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University of Pittsburgh, 2020

Transactive Energy (TE) has been recognized as a promising combination of techniques for im-

proving the efficiency of modern power grids through market-based transactive exchanges between

energy producers and energy consumers. It is of significant interest to identify optimal strategy to

control the transactive load in TE systems. The behaviors of transactive loads are affected by the

energy market values which in return impact the operation and stability of the distribution sys-

tem. To evaluate the benefits and impacts of transactive loads and new control mechanisms, time

series simulations are commonly used. These simulations consider the pricing response and the

physical constraints of the system simultaneously. Such simulations are computationally demand-

ing due to the information exchange among various participants and the complex co-simulation

environments.

This dissertation first explores the reduced order models to support quasi-static time-series

(QSTS) simulations for power distribution systems with independent dynamic non-responsive

load to address the limitations of the order reduction methods. Further, a reduced order model

for transactive systems with responsive load is proposed. The proposed model consists of an ag-

gregate responsive load (ARL) agent which utilizes two Recurrent Neural Networks (RNN) with

Long Short-Term Memory units (LSTMs) to represent the transactive elements in TE systems.

The developed ARL agent generates load behavior for transactive elements and interacts with the

electricity market. In addition, for individual transactive elements, a control strategy for the resi-

dential Heating, Ventilation, and Air Conditioning (HVAC) is introduced through the solution of

an optimization problem that balances between the energy cost and consumer’s dissatisfaction. A

reinforcement learning (RL) algorithm based on Deep Deterministic Policy Gradients (DDPG) is

used to obtain the optimal control strategy for the HVAC systems. The reduced order model and

the DDPG RL-based control are both implemented in the Transactive Energy Simulation Platform

(TESP). The reduced order model is able to produce transactive behaviour very close to the full
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simulation model while achieving significant simulation time reduction. Moreover, simulation

results demonstrated that the proposed control method for HVACs reduces the energy cost and

improves the customers’ comfort simultaneously.
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1.0 Introduction

This dissertation introduces reduced order models for the simulation of distribution systems

with independent changing load and distribution systems with transactive elements. In addition,

a reinforcement learning agent is developed and implemented in Transactive Energy Simulation

Platform (TESP) to find to an optimal control strategy for HVAC systems that balances between

electricity cost and user comfort by Deep Deterministic Policy Gradients (DDPG)-based deep

reinforcement learning algorithm.

Section 1 includes an overview of the research and the background information on power sys-

tems and transactive energy. Section 2 introduces the reduced order model by segment substitution

for distribution systems with independent changing loads. A method to stochastically model and

employ the dynamic behavior of end-use load in QSTS simulations is also presented. Using the

stochastically modeled load behavior as an input, the QSTS simulation result of reduced order

model and full model are compared. Section 3 provides the reduced order model for transactive

systems with responsive loads. The transactive behaviours of HVACs generated by the reduced

order model are compared with the TESP full model simulation result. In section 4, a DDPG

reinforcement learning based automated control of transactive HVACs in distribution systems is

presented, the performance of the method are demonstrated through different simulation scenar-

ios. Section 5 is the summary of the research.

1.1 Research Overview

Many distribution system technologies have time-varying characteristics. One of the tools to

investigate the operational characteristics of a modeled distribution system over a period of time

is called quasi-static time-series (QSTS) analysis [4]. QSTS analysis with high resolution (small

time step) is required to capture the load variability and simulate control signals for the emerging

technologies such as responsive load and plug-in electric vehicle charging [5]. However, long-term

high-resolution QSTS simulations require a large number of power flow computations. A year-

1



long simulation at 1-second resolution could take a computational time of 10 to 120 hours using a

desktop computer [6]. This may limit sensitivity analysis, design optimization, or exploration of

alternatives on the distribution system.

Transactive energy (TE) is a new approach for managing the electric power distribution system

based on principles of economic value, with engineering constraints [2]. It is a natural evolution of

market deregulation, which resulted in wholesale markets for the big players. Transactive energy is

a way of bringing competitive market principles to many more electricity customers and potential

participants. With many more new types of participants including end-use load and distributed

energy resources in future grids. There are higher requirements for the modeling of end-use load:

buildings, appliance to support transactive energy simulations and many valuation metrics need

to be predicted by time-series simulation in order to meld physical systems with economic value.

At present, most studies mainly focus on the design and analysis of the hierarchy architecture of

transactive control schemes. (Transactive control has also been applied in the distributed dispatch

or control systems of responsive assets in the grid.) However, the detailed control method of the

end-users in the transactive systems needs to be further explored [7].

Simulation for the transactive system is becoming increasingly important in smart grid stud-

ies. The modeling of price responsive load in the transactive system helps to evaluate different

transactive energy mechanisms and new control strategies. Software tools such as GridLAB-D

have detailed physical models to represent end-use behavior loads in a house, e.g. water heaters,

heating and cooling systems [8]. Each house has its individual thermal dynamic equivalent model,

requiring lengthy computation for large numbers of houses. In the Transactive Energy Simulation

Platform (TESP), these houses also have to participate in the electricity market by submitting bids

for the transactive elements such as HVACs. Simulations in TESP could take several days for a

large system with thousands of houses due to the various participants, different transactive agents,

large numbers of individual models, and the complex co-simulation environment.

Accurate and efficient modeling of the end-use load in distribution systems is important for

studying the aggregate dynamic behaviours and their impact on the bulk system. The simulation

time can be notably reduced by an aggregate model with the collective bidding and responding

ability. Therefore, accurate aggregation of large numbers of end-use loads is needed to account

for behaviours of the transactive elements and their interactions with the electricity market. To
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achieve faster simulations, it is well worth studying the error characteristics of reduced-order mod-

els to ensure that simplifications and aggregations are appropriate and represent the system model

precisely enough for certain applications and studies. Some studies have focused on the aggre-

gation of thermostatically controlled loads (e.g. HVACs) since they can actively participate in

demand response programs. Aggregated dynamic models are developed in [9] for thermostatic

loads using stochastic diffusion models by Fokker-Planck partial differential equations (PDEs).

An aggregate controllable model for a homogeneous population of HVACs and water heaters con-

sidering the state transitions is developed in [10]. Data driven approaches based on Markov chains

are proposed in [11] [12], these methods compute the transition probability between different states

based on equivalent thermal parameter (ETP) model. The above aggregate models are developed

for steady state conditions, not designed for demand response. Researchers have been study on the

aggregation of price responsive loads as well. In [13], the author proposed a method to aggregate a

group of price responsive loads through a non-parametric analysis of experimental random scenar-

ios to maximize the profit for the retailer/aggregator in a day-ahead market. In [14], an aggregate

model for a diverse group of thermostatically controlled loads is proposed, the aggregate model is

able to accurately capture the transient dynamics in the collective response under both steady state

and severe dynamic conditions. Different from the aforementioned approaches, the reduced order

model in TESP needs to have bidding and responding functions to interact with different market

participants, thereby produce similar behavior for the transactive elements to ensure the validity

of representing the transactive mechanisms of the full model. Through the reduced order mode in

TESP, we’re trying to simulate an entire balancing authority or region, such as ERCOT (Electric

Reliability Council of Texas) or WECC (Western Electricity Coordinating Council), in order to

show the effect of major policy changes and restructurings.

In this dissertation, a reduced order models for the simulation of distribution systems with inde-

pendent changing load is introduced. Moreover, for the evaluation of top-level design approaches

and the impacts of responsive loads on the bulk system, a reduced order model for distribution

systems with transactive elements is developed for the aggregation of price responsive loads. The

reduced order model is able to generate similar transactive behaviors as the full model by formu-

lating bids and reacting to the market clearing price collectively with an aggregate responsive load.

The proposed method dramatically reduces the simulation time for distribution feeder models with
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larger number of houses in TESP. In addition, for detailed control methods of end-users in the

transactive systems, an RL-based HVAC control method is also presented in this dissertation. The

RL-based control approach is implemented in and tested through the TESP. Through multiple ex-

periments, the effect of control algorithm parameter selection is demonstrated, and the proposed

method is compared with the transactive HVAC controller that is currently implemented in TESP.

1.2 Power System and Transactive Energy

This section contains the background information for the studies in the dissertation.

1.2.1 Power System

This section shows a high-level background about power systems which have some basic in-

formation considered to be known that may appear in the rest of the proposal. The composition of

the power system and the function of each part is included in this section.

Power systems were designed to deliver power from large power plants to load areas. It is a

network of electrical components to supply, transfer, store and use electric power [15]. The systems

can be divided into generation, transmission, sub-transmission and distribution. The transmission

system connects generating stations to substations and the sub-transmission system is responsible

for distributing powers to a specific district. Fig. 1 shows a diagram of a power system that contains

key components.

1.2.1.1 Generation

There are several methods of generating electricity. Generally, it is more efficient to generate

power at large power plants and distribute power to individual load sites. There also exist electric

power generation within distribution networks or on the customer side of the network which is

called distributed generations (DG) [16].
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Figure 1: Basic structure of the power system [1]

1.2.1.2 Transmission

The transmission system connects generations and substations at high voltage level in order

to reduce line losses. Transmission systems deliver bulk power over long distances, but only a

few very large customers are directly connected to transmission. The power going through the

transmission lines must be reduced to lower voltage levels by electricity distributors before it can

be delivered to a residence or business. So most of the transactive energy simulations and control

framework focus on distribution systems, which deliver electricity to more customers who are

potential new market participants.

1.2.1.3 Distribution

At distribution substations, transformers reduce the voltage to a medium-voltage level (1 kV

to 35 kV) and supply one or more feeders. A feeder is a radial or meshed topology that connects

substation and customer loads which is the last link of the power delivery, usually serving several

hundred residential consumers.

Modeling of power distribution systems can be used to understand distribution system be-

havior without monitoring. They can also be used to study transients or other system behaviors.

Some examples are: Infrastructure upgrades [17], distribution energy integration: energy storage,

plug-in electric vehicle (PEV) applications, solar or other distributed generation resources [18–

21],switching transients [22], lightning transients [23], harmonics [24, 25].
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There exist different kinds of simulations such as transient simulations and load-flow simula-

tions for different purposes. Transient simulations are performed on the order of micro-seconds

to seconds in duration to study corresponding events. Load-flow calculations can be used to study

the steady-state behavior of a system or system stability. Harmonics can be studied by performing

steady-state load-flow calculations over a range of system frequencies.

1.2.1.4 Utilization

Utilization is the final result of the generation, transmission and distribution. The power then

will be turned into light, heat, or some other useful work. Utilization also refers to circuits behind

the meter, i.e., inside the residence or place of business. Generally, utilization circuits are not

modeled in detail, only as a collection of loads i.e., residential appliances, behind the meter. These

circuits are the customer’s responsibility, not the utilities. To ensure appropriate planning and

operation of the power system, understanding and characterizing the utilization of electric power

is important.

1.2.1.5 Demand Response

The power system could become stressed when there is high demand of electricity. Demand

response (DR) provides a way for end-use consumers to reduce or shift their electricity usage

during peak hours in response to time-based electricity price or other incentives [26]. There are

multiple benefits associated with DR. Consumers are able able to reduce the electricity bills by

participating in DR programs. A market-wide electricity price reduction is expected by cutting the

demand from much expensive electricity generating units. DR programs also help to reduce the

risk of outages, reduce price volatility and improve system reliability [27]. An example of direct

local control program to release the electric supply pressure is the customers give permission to

power companies to control the on and off of air conditioners and water heaters during rush hours in

exchange for financial incentives. With advanced information and communications technologies,

household consumers now have the potential to participate in demand response more actively.

The consumers may adjust their demand in numerous ways to provide the power grid with more

flexibility: (1) reduce consumption, (2) increase consumption, (3) shift load to off-peak periods,

(4) store electricity, (5) generating electricity in small generation units (self-supply).
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Many studies have emphasized the importance of time-based dynamic pricing at the distribu-

tion level to motivate consumers to participate in DR programs [28].

1.2.2 Transactive Energy

With large scale deployment of distributed energy resources (DERs) and high penetration level

ofrenewable energy sources (RES) in future smart grid, new control method for the power system

operations are in demand so that the responsive assets of different participants can be well investi-

gated [7]. The Gridwise Architecture Council (GWAC) defines transactive energy (TE) as “a set of

economic and control mechanisms that allows the dynamic balance of supply and demand across

the entire electrical infrastructure using value as a key operational parameter.” TE also refers to

the economic and control techniques used to manage the exchange of energy within an electric

power system in regards to economic and market based standard values of energy [29]. It is a con-

cept that is used in an effort to improve the efficiency and reliability of the power system, heading

towards a more intelligent and interactive future grid. A TE system uses principles of value to

coordinate responsive supply and demand in energy systems. In transactive energy systems, price

signals are passed throughout the system as communication bridges between different prosumers,

enabling the optimal utilization of energy resources by distributed decision making of prosumers.

In the way, different participants perform individually and interacting in near real time to achieve

system objectives. An example of an application of a transactive energy technique is the double

auction market used to control responsive demand side assets in the GridWise Olympic Peninsula

Project [30].

Existing TE mechanisms have been reported in the literature such as double auction [31],

TeMix [32], and PowerMatcher [33]. For different parts of power systems described in sec-

tion 1.2.1, market mechanisms are already used on the transmission level to make decisions for

system operation in modern power systems. For the distribution level of the power systems, as

the distributed energy resources (DER) become mature, it’s necessary to find appropriate market

mechanisms for variable DER energy exports. On the other hand, there are still uncertainties and

challenges in the coordination of the increasing number of intelligent devices for a resilient and

efficient system. These devices have different objectives and different measurement of value. TE
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concepts are introduced into the distribution level to balances the trade-offs among participants

with different objectives while considering the available changing resources over time [29]. The

operation of flexible devices or transactive elements are controlled by individual local controllers

(agents), these controllers optimize the operation economically based on market value with the

preference of end users. Different from the simple price reactive approach which is an one way

communication sending dynamic price signals to end users, local controllers of the consuming de-

vice communicate their willingness to pay by submitting bids based on market conditions and the

preference of end users. Through this approach, prices can be determined collaboratively from the

predictable reactions of all participates to balance the supply and demand. The approach makes

good use of the response potential of flexible devices and protects the end user’s privacy since only

prices and energy quantities are used for communication.

A TE system with transactive control and coordination has advantages in integrating different

transactive elements such as smart homes, buildings in the market at the distribution system level,

it makes most use of the response potential. Different participates engage into the market based

on energy quantities and price in two-way communications. Some other advantages of TE can be

summarized as follows:

1. Lower costs during peak demand conditions

2. Improve the resilience and reliability, reduce the length and frequency of outage

3. Increase the flexibility of personal energy use with more information

4. Increased use of cost-effective, renewable energy generation, enable the optimal integration of

RES and DERs in the distribution systems.

5. Reduce the need for building new power plants

Specific examples of transactive control applications:

1. Some appliances such as HVACs, dishwashers, dryers, water heaters which use a large amount

of electricity. These appliances can be programmed to be on and off at different time of the

day based on the consumers’ desire for the balance between convenience and cost.
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2. Electric vehicle batteries can be charged when the electricity market price is the least expen-

sive. The charging can be coordinated with the availability of renewable energy resources

(charging on a windy day or a sunny day). Besides, the charged batteries can sell power back

to the system when the market price is high under certain conditions.

1.2.3 Transactive Energy Simulation Platform

A simulation environment TESP (Transactive Energy Simulation Platform ) has been devel-

oped by Pacific Northwest National Laboratory (PNNL) to simulate alternative transactive energy

mechanisms, to co-simulate effects across distribution and transmission, and to allow interplay be-

tween existing wholesale market mechanisms and new transactive distribution systems [34]. The

Transactive Energy Simulation Platform (TESP) incorporates time-series electrical simulations of

the distribution grid with agent-based market simulations and transactive energy valuations.

Figure 2: TESP architecture [2]

Figure 2 shows the simulation architecture of TESP. Distribution simulator GridLAB-D [8]

covers the simulation of electric power distribution circuits and weather. Transmission simulator

MATPOWER or PYPOWER covers the bulk power generation and transmission [35]. Building

simulator EnergyPlus represents large commercial buildings [36], which were not addressed in

this dissertation. TESP uses these three simulators together in a transactive simulation. The in-
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tegrating Framework for Network Co-simulation (FNCS) manages the time step synchronization

and message exchange among all of the federated simulation modules [37]. TESP also provides

plugin application program interfaces (APIs) which allow users to develop different modularized

software control, bidding and market clearing agents.

Some TE agents such as double-auction market, dual-ramp thermostat controller were previ-

ously hard coded in GridLAB-D in C/C++ [31]. TESP enables the design and test of new TE

mechanisms with separate TE agents implemented in Python, Java or C/C++. One can modify the

TE agent code in without rebuilding all of GridLAB-D. Currently, TESP includes TE agents for

residential customers and distributed energy resource (DER) owners. Examples of some TE agents

are described in the following section.

1. Double Auction TE agent: A double-auction market agent in TESP is a two-way market.

It collects bids from both suppliers and demanders (sellers and buyers), including price and

quantity simultaneously [31]. The double auction TE agent aggregates the bids and publishes

a market cleared price and sends the information back to all the participants.

2. HVAC controller TE agent: With the HVAC controller TE agent, the consumers are able to set

the desired temperature and an acceptable temperature range. The HVAC controller agent will

formulate bids based on a user-defined ramp parameter associated with the trade-off between

cost and comfort at every market cycle. After each market clearing, the HVAC controllers

use that subscribed clearing price, compared to their bid price and adjust the HVAC setpoint

accordingly.

