
Adaptive Memory Management for CPU-GPU Heterogeneous Systems

by

Debashis Ganguly

Bachelor of Technology in

Computer Science and Engineering, West Bengal University of Technology, 2009

Submitted to the Graduate Faculty of

the Department of Computer Science, School of Computing and Information

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2020



UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Debashis Ganguly

It was defended on

October 13, 2020

and approved by

Rami Melhem, Department of Computer Science

Jun Yang, Electrical and Computer Engineering Department

Youtao Zhang, Department of Computer Science

Bruce Childers, Department of Computer Science

Dissertation Director: Rami Melhem, Department of Computer Science

ii



Copyright c© by Debashis Ganguly

2020

iii



To maa and baba,

Jyotsna and Malay Ganguly,

who mean the world to me



Acknowledgements

First and foremost, my heartfelt gratitude goes to my advisor, Dr. Rami Melhem for his

guidance and patience throughout my time in graduate school. He taught me the fundamen-

tals of architecture during my early coursework, and in my later years taught me about the

art of effective communication. I also want to thank my co-advisor, Dr. Jun Yang. They

have always been available to discuss research ideas and have spent countless hours review-

ing and improving my work. I would like to thank my Ph.D. committee members for their

feedback and constructive criticism which greatly improved the quality of this dissertation.

I am fortunate to meet several extraordinarily kind and brilliant people during my time in

graduate school. My earnest acknowledgement goes to Ziyu Zhang, who had been a pivotal

contributor to the works contained in this dissertation. I would especially like to thank

Michael LeBeane, who kindly mentored me during my internship at AMD. He has been kind

enough to clarify my doubts and help me develop a pragmatic and technical outlook towards

research. Finally, I would like to thank Prof. Daniel Mossé for his unwavering encouragement

and motivation through stressful times.

Last but no way the least, my sincere gratitude goes to my parents, and my family for

all their mental support and an infinite endurance with which they put up with me during

this arduous phase of my life. It is really hard to paraphrase my acknowledgement to them,

as it will invariably look very little, compared to their so many contributions in my life.

v



Adaptive Memory Management for CPU-GPU Heterogeneous Systems

Debashis Ganguly, PhD

University of Pittsburgh, 2020

High compute-density with massive thread-level parallelism of Graphics Processing Units

(GPUs) is behind their unprecedented adoption in systems ranging from data-centers to high-

performance computing installations. Currently, discrete GPU(s) combined with CPU via

slow CPU-GPU interconnect dominate these computing platforms. The introduction of on-

demand paging and fault-driven migration support in the newer generation GPUs, powered

by software-managed unified memory runtime, simplified memory management in the CPU-

GPU heterogeneous memory systems and ensured higher programmability. As GPUs are

increasingly being used to accelerate general-purpose applications beyond traditional graph-

ics processing, these systems raise a number of design challenges, including smart runtime

systems, programming libraries, and micro-architecture.

One of the key challenges this dissertation aims to address is the performance slowdown

under device memory oversubscription. When the working set of an application exceeds the

device’s memory capacity, CPU-GPU interconnect-traffic from page eviction and software

prefetching becomes a major source of performance bottleneck. Firstly, this dissertation pro-

poses a pre-eviction policy, that adapts the semantics of software prefetcher to reduce the

CPU-GPU interconnect traffic from unnecessary page thrashing. Secondly, this dissertation

proposes an adaptive page migration and pinning strategy for the runtime that adapts to

the irregularity in the access pattern based on the frequency of memory access. Disparate

applications demand special attention for memory management based on their workload char-

acteristics, thread-level parallelism, and memory access pattern. Finally, this dissertation

introduces a smart runtime that transparently caters to different classes of applications by

unifying a wide array of memory management strategies. As GPUs are becoming an integral

part of commodity computing clusters, assuring system throughput and execution fairness

is becoming a critical challenge for multi-tenant workloads. To this end, the dissertation

proposes a CPU-GPU interconnect scheduler that provisions network traffic adapting to the

vi



disparate computation characteristics and bandwidth demands of participating applications

in the composed workload. By introducing all these techniques, the dissertation makes signif-

icant progress towards realizing the goal of developing an adaptive, smart software-managed

runtime for CPU-GPU heterogeneous memory systems.

vii



Table of Contents

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.0 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Baseline Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Unified Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Fault-driven Migration and On-demand Allocation . . . . . . . . . . . 13

2.2.2 Tree-based Software (TBNp) Prefetcher . . . . . . . . . . . . . . . . . 14

2.2.3 Page Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Remote Zero-copy Access and Delayed Migration . . . . . . . . . . . . 18

2.3 GPU Multi-tenancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 GPU Sharing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 CPU-GPU Interconnect Provisioning . . . . . . . . . . . . . . . . . . 21

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Prefetching and Page Replacement in Unified Memory . . . . . . . . . 22

2.4.2 Page Migration and Pinning . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.4 Execution of Concurrent Applications on GPU . . . . . . . . . . . . . 25

2.4.5 GPU Memory Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.6 GPU Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.7 GPGPU Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.0 UVMSmart: Simulation Framework and Unified Memory Benchmarks 29

3.1 UVMSmart: Design and Implementation . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



3.1.2 Micro-architecture Modeling . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4 Runtime Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Unified Memory API Modeling . . . . . . . . . . . . . . . . . . . . . . 36

3.1.6 Support for Concurrent Execution . . . . . . . . . . . . . . . . . . . . 36

3.2 Application Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Micro-benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Unified Memory Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Unified Memory Concurrent Application Framework . . . . . . . . . . 39

3.3 Configuration and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Simulation Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.0 Adaptive Page Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Pre-eviction Policies Adaptive to Prefetchers . . . . . . . . . . . . . . . . . . 43

4.1.1 Sequential-local (SLe) Pre-eviction . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Tree-based Neighborhood (TBNe) Pre-eviction . . . . . . . . . . . . . 44

4.1.3 Specific Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Pre-eviction Policies in Isolation . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Combinations of Pre-eviction Policy and Software Prefetcher . . . . . 48

4.2.3 Memory Over-subscription Sensitivity . . . . . . . . . . . . . . . . . . 50

4.2.4 Reserving Percentage of LRU Page List from Eviction . . . . . . . . . 51

4.2.5 2MB Large Page Eviction . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.0 Adaptive Page Migration and Pinning . . . . . . . . . . . . . . . . . . . . 55

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Workload Characterization . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.2 High-level Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Dynamic Access counter Threshold Based Delayed Data Migration . . . . . 58

ix



5.2.1 Dynamic Access Counter Threshold . . . . . . . . . . . . . . . . . . . 59

5.2.2 Access Counter Based Page Replacement . . . . . . . . . . . . . . . . 60

5.2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Sensitivity to Static Migration Threshold . . . . . . . . . . . . . . . . 62

5.3.2 The Case of No Oversubscription . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 The Case of Oversubscription . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.4 Sensitivity to Multiplicative Penalty . . . . . . . . . . . . . . . . . . . 66

5.3.5 Access Counter Based Eviction . . . . . . . . . . . . . . . . . . . . . . 68

5.3.6 Invalidating Clean Pages . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.0 An Adaptive Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 The Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Memory Migration Pattern . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.2 Pattern Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.3 Adaptive Memory Management . . . . . . . . . . . . . . . . . . . . . 76

6.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.0 Adaptive Interconnect Provisioning for Multi-tenant Workloads . . . . 79

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.1 Workload Characterization . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.2 Application Interference . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.3 Limitations of Existing Scheduling Schemes . . . . . . . . . . . . . . . 82

7.1.4 Interference under Device Memory Oversubscription . . . . . . . . . . 84

7.1.5 Key Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Application-aware CPU-GPU Interconnect Provisioning . . . . . . . . . . . 86

7.2.1 Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.2 Mechanism and Implementation Details . . . . . . . . . . . . . . . . . 88

7.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



7.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.2 Effect on System Throughput . . . . . . . . . . . . . . . . . . . . . . 91

7.3.3 Effect on Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.4 The Case of Oversubscription . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.0 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



List of Tables

1 Full-benchmarks with their memory access pattern. . . . . . . . . . . . . . . . . 39

2 Configuration parameters of the simulated system. . . . . . . . . . . . . . . . . 41

xii



List of Figures

1 Sensitivity of workloads to the percentage of memory oversubscription (per-

formed on real hardware). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The effect of computation resources and interconnect bandwidth on unified mem-

ory applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Overview of the thesis work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Demonstration of the tree-based prefetcher on 512 KB memory chunk for two

different page access patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Delayed page migration upon exceeding a static access threshold or exclusive

data migration on write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Transfer rate improves with transfer size as observed on real hardware with PCI-e

3.0 16x interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Comparing kernel execution time with different software prefetching schemes

against no prefetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Performance validation of UVMSmart against real hardware. . . . . . . . . . . 42

9 Demonstration of tree-based pre-eviction on 512 KB memory chunk. . . . . . . 45

10 Comparing the effect of different eviction policies on kernel execution time. Tree-

based prefetcher is active before reaching device memory capacity. Upon over-

subscription, software prefetcher is disabled and 4KB pages are migrated on-

demand. Working set is 110% of the device memory size. . . . . . . . . . . . . 47

11 Comparing total number of pages evicted for different eviction schemes. . . . . 48

12 Comparing the effect of different combinations of eviction policies and software

prefetcher after oversubscription on kernel execution time. Tree-based prefetcher

is active before reaching device memory capacity. Working set is 110% of the

device memory size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13 Page access pattern of nw benchmark without eviction. . . . . . . . . . . . . . . 50

xiii



14 Sensitivity of combinations of tree-based prefetcher and pre-eviction to the per-

centage of memory over-subscription by the working sets. . . . . . . . . . . . . 51

15 Effect of reserving a certain percentage of pages of LRU list from eviction on

kernel runtime. Working set is 110% of the device memory size. Tree-based

prefetcher is active before reaching device memory capacity. . . . . . . . . . . . 52

16 Comparing the performance of tree-based pre-eviction against 2MB large page

eviction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

17 Comparing the effect of tree-based pre-eviction and 2MB large page eviction on

the total number of pages thrashed. . . . . . . . . . . . . . . . . . . . . . . . . 54

18 Visualizing page access distribution detailing type of access and total number of

accesses per page per managed allocation for fdtd and sssp. . . . . . . . . . . . 56

19 Visualizing page access patterns of a regular (fdtd) and an irregular (sssp) appli-

cation over two iterations. (a), and (b) show access pattern of fdtd in iterations

2, and 4 respectively. (c), and (d) show access pattern of sssp in iterations 3, and

5 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

20 Sensitivity of workloads to the static access counter threshold for delayed migra-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

21 Comparing the impact of dynamic access counter based adaptive scheme on ex-

ecution time against the baseline case of first-touch migration and static access

counter threshold based delayed migration scheme under no memory oversub-

scription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

22 Comparing the impact of dynamic access counter based adaptive scheme on ex-

ecution time against the baseline case of first-touch migration and static access

counter threshold based delayed migration schemes. . . . . . . . . . . . . . . . 65

23 Comparing the impact of dynamic access counter based adaptive scheme on mem-

ory thrashing against the baseline case of first-touch migration and static access

counter threshold based delayed migration schemes. . . . . . . . . . . . . . . . 66

24 Sensitivity of workloads to the multiplicative migration penalty. . . . . . . . . 67

25 Performance variation between LRU and LFU page replacement strategies. . . . 68

xiv



26 Comparing performance of schemes where (i) 2MB blocks are always written

back and (ii) only dirty pages are written back and clean pages are invalidated

directly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

27 An example of the hierarchical data-structure keeping track of block migration

addresses used by detection engine. . . . . . . . . . . . . . . . . . . . . . . . . . 74

28 Deterministic Finite Automaton (DFA) for managed allocations demonstrating

the transition of migration states. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

29 Performance of smart adaptive framework compared to unified runtime . . . . . 77

30 Categorizing workloads based on memory access pattern, arithmetic intensity,

and number of DMA transactions per unit memory. . . . . . . . . . . . . . . . . 80

31 Effect of application consolidation on system throughput. FR-FCFS is the de-

fault scheduling policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

32 Different performance slowdowns experienced when different interconnect schedul-

ing schemes are employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

33 Unwanted page eviction and in turn performance slowdown by application consol-

idation under device-memory oversubscription. App-1 and App-2 are respectively

high- and low-priority application chosen by adaptive host-to-device interconnect

scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

34 The effect of adaptive CPU-GPU interconnect scheduling on weighted speedup

for 17 representative workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

35 The summary of instruction throughput from adaptive CPU-GPU interconnect

scheduling for all 45 workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

36 The summary of harmonic speedup from adaptive CPU-GPU interconnect schedul-

ing for all 45 workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

37 The effect of priority preserving device-to-host CPU-GPU interconnect provi-

sioning on weighted speedup and page eviction for 6 representative workloads. . 96

xv



1.0 Introduction

Today, heterogeneity in memory technology and core types is ubiquitous in systems start-

ing from hand-held smartphones to large supercomputers and commodity cloud platforms.

For example, Oak Ridge National Laboratory’s Titan supercomputer [77] incorporates graph-

ics processing units (GPUs) and Intel’s Xeon Phi co-processors alongside traditional central

processing units (CPUs). Similarly, Amazon Web Services (AWS) [6], one of the largest

cloud providers, offers instances of CPU-GPU platforms built with Intel CPUs and NVIDIA

GPUs. The union of high thermal design power (TDP) processors in heterogeneous systems

offer new performance opportunities for applications. For example, while serial code sections

can run efficiently on ILP-optimized CPU processors, parallel code with fine-grained data

parallelism benefit from running on accelerators such as GPUs resulting in aggregate savings

of millions of dollars in large-scale systems.

While some of these heterogeneous systems may share a single homogeneous pool of

physical memory between CPUs and GPUs, discrete GPUs connected with x86 processors

via peripheral component interconnect express (PCIe) dominate the marketplace. As the

number of scalar cores and SIMT (Single Instruction Multiple Threads) units in GPUs

continues to grow, memory bandwidth is also scaled proportionately to keep the compute-

resources busy. However, GPU memory capacity remains relatively smaller compared to the

capacity of CPU-attached memory. For example, while CPUs are likely to continue using cost

and capacity-optimized DRAM (DDR4, LPDDR4) technology, GPUs are moving towards

using capacity-limited, but bandwidth-optimized, on-chip memory packages such GDDR5,

High Bandwidth Memory (HBM), and Wide-IO2 (WIO2). Due to the large differences in

bandwidth and capacity of the individual memory modules, memory management becomes

challenging with respect to the system design and programmability of discrete CPU-GPU

systems.

1



1.1 Problem Description

Due to discrete physical memory modules, traditionally application programmers had to

explicitly call memory copy APIs to copy pre-initialized data over the relatively slow CPU-

GPU interconnect (e.g. PCIe) to the GPU’s physical memory before launching GPU kernels.

This upfront memory transfer is an important aspect while quantifying GPU performance

because, for long-running GPU kernels, this bandwidth-optimized bulk-transfer amortizes

the migration overhead. However, relatively smaller GPU memory capacity restricts the

effective working sets of the GPU programs. As a result, the onus of memory management

falls squarely on the programmers. Application developers are forced to tile their data

for migration and painstakingly launch GPU kernels over multiple iterations. This burden

has been considerably relaxed by the introduction of Unified Virtual Memory (UVM). To

this date, stand-alone PCIe-attached GPUs are treated as slave accelerators. The runtime,

loaded as a set of kernel modules in the host operating system, is the key to tap into the

computation capabilities of a GPU. NVIDIA introduced software-managed runtime which

provides the illusion of unified memory space by providing a virtual memory pointer shared

between CPU and GPU. With the assistance from hardware page-faulting and migration

engine, UVM automates the migration of data in and out of the GPU memory even upon

device-memory over-subscription.

Although fault-driven migration and non-blocking, outstanding, replayable page faults in

unified memory improve programmability, it is not sufficient. As GPU’s massive thread-level

parallelism (TLP) can no longer mask the latency of migrating pages over slow CPU-GPU

interconnect, researchers have felt the need for prefetching pages in advance to overlap com-

putation with the migration of future-referenced pages. The concept of prefetching is not new

in hierarchical memory systems. Prefetchers are designed to exploit spatial- and/or temporal-

locality of memory accesses of prevalent workloads to reduce the amount of time a compu-

tation pipeline is stalled for the availability of data/operands. In the past, researchers had

explored both micro-architectural and software-based prefetchers [8, 29, 30, 34, 52, 54, 72].

However, prefetching pages between host and device memory over CPU-GPU interconnect

stands out due to several unique systems properties and performance requirements in con-

2



trast to the hierarchical memory models in traditional multi-core symmetric multi-processor

(SMP) systems. Firstly, when the working set of a GPU workload fits in the GPU device

memory, aggressive prefetching has little to no downside as performance always benefits from

bandwidth-optimized access to local memory. However, for applications with sparse, ran-

dom, and seldom access over large memory allocations, prefetching pages indiscriminately

can quickly lead to device-memory oversubscription. Moreover, because of the large num-

ber of SIMT units and massive TLP, GPU compute units (CUs) are constantly generating

on-demand requests for page migrations. As a result, a prefetcher cannot afford to flood

the DMA engine with prefetch requests and in turn throttle on-demand transfers. Secondly,

GPU has been traditionally used as a slave to the host processor. The software-managed

runtime in the host operating system is responsible for memory management as well to

manipulate GPU’s page table. As a result, hardware-assisted prefetching is not a viable

solution for prefetching data from the host to the device memory. Similarly, considering the

requirement of higher programmability and application-transparency, user-assisted and/or

compiler-directed prefetchers are not preferred for GPU workloads.

Acknowledging these unique challenges for prefetching presented in the CPU-GPU mem-

ory hierarchy, researchers have proposed the concept of software prefetchers [94, 2]. Ganguly

at al [32], through their extensive micro-benchmarking and investigation of the NVIDIA

UVM module, showed that there exists a tree-based software prefetcher implemented in the

CUDA unified memory runtime. Implementing a prefetcher in GPU runtime exposes new

opportunities by taking away the limitations of both hardware and user-directed prefetching.

Because GPU interrupts the runtime hosted on CPU and communicates the pending faults,

the runtime is in a unique position of maintaining a historic view of the memory accesses and

making an informed choice of selecting a prefetch candidate based on the spatio-temporal

locality of access.

However, when GPU memory has no free space to allocate pages for newer migra-

tion, aggressive prefetching can be counterproductive. Runtime, upon detecting memory-

oversubscription, needs to evict pages to allow not only on-demand migration but also inser-

tion of prefetch candidates. NVIDIA’s unified memory runtime implements an LRU page re-

placement with 2MB huge-page eviction granularity. Like aggressive prefetching, aggressive

3



Figure 1: Sensitivity of workloads to the percentage of memory oversubscription (performed

on real hardware).

eviction has an adverse effect on performance. Figure 1 shows the performance degradation

of GPGPU workloads with varying percentages of memory oversubscription. These work-

loads are described in Section 3.2. The results are obtained by running the workloads on

GeForceGTX 1080 ti [58] (not on simulated environment). Eviction with huge-page granu-

larity causes a large page thrashing for repetitive kernel launches. This necessitates careful

investigation and design of a new locality-aware page replacement strategy compatible with

locality-aware software prefetcher.

In recent years, discrete CPU-GPU heterogeneous systems have been moving away from

the PCIe interface. By layering coherence protocols on top of physical link technologies

(e.g. NVLink, Hypertransport, etc.), these systems achieve high bandwidth and low latency

between the NUMA pools attached to GPU and CPU respectively. As a result, CPU-GPU

heterogeneous systems are closely resembling the traditional CC-NUMA and even hierar-

chical hybrid memory systems. Today, GDDR5 is the most common bandwidth-optimized

memory technology used with discrete GPUs. Due to the high data rates (per-pin data

4



rate up to 7Gbps), GDDR5 requires significant energy per access and in turn, cannot scale

into high-capacity multi-rank memory modules. Whereas, CPU-attached DRAM modules

(DDR4, LPDDR4) can provide similar latency at a much lower energy requirement per access

but fail to provide a high data rate (only 3.2 Gbps per pin).

Traditionally, operating systems characterize NUMA zones based on the difference in

respective memory access latency and further assume that these NUMA zones will be sym-

metric in bandwidth and power characteristics. However, in the context of CPU-GPU hetero-

geneous systems, this assumption clearly breaks down. The situation is further exacerbated

as GPU-runtime is unaware of the potential impact of these differences in memory char-

acteristics on the performance and energy requirements of the running applications. The

disaggregation of memory into on- and off-package pools and significant variation in energy

requirement, bandwidth, and latency between the discrete memory pools are two primary

factors motivating the necessity to revisit page placement and pinning decision in the context

of CPU-GPU Unified Memory. Moreover, with heterogeneous computing, certain phases of

computation are pinned to either CPU or GPU. Unlike traditional NUMA-aware SMP sys-

tems, processes are not migrated to the data they are operating on to mitigate performance

imbalance. As a result, it is runtime’s responsibility to decide where the memory pages to

be pinned and when to be migrated in case of heterogeneous CPU-GPU systems. The goal

of a robust page placement and pinning strategy is to abstract the technical properties of

on- and off-package memory into power and performance characteristics based on which an

optimization decision can be made.

Beyond the peculiarities of memory characteristics and asymmetry in bandwidth, access

latency, capacity, and power consumption, memory access pattern of GPU workloads plays

vital roles while deciding page placement and pinning. Agarwal et al [3] showed that over

60% of the memory bandwidth stems from within only 10% of the application’s allocated

pages. This is due to the fact that distinct ranges of physical addresses appear to be clustered

as hot or cold (based on the aggregate access frequency) for a wide range of irregular data-

intensive workloads. Further, migrating a cold page can cause serious thrashing of the

heavily accessed or hot page which is the primary cause of oversubscription overhead for

irregular data-intensive applications with sparse, random, and seldom access over large cold

5



data sets. This necessitates the exploration of a user-agnostic page placement and pinning

policy in the software-managed runtime leveraging existing hardware and software support

for data-intensive workloads in CPU-GPU heterogeneous systems.

The memory access pattern of a GPU application depends on the fine-grained parallelism

and inherent memory access characteristics. Different access patterns can react differently

to memory over-subscription. Detailed analysis by runtime profiling shows that fault-based

migration under oversubscription waits for long latency writebacks in case of regular ap-

plications. On the other hand, the oversubscription overhead in irregular applications is

due to excessive page thrashing which is further exacerbated by the prefetcher. Irregular

applications show an order of magnitude performance degradation. Although CUDA pro-

vides a wide array of APIs to properly allocate and manage a working set of general-purpose

applications, taking full advantage of smart memory management tactics depend on the

ninja programming skills of application developers. This necessitates the design of a smart,

adaptive runtime that can monitor and determine the underlying pattern in CPU-GPU in-

terconnect traffic and then choose and apply the best possible memory management strategy

transparent to the application developers.

