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Sami T. Mian, PhD

University of Pittsburgh, 2020

Unmanned Aerial Vehicles (UAVs) have become cheaper and more technologically ad-

vanced over the past five years, with uses in academia, industry, and government projects.

A promising application of UAV technology is multi-agent swarms: using multiple drones to

accomplish a group of tasks cooperatively. Currently, drone swarms have been used to aid

search and rescue efforts, increase security systems, and produce awe-inspiring art installa-

tions. They are even used by groups like NASA to simulate advanced distributed systems,

such as satellite constellations. However, as the hardware and sensing capabilities of UAVs

increases, so too does the complexity of managing these swarms. Most swarm deployment

systems are homogeneous: platforms are identical and assigned one overarching task. There

is no allowance for specializations in platform capabilities. This undercuts the benefits of dis-

tributed computing: it is operationally restrictive to use custom, specialized UAVs in a large

swarm, as the platform management is problematic and impractical. This leads to heavy

implementation restrictions for novel sensors in swarms, due to high costs of integration and

deployment.

The research of this dissertation creates a fleet mission management system that allows

for multiple UAVs to cooperate and accomplish a multitude of mission types. The system em-

ploys new control law methods and flight software standards to coordinate the autonomous

flight of drones in restrictive environments, while also optimizing for scarce resources like

power, communication capabilities, and payload specialties. Furthermore, this research cre-

ates a system that allows for the inclusion and use of diverse, unique platforms and sensor

payloads without considerable system modifications. The fleet management system is built

on top of NASA’s cFS architecture and includes features from open-source software. A novel

optimal control technique, called heterogeneous decentralized receding horizon control is de-

veloped and tuning using a UAV simulator. Lastly, exploratory research has been conducted

iv



on integrating dynamic vision sensors with UAV flight controllers, to test the integration of

novel sensors with this fleet management system. The resulting system is readily deployable

and can allow groups like NASA to mimic dynamic, diverse UAV swarms with relative ease.
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1.0 Introduction

Advances in embedded hardware, sensor technologies, and general robotics have allowed

the development and usage of unmanned aerial vehicles (UAVs) to skyrocket the past five

years. Unmanned aerial vehicles, also known as drones or small Unmanned Aerial Systems

(sUAS), are used for a variety of applications. They have seen widespread adoption in

sensing tasks, especially those in unknown or dangerous environments, mainly due to their

customizable payloads and high maneuverability. These applications include search and

rescue relief efforts, package delivery, and security perimeter searches. More recently, cities

around the United States have been looking at FAA-sponsored pilot programs to integrate

aerial systems into their smart city environments.

Recent excitement has been directing research to focus on the deployment and use of

multiple UAV agents (swarms) to accomplish a joint effort. There are two primary limitations

to deploying UAV swarms: First, many operational environments and missions require in-

situ adaptability to mission events. While this is the primary motivation for deploying a

swarm, the swarm’s overall ability to handle situations is limited by the payload (sensors,

power, tools, etc.) each UAV carries. It is not ideal to deploy hundreds or even thousands

of identical UAVs as there is a threshold to scalability. Second, technology advances rapidly

with business and cultural needs, thus swarms must evolve with the technology. However

the costs incurred by comprehensive fleet upgrades are substantial. In both cases, the ability

to utilize a heterogeneous swarm is paramount to increasing the overall flexibility and cost

of the technology. These pose new challenges to control architectures and fleet management

system implementations, as applying a uniform architecture/scheme to the swarm is no

longer applicable. For this dissertation research, we look at two specific use cases to frame the

motivation and driving force of this work. The first has to do with addressing the increasing

difficulty of ambiguous search and sensing scenarios where UAV swarms are applied, and the

second has to do with using UAVs as testbeds for space robotics.

The first motivation for this research is the lack of efficiency in using UAV swarms for

large-scale search and sensing tasks. The most common use case is search and rescue of
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individuals in disaster-stricken areas, but also applied to battlefield surveillance and generic

data collection tasks. As sensor technology has improved drastically with the increase in

computing capabilities and MEMS technology, so too are the capabilities of UAV sensor

systems. Custom payloads can now be designed to work for specific tasks, such as using low-

powered thermal cameras for tracking the spread of heat (fire), or hi-res RADAR cameras

for imaging large areas in poor lighting conditions. Although these custom payloads can

greatly increase the efficiency and success metrics of a mission, they are rarely used in multi-

agent systems. This is because currently almost all deployable systems that manage drone

swarms are built for homogenous systems: they only work with one type of platform. The

few systems that do use manage multiple platforms are horribly inefficient, and still limited

in their support scope. In order to use different UAV platforms efficiently, an end user will

need to set up multiple systems, one for each platform specialty.

Another focus of improvement for this work is the efficient use of all agents within a swarm

for polymorphic tasks. For any given scenario requiring multiple platform-types, there will

be multiple different mission tasks. In an ideal scenario, each task will be structured so that

it can achieved by one specific type of platform; however, this is not realistic. In a more

conceivable deployment setting, each unique platform will be capable of accomplishing a

subset of mission tasks during deployment. However, the set of mission capabilities are not

mutually exclusive, there will be some overlap. In this situation, multiple UAVs will be able

to accomplish the same mission, possibly with varying levels of speed/accuracy. In order to

be as efficient as possible, a heterogenous swarm controller needs to take advantage of these

overlaps. Platforms need to be assigned missions based on a variety of parameters, instead

of just payload-task fit. This introduces more complexity into an optimal control scheme,

which is not usually used to manage diverse possibilities.

In addition to this, there is also to consider situation of adjacent/secondary mission pa-

rameters. In our scenario, we look at wide-area sensing for disaster relief efforts. In addition

to specific mission goals, where a certain UAV payload is needed for specific sensing task,

there is also a secondary set of missions, focused on generic data collection and situational

awareness of the surrounding environment. This secondary task can be accomplished by

any UAV platforms, as long as they are in the right vicinity. However, this adds another
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additional layer of complexity to the task. The goal of this dissertation research is to simplify

the process for dealing with these scenarios.

The second motivation for this work is the application of swarm robotics to space-based

robotics. One of the newest research uses of multiple UAVs by groups such as NASA and

Boeing, is to use them as test platforms for satellites. Because the cost of launch for prototype

satellites is extremely expensive and prototyping space objects in lab environments can get

quite resource-intensive, these large companies have wanted to use other types of robots to

simulate satellites and their sensor payloads. UAVs are the ideal platforms because they

travel in 3-dimensional space, use similar flight hardware and software systems, and face

similar resource challenges as satellites. It is also much easier to model satellite constellations

using UAV swarms, as opposed to other robot platforms. Specifically, UAVs are used to

model the “cube” satellite, a small U-class spacecraft. These cubesats are usually made up

of minimal computing power (sometimes automotive grade components), and cost a fraction

of the price to develop compared to regular satellites; the cost for deployment/delivery to

LEO is also greatly diminished when compared to traditional satellites. This lower launch

cost, as well as the easy replicability and production speeds, is why cubesats are more

widely used today for small-scale space computing needs. For companies using cubesats,

the return on investment is much greater compared to traditional satellites. Nowadays,

instead of sending out one giant satellite to complete a task, a company can send up 5 to

10 smaller cubesats to accomplish that same task. The benefits to sending up a swarm

or group of cube satellites is two-fold: the size of the payload for sending up the entire

group is smaller than a satellite, and it can be split up among several different launches,

meaning the overall launch cost can be diminished. And the risk of damage is also minimal,

as a small piece of space debris would only take out one of these satellites and still leave

9 functioning units, whereas the same size of space debris can take out a full traditional

satellite, rendering it unusable for its missions/operations. One of the nice things about

using multiple platforms (both on the ground and in space) is that you can always add

more functionality by sending up an additional platform. As many space companies are

moving towards using cubesats for their space missions, there is now a need for platforms

for research, development, and testing for cubesats in preparation. As mentioned above, a
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new emerging method for simulating cubesats is by using unmanned aerial vehicles, or UAVs.

However, there currently does not exist any fleet or mission management software that allows

for control of UAV systems in a way similar to how it’s done for cubesat constellations. One

of the goals of this dissertation research is to overcome this limitation by creating a fleet

mission management system that allows for robust, intelligent control of UAV platforms

similar to what is needed for constellation arrays of satellites.

Just as with all robots, there are several factors that limit the capabilities of UAVs. The

first common limitation that is shared by all robots is power resources: a drone is limited

by its power source. For a regular robot, if it runs out of power, it is stuck unmoving in

its original location; it can be retrieved by human operators and restored to full working

condition. This is not an option with UAVs, which operate by flying through the air; if a

UAV runs out of power, it falls out of the sky and sustains damage. Even worse, a UAV

falling out of the sky can hit a human or vehicles, causing damage and potential injuries. An-

other crucial limiting factor for robot deployments is the platform’s communication abilities.

Unless a robot is fully autonomous, there needs to be some sort of communication protocol

that allows for them to send and receive information from the controller; this includes com-

mands, decisions, and safety-critical management. Once again, if a ground robot receives

no commands or loses a communication connection, it will stay in place until it regains a

connection. A UAV will do the same, until it runs out of battery and once again falls from

the sky. Both of these problems scale in complexity and importance when you more from

one robot to many robot platforms working in conjunction.

When it comes to dealing with fleets or swarms of robots, all of these problems magnify in

importance. When developing mission parameters for multiple robots, the planning system

needs to take into account the state, current operating status, and available resources for each

platform, which becomes a huge optimization problem. This becomes even more difficult to

solve when all of your robots are not in the same starting position. For example, managing

package delivery with drones spread out across an entire city, you need to maximize their

flying potential with regards to power storage. Drones can only fly so far on their battery

reserves, and it is not optimal to have a drone fly from one end of town to another when

there are other platforms closer that can accomplish the same task. As such, its important
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to have a management system that understands all of the platforms, available resources, and

possible anomalies when creating mission plans.

The main contribution of this research is the development of a fleet management system

that allows for coordination of multiple, heterogeneous robot platforms in constrained en-

vironments. This work focuses on UAV systems, and will be adapted to allow for scientific

implementation and research on space-based robots. This project accomplishes three main

tasks. The first task is to develop a multi-drone management system using NASA’s core

flight software system; this system is a robust Mission management system that operates

in real time and allows for flight readiness for Mission critical platforms. The second task

is to develop a new control law for the robot coordination and path planning using opti-

mal control methods. This control technique pulls data from robot resource availabilities,

mission health records, and available sensor data to optimize the best mission plans for the

group of robots. Part of this algorithm is to develop a distributed strategy for maximizing

utilization of a swarm of drones, making sure each drone platform it used to the extent of

its abilities (mainly for specialized platforms). The third task focuses on further developing

sensor fusion techniques to use with these UAV platforms, and will specifically focus on

integrating neuromorphic camera technologies onboard UAV systems. Novel sensor fusion

techniques will be developed to utilize the event camera data for faster perception loops and

flight controller responses. The results of this work have been published in peer-reviewed

venues [1, 2, 3].

1.1 Research Questions

• How to develop a robust fleet management system for UAV missions that is flight tested,

safety critical-compliant, and adaptive to diverse platforms and environments.

• How to use optimal control to allow for multi-agent, disjointed resource-based planning

in highly restrictive operating conditions.

• How to integrate brand new sensor data into existing control/management frameworks

for platform perception and planning.
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1.2 Dissertation Organization

This dissertation is broken up into several major parts: an extended background on all

the related technologies, the research conducted on each of the three major components of

this work, and a detailed discussion and analysis that concludes all of the results from this

work. These parts are broken up into six chapters, consisting of the following organization:

• Chapter 2 contains an overview of each of the systems or technology stacks that are in-

volved in this research; common or widely researched topics will have shorter explanations

with citations from numerous foundation papers, while newer/less known systems/topics

will have in depth sections. This includes an extensive overview of the NASA Core Flight

System architecture, as this is a minimally documented system.

• Chapter 3 covers the work accomplished with regards to fleet management for UAV

swarms. Specifically, this chapter details the development of the UAV swarm manage-

ment system designed using both Robot Operating System (ROS) and NASA’s cFS

architecture. This section covers the work started in conjunction with NASA Langley’s

Formal Methods team, and the extensions completed at the University of Pittsburgh.

• Chapter 4 details the research conducted on utilizing optimal control techniques for

high-level mission planning for UAV swarms. This includes missing and path planning for

high-dimension swarms, and covers both homogenous and heterogeneous swarm systems.

• Chapter 5 is focused on the integration of the neuromorphic camera system with tradi-

tional UAV flight controllers. This includes the reinforcement learning work completed

with both raw event camera data, as well as the research on developing a novel non-linear

representation for event camera bytestreams.

• Chapter 6 contains an overview of the work noted in the previous three chapters, and

summarizes the contributions from each stage of research. This chapter also connects to-

gether all of the aforementioned research with the underlying goals and accomplishments

of this dissertation, and discusses the next step in research for each of these topics.
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2.0 Background

2.1 Overview of Flight Software

Flight software (abbreviated as FSW) is software that “flies” which means that it is

onboard a UAV or spacecraft. IT can be a part of the spacecraft Bus (fundamental systems

like mechanical structure or attitude control system), Flight Software is hosted within the

flight electronics CPU, and starts immediately when the platform receives power. FSW acts

as the brains of the mission. FSW is classified as embedded software, which is computer

software written to control machines or devices that are specialized hardware, i.e. have time

and memory constraints, and are designed for specific purposes. FSW must be handled

in real time, as it allows it to be deterministic, reliable, and guarantees a response within

required time constraints. FSW is also mission critical; it must keep your platform safe

through unexpected anomaly and must be able to act autonomously.

The aerospace domain is unique with regards to computing. Missions require the use of

specialized, radiation tolerant hardware; Consumer-grade Off The Shelf (COTS) solutions

simply do not exist. This hardware is required to work in a fixed, constrained environ-

ment; the two major constraints are processor speed and available memory and storage

capacity. For example, The Lunar Reconnaissance Orbiter uses a 166 MHz processor with

2MB of memory available for mission software. The software used in space-based devices is

also highly complex. Software needs to be highly reliable and fault tolerant, must support

autonomous operations and in-mission maintenance, and must be able to complete compu-

tations for high speed science operations. All of these challenges greatly increase the cost of

satellite software.

In the past, flight software was rarely reused. There was no product line; heritage

missions were used as starting points for new software. There was no version control or

management of major software changes; all changes were made at the discretion of the de-

veloper. Since the hardware was very restrictive and specialized, any upgrades in hardware

or operating systems would require vast changes throughout the flight software to make it
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compatible. And lastly, there was poor documentation and no uniform testing procedures.

Because of all of the above problems, NASA spent ludicrous amounts on software develop-

ment, and never learned from past lessons. This had to change, so Goddard Space Flight

Center developed a solution: An adaptive set of flight software systems that could be used as

a majority of the software basis for most future missions; specifically, an all-purpose software

solution to the spacecraft bus, flight software and avionics software. This project resulted in

the development of NASA’s Core Flight System [4].

2.2 Overview of CFS

NASA’s Core Flight System (CFS) is a set of mission independent, modular software

services and applications, running in a unique operating environment. It has three key as-

pects to its architecture: a dynamic runtime environment, layer software systems, and a

component-based design [5]. CFS has a layered architecture that allows it to support a

variety of hardware platforms, which is ideal for flight software due to the ever changing

hardware requirements/availability. CFS provides a standardized application programmer

interface (API) which makes it easier to interface with other external software; this also

makes developing for CFS easier for those not as familiar with the system. CFS is built

around supporting multiple software applications, including those used for core flight soft-

ware. Individual applications can be added or removed at run-time, which allows for easier

system integration, testing, and software maintenance. On top of this, CFS contains plat-

form and missions specific configuration parametres, which are used to tailor the software

apps to work optimally on specific hardware platforms or for specific mission focuses. In

terms of extended development, CFS supports software development in three ways: through

onboard flight software, through a desktop-based development environment, and through

simulators. These allow for software applications that run on CFS to be developed using a

variety of requirements and techniques.

The CFS software framework is built on top of years of successful GSFC flight software

systems, all of this have been flight testing and gone through rigorous analysis and valida-
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tion. It addresses the ever-present challenge of continually increased software development

costs, mainly due to the perpetually changes and improvements to hardware used in flight

missions. The size and complexity of flight software has and will continue to grow dra-

matically as the years progress, and CFS provides a way to manage the complexity that is

intrinsic to this continuous growth and modularization. In order for the system to be inde-

pendance and adaptable over a wide array of use cases, the baseline architecture contains a

configurable set of code and base requirements. These parameters allow CFS to be specif-

ically customized and tailored for each type of operating environment, from simulations to

barebone CPUs. The CFS architecture greatly simplifies the development process of slight

software by establishing an underlying infrastructure and hosting a runtime environment for

development of project/mission specific applications; The cFS architecture also simplifies the

flight software maintenance process by providing the ability to change software components

during development or in flight without having to restart or reboot the system [5]. At a

high level, CFS has a complete development environment that allows for development for

multiple processor processor architectures, operating systems, and missions software needs.

One of the greatest development capabilities of CFS is the ability to run the same software

on varying platforms: to run and test applications on a development machine and then de-

ploy that same software to an embedded system without any changes it extraordinary. Even

before specialized hardware is made available, mission software can be prototyped, tested,

and iterated on very early in the project while remaining hardware agnostic. The baseline

missions and algorithms can be created, and then the flight software can be tuned to work

on whatever hardware platform is chosen or provided. CFS development tools allows for

managing different builds for individual processors, and allows for different applications to

be loaded to each processor (depending on hardware support). The architecture also con-

tains an automated testing suite which can be used to perform a large battery of basic tests,

both unit and integration, on the software without hardware requirements. The architecture

also contains other resources for developers, including design documentation, development

standards, user guides, and testing procedures with expected results. According to NASA

engineers, CFS and its underlying architecture has helped mission development processes

in the following ways: It has reduced the overall time to create and deploy flight software
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that is high quality, it has simplified the software engineering process for flight software,

it has provided a platform for advanced prototyping and development, it has encouraged

formalized software lifecycle adherence (including version control) and it has reduced costs

and project scheduling immensely.

2.2.1 CFS Technical Details

Core Flight System is built using a layered architecture; this means that each layer is

hidden from the other layers with regards to implementation and technology details. Each

of these internal layers are modular and can be changed without affecting the components

or operations of any other layers. This allows for individual aspects of CFS to be selectively

improved or modified to meet growing specifications. This is what also allows CFS to be

hardware agnostic, as well as removing limitations and reliance on specific operating systems

and accompanying middleware. Figure 1 shows a diagram of the CFS System Architecture.

CFS runs using PROM Boot Software and utilizes a Real Time Operating System

(RTOS). In addition to this, the software is mainly comprised of an OS Abstraction Layer

(OSAL), Platform Support Package (PSP), core Flight Executive (cFE) Core, CFS Libraries,

and several standard CFS Applications.

2.2.2 PROM Boot Software

This software is the local software that conducts the early initialization and bootstraps

the operating system used to run CFS. It is stored in local PROM on the hardware platform.