The sequence of interactions between different simulators and controller agents in TESP are

shown in Fig. 3. Messages are communicated via FNCS between different simulators and TE

agents. A Substation agent encapsulates the above-mentioned HVAC controllers and the double

auction market. ∆t is the FNCS time step and T is the time step for market clearing and optimal

power flow by PYPOWER. We envision real-time markets clearing at 5 to 15 minutes intervals,

along with hourly day-ahead markets. These time frames are similar to some existing wholesale

markets on bulk systems. So, there is still a need for ramping reserves and frequency control,

which could also be services offered in the market, but not in the scope of this dissertation.
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Figure 3: Message flow around every market clearing cycle
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2.0 Model Order Reduction for Distribution Systems with Independent Varying Loads

2.1 Motivation and Related Work

Today, many distribution system technologies have time-varying characteristics. One of the

tools to investigate the operational characteristics of a modeled distribution system over a pe-

riod of time is called quasi-static time-series (QSTS) analysis [4]. QSTS analysis at small time

step is required to capture the load variability and simulate control signals for the emerging tech-

nologies such as responsive load and plug-in electric vehicle charging [5]. However, long-term

high-resolution QSTS simulations require a large number of power flow computations. A year-

long simulation at 1-second resolution could take a computational time of 10 to 120 hours using

a desktop computer [6]. This may limit sensitivity analysis, design optimization, or exploration

of alternatives on the distribution system. To achieve faster simulations, it is well worth studying

the error characteristics of reduced-order models to ensure that simplifications are appropriate and

represent the system precisely enough for a certain application.

This model order reduction work was motivated by the needs of two parallel research projects,

to be reported in detail later.

1. Regional Transactive System Study: The study is set in Texas, with a synthetic grid comprising

up to 200 substations and 800 feeders. To develop and test new market and control mechanisms

over a period of one year, we needed to reduce the number of distribution system nodes retained

in the model, while keeping the same number of loads. The total simulation times have been

shorter by a factor of 3, saving approximately 10 computing days per simulated month on this

large system.

2. Island Resilience with Storage Study: The distribution system comprises 8 feeders with a

utility-scale battery, some solar resources and a combustion turbine. When disconnected from

the mainland, critical loads cannot be supplied indefinitely without new control methods. To

develop and test these methods, we needed to simplify non-responsive parts of the system with

reasonable accuracy, while retaining all of the independent and dynamic agents.
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2.1.1 Related Work - Load Modeling

To support QSTS simulations, high-resolution temporal and spatial input data are required,

including the end-use load behaviors. Accurate representation of the end-use load behaviors can

help to completely represent the behavior of distribution systems including state transitions, to as-

sess the influence of the increasing smart grid technologies and transactive control techniques, and

to optimize the integration of renewable energy sources (RES) and distributed energy resources

(DER) [7, 38–42]. The most commonly used method to represent end-use load is to combine con-

stant impedance, constant current, and constant power elements, known as a ZIP model [5, 43].

These loads are often scaled by feeder load profiles to represent changing load at each QSTS time

step. In contrast, a dynamic load model switches on and off according to independent schedules

or control signals. Such detailed load behaviors are useful for simulations since the majority of

the end-use loads have sub-minute time scale behaviors, not usually captured in feeder load pro-

files [44–46]. To evaluate their impact on residential distribution system operations, end-use load

models on residential distribution feeders that are changing with time are required [45], yielding a

detailed load model for peak and off-peak periods.

Apart from the above mentioned deterministic methods, some stochastic methods have been

used as well. Hidden Markov models (HMM) have been used to represent load behaviors [47–50],

where the probability of transition between the state of the appliance is assumed to be dependent

on the current state of the appliance. Reference [47] presents a method of modeling the sequence

of operational states of an appliance from measurements of power consumption using HMM. In

[48], the author introduced an HMM model to describe and identify thermostatically controlled

automatic appliances and fixed-operation human-controlled appliances. In contrast to the HMM

models, this work uses and provides visibility to the load’s operational states.

Software tools such as GridLAB-D have detailed physical models to represent end-use behav-

ior loads in a house, e.g. water heaters, heating and cooling systems [8]. In [5], a multi-state load

model is presented with a detailed equivalent thermal parameter model (ETP) for heating, ventilat-

ing and air conditioning (HVAC) units. These models have thermodynamic states and differential

equations relating to many random thermal inputs over the population of houses. The simulations

are deterministic with detailed physical models of each load component, requiring lengthy com-
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putation for large numbers of houses. As the input of QSTS simulation, the load behaviors are

influenced by many random input variables. To avoid simulating every single load component,

it is reasonable to use a stochastic method to obtain the load behaviors for the inputs to QSTS

simulations [51].

2.1.2 Related Work - Feeder Model Order Reduction

To reduce the computational burden of QSTS simulations on large distribution systems, in [52],

the A-Diakoptics methodology is presented to reduce the simulation time by separating feeders

into sub-networks and solving them in parallel using multi-core machines. A segment substitution

method for distribution system model simplification is introduced in [3] eliminating buses on large

distribution feeders. The simplified model from that method greatly reduces the simulation time

with an acceptable simplification error for the study of photovoltaic (PV) output fluctuations. In a

local area, these PV fluctuations tend to be similar in shape and correlated in time, as they originate

from the same solar irradiance and cloud cover. However, it is a reasonable simplification for loads

only if they all follow the same load shape. When loads at different locations follow different load

shapes, the error will increase rapidly. In [53], the author introduced a linear sensitivity model

to estimate the impact of load and PV profiles on the magnitude of phase voltage as well as the

states of voltage control devices to speed up the simulation. In [54], the authors used a linearized

matrix method with weighting factors to transfer loads and generators onto retained buses. Neither

considered that loads may follow different profiles at different locations, and this may degrade the

resulting accuracy of estimation.

Solar generation is known to vary locally, but the usual practice is to assume that loads vary

uniformly and slowly. This is not really the case, especially in small circuit segments with air

conditioners, water heaters, microwaves, and other loads turning on and off. Existing QSTS sim-

ulations tend to use a uniform load shape for all the loads of the same types. This will potentially

capture the action of a substation transformer Tap Changer that regulates the whole feeder, shown

to the left in Fig. 4. Loads distributed out on the feeder actually vary independently as shown, but

in large numbers, these diverse loads may be aggregated at the feeder level with acceptable results.

However, this assumption is less valid in small numbers, and it usually won’t capture the behaviors
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Figure 4: Feeder model with independent load and generation components. Distributed load arrow

lengths represent the instantaneous load magnitude at each location, normalized to its own peak.

of line regulators and capacitors with local controls that are located out on the feeder. For example,

if the switched capacitors in Fig. 4 operate on local voltage control or reactive power control, then

their behavior is largely determined by the downstream solar generation and segment of distributed

load, at the right of Fig. 4. The upstream line regulator responds to the distributed load, switched

capacitors and utility scale solar to its right. However, the bottom-most line regulator in Fig. 4

responds to its own downstream distributed load, plus its large downstream spot load. Those two

regulators respond differently because the solar generation depends on weather, while the spot load

depends on customer schedules, and these are loosely correlated if at all. Furthermore, at the in-

stant shown in Fig. 4, the switched capacitor sees less than its share of distributed load while the

bottom-most regulator sees more than its share.

This local stochastic behavior is masked by diversification over the whole feeder, which has

been acceptable when considering the whole feeder serving passive load. As feeders become more

active due to solar generation, storage, and responsive loads, it will be more important to represent

these local stochastic behaviors. Otherwise, errors may occur in the analysis of grid constraints,

controls and operating conditions. We aim to alleviate this risk by enabling faster simulation tools,

but within acceptable error bounds.
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In [3], we presented a simplification method that achieved 0.2% error, or less, when the ZIP

loads vary uniformly and the PV outputs also vary uniformly. However, when the ZIP loads in

each segment do not vary uniformly, the errors in voltage can be higher than 1.0%, which is not

good enough for voltage control and violation studies. The example in [3] reduced a feeder with

1225 primary line segments to 23 segments, retaining the key bus connections for devices that help

control voltage. Each segment contained one equivalent ZIP load representing its internal uniform

load (which varies with time), and a pair of independent sources representing all the PV that vary

with time. We improve the error to an acceptable limit by generalizing the superposition of sources

on a simplified model, and also speed up the simulations with stochastic models of independent

loads. Even with many more independent sources, the number of simultaneous equations to solve

in the power flow model is the same as before, which helps to retain most of the computational

efficiency.

In this section, we propose two complementary approaches to improve the computational com-

plexity of QSTS simulations in more realistic models of large distribution systems in two different

aspects. Accordingly, we first introduce a stochastic method to efficiently generate load behav-

iors of end-use appliances to support QSTS simulations, providing a general procedure to generate

stochastic load behaviors for a given number of independent loads (end-use appliances) without

simulating every load instance in detail. We show that the proposed method is able to accurately

capture the time correlation of the appliance behaviors in large systems. The results for water

heaters are promising; along with air conditioners and heat pumps, these have the most impactful

stochastic load behaviors on distribution feeders [2, 11]. Work is underway to apply and validate

the method for composite load types, to be reported in a future publication. Secondly, considering

the problem described in section 2.1.2, to reduce the QSTS simulation time, a new segment sim-

plification method for large distribution system models is introduced. The proposed simplification

method is applicable for QSTS simulations with independent dynamic load behaviors at different

parts of the distribution circuit by extending the method presented in [3]. It is demonstrated that

independent load behavior can be integrated into the QSTS simulations with the proposed distri-

bution system simplification approach. We also show that other methods for circuit simplification

are not as accurate as the proposed method for simulation purposes. Note here that the proposed

approach is novel and transformative such that our approach can be applied to models with multi-
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ple distributed sources with independent time series profiles, such as PV, energy storage systems

and electric vehicles. In this study, we present the methodologies for independent load behavior

generation and circuit simplification and demonstrate the performance of the proposed methods

on a distribution model simulated in OpenDSS [55]. We compare the proposed approach in terms

of computational time and simulation accuracy with a QSTS simulation approach that does not

account for independent load behavior [3]. Note here that circuit simplification for computational

complexity reduction of QSTS simulation under independent load behavior is not trivial, and this

study provides solutions to this important problem.

2.1.3 Systematic Flowchart

Fig. 5 summarizes the overall implementation of the proposed Algorithms 1 and 2 with the

usage of and interaction among different simulation tools. We utilized three main software tools in

this work as follows:

1. MATLAB: Used to produce and simulate stochastic end use load models, e.g., water heaters,

not connected to an electric power distribution system.

2. OpenDSS: Used as a fast and robust QSTS power flow solver of the distribution system, but

with combinations of constant impedance, constant current and constant power (ZIP) loads

only [5, 43].

3. GridLAB-D: Used for QSTS power flow with climates, thermal envelopes of buildings, and

load behavioral models connected to an electric power distribution system [8].

GridLAB-D generates temporally varying water heater data, which is then utilized in Algorithm

1 in MATLAB to obtain stochastic aggregated load variation data for any given number of water

heaters, represented as Mn(t) in this figure. The details of Algorithm 1 are in Section 2. The full

feeder model is segmented and fed to the proposed Algorithm 2. In each segment, Algorithm 2

generates aggregated impedance and load values (represented as Zi and Si, respectively) together

with compensating currents and gains (represented as Ic and Gc) in Fig. 5. Compensation currents

and gains are used to account for changes in load behavior. The details of Algorithm 2 are provided

in Section 3. Aggregated loads and compensation currents for each segment are presented in

Fig.2 as the Simplified Feeder Model. Finally, Simplified Feeder Model and compensation gains
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Figure 5: A systematic flowchart of the proposed algorithms with a demonstration of simulation

scenario and feeder topology.
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(Gc) together with the output of Algorithm 1 (Mn(t)) are used in OpenDSS to obtain the QSTS

simulation results. The output voltage is used as the performance metric to compare the simplified

model to the full model (OpenDSS QSTS) simulation.

2.2 Stochastic Modeling for Load Shapes of Behavioral Load

GridLAB-D has physical models for houses including many kinds of appliances such as dish-

washer, dryer, electric vehicle (EV) charger, freezer, water heater and HVAC. The simulations are

deterministic; every house model instance has a thermal heat flow circuit and its ETP heat balance

equations [8]. Each type of appliance’s state in each time step during the simulation will depend on

the solution of the equations associated not only with thermally-related variables of the house such

as floor area, window-to-wall ratio, air temperature and air exchange rate but also random variables

of each type of end-use appliance. Many of these variables are driven by the activity of the occu-

pants, which GridLAB-D represents with randomized schedules. When large numbers of houses

are simulated on distribution feeders, computational time will increase dramatically. Thus, our

goal is to make the simulations more efficient by using stochastic parameters with reduced-order

models. By the proposed method in this section, the stochastic load behaviors can be obtained

efficiently for any given number of the same type of appliance. Stochastic simulation in MATLAB

Table 1: Time-Dependent Parameters for Stochastic Load Modeling

Symbol Definition

Pt+1

Bernoulli trial parameter of each OFF appliance’s probability of

turning on before time t+ 1

Nt(on) The ratio of appliances that are on at time t in GridLAB-D output

Nt(off) The ratio of appliances turning off just after time t in stochastic simulation

Xt

Probability distribution of the time each appliance stays on, having switched its

state from off to on after time step t
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is used to build aggregate behavioral load shapes of a certain type of appliance based on GridLAB-

D simulation results of larger numbers of houses and appliances. These GridLAB-D simulations

comprise the appliances only, each one controlled by randomized end-use schedules (e.g. showers

in early morning and dishwashing in evening influence water heater behavior). The feeder power

flow analysis is not included at this stage. The procedure to generate aggregated load behaviors is

described in the following steps:

1. A preliminary step is extracting appliance behavior from GridLAB-D, specifically, obtaining

time-dependent probability distribution parameters that are summarized in Table I from the

original simulation results in GridLAB-D.

2. Calculating Pt+1: for each appliance, the probability that each one of them that is off at time

step t will switch from off to on before time step t+1, conditioned on the number of appliances

that are off at time t. Equation 2.1 and Equation 2.2 are the mathematical expressions to

compute Pt+1 for each time step t:

Pt+1 =
Nt+1(on) − (Nt(on) −Nt(off))

1− (Nt(on) −Nt(off))
t ≥ 1 (2.1)

P1 =
N1(on)

1
t = 0 (2.2)

Where Nt(on) is the ratio of appliances that are on at time t in GridLAB-D output. Nt(off)

represents the ratio of appliances turning off just after time t in stochastic simulation. For

instance, assume the total number of appliances is five. Three of them are on at 6:00, so at time

point t, Nt(on) is 0.6. One of them is turning off just after time point t at 6:05 in the stochastic

simulation (time t is the end of ON duration of this appliance), so Nt(off) is 0.2. Then for the

next time point t + 1, four of them are on in the GridLAB-D data, so Nt+1(on) is 0.8. Using

Equation 2.1, Pt+1 will be 0.67 in this example. Equation 2.2 is used to calculate P for the first

time step, which is a special case for Equation 2.1. Since we are assuming all the appliances

are off as the initial state, Nt(on) and Nt(off) are both zero when t = 0.

3. Calculating Xt: the probability distribution of the on-time duration for each appliance that

switches its state from off to on between time step t and time step t + 1. Example on-time

distributions of water heaters at three different times of the day are shown in Fig. 6.
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Figure 6: An example of calculatingXt for different times of the day:(left) if the water heater turns

ON at 6 am, it will stay on for around 45 minutes with almost probability 1; (middle) at 11am, the

length of ON duration is distributed non-uniformly between 55 and 65 minutes; (right) at 8 pm,

the length of ON duration is distributed between 50 and 70 minutes.

Note that each appliance type (e.g. water heaters with different vintages and tank sizes are

different types) will have different P since they could have different behaviors; similarly, the

on-time probability distribution Xt also depends on the characteristics of the appliance. Once

these parameters are obtained, we have the ability to generate load behaviors and power con-

sumption values for both individual appliances and, if the initial GridLAB-D population is

large enough, for large numbers of appliances having the same distribution of significant load

parameters (e.g. residence floor area, temperature setpoint, water demand schedule, etc.).

The stochastic load behaviors could be generated by the following procedure without simulating

the appliances in GridLAB-D every time.

1. Determine the type of the appliance. This may be randomized from a uniform distribution

of available types, or appliances may be treated systematically by type (e.g. water heater,

microwave, refrigerator, lights). It’s also possible to aggregate different kinds of appliance into

the process. In this method, we aggregate different sizes of water heaters to learn Pt and Xt

from GridLAB-D simulations. The recursive approach to calculate Pt (the probability for each

appliance to switch from OFF position to ON position) is demonstrated in equations (1) and (2).

Xt (the probability distribution for the length of ON duration when an appliance changes from
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OFF to ON position) is calculated for different times of the day using GridLAB-D simulations

as explained in Fig. 6. Note that Xt can be different for different type of appliance.

2. Generate a stochastic load behavior for an individual appliance of a certain type. The procedure

is summarized in Algorithm 1.