In today’s heterogeneous installations, a single GPU is often shared by multiple applica-

tions potentially originating from different users to fully saturate available compute-resources

of the GPU. Researchers [59, 60, 76, 82, 89, 1] have shown that executing concurrent appli-

cations on the same GPU improves overall system throughput. However, workload consol-

idation suffers from the problem of application interference contending for various system

resources - memory hierarchy, on-chip interconnect bandwidth and compute cores. Past re-

searches [1, 4, 5, 36, 86, 59] have investigated the issue with contention for compute resources

by concurrent GPU applications. Only a few works [42, 43] have explored the application

interference in the on-chip interconnect and device memory.

Figure 2a reports the performance slowdown of GPU applications when provisioned - (i)

50% of available SMs with full share of interconnect bandwidth and (ii) 50% of interconnect

bandwidth but executed on all available SMs compared to the case where the respective

application runs with full compute resources and bandwidth. We can see that halving the

number of SMs only causes 3% (geometric mean) slowdown compared to 29% slowdown

6



(a) On end-to-end execution time

(b) On average delay suffered by CPU-GPU interconnect traffic

Figure 2: The effect of computation resources and interconnect bandwidth on unified memory

applications.

with half of available interconnect bandwidth. Note that most of the applications show little

to no slowdown from 50% reduction in the number of SMs. This behaviour might appear

counter-intuitive. However, most of these algorithms use more threads-per-blocks and fewer

blocks-per-grid to fully saturate the scheduling capacity per SM. Hence, they cannot fully

scale to multiple SMs leading to poor utilization of GPU compute resources. Moreover, ra

gains performance. ra creates bursts of random requests per thread. Halving the number of

7



SMs leads to fewer active threads and in turn lesser contention for interconnect bandwidth.

This is similar to the method of thread-throttling to remove memory interference in chip-

multiprocessors [28, 23]. This validates the use case of sharing GPU compute resources in a

spatial manner.

Figure 2b demonstrates that the normalized delay suffered by CPU-GPU interconnect

traffic is almost twice when the interconnect bandwidth is halved and has no significant

impact when half of the total SMs is provisioned. This justifies the performance behavior

reported in Figure 2a. In contrast to the classic “copy-then-execute” model, with unified

memory, kernel execution stalls for fault-driven migrations. The end-to-end execution time

of an application with unified memory allocations resembles the summation of serial memory

copy and kernel execution time. Even, GPU’s heavy multi-threading is rendered ineffective

to hide long latency host-to-device page migrations. As a result, CPU-GPU interconnect

becomes a performance-critical resource when multiple concurrent applications, sharing the

same GPU, contend for it. This motivates the particular use case of user-agnostic CPU-GPU

interconnect provisioning for concurrent applications in commodity clusters.

1.2 Thesis Statement

“Unified Memory provides greater programmability by simplifying memory management

in CPU-GPU heterogeneous systems. Despite significant advancement in memory manage-

ment techniques, over-subscription remains a major challenge in the adaptation of GPUs

by data-intensive applications. Moreover, the applicability of certain memory management

techniques still relies on explicit programming hints supplied by application developers. Fur-

ther, multi-tenancy in the GPU cloud is not explored to its full potential. The goal of this

dissertation is to design an adaptive memory management system, which can cater to the

performance goals of a large, and disparate set of general-purpose applications using Unified

Memory in CPU-GPU heterogeneous systems.”

8



1.3 Contributions

The primary goal of this dissertation is to design a smart, application-transparent runtime

that can improve GPU programmability and also address the performance requirements of

disparate general-purpose applications. To this end, this dissertation attempts to answer the

following research questions.

• RQ-1. How to mitigate performance overhead from device-memory oversubscription by

the application working set?

– RQ-1.1. Is it possible to design a page replacement strategy that adopts the se-

mantics of existing software prefetcher?

– RQ-1.2. How to leverage existing hardware and software support to characterize

memory pages based on access-frequency, and make smart pinning and migration

decision?

– RQ-1.1. How to transparently identify any underlying pattern in CPU-GPU inter-

connect traffic and apply suitable memory management policies to deal with over-

subscription overhead?

• RQ-2. How to ensure overall system throughput while guaranteeing performance fairness

by eliminating interference in multi-tenant execution?

To this end, the main contributions of this dissertation can be outlined as follows.

1. Adaptive Page Replacement

• Adopts the semantics and leverages the implementation of the existing tree-based

software prefetcher.

• By following the spatio-temporal locality, trades between 4KB and 2MB page evic-

tion granularity.

2. Adaptive Page Migration and Pinning

• Pins hot pages to the device memory and cold pages to the host memory.

• Balances between high-bandwidth, sequential access to device-local memory and

low-latency, sparse, remote access to the host memory.

9



3. A Smart Unified Memory Management Framework

• Detects underlying pattern in CPU-GPU interconnect traffic.

• Unifies memory management by dynamically and transparently employing the best-

suited memory management policy to reduce page thrashing.

4. Adaptive Multi-tenancy

• Extends the characterization of unified memory applications beyond device memory

access pattern by introducing arithmetic intensity and the number of interconnect

traffics per unit memory as two new classification metrics.

• Develops a strong analytical model that expresses application performance as a func-

tion of their arithmetic intensity and number of on-demand memory transactions.

• Based on the theoretical model, presents an application-aware, adaptive interconnect

provisioning scheme that aims to - (i) improve overall system throughput, and (ii)

guarantee application fairness by fair-share, work-conserving scheduling.

In addition to the main contributions listed above, the following contributions were

necessary to enable the design and evaluation of the presented work.

1. Discovery of the Semantics of Tree-based Prefetcher

• Creating micro-benchmarks to reverse engineer the semantics of tree-based prefetcher

2. Evaluation Framework for Isolated Execution

• Extending of GPGPU-Sim 3.x to provide functional and timing simulation support

for Unified Memory

• Introducing new benchmarks with Unified Memory APIs

3. Evaluation Framework for Concurrent Execution

• A Unified Memory Concurrent Application (UMCA) suite and a simulation frame-

work to support execution of such application suite

10



1.4 Organization

Figure 3 gives an overview of the dissertation. Chapter 2 provides the necessary back-

ground to navigate the rest of the dissertation along with relevant prior work motivating

the proposed contributions. The extended simulation framework and new unified memory

benchmarks are explained in Chapter 3. Chapter 4 presents the contribution on adaptive

page replacement (published in ISCA 2019 [32]). Chapter 4 describes the heuristic for adap-

tive page migration and pinning (published in IPDPS 2020 [31]). Chapter 6 introduces a

smart, adaptive extension to the unified memory runtime that transparently detects the

page-migration pattern and applies memory management techniques to holistically address

device-memory oversubscription. Chapter 7 presents an adaptive CPU-GPU interconnect

scheduler for multi-tenant GPGPU workloads in CPU-GPU heterogeneous memory systems.

Finally, Chapter 8 summarizes this dissertation by highlighting the expected impact along

with the future research direction.

Figure 3: Overview of the thesis work.

11



2.0 Background and Related Work

This chapter provides relevant background information on memory management in CPU-

GPU heterogeneous systems setting the necessary foundation for the following chapters.

The description closely follows NVIDIA/CUDA terminology in specific cases, however, it is

general enough to describe any vendor-agnostic discrete CPU-GPU heterogeneous memory

system. It also includes a summary of relevant prior research that motivates the contributions

in the following chapters.

2.1 Baseline Architecture

This dissertation considers discrete GPUs connected to the host CPU over PCIe (periph-

eral component interconnect express) as they dominate the marketplace over the integrated

on-die GPUs. Multiple compute cores are grouped in Streaming Multiprocessors (SMs) along

with registers, shared memory, and caches. The GPU has many SMs. SMs are connected

to multiple Memory Controllers (MCs) via an on-chip interconnect network and share the

device memory (e.g. GDDR5, HBM, etc.).

GPUs are co-processors and governed by software runtime. The software runtime exe-

cutes as a device driver part of the host operating system (OS). The host application launches

CUDA computation kernels. Each kernel is organized as blocks (TBs) of co-operative thread

arrays (CTAs). Once a TB is dispatched to an SM, its threads are batched into warps that

are scheduled on the SM.

2.2 Unified Memory

Traditionally, the onus of memory management and utilizing overall system bandwidth

had fallen squarely on application programmers. In the classic, “copy then execute” model,

12



application programmers had to allocate memory on both host and device memory pools,

then copy the data from the host to device memory before launching the GPU kernels, and

then finally copy the data back from the device to the host memory pool. Programmers

also had to painstakingly tile the working set to work around memory oversubscription and

write smart multi-stream asynchronous constructs for data migration to overlap with kernel

execution.

To address these challenges with memory management and accommodate increasing

memory demand of general-purpose applications, GPU vendors introduced device memory

virtualization. Although the Heterogeneous System Architecture (HSA) Foundation has its

version of unified virtual addressing (UVA), NVIDIA GPUs are ahead in their game due

to their hardware support for fault-driven migration and on-demand allocation powered by

software-runtime for unified memory. By automatically paging in and out of device memory,

unified memory simplifies memory management, and improves programmability.

2.2.1 Fault-driven Migration and On-demand Allocation

The key to realizing the illusion of a unified address space is micro-architectural sup-

port for fault-driven migration and on-demand allocation. NVIDIA Pascal GPUs [56] have

introduced hardware page faulting and Page Migration Engine to support Unified Memory

for discrete CPU-GPU systems. In CUDA 8.0 [55], cudaMallocManaged allows programs

to allocate data that can be accessed by both host code and kernel using a single shared

pointer. The illusion of Unified Memory is realized by on-demand allocation and fault-driven

data transfer.

In the “copy then execute” model, the host program ensures that data is physically

available in the device memory before the kernel starts executing. Warps are stalled on

near-faults which occurs only upon L2 cache misses. The massive thread-level parallelism

(TLP) hides the local memory access latency and guarantees high throughput. However,

in Unified Memory, a new type of fault, which will be referred to as far-faults. Zheng et

al [94] introduced the concept of replayable far-fault. A far-fault occurs when the addressed

memory page is not physically present in the device memory. On-demand allocation and

13



page migration is triggered by these far-faults.

The following steps demonstrate the lifetime of a far-fault resolution. 1© Scheduled

warps generate global memory accesses. 2© Each Streaming Multiprocessor (SM) has its

own load/store unit. Every load/store unit has its L1 TLB. The load/store unit performs a

TLB lookup to find whether the translation for the issued memory access is cached or not.

3© There is also an L2 TLB shared across all SMs of a GPU. Missed translation requests in

L1 TLB are searched through L2 TLB. 4© A L2 TLB miss is relayed to the GPU Memory

Management Unit (GMMU). 5© The GMMU walks through the page table looking for a page

table entry (PTE) corresponding to the requested page with the valid flag set. A far-fault

occurs if there is no PTE for the requested page or the valid flag is not set. 6© GMMU can

only perform a page table lookup. It has no capability to handle far-fault and update/add

page table entry. The far-fault is registered in the Far-fault Miss Status Handling Registers

(MSHRs). The offending warps are stalled. 7© GPU interrupts runtime hosted by the host

operating system to relay the far-faults every set quantum. 8© Unified memory runtime

groups the far-faults. The software prefetcher (detailed in Section 2.2.2) determines and

schedules direct memory access (DMA) request to transfer a chunk of memory from the

host to the device over CPU-GPU interconnect. 9© Pages corresponding to the memory

chunk are allocated on-demand, and page table and TLB entries are created/updated upon

completion of the scheduled DMA request. 10© The MSHRs are consulted to notify the

corresponding load/store unit and the memory access is replayed. The offending warps are

marked executable.

2.2.2 Tree-based Software (TBNp) Prefetcher

GPU Technology Conference 2018 [70] briefly mentioned a tree-based hardware prefetcher

implemented by NVIDIA CUDA 8.0 driver. Knowledge of the exact semantics of this

prefetcher is proprietary to NVIDIA and was never made public. One of the key con-

tributions of this dissertation is the discovery of the semantics of the tree-based software

prefetcher by studying the MIT-licensed open-source nvidia-uvm module, and executing

micro-benchmarks described in Section 3.2.1 on GeForceGTX 1080ti and profiling the mem-

14



ory accesses using nvprof.

The semantics of TBNp demands that every cudaMallocManaged allocation is first logi-

cally divided into 2MB huge-pages. Then, these 2MB huge-pages are further divided into

logical 64KB basic blocks to create a full binary tree (or a proper binary tree or a 2-tree)

per huge-page boundary. By the definition of a full binary tree, every node has exactly two

children nodes. The root node of each binary tree corresponds to the virtual address of a

2MB large page and the leaf-level nodes correspond to the virtual addresses of the 64KB

basic blocks. If the user-specified size of the allocation is not a perfect multiple of 2MB,

then the remainder size of the allocation breaks the principle of a full binary tree. To ad-

dress this, the remainder allocation is rounded up to the next 2i ∗ 64KB and another full

binary tree is created. For example, if the programmer specifies 4MB and 168KB size for

a cudaMallocManaged allocation, at the time of allocation, the runtime rounds this size up

to 4MB and 256KB. Then two full binary trees for 2MB large pages and one full tree

for 256KB are created and maintained by the runtime transparent to the programmer’s

knowledge. This behavior can also be verified by running the micro-benchmarks described

later.

The maximum memory capacity of a node in the full binary tree can be calculated as

2h ∗ 64KB, where h is the height of a node and h = 0 at the leaf level. On every far-fault,

the runtime first identifies the 64KB basic block corresponding to the faulty page being

requested. With the understanding that upon migrating, 16 pages in the basic block will be

validated in the GPU page table, runtime then recalculates the to-be valid size of its parent

and grand-parent up to the root node of the tree. Here and henceforth, the valid size means

the size of all valid pages corresponding to the leaf-nodes belonging to a given node. At any

point, if runtime discovers the to-be valid size of a node is strictly greater than 50% of the

maximum memory capacity at this level, it tries to balance the valid sizes between the two

children of that node. This balancing process is recursively pushed down to the children

which have not reached the maximum valid size quota. This balancing act identifies basic

blocks for prefetching. This process continues till no more basic blocks at leaf level can be

identified as prefetch candidates and the to-be valid size of any non-leaf node including root

is not more than 50% of maximum size capacity at its level.

15



Prefetching contiguous pages within 2MB boundary tries to ensure the allocation of

larger contiguous memory and can also help bypass traversing the nested page tables. This

helps reduce the time to access memory. For this same reason, in their work [10], researchers

introduced the concept of memory defragmentation to swap and coalesce fragmented memory

chunks to ensure contiguous physical memory worth of 2MB large page. However, migrat-

ing 4KB pages on-demand and then defragmenting the memory space in the runtime has

substantial overhead. Whereas, TBNp is an adaptive scheme where the prefetch size can

vary from 64KB to 1MB based on the access pattern and opportunity of prefetching. Thus,

it can get close to 2MB large page locality without causing any additional performance

overhead.

TBNp can be demonstrated with the help of two examples in Figure 4. Both of these

examples explain the semantics on 512KB memory chunk for simplicity. These examples

use N i
h to denote a node in the full binary tree, where h is the height of the node and i is

the numeric position of the node in that particular level. It is further assumed that initially

all pages in this 512KB allocation are invalid with valid bit not set in the GPU’s page table

and thus every first access to a page causes a far-fault.

In the first example, for the first four far-faults, runtime identifies the corresponding

basic blocks N1
0 , N3

0 , N5
0 , and N7

0 for migration. In this example, as the first byte of every

basic block is accessed, the basic blocks are split into 4KB page-fault groups and 60KB

prefetch groups. All memory transfers are serialized in time. After these first four accesses,

each of nodes N1
0 , N3

0 , N5
0 , and N7

0 has 64KB valid pages. Then, runtime traverses the full

tree to update the valid page size for all the parent nodes and thus each node at h = 1 (N0
1 ,

N1
1 , N2

1 , and N3
1 ) has 64KB valid pages. When the fifth access occurs, runtime discovers

that N0
1 and N0

2 will have 128KB and 192KB valid pages respectively. For N0
2 , the to-be

valid size is greater than 50% of the maximum valid size of 256KB. Hence, the right child

N1
1 is identified for prefetching. This decision is then pushed down to the children. This

process identifies the basic block N2
0 as a prefetch candidate. Further, runtime discovers

that after prefetching N2
0 , N0

3 will have 320KB of valid pages which is more than 50% of

the maximum valid size of 512KB. Then, node N0
3 pushes prefetch request to the node N1

2

which in turn pushes it to its children. This process identifies basic blocks N4
0 and N6

0 for

16



Figure 4: Demonstration of the tree-based prefetcher on 512 KB memory chunk for two

different page access patterns.

further prefetching.

In the second example, the first two far-faults cause migration of basic blocks N1
0 and

N3
0 . runtime traverses the tree to update the valid size of nodes N0

1 and N1
1 as 64KB each.

At the third far-fault, as basic block N0
0 is migrated, the estimated valid sizes for nodes N0

1 ,

and N0
2 are updated as 128KB and 192KB respectively. As the valid size of N0

2 is more

than 50% of the maximum valid size of 256KB, N2
0 is identified for prefetching. After this

point, the N0
2 is fully balanced and both N0

2 and N0
3 have exactly 256KB of valid pages. On

fourth access, runtime discovers that the valid size of N0
3 will be 320KB which is more than

50% of the maximum memory size it can hold. This imbalance causes prefetching of nodes

N5
0 , N6

0 , and N7
0 . Note at this point as runtime finds four consecutive basic blocks, it groups

them to take advantage of higher bandwidth. Then, based on the page fault, it splits this

256KB into two transfers: 4KB and 252KB. An interesting point to observe here is that

for a full binary tree of 2MB size, TBNp can prefetch at most 1020KB at once in a scenario

17



similar to the second example.

2.2.3 Page Replacement

One of the major benefits of unified memory is that the runtime automatically evicts

older pages to make room for the newer page migrations taking care of the device-memory

oversubscription. Before scheduling any DMA request to copy memory pages from the host

to the device memory, the runtime evaluates the current occupancy of device memory by

querying low-level system APIs. When there is no free space in the device memory, the

runtime invokes a page replacement routine to write-back pages automatically from the

device to the host memory. CUDA runtime implements Least Recently Used (LRU) page

eviction. As the pages are migrated in, they are placed in a queue based on the migration

timestamp. After migration, if a page is accessed, then its position is updated based on the

current access timestamp. Newly accessed pages are moved to the end of the queue and

thus the oldest accessed (/migrated) page will be evicted upon oversubscription. The page

replacement works at the strict granularity of 2MB x86-OS huge-page. A 2MB huge-page

is selected for eviction only when it is fully populated and not currently addressed by any

scheduled warp. Evicting 2MB ensures that the semantics of the tree-based prefetcher is

not violated and thus stays active even after device memory oversubscription.

2.2.4 Remote Zero-copy Access and Delayed Migration

Unified Memory offers a “single-pointer-to-data” model. Both host and device see a

unified view of virtual address space. At any given time, only one physical copy of the data

is maintained either on the host or the device memory. Typically, the data is initialized in

the host memory. On every first access to a page by the device, the corresponding page

table entry in the host is invalidated and data is migrated to the device memory and a

new entry is created in the device page table. On the contrary, with zero-copy allocations,

the physical allocation is hard-pinned to the host memory. This means pages are never

copied from the host to the device memory. Rather the device accesses data remotely

over cache-coherent interconnect. cudaHostRegister API allows malloced allocation to

18



be pinned to the host memory and the kernels are launched with device pointer derived

using cudaHostGetDevicePointer API. Remote zero-copy access has lower latency than

the classic Direct Memory Access (DMA) but also suffers from lower bandwidth of PCIe

interconnect. This is why zero-copy access is introduced for applications with seldom and

sparse access to very large data sets. OpenCL [9, 7] also provides support for allocating host

pinned memory using CL_MEM_ALLOC_HOST_PTR.

Following the same concept, CUDA 9.0 offers the ability to provide useful hints to the

Unified Memory subsystem about the usage pattern. The cudaMemAdviseSetAccessedBy

flag allows the device to establish direct mapping to the host memory. Further, the preferred

location of memory allocation can be set using cudaMemAdviseSetPreferredLocation.

However, the pages in the host memory are soft-pinned because based on runtime heuristics

pages can be migrated to the local from the far memory.

Figure 5: Delayed page migration upon exceeding a static access threshold or exclusive data

migration on write.

NVIDIA Volta GPUs [71] and IBM Power9 [38] introduced a new hardware-based page-

level access counter. If an allocation is advised to be soft-pinned to the host memory, then

the memory is not copied directly at the first-touch by the device. Rather, the migration

from the preferred location of host memory to the device memory is delayed based on a

static access counter threshold, ts. If the page is accessed to read data for a certain number

of times crossing the value of ts configured in the driver, the data is copied to the device

19



memory. On the other hand, on write access, the page is invalidated in the host page table

and exclusively copied to the device memory irrespective of the access frequency [70]. This

access counter-based delayed page migration mechanism is illustrated in Figure 5.

Irregular applications with sparse memory access can highly benefit from both remote

zero-copy access and access counter-based delayed migration. As in Unified Memory, fault-

based migration triggers additional prefetching of neighbor pages, under a strict memory

budget it can exacerbate the situation causing a crippling impact on performance. Delayed

migration or no-copy can improve performance for irregular applications by reducing the

number of page thrashing. However, for regular applications with dense, sequential access

zero-copy is a bad option. Although the remote zero-copy model offers low latency of access,

migrating data in bulk to the local memory and then accessing it enjoys the benefits of band-

width optimized local network. Moreover, larger migration using prefetcher improves PCI-e

bandwidth utilization and reduces the number of far-faults in general. Similarly, having

static access counter-based threshold for delayed migration incurs the additional overhead

of remote access because, for dense sequential access, the data is eventually migrated to the

local memory upon crossing the threshold.

2.3 GPU Multi-tenancy

2.3.1 GPU Sharing Mechanism

The state-of-the-art GPU architecture provides software-based GPU multi-tenancy lever-

aging the hardware support of Hyper-Q [62]. A CUDA stream is a software abstraction of

a sequence of commands that execute in order. All work on the GPU is launched either

explicitly into a CUDA stream, or implicitly using a default stream. The default stream is

a special stream that implicitly synchronizes with all other streams on the device. Whereas,

different streams, other than the default stream, may execute their commands concurrently,

allowing for coarse-grained parallelism. Starting from Kepler architecture, NVIDIA provides

32 work queues between the host and the GPU and a concurrent scheduler to schedule work

20



from work queues. CUDA streams are aliased onto one or more work queues on the GPU

by the driver. Thus, streams enable concurrent kernel execution on GPU which in turn

facilitates better utilization of GPUs and overall performance.

NVIDIA released an alternative, binary-compatible implementation of the CUDA API

called Multi-Process Service (MPS) [57]. The MPS client runtime is built into the CUDA

driver library which can be used transparently by multiple CUDA applications to utilize

Hyper-Q capabilities of the GPU. The MPS server is the clients’ shared connection to the

GPU and provides concurrency between the clients. In contrast to the pre-Volta MPS, Volta

MPS clients can submit work directly to the GPU bypassing the MPS server. While availing

stream-based multi-tenancy needs code transformation, MPS allows dynamic scheduling of

client codes.