This software includes an EEPROM/Flash loader, which allows for installation on most if not

all hardware platforms. It has been designed to be as simple as possible to minimize changes

to the PROM. For CFS, the main two commonly used boot softwares are the RAD750 BAE

SUROM and the LEON3 uBoot software; Goddard also created their own custom image

based on open source code available from Coldfire.
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Figure 1: cFS architecture diagram [4]

2.2.3 Real Time Operating System

The real time operating system used to run the lowest levels of CFS is in charge of

hardware-level operations. This includes handing message queues and semaphores/mutexes

(to help alleviate problems with lockup or runtime conditions). The RTS is also in charge

of handing preemptive priority based multitasking. It also has the standard support for

interrupt and exception handling, as well as basic shell and file system support. The current

RTOS systems that meet the requirements for CFS are VxWorks and RTEMS.

2.2.4 Platform Abstraction Layer OSAL

The reason that CFS is able to run on numerous different operating systems without any

modifications is because of the platform abstraction layer. This software, called the operating

system abstraction layer (OSAL) is a basic library that separates the flight software from the
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RTOS, handing all of the calls in between using a library system built to be compatible with

most operating systems. This way, the rest of CFS does not need to work about specifying

system-level calls, like a basic print function. Figure 2 is a diagram of the implementation

of OSAL.

Figure 2: OSAL implementation system diagram [4]

2.2.5 Platform Abstraction Layer PSP

Another of the critical pieces of CFS is the platform abstraction layer. The purpose

of this layer of software is to contain all of the software needed to adapt the core parts of

CFS and CFE to any type of high level operating system and processor card. This piece of

software is called a Platform Support Package (PSP), and also includes all of the tool chains

that are required for make rules to build and deploy code of the given system. Functions of

the PSP includes simple startup code, commands to read, write, and protect the onboard

memory (EEPROM, RAND), processor reset functions, and timer functions. Currently the

widely used PSPs are Linux x86, Power PC’s VxWorks, and RTEMS.

2.2.6 Application Library Layer

CFS also uses a separate application library layer, which manages all of the shared

libraries used by different applications. This includes standard C libraries as well as mission-

specific libraries, such as those used for scientific computing work. The most important
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use of this layer is for libraries that are crucial for working with onboard hardware, such

as FPGA boards or specialized sensors (cameras, lasers, etc.). The main CFS library pro-

vides common utility functions including string manipulation, CRC computation, and file

path/name verification.

2.2.7 Core Flight Executive: CFE

Core Flight Executive (CFE) is a framework of flight software services and an operating

environment that are independent of any mission. It is the core of the CFS system, and

is available for use with CFS out of the box; its applications are considered the “default”

applications for CFS. CFE is where the platform and mission configuration parameters are

stored; these are the parameters that are modified to tailor the program for a specific hard-

ware platform and mission. CFE is composed of five core services: Executive Services, Event

Services, Software Bus Service, Table Service, and Time Services.

The executive service managed the basic operations of the CFS system. This includes all

of the aspects of system startup: powering on the system and processor, starting and resetting

applications, spawning child tasks, keeping records of all tasks running, and managing which

applications will be built/run for the current mission. In addition to this, executive services

maintains a system log which records all execution, reset, and exception information; this

is used for performance analysis and debugging. This service also provides the ability to

use shared libraries, support different device drivers, and restored critical data after any

processor resets.

The event services provides the basic interface between applications used to send and

receive asynchronous messages. These messages include informational, debugging, and er-

ror messages, and each is timestamped for accurate message tracking. Event services also

supports filtering, and has its own optional event log.

The software bus service serves as a portable massage service in between all of the running

applications. It provides a subscription/publisher messaging interface similar to that used

in Robot Operating System (ROS), which allows all running instances to send and receive

information over open data pipelines. This system has built-in error detection for message
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transfers, and records and provides statistics packets and relevant routing information for

messages when necessary.

The table services manages all of the interaction between applications in CFS and the

table data structure image. A Table is a specific group of parameters used by an application.

The Table Registry is populated at runtime by loading in information from the table.h file;

this eliminates cross-coupling of applications with the flight executive during compile time.

This service also allows for synchronous table updates with relevant applications in order to

verify data/parameter integrity. Tables can be shared by applications, although more core

applications have their own reserved tables. The time service is used to provide time and

timestamp data to all of CFS systems. Specifically, this service provides spacecraft time

(based on mission start time), a time correlation factor, and time corrections to all services.

Each application is able to use the time service to query the current time, which is used in

turn for a number of calculations (trajectory and odometry, timestamps, efficiency analysis,

etc.). The service can also distribute a wakeup time message, usually set to 1 Hz rate.

2.3 ICAROUS

NASA’s Independent Configurable Architecture for Reliable Operations of Unmanned

Systems, or ICAROUS for short, is a software architecture that allows for the fast and verified

development of applications for unmanned aircrafts [6]. It allows for the robust integration

of cFE and other core algorithms along with mission-specific application modules that is

both safety-focused and flight assured. Currently, most UAV autopilot systems have limited

computing capabilities, since all that is needed is basic navigation and control functions.

However, with the increasing use of UAVs for all kinds of applications, there is more demand

for high level decision making capabilities in autopilot software; this includes sense and avoid

algorithms, conforming to airspace regulations (avoiding restricted airspace) and working

with more advanced sensors. The ICAROUS software system allows for the higher level

decision making capabilities to be available to work alongside traditional autopilot systems.

One primary use of ICARUS is to easily enable beyond visual line of sight (BVLOS) missions
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for UAV platforms without relying on human monitoring or intervention [6]. ICAROUS

depends on an external autopilot system, and is designed to run on a companion computer

that interfaces with the autopilot computer to modify flight plans/parameters to allow for

safe flight.

Figure 3: ICAROUS architecture [1] ©2020 IEEE

ICAROUS is comprised of several software modules that all interface using a software

bus. Using modular apps allows for rapid development and incorporation of new features.

The software bus is a data pipeline that is accessible to all applications running on the sys-

tem, and uses the traditional publish/subscribe paradigm for message communication [6].

ICAROUS is implemented using NASA’s CFS middleware, which allows it to operate as a

distributed architecture. This modular, distributed approach allows ICAROUS to interface

with a majority of available autopilot software, requiring only an interface program to be de-

signed. The default build of ICAROUS is configured to work with MAVLink and ArduPilot,

an open source autopilot flight stack that is used by the majority of hobbyists and academic

researchers.

The major features in ICAROUS have been compressed into libraries for easy integration.

They include DAIDALUS, PolyCarp, and PLEXIL. DAIDALUS is a detect and avoid library

that allows for the monitoring of well clear violations against other vehicles [7]. It also

provides contingency actions for horizontal and vertical speeds, as well as altitude, to avoid

losing contact with a platform [7]. PolyCarp is a library that verifies in a point is inside or
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outside a polygon. This functionality is used to compare flight plans with existing geofences,

and detects any potential violations (both for white lists and black lists of points) based on

vehicle velocity and flightplan. ICAROUS uses this information to avoid flying in restricted

areas and modifies flight plans based on potential violations. ICAROUS is able to replant the

flight plans using a combination of search algorithms and existing waypoints to avoid static

or dynamic obstacles. PLEXIL, which stands for Plan Execution Interchange LAnguage,

is a language that is used to represent plans for use by autonomous agents. ICAROUS

uses PLEXIL to schedule different tasks for the platform based on priority and resource

requirements.

2.4 Control Systems and Planning Background

2.4.1 2D Path Planning: Motion Planning

The problem of defining a path from a starting point to an ending point has been explored

in great detail in numerous different studies and papers. There are two main types of

solutions: graph search methods and optimal control methods. For most common graph

search methods, the search space is discretized into a connected graph made up of nodes;

each node represents a step in motion or an adjacent location. These nodes are connected

together using a measurable metric (i.e. distance, reachability) to create a tree structure. The

tree can then be searched for multiple paths from one point (node) to another point (node).

Several popular search techniques used for graphs include A*, Dijkstra, and depth/breadth

first algorithms. Although these techniques have been rigorously testing and are used in

numerous settings (like A* used in video game AI), there are several drawbacks of the

graph-based approach. Graph-based methods are not designed for scalable dimensionality;

as the dimension of the search space increases, the complexity of the graph and all solutions

increases exponentially.
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In more recent literature, sampling-based methods have been introduced in order to help

overcome the increased complexity of graph-based solutions. Two of the most common are

the Probabilistic Road Maps (PRMS) [8] and Rapidly Exploring Random Trees (RRT) [9].

The main idea behind PRMs is to take random samples of the entire configuration space

of a robot, test to see if they are in the robot’s possible operating space, and use a basic

pathplanner to try and attempt these configurations to other nearby configuration spaces.

This first part is used to create a large graph configuration of all the possible motion plans

for the robot. After this, a simple graph-search method such as A* is used to find the

shortest path (or a path that meets other requirements based on the cost function). The

RRT algorithm works by drawing a random tree of possible paths which stems from the

starting configuration; random points are picked a certain distance away from the existing

(or starting) points and then those are connected to the closest points using a line (if feasible).

This technique is similar to a monte carlo approach, and is biased towards creating the largest

voronoi regions in the available search space [9]. Numerous variations on this technique

have been developed that allow for optimizing different attributes; the RRT* algorithm is

optimized to give extremely straight paths. There have been numerous examples of successful

motion plan generation using PRMs and RRT, although most of those have been confined to

2D movement (X and Y place). A couple of prominent self-driving car companies actually

utilize the RRT* planning model for their main navigation algorithms [10, 11].

In optimal control methods used for motion planning, the problem objective tends to

be represented as a cost function; the objective can include parameters such as finding the

shortest path, using the least amount of power, or reaching the destination in the fastest

time possible. A parametric representation for the path or the control inputs to the system

is chosen. Then, an optimization algorithm solves for the parameters that minimize the

cost function subject to various constraints on the environment and dynamics. One of the

drawbacks of using the optimal control route is that these equations can be hard to solve

analytically; the complexity is further increased by the presence of nonlinear constants in the

functions. Therefore, usually numerical methods are used to solve these methods, although

sometimes minimization/maximization functions can get stuck in local minimum/maximum

solutions instead of global solutions.
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2.4.2 Geofencing

Geofencing is another method in which hard boundaries are set for path planning for

airborne vehicles. A geofence is a virtual perimeter for a geographic area that is usually

composed of GPS waypoints. With respect to UAVs, a geofence is usually used to designate

either a flight-approved zone, or to show obstacles or areas where UAVs are not allowed

to operate. Geofencing strategies and integration into path plans for UAVS have been

explored in several papers [12, 13]. The main focus of work thus far has been around

creating algorithms that compare flight plans with geofences in order to detect any conflicts,

and determining corrective action. Usually basic corrective action entails stopping flight or

landing/returning home, although more advanced capabilities include maneuvering around

an obstacle or completely re planning based on the available data. In order to allow for

fully autonomous operations, any kind of replanning or conflict resolution needs to be able

to consider mission parameters and dynamically create new flight plans that avoid geofences

while still accomplishing all mission parameters.

2.4.3 Obstacle Avoidance

Sense and avoid (SAA) systems are implemented on most types of autonomous systems,

from self-driving cars to space platforms currently orbiting the Earth [14]. As the operational

environment grows in complexity, the sense and avoid capabilities of platforms must also

improve in both detection quality and system response. This has largely been aided through

the use of newer sensing technologies and advanced control architectures.

Figure 4: Traditional UAV sense & avoid system flow [1] ©2020 IEEE
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Figure 4 shows the basic diagram of how a sense and avoid system operates. One or

several sensors are responsible for detecting and identifying any obstacles or possible haz-

ards along the vehicle’s intended trajectory or surrounding environment. The data from

these sensors is then processed using sensor fusion techniques, and a collision avoidance ap-

proach is devised. Some examples of techniques include graph search algorithms, nonlinear

model predictive control, field potential modeling, and convolutional neural networks [15].

For UAV platforms, the main challenge for implementing collision avoidance is the usability

of sensors; due to the size, weight, and power constraints of an aerial platform, sensors for

the UAV payload are limited [16]. These sensors can be split into two types: cooperative

and non-cooperative sensors. Cooperative sensors are those which are placed on not just on

the target UAV, but also on potential obstacles, such as other UAVs. These sensors consis-

tently broadcast their flight information, so that all nearby platforms are aware of intended

flight plans. Two popular examples of this are the Traffic Alert Collision Avoidance System

(TCAS) used on early aircraft, and the more popular Automatic Dependent Surveillance and

broadcasting (ADS-B) which is now being implemented on many UAV platforms [17, 18, 19].

Non-cooperative sensors, which are sensors that only exist on the target platform, are

more common on modern UAVs since they can meet the payload constraints, and do not rely

on external sensors. Extensive work has been done with standard RGB-D cameras [20, 21],

LIDAR systems [14], RADAR sensors [22], acoustic and sonar sensors [23], and infrared

sensors [16, 24]. There has also been some cursory work on using dynamic vision sensors

for obstacle tracking and avoidance on-board UAVs, but this area of research is still in its

infancy.

2.4.4 Optimal Control for Robust Planning

Most literature related to optimal control techniques for path planning is focused on

industrial robotics. Usually, the environments for these robots are manufacturing plants,

where the robots are multi-DoF arms that have highly constrained motion and operating

parameters. However, we can take a lot of inspiration from industrial robots when looking

at UAV planning due to the similarity of these constraints: Limited motion options, power
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constraints, maintenance considerations, and collision avoidance. Focusing on integrating

power consumption and battery resource monitoring is especially important for UAVs, as

battery is the leading constraint when it comes to mission planning.

Obstacle avoidance capabilities is also extremely important with regards to path plan-

ning, especially when looking at robot swarms. There is extensive literature in the industrial

robotics space that details approaches to solve this [25]. A strategy to use spline interpo-

lation to optimize trajectory and dynamic behavior is detailed in [26]. The paper by [27]

focuses on obstacle avoidance using dynamic optimization through interpolation techniques

[28]. With regards to controls, a time optimal control strategy is studied in [29], and the

use of different performance indexes for the optimal control technique (in an obstacle free

environment) is studied in [30]. Paper [31] has an interesting use of dynamic programming to

use for point to point collision free motion planning, which can be good for planning around

direct path obstacles in 3 dimension space. There is an approach to use penalty function to

avoid collisions in a workspace in papers [32, 33, 34, 35]. And lastly, in paper [36] there is

an approach to optimal robot motion planning with obstacle considerations using the non

classical formulation of Pntryagin’s maximum principle.

2.4.5 Receding Horizon Control (RHC) for Swarm Behavior

Another type of control system that uses optimization problems as its basis is the receding

horizon control method (RHC). In receding horizon control, an optimization function is used

to determine the next action for a platform/plant for a projected time frame that ends with

a “receding horizon;” the next time step during which an action must be determined [37]. In

order to develop an RHC, first the objective, constraint, prediction method,and horizon are

specified; each of these tends to have a “natural choice” that is suggested by the application

in question [37]. Unlike a PID controller, an RHC rarely needs to be tuned to achieve high

levels of performance; these systems are also able to run in implementation at extremely

high speeds, usually around the kilohertz sampling rate. Due to the high speeds at which

these controllers can run, they are ideal for real time systems, as well as for use in rapid

simulation settings (i.e. Monte Carlo) for iterative development. The real-time nature and
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minimal tuning requirements of these controllers has led to the use of RHC for mission

critical systems, where robust and speedy decision making is critical. By determining the

proper cost functions and objectives, an RHC can perform near the top limits of a controller.

RHC is used in numerous robotics fields, with particular interest in swarm robotics over the

past few years [38, 39].

Receding horizon control has also been proven to act as a phenomenal control strategy

for decentralized swarm systems [40]. This method, known as decentralized receding horizon

control (D-RHC), focuses on using predictive information about nearby swarm members and

collective goals to determine and optimize the appropriate cost-based objective functions.

This prediction is done at each timestep, in order to try and predict the actions of each

swarm robot at the next horizon time. The predictions are usually based on current state

information of the surrounding robots (trajectory, velocity, etc.) but can also be derived

from any model information that is available about the controllers on the neighboring robots

(including their optimization functions). After the predictions are made, the system devel-

oped a constrained cost minimization problem to model the state of the swarm; the system

solved this problem in order to determine the optimal solution for the next time horizon. The

solution always involves modifying a variable that is controllable for the specific platform,

such as velocity.

Although a receding horizon controller does not require much tuning in order to run

optimally, it is still hard to design a decentralized version due to the need to combine a

set of differing goals, costs, and constrains all to form an efficient optimization function

[41]. Furthermore, in a complex swarm, it is even more difficult to determine the most

efficient combinations of costs that can remain static due to the dynamic nature of the

operating environment. Communication issues, network delays, noisy sensors readings, and

other environmental factors can render a pre-set optimization function useless and ineffective.

In the paper by Henderson et al, it is proposed that these different variables can be easily

quantified and set using a meta-learning process: cost adaptation. This method uses a set of

user-generated cost and constraint functions, as well as other external heuristics, to generate

the optimization objective. A heuristic-based search algorithm is used to determine the best

way to generate the objective based on a large list of pre-set cost and constraint functions.
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This search is guided by the swarm’s interactions with the environment, as well as data

collected on neighboring platforms. Through the use of simulated annealing, we can allow

the adaptive agents to perform tasks while optimizing for efficiency and safety [42]. The

goal of this approach is to allow for the simple combining of goal-based objectives while

still allowing for the system to adapt to all types of unforeseen obstacles presented by the

operating environment. Since the learned objectives are based on user-entered goals and cost

functions, the outcomes of the controller are also human-readable, which allows for insight

into the decision making process and the ability to modify to match desired decision bases.

2.5 Distributed Systems and Computing Background

Distributed Satellite systems (DSS) are one of the types of robot “swarms” where au-

tonomy is becoming more prevalent. A good synopsis of the uses of autonomy is found

in a paper by Araguz et al [43]. Some of the issues facing satellites that are hoped to be

solved with satellites include communication delays/timing, mission robustness and failure

tolerance, and reduced control windows due to ground station availability. The goal of most

research in this area is to enable these platforms with more forms of autonomy; the autonomy

is not just another feature of these platforms, but will be the key method in which future

platforms manage operation dynamics and complex systems [44].

Mission Planning Systems (MPS) are a major part of distributed satellite systems, as

its important to coordinate task execution across multiple platforms. Currently, the main

approaches used for MPS are heuristic-based approaches. A prime example is the EO-1 ap-

proach, which has a preset schedule that implements replanning whenever there are anoma-

lies detected in operating conditions. Another interesting approach to MPS is described

by Beauemet et al [45], using a reactive algorithm that created new, instantaneous plans

based on preset system operating rules/parameters. For each task, a priority, start time,

duration, and required resources is assigned, and then an optimization algorithm determines

the best order of execution. This optimization can be performed by one of many math-based

scheduling solutions, underneath the topic of Earth Observation Satellite (EOS) scheduling;
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the most common techniques are described in detail in [46] for single satellites and [47] for

multi-satellite systems. The goal of these approaches it to provide optimal schedules, assum-

ing no deviations; this is only valid for missions where anomalies are not expected. Other

pieces of relevant literature include the general field of distributed computing, where there

has been a plethora of research focused on interdependent task scheduling, with a good list

of work cited in [48]. There is also a large body of relevant work for terrestrial autonomous

systems, including Autonomous Underwater Vehicles (AUVs) in [49], and UAVs, in [50]

which is the focus of this paper. With regards to these last two, these systems do not have

the same constraints as space-based systems, and are instead usually constrained by other

factors (such as path planning).