For each individual instance of a specific type of appliance, at time step t, if the appliance is

OFF, sample to determine whether it will turn ON. Following the earlier example, each of the

three water heaters that are OFF at the end of 6:00 period (two were already OFF, one switches

to OFF at the end of the 5 minute period) has a 0.67 chance of turning ON by 6:05. Whenever

the appliance turns ON, sample from the on-time probability distribution for that time point to

obtain an on-time duration, e.g. Fig. 6. The appliance will be ON throughout this duration
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and turn OFF afterward. Once it does turn OFF, it may turn ON later according to the time-

dependent probability in Equation 2.1. If the appliance won’t switch from OFF to ON, go to

the next time step and sample again. Repeat this process until the end of the simulation time.

Then the aggregate stochastic load LWH at each time step t could be obtained by adding the

load of each individual appliance that turned ON at t or stayed ON from an earlier time step.

Our approach requires for each time frame t, an aggregated probabilistic distribution that will char-

acterize the switching between OFF to ON conditions (Pt), and the length of ON condition when

an appliance changes from OFF to ON condition (Xt). This method recursively calculates these

distributions from GridLAB-D simulations, and it samples from these distributions to generate a

temporally varying load behavior. More specifically, Pt+1 and the probability distribution Xt need

to be calculated indirectly by the status (ON or OFF) of the same type of appliance over a discrete

time interval, which is obtained from GridLAB-D simulations. Note that the GridLAB-D appli-

ance simulation only needs to be run one time to obtain Pt+1 and Xt, using Nt(on) and Nt(off) from

the simulation results to get the canonical behaviors for that type of appliance. Once the stochastic

model is built, it will be scalable to generate any number of stochastic load behaviors for a specific

sample set of appliances, without re-running GridLAB-D. We randomly place water heaters of

different types and sizes within a feeder model, according to probability distributions that depend

on the region, type of dwelling and individual dwelling’s floor area. Given that, water heater loads

depend on randomized schedules of occupant behavior, which we also scale and shift in time ac-

cording to probability distributions. The stochastic model described in this section addresses the

schedule-dependent water heater behavior, and we chose sample set sizes approximately equal to

the number of electric water heaters found on a single distribution feeder.

2.3 Segment Substitution for Models with Independent Loads

2.3.1 Previous Work on Distribution System Model Simplification

Many analysis tasks do not require the full electrical state (bus voltage and branch current) at

each point on a full distribution feeder. Fig. 7 is a simple demonstration of the segment substitution
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Figure 7: Segment substitution Demonstration

method that we developed in our previous work [3]. This existing method is able to greatly reduce

simulation time by replacing the full segment topology, which is often more complex than Fig.

7(a), in the distribution system with simplified segments in Fig. 7(b). We showed that through this

method under a constant load assumption, the computation time of QSTS simulation is reduced

by 95% with a voltage error as low as 0.2%. As mentioned above this method assumes a constant

load scaling across the segments, which means that the loads in different segments follow the same

global load shape, i.e., they are not independent. Moreover, even though PV compensation exists

through a current source, all the PVs in different segments are assumed to follow the same tempo-

ral behavior. Utilities usually have data for these global load shapes. However, loads in different

segments generally have different load behaviors, for example, weather and temperature charac-

teristics and corresponding user preferences may vary with time and location. These differences

will introduce temporally changing and location-dependent load behaviors. These load behaviors

could increase the error during QSTS simulations on the simplified topology in Fig. 7(b) to analyze

voltage violations and voltage regulator operations. We also show this increase in error through

our simulation results, see Section 2.4.3.

2.3.2 Segment Substitution for Models with Independent Loads

To address the error introduced due to the temporally varying load behavior in the simulation

of distribution systems through the previous simplification method, in this study, we present a new

simplification methodology as shown in Fig. 8(b). More specifically, for more accurate simula-
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Figure 8: Topological realization of segment substitution for models with independent loads, per

phase, expanded from Fig. 7 of [3].

tions, loads within each area corresponding to each segment in the simulation model should have

independent changing load behaviors. Models with independent load shapes have a similar effect

to PV on the voltage drop across the series impedance of simplified segments [3]. If the loads of

each segment follow different load shapes, the corresponding load currents in different segments

throughout the feeder will not change in proportion to each other. Independent load shapes of each

segment can affect the shunt current, and the voltage drop across the segment will be influenced

by different load shapes of both upstream and downstream segments. The voltage drop across

the simplified segment should be an appropriate approximation to the voltage drop across the full

segment in a distribution model with independent loads. To accomplish this, the simplified seg-

ment model should have elements to compensate the effect of independent load behaviors from the

other segments as shown in Fig. 8(b). Following the model illustrated in Fig. 8(b), with the current

source compensating the influence from the other segments, the voltage drop across each segment

i is:

∆V̄ i = Zi((−1 ∗
N∑
n=1

Mn(t)Inc out,i) +
J∑
j

(−1 ∗
N∑
n=1

Mn(t)(Inc in,j + Inc out,j))) (2.3)
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Inc in,i,I
n
c out,i Independent current sources to compensate the voltage

drop in segment i due to load behavior of segment n

Mn(t) Independent load shape of the segment n at time t

N The number of segments

n The index of the load shape of a different segment

i The index of the simplified segment

j The index of the downstream segment

Zi Simplified equivalent impedance of segment i, shown as

Zsim in Fig. 8(b), the detailed calculation of Zi is in [3].

∆V̄ i Voltage drop across segment i

Each pair of Inc in,i,I
n
c out,i added to the topology will compensate the effect of the load behaviors

on the voltage drop in segment i due to the independent load behavior in segment n. For example,

if the full circuit model has ten segments after simplification, each segment will have 10 pairs of Ics

as shown in Fig. 8(b) to compensate different load behaviors from all segments. In other words,

the compensating currents account for other segments, not for different load types. Stochastic

load contributions in those other segments would have already been calculated. The total segment

number N is determined by the number of the buses to be preserved in a full model; components

between two preserved buses form a segment. Through equations 2.4 to 2.7, we demonstrate how

to compute values of the compensating current Ic for each segment in the proposed simplified

topology. The procedure is also summarized in Algorithm 2. With ten segments, there are 100

power flows performed within the loop, at Line 5, and two before the loop, at Lines 1 and 2.

Inc in,i = Z−1i [(V n
in,i − V n

out,i)− ZiInin,i] (2.4)

Inc out,i = (I0in,i − I0out,i)− (Inin,i − Inout,i)− Inin,i (2.5)

Gn
in,i = V n

in,i(I
n
c in,i)

∗ (2.6)

Gn
out,i = V n

out,i(I
n
c out,i)

∗ (2.7)
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Where V 0
[in/out],i and I0[in/out],i are the no load voltages and currents of a segment i. In all these

equations, Vin represents the voltage at the initial point of a segment, Vout represents the voltage

at the end of a segment, Iin represents the input current of a segment, Iout represents the output

current from the end of a segment and i is the segment index. V n
[in/out],i and In[in/out],i are the volt-

ages and currents of segment i when all the loads that don’t follow load shape i are set to zero,

i.e., Si 6=n = 0, Inc[in/out],i are independent current sources on segment i for load shape n, Gn
[in/out],i

are the compensating power values of segment i for load shape n. Equation 2.4 and 2.5 are used

to find the compensation source values for each segment i associated with each independent load

shape n, some of which were generated stochastically using Algorithm 1. Once the values of Ics

are obtained, the full system segments i can be replaced with the corresponding simplified segment

shown in Fig. 8(b). Each pair of currents sources Inc[in/out],i associated with V n
[in/out],i compensates

for each independent load shape n. The compensator values Gn
[in/out],i obtained through Equations

2.4- 2.7 differ among the segments but these are not yet time-varying. For the purpose of com-

pensating the independent time-varying load behavior generated as described in Section 2.2, the

stochastic dynamic load behavior for a single day for each segment is divided into windows of a

certain time length. Then within each window, a pth percentile value (p can be 25, 50, 75...) of

the normalized load shape Mn is selected to represent the time-changing load behavior. Fig. 9

illustrates a window for which the percentile value is chosen empirically. Equation 2.8 shows how

the compensating power valueGn,k
[in/out],i is changing for different windows to compensate the time-

varying load, where k represents different windows, so that the left-hand side of Equation 2.8 is

time-varying. In quasi-static time-series simulation, for all segments i, each compensator follows

the load shape corresponding to segment n, Mn(t). The selected window size and the percentile

value will affect the simulation result as discussed in Section 2.4, based on a numerical example

of load behavior for 900 water heaters.

Gn,k
[in/out],i = Mpercentile,k

n Gn
[in/out],i (2.8)

By using the proposed new topology, instead of a global load shape for each segment in [3],

we introduce independent dynamic loads on the simplified distribution system segmented model.

This method ensures the usability of segment substitution under the condition that loads of different

areas have different behaviors. Furthermore, the method can be extended to compensating different
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Figure 9: A demonstration of how to obtain Mpercentile,k
n .

sources with variable time series profiles, such as load, PV, battery and electric vehicle charging,

all of which have independent behaviors injected into the system at different locations. They would

all contribute to the totals as in Fig. 9 or other results presented later.

2.3.3 Voltage Drop and Shunt Current Relationships

This section describes how the added current sources compensate the effect of independent

load in the other segments on the voltage drop on segment i. In [3], for a system simplified from

Fig. 7(a) to Fig. 7(b), the voltage drop ∆V̄ i across each simplified segment i is an approximation

of the voltage drop ∆V i across each full segment i under the same loading conditions:

∆V̄ i ≈ ∆V i (2.9)
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The voltage drop is determined by the cumulative voltage drop resulting from branch currents

across the series branches between the input and output buses. The voltage drop and shunt current

are proportional to a linear combination of the segment’s compensating load currents and the seg-

ment output current. In the simplified segment of Fig. 8(b), the voltage drop is determined by the

input current across the series impedance.

∆V̄ i ≈ ZiĪ
i
in (2.10)

Where ∆V̄ i is the voltage drop across the simplified segment i, and Ī iin is the input current.

The load multiplier, M , is normally applied to the complex power of a load. The load voltages are

assumed to change proportionately at different load conditions such that for each segment i:

M i(t)(
Si
Vi

)∗ ≈M i(t)Ii (2.11)

Where M i(t) is the time series of load multipliers known as the load shape for segment i, Si is

the total complex power drawn by segment i, Ii is the total current drawn by segment i, and Vi is

the voltage associated with this segment. Under this assumption, the segment load current follows

the segment load shape. Therefore:

∆V̄ i = Zi(M
i(t) ∗ Ī iin) (2.12)

The input current is the sum of the output current and current Ii drawn by the complex power

S component of segment i. The output current is the sum of the shunt currents of all downstream

load objects (segments, junctions, and unsimplified loads) j.

∆V̄ i = M i(t) ∗ Zi(Ii +
∑
j

Ij) (2.13)

When the segments follow different load shapes, such as the stochastic load behaviors dis-

cussed in this study, the influence of these different load behaviors on the segment voltage drop is

shown in Equation 2.14, which can be further extended to Equation 2.3:

∆V̄ i = M(t) ∗ Zi(Mi(t)Ii +
∑
j

Mj(t)Ij) (2.14)
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Where Mj(t) is the specific load shape for segment j. In the full system model, the shunt

current is determined by the loads throughout the segment (neglecting any no-load loss). Similar

to voltage drop, the shunt current ∆Ī i across a simplified segment i is an approximation of the

shunt current ∆Ī i across the full segment i:

∆Ī i ≈ ∆I i (2.15)

More simply, using Equation 2.3 as described above, the shunt current across a simplified

segment without independent load compensation, for a global load shape M(t), is equal to the

load multiplier times the segment load:

∆Ī i(t) = M(t)I i (2.16)

To compensate for any independent effects on the load,

∆Ī i(t) = −1 ∗
N∑
n=1

Mn(t)(Inc out,i + Inc in,i) (2.17)

Inc in,i and Inc out,i in Equation 2.3 and Equation 2.17 are the compensating current values, which

follow the load shape Mn representing the effect of load behaviors of segment n on the voltage

drop of segment i.

2.4 Numerical Results

In this section, we first demonstrate the performance of Algorithm 1 (see Fig. 5) that is used for

stochastic load modeling. Specifically, we compare the stochastically generated load behaviors in

MATLAB with the GridLAB-D water heater simulation results. We also show the generalization

of Algorithm 1 to a different number of different water heaters.

In the second part of this section, we demonstrate the performance of the proposed framework,

specifically, the combination of Algorithms 1 and 2 for model order reduction. As shown in Fig. 5,

we identify different segments of the full feeder model and replace them with the simplified seg-

ment topology to obtain a simplified feeder model by Algorithm 2. The load behaviors obtained
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through Algorithm 1 are used as the loads of water heaters on a test circuit in OpenDSS for QSTS.

The compensators obtained from Algorithm 2 in the simplified feeder are changing according

to the load behaviors obtained through Algorithm 1 to compensate for independent time-varying

behaviour in QSTS of the simplified feeder model. To evaluate the performance of the new sim-

plification method, the results are compared with QSTS on the full feeder model and simplified

feeder model without the independent load compensators. The interactions between MATLAB and

OpenDSS were performed using the OpenDSS automation interface from MATLAB as in [3].

2.4.1 Example for Stochastic Load Model: Water Heater

This section shows an example to implement the stochastic method to get aggregate load be-

haviors for water heaters. The training data set has 300 water heaters for each of three different

tank sizes. Fig. 10 compares a stochastic water heater (not power flow) simulation result in MAT-

LAB with the original output from GridLAB-D. The daily simulation with 30-second time step,

Figure 10: Stochastic simulation result for 900 water heaters.( The blue line represents the differ-

ence between stochastically generated load and the original simulation data from GridLab-D)

which was chosen based on typical heating times and time constants for water heaters, shows the

changing load of 900 water heaters in the same area throughout a typical day in spring. The maxi-

mum error in the aggregate load at peak is about 3.4%. The results showed that the method is able

to obtain very similar behaviors as the original output, including the time correlation. Both the
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morning and evening peaks are well matched. Regarding computation time, generating a one-day

load profile of 900 water heaters in GridLAB-D takes 140s, while subsequent stochastic simula-

tion takes no more than 15s (89.3% reduction) to generate similar behaviors. Furthermore, once

the water heater behaviors are extracted from GridLAB-D, it is faster to generate the aggregate

power consumption for any other number of water heaters (having the same distribution of types)

in a different circuit segment. Specifically, some simulation results for different numbers of water

heaters are shown in Fig. 11 and Fig. 12 below, in which the similarities between the GridLAB-D

and the proposed stochastic load behaviors are evident. The same stochastic model provides good

fidelity to new GridLAB-D simulation results of 9, 30, 150 or 300 water heaters. The approach for

water heaters can be extended to other behavioral load types as well, using GridLAB-D simulations

to generate the training data sets as appropriate for the type of day, weather, customer schedules,

etc.
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Figure 11: Stochastic load behaviors of 9 and 30 water heaters
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Figure 12: Stochastic load behaviors of 150 and 300 water heaters
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2.4.2 Segment Substitution with Independent Loads on a Feeder Model

Figure 13: Layout of the EPRI J1 feeder before and after simplification [3].

In this section, segment substitution with independent dynamic loads is demonstrated on a full

electric power distribution model that has houses represented. Assuming the only loads in the

feeder model are water heaters, after simplification, each segment follows a unique independent

load shape to represent load behaviors of the water heaters inside the segment.

The load behaviors are generated by the stochastic method. The test feeder model is EPRI

feeder J1, a model in OpenDSS released to the public at [56]. Fig. 13 shows the feeder layout

before and after simplification. The simplification procedure steps, including disable old compo-

nent, enable each segment to calculate the compensator parameters, insert new components, and

test performance were all performed using the OpenDSS automation interface from MATLAB as

in [3]. The model has 23 segments after the segment substitution. The simplified model has 529

sources, which took 531 load flow solutions to set up. Buses connected to capacitors and regu-

lators, i.e. voltage control devices, are preserved. The full model’s three-phase voltage profile is

shown in Fig. 14. The three phase voltages are per unit values vs. the distance from the substation
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at the feeder head. Fig. 15 shows voltage profiles at full load after substitution with independent

load compensators, 23 pairs of them in each segment. This result demonstrates that the simplified

model gives a similar result compared to the full model with respect to voltage profile.

Figure 14: Three-phase unbalanced voltage profile for the full EPRI J1 feeder model.
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Figure 15: Three-phase unbalanced voltage profile for the simplified EPRI J1 feeder model by

independent compensator substitution.
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2.4.3 QSTS Simulation Result with Independent Load Behaviors

This section shows the result of daily QSTS simulations performed on the full model, the

simplified model with independent load compensation and the simplified model without compen-

sation. To generate the compensating gains, we obtain normalized load shapes using a method

that is described in Section 3.2 under equation (8). Specifically, we apply this method to the load

behavior obtained in Fig. 10. As before, the time step is 30 seconds for water heaters. Loads in 23

segments follow 23 different load shapes generated by the stochastic method.

Fig. 16 shows the voltage of the full model, the simplified model without independent load

compensation and the simplified model with independent load compensation at one specific seg-

ment. The voltage error is calculated by Equation 2.18:

Error =
abs(VFull − VSimplified)

Vbase
(2.18)

Fig. 17 is the plot of the average error of the 23 segments. The proposed simplification method

generates a smaller overall error. It outperforms the old simplification method during the time that

the loads are at lower level, and the error during the evening peak is also reduced to an acceptable

range. Without independent load compensation, the average error ranges from about 0.01 to 0.02

pu, or 1.2 to 2.4 volts on a 120-volt base, which is unacceptable for studies in which the voltage

is important. For example, the worst error exceeds typical bandwidth settings on line voltage

regulators. With independent load compensation, the worst average error is about 0.007 pu, or

about 0.8 volts on a 120-volt base, which is near the limit of acceptability. In this example, the

simplified model is useful for voltage studies only with the independent load compensation.

