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Integrated genome-wide analysis of human facial morphology

Dongjing Liu, PhD

University of Pittsburgh, 2020

The human face is a highly multipartite structure resulting from the intricate coordina-

tion of multiple factors. The high heritability of facial morphology has long been appreciated,

yet little is known about the contributions of specific genes. Knowledge of the genetic archi-

tecture of facial morphology is important for understanding craniofacial morphogenesis and

how these processes contribute to craniofacial disorders. Studying facial genetics may also

provide a basis for DNA-informed facial prediction, which has several real-world applications.

Genome-wide data on well-characterized human cohorts has great potential for generat-

ing novel insights in the post-Genome-Wide Association Study (GWAS) era. Moving beyond

the conventional single variant-single trait association in GWAS, this study analyzed existing

genome-wide data using three di↵erent approaches to glean insights into facial morphology,

by leveraging state-of-the-art advances in 3D facial phenotype modeling and multivariate

statistical approaches. Specifically, analysis in Aim 1 for the first time demonstrated the

contribution of rare and low-frequency coding variants in facial variation, with eight genes

being significant associated, one of which (NECTIN1 ) had known craniofacial function.

Transcriptome-wide association analysis in Aim 2 extended a previous GWAS e↵ort by re-

fining potential causal genes for future functional characterization. Findings from this aim

also pointed to several novel candidate genes. Finally, analysis in Aim 3 explored the role of

Variance Quantitative Trait Loci and highlighted the importance of studying facial variabil-

ity in addition to facial mean di↵erences in gene discovery and mechanistic exploration. The

variance prioritization strategy adopted in this aim also demonstrated its advantage in de-

tecting gene by gene interactions involved in facial morphology. These results expanded our

understanding of the genetic basis of normal-range facial morphology and will have impor-

tant implications for future studies. The application of several recently developed statistical

tools also helped to evaluate and generalize their utility to multivariate settings and identify

their limitations.
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This study had public health relevance. Our findings can help provide a roadmap for

understanding the genetic underpinnings of craniofacial morphogenesis and birth defects,

pave the way for advances in personalized prevention and therapeutics of related conditions,

and inform DNA-based facial prediction for clinical and forensic application.

v



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1.0 Overall Research Goal and Specific Aims . . . . . . . . . . . . . . . . . . . 1

2.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Face development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 A review of human facial genetics study . . . . . . . . . . . . . . . . . . . . 5

2.2.1 GWAS of normal-range facial variation . . . . . . . . . . . . . . . . . 5

2.2.2 Gene discovery was stymied by the suboptimal quantification of facial

shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 A more e�cient phenotyping approach . . . . . . . . . . . . . . . . . 6

2.3 Rationale for the specific aims . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Aim 1: Rare and low-frequency coding variants analysis . . . . . . . . 7

2.3.2 Aim 2: Transcriptome-wide association study . . . . . . . . . . . . . . 11

2.3.3 Aim 3: Variance quantitative trait locus analysis . . . . . . . . . . . . 14

2.4 Public health relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.0 Cohorts and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Cohorts and genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Phenotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Consideration of the ethnicity . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.0 Rare and Low-frequency Coding Variant Analysis . . . . . . . . . . . . . 25

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 MultiSKAT and Meta-MultiSKAT . . . . . . . . . . . . . . . . . . . . 25

vi



4.2.2 Quality control on facial phenotypes . . . . . . . . . . . . . . . . . . . 26

4.2.3 Gene-level analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.4 Variant-level analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.5 Lookups of significant genes in orofacial clefting GWAS . . . . . . . . 30

4.2.6 Replication and meta-analysis . . . . . . . . . . . . . . . . . . . . . . 30

4.2.7 Low-frequency coding variant analysis for univariate facial traits . . . 31

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Low-frequency variant association results in the PITT cohort gene-level

analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Variant-level analysis results in the PITT cohort . . . . . . . . . . . . 38

4.3.3 Low-frequency variant association results in the Denver cohort and re-

sults for replication analysis . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.4 Results for meta-analyzing the PITT and the Denver cohort . . . . . 40

4.3.5 Results for univariate facial traits in the PITT cohort . . . . . . . . . 42

4.3.6 Low-frequency variant association results in the Tanzania cohort . . . 42

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.0 Transcriptome-Wide Association Study . . . . . . . . . . . . . . . . . . . . 51

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 MetaXcan and COLOC software . . . . . . . . . . . . . . . . . . . . . 52

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Predicting gene expression by MetaXcan . . . . . . . . . . . . . . . . 55

5.2.3 Testing the association between the genetically regulated gene expres-

sion (GRex) and facial modules . . . . . . . . . . . . . . . . . . . . . 55

vii



5.2.4 Follow-up analysis of TWAS genes . . . . . . . . . . . . . . . . . . . . 56

5.2.5 Gene-set enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 TWAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Conditional analysis for significant TWAS genes . . . . . . . . . . . . 63

5.3.3 COLOC analysis of multi-gene TWAS loci . . . . . . . . . . . . . . . 66

5.3.4 Gene-set enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.5 TWAS identified novel genes not revealed by previous GWAS . . . . . 70

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.0 Variance Quantitative Trait Locus (vQTL) Analysis . . . . . . . . . . . . 79

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Mechanisms for a SNP variance e↵ect . . . . . . . . . . . . . . . . . . 79

6.1.2 Variance prioritization applications . . . . . . . . . . . . . . . . . . . 79

6.1.3 A review of variance homogeneity test . . . . . . . . . . . . . . . . . . 80

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Levene’s test with median and its multivariate generalization . . . . . 82

6.2.2 Multiple testing correction . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 Power calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.4 Exploration of the mechanisms of variance heterogeneity for lead SNPs

at vQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.5 G ⇥ E and G ⇥ G for lead SNPs at vQTL . . . . . . . . . . . . . . . 84

6.2.6 vQTL analysis for univariate facial traits . . . . . . . . . . . . . . . . 84

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 Genome-wide vQTL scans for the multivariate facial modules . . . . . 85

6.3.2 A post hoc power calculation for multivariate Levene’s test . . . . . . 86

viii



6.3.3 Little overlap of identified vQTLs between the two cohorts . . . . . . 88

6.3.4 Mechanisms of the observed variance heterogeneity . . . . . . . . . . . 88

6.3.5 G ⇥ Sex and G ⇥ G . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.6 vQTL analysis for univariate facial traits . . . . . . . . . . . . . . . . 100

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.0 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix A. Supplementary materials for Chapter 2 . . . . . . . . . . . . . . 119

Appendix B. Supplementary materials for Chapter 4 . . . . . . . . . . . . . . 122

Appendix C. Supplementary materials for Chapter 5 . . . . . . . . . . . . . . 135

Appendix D. Supplementary materials for Chapter 6 . . . . . . . . . . . . . . 151

Appendix E. List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 160

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ix



List of Tables

2.1 Contribution of the embryonic prominences to the adult face . . . . . . . . . 4

4.1 Module-wide association results of genes identified by MultiSKAT in the PITT

cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 SKAT and CMC test results of the association between the seven facial genes

and NSCL/P in a multi-ethnic study . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Single variant association and functional prediction for variants contributing

to the gene-level significance in the PITT cohort . . . . . . . . . . . . . . . . 41

4.4 Replication and meta p-values for genes identified in either PITT or Denver . 44

4.5 Discovery and replication results for individual variants in genes identified in

the Denver cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Significant genes in the meta-analysis of PITT and Denver . . . . . . . . . . 45

4.7 Single variant association for GRAMD1B and univariate facial linear distances

in the PITT cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Overview of TWAS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Study-wide significant TWAS genes . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 SNP-trait association p-values before and after conditioning on the predicted

expression of TWAS significant genes . . . . . . . . . . . . . . . . . . . . . . 63

5.4 COLOC analysis of multi-gene TWAS loci . . . . . . . . . . . . . . . . . . . 66

6.1 Genome-wide significant vQTLs in the PITT cohort . . . . . . . . . . . . . . 87

6.2 Genome-wide significant vQTLs in the Tanzania cohort . . . . . . . . . . . . 88

6.3 Results of gene-based rare and low-frequency variant association test at vQTLs 98

6.4 G ⇥ sex results for the lead SNP at the eight vQTLs . . . . . . . . . . . . . 99

x



6.5 Suggestive G ⇥ G for lead vQTL SNPs . . . . . . . . . . . . . . . . . . . . . 99

6.6 Proxy SNPs identified for rs1796391 (PRICKLE1 ) and rs10511683 (FOCAD)

in the replication cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 vQTL replication analysis results for the proxy SNPs of the discovery lead

SNP rs1796391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 G ⇥ G test p-values for the proxy SNP pairs in the replication cohort . . . . 110

A1 Genes identified in normal-range facial variation GWAS . . . . . . . . . . . . 119

B1 Previous genotype-phenotype associations for variants in the seven Multi-

SKAT significant genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B2 MultiSKAT results of ARHGEF18, CARS2, NECTIN1, and TELO2 in the

Tanzania cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C1 Suggestive TWAS genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C2 COLOC results at the 3q21.3 and the 1p12 locus . . . . . . . . . . . . . . . . 145

C3 Genes yielding stronger gene-level association in TWAS than SNP-level asso-

ciation in GWAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D1 Lookups of vQTLs in the PITT and the Tanzania cohorts . . . . . . . . . . . 158

D2 Top vQTL for each of the 24 univariate facial distances in the PITT cohort . 159

xi



List of Figures

2.1 Human facial development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Variant e↵ect size-population frequency relationship . . . . . . . . . . . . . . 9

2.3 Relation between a vQTL and a G ⇥ G . . . . . . . . . . . . . . . . . . . . . 16

3.1 A flowchart of the hierarchical modular phenotyping approach developed by

Claes et al [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Global-to-local facial segmentation of the PITT cohort . . . . . . . . . . . . 22

3.3 Global-to-local facial segmentation of the Tanzania cohort . . . . . . . . . . . 23

4.1 The 31 PITT facial modules included in low-frequency variant analysis . . . 28

4.2 Univariate facial phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Composite Manhattan plot showing results across 31 facial modules in the

analysis of the PITT cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Module-wide association results for significant genes . . . . . . . . . . . . . . 35

