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Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy

and it is the most common fatal genetic disorder diagnosed in childhood. DMD almost al-

ways affects boys as it results from a genetic mutation in the X chromosome that programs

proteins critical to muscle integrity. DMD affects approximately 1 in every 3,500 to 6000

male births in the US (about 20,000 new cases each year worldwide). Typically, boys with

DMD lose their ability to walk between the ages of ten and fourteen. By the late teenage

years as the muscles deteriorate, significant loss of strength in the upper body results in loss

of arm function and independence in everyday tasks. In this study we investigate the usage

of an Actively Actuated Device called KINOVA-O540 as an assistive technology by such in-

dividuals during activities of daily living. This study compared the usage of KINOVA-O540

and no-KINOVA-O540 usage through the participation of individuals with DMD during

Performance of Upper Limb (PUL) tests. PUL tests represent the activities of daily liv-

ing. Specifically, three dimensional actigraphy data (accelerometer data) were used for this

comparison. We have developed a feature selection and support vector machine (SVM)-

based classification algorithm to identify when the KINOVA-O540 device is used based on

the recorded actigraphy. Moreover, we showed how the selected features that separate the

KINOVA-O540 usage from other data change as the success rate changes in PUL tasks. As

the features that separate KINOVA-O540 from no-KINOVA-O540 usage are not optimized

to identify task success, we then modified the feature selection and classification algorithm

to separate the success from no-success in PUL tasks based on the recorded actigraphy. We

showed that such an algorithm based on actigraphy is more successful in classifying between

success and no-success when KINOVA-O540 device is used. This is a significant outcome as

it shows that KINOVA-O540 can be used together with actigraphy to identify how successful

DMD patients are during activities of daily living.
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1.0 Introduction

1.1 What is DMD

Duchenne Muscular Dystrophy (DMD) is the most common form of muscular dystrophy

in early childhood [24]. It is a genetic disorder linked to the X-chromosome, thus it mainly

affects males, with a frequency of 1 in 3600-6000 live male births[7] [10]. This mutation affects

the dystrophin gene (essentially deletions), a gene that encodes the dystrophin protein that

supports muscle fiber strength and helps prevent muscle fiber injury, and whose absence leads

to muscle loss and deterioration including skeletal, cardiac, and pulmonary muscles causing

the loss of the ability to walk by the age of 13 years [19] [8] [14]. The dystrophin protein

exists also in the brain, and its absence might lead to non-progressive cognitive dysfunction

impacting digit span, story recall, and comprehension[28] [13]. This disease is still currently

incurable, therefore most of the effort is is aimed to treat the symptoms. For example by

the use of corticosteroids to reduce the deterioration of muscle strength and function[21],

and psychosocial care to provide coping mechanisms to live with such disease, and clinical

management like rehabilitative interventions and the use of assistive devices (wheelchair,

arm supports, exoskeletons etc.) [8] [4].

1.2 Assistive Devices

In the late stages of DMD, patients start to lose ambulation as their muscles deteriorate.

Therefore, they rely on the use of Assistive Devices(ADs) to perform essential daily life

activities. The use of ADs for lower limbs to help with ambulation like electric wheelchairs

are established and reliable, however development of ADs for upper limbs are a lot more

difficult [11], but they are becoming progressively important as life expectancy for DMD

patients is inclining [27] [16] (patients living up to 30 and 40 years old) and such devices can

significantly improve their quality of life [11].
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1.3 Dynamic Arm Supports

In this study we’ll be focusing on a dynamic arm support device which is an upper

limb AD. Prior research on dynamic arm supports is limited. However studies have shown

that their usage was essential for many daily life activities [32] [9]. Dynamic arm support

devices can be categorized in 4 main categories [33]: (i) non-actuated devices, which are

devices that are operated by the user’s energy, that don’t store potential energy nor need

external energy input to function (ii) passively actuated devices that store potential energy

allowing less energy input from the user and they don’t need an external source of energy to

operate, (iii) actively actuated devices, powered by electricity and also can store potential

energy thus require minimal energy input from the user, (iv) or devices using the functional

electrical stimulation principle. These devices can be further divided into (a) exoskeletons,

which are devices that align with the users joint, following their movements, thus allowing

better control of each joint, (b) end-effectors, which are devices that are attached to a single

point on the user’s body, making the joints follow a movement without controlling each joint

individually. For this work, we’ll be using an actively actuated end-effector device called

KINOVO O540 (that will be referenced as KINOVO in this thesis)