2.3.2 CPU-GPU Interconnect Provisioning

Currently, the Peripheral Component Interconnect Express (PCIe) interface is commonly

used to connect a GPU to a computer system. PCIe standard [39] includes the features of

Virtual Channels (VCs) and Traffic Classes (TCs) for network traffic provisioning. Traffic

classes indicate the priority of traffic, while Virtual Channels deliver the priority. Virtual

channels allow higher-priority traffic to flow past lower priority traffic at every link. Transac-

tions are associated with one of the supported VCs according to their TC attribute through

TC-to-VC mapping, specified in the configuration block of the PCIe device. VCs have ded-

icated physical resources - buffering, flow control management, etc. As of today, the vast

majority of GPU runtimes do not support interconnect provisioning for concurrent GPU

applications. Currently, the best approach implemented in drivers is to serve the requests

from concurrent applications based on a first-ready first-come-first-serve (FR-FCFS) basis.

Starvation is avoided by load balancing between the application following round-robin (RR)

ordering between transactions.

21



2.4 Related Work

2.4.1 Prefetching and Page Replacement in Unified Memory

The key to realizing the illusion of unified virtual address space is fault-driven migration

and on-demand memory allocation. Zheng et al [94] introduced the concept of replayable

far-fault. A far-fault occurs when the addressed memory page is not physically present in

the device memory unlike a near-fault on cache-miss. Despite the higher programmability

and ease of memory management, unified memory is still in its infancy. Agarwal et al [2]

and Zheng et al [94] were one of the first few to demonstrate the performance bottleneck

of on-demand paging and proposed software prefetchers as a prospective solution. Zheng et

al [94] introduced (i) random, (ii) sequential, and (iii) locality-aware software prefetchers.

Following these researches, NVIDIA’s unified memory runtime introduces a tree-based spatio-

temporal prefetcher as described in Section 2.2.2. Like prefetching, page replacement also

plays a critical role in unified memory particularly under device memory oversubscription.

Zheng et al [94] compared the performance difference from (1) random and (ii) LRU page

eviction. Ganguly et al [32] studied the interplay between prefetchers and page replacement

algorithms under oversubscription. They proposed a new “pre-eviction” policy inspired by

the semantics of NVIDIA’s tree-based prefetcher to reduce page thrashing which is one of

the main contributions of this dissertation as presented in Chapter 4. Following the same

direction, Yu et al introduced hierarchical page eviction [91], and a coordinated prefetcher

and eviction policy [90].

2.4.2 Page Migration and Pinning

Over the years, the modern-day SMP systems have become more complex in their struc-

ture and component designs. Now, they are typically made of multiple cache-coherent

non-uniform memory access (CC-NUMA) zones where each NUMA zone comprises of a

socket, the processors within it, and the attached physical memory module. While a pro-

cessor within a NUMA zone can freely access the memory from another NUMA zone to

take advantage of the aggregate memory capacity and bandwidth, it comes at the cost of

22



non-uniform access latency. To mitigate the performance imbalance and benefit from data-

locality, researchers have explored the idea of page placement and pinning in traditional

CC-NUMA systems. Earlier works mostly focused on placing data and processes in close

proximity [16, 17, 40, 49, 80, 87]. Acknowledging the fact that it is typically better for

processes to service memory requests from their respective NUMA zone, operating systems

like LINUX exposes the system topology and memory latency information using System Re-

source Affinity Table (SRAT) and System Locality Information Table (SLIT). Discovering

this information, the application can allocate and place physical memory pages using malloc

and mmap calls. There is another body of work [11, 15, 24, 26, 46, 75, 95], which considers

sharing patterns, interconnect congestion, and even queuing delay within the memory con-

troller as metrics to design page and process placement policies. Page placement and pinning

also become crucial considerations for hybrid and hierarchical memory systems consisting of

capacity-optimized non-volatile memory (NVM) alongside latency-optimized small DRAM

modules. Several works [13, 20, 47, 53, 61, 63, 67] had studied the performance peculiarities

of NVM in particular read/write latency disparity and focused to balance performance needs

with power consumption. Although the above works explored heterogeneity in traditional

SMP systems, and in hierarchical and hybrid-memory systems, the key idea of data-locality

and memory placement motivated the work presented in Chapter 5.

While CPUs are generally more performance-sensitive to memory system latency rather

than other memory characteristics, due to their massive TLP, GPUs can gracefully handle

long memory latencies, and instead sensitive to memory bandwidth [93]. Wang et al [81]

explored compiler analysis to identify near-optimal data placement across kernel invocations

for their heterogeneous memory (mixed NVM-DRAM based) system to ensure improved

power efficiency. In the context of discrete CPU-GPU heterogeneous system, Agarwal et

al [3] proposed a bandwidth-aware (BW-AWARE) page placement policy that maximizes

GPU throughput by balancing page placement across the memories based on the aggregate

memory bandwidth available in a system. They enhanced BW-AWARE by a compiler-based

profiling mechanism that furnishes programmers with data-structure access information and

in turn, allows to annotate program to provide hints about memory placement. They further

studied the trade-offs and considerations in relying on hardware cache-coherence mechanisms

23



versus using software page migration to optimize the performance of memory-intensive GPU

workloads [2]. They showed that virtual address-based program locality to enable aggressive

memory prefetching combined with bandwidth balancing is required to maximize perfor-

mance.

However, none of the above works consider the presence of prefetcher in CPU-CPU uni-

fied memory and its impact on memory over-subscription. Because of their dense, sequential

memory access, regular data-parallel applications benefit from prefetchers [94, 32, 70]. A

prefetcher prefetches data in advance based on the spatio-temporal locality of access. In the

process, it reduces the number of faults and further improves PCI-e bandwidth. Whereas,

for irregular, data-intensive applications, aggressive prefetching can be counter-productive

under memory oversubscription. The situation is aggravated further as heavily referenced

pages are replaced using LRU without differentiating between cold and hot data structures.

Chapter 5 introduces a user-agnostic page placement and pinning policy for data-intensive,

irregular workloads in CPU-GPU heterogeneous systems. The proposed framework lever-

ages the hardware access counter register, present in IBM Power9 [38] and Volta V100

systems, and extends the static threshold-based delayed migration strategy to employ a sim-

ple heuristic that determines a dynamic access threshold for page migration. The dynamic

access threshold is derived as a response to the memory occupancy, and page access and

thrashing frequency. It dynamically strikes a balance between latency-optimized direct ac-

cess to remote host memory and bandwidth-optimized local memory for cold and hot data

structures respectively.

2.4.3 Unified Framework

The memory access pattern of a GPU application depends on the fine-grained paral-

lelism and inherent memory access characteristics. Different patterns can react differently to

memory over-subscription. As a result, the oversubscription overhead of a workload heavily

depends on the corresponding memory access pattern. Yu el al [92] provided a quantitative

evaluation and comprehensive analysis of Unified Memory in GPUs. They profiled workload

execution on a simulation platform to identify six representative classes of memory access

24



patterns for various general-purpose applications. Li et al [50] also classified GPU applica-

tions in three categories - 1) regular applications without data sharing, 2) regular applications

with data sharing and 3) irregular applications. Burtscher et al [18] performed a quantitative

study to categorize a set of irregular applications based on their memory and control flow

irregularity and input dependence. Li et al [50] employed a counter in each SM’s load/store

unit to sample the number of coalesced memory accesses and determine the memory access

pattern of the executing workload. Upon detecting the memory access pattern, the runtime

chooses between proactive eviction, memory-aware throttling, and capacity compression to

address the challenge with memory over-subscription. Unlike the above works, Chapter 6

proposes an extension to the runtime for CPU-GPU interconnect-traffic pattern detection

that does not rely either on intrusive profiling techniques or on any hardware extension;

rather leverages prefetched block-addresses along with the access cycle information already

available with the runtime engine to determine unified memory page-migration pattern and

can transparently apply specific memory management techniques.

2.4.4 Execution of Concurrent Applications on GPU

Past studies demonstrated that sharing the GPU between multiple application kernels

improves energy efficiency and overall system throughput compared to running a single kernel

where on-chip GPU resources are greatly underutilized [59, 60, 76, 82, 89, 1]. Sharing GPU

between multiple applications poses unique challenges as there is limited support for hard-

ware preemption and context-switching. Existing approaches for GPU sharing can be broadly

classified into two categories - (i) software-based approaches and (ii) hardware-assisted multi-

tenancy. The most common software-based approach is coarse-grained time-multiplexing of

kernels analogous to CPU job scheduling. Baymax [22] blocks the application, that had al-

ready consumed higher GPU time, from launching more kernels to make room kernels of other

applications with lower GPU time. Because of the coarse-granularity of GPU sharing, this ap-

proach fails to improve overall resource utilization and in turn system throughput. Although

the overall application lifetime may overlap, kernels from different applications run sequen-

tially. The second software-based approach relies on code-transformation [88, 89, 59, 82].

25



The participating applications should be known and codes are required to be available in

advance for applying any code transformation. As a result, this approach fails to facilitate

the dynamic scheduling of workloads. Moreover, since kernels from different applications

are fused, the hardware sees only one kernel, and in turn, may lead to unfair scheduling.

Warped-slicer [89] proposed a profiling-based TB-allocation scheme for sharer kernel to im-

prove performance. Wu et al [88] presented a transformation centered on SMs permitting

precise control of job locality on SMs. Kernel Fusion [82] and Elastic Kernel [59] fuse two

kernels from two different applications into one kernel based on resource requirements achiev-

ing a fine-grained sharing mechanism as they can be resident to one SM. Hardware-assisted

multi-tenancy essentially leverages the hardware-based preemption and context-switching

mechanism to allow sharing available compute-resources. SMs can be either physically por-

tioned between participating kernels [76, 60] or shared partially in time [84, 85]. Wang et

al [86] extended the SMK [84, 85] approach of fine-grained sharing to provide Quality of

service support for collocated workloads. These approaches only considered provisioning

compute resources to enable GPU multi-tenancy, and ensure performance isolation. Chap-

ter 7 follows a kernel-to-SMs allocation scheme. Compute resources are evenly distributed

among the participating concurrent application spatially.

2.4.5 GPU Memory Scheduling

Shortest Job First (SJF) and FR-FCFS [69, 96] are widely used as DRAM memory

scheduler. Researchers also studied a DRAM scheduling policy that essentially chooses

between the above two [48]. Chatterjee et al [19] explored warp-aware memory scheduling to

reduce DRAM latency divergence. Jeong et al [41] presented a QoS-aware memory controller

in the SoC space that allows GPUs to maintain a real-time QoS-level. These prior works on

GPU memory scheduling have focused on a single execution context only to obtain the lowest

possible latency without degrading the bandwidth utilization. Note that the benefits of these

schedulers can also be independently adapted in the framework presented in Chapter 7 as

secondary arbitration criteria. Jog et al [43] studied the application interference on on-chip

interconnect from concurrent device-memory requests. Wang et al [83] presented an efficient

26



and fair multi-programming model in GPUs via effective bandwidth management. None

of these works considered CPU-GPU interconnect as a critical resource for provisioning.

With unified memory, CPU-GPU interconnect becomes a critical resource of consideration

as the performance bottleneck shifts to fault-driven mitigation. Li et al [51] considered PCIe

arbitration to overlap memory copies with kernel execution for multi-tenant multi-GPU

systems. However, they also fail to capture the dynamic nature of applications while using

unified memory stemming from memory access patterns, arithmetic intensity, and efficacy

of software prefetcher. Chapter 7 focuses on CPU-GPU interconnect provisioning in the

context of consolidating workloads with unified memory.

2.4.6 GPU Simulators

Simulation allows researchers to investigate and evaluate design ideas before implement-

ing them on real hardware and thus drives innovation in computer architecture. GPGPU-

Sim [12] is one such simulation platforms that advanced innovation in GPGPUs. It provides

combined support of functional and timing modeling of GPUs based on NVIDIA’s PTX

ISA. However, it fails to capture interactions between the host and the device. In con-

trast, Multi2Sim [78] models an x86 CPU and an AMD Evergreen GPU based on AMD’s

GCN1 ISA. Similarly, AMD’s GEM5 GPU [65] models CPU-GPU heterogeneous systems

by integrating GEM5 [14], a modular full-system CPU simulator with GPGPU-Sim. MG-

PUSim [74] models multi-GPU systems. However, none of these simulators models unified

memory runtime for discrete CPU-GPU heterogeneous memory systems.

2.4.7 GPGPU Workloads

Rodinia [21], Parboil [73], Lonestar [18], and PolyBench [35] are widely used benchmark

suites to evaluate the performance of GPGPUs. They contain real-world computation work-

loads written with “copy then execute” model provided by CUDA 4.0. Recently, Chai [33]

introduced 14 CPU-GPU collaborative workloads, i.e., CPU and GPU solve the working

problem in tandem. Chapter 3 introduces a set mini-applications chosen from the above-

mentioned benchmark suites to use CUDA unified memory APIs that are solely accelerated

27



by GPU to study GPU micro-architecture and software runtime without worrying about the

host. Alongside, Chapter 3 introduces a set of micro-benchmarks to discover the seman-

tics of unified memory and validate the simulated framework against real hardware. Jog et

al [43] created a GPU concurrent application (GCA) framework to first evaluate the effect

of bandwidth interference in concurrent applications. Chapter 3 also introduces the Unified

Memory Concurrent Application (UMCA) Framework inspired by GCA.

28



3.0 UVMSmart: Simulation Framework and Unified Memory Benchmarks

High compute-density with massive thread-level parallelism of GPUs is behind their un-

precedented adoption in systems ranging from data-centers to high-performance computing

installations. As GPUs are increasingly being used to accelerate general-purpose applica-

tions beyond traditional graphics processing, these systems raise several design challenges,

including smart runtime systems, programming libraries, and micro-architecture. However,

the research community currently lacks a publicly available, comprehensive, yet highly ex-

tensible and configurable simulation framework to evaluate different design choices for GPU

Unified Memory runtime. This chapter presents UVMSmart, a highly validated, functional,

and timing simulator for GPU Unified Memory extending the latest branch of cycle-accurate

GPGPU-Sim. UVMSmart comes with a set of micro-benchmarks, used to discover GPU run-

time semantics and for performance validation along with a set of mini-applications written

with CUDA Unified Memory APIs. UVMSmart introduces a large set of statistical counters

along with a detailed execution timeline view enabling analysis of different architectural and

runtime aspects of GPU Unified Memory.

3.1 UVMSmart: Design and Implementation

UVMSmart is a highly configurable and extensible GPU simulator. It is open-source.

UVMSmart provides both functional and timing modeling of runtime and micro-architectural

support for unified memory in CPU-GPU heterogeneous memory systems. The latest version

of the GPGPU-Sim developer branch is extended to implement UVMSmart. The extended

version is centered around four major components - (i) modeling micro-architectural ad-

vancement, (ii) PCIe interconnect and timing models, (iii) runtime components of unified

memory, and (iv) functional support by modeling high-level programmer APIs. This section

motivates the design requirements followed by a detailed discussion of the aforementioned

high-level concepts.

29



3.1.1 Design Requirements

The key choices behind designing UVMSmart are summarized as follows.

1. Modeling Function-driven Timing. Often simulators are trace-driven and thus limit

their modeling scope to timing alone. The dynamics of functional modeling and real data-

driven execution guide the memory access pattern, interconnect traffic, and computation

and thus results in an accurate timing model.

2. High Configurability and Extensibility. The goals of any good architecture sim-

ulator are - (i) to allow researchers to configure the framework based on new systems,

and (ii) to ensure that it is easy to build on and extend existing research without major

modifications.

3. Accuracy of Modeling.. Simulators should be tuned and validated against real systems

to serve as a valid and credible baseline. Accuracy of timing modeling and correctness

of functional results should be ensured by profiling with the help of detailed micro-

benchmarks and mini-applications.

4. Ease of Use. Architecture simulators are often difficult to set up due to complex

dependencies on system and programming environments. A good simulator should be

properly containerized with ease of system set-up and configuration.

3.1.2 Micro-architecture Modeling

Fault-driven Migration. Key to realizing the illusion of unified address space is micro-

architectural support for fault-driven migration and on-demand allocation. Zheng et al [94]

introduced the concept of replayable far-fault. A far-fault occurs when the addressed memory

page is not physically present in the device memory. UVMSmart models the control flow of

fault-driven migration support presented in Section 2.2.1.

Host-pinned access and delayed migration. UVMSmart models hardware-based

page-level access counter introduced in NVIDIA Volta GPUs [71] and IBM Power9 [38] as

described in Section 2.2.4. Along with access-counter threshold-based delayed migration,

UVMSmart also models zero-copy, uncacheable access to host-pinned memory. If an al-

location is advised to be soft-pinned to the host memory, then the memory is not copied

30



directly at the first-touch by the device. Rather, the migration is delayed until the number

of request crosses a certain static threshold, ts configured in the model-specific register, the

data is copied to the device memory. On write access, the data is migrated irrespective of

the threshold [70] to maintain the exclusivity of access.

Adpative Page Migration and Pinning. The above discussion elucidates the stan-

dard micro-architectural features of modern GPUs. Along with these default configurations,

UVMSmart also models the dynamic access threshold-based delayed page migration and

pinning introduced in Chapter 5. This demonstrates how easy it is to extend UVMSmart to

model newer micro-architecture and interaction between runtime and hardware counters. To

implement adaptive page migration and pinning, the micro-architecture of UVMSmart is ex-

tended to maintain the access-counters per TLB entry and increment them on every access.

Runtime is responsible to read and update the counters. New lower-level APIs are intro-

duced to - (i) query access counters and keep track of access frequency in the runtime and (ii)

reset them when the counters are saturated. Along with the access frequency, the runtime

tracks the number of times a basic block is thrashed between the host and the device mem-

ory to determine the migration threshold under oversubscription. UVMSmart introduces a

new low-level system API, invoked by the runtime to dynamically set special model-specific

register and configure the dynamic migration threshold, td for delayed migration.

3.1.3 Timing Model

Timing simulation for unified memory revolves around modeling different latency com-

ponents associated with fault-driven migration and far-faults. UVMSmart focuses on three

major components - (i) TLB look-up, shoot-down, and page-table walk, (ii) far-fault latency,

and (iii) interconnect latency and various queuing delays.

Modeling TLB and Page Table. Pichai et al [64] proposed a 128 entry, 4 port TLB

per SM. In UVMSmart, TLB is roughly modeled after theirs. The Load/Store unit per

Streaming Multiprocessor (SM) is equipped with an L1 TLB and an L2 TLB shared by

all SMs. UVMSmart’s TLB is fully-associative which allows the TLB lookup to be done

in a single-core cycle. The number of TLB entries is configurable. In general, the TLB

31



implementation is highly modularized and thus easy to replace. Upon capacity-miss, the

TLB shoot-down is triggered invalidating entries in the LRU order. UVMSmart implements

a multi-threaded GMMU page table walk [64] such that all SMs can look up for page table

entries concurrently. Like TLB, page table implementation is also modularized. Thus,

UVMSmart allows researchers to explore the impact of different structural choices such

as associativity and set size for TLB and page table cache on overall system design. For

simplicity, lookup latencies are configurable.

Far-fault latency. The far-fault and associated DMA requests require several PCIe

round-trips and significant interaction with the host runtime as the GPU pipeline does

not accommodate the capability to handle page-faults in the pipeline. The GPU memory

management unit (GMMU) only walks through page-table to consolidate page faults and

offloads the migration decision to the host’s runtime. Far-fault latency is determined by

running micro-benchmark and is defined as a parameter in the extended configuration file.

Figure 6: Transfer rate improves with transfer size as observed on real hardware with PCI-e

3.0 16x interconnect.

PCIe latency and queuing delays. At the heart of timing simulation is accurate

modeling CPU-GPU interconnect bandwidth and transfer latency. PCI-e 3.0 16x standard

implements 16 bi-directional channels with 1 GBPS transfer speed per channel in each di-

rection. However, due to activation overhead, the highest attainable throughput is 11GBPS

32



in each direction. Interconnection bandwidth is a configurable parameter in UVMSmart.

Experiments with micro-benchmarks establish a relationship between the throughput and

the transfer size as shown in Figure 6. UVMSmart uses curve-fitting to derive an equation to

model PCIe transfer latency. Along with transfer latency, DMA transfers also waits in sev-

eral queues before being scheduled. UVMSmart also models several queuing delays suffered

by a memory request generated by load/store unit in its lifetime.

3.1.4 Runtime Modeling

At the heart of UVMSmart is the discovery of runtime components such as software

prefetchers and page eviction policies based on the detailed micro-benchmarking explained

in Section 3.2.1.

Software Prefetchers. In unified memory, massive TLP is not sufficient to mask mem-

ory access latency as the offending warps stall for the costlier far-faults. The total kernel

execution time increases dramatically and closely resembles the serialized data migration

and kernel execution time of the “copy then execute” model. To ameliorate this situation,

programmers resort to complicated cudaMemPrefetchAsync constructs to overlap the kernel

execution with data migration. Software prefetchers have been proposed by researchers [94, 2]

to relieve programmers from the burden of writing hand-tuned code. CUDA unified mem-

ory runtime implements a tree-based software prefetcher. UVMSmart models this software

prefetcher following the detailed semantics described in Section 2.2.2.

Note that in UVMSmart, the software prefetcher is a self-contained module and thus

researchers can plug-and-play any new heuristics and configure through configuration items.

Along with this default software prefetcher, UVMSmart also implements Random and

64KB Sequential-local prefetchers [94].

• Random (Rp) Prefetcher. A random prefetcher prefetches a random 4KB page along

with the 4KB page for which the far-fault occurred in the current cycle. The prefetch

candidate is selected randomly from the 2MB large page boundary to which the faulty

page belongs. This not only helps CUDA workloads with random access pattern but

also selecting from 2MB large page boundary instead of the whole virtual address space

33



helps in cases of the locality of memory accesses.

• Sequential-local (SLp) Prefetcher. Zheng et al [94] described their sequential prefetcher

as the process of bringing a sequence of 4KB pages from the lowest to the highest order

of virtual address irrespective of page access pattern or far-faults. Their locality-aware

prefetcher migrates consecutive 128 4KB pages (or total 512KB memory chunk) start-

ing from the faulty-page. UVMSmart models a different variation called sequential-local

software prefetcher. Each cudaMallocManaged allocation is logically split into multiple

64KB basic blocks. The runtime, upon receiving the far-fault notification interrupts,

first calculates the base addresses of the 64KB logical chunks to which these faulty 4KB

pages belong. These 64KB basic blocks are the prefetch candidates. Further, it divides

these candidate basic blocks into prefetch groups and page fault groups based on the

position of the faulty page in the current basic block and then schedules them for se-

quential DMA transfers over CPU-GPU interconnect. Prefetching 64KB basic blocks

ensures contiguous 16 4KB pages local to the current faulty pages. Note that this is dif-

ferent from the locality-aware prefetcher proposed in [94]. The position of a faulty page

can be anywhere within the corresponding 64KB basic block. Further, multiple faulty

pages are taken into consideration while choosing a basic block for prefetching and can

be grouped within the same 64KB boundary. Although, 512KB prefetch granularity

may yield better performance compared to 64KB sequential local, the proposed version

requires no additional coordination across multiple 2MB large pages.