The simulation result can be affected by different window sizes and percentile values for load

behaviors as discussed around Fig. 9. Here we used several sizes of windows to process the

stochastic load, from 1 minute, 2 minutes and 5 minutes up to 50 minutes window length. A

specific percentile load value was taken from each window (e.g. 75%) to represent the load value

of all the other time points inside the associated window.

Fig. 18 and Fig. 19 show some simulation results of the effect of different window sizes

and percentile values applied on the stochastic load behaviors for the simplified model. Since the

estimations become less precise with larger window size, the errors and their standard deviations
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on the simplified feeder model.
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Figure 18: Average error and its standard deviations (averaging among all buses and times of day)

vs. window size (75 percentile value for each window).

Figure 19: Average error and its standard deviations (averaging among all buses and times of day)

vs. percentile value for 5-minutes window.
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Figure 20: Proposed method’s simulation time at different window sizes.

tend to increase as the window size increases. The errors of different percentile values are empirical

results, and the smallest error may occur at different percentile values in a different case. Fig. 20

shows that the simulation time of the proposed method remains about the same with different

window sizes. Therefore, it is better to use a smaller window size for more precise estimates.

Table 2: Average error with standard deviation

Error (p.u.) Proposed method Previous method Improvement

Phase A 0.0021±0.0047 0.0132±0.0089 6 times

Phase B 0.0018±0.0048 0.0081±0.0083 4 times

Phase C 0.0028±0.0057 0.0116±0.0069 4 times

The best result with the smallest error is summarized in Table 2. The new method’s error

is 4 to 6 times smaller than the previous method’s error. The maximum average error is now

approximately 1/3 volt on a 120-volt base; this should be good enough for system optimization

functions, such as conservation voltage reduction accounting for stochastic load behavior. The

previous maximum average error was approximately 1.6 volts; this might have been good enough

to detect voltage violations, but not for system optimization.
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2.4.4 Computation Time Reduction

The computational savings factor is defined as:

CSF =
TFull − TSimplified

TFull
(2.19)

Where TFull is the benchmark simulation time of the full model, TSimplified is the simulation

time required by the simplified model. The result is shown in Table 3.

Table 3: Time Reduction

Metric Full Model Proposed Method Previous Method

Simulation Time 21.352s 7.619s 0.867s

CSF 0.643 0.959

The proposed new method required more time to simulate than the previous method because it

contains many more load compensation sources in the model, see Fig. 8. Nonetheless, it improved

the accuracy and reduced the QSTS power flow simulation time by 65%, producing much smaller

error under the condition of independent temporal loads.
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3.0 Model Order Reduction for Transactive Elements

In the recent years, with the widespread application of advanced information and communica-

tion technologies, buildings and household appliances have become more intelligent, having the

potential to operate more efficiently to achieve higher cost savings by participating in demand re-

sponse (DR) programs. Transactive energy (TE) extends demand response to operate on faster

time scales with multilateral market participation by responsive loads [7]. PNNL has developed

a Transactive Energy Simulation Platform (TESP) for TE system simulations with the transactive

market and new control mechanisms [2]. Accurate and efficient modeling of the end-use load in

a large distribution system is important for studying the aggregate dynamic behaviour and its im-

pact on the bulk system. Previous work on model order reduction for distribution systems with

non-responsive loads are introduced in [57], but that approach did not consider the reduction of

responsive loads. For the large-scale and complex co-simulation environment of transactive sys-

tems in TESP, it is less computationally expensive and more efficient to use aggregated models

of responsive loads to evaluate top-level design approaches and to analyze its impacts on the bulk

system.

As shown in Fig. 21, TESP includes a distribution simulator GridLAB-D [58], a transmis-

sion simulator MATPOWER [59] and a building simulator with multiple transactive agents, and

the integrating Framework for Network Co-Simulation (FNCS) [37] that manages the message

exchange among different simulators and transactive agents. TESP simulations with multiple dis-

tribution feeders in a larger system are time consuming. A single distribution feeder in TESP may

have thousands of houses. Each of these houses uses an equivalent thermal parameters model in

GridLAB-D to generate the load consumption profiles for both responsive and unresponsive loads

[60]. These loads/appliances follow different schedules, thereby representing different behaviours

of each end-user. In the TESP, each residential house is a demander which submits a bid, including

price and quantity, into a double auction market. The HVAC in a house, as an example of the

transactive loads, participates in the market as a transactive element with a thermostat controller

agent. The thermostat controller agent subscribes to the air temperature, HVAC power state, and

the HVAC power from GridLAB-D. The agent then uses this information to formulate a bid for the
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Figure 21: TESP architecture

next cleared market value. After receiving the clearing price from the double auction market, the

thermostat controller agent adjusts the temperature setpoint based on the cleared price and the base

schedule [31]. Simulation platform like TESP have to model the transactive behaviors (bidding

and responding) of over 10 thousands of houses for a larger system, which will lead to days of

simulation time. A reduced order model that has the similar transactive function and behaviors to

the full model can dramatically reduce the simulation time and computational burden. We develop

and test such a reduced order model in this study.

Here we argue that the simulation time can be notably reduced through an aggregate model

with the collective bidding and responding ability. Therefore, accurate aggregation of large num-

bers of end-use loads is needed to account for the transactive behaviours and to model interactions

among different aggregated loads within large systems. Such a reduced aggregate model, in addi-

tion to having lower computation costs and providing faster simulation results, should have also

minimum simulation error compared to the full model. Lower errors will ensure that the simpli-

fications and aggregations is achieved while representing the larger system model precisely. Ex-
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isting studies have focused on the aggregation of thermostatically controlled loads (e.g. HVACs)

since they can actively participate in demand response programs. Aggregated dynamic models are

proposed in [9] for thermostatic loads using stochastic diffusion models by Fokker-Planck partial

differential equations (PDEs). An aggregate controllable model for a homogeneous population of

HVACs and water heaters considering the state transitions is developed in [10]. Data driven ap-

proaches based on Markov chains are proposed in [11] [12], these methods compute the transition

probabilities among different states based on the equivalent thermal parameter (ETP) model. All

the above existing aggregate models have been developed for steady state conditions i.e. when

there is no demand response. The system does not consider the dynamic demand response char-

acteristics of transactive interactions and the heterogeneity in the population. More recently, there

have been studies on the aggregation of price responsive loads as well. For example, in [13], a

method to estimate the aggregate behavior of a group of price responsive loads is proposed to

maximize the profit for the retailer/aggregator with optimal bidding price in a day-ahead market.

The communication flow between the retailer and consumers is one-directional, the price respon-

sive load of the consumers is estimated by the conditional distribution given a retail price. In [14],

an aggregate model for a diverse group of thermostatically controlled loads is proposed, this ag-

gregate model is able to accurately capture the transient dynamics in the collective response under

both steady state and severe dynamic conditions, there is no market and bids involved.

Different from the aforementioned approaches, we aim to obtain a simplified structure for

simulations in order to reduce the simulation time, and is able to collectively generate bids which

accurately represents the aggregate transactive behaviors of consumers in the transactive systems

to participate in the electricity market. The reduced order model for TESP requires bidding and

responding functions to interact with different simulators, thereby produce similar behavior for the

transactive loads to ensure the validity/accuracy of representing the transactive mechanisms of the

full system model which was illustrated in Fig. 21. In order to develop a reduced order model

with low approximation error for faster simulation in the TESP, an aggregation of different houses

is necessary. The aggregate model should have the ability to formulate bids that represent the

functions of transactive loads to participate in the double auction electricity market, and to adjust

the loads based on market clearing price which represents the feature of price responsive.
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In this study, we develop a method to build a reduced order model for TESP. The method is

implemented in TESP as an aggregate responsive load (ARL) agent to replace all the detailed house

models and accordingly to achieve faster simulation results. The ARL agent utilizes two recurrent

neural networks (RNN) with long-short term memory units (LSTMs) to collectively generate bids

and adjust the aggregate responsive load in every market clearing cycle. Through simulation results

we show that the reduced order model with the ARL agent is able to significantly reduce the

simulation time and generate simulation results with low error. Once the ARL agent was trained,

it is able to produce simulation results with low error for large number of houses for different

days/weeks/months as well as generalize the simulation results for different number of houses. We

demonstrate the error characteristics of the reduced order model and its generalization capabilities

by comparing it with the full order model.

3.1 Framework of the Reduced Order Model

Figure 22: Full model and reduced order model
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For comparison, the TESP full model and the proposed reduced order model are shown in

Fig. 22. In the full model, every house is modeled in detail with different individual settings

(temperature schedule, size) and controllers for transactive elements. Each house formulates

bid, and adjusts load based on received cleared price from the auction market, then accordingly

changes the temperature setting to adjust the load consumption individually in every market clear-

ing cycle based on occupant’s preference. The simulation time will increase with the number of

houses. In the proposed reduced order model, the main components is an aggregate response load

(ARL) agent which contains two recurrent neural networks with Long Short-Term Memory Units

(LSTMs). Instead of hundreds or thousands of houses, only two elements exist in the reduced

order model. All the detailed house models which use the equivalent thermal parameter model

are removed and replaced by the aggregate responsive load and the aggregate unresponsive load.

All the transactive elements in the full model are aggregated and represent by the blue box in the

reduced order model as an aggregate responsive load (ARL) agent, see Fig 22. An ARL agent

has the ability to submit bids that represent different houses and provide responses to the market

clearing price with a price dependent load. In this way, a single ARL agent behaves the same as

the transactive elements in hundreds or thousands of houses. All the other loads in the full model

which are not price responsive are represented by the aggregate unresponsive load following a

certain load profile. With this proposed method, every distribution feeder model in a bulk system

can be replaced with a reduced order model. We show that such a model has similar simulation

results to the fill model and the error between the outcomes is very low. Moreover, the proposed

method is able to reduce the simulation time for the feeder model with larger number of houses.

For example, through the proposed method, one can use a full detailed model for one feeder for

observation and change all the other feeders to reduced order models.

3.2 Method

In this section, we first introduce the proposed reduced order model. Then we present back-

ground information on RNNs and LSTMs, followed by the simulation of transactive load in TESP

and the application of RNN with LSTMs in the reduced order model.
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Figure 23: Recurrent neural network structure

3.2.1 Recurrent Neural Network (RNN)

RNN is used as the bid and response neural network in the ARL as described in the previ-

ous section. This section briefly introduces RNN and why it is used to imitate the bidding and

responding behaviours of transactive elements.

Recurrent neural network is a type of feed forward neural network which has an internal mem-

ory [61]. As shown in Figure. 23, RNN performs the same function for every input but the output

of the current input is related to the past computations. Every time RNN producing a output, it

will be sent back into the recurrent neural network. When generating a output, RNN make use of

the current input and also the output that it has learned from the previous input. Unlike the other

neural networks where all the inputs are independent from each other, inputs in RNN are related to

each other. More specifically, while generating an output, RNN structure makes use of the current

input and also the output that it has learned from the previous inputs. Therefore, unlike the other

feed-forward neural networks, RNN structures can be used to model correlations among inputs

from different time steps and learn dependencies across different outputs and inputs.

However, it was shown that RNN structures have several shortcomings [62] [63]. The training

of an RNN could be a difficult process due to the gradient vanishing. If the partial derivation of

error is less than 1 and becomes much smaller during iterations, the contribution from the earlier

steps becomes insignificant in the gradient for the RNN unit, the long-term dependencies will be

ignored during training. If we can not find the gradient, we can not adjust weights in the direction to
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minimize error. It is very difficult to find how important some of the remote inputs are to the current

output. Also, RNN is not able to process very long sequences. Sometimes the current output needs

the information from further back, the gap between the useful information and the point where is

it needed can be very large, RNN may not have the ability to connect the information.

3.2.2 Long Short-Term Memory Units (LSTMs)

A variation of RNN called Long Short-Term Memory units is proposed to solve the vanishing

gradient problem [64] [65]. LSTMs have powerful memories and are capable of learning long-

term dependencies which bring in more flexibility in modeling the input-output relationships. For

example, RNNs with LSTMs are widely used for time series prediction [66] [67]. LSTMs help

reduce the training error which can be back-propagated through time and layers. Accordingly,

LSTMs enable the recurrent neural nets to learn over very long sequences, and make the networks

possible to link the error to remote units.

Standard RNN structures include a chain of repeating modules of neural networks as shown

in Figure. 23. These modules usually are designed using simple structures including only a sin-

gle activation layer that uses for example hyperbolic tangent function (tanh). On the other hand,

LSTMs have the same chain structure, but every module has a more complicated design with three

gates: input, forget and output gates. Through these gates, LSTMs have the ability to update and

control/model the information flow. Specifically, the LSTM cell learns when to allow data to en-

ter, leave or be deleted by these gates through the training process, back-propagating error, and

adjusting weights via gradient descent.

σ denotes a sigmoid activation function, tanh denotes a hyperbolic tangent activation function.

The lower left of the cell operates a concatenation of the new inputXt and the previous output yt−1.

The line running through the top of each cell is the cell state of LSTMs. Along the entire chain,

LSTMs are able to add or remove information to the cell state by the regulation of different gates

as shown in Figure. 24. Different from the normal RNN, LSTM cell has more information, these

information can be stored, read and modified by different gates. These gates will open and close

to block and pass the signal they received based on the importance, which is determined by the

weights that are adjusted by the learning process. The following equations are used to determine
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Figure 24: Connection of LSTM cells and its internal structure

the gate state, W represent the weight matrices connecting xt to different gates, b is the bias term

of different gates.

forget gate:

ft = σ(Wf · [yt−1, xt] + bf ) (3.1)

The forget gate in Figure. 24 determines what information to be thrown away from the cell

state. It will take the previous output and current input, output a number between 0 (delete all) and

1(keep all), then acting on information in the previous cell state Ct−1 to control it.

input gate:

it = σ(Wi · [yt−1, xt] + bi) (3.2)

cell input:

C̃t = tanh(Wc · [yt−1, xt] + bc) (3.3)

The input gate determines which new information is going to be added to the cell state, the sigmoid

function will select which value to go through, the tanh function will give the level of importance

to these values.

update cell state:

Ct = it ∗ C̃t + ft ∗ Ct−1 (3.4)
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Multiply ft with the old cell state Ct−1 and combined the updated old state with it ∗ C̃t from the

input gate is the new cell state value Ct. Then information in the new cell state will be used to

determine the output.

output gate:

ot = σ(Wo · [yt−1, xt] + bo) (3.5)

A sigmoid function is applied to find which part of the cell state will be output. The cell state will

go through a tanh function ranging the value from -1 to 1 and multiply it with the output of sigmoid

function to get yt.

yt = ot ∗ tanh (Ct) (3.6)

LSTM cell structure helps error to be back-propagated through time and layers. By maintaining a

more constant error, LSTMs make it possible for RNN to learn over many time steps by opening a

channel to link causes and effects remotely. Due to the powerful features and its recurrent nature,

a single layer of LSTM units can be considered as a deep neural network.

3.2.3 Components and Functions of the Aggregate Responsive Load (ARLa)

Figure. 25 is an enlarged model of ARL. There are two main components in the ARL, the

bid RNN and the response RNN. The bid RNN manages to generate bids for the given input

features which are related to the bidding formulation in the original TESP mechanisms. ARL

then sends these bids to the market shown as (1) in Figure. 25, and the market agent will send a

cleared price back to ARL after each market clear. Then the response RNN will receive the cleared

price as one of the input features, combined with some other input features, the response RNN

generates transactive loads for individual houses shown as (2) in Figure. 25. The summation of

these transactive loads is used to represent the aggregate responsive load in the feeder shown as (3)

in Figure. 25. The two main functions of the proposed ARL are:

1. Formulate bids (bid RNN):

a. Obtain the previous market cleared price.

b. Generate bids(price, power) for a given number of houses.

c. Send the bids to the market agent.

2. Adjust loads based on cleared price (response RNN):
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Figure 25: Detailed model of the aggregate responsive Load
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a. Receive the cleared price from the auction market.

b. Determine the aggregate transactive load based on the cleared price.

c. Adjust the load value in GridLAB-D.

Equation 3.7 is how every single house in TESP formulate individual bid price. Where Paverage

is the mean value of historical price, khigh/low is a bidding ramp denominator, σprice is the standard

deviation of historical price,
∣∣Tmax/min

∣∣ is the allowed range of set point variation. These factors

can be summarized as the historical price, and individual thermal settings.

P bid = Paverage +
(Troom − Tschedule)× khigh/low × σprice∣∣Tmax/min

∣∣ (3.7)

After sending bids to the market, the substation will receive a cleared price and send back to

the HVAC controller of each house. Every house then adjust the temperature based on Equation

3.8 so that the transactive load (HVAC load in this case) is changed in responding to the cleared

price.

Tset = Tschedule +
(Pcleared − Paverage)×

∣∣Tmax/min

∣∣
khigh/low × σprice

(3.8)

From the above equations, it can be observed that the bidding of HVAC is related to the thermal

environment of each house and the price information. Since the thermal environment of a house

is highly related to the previous states, the bidding price of the individual HVAC can be treated as

a sequence of data which has dependency over different time steps. Specifically, a bidding price

at time t could be affected by the bid price, cleared price of some time earlier in the same day.