1.4 Actigraphy

Measuring the performance and effectiveness of dynamic arm support is not standardized

and also lacking [2]. And in the literature, most of the assessment found was done through

questionnaires or interviews [32] or various clinical tests like Motricity index test to assess

upper limb and Fugl-Meyer Assessment to assess motor functioning etc. for patients with

cerebral palsy, multiple sclerosis, and stroke. [2] Actigraphy is a way to measure human

activity non-invasively , through the use of an accelerometer (typically triaxial accelerom-

eters). Therefore, the use of an actigraph allows us to get quantifiable descriptions of the

difference between movements through the recorded accelerometer data. Many methods in-

volving the use of actigraphy have been developed to assess the performance of upper limb
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activity, gait, cadence, and ambulatory activity for patients with impaired mobility and

neurological disease, where significant correlations between accelerometry and the studied

conditions’ clinical tests have been found [3] [29] [12] [26]. And recently, the use of actig-

raphy in tandem with DMD population is gaining traction, which is used for example to

quantify energy expenditure [17] [20] [25], and one study was able to show the sensitivity of

accelerometry to the differences between daily life activities for the DMD population and a

correlation between accelerometry and the current standards for the evaluation of upper ex-

tremity functions [31], thus showing its potential as an assessment tool for studies concerning

DMD. However, its use is still limited for the study of DMD. Moreover, many studies have

successfully shown that it is possible to use accelerometry in order to classify between differ-

ent kinds of body movements and postures using various approaches and techniques, starting

from basic threshold-based techniques to more advanced machine learning techniques like

random forests, Naive Bayes, neural networks, decision trees coupled with AdaBoost, Sup-

port Vector Machines etc... [22] [15] [30] [5]. This gives us the necessary motivation of using

machine learning techniques (here Support Vector Machines) combined with actigraphy for

this study.

1.5 Contribution of This Study

Our study offers a novel way to explore the implications and benefits of the use of

actively actuated devices, through linking actigraphy data with the use of KINOVA-O540, a

dynamic arm support device. Participants were asked to perform a number of movements of

the standardized Performance of Upper Limb test (PUL test) [23] while using and not using

KINOVA-O540, and their movements were captured by an actigraph (The ActiGraph GT9X

Link) under the supervision of clinical experts or remotely. Moreover, a score indicating

success or failure was assigned to each movement for each participant. From the actigraphy

data, multiple statistical and inherent signal features were extracted. By using Support

Vector Machines (SVM) and a feature selection algorithm (Forward Sequential Selection), we

analyzed the separability between the usage of KINOVA-O540 and no KINOVA-O540 usage,

3



and then we tried to understand the relationship between the features that were chosen as

the best features permitting that separation and the evolution of movements success while

using KINOVA-O540 and not using KINOVA-O540 through their values. Furthermore,

we analyzed the separability between the successful movements and the unsuccessful ones

and compared the separability of successful movements when both KINOVA-O540 and No-

KINOVA-O540 actigraphy data are considered, and when only KINOVA-O540 actigraphy

data is considered, and when only no-KINOVA-O540 actigraphy data is considered. Through

this analysis, we aim to provide all stakeholders, including clinicians, manufacturers and

researchers with a clearer insight about the use of the device.
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2.0 Participants & Methods

2.1 Participants

Local and national disability-related resources (e.g., Muscular Dystrophy Assocoiation,

Duchene Connect Registry, and University of Pittsburgh Medical Center’s Children’s Hospi-

tal) were used for identification and recruitment of participants. Inclusion criteria included:

(i) participants need to be at least 14 years of age, (ii) participants have a diagnosis of

DMD, (iii) participants use a power wheelchair for mobility, (iv) no medical or psycholog-

ical diagnosis unrelated to DMD that would impact their participation in daily activities

or routines. Data are collected through a procedure that is approved by the University of

Pittsburgh’s Institutional Review Board (IRB # STUDY19100339)

2.2 Data Collection & Materials

2.2.1 Data Collection Procedure

The design of this study was the following: (i) A first home visit, where the participants

were first asked to perform the Performance of the Upper Limb test (PUL test) while seated

on their wheelchair and wearing the wrist-worn actigraph (ActiGraph GT9X Link) on their

dominant arm without the KINOVA-O540 dynamic arm support. The session was video

recorded for labeling and score assessment, and it will be used as our No KINOVA-O540

usage data. After finishing the PUL test without the device, the KINOVA-O540 was installed

on the wheelchair to be used for the same arm, the objective here was simply testing and

training using the device and its remote control while doing the PUL test. (ii) A month-long

trial and experimenting with the device, where the participants were encouraged to use it for

daily life tasks to gain more experience with the device. Instructions were given to caregivers

on how to temporarily remove and re-install the device in case of space limitations or travel.
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(iii) After one month of trial, a second home visit was conducted to reperform the PUL test

while using KINOVA-O540, with the actigraph on and while video recording. This is the

data used as our KINOVA-O540 usage data.

2.2.2 KINOVA-O540 - An Actively Actuated Device

The KINOVA R© Dynamic arm support O540, manufactured by KINOVA inc, was used

throughout this study. This device is intended to be mounted on a power wheelchair. The

device is designed to compensate for the weight of the arm so that the user can move his

arm easily. However, it does not take over any arm function and the user must make the

movements by himself (it is not a robotic arm). The user rests his arm on a brace. Using a

handheld remote, the user can (i) control the amount of compensation force, (ii) control the

tilt angle of the device to adjust working range (iii) use a brake command to lock the device

movement horizontally or vertically (iv) use a rotation brake command to lock rotational

movements of the main axis.