Figure 7 compares the kernel execution time of a set of GPU workloads using different

prefetching schemes against 4KB on-demand fault-driven migration without any prefetching.

All software prefetchers improve performance significantly compared to just 4KB on-demand

page migration under no oversubscription. This proves the necessity of prefetching in CPU-

GPU unified memory. The tree-based neighborhood prefetcher provides the best performance

compared to the others. This validates the adoption of such a scheme in the NVIDIA GPU

driver.

Irrespective of the transfer size, every DMA transaction has a constant activation over-

head from the cost of setting up the address bus. Thus, scheduling larger transfer size

amortizes activation overhead and reduces transfer latency guaranteeing better bandwidth

34



Figure 7: Comparing kernel execution time with different software prefetching schemes

against no prefetching.

utilization. Both on-demand page migration and random prefetcher transfers memory in

multiples of 4KB. Whereas, SLp can transfer up to (4 + 60)KB memory chunks. As dis-

cussed in Section 2.2.2, TBNp can migrate maximum 1MB of memory in a single transfer.

This results in the highest bandwidth utilization and the best kernel performance achieved by

the tree-based prefetcher as seen in Figure 7. Further, prefetching pages based on tree-based

spatio-temporal locality reduces the number of far-faults and in turn the latency overhead

of handling far-faults.

Page Eviction Routines. Page replacement plays a key role in unified memory by

transparently dealing with device-memory oversubscription. UVMSmart implements LRU

with the eviction granularity of 2MB x86-OS huge-page described in Section 2.2.3. Like

software prefetchers, the eviction routine is modularized and self-contained. It can be easily

replaced with new algorithms. Users of UVMSmart can choose from a wide-range of eviction

algorithms other than the default 2MB LRU by simply switching between configuration op-

tions. Random and 64KB Sequential-local page replacements are inspired by the random

35



and sequential-local prefetchers [94, 32]. Along with the random and 64KB sequential-local

eviction routines, UVMSmart also incorporates tree-based neighborhood pre-eviction

introduced in Chapter 4 and access counter-based LFU presented in Chapter 5. The

ability to add new eviction algorithms demonstrates the ease of extensibility of the runtime

component of UVMSmart independent of any runtime API and GPU micro-architecture

components.

3.1.5 Unified Memory API Modeling

The key to functional simulation is to support CUDA runtime APIs for unified memory

such as cudaMallocManaged, cudaMemPrefetchAsync, and cudaDeviceSynchronize along

with the traditional cudaMemcpy to capture the essence of different classes of CPU-GPU in-

terconnect traffic. These APIs are compiled against cuda_runtime_api.h of libcuda. While

cudaMemcpy serializes the execution, cudaMemPrefetchAsync is an asynchronous construct

that uses CUDA streams to execute in parallel with kernel execution. cudaMemPrefetchAsync

divides the total transfer in chunks of 2MB huge-pages to schedule DMA requests. At

the core of unified memory is cudaMallocManaged. It provides a pointer to a virtual

address space that is visible to both the host and the device. Managed allocations do

not reserve memory space by default. Rather, on every page fault, memory is allocated

and data is migrated keeping only one copy of data either on the host or the device.

cudaDeviceSynchronize is a blocking call that waits for the device to complete execution

before returning execution control to the host. It synchronizes page table entries between

host and device. After completion of GPU execution, the host encounters page faults, and

data is migrated from the device memory to the host memory.

3.1.6 Support for Concurrent Execution

To support Unified Memory Concurrent Application (UMCA), described in Section 3.2.3,

the multi-stream execution framework of UVMSmart is leveraged. This extended framework

is released publicly. The CPU thread of UMCA repeats the faster running application

to overlap the execution of the slowest application in the workload composition. This is

36



done so that the application interference is present throughout the lifetime of participating

concurrent applications. The framework captures the total execution time per application

run including the time spent on far-faults and page migration. To ensure consistency, the

end-to-end execution time is averaged out for repeated faster-running applications. Along

with the end-to-end execution time, the simulation framework also reports multiple statistics,

e.g., average weighted queuing delay, arithmetic intensity, IPC, number of conflicting network

packets, and number of prioritized packets per application. This extended framework is used

to evaluate the contributions in Chapter 7.

3.2 Application Suite

This section presents a set of micro-benchmarks to discover the semantics of unified

memory runtime and validate the framework against real hardware along with a set of mini-

applications written with CUDA UVM APIs. These benchmarks are used to validate the

research contributions presented in Chapters 4, 5, and 6. This section also presents a suite

of concurrently running applications with unified memory used to evaluate the contribution

in Chapter 7.

3.2.1 Micro-benchmarks

Mainly four classes micro-benchmarks are designed to discover - (i) the semantics of

unified memory runtime components, and (ii) timing components associated with the fault-

driven migration. For sake of brevity, instead of going in detail of individual benchmarks,

this section provides a high-level description of the classes of micro-benchmarks. These

micro-benchmarks are publicly available along with UVMSmart.

Managed Allocation This class of micro-benchmarks shows that the user-provided size

for a managed allocation is rounded up to the next 64∗(2i)KB (e.g. 2MB192KB is rounded

up to 2MB256KB). These micro-benchmarks play with the size for cudaMallocManaged

allocations and access the padded bytes safely without any memory issues. The padded ad-

37



dress also shows up in profiling for prefetching and page eviction. A set of micro-benchmarks

in this class also identifies that the root of the tree is a maximum 2MB or an x86-OS huge-

page. All prefetch and eviction decisions are bounded within a 2MB huge-page.

Software Prefetcher This class of micro-benchmarks is used to unravel the semantics

of tree-based software prefetcher implemented by CUDA unified memory runtime described

in Section 2.2.2. A single-threaded GPU kernel is used to access different indices in an array

logically divide into 64KB chunks. Each memory access is separated by long sleep to serialize

PCIe transactions. As a result, new access is made only after the previous one is completed

to ensure runtime does not coalesce DMA requests. This class of micro-benchmarks proves

that the minimum prefetch granularity is 64KB and also shows the 50% occupancy-based

thresholding rule for tree-based prefetching.

Page Eviction This set of benchmarks helps to discover that NVIDIA GPUs implement

an LRU with 2MB huge-page eviction granularity. They also show that no matter a huge-

page is partially/fully dirty/clean, it is always written back from the device to the host

memory instead of simply invalidating 4KB clean pages.

Timing Components GPU Technology Conference 2017 [71] mentions that page fault

handling latency to be 30µs. However, upon execution of this class of micro-benchmarks

on real hardware with GeForceGTX 1080 ti shows it to be 45µs on average. This class of

micro-benchmarks also helps find PCIe interconnect throughput and latency as a function

of host-to-device memory transfer size. A single-threaded kernel transfers memory chunks

of varied sizes ranging 4KB to 1MB and notes the latency and throughput for reporting.

3.2.2 Unified Memory Benchmarks

Out of the wide variety of mini-application suites, a set of full-benchmarks is chosen from

Rodinia [21], Lonestar [18], and PolyBench [35] suites. These benchmarks are selected to

ensure wide coverage of CPU-GPU PCIe access, GPU memory access pattern, and different

classes of data-structures based on the frequency of access. In these benchmarks, data

structures are allocated using cudaMallocManaged instead of cudaMalloc. All instances of

cudaMemcpy API are removed, and cudaDeviceSynchronize is used instead to ensure safe

38



Workload Access Pattern

Streaming

2D Convolution (2DConv),

Back Propagation (backprop),

Pathfinder,

StreamTriad

Regular
FDTD-2D,HotSpot,

Speckle Reducing Anisotropic Diffusion (SRAD),

Random
ATAX,

RandomAccess (RA)

Irregular

Needleman-Wunsch (NW),

Breadth First Search (bfs),

Single Source Shortest Path (sssp)

Table 1: Full-benchmarks with their memory access pattern.

access of data by the host. These benchmarks are listed and classified based on their access

pattern in Table 1. These access patterns are formally defined in Section 6.2.1. Along with

the micro-benchmarks, these twelve mini-applications are made available.

3.2.3 Unified Memory Concurrent Application Framework

Unified Memory Concurrent Application (UMCA) Framework is inspired by GCA [43].

UMCA is driven by the main driver program that creates multiple CPU threads (pthreads)

to launch multiple GPGPU applications in parallel. It employs mutex locks to ensure thread

safety between CUDA API calls from different threads. UMCA leverages CUDA streams. A

stream is defined as a series of CUDA API calls executing in-order where multiple streams can

launch and execute CUDA APIs in parallel on a single GPU resource. UMCA enables con-

current execution of GPGPU applications on both real hardware and simulation frameworks

without any significant code changes to the individual application source code. UMCA uses

39



ten applications from the unified memory application suite provided by UVMSmart [27] orig-

inally taken from Rodinia [21], Lonestar [18], and PolyBench [35] suites. These applications

are shown in Figure 30. Each application is fenced with proper CUDA stream synchroniza-

tion API to ensure the correctness of the output. UMCA on the simulation framework is

validated for the correctness of output against real hardware. UMCA is released for further

academic research.

3.3 Configuration and Validation

This section presents the configuration parameters for UVMSmart alongside the valida-

tion results against real hardware.

3.3.1 Simulation Configuration

UVMSmart extends the latest GPGPU-Sim developer branch to add functional and tim-

ing simulation support for unified memory runtime and NVIDIA GPU architecture. As part

of functional support, software prefetcher, page eviction policy, and Unified Memory APIs

are added and for architecture modeling, fault-driven migration and on-demand allocation,

hardware access counter-based delayed migration, uncacheable access to host pinned mem-

ory is modeled. Table 2 shows the primary configuration parameters that primarily enable

timing simulation for CUDA unified memory runtime on GeForceGTX 1080 Ti [58]. The

items in boldface show the default value of the configurations items.

3.3.2 Containerization

UVMSmart is thoroughly containerized. Researchers are provided with a docker image

that removes dependencies on the operating system, version of GPU runtime, and program-

ming environment required to compile and execute UVMSmart. Users of UVMSmart can

easily configure and switch between disparate micro-architecture choices, and prefetchers,

40



GPU Cores 28 SMs, 128 cores each @ 1481 MHz

Shader Core Config
Max. 32 CTA and 64 warps per SM,

32 threads per warp, GTO scheduler

Page Size 4KB

Page Table Walk Latency Multi-threaded, 100 core cycle

TLB Fully-associative L1

CPU-GPU Interconnect

PCI-e 3.0 16x,

8 GTPS per channel per direction,

100 GPU core cycles latency

DRAM Latency 100 GPU core cycles [3]

Remote Zero-copy Access Latency 200 GPU core cycles

Eviction Granularity 2 MB, 64KB

Page Replacement Policy LRU, LFU, Sequential 64KB, Random

Far-fault Handling Latency 45µs

Software Prefetcher Tree-based, Sequential 64KB, Random

Static Access Counter Threshold 8

Multiplicative Migration Penalty 8

Table 2: Configuration parameters of the simulated system.

eviction algorithms, and memory management techniques by updating items in the extended

configuration file without modifying the simulator and/or any programming environment.

3.3.3 Validation

This section reports the results of validating UVMSmart against real hardware. This

comparison builds confidence in the correctness and accuracy of functional and timing simu-

lation respectively. Figure 8 shows the validation results. Figure 8a compares the estimated

execution time by UVMSMart and the real hardware execution time of benchmark kernels.

Across all the benchmarks, the difference between these two values is 4% (geometric mean)

and ranging between 4% to 38%. Similarly, Figure 8b compares the total host-to-device

memory copy time between UVMSmart and real hardware with (geometric) mean variation

41



(a) Execution Time

(b) Host-to-device Memory Copy

Figure 8: Performance validation of UVMSmart against real hardware.

as 4% and ranging between 4% to 36%. Note that the original GPGPU-Sim already has an

average 15% performance deviation in comparison to the real hardware setup for benchmarks

not using unified memory.

42



4.0 Adaptive Page Replacement

Section 3.1.4 has demonstrated that good software prefetcher is the key to the success of

CPU-GPU Unified Virtual Memory. Both SLp and TBNp migrate memory in the multiples

of 64KB basic block local to the current faulty pages. This is with the hope that the thread

blocks will eventually access these pages in the immediate future. However, in reality, some

of these pages may not be referenced before the eviction procedure starts replacing pages.

These unused prefetched pages are never chosen for eviction by LRU. Instead when GPU

memory capacity has been reached and kernel execution stalls for new page migration, a

heavily referenced page could be chosen for displacement. Thus, an eviction policy, unaware

of prefetchers, meets with the challenge of how to deal with the memory oversubscription

issue. A logical choice would be evicting pages in the same way they were brought in by

the hardware prefetchers. This means pre-evicting pages in multiples of 64KB basic blocks

based on sequential or tree-based neighborhood locality. Locality-based pre-eviction has two

benefits. 1© Evicting pages in larger chunks increases PCI-e write-back bandwidth and lowers

the write-back latency. 2© Software prefetchers can work in tandem with the pre-eviction

scheme. This also means that it overcomes the drawbacks of memory threshold-based pre-

eviction policy. This chapter introduces two new pre-eviction schemes.

4.1 Pre-eviction Policies Adaptive to Prefetchers

4.1.1 Sequential-local (SLe) Pre-eviction

Sequential-local eviction consults the LRU page list to select an eviction candidate. The

runtime then determines the 64KB basic block to which the current eviction candidate

belongs and then schedules the whole basic block for eviction and eventual write-back. Note

that there can be pages in the basic block which were not accessed and just brought in by

the prefetcher. All the 16 pages in the 64KB are written back as a single unit irrespective

43



of the pages within are clean or dirty. This is because transferring memory in larger chunks

improves PCI-e bandwidth and reduces latency instead of writing back multiple 4KB pages.

4.1.2 Tree-based Neighborhood (TBNe) Pre-eviction

The proposed tree-based neighborhood pre-eviction strategy is inspired by the TBNp.

It leverages the full-binary tree structures created and maintained for hardware prefetching

at the time of managed allocation. Thus, it accounts for no additional implementation

overhead. As discussed in Section 2.2.2, all nodes in these full-binary trees correspond to

64KB basic blocks and the root node of each tree corresponds to a maximum contiguous

virtual space of 2MB large page or a size equivalent to 2i ∗ 64KB. Like SLe, an eviction

candidate is chosen from the LRU list. Then a 64KB basic block, to which this eviction

candidate belongs, is identified for pre-eviction. After the selection of every pre-eviction

candidate, the runtime traverses the whole tree updating the valid page size of all its parent

nodes including the root node by subtracting the size of the evicted basic block. At any

point, if the total valid size of any node is strictly less than 50% of the maximum valid size

of that node, a further pre-eviction decision is made by the runtime which is in turn pushed

down to the children till the leaf level. This process continues recursively till no more basic

blocks can be identified for pre-eviction or no node higher than leaf-level including the root

node has valid size less than 50% of the maximum capacity at the corresponding tree level.

The eviction granularity in this scheme varies between 64KB to 1MB and thus it adapts

between the two extremities of 4KB and 2MB eviction granularity for LRU.

Figure 9 demonstrates the TBNe on a 512KB memory allocation for simplicity. Initially,

let us assume that all pages in this 512KB allocation are valid in the page table. Let us

further assume that the first three entries in the LRU list correspond to the basic blocks

N1
0 , N3

0 , and N4
0 . Upon over-subscription, when page replacement routine kicks in, these

three basic blocks are identified for eviction one after another. After evicting the first three

basic blocks, the valid size for each of the nodes N0
1 , N1

1 , and N2
1 is updated to 64KB by

the runtime. Further the valid sizes for nodes N0
2 , N1

2 , and N0
3 are updated as 128KB,

192KB, and 320KB respectively. Let us now assume that the current least recently used

44



Figure 9: Demonstration of tree-based pre-eviction on 512 KB memory chunk.

page corresponds to the basic block N0
0 . After the fourth pre-eviction, the valid sizes of

N0
1 , and N0

2 are updated as 0KB and 64KB respectively. As the current valid size for N0
2

is 64KB and is less than 50% of its maximum capacity, a further pre-eviction decision is

made for N1
1 and is pushed to its children. This ultimately chooses N2

0 as a pre-eviction

candidate. At this point, the runtime traverses the tree and updates the valid sizes of all

nodes in the tree. It then discovers the valid size of N0
3 to be 192KB which is less than

50% of its maximum capacity. This pushes the pre-eviction decision to N1
2 and in turn to

its children. This process identifies basic blocks N5
0 , N6

0 , and N7
0 as pre-eviction candidates.

As these blocks are contiguous, the runtime groups them together into a single transfer.

4.1.3 Specific Design Choices

Both SLe and TBNe first select an eviction candidate from the LRU list and then identify

the corresponding 64KB basic block for eviction. These basic blocks, up for eviction, can

have some pages with dirty and/or access flags set in the page table along with some pages

for which these flags are not set and only valid bits are set in the page table. We make a

distinct design choice for how the LRU page list is to be maintained in case of these pre-

eviction policies. We place all the pages in the LRU when the valid flags of the corresponding

page table entries are set in the GPU page table. This means the LRU list contains all pages

with the valid flag set in the GPU page table in contrast to the traditional LRU list which

45



only maintains pages with the access flags set in the page table. Further, a page is pushed

to the back of the LRU list upon any read or write access in the course of execution. Upon

evicting a basic block, all pages including the eviction candidate are removed from the LRU

list. Hence, this design choice ensures all pages local to the eviction candidate are evicted

irrespective of whether they are accessed or not. This is how SLe and TBNe deal with the

unused prefetched pages migrated by the SLp and TBNp and free up contiguous virtual

address space. We sort the pages first at a large page level based on the access timestamp

of the 2MB chunk they belong to. Then, within the 2MB large page, 64KB basic blocks

are sorted based on their respective access timestamps. This hierarchical sorting ensures

a global order at 2MB large page level and the local order of 64KB basic blocks at the

leaf-level of 2MB tree.

A known issue with LRU is that the performance degrades for a repetitive linear access

pattern. For example, if there are N pages in the LRU page list, a CUDA kernel executing a

loop over an array of N + 1 pages will face a far-fault on every access. There have been a lot

of research efforts invested in the past in modifying LRU to work with repetitive sequential

access pattern as iterating over large arrays are common. One such proposal is to switch to

Most Recently Used (MRU) page replacement policy upon detecting such a memory access

pattern. However, detecting or predicting memory access patterns in runtime is itself a

challenging problem and incurs large implementation and performance overheads. In this

paper, we follow a simple solution to address this problem by reserving certain pages from

the top of the LRU page list such that they are not chosen as eviction candidates. Thus,

reserving the top percentage of the LRU page list reduces thrashing since the top percentage

of pages in the LRU list, which are chosen for immediate eviction, are also accessed first in

the next iteration.

46



4.2 Experimental Evaluation

4.2.1 Pre-eviction Policies in Isolation

Section 3.1.4 has shown that the TBNp has the best performance when device memory

can accommodate the whole working set. So, experiments in this chapter only consider

TBNp before over-subscription. Under over-subscription, the simulator disables prefetcher

and only migrates 4KB pages on-demand. The reason behind this setup is to investigate

the sole impact of different eviction policies on the kernel execution time. Also for this

experiment, working sets for the benchmarks are set as 110% of the device memory size.

Figure 10 shows the result of this experiment.

Figure 10: Comparing the effect of different eviction policies on kernel execution time. Tree-

based prefetcher is active before reaching device memory capacity. Upon over-subscription,

software prefetcher is disabled and 4KB pages are migrated on-demand. Working set is

110% of the device memory size.

The following major behaviors are exhibited by the benchmarks. 1© backprop and

pathfinder show no sensitivity to the choice of eviction policy. This is because both of

47



these benchmarks exhibit a streaming memory access pattern. Both of them scan a large

vector in parts sequentially and do not reuse data across different iterations. 2© For most

benchmarks, random eviction policy provides the best performance contrary to the popular

belief [94] that LRU and random page replacement policies have no performance difference.

Randomly picking a 4KB eviction candidate from the entire virtual address space reduces

the chance of thrashing. In contrast, the following LRU list increases thrashing for iterative

kernels with data reuse.

Figure 11: Comparing total number of pages evicted for different eviction schemes.

Figure 11 reports the total number of 4KB pages evicted by the different schemes. It can

be observed that the kernel performance is highly correlated to the total number of pages

being evicted by the corresponding page replacement policy as expected.

4.2.2 Combinations of Pre-eviction Policy and Software Prefetcher

To this end, this experiment takes the logical next step by pairing eviction policies and

hardware prefetchers under over-subscription. The experiment enables the TBNp before

over-subscription. Also, 110% device memory oversubscription is considered. Four different

48



Figure 12: Comparing the effect of different combinations of eviction policies and software

prefetcher after oversubscription on kernel execution time. Tree-based prefetcher is active

before reaching device memory capacity. Working set is 110% of the device memory size.

combinations of eviction policies and page migration schemes are chosen in a way that they

do not violate, rather respect each other’s semantics.

Figure 12 reports the kernel execution time for these settings under over-subscription: (i)

LRU 4KB eviction and no hardware prefetching, (ii) Re policy and Rp, (iii) SLe and SLp, and

(iv) TBNe and TBNp. Note that the third and fourth combinations drastically outperform

the first two. In particular, the combination of TBNe and TBNp provides an average 93%

performance improvement compared to the combination of LRU 4KB eviction policy and

4KB on-demand page migration. This can be attributed to the higher PCI-e read and write

bandwidth utilization achieved by these combinations as they evict and prefetch memory in

larger granularity other than 4KB which is the case for the first two combinations. Further,

pre-eviction reduces the page access time by not waiting for pages to be written back, and

allowing prefetchers to prefetch pages reduces the number of page faults.

One exception is nw. The combination of SLe and SLp yields better performance com-

49



(a) Iteration 60 (b) Iteration 70

Figure 13: Page access pattern of nw benchmark without eviction.

pared to the combination of TBNe and TBNp. To gain more insight into this behavior, let

us further analyze the memory access pattern of nw. In this example, nw runs for 127 itera-

tions. Figure 13 shows the pages being accessed in iterations 60 and 70 (chosen randomly)

respectively. The horizontal axis corresponds to the core cycle and the vertical axis shows

the virtual page number. As it can be seen that for nw, in every cycle, a set of pages, which

are spaced far apart in the virtual address space, are accessed repeatedly over time. As

the memory access is sparse yet localized and repeated over time, the smaller granularity of

eviction yields better performance than larger granularity. This is because evicting pages in

a larger chunk by TBNe causes more thrashing than evicting 64KB basic blocks by SLe.

4.2.3 Memory Over-subscription Sensitivity

In this experiment, the percentage of memory oversubscription is varied to study the

scalability of the combination of the proposed pre-eviction policy and software prefetcher.