Therefore, we take the key factors that contribute to the formulation of bid price as input features

to train an RNN to learn the function of bidding. After training, one RNN can be used to obtain

the bid price for different houses with different input parameters such as the cleared price from

the previous time step, the pre-defined temperature schedule and the thermal parameters of houses

etc.. As mentioned in Section 3.2.2, by the RNN with LSTMs, not only the current inputs but also

important information like the thermal environment from historical inputs will be considered when

deciding the output. It allows the ARL agent have similar behaviors when formulating the bidding

price as the original simulation.
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Similarly, RNN can be applied to perform the response-to-price function of the transactive

elements in the same way. The thermal state parameters of a house are key factors to determine the

HVAC power consumption. The room temperature of a house is determined by the HVAC power

output and the thermal environment of the previous time step. Thus, the load of each individual

HVAC is also a sequence of values that has time series relations. Taking the cleared price as an

input, together with thermal parameters and schedule of different houses, an RNN can be trained

to generate the HVAC load given a cleared price.

In the reduced order model as shown in Fig. 25, two main components, bid RNN and re-

sponse RNN keep the same functions as described in Equation 3.7 and 3.8. These RNNs are

trained by the simulation data of different houses from the full model simulation in TESP. After

training, the ARL agent is able to generate rational simulation result of different days with different

weather and schedule inputs. Input features for bid RNN and response RNN are listed in Table 6 as

ARLa. Note that the thermal integrity (TI) and the size of the house (SF) are easily obtained while

Ua, Ca, Cm, Hm are difficult to acquire. These parameters are readily available from GridLAB-D

simulation, but in real life they might have to be estimated [68].

Input features for different networks are listed in Table 4 and Table 5.

Table 4: Input features for bid RNN

Input Features of Bid RNN

Cleared price(t-1) Pcleared(t−1)

Outside Temperature To

Temperature Schedule Tdesired

Controller ramp Ramp

Temperature range Trange

Thermal envelope of the house Ua

Total air mass Ca

Total thermal mass Cm

Interior mass surface conductance Hm
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Table 5: Input features for response RNN

Input Features of Response RNN

Cleared price(t) Pcleared

Outside Temperature To

Temperature Schedule Tdesired

Controller ramp Ramp

Temperature range Trange

Thermal envelope of the house Ua

Total air mass Ca

Total thermal mass Cm

Interior mass surface conductance Hm

Thermal integrity TI

Size of the house sqft

With RNN and LSTMs, not only the current inputs but also important information like the

thermal state from multiple previous inputs will be considered when deciding the current output.

It makes the ARL model have similar features as the original simulation. The design of the ARL

agent is listed as follows :

ARL agent attribute:

1. House number : the number of houses with transactive HVAC controller

2. Bid RNN : a recurrent neural net which generate bids

3. Response RNN : a recurrent neural net which generate loads in response to cleared price

4. Unresponsive load : all the unresponsive load in the feeder in kW

5. Cleared price : the cleared market price of the current market clearing cycle $/kwh

ARL agent functions:

1. Inform bid : set the cleared price attribute.

Arguments: price
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2. Generate bid: output the list of bidding price,bidding quantity and the states on HVACs for the

given time step.

Arguments: day, t, input tensor (input features for bidding)

Return: bids

3. Set hvac load : set the aggregate HVAC load attribute

Arguments: day, t, input tensor (input features for response RNN)

3.2.4 Aggregate Responsive Load for Different Number of Houses (ARLb)

In TESP, as the total number of houses increases, the load on this feeder may have a minor

impact on the bulk system, which could lead to congestion and thus affect the market cleared price.

Examples of bulk market operations can be found in [69]. On the other hand, with more houses,

there is more demand on the feeder which lead to higher market clearing price, and consequently

higher bidding price for some consumers during certain time of the day. The increasing number

of houses may also lead to congestion during peak demand periods. Due to these factors, the

bidding behaviors for the same house can be different when the total number of houses in the

feeder changes. Consequently, the individual HVAC load behavior is also affected by the total

number of houses, and the aggregate HVAC load will not simply scale up with house number

which can be observed from the TESP simulation result in Section 3.4.2 . Here, we propose we

extend the ARL model from Section II.D to capture the bid and response behaviors affected by the

total house number and produce simulation results of any given number of houses after training.

Fig. 26 is a variation of the ARL agent which has several different input features for the bid

RNN and response RNN. The main components and the steps (1) (2) (3) are the same as described

for Figure. 25 in Section.3.2.3, but the inputs for the RNNs are different. Specifically, the bid RNN

and the response RNN both take the total house number and the behaviors from case nmax as addi-

tional inputs to learn the impact of house number on both bidding and price responsive behaviours.

All input features of the RNNs are listed in Table 6 as ARLb. For the training of networks in Fig. 26,

TESP simulation result of different cases with total house number n = {n1, n2, n3, ..., nmax} are

used. In the modified ARL agent, the networks learn the bid and response behaviors of case

n1, n2, n3, ... from case nmax. Comparing with the networks in Section 3.2.3 which generalize the
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Figure 26: A variation of the bid and response networks

result of different days, the changes in Fig. 26 enable the ARL agent to have better performance

in the generalization of simulation cases with different numbers of houses. The inputs of different

ARL are summarized in the Table 6 below.
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Table 6: Input features for bid RNN and response RNN

Input Features
ARLa ARLb

Bid RNN Response

RNN

Bid RNN Response

RNN

Cleared price Pcleared Pcleared Pcleared Pcleared

Outside Temperature To To To To

Temperature Schedule Tschedule Tschedule Tschedule Tschedule

Controller ramp khigh/low khigh/low khigh/low khigh/low

Temperature range Tmax /min Tmax /min Tmax /min Tmax /min

Thermal envelope of the house Ua Ua Ua Ua

Total air mass Ca Ca Ca Ca

Total thermal mass Cm Cm Cm Cm

Interior mass surface conductance Hm Hm Hm Hm

Thermal integrity TI TI

Size of the house SF SF

Total house number n n

Bids of nmax houses Bid

HVAC load of nmax houses Load
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3.3 Performance of the Proposed Method

In this section, functions and performance of the proposed two RNN with LSTMs networks

are shown separately. The bid RNN is responsible for generating bids and the response RNN is

responsible for determining the load value of transactive elements (HVACs in this case).

Figure. 27 is the performance of the bid RNN compared with the original simulation result

with detailed house model in TESP. Different sub-figures show the HVAC bidding price of different

houses during a 24 hours time period. It can be observed that the bidding price of different houses

have a similar trend but some are far from each other at certain time of the day. This is due to

the slightly different schedule and some random parameters of the house model. With the bid

RNN, we are able to generate very similar bid price for different houses by a single network.

Some of the small fluctuation is not captured very well but the overall accuracy is acceptable

for representing the bidding function of HVAC controller and house model in the original TESP

simulations. Similarly, Figure. 28 shows the training result of the bidding price for 1500 houses.

Once the ARL generate the bids of different house at every market cycle, the market agent

then collects all the bids from the ARL agent and formulate a bidding curve which accumulates

the sets of price and quantity. The order of the curve is descending by the bidding price. In Figure.

29, we compare the bidding curves generated by bid RNN and the original HVAC bids in TESP

full model at different time of the day. The bid RNN is able to reproduce very similar result for

most of the time, but failed to match the original result at the end of the day. This is due to the

reason that the bid price obtained by RNN is not very well matched. As shown in Figure. 27, some

peak values between time step 200 and 300 are not captured by the RNN. Therefore, some of the

bidding price generated from RNN is lower than TESP, and the RNN bidding curve is far below

the TESP bidding curve as can be observed in the bottom part of Figure. 29.
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Figure 27: (1) Bidding price of individual house generated from LSTMs (306 houses)

Figure 28: (1) Bidding price of individual house generated from LSTMs (1500 houses)
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Figure 29: Bidding curve comparison (306 houses)

Figure 30: Bidding curve comparison (1500 houses)
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Figure 31: Bidding curve comparison (1500 houses)

Figure 32: HVAC load of individual house generated from LSTM given the cleared price
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Figure 33: Aggregate HVAC load given the cleared price (306 houses)

Figure 34: Aggregate HVAC load given the cleared price (1500 houses)
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Figure. 30 and Figure. 31 shows the comparison of bidding curve for 1500 houses at different

time of the day between the TESP simulation result and the bid RNN result. The bidding curves

are well matched for most of the time. When there is capacity limit, a vertical line at the capacity

limit will cut through the bidding curve, the price value at the intersection of the bidding curve and

the vertical line will be the cleared price for the current market clearing cycle. Therefore, there

will not be a significant difference between the cleared price of the reduced order model and the

full model if the bidding curve is well matched.

Figure. 32 shows the HVAC load of each individual house of a day generated by the response

RNN after training, with the cleared price from TESP as one of the input features, a response RNN

can produce similar load behaviours of the HVAC in different houses. It can be observed that

the load behaviours of different houses have big difference due to the temperature schedule and

thermal parameters. The response RNN is able to learn to adjust the load value of different houses

by the input features listed in Table 5.

As described in Figure. 25. The ARL needs to collect all the HVAC loads to obtain an ag-

gregate transactive load. This step can be done by adding up all the HVAC loads at different time

steps. Figure. 33 shows the result of aggregate HVAC load of different days. These are the results

using the training data, the aggregate HVAC load generated by the response RNN is very close to

the original simulation result in TESP with the detail house models.

Figure. 34 shows the aggregate HVAC load of 1500 houses of different days generated by

the response RNN, the results are compared with the TESP full model simulation result. The

aggregated load are smoothed out due to the increasing number of houses. The response RNN is

able to generate similar 1500 houses result as the TESP benchmark.

3.4 TESP Simulation with the Reduced Order Model

In this section, we describe the simulation scenarios and present numerical results. The per-

formance of the proposed reduced order model is compared with the simulation result of a full

model. The reduced order model is implemented in TESP and it communicates with the market

agent and substation agent as shown in Figure. 21. All the houses are removed in the reduced or-
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der model, replaced by an aggregate responsive load (ARL) agent and an aggregate unresponsive

load in GridLAB-D. Aggregate unresponsive load follows a given temporally changing load shape

representing all the loads which are not transactive. Aggregated responsive load represents all the

transactive loads and has two functions, generating bids for a given number of houses and adjusting

the aggregate responsive load (total HVAC load) based on the cleared price of the market. Note

that the transactive load in this simulation is HVACs, other responsive load such as water heaters

can also participate [70]. The bid and response RNNs in ARL use updated cleared price from

TESP simulation in real time as one of the input features as shown in Table 6.

Benchmark simulations in TESP take TMY3 data of Miami, Florida as the weather input [71].

The simulation data are generated for different cases with 600, 900, 1000, 1400, 1500 houses

for training ARL. The training of ARLa as introduced in Section 3.2.3 and ARLb as described in

Section 3.2.4 use different training data, details are described in the following sections.

In different simulation cases, the parameters of individual houses are different as summarized

in Table 7. There are three kinds of houses with different mean square footage. For different

regions of the USA, the proportion of each type of the house is different. Singe family houses

range from 2209 sq.ft. to 2951 sq.ft.; apartments range from 798 sq.ft. to 901 sq.ft.; and mobile

homes range from 1054 sq.ft. to 1093 sq.ft.. The HVAC setpoint variation range Tmax /min ranges

from 2◦F to 4◦F. The bidding ramp of an individual HVAC controller khigh/low ranges from 0.5

to 3. The thermal integrity of different houses are all uniformly chosen from the set: {very little,

little, below normal, normal, above normal, good, very good}; these values are associated with the

insulation R-values of the thermal envelope of the house which affects inside-outside air exchange

rates. The cooling set points of the HVACs are randomly chosen within different ranges; these

ranges change regionally. In our simulations, for this set point we a range from 65◦F to 85◦F. The

detailed parameter definitions are available on github1.

1https://github.com/pnnl/tesp/blob/master/src/tesp support/tesp support/feederGenerator.py
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Table 7: Simulation parameters of different houses

House parameter Range / Set

Tmax /min (setpoint variation range) 2◦F ∼ 4◦F

khigh/low (bidding ramp) 0.5 ∼ 3

Cooling Setpoints 65◦F ∼ 85◦F

Thermal Integrity Very little ∼ Very good

Type of house Single family, Apartment, Mobile home

The reduced order model attempts to speed up the simulation without affecting the simulation

performance metrics. To evaluate the error, we use simulation results from TESP full models

as benchmark. The absolute difference between the metrics of interest (cleared price, aggregate

HVAC loads) for the full model and reduced order model can be computed for each simulation

time step. The mean absolute error (MAE) is calculated as shown in Equation 3.9 for different

simulation cases.

AMAE
err =

n∑
t=0

1

n


∣∣∣Asimt − Afullt

∣∣∣
Amax

 (3.9)

Where A is the metrics of interest, n is the total number of simulation time steps.

3.4.1 Reduced Order Model for the Generalization across Different Days (ARLa)

For the training of the bid and response RNNs that are presented in Fig. 25, we used 5 weeks of

simulation data from May 28th to July 2th generated by the TESP full model with 1500 houses. For

testing we assumed 1500 houses, and we used the TESP full model simulation results for the weeks

of July 9th and August 6th. Specifically, cleared price, bids and HVAC loads of each individual

house were extracted from the simulation results and used for training. After training, the model

is tested across different months. The training results are shown in Figures 35-37, the test results

are shown in Figures 38-41. We compared the full model and reduced order model results based

on mean absolute bidding price error and mean absolute HVAC load error as shown in Fig. 42.
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Figure 35: Aggregate parameters of 1500 houses from the reduced order model and the full model

Figure 36: Transactive Load and the cleared price on 1500 houses
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Figure 37: Total feeder load

The cleared price is affected by the bids from transactive loads and the aggregate transactive

load is changed based on the cleared price. Therefore, the cleared price and the aggregate HVAC

load are two main metrics to be observed in order to test the validity of the fully connected simu-

lation model with the proposed ARL agent. Fig. 36 shows the simulation result of five day cleared

price and aggregated HVAC load of the reduced order model and full TESP model on training data

sets. Fig. 35 shows the transactive load related variables in the simulation of the reduced order

model and the full model. In the reduced order model, these variables are calculated with the

bids generated from the ARL agent, accurate estimation of these variables with ARL agent can

improve the consistency of cleared price with the full model. In this case, after the market collects

bids from the aggregate responsive load, the aggregated unresponsive bidding load are calculated

by subtracting all the HVAC loads (determined by the response RNN from last market clearing

cycle) from the total substation load.

It can be observed from Figure. 36 that simulation of reduced order model with the ARL agent

is able to produce similar load consumption patterns of transactive HVACs as the full model of

TESP. The morning peak and evening peak are well captured. The reduced order model is also

able to produce the relatively small fluctuation such as the short peak at 6am every day. Corre-

spondingly, the cleared price of the reduce order model also matches with the TESP simulation

result which validates the bidding function of the proposed ARL agent
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Figure 38: Transactive Load and the cleared price on 1500 houses (test data set 1)

Figure 39: Total feeder load (test data set 1)

Figure 40: Transactive Load and the cleared price on 1500 houses (test data set 2)
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Figure 41: Total feeder load (test data set 2)

Fig. 38-41 shows the simulation results of cleared price and aggregated HVAC load of the

reduced order model and full TESP model in two different test cases, one is the result from the

week of July 9th, the other is from the week of August 6th. These results demonstrate that the ARL

agent is able to learn the bidding and responding functions of the transactive load and generate

appropriate simulation result of days from different months under different outside temperature.

To summarize the training results, the MAEs of bidding price and aggregated HVAC load

across different days are shown in Fig. 42. Maximum bidding price error is less than 3% and

maximum aggregate HVAC load error is less than 8%. It can be observed that the maximum errors

occur around 6:00 and/or 18:00. This is due to the slight time shift between the ARL and full

model results as shown in Figures 36, and 38. Nonetheless, the average error is acceptable and the

overall trends of the full and reduced order model transactive behaviour are very well matched.

The error of the reduced order model is summarized in Table 8. The reduced order model has

steady performance over different cases. There is no significant difference between the error of

training and testing cases.
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(a) Average mean absolute error of bidding price
from different houses across a day.

(b) Average mean absolute error of aggregate
HVAC load across a day.

Figure 42: Average error changing across a day

Table 8: MAE of training and testing cases

Mean Absolute Error (MAE)

cleared price Aggregate load

Training - June 0.027 0.053

Testing 1 - July 0.030 0.054

Testing 2 - August 0.024 0.042
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3.4.2 Reduced Order Model for the Generalization across Different Number of Houses

(ARLb)

Figure 43: Cleared price and aggregate HVAC load from TESP full model

Fig. 43 shows the TESP simulation result of different number of houses. As described in Sec-

tion 3.2.4, there are obvious distinctions on cleared price among different cases and the aggregate

HVAC load doesn’t scale up as the number of houses keeps growing. The ARL agent in Fig. 25

are not able to capture the bidding and responding behaviors affected by the changing number of

houses. For the generalization across different number of houses, the ARL model in Fig. 26 are

used. In this case, TESP simulation data from 600, 900, 1000, 1400, 1500 houses are chosen as

the training data. After training, the ARL agent is tested in the reduced order model with differ-

ent number of houses and compared with the simulation results of TESP full model. The test set

results are shown in Fig. 44-48 with 498, 699, 798, 1200, 1299 houses respectively. The average

performance metrics across different days are shown in Fig. 49.