2.2.3 Performance of the Upper Limb Test

The PUL test [23] is a test designed to assess the motor performance of the upper limb

for DMD patients. The test consists of 22 movements, divided into 3 levels aiming to capture

the progression of weakness in DMD. These three levels are:

• High level from the proximal shoulder girdle

• Mid level at the elbow flexors and extensors

• Distant level at the wrist and hand

Each movement was assigned a 0 or 1 score, depending on if the participant finished the

movement successfully or not.

2.2.4 Actigraphy

While performing the PUL test, each participant was asked to wear the ActiGraph GT9X

Link (ActiGraph Corp, LLC, Pensacola, FL) on the wrist of the dominant arm, for which
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the KINOVA-O540 was used. The actiGraph GT9X Link features a triaxial accelerometer,

a magnetometer, and a gyroscope. Only the accelerometer data was used as previously

discussed. The vector magnitude of the triaxial data was computed. The data was collected

at a frequency of 1 Hz.

2.3 Data Analysis

Not all participants were able to complete every task of the 22 movements of the PUL test

due to the different range of abilities and depending on the progression of the disease. The

clinical researchers hypothesized that most of the tasks that involve shoulder flexion wouldn’t

be completed without the KINOVA-O540. Therefore, each PUL task was analyzed separately

and only attempted tasks were used for the analysis. A score was assessed individually for

each of them instead of giving a composite score.

2.3.1 Preprocessing and Labeling

The videos recorded had frame rates of 30fps, and the actigraphy data had a frequency

of 1 Hz. In order to sync the video with the vector magnitude of the triaxial accelerometer

accurately, a MATLAB tool was designed: it has three controls, pause, advance, and rewind

(figure 1) Each PUL task was labeled individually. Two other clinical research assistant

labeled the data independently. Then we checked for discrepancies and an agreement relating

to the start and the end of each movement was reached before using the data for further

analysis.
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Figure 1: Syncing actigraphy and video for labeling

2.3.2 Movement Categorization

Each PUL task’s actigraphy data from all the participants were given two labels (1) a

label indicating either it was done using KINOVA-O540 or without KINOVA-O540, (2) a

label indicating either it was successful(Score = 1) or not (Score = 0). Similar PUL tasks were

grouped by three clinical experts in muscle function and assessment into seven movement

categories as indicated in table 6 in appendix A. All samples were counted following their

label (see Appendix B table 7). Some movements have unbalanced sample sizes of KINOVA-

O540 usage. For example, movement B has more samples using KINOVA-O540, this is

because many participants weren’t able to attempt movements that require shoulder flexion,

like raising the arm to shoulder height or stacking cans without the assistance of the device.

Moreover, some movements have unbalanced success/failure samples like movement F, as
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these require fine motor skills, that many of the participants weren’t lacking, thus most

attempts were successful. Also, some categories were lacking in samples for some or both

labels. Therefore, only movement groupings D and E were used for all the analysis conducted

in this study, as they had a balanced and a sufficient number of samples for both labels:

device usage and success labels. Starting from here, movements D and E will be referenced

to as category 1 and 2 respectively.

2.3.3 Formulating the Classification Problem

Using actigraphy data, we formulate two classification problems for: (i) identification

of KINOVA-O540 usage, and (ii) separation between task success and failure. For both

classification, we utilize support vector machine (SVM) and apply sequential forward feature

selection. Both classifier will be created for each movement category. We then investigate

how the changes in the Identified salient features for both classification problems affect the

task success rate. We then compare KINOVA-O540 usage with no-KINOVA-O540 usage in

terms of identification of task success when actigraphy is used. Figure 2 shows a summary of

the study’s approach. In the following sections, a description of the features extracted from

our signal is presented, then we proceed with explaining SVM classifiers, sequential feature

selection and success rate.

2.3.4 Feature Definitions

n order to use the above mentioned SVM classifiers, we extract the following features

from the vector magnitude of the triaxial actigraphy data for each task: (i) Mean value across

time, (ii) standard deviation across time, (iii) minimum value across time, (iv) maximum

value across time, (v) median value across time, (vi) duration of the task completion(elapsed

time), (vii) entropy, (viii) signal energy and (iv) normalized signal energy. Computation

of the statistical features and task duration are trivial; therefore, below only the details of

how the entropy, signal energy and normalized signal energy are computed.

9



Figure 2: Summary of the study’s approach
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Entropy [18] [6] from an information theory sense, is a measurement of the amount of

information/uncertainty in a signal, providing us a measure of the randomness of the signal.

In order to compute it. First a distribution of the signal values P (B) is obtained to get the

frequency of occurrence (the probabilities) for each value of the signal, with B a random

variable representing the the vector magnitude in the recorded actigraphy signal. Here we

identify P (B) through the computation of the normalized histogram of the vector magnitude

values of the actigraphy signal for each task. Let bi represent a bin value of the computed

histogram, and PB(bi) its probability, then entropy is defined as:

H(B) = −
N∑
i=1

PB(bi)log2 (PB(bi)) (2.1)

Where N is the number of bins in the histogram. With IB(bi) = −log2 (PB(bi)) know

as self-information. We can observe that the ”Entropy” is defined as the mean value of

self-information. From the chosen of the self-information function, we observe that smaller

probability P (bi) corresponds to higher self-information value, which means the more sur-

prising/rare the value was. While a bigger probability yields a lower entropy value meaning

the that the concerned value is highly expected and unsurprising. Therefore, if the normal-

ized histogram of the vector magnitude values is closer to a uniform distribution, a higher

entropy value is obtained. Because, we can see different values in the signal appearing with

low rates, meaning lots of information is being captured. A low entropy means the values

don’t vary much in the signal showing how little unexpected information the signal contains.