The combination of TBNe and TBNp is used after over-subscription for this experimental

setup as this combination outperforms other combinations in general as seen in the previous

section. Figure 14 shows that backprop, and pathfinder shows no sensitivity to memory

over-subscription percentage as they exhibit streaming memory pattern. Other than nw, all

other benchmarks scale up linearly. The order of magnitude performance degradation with

50



Figure 14: Sensitivity of combinations of tree-based prefetcher and pre-eviction to the per-

centage of memory over-subscription by the working sets.

a higher percentage of memory over-subscription for nw can be attributed to its localized

sparse memory access and large thrashing caused by the same.

4.2.4 Reserving Percentage of LRU Page List from Eviction

To address the issue of page thrashing for benchmarks with data reuse over multiple

iterations, a certain percentage of pages from the top of the LRU page list is reserved from

eviction as discussed in Section 4.1.3.

Figure 15 compares the kernel execution time of the benchmarks with the 10% and 20%

reservation of the LRU page list along with the combination of TBNe and TBNp against the

same with no reservation. The streaming applications like backprop and pathfinder show

no performance variation with the LRU page reservation. The kernel performance improves

with 10% reservation from the top of the LRU list for all other benchmarks. However, with

higher percentage of reservation, it hurts for certain benchmarks.

51



Figure 15: Effect of reserving a certain percentage of pages of LRU list from eviction on

kernel runtime. Working set is 110% of the device memory size. Tree-based prefetcher is

active before reaching device memory capacity.

4.2.5 2MB Large Page Eviction

Based on the experimental results presented in the previous sections, it can be safely

concluded that pre-evicting pages in larger granularity based on the spatio-temporal lo-

cality within 2MB large page enables further hardware prefetching under oversubscription

and in turn provides better performance. Further, 4KB LRU eviction renders hardware

prefetching ineffective. So, a question can be asked then “Why not replacing pages in 2MB

granularity?”. Evicting 2MB large pages means invalidating the entire tree. This ultimately

guarantees contiguous invalid pages required for the software prefetcher to work. However,

like aggressive prefetching, aggressive eviction is detrimental as it can cause serious page

thrashing upon evicting highly referenced pages in case of repetitive kernel launch.

In this experiment, TBNe is compared against the static 2MB LRU. Figure 16 shows

that the TBNe ensures an average 18.5% and up to 52% performance improvement compared

to 2MB LRU under 110% memory over-subscription. By opportunistically determining a

dynamic replacement granularity based on the current state of the 2MB full-tree, TBNe nav-

52



Figure 16: Comparing the performance of tree-based pre-eviction against 2MB large page

eviction.

igates between the spectrum of 4KB and 2MB LRU eviction and overcome the limitations

with both of these two extremes.

Figure 17 shows the average page thrashing caused by 2MB large-page eviction and TBNe

under 110% and 125% memory over-subscription. As usual, backprop and pathfinder shows

no thrashing as they do not have any data reuse. For benchmarks like bfs, hotspot, nw, and

srad the performance improvement by TBNe compared to 2MB eviction can be attributed

to the significant reduction in the number of page thrashing.

4.3 Conclusions

This chapter introduces locality-aware pre-eviction policies that are compatible with

software prefetcher. Memory access patterns of the unified memory workloads have been

studied in depth to gain more insight into the interplay of such pre-eviction policies and

53



Figure 17: Comparing the effect of tree-based pre-eviction and 2MB large page eviction on

the total number of pages thrashed.

software prefetchers. Experimental results demonstrate that the proposed tree-based pre-

eviction policy provides an average of 93% and 18.5% performance speed-up compared to

LRU based 4KB and 2MB page replacement strategies, respectively. The proposed scheme

moves between two extremes of 4KB and 2MB. By opportunistically determining a dy-

namic eviction size based on spatio-temporal locality within 2MB large page, it overcomes

the limitations with page replacement strategies with fixed granularity. Moreover, as these

pre-eviction schemes leverage the existing tree-based implementation of software prefetcher,

they do not cost any additional implementation overhead. This makes this solution simple,

pragmatic, and adaptable on real hardware irrespective of vendor-specific architectures.

54



5.0 Adaptive Page Migration and Pinning

The performance overhead under memory oversubscription depends on the memory ac-

cess pattern of the corresponding workload. While a regular application with sequential,

dense memory access suffers from long latency write-backs, the performance of an irregular

application with sparse, seldom accesses to large data-sets degrades due to page thrashing.

Although smart spatio-temporal prefetching and large page eviction yield good performance

in general, remote zero-copy access to host-pinned memory proves to be beneficial for ir-

regular, data-intensive applications. Further, new generation GPUs introduced hardware

access counters to delay page migration and reduce memory thrashing. However, the re-

sponsibility of deciding what strategy is the best fit for a given application relies heavily on

the programmer based on a thorough understanding of the memory access pattern through

intrusive profiling. This chapter proposes a programmer-agnostic runtime that leverages the

hardware access counters to automatically categorize memory allocations based on the access

pattern and frequency. The proposed heuristic adaptively navigates between remote zero-

copy access to host-pinned memory and first-touch page migration based on the trade-off

between low latency remote access and high-bandwidth local access.

5.1 Motivation

An effective memory management strategy to deal with device memory oversubscription

requires a thorough understanding of the memory access pattern of the workloads. To

this end, the memory access patterns of various GPGPU workloads are analyzed in detail

to characterize their respective behaviour. The workloads are broadly categorized into: 1)

regular with dense, sequential, repetitive memory access and 2) irregular with sparse, seldom

access.

55



5.1.1 Workload Characterization

Firstly, the distribution of page access frequency of different memory-allocations/data-

structures is visualized over the entire execution period of two benchmarks, fdtd and sssp,

in Figure 18. Memory pages are classified based on the type of access - read only, and both

read and in-place write.

(a) fdtd (b) sssp

Figure 18: Visualizing page access distribution detailing type of access and total number of

accesses per page per managed allocation for fdtd and sssp.

Figure 18a shows that in fdtd, most of the pages in the allocations are accessed at the

same frequency over the entire execution time. A very few pages, equally spaced over the al-

location boundary, are accessed a lot more than the rest of the pages. On the other hand, Fig-

ure 18b shows an entirely different characteristics for sssp. Note that few allocations/data-

structures are more heavily accessed than the others leading to a cluster of hot and cold

pages over the entire memory set. Moreover, the read-only data-structures are cold and

the pages in hot data-structures are both read from and written to. This shows that for

irregular applications a small fraction of memory footprint corresponds to the higher share

of bandwidth.

Figure 19a, and 19b show the memory access pattern of fdtd in iterations 2, and 4

respectively. The horizontal axis represents time in cycles and the primary vertical axis

shows the page numbers accessed at a given cycle. Note that the memory access pattern is

56



fairly constant over two different iterations. Moreover, in every iteration, each allocated data

structure is accessed linearly. This explains the access frequency distribution of fdtd reported

in Figure 18a. Thus, fdtd is characterized as a regular application. Regular applications

typically show dense, sequential access repeated over multiple iterations. backprop, hotspot,

and srad are other examples of GPU benchmarks that can also be categorized as regular

applications as they exhibit similar memory access pattern [21].

(a) fdtd - Iteration 2 (b) fdtd - Iteration 4

(c) sssp - Iteration 3 (d) sssp - Iteration 5

Figure 19: Visualizing page access patterns of a regular (fdtd) and an irregular (sssp) ap-

plication over two iterations. (a), and (b) show access pattern of fdtd in iterations 2, and 4

respectively. (c), and (d) show access pattern of sssp in iterations 3, and 5 respectively.

On the other hand, Figure 19c, and 19d show the memory access pattern of sssp in

iterations 3, and 5 respectively. Note that kernel1 exhibits sparse memory access over

57



different allocations/data-structures and the memory pages accessed over different iterations

vary drastically in virtual address space. However, kernel2 shows sequential and dense

access over two data structures in every iteration. This justifies the cluster of hot and cold

data structures in sssp as shown in Figure 18b. Hence, sssp is characterized as an irregular

applications. In general, irregular applications exhibit dense sequential access on hot data

structures and sparse, random access on cold data structures. bfs, nw [21], ra [79] are other

benchmarks that fall under the same category.

5.1.2 High-level Observations

Based on the discussion in the previous section, the following observations can be made

to motivate the proposed work.

1. A higher percentage of interconnect bandwidth is consumed by a small percentage of the

total memory pages,

2. Migrating pages of cold data-structures/allocations causes eviction of pages of hot data-

structures/allocations for irregular applications,

3. Data migrations due to page thrashing over low bandwidth interconnect contribute to

memory oversubscription overhead,

4. Current state-of-the-art solutions are not satisfactory to all workloads as zero-copy access

and delayed migration can hurt the performance of regular applications although proven

to be useful for irregular workloads,

5. Thus, an effective solution to address device memory oversubscription must rely on user-

hints based on an extensive understanding of memory usage and access pattern.

5.2 Dynamic Access counter Threshold Based Delayed Data Migration

This section introduces an adaptive runtime heuristic that is programmer-agnostic as it

requires no advice to the memory subsystem from the application developer. Further, the

extended runtime leverages the new hardware features of page-level access counters. Thus,

58



it demands no hardware modification and is solely based on a pragmatic modification to the

GPU runtime.

5.2.1 Dynamic Access Counter Threshold

In current delayed migration solutions, pages are always migrated only after crossing a

static access counter threshold. This means regular applications, with dense memory access,

end up incurring the overhead of remote memory access before ultimately migrating the pages

to the local memory. Moreover, when there is no memory constraint, it is always beneficial

to migrate the data to the device memory and access it locally. This is because the tree-

based prefetcher can considerably improve PCI-e bandwidth utilization and in turn reduce

the number of far-faults. Also, local memory is bandwidth optimized and thus guarantees

better performance than fragmented remote access.

So, an effective solution should be able to decide how to eliminate the overhead of remote

access for no memory oversubscription and regular applications in general. This section

proposes a dynamic threshold for delayed migration. The heuristic of the proposed solution

is driven by the Equation 1.

td =

ts ∗
Num. of allocated pages
Total num. of pages

+ 1, if no oversubscription

ts ∗ (r + 1) ∗ p, otherwise

(1)

where ts = Static access counter threshold,

r = Number of round trips or number of times evicted,

p = Multiplicative Migration Penalty

The proposed dynamic threshold, td, grows adaptively in response to the size of free space

in the device memory starting from 1 to the driver configured static threshold. Firstly, assume

that the static threshold, ts, is configured in the driver as 8. If currently less than 12.5%

of device memory is allocated, then the dynamic threshold is derived as 1 from Equation

1. This means every first touch will cause page migration. Similarly, the dynamic access

counter threshold will be the same as the static threshold of 8 just before reaching the full

capacity of device memory and 9 upon oversubscription. The goal of the framework, here, is

59



to tame down the aggression of the prefetcher by delaying the page migration as the memory

starts filling up to its maximum capacity. Use cases involving no memory oversubscription

and regular applications benefit from this mechanism compared to delayed migration based

on a static threshold.

Equation 1 also addresses the situations involving memory oversubscription. The frame-

work is driven by the intuition that under memory oversubscription cold pages should be

soft-pinned to the host memory and the only hot pages should be copied to the device mem-

ory. This is because hot pages can benefit from bandwidth-optimized local-memory access

and the sparse and seldom access to cold pages can benefit from low-latency of remote-access

without contributing to the strict local memory budget. Equation 1 also introduces a multi-

plicative penalty for migration under oversubscription, p configurable as a module parameter

to the GPU driver. With p = 2 and ts = 8, the pages are migrated after 16th access after

oversubscription. This helps reduce the amount of page thrashing. Moreover, the framework

keeps count of the number of round trips or the number of times a certain chunk of memory

is evicted which is denoted as r in Equation 1. For example, if a given chunk of memory

is evicted twice, then the dynamic threshold of migration for that memory chunk will be

derived as 48. The intuition behind this heuristic is that the more a page is thrashed, the

harder it should be pinned to the host memory. Thus, the heuristic controls the hardness

(/softness) of page pinning and helps achieve the concept of host-pinned zero-copy allocation

for highly thrashed memory pages.

5.2.2 Access Counter Based Page Replacement

The framework also extends the page replacement strategy leveraging the same access

counters. As detailed in Section 2.2.3, a näıve LRU page replacement cannot differentiate

a set of cold pages from a set of hot pages. As a result, it may end up evicting highly

referenced hot pages in the process of migrating a cold page and thus defeats the objective

of hard-pinning hot pages to the device memory and cold pages to the host memory. Instead,

the access counters are used to sort the list of 2MB large pages in the LRU list such that

cold pages are prioritized over hot pages for eviction in the irregular applications. Thus,

60



it emulates a simplified Least Frequently Used (LFU) scheme in the framework. However,

with linear sequential access in regular applications, where pages are accessed with almost

the same frequency, the framework automatically falls back to the LRU policy. Read-only

pages are also prioritized as eviction candidates. This is because, on write access, pages

are migrated exclusively to the device memory irrespective of their access counter. So, the

framework prefers to keep the write pages in the device-local memory as much as possible.

5.2.3 Implementation Details

Access Counter Granularity. Access counters are maintained at the page granularity

for Volta GPUs [71]. However, as explained in Section 2.2.2, the tree-based prefetcher in

nvidia-uvm module migrates data in multiple of 64KB basic blocks based on the page

faults relayed from GMMU. This leads to the optimization of maintaining access counters at

64KB basic block level instead of 4KB page granularity. This not only reduces the memory

overhead of maintaining access counters, but it is also functionally more meaningful as the

prefetch granularity is 64KB.

Access Counter Maintenance. The implementation uses 32bits access registers.

Hardware counters are updated by GMMU on every page access during the TLB lookup.

Whereas, runtime reads the values of hardware access counters and maintains them as part

of the driver (/system software) memory. As runtime is responsible to update GPU’s page

table, they are read, updated, and consulted on every PCIe migration. The lower 27bits

are used for access counters and most significant 5bits are kept to keep track of round trip

time or r. This provides the opportunity to maintain a large value for access frequency

and to realize a historic counter. The access counters in Volta GPUs only keep track of

remote accesses. In comparison, the framework maintains the count of both device-local and

remote accesses. This provides a historic view of accesses and differentiates hot pages from

cold pages over larger iterations. When the counter for one of the basic blocks reaches the

maximum value (for either the round trip counters or the access counters), the framework

halves the corresponding counters of all the basic blocks instead of resetting them entirely.

This helps maintain the relative view of hotness over multiple allocations.

61



5.3 Experimental Evaluation

Henceforth, the dynamic access-counter threshold based delayed migration scheme will

be alternatively referred as Adaptive. The Adaptive scheme is compared with 1© the state

of the art baseline where remote access is not enabled and data is migrated at first touch,

alternately referred it as Baseline or Disabled, 2© the static access counter based threshold

proposed in Volta GPUs termed as Always, and 3© a static access counter based delayed

migration scheme enabled only after oversubscription referred as Oversub. Difference between

Always and Oversub is that Always delays migration from the start irrespective of memory

oversubscription.

For Baseline, LRU page replacement is active whereas, for the other three schemes, the

proposed access counter-based simplified LFU policy is used. Note that the following experi-

ments only deal with 125% of device memory oversubscription. Unlike, CPU virtual memory,

current GPUs are not capable of handling a higher percentage of memory oversubscriptions.

NVIDIA recommends using more than one GPU to distribute workload if the GPU memory

oversubscription is more than 125%.

5.3.1 Sensitivity to Static Migration Threshold

The success of access counter-based delayed migration relies on finding a suitable value for

the static access counter threshold, ts. The objective of the framework is not to hurt regular

applications in general and all applications under no oversubscription. This experiment aims

to find out the sensitivity of ts on the kernel execution time. Figure 20 shows the result.

In this experiment considers the Always scheme as it is the state of the art for delayed

migration.

As ts is varied from 8 to 32, regular applications show almost no sensitivity to the static

threshold. This is because for regular applications the number of per basic block accesses

generated by load/store unit is quite high and they always exceeds the threshold. Thus, for

regular application, no remote access is performed. However, irregular applications shows

sensitivity to ts. While the performance of nw and sssp degrades with higher value of ts,

62



Figure 20: Sensitivity of workloads to the static access counter threshold for delayed migra-

tion.

bfs and ra show improvement for ts = 16 compared to ts = 8. This behaviour is not

unpredictable and depends on the input of the workload and the sparsity of memory access.

This work recommends a justifiably small number for ts such that it closely resembles first-

touch migration under no oversubscription. However, an extremely small value for ts like

1 or 2 is also not recommended as it will hurt performance for irregular applications under

oversubscription. Experiments in the later subsections use ts = 8. Section 5.3.4 will present

experimental results showing the sensitivity p on performance.

5.3.2 The Case of No Oversubscription

This section compares the proposed Adaptive scheme against the Baseline and the Always

scheme for delayed migration under no oversubscription. Figure 21 shows the normalized

runtime of different workloads using the above three schemes. Oversub is not applicable for

this experiment as it enables threshold-based delayed migration only after oversubscription.

Figure 21 shows for both regular and irregular applications, the Adaptive scheme pro-

duces results equivalent to the Baseline or Disabled scheme. This means that the dynamic

63



Figure 21: Comparing the impact of dynamic access counter based adaptive scheme on

execution time against the baseline case of first-touch migration and static access counter

threshold based delayed migration scheme under no memory oversubscription.

threshold scheme falls back to first-touch migration based on the access frequency and mem-

ory availability. While, for regular applications, Always scheme shows no major performance

difference, for irregular applications, it introduces unpredictability. bfs and ra benefit from

Always scheme, whereas nw and sssp show performance degradation. This is because even

for sparse memory access if there is no memory constraint, it is always better to copy the data

to the device memory using a prefetcher and then benefit from bandwidth optimized local

access. Note, that the objective of the framework under no oversubscription is not to out-

perform Baseline first touch-based migration, rather show more consistent and predictable

behavior compared to the Always scheme of static threshold-based delayed migration.

5.3.3 The Case of Oversubscription

This experiment demonstrates the effectiveness of the proposed Adaptive policy by com-

paring runtime of different workloads against Disabled, Always, and Oversub policies. For

the Adaptive scheme p = 8 is used and ts = 8 is set for all delayed migration policies.

64



Figure 22: Comparing the impact of dynamic access counter based adaptive scheme on

execution time against the baseline case of first-touch migration and static access counter

threshold based delayed migration schemes.

Figure 22 shows that Adaptive scheme does not impact performance of regular appli-

cations. On the other hand improves the performance of irregular applications by 22% to

78%. Moreover, it also yields better performance compared to static access counter threshold

based schemes.

To reason about the performance improvement by the Adaptive scheme demonstrated in

Figure 22, Figure 23 reports the number of pages being thrashed for different schemes. As it

can be seen that the improvement in kernel execution time is directly a factor of reduction

in memory thrashing for irregular applications. For regular applications, the number of

pages being thrashed using Adaptive scheme is same as Baseline or Disabled. Note that for

backprop there is no thrashing at all. This is because it scans through the entire allocation

sequentially without any data reuse over iterations. On the other hand, ra shows completely

random access and no data reuse which makes it a perfect candidate for zero-copy host-

pinned memory access.

65



Figure 23: Comparing the impact of dynamic access counter based adaptive scheme on

memory thrashing against the baseline case of first-touch migration and static access counter

threshold based delayed migration schemes.

5.3.4 Sensitivity to Multiplicative Penalty

This experiment is aimed to study the effect of the multiplicative penalty, p on the kernel

execution time. The intuition is that higher values of p dictates a larger dynamic threshold

for delayed migration and thus achieves harder pinning of pages.

Figure 24 shows that regular application doesn’t show any performance variation when

the value of p is varied from 2 to 8. Whereas, irregular applications shows strictly linear

performance improvement with larger p. The observation is consistent with p = 16 and

p = 32 (not plotted due to limited space). This is how the adaptive scheme navigates

between bandwidth optimized local access and low latency remote access.

A question may arise as to why not having an unreasonably higher value of p. Clearly,

the dynamic threshold, td is dictated by p. Hence, for relatively large p, the values of ts

and r would not have an appreciable effect on td. As a result, an unreasonably large p will

blindly keep pages pinned to the host memory without caring for the access threshold or

the number of round trips (evictions). Note that t = 1048576 indeed has huge performance

66



Figure 24: Sensitivity of workloads to the multiplicative migration penalty.

benefits on nw, ra, and sssp by eliminating thrashing entirely. However, this behaviour

is unpredictable and solely depends on what pages get pinned to the host memory. For

example, bfs shows 2% performance degradation. Moreover, regular applications suffer a

great deal of performance loss for a large p. For example, the kernel execution time for srad

almost doubles up. This is because for dense, sequential access it is always better to migrate

the memory to the device and access locally. This also proves that the framework is tunable

to achieve remote zero-copy access by configuring p or multiplicative penalty. Further, the

dynamic threshold based heuristic navigates between zero-copy remote access and first touch

migration adaptively.

Note that the sensitivity studies in Section 5.3.1 and 5.3.4 are not performed to find the

optimal values for ts and p, rather to show the effectiveness of the heuristic for reasonable

values for these two parameters. Moreover, the objective of the framework is not to automate

the process of finding values for ts and p as these are configurable as kernel module parameters

to NVIDIA driver.

67



5.3.5 Access Counter Based Eviction

This section shows the effectiveness of the access counter-based simple LFU in comparison

with the LRU page replacement implemented in NVIDIA GPUs. The experimental setup

involving both eviction policies uses Adaptive scheme with ts = 8 and p = 8. The working

sets of the workloads are set at 125% of the total device memory size.

Figure 25: Performance variation between LRU and LFU page replacement strategies.

Figure 25 shows that for regular applications the choice of page replacement policy has

no impact on the performance. Regular applications access the data sequentially and access

counters at 2MB level per managed allocation are almost the same. Hence, LFU converges

to LRU. On the other hand, LFU improves the performance of irregular applications by 6%

to 26%. This validates the hypothesis that prioritizing cold pages over hot pages for eviction

improves performance. However, ra shows a sharp performance degradation of 30% using

LFU. This can be contributed to its extremely sparse and random access.

5.3.6 Invalidating Clean Pages

As discussed in Section 2.2.3, the eviction granularity is 2MB for NVIDIA GPUs. Ir-

respective of the pages being dirty or clean, 2MB large pages are written back from the

68



device to the host memory. As seen in Figure 18b, irregular workloads like sssp has a high

percentage of memory allocation which is read-only. Such an application can benefit from

invalidating clean pages instead of waiting for always writing back 2MB pages. Simple op-

timization can be performed to keep track of access type at 2MB large page level and based

on the type decide on whether to write back or invalidate. This means even if a single page

is dirty within 2MB, the whole chunk is considered dirty. This is done to reduce the over-

head of going over all 4KB pages within 2MB checking for dirty or clean status. Moreover,

transfer bandwidth for 2MB is much higher and guarantees lower latency. This experiment

compares the always write back scheme with the opportunistic mix of writing back dirty

pages and invalidating clean pages. For both schemes, Adaptive scheme with ts = 8 and

p = 8 under 125% memory oversubscription is considered.

Figure 26: Comparing performance of schemes where (i) 2MB blocks are always written

back and (ii) only dirty pages are written back and clean pages are invalidated directly.