One of the milestone papers in the area of autonomous spacecraft software contains

an overview of the software used for Earth Observing One (EO-1) [51]. EO-1 is a satellite

that flies in Low Earth Orbit, which uses cameras and other related sensors to detect notable

events autonomously and then react to them. For its planning/replanning system, EO-1 uses

the Continuous Activity Scheduling Planning Execution and Replanning (CASPER) software

developed by NASA’s Jet Propulsion Laboratory (JPL) [52]. The mission plans created by

CASPER are used as input into the Spacecraft Command Language (SCL) executive, which

uses CARPER’s plan to perform low-level actions to achieve the predetermined actions.

CASPER is able to create plans that span anywhere from a few minutes of planning to far

into the future; this is due to the strict requirements and availability of processing power

available on some spacecrafts [52]. The further out the actions to be completed, the higher

level and more abstract the instructions would be. This scalability and adaptive schedule

planning is important for UAVS, satellites, and any other platforms with limited storage and

computing power, as detailed plans can take up a large amount of memory and can become

obsolete in an instance due to anomalies or conflicting requirements.

In the paper [53], a new technique is discussed that allows for a more standardized ap-

proach to autonomy, using a modular architecture, that builds on top of the capabilities used

for EO-1; this method is hardware and software independent, and can be translated to other

platforms. This method, called the Autonomous Mission Manager (AMM), uses a Service-

Oriented Architecture (SOA) which allows software to be divided up into multiple processes
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that are able to communicate with each other using a predefined communication bus [44].

This method of process partitioning is similar to those used in ROS and NASA’s CFS sys-

tem. AMM also uses CASPER for its task planning, but also integrates a software executive

platform called the Cooperative Intelligent Real-Time Control Architecture (CIRCA); AMM

also has its own middleware messaging system that it uses to communicate in between its

software modules, called the Adaptive, Scalable, Portable Infrastructure for Responsive En-

gineering (ASPIRE) framework [44]. Like with CFS, the goal of the AMM architecture is

to standardize the interface and transfer of data between the modular components, which

allows for easier software development and more robust systems.

2.6 Robot Operating System (ROS) Background

Robot Operating System (ROS) is an open-source, meta-operating system used for

robots. It sits on top of a basic POSIX operating system, and allows for most of the

hardware-software interfacing to give a robot functionality. ROS provides services such as

hardware abstraction, low-level device control, package management, and other commonly-

used OS functionality. ROS also has its own messaging service, which allows all processes

and programs to send and receive data in one of many open channels of communication.

ROS also provides all of the basic tools and libraries needed to write, build, and run code

on a hardware platform. ROS is not a realtime framework, but it can be integrated with

realtime code.

The ROS runtime system can be pictures as a “graph” of processes that are connected

in a peer-to-peer network; usually these processes are connected using Rostopics, which is

ROS’s communication infrastructure. ROS processes can be distributed among multiple

platforms, as long as they are all on the communication platform. ROS implements several

different styles of communication, including synchronous RPC-style communication over

services, asynchronous streaming of data over topics, and storage of data on a Parameter

Server [54, 55].
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ROS is designed to be a thin system that can work with other robot software framework.

It does not contain its own main() function, meaning it can be used by or with other software

packages. ROS is also designed to be used with standard, ROS-agnostic libraries. ROS has

supported implementations in C++ and Python, meaning that development is not tied to

a specific language (language agnostic); in fact, ROS has support for cross-compilers that

allow for use of multiple languages [54, 55]. ROS also has built-in testing and integration

frameworks, under the ROStest library, which allows for quick unit and full integration

testing of all written software. And lastly, ROS is built to be scalable, allowing it to be used

on large runtime systems and with large development processes. ROS has been designed

and developed to allow a few key features to be usable for robot platforms: Distributed

computing, software modularity, and rapid testing.

2.6.1 Distributed Computation

Modern robot systems rely on software that utilizes many different processes. These

processes can all be run on a single platform, or can be distributed across several different

mediums (robots, servers, cloud systems, etc). With current best practices, it’s best to divide

software systems into many smaller processes as opposed to a few large behemoth processes.

This is known as complexity via composition [54, 55]. Whether a single robot is running all

of these processes, or there are multiple agents collaborating on a task, there is a common

need in order to reach success: all of these processes need to be able to communicate to each

other, for coordination and data sharing. ROS provides multiple mechanisms to facilitate

this level of communication. In fact, the messaging system is so advanced that there is

theoretically no limit to the number of processes that can be running simultaneously and

sharing/using information amongst themselves.
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2.6.2 Software Modularity

Robotics as a field has seen constant development and progress over the past 50 years.

As a result, there is a large repository of robust, vetted algorithms that are used for common

tasks such as mapping, navigation, computer vision, and sensor fusion. These can serve

as very useful resources if they don’t need to be implemented from scratch. With ROS,

many of these existing algorithms can be used in a plug-and-play fashion. First of all, ROS

has a group of standard packages that provide stable, fully integrated versions of many of

these important algorithms. Two of the most well known are GMapping, which is used

for building maps, and AMCL, which is a particle filter used for accurate 3D localization.

These packages can be added to any ROS project because they use ROS’s default messaging

system. This messaging system has become the de facto standard for robotics software

communication, and as such, any package using this system can interface with ROS. This

also means that ROS can interface with most existing and new hardware, as it’s designed

around this communication protocol. Because of the uniform adoption of this system, there

is also less need to write integration code to make existing code work with new packages;

since they all use the same messaging system all that needs to be “modified” if the message

processing scripts and algorithmic input/output [54, 55].

2.6.3 Rapid Testing

When it comes to developing robotics software, testing is one of the most challenging

aspects. This is primarily because testing can be time-consuming and error-filled. Hardware

is notoriously hard to debug, and sometimes the proper platforms are not always available,

or have their own limitations. Integration tests tend to require a fully functioning system for

even basic tests, which can be hard to have available during distributed development. Using

ROS provides a couple of alternatives to help solve this problem. The first way is by using a

simulator. Because of the way ROS is designed, a good ROS system can separate the low-level

control system from the higher-level software system; the low-level system tends to handle

interfacing with the hardware while the high level is more of the processing, navigation, and

decision making systems the robot uses. If the low level systems can be placed in a separate
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process, they can be replaced with a hardware simulation environment. This would allow for

the higher level functions to be testing using “ideal” hardware data and a fully- controllable

environment. ROS is also able to record all sensor/process data using its ROSBag software;

this can always be used to simulate the robot platform by resending all of the data down

the communication bus to the higher-level software. In both cases, simulator and rosbag,

the change is seamless. Both options are able to create and provide identical interfaces to

those of the physical robot, which means the software does not need to be modified in any

way. As such, the system has no idea it is not being testing on live hardware. This in turn

makes teasing much easier and faster with ROS.

2.7 Overview on Swarm Robotics

Using multiple robots for a joint task has been a large focus of robotics research over

the past 30 years. As such, there have been numerous systems and studies carried out,

many offering unique hardware and software architectures for multi-robot systems. There

are two types of multi-agent systems: homogeneous and heterogeneous. As the names sug-

gest, homogenous robot swarms are comprised of many units of the exact same platform,

whereas heterogeneous swarms are comprised of different varieties/types of robot platforms;

sometimes, heterogeneous swarms include robots of different operating environments (i.e.

drones and underwater systems, or different types of space-capable platforms). Most re-

search that has been performed in depth on these systems from a controls perspective has

been performed on homogenous systems, as assumptions about group performance can be

extrapolated based on individual platform characteristics and dynamics. A drawback of het-

erogeneous systems is that it is challenging for robots to model other platforms in the system,

as not all platforms are uniform. This causes the systems robustness to diminish in cases of

unique platform failure. Because of this, most researchers in the space believe heterogeneous

swarms work should be avoided when possible, leading to a majority of research focusing on

homogenous systems [56].

A “swarm” of robots is a large group of robot agents that are all working cooperatively
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to achieve some kind of common goal or collective behavior [56]. Traditionally, this term is

associated with joint movement through space, although it applies to all types of collective

behavior, from movement to sensing and decision making. Individual agents in a swarm tend

to have limited capabilities, in terms of computing, sensing, or actuation. Swarm intelligence

refers to the collective intelligence that is created from the interactions between autonomous

individuals within a large group [57, 58]. The goal of swarm robotics research is to use many

of these limited platforms to achieve bigger accomplishments not possible for just single agent

systems. In order for a robot swarm to accomplish different kinds of tasks, the swarm must

be flexible, robust, and easily scalable [59]. Some examples of optimal uses for robot swarms

include: using multiple agents to quickly explore and map an unknown area, using multiple

platforms to accomplish a common task (such as transporting a large object), and using a

group of agents to accomplish different pieces of a large-scale task (such as deep learning-

enabled computer vision). Swarms of robots are useful for implementing superior situational

awareness [60]. They also support greater levels of robustness in regards to mission failures,

since the use of multiple platforms allows for redundancy and error checking [61, 62, 63].

One of the main features of swarm robotics is location-based distributed computing; they are

able to distribute tasks and workload among agents uniformly throughout a large physical

area, allowing for increased spacial awareness as well as manipulation of a larger portion of

the surrounding environment [58, 64]. This is especially evident in hazardous environments,

as the use of swarm robots allows for increased situational awareness and mission capabilities

without the inclusion of a human.

There are also several drawbacks that are associated with swarm-based systems. First

of all, it is very hard for a human operator to control or direct a swarm system, for both

centralized and decentralized control schemes. For centralized systems, the communication

structure and control schemes do not scale easily when the number of individual actors

is increased, and are particularly sensitive to the loss or replacement of the central leader

[65, 66, 67]. For decentralized systems, the main problem comes with the lack of access to all

global data. For decentralized swarms, not all robots are connected to each other, meaning

it is hard to get a snapshot of the entire state of the system, or to easily synthesize all of the

information currently held by the collective group. This lack of full situational awareness and
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the ability to predict full group behavior makes it difficult for one agent, in this case a human

operator, to make appropriate calls to direct the swarm as a whole. However, even with these

drawbacks, the benefits of using multiple robot platforms in a swarm far outweighs any of

these concerns. Swarm robots have been implemented and testing in a variety of challenging

scenarios, including space exploration [65, 68], search and rescue operations [69, 70, 71, 72],

autonomous security [73], and battlefield surveillance [61].

2.7.1 Testbed Hardware Platforms

For heterogenous work in this paper, there are two main types of platforms we are focused

on : UAVs and cubesats. UAVs will be used in this case to simulate cubeSats. What makes

these platforms different is the different sensor packages and other hardware available on

each platform. In order to allow for a collection of UAVs that are able to do a wide variety

of tasks (both sensing and computing), we need to make sure the swarm is fully equipped

to meet all of these needs. Since power and weight budgets and extremely restrictive on

UAV platforms, these capabilities will be divided up among numerous physical platforms.

Some UAVs will focus solely on sensing, and will be equipped with one of these specialized

sensors: HD Camera, Thermal Camera, LIDAR sensor, IR Camera(s), Ultrasonic Sensors

+ microphones, wind sensors, etc. Other UAV platforms will have specialized computing

hardware in order to meet special computational requirements, such as chips designed for

Video Processing or machine learning. Some of this demand will be alleviated by embedding

FPGA systems on these drones; as FPGAs are reprogrammable hardware, their software can

be customized to meet the task at hand. And other UAVs will be equipped with hardware

that allows them to conduct their duties, such as a package delivery mechanism, an arm to

acquire experimental samples, a parachute for safety, or a speaker system to convey audio

messages.
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2.8 Overview of Dynamic Vision Sensors and Event Simulation

One of the major areas of interest in robotics is computer vision. With regards to UAV

systems, computer vision and image processing is extremely important, both for situational

awareness (sense and avoid) as well as for localization and mapping purposes. However,

cameras, especially good ones, require large amounts of power, and do not operate well

under high speed conditions. As such, UAV researchers are always looking at alternative

methods to capture and analyze vision data. One of the latest sensors is called a dynamic

vision sensor, also known as a neuromorphic camera or an event camera. The Dynamic

Vision Sensor (DVS) is an event-based, neuromorphic sensor that mimics properties of the

human eye in order to dramatically increase sampling rate, while simultaneously reducing

effective data rate. Rather than sensing the magnitude of luminance at each pixel, the DVS

detects changes in the log-luminance over time, resulting in image data with high temporal

resolution and without redundant, static background information. This behavior allows the

sensor to operate with a sampling rate in the MHz range and enables the high dynamic

range of the sensors to detect exceptionally small changes in luminance. However, event-

based sensors differ from conventional cameras due to the image data being represented as

one-dimensional sequences of events rather than traditional 2D images. While the small-

size and low-power consumption of dynamic vision sensors make them ideal for embedded

platforms, the asynchronous nature of the image data necessitates new computer vision and

image processing techniques for conventional applications [74, 75, 76].

Due to the relatively high cost of dynamic vision sensors, it is advantageous to be able

to test and verify computer-vision applications using conventional images from either RGB

cameras or rendered simulations. With the low availability of event-based datasets, event

simulation (i.e. extrapolating a one-dimensional event stream of events from conventional

images) is a particularly useful method for evaluating event-based applications. Given a

conventional sequence of images, one-dimensional event stream data can be extrapolated via

the intensity difference and current exposure value found at each pixel. Since event simulation

can be a time-consuming process as a byproduct of the large number of spikes generated

and the need for timestamps to be ordered temporally, a naive, linear implementation is

30



infeasible for real-time processing in this work. Instead, the process is converted into a

sequence of matrix operations and parallelized via GPU acceleration in order to achieve

real-time integration with AirSim [77, 78, 79].

Using a real-world DVS in the context of robotic navigation and obstacle avoidance has

already been implemented in several previous works. The work in [80] explores how a re-

duction in visual latency can positively impact the maximum speed with which a quadrotor

can navigate an environment by comparing monocular and stereo cameras to event-based

cameras. The paper suggested that an event camera has a more beneficial impact on per-

formance when a robot is more agile and able to react quickly to changing information, as

compared to traditional monocular and stereo cameras. This assertion was tested by having

quadrotors perform collision avoidance maneuvers against incoming balls, using DVS data as

visual input. [81] implements an impressive on-board object collision method for quadrotors

using a dynamic vision sensor and an Extended Kalman Filter. [82] takes the experiments

performed in [81] and conducts a theoretical analysis on the joint role of perception latency

and actuation latency in robotic navigation tasks.

2.8.1 Benefits of Using Dynamic Vision Sensors

The use of the neuromorphic vision system onboard UAVs and in space-based applica-

tions has numerous benefits. One major benefit of this camera is that it is event-driven;

the event-based sampling works by collecting data from only the pixel sensors that sense a

changing event, as opposed to all of the pixel sensors in the camera. Because of this reduced

number of pixel data being recorded, this leads to very low data rates along with extremely

high accuracy [83]. This is important for UAV and satellite systems as it allows for more

efficient use of the limited onboard memory as well as helps resolve the usual problem of

limited downlink bandwidth issues by transmitting back minimal data. Dynamic vision sen-

sors have the capability for more efficient object tracking, and an increased ability to ignore

overpowering light sources [84]. In the field of aerospace research, there is currently a major

push for developing new technologies that can help with space situational awareness (SSA)

[85]. The ability for a satellite to track objects and predict their motion patterns it vital in
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space, as it allows for detection of threats and application of collision avoidance measures;

this capability requires instant detection of objects as well as real-time processing. Dynamic

vision sensors are ideal for this kind of instant object tracking, as they are optimized for

real-time trajectory mapping and motion prediction. In one study by Valeiras et al, objects

were able to be tracked at a Khz rate in real time using these cameras [86]. This kind of

instant tracking is also crucial for UAV systems, where sense and avoid algorithms need to

be perfected to work in real time; this is especially crucial when UAVs are operating at high

speeds in dense areas, such as a forest or cityscape.

2.8.2 Space-Based Applications and Background

There are several major problems in the field of aerospace and space-operations research

in which the neuromorphic camera can be a solution. Many of these problems have been

thoroughly researched with a variety of solutions posed as results; we think the benefit of

neuromorphic cameras can far outweigh many of the drawbacks of these other solutions.

As mentioned before, space situational awareness (SSA) has been an important area of

research both in civilian and military situations with regard to space-based applications.

The research done by Ender et al. demonstrates the use of radar systems for SSA, in use

of applications for collision detection, orbit estimation, and propagation [87]. Radar is a

commonly used technology chiefly because of its wide range; it can sense over a very wide

area of coverage, with consistent results.

However, this method is only viable to detecting large objects; this is due to the large

wavelengths of the radio waves used, as well as diffraction properties [87]. Another researcher,

Demars, has presented a method that uses SSA for predicting non-linear orbits for objects in

space. The proposed method uses Gaussian mixture modeling to exploit properties of a linear

system to extrapolate information about a nonlinear system [88]; in order to reduce the error

from extrapolation, Gaussian splitting is then introduced to the resulting model. This allows

for the accurate mapping of complex, non-linear orbits, which allows for better interpretation

of collision paths and probabilities. Although not as useful for human operating systems, this

level of modeling and prediction becomes crucial for autonomous systems that are conducting
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surveillance. A major downside of this method is the complex mathematical calculations

that are part of the modeling process; these methods are too complex for operation on any

standard satellite computing platform. There is also possibility of statistical errors to be

introduced into the calculations, based on the method being used. Another paper by Abbot

and Wallace also looks at ways to track orbiting space objects, albeit in larger numbers,

using SSA. Their initial claim that the small number of sensors used for gather data is

what leads to inconsistent observation of the objects, which leads to poor prediction results.

They propose that multiple satellites orbiting in geosynchronous earth orbit (GEO) work

cooperatively to monitor space objects, to allow for more robust collision avoidance systems.

This is especially useful for satellites in GEO, as their orbit tends to oscillate (an example

is shown in the diagram below) [89].

The drawback of this method of using SSA, like the last one, it the amount of processing

power and local memory that is required. This method utilizes bayesian modeling, which

tends to require large amounts of processing power to be done correctly, as well as relies on

the available data regarding orbital information for all tracked objects, which is difficult to

find and access. This can lead to many problems when considering classified space objects,

those not known to the public, or those with incorrect public access data.

2.9 Machine Learning

2.9.1 Reinforcement Learning

Reinforcement Learning is a subset of machine learning that teaches an agent behavior

based on its interactions with an environment and the resulting outcomes of specific decisions.

Based on behavioral physiology, the basis of reinforcement learning is to attribute a ”reward”

for each action taken by an agent, and to shape that agent’s behavior in order to maximize

the cumulative reward in the course of a trial. Reinforcement learning allows us to give a

framework and set of tools for robots in order to design and improve a hard-to-engineer set

of behaviors in both known and unknown environments. For this dissertation, reinforcement
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learning is used to develop control policies for UAVs in simulation, specifically teaching them

how to interact with their environment to efficiently accomplish a list of tasks. Training these

policies in simulation is the fastest way to develop a proper set of model behaviors, as this

method relies on hundreds of thousands of training trials in order to reach a decent model.

For this dissertation work, the two major reinforcement learning techniques used at Deep Q

learning Networks (DQNs) and Proximal Policy Optimization (PPO).