In our recorded actigraphy signals, low entropy corresponds to lower uncertainty with pre-

dictable task movements, while high entropy can be observed for unpredictable/uncontrolled

movements which means lots of different accelerometer values were recorded to achieve a

movement task. So a high entropy value for the actigraphy sample of a certain movement

could be interpreted as that the concerned movement was abrupt and uncontrolled, while a

low entropy value means a more controlled movement was captured.
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Signal energy: Let the vector magnitude of the recorded signal be is x(i), with i = 1,

2, ..., n. Where ’n’ is the length of the signal then the energy (E) is defined as:

E =
n∑
i=1

|x(i)|2 (2.2)

Normalized signal energy: Similarly, if the signal is x(i) with i = 1, 2, ..., n, then the

normalized energy is defined as:

En =
1

n

n∑
i=1

|x(i)|2 (2.3)

Similar to entropy, we expect higher energy in the actigraphy that correspond to more

uncontrolled movements. Different than the signal energy, normalized energy considers also

the task length.

2.3.5 Support Vector Machine Classifier (SVM)

SVM (support vector machine) is a supervised machine learning model for binary or

multi-class classification. Provided a set of features associated with labeled data, the goal is

to find the best hyperplane separating 2 categories from each other. This hyper-plane is the

one that maximizes the margin between these 2 classes.

2.3.5.1 Linearly Separable Data - Hard Margin Here we start by a simple assump-

tion that the two classes don’t overlap and are linearly separable. This assumption won’t

work for all practical situations. Further modifications will be added and explained later in

this section for the non linearly separable cases.

In our training data we have n samples, with features xi ∈ Rd (d = number of features), and

labels yi = ±1 (indicating samples class: +1 for one category and -1 for the other), with

i = 1, 2, ..., n, the hyper-plane is defined by the following affine function (visual representa-

tion in figure 3 ):

f(x, β, β0) = β · x+ β0 = 0 with β ∈ Rd and β0 ∈ R (2.4)
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Figure 3: Separating hyperplane with support vectors

Our goal is to get:

f(xi) = β · x+ β0 ≥ 1, when yi = 1

f(xi) = β · x+ β0 ≤ −1, when yi = −1

Giving: yif(xi) ≥ 1 for i = 1, 2, ..., n

(2.5)

The distance l between a sample and the hyper-plane is l = f(x)
‖β‖ . From our assumption

that the training data is linearly separable, this means that for some samples, from equation

2.4 we will get f(x) = ±1 these samples are called support vectors (Figure 3), they are the

closest samples to the hyper-plane from both categories, and they are the ones that decide

the margin between the two classes, thus hyper-plane. The distance between the support

vectors and the hyper-plane is l = 1
‖β‖ which needs to be maximized. Thus we create the
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following quadratic convex optimization problem whose primal formulation is:

min
‖β‖2

2

subject to: yi(β · xi + β0) ≥ 1, for i = 1, 2, ..., n

(2.6)

In order to solve this problem, it’s easier to solve its Lagrangian dual problem. The primal’s

Lagrangian is:

L(β, β0, α) =
1

2
β · β −

n∑
i=1

αi [yi(β · xi − 1)] (2.7)

By imposing stationarity:

∂L

∂β
= β −

n∑
i=1

yiαixi = 0

∂L

∂β0
=

n∑
i=1

yiαi = 0

Thus obtaining:

β =
n∑
i=1

yiαixi (2.8)

n∑
i=1

yiαi = 0 (2.9)

and from KKT conditions we know that:

αi [yi(β · xi + β0)− 1] = 0 (2.10)

αi ≥ 0 (2.11)

Then we substitute in the Lagrangian (2.7) to obtain the following dual optimization prob-

lem:

max
n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjxi · xj

s.t. αi ≥ 0,

n∑
i=1

yiαi = 0, i = 1, ..., n

(2.12)
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We then solve this maximization problem using a quadratic solver to obtain the values of αi,

to get the optimal value of β using (2.8). Then we can get the optimal β0 from the primal

constraints

β0 = −maxyi=−1(β · xi) + minyi=1(β · xi)
2

(2.13)

From the KKT conditions (2.10) (2.11), and knowing that the support vectors satisfy:

yi(β · xi + β0) − 1 = 0, this means that the support vectors are the only active constraints

in the Lagrangian formulation, meaning that the corresponding αi satisfy αi ≥ 0. While the

alpha values of the rest of the points need to be zero. Hence showing that the support vectors

are the only points that decide the separating hyperplane. Thus the optimal hyperplane can

be expressed using the support vectors and the optimal values of β and β0:

f(x, β, β0) = β · x+ β0

=
n∑
i=1

yiαixi · x+ β0

=
∑

i∈ support vectors

yiαixi · x+ β0

(2.14)