4.5 FUMA gene-set enrichment results for the seven MultiSKAT significant genes

in the PITT cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Magnitude of variant e↵ects in the PITT cohort . . . . . . . . . . . . . . . . 43

4.7 Manhattan plot for lower vermilion height highlighting GRAMD1B in the

PITT cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 TWAS flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Composite Manhattan plot for TWAS results in the PITT cohort . . . . . . . 62

5.3 SNP-philtrum associations conditioning on EEFSEC at the 3q21.3 locus . . . 65

5.4 Locuscompare plot for EEFSEC . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Locuscompare plot for HAO2 . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



5.6 Significant enrichment terms for TWAS results by FUMA . . . . . . . . . . . 69

5.7 An example TWAS locus where two genes had significant assoication . . . . . 76

5.8 Conditional analysis may fall short in sorting out the putative causal gene

when nearby genes share eQTLs . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 PITT vQTL: Regional plot of the 8q23.3 locus in module 35 (nasolabial) . . 89

6.2 PITT vQTL: Regional plot of the 10q25.3 locus in module 2 (nose, mouth) . 90

6.3 PITT vQTL: Regional plot of the 10p11.22 locus in module 37 (upper lip) . . 91

6.4 PITT vQTL: Regional plot of the 17q21.32 locus in module 6 (lower face) . . 92

6.5 Tanzania vQTL: Regional plot of the 2q22.3 locus in module 51 (nose) . . . . 93

6.6 Tanzania vQTL: Regional plot of the 4q13.1 locus in module 3 (nose, eye) . . 94

6.7 Tanzania vQTL: Regional plot of the 11q14.2 locus in module 47 (zygoma) . 95

6.8 Tanzania vQTL: Regional plot of the 13q21.22 locus in module 50 (nose) . . 96

6.9 Post hoc power calculation for the vQTL analysis . . . . . . . . . . . . . . . 97

6.10 Regional plot of the PRICKLE1 locus in cranial base width in the PITT cohort101

6.11 Regional plot of the FOCAD locus in cranial base width in the PITT cohort 103

6.12 Interaction e↵ect between rs1796391 (PRICKLE1 ) and rs10511683 (FOCAD)

in cranial base width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.13 Locuscompare plot for PRICKLE1 . . . . . . . . . . . . . . . . . . . . . . . 105

6.14 Stratified vQTL analysis of PRICKLE1 . . . . . . . . . . . . . . . . . . . . . 106

6.15 Sensitivity analysis of the PRICKLE1 vQTL . . . . . . . . . . . . . . . . . . 107

6.16 Results of the vQTL test for PRICKLE1 locus in the replication cohort . . . 108

6.17 Replication of PRICKLE1 ⇥ FOCAD interaction . . . . . . . . . . . . . . . 111

B1 Multivariate outlier for PITT module 27 . . . . . . . . . . . . . . . . . . . . 122

B2 Distribution of PCs in PITT module 27 . . . . . . . . . . . . . . . . . . . . . 123

xiii



B3 Pairwise Pearson correlation between individual PCs in 31 modules and 24

facial distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B4 Q-Q plots for MultiSKAT analysis of 31 facial modules in the PITT cohort . 125

B5 Expression of MultiSKAT significant genes in GTEx tissues relevant to facial

morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B6 Q-Q plots for MultiSKAT analysis of 31 facial modules in the Tanzania cohort 129

C1 TWAS regional plot of CCDC91 . . . . . . . . . . . . . . . . . . . . . . . . . 139

C2 TWAS regional plot of LTB4R . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C3 TWAS regional plot of LINC01006 . . . . . . . . . . . . . . . . . . . . . . . 141

C4 TWAS regional plot of ADH6 . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C5 Q-Q plots for TWAS using the MASHR model . . . . . . . . . . . . . . . . . 143

C6 Q-Q plots for TWAS using the EN model . . . . . . . . . . . . . . . . . . . . 144

D1 Q-Q plots for the vQTL analysis . . . . . . . . . . . . . . . . . . . . . . . . . 152

D2 Locuszoom plot for suggestive G ⇥ G involving lead vQTL SNPs . . . . . . . 153

D3 Plots for the genome-wide search of G ⇥ G . . . . . . . . . . . . . . . . . . . 155

D4 Q-Q and Manhattan plot for the vQTL test of cranial base width in the PITT

cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

D5 Q-Q plot for the vQTL test of zygion-to-zygion distance in the Korean repli-

cation cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D6 Q-Q plot for the G ⇥ G test of zygion-to-zygion distance in the replication

cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xiv



Preface

I am grateful to all of those who have helped me along the way during my PhD journey.

Without them, I would not have been able to complete this dissertation project and would

not have made it through my PhD degree. I relish all I have learned and all the friends I

made along.

I would like to express my deep appreciation and gratitude to my dissertation committee,

Dr.John Sha↵er, Dr.Daniel Weeks, Dr.Seth Weinberg and Dr.Jiebiao Wang. Their insightful

guidance throughout have made undertaking this project an inspiring experience for me. As

my chairman, Dr.Sha↵er oversaw all aspects of this project and provided a great amount

of invaluable feedback to guide my work. Dr.Weinberg has extensive domain knowledge

into the subject matter - human craniofacial anatomy and development - which steered me

through this research. Dr.Weeks is thoroughly knowledgeable in statistical genetics and has

helped me substantially in ensuring the statistical aspects of my research to be solid and

sound. Dr.Wang is a real expert in biostatistics and bioinformatics and has given me plenty

of actionable suggestions to improve my work. Their wise guidance contributes a lot to my

intellectual growth during my years of study here. Thank you to all my committee members,

without your wise guidance this project would have not been the same. Beyond this project,

each one of my committee members have provided me extensive personal and professional

guidance, taught me a great deal about doing science, and have been extremely supportive

of my career goals.

Special thanks to my supervisor, Dr.John Sha↵er, for the patient guidance and men-

torship he provided to me, all the way from when I first applied to the PhD program in

the Human Genetics Department, through to the completion of this degree. Dr.Sha↵er has

taught me more than I could ever give him credit for here. His scientific brilliance and knowl-

edge have immensely helped me in making progress in all the research projects of mine; he

was always willing and enthusiastic to help me in any way he could. Thank you for being a

truly amazing mentor.

xv



Whole-heartedly I would like to say thank you to everyone at CCDG, the research center

where I conducted most of my PhD research work at. Thank you to Dr.Mary Marazita

and Dr.Eleanor Feingold, from whom I always see passion, enthusiasm and energy in genetic

research, which motivated me to o↵er my full e↵ort to every project. Thank you to all

the sta↵ members there for your collaborative e↵ort during data collection, cleaning and

management. Your work has provided me with the necessary resources that I needed in my

research. I am truly fortunate to have had the opportunity to work in such a fabulous team

and get to learn something from each one of its members. I am also thankful to my lovely

colleagues in the Sha↵er lab who together maintained a warm and supportive lab culture

and have made my lab experience very enjoyable.

I am thankful to the Department of Human Genetics and all the professors and sta↵

members for providing me with an excellent environment to learn, to research, to be curious,

and to make achievements. I appreciate everyone being so caring about the students in the

department. Also thank you to my fellow doctoral students for your feedback and friendship.

I cannot forget to thank my beloved family and friends for all the unconditional support

in my endeavours. You earned this degree right along with me.

I have had great pleasure to work with so many talented people during this and other

related projects. They have shown me by their own example what a good scientific researcher

should be. It is sincerely appreciated that the role models they set up direct the path for

me to keep making progress toward my goals.

This was an enriching journey and I relish all I have learned and all the friends I made

along.

xvi



1.0 Overall Research Goal and Specific Aims

The human face is a highly multipartite structure resulting from the intrinsic complexity

of facial morphogenesis and the intricate coordination of multiple factors that impact facial

morphology over the lifespan. The strong genetic basis and high heritability of human facial

morphology has been long appreciated, yet relatively little is known about the contributions

of specific genes to facial features [1]. Knowledge of the genetics underlying normal-range

facial variation is important for understanding the mechanisms of craniofacial morphogen-

esis and processes leading to aberrant craniofacial development, and will further provide

the foundation for developing e↵ective public health interventions. Genome-wide data of

carefully phenotyped human cohorts have yielded substantial knowledge in genome-wide as-

sociation studies (GWASs) of facial traits. Beyond the conventional single variant-single

trait association analysis in GWAS, those genome-wide data can be analyzed in many other

ways to gather additional insights into facial variation. This dissertation project focused on

three such analyses to study facial genetics in the post-GWAS era.

The overall objective of the current project was to promote the genetic understanding

of human facial variation. At their core, the strategies to achieve this goal were a series of

genotype-phenotype association analyses that leveraged existing data resources and state-

of-the-art advances in 3D facial phenotype modeling. Specifically, this project comprised of

three aims to improve knowledge of the genetic architecture of facial morphology:

Aim 1: Interrogate the role of rare and low-frequency coding variants in facial morphology

through an exome-wide gene-based association analysis

Aim 2: Identify putative functional genes underlying the SNP-face association via the inte-

gration of expression quantitative trait locus (eQTL) data with GWAS data, with specific

analyses including transcriptome-wide association study (TWAS), conditional analysis and

colocalization analysis

Aim 3: Examine the genetic e↵ects on facial phenotypic variability by conducting a genome-

wide scan for Variance Quantitative Trait Loci (vQTLs), and explore the underlying mech-
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anisms for the identified vQTLs with a special focus on interaction e↵ects

Studies of other human polygenic diseases and traits have demonstrated the usefulness

of these analysis strategies [2–9]. By applying them for the first time to the field of facial

genetics, this project represented critical steps to make full use of the genome-wide data on

well-characterized human cohorts, the results of which greatly forwarded our understanding

of the genetic architecture of facial variation. The application of various statistical genetic

approaches provided opportunities to evaluate their usefulness for polygenic, multivariate,

and morphological traits, which will help inform future study of other complex phenotypes.