Deep Q learning is a prominent area of reinforcement learning research that leverages

deep learning neural networks to learn effective policies given high-dimensional input data

[90]. The agent action policy is the core of the Q-learning algorithm, which dictates which

action an agent should take given the current state of its environment in order to maximize

expected reward. The Q-value indicates both the immediate reward for a given action and

a discounted summation of the expected rewards gained from subsequent states, allowing

the agent to effectively plan into the future what actions should be taken over time. Using

techniques taken from classic deep learning tasks, such as image classification, the authors

of [90] trained a custom CNN architecture as the means of estimating Q-values based on

visual observations of an environment, with a target Q-value as the loss metric used to

train the network weights. In order to smooth the training distribution, the authors also

introduced experience replay, a manner in which the network could be trained over batches

of previously encountered states and actions [90]. This resulting neural network function

approximator, called the Q-network, was trained in order to achieve state-of-the-art results

in playing a selection of five Atari games. [91] expands upon this work, achieving human-level

performance across a wide variety of Atari games with a single, model-free deep Q-network

agent. [91] uses human-in-the-loop demonstrations as a form of semi-supervised learning to

reduce the size of the data set necessary for deep Q-learning. These demonstrations serve

to pre-train the agent and accelerate the training process by initializing the network with

non-random weights.

Several previous works have explored memory-based deep reinforcement learning meth-

ods in order to avoid obstacles in unknown, indoor environments. Reference [92] opts for a

Deep RL approach using a simple monocular camera instead of computationally intensive

SLAM or SfM approaches because of the cost of such methods and their inability to avoid

34



dynamic objects. The work successfully used a recurrent neural network (RNN) module

to enable learning an obstacle avoidance control policy that can utilize relevant past infor-

mation. Experimental results showed significant improvement over both DQN and other

DQN variant algorithms. This work is similar to our approach, as it performs training in a

virtual environment, modifies the basic DQN architecture, and performs obstacle avoidance

with a simulated UAV. The primary difference between these approaches is that [92] uses

a monocular camera to estimate depth (using a depth estimator obtained from training a

network with a conditional GAN) and computationally-expensive LSTM modules to enable

temporal attention; Our agent relies on the interaction between the DVS data and spiking

architecture to capture temporal information.

2.9.2 Spiking Neural Networks

Work done in formulating SNN-specific training algorithms stems from developments

in both deep learning and neuroscience. However, fundamental research in SNN-specific

training relies heavily on biologically-inspired processes from neuroscience research that are

not entirely proven in the realm of deep learning. A number of papers concerning biologically-

realistic models for learning have resulted in real-world implementations that demonstrate

promising results [93, 94, 95]. The work in [96] outlines a framework for propagating an

additional network parameter, a reward signal, through neurons in a biologically-inspired

way of mimicking conventional reinforcement learning. A supervised multi-spike learning

algorithm is used to train spiking neurons to converge towards desired spiking rates in the

work of [97], achieving competitive accuracy in time-based pattern classification tasks. [98]

demonstrates a novel method of SNN learning using spike-time dependent plasticity (STDP)

for image classification tasks. For deep learning-based approaches to training SNNs, the

reader is referred to [99].

For practical applications, the low-level implementation of spiking architectures can be in-

credibly time-consuming, especially without native support in machine learning frameworks

such as Tensorflow or PyTorch. To facilitate conversion between traditional, nonspiking net-

works to equivalent spiking models, [93] outlines a framework for combining deep learning
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with the strengths of neuromorphic modeling. The Nengo framework is specifically designed

to allow users to experiment with biologically-plausible neural networks and then apply them

to meaningful tasks within the same unified environment. Additionally, the NengoDL frame-

work used for this research enables users to apply conventional deep learning methods to

spiking neural networks and supports the conversion of models built with the popular Keras

libraries. “Neuromorphic modelling” refers to building models that incorporate high levels

of biological realism, such as the three-factor learning outlined in [96]. In object tracking

and collision avoidance tasks, SNNs have been shown to perform well in closed-loop control

systems [100]. A SNN is used in the ROLLS neuromorphic processor to realize an obstacle

detection and avoidance method on a physical robot with both static and moving objects. An

interesting observation from this paper was that avoiding moving objects was more robust

than avoiding static objects, as moving objects generate more events than static objects.

This observation provides experimental evidence for the claim that performance of a con-

trol method is positively correlated with the speed at which the robot moves relative to its

surroundings [100].

2.10 Simulation

Since it is difficult and time-consuming to tune controllers and UAV configurations phys-

ically, many multi-agent system designs relies on high-fidelity simulation. There are several

simulation environments that are designed for testing and training UAV flight controllers.

Some are equipped with the popular open-source autopilot system called ArduPilot [101].

The Gazebo simulation environment for Robot Operating System™ (ROS) has support for

UAVs and is a free open-source simulator. Additionally, NASA provides several open-source

UAV simulation environments, including the Independent Configurable Architecture for Re-

liable Operations of Unmanned Systems (ICAROUS) system which supports several libraries

for geofencing, sense and avoid, and formal method verification for safety-critical applications

[6].
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The majority of the work in this dissertation utilizes Microsoft’s AirSim simulator [102],

which has been used for numerous first-stage UAV research applications. AirSim is a high-

fidelity physical simulator built using the Unreal Engine which allows modeling & evaluation

in a variety of environments and flight conditions. Previous work has shown that controllers

designed and tuned within AirSim are transferable to physical UAV platforms with minimal

changes [95]. Though recent advances have been added in support of the Drone Racing Lab

[103], this research included the development and addition of several mechanisms to support

swarm controls engineering. These include modeling of centralized & mesh communication

networks, a framework to provide HD-RHC control to UAV platforms, and tools to tune &

analyze HD-RHC performance. For the neuromorphic vision research, a stand alone event

camera simulator was integrated into the AirSim egosystem, which has been used in place

of the actual camera hardware system.
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3.0 Task 1: Fleet Management System

©2020 IEEE [In Press]. Portions of this section have been reprinted with permission from S.
Mian and C. Munoz, Autonomous Spacecraft Inspection with Free-Flying Drones, DASC 2020.1

3.1 Task Overview

The first task in this dissertation research is to develop a robust fleet management system

for multiple UAV platforms. For this portion, the focus is on the high-level management

system for interfacing and controlling the drones, as opposed to any controls work. Imple-

mentation focuses on homogeneous UAV platforms (all the same) as this is the easiest for

testing and validation. The scenario used for this portion of the research was to use UAVs

to simulate freelying spacecrafts (cubesats), and have them accomplish a joint mission of

detecting damage on an object of interest. The payload for the UAV platforms is a standard

RGB camera, and the fleet management system incorporates a computer vision algorithm

that completes the sensing portion of the mission tasks. For this portion of research, the

fleet management system was built using flight-proven open source software developed by

NASA. This choice was crucial because it allows for the testing and simulation of space-

based robotic software to be completed on UAV platforms. The software architecture was

modified to add multi-agent functionality and control, as well as several interfaces to allow

for using multiple different types of hardware platforms. The controller/planning portion

of this system was also abstracted into a separate module, so it could be changed in order

to reflect the work completed in Task 2. This work was completed in conjunction with the

NASA Langley Research Center, and was presented in a conference publication [1]. This

section includes the computer vision work completed for the custom sensing task as it shows

the extend to which the fleet management system is able to operate.

1Sami Mian, Tyler Garrett, Alex Glandon, Chris Manderino, Swee Balachandran, Chester Dolph, and
Cesar A Munoz. Autonomous spacecraft inspection with free-flying drones. In 2020 IEEE/AIAA 39th
Digital Avionics Systems Conference (DASC). IEEE, 2020 [In Press].
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3.2 System Design

This work deploys ICAROUS with cFS in UAV mission computers to simulate free-flyers

operating in-orbit. A major contribution of this work is the development of several new

modules for the ICAROUS system to provide high-level mission management and multi-

agent coordination. This work also develops a cFS VICON interface for indoor localization

during research and testing. We also implement a novel computer vision program in cFS for

accurately detecting several types of damage in-situ.

3.2.1 System Software Architecture

Thanks to the ICAROUS system developed by NASA Langley, the same software system

used on satellite platforms can now be used for autonomous UAVs. In order to use ICAROUS

for the application of multi-agent damage detection, three new modules were added to the

system to allow for extended capability. Figure 5 shows the various software modules that

comprise the flight software system used for controlling the freeflyers.

Cognition determines various levels of mission tasks for each of the free-flyer including

takeoff/land, assigning specific waypoints for each platform, and positioning for capturing

data with available sensors.

Guidance issues low-level commands to each free-flyer based on their allocated tasks,

such as changes in directional velocity, position estimation, and local trajectory planning

functions.

Coordination manages the multi-agent aspects of the mission. This application ac-

cepts mission input from the ground station, determines how to split up the mission param-

eters/tasks based on requirements and number of agents available to deploy. The Coordina-

tion application also handles the dynamic addition or loss platforms of free-flyer workers at

any time during the mission.
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Figure 5: Flight software architecture [1] ©2020 IEEE

3.2.2 Platform Support Applications

Hardware Interface – In addition to ICAROUS suite applications, a hardware-interface

module allows the ICAROUS system to interface with the free-flyer platform firmware. This

application will be expanded on the implementation section.

Positioning System – As autonomous systems, the free-flyers require the ability to

accurately determine position in orbit, with respect to themselves and an object of inter-

est. To use traditional GPS localization, something common to UAV and spacecraft flight

systems, indoors, a cFS localization application was developed to interface with a motion

capture (mocap) system. This application translates local area positioning to GPS coordi-

nates for real-time autonomous navigation, using a Vicon mocap setup. The Vicon system

is a commercially available indoor motion capture system, our flight space utilized 16 HD

motion capture cameras. Each free-flyer platform is marked with several tracking tags and

individually registered in the system. In order to integrate into the system, a cFS application

was created to interface with the Vicon system.
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Inter-craft Communication – Each system uses a specialized cFS application, Soft-

ware Bus Network (SBN), in order to share communications. SBN enables each instance of

cFS to receive messages published to the software bus by any member of the swarm. For

example, if the message is received from another flight unit indicating its position is too close

to the aircraft itself, modification can be made to its flight path in order to avoid potential

collisions while still progressing to its next way point.

3.2.3 Inspection Protocol Using Computer Vision

The inspection protocol (the custom sensing module added to the fleet management

system) uses computer vision techniques on video provided by each UAV platform to identify

potential damage or anomalies. There are two subtasks for the computer vision processing:

first, the object of interest (a mock satellite) is segmented from the background; second,

damage is detected in a window area corresponding to the segmented module. Damage is

highlighted and visualized for the operation team in real-time. As a complementary feature

to 2D damage detection, 3D reconstruction for visualization is also implemented for post-

mission analysis. The 2D algorithm isolates regions of interest for autonomous operations,

and a human in the loop can inspect the 3D rendering of the selected region after the mission.

The computer vision has been integrated into the entire system as a standalone cFS app.

Figures 6 and 7 below show the pipeline for the two computer vision processes.
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Figure 6: Real-time 2D Damage Visualization [1] ©2020 IEEE

Figure 7: Post-Processing 3D Reconstruction [1] ©2020 IEEE

3.3 Implementation

Several technologies are developed for this project. The development of the control

and coordination for the UAVs is realized through the implementation of new ICAROUS

modules: a two-way communication system between the UAVs hardware and ICAROUS,

a Vicon Tracker interface for providing vehicle telemetry, a custom flight controller based

on a Proportional Integral and Derivative (PID) architecture, a mission coordinator for

decentralized task distribution, a networking module that enables UAVs to share flight plans

and mission objectives, and a visual damage inspector. The communication module added

new message structures to the existing publish/subscribe protocol. These new messages
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allow for the distribution of tasks among available free-flyers. The custom flight planner

is designed to adapt the ICAROUS planner for multiple UAVs. The coordination planner

analyzes mission objectives and dynamically distributes mission subtasks to each available

UAV. Several libraries are created to autogenerate nominal flight plans for the UAVs with

optimized video stability and field of view. Finally, a new set of computer vision applications

were developed and integrated into the ICAROUS system to enable the damage detection

and analysis portion of this project.

3.3.1 Drone Control Software

Since the cFS software used to control the drone’s motion planning was not placed

on-board the drone, a separate module was created in order to fill in the necessary gaps,

and mimic how the system would work if the NUC computers were onboard the AR drone

platforms.

The Drone Control module provides two high-level functions: convert velocity commands

from cFS to low level control commands an AR drone accepts (AT commands, takeoff/land,

Roll/Pitch/Yaw/Gaz), and serve as a flight controller to maintain the drones trajectory from

point to point, with minimal error. The Parrot AR drones come built with a standard API,

written in multiple languages, which supports sending commands to the drone to takeoff and

land, hover in place, activate emergency mode, and modify the drones current roll, pitch,

yay, and gaz (altitude). Several different control systems were also implemented in order to

control the target drone’s precise movement. A Proportional-integral-differential (PID) con-

troller was used for managing the drone’s 2D grid based navigation, a bang-bang controller

for controlling the altitude, a double setpoint controller for managing the drone’s yaw and

field of view, and a normalized proportional controller for controlling the ground speed. The

equations used for each of these controllers are listed at the end of this section. The resulting

velocity output matrices were multiplied with three sets of transformation matrices, to con-

vert the values from the local frame to the global frame of reference, for proper application

onboard the drones. Several experiments were run to tune these controllers and determine

their effectiveness in comparison to off-the-shelf solutions, the results of which are detailed in
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the results section. A figure of the high level control scheme for the drones is shown in figure 8.

Figure 8: High level control overview [1] ©2020 IEEE

These are the equations used to design the various controllers used for the custom flight

controller. Equation (3.1) is used to determine the desired viewing angle for the UAV to

focus on the object of interest.

θ = arctan2
Ydrone − Yobject
Xdrone −Xobject

(3.1)

Where X and Y are the Cartesian coordinates for the object, in the local frame Equa-

tion (3.2) is used to calculate the Yaw velocity of the drone to change its camera orientation:
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VY AW =



0.25ωmax, θ − ψ > 5◦

0.75ωmax, θ − ψ > 15◦

0.75ωmax, θ − ψ < 15◦

0.25ωmax, θ − ψ < 5◦

(3.2)

Where ψ is the current UAV heading, θ is the desired heading, and ωmax is the maximum

UAV angular velocity.

Equation (3.3) is used to calculate the thrust needed to change the UAV’s current alti-

tude. Velocity input for drone thrust:

VGAZ =


Vx ∗ τ + VALT ∆ALT > 0.5m

Vx ∗ τ + VALT −∆ALT > 0.2m

0.1m/s otherwise

(3.3)

where ∆Alt is the required change in altitude, Vx is the current velocity in the X direc-

tion, τ is the yaw scaling factor, and VALT is the vertical velocity required to stabilize the

UAV.

3.3.2 Multi-Drone Coordination

In the most basic implementation of an inspection, the ground station uploads a single

flight plan to a lone aircraft which then travels to each waypoint. The mission concludes once

all points have been reached. The Cognition and Guidance applications are able to guide the
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drone effectively and safely, however, rely on receiving the initial flight plan to carry out the

mission. This becomes increasingly complicated as more than one drone is introduced into

the system. The complexity is further exacerbated by needing to handle a fluctuating fleet

size. To address these issues, a new application is introduced called Coordination. The role of

the Coordination application is to monitor the fleet and dynamically allocate and distribute

updated flight plans to each drone to achieve optimal traversal of the search space around

the object being inspected. The application considers fleet size and remaining waypoints

from a master flight plan. Coordination is implemented within the software architecture

between the ground station and Cognition. A master flight plan is uploaded initially to a

single drone. The flight software on this drone then evaluates, computes, and distributes

the new flight plans for itself and all other fleet members based on their aircraft ID. In the

event that a drone is removed or added to the system, a reassessment of the remaining list

of waypoints and drone positions is evaluated and updated flight plans are redistributed.

Coordination can handle several different scenarios including:

1. Mission starts with one or more available agents

2. A new agent is added to the available group of platforms

3. An existing agent is no longer able to perform a mission (loss of platform, communication,

etc.)

4. A discrepancy in data is detected and new mission tasks need to be added for robustness

5. The object undergoing inspection has moved and new mission waypoints need to be

determined

3.3.3 Automated Waypoint Generation

As the goal of this mission is to use various freeflyers in order to inspect an object and

look for damage using computer vision approaches, it is necessary to obtain images of the

object being inspected from a variety of angles and distances. In order to make sure the UAVs

are able to obtain substantial visual data to ensure the detection of any and all simulated

damage, several tools were created that auto generate various UAV flight plans. The tool

requires a number of parameters, including object’s size and GPS coordinates, as well as the
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number of images desired, the resolution of the images, the desired yaw and pitch angles of

the photos, and any unique flight patterns (a helix, a circle, raster photos, etc.). The planner

first calculates all of the requested waypoints in a 3D cartesian coordinate system, placing

the object at the origin. Then, these coordinates are converted into Geodesic coordinates

using an open source UTM library, which simulates the projection of 3D space onto a sphere

(the earth). Lastly, these new coordinates are formatted and combined into a mission input

file that can be provided to ICAROUS.

3.3.4 Localization System

The Vicon motion capture was integrated into ICAROUS as a new application which

used the Vicon SDK to open a socket connection that received telemetry data as the drones

motions were tracked in real-time. Capturing 3D frames of the flight space at up to 200Hz,

the drone’s position and rotation are recorded relative to the global center. From here the

Vicon application performs several calculations to derive velocity (by taking the difference

in position between frames), heading, and translating the coordinates from the local frame

(NED) to the spoofed global frame (geodesic). The data is then piped to the Guidance

application where based on the current location of the drone coupled with the assigned

destination from the Cognition application, adjustments are made to the velocities in the

local coordinate frame to keep the drone on course. These adjustments are then passed to

the drone interface module to be translated to the raw commands accepted by the UAV

platform’s control API.

3.3.5 Computer Vision Implementation

First, for background subtraction, several techniques are tested experimentally for per-

formance on segmenting our given modules. For the satellite segmentation several techniques

are compared. Adaptive Otsu thresholding is considered as shown in figure 9a. It is fast, but

ineffective at precise segmentation. The intensity between the cylinders and the background

is insufficient for Otsu segmentation. Template matching is considered as shown in figure 9b.

Template matching works well when the mock satellite is at a fixed distance or image size.
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When the mock satellite is close or far, the predefined template will not match. This can

be fixed, by performing multiple searches through the image with different size templates.

In this case the speed is drastically reduced. GrabCut is applied for segmentation also as

shown in figure 9c. It performs well, but is not considered for final implementation as it

requires user interaction and is slow to process.

(a) Otsu thresholding (b) Template matching

(c) GrabCut

Figure 9: Initial segmentation experiments [1] ©2020 IEEE

Finally a solution is developed using color based thresholding that is able to robustly and

precisely extract the location of the space module. To improve segmentation performance,

the next step was to paint the mock satellite a gold color. The gold color was chosen because

of its similarity to that of the polyimide-based insulation usually found on the outside of

satellites.
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The color based segmentation is based on ratio matching. Standard color matching is

based on color channel vector distance as in Equation 3.4. R refers to the red color channel

intensity, and so on for G and B. Rref refers to the target channel intensity and so on.

√
(R−Rref )2 + (G−Gref )2 + (B −Bref )2 (3.4)

This gives stable results invariant to lighting and background noise using ratio based match-

ing, where distance is now described in Equation 3.5. Reference RGref refers to a target red

to green ratio, and likewise for green to blue ratio and blue to red ratio.