In order to use the obtained hyperplane for the classification of new unseen data, from our

previously defined constraints on the two classes (2.5), f(x) should be either positive or

negative depending on which side of the hyperplane a sample resides. Thus we can use the

sign of f(x) as a decision function D(x) for classification:

D (x) = sign (f (x)) (2.15)
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Figure 4: Finding a good nonlinear mapping

2.3.5.2 Kernel Trick In some cases, the data are not linearly separable, meaning that it

can’t be separated using an affine hyperplane. For example, imagine a 3-dimensional feature

space, the data of one class can be clustered inside a circle, while all the area surrounding

the circle contains the second class. In similar cases, an affine separating hyperplane (which

corresponds to a line in the previous example) won’t be compatible and a nonlinear transfor-

mation is needed. But in order to use the same approach derived for the linearly separable

data, our goal is to find a nonlinear mapping that projects our features on a space where

the data can be linearly separated as in figure 4. However, in order to achieve this, we need

to find an explicit mapping that projects our data from the original feature space X, to the

desired feature space F.

φ : X −→ F (2.16)

f(x) = β · φ(x) + β0 (2.17)

However, this explicit mapping could result in a high computational cost and might be hard

to find. Luckily, if we look again at equation (2.12), we can see that a sample ’x’ is used
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indirectly through an inner product

f(x) =
n∑
i=1

yiαi 〈φ(xi) · φ(x)〉+ β0 (2.18)

This means that we only need to know the inner product function associated with the target

space (known as Kernel):

K(x, xi) = 〈φ(x) · φ(xi)〉 (2.19)

for which the number of computations is not necessarily proportional to the number of

dimensions in the desired feature space and allows us to map the data implicitly to the

desired feature space while avoiding computational problems associated with finding the

feature map φ , and reducing the computational cost.

f(x) =
n∑
i=1

yiαiK(x, xi) + β0 (2.20)

For this study, the Kernel that was used is the Radial Basis function(RBF) also know as

Gaussian kernel.

K(x, xi) = exp(−‖x− xi‖
2

2σ2
) (2.21)

with σ a free parameter that could be used for scaling the feature space. This approach

improves the degrees of freedom. Nonetheless, the higher the feature map’s dimensions

and the more complex it is, this will result in a high number of support vectors which will

create overfitting and generalization problems (the worst case is when all the data points are

support vectors). To remedy that and account for eventual noisy data, we can improve our

optimization function by leaving some room for intentional misclassification, thus improving

our model generalization capability.
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2.3.5.3 Soft Margin SVM As we discussed previously, in most cases, the data might

not be separable because of overlapping. And using a very complex feature map might result

in overfitting. So, we can use a soft margin to separate many but not all points into their

correct class. One approach is to introduce a penalty parameter C and slack variables ξi:

min
‖β‖2

2
+ C

n∑
i=1

ξi

s.t. yi(β · xi + β0) ≥ 1− ξi,

ξi ≥ 0, for i = 1, 2, ..., n

(2.22)

The new Lagrangian is:

L(β, β0, ξ, µ, α) =
‖β‖2

2
+ C

n∑
i=1

ξi −
n∑
i=1

µiξi −
n∑
i=1

αi (yi(β · xi + β0)− 1 + ξi)

with C, ξ, α, µ ∈ R and αi, µi ≥ 0

(2.23)

Stationarity gives:

β =
n∑
i=1

αiyixi (2.24)

n∑
i=1

αiyi = 0 (2.25)

And KKT conditions give:

αi = C − µi (2.26)

From (2.23), (2.24) and (2.26) we get:

0 ≤ αi ≤ C (2.27)

The penalty C is also called box constraint as it limits the value of αi.

By substituting the values of the main variables in the primal formulation we get the following

dual of the original optimization function:

max
n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjxi · xj

s.t. 0 ≤ αi ≤ C,

n∑
i=1

yiαi = 0, i = 1, ..., n

(2.28)
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If we want to use the Kernel trick we just replace the inner product:

max
n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjK(xi, xj)

s.t. 0 ≤ αi ≤ C,

n∑
i=1

yiαi = 0, i = 1, ..., n

(2.29)

We can create even more degrees by giving giving different box constraint values for each class

Ci∈certain class. This extra degree of freedom is very useful if the training data is not balanced

as it could allow us to give different weights for each class, so we can give the class of the

data that has a lower number of samples higher weights thus sometimes improving prediction

accuracy. This will be used in some of this study’s results as some of the movements have

unbalanced samples as mentioned previously.

2.3.6 Sequential Feature Selection

From all the features defined previously, features were used for the SVM classification.