Knowledge generated from this study can help provide a roadmap for understanding the

genetic underpinnings of craniofacial phenotypes and birth defects, pave the way for advances

in personalized prevention and therapeutics of related conditions, and inform DNA-based

facial prediction for clinical and forensic application.
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2.0 Introduction

2.1 Face development

Human facial morphogenesis is the result of an intricate coordination of a series of pre-

cisely timed embryonic events. The process involves extensive interaction and movement of

the derivates of all germ layers. The majority of anterior facial tissues, including cartilage,

bone, and musculature are derived from the cranial neural crest cells (CNCC) which migrate

ventrally into the first pharyngeal arch and frontonasal process [10]. Pharyngeal arches are

the earliest primordia of face and appear at around 4th week of gestation. The first arch is

of primary relevance to face and it later splits into upper maxillary and lower mandibular

swellings (aka processes or prominences), which will give rise to the cartilage, bones, and con-

nective tissue of the upper and lower jaw, respectively [11]. The maxillary and mandibular

prominences are initially bilateral, and increasingly grow towards the midline as embryonic

development continues. The frontonasal prominence, derived directly from CNCCs, give rise

to the lateral and medial nasal processes which will later be separated from the maxillary

prominence by deep furrows. The inward growth of the two maxillary prominences pushes

the two medial nasal prominences together such that they fuse to form the midline of the

nose and philtrum of the upper lip. The mandibular processes also grow together to form

a single mandible. All facial prominences are fully integrated by the 10th week of human

embryonic development. Dworkin et al. [12] devised a schematic diagram of human facial

development (Figure 2.1) displaying the above processes. Table 2.1 relates the embryonic

structures to the corresponding components of the adult face. Disruption of the development

of these facial prominences can result in a variety of facial anomalies including orofacial cleft,

cleft lip, frontonasal dysplasia, etc.

Many studies have contributed to the revelation of pathways and genes involved in cran-

iofacial development. Some critical regulators include SHH [13, 14], BMP [15, 16] and FGF

families [17,18], and there is extensive co-regulation and interaction among them [19,20]. A
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Figure 2.1: Human facial development. Reproduced from Dworkin et al. 2016 [12].

Table 2.1: Contribution of the embryonic prominences to the adult face

Prominence Adult structure

Frontonasal Forehead, nose bridge

Medial nasal Nose midline, philtrum

Lateral nasal Alae of nose

Maxillary Cheeks, lateral upper lip

Mandibular Lower lip, jaw
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large number of genes are expressed and involved in the formation of the face [21]. Given

the complexity and the multipartite nature of head and face, the molecular mechanisms

crucial for the patterning and formation of craniofacial structures are not yet completely

understood.

2.2 A review of human facial genetics study

2.2.1 GWAS of normal-range facial variation

Human facial morphology is a highly variable, complex trait with strong genetic influence

as demonstrated by animal studies [22–24], human genetic syndromes [25], and heritability

studies [26–29]. For more than a decade, significant progress has been made in elucidat-

ing the genetic basis of normal-range facial shape variation by the collective e↵orts from

various research groups [1]. Table A1 summarizes the genes that have been identified in

GWASs of facial morphology to date together with their putative biology functions. The

initial successes largely featured GWASs on well-characterized cohorts with both 3D fa-

cial images and genomic data [30–38]. These studies derived a variety of facial biometrics

from three-dimensional facial images or head magnetic resonance images, including facial

landmark distances, angles, curvatures, and composite variables as a more comprehensive

representation of shape. Faces studied came from several major populations around the

world (European, African, Latin American and Asian) and span a wide age range, with

the typical size of studies being a few hundreds to several thousands. In addition to co-

horts of unrelated participants, some studies took e↵orts to phenotype relatives and focused

primarily on highly heritable facial aspects in order to expedite gene mapping [32]. All of

these e↵orts have together led to the identification and replication of a fair amount of com-

mon genetic variants influencing facial morphology. Some of the identified variants/genes

are being further investigated in functional experiments to verify their role in craniofacial

morphogenesis.

Despite the substantial progress, relatively little is known about how specific genetic
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variants influence the phenotypic expression of many facial traits. Few of the GWAS hits

have been rigorously pinpointed to a specific gene, and roles of these genes in craniofacial

morphogenesis are yet to be experimentally validated. The highly complex nature of cranio-

facial morphogenesis and growth also indicates the existence of many undiscovered genetic

factors. The infamous issue of missing heritability has motivated researchers studying other

complex phenotypes to look beyond the marginal e↵ects of common SNPs that are routinely

studied in GWAS [39], yet so far little such e↵ort has gone into facial genetics. Besides ef-

forts toward larger cohorts and meta-analysis, strategies of tracking the genetic contribution

missing from existing GWASs can be equally useful and worth pursuing in parallel.

2.2.2 Gene discovery was stymied by the suboptimal quantification of facial

shape

Modeling three-dimensional geometry has long been a challenge in facial gene discov-

ery. The traditional quantification of facial features gives simple linear distances or angles

based on landmark points on facial surface. Such measures rely heavily on the placement

of landmarks and do not represent well certain areas of the face, resulting in a great loss of

geometric information. Moreover, they are chosen a priori based on convenience rather than

biological relevance. Under the conventional phenotyping scheme, the entire facial shape was

analyzed as a combination of sparse univariate “surrogates” that are far from complete and

e�cient. Early GWASs analyzing these distance/angle phenotypes individually usually only

generated no more than a dozen significant associations, despite with tens of facial features

tested [34,37,40]. In addition, there is no simple solution for balancing the trade-o↵ between

the number of traits to include and the burden of multiple testing in statistical analysis,

which has hindered research progress.

2.2.3 A more e�cient phenotyping approach

In order to improve upon the standing landmark-based strategy with more e↵ective ap-

proaches, our group developed a comprehensive global-to-local modular phenotyping system
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in 2018 [31]. This innovative approach was based on the modular organization of the face as

a natural consequence of processes involved in craniofacial morphogenesis. The new repre-

sentation of the facial morphology is a hierarchical framework that partitions the 3D surface

into nested segments arranged from global to local, with the full face at the most global level

and sets of confined facial segments arranged towards the most local level. This organization

allows for an open-ended scan for genetic variants exhibiting a range of e↵ects at di↵erent

scales. The shape variation within individual facial segments was extracted through prin-

cipal component analysis (PCA) and represented by multiple principal components (PCs),

which enables subsequent statistical analysis to be done in a multivariate framework. These

information-dense multivariate phenotypes were shown to be much more e↵ective in gene

mapping compared to the traditional sparse univariate traits. We were able to identify 38

loci in a cohort of 2,329 individuals by analyzing these multivariate facial phenotypes [31],

demonstrating a greater success despite a smaller sample compared to prior works on uni-

variate facial features [34, 37,40].

2.3 Rationale for the specific aims

2.3.1 Aim 1: Rare and low-frequency coding variants analysis

Rare and low-frequency variants are commonly defined as variants with a minor allele fre-

quency (MAF) below 1% and in between 1 and 5%, respectively. They have been suggested

to account for part the missing heritability in both theoretical and empirical studies [41–44].

Conceptually, variants that heavily predispose individuals to diseases are under strong puri-

fying selection pressure and thus are kept at a low frequency [45–47]. Evolution dictates an

inverse e↵ect size-population frequency relationship, which is widely observed and well ap-

preciated as a common law for most complex traits, although not without exception (Figure

2.2). GWAS was not designed for studying these variants; fortunately, lessons on their e↵ects

are beginning to emerge from exome-wide and genome-wide sequencing studies. A number

of studies have explored the contribution of rare and low-frequency variants in various hu-
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man traits and disorders [3, 48–52]. For example, rare coding variants were estimated to

account for nearly 5% of the heritability of multiple sclerosis risk [50]. An exome-wide study

of human height identified 83 coding variants with frequencies below 5% and large e↵ects

of up to 2 centimeters per allele. About 1.7% of the heritable variation of adult height was

attributed to rare and low-frequency coding variants. A more recent study with an exclusive

focus on variants below 0.1% reported 64 statistically significant genes for a variety of human

phenotypes in over 70,000 exomes, using electronic health records [48]. These studies serve

as a proof-of-principle in support for the general involvement of low-frequency variants in

complex human traits.

Studying rare and low-frequency variants also has great potential in unraveling addi-

tional core genes and functions which may lead to more direct insights into disease biology.

Coding variants are more interpretable and experimentally tractable than non-coding varia-

tion. This feature complements well with GWAS, where identifying and characterising causal

variants and mechanism presents remarkable challenges. As shown in Figure 2.2, detectable

low-frequency variants are expected to have larger e↵ect sizes compared to common SNPs,

making the variants more amenable to experimental verification. The aforementioned height

study followed their findings from the human association data and pursued in vitro func-

tional validation for STC2, demonstrating how they were able to trace the molecular path

from a single-base DNA substitution to changes in protein binding activity and eventually

to an altered phenotype in the expected direction at the organismal level [2]. Another suc-

cessful example was reported in Liu and colleagues’ exome-wide study, where the statistical

association between A1CF and blood triglyceride levels was strongly supported by their

functional work in human cell lines and mouse models [51]. The authors observed reduced

secreted APOB transcript levels in human hepatoma cells with induced deletion of A1CF,

and further found that knock-in mice had 46% higher triglyceride than the wild-type mice.

Altogether, these results illustrate the biological value of studying rare and low-frequency

genetic variants.

Detecting variants that fall to the left in the allele frequency spectrum presents special

challenges. Insu�cient power and di�culty in replication are among the most prominent
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Figure 2.2: Variant e↵ect size-population frequency relationship. Reproduced from

Manolio et al 2009 with permission [39].

ones, both stemming from the scarcity of variant carriers in the populations. Classical single-

variant tests would have at best modest power given the typical sample size for rare and

low-frequency variant studies. A simple yet e↵ective way to increase power is to use collapsing

approaches [53]. The idea is to aggregate e↵ects by binning qualifying variants into groups,

usually combined with strategies to enrich risk e↵ects by only focusing on a certain class of

variation, such as nonsynonymous variants, loss of function variants or variants predicted to

be deleterious. Units of association are usually selected to be biologically relevant regions

such as genes, exons, enhancers, and pathways. This collapsing strategy has been widely

adopted by many rare variant studies to date. The other challenge, replication di�culty, is

a more intrinsic issue. By nature, rare and low-frequency variants tend to be population-

specific and are likely to be absent in study cohorts di↵erent from the one where they were

originally detected. When they do present in multiple cohorts, a meta-analysis can help.