√
(
R−G
RGref

)2 + (
G−B
GBref

)2 + (
B −R
BRref

)2 (3.5)

Once the cylinder image is determined, convolutional neural network (CNN) and sobel edge

detection are compared experimentally. The first CNN model is trained to consider the

3-class decision problem of “background”, “module - damage”, and “module - no damage”.

This did not achieve good performance. Including ”background” made the classification

problem more complex. Next, the CNN is trained to return a binary decision, representing

damage “present” or “absent”. This required building a training set of many example views

of the cylinder including normal and damaged sections, with a variety of lighting and dis-

tance conditions. The CNN is applied as a sliding window operation to detect damage in

regions of interest. The CNN performance was fair, however the computation was slow, as

the CNN output is computed over several windows.
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Sobel edge detection is considered as it is fast to operate this method over an entire

image. Sobel returns a filtered image, where edges are highlighted. Two damage detection

algorithms are applied to the sobel output. The sobel output is integrated over windows of

interest to determine regions of damage. The sobel output is also visualized at the granularity

of pixel level.

For post-mission processing 3D damage visualization using photogrammetry is performed.

A necessary condition for fidelity in 3D object rendering is the presence of discriminatory im-

age features at each location of the object. Unlike the expectations for a spacecraft, the gold

painted cylinders did not have identifiable features over the extent of their clean surfaces.

To correct this deficiency, a speckle paint pattern is applied to the surface of the damage

cylinder. The photogrammetry pipeline uses an algorithm called structure from motion to

generate the 3D representation giving a gallery of images from different perspectives [104].

3.4 Experimentation & Results

For this demonstration, a damaged aluminum cylinder is used as a mockup of a damaged

satellite. The free-flyers cooperate to scan the cylinder for damage at a high resolution.

Multiple UAVs use ICAROUS to autonomously navigate around the mockup satellite while

keeping it within their cameras’ field of view. The free-flyers cooperate and maintain a safe

distance between each other vehicle and the mockup. The coordination module creates a

unique flight plan for each of the UAVs based on the shared mission plan. The coordinator

also allows dynamic task reallocation when the number of UAVs systems available for the

mission is changed (though new additions or platform loss). The UAVs systems complete

a full successful scan of the mockup, highlighting the damaged surfaces in real-time and

providing a video visualization during mission execution. A publicly released video of the

demo and project overview is available at [105].
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3.4.1 Drone Hardware Platform

The UAV platform used in this demonstration is the Parrot AR 2.0 Drone equipped with

an ARM Cortex A8 processor, 1Gb of RAM, and a barebones version of Linux 2.6 [106].

These platforms come equipped with a built-in WIFI b/g/n chip for both establishing and

connecting to wireless networks. The sensors onboard each platform included a 3 axis gyro,

a 3 axis accelerometer,a magnetometer, an ultrasonic sensor (for altitude measurements) and

2 cameras. A 720p 30 FPS camera faces forward on the drone, and was used to collect video

for the damage analysis in this demonstration; the other camera is a downward facing wide

angle lens sensor which is used for optical flow tracking, which allows for smoother movement

and hover.

Due to a limit of 100g payload and insufficient computing power, a secondary offboard

computer was chosen as a proxy. The Intel NUC miniature PC was chosen, as it is small

enough to be placed onboard custom UAV platforms and hence serves as an acceptable

substitute. Each NUC was connected to one AR drone platform via WiFi, running the cFS

and ICAROUS software platform and issuing low level actuation commands. The UAVs

stream back live video from its forward-facing camera to the NUCs, where the computer

vision cFS application would analyze the video for damage patterns.

3.4.2 Full System Demo

The mission success of this simulator demonstrates multiple-agents can cooperatively

inspect an object for damage in real time.Two UAVs were used to simulate two free flyers

in space; the space modules were stacked together, with the damaged cylinder on top of the

pristine cylinder, to mimic the large cylindrical body of a fuselage. A single flight plan was

autogenerated for inspecting the cylinders, with three distinct parts: An orbit of the top

cylinder, a downward spiral in the pattern of a helix with two full revolutions, and a full

orbit of the bottom cylinder. With this flight plan, each portion of the object’s surface would

be viewed at least twice by one of the cameras. In this demonstration mission, one free-flyer

initiates the mission and a second free-flyer joins halfway through the mission. The second

UAV would then be abruptly removed from the space, simulating a loss of spacecraft. The
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Coordination application coordinates the dynamically changing environment to account for

mission resources and mission progression.

The demo progressed with the following events:

1. UAV 1 enters flight space

2. Coordination module detects one freeflyer and passes full flight plan from ground station

3. UAV 1 begins orbit of the top cylinder and processes the video stream for real-time

damage analysis

4. UAV 2 is dispatched

5. Coordination detects new freeflyer and dynamically updates mission into two subtasks:

one for orbiting the top cylinder and one for orbiting the bottom

6. Each subtask is distributed to UAVs 1 and 2 respectively

7. UAVs 1 and 2 commence new operation

8. UAV 2 abruptly departs

9. Coordination detects the loss and recalculates a new mission for the UAV 1 consisting

of the remaining waypoints

10. UAV 1 completes visual analysis of the top cylinder and enters a helix to spiral down to

finish analyzing the bottom cylinder using the waypoints inherited from the loss of UAV

2

11. UAV 1 completes the remainder of the mission

Figure 10 shows the original mission flight plan as well as the flight patterns for both

drones generated from the flight logs from this demo.

3.4.3 Flight Controller Performance

Several experiments were performed during the development of the UAV control software,

to assess the impact of the different control approaches and tuning methods.

For the 2D trajectory planner, the PID controller provided the capability to allow even

the cheap AR drone the ability of high precision in regards to movement. Although the

actuation system on board the platforms was inaccurate, the controls provided a critically
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Figure 10: Drone waypoints visualization [1] ©2020 IEEE

damped system, allowing the UAVs to smoothly follow their waypoint lists. This was ex-

tremely important for some of the more complex flight patterns, including the double helix

and several overlapping flight plans. During flight testing, each drone’s actual position was

recorded and compared to the intended position determined by ICAROUS, in order to ascer-

tain the effectiveness of the PID controller. Figures 11 and 12 shows the maximum error of

the drone’s position across five trials; Figure 11 shows the error in terms of absolute distance

(meters), and Figure 12 shows the error in terms of relative distance (percentage).

For the Yaw control, both a proportional controller and a double setpoint controller

were considered. The proportional controller proved to be a poor choice, as it would often

overdampen, causing the drone to jerk violently back and forth, failing to keep its focus

on the object of interest. The double setpoint controller provided a smoother choice, as it

allowed for the drone platform to turn at a constant rate, which was recorded and used for

post-processing of the video information. As the drone’s yaw orientation came closer to the

target orientation, the drone would slow to a more appropriate angular velocity.
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Figure 11: Drone position absolute error [1] ©2020 IEEE

Figure 12: Drone position relative error [1] ©2020 IEEE
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For the altitude controller, a simple bang-bang optimal controller proved adequate for

thrust control. The system would be able to reach the targeted altitude within 1.5 seconds,

based on the ground speed of the platform, while maintaining smooth motion. Due to

the nature of UAVs’ need for constant thrust, this provided additionally beneficial during

hover/holding patterns, where supplying a constant set rate of thrust allowed for near-perfect

altitude hold.

3.4.4 Computer Vision Results

The color ratio segmentation algorithm is shown to perform robust satellite segmentation

as shown below in figure with the blue and green windows. Our CNN is trained for damage

detection. The CNN is trained on all the surfaces, but the more variety of surfaces, the more

complex the CNN becomes. This is less robust for a simple space module surface than sobel.

Figure 13 shows the output of the CNN on a sliding window damage detection where green

represents normal and red represents damage.

Figure 13: CNN sliding window output [1] ©2020 IEEE

Based on performance, the final system incorporated sobel filtering for damage detec-

tion. Given that our surfaces are rather smooth and have low inter class variance, the CNN

did not match the performance of the sobel filter. False negatives are crucial to avoid as

not detecting damage is system failure. Our final system incorporates a tunable sobel filter
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threshold which enables the false negatives to be minimized by increasing false positives.

This parameter is fine-tuned and found that the damage can be robustly isolated with very

low false negatives, and at the same time the false positives are very low. The overlaid final

damaged detection is also shown in window based damage detection in figure 14a, and edge

based highlighting in figure 14b.

Figure 14: Computer vision output of segmented satellites and damage highlighting [1]

©2020 IEEE

The final segmentation and damage detection algorithms are written in OpenCV, which

requires C++. However, the C++ code is wrapped into a C application, so that the com-

puter vision algorithms are self-contained in a standalone ICAROUS module. In addition the

concept of 3D modeling is demonstrated to supplement and improve perception of damage to

the space module. 3D visualization shows a human-navigable depth perspective for further

investigation. Given a space module with arbitrary lines (features that the sobel would pick

up but that don’t represent damage), the original surface can be modeled for comparison with

an after damage 3D reconstruction to detect discrepancies due to damage. Figure 15 shows

the before where the speckle paint is applied to the cylinder, and the after 3D reconstruction.
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Figure 15: Speckled painting and 3D reconstruction [1] ©2020 IEEE
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3.5 Discussion

The high-level system designed in this project was made to show the beneficial capabilities

of freeflying agents in orbit around the Earth. Using simple UAV platforms as freeflyer

substitutes, a software framework was designed to show the applications of computer vision

onboard these platforms, specifically for the purpose of in-situ inspections of objects of

interest. The demonstration that was held at the end of this project showed that such a

system is indeed possible, and a large portion of the enabling software technologies for this

have been created as a result. The implementation and experiments carried out have shown

that the existing ICAROUS framework allows for testing conducted using UAV platforms

to properly emulate those of actual satellites/systems in orbit, and the additional software

modules have added new capabilities to the system. The following is a discussion on the

outcomes, implementation results, and challenges for each major part of this project.

3.5.1 Individual UAV Control

The AR Drone was adequate for the requirements of this mission simulator. Although

the built-in control system was subpar, the development of the ICAROUS drone integration

module and custom control scheme allowed the UAV flight to be controlled with a high level

of precision. The PID system allowed the UAV to follow the directed velocity commands,

and maximized power efficiency by avoiding unnecessary acceleration and jerk. The original

design of the yaw controller tended to overdampen, causing the UAV to jerk back and forth

while focusing on the cylinder. This caused noise in the video data, which inhibited the

damage analysis. The double setpoint control scheme for the yaw allowed for smooth control

of the UAV’s angular velocity, and the small margin of error allowed the video to stabilize

sufficiently for video data analysis. The upgraded control system improved stability while

hovering. The simple bang-bang controller for movement in the Z-axis proved sufficient, as

the system would always have to provide a non-zero thrust to ensure stability. The adaptive

control technique allowed the UAV to reach the desired altitude quickly, while utilizing the

UAV’s current directional momentum and improving thrust. It was shown that this scaled
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approach to altitude hold allowed for the smoothest transition between altitudes, both during

UAV movement and during position hold.

3.5.2 Localization System

The indoor localization system was able to be successfully integrated with the ICAROUS

framework, allowing for pseudo-GPS data to be provided for any of the tracked objects within

the space’s vicinity. The GPS location of the system was dynamic, allowing for simulated

testing in numerous real world locations; this was important for ensuring that geofence and

airspace restrictions would be followed. The use of the indoor localization system also allowed

for a high degree of accuracy with respect to tracking the UAVs’ movement, and enabled the

coordination of multiple platforms to work in a highly confined space. The system designed

to provide localization data for over one hundred unique agents. Each agent’s position and

orientation data was provided at a rate of 200Hz, which allowed for the tracking of vehicle

acceleration and jerk at an interval measured in milliseconds. This is comparable to the

tracking necessary of any freeflyers in orbit, where the distance traveled in this short time

frame is significant.

3.5.3 Multi-Drone Implementation

The main challenges of using multiple drones related to determining how to split the

mission properly between available free-flyers and how to coordinate the motion planning

for all of the active platforms. This proved to be challenging as the available free-flyers were

treated as a dynamic resource: platforms could be added or removed from service at any

time. In order to ensure all mission waypoints and tasks were achieved, the Coordination

application tracked all assigned subtasks, and verified mission success with each agent at

every milestone. At the beginning of each time step, the group of platforms would be

checked to see if any platforms had been removed or added to the available group; if so, only

then would the Coordination module re-distribute the mission parameters.
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This method of UAV coordination and mission allocation proved successful in all testing

scenarios. In addition to tests with variable number of UAVs, some tests were run where plat-

forms were suddenly removed from the system (to simulate sudden damage). Each agent’s

data was marked with a timestamp including the platform’s spacecraft ID. This way, during

3D reconstruction, the CV module would be able to use each platform’s position/velocity

data to match up the relevant video data in relative space. One of the challenges of the joint

motion planning was preventing any well-clear violations (making sure the UAVs didn’t fly

too close to each other or the object). This was accomplished by having each platform broad-

cast its current and next waypoint goal throughout the mission; a UAV’s flight controller

would run a check to make sure there would be no intersection or adjacency of paths during

movement.

Another major challenge was verifying that each waypoint was visited the correct number

of times, by any of the platforms. To solve this, each platform kept track of the list of

waypoints all the other platforms visited, based on the previously mentioned broadcasts;

if there was a discrepancy, the affected waypoints would be visited again to verify data

redundancy.

3.5.4 Computer Vision System

The CNN-based algorithm was trained as demonstrated for damage detection. This is less

robust for a simple space module surface than sobel. However, if the damage is more diverse

in character, and the modules have a complicated surface with equipment and junctions,

a CNN can be trained if an existing dataset of labeled damage is given. The final system

incorporated sobel filtering for damage detection. The advantage of sobel is the tunable

filter is able to minimize false negatives.
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The advantage of 3D modeling in addition to 2D, is two fold. First, 3D modeling can be

used as a comparison of before and after assembly to detect damage. Secondly, when our

2D pipeline is in place, and is producing detections of damage in real time, the 3D modeling

can be used to visualize damage offline interactively. For example, if there is damage on

the rims, the 3D modeling can find this, where the edge detection based sobel would miss

this difference. Also, a CNN can miss damage when it is not given a specific set of training

images corresponding to a class of damage. 3D modeling places a human operator in the

loop, minimizing the likelihood of detection failure.

3.6 Chapter Conclusion

The work accomplished in this chapter shows the successful development and deploy-

ment of a robust fleet management system for multiple UAVs conducting joint missions. For

the scenario specific research, this work implements and demonstrates the feasibility of the

computer vision and navigation techniques necessary to perform inspection of a large space-

craft using the ICAROUS framework. UAVs were successfully used to simulate freeflying

spacecraft in this demonstration mission, and various damage patterns were detected on a

uniform metallic surface using a variety of computer vision techniques. Advanced network-

ing and multi-agent control techniques proved capable of supporting a dynamic number of

agents, allowing for efficient mission planning and completion based on a variable number of

resources.The results of this work suggest that UAV platforms can be used to successfully

simulate and develop control software for space-based robotics, and can support the needs

of multi-agent mission collaboration.
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4.0 Task 2: Optimal Control Techniques for UAV Swarms

©2020 IEEE [In Press]. Portions of this section have been reprinted with permission from S.
Mian and Z. Mao, Optimal Control Techniques for Heterogeneous UAV Swarms, DASC 2020.1

4.1 Task Overview

The goal of Task 2 in this dissertation is to develop a new control algorithm that allows

for heterogeneous platform support in multi-agent swarms. Specifically, this work focuses

on allowing fleet management systems, like the custom ICAROUS-based control system

developed in Task 1, to manage and control multiple different types of UAV platforms

for a variety of mission objectives. This poses new challenges to control architectures as

applying a uniform architecture to the swarm is no longer applicable. Each platform needs

to be quantified based on its unique characteristics, including payload capabilities, operating

requirements/restrictions, and other identifying factors.

Most research on these controls problems focus on homogenous systems, assuming group

performance may be extrapolated based on uniform platform characteristics and dynamics

(a single type of platform is used across the system). This is not the case for several missions,

such as Search & Rescue [107], Structural & Materials Analysis [108], and Space Exploration

[65]. A variety of platforms and sensor payloads are used in order to obtain mission success,

thus indicating a heterogeneous swarm as the optimal force. There is limited capability

to manage a large fleet of varied platforms using a robust control framework with current

market products.

1Sami Mian, John Hill IV, and Zhi-Hong Mao. Optimal control techniques for heterogeneous UAV
swarms. In 2020 IEEE/AIAA 39th Digital Avionics Systems Conference(DASC). IEEE, 2020 [In Press].
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This work applies an optimal control technique called Decentralized Receding Horizon

Control (D-RHC) in context of a search and rescue mission. Though the technique itself has

been previously implemented for swarm organization, this application poses novel challenges:

While victim discovery can succeed with any agent detection, hazard discovery is specialized,

therefore a heterogeneous swarm is ideal. We therefore introduce a novel technique: Het-

erogeneous Decentralized Receding Horizon Control (HD-RHC). This new control technique

takes into account an individual platform’s capabilities and limitations, usually derived from

sensor payload and power resources, and modifies the optimization functions used in D-RHC

to factor these aspects in the swarm motion and mission planning. In this work, we define the

requirements and restrictions for the control system, derive the mathematical models used

to create the control scheme, and implement the controller using the python controls library.

The HD-RHC controller is then integrated and tuned using the AirSim physics-based UAV

simulation environment.

4.2 Deriving the HD-RHC Controller

We are extending RHC control for high-level motion planning, dictating which missions

and locations each UAV platform is responsible for surveying. The swarm implements a

mesh-network [109], where UAV platforms rely on their neighbors to communicate with the

whole swarm.

A key contribution to this project is formulating objectives uniquely suited to specific

members of the swarm without introducing the need to implement a separate controller for

each different UAV. Specifically, every member of the swarm should be able to accomplish

some common tasks in the mission, while members with targeted configurations will only be

applicable to specific objectives. As an example implementation, we investigate a targeted

surveillance mission in which the swarm must observe a given search area, and the area has

specific regions of interest that require specialized sensory payloads to analyze. Figure 16

describes an example search area A with two classes of mission points.
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Figure 16: Search area A with mission cells of two classes depicted in red and blue [2] ©2020

IEEE

4.2.1 Problem Concept

Suppose an operational area in which a heterogeneous UAV swarm executes a mission.

This swarm is composed of UAV platforms, each with a payload (sensors, equipment, etc.)

that makes it suited to accomplish a specified sub-mission. Cells that contain sub-mission

objectives are called mission points. The swarm is provided with an a priori specification

of the operational area and tasked with providing surveillance of the entire area, including

specialized inspection of the mission points.

4.2.2 Parameter Definition

Payload Classes

The payload that each UAV carries provides that platform with unique capabilities and

properties which may not be shared amongst the rest of the swarm. The variance of these

payloads within the swarm is the basis of its heterogeneity. These payload classes are de-

scribed by the set:
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P : {p1, ..., pk} (4.1)

Note that each UAV will have exactly one payload; we consider combinations of payloads to

be a unique class in our problem, as it affects overall sub-mission acceptability and energy-

costs.

Mission Points

The operational area contains some finite number of mission points, however these areas

of interest are best assessed with specialized payloads. For our problem, we consider that

each mission point has a mission uniquely satisfied by exactly one class of payload.