For each classifier created for each movement task, only a subset of the features was selected

using a sequential feature selection algorithm, which is a family of greedy search algorithms

that aim to reduce the dimensions of the feature space from a d-dimensional space to a

lower k-dimensional space (d > k). The goal is to remove irrelevant features or noise to

reduce generalization error of the classifier model, which is the SVM model in our case. The

selected features will be further studied to analyze and how they affect the performances

of each movement task category. In this study, we are going to use Sequential Forward

Selection (SFS) of exponential complexity [1], which is a variant of sequential feature

selection algorithms. The method comprises of :

• An objective function that measure the classification error of an SVM model trained

on a candidate subset of features. The objective function used here is the misclassification

rate, which is the number of misclassified samples.
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• A sequential search algorithm which adds or removes features from a candidate

subset depending on the value of the objective function. As we are using Sequential

Forward Selection, we will start with an empty set, then we will be adding one new

feature at a time, as long as this addition reduces the misclassification rate. So, we

will start with one feature that gives the lowest misclassification rate, then we will add

second one from the rest of the set of features creating multiple candidate subsets, while

choosing the combination that gets lowest misclassification rate. We will continue adding

features one by one creating multiple candidate subsets, until there is no improvement in

the classification or until we’ve added all of them or until we have reached a predefined

maximum number k of features.

• A performance function which is the SVM classifier in our case, which will give us

a measure of the chosen features by calculating the accuracy, the sensitivity and the

specificity.

During each step of the search algorithm and for each candidate subset of features, an SVM

model is trained on the candidate subset using a 5-fold cross-validation, where the data is

divided into 5 batches, each batch will be used once as a testing set while the others are

used as training sets, which gives us 5 SVM models and 5 objective function values. The

final value used is the mean of the 5 obtained values. The cross-validation procedure for

each candidate subset is repeated 100 Monte-Carlo repetitions and the mean value of all the

computed objective function values is taken and then compared to the objective function

values of other candidate subsets that went through the same procedure, finally the subset

having the lowest objective function value is chosen. These 100 repetitions are done to

reduce any bias while creating training and testing sets ensuring the generalization of the

models created using the available features. Following feature selection, we’ll use the chosen

subset of features to train final SVM classifiers for our 2 classification problems, with results

obtained using a 5-fold cross validation, to check the performance of the SVM classifiers.
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2.3.7 Success Rate

Let fX(a) be the function representing success rate of ′X ′ which corresponds to a given

feature, xi corresponds to the value of that feature for a given sample, with i = 1, ..., n,

with ‘n’ corresponding to total number of samples of a specific studied group(e.g. only

KINOVA-O540 users), and ’a’ corresponds to a specific value of ’X’:

fX(a) =

∑
i ∈ Successful movement I(xi ≤ a)∑n

i=1 I(xi ≤ a)
(2.30)

The goal is to analyze how movement success evolves from the usage or absence of KINOVA-

O540, through the metrics defined by the chosen features.
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3.0 Results and Discussion

A total number of 12 participants participated in the KINOVA O540 dynamic arm sup-

port device trial while wearing the actigraph. Two participants did not have data for the

PUL test with the device and 1 participant did not have actigraphy data for the PUL test

without the device. Therefore in total, we have data on 9 participants using KINOVA-O540

for categories 1 & 2, 10 participants not using KINOVA-O540 for category 1 and 11 partici-

pants not using KINOVA-O540 for category 2. Below we demonstrate the results for the two

actigraphy-based classification problems: (i) KINOVA-O540 vs No-KINOVA-O540, and (ii)

Task success vs. failure in each of the two movement categories 1 & 2. The success vs. failure

is further divided in 3 categories: (a) Success vs. failure for both KINOVA-O540 and No

KINOVA-O540 actigraphy data, (b) Success vs. failure for only KINOVA-O540 actigraphy

data, (c) Success vs. failure for only No KINOVA-O540 actigraphy data.

3.1 KINOVA-O540 Vs. No-KINOVA-O540 Classification

KINOVA-O540 vs No-KINOVA-O540 classification accuracies, specificities and sensitiv-

ities are listed for both movement categories in Table 1. Table 1 also lists the subset of

features for each movement category that is most informative about this classification. We

observe from this table that for both movement categories the KINOVA-O540 usage is very

accurately separable from No-KINOVA-O540 usage through actigraphy. Moreover, for both

movement categories mean value, standard deviation and normalized energy are the most

informative features. The distribution/histograms of these feature are presented in Figure 5.

We observe in Figure 5 that for both movement categories, the distributions of the feature

values when KINOVA-O540 is used are highly separable from the distributions of the feature

values when KINOVA-O540 is not used. This separability in the histogram domain supports

the good classification performance we obtained in the separation between KINOVA-O540

and No-KINOVA-O540 cases.
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Table 1: KINOVA-O540 vs No-KINOVA-O540 classification performance and the list of

selected features. Here Sensitivity indicated the accuracy of correctly identifying O540 usage.

