred in an open vial for another 25 mins. The reaction was added to water (3 mL) and the solvents dioxane and acetonitrile were evaporated under reduced pressure. The product was purified from the residual aqueous solution by DEAE Sephadex ion-exchange column chromatography and elution with 0.5 M TEAB buffer to yield 298 as a pale-yellow oil (17 mg, 23%). 1H NMR (400 MHz, CD$_3$OD) δ 8.12 (s, 1 H), 7.32 (s, 1 H), 7.02 (s, 1 H), 6.23 (q, $J=6.36$ Hz, 1 H), 6.19 – 6.27 (m, 2 H), 5.82 (d, $J=5.01$ Hz, 1 H), 4.71 – 4.76 (m, 1 H), 4.52 – 4.48 (m, 1 H), 4.33 – 4.37 (m, 1 H), 4.20 – 4.26 (m, 2 H), 1.81 (d, $J=6.28$ Hz, 3 H); LRMS (ESI) calcd. for C$_{20}$H$_{20}$O$_{14}$N$_6$P (M–H)$^-$ 599.08, found: 599.00. (13C NMR not recorded due to low purity of 298, ~60% purity).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-(7-methyl-2-(((1-(6-nitrobenzo[d][1,3]dioxol-5-yI)ethoxy)carbonyl)amino)-6-oxo-1,6-dihydro-9H-purin-7-ium-9-yl)tetrahydrofuran-2-yl)methyl phos phate (299). Compound 298 (10 mg, 0.016 mmol, 1.0 eq) was dissolved in anhydrous DMSO (0.3 mL) and methyl iodide (10 µL, 0.16 mmol, 10 eq) was added to this solution at room temperature. The reaction was stirred for 5 h at room temperature and added to water (3 mL). The aqueous solution was washed with diethyl ether (3 × 1 mL). The aqueous solution was concentrated under reduced pressure by co-evaporation with absolute ethanol and acetonitrile. The crude product 299 was obtained as a yellow residue (8.9 mg, 90%). LRMS (ESI) calcd. for C$_{21}$H$_{22}$O$_{14}$N$_6$P (M–H)$^-$ 613.09, found: 613.00.
9-((2R,3R,4S,5R)-5-((((((2R,3S,4R,5R)-5-(2-Amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)oxidophosphoryl)-oxy)
oxidophosphoryl)oxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-7-methyl-2-(((1-(6-nitro
benzo[d][1,3]dioxol-5-yl)ethoxy)carbonyl)amino)-9H-purin-7-ium-6-olate (300). Compounds
289 (8 mg, 0.016 mmol, 1.0 eq) and 299 (15 mg, 0.024 mmol, 1.5 eq) were suspended in anhydrous
DMF (0.3 mL), and ZnCl₂ (22 mg, 0.163 mmol, 10 eq) was added to the suspension at room
temperature with vigorous stirring. After 15 min of vigorous stirring to dissolve the reactants, the
reaction was stirred at room temperature with normal stirring for 24 h. LCMS analysis did not
reveal the formation of 300.

52. Pogribny, I. P.; Starlard-Davenport, A.; Tryndyak, V. P.; Han, T.; Ross, S. A.; Rusyn, I.; Beland, F. A., Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. *Laboratory Investigation* **2010**, *90*(10), 1437-1446.

recommendations based on a critical literature analysis: miniperspective. Journal of Medicinal Chemistry 2013, 56 (17), 6560-6572.

120. Schmidt, M. F.; Korb, O.; Abell, C., MicroRNA-specific argonaute 2 protein inhibitors. ACS Chemical Biology 2013, 8 (10), 2122-2126.

144. Thakral, S.; Ghoshal, K., miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. *Current Gene Therapy* 2015, 15 (2), 142-150.

146. Fornari, F.; Gramantieri, L.; Giovanni, C.; Veronese, A.; Ferracin, M.; Sabbioni, S.; Calin, G. A.; Grazi, G. L.; Croce, C. M.; Tavolari, S., MiR-122/cyclin G1 interaction

352. Furuichi, Y.; Muthukrishnan, S.; Tomasz, J.; Shatkin, A., Mechanism of formation of reovirus mRNA 5’-terminal blocked and methylated sequence, m7GpppGmpC. *Journal of Biological Chemistry* 1976, 251 (16), 5043-5053.