As such we define the set of mission points:

G : {g1, ..., gm} (4.2)

Since the mission point is only applicable to a specific payload, we will use a superscript to

denote its applicability with respect to a payload class. Hence, the major mission can be

described as

x | gxj ∈ G→ px ∈ P (4.3)
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UAVs Individually

Each agent in the swarm has properties shared by the entire swarm. Particularly, we

assume that any region without a mission point is capable of being surveyed by any member

in the swarm. While this seems intuitive, it is important to recognize that payloads do

not make UAV platforms orthogonally unique to one another – otherwise the problem is

reducible to operating concurrent swarms.

Nonetheless, other non-mission properties are evident. These include pose (r) and veloc-

ity (ṙ) with respect to the origin of A and the energy-cost function (e) of UAV operations.

The action of a UAV, ui(t), is idealized to the transit activity moving from one place to

another. This includes the acceleration to achieve target flight velocity, deceleration to reach

the location of interest, and surveillance maneuvers needed to be effective with the payload.

The energy-cost function, therefore, is a function of both the activity and underlying prop-

erties of the payload (mass & its own energy needs during usage), hence its definition as

e(u(t); p).

An additional property is considered with UAV operation: reliability (ζ). This property

represents the overall health of the individual UAV platform. For our problem, it does not

matter if this property is formulated as a probability or a score. What we do consider, how-

ever, is that this property diminishes over the lifetime of operation. That is to say, reliability

has the following dynamics:

arg max
t

ζ(t) = 0 (4.4)

lim
t→∞

ζ(t) = 0 (4.5)

dζ

dt
< 0, 0 ≤ t <∞ (4.6)

66



With payload, we succinctly describe a UAV in swarm D as follows:

di ∈ D : {px ∈ P, ri, ṙi, e(u; p), ζ} (4.7)

Each platform has a membership function as a consequence of sub-mission applicability.

This function is idealized as:

m(gxk) =

1 px ∈ di

0 otherwise

(4.8)

This concept is crucial when our problem considers both high-level (mission) and low-level

(motion) planning objectives considering the payload-classes of members of the swarm.

4.2.3 Mission Planning Problem Formulation

The controller splits between high-level objective planning and low-level motion plan-

ning. High-level planning primarily focuses on the swarm satisfying the objectives stated

by the mission points. A bidding scheme executed in each planning epoch is defined by the

following function:

bi,j(di, gj) =

‖ri − g
x
j ‖ − ζ m(gxj ) > 0, gxj ∈ G∗

∞ otherwise

(4.9)
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Here, we define G∗ ⊆ G as the set of mission points that have not been visited by a

UAV with an appropriate payload requirement matching di’s payload. A mission point is

won by having the lowest bid. UAVs can only have a single mission point during a planning

epoch. So when a UAV is able to win multiple mission points, it will select the mission point

that generated the lowest bid (greedy approach). In the event of a tie, a random-draw is

negotiated by the UAVs. Bidding in this scheme is exercised at each planning epoch. This

helps ensure robustness in the event that when a platform fails, another appropriate one can

take its place.

In our experiments, we satisfy conditions (4.4), (4.5), and (4.6) for reliability by reducing

ζ for each action taken and when a UAV visits a payload-applicable mission point. The addi-

tional reduction characterizes the reduced reliability of the UAV itself because its specialized

payload was energized.

There may arise cases where a UAV simply does not win bidding on any mission point,

such as when there are more platforms available than mission points. In that event, the

motion planning function will drive the UAV to explore the operational area, maximizing

search coverage. Likewise, we expect cases where G∗ = ∅, meaning all mission points have

been visited. We define the time of this event Tg.

4.2.4 Motion Planning Problem Formulation

4.2.4.1 Search Coverage Cost Search coverage itself is a function of the swarm pro-

viding a “sweep” of the entire operational area. That is, we consider that UAVs may or may

not have observability into neighboring cells with their default sensor suite. We define vi(r)

as the region in the operational area which is being observed by UAV di. Therefore, the

total area searched over time by the swarm can be defined as

ai(t) =

∫ t

0

vi(r(t))dt (4.10)
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Therefore we can consider a search cost ca:

ca = −vi(ri(t);u(t)) (4.11)

Here, u(t) ∈ U represents an action in the action space of the UAV. In our example case, we

consider the function vi(r;u) as an update to a one-hot heat map describing the operational

area with newly observed cells incrementing by 1, and repeated observed cells having no

change. Therefore actions that lead to greater newly discovered cells have lower costs than

those which do not. One consequence of describing the covered search area is that we can

detect a time Ta such that the entire operational area A is covered. That is,

lim
t→Ta

N∑
i=1

ai(t) = A (4.12)

4.2.4.2 Mission Point Visualization Cost Considering mission point selection, we

consider the definition of error-distance to the mission point as the cost:

cg =

‖r − g̃‖ g̃ ∈ G∗

0 otherwise

(4.13)
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Two results can be observed with this formulation. First, as a UAV with appropriate

mission payload reaches the current mission point, its cost will increase so that it can move

onto the next unvisited mission point whose bid it won. The second is that the situation

when the cost reaches zero is only when there are no more appropriate mission points that the

UAV should visit. Note that we define time of mission complete Tg as the time when G∗ = ∅.

4.2.4.3 Energy Cost Overall energy costs are important for any UAV’s operation, They

are critical when considering reusability and the likelihood of mission success – no one wants

a UAV to fail before it completes its specified mission. Intuitively, a number of factors play

into this cost, specifically its payload and the amount of force required for it to transit from

one location to another. Here, we idealize the energy function of a given activity as e(u; p):

ce = e(u(t); p) (4.14)

4.2.5 Full Optimization Problem

We characterize the total cost to be optimized as the weighted-sum of the aforementioned

costs with weights wa, wg, and we respectively. Thus the swarm action process is defined as

the solution to this optimization problem:

min
u∈U

waca + wgcg + wece

s.t..‖ri − rj‖ > δmin, ∀di 6=j ∈ D

λi,j <∞, ∀di 6=j ∈ D

(4.15)

70



We consider two constraining factors for the swarm: safety to keep UAVs from inadver-

tently colliding with one another; and cohesion to keep the swarm from separating too far

so that mesh-network communication is impossible. These are competing constraints with

respect to distance.

4.2.5.1 Safety Constraint For our problem, we consider a safety-radius of δmin from

which each UAV must stand-off from one another. The constraint itself does not need to be

uniform. In later work, we consider such cases where directional active-sensors need to be

oriented away from each other to reduce interference during mission operations.

4.2.5.2 Cohesion Constraint Unlike safety, cohesion cannot be considered as keeping

within a maximum radius. Rather, consider that the swarm implements a mesh network

[109]. We, therefore, must redefine this property. A swarm is cohesive when the swarm has

an unbroken mesh network allowing any UAV to be in communications with any other UAV.

Figure 17 shows how reachability is defined, with this example: : ‖A − B‖ > δmax; B is

reachable because ‖A− C‖ < δmax and ‖C −B‖ < δmax and therefore λa,b is finite.

Figure 17: Node reachability example [2] ©2020 IEEE

As such, we consider the swarm itself as a weighted K-graph with weights, Li,j, between

the nodes as:
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Li,j =

‖ri − rj‖ ‖ri − rj‖ < δmax

∞ otherwise

(4.16)

Here, δmax represents the maximum range in which point-to-point communications is consid-

ered successful, beyond which, we consider the cost to be infinite. Following this, a number

of path search techniques can be employed to provide a minimal-cost path for a message from

any one UAV to reach with path-length λi,j. When there are no reachable paths between

UAVs di and dj, we define λi,j =∞, hence the constraint for the swarm:

λi,j <∞, ∀di 6=j ∈ D (4.17)

4.2.6 Cost Adaptation

As found in [41], this formulation allows for cost-adaptation, which is the tunability of

the controller given characteristics of the swarm itself. To achieve this, we search for tuning

that minimizes time to mission completion. Here, we define time to mission complete as:

T = max(Ta, Tg) (4.18)

Therefore, we tune the tuple (wa, wg, we) to minimize T .
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4.3 System Design

We provide a simulation setup to tune and evaluate the controller, demonstrating its

scalability. This system consists of a client-end model of each UAV of the swarm and the

mesh network model, which can connect to an optional server-end AirSim instance. A single

discrete controller was provided to all platforms of the swarm, demonstrating its extensibility

to a heterogeneous composition. This is made available to the public for inspection and

testing.

4.3.1 Discrete Controller Design

In general, the controller has three high-level functions, described in Algorithm 1. At

each planning epoch, each UAV accumulates the latest telemetry and bid information of the

swarm, assesses its bid for mission points, and determines its next action to take.

Algorithm 1 Discrete Controller Loop [2] ©2020 IEEE

Input: t;H : {(ri(t), ζi(t))}∀i = 0..N − 1

Output: u ∈ U

1: updateSwarmHistory(H)

2: g = selectMissionPoint()

3: u = computeMotionVector(g;H)

4: return u

Each UAV uses the telemetry and bid information to update its understanding of the

internal mission state. That is, it updates its understanding of search coverage and mission

point visitation in addition to the location of each UAV in the swarm to understand constraint

satisfaction.
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4.3.2 Mission Point Selection

Mission point selection is assigned based upon the bidding scheme discussed in the previ-

ous section. However, each UAV can assess and determine the entire swarm’s selection, given

the information passed at each step through the mesh network. This is done by constructing

a table of bids and allowing assignment to go in order of minimum bid.

Figure 18: Example of mission point assignments [2] ©2020 IEEE

Bid tables comprised of elements bi,j computed by Equation (4.9) is constructed for each

mission point class. Searching in order of minimum bid, rows and columns are eliminated

when an assignment is selected. By going in order of minimum bid, each UAV is able to

select mission points taking the greedy approach, and ties are resolved by simply looking up

the pre-generated random rolls each bid makes for itself.

Using the example described by Figure 18 above, Iteration 0 describes an initial com-

position of bids. UAV d3 has the minimum bid overall in the table, and is awarded g3.

Thus for Iteration 1, the row denoting d3 and column denoting g3 are eliminated, and the

loop continues. Here, both UAVs d1 and d4 provide the lowest winning bids for g2; in this

scenario, d1’s random-draw was a lesser value than that of d4, so it is awarded g2. Iteration

2 demonstrates that though d4 did not win the bid of g2, it instead wins g1. In Iteration

3, with all mission point columns eliminated, d2 is left without assignment and thus favors

search when evaluating action cost. Note that assignment also ends in the case where there

are no UAVs left in the table, yet mission points remain.
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4.3.3 Action Selection

With a mission point assignment, we can now consider potential actions. For a proof-of-

concept, we explore a discretized grid map and provide an action-space such that each UAV

selects which neighboring cell to visit (four cardinal directions and four diagonal directions).

To keep the computational load small for this study, the controller does not consider poten-

tial next-states of the swarm. This is done so that the action space is not size 8N where N

is the size of the swarm. Future work will consider reducing this space.

Algorithm 2 Motion Vector Selection [2] ©2020 IEEE

Input: g ∈ G∗;H : {(ri(t), ζi(t))}∀i = 0..N − 1

Output: u ∈ U

Initialisation : U∗ = ∅

1: for u ∈ U do

2: if ‖(ri(t) + u)− rj(t)‖ ≥ δmin and λi,j <∞ ∀j 6= i then

3: Add u to U∗

4: end if

5: end for

6: if U∗ 6= ∅ then

7: u∗ = arg minu∈U∗ waca + wgcg + wece

8: else

9: u∗ set to null-action

10: end if

11: return u∗

This example implementation first filters for actions that do not violate the optimization

constraints, then searches for the action with minimal cost. In the event that every action

violates the constraints, the UAV remains stationary (the ”null-action”) for its safety; this

is necessary for the case where the entire swarm begins from a common staging location.
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4.3.4 Controller Tuning

The weights wa, wg and we are calibrated to strike a balance between seeking to cover

the search area and favoring mission point visitation. To do so, we consider two different

techniques: Monte-Carlo (MC) and Simulated Annealing (SA) inspired by [40]. Both are

uninformed search techniques that are commonly applied to such problems. As such, several

trial iterations with different weight settings are analyzed to find the optimal combination,

which minimizes time to mission complete (see Equation (4.18)).

4.4 Experiments & Analysis

Here, we execute two experiments to evaluate the controller: Benchmarking Tuning

Effort, and Assessing Scalability of Tuning. In all cases, we are predominantly interested

in three aspects: 1) Mission point visitation, 2) Search Area Coverage, and 3) Efficiency of

Search Coverage. While the first two are parts of the controller’s cost function, the third is

interested in understanding how frequently cells in the space are revisited.

To tune, a search area of 64x64 is proposed with two different payload types. There are

four UAVs whose positions were chosen arbitrarily near the origin. There are 20 mission

points split evenly among the payload types. Our preliminary modeling was integrated with

AirSim for accuracy and visual analysis.

Through the remainder of the document, we will review both mission coverage results via

odometry and the efficiency of the swarm. Figure 3 provides an example: The coverage plots

(a) provide an assessment of mission point visitation and total search area coverage; mission

points (in black) which are not visited have no odometry paths joining them. Overall coverage

can be understood by observing the odometry data spanning the graph field. The heat map

(b) represents cells that have been repeatedly visited with hot/red, and cool/blue represents

rarely or unvisited cells. This offers an effective understanding of loitering behavior.
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Figure 19: Example mission coverage and efficiency plots regarding a failed configuration [2]

©2020 IEEE

4.4.1 Controller Tuning

Cost-adaptation is a key feature of D-RHC, and so it too is required of HD-RHC. There

are several ways this controller can be tuned. However, we chose to explore two uninformed

search techniques, Simulated Annealing (SA) and Monte-Carlo Method (MC).

In these setups, mission points are randomized between each simulation trial; UAV start-

ing locations were not due to simulator configuration requirements. In all cases, it is expected

that poor cost-weights may be analyzed, and so the simulations are capped with a maximum

step-count.

4.4.1.1 Simulated Annealing Simulated Annealing is a randomized search that at-

tempts to explore local neighborhoods searching for optimal solutions [110]. This tuning

method was chosen as it is a popular default heuristic search to locate local-optima and ex-

plore sub-optimal regions about it. It is, however, a non-deterministic search, so even when

optimal configurations are determined after the set, it is recommended that multiple setups

are executed and results compared with each other.
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Figure 20: Example results from SA Tuning [2] ©2020 IEEE

In our implementation, we restricted the search space to only the positive-domain as

negative weights would create a repulsion-effect in the controller (for example, if wg < 0,

then the UAV would favor going away from its assigned mission point). The search itself

began at (1.0, 1.0, 1.0), randomly searching the neighborhood with a maximum difference

magnitude of 1.0 from its currently selected “best” candidate configuration.

4.4.1.2 Monte-Carlo Method Monte-Carlo Method is another uninformed search tech-

nique in that the search randomly polls about a neighborhood given a probability distribu-

tion. Readers wishing to explore implementations can refer to [111] and [112]. This method

was also chosen because of its popularity and simplicity to implement. We restricted the

search space to weights 0 < w ≤ 1 with uniform distribution.

Figures 21, 22, and 23 show a selection of results from the trial runs, where we look

at the dynamics of each of the components of the cost function (by setting the other two

weights to 0). Figure 24 shows the results of one of the highest performing trials.
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Figure 21: MC trial with weights wa = 1, wg = 0, we = 0 [2] ©2020 IEEE

Figure 22: MC trial with weights wa = 0, wg = 1, we = 0 [2] ©2020 IEEE
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Figure 23: MC trial with weights wa = 0, wg = 0, we = 1 [2] ©2020 IEEE

Figure 24: MC trial with the best overall performance [2] ©2020 IEEE
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4.4.2 Scalability Experiments

We also analyze the applicability of tuning parameters to larger mission areas and

swarms. In tuning, the swarm itself was a four UAV configuration with only two payload

classes. Here, we extend to a larger area (100x100) with five payload classes and a swarm

size of 48 UAVs.

Figure 25: Normalized swarm initial locations with mission point distribution [2] ©2020

IEEE

There are two starting configurations for the swarm. The first is a pre-deployment

starting location: all of the swarm agents are starting off in a cluster at the edge of the

map, as if being deployed out into the environment for the first time (i.e. “first flight”

configuration). The other configuration has each of the swarm agents starting in randomized

locations spread out throughout the environment; this is to simulate a pre-deployed swarm

obtaining a new mission after operating for some time, or a pre-distributed swarm receiving

its first mission orders.
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Figure 26: Randomized swarm initial locations with mission point distribution [2] ©2020

IEEE

4.5 Discussion

After several iterations of tuning and experimentation with the HD-RHC controller, we

were able to discover the impact of each of the weights on the controller, and better categorize

how to configure the HD-RHC controller for different mission approaches. The system allows

for a variable number of heterogeneous agent types to be considered and can optimize for

different mission costs (efficiency, coverage, mission-completion speed). The integration of

this controller with AirSim allowed training and evaluation of the system using high-fidelity

UAV odometry. This provided a realistic understanding of the dynamics present within these

autonomous systems.
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4.5.1 Mission Completion Analysis

Equation (4.15) describes a cost function balancing three different trade-offs. Under-

standing the dynamics between each is crucial to understanding phenomena whilst tuning

the controller. For example, in Figure 20, odometry (a) shows mission point visitation,

but demonstrates a missed region of coverage; the heat map (b) demonstrates contention

in favoring which direction to expand search coverage as highlighted by the hot/red rows

& columns. Intuitively, costs focusing exclusively one one of the three demonstrate mission

focus in that area exclusively: non-zero weight for wa maximizes area coverage; non-zero

weight for wg maximizes mission point visitation; non-zero weight for we favors momentum

preservation.

Figure 27: Odometries caused by slight perturbation of wa [2] ©2020 IEEE

Here, we noticed certain effects: particularly when wa ≥ 0.1, we begin to observe mission

points never being explored. Further analysis of the odometry noted that the controller would

oscillate between favoring a mission point visitation or favoring search coverage exploration

near wa ∼ 0.1. An interesting revelation is how sensitive the controller was to changes

for each of the weights; changing one weight would cause unexpected interference with the

other respective weight parameters. As seen in Figure 27, by adding a minor weight to

search area coverage cost, the swarm begins to miss mission points entirely and struggles
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by alternating its focus between mission point visitation and coverage, essentially leading

to a standstill. From this, we conclude that naive uninformed searches cannot produce

optimal tuning without exhaustive highly-resolute searches. Better calibrations are possible

when the weights are first set to cost-normalized values. As a result, when mission costs

are changed, these parameters are not easily transferable. Nonetheless, when a new cost

function is considered holistically, a set of initial weights can be derived.

4.5.2 Tuning Scalability

Determining optimal weights with a smaller swarm & mission-scope, then applying them

to a larger swarm hasn’t been thoroughly analyzed. So after deriving an optimal tuning,

we applied it to the large swarm configurations mentioned in the Scalability Experiments

section. Below are the results of these trials.