Figure 26 shows that invalidating read-only memory directly can improve performance

by 2% to 7% compared to the always writing back strategy. However, nw shows a sharp

performance degradation of 13%. This is because when any page from a 2MB chunk, which

is staged for write-back, is addressed by load/store unit, the 2MB chunk is removed from

the staging queue of write-back and put back to the end of the LRU page list. As 2MB

69



blocks scheduled for eviction suffers from queuing delay, it may get the opportunity to be

removed from the queue and brought back to the list of valid pages. However, invalidating

clean pages is almost instantaneous and thus the blocks being invalidated do not get an

opportunity to remain valid in the memory from any access in the immediate future. This

is the case with nw. As a result, invalidating clean pages increases thrashing for nw and thus

degrades performance. Whereas, backprop and ra show no performance difference as they

have no reusable data.

5.4 Conclusion

This chapter introduces a programmer-agnostic framework to deal with memory over-

subscription overhead stemming from page thrashing in irregular, data-intensive GPU ap-

plications. The adaptive scheme leverages the hardware access counters present in new-

generation GPUs. Hence, it makes the solution simple and pragmatic with no need for any

programmer-assistance or new hardware enhancements. Based on the memory availability

and access frequency, the heuristic adaptively navigates between first-touch page migration

and remote zero-copy access. The proposed framework employs a dynamic access counter

threshold to delay page migration instead of relying on a static threshold for accesses. Based

on access frequency, the proposed scheme achieves the soft-pinning of hot pages to the device

local memory while remotely accessing cold pages from host memory. As a result, it bal-

ances between low latency remote access and high bandwidth local access to reduce thrashing

significantly. Experimental results show that while the proposed framework improves per-

formance for irregular applications under a tight memory budget, it has no negative impact

on performance in cases of no memory oversubscription or for regular applications.

70



6.0 An Adaptive Unified Framework

The CUDA APIs and unified memory runtime offer multiple memory management prim-

itives to optimize the performance of a wider range of applications. However, the onus of

selecting the best memory management strategy falls squarely on application developers. As

no single solution can address all disparate memory management requirements presented by

various workloads, application developers typically resort to intrusive profiling to character-

ize workloads and the allocations within. This chapter presents a smart adaptive runtime

that simplifies memory management for application developers and effectively addresses the

performance overhead under device memory oversubscription. This extended runtime intro-

duces three components - (i) a pattern detection engine, (ii) a policy engine transparent to

the application programmer, and (iii) an augmented adaptive memory management module.

The adaptive runtime chooses from a wide array of memory management policies namely

dynamic page migration and pinning, tree-based eviction, uncacheable host-pinned access to

reduce thrashing of unified memory pages under device memory oversubscription.

6.1 Motivation

The memory access pattern of a GPU application depends on the fine-grained paral-

lelism and inherent memory access characteristics. Different patterns can react differently to

memory over-subscription. As a result, the oversubscription overhead of a workload heavily

depends on the corresponding memory access pattern. Yu el al [91] provided a quantitative

evaluation and comprehensive analysis of Unified Memory in GPUs. They profiled work-

load execution on a simulation platform to identify six representative classes of memory

access patterns for various general-purpose applications. Li et al [50] also classified GPU

applications in three categories - 1) regular applications without data sharing, 2) regular

applications with data sharing and 3) irregular applications. They employed a counter in

each SM’s load/store unit to sample the number of coalesced memory accesses and deter-

71



mine the memory access pattern of the executing workload. Upon detecting the memory

access pattern, the runtime chooses between proactive eviction, memory-aware throttling,

and capacity compression to address the challenge with memory oversubscription.

Unlike the above works, this chapter looks into page migration patterns. Page migration

patterns are inherently different from memory access patterns. For example, a particular

workload can migrate the pages in the device memory during cold start and access it locally

across different kernel launches over multiple iterations. If there is no oversubscription and

subsequent page thrashing pattern of accessing the device-local memory after cold start

has little to no effect on page thrashing and performance overhead. Page migration is

a compounded behavior of - (i) memory requirements of scheduled warps, (ii) efficacy of

coalescing unit and MSHRs, and (iii) most importantly the heuristic employed by software

prefetcher. Under oversubscription, access patterns and eviction heuristic also indirectly

influence page migration decisions and the amount of interconnect traffic. While device

memory access pattern affects cache hit rate and local memory bandwidth, for applications

with unified memory allocations, the page migration pattern plays a far more important role.

6.2 The Unified Framework

The chapter proposes an extension to the unified memory runtime for page migration

pattern detection that does neither rely on intrusive profiling techniques nor any hardware

extension. Rather, it leverages the information of 64KB basic blocks identified by prefetcher

for fault-driven migration to detect page migration patterns. Then, based on the detection

result, the smart framework adaptively chooses and applies suitable memory management

policies to deal with memory oversubscription and reduce interconnect memory-traffic.

6.2.1 Memory Migration Pattern

The following are the page migration patterns considered and modeled to realize the

adaptive smart runtime extension.

72



Regular. Equation 2 represents a sequential migration of k basic-blocks cyclically re-

peated over N iteration. In this set p1 and pk are respectively distant and near re-referenced

blocks. When k is larger than the device-memory capacity, a percentage of the distant re-

referenced blocks are written back to accommodate newer migrations. As a result, there is

constant cyclical thrashing of memory pages.

(p1, p2, ..., pk)N where, N > 1, k > Memory Size (2)

Streaming. A streaming migration pattern is a special case of the Regular access pattern

where no data is re-referenced. With N = 1, Equation 2 is transformed into Equation 3,

which represents a streaming migration pattern. This pattern has no locality in its references

or in other words, memory pages have an infinite re-reference interval.

(p1, p2, ..., pk) where, k = Number of Accesses (3)

Random. Equation 4 defines a Random migration pattern where basic-blocks, ranging

between [1,m], has a migration probability of ε. Further, ε is high, close to 1 for the common

case. This means that memory chunks are migrated randomly based on some probability

distribution.

Pε(p1, p2, ..., pm) where, m = Number of Accesses (4)

Irregular/Mixed. Equation 5 represents a Irregular or Mixed migration pattern. An

irregular pattern can be a mix of regular and random accesses over more than one memory

allocations. Equation 5 shows that basic blocks qi, ranging between [1, k], is linearly mi-

grated for M iterations and blocks pi, ranging between [1,m], are randomly migrated with

probability, ε. This entire access can be repeated for N iterations. Note that unlike Random

migration pattern, the probability of migration, ε is almost close to 0 in the common case.

((q1, q2, ..., qk)MPε(p1, p2, ..., pm))
N

(5)

73



6.2.2 Pattern Detection

The main contribution of this chapter is the pattern detection engine augmented to the

smart adaptive runtime. The heuristic employed by the pattern detection engine is illustrated

by the following steps.

Figure 27: An example of the hierarchical data-structure keeping track of block migration

addresses used by detection engine.

1© As described in Section 2.2.1, GPU interrupts runtime in the host to relay the far-

fault information. 2© Based on the group of faults, the software prefetcher determines

the 64KB basic blocks from the tree structures as migration candidates. 3© These basic

blocks are communicated to the I/O root complex to schedule DMA transfers. 4© The

pattern detection module of the proposed runtime leverages the information of this basic-

block migration information. Throughout computation and data-migration, the runtime

keeps a list of the basic block addresses with their corresponding schedule timestamp. 5©

Runtime is already aware of the base address and allocation size of the managed allocations

along with the kernel launch and completion time. 6© The detection engine is triggered

74



Figure 28: Deterministic Finite Automaton (DFA) for managed allocations demonstrating

the transition of migration states.

at oversubscription before evoking the page eviction routine. 7© The detection

module first scans through the list of basic block transfers and segregates them at kernel

boundaries based on their schedule timestamp. Then, within each kernel boundary, migrated

blocks are further subdivided into groups of managed allocations based on their virtual

address. Figure 27 shows an example of the hierarchical data-structures tracking the basic

blocks of migrations grouped by the managed allocation in each kernel boundary. 8© Then,

the detection module scans through the list of addresses in each managed allocation within

the kernel boundary to determine whether they show linearity/randomness of migration. 9©

Across the kernel boundaries, addresses are compared to determine any re-referencing. 10©

Based on intra-kernel pattern detection in Step 8 and inter-kernel detection of re-referencing

Step 9, the detection module refines the state of managed allocations individually. Figure 28

shows the possible state transition starting from the initial Undecided state.

75



6.2.3 Adaptive Memory Management

The proposed runtime is the culmination of the lessons learned from the past researches

on unified memory oversubscription [32, 31]. Based on the verdict of the pattern-detection

module, the policy-engine chooses from the following set of memory management strategies

and employs it dynamically. As computation progresses and the detection engine perfects

its prediction, the runtime is capable of adaptively switching between memory management

techniques to cater to the current prediction at its best. Note that the runtime starts with

the tree-based prefetcher and huge-page LRU eviction as the base strategy and based on the

detected patterns, adapts its policies as described below:

Regular/Linear with data-reuse. LRU always attempts to evict the distant re-

referenced block p1 which is accessed in the immediate next cycle. As a result, LRU causes

cyclical thrashing of memory pages. The situation is further worsened by huge-page (2MB)

eviction granularity. The goal of a good eviction algorithm is to avoid eviction as much

as possible and also seamlessly coordinate with the software prefetcher. Ganguly et al [32]

showed the combination of tree-based prefetcher and tree-based pre-eviction can reduce page

thrashing for allocations with both regular and irregular migration patterns.

Streaming/Linear with no data-reuse. As there is no data reuse and a large array

is scanned linearly, the goal for memory management here is to replace memory pages at the

highest granularity of 2MB huge-pages. This is because the performance overhead of device-

memory oversubscription for streaming pattern stems from the write-back latency of evicted

blocks. Larger eviction granularity ensures lower write-back latency. Hence, for streaming

migration pattern, smart runtime sticks with the default eviction policy of huge-page LRU.

Random (with or without data-reuse). As memory is migrated randomly, the

prefetcher is not effective to coalesce multiple transfers into a single larger unit. The ideal

memory management strategy here is to hard pin the oversubscribed portion of managed allo-

cation in the host memory and allow the device to access the memory at sub-page granularity

(up to 128B) sporadically over interconnect without either caching the bytes or migrating

the pages to the device.

76



Mixed (with or without data-reuse). From the Equation 5, memory pages (qi) with

linear, sequential pattern with re-referencing can be classified as hot pages and the allocation

with random, sparse access (pi) as cold. hot and cold pages are pinned on the device and

the host memory respectively. This is achieved by employing the adaptive page pinning

and delayed migration heuristic proposed by Ganguly et al [31]. However, tree-based pre-

eviction is employed instead of access counter-based LFU with 2MB granularity to reduce

page-thrashing.

(a) Performance Speedup

(b) Reduction in Thrashing

Figure 29: Performance of smart adaptive framework compared to unified runtime

77



6.3 Experimental Evaluation

To evaluate the extended framework, the execution time of benchmark kernels running

with the proposed smart adaptive framework is compared against the kernels running with

the NVIDIA’s default unified memory runtime. Figure 29a shows that the extended frame-

work provides an average (geometric mean) 28% and 30% performance improvement under

125% and 150% memory over-subscription respectively. Note that for applications with

streaming migration pattern, the performance or smart adaptive runtime is the same as the

default unified memory. This is because as described in Section 6.2.3 the memory manage-

ment strategies are the same for the two. Whereas, for applications with other migration

patterns, smart runtime is extremely effective compared to default unified memory. By dy-

namically determining an adaptive memory management strategy, the smart runtime ensures

a considerable reduction in page thrashing as shown in Figure 29b which contributes to the

performance speed-up. Note as mentioned earlier, Figure 29b shows no page thrashing for

streaming applications due to zero-reuse of data.

6.4 Conclusion

The aim of advancing science is to build on existing research by proposing simple yet

effective extensions. This chapter is a culmination of the ideas and unification of the memory

management techniques presented in the Chapters 4 and 5. This chapter builds on existing

runtime and hardware capabilities. Thus, it is not only effective but also has low adaptation

costs. Moreover, being application-transparent, the presented smart runtime offers higher

programmability with low-performance overhead.

78



7.0 Adaptive Interconnect Provisioning for Multi-tenant Workloads

The past decade has witnessed a steady increase in GPU compute density both in the

number of streaming multi-processors (SM) and the number of scalar cores per SM. As

a result, there is a growing trend in sharing GPU between concurrent applications to fully

saturate available compute-resources and improve value per dollar spent on commodity cloud

platforms. However, workload consolidation must guarantee overall system throughput and

fairness of execution by eliminating interference between concurrent applications. In the past,

researchers have considered partitioning compute resources either spatially or temporally to

ensure isolation. They have also investigated provisioning on-chip interconnect bandwidth

to remove interference between applications with disparate bandwidth demands. However,

with the advent of unified memory, CPU-GPU interconnect becomes a critical resource of

consideration as the performance bottleneck is shifted to on-demand page migration.

This chapter goes beyond memory access pattern and characterizes workloads based on

their arithmetic intensity and the number of network traffic per unit of unified memory. It

demonstrates the limitations with existing interconnect arbiters and traffic schedulers. Based

on the key observations, it introduces an adaptive network traffic scheduler that improves

system throughput and instruction throughput, while ensuring fairness between participating

applications.

7.1 Motivation

This section starts with the characterization of general-purpose GPU workloads. Then,

it demonstrates the interference between concurrent applications followed by the discus-

sion on the limitations of different interconnect scheduling strategies. To demonstrate the

application interference and limitation of scheduling schemes, this section uses two impor-

tant performance metrics - (i) weighted speedup, and (ii) instruction throughput, which are

described in details in Section 7.3.1.

79



7.1.1 Workload Characterization

L2 misses per kilo-instruction (MPKI) is widely used for characterizing memory intensity

of applications as well as a proxy for performance [25, 45, 44, 66]. Jog et al [43] showed MPKI

alone is not sufficient while categorizing on-chip interconnect and device memory interference

for concurrent GPGPU applications. They proposed the bandwidth demand of individual

applications as a key performance metric. Several previous works [32, 31, 91, 90] have

characterized applications based on their device-memory access pattern. Two broad classes,

that emerged from these studies, are - (i) regular, and (ii) irregular. Regular applications

have sequential, repetitive access; while irregular applications access memory randomly and

sparsely.

Figure 30: Categorizing workloads based on memory access pattern, arithmetic intensity,

and number of DMA transactions per unit memory.

This section shows that while previous works considered regularity(/irregularity) of

device-memory access pattern for making page-migration choices to improve CPU-GPU

interconnect-bandwidth utilization, such characterization is not sufficient. Figure 30 presents

80



a set of general-purpose applications, described in Section 3.2.3, and characterizes them based

on - (1) number of DMA transactions per unit memory, and (2) arithmetic intensity.

The number of DMA transactions per unit memory allocation is a proxy for the band-

width demand of an application. It shows the efficacy of the software prefetcher in unified

memory runtime. Typically, the software prefetcher works better with the applications with

regular memory access pattern than the irregular ones. When the prefetcher under-performs,

the runtime creates a lot of DMA requests with smaller memory sizes. As a result, appli-

cations with a higher number of DMA transactions per unit memory allocation attain low

bandwidth compared to peak interconnect bandwidth. For example, ra has higher band-

width demand or lower bandwidth utilization compared to 2dconv. Figure 30 presents an

interesting observation that while all regular applications belong to a single cluster based on

the number of DMA transactions per unit memory allocation, irregular applications create

three distinct clusters - (1) nw, (2) atax, sssp, bfs, and (3) ra.

Arithmetic Intensity (AI) is used in the Roofline model and is expressed as flops/bytes.

AI expresses how much work is done per unit memory traffic. For applications using a unified

memory, AI demonstrates the application’s compute-intensity and efficacy of GPU’s multi-

threading to hide the latency of fault-driven migrations. For example, hotspot has higher

AI than stream_triad as shown in Figure 30. An application with higher AI creates a fewer

number of interconnect-transfers in unit time compared to an application with lower AI.

Thus, lower AI indicates the higher bandwidth demand of an application.

7.1.2 Application Interference

Concurrent applications sharing the same GPU interfere at various levels of the mem-

ory hierarchy (e.g. last level cache, device memory) and on-chip interconnect even when

the SMs are evenly spatially partitioned among them. However, with unified memory, the

performance bottleneck shifts to CPU-GPU interconnect traffic.

Figure 31a shows the performance slowdown of individual applications in a consolidated

environment compared to isolated execution with full compute-resources and interconnect

bandwidth. bfs and sssp have negligible slowdown and the total weighted speedup of the

81



(a) Effect on performance slowdown (b) Effect of instruction throughput

Figure 31: Effect of application consolidation on system throughput. FR-FCFS is the default

scheduling policy.

consolidated run is close to the maximum value, 2. bfs and sssp both belong to the same

cluster based on their AI and the number of DMA transactions per unit memory. Whereas,

sssp experiences a considerable slowdown when executed alongside pathfinder as they are

diverse in their execution and memory characteristics.

Figure 31b presents the total application throughput of consolidated run normalized by

the summation of throughput of applications running in isolation. Like WS, degradation in

total IT also shows a strong dependency on the nature of participating applications.

7.1.3 Limitations of Existing Scheduling Schemes

First-Ready First-Come-First-Serve (FR-FCFS) [69, 68] is the default scheduling pol-

icy of interconnect-arbiters in modern systems. The FCFS nature of the scheduler allows

more traffic from the higher memory demanding application as the runtime schedules more

network packets in the system queue. As a result, these applications get a higher share

of network bandwidth. Whereas RR-FR-FCFS [96] alternates between the network traf-

fics from different applications and thus gives them almost equal service priority. System

82



administrators also employ static priority for interconnect provisioning. Based on detailed

offline-profiling (such as Section 7.1.1), applications with more bandwidth demand are config-

ured to have strict static provisioning priority. Figure 32a shows the performance slowdown

of an individual application under the above three scheduling schemes.

(a) Effect of different DMA scheduling (b) Effect of warp scheduling and in turn order of in-
terrupts (DMA scheduling policy is FR-FCFS)

Figure 32: Different performance slowdowns experienced when different interconnect schedul-

ing schemes are employed.

Limitations of FR-FCFS. As discussed above, FR-FCFS allows a higher share of in-

terconnect bandwidth to the more demanding application in the consolidation. For example,

this is clear for both atax+ra and 2dconv+ra, as ra creates more DMA transactions per unit

memory, it hogs the network queue. As a result, both 2dconv and atax suffer significant

performance degradation.

Limitations of RR FR-FCFS. In case of both pathfinder+stream_triad and atax+ra,

pathfinder and atax gain performance by 19% and 13% respectively while stream_triad

and ra experiences 4% and 12% slowdown. However, for both of these workloads, prioritizing

the latter application over the former improves both of their performance over FR-FCFS.

Limitations of static application priority. It can be seen that prioritizing ra over

atax significantly improve the performance of both. However, static provisioning needs

in-depth knowledge of application characteristics before consolidating for execution.

83



Effect of interrupt ordering and page-fault notification. As described in Sec-

tion 2.2.1, the software prefetcher in the runtime schedules host-to-device DMA transactions

based on the page-faults notified by GMMU interrupts. The order of page-fault interrupt

explicitly depends on the order of warp scheduling and the SM partition on which TBs from

a particular application kernel is mapped to. As shown in Figure 32b, prioritizing page-

fault notification from one application over the other has no significant impact on speedup

for 2dconv+hotspot and atax+sssp. However, for pathfinder+ra, prioritizing interrupt

notification for ra improves overall system throughput.

7.1.4 Interference under Device Memory Oversubscription

After receiving page-fault notifications from the GPU memory management unit (GMMU),

the runtime queries whether there is enough space in device memory for the new page mi-

grations. When the working set exceeds the device memory capacity, the runtime invokes

the LRU eviction routine to write-back older 2MB huge-pages from the device to the host

memory. Under workload consolidation, one application can significantly impact the perfor-

mance of the other concurrent applications by evicting their memory pages unnecessarily,

even without their knowledge.

Figure 33a shows the performance slowdown of the individual application under 110%

device-memory oversubscription compared to no oversubscription along with the percent-

age of allocated memory evicted per application reported in Figure 33b. In the case of

2dconv+pathfinder, both applications experience similar performance slowdown (1% and

2%) with 25% and 29% of their respective working sets are evicted. However, for nw+sssp,

two applications experience drastically different performance slowdown which can be at-

tributed to their eviction percentages.

7.1.5 Key Observations

This section enumerates the key observations based on the above discussion to build

the foundation towards designing an application-aware, adaptive CPU-GPU interconnect

84



(a) Effect on performance slowdown (b) Effect of page eviction

Figure 33: Unwanted page eviction and in turn performance slowdown by application con-

solidation under device-memory oversubscription. App-1 and App-2 are respectively high-

and low-priority application chosen by adaptive host-to-device interconnect scheduler.

provisioning scheme.

Observation 1: Prioritizing applications with a higher number of DMA trans-

actions improves system throughput. In the workloads, where any participating ap-

plication suffers significant performance slowdown, prioritizing application with more DMA

requests improves overall system throughput. For example, although atax and ra belongs

to the same cluster based on their arithmetic intensity, ra creates more DMA requests per

unit memory and has higher bandwidth demand. Thus, prioritizing ra over atax improves

system throughput.

Observation 2: Prioritizing applications with lower AI improves system through-

put. In the workloads, where any participating application suffers significant performance

slowdown, prioritizing application with lower AI improves overall system throughput. In the

case of pathfinder+stream_triad, stream_triad has significantly lower AI than pathfinder

although they create a similar number of DMA requests. Lower AI means stream_triad

consumes memory faster by doing less computation per unit memory and shows higher

bandwidth demand. Thus, prioritizing stream_triad over pathfinder improves system

throughput.

85



Observation 3: Order of page-fault notification is as important as the order

of DMA requests. In the workloads, where any participating application suffers signifi-

cant performance slowdown, prioritizing page-fault notification for application with higher

bandwidth demand improves system throughput. ra has lowed AI and creates more DMA

requests than pathfinder. Thus, as shown in Figure 32b, prioritizing interrupt notifications

for page-faults in ra improves the overall system throughput with the same DMA scheduling

policy.

Observation 4: Preventing page eviction from higher priority application

improves system throughput. In case of device-memory oversubscription, allowing page-

migration of one application to interfere with the eviction decision of another application

causes serious performance degradation. The degree of performance degradation depends on

the nature of participating applications. As prioritizing the high-priority application with

higher bandwidth demand improves overall system throughput, the goal is to restrict the

eviction of memory pages from high-priority applications giving it the illusion of no memory

oversubscription.

7.2 Application-aware CPU-GPU Interconnect Provisioning

7.2.1 Performance Model

From the discussion in Section 7.1, it can be concluded that maximum attainable band-

width, BWi for ith application is a function of AIi and Ti, where AIi and Ti are respectively

arithmetic intensity and the number of DMA transactions per unit memory. More specifi-

cally, (1) higher Ti translates to lower BWi as prefetcher is ineffective resulting fragmented

transactions of smaller sizes and (2) higher AIi translates to lesser number of DMA trans-

actions in unit time resulting higher BWi. This can summarized as Equation 6.

