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Abstract: Autonomous vehicles (AVs) are considered an emerging technology revolution. Planning
paths that are safe to drive on contributes greatly to expediting AV adoption. However, the main
barrier to this adoption is navigation under sensor uncertainty, with the understanding that there
is no perfect sensing solution for all driving environments. In this paper, we propose a global safe
path planner that analyzes sensor uncertainty and determines optimal paths. The path planner has
two components: sensor analytics and path finder. The sensor analytics component combines the
uncertainties of all sensors to evaluate the positioning and navigation performance of an AV at given
locations and times. The path finder component then utilizes the acquired sensor performance and
creates a weight based on safety for each road segment. The operation and quality of the proposed
path finder are demonstrated through simulations. The simulation results reveal that the proposed
safe path planner generates paths that significantly improve the navigation safety in complex dynamic
environments when compared to the paths generated by conventional approaches.

Keywords: autonomous vehicles; sensors; sensor uncertainty; uncertainty assessment; uncertainty
avoidance; autonomous navigation; path planner

1. Introduction

The development of fully autonomous vehicles (AVs) is currently inevitable. As modern vehicles,
AVs have drawn an increasing amount of attention due to their potential to improve accessibility for
individuals with disabilities and increase driver and passenger safety. Navigation is a key component of
AVs, which requires a precise and accurate map for representing environmental features, namely roads,
intersections, and traffic signals. Additionally, the functionality of AVs is dependent on the proprietary
suites of sensors to continually collect data from their surroundings as they navigate the environment.
The primary navigation sensors in AVs include the Global Navigation Satellite Systems (GNSSs),
inertial measurement units (IMUs), cameras, and a light detection and ranging (LiDAR). Working
collectively, these sensors perceive the motion and surroundings of AVs: the GNSS and IMU track the
location and acceleration of the AV, and the other sensors detect the shape, distance, and velocity of
nearby objects.

In addition to the localization task, AVs perform obstacle avoidance, object detection, and path
planning, which together ensure safe navigation. The localization task estimates the location of the
AV, whereas the aim of the obstacle avoidance task is to prevent collisions while navigating the
environment. The objective of the path planning task is to determine a safe and efficient route from
an initial point of interest to a requested destination with reference to a desired criterion, such as
the shortest distance. With respect to the environment, path planning can be classified into two
subgroups: global and local [1]. A global path planner computes a high-level trajectory leading to the
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destination, whereas a local path planner computes a suitable short-distance movement and maneuver
for obstacle avoidance. While obstacle detection and avoidance helps in accident-free navigation,
decisions are ultimately based on sensors that are not perfect in all environments [2]. Specifically,
sensor performance varies in terms of accuracy, reliability, consistency, and availability. Sources of
these variations are sensor uncertainties, which can generally be divided into two groups: static sources
and dynamic sources. Static sources are fixed in location and do not vary over time. For instance,
the GNSS is eminently susceptible to environmental conditions—e.g., GNSS receivers are unable to
receive signals—while an AV drives through tunnels. However, dynamic sources, such as weather
condition, vary with regard to their location, time, and severity. For example, when raining, the amount
and intensity of rain and the droplet size substantially contribute to the level of image noise. Hence,
AV navigation is highly influenced by these uncertainties. This influence leads to a high risk of traffic
accidents, which could threaten the lives of passengers and other road users.

This work pays special attention to the global path planning in fully AVs considering the existence
of sensor uncertainties. We propose a method for safe path planning, whose aim is to avoid areas where
sensor uncertainties are expected to be high before a vehicle starts its journey and modifies a plan as
changes occur. The proposed method utilizes a collection of fuzzy logics to model sensor uncertainties
on road segments with the intention of predicting the uncertainties at a specific time. In addition, a cost
function is developed to select a route with the lowest sensor uncertainty. The contributions of this
paper include the design of a fuzzy logic–based uncertainty indicator and the development of a cost
function for selecting routes with the lowest sensor uncertainty. The proposed method was evaluated
using simulated data. The results demonstrate the effectiveness of the method and its capability in
generating routes with least sensor uncertainties and thus ensuring safe navigation.

The rest of this paper is structured as follows. Section 2 discusses the related works. In Section 3,
the proposed method and a brief review of the basics of the fuzzy logic reasoning technique are
presented. In Section 4, the method is evaluated, and how the method can effectively determine safe
routes is discussed. Section 5 concludes the key findings and discusses future research directions.

2. Related Works

Global path planners for AVs are primarily developed for the purpose of path finding and
smoothing. A path finder searches for a set of waypoints to obtain the optimal route between
two locations in a state space, whereas a path smoother enhances these waypoints by adding
or subtracting sub-waypoints. The state space is typically configured as an occupancy grid or
lattice. Path finding approaches can be further categorized based on their design paradigm into
graph-based and sample-based planners. A graph-based planner uses either a deterministic search
(e.g., Dijkstra’s algorithm [3]), which requires visitation of each node in the graph, or a heuristic
search (e.g., A*’s algorithm [4]), which requires a priori knowledge to limit the number of nodes to be
visited. A sample-based planner performs a random search within the state space to reduce the time
complexity [5,6]. Heuristic and sample searches benefit local path planning due to their fast responses.
A review of the algorithms that solve both global and local path planning problems for AVs is given
in [7].