SVM classifier performance using

chosen features

Movement

category

Subset of features

chosen by sequential

forward selection

Accuracy Sensitivity Specificity

1
Mean, Std,

Normalized energy
87.88% 82.76% 91.89%

2
Mean, Std, Max,

Normalized energy
88.89% 91.30% 87.10%

Moreover, in Figure 5, we further observe that recording larger values for the actigraphy

features when KINOVA-O540 is not used has higher probability compared to the cases when

KINOVA-O540 is used. We believe this is because when KINOVA-O540 is used the PUL

tasks are completed through more controlled movements and with less effort the participants

were able to complete the tasks. Finally, we investigate the change in the task success rate as

a function of the values of the selected features that are most informative about KINOVA-

O540 vs No-KINOVA-O540 separation. The results of this investigation are presented in

Figure 6. In Figure 6, for both movement categories, we observe that similar success rates

are achieved for lower values of the selected features when the O540 is used which supports

our claim that when the O540 is used tasks are completed with less effort by the participants.

If these selected subsets of features are used for task success vs failure classification, the clas-

sification performance is poor. The features are informative about task success, but they

fail to identify task failure, see Table 2. This is because the features investigated here are

chosen for O540 vs No-O540 separation and they are not optimized to identify task success.

Therefore, our next results focus on the classification between task success and failure and

the corresponding feature selection.
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Figure 5: Movement 1 & 2 selected features histograms of KINOVA-O540 Vs No KINOVA-

O540 classification
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Figure 6: Movement 1 & 2 success rates of selected features from KINOVA-O540 vs. No

KINOVA-O540 classification
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Table 2: Task success vs failure classification performance when features that are most

informative about KINOVA-O540 usage are used for the classification. Sensitivity indicates

correctly identifying successful movements

SVM classifier performance using

chosen features

Movement

category

Subset of features

chosen by sequential

forward selection

Accuracy Sensitivity Specificity

1
Mean, Std,

Normalized energy
71.21% 100% 0%

2
Mean, Std, Max,

Normalized energy
69.17% 100% 0%

3.2 Success Vs. Failure Classification

Next, as described in the Methods Section, we formulated a classification problem, to

separate the actigraphy data corresponding to the task success from task failure. The classi-

fication performance results are presented in Tables 3, 4 and 5. The results in Tables 3, 4 and

5 correspond to the classification performance when both KINOVA-O540 and No-KINOVA-

O540 actigraphy data are used, when only KINOVA-O540 data are used and when only

No-KINOVA-O540 actigraphy data are used, respectively.
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Table 3: Task success vs failure classification performance and the list of selected features

when both KINOVA-O540 and No-KINOVA-O540 actigraphy data are used. Sensitivity

indicates the accuracy of correct identification of task success.

SVM classifier performance using

chosen features

Movement

category

Subset of features

chosen by sequential

forward selection

Accuracy Sensitivity Specificity

1 Normalized energy, Time 72.73% 72.34% 73.68%

2 Median 70.37% 75% 61.11%

Table 4: Task success vs failure classification performance and selected features when only

KINOVA-O540 actigraphy data are used. Sensitivity indicates the accuracy of correctly

identifying task success.

SVM classifier performance using

chosen features

Movement

category

Subset of features

chosen by sequential

forward selection

Accuracy Sensitivity Specificity

1 Entropy, Time 82.76% 88.89% 72.73%

2 Mean, Min, Median, Energy 82.61% 92.86% 66.67%
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Table 5: Task success vs failure classification performance and selected features when only

No-KINOVA-O540 actigraphy data are used. Sensitivity indicates the accuracy of correctly

identifying task success.

SVM classifier performance using

chosen features

Movement

category

Subset of features

chosen by sequential

forward selection

Accuracy Sensitivity Specificity

1
Energy, Normalized energy,

Time
45.95% 44.83% 50%

2 Std 51.61% 50% 55.56%

From Table 3, we observe that when both KINOVA and No-KINOVA-O540 data are

used for classification, the task success vs failure classification accuracies, specificities and

sensitivities are around 70% for both movement categories with lower than 70% specificity

for movement category 2. Moreover, normalized energy, median and task time are selected

as the most informative features for this classification problem. In Figure 7, we demonstrate

the task success rate as a function of the selected feature values. For movement 1, higher

success rates are achieved with lower task time and lower normalized energy when KINOVA-

O540 is used and for movement 2 when KINOVA-O540 is used with lower median higher

success rate could be achieved. For movement category 1, lower normalized energy and short

elapsed time could indicate that KINOVA-O540 users tend to complete a task successfully

while using lower amount of energy, in contrast to the higher energy for non-KINOVA-O540

users. On the other hand, for movement category 2, the recorded acceleration values for

non-KINOVA-O540 users were higher potentially indicating more abrupt and uncontrolled

movements by non-KINOVA-O540 users

28



Figure 7: Movement 1 & 2 success rates for selected features of success vs failure classification

of both KINOVA-O540 and No-KINOVA actigraphy data
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Finally, we investigate the task success vs failure classification performance when only

KINOVA-O540 or No-KINOVA-O540 actigraphy data are used and the classification results

together with the selected features are presented in Tables 4 and 5, respectively. Comparing

tables 4 and 5, we observe that when KINOVA-O540 is used task success classification

performance is significantly higher than when KINOVA-O540 is not used. Moreover, Figures