BWi ∝
AIi
Ti

(6)

Firstly, based on the performance model proposed by Guz et al [37], performance of ith

86



application, P t
i ∝ BWi∀i at any given time t. BW alone

i and P alone
i are the attained bandwidth

and performance of the application when executed in isolation. Let us assume that at time

t + 1, an additional ε bandwidth is provisioned to the first application by taking it away

from the second application. Then, the performance of the two applications at t+ 1 will be

P t+1
1 ∝ BW1 + ε and P t+1

2 ∝ BW2 − ε respectively.

In order to improve overall system throughput from time t to t+ 1,

P t+1
1

P alone
1

+
P t+1
2

P alone
2

>
P t
1

P alone
1

+
P t
2

P alone
2

BW1 + ε

BW alone
1

+
BW2 − ε
BW alone

2

>
BW1

BW alone
1

+
BW2

BW alone
2

(7)

Simplifying Equation 7 yields -

ε(BW alone
2 −BW alone

1 ) > 0

=⇒ BW alone
2 > BW alone

1 , if ε > 0

BW alone
1 > BW alone

2 , if ε < 0

(8)

Combining Equation 6 and 8, for ε > 0, the following relationships can be concluded -

T alone
1 > T alone

2 , where AIalone1 ≈ AIalone2

AIalone2 > AIalone1 , where T alone
1 ≈ T alone

2

(9)

Equation 9 implies that to improve overall system throughput - (1) give more bandwidth

to the application with a higher number of DMA requests per unit memory if all the partic-

ipating applications have similar AI, and (2) give more bandwidth to the application with

lower AI if all participating applications generate a similar number of DMA requests. This

conclusion is congruent with the observations in Section 7.1.5. Note that this mathematical

model can be easily extended to workloads consisting of more than two applications.

87



7.2.2 Mechanism and Implementation Details

Based on the key observations presented in Section 7.1.5 and the analytical model of

Section 7.2.1, this chapter proposes an application-aware, adaptive CPU-GPU interconnect

scheduling. This scheduler is realized as an extension to the GPU runtime. The scheme has

four primary objectives - (i) prioritize traffics from the application with the highest band-

width demand, (ii) enforce service fairness by avoiding starvation of the applications with

lower bandwidth demand, (iii) improve overall interconnect utilization by work-conserving

scheduling, and (iv) provide the illusion of no-oversubscription to the high-priority applica-

tion by avoiding any interference in the eviction decision.

Determining and Configuring High Priority Application. Application’s band-

width demand can be quantified by - (i) number of generated DMA requests per unit memory

and (ii) AI. DMA transactions are relayed to the root complex and in turn to the intercon-

nect switch by the runtime’s software prefetcher logic. The runtime maintains a counter

that tracks the number of scheduled transactions per unit size per transaction for the first

metric. Measuring AI in the runtime is not trivial as there is no straightforward GPU hard-

ware counter to query committed FLPOS like CPU architecture. Note that AI indicates how

much time it takes to consume a memory chunk or in other words the frequency of memory

requests per unit execution time. The runtime creates a proxy counter for AI that tracks

a weighted average transfer size per unit time. The scheduler periodically measures these

two counters for each application to determine which application should be prioritized. As

discussed previously, if the participating applications have similar AI, then the application

with a higher number of generated DMA transactions is prioritized. Similarly, if concurrent

applications generate a similar number of DMA requests, then the application with lower

AI is prioritized. Based on these two criteria, the scheduler determines a clear high priority

application. Then, it sets the TC/VC map field of the VC Resource Control Register. Links

in each direction is configured to provision both device-to-host page-fault notification traffic

and host-to-device DMA transaction. However, sometimes participating applications can

not be strictly classified based on either AI or the number of generated DMA requests. In

such cases, failing to determine a clear high priority application, the scheduler falls back to

88



the RR FR-FCFS by provisioning equal priority for all applications.

Fair Scheduling. Application with the highest bandwidth demand hogs the intercon-

nect queues in both FR-FCFS and static priority scheme and thus hurts collocated applica-

tions. While a static priority scheme tries to enforce a fixed ratio of the number of serviceable

transactions per application, FR-FCFS has no such restriction. Unlike these schemes, the

proposed scheduler tries to balance the number of transactions serviced per application by

calculating the deviation in performance metrics per application over time. If the perfor-

mance of the lower priority application deviates by a certain threshold, then its interconnect

traffic is prioritized in the future until either the performance is recovered or the higher

priority application has a lot of pending serviceable traffics. Thus, the adaptive nature of

traffic priority avoids starvation and balances the performance of participating applications.

Work Conservation. Sometimes there is no serviceable interconnect traffic from the

higher priority application. Instead of enforcing a strict ratio of the number of serviceable

transactions per application like a static provisioning scheme, the proposed scheduler allows

serviceable traffics from the lower priority application if any. This work-conserving nature

of the scheduler improves overall interconnect bandwidth utilization compared to the static

scheme.

Avoid Eviction of High-priority Application Pages. The goal of the scheduler is

to provide the illusion of no memory oversubscription to the high-priority application as if

its memory pages are pinned on the device memory. The scheduler prioritizes the eviction of

memory pages from low-priority application over the high-priority application. However, it

is unfair to prioritize page eviction of the lower-priority application when the high-priority

application has already completed its execution. Thus, the runtime engine writes back all

memory pages at the last kernel boundary of high-priority application as part of the device-

synchronization.

89



7.3 Experimental Evaluation

In total 45 two-application workloads from the 10 unified memory benchmarks part of

UMCA described in Section 3.2.3 are evaluated. These workloads are classified in three

major categories based on the memory access pattern of the participating applications -

(i) regular+regular, (ii) irregular+irregular, and (iii) regular+irregular. Within

each category, the workloads are sub-divided based on their respective arithmetic inten-

sity and the number of DMA transactions generated per unit memory. For example, let

us consider two workloads within regular+regular category - 2dconv+stream_triad and

2dconv+pathfinder. All three applications belong to the same cluster based on their num-

ber of DMA transactions. However, 2dconv and stream_triad have a large difference in

AI. Whereas, 2dconv and pathfinder belongs to the same cluster of AI. Applications in

regular+irregular category can be further divided based on AI and the number of DMA

transactions. While benchmarks like atax and na have a large difference in both AI and the

number of DMA transactions, atax and sssp belong to the same cluster on both metrics.

7.3.1 Evaluation Metrics

To evaluate the concurrent execution of more than one application, one needs to consider

the application and overall system throughput along with the fairness of execution between

applications.

Application Throughput. Instruction Throughput (IT) is expressed as
∑n

i=1 IPC
concurrent
i

where, IPCconcurrent
i is the number of committed instructions per cycle for the ith application

where n applications are executing concurrently. IT measures raw machine throughput.

Overall system throughput can be evaluated using the metric Weighted Speedup (WS),

which can be expressed as the summation of slowdown per application compared to isolated

run. WS indicates how many jobs are executed per unit time. When there is no interference

between the concurrent applications, the WS equals the total number of applications in the

composed workload. WS can be expressed as
∑n

i=1 SDi. SDi denotes the slowdown of ith

application and can be given by
IPCconcurrent

i

IPCalone
i

or cycleialone

cycleiconcurrent .

90



Fairness. Kim et al [45] used Harmonic Speedup (HS) to express the notion of fairness

between concurrent applications. HS is the reciprocal of Average Normalized Turn-around

Time (ANTT) and is expressed as 1/
∑n

i=1
1

SDi
.

7.3.2 Effect on System Throughput

From the set of total 45 workloads, 17 representatives workloads are chosen for evaluation.

This experiment evaluates the performance of adaptive interconnect provisioning in contrast

to - (i) default FR-FCFS (baseline), (ii) RR FR-FCFS, and (iii) a static priority scheme.

Note that the static scheme requires detailed offline profiling to determine which application

should be prioritized. In each workload, the application with the highest bandwidth demand

or the lowest attained bandwidth is prioritized. For example, in ra+stream_triad, ra is

given higher priority as it generates more DMA transactions.

Figure 34 shows the weighted speedup of the four considered schemes normalized with

respect to FR-FCFS. Note that higher normalized WS indicates the efficacy of the scheme.

The average performance result of all 45 workloads using geometric mean (GeoMean) is also

reported. Overall the adaptive scheme outperforms FR-FCFS, RR FR-FCFS, and static

priority scheme. Particularly, the proposed scheduling scheme gives 8% improvement over

FR-FCFS.

Now let us carefully investigate three example workloads (highlighted in Figure 34) from

each major category of composition. In pathfinder+stream_triad, both of the partic-

ipating applications belong to the same cluster based on the number of generated DMA

transactions. However, stream_triad has higher bandwidth demand as it has lower AI than

pathfinder. The software prefetcher yields higher throughput for both applications because

of their regular memory access pattern. Thus, prioritizing stream_triad hurts pathfinder

and in turn overall system throughput. As a result, RR FR-FCFS yields better WS than the

static priority scheme. The work-conserving, fair scheduling strategy of the adaptive scheme

closely follows the RR FR-FCFS and hence yields closely similar performance.

In atax+ra, both applications have irregular memory access patterns, and thus prefetch-

91



ing is rendered ineffective resulting in more DMA requests per unit memory. Due to the

high bandwidth demand of both applications, FR-FCFS and RR FR-FCFS do not work

well for this group of applications. Although they have similar AI, ra creates significantly

more DMA requests in short bursts due to its completely random memory access pattern.

The adaptive scheme prefers ra over atax while provisioning interconnect bandwidth. This

results in the adaptive scheme having WS identical to that of the static priority policy.

In 2dconv+ra, the applications belong to an opposite spectrum based on memory access

pattern, and thus ra creates 2.5× DMA requests compared to 2dconv. Because of this

diverse nature, a consistent performance improvement can be seen between schemes, with

the adaptive scheme yielding 32% speedup over FR-FCFS.

Figure 35 shows the normalized instruction throughput of workloads in each major cat-

egory along with the overall geometric mean of all 45 workloads. Like WS, the adaptive

scheme improves IT by 9% compared to the baseline FR-FCFS.

Figure 34: The effect of adaptive CPU-GPU interconnect scheduling on weighted speedup

for 17 representative workloads.

92



Figure 35: The summary of instruction throughput from adaptive CPU-GPU interconnect

scheduling for all 45 workloads.

7.3.3 Effect on Fairness

Figure 36 reports the Harmonic Speedup (HS) as a balanced metric for performance as

well as fairness. Across all classes of workloads, the adaptive scheme consistently performs

better than FR-FCFS with an average (GeoMean) 8% improvement. Careful observation

reveals that for the regular+regular class, where both applications have high bandwidth

utilization, RR FR-FCFS outperforms the static priority scheme and closely follows the

adaptive scheme. This proves that the adaptive scheme unlike FR-FCFS and static priority

scheme does not starve the application with lower bandwidth demand, rather the work-

conserving nature of the scheduler balances the bandwidth demand while ensuring a higher

system throughput.

93



Figure 36: The summary of harmonic speedup from adaptive CPU-GPU interconnect

scheduling for all 45 workloads.

7.3.4 The Case of Oversubscription

Figure 37 reports the experimental results in the case where the total working set of

two concurrent applications is 110% of the device-memory capacity. The labels App-1 and

App-2 denote higher and lower priority applications dynamically identified by the adaptive

host-to-device provisioning scheme respectively. This experiment compares three different in-

terconnect provisioning scheme - (i) FR-FCFS+Interfere: the host-to-device DMA traffics

and device-to-host interrupt notification traffics are provisioned based on default FR FCFS

policy and under oversubscription, device-to-host write-back traffics are not provisioned, (ii)

Adaptive+Interfere: the host-to-device DMA traffics and device-to-host interrupt noti-

fication traffics are provisioned by the proposed adaptive scheduler and the device-to-host

write-back traffics are not provisioned, and (iii) Adaptive+Preserve: the host-to-device

DMA traffics and device-to-host interrupt notification traffics are provisioned by the pro-

posed adaptive scheduler and the device-to-host write-back traffics of lower-priority applica-

94



tions are prioritized to prevent the eviction of high-priority application’s memory pages.

Figure 37a reports the relative slowdown per application compared to their respective

performance under no oversubscription or when the working set can fit in the device mem-

ory. Figure 37b shows the percentage of allocated memory per application being evicted due

to workload eviction under two schemes in consideration. Provisioning host-to-device on-

demand migration traffic and device-to-host interrupt notification using adaptive scheduler

improve performance of high- and low-priority applications by an average (geometric mean)

8% and 7% respectively resulting in a total 15% gain in overall system throughput compared

to the default interconnect provisioning in both directions. Moreover, preserving memory

pages of high-priority application from eviction by prioritizing eviction of the low-priority

application improves the performance of the high-priority application by an additional 3%

without affecting the performance of the low-priority application. Thus, the adaptive pro-

visioning with priority preserving page eviction leads to an average 18% improvement of

overall system throughput compared to the baseline. This improvement in performance can

be attributed to the reduction in page eviction of high-priority application. Early completion

of higher-priority application due to lesser page eviction frees the interconnect bandwidth in

both directions for the lower-priority application. Moreover, as the higher priority applica-

tion finishes, the runtime can now freely evict pages from it causing no further eviction of

remaining low priority application at kernel-level device-synchronization. This results in the

overall improvement of system throughput.

95



(a) Effect on Performance Speedup

(b) Effect on percentage of memory being evicted

Figure 37: The effect of priority preserving device-to-host CPU-GPU interconnect provision-

ing on weighted speedup and page eviction for 6 representative workloads.

96



7.4 Conclusion

State-of-the-art GPU runtime does not have proper support for CPU-GPU intercon-

nect provisioning to ensure system throughput and fairness when a GPU is shared between

multiple concurrent applications using unified memory. Firstly, this chapter demonstrates

that the current PCIe arbiter is not sufficient to eliminate performance interference between

interconnect traffics arising from different applications. Next, it presents an adaptive in-

terconnect traffic scheduling that goes beyond the memory access pattern of participating

applications and considers arithmetic intensity and the number of DMA requests to arbi-

trate priority of CPU-GPU interconnect traffic. Evaluation results show that the proposed

scheduler improves overall system throughput and also ensures fairness for a wide variety of

workload consolidation.

97



8.0 Concluding Remarks

Unified memory runtime simplifies the memory management of the CPU-GPU hetero-

geneous memory system and at the same time provides higher programmability. GPUs

are classically used to accelerate graphics rendering. However, due to large thread-level

parallelism and advancement in the software-managed runtime, GPUs are increasingly be-

ing used to accelerate general-purpose applications with large working sets. This exposes

new challenges with memory management. This dissertation explores new application-aware

heuristics to mitigate performance overhead and improve overall system throughput with

minimum modification to the software-managed GPU runtime.

8.1 Summary

To address the performance slowdown under device memory oversubscription, the disser-

tation first introduces a tree-based pre-eviction algorithm. By adopting the semantics of the

tree-based prefetcher, it navigates between the two extremes of static eviction granularity of

4KB and 2MB and thus overcomes the limitations of these schemes. Moreover, by following

the spatio-temporal locality of prefetching, it reduces the amount of page thrashing.

Secondly, this dissertation introduces a programmer-agnostic runtime that leverages the

hardware access counters to automatically categorize memory allocations based on the access

pattern and frequency. The proposed heuristic adaptively navigates between remote zero-

copy access to host-pinned memory and first-touch page migration based on the trade-off

between low latency remote access and high-bandwidth local access. By dynamically con-

trolling page migration and pinning, the heuristic reduces page thrashing for data-intensive

applications with irregular, sparse memory accesses under device-memory over-subscription.

Finally, considering the ever-growing spectrum of general-purpose algorithms in GPU

and their diverse memory management needs, this dissertation extends by introducing a

pattern detection engine. Based on the underlying CPU-GPU interconnect traffic-access

98



pattern of the workload, the smart runtime applies the best-suited memory management

strategy to reduce page-thrashing.

To extend the memory-management beyond isolated application execution on a GPU,

this dissertation delves into the aspect of sharing the GPU by concurrent applications. It

proposes a CPU-GPU interconnect scheduler that guarantees execution fairness and improves

overall system throughput by provisioning network traffic from the application with higher

bandwidth-demand.

8.2 Future Direction

Due to the fundamental fact that GPUs are used as slave I/O device to the host proces-

sor, the GPU memory management heavily relies on smart memory management techniques

in the software-managed runtime. To solve large workloads such as scientific computing,

training deep neural networks, application developers are using multi-GPU nodes and even

clusters of GPU-enabled nodes connected over a high-performance computer network. Al-

though this dissertation explores memory management for a single CPU-GPU node, the

heuristics introduced in this dissertation can be easily adapted to a single-node multi-GPU

system with little to no modification. A natural direction for future research is to study the

applicability and scalability of these memory management techniques and smart runtime for

multi-GPU applications. However, GPU-enabled multi-node systems do not have support

for unified memory with the illusion of a contiguous, byte-addressable, virtual address space

unlike single-node multi-GPU systems, and GPUs are unfortunately forced to communicate

through the driver stack in the host CPU using high-level API calls like MPI. This disserta-

tion calls for attention towards developing a byte-addressable unified virtual address space

spanning multiple nodes by leveraging the host-bypass RDMA network. Both migrating

pages across physical nodes and directly accessing a memory module in a far-node over the

network add to the heterogeneity of memory access. Ensuring data-locality and minimizing

network traffic requires careful investigation for multi-node installations further necessitating

the development of a smart, adaptive runtime.

99



Bibliography

[1] Jacob T Adriaens, Katherine Compton, Nam Sung Kim, and Michael J Schulte. The
case for gpgpu spatial multitasking. In IEEE International Symposium on High-
Performance Comp Architecture, pages 1–12. IEEE, 2012.

[2] Neha Agarwal, David Nellans, Mike O’Connor, Stephen W Keckler, and Thomas F
Wenisch. Unlocking bandwidth for gpus in cc-numa systems. In 2015 IEEE 21st In-
ternational Symposium on High Performance Computer Architecture (HPCA), pages
354–365. IEEE, 2015.

[3] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and Stephen W
Keckler. Page placement strategies for gpus within heterogeneous memory systems.
In ACM SIGPLAN Notices, pages 607–618. ACM, 2015.

[4] Paula Aguilera, Katherine Morrow, and Nam Sung Kim. Fair share: Allocation of
gpu resources for both performance and fairness. In 2014 IEEE 32nd International
Conference on Computer Design (ICCD), pages 440–447. IEEE, 2014.

[5] Paula Aguilera, Katherine Morrow, and Nam Sung Kim. Qos-aware dynamic resource
allocation for spatial-multitasking gpus. In 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 726–731. IEEE, 2014.

[6] Amazon. Amazon EC2 Instance Types. https://aws.amazon.com/ec2/

instance-types/, 2019.

[7] AMD. AMD APP SDK OpenCL Optimization Guide. http://developer.amd.com/
wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf,
2015.

[8] Murali Annavaram, Jignesh M Patel, and Edward S Davidson. Data prefetching by
dependence graph precomputation. In Proceedings 28th Annual International Sympo-
sium on Computer Architecture, pages 52–61. IEEE, 2001.

[9] ARM. ARM Mali GPU OpenCL Developer Guide. http://infocenter.arm.

com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_opencl_

developer_guide_100614_0303_00_en.pdf, 2017.

100

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_opencl_developer_guide_100614_0303_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_opencl_developer_guide_100614_0303_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_opencl_developer_guide_100614_0303_00_en.pdf


[10] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata Ghose, Jayneel
Gandhi, Christopher J Rossbach, and Onur Mutlu. Mosaic: a gpu memory manager
with application-transparent support for multiple page sizes. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture, pages 136–
150, 2017.

[11] Manu Awasthi, David Nellans, Kshitij Sudan, Rajeev Balasubramonian, and Al Davis.
Handling the problems and opportunities posed by multiple on-chip memory con-
trollers. In 2010 19th International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pages 319–330. IEEE, 2010.

[12] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 163–174. IEEE,
2009.

[13] Rishiraj A Bheda, Jason A Poovey, Jesse G Beu, and Thomas M Conte. Energy effi-
cient phase change memory based main memory for future high performance systems.
In 2011 International Green Computing Conference and Workshops, pages 1–8. IEEE,
2011.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,
et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

[15] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A case
for numa-aware contention management on multicore systems. In Proceedings of the
19th international conference on Parallel architectures and compilation techniques,
pages 557–558. ACM, 2010.

[16] William Bolosky, Robert Fitzgerald, and Michael Scott. Simple but effective tech-
niques for numa memory management. ACM SIGOPS Operating Systems Review,
23(5):19–31, 1989.

[17] Timothy Brecht. On the importance of parallel application placement in numa multi-
processors. In Symposium on Experiences with Distributed and Multiprocessor Systems
(SEDMS IV), pages 1–18, 1993.

101



[18] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study of ir-
regular programs on gpus. In 2012 IEEE International Symposium on Workload
Characterization (IISWC), pages 141–151. IEEE, 2012.

[19] Niladrish Chatterjee, Mike O’Connor, Gabriel H Loh, Nuwan Jayasena, and Rajeev
Balasubramonia. Managing dram latency divergence in irregular gpgpu applications.
In SC’14: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 128–139. IEEE, 2014.

[20] Niladrish Chatterjee, Manjunath Shevgoor, Rajeev Balasubramonian, Al Davis, Zhen
Fang, Ramesh Illikkal, and Ravi Iyer. Leveraging heterogeneity in dram main memo-
ries to accelerate critical word access. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 13–24. IEEE, 2012.

[21] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Workload Characterization, 2009. IISWC 2009. IEEE International Symposium
on, pages 44–54. Ieee, 2009.

[22] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. Baymax: Qos awareness
and increased utilization for non-preemptive accelerators in warehouse scale comput-
ers. ACM SIGPLAN Notices, 51(4):681–696, 2016.

[23] Hsiang-Yun Cheng, Chung-Hsiang Lin, Jian Li, and Chia-Lin Yang. Memory latency
reduction via thread throttling. In 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 53–64. IEEE, 2010.

[24] Jonathan Corbet. Autonuma: the other approach to numa scheduling. LWN. net,
2012.

[25] Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R Das. Aérgia: exploit-
ing packet latency slack in on-chip networks. ACM SIGARCH computer architecture
news, 38(3):106–116, 2010.

[26] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic management: a
holistic approach to memory placement on numa systems. ACM SIGARCH Computer
Architecture News, 41(1):381–394, 2013.

102



[27] Debashis Ganguly. GPGPU-Sim UVM Smart. https://github.com/

DebashisGanguly/gpgpu-sim_UVMSmart.git, 2019.

[28] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N Patt. Fairness via source
throttling: a configurable and high-performance fairness substrate for multi-core mem-
ory systems. ACM Sigplan Notices, 45(3):335–346, 2010.

[29] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N Patt. Coordinated control
of multiple prefetchers in multi-core systems. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 316–326. ACM,
2009.