In regard to planning a global path in AVs, the literature contains different proposed optimization
objectives. Among these objectives, several studies, such as [8], propose shortest-path planning.
Note that the shortest path can be defined as either the traversed distance or time to travel between
two points. Other studies have proposed path planning with energy efficiency as the optimization
objective [9–13]. These planners aim to optimize energy in electric-powered vehicles because of the
limitations in their battery capacity and the scarce availability of charging stations. Some studies
propose path planners for resource constraints, including a time window [14], distance [15],
or battlefield [16]. Furthermore, Simon [17] and Piazzi and Visioli [18] consider jerk minimization to
enhance AV stability and passenger comfort along the planned path. Path planning that computes
routes for AVs in the presence of sensor uncertainties is still an open problem.
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Path planning that computes routes for AVs in the presence of uncertainties has received
extensive attention among researchers since general-purpose planning algorithms are not applicable
for AVs, especially in uncertain environments. The literature contains different planning approaches
for uncertain environments. One approach incorporates the uncertainty as a belief space
whose most general and systemic formulation is called the Partially Observed Markov Decision
Process (POMDP) [19], where every possible belief (over states) is mapped into actions. This approach
aims to obtain an optimal policy that achieves the maximum expected cumulative cost. Exact POMDP
solutions are well-established for both finite [20] and infinite [21] horizon cases. In general,
these planners consider a continuous belief space, requiring substantially complex computations and
resulting in potential issues with scalability. Addressing scalability is the main fundamental idea that
leads to the employment of sampling-based algorithms, including probabilistic roadmaps (PRM) [5]
and rapidly-exploring random trees (RRT) [6]. An instance of the sampling-based planner includes the
proposed belief roadmap planner for linear Gaussian systems [22]. Another approach leverages the
Linear Quadratic Gaussian (LQG) methodology to construct a belief space. This approach allows for
an estimation and a controller of linear systems with Gaussian noises [23]. The LQG-based planning
approach involves a starting trajectory with two proposed common architectures. One architecture
separates the process performed by the trajectory from the other linear control policies. Van den Berg,
Abbeel, and Goldberg [24] use an RRT to generate candidate paths and evaluate the LQG performance
over each one. Since their method aims to select the feasible path with respect to minimum cost
having a bounded collision belief from an RRT, an optimal path might not be found. To address this,
Bry and Roy [25] predict belief over trajectories of candidate paths using a local LQG, and then utilize
an incremental sampling refinement to improve these paths. Other approaches perform an iterative
distinct routine [26,27]. However, using simple distributions (e.g., Gaussian) to model uncertainty
cannot precisely depict the belief of complicated systems, as in AVs’ navigating environment with
sensor uncertainty. Furthermore, while these stochastic approaches can provide efficient solutions,
the solutions are not always optimal. A planner that provides optimal solutions could only find a path
in case one existed. With the stochastic approach, it is possible to have a situation where the planner
would not succeed in finding a feasible path, even though one existed.

Navigation sensor uncertainties have been studied in various contexts. For instance, the impact
of uncertainty on GNSS performance is discussed thoroughly in [28]. Roongpiboonsopit and
Karimi [29] proposed an approach for predicting the quality of integrated GNSS. Hsu, Tokura, Kubo,
Gu, and Kamijo [30] proposed an improved GNSS positioning approach that detects the GNSS
inconsistency and excludes satellites with higher errors in urban canyon environments. Numerous
studies [31–33] have also investigated the influence of weather conditions, such as rain and fog
on LiDAR, radar, and camera sensors. Moreover, Alharbi and Karimi [2] have examined sensor
uncertainties affecting the safety of road users during AV navigation; they proposed five algorithms to
measure and highlight the navigation accuracy attainable in challenging environmental conditions.

Navigation sensor performance greatly depends on time and environment, as shown in [2]. Several
approaches have proposed sensor fusion to reduce residuals and improve sensor stability [34,35]. Sensor
fusion integrates the data of disparate sensors so that the fused data are more accurate than the data
obtained from a single sensor. Although sensor fusion offers flexibility and shows effectiveness in
handling uncertain data, it may lead to bias and divergence. The former comprises errors that account for
the erroneous assumptions in the data fusion technique, whereas the latter occurs when the theoretical
behavior of a data fusion model differs from its actual behavior. These issues impact the accuracy of data
integration, which leads to limited safety considerations. Thus, there is a need for novel approaches that
are capable of accurately detecting, analyzing, and avoiding sensor uncertainties.