Fig. 44-48 shows the simulation results of the reduced order model after training. When the

house number is below a certain limit, there is little impact on the bulk market operation as the

house number increases, tiny variations of the cleared price can be observed in Fig. 44-46. When

the house number is beyond a limit such as the case in Fig. 47 and Fig. 48, the increasing load

(even small amount) triggers congestion on the bulk system, leading to abnormal cleared price. We
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Figure 44: test case: 498 houses

Figure 45: test case: 699 houses

Figure 46: test case: 798 houses
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Figure 47: test case: 1200 houses

Figure 48: test case: 1299 houses

Figure 49: Average Error (mean absolute error (percentage))
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compare the simulation results of the proposed reduced order model with the original simulation

result in the full TESP model. Similar to the full TESP model simulation results in Fig. 43, these

results are different test cases with different number of houses on the feeder. It can be observed that

the aggregate HVAC load doesn’t simply scale up with house number, the HVAC load behaviors

change as the total number of houses grows. The cleared price also varies in different cases. In

Fig. 47 and Fig. 48, the cleared price is affected by the congestion starting around 6pm every

day, the ARL agent is able to predict it based on the learning from the training data. These figures

demonstrate that the reduced order model is able to generate results similar to the full TESP model.

Fig. 44-48 also illustrate that the proposed reduced order model generalizes well on feeder models

with different number of houses. The cleared price matches well in different cases which verifies

the accuracy of the bid RNN’s bidding function in the reduced order model. The aggregate HVAC

load is also consistent with the trend of total HVAC load in the full TESP model. Small spikes

and different peaks are well captured which verifies the function of the response RNN to rationally

adjust HVAC load based on cleared price according to the TESP transactive mechanisms. To

summarize the results, the MAEs of cleared price and aggregated HVAC load across different days

are shown in Fig. 49. Maximum cleared price error is less than 1.4% and maximum aggregate

HVAC load error is less than 8.5%. The maximum errors occur around 6:00 and/or 18:00 due to

the slight time shift between the ARL and full model results as shown in Figures 47, and 48.

Table 9: MAE of different cases

Mean Absolute Error (MAE)
Case Cleared price Aggregare load

300 houses 0.0001 0.032
498 houses 0.0012 0.030
600 houses 0.0014 0.029
699 houses 0.0015 0.028
798 houses 0.0017 0.028
900 houses 0.0029 0.028
1000 houses 0.0083 0.028
1200 houses 0.0094 0.033
1400 houses 0.0082 0.032
1500 houses 0.0062 0.028
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The errors of different cases are summarized in Table 9. There is an increasing trend in the

average price deviation as the number of houses increases, the highest average price deviation is

still less than 0.01 in the case with 1200 houses. The average load deviation is stable around 0.03

for all the cases.

3.4.3 Simulation Time Reduction

Table 10: Time Reduction

5-day Simulation Time
Case Reduced order model Full model Time reduction

300 houses 312.2s 1080.3s 71.1%
498 houses 329.6s 2006.3s 83.5%
600 houses 356.4s 2174.9s 83.6%
699 houses 369.1s 3060.9s 87.9%
900 houses 396.9s 3366.9s 88.2%

1000 houses 419.9s 4061.8s 89.7%
1200 houses 458.6s 4715.1s 90.3%
1400 houses 499.0s 5670.3s 91.2%
1500 houses 513.9s 6681.3s 92.3%

The simulation time of different cases is summarized in Table 10. The reduced order model

can save approximately 80% to 90% of simulation time. It can be observed that the time reduction

becomes more significant as the number of houses increases. The reduced order model is able to

reduce 92.3% of the simulation time for a feeder model with 1500 houses.

Fig. 50 is a plot of simulation time vs. increasing house number with extrapolation. The

percentage values are the time reduction achieved by the reduced order model. The simulation

time of the full model increases nonlinearly with the number houses due to the messaging between

increasing number of agents. It can be estimated that even more time reduction can be achieved as

the number of houses continues to increase.
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Figure 50: Simulation time comparison
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4.0 Automatic control of Transactive HVACs

The increase in population, rapid urbanization, and the usage of various household appliances

leads to increasing energy consumption. It is crucial that the energy providers are reliable and flex-

ible based on these increases in the demands. Demand response (DR) of the energy providers

motivates the consumers to adapt their energy consumption in response to the market pricing

signals [72]. In the recent years, with the widespread application of advanced information and

communication technologies, buildings and household appliances have become more intelligent,

having the potential to operate more efficiently to adjust their usage based on the DR and also

to achieve higher energy savings. Transactive energy (TE) extends DR to operate on faster time

scales with multilateral market participation by responsive loads [7]. In this study, we focus on TE

systems with HVAC as a responsive load.

Electricity use by residential air conditioners accounts for 14.7% of the total power consump-

tion in the US, which was the largest use of electricity by the U.S. residential sector in 2018 [73].

With the advancements in technology, HVAC systems can be designed to participate in TE sys-

tems with energy providers by modifying the temperature levels at each individual residence based

on the consumer needs, available energy levels and energy prices. HVAC load can be shifted by

pre-heating or pre-cooling the houses providing flexibility to these systems for intelligent opera-

tion based on TE [74]. However, consumers are generally willing to pay more for comfort. For

example, it was shown that residential consumers will pay two times the actual price for electricity

during a power outage [75]. This may be partially due to the fact that the consumers may not

be aware of the price changes and/or they may not be willing to compromise on their comfort.

However, another factor that contributes to this is that the current HVAC (or other household appli-

ance) technology does not adjust energy consumption patterns that can balance between consumer

comfort and energy savings. We argue that future HVAC technology should enhance an intelligent

automated operation for active participation of the consumers to achieve this balance between price

and comfort [76].
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Real-time thermal control is required for the HVAC systems to participate in TE in an au-

tomated manner. Traditionally, model-based approaches are used for thermal control problems

[77–79], often requiring simplified mathematical modeling of the dynamics of the HVAC systems.

However, model-based approaches require time and domain expertise [80] to obtain a robust and

generalized approach for HVAC thermal control strategy design due to various randomness orig-

inating from individual residences (e.g. size, thermal integrity, window wall ratio and different

behaviors of the end users) which introduces additional complexity and uncertainty to the control

problem.

In order to address this randomness, artificial intelligence (AI) was applied in many optimal

decision-making problems in TE by imitating human behavior and automating the control of the

appliances such as HVAC systems. To solve such problems, especially reinforcement learning

(RL) was utilized. RL is a machine learning approach with a strong ability to learn and adapt

through the interaction with the environment of real world applications. It was shown that with

the help of RL, a well designed TE scheme can achieve better performance on the optimal control

and decision making of residential appliances. For example, most studies demonstrated the use of

a popular RL method, Q-learning [81], in DR and TE [82–84]. Another RL based method was

proposed in [85] for the modeling and learning of TE for plug-in electric vehicle (PEV) charging

to reduce the long-term cost. Yang et al. used RL to solve the optimal control of a building

energy system [86]. In [87], with the predicted future price, the authors proposed a multi-agent RL

algorithm to make optimal decisions for the control of various home appliances. In [88] and [89],

batch RL algorithms were proposed to schedule thermostatically controlled loads and water heaters

participating in a day-ahead market. However, few of the studies modeled the appliances with a

high level of detail. Most of the above mentioned approaches did not have a practical way to deal

with the continuous space of the controlled state (temperature) of the HVAC systems. Moreover

due to limitations in the simulations, these studies failed to provide a high degree of granularity in

the precise control of the HVAC.

In this study, we develop an RL-based approach for precise control of HVAC systems that

are participating in the energy market as transactive elements in the Transactive Energy Simu-

lation Platform (TESP) [90]. TESP was developed by Pacific Northwest National Laboratory

(PNNL) as an open-source simulation platform with transactive market and control mechanisms
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Figure 51: TESP and the implementation of proposed methods

for the grid [2]. TESP includes distribution simulator, transmission simulator and building simu-

lator with multiple transactive agents, and the integrating Framework for Network Co-Simulation

(FNCS) [37] that manages the message exchange among different simulators. In order to have an

intelligent and granular control of the HVACs, we utilize RL and formulate the control problem as

an optimization of cost function that balances between the electricity cost and end-user satisfaction.

More specifically, combined with a price prediction method using historical data, we adopt Deep

Deterministic Policy Gradients (DDPG) RL algorithm. The methods are implemented as an RL

agent in TESP simulations. DDPG is a deep reinforcement learning approach developed for con-

tinuous action space; therefore it is naturally suitable for the control of HVAC systems achieving

a finer and more precise control. We specifically use DDPG RL to control the base temperature

schedule of the HVAC in TESP to make the TESP thermostat controller respond to the cleared

market prices more intelligently at each time step to maximize the long term reward that balances

between electricity cost and end-user satisfaction.
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4.1 TESP HVAC and Problem Formulation

In this section, we describe the formulation of the optimum HVAC control balancing between

energy cost minimization and customer satisfaction based on RL. This RL based method relies on

the predicted energy price; therefore, a price prediction method based on ANNs is also presented

in this section.

4.1.1 HVAC Response and Problem Formulation

In a transactive energy system, residential users are able to participate in TE through a trans-

active HVAC system. Transactive HVAC systems are flexible, and they can adjust the power con-

sumption by changing the temperature settings in residences. Here, we formulate the HVAC tem-

perature control objective to minimize the electricity cost and the dissatisfaction of the customers

caused by the temperature differences between the desired and adjusted temperature settings. We

argue that the current room temperature depends on the HVAC state and power, outdoor temper-

ature, and the room temperature of the previous time step. Accordingly, different than the legacy

ramp transactive control mechanism used in TESP [31], we formulate the HVAC control through

a Markov Decision Process (MDP) to optimize the energy cost and customer satisfaction simulta-

neously. MDP is a mathematical framework that satisfies Markov property and has four elements:

a set of states which represent the environment, a set of possible actions for each state, a reward

function to assess the value of each action taken at a certain state, and the rules for the transitions

among different states. Below is the description of the state, action, and reward function tailored

to the HVAC; the control flow of HVAC based on MDP is shown in Fig. 52.

The HVAC power consumption is influenced by various factors. We consider these factors as

the elements of the HVAC state in the MDP model. We denote the HVAC state at time t as St,

see (4.1). The observable state of an HVAC should contain information about both indoor and

outdoor environment as they significantly affect the energy consumption. Therefore, the indoor

temperature T troom and outside temperature T tout at time t are considered as elements of the HVAC

state. In addition, the desired or scheduled base temperature, T tschedule, of the house is included in

the HVAC state. Finally, since the HVAC on/off status at time t depends on price-responsive T tset

and the current indoor thermal environment, T tset is also included in the HVAC state.
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Figure 52: HVAC control flow and settings; discomfort region shaded in pink.

St = {T tset, T troom, T tschedule, Tout} (4.1)

T tset = T tschedule +
(P t

cleared − Paverage)×
∣∣Tmax/min

∣∣
khigh/low × σactual

(4.2)

The relation between T tset and T tschedule in TESP is shown in (4.2), where Paverage is the historical

mean price,
∣∣Tmax/min

∣∣ is the allowed range of set point variation , khigh/low is the bidding ramp

denominator, σactual is the standard deviation of the price. Bidding ramps and allowed temperature

ranges could be unequal above and below T tschedule as in [31].

The aim of the HVAC control is to minimize the cost by changing the HVAC temperature

setting schedule, T tschedule. Therefore, in our formulation, the learning agent of the RL approach

based on MDP assumptions is designed to make changes in the scheduled temperature deviating

from the original schedule based on a reward function. The action is the temperature change from

the original schedule in a certain adjustable range, e.g. [-5,5] degrees Fahrenheit.

The reward of each action consists of two parts, the penalty for the energy consumed by the

HVAC during the time period and the discomfort of the consumer resulting from the control action

taken at a given state. The discomfort is the estimated feedback of the occupants’ dissatisfaction

under the current thermal condition. The reward at each time step is defined as:

rt = −α(Et
hvac × P t

clear)− (1− α)k × (T tdev)
2 (4.3)
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T tdev = (T troom − T tschedule) (4.4)

where α represents the importance of the cost of energy consumption of the HVAC. Et
hvac is

the energy consumption of the HVAC during this time step. P t
clear is the cleared price from TESP.

The cost will be higher if more energy is consumed when the price is relatively high. The second

term is the consumers’ dissatisfaction cost which is calculated by multiplying a factor k by the

squared room temperature deviation T tdev from the original schedule temperature.

4.2 Deep Deterministic Policy Gradient

Model-based or model-free approaches can be used in reinforcement learning to optimize en-

ergy cost and/or thermal comfort through the control of HVAC [91]. Model-based approaches

require complete information of the HVAC thermal dynamics to represent transition among differ-

ent states. For example, for the model-based approaches, accurate dynamic interactions between

the residence and the surrounding environment may be needed. In contrast, model-free methods

are more flexible to overcome the detailed modeling of the HVAC dynamics and accordingly to

represent state transitions.

Q-learning, state-action-reward-state-action (SARSA) and deep Q-networks (DQN) are com-

monly used for model-free RL [92]. However, they cannot be used to solve control problems with

both continuous state and action spaces. For instance, in order to utilize DQN for HVAC control,

temperature of the HVAC can be discretized finely, resulting in a large number of possible actions.

But higher granularity of the action space will decrease the training efficiency dramatically. DDPG

is a deep reinforcement learning method which is capable of handling a space of continuous states

and actions. There exist other off-policy algorithms like soft actor critic (SAC) [93] and twin de-

layed DDPG [94] which are variations of the DDPG algorithm. They can also be used to solve the

continuous control problem such as HVAC control. In this study, we utilize DDPG for the control

purposes as we can show through our numerical results that the reward convergence is robust to

the changes in the hyperparameters.
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Figure 53: (a) Input HVAC state, DDPG is able to generate continuous action control. (b) The

network structure of DDPG implemented as the RL agent. The actor network specifies a control

action given the current thermal state and the critic network outputs an evaluation of the action

generated by the actor network.

As shown in Fig. 53(a), for any given input state, through the interaction of actor and critic net-

works, DDPG is able to generate optimal control action directly rather than by fine discretization

of the action space. The network structure of the DDPG method is presented in Fig. 53(b). More

specifically, DDPG is implemented here through an actor-critic architecture that learns approxima-

tions to both policy function, θµ, and value function, θQ. An actor is used to tune the parameter

θµ for the policy function (i.e., to decide the best control action At given a specific HVAC state St,

where θµ represents the weights of the actor neural network). On the other hand, a critic network is

used for evaluating the policy function estimated by the actor network. Here, the critic network’s

parameters are denoted by θQ. Critic network estimates the action value Q which is the expected

reward of taking the control action At at state St.

The actor network and the critic network are trained through the TESP simulations which

enables evaluation of different actions for different HVAC states. After training, during testing,

through the interaction between actor and critic networks RL-based control outputs an optimum

action that is used by TESP to control the HVAC. The training details of the actor and critic

networks are provided in Algorithm 1 and Fig. 54.
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Algorithm 1 DDPG

1: procedure DDPG RL(θµ,θQ)

2: Initialize memory M of size N ;

3: Initialize the actor network µ(St|θµ) and critic network (St, At|θQ)

4: with random parameter θµ and θQ

5: Initialize the target network µ′ and Q′ with θµ
′
← θµ ,θQ

′
← θQ;

6: Input the estimated price {P̂clear}T0 ;

7: Define st = {T tset, T troom, T tout, Tschedulet};

8: Receive the initial HVAC state s0={T 0
set, T

0
room, T

0
out, Tschedule

0};

9: for t=0,1,2,..,T do

10: Select at by at = µ(st|θµ) +Nt;

11: Execute at on HVAC and obtain the reward r(st, at) and next state st+1;

12: Store the transition (st, at, rt, st+1) in M;

13: Sample K transition from M randomly and calculate the estimated policy value for the

sampled transitions i : yi = ri + γQ
′
(si+1, µ

′
(si+1|θµ

′
)|θQ

′
);

14: Update the critic network θQ by the gradient ∇θQL of the MSE over the K size mini-

batch and learning rate βy: ∇θQL = 1
K

∑k
i=1(yi −Q(si, ai|θQ))2;

15: Update the actor network using the sampled policy gradient∇θµJ and learning rate βx:

∇θµJ ≈ 1
K

K∑
i=1

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si
16: Update the target networks (τ : updating rate):

17: θµ
′
← τθµ + (1− τ)θµ

′
;

18: θQ
′
← τθQ + (1− τ)θQ

′
;

19: end for

20: end procedure
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Figure 54: The structure of critic network and actor network, red numbers correspond to lines in

Algorithm 1.

For the training, we initialize the actor network and the critic network with random parameters,

also we use the same random parameters to initialize the target actor network and target critic

network. DDPG enables the agent to explore a wide variety of actions in the beginning of learning.

Specifically, after receiving the initial state s0, the actor network explores the action space to select

a control action. We add random noise to the selected action to explore the control action space to

prevent converging to a local solution through Ornstein–Uhlenbeck process [95], see Algorithm 1

line 10.

During training, at each time step t, after the learning agent takes the control action at, it

communicates this action to TESP to change the HVAC state st, then receives the new HVAC state

st+1 and the reward Rt calculated based on (4.3) as feedback from TESP. In order to improve the

convergence and decrease the correlation among the training samples, we add a memory buffer for

experience replay. So at every time step, the state action transition st, at, Rt, st+1 is stored into the

memoryM . From memoryM , we then randomly sampleK transitions and calculate the estimated

value y of each sampled transition using the target networks. The next-stateQ values are calculated
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with the target value network and target policy network (Fig. 54 arrow 13). Then, we minimize the

mean-squared loss between the updated Q value and the original Q value (line 14). Here, we use

the target networks which are constrained to change slowly. The two target networks θµ
′

and θQ
′

will slowly track two learned networks θµ and θQ which will help improve the stability of learning.