[30] Eiman Ebrahimi, Onur Mutlu, and Yale N Patt. Techniques for bandwidth-efficient
prefetching of linked data structures in hybrid prefetching systems. In 2009 IEEE
15th International Symposium on High Performance Computer Architecture, pages
7–17. IEEE, 2009.

[31] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Ram Melhem. Adaptive page migration
for irregular data-intensive applications under gpu memory oversubscription. In 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
451–461. IEEE, 2020.

[32] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. Interplay between
hardware prefetcher and page eviction policy in cpu-gpu unified virtual memory. In
Proceedings of the 46th International Symposium on Computer Architecture, pages
224–235, 2019.

[33] Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Vı́ctor Garćıa-Floreszx, Simon Gar-
cia De Gonzalo, Thomas B Jablin, Antonio J Pena, and Wen-mei Hwu. Chai: Col-
laborative heterogeneous applications for integrated-architectures. In 2017 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 43–54. IEEE, 2017.

[34] Edward H Gornish, Elana D Granston, and Alexander V Veidenbaum. Compiler-
directed data prefetching in multiprocessors with memory hierarchies. In ACM In-
ternational Conference on Supercomputing 25th Anniversary Volume, pages 128–142.
ACM, 2014.

[35] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. Auto-tuning a high-level language targeted to gpu codes. In 2012 Innovative
Parallel Computing (InPar), pages 1–10. Ieee, 2012.

103

https://github.com/DebashisGanguly/gpgpu-sim_UVMSmart.git
https://github.com/DebashisGanguly/gpgpu-sim_UVMSmart.git


[36] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. Fine-grained
resource sharing for concurrent {GPGPU} kernels. In Presented as part of the 4th
{USENIX} Workshop on Hot Topics in Parallelism, 2012.

[37] Zvika Guz, Evgeny Bolotin, Idit Keidar, Avinoam Kolodny, Avi Mendelson, and Uri C
Weiser. Many-core vs. many-thread machines: Stay away from the valley. IEEE
Computer Architecture Letters, 8(1):25–28, 2009.

[38] IBM. IBM Power System AC922: Technical Overview and Introduction. http:

//www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf. Accessed Apr 04, 2019.

[39] Ilya Granovsky, Elchanan Perlin - IBM. Integrating pci express
ip in a soc. https://www.design-reuse.com/articles/15545/

integrating-pci-express-ip-in-a-soc.html, 2018.

[40] Ravishankar Iyer, Hujun Wang, and Laxmi Narayan Bhuyan. Design and analysis of
static memory management policies for cc-numa multiprocessors. Journal of systems
architecture, 48(1-3):59–80, 2002.

[41] Min Kyu Jeong, Mattan Erez, Chander Sudanthi, and Nigel Paver. A qos-aware
memory controller for dynamically balancing gpu and cpu bandwidth use in an mpsoc.
In DAC Design Automation Conference 2012, pages 850–855. IEEE, 2012.

[42] Adwait Jog, Evgeny Bolotin, Zvika Guz, Mike Parker, Stephen W Keckler, Mahmut T
Kandemir, and Chita R Das. Application-aware memory system for fair and efficient
execution of concurrent gpgpu applications. In Proceedings of workshop on general
purpose processing using GPUs, pages 1–8, 2014.

[43] Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny Bolotin, Ni-
ladrish Chatterjee, Stephen W Keckler, Mahmut T Kandemir, and Chita R Das.
Anatomy of gpu memory system for multi-application execution. In Proceedings of
the 2015 International Symposium on Memory Systems, pages 223–234, 2015.

[44] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. Atlas: A scal-
able and high-performance scheduling algorithm for multiple memory controllers. In
HPCA-16 2010 The Sixteenth International Symposium on High-Performance Com-
puter Architecture, pages 1–12. IEEE, 2010.

[45] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access behavior. In

104

http://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
https://www.design-reuse.com/articles/15545/integrating-pci-express-ip-in-a-soc.html
https://www.design-reuse.com/articles/15545/integrating-pci-express-ip-in-a-soc.html


2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, pages
65–76. IEEE, 2010.

[46] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using os
observations to improve performance in multicore systems. IEEE micro, 28(3):54–66,
2008.

[47] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
Evaluating stt-ram as an energy-efficient main memory alternative. In 2013 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 256–267. IEEE, 2013.

[48] Nagesh B Lakshminarayana, Jaekyu Lee, Hyesoon Kim, and Jinwoo Shin. Dram
scheduling policy for gpgpu architectures based on a potential function. IEEE Com-
puter Architecture Letters, 11(2):33–36, 2011.

[49] RP LaRowe, Carla Schlatter Ellis, and Mark A Holliday. Evaluation of numa memory
management through modeling and measurements. IEEE Transactions on Parallel
and Distributed Systems, pages 686–701, 1992.

[50] Chen Li, Rachata Ausavarungnirun, Christopher J Rossbach, Youtao Zhang, Onur
Mutlu, Yang Guo, and Jun Yang. A framework for memory oversubscription manage-
ment in graphics processing units. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 49–63, 2019.

[51] Chen Li, Yifan Sun, Lingling Jin, Lingjie Xu, Zheng Cao, Pengfei Fan, David Kaeli,
Sheng Ma, Yang Guo, and Jun Yang. Priority-based pcie scheduling for multi-tenant
multi-gpu systems. IEEE Computer Architecture Letters, 18(2):157–160, 2019.

[52] Wei-Fen Lin, Steven K Reinhardt, and Doug Burger. Designing a modern memory
hierarchy with hardware prefetching. IEEE Transactions on Computers, 50(11):1202–
1218, 2001.

[53] Jeffrey C Mogul, Eduardo Argollo, Mehul A Shah, and Paolo Faraboschi. Operating
system support for nvm+ dram hybrid main memory. In HotOS, volume 9, pages
4–14, 2009.

105



[54] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled
prefetching in shared-memory multiprocessors. Journal of parallel and Distributed
Computing, 12(2):87–106, 1991.

[55] NVIDIA. CUDA Runtime API - v10.0.130. https://docs.nvidia.com/cuda/

cuda-runtime-api/. Accessed Apr 04, 2019.

[56] NVIDIA. NVIDIA Pascal Architecture. https://www.nvidia.com/en-us/

data-center/pascal-gpu-architecture/. Accessed Apr 04, 2019.

[57] NVIDIA. Multi-process service - volta. https://docs.nvidia.com/deploy/mps/

index.html, 2019.

[58] NVIDIA Corp. NVIDIA GeForce GTX 1080 Ti. http://international.download.
nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_

FINAL.pdf, 2016.

[59] Sreepathi Pai, Matthew J Thazhuthaveetil, and Ramaswamy Govindarajan. Improv-
ing gpgpu concurrency with elastic kernels. ACM SIGARCH Computer Architecture
News, 41(1):407–418, 2013.

[60] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collaborative
preemption for multitasking on a shared gpu. ACM SIGARCH Computer Architecture
News, 43(1):593–606, 2015.

[61] Milan Pavlovic, Nikola Puzovic, and Alex Ramirez. Data placement in hpc architec-
tures with heterogeneous off-chip memory. In 2013 IEEE 31st International Confer-
ence on Computer Design (ICCD), pages 193–200. IEEE, 2013.

[62] Peter Messmer. Unleash legacy mpi codes with ke-
pler’s hyper-q. https://blogs.nvidia.com/blog/2012/08/23/

unleash-legacy-mpi-codes-with-keplers-hyper-q/, 2012.

[63] Sujay Phadke and Satish Narayanasamy. Mlp aware heterogeneous memory system.
In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE, 2011.

[64] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. Architectural support for
address translation on gpus: Designing memory management units for cpu/gpus with
unified address spaces. ACM SIGPLAN Notices, pages 743–758, 2014.

106

https://docs.nvidia.com/cuda/cuda-runtime-api/
https://docs.nvidia.com/cuda/cuda-runtime-api/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://blogs.nvidia.com/blog/2012/08/23/unleash-legacy-mpi-codes-with-keplers-hyper-q/
https://blogs.nvidia.com/blog/2012/08/23/unleash-legacy-mpi-codes-with-keplers-hyper-q/


[65] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A Wood. gem5-gpu:
A heterogeneous cpu-gpu simulator. IEEE Computer Architecture Letters, 14(1):34–
36, 2015.

[66] Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In
2006 39th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’06), pages 423–432. IEEE, 2006.

[67] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in hybrid
memory systems. In Proceedings of the international conference on Supercomputing,
pages 85–95. ACM, 2011.

[68] Scott Rixner. Memory controller optimizations for web servers. In 37th International
Symposium on Microarchitecture (MICRO-37’04), pages 355–366. IEEE, 2004.

[69] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens.
Memory access scheduling. ACM SIGARCH Computer Architecture News, 28(2):128–
138, 2000.

[70] Nikolay Sakharnykh. Everything you need to know about Unified Mem-
ory. http://on-demand.gputechconf.com/gtc/2018/presentation/

s8430-everything-you-need-to-know-about-unified-memory.pdf. Accessed
Apr 04, 2019.

[71] Nikolay Sakharnykh. Unified memory on pascal and volta.
http://on-demand.gputechconf.com/gtc/2017/presentation/

s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf. Ac-
cessed Apr 04, 2019.

[72] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. Feedback di-
rected prefetching: Improving the performance and bandwidth-efficiency of hardware
prefetchers. In 2007 IEEE 13th International Symposium on High Performance Com-
puter Architecture, pages 63–74. IEEE, 2007.

[73] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised benchmark
suite for scientific and commercial throughput computing. Center for Reliable and
High-Performance Computing, 127, 2012.

107

http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf


[74] Yifan Sun, Trinayan Baruah, Saiful A Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, et al. Mg-
pusim: enabling multi-gpu performance modeling and optimization. In Proceedings of
the 46th International Symposium on Computer Architecture, pages 197–209, 2019.

[75] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: sharing-aware
scheduling on smp-cmp-smt multiprocessors. In ACM SIGOPS Operating Systems
Review, pages 47–58. ACM, 2007.

[76] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and Mateo
Valero. Enabling preemptive multiprogramming on gpus. ACM SIGARCH Computer
Architecture News, 42(3):193–204, 2014.

[77] TOP500.org. Top500 November 2019. https://www.top500.org/lists/2019/11/,
2019.

[78] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2sim: a simulation framework for cpu-gpu computing. In 2012 21st International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages 335–
344. IEEE, 2012.

[79] University of Tennesse. HPC Challenge Benchmark. https://icl.utk.edu/hpcc/,
2012.

[80] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating system
support for improving data locality on cc-numa compute servers. In ACM Sigplan
Notices, pages 279–289. ACM, 1996.

[81] Bin Wang, Bo Wu, Dong Li, Xipeng Shen, Weikuan Yu, Yizheng Jiao, and Jeffrey S
Vetter. Exploring hybrid memory for gpu energy efficiency through software-hardware
co-design. In Proceedings of the 22nd international conference on Parallel architectures
and compilation techniques, pages 93–102. IEEE Press, 2013.

[82] Guibin Wang, YiSong Lin, and Wei Yi. Kernel fusion: An effective method for
better power efficiency on multithreaded gpu. In 2010 IEEE/ACM Int’l Conference
on Green Computing and Communications & Int’l Conference on Cyber, Physical and
Social Computing, pages 344–350. IEEE, 2010.

[83] Haonan Wang, Fan Luo, Mohamed Ibrahim, Onur Kayiran, and Adwait Jog. Effi-
cient and fair multi-programming in gpus via effective bandwidth management. In

108

https://www.top500.org/lists/2019/11/
https://icl.utk.edu/hpcc/


2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 247–258. IEEE, 2018.

[84] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi
Guo. Simultaneous multikernel: Fine-grained sharing of gpus. IEEE Computer Ar-
chitecture Letters, 15(2):113–116, 2015.

[85] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi
Guo. Simultaneous multikernel gpu: Multi-tasking throughput processors via fine-
grained sharing. In 2016 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 358–369. IEEE, 2016.

[86] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi
Guo. Quality of service support for fine-grained sharing on gpus. In Proceedings of
the 44th Annual International Symposium on Computer Architecture, pages 269–281,
2017.

[87] Kenneth M Wilson and Bob B Aglietti. Dynamic page placement to improve locality in
cc-numa multiprocessors for tpc-c. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing, pages 33–33. ACM, 2001.

[88] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. Enabling and ex-
ploiting flexible task assignment on gpu through sm-centric program transformations.
In Proceedings of the 29th ACM on International Conference on Supercomputing,
pages 119–130, 2015.

[89] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram.
Warped-slicer: efficient intra-sm slicing through dynamic resource partitioning for
gpu multiprogramming. In 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pages 230–242. IEEE, 2016.

[90] Qi Yu, Bruce Childers, Libo Huang, Cheng Qian, Hui Guo, and Zhiying Wang. Coor-
dinated page prefetch and eviction for memory oversubscription management in gpus.
In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 472–482. IEEE, 2020.

[91] Qi Yu, Bruce Childers, Libo Huang, Cheng Qian, and Zhiying Wang. Hpe: Hi-
erarchical page eviction policy for unified memory in gpus. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2019.

109



[92] Qi Yu, Bruce Childers, Libo Huang, Cheng Qian, and Zhiying Wang. A quantitative
evaluation of unified memory in gpus. The Journal of Supercomputing, pages 1–28,
2019.

[93] Jishen Zhao, Guangyu Sun, Gabriel H Loh, and Yuan Xie. Optimizing gpu energy
efficiency with 3d die-stacking graphics memory and reconfigurable memory interface.
ACM Transactions on Architecture and Code Optimization (TACO), 10(4):24, 2013.

[94] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephenson, and Stephen W
Keckler. Towards high performance paged memory for gpus. In 2016 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA), pages
345–357. IEEE, 2016.

[95] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In ACM Sigplan Notices,
pages 129–142. ACM, 2010.

[96] William K Zuravleff and Timothy Robinson. Controller for a synchronous dram that
maximizes throughput by allowing memory requests and commands to be issued out
of order, May 13 1997. US Patent 5,630,096.

110


	Title Page
	Committee Membership Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	1. Full-benchmarks with their memory access pattern.
	2. Configuration parameters of the simulated system.

	List of Figures
	1. Sensitivity of workloads to the percentage of memory oversubscription (performed on real hardware). 
	2. The effect of computation resources and interconnect bandwidth on unified memory applications.
	(a). On end-to-end execution time
	(b). On average delay suffered by CPU-GPU interconnect traffic
	3. Overview of the thesis work. 
	4. Demonstration of the tree-based prefetcher on 512 KB memory chunk for two different page access patterns. 
	5. Delayed page migration upon exceeding a static access threshold or exclusive data migration on write. 
	6. Transfer rate improves with transfer size as observed on real hardware with PCI-e 3.0 16x interconnect.
	7. Comparing kernel execution time with different software prefetching schemes against no prefetching. 
	8. Performance validation of UVMSmart against real hardware.
	(a). Execution Time
	(b). Host-to-device Memory Copy
	9. Demonstration of tree-based pre-eviction on 512 KB memory chunk. 
	10. Comparing the effect of different eviction policies on kernel execution time. Tree-based prefetcher is active before reaching device memory capacity. Upon over-subscription, software prefetcher is disabled and 4KB pages are migrated on-demand. Working set is 110% of the device memory size. 
	11. Comparing total number of pages evicted for different eviction schemes. 
	12. Comparing the effect of different combinations of eviction policies and software prefetcher after oversubscription on kernel execution time. Tree-based prefetcher is active before reaching device memory capacity. Working set is 110% of the device memory size. 
	13. Page access pattern of nw benchmark without eviction.
	(a). Iteration 60
	(b). Iteration 70
	14. Sensitivity of combinations of tree-based prefetcher and pre-eviction to the percentage of memory over-subscription by the working sets. 
	15. Effect of reserving a certain percentage of pages of LRU list from eviction on kernel runtime. Working set is 110% of the device memory size. Tree-based prefetcher is active before reaching device memory capacity.
	16. Comparing the performance of tree-based pre-eviction against 2MB large page eviction.
	17. Comparing the effect of tree-based pre-eviction and 2MB large page eviction on the total number of pages thrashed.
	18. Visualizing page access distribution detailing type of access and total number of accesses per page per managed allocation for fdtd and sssp.
	(a). fdtd
	(b). sssp
	19. Visualizing page access patterns of a regular (fdtd) and an irregular (sssp) application over two iterations. (a), and (b) show access pattern of fdtd in iterations 2, and 4 respectively. (c), and (d) show access pattern of sssp in iterations 3, and 5 respectively.
	(a). fdtd - Iteration 2
	(b). fdtd - Iteration 4
	(c). sssp - Iteration 3
	(d). sssp - Iteration 5
	20. Sensitivity of workloads to the static access counter threshold for delayed migration. 
	21. Comparing the impact of dynamic access counter based adaptive scheme on execution time against the baseline case of first-touch migration and static access counter threshold based delayed migration scheme under no memory oversubscription. 
	22. Comparing the impact of dynamic access counter based adaptive scheme on execution time against the baseline case of first-touch migration and static access counter threshold based delayed migration schemes. 
	23. Comparing the impact of dynamic access counter based adaptive scheme on memory thrashing against the baseline case of first-touch migration and static access counter threshold based delayed migration schemes. 
	24. Sensitivity of workloads to the multiplicative migration penalty. 
	25. Performance variation between LRU and LFU page replacement strategies.
	26. Comparing performance of schemes where (i) 2MB blocks are always written back and (ii) only dirty pages are written back and clean pages are invalidated directly.
	27. An example of the hierarchical data-structure keeping track of block migration addresses used by detection engine.
	28. Deterministic Finite Automaton (DFA) for managed allocations demonstrating the transition of migration states.
	29. Performance of smart adaptive framework compared to unified runtime
	(a). Performance Speedup
	(b). Reduction in Thrashing
	30. Categorizing workloads based on memory access pattern, arithmetic intensity, and number of DMA transactions per unit memory.
	31. Effect of application consolidation on system throughput. FR-FCFS is the default scheduling policy.
	(a). Effect on performance slowdown
	(b). Effect of instruction throughput
	32. Different performance slowdowns experienced when different interconnect scheduling schemes are employed.
	(a). Effect of different DMA scheduling
	(b). Effect of warp scheduling and in turn order of interrupts (DMA scheduling policy is FR-FCFS)
	33. Unwanted page eviction and in turn performance slowdown by application consolidation under device-memory oversubscription. App-1 and App-2 are respectively high- and low-priority application chosen by adaptive host-to-device interconnect scheduler.
	(a). Effect on performance slowdown
	(b). Effect of page eviction
	34. The effect of adaptive CPU-GPU interconnect scheduling on weighted speedup for 17 representative workloads.
	35. The summary of instruction throughput from adaptive CPU-GPU interconnect scheduling for all 45 workloads.
	36. The summary of harmonic speedup from adaptive CPU-GPU interconnect scheduling for all 45 workloads.
	37. The effect of priority preserving device-to-host CPU-GPU interconnect provisioning on weighted speedup and page eviction for 6 representative workloads.
	(a). Effect on Performance Speedup
	(b). Effect on percentage of memory being evicted

	1.0 Introduction
	1.1 Problem Description
	1.2 Thesis Statement
	1.3 Contributions
	1.4 Organization

	2.0 Background and Related Work
	2.1 Baseline Architecture
	2.2 Unified Memory
	2.2.1 Fault-driven Migration and On-demand Allocation
	2.2.2 Tree-based Software (TBNp) Prefetcher
	2.2.3 Page Replacement
	2.2.4 Remote Zero-copy Access and Delayed Migration

	2.3 GPU Multi-tenancy
	2.3.1 GPU Sharing Mechanism
	2.3.2 CPU-GPU Interconnect Provisioning

	2.4 Related Work
	2.4.1 Prefetching and Page Replacement in Unified Memory
	2.4.2 Page Migration and Pinning
	2.4.3 Unified Framework
	2.4.4 Execution of Concurrent Applications on GPU
	2.4.5 GPU Memory Scheduling
	2.4.6 GPU Simulators
	2.4.7 GPGPU Workloads


	3.0 UVMSmart: Simulation Framework and Unified Memory Benchmarks
	3.1 UVMSmart: Design and Implementation
	3.1.1 Design Requirements
	3.1.2 Micro-architecture Modeling
	3.1.3 Timing Model
	3.1.4 Runtime Modeling
	3.1.5 Unified Memory API Modeling
	3.1.6 Support for Concurrent Execution

	3.2 Application Suite
	3.2.1 Micro-benchmarks
	3.2.2 Unified Memory Benchmarks
	3.2.3 Unified Memory Concurrent Application Framework

	3.3 Configuration and Validation
	3.3.1 Simulation Configuration
	3.3.2 Containerization
	3.3.3 Validation


	4.0 Adaptive Page Replacement
	4.1 Pre-eviction Policies Adaptive to Prefetchers
	4.1.1 Sequential-local (SLe) Pre-eviction
	4.1.2 Tree-based Neighborhood (TBNe) Pre-eviction
	4.1.3 Specific Design Choices

	4.2 Experimental Evaluation
	4.2.1 Pre-eviction Policies in Isolation
	4.2.2 Combinations of Pre-eviction Policy and Software Prefetcher
	4.2.3 Memory Over-subscription Sensitivity
	4.2.4 Reserving Percentage of LRU Page List from Eviction
	4.2.5 2MB Large Page Eviction

	4.3 Conclusions

	5.0 Adaptive Page Migration and Pinning
	5.1 Motivation
	5.1.1 Workload Characterization
	5.1.2 High-level Observations

	5.2 Dynamic Access counter Threshold Based Delayed Data Migration
	5.2.1 Dynamic Access Counter Threshold
	5.2.2 Access Counter Based Page Replacement
	5.2.3 Implementation Details

	5.3 Experimental Evaluation
	5.3.1 Sensitivity to Static Migration Threshold
	5.3.2 The Case of No Oversubscription
	5.3.3 The Case of Oversubscription
	5.3.4 Sensitivity to Multiplicative Penalty
	5.3.5 Access Counter Based Eviction
	5.3.6 Invalidating Clean Pages

	5.4 Conclusion

	6.0 An Adaptive Unified Framework
	6.1 Motivation
	6.2 The Unified Framework
	6.2.1 Memory Migration Pattern
	6.2.2 Pattern Detection
	6.2.3 Adaptive Memory Management

	6.3 Experimental Evaluation
	6.4 Conclusion

	7.0 Adaptive Interconnect Provisioning for Multi-tenant Workloads
	7.1 Motivation
	7.1.1 Workload Characterization
	7.1.2 Application Interference
	7.1.3 Limitations of Existing Scheduling Schemes
	7.1.4 Interference under Device Memory Oversubscription
	7.1.5 Key Observations

	7.2 Application-aware CPU-GPU Interconnect Provisioning
	7.2.1 Performance Model
	7.2.2 Mechanism and Implementation Details

	7.3 Experimental Evaluation
	7.3.1 Evaluation Metrics
	7.3.2 Effect on System Throughput
	7.3.3 Effect on Fairness
	7.3.4 The Case of Oversubscription

	7.4 Conclusion

	8.0 Concluding Remarks
	8.1 Summary
	8.2 Future Direction

	Bibliography