In this paper, a new global path planning method, whose aim is to avoid challenging situations
for navigation sensors in order to maximize AV safety, is proposed. We utilize multiple fuzzy logics to
model challenging situations and obtain scores for their potential risk on each road segment. A cost
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function is used to calculate a weight based on sensor uncertainties for each road segment, which is
used in Dijkstra’s algorithm to compute the optimal trajectory in the state space.

3. Method

In this section, we first briefly review fuzzy logic and then discuss the architecture of the proposed
method in the safe path planner. The proposed method includes a priori knowledge, an uncertainty
indicator, and a path finder, as shown in Figure 1. We assume that the proposed path planning method
is implemented in the cloud, so that the uncertainty indicator results can be shared with other AVs
navigating in the same or similar environments, resulting in efficient resource usage. The priori
knowledge consists of road networks, AV configurations, and sensor specifications. We assume these
data are accurate, complete, updated, and sufficient to address all possible different environments
for sensors.

Cloud A Priori Knowledge

Uncertainty Indicator

Path Computation

Path Update

Uncertainty Storage

Path Finder

X

Figure 1. A proposed global safe path planner.

3.1. Fuzzy Logic

Fuzzy logic [36] is a well-known representational and decision-making tool employed to handle
variables that are imprecise and qualitatively uncertain. Given that the variables collected from the AV
environment are mostly heterogeneous, fuzzy logic is employed to homogenize these variables into
membership functions. Fuzzy inference rules are then applied to produce crisp outcomes. Figure 2
shows the fuzzy logic architecture, which has four primary phases. First, the fuzzification phase
transforms the numerical input into a fuzzy set with a degree of membership, which is a real number
in the interval [0, 1], where 0 and 1 are extreme cases of falsity and truth, respectively. Second,
the inference engine phase determines the matching degree between the current fuzzy input and the
if–then rules stored in the knowledge base. Last, the defuzzification phase generates a crisp outcome
from the resultant fuzzy set obtained by the inference engine. The fuzzy sets are intended to reduce
ambiguity. With this fuzzy logic approach, our objective is to determine the nature of an event in the
AV environment. In particular, the approach enables the identification of whether an event influences
the performance of a sensor.

Fuzzification Inference Engine

Knowledge Base

Defuzzification

Crisp

Input

Crisp

Output

Fuzzy Input

Set

Fuzzy Output

Set

Figure 2. Fuzzy logic architecture.
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3.2. Uncertainty Indicator

The uncertainty indicator measures the potential sensor failure on each road segment. We examine
a scenario in which an AV is equipped with the GNSS, camera, and LiDAR sensors; their uncertainties
are reported in [2]. As shown in Table 1, the sources of uncertainty for these sensors are classified
into three categories. First, the road infrastructure, including tunnels, buildings, and trees, degrades
the performance of the GNSS. For instance, tunnels and urban environments significantly reduce the
quality of GNSS signals received from satellites. The road slope also reduces the coverage area of both
the camera and LiDAR. Second, the capture time of these sensors may have a significant role in sensor
performance. For instance, cameras are very sensitive to light, because pixel intensities are affected by
changes in lighting conditions, which leads to poor performance of cameras at night. Third, extreme
weather conditions, such as fog, rain, and snow, impair the sensor capability and mostly affect cameras
and LiDAR.

Table 1. Sources of uncertainty for sensors.

Sensor Road Infrastructure Time Weather

GNSS Tunnels/bridges

High-rise buildings

Dense trees

Camera

Slope

Night Fog
Rain
Snow

visibilityLiDAR

To model the uncertainty, we use a combination of fuzzy logic controllers, where each controller
represents a sensor. The outcomes are weighted and combined by the cost function (described in
Section 3.3). These fuzzy logic controllers are hereafter called “fuzzy logic” or “uncertainty indicators”
for the sake of simplicity. A fuzzy logic system is designed to qualitatively estimate risk when a specific
sensor is considered. As Table 2 shows, the fuzzy logic system has ten unique input parameters.
Overpass and underpass road structures are treated equally in this work since both types of structures
prevent the GNSS from receiving signals. Tunnels and bridges are the most common underpass
structure and overpass road structure, respectively. Thus, the tunnel and bridge lengths are inputs to
the uncertainty indicator. Moreover, buildings and trees, obstructions to GNSS signal, are fed into the
indicator. The building and tree lengths are defined as the average lengths of the blockages located
near road segments. The uncertainty indicator also considers the slope angle of each road segment as
an input. A road segment with no slope has an angle of 0◦, whereas steep and inclined roads have
positive and negative angles. The estimated time to arrive at a particular road segment is also input
to determine the dim nighttime period, which is defined as the time between sunset and sunrise.
In addition, four input parameters are considered to assess weather conditions—visibility, snow depth,
rainfall intensity, and fog. Visibility and fog are normally evaluated by the meteorological optical range
(MOR). The MOR is a measure of air transparency, which determines the longest distance, in kilometers,
at which objects can be recognized by sensors. Snowfall is typically measured in centimeters. Rainfall
intensity is expressed as the ratio of rainfall depth over a period of time (i.e., millimeters per hour).