Tools specifically designed for meta-analyzing rare variants including RAREMETAL [54,55]
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and MetaSKAT [56] have demonstrated their usefulness in identifying additional variants and

genes. Some studies managed the replication problem by taking another route - skipping

statistical replication and seeking directly for functional validation [2], which may lend even

stronger support although being demanding on resources.

There are a good number of statistical methods and associated software packages specif-

ically configured for collapsing tests, most of which fall into two main categories: burden

tests and variance-component tests [57, 58]. The burden test and its generalizations include

CAST [59], CMC [60], WSS [61], aSum [62], VT [63], etc. These methods assume that all

variants in a test unit influence the phenotype under study in the same direction. Variance-

components type of tests, such as sequence kernel association test (SKAT) [64], SSU [65]

and C-alpha [66], lift this assumption and are more powerful in the presence of both trait-

increasing and trait-decreasing variants, or when not all variants are causal. When there is

limited prior knowledge of the underlying genetic architecture, omnibus tests such as SKAT-

O [67] and Mist [68] can be more e↵ective by combining evidence from both burden and

variance component tests. The success of these approaches in identifying causal genes for a

variety of human traits has illustrated the applicability of collapsing analyses over diverse

disease architectures, study designs and sample sizes [2, 69, 70].

Rare and low-frequency variants have not been studied for associations with human

facial features. Based on findings from other polygenic morphological traits, it is reasonable

to hypothesize that rare and low-frequency variants also contribute to facial morphology.

This aim therefore asked several key questions concerning the genetic architecture of facial

morphology: 1) Do rare and low-frequency variants have a role in facial morphology? 2)

How big is their role? 3) Which genes are implicated? 4) Do these genes overlap with

those already implicated by common variants in prior GWASs? 5) Do these genes also play

a role in craniofacial anomalies, in particular orofacial clefts? Answering these questions

will broaden the allele frequency spectrum of genetic variants ever studied and give a more

comprehensive view of the genetic architecture of facial morphology.
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2.3.2 Aim 2: Transcriptome-wide association study

Despite the substantial progress made by GWAS, top SNPs at GWAS loci often reside

in non-coding regions and the identified trait-associated loci often harbor multiple genes,

making it challenging to identify the causal ones [71]. This is in part due to the di�culty

connecting regulatory variants to their target genes in the right cell types and right physi-

ological contexts using existing data. This missing functionality issue represents one of the

biggest challenges in GWAS and has drawn great research e↵orts worldwide. A major area

of research with the intention to tackle this challenge involves the integration of functional

genomics datasets with the genome-wide data [72]. Multi-omics data, such as genomics,

transcriptomics, proteomics, epigenomics, metabolomics and so on, can be not only use-

ful in establishing the molecular or statistical links across complex biological networks, but

also in inferring the intermediate molecular profiles of individuals on whom not all of these

data are collected. This e↵ort is made possible by the rich data resources generated from

consortia such as GTEx, ENCODE and Roadmap projects [73–75]. A wide range of sta-

tistical methodologies have been developed or extended based on this idea, which includs

methods falling under the categories of fine-mapping approaches, transcriptome-wide asso-

ciation study (TWAS), colocalization analysis, Mendelian Randomization with the exposure

of interest being molecular phenotypes, and methods for inferring disease tissues and cell

types.

TWAS originates from the idea that non-coding risk variants can influence individuals’

genetic propensity through their regulatory role on gene expression. TWAS tests for the

association between a trait and the genetically regulated gene expression (GRex) predicted

from a set of pre-computed gene expression weights and either the individual-level genotype

data or summary-level association statistics [76]. The pre-computed weights, also referred to

as expression prediction models, have to be generated from matched genome and transcrip-

tome data on the same individual. GTEx [73] is one of the major ongoing projects collecting,

housing and updating such data, and has greatly promoted the discovery of abundant cis ex-

pression quantitative trait loci (cis-eQTLs) with a small number of trans-eQTLs as well. Cis

and trans refer to whether an eQTL is locally-acting or remotely-acting on its target gene.
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Trans-eQTLs are especially di�cult to pinpoint because they can be located anywhere in the

genome and tend to have only modest e↵ects on gene expression. Although they are known

to explain important expression variation for many genes, most existing TWAS tools are not

able to assess those distant genetic regulation e↵ects due to the limited number of discovered

trans-eQTLs. At the core of these TWAS tools are the expression prediction models, which

were already provided by others and a user will only need individual level genome-wide data

or summary level GWAS statistics to run a TWAS. Since its first introduction, TWAS has

been widely applied and has shown its usefulness in studying diverse kinds of diseases and

traits [5, 6, 77–79].

The TWAS design confers several strengths: (1) there is a reduced multiple testing

burden compared to GWAS because the number of genes is substantially lower than the

number of common SNPs; (2) by using genes as testing units, results from TWAS are more

biologically interpretable; (3) predicting expression from genome data is much less costly than

measuring expression by RNA-sequencing, which makes its application possible on biobank-

scale sample size; (4) predicting gene expression from (loosely speaking) fixed genotype

obviates the di�cult argument on whether changes in expression level cause or follow from

disease onset, whereas a direct mRNA-trait association analysis is inevitably prone to the

issue of reverse causality; (5) directionality of the gene-trait association is apparent in TWAS,

which can give hints for the mechanisms of the genetic e↵ect.

The intermediate molecular trait does not have to be expression; a variety of other types

of QTLs, such as methylation QTL, splicing QTL, and protein QTL can all be used in a

similar way. They are less popular than eQTLs simply because that expression is the first step

in gene regulation and the field has not gotten far enough beyond expression. Nevertheless,

the body of research on various molecular phenotypes is growing fast, and in fact alternative

splicing prediction has already been incorporated into some TWAS software [80]. Several

implementations of TWAS are available. PrediXcan [81], the ever first TWAS software,

initially trained elastic net expression prediction models and required individual level data

on its application cohort. Later, the authors derived a mathematical formulation which

achieved comparable results using only GWAS summary level data (S-PrediXcan) [82]. More
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recently, PrediXcan further updated their models using a di↵erent strategy, Multivariate

Adaptive Shrinkage in R (MASHR), for eQTLs on the GTEx v8 release data [80]. The

MASHR-based model takes advantage of the correlation of gene expression between tissues

and has a superior performance than those early versions trained by elastic net.

Another popular TWAS tool which also takes in summary statistics is FUSION [83].

FUSION adopts a Bayesian predictor to impute gene expression from genotypes, and incor-

porates a convenient function to run conditional analysis for examining how much of the

GWAS signal remains after the gene-trait association is adjusted for. It also provides an

omnibus test for e↵ects across multiple reference panels. The application of FUSION in a

large prostate cancer study identified 217 genes at 84 independent loci, several of which were

novel, i.e. with no nearby GWAS signals [5]. The study also emphasized the importance of

alternative splicing in prostate cancer risk by using splicing QTL data. The authors further

extended their method to include chromatin marks, which was shown to be able to sort out

candidate regulatory elements for the phenotype [6]. Their work represented a successful

application of TWAS where it was able to discover a considerable number of novel genes

that do not overlap with known GWAS loci.

More recently, a nonparametric Bayesian approach, Transcriptome-Integrated Genetic

Association Resource (TIGAR), was developed specifically for modelling the complex genetic

architecture of transcriptome [84]. The authors showed in the simulations as well as in

the real-data analysis that TIGAR was able to fit transcriptomic imputation models for

more genes and to achieve an improvement in expression imputation accuracy. Shortly

after TIGAR was developed, the authors further extended the Bayesian TWAS approach

to leverages both cis- and trans-eQTL information for TWAS [85]. By applying their new

method to several Alzheimer’s dementia datasets, they identified a novel risk gene that was

completely driven by trans-eQTL.

There has not been TWAS conducted on human facial traits before this dissertation

project. Given the rapid progress on the methodology and its successful application to other

complex traits, TWAS will likely also benefit the gene mapping e↵orts for human facial

morphology.
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2.3.3 Aim 3: Variance quantitative trait locus analysis

Human genetic studies of quantitative traits so far have overwhelming focused on detect-

ing variants whose genotype groups have di↵erential mean values of the phenotype, and have

been very successful in mapping QTLs and estimating their e↵ects averaged in a population.

On the other hand, the variability of human phenotypes across genotype groups has not

received much attention despite it also being genetically regulated [86,87]. Phenotypic vari-

ation being a phenotype on its own and the genetic control of it are indeed widely appreciated

concepts in quantitative and evolutionary genetics, agriculture, animal breeding and plant

genetics [88–90], but much less so in the field of human genetics. With the contribution of

variability to overall phenotypic variation being ignored, traditional GWAS may potentially

miss an important axis of genetic variation underlying individual di↵erences [88].

Phenotypic variation may stem from developmental plasticity, a phenomenon wherein

individual genotypes are able to produce distinct phenotypes in di↵erent genetic or environ-

mental contexts [91]. The ability to produce plastic responses under heterogeneous conditions

is a fundamental requirement of evolutionary processes, may confer adaptive advantages and

thus be promoted by natural selection [92–94]. On the other hand, being able to produce a

stable and robust phenotype under environmental and genetic perturbation is also an impor-

tant feature for organisms to persist during evolution [95,96]. The intricate balance between

these two opposite forces is not yet fully understood [97]. Robustness and plasticity can be

studied in model organisms but not in human populations using experimental approaches,

which partly explains why human geneticists have not been as much involved.

The genetic basis of phenotypic variability can be examined by means of variance quanti-

tative trait locus (vQTL). SNPs at vQTLs exhibit interindividual intragenotypic variability,

i.e. one of the alleles is associated with a larger phenotypic variance compared to the other.

vQTLs have been shown to be as common as quantitative trait loci (QTLs) in Arabidop-

sis [89], yet their occurrence and e↵ects remain largely uncharacterized in humans. In

traditional QTL studies where means of a trait are compared among genotype groups, any

di↵erences in trait variation are treated as a nuisance, or assumed to be absent. On the con-

trary, vQTL studies consider such di↵ering variation as the primary target of investigation.
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vQTLs may or may not also have an e↵ect on the phenotypic mean, and those without QTL

e↵ects would be missing from conventional association studies. Phenotypic variability and

vQTLs are topics that have remained largely unexplored for human facial morphology.