Calculation of the estimated value y through the target networks is achieved through Algorithm 1

line 13, where γ is the discounting factor indicating the The weight of the critic network is updated

by minimizing the mean square error with respect to the critic network parameters using the values

corresponding to the randomly selected K samples as shown in line 14 of the Algorithm 1. The

policy loss is the derivative of the objective function with respect to the policy (actor network)

parameters. Then the actor network is updated through the sampled policy gradient as shown in

line 15 of Algorithm 1 [96]. Note that the chain rule is applied since the policy function and the

actor network are both differentiable. Finally, both target networks are updated with an update rate

τ � 1 as shown in lines 17 and 18.

The actor network and the critic network of DDPG algorithm both have 2 hidden layers. The

structure and different activation functions are shown in Fig. 55.
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Figure 55: The structure of critic network and actor network; ReLU is a rectified linear activation

unit.
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4.3 Price Prediction

The optimal control strategy based on DDPG relies also on the predicted electricity price, see

Fig. 53. In our approach, we utilized a multi-layer perceptron neural network with 2 hidden layers

to predict the future electricity price. Through such an artificial neural network, we develop a

nonlinear relationship between the input variables (e.g. temperature, system load, day of the week)

and the predicted output electricity price. Fig. 56 demonstrates the topology of the utilized neural

network. As listed in Fig. 56 there are up to 18 day, hour, load, temperature and price inputs

connecting to the hidden layers.

Figure 56: The neural network for price prediction

4.4 Simulations and Numerical Result

In this section, we describe the simulation scenarios and present the numerical results. We

first present the performance of the proposed ANN structure for electricity price prediction and we

compare it with the state-of-the-art price prediction methods such as weighted average filter [97],

support vector machine (SVM)-based prediction [98], and ANN-based prediction [99]. Then, we

consider different simulation scenarios in TESP to compare the proposed DDPG RL-based HVAC
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control strategy with the control strategy that is already implemented in TESP in terms of electricity

cost and consumer satisfaction. We represent the consumers’ satisfaction by the deviation of the

temperature settings from the desired temperature schedule of the HVAC systems.

4.4.1 Simulation and Performance of the Price Prediction

We generated four weeks of electricity price data using TESP. This simulation includes 306

houses with HVACs connected to a large distribution system as shown in Fig. 51. We used the first

two weeks of the generated price data for training the proposed neural network and used the second

two weeks of data for testing. More specifically, as shown in Table 11, up to 18 input features are

used to train the proposed neural network to predict electricity price. Day of the week, hour of

the day and historical price data are obtained directly from the generated TESP data. Historical

weather (temperature) and the load data for price prediction training in the Pittsburgh area are

obtained from the weather data in Typical Meteorological Year 3 (TMY3) format [100] and PJM

website, respectively. PJM is a regional transmission organization and they provide the historical

hourly load data for Duquesne Light Company on their website. Since the TESP simulation data

have higher temporal resolution compared to the load data, the hourly load data is interpolated to

obtain 5 minutes per sample temporal resolution.

Table 11: Input features for price prediction (h represent hour)

Input Features

Day of the week 1-7

Hour of the day 1-24

Historical price (h-1),(h-2),(h-3),(h-24),(h-25),(h-26),(h-48),(h-168)

PJM load (h-1),(h-2),(h-3),(h-24),(h-25),(h-26)

Weather temperature

Price distribution mean of the distribution
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4.4.1.1 Price Prediction Simulation Result

In Fig. 57 we compare the proposed neural network that is trained using all 18 inputs that

are listed in Table 11 directly with the TESP simulation results. Here TESP simulation results are

the benchmark. Fig. 57 (a) shows 24 hour prediction results with mean square error (MSE) of

2.12 × 10−4), and Fig. 57 (b) shows 10 hour simulation results with MSE 2.59 × 10−4). From

these two figures, we observe that the overall trend of the predicted price is consistent with the

TESP-simulated electricity price. Note that even some small fluctuations in price are also correctly

predicted.

Here we also compare the proposed approach with the state-of-the-art price prediction meth-

ods. We denote the proposed approach as ANN with weather and price distribution input (ANN +

weather + price distribution) and compare it with weighted average filter-based, SVM-based, ANN

with weather input (ANN + weather) and ANN without weather and price distribution (ANN)

methods. For this comparison, we generated TESP simulation data for the system of 306 houses as

described above. Similar to the above scenario, historical weather and PJM load data are obtained

from online sources.

The data was divided into 50 week-long periods, and the mean square error of predicting price

of different weeks throughout the year is shown for different methods in Fig. 58. In this figure, we

observe that SVM-based method is better than the weighted average filter, and ANN based methods

outperform both the weighted average filter and SVM-based methods. To statistically compare

the methods, we apply non-parametric one-sided rank sum test and the results are presented in

Table 12. In this table, we specifically present the p-values for testing if the methods listed in the

columns have a lower mean-square error in price prediction than the methods listed in the rows. A

p-value lower than 0.05 means that the method listed in the column has statistically lower mean-

square error compared to the method listed in the row. Similar to Fig. 58, ANN-based methods

are significantly better than weighted average filter and SVM-based methods. Even though there

are not statistically significant differences among ANN, ANN+W and ANN+W+P (see Table 12),

adding weather and price distribution information may make the price prediction more robust, see

Fig. 58. But this robustness comes with price of additional data collection.

92



���� ���� 
��� ����� �	��� ����� ����
��������#�����&

����


�����

�����

�����

����	

����


�����

�
��
#!�
��
#&
� 
!��
��
��
��

�

�!����#����%"����$��#���

#�"#
#!������
�������!�

(a) 24 hour prediction result (MSE : 2.12× 10−4)
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(b) 10 hour prediction result (MSE : 2.12× 10−4)

Figure 57: Price prediction vs TESP Simulation data
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Figure 58: Error Comparison

Table 12: p value of Wilcoxon rank-sum test between the method in each row and the method in

each column.

Wilcoxon Rank Sum Test of the errors in Fig. 58

p filter SVM ANN ANN+W ANN+W+P

filter 0.50 5.58e-5 6.75e-17 3.53e-18 3.53e-18

SVM 0.99 0.50 1.38e-7 3.31e-8 1.85e-8

ANN 1 1 0.50 0.35 0.45

ANN+W 1 1 0.65 0.50 0.58

ANN+W+P 1 1 0.55 0.42 0.50
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4.4.2 Simulation and Performance of the RL Agent

4.4.2.1 Simulation scenarios

The proposed RL-based HVAC control is evaluated using TESP-simulated data on 306 houses.

We specifically considered the scenarios in which HVACs are in the cooling mode. To make sure

the HVACs are in cooling mode during the training, TMY3 data for Florida instead of Pittsburgh

were used during the period from June to November of 2018. One generic control policy for differ-

ent houses is obtained after training. The DDPG algorithm is implemented with Pytorch [101], an

open source Python-based scientific computing package for machine learning. The training data

comes from the simulation of 212 days in TESP.

As also mentioned above, we compare the RL-based approach with the HVAC ramp control

approach that is implemented in TESP. This method (which we denote as ”without RL agent”

in this study) controls the HVAC using a pre-defined temperature schedule. On the other hand,

the proposed RL-based method (which we denote as ”with RL agent”) changes the pre-defined

temperature schedule based on the predicted price and DDPG-based control. We compare these

two control approaches not only under normal conditions but also during a high price scenario

that includes a bulk system generator outage. Test cases are illustrated in Fig. 59. Simulation

configurations and key parameters of the DDPG training algorithm are listed in Table 13.

Figure 59: Test cases of the proposed RL agent
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Table 13: RL Agent Training Settings

Ttest 212 days training data time length
∆t 5 minutes time step
βQ 0.000025 learning rate of the critic network
βµ 0.00025 learning rate of the actor network
τ 0.001 model update parameter
γ 0.95 reward discount factor
α 0.1∼0.5 weight factor of the electricity cost

The batch size for DDPG training is chosen to be 72. The parameter α that was introduced in

(4.3) and that balances between energy cost saving and customer satisfaction is varied between 0.1

and 0.5.

4.4.2.2 Performance Metrics

In order to compare the control methods with and without RL agents, we define electricity cost

saving factor (CSF) and thermal comfort improvement factor (TIF) as the performance metrics.

Both are affected by α.

CSF =
weeklybillbase − weeklybillRL

weeklybillbase
× 100% (4.5)

TIF =
∆Tbase −∆TRL

∆Tbase
× 100% (4.6)

Both CSF and TIF can be greater or less than 0; a positive CSF or TIF indicates better perfor-

mance with the RL agent.

4.4.2.3 Convergence of the training process

We first demonstrate the effect of the hyper-parameter selection on the convergence of the

DDPG algorithm for RL-based control. Specifically, as shown in Figure 60, we plot the reward

function as a function of training time steps for different hyper-parameters. Recalling that τ is the

update rate for target networks, see Algorithm 1, as shown in Fig. 60(a), higher τ values lead to

faster convergence. The reward converges at 25000 steps for the smallest τ value (0.0002) in our
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(a) The convergence process with different τ

(b) The convergence process with different βµ and βQ, βµ=10βQ

(c) The convergence process with different α

Figure 60: Convergence of DDPG training process with different hyper parameters.
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test cases. When τ is greater than 0.001, the convergence of the reward is very robust to different

values of τ . Note that βµ and βQ are the learning rates of the actor and critic networks, respectively.

Considering βµ=10βQ, as it is recommended in the literature to have higher learning rate for actor

network than the critic network [96], in Fig. 60(b) we show the effect of βµ on the reward function

convergence. As it can be observed from this figure, the training of the algorithm is very robust

to the changes in the actor and critic networks’ learning rates. Finally, Fig. 60(c) shows the effect

of α (the hyper-parameter that balances between electricity cost and customer satisfaction) on the

reward function. As it is observed, the convergence of the reward is robust to the selection of α.

Figure 61: Convergence of DDPG training process with different hyper parameters

In summary, as shown in Fig. 61, we plot the reward function as a function of training time

steps for different hyper-parameters. It can be observed that the training of the algorithm is very

robust to the changes in α and βµ (βµ=10βQ), and τ (when τ is greater than 0.001, which is the

literature recommended value).

4.4.2.4 Performance of the DDPG RL Algorithm

Through TESP simulations as described above, we compare HVAC control with RL agent to

HVAC control without RL agent. Recall here that HVAC control without RL agent uses a fixed
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temperature schedule and adjusts the HVAC setting based on this fixed temperature schedule and

cleared market price for electricity [31]. On the other hand, HVAC control with RL agent changes

the temperature schedule and then adjusts the HVAC setting for price. For these two approaches,

in Fig. 62, we plot the temperature schedules, HVAC temperatures and cleared market price for
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Figure 62: Room temperature with and without RL agent

electricity. The purple dashed-line demonstrates the cleared market price, green and orange lines

show the fixed and changing temperature schedules, respectively, and red and blue lines are for

the HVAC temperatures with and without RL-agent control, respectively. The room temperature is

rising along with the increasing outside temperature from 8am to noon and it continues to rise until

it triggers the HVAC to cool the room. The HVAC control with RL agent predicts the afternoon

increase in the cleared market price; therefore, there is sudden drop in the temperature schedule at

12:00 with RL agent, and the temperature schedule then continues to drop below the current room

temperature. As a result, the HVAC starts cooling the house a little earlier than the original control

without RL agent before the price peak is reached at around 14:00. Specifically, just after 12:00, the

red line starts to drop and fluctuate, before the blue line. At every time step, the RL agent controls

the HVAC output to minimize the deviation of the room temperature from the original schedule

99



while aiming to consume more power for HVAC at relatively lower price. Fig. 63 demonstrates the

energy consumption of a single HVAC controlled with (blue) and without (orange) the RL agent at

different time of a day.

We observe that compared to the HVAC controlled without RL agent, HVAC controlled with

RL agent consumes more power (higher HVAC load) when the price is low (Fig. 63 (b) around

6:00) and less power (lower HVAC load) when the price is high (Fig. 63 (a) around 20:00). Ad-

ditionally, Fig. 64 shows the aggregated loads of 306 HVACs controlled with (blue) and without

(orange) the RL agent.

In this figure, the total HVAC load is less when the price is high around 14:00 to 18:00. The

HVACs consume a little more power during the time when the price is relatively low such as 0:00

to 4:00. Similar to what we observe in Fig. 63, HVACs controlled with RL agents aim to save more

energy at higher market prices.

Recall from (4.3) that α value is chosen to balance between the consumed energy cost of HVAC

and the comfort level of the customers. We define the minimization of customer discomfort as the

minimization of the deviation of the temperature schedule from the original schedule. Parameter α

takes values between 0 and 1 and as its value increases, customers care more about the energy cost.

Here we compare again the HVAC control methods with (blue) and without (orange) RL agent for

different α values. More specifically, Fig. 65 is the box plot of the weekly cost of consumed power

by HVAC. The green dashed lines show the weekly mean values. As can be observed from this

figure the RL agent saves more money compared to the control without RL agent; saving increases

as α increases. For example, the CSF is 38.5% when α is 0.5. On the other hand, Fig. 66 is the bar

plot of the room temperature deviation from the desired temperature schedule.

The average temperature deviation increases with the increase of α, such that TIF ranges from

42.75% to -28.7%. Fig. 67 shows the room temperature under the control of RL agent with different

α.
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Figure 63: Time varying price and the HVAC load
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Figure 64: Aggregate responses of the HVACs
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Figure 65: Comparative box plot of the weekly energy cost vs. α
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Figure 66: Comparative bar plot of the temperature deviation vs. α

When α increases the deviation of the temperature from the scheduled temperature increases.

With larger α, the RL agent is very sensitive to the electricity consumption, in consequence, the RL

agent tends to save more energy by sacrificing thermal comfort. For example, as shown in Fig. 66,

with α = 0.45 and α = 0.5, the TIF became negative and the temperature deviation is even higher

than the case that uses HVAC control without RL. Moreover, Fig. 65 and Fig. 66 also demonstrate

that with certain α, the RL agent is able to reduce the energy cost and improve the occupants’

comfort at the same time compared to the HVAC control without RL in the TESP, for example, see

α = 0.4.
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Figure 67: Room temperature of different cases.

4.4.2.5 DDPG RL Performance During a Generation Outage

In the above simulations, the clearing price is at a normal level for most of the time. To

evaluate the performance of the HVAC control with RL agent during high-price events, we perform

simulations with a bulk generation outage at a certain time of day. We are using the same simulation

scenario with 306 HVACs as described above but now there is a generation unit outage from 12:00

to 18:00.

Due to the outage of a main generation unit and the higher cost of the back up generation unit,

the Locational Marginal Price (LMP) at the substation bus becomes higher than normal during the

outage, leading to a high clearing price as shown in Fig. 68.

With RL agent, the HVAC consumes less power during the outage when the electricity price

is at peak. As illustrated in Fig. 68, different from the HVAC control without RL which consumes

power during the price peak, the HVAC with RL agent is off beginning around 16:00 and starts to

work again when the price drops.

Similar to Fig. 65 for different α values, Fig. 69 shows the box plot of weekly HVAC energy

cost with generation outage.
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Figure 68: Electricity price and the HVAC power consumption with RL agent during generation

outage
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Figure 69: Weekly HVAC energy cost vs. α with generation outage.

105



As observed in Fig. 69, without RL agent, the energy cost of HVAC is doubled over the nor-

mal scenario as demonstrated in Fig. 65. Similar to Fig. 66, Fig. 70 shows the bar plot of room

temperature deviation from the desired temperature schedule.
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Figure 70: Average temperature deviation vs. α with generation outage.

When α = 0.25, the thermal comfort with and without RL are almost the same in these two

cases. Note that when α = 0.25 the consumers are still able to save 12.7% of HVAC energy cost

on average with the RL agent. That is, while the comfort level is preserved, there is more energy

savings with HVAC control with RL. When α = 0.55, although the average HVAC energy cost is

reduced by 50%, the temperature deviation increases a lot. In general, consumers are able to save

a greater extent of money with a higher α (emphasis on energy saving), reducing thermal comfort

as shown in Fig. 70.
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5.0 Research Summary

This dissertation investigated the machine learning applications on the simulation and control

framework for electric power distribution systems with transactive agents. A reduced order model

for distribution system model with independent dynamically changing end-use load was developed.

Further, to reduce the simulation time of large system models with transactive elements in TESP, a

reduced order model which aggregated responsive loads was developed. The two proposed reduced

order models were demonstrated to be capable of reducing the simulation time while generate

appropriate approximation of the full model. In addition, an RL-based approach was developed for

precise control of HVAC systems that are participating in the energy market as transactive elements

in TESP. The control method is implemented in TESP as a transactive agent, and is demonstrated

to achieve intelligent and granular control of the HVACs to maximize the long term reward that

balances between electricity cost and end-user satisfaction.