Each input parameter is assigned a member function, thereby generating the fuzzy sets.
The fuzzy set elements are divided based on the level of uncertainty into low-uncertainty
elements and high-uncertainty elements. Low-uncertainty elements are clear, covered, and bright,
while high-uncertainty elements are occlusive, uncovered, dim, unclear, and obscured. The following are
the fuzzy sets used for determining sensor uncertainty:

• Tunnel/bridge, building, tree length— {occlusive, clear}
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• Slope angle— {uncovered, covered}
• Time— {dim, bright}
• Visibility— {unclear, clear}
• Snow depth— {obscured, clear}
• Rainfall intensity— {obscured, clear}
• Fog— {unclear, clear}

Table 2. Input parameters of fuzzy logic.

Sensor Parameter Unit

Tunnel/bridge length km
GNSS Building length m

Tree length m

Slope angle radians
Camera Time HH:mm

Visibility (MOR) km

LiDAR

Slope angle radians
Snow depth cm
Rainfall intensity mm/h
Fog (MOR) km

From the sensor specifications and configurations, we derive the critical values, which define
these parameter boundaries. For the camera and LiDAR fields of view (FOVs), we assume that at least
one sensor with a clear distance, d, an aperture angle, a, and a certain optical angle, o, is mounted on
the very front of the vehicle roof at a height, hc. Figure 3 illustrates the vertical FOV of the sensors.
As can be seen, the aperture angle a is separated by the horizontal sightline into the upper aperture
angle at and the lower aperture angle ab. The blind spot length l is expressed as follows:

l = hc tan
(π

2
− ab

)
, (1)

By the properties of trigonometric functions, the occluded FOV height hh and visual height hv are
expressed as

hh = (d− l) [tan (ab) + tan (s)] , (2)

hv = d [tan (at) + tan(ab)]− hh, (3)

where s is the slope degree of the road segment. In the case of a steep path, the visual height must
satisfy the following expression:

hv − hc ≥ 0. (4)

hc

o at

l
s

hv

hh

d

ab

Figure 3. Vertical FOV of sensors.
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By restricting the domain of the slope to the interval
(
−π

2 , π
2
)

and solving for s, we obtain the
fuzzy sets in Equation (5) for the slope parameter.

f (s) =

 covered −ab ≤ s ≤ tan−1
(

d tan (a)−hc
d−l

)
− ab

uncovered −ab ≥ s ≥ tan−1
(

d tan (a)−hc
d−l

)
− ab

(5)

The S-shaped and Z-shaped membership functions [37] are used to generate the fuzzy variables
and are given by Equations (6) and (7), respectively.

f (x, a, b) =



0, x ≤ a

2
(

x−a
b−a

)2
, a ≤ x ≤ a+b

2

1− 2
(

x−a
b−a

)2
, a+b

2 ≤ x ≤ b

1, x ≥ b

(6)

f (x, a, b) =



1, x ≤ a

1− 2
(

x−a
b−a

)2
, a ≤ x ≤ a+b

2

2
(

x−a
b−a

)2
, a+b

2 ≤ x ≤ b

0, x ≥ b

(7)

For a given universe of discourse x, a lower limit a, and upper limit b, the S-shaped and Z-shaped
functions return the corresponding degrees of membership in the range [0, 1]. One can easily observe
that the S-shaped member function is the mirror image of the Z-shaped function. Going from the
leftmost point x to the rightmost point in x, the output of the S-shaped function increases from 0 to 1,
while that of the Z-shaped function declines from 1 to 0. These spline-based functions require the
parameters a and b to establish the boundary of the sloped part of the line, with a < b.

Moreover, the fuzzy variables for the slope and time parameters utilize SZ-shaped and ZS-shaped
membership functions defined in Equations (8) and (9), which are derived from Equations (6)
and (7), respectively.

f (x, a1:2, b1:2) =



0, a1 ≥ x ≥ b2

2
(

x−a1
b1−a1

)2
, a1 ≤ x ≤ a1+b1

2

1− 2
(

x−a1
b1−a1

)2
, a1+b1

2 ≤ x ≤ b1

1− 2
(

x−a2
b2−a2

)2
, a2 ≤ x ≤ a2+b2

2

2
(

x−a2
b2−a2

)2
, a2+b2

2 ≤ x ≤ b2

1, b1 ≤ x ≤ a2

(8)

f (x, a1:2, b1:2) =



1, a1 ≥ x ≥ b2

1− 2
(

x−a1
b1−a1

)2
, a1 ≤ x ≤ a1+b1

2

2
(

x−a1
b1−a1

)2
, a1+b1

2 ≤ x ≤ b1

2
(

x−a2
b2−a2

)2
, a2 ≤ x ≤ a2+b2

2

1− 2
(

x−a2
b2−a2

)2
, a2+b2

2 ≤ x ≤ b2

0, b1 ≤ x ≤ a2

(9)