Di↵erential phenotypic variance may arise from interaction e↵ects [98, 99]. Interaction

happens when trait-influencing factors crosstalk with each other as they operate, rather than

act independently. Interaction between genetic factors is also known as epistasis. There is

a consensus that the undetected interaction represents a critical source of missing heritabil-

ity [100]. However, as a non-additive genetic e↵ect, interaction is so far a much under-

researched area due to low statistical power and the di�culties in measuring environmental

fluctuations. Polygenic traits are influenced by numerous genetic and non-genetic factors,

which in combination may give rise to vast and usually unknowable interaction map. For

practical reasons, most association studies focus solely on the main e↵ect of contributing

factors, leaving interaction e↵ects under-researched for many diseases/traits.

There are formal statistical tests for interaction, but a shortcut is to take advantage

of vQTLs. Certain types of gene by gene interaction (G ⇥ G) and gene by environment

interaction (G ⇥ E) lead to unequal variance of a quantitative trait across di↵erent genotype

groups [98, 99, 101]. A graphical illustration can be seen in Figure 2.3, where the increased

variance is the result of alleles at one SNP moderating the e↵ects of alleles at a second SNP.

The same principle applies to cases where the interaction involves a SNP and an environ-

mental factor. This interaction-variance heterogeneity connection can therefore be used to

prioritize SNPs for formal interaction tests. A number of studies have demonstrated the

usefulness of this strategy. For example, a study found that a vQTL in FTO gene conferred

a di↵erence of 0.5 kilograms in standard deviation of weight between opposite homozygous

groups, and this e↵ect was consistent with the reported FTO-environment interactions for

BMI [102]. The same approach was applied to 13 quantitative traits in UK Biobank samples,

and a significant enrichment of G ⇥ E e↵ects was observed among the detected vQTLs [8].
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Figure 2.3: Relation between a vQTL and a G ⇥ G. Reproduced from Ronnegard et al

2012 [103]. (a) Phenotype values stratified by genotype at a hypothetical vQTL. (b) Variance

heterogeneity could have arisen through a G ⇥ G with a second locus that segregates two

genotypes (black and gray).

Molecular phenotypes such as gene expression, DNA methylation and protein levels have

also been the subject of vQTL and/or interaction studies [86, 101, 104, 105]. For exam-

ple, significant vQTLs were identified for two cardiovascular protein biomarkers in Women’s

Genome Health Study, where the observed variance heterogeneity was suggested to be ex-

plained by interacting e↵ects between vQTLs and BMI/smoking [101]. It should be noted

that interaction is one of the explanations of variance heterogeneity; other mechanisms can

also manifest as di↵erential variance. Although vQTLs and interaction e↵ects are neither

su�cient nor necessary to each other, a detected vQTL does signify the possible presence of

unmodeled statistical interaction, which can be examined further.

Studying variance e↵ects has important medical implications. Many diseases emerge as

their underlying quantitative traits exceed phenotypic thresholds, such as obesity and hyper-

tension, which are defined based on high BMI and blood pressure, respectively. For diseases

without a simple quantitative diagnostic criterion, the liability threshold model of diseases

proposes that there exists an underlying liability which summarizes all disease-related ex-
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posures for an individual. This liability can be thought of as the analogous quantitative

phenotype. At a vQTL, genotypes that produce a more variable phenotype will have a

larger proportion of individuals exceeding the dividing threshold than other genotypes, lead-

ing to higher disease risk even when di↵erent genotype groups do not di↵er in the mean of

the continuous phenotype or liability. Thus, alleles with extreme variability may be harmful

to an individual and increase disease risk in the population.

2.4 Public health relevance

Evidence so far has suggested an overlapping genetic control between normal facial mor-

phogenesis and abnormal facial development [106–108]. Studying the genetics underlying

normal-range facial variation, therefore, can improve our knowledge of the complex relation-

ship between genotype and phenotype in craniofacial syndromes and birth defects. These

conditions are a source of major morbidity with both physical and psychosocial consequences

imposing great public health burden [109,110]. Knowledge on normal and abnormal cranio-

facial development will be essential for devising novel clinical approaches to prevent, treat

and manage craniofacial conditions.

Another promising application of the genetic knowledge on facial morphology is DNA-

based facial prediction and reconstruction, which has been accumulating enormous interests

in clinical and forensic settings. Personalized planning of craniofacial surgery and orthodon-

tics procedures, by leveraging the natural craniofacial growth informed by one’s genotype, is

already shifting from theory to reality [111]. Likewise, genetic facial prediction for forensic

purposes is an area of interest to law enforcement [112]. The recovery of face from DNA

remains challenging because the complex molecular and environmental interactions involved

in facial development is still incompletely understood [113]. Research to better understand

the genetic basis of human facial shape will provide the necessary scientific foundation for

DNA-based facial profiling and ultimately inform such real-world applications.
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3.0 Cohorts and Data

3.1 Cohorts and genotyping

This dissertation project involved three human cohorts consisting of unrelated, healthy

individuals of di↵erent ancestries. (1) The PITT cohort included 2329 Europeans collected

in Pittsburgh, Houston, Seattle and Iowa City, USA. The cohort ranged in age from three

to 49 years and had a female proportion of 62%.(2) The Denver cohort had 664 Hispanic

White individuals collected at Denver and San Francisco, USA. The cohort was consist of

children ranging in age from three to 12 years and had a female proportion of 52% (3) The

Tanzanian cohort consisted of 2595 African participants collected at several sites in Tanza-

nia.The Tanzanian cohort ranged in age from three to 21 years and had a female proportion

of 56%. For all cohorts, participants were eligible if they had not experienced facial trauma,

major surgery, congenital facial anomalies that could potentially a↵ect their natural facial

structure. In the PITT and the Denver cohorts, 3D images of participant’s resting face were

captured using the 3dMD face camera system. The Tanzania participants were photographed

using Creaform MegaCapturor II or Gemini white light 3D photogrammetry systems.

The PITT and the Denver cohorts were genotyped on the Illumina OmniExpress +

Exome v1.2 array, which assays nearly 1 million SNPs including approximately 245,000

coding variants, and were fully imputed to the 1000 Genomes Project phase 3 reference

panel. The Tanzania cohort was genotyped on the Illumina HumanOmni2.5+Exome-8v1A

array covering over 2.5 million SNPs, which have been fully imputed to the 1000 Genomes

Project phase 1 reference. Data cleaning and quality control procedures were performed using

standard analysis pipelines [114]. Specifically, samples were interrogated for genetic sex,

chromosomal aberrations, concordance between genetic and self-reported ancestry, biological

relatedness among participants, missing call rate, and batch e↵ects. Variant-level evaluation

included missing call rate, discordance between duplicates, Mendelian errors, deviation from

Hardy-Weinberg equilibrium, and sex di↵erences in allele frequency and heterozygosity (for
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autosomal and pseudo-autosomal SNPs). Imputed SNPs were filtered by SNP-level INFO

score and genotype-per-participant-level genotype probability.

3.2 Phenotyping

The proposed project will take advantage of a novel approach, global-to-local hierarchical

modular phenotyping, for modeling the multi-dimensional facial shape. This approach was

developed by Peter Claes’s group at KU Leuven, and a detailed description of the process

can be found in Claes et al 2018 [31]. A flowchart of this hierarchical modular phenotyping

approach can be seen in Figure 3.1. Briefly, approximately 10,000 points, also called quasi-

landmarks, were automatically placed across the facial surface, by a non-rigid registration

of a standard facial template onto each surface. The result is that each quasi-landmark

represents the same facial position across all participants [115]. The configurations were

then co-aligned to their mean with generalized Procrustes analysis. The landmarks were then

clustered into groups of co-varying points in order to partition the full face into segments (also

called modules). This was accomplished through spectral clustering applied to the pairwise

correlation matrix of quasi-landmarks. Each partition generated two sub-segments, and

process was repeated for a total of five iterations to generate a hierarchy of 63 facial modules

comprising overlapping groups of quasi-landmarks. These modules formed successive levels

representing the shift from more globally integrated to more locally focused morphology.

The shape variation characterizing each module was represented by the 3D coordinates of

all quasi-landmarks contained therein. Principal components analysis and parallel analysis

were performed on the quasi-landmarks to form multi-dimensional phenotypes in which

the shape variation is represented by principal component scores (PCs). Each module was

represented by 5⇠50 PCs which were corrected for sex, age, height, weight, facial size and

genetic ancestry. These 63 multivariate modules will serve as the phenotype to be analyzed

individually in the statistical tests.

The hierarchical clustering of facial shape is shown in Figure 3.2 for the PITT cohort
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Aligned quasi-landmarks 

Align the 3D facial surfaces conditioning on age, 
sex and ancestry; ~ 10,000 quasi-landmarks

Construct a spectral map of 
the correlations among the 
quasi-landmarks

Apply unsupervised spectral 
clustering to partition the 
quasi-landmarks into highly 
correlated clusters

Arrange modules as a nested hierarchy

PC 1

PC
 2

PC 3

Perform PCA on each module 
separately to describe its shape 
variation. PCs served as the 
multivariate phenotype for 
association analysis

Figure 3.1: A flowchart of the hierarchical modular phenotyping approach de-

veloped by Claes et al [31]
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and in Figure 3.3 for the Tanzania cohort. Segments are shown in several colors with a

background face in gray. In the center is shown the most global segment representing the

full face, which is split into segments 2 and 3 as shown in the innermost concentric circle.

Moving outward across the five concentric circles, each facial segment is further partitioned

into two more localized segments. These segments are also referred to as modules hereafter.

Comparing Figure 3.2 and Figure 3.3, one can notice that the segmentation in the two

cohorts was in general consistent with each other. The second tier of the hierarchy in both

had four modules representing roughly the mouth/lip, upper face, lower face, and middle

face/nose area. At a finer scale, individual facial modules in one cohort may or may not have

an obvious counterpart in another. The forehead modules 30 in PITT and 20 in Tanzania,

for instance, largely overlap each other, while the orbital module 45 in Tanzania was not

present in PITT.