5.1 Contributions

This dissertation describes the following contributions:

1. Reduced order model for distribution system with independent dynamic loads:

The algorithms presented here stochastically generates load shapes for behavioral loads and re-

produces the behavior of physics-based models, saving up to 89.3% simulation time when gen-

erating the aggregate load of water heaters by stochastic simulations. The stochastic method

is able to obtain the load behaviors with several parameters. It has the flexibility to generate

a behavior model for any population size of loads, once the stochastic model is built for that

mixture of load types. The QSTS simulation results of the test case showed that segment sub-

stitution for a model with dynamic independent loads reduces the computation time of QSTS

simulation of the full model further, by 64.3% compared to the full-model benchmark. The

average error is on the order of 0.002 pu voltage. The worst case error is less than 0.01 pu

voltage. The old simplified method reduces the time by 95%, with sufficient accuracy for PV
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studies. However, it produces larger error with a mixture of more diverse and independent load

behaviors. Under these conditions, the proposed method improves the accuracy significantly

compared with the old simplification method without independent load compensation.

2. Reduced order model for transactive systems:

A reduced order model for the distribution system model with transactive elements in TESP

was developed. The proposed reduced order model utilizes RNN with LSTMs to collectively

generate bids and adjust the aggregate responsive load in every market clearing cycle. The

reduced order model is integrated and tested through TESP as an aggregate responsive load

(ARL) agent. The ARL agent is capable of communicating with the other agents and generat-

ing similar transactive load behaviors as the full model while retaining the bidding functions

and price responsive features of the transactive loads. It is demonstrated that the model gen-

eralizes well across time and number of houses. Simulation results showed that the reduced

order model is able to generate rational results similar to the full TESP model while achieving

up to 92.3% of simulation time reduction with 0.03 mean absolute error. Further, the time

reduction is expected to be more significant due to the nonliner growth of simulation time for

the full model. The proposed ARL agent can also be used to scale up to a large model for

examining bulk system impacts. Moreover, simulations could focus on a single detailed feeder

while others on the same substation use the ARL agent.

3. Reinforcement learning based controller agent for transactive HVACs:

a) A market price prediction model is developed through an artificial neural network (ANN).

The method produces accurate results compared to the existing methods [102]. This

method provides price information to the RL algorithm in this dissertation that is de-

veloped for HVAC control.

b) A DDPG RL based model-free control algorithm is developed for the optimal determinis-

tic decision making to adapt the schedule setting of HVACs participating in the market as

transactive elements through balancing between energy cost and consumer satisfaction.

c) The RL-based control approach is implemented and tested in HVAC systems in residential

building models through the Transactive Energy Simulation Platform (TESP) [2] as a RL-

agent. Through multiple experiments, the effect of control algorithm parameter selection

is demonstrated, and the proposed method is compared with the transactive HVAC con-
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troller that is currently implemented in TESP. Two metrics, electricity cost saving factor

(CSF) and thermal comfort improvement factor (TIF), have been introduced to quantify

the performance of the RL agent. It is demonstrated that the proposed control method not

only saves the electricity cost but also improves the customers’ comfort at the same time

with more precise control.

5.2 Scope of Further Research

Figure 71: RL agent on aggregated responsive load in reduced order model

The RL agent can be applied on the aggregated responsive load at the substation level. In

the full feeder model, each house participates in the market individually. For a large system with

multiple distribution feeders, a feeder can be represented by a reduced order model as shown in

Fig. 71, with only an aggregated unresponsive load and an aggregated responsive load. This will

reduce the number of agents dramatically. The aggregated responsive load is able to participate in
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the market by submitting a probabilistically sampled bidding price vs. quantity curve and should be

able to respond to the clearing price and update the collective transactive behaviour distributions

accordingly. Further, RL agents can be applied on the aggregated responsive load to adjust the

bidding and response in a smart way, similar to the individual HVAC example. The feedback to the

learning agent can be the approximation of certain collective metrics, e.g., average thermal comfort

for large number of houses.

The legacy ramp (temperature vs price) controller can be replaced by RL-based algorithms.

These algorithms can be trained off-line using past experiences, which is very useful when large

amounts of data are available. The learning agent can be integrated with TESP as an RL agent for

different transactive elements and different optimization objectives:

1. Water Heaters: Water heaters have the ability to store energy in their water tanks without im-

pacting the comfort of the end users. This feature makes them a prime candidate for residential

demand response. RL can be applied to minimize the long term cost of energy consumption.

2. EV Charging: Demand response approaches may reduce long-term charging/discharging

costs of plug-in electric vehicles. Failing to meet the user needs would lead to negative re-

wards that are part of the learning process.

3. Distributed Generation and Battery Energy Management: RL can be applied to the control

of distributed generation resources with electrical storage. The electricity consumption and the

battery health can be taken into consideration as a decision making problem to find the optimal

charging strategy with real time price forecasting.

5.3 Publications

Published

• Liu, Reiman, Akcakaya, McDermott, ”Distribution system segmented model simplification

with independent dynamically changing end-use loads,” Electric Power Systems Research
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In Review

• Liu, Akcakaya, McDermott, ”Automated Control of Transactive HVACs in Energy Distribu-

tion Systems,” submitted to IEEE Transactions on Smart Grid

In Preparation

• Liu, Akcakaya, McDermott, ”Reduced Order Model for Transactive Systems”.
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Appendix A Game Theory Applications

A.1 Problem Formulation

α Real time price determined by the coordinator

p Load consumption of the consumers (kW)

K The comfort level of the consumers

θ weight coefficient of comfort on the consumers’ utility

us Seller’s utility

uc Consumer’s utility

σs ∈ ∆(A) mixed strategy of the seller

σc ∈ ∆(P ) mixed strategy of the consumer

β power generation cost β(p) = c2p
2 + c1p+ c0

For the consumers and sellers in a power system, we define a multi-time interval T=1,2,...,tmax,

tmax ≥ 2, each interval is a positive fixed duration. Denote pmax as the energy consumption

for the consumer if the appliance is working at maximum power during the entire time period

(0 ≤ p ≤ pmax). Let {α ∈ Sα, α = (α1, α2, ..., αtmax)} and {p ∈ Sp, p = (p1, p2, ..., ptmax)} be the

decision variables for the seller and consumers respectively, αn and Pn is the decision variables of

the nth time slot for n=1,2,. . . ,tmax. The consumers aim to find the optimal strategies in response

to the seller’s price in order to maximize the benefit by control the transactive elements such as

HVACs. This optimization problem is formulated as:

max
α∈Sα

1

T

T−1∑
T=0

{α(t)p(t)− β(p(t)) (A.1)

p ∈ arg max
p∈Sp

{ 1

T

T−1∑
T=0

{θ ·K(p(t))− α(t) · p(t)}} (A.2)

s.t. 0 ≤ p(t) ≤ pmax, α
min ≤ α(t) ≤ αmax
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or
p ∼ X(µ1, σ1

2)

α ∼ Y (µ2, σ2
2)

From the TESP simulation, we can obtain the probability distribution for the power consump-

tion of the consumers p for a given electricity price α from the seller, the probability distribution

for the price of the seller α for a given load p from the consumers.

A.2 Mixed Strategy of Repeat Games

A.2.1 Zero-sum Matrix Game

In Eq. (1) and (2), if β(p(t)) is equal to θ ·K(p(t)). The problem can be turned into a zero-sum

game. A mixed strategy profile (x∗, y∗) is a mixed strategy Nash equilibrium if and only if

(x∗)TAy∗ ≥ xTAy∗, ∀x ∈ X (A.3)

(x∗)TBy∗ ≥ (x∗)TBy, ∀y ∈ Y (A.4)

For zero-sum game, B = −A, so Eq. (4) becomes

(x∗)TAy∗ ≤ (x∗)TAy, ∀y ∈ Y (A.5)

Combining the preceding,

xTAy∗ ≤ (x∗)TAy∗ ≤ (x∗)TAy, ∀y ∈ Y (A.6)

(x∗, y∗) is a saddle point of the function xTAy defined over X × Y . A mixed strategy profile

(x∗, y∗) is a mixed strategy Nash equilibrium if and only if

(x∗)TAy∗ = inf
y∈Y

sup
x∈X

xTAy = sup
x∈X

inf
y∈Y

xTAy (A.7)

(x∗)TAy∗ is the value of the game.
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Strong Duality: P1 wishes to choose x to minimize xTAy (yTAx). P2 wishes to choose y to

maximize xTAy. From the point of view of P1, assuming his strategy x is known to P2, then P2

will choose y to maximize xTAy,

sup{xTAy
∣∣y ≥ 0, 1Ty = 1} = max

i=1,...,m
(ATx)i

P1 will choose x to minimize the worst case payoff to P2, there is a mixed strategy for P1 such that

average loss of P1 is at most a certain value. matter what P2 does,

min max
i=1,...,m

(ATx)i

s.t. x ≥ 0, 1Tx = 1
(A.8)

Similarly, from the point of view of P2, assuming his strategy y is known to P1, then P1 will choose

x to minimize xTAy,

inf{xTAy
∣∣x ≥ 0, 1Tx = 1} = min

i=1,...,n
(Ay)i

P2 will choose y to maximize his gain from P1,

max min
i=1,...,n

(Ay)i

s.t. y ≥ 0, 1Ty = 1
(A.9)

Formulating problem (8) and (9) as LPs,

(i) x∗ satisfies (8) if and only if for r∗,(x∗, r∗) solve the LP

min r

s.t. x ≥ 0, 1Tx = 1

ATx ≤ r1

(A.10)

(ii) y∗ satisfies (9) if and only if for s∗,(y∗, s∗) solve the LP

max s

s.t. y ≥ 0, 1Ty = 1

Ay ≥ s1

(A.11)

(iii) The LP’s in (10)and (11) are duals of each other and the optimal objective value should be the

same.
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The conditions that the problem can be defined as a zero-sum game: In a zero-sum game, any

advantage gained by the opponent is a lose to the player (the sum of the utilities in each entry of the

payoff matrix is zero). A non-zero-sum game is a situation where one’s win does not necessarily

mean the other’s loss, and one’s loss does not necessarily mean that the other party wins. In a

Non-Zero-Sum Game, all parties could gain, or all parties could lose.

The transformation between zero-sum and nonzero-sum game: Reference [103] demonstrates

how one can define a transformation of a non-zero sum game into a zero sum game by introducing a

passive player into a game whose payoff depends on the actions of active players. In a transformed

game, each participant plays against all other players, including the passive player. The advantage

of this approach is that the transformed game is zero-sum and has an equilibrium solution. The

optimal strategy and the value of the new game, however, can be different from strategies that are

rational in the original game. Using prisoner’s dilemma as an example:

A =

 −1 −10

0 −6

 B =

 −1 0

−10 −6


The classic ’rational solution to this game is to cooperate (use strategy 1 with probability p=1), and

the value of the game is,

E(x1) = −1

The game is not zero sum since

A+B =

 −2 −10

−10 −12

 6= 0

Introduce a passive player, whose payoff is

C = −1

2
A+B =

 −2 −10

−10 −12

 =

 1 5

5 6


The utilities of the prisoners are transformed to Ã = A+ C and B̃ = B + C

Ã =

 0 −5

5 0

 B̃ =

 0 5

−5 0


In this representation, the game becomes zero-sum, and it has solution p1 = p2 = 0.5 and the value

E(Ã) = 0 . This expected payoff to each player is higher than that of the strategy p1 = 1, but it is

independent of the decision of the other player to defect.
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A.2.2 Nonzero-Sum Bimatrix Games

Suppose the same game is played over and over again and the final outcome is determined by

averaging the outcomes of individual plays.

2 players: N={seller, consumers}

The set of pure strategy for the 2 players are:

A = (α1, α2, ..., αn), P = (p1, p2, ..., pm)

Let Us = (uijs ) and Uc = (uijc ) be two n × m matrix represent the utility of each player

corresponding to each pair of actions. The bimatrix game (U ij
s , U

ij
c ) is a two person game in

normal form, where the supplier and the consumer choose their strategy independently. The utility

of the supplier and consumer under pure strategies are:

uijs = αipj − β(pj)

uijc = θ ·K(pj)− αipj
(A.12)

Let σs and σc denote the mixed strategy of the two player, σis and σjc be the probability that the

supplier and the consumer choose the i− th price and j− th load consumption respectively, where

n∑
i=1

σsi = 1, σsi ≥ 0
m∑
j=1

σcj = 1, σcj ≥ 0

The expected payoff to supplier is:

σTs Usσc =
∑n

i=1

∑m

j=1
σisu

ij
s σ

j
c (A.13)

Similarly the expected payoff to consumer is:

σTs Ucσc =
∑n

i=1

∑m

j=1
σisu

ij
c σ

j
c (A.14)

First, considering an inner mixed Nash equilibrium (σ∗s , σ
∗
c ), where σ∗si ≥ 0 for all i and σ∗cj ≥ 0

for all j (all pure strategies are used with positive probability).
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Using the equivalent characterization of a mixed strategy Nash equilibrium (i.e., all pure strate-

gies in the support of a Nash equilibrium strategy yields the same payoff, which is also greater than

or equal to the payoffs for strategies outside the support), we have

us1σ
∗
c = usiσ

∗
c , i = 2, ..., n (A.15)

(σ∗s)
Tuc1 = (σ∗s)

Tuci, j = 2, ...,m (A.16)

where usi denote the rows of payoff matrix Us and uci denote the columns of payoff matrix Uc.

By Eq.(6) and Eq.(7), a system of linear equations can be solved. However, the assumption that

every strategy is played with positive probability is a very restrictive assumption. Most games do

not have totally mixed Nash equilibria.

Transform it into a Bi-linear Programming Problem: A mixed strategy profile (σ∗s , σ
∗
c ) is a

mixed Nash equilibrium of the bimatrix game (Us, Uc) if and only if there exists a pair (r∗, s∗)

such that (σ∗s , σ
∗
c , r
∗, s∗) is a solution to the following bi-linear programming problem:

max {σsTUsσc + σs
TUcσc − r − s} (A.17)

s.t. Usσc ≤ r1n, UT
c
σs ≤ s1m, (A.18)

∑
i

σsi = 1,
∑
j

σcj = 1, (A.19)

σs ≥ 0, σc ≥ 0, (A.20)

where,1n and 1n are n and m dimensional vector with all components equal to 1.

Solution of Bi-linear Programming:

max
x,y,p,q

x(A+B)y − p− q

s.t. xB − qe ≤ 0, ex− 1 = 0 , x ≥ 0,

Ay − qe ≤ 0, ey − 1 = 0 , y ≥ 0,

(A.21)
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Solutions of the corresponding problem of bi-linear programming were found by computer, using

the gradient method. [104]. A Difference-Index based ranking bi-linear programming approach to

Solving bi-matrix games with payoffs of trapezoidal intuitionistic fuzzy numbers are introduced

in [105], an enumeration method is presented in [106].
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Appendix B Simulation Result

From TESP simulations, extracting the time varying price and the total HVAC load of the

houses that participating in the market as shown in Fig. 74. (Values in Fig. 74 are the mean value

of the simulation results from 12 month from TESP as shown in Fig. 72 and Fig. 73) Using these

data to formulate time dependent the conditional distributions (Λ|p) and (p|λ). Specifically, (Λ|p)

is the distribution of the total load of the houses for a given price in a certain range between price

λa and λb. (Λ|p) is the distribution of possible prices for a given total load in a certain range

between pe and pf . Then formulating a mixed strategy game.

Figure 72: Load of different cases from TESP Simulation

1. From TESP simulations, the following joint distributions (p:load λ: price) are obtained. All

the distributions can be turned into time dependent distributions, the number of time intervals

can be changed as well:

f(P,Λ) (Joint distribution of cleared price and load)

f(Pbid,Λ) (Joint distribution of bidding load and cleared price)
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Figure 73: HVAC Load of different month from TESP Simulation

(a) transactive HVAC load of all the houses (b) time varying price

Figure 74: TESP simulation result (mean of 12 month, load value is normalized)
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(a) load vs price (b) bidding load vs price

Figure 75: 2D histogram Load vs Price

f(Pbid, P ) (joint distribution of the bidding load and real HVAC load)

f(Pbid,Λbid) (joint distribution of the bidding load and bidding price).

2. Define an initial p0 and λ0

3. Start from time step t, t = 1, 2, 3, ..., tmax,

a. Find the strategy set Pt,Λt:

Pt: sample from f(p|λ)(λt−1)→ p1t , p
2
t , ..., p

i
t

Λt: sample from f(λ|p)(pt−1)→ λ1t , λ
2
t , ..., λ

j
t

b. Calculate the payoff matrix by the utility function:

(i) Aij = (E[p|λ]ij − (pbid|p)ij)2 minimize the difference between the bidding power and

the actual power consumption, where [E[p|λ]]ij = E[p ∼ f(p|λjt)] = E[p|λjt ] is the

expected value of actual power consumption for a given price λ. [pbid|p]ij = Xpbidp(p
i
t) =

pbid|pit is the bidding load for for a given actual power consumption p.

(ii) Aij = [E[λ|p]ij − (λbid|λ)ij]
2 minimize the difference between the bidding price and

the actual price, where

[E[λ|p]ij = E[λ ∼ f(λ|pit)] = E[λ|pit]

[λbid|λ]ij = Xλbidλ(λ
j
t) = λbid|λit

(iii) Aij = a[E[p|λ]ij− (pbid|p)ij]2 + b[E[λ|p]ij− (λbid|λ)ij]
2 is the combination of (i) and

(ii), where a+ b = 1.

c. Find the optimal strategy (probability vector) Xt, Yt by solving the game:
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d. Use the probability Xt, Yt to calculate pt+1 and λt+1:

Sampling from Pt with Xt → pt

Sampling from Λt with Yt → λt

e. go back to (a) for next time step

Figure 76: 1 realization of Load and Price
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Figure 77: Mean Square Error (50 times)
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