The output parameter for each fuzzy logic controller is called risk. Risk is defined as the probability
that the sensor is exposed to uncertainty. The higher the risk associated with a road segment, the more
uncertainty the sensor has. We assume that no external factors, including dynamic objects such as
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pedestrians and other vehicles, influence the sensor reading quality. The fuzzy set for determining risk
consists of the variables low and high. A triangular membership function expresses the fuzzy outputs,
as given in Equation (10).

f (x, a, b, c) = max
(

min
(

x− a
b− a

,
c− x
c− b

)
, 0
)

(10)

where x is the universe of discourse; a and c are the lower and upper limits where the degree of
membership is 0, respectively; b is the value where the degree of membership is 1, —i.e., a < b < c.

The fuzzy IF-THEN rules evaluated by the inference engine are given in Table 3. Broadly speaking,
the fuzzy rules are as follows:

Rule 1: If a parameter value is clear, covered, and bright, then the risk is low.
Rule 2: If a parameter value is occlusive, uncovered, dim, unclear, or obscured, then the risk is high.

Table 3. Fuzzy rules (risks).

Risk Parameter Fuzzy Set

Tunnel/bridge length occlusive
Building length occlusive
Tree length occlusive
Slope angle uncovered

High Time dim
Visibility unclear
Snow depth obscured
Rainfall intensity obscured
Fog unclear

Tunnel/bridge length clear
Building length clear
Tree length clear
Slope angle covered

Low Time bright
Visibility clear
Snow depth clear
Rainfall intensity clear
Fog clear

3.3. Path Finder

The path finder aims to select a route with the minimum likelihood of sensor failure. The path
finder comprises three tasks: path computation, path update, and uncertainty storage. The following
subsections discuss these tasks in detail.

3.3.1. Path Computation

At the highest level, path computation aims to select a route between an AV’s current position
and the requested destination. This problem is represented as a graph. Road networks are typically
represented as a directed graph, G = (V, E, w), whose edge weights, w : E → N, are equivalent to the
traversal cost for a road segment, edge(u, v) ∈ E. The traversal cost is defined as the ratio of sensors
mounted in a vehicle to their risk scores reported by the uncertainty indicator. Therefore, the task
of finding the optimal route can be expressed as a shortest-path problem and solved using classical
algorithms, such as Dijkstra’s algorithm [3] and A*’s algorithm [4]. In this work, Dijkstra’s algorithm
is adopted because it explores all vertices in the graph. Note that the performance of the algorithm,
which is exponential and not efficient for very large networks, is not addressed in this work.

The cost function has the form

min w (v) = g (v) + α d (v) , (11)
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where v is the current vertex, g (v) is the sensor uncertainty, d (v) is the Euclidean distance between
the current vertex and the destination, and α is a hyperparameter that controls the distance weight.
The value of α needs to be determined; according to our simulation a value near 0.5 would reduce the
impact of distance on the overall cost. The Euclidean distance aims to penalize any deviations from
the reference path, which is the straight path from the current location to the target destination. In this
way, we reduce the uncertainty level to an acceptable degree while maintaining a reduced path length.

The sensor uncertainty function can be expressed as

g (v) = M−1 ∑
i∈M

ρisi + ϕ(si), (12)

where M is the number of sensors, ρi represents how much the AV subsystems rely on the ith sensor
(0 < ρi ≤ 1), and si is the risk indicator score, which ranges between 0 and 1. ϕ (s) is a penalty term
used to maximize the number of high-quality sensors, which is given by

ϕ (si) =

{
1, si > 0.5
0, si ≤ 0.5

(13)

3.3.2. Path Update

A decision based on dynamic uncertainty evaluation requires frequent updates. Without these
updates, AVs might be exposed to unknown uncertainties. For this, a path update algorithm is used to
monitor the generated path for any change. When a major change occurs to road segment uncertainty,
such that the risk score switches from high to low or vice versa, the path update algorithm requests
the current path to be recomputed. To make this process fast and thus meet the real-time requirement
of AVs, only a few road segments ahead of the current are evaluated. Algorithm 1 shows the path
update process.