The Denver sample was projected onto each of the phenotypic traits (PCs in facial mod-

ules) learned in the PITT cohort because its sample size did not support a stable data-driven

segmentation. Consequently, the facial traits were kept fixed and thus consistent between the

PITT cohort and the Denver cohort, which facilitated using Denver as a replication dataset

for the PITT cohort and the meta-analysis of the two.

This global-to-local segmentation framework confers several benefits. First, it achieves

a compact and comprehensive representation of the 3D facial morphology. Shape variation

is preserved to the maximum extent so that unlike univariate traits derived from a limited

number of facial landmarks, little information is lost in our analysis. Meanwhile, PCA

within each segment produces a manageable set of phenotypes and investigating all PCs

simultaneously in a single multivariate framework would help reduce the multiple testing

burden. Second, the organization allows for an open-ended interrogation for genes exhibiting

a range of e↵ects at di↵erent scales. By gradually zooming into more localized facial area,

genes associated with a high level segment can be further refined to more specific facial

regions. The phenotypic pattern of association signals can also help with inferring the

possible biological mechanism and guiding functional experiments. Third, although the

segmentation is unsupervised and learned exclusively from the data, the resulting modules
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Figure 3.2: Global-to-local facial segmentation of the PITT cohort. Obtained

using hierarchical spectral clustering. Modules are colored on a gray background face.
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Figure 3.3: Global-to-local facial segmentation of the Tanzania cohort. Obtained

using hierarchical spectral clustering. Modules are colored on a gray background face.
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did show some degree of biological relevance. For example, module 4-7 at the second to the

innermost concentric circle roughly echo the three embryonic facial prominences - frontonasal,

maxillary and mandibular. Such biological relevance will facilitate the interpretation of gene

mapping results. Fourth, the data-driven approach circumvents the inherent di�culty in

defining proper facial measurements a priori and avoids the arbitrariness in the phenotype

selection process.

3.3 Consideration of the ethnicity

Cohorts involved in this dissertation project were each of a di↵erent ancestry (European,

Hispanic White, and African). The e↵ect of certain genetic variants on individual level

phenotypes and molecular traits are known to be di↵erent among populations/ethnic groups,

and this heterogeneity complicates multi-ethnic studies where groups are to be analyzed

as a whole. Two additional complicating factors need to be taken into account for this

specific project. First, low-frequency genetic variants in Aim 1 would rarely be shared across

ethnic groups and thus a joint analysis using individual level data, i.e. a mega-analysis,

should not be expected to add much to the study. Second, the data-driven phenotyping

approach generated di↵erent sets of facial modules for di↵erent cohorts. Some modules

have counterparts (those overlapping a lot) across cohorts, whereas other do not. Operation

of a meta-analysis on the summary-level data is much less clear as none of the modules

were identical between the two cohorts. With the consideration of these complications, this

project analyzed each cohort separately and except in Aim 1, did not pursue either a meta-

or a mega-analysis.
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4.0 Rare and Low-frequency Coding Variant Analysis

The analysis of the PITT cohort included in this chapter is under review as of this

writing.

4.1 Introduction

Although the strong genetic control of facial features has long been appreciated, knowl-

edge on specific genes underlying normal-range human facial variation is still poorly under-

stood. Common SNPs identified by GWAS cumulatively explain only a small fraction of

the heritable phenotypic variation. Based on large-scale genomic studies of other complex

morphological traits, such as height [2, 3, 51], we hypothesized that functional variants at

hundreds or perhaps thousands of loci have yet to be discovered. One proposed source of

the missing heritability lies in variants with lower frequencies that have not been investi-

gated in GWAS. We therefore aimed in this section to discover facial morphology-associated

low-frequency variants, in a gene-based manner, first in each of the three study populations

separately and then combing results across the two US cohorts by performing a meta-analysis.

4.2 Methods

4.2.1 MultiSKAT and Meta-MultiSKAT

This study used MultiSKAT and Meta-MultiSKAT [116,117] to carry out the exome-wide

gene-based low-frequency coding variant scans. The two methods belong to a recently devel-

oped statistical framework accommodating both (1) the low statistical power associated with

analyzing individual low-frequency genetic variation by implementing set-based tests, and (2)

the multi-dimensional nature of the facial phenotype. More specifically, MultiSKAT extends
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the mixed models-based kernel association test to a multivariate setting while adjusting for

covariates and accounting for family relationships. It is flexible in relating multivariate phe-

notypes to a collection of genotypes through the use of di↵erent kernel options, and includes

an omnibus test for integrating results across kernels in the absence of a priori knowledge. As

a set-based test, MultiSKAT assigns larger weights to rarer variants when aggregating across

variants within a testing unit. Meta-MultiSKAT further extends MultiSKAT for the purpose

of meta-analyzing across datasets. Since MultiSKAT and Meta-MultiSKAT are brand-new

methods, we closely monitored their behavior and performed quality control diagnostics in

applying these methods to our dataset. To the best of our knowledge, there are not yet any

alternatives, readily available tools for set-based association testing of multivariate traits.

MultiSKAT uses kernels to model one-to-many relationships: the phenotype kernel de-

scribes how one variant a↵ects multiple traits and the genotype kernel specifies how multiple

variants influence one trait. MultiSKAT provides two choices of the genotype kernel and four

choices for the phenotype kernel, and suggests using multiple kernels to obviate the need of

making upfront guesses of the unknown underlying genetic architecture. This study applied

their omnibus test to combine across four kernel combinations, with either SKAT or burden

as genotype kernel and either Hom or Het as phenotype kernel: (SKAT, Hom), (SKAT, Het),

(burden, Hom), and (burden, Hom).The Hom kernel assumes the e↵ect sizes of a variant

on di↵erent phenotypes are homogeneous while the Het kernel assumes the e↵ect sizes of

a variant on di↵erent phenotypes are heterogeneous. Among all four available phenotype

kernel options (Hom, Het, PhC, PC), three of them (Het, PhC, PC) are essentially the same

for standardised variables (facial PCs). Therefore, only one among the three was selected

for analysis, giving a total of two selected phenotype kernels. For the two available genotype

kernels, we used both of them.

4.2.2 Quality control on facial phenotypes

Analyzing rare variants presents several challenges, one of which is that many widely ap-

plied statistical tests become more prone to inflated type I error when phenotypic normality

does not hold [118]. In fact, we observed inflated MultiSKAT quantile-quantile (Q-Q) plots
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at first and identified a need to re-examine the phenotypic distribution of the facial PCs. To

accomplish this, we visualized the joint distribution of all PCs underlying each facial module

in Q-Q plots where the chi-squared quantiles were plotted against robust squared Maha-

lanobis distances. Outliers that fell far apart from the rest of the sample can be identified

by visual inspection.The Mahalanobis distance is a metric measuring how far an observation

is from the center of the joint distribution, which can be thought of as the centroid in mul-

tivariate space. Facial images associated with outlier observations were revisited to confirm

data validity and sample eligibility. After this procedure, one facial image was labelled as a

multivariate outlier for PITT module 27 (Figure B1). Pairwise distributions of the 16 facial

PCs in this module further revealed that this outlier had extreme values on four individual

PCs (PC9, PC11, PC13 and PC14, Figure B2). Subsequent analysis involving module 27

therefore did not use data from this individual. Inspection of the 3D image suggested a

potential artifact in the facial region represented by module 27. No outlying phenotypes

were spotted in either the Tanzania cohort or the Denver cohort.

To minimize potential spurious associations, the outermost layer of the module rosette in

Figure 3.2 and Figure 3.3 were excluded from low-frequency variant association test. These

modules were shown to be less robust in the previous GWAS in that SNPs significantly

associated with only the outermost modules but not more inner ones generally failed repli-

cation [31]. For variants with lower frequency and a brand-new statistical method that has

yet had su�cient real-world application to prove its empirical performance, it is safer to

restrict the analysis to better-behaved facial segments. The remaining 31 modules arranged

as a top-down tree structure for the PITT cohort can be seen in Figure 4.1. The e↵ective

number of tests (number of independent modules) was estimated to be 19 in the PITT and

the Denver cohort, and 20 in the Tanzania cohort according to Li and Ji’s eigenvalue-based

method [119]. These numbers were used for multiple testing correction.
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Figure 4.1: The 31 PITT facial modules included in low-frequency variant anal-

ysis. Modules are colored in blue.

4.2.3 Gene-level analysis

Imputed genotypes with a certainty above 0.9 were used to fill in any sporadic missing-

ness among genotype calls of the directly genotyped variants. Wholly unobserved, imputed

SNPs were not included in this analysis. Ancestry PCs based on common linkage disequilib-

rium (LD)-pruned SNPs were constructed and regressed out from the modular traits at the

phenotyping stage. Variants were grouped into genes if they (1) overlap with hg19 exons so

that only coding variants were included, (2) had a MAF below 1%, and (3) had at least 4

minor allele counts (MAC) for analysis in the PITT and Denver data, or at least 2 MAC for

analysis in the Tanzania data. Genes with less than two qualified variants were excluded.

The last criterion, a minimum MAC cuto↵, was applied per suggestion from the original Mul-

tiSKAT paper and further customized for each dataset to include as many genes as possible
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while maintaining a well-behaved statistic. The final numbers of variants included for the

analysis in the PITT, Tanzania and Denver cohort were 31347, 20468, 10684, respectively,

and the corresponding numbers of genes tested are 8091, 6235, 3660. The p-value thresholds

for declaring significance (set for each individual cohort) were 0.05/(8091 ⇥ 19) = 3.3⇥10-7

in PITT, 0.05/(6235 ⇥ 20) = 4.0⇥10-7 in Tanzania, and 0.05/(3660 ⇥ 19) = 7.2⇥10-7 in

Denver.

Genes and variants were annotated by Ensembl GRCh37. Several GWAS result annota-

tion tools, including GREAT [120], FUMA [121] and ToppFun [122], were used to perform

gene-set enrichment analysis with default parameter settings. We queried the GTEx database

for gene expression levels in face-related tissues. Results from this gene-based low-frequency

variant scan were compared with previous GWAS results in the same sample to explore the

e↵ects of variants with di↵erent allele frequencies.