Figure 28: Coverage with normalized start location [2] ©2020 IEEE
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Figure 29: Swarm efficiency with normalized start location [2] ©2020 IEEE

In both cases, the swarm was able to achieve full search coverage and mission point

visitation in roughly equal runtimes (2934 and 3288 time steps, respectively) with the same

parameters used in the four UAV / two payload classes normalized configuration. This

effectively demonstrates that tuning in simulation need not match the deployed UAV size

nor capability. Rather, tuning only needs to focus on striking a balance between objective

costs. Therefore, it is possible to increase training efficiency by using only a handful of

models instead of a comprehensive modeling of the target swarm.
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Figure 30: Coverage with randomized start location [2] ©2020 IEEE

4.6 Chapter Conclusion

For this portion of the dissertation work, we were able to build on existing work using

receding horizon control to manage multiple UAV agents, by introducing a new type of

controller: Heterogeneous Decentralized Receding Horizon Control (HD-RHC). With HD-

RHC, we are now able to provide scheduling and planning for a heterogeneous UAV swarm in

both a known and unknown environment. Each platform can be assigned a unique payload,

which correlates to specific mission capabilities (sensing, actuation, etc.). Scheduling and

planning work the same as a standard RHC system, but now include a scalable number

of unique platforms and mission capabilities. This controller also considers communication

constraints, currently designed for use with a mesh network of variable strength. This system
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Figure 31: Swarm efficiency with randomized start location [2] ©2020 IEEE

is able to be trained both headless, using basic graph representation for the search space and

UAV positions, as well as with the AirSim high-fidelity simulation environment. Through

initial tuning and testing, a small range of weights has been selected that allow for fast

mission complete time and full search coverage of unknown areas. The sensitivity of the

controller to the weights allows for a high level of mission adaptability; with proper tuning,

the HD-RHC controller can be used for a number of different mission outcomes, such as

large-scale area exploration (search and rescue), as well as mission-focused deployments (i.e.

package delivery).
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5.0 Task 3: Novel Sensor Fusion Techniques for UAV Perception

©2020 IEEE [In Press]. Portions of this section have been reprinted with permission from S.
Mian and A. George, Neuro-inspired Approach to Intelligent Collision Avoidance and Navigation,
DASC 2020 1

5.1 Task Overview

The final task in this dissertation is focused on platform-specific solutions for motion

planning and navigation, using new and existing sensor techniques. Although the fleet man-

agement system and HD-RHC controller are able to direct UAV platforms to specific goals,

each of the UAVs still needs to be able to reach that mission objective, by navigating through

the surrounding environment. Currently, there are a multitude of techniques used for motion

planning and obstacle avoidance that are used onboard modern UAVs. However, one of the

overarching goals of this research is to make sure the fleet management system is able to

work with novel, cutting edge sensors and payload systems. So for this work, we decided to

turn to a dynamic vision sensor, also known as an event camera or neuromorphic camera.

A majority of the novel research here focused on integrating the event camera into a UAV’s

flight control system, specifically for obstacle avoidance. Reinforcement learning Is used to

train the flight controller for perception inputs, using the event cameras; this was imple-

mented and tuned using a UAV simulation environment. This method was then integrated

into the fleet management system and compared with other approaches using event cameras.

1Nikolaus Salvatore, Sami Mian, Collin Abidi, and Alan George. A neuro-inspired approach to intelligent
collision avoidance and navigation. In 2020 IEEE/AIAA 39th Digital Avionics Systems Conference (DASC).
IEEE, 2020 [In Press].
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5.2 Task-Specific Background

Unmanned Aerial Vehicles (UAVs) are ideal remote-sensing platforms due to their ability

to maneuver quickly at high speeds in terrains which may be difficult for humans to access.

With a wide variety of sensor payloads available, UAVs are able to operate in diverse envi-

ronments while performing complex sensor tasks. For autonomous vehicles to safely operate

in shared airspace, their collision avoidance system should have the ability to react as quickly

as possible to avoid objects on an intersecting trajectory. Designing a control system that

achieves this goal involves coupling sensors with a control architecture that minimizes pro-

cessing overhead and response time. A common choice of sensor is the image-based camera,

which has seen widespread use in robot perception tasks. One of the major limitations,

however, for object avoidance using image-based data is the sampling rate of conventional

cameras and laser-based systems. In high-speed autonomous navigation situations, low la-

tency is key to successfully performing avoidance maneuvers. In general, the faster that a

UAV moves, the more detrimental the sensing latency [82].

As sensor latency is a restricting factor for UAV agility, choosing a sensor that balances

low latency with sufficient visual information should lead to improved actuation ability.

Among novel sensors proposed, the Dynamic Vision Sensor (DVS) [113] is an emerging type

of event-based camera that registers changes in luminosity to construct a power-efficient

visual representation of the environment. The DVS has high dynamic range, low latency,

and low computational overhead, making it an interesting on-board sensor candidate for

autonomous systems that require low latency.
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Finding a good control policy is important for ensuring that a UAV not only performs

actions quickly, but also appropriately. Recently, a large body of research using deep learning

(DL) for robotic perception tasks has emerged for these specific applications. More specifi-

cally, reinforcement learning (RL) methods have consistently demonstrated promise in their

ability to train an agent to make good decisions when facing problems with difficult formu-

lations for standard deep learning techniques. Reinforcement learning algorithms typically

find a good control policy by training an agent iteratively within a simulated environment

for many thousands, or even millions, of trials. The Deep Q-Learning method combines ad-

vances in deep and reinforcement learning techniques to allow an agent, guided by the Deep

Q-Network (DQN), to select actions in a way that maximizes cumulative future reward [91].

5.3 Methodology

For our training procedure, we opted to create a series of lanes in Unreal Engine 4 that

feature elementary object shapes as obstacles with which to train our DQN architecture for

collision avoidance. Training trials were performed by repeatedly commanding the simulated

drone to fly down each obstacle course lane and allowing the DQN architecture to issue col-

lision avoidance commands as needed. Successive frames were pulled from the simulated

drone’s on-board camera and passed through an event-based vision simulator in order to

mimic the behavior of event-based sensors. After training the conventional DQN architec-

ture, observations were pulled from successful trials and used to train an equivalent spiking

architecture. Both trained networks were then evaluated on additional, distinct obstacle

course lanes created for the purposes of testing.
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5.3.1 Event Simulation

To assess the benefits of using dynamic vision sensing for collision avoidance within the

AirSim environment, it is necessary to emulate the behavior of the sensor using the RGB

luminance values of frames provided by the simulated drone. In this work, we use an em-

ulation method adapted from [77] in which the brightness change, in terms of logarithmic

luminance calculated at each pixel, is accumulated overtime and compared to a crossing

threshold chosen at runtime as shown in Equations 1 and 2.

L(u, t) = log(0.299IR(u, t) + 0.587IG(u, t) + 0.114IB(u, t)) (5.1)

p(u, t) =

+1, ifL(u, t)− L(u, t− 1) > ∆L

−1, ifL(u, t)− L(u, t− 1) < −∆L

(5.2)

In Equation 1, L(u, t) indicates the log luminance of the given pixel at pixel position u = [x, y]

at time t, while I(u, t) represents the luminance magnitude with subscript indicating the

color channel of the corresponding values. Equation 2 shows the generation of simulated

DVS events with polarity p(u, t) based on the comparison of the log luminance difference be-

tween frames with the chosen crossing ∆L threshold. In order to mimic the spiking behavior

of a DVS, the number of events generated at a given pixel is determined via linear interpola-

tion of the log luminance values observed between subsequent frames as shown in Equation 3

Ns(u, t) = min(Nb,
∆B

∆L
(u, t)) (5.3)

where Ns indicates the number of events generated at pixel u, Nb is a maximum constraint

placed on the number of events that may be generated, and ∆B is the total log luminance

91



change occurring at pixel u and at time t. In order to accomplish real-time event simulation

for DQN training, these operations were performed in parallel using OpenCV’s built-in GPU

acceleration to produce both matrices containing numbers of events generated at each pixel

Ns(u, t) and a gray-scale, integrated frame with values shown in Equation 4.

I(u, t) =


255, p(u, t) = +1

125, p(u, t) = −1

0, p(u, t) = 0

(5.4)

In order to train the spiking neural network architecture with realistic DVS data, the num-

ber of events Ns(u, t) is used to generate a one-dimensional stream of events with the native

DVS form (x, y, t, p), where (x, y) indicates the x and y coordinates of the pixel, t is the

timestamp of the generated event, and p is the polarity of the event as calculated above.

The timestamp of each event generated at the same pixel is incremented by a value relative

to the time interval between received conventional frames as shown in Equation 5

t = to +
∆T

Ns(u)
(5.5)

where to is the timestamp of the first event generated at the current time-step and ∆T

is the time interval between frames in microseconds. In order to properly imitate a DVS,

it is also necessary to sort these simulated events into temporal order according to their

associated timestamps. Figure 2 shows a sample image taken from within the AirSim en-

vironment, while Figure 3 displays the corresponding integrated frame output yielded from

event-based vision simulation.
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Figure 32: Drone view of UE4 environment [3] ©2020 IEEE

Figure 33: Integrated frame of event simulation output [3] ©2020 IEEE
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5.3.2 Deep Q Network Training

In order to reduce the expected training time, we opted to use a shallow architecture for

the Deep Q network, consisting of only two convolutional layers for feature extraction and

two fully connected layers for action value determination. Similar to other previous works,

the input to this network is a stack of three consecutive frames taken at regular intervals

during flight time. The output of the network indicates the expected value of each of the

possible avoidance maneuvers available to the agent as detailed in Table 1. Although the

network is given five total maneuvers to choose from, the exact nature of these avoidance

maneuvers is arbitrary and dictated by the options available within the AirSim API. The

overall DQN architecture is shown in Figure 34.

Figure 34: DQN architecture [3] ©2020 IEEE
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Table 1: Network Output Actions [3] ©2020 IEEE

ActionNumber AvoidanceManeuver

0 ”Avoid Left”

1 ”Avoid Right”

2 ”Avoid Up”

3 ”Avoid Down”

4 ”Maintain Course”

The reward function used to assign values to the drone actions and states was chosen in

order to reward clear progress down the current lane as well as penalize both collisions and

repetitive, unnecessary collision avoidance maneuvers. In our scheme, the current state of

the drone considers both the current, visual observation of the sensors and the y position

and collision state as relayed by the AirSim environment. Given the arrangement of the

training lanes used, movement in the positive y direction corresponds to successful progress

in a lane. The reward function is therefore defined as follows

R(s, a) = γP∆y − γCC − γaa

γaa = 0, ifa = 4
(5.6)

where γP , γC , γa are the reward values assigned to progress, collisions, and actions respec-

tively, ∆y is the distance traveled down the current lane, C is the number of collisions

currently registered, and a is the index of the last action taken. As indicated, the reward is

not penalized when the agent chooses not to make a collision avoidance maneuver.
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In order to train the network, state, action, reward, and state transitions are stored in

an experience replay buffer, which is randomly sampled and batched to calculate network

weight updates at regular intervals. For network training, we used a Double Q learning

approach [114] in which two, identical networks are used to estimate the current Q value and

target Q value separately. Every n steps of the simulation, weights of the DQN network are

updated according to

∆w = α[R + γmaxaQ̂(s′, a, wt)− Q̂(s′, a, w)]∇Q̂(s′, a, w) (5.7)

where Q̂(s′, a, w) represents the value prediction of the DQN network, maxaQ̂(s′, a, wt)

represents the discounted maximum value predicted by the target network, and α is the

learning rate. After training on each batch is completed, the weights of the target network

are updated with a chosen τ .

wt = τw + (1− τ)wt (5.8)

As with most reinforcement learning schemes, a decaying exploration value, ε, was used to

indicate the probability of the agent taking a random action during the training procedure,

regardless of the DQN’s output.

5.3.3 SNN Conversion and Evaluation

Although several methods exist for performing reinforcement learning natively with spik-

ing neural networks, we focused on using more mature training methods in tandem with the

conventional reinforcement learning network in order to encourage faster convergence of the

SNN. In order to create and train the spiking architecture, we made use of the NengoDL

framework’s converter functionality, allowing us to create a spiking model equivalent to
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the conventional DQN previously trained. This spiking DQN was then trained in a semi-

supervised fashion, using a labelled dataset collected using the experiences of the trained,

conventional DQN. This dataset was formed by taking the stacked input frames represent-

ing the state of the agent at regular intervals in each lane and labelling it with the action

index chosen by the conventional DQN. To avoid training the SNN with erroneous inputs,

observation and action pairs were only recorded from trials in which the conventional DQN

successfully traveled the entire length of the lane. After training the SNN in the NengoDL

framework with this labelled dataset, the SNN performance was then evaluated using inte-

grated frames with predetermined presentation times on the additional testing course lanes.

Additional parameters of synaptic scaling and smoothing were also included as necessary

with the spiking function of the network, although no extensive parameter optimization of

these values was explored.

5.4 Experiments

As mentioned previously, network training was conducted on a series of five obstacle

course lanes built in Unreal Engine 4 with a series of elementary shaped obstacles as pictured

in Figures 35 and 36. For each trial, the simulated UAV was commanded to progress down a

given lane with the trial terminating after reaching the endpoint, i.e. 150m in the y direction,

or registering at least two collisions with an object in the environment. At the beginning of

a predefined command window, the last three event-based frames from the simulation were

stacked and passed to the DQN as input, after which the network’s action and subsequent

reward were then stored in the experience replay buffer.
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Figure 35: Training environment: front view [3] ©2020 IEEE
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Figure 36: Training environment: top view [3] ©2020 IEEE
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After a certain number of experiences, i.e. state, reward, action, and transition pairs, are

collected, the AirSim simulation is paused and the weights of the DQN networks are then

updated as stated previously. Once sufficient training was performed with the conventional

DQN, a series of trials were performed on the training lanes where all observations occurring

within successful lane trials were recorded and used to create the labelled dataset for SNN

training. Finally, the performance of both the conventional and spiking network architec-

tures were then evaluated using the distinct testing lanes pictured in Figures 37 and 38.

Figure 37: Testing environment: front view [3] ©2020 IEEE
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Figure 38: Testing environment: top view [3] ©2020 IEEE

5.5 Results

50,000 training trials were performed for conventional DQN agent, evenly distributed

amongst the five lanes. Each trial consisted of the drone travelling down a given course lane

with the global Cartesian coordinates, lane number, and trial number being recorded at the

trial’s conclusion. Training trials terminate when either the drone reaches the end of the

lane (y ≥ 145 meters) or collides with an object more than once, which is recorded as either

a success or failure respectively. A log-luminance threshold of ∆L = 0.25 was used in the

event-based simulation of the drone’s observations. The results in Figure 39 show the rate of

success over time, whereas Figure 40 shows a spatial visualization of successes and failures
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over the training period. While Figure 39 highlights the general trends in collision avoidance

performance over time, Figure 40 serves to pinpoint which obstacles are most difficult for the

drone to avoid as well as show the successful distance travelled for trials marked as failures.

Table 2 lists the statistical metrics calculated to analyze the correlation between success rate

and training iterations during the training process.

Figure 39: Success rate vs. training iterations for training lanes [3] ©2020 IEEE

After validating the training data and weights, a set of testing trials was conducted using

the testing environment pictured in Figures 37 and 38. For these trials, the operating pa-

rameters were the same as those used for training (namely, using a DVS simulation threshold

of 0.25) as well as the data collection process. The success rate results are shown in Figure

41 as well as the corresponding correlation analysis in Table 3.

In order to compare the results of this training with a random baseline, a separate set of

trial runs were performed where the UAV was directed to take a random action during each

timestep. Additionally, the spiking architecture, trained using labelled data derived from the

most trained, conventional DQN, was evaluated on the same testing lanes as the conventional
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Figure 40: X/Y coordinates for trial termination [3] ©2020 IEEE

Table 2: Statistical Analysis of Distance and Iterations in Training Environment [3] ©2020

IEEE

Lane d.o.f. p− value corr.coeff. t− value

0 456 0.5175 0.278 -0.648

1 2749 2.2e-16 0.590 38.344

2 2233 2.2e-16 0.451 23.879

3 1901 2.2e-16 0.517 26.296

4 4318 2.2e-16 0.286 19.602

and random agents. Figure 42 shows the success rates of the random agent, spiking agent,

and most trained conventional agent trials using the same testing environment. The spiking
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Figure 41: Success rate vs. training iterations for testing lanes [3] ©2020 IEEE

Table 3: Statistical Analysis of Distance and Amount of Training in Testing Environment

[3] ©2020 IEEE

Lane d.o.f. p− value corr.coeff. t− value

0 230 1.734e-05 0.278 4.389

1 250 0.075 -0.1122 -1.786

2 193 0.164 0.100 1.397

agent was trained for 500 epochs on batches of observations collected from 50 successful

trials in each training lane, resulting in a action selection accuracy of 91.35% in relation to

the conventional agent’s actions.
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Figure 42: SNN vs. random agent vs. training [3] ©2020 IEEE

5.6 Discussion

Due to the overhead of the Unreal Engine 4 and AirSim simulation, the time required

to perform a single training iteration for the agent in this work is far greater than that of

previous works in far simpler environments. As a result, the number of training iterations

performed in this work is far fewer than in similar reinforcement learning tasks, and the

outcome can be clearly seen in the mediocre results of the testing course success rates.

However, the success rate of the agent in each training lane over time shows a statistically

significant, positive correlation with increasing training iterations, indicating that the agent

is learning to avoid obstacles despite the limited training data available. The one exception

to this improvement was training course lane 0, which featured obstacles with large, flat

surfaces that the agent found difficult to avoid. One issue that the lack of training diversity

introduces is the difficulty of generalizing the agent to new obstacle environments, as can be

seen with the testing lane results. While the trained agent does show superior performance
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as compared to the agent choosing random actions, there is a weak correlation between

training iterations and test lane success rate, indicating that the agent requires more varied

training data to be able to generalize it’s decisions to new environments.

Another potential issue that the agent faced over the course of training is the inherent

nature of the DVS simulation output. While the edges of obstacles were clearly visible

throughout training, the smooth surfaces of some obstacles and the walls of each course lane

had limited or overly high activity depending on the contrast threshold chosen for event-

based simulation. These issues also made it more difficult for the agent to learn avoidance

maneuvers when confronted with large, flat surfaces, such as in segments of training lane 0.

The agent’s difficulty in avoiding these obstacles can be seen in the spatial visualization of

40, where the majority of collisions are registered on these flat surfaces. Using elementary

obstacles within simulation also posed an issue as the surfaces of these objects lack the

complexity of real-world objects and therefore appear differently to the DVS simulation than

might be ordinarily expected. Later versions of our training and testing course lanes used

various in-engine textures in order to make the obstacles more visible to the simulated sensor

with larger contrast thresholds. However, it is as of yet unclear how the DVS simulation

parameters might extrapolate to a real-world setting and a hardware DVS may have a much

easier time of differentiating object edges and surfaces.

In regards to the spiking architecture, testing results showed that the SNN had variable

performance as compared to the regular, non-spiking architecture. Across testing trials, the

SNN exhibited superior success rates in testing lanes 1 and 2, but a slightly lower success rate

in lane 0. Interestingly, lane 0 is also the only testing lane that showed positive correlation

between training iterations and success rate, indicating that the additional training time

would most likely have resulted in greater success rates for the conventional approach. It is

also important to recall that the SNN agent is trained using labelled observations collected

during successful conventional agent runs, resulting in the spiking agent relying on far fewer

observations of the lanes than the conventional equivalent. Furthermore, the entire training

process of the SNN agent resulted in an accuracy of approximately 91% in relation to the

labelled observations of the conventional DQN, causing the SNN to choose different actions

despite some observations being nearly identical to those encountered by the conventional
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architecture. Nonetheless, the superior success rates in the other testing lanes suggest that

the SNN agent may actually benefit from only training on a subset of the conventional agent’s

observations. Overall, the SNN testing results suggest that the training scheme used in this

work can be used to train an equivalent spiking agent from a conventional one, although the

true benefits of using a spiking architecture may only be seen when integrating the system

with a hardware DVS.