Algorithm 1: Path Update Algorithm
Input: Path data from the current road segment to the destination (P), number of road

segments to check (α)
Output: modified path (P̂)

P̂← P
if (α 6= 0), then

for each road segment e ∈ P, do
c← current weight;
ĉ← w(e);
if (c < ĉ), then

P̂← P recompute the path from the current road segment to the destination; return
P̂;

end
end

end

return P̂;

3.3.3. Uncertainty Storage

AV subsystems could exclude sensors with high potential risk to improve their performance.
We establish an uncertainty storage to maintain the sensors’ risk scores for each road segment, which is
selected on the generated route. By querying these scores, AV subsystems can examine the quality
of each sensor in their current situation to ensure that they can make more accurate decisions in
regard to sensors’ reliability. The uncertainty storage is updated whenever a path re-computation is
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performed. In addition, uncertainty storage offers easy and more efficient source management for
AVs that have identical sensor specifications and configurations. Since the proposed path planner is
implemented in the cloud platform, all AVs can utilize the precomputed uncertainty scores. Hence,
with the cloud-based path planner, AVs would benefit from the cloud computing power in processing
and maintaining less data.

4. Evaluation and Discussion

The proposed path planner was implemented in Python. For fuzzy logic implementation,
the Fuzzy Logic SciKit was adopted since it includes all types of fuzzy membership functions. Due to
the difficulty of obtaining an AV with all tested sensors, our proposed method was evaluated by using
simulated data. For sensor uncertainty sources, we considered buildings, trees, tunnels, road slope,
time, visibility, and weather conditions. The uncertainty thresholds for each source used in our
simulation are given in Table 4. For instance, the maximum tunnel and bridge lengths tolerated by
sensors was 500 m. The night time was set between 19:35 (sunset time) and 7:20 (sunrise time). The road
slope thresholds were computed using Equation (5), resulting in [−10.7, 70.1] and [−5.56, 60.59] for
the camera and LiDAR, respectively. Table 4 reveals the remaining parameters, including sensor
specifications. The membership functions of the uncertainty indicator are presented in Figure 4.
A simulated grid road network was constructed for evaluating our proposed path planner method.
In the road network, we assigned arbitrary uncertainty sources to road segments. We evaluated the
performance of the proposed method against a conventional planner, which simply optimized the
route length. The performance was evaluated in terms of: (1) the number of uncertainty sources in the
computed path and (2) the ability to omit road segments that have only sensors with high risk scores.
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Figure 4. Membership functions for the uncertainty indicator.
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Table 4. Simulation parameters.

Parameter Value Unit Sensor Specifications

Tunnel/bridge length 0.5 km Sensor Parameter Value Unit

High-rise building length 200 m Camera optical angle 10 deg.

Dense tree length 100 m aperture angle 80 deg.

Time 07:20 HH:mm observable distance 120 m

07:20 HH:mm camera height 1.9 m

Visibility 5 km LiDAR optical angle 5 deg.

Snow depth 10 cm vertical FOV 64 deg.

Rainfall intensity 20 mm/h distance range 200 m

Fog 5 km LiDAR height 1.9 m

Risk percent 50 percent

Figure 5 shows the simulated road networks annotated with the assigned uncertainties.
The vertical color bars denote the parameters’ values. The arrow shown in the color bars indicates
the risk direction. The uncertainty sources considered in this evaluation can be classified as dynamic
or static. The static sources were buildings, trees, and tunnels, and the dynamic sources were slope,
time, visibility, and weather conditions. The road network in Figure 5 (middle) shows the arrival time,
which was calculated based on velocity and assumed to be constant, and road segment length. In the
presence of these uncertainties, the route between the lower left node (in red) and the upper right node
(in green) was computed.

0

100

200

300

400

500

B
ui
ld
in
g 
H
ei
gh
t

0

25

50

75

100

125

150

175

200

Tr
ee
 H
ei
gh
t

0

2

4

6

8

10

Tu
nn
el
 L
en
gt
h

−75

−50

−25

0

25

50

75

Sl
op
e 
An
gl
e

0

5

10

15

20

Ti
 
e 
of
 N
ig
ht

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Vi
si
bi
lit
y 
D
is
ta
nc
e

0

20

40

60

80

100

Sn
ow
 D
ep
th

0

20

40

60

80

100

R
ai
n 
A 
ou
nt

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fo
g

Building Tree Tunnel

Slope Ti e Visibility

Snow Rain Fog

Figure 5. Simulated road network with uncertainty sources. The vertical color bars denote the
parameters’ values and the arrow indicates the risk direction.

The proposed path planner was thoroughly tested in three different scenarios. The first scenario
was that of equal-weighted sensors. In this case, the reliance term, ρi, was equal to 1 for all sensors.
The second scenario concerned preferable sensors, among which only one sensor had a higher reliance
weight. If sensor X has a higher reliance weight than the others, it is called preferable. In the third
scenario, two out of three sensors were assigned equal weights (ρi = 1), and one was assigned a
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lower weight (ρi = 0.5). Table 5 shows the weights of the sensors contributing to each scenario.
All scenarios utilized the same road network with identical setups as mentioned above. We checked
the proposed path planner with different distance weights α and in the presence or absence of the
penalty term ϕ(si) for the number of low-quality sensors. The outcomes revealed that the proposed
path planner performs better than the conventional planner in all scenarios.