4.2.4 Variant-level analysis

For genes identified by MultiSKAT, we scrutinized the quality of genotype calls by in-

specting allele intensity cluster plots. We then performed association tests of individual

variants with the corresponding facial segments using MultiPhen [123]. MultiPhen finds the

linear combination of facial PCs with the strongest association with the genotypes at a SNP,

and is especially appealing for this study due to its robust performance in scenarios where

rare variants are tested against non-normal phenotypes.

Variant-level bioinformatic annotation was done using CADD [124]. CADD is a com-

prehensive metric that weights and integrates diverse sources of annotation, by contrasting

variants that survived natural selection with simulated mutations. The scaled CADD score

expresses the deleteriousness rank in terms of order of magnitude. A score of 10, for instance,

is interpreted as ranking in the top 10% in terms of the damaging degree amongst reference

SNPs, and a score of 20 refers to 1%, 30 to 0.1%, etc. Individual exonic variants were looked

up in literature and by PhenoScanner [125] for existing genotype-phenotype associations.

The magnitude of phenotypic e↵ect of individual low-frequency variants was quantified
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by the di↵erence between averaged faces of variant carriers and non-carriers. This di↵erence

was further compared with that of the significant common variants identified in our previous

GWAS [31]. Specifically, the centroids of the multidimensional space defined by PCs in a

certain module were computed separately for people carrying the variant and people who do

not carry the variant. Then the Euclidean distance between the two centroids was calculated

as a measure of variant e↵ect size. The 95% confidence interval of the e↵ect size was obtained

by 5000 bootstraps. This work was done in collaboration with Harry Matthews from KU

Leuven.

4.2.5 Lookups of significant genes in orofacial clefting GWAS

Our group has previously conducted a low-frequency variant association analysis in oro-

facial clefting (OFC) datasets [126]. Following our hypothesis that genes influencing typical

facial presentation may also be involved in facial anomalies, we examined whether any sig-

nificant genes in the current study were associated with non-syndromic cleft palate with or

without cleft lip (NSCL/P). Summary statistics of the identified face-associated genes were

retrieved from the OFC study, where two types of statistical tests (SKAT and burden test)

were applied in four individual cohorts. The lookup p-values were compared to a Bonferroni

adjusted threshold of p-value < 0.05/(4 ⇥ 2 ⇥ number of genes looked up).

4.2.6 Replication and meta-analysis

The PITT and the Denver cohorts can serve as independent replication cohorts for each

other. Both gene-level and single variant-level replication analysis were performed for genes

identified in the discovery phase of individual cohorts. Meta-MultiSKAT was used to conduct

a meta-analysis of the PITT and the Denver cohort. The Tanzania dataset was excluded

from this e↵ort because (1) the facial modules were not the same as those of the US cohorts,

a result of the data-driven phenotyping process; (2) the participants were of a di↵erent

ancestry, adding another layer of complexity, especially for low-frequency variants on which

the e↵ect of population structure is not yet well understood. On the other hand, the PITT
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and Denver cohorts can be combined by meta techniques, free of the former concern and to

a lesser extent of the latter. Genes common in both cohorts were meta analyzed by meta-

MultiSKAT, assuming (1) the same and (2) di↵erent gene e↵ects between cohorts, followed

by a combination test of the two circumstances.

4.2.7 Low-frequency coding variant analysis for univariate facial traits

In addition to the multi-dimensional modular phenotypes, this project also analyzed

a set of traditionally defined univariate facial traits. This analysis was conducted in the

PITT cohort only, as the hand-placed landmarks used to generated linear distances were

not available in the Denver or Tanzania datasets. A total of 24 preselected linear distance

measures (Figure 4.2) were available for 2447 PITT subjects (mostly overlapping with the

2329 individuals included in the analysis of modular phenotypes). These univariate pheno-

types represented di↵erent morphological information than the multivariate modules, shown

by the low-to-medium Pearson correlations between them B3). Phenotypic residuals were

generated by regressing out the e↵ect of sex, age, age2, height, weight and facial size on the

24 facial measures. The independent number of phenotypes estimated according to Li and

Ji [119] was 17. We tested low-frequency variants on these residual phenotypes in a gene-

based manner while adjusting for ancestry PCs. We used two complementary score-statistics

based tests, SKAT and Combined Multivariate and Collapsing (CMC) methods as imple-

mented in rvtest [127]. Coding variants with a MAF below 1% were grouped into genes. A

total of 10725 genes with at least two qualified variants were included in the analysis, giving

an exome-wide significance threshold of 0.05/(10725 ⇥ 17) = 2.74⇥10-7. For significantly

associated genes, we scrutinized the quality of genotype calls by inspecting allele intensity

cluster plots, and further performed single-variant association tests.
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Figure 4.2: Univariate facial phenotypes. (A) Cranial base width, (B) Upper facial

depth, (C) Middle facial depth, (D) Lower facial depth, (E) Morphological facial height, (F)

Upper facial height, (G) Lower facial height, (H) intercanthal width, (I) Outercanthal width,

(J) Palpebral fissure length, (K) Nasal width, (L) Subnasal width, (M) Nasal Protrusion,

(N) Nasal ala length, (O) Nasal height, (P) Nasal Bridge Length, (Q) Labial fissure length,

(R) Philtrum length, (S) Upper lip height, and (T) Lower lip height, (U) lower vermilion

height, (V) Philtrum width, (W) Upper vermilion height,(X) Cutaneous Lower Lip Height
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4.3 Results

4.3.1 Low-frequency variant association results in the PITT cohort gene-level

analysis results

MultiSKAT identified seven genes (HFE, NECTIN1, CARS2, LTB4R, TELO2, AR,

FTSJ1 ) significantly associated with at least one facial module. Figure 4.3 shows the com-

posite Manhattan plot overlaying the results from all modules analyzed. Significant genes

are linked to their associated facial segments together with the p-values. Four genes (HFE,

CARS2, LTB4R, and TELO2 ) were associated with nose-related modules, and the others

were associated with modules of the chin, mouth, and cheek. Three genes reached the signif-

icance level in more than one module. We observed well-calibrated test statistics and little

evidence of inflation in the Q-Q plots (Figure B4).

A more comprehensive view of the genes’ phenotypic e↵ects, shown by the association

p-values across the entire facial segmentation hierarchy, can be viewed in Figure 4.4. For

each gene, its -log10(P-value) with 31 modules is shown as color shades ranging from the

minimum to the maximum (within each gene). A top-down tracing of the shade degree gives

an easy visualization of genes’ e↵ects propagating along the branching paths from the more

global segments to the more local segments. FTSJ1 had a broad range of e↵ects involving

facial regions from the full face to the most refined modules, while e↵ects of other genes were

more confined to local modules. Table 4.1 lists all facial segments and the corresponding

morphological areas where the seven genes showed an association p-value < 10-4.

We performed gene-set enrichment analysis to explore the functions associated with the

seven identified genes. Enrichment was detected for a variety of biological processes (Figure

4.5), especially those related to ion, metabolism, transportation and regulation. Enriched

molecular functions tended to be housekeeping and general processes, e.g. signaling receptor

and protein binding activity. Two genes with relatively well characterized functions, i.e.

HFE and AR, contributed a lot to the enrichment terms. In the GTEx database, these

seven genes showed measurable expression level in adipose, skin and muscle-skeletal tissue

(Figure B5), among which the strongest expression was seen for NECTIN1 in skin.
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Figure 4.3: Composite Manhattan plot showing results across 31 facial modules

in the analysis of the PITT cohort. The Manhattan plot shows the position of genes on

the x-axis and MultiSKAT p-values on the y-axis. A total of 31 points are plotted for each

gene, representing p-values obtained by testing their association with each of the 31 modules.

The red horizontal line indicates the study-wide significance threshold. The associated facial

modules and the corresponding p-value for each gene that surpassed the threshold are shown

above the Manhattan plot.
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Figure 4.4: Module-wide association results for significant genes. For each gene, the

–log10(p-value) is shown as color shades ranging from the minimum to the maximum, for 31 fa-

cial segments arranged the same way as in Figure 4.1.
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Table 4.1: Module-wide association results of genes identified by MultiSKAT in the PITT

cohort. Here we show associations with a p-value < 10-4

Chr Gene Module P-value Facial region

6 HFE

22 1.51E-10

nose
5 1.09E-07

10 7.11E-07

20 4.58E-05

11 NECTIN1
27 2.54E-07

chin13 2.56E-05

13 CARS2
10 5.22E-10

nose20 1.91E-09

14 LTB4R
20 6.88E-08

nose10 5.47E-07

16 TELO2
10 1.19E-09

nose20 2.79E-06

23 AR

18 1.77E-07

lip, philtrum4 7.00E-07

9 2.15E-05

23 FTSJ1

28 2.46E-10

full face, cheek

1 2.05E-08

6 2.41E-08

12 1.73E-07

3 9.48E-07

25 9.84E-07

24 1.84E-06

14 8.26E-05
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a) GO biological process

b) GO molecular function

c) GWAS catalog

Fig S2. FUMA enrichment results

Figure 4.5: FUMA gene-set enrichment results for the seven MultiSKAT signif-

icant genes in the PITT cohort
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To explore whether facial genes also a↵ect the risk of orofacial clefts, we retrieved the sum-

mary statistics of five of the seven face-associated genes from our previous OFC study [126].

Two genes (AR and FTSJ1 ) were not available due to a lack of variant carriers. Table 4.2

displays the SKAT and CMC test p-values for the five genes in Europeans, Asians, Latino

South Americans (LSA in Table 4.2) and combined populations. Two associations passed

a Bonferroni corrected threshold for 40 tests (5 genes ⇥ 4 populations ⇥ 2 type of tests):

TELO2 with a CMC p-value = 6.5⇥10-4, and HFE with a CMC p-value = 1.1⇥10-3, both

in the combined population of all ancestry groups.

4.3.2 Variant-level analysis results in the PITT cohort

Single variants in the seven significant genes were further tested individually for associ-

ation with the corresponding facial module, the results of which are displayed in Table 4.3.