3.2 and 3.2 demonstrate the distribution of the features selected to be most informative

about task success vs failure classification. Comparing these two figures, we can identify

that score the distributions of the features for failed samples and successful samples are

more separable from each other when KINOVA-O540 is used. This higher separability for

KINOVA-O540 case also supports our classification results for which when KINOVA-O540 is

used actigraphy is more informative about task success identification. These results indicate

that when KINOVA-O540 is used, actigraphy could be successfully used to identify if the

PUL tasks are successfully completed.
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Figure 8: Movement 1 & 2 selected features histograms of success vs failure classification of

only KINOVA-O540 actigraphy data
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Figure 9: Movement 1 & 2 selected features histograms of success vs failure classification of

only No-KINOVA-O540 actigraphy data
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4.0 Conclusions and Future Directions

This study presents a novel method to remotely study dynamic arm supports for the

Duchenne Muscular Dystrophy (DMD) population. Such a remote study is essential for

this population as DMD is a rare disease, and the proposed approach is a step towards

facilitating access to clinicians’ assessment by remote monitoring. In our approach, we com-

bined standardized testing with actigraphy data that is labeled through recorded videos,

and then we applied machine learning and feature selection, specifically support vector ma-

chines (SVMs) and sequential forward feature selection. Our analysis with SVM showed

that it is possible to detect with high accuracy the usage or no-usage of the KINOVA-O540,

the dynamic arm support device that is utilized in this study. We argue that this was

possible because of the smooth non-abrupt movements achieved when KINOVA-O540 was

used. When KINOVA-O540 was not used, movements recorded through actigraphy had

high variability due to different range of abilities of the participants. Such a distinction

between KINOVA-O540 and No-KINOVA-O540 cases allowed the detection of a distinctive

patterns within the actigraphy data. In future applications, this classification method could

be used for remote monitoring of the usage of KINOVA-O540 for daily life tasks, permitting

better planning for treatment. Furthermore, we analyzed how the standardized test task

performance was impacted by the use or absence of KINOVA-O540. We showed through

the selected features that when KINOVA-O540 is used, there was an improvement in energy

expenditure and movement control. Finally, we showed that classification between success

or failure of tasks that are defined by the standardized PUL test is more accurate if only

KINOVA-O540 actigraphy data was considered, compared to using both KINOVA-O540 and

No-KINOVA-O540 data together or just using No-KINOVA-O540 data. We argue that the

low task success vs failure classification performance for No-KINOVA-O540 case could be

explained by the irregular patterns in the actigraphy data due to the varying abilities of

the participants. The main limitation of this study was the number of samples available

for each movement category which prevented further analyses of the differences of perfor-

mance among different movement types. Such a limitation might impact the generalization
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ability of our classifiers across different movements and across more participants. However,

we believe that our approach is a novel application of machine learning for the analysis of

actigraphy data recorded from DMD population. In summary, the work presented in this

thesis is an initial step towards remote monitoring of KINOVA-O540 or a similar dynamic

arm support device usage and identification of task success when such devices are used by

the participant during activities of daily living. Such a remote monitoring could then be

used to investigate the long-term effect of such dynamic arm support devices.
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Appendix A Movement Categorization

Below find how PUL tasks were categorized into seven movement categories

35



Table 6: Movement categorization

Movement grouping Commonalities in items
Item number and

description on the PUL

A
Require shoulder flexion at shoulder

height or above

1. Shoulder abduction with

arms above head

2. Raise both arms to shoulder

height

3. Shoulder flexion to shoulder

height (no weight)

B Require lifting weight off of table

4. Shoulder flexion to shoulder

height (500g)

5. Shoulder flexion above

shoulder height (500g)

6. Shoulder flexion above

shoulder height (1kg)

13. Stack 3 soup cans at midline

14. Stack 5 soup cans at midline

C
Requires primarily elbow/shoulder

movement without weights

7. Hands to mouth

8. Hands from lap to table

D Moving weight on table

9.Move 100g weight on table

10. Move 500g weight on table

11. Move 1kg weight on table

12. Lift heavy can diagonally

on table

E Requires use of two hands together

15. Remove lid from container

16. Tearing paper

18. Push on light

F Fine motor tasks

17. Trace a path on a paper

using a pencil

20. Pick up coins on tabletop

21. Place finger sequentially on

numbers on a diagram

22. Pick up 10g weight using a

finger pinch

G Wrist movement only
19. Supination (move wrist to

face palm up)
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Appendix B Movements Count

Below are the number of samples existing for each of the 5 movements categories. Score

0 = Failure , Score 1 = Success

Table 7: Movements count

Without

KINOVA-O540

With

KINOVA-O540
Score 0 Score 1

Score 0 Without

KINOVA-O540

Score 1 Without

KINOVA-O540

Score 0 With

KINOVA-O540

Score 1 With

KINOVA-O540

mov A 6 5 2 9 1 5 1 4

mov B 5 11 8 8 4 1 4 7

mov C 12 13 5 20 0 12 5 8

mov D 37 29 19 47 8 29 11 18

mov E 31 23 18 36 9 22 9 14

mov F 43 34 1 76 0 43 1 33

mov G 11 8 3 16 1 10 2 6
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