Table 5. Simulation scenario parameters.

Scenario ρGNSS ρcamera ρlidar

A 1 1 1

B.1 1 0.5 0.5

B.2 0.5 1 0.5

B.3 0.5 0.5 1

C.1 1 1 0.5

C.2 1 0.5 1

C.3 0.5 1 1

Figure 6 shows the path selected by the conventional path planner, which executes Dijkstra’s
algorithm with the shortest length as a cost function. The generated path has certain road segments
with multiple high-risk sensors, which are not safe. This is because the conventional approach does
not take into account the sensor performance for finding optimal routes. As it is shown, some road
segments with low uncertainty are parts of the shortest path. On the other hand, Figure 7 shows our
proposed method for Scenario A, which balances performances by all sensors. The proposed method
successfully avoids encountering uncertainty. By penalizing the low-quality sensors, as shown in
Figure 7a,c,d, the generated path includes the maximum number of reliable sensors and thus is a safe
route. However, disregarding the quality term, as shown in Figure 7b,d,f, leads to the inclusion of
high-risk road segments along the route. Furthermore, increasing the distance weight α can force
a planner to select one road segment over another road segment regardless of the uncertainty.

Figure 6. Path planner using the conventional approach. Red circles mark instances of the road
segments with multiple high-risk sensors.

Scenario B shows the simulations where AVs rely on only one sensor. Figure 8 presents the
GNSS preferable path where the planner disregards the road segments with tunnels, which have
high uncertainties. Likewise, a precise path is computed for cameras and LiDAR, as shown in
Figures 9 and 10, respectively. From Figures 8–10b,d,f, it is obvious that neglecting the penalty term
for the sensors with high uncertainty results in only one sensor being utilized.

Scenario C shows the simulations where AVs rely on all but one sensor. Figures 11–13 show
the computed path for the GNSS, camera, and LiDAR, which the planner disregards. The proposed
planner prioritizes the remaining sensors and successfully calculates the low-uncertainty path. This is
illustrated in Figure 13 where the camera and LiDAR are the preferred sensors over GNSS. Thus,
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the computed path includes some road segments with uncertainties (e.g., tunnels) that affect the
performance of GNSS only.
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Figure 7. Path planner for scenario A that balances all sensors’ performances during planning. (a,c,e) Proposed
method with a penalty term. The planner finds paths with maximum number of sensors and least combined amount
of uncertainty. Increasing the value of α leads to a shorter path. The solutions in (b,d,f) exclude the penalty term,
so the paths can indicate a lower uncertainty, but the joint sensor quality is not guaranteed.
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Figure 8. Path planning for scenario B.1 when GNSS is preferable over other sensors. (a,c,e) Proposed method with
a penalty term. The computed paths greatly function with GNSS. Some trajectories with high risk for GNSS include
in the paths due to the penalty term effect. (b,d,f) Proposed method without a penalty term effect. Trajectories with
high risk for GNSS are filter out.
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Figure 9. Path planning for scenario B.2 when camera is preferable over other sensors. (a,c,e) Proposed method
with a penalty term. (b,d,f) Proposed method without a penalty term.
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Figure 10. Path planning for scenario B.3 when LiDAR is preferable over other sensors. (a,c,e) Proposed method
with a penalty term. (b,d,f) Proposed method without a penalty term.
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Figure 11. Path planning for scenario C.1 when GNSS and camera are preferable sensors. (a,c,e) Proposed
method with a penalty term. (b,d,f) Proposed method without a penalty term.
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Figure 12. Path planning for scenario C.2 when GNSS and LiDAR are preferable sensors. (a,c,e) Proposed
method with a penalty term. (b,d,f) Proposed method without a penalty term.
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Figure 13. Path planning for scenario C.3 when camera and LiDAR are preferable sensors. (a,c,e) Proposed
method with a penalty term. (b,d,f) Proposed method without a penalty term.