5.7 Additional Training Approaches with Reinforcement Learning

After this first round of training and testing, it has been shown that reinforcement

learning is a viable solution for developing a sense and avoid system for UAV flight control.

The next steps in this research is to determine the optimal way to train these policies, both

in terms of speed and efficiency. In order to do this, we device a new training environment

focusing on one specific type of obstacle, a cone, shown in Figure 43. Several training lanes

are created using this obstacle, including an ”easy” course and a more difficult course; an

example is shown in Figure 44.

Figure 43: Cone obstacle

In order to evaluate how well the training setup is working, we decide to plot the cu-

mulative rewards over the course of training iterations. For this experiment, two versions of

the reinforcement learning training pipeline are used. The first is the same pipeline used in
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Figure 44: New training courses

previous experiments, where the drone is fed a steady stream of velocity commands. The

second is a modified pipeline where the drone is sent position commands instead, and the

AirSim built-in planner is used to fly the drones to the relevant positions. The initial results

of these experiments are shown in Figures 45 and 52. The bounds of the cumulative rewards

are from -2000 to 1000.

As we see from these results, the RL controller is slowly learning how to navigate the

obstacle courses using the event camera data. In both of these experiments, the training

loops manage to reach a cumulative reward greater than 0 in approximately 5000 trials; this

shows that the drone is successfully navigating to the last portion of the testing lanes, but

not successfully completing the trials. Analysis of individual results show this is due to two

reasons: unreasonably high penalties for non-ideal actions, and sparsity of data for the RL

system to use. Both of these problems are fixed in the next iteration of training.
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Figure 45: Velocity-based pipeline results [3] ©2020 IEEE

Figure 46: Position-based pipeline results [3] ©2020 IEEE

109



5.8 Chapter Conclusion

In summary, this work has introduced a reinforcement learning scheme that has the

potential to train both conventional and spiking DQN agents to perform collision avoidance

maneuvers using event-based vision sensors. Despite the rather small number of training set

iterations performed, the conventional agent showed significant improvement in avoidance as

compared to the baseline, with these benefits being successfully transferred to an equivalent

spiking architecture. The AirSim simulation environment proves essential for allowing the

creation of custom training environments and the large number of iterations needed to train a

reinforcement learning agent. In the future, far more varied lanes and additional training time

will be required to generalize the collision avoidance scheme to more complex environments.

Furthermore, more exhaustive analysis of real-world event-based sensors will be necessary to

establish the performance gains versus conventional sensors and the benefits of integration

with spiking neural net architectures. At higher level, this portion of the dissertation research

has shown that it is feasible to integrate new, cutting edge sensor packages on-board UAVs

and can integrate their use with the fleet management program designed. The use of new

sensors like this can take control of point-to=point motion navigation for UAVs during

mission procedures, meaning this work no longer has to be directly overseen by a fleet

management system.
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6.0 Contributions Overview and Future Work

Over the course of this dissertation, work has been conducted on along many different

aspects of multi-agent drone systems, from high-level management approaches to low-level

sensor techniques. The overarching goal of this research is to develop and validate a scalable,

modular system that will allow for the command and control of multiple UAV systems for

any mission requirements. In order to ac hive this, comprehensive work has been done at

each level of control. At the onset, the research focused on developing a fleet management

system that would be able to control and direct any number of robots for a specific purpose.

This was built on top of existing, proved software, in order for it to be readily deploy-able

and meet all operating requirements by various sources (ISO, ANSI, SAEI, etc.). The second

stage of work was to work on platform-specific motion planning, to determine what is the

best way to coordinate these groups of robots at the platform level. This work focused

on adapting and creating new control techniques that would take into consideration the

mission and platform aspects while planning. These novel control techniques serve as the

mission planning ”brains” of the fleet management system. The third section of work in

this dissertation was focused on novel sensor technologies. The goal of this work was to

focus on how to integrate new types of sensors and payloads into a multi-agent swarm. The

main focus of this section is for platform-specific processing and management; how does each

platform accomplish the goals given to it by the fleet management system. Specifically, I

chose to work on obstacle avoidance for motion planning, as this is the main issue the robots

face with following orders given by the motion planner. This was also a change to work

with brand new, minimally-studied technologies, and be one of the first research projects to

integrate them onto UAV systems.
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6.1 High-level Fleet Management

The goal of the fleet management system implemented in this research was twofold: create

a system that can interface with and control any number of robotic systems for joint mission

completion, and built it on top of a pre-existing system that has already been validated

and approved for deployment. This was accomplished by utilizing two open source software

architectures currently available: Robot Operating System (ROS) and NASA’s Core Flight

System. Using these two systems, a set of modules was developed that would allow for the

core flight system to interface with a large number of remote platforms, all connected over

a distributed network. In order to develop and prove that this system works, we devised a

test scenario: have a number of UAVs cooperatively scan an object for visible damage. This

scenario was perfect because it required several important operational constraints: manage

multiple UAVs flying in close proximity, manage and modify the flight plans of these UAVs

based on mission factors, manage multiple high-bandwidth payloads and run analysis on

the incoming data, and operate using a robust and safety-critical system. The system was

first prototyped and tested using ROS, and was later deployed on top of NASA’s ICAROUS

suite, due to its specification for UAV systems. This system was then successfully tested

for the scenario mentioned above. After these tests were completed, the system was then

modified to work with the simulator of choice for this research project, AirSim.

6.2 Platform-specific Motion Planning

The next step in this research was to create a new process that would be able to direct

and manage the actions of the numerous robots connected to the fleet management system.

The best way to do that was to create a new control policy specifically designed for this

application. As stated before, the parameters for the policy were that it needs to support

multiple agents, it must be able to handle heterogeneous systems (many diverse platforms and

payloads), and it needs to work for both centralized and decentralized systems, for a variety

of mission types. In order to accomplish this, the new control policy was based on Receding
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Horizon Control (RHC), a mixture between optimal and adaptive control techniques that

allows for near-optimal performance with minimal tuning. The RHC control policy was first

setup conceptually, using the base case scenario of a search and rescue mission with both

known and unknown points of interest (mission points), The controller was designed and

integrated with both the AirSim simulator and a graph-based training environment. The

system was then tuned over the course of 10,000 trials, in order to find the optimal weights.

Once it was verified that this new policy worked as intended, a cFS module was created for

the RHC controller, so it can interface with the fleet management system with ease.

6.3 Exploration into Novel Sensor Technologies

The last portion of this research was focused on platform-specific solutions for motion

planning and navigation, using new and existing sensor techniques. Now that the fleet

management system is able to interface with multiple robots and send them intelligent actions

to accomplish a mission, the individual platforms need to be able to carry out those orders.

For this research, the focus is to make sure the UAVs can successfully navigate to their

desired location while avoiding any unforeseen obstacles. This research ended up revolving

around the dynamic vision sensor (DVS), also known as a neuromorphic or event camera.

This is because very little work has been done regarding DVS systems and UAVs, except

for the last six months. Event cameras are an ideal sensor for UAVs, as they work best on

moving platforms and are able to capture data at faster rates than traditional sensors. For

this research, we focused on training a UAV flight controller to use event camera input for

perception and action loops in a diverse environment. The 2D image output from the event

cameras were fed directly into a reinforcement learning algorithm, with the output being a

set of actions for a UAV. Through 400,000 iterations of training in several environments, a

model policy was created that would allow a UAV platform to successfully navigate a variety

of obstacles in its way, with minimal deviations to its existing trajectory.
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This research was then extended by developing a way to train and control the flight

controllers using the raw bytestream output of the vent cameras. The results for this training

showed that using the raw bytestream and a non-linear representation actually allows for

the development of a more robust policy in a faster amount of time.

6.4 Novel Contributions

This dissertation research has produced a number of novel contributions, that have been

published and shared with the research community through several conference and journal

papers. Here is a list of the contributions broken up by each task.

Task 1:

• Develop a localization system plugin for the cFS architecture

• Add multi-agent support to the NASA ICAROUS system

• Add machine learning (CNNs) support to the NASA cFS architecture

• Integrate ICAROUS into the AirSim simulation framework, for rapid training/tuning

Task 2:

• Develop a new version of Receding Horizon Control that support heterogeneous systems

• Integrate this new controller with the AirSim simulator to allow for rapid tuning

• Develop a new formalization for denoting non-uniform payload capabilities for platforms

• Integrate health metrics, energy constraints, and communication limitations into the

RHC controller

Task 3:

• Develop a reinforcement learning pipeline using AirSim and various cloud architectures

• Integrate an event camera into the Unreal Engine environment

• Develop the first use of event camera data in reinforcement learning

• Develop a novel non-linear representation for event camera bytestream data

• Train reinforcement learning systems using raw bytestream data
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6.5 Future Work

6.5.1 Fleet Management Work

For future work the new ICAROUS modules can be improved to allow for more complex

methods of mission allocation and coordination. The multi-agent approach can be improved

upon, adding in support for heterogeneous collection of UAVs. For communications, some

time was dedicated to exploring the use of distributed communication systems, specifically

the Data Distribution Service (DDS). The incorporation of DDS into a multi-agent system

would allow for more advanced network and data sharing techniques, which would prove

impactful when coordinating among large numbers of systems. The next step for the com-

puter vision work would be to implement 3D reconstruction capability in real time, as the

free-flyer platforms scan its surface. Another avenue is the use of unsupervised machine

learning techniques for feature detection.

6.5.2 RHC Controls Work

Though the controller has demonstrated effectiveness for heterogeneous swarms, we un-

derstand that this proof of concept is limited. To explore the true dynamics of this controller,

we intend to introduce higher fidelity simulation models. This includes modeling varying

payload energy and operational costs: various sensors require different lengths of time to

properly measure certain phenomena (e.g., gas leak detection). This in turn would require

changes to the controller’s cost function to account for non-uniform visitation time costs.

Another avenue of future work is to implement and test the HD-RHC controller with

several other simulation platforms. Of interest are the NASA ICAROUS system, due to

its support for low-powered systems and formally verified architecture, and the new AWS

RoboMaker simulation environment, which would provide extended support for tuning huge-

number systems using cloud services [115]. Additional areas we wish to explore are extending

beyond the one-hot membership function. There are two additional combinations of payload

classes to consider: payloads which have multiple mission applicabilities, and payloads which

have partial mission applicability. In the former, we expect that the energy and time costs
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of motion for such a UAV to be greater than their dedicated-payload counterparts, thus

needing to expand mission point selection to consider more than distance, and reliability

scores. In the case of partial-membership, we expect the mission selection bids to be factored

by applicability, but know that tuning is required to not extensively favor full-membership

payloads.

The modeling of the controller itself assumes discrete actions and synchronous con-

trol epochs. We wish to further explore applications in continuous action space and non-

synchronized planning. Doing so will more closely model real-world implementations, but

also may change the cost function model to consider the probability mass of selected actions

of neighboring UAVs in the swarm.

6.5.3 Neuromorphic Camera Work

While the results of the testing trials do show steady improvement in the agent’s collision

avoidance, there is of course considerable room for improvement and a number of methods

that could be applied. Foremost among these would be to drastically increase both the

number of training trials and the number and diversity of obstacle course lanes used for

training. Given the elementary obstacles used in these trials, the trained DQN would most

likely have difficulty generalizing to environments with less well-defined obstacles such as

trees or power lines. For future training, it would be immensely beneficial to include some

means of procedural generation that could produce large numbers of very distinct obstacle

course lanes for training. Another modification to the training procedure that could have a

significant impact would be to change the manner in which the experience replay buffer is

sampled at training time. In this work, the buffer was simply randomly sampled in batches,

however, previous works have shown that prioritizing certain memories based on difference

in calculated loss can significantly improve results and decrease required training time [116].
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Prior research has also shown that the training time of reinforcement learning models

can be greatly reduced by including demonstration samples from human-in-the-loop trials

[117]. In much the same way that the SNN was trained in a semi-supervised fashion with la-

belled observations, the conventional DQN could also be trained partially using observations

labelled with actions performed by a human as ground-truth.

There are also significant changes that could be made to the DQN architecture itself.

For this work, we opted for a shallow convolutional neural network with fewer layers that

extracted features at a fairly large scale. The reasoning for this choice was an attempt to re-

duce training time as well as the assumption that fine-grained features were unnecessary for

UAV-based collision avoidance. However, given the differences between the images supplied

by a DVS and a conventional camera, it may be beneficial to include more convolutional

layers in the network. The event-based data produced by a DVS also has a strong tempo-

ral component that could benefit from using a recurrent neural network architecture that

could operate on the one-dimensional stream directly. Lastly, after making significant im-

provements to the architecture and training, the long-term goal of this work would be to

transfer the network to a physical UAV in order to assess performance in a real-world envi-

ronment. This testing will include integrating a dynamic vision sensor on-board a custom

UAV platform, and flying the platform through a custom-built obstacle course. The amount

of training required for real-world testing will hopefully be minimal, thanks to the extensive

training conducted in the high-fidelity simulator [95].
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Appendix A Software Architecture Diagrams

Figure 47: ICAROUS-based FMS diagram [1] ©2020 IEEE
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Figure 48: FMS control system architecture [1] ©2020 IEEE
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Figure 49: HD-RHC project organization
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Figure 50: HD-RHC training class diagram
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Figure 51: HD-RHC evaluation class diagram
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Figure 52: HD-RHC activity diagram
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Appendix B Control System Experimental Results

Figure 53: Odometry plot for weights (1.0, 1.0, 1.0) [2] ©2020 IEEE
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Figure 54: Heat-visitation map for weights (1.0, 1.0, 1.0) [2] ©2020 IEEE
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Figure 55: Odometry plot for weights (1.0, 0.0, 0.0) [2] ©2020 IEEE
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Figure 56: Heat-visitation map for weights (1.0, 0.0, 0.0) [2] ©2020 IEEE
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Figure 57: Odometry plot for weights (0.0, 1.0, 0.0) [2] ©2020 IEEE
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Figure 58: Heat-visitation map for weights (0.0, 1.0, 0.0) [2] ©2020 IEEE
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Figure 59: Odometry plot for weights (0.0, 0.0, 1.0) [2] ©2020 IEEE
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Figure 60: Heat-visitation map for weights (0.0, 1.0, 0.0) [2] ©2020 IEEE
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Figure 61: Odometry plot for best case results (1.0, 0.3, 0.0) [2] ©2020 IEEE
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Figure 62: Heat-visitation map for best case results (1.0, 0.3, 0.0) [2] ©2020 IEEE
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Figure 63: Initial distribution, normalized locations [2] ©2020 IEEE
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Figure 64: Initial distribution, randomized locations [2] ©2020 IEEE
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Figure 65: Odometry plot: normalized start location [2] ©2020 IEEE
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Figure 66: Heatmap: normalized start location [2] ©2020 IEEE
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Figure 67: Odometry plot: randomized start locations [2] ©2020 IEEE
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Figure 68: Heatmap: randomized start locations [2] ©2020 IEEE
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[56] Erol Şahin. Swarm robotics: From sources of inspiration to domains of application.
In International workshop on swarm robotics, pages 10–20. Springer, 2004.

[57] G Dudek, M Jenkin, E Milios, and D Wilkes. A taxonomy for swarm robots, intelligent
robots and systems’ 93, iros’93. In Proceedings of the 1993 IEEE/RSJ International
Conference on, volume 1, 1993.

[58] Y Uny Cao, Alex S Fukunaga, and Andrew Kahng. Cooperative mobile robotics:
Antecedents and directions. Autonomous robots, 4(1):7–27, 1997.

[59] Jan Carlo Barca and Y Ahmet Sekercioglu. Swarm robotics reviewed. Robotica,
31(3):345–359, 2013.

[60] Sean J Edwards. Swarming on the battlefield: past, present, and future. Technical
report, RAND NATIONAL DEFENSE RESEARCH INST SANTA MONICA CA,
2000.

145



[61] Patrick Vincent and Izhak Rubin. A framework and analysis for cooperative search
using uav swarms. In Proceedings of the 2004 ACM symposium on Applied computing,
pages 79–86, 2004.

[62] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage con-
trol for mobile sensing networks. IEEE Transactions on robotics and Automation,
20(2):243–255, 2004.

[63] Kristina Lerman, Alcherio Martinoli, and Aram Galstyan. A review of probabilistic
macroscopic models for swarm robotic systems. In International workshop on swarm
robotics, pages 143–152. Springer, 2004.

[64] Jan Carlo Barca, Grace Rumantir, and Raymond Li. A concept for optimizing be-
havioural effectiveness & efficiency. In Intelligent Engineering Systems and Computa-
tional Cybernetics, pages 449–458. Springer, 2009.

[65] Ming Ma and Yuanyuan Yang. Adaptive triangular deployment algorithm for unat-
tended mobile sensor networks. IEEE Transactions on Computers, 56(7):946–847,
2007.

[66] Lynne E Parker. Designing control laws for cooperative agent teams. In [1993] Pro-
ceedings IEEE International Conference on Robotics and Automation, pages 582–587.
IEEE, 1993.

[67] V. J. Lumelsky and K. R. Harinarayan. Decentralized motion planning for multi-
ple mobile robots: The cocktail party model. Autonomous Robots, 4(1SN - 1573-
7527):121–135, Mar 1997.

[68] Michael G Hinchey, Roy Sterritt, and Chris Rouff. Swarms and swarm intelligence.
Computer, 40(4):111–113, 2007.

[69] Sonia Martinez, Jorge Cortes, and Francesco Bullo. Motion coordination with dis-
tributed information. IEEE control systems magazine, 27(4):75–88, 2007.

[70] Jacques Penders, Lyuba Alboul, Ulf Witkowski, Amir Naghsh, Joan Saez-Pons, Stefan
Herbrechtsmeier, and Mohamed El-Habbal. A robot swarm assisting a human fire-
fighter. Advanced Robotics, 25(1-2):93–117, 2011.

[71] Julián Colorado, Antonio Barrientos, Claudio Rossi, and Jaime del Cerro. Follow-
the-leader formation marching through a scalable o (log 2 n) parallel architecture. In

146



2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5583–5588. IEEE, 2010.

[72] Nojeong Heo and Pramod K Varshney. Energy-efficient deployment of intelligent
mobile sensor networks. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 35(1):78–92, 2004.

[73] Sami Mian. A novel battery management & charging solution for autonomous uav
systems. Master’s thesis, ARIZONA STATE UNIVERSITY, 2018.

[74] Christoph Posch, Teresa Serrano-Gotarredona, Bernabe Linares-Barranco, and Tobi
Delbruck. Retinomorphic event-based vision sensors: bioinspired cameras with spiking
output. Proceedings of the IEEE, 102(10):1470–1484, 2014.

[75] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. An asynchronous time-
based image sensor. In 2008 IEEE International Symposium on Circuits and Systems,
pages 2130–2133. IEEE, 2008.

[76] Tobi Delbrück, Bernabe Linares-Barranco, Eugenio Culurciello, and Christoph Posch.
Activity-driven, event-based vision sensors. In Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, pages 2426–2429. IEEE, 2010.
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