Furthermore, quantitative analysis is performed in terms of measuring the risk over the whole
route. The risk score is calculated from the uncertainty storage. A high risk score indicates that
the route is undesirable for navigation, as it poses high sensor uncertainty. This analysis provides
further verification of the feasibility of the computed path for each scenario. The results per scenario
with different distance weights are demonstrated in Figures 14–20. The average of risks is drawn as
horizontal lines. All paths computed by the proposed path planner optimize the objective in each
scenario. For instance, Figure 14 reveals the risk of the planned path which is contributed equally
by each sensors. The planned path indicates a trade-off between distance and risk. As the distance
weight decreases, paths have lower uncertainty, and the planner has a better chance to maximize the
sensor quality. Figures 17 and 20 show cases where there is no impact by the distance constraint on
risk scores since the best planned path is very close to the reference path. Thus, the distance weight
requires careful tuning. We recommend a value of 0.5 for the distance weight, because this value
balances the route length and the likelihood of encountering uncertainty. This objective is realistic
because a planned route should not deviate far from a reference route. Moreover, with knowledge of
the uncertainty scores for each road segment, AVs can feed these scores into their systems to better
handle uncertain environments with the goal of achieving safe navigation.
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Figure 14. Risk of the planned path for scenario A where sensors’ performances are balanced.
Horizontal lines depict the average of sensors’ risk scores. (a–c) show different distance weight
trails—i.e., α = 0.8, α = 0.5, and α = 0.2, respectively. The average of sensors’ risk scores is almost
equal among all trails. However, as the distance weight is very small, the planned paths demonstrate
high sensor quality since the planner reduces the distance power and avoids trajectories with no
perfect sensors.
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Figure 15. Risk of the planned path for scenario B.1 where GNSS is preferable over other sensors.
Horizontal lines depict the average of sensors’ risk scores. (a–c) show different distance weight
trails—i.e., α = 0.8, α = 0.5, and α = 0.2, respectively. The GNSS performance on average is similar
among all trails, with slight improvement in (c). LiDAR’s performance expectedly drops in (c) as there
is no constraint on its performance. With lower distance weight, the planned paths demonstrate high
sensor quality since they avoid trajectories with no perfect sensors.
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Figure 16. Risk of the planned path for scenario B.2 where camera is preferable over other sensors.
Horizontal lines depict the average of sensors’ risk scores. (a–c) show different distance weight
trails—i.e., α = 0.8, α = 0.5, and α = 0.2, respectively. The camera’s performance on average is
identical among all trails since cameras are vulnerable to many uncertainty sources in the environment.
The GNSS’s performance expectedly drops in (b) and (c) as there is no constraint on its performance.
As the distance weight is very small, the planned paths demonstrate high sensor quality since they
avoid trajectories with no perfect sensors.
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Figure 17. Risk of the planned path for scenario B.3 where LiDAR is preferable over other sensors.
Horizontal lines depict the average of sensor risk scores. (a–c) show different distance weight trails—i.e.,
α = 0.8, α = 0.5, and α = 0.2, respectively. All sensors have an identical performance among all trails
since the best planned path is not impacted by the distance constraint.
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Figure 18. Risk of the planned path for scenario C.1 where LiDAR is neglected. Horizontal lines depict
the average of sensors’ risk scores. (a–c) show different distance weight trails—i.e., α = 0.8, α = 0.5,
and α = 0.2, respectively. (a) and (b) reveal no change in sensor performances. In (c), the performance
is improved for GNSS and deteriorated for LiDAR, which is the targeted objective in this scenario.
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Figure 19. Risk of the planned path for scenario C.2 where camera is neglected. Horizontal lines
depict the average of sensors’ risk scores. (a–c) show different distance weight trails—i.e., α = 0.8,
α = 0.5, and α = 0.2, respectively. These trails indicate an improvement in the sensor quality when
the distance weight reaches 0.2. Additionally, the performances of GNSS and LiDAR are improved in
some trajectories but remain steady on average.
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Figure 20. Risk of the planned path for scenario C.3 where GNSS is neglected. Horizontal lines depict
the average of sensors’ risk scores. (a–c) show different distance weight trails—i.e., α = 0.8, α = 0.5,
and α = 0.2, respectively. These trails indicate no change in sensor uncertainties since the best planned
path is not impacted by the distance constraint.

5. Conclusions and Future Research

In this paper, a global path planner method with the goal of finding routes with minimum sensor
uncertainties is proposed. To satisfy the requirement of real-time navigation, the proposed method
quantifies sensor uncertainty using fuzzy logic systems. More specifically, the proposed path planner
weighs road segments with risk scores to compute a global path with the objective of not deviating
far from the shortest path between the same pair of origin and destination locations. The simulation
results demonstrate that the proposed path planner method effectively enhances path computation in
terms of least overall combined sensor uncertainties.

Although path planning under uncertainty in AVs is a well-researched area, to the best of our
knowledge, this work is the first attempt to design and formulate a path planner that considers
detecting, analyzing, and avoiding sensor uncertainties’ sources in structured environments. Various
parameters are determined via simulation experiments, including the threshold of each uncertainty
source and cost function parameters. However, more work is required to effectively optimize
these parameters. Additionally, in real scenarios, AVs would have their own high-definition maps,
which include all road characteristics and surroundings, stored in a database. These data could
be a priori knowledge for our proposed approach. In this work, we assume that all data in this
database are accurate, complete, updated, and sufficient to address all possible different challenges
in the environments. Thus, one future research direction is to manage uncertainty in this database.
Furthermore, the key objective of this work is to address safety in navigation by considering the subset
of sensors that can provide a low overall level of uncertainty. Future directions also include optimizing
ride/route smoothness that enables maintaining stability and comfort along the route.
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