Six SNPs from five genes yielded an association p-value < 0.05. SNP rs142932029 in FTSJ1

was strongly associated with module 28 with p-value = 1.59⇥10-14. Because no single variant

in HFE or LTB4R showed nominal significance, the gene-level signals reflected the cumu-

lative e↵ects of multiple low-frequency variants and the increased power of gene-based test.

Significance of other genes in the MultiSKAT test were to some degree driven by a specific

SNP. Most of the individual variants appeared at frequencies much lower than 1%, and all

are nonsynonymous variants except one splice site SNP in FTSJ1 (this SNP is also an exon

variant for a non-coding transcript of FTSJ1 ). Variants in NECTIN1, CARS2 and AR were

predicted to have a high probability of being deleterious with a CADD score greater than

20. PhenoScanner linked these coding variants with a variety of human traits/disorders in

previous studies (Table B1), including height, vascular diseases, osteoporosis, neoplasms etc.,

suggesting that coding variants influencing facial shape may be pleiotropic and play roles

in other biological processes. We compared the e↵ect sizes of all individual low-frequency

variants in the seven genes to that of the common SNPs identified in previous GWAS.

Phenotypic di↵erences between variant carriers and non-carriers were consistently larger for

low-frequency variants than for common SNPs, as shown in Figure 4.6.
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Table 4.2: SKAT and CMC test results of the association between the seven facial genes

and NSCL/P in a multi-ethnic study

Gene CHR Number of

variants

Study

population

Sample size SKAT P-value CMC P-value

HFE 6 6 All pops 3621 3.68E-03 1.10E-03

HFE 6 1 Asia 528 5.07E-01 5.07E-01

HFE 6 3 Euro 1411 5.35E-01 7.08E-01

HFE 6 4 LSA 1676 2.23E-02 3.49E-02

NECTIN1 11 5 All pops 3621 1.43E-01 5.30E-02

NECTIN1 11 1 Asia 528 1.31E-01 1.31E-01

NECTIN1 11 3 Euro 1411 5.95E-01 3.86E-01

NECTIN1 11 5 LSA 1676 3.91E-03 1.15E-02

CARS2 13 17 All pops 3621 5.55E-01 8.83E-01

CARS2 13 2 Asia 528 5.11E-02 9.95E-02

CARS2 13 7 Euro 1411 4.00E-01 4.59E-01

CARS2 13 11 LSA 1676 2.03E-01 8.58E-01

LTB4R 14 7 All pops 3621 8.25E-01 4.64E-01

LTB4R 14 3 Asia 528 3.37E-01 4.67E-01

LTB4R 14 4 Euro 1411 7.36E-01 4.83E-01

LTB4R 14 6 LSA 1676 1.33E-01 6.46E-01

TELO2 16 20 All pops 3621 7.44E-03 6.51E-04

TELO2 16 3 Asia 528 7.63E-01 8.29E-01

TELO2 16 7 Euro 1411 1.49E-01 5.96E-01

TELO2 16 13 LSA 1676 7.78E-02 1.22E-01
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4.3.3 Low-frequency variant association results in the Denver cohort and results

for replication analysis

Two genes surpassed the exome-wide significance level in the analysis of the Denver

cohort. ZNF268 was associated with lip shape and ARHGEF18 with forehead shape (Last

two rows in Table 4.4). Both genes were significant in only one facial module. Table 4.5

shows the results from single variant analysis of these two genes as well as the variant-level

replication in the PITT cohort. SNP rs140297736 in ARHGEF18 had a p-value = 1.73⇥10-4

in a forehead module. Other variants did not show strong association by themselves. All five

SNPs involved in the Denver cohort were also present in the PITT cohort with comparable

MAF, yet none showed evidence of replication.

Variant-level replication for the PITT results in the Denver cohort was not pursued as

all PITT variants were absent from the Denver cohort. This unavailability was a result of

the much smaller size of the Denver sample. Gene-level replication was also compromised by

limited sample in that only LTB4R was eligible in the Denver cohort, and it did not have a

small replication p-value (Table 4.4). Genes originally discovered in the Denver cohort failed

the replication as well.

4.3.4 Results for meta-analyzing the PITT and the Denver cohort

We included 3429 genes shared between the PITT and the Denver cohort in the meta-

MultiSKAT analysis. Two genes passed the study-wide significant threshold (Table 4.6).

Complement C6 was associated with nose shape, and Proprotein Convertase Subtilisin/Kexin

Type 9 (PCSK9 ) was associated with philtrum shape. Neither were significant in either

individual cohort. Three out of the nine genes identified in either PITT or Denver data were

tested in the meta-analysis although none were significant, indicating that their e↵ects were

unique to the discovery cohort (Table 4.4).

40



Table 4.3: Single variant association and functional prediction for variants contributing to the gene-level significance in the
PITT cohort

Chr Gene
Gene-level association Variant-level association

Modulea MultiSKAT

P-valuea

SNP Pos (hg19) Ref/Altb Functionc CADD

scored

MAF Modulee MultiPhen

P-valuee

6 HFE 5, 22 1.51E-10
rs149342416 26087686 G/C Arg6Ser 15.3 0.09% 22 7.0E-02
rs143662783 26087718 C/G Thr17Ile 13.4 0.09% 5 8.7E-01

11 NECTIN1 27 2.54E-07
rs142863092 119548369 G/A Arg210His 25.2 0.09% 27 1.1E-03
rs137991779 119549425 G/A Gly44Ser 29.2 0.11% 27 1.5E-01

13 CARS2 10, 20 5.22E-10
rs151097801 111296817 C/T Pro138Leu 22.4 0.09% 20 1.2E-01
rs117788141 111357899 G/A Val69Ile 28 0.09% 10 1.0E-02

14 LTB4R 20 6.88E-08
rs143666989 24780865 A/G Gln332Arg 16.6 0.11% 20 1.1E-01
rs148153989 24780915 A/T Met349Leu 12.5 0.09% 20 5.9E-01

16 TELO2 10 1.19E-09
rs140903666 1544313 G/A Ala11Thr 6.3 0.22% 10 8.2E-04
rs144863771 1544314 C/A Ala11Asp 10.7 0.22% 10 8.2E-04
rs147858841 1555541 C/T Ala132Val 9.4 0.11% 10 4.3E-01

23 AR 18 1.77E-07
rs142280455 66905875 A/G Ser598Gly 22.4 0.13% 18 8.1E-01
rs137852591 66941751 C/G Gln267Glu 25 0.13% 18 3.9E-03

23 FTSJ1 1, 6, 12, 28 2.46E-10
rs142932029 48341118 G/A Ser161Asn 7.4 0.08% 28 1.6E-14
rs201095751 48341414 C/T Splice site 0.1 0.11% 12 1.0E-01

a For genes associated with multiple facial modules, the most significant module is in bold and only it’s p-value is shown
b Alleles are listed as alternative/reference alleles on the forward strand of the reference genome
c For missense variant, amino acid substitution is given
d Bioinformatic prediction of variant e↵ect, higher score indicates greater damaging e↵ect
e Variants were tested against all module(s) with gene-level significance, and for genes associated with multiple modules, only the module yielding the smallest p-value in the
variant-level test is shown
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4.3.5 Results for univariate facial traits in the PITT cohort

In the analysis of facial linear distances, one association surpassed the exome-wide sig-

nificance threshold. GRAMD1B was associated with the height of the lower vermilion with

a SKAT p-value = 6.34⇥10-12, a permutation SKAT p-value = 2.94⇥10-6 and a CMC p-

value = 1.64⇥10-7. See Figure 4.7 for the Manhattan plot of lower vermilion height where

GRAMD1B was highlighted in both SKAT and CMC. Variant-level analysis identified a

missense variant, rs191981781, whose minor allele was significantly associated with thicker

vermilion (p-value=2.83⇥10-11; Table 4.7). SIFT and PolyPhen predicted this variant to be

benign. GRAMD1B is a highly conserved gene near a leukemia GWAS locus [128, 129]. Its

molecular function has not been well characterized.

4.3.6 Low-frequency variant association results in the Tanzania cohort

MultiSKAT analysis of the Tanzania data did not identify significant genes. There was

no overall inflation of the test statistics (Figure B6). We explored whether genes identified

in the European cohorts also showed any evidence of association in this African cohort. Four

out of the nine genes in Table 4.4 were available for lookup, none of which were associated

with facial morphology in the Tanzania cohort (Table B2, threshold 0.05/4/20=6.25⇥10-4).

4.4 Discussion

With rare and low-frequency variants being the primary study focus, this chapter pre-

sented a discovery e↵ort to identify coding variants associated with normal-range human

facial morphology by undertaking gene-based association tests and subsequent analyses us-

ing Exome chip genotyping data. Overall, we demonstrated that part of the morphological

variation of facial shape is attributable to rare and low-frequency coding variants. Seven

genes were detected in the analysis of modular phenotypes and one additional gene was

found to be associated with traditional univariate facial measures. Notably, NECTIN1 is
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Figure 4.6: Magnitude of variant e↵ects in the PITT cohort. Magnitudes were

quantified by the Euclidean distance between averaged faces of di↵erent genotype groups.

Horizontal lines in the rightmost column indicate the 95% confidence interval. The farther

away the blue (common, significant GWAS SNPs) or red (low-freq variants) rectangular boxes

are from x=0, the greater the e↵ect. The genotype groups column indicates the two groups

of people for whom the faces were averaged and the distance computed. 0 = major allele

homozygotes, 1 = heterozygotes, 2 = minor allele homozygotes, and 1/2 = the combined

group of heterozygotes and minor allele homozygotes. For example, 0 vs 1/2 means major

allele homozygotes versus anyone else. The following two columns indicate sample sizes of

the two groups in comparison.
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Table 4.4: Replication and meta p-values for genes identified in either PITT or Denver

Discovery Replication Meta

CHR Gene Module Cohort Num Var P-value Num Var P-value Num Vara P-value

6 HFE 5 PITT 2 1.09E-07 -b - - -

6 HFE 22 PITT 2 1.51E-10 - - - -

11 NECTIN1 27 PITT 2 2.54E-07 - - - -

13 CARS2 10 PITT 2 5.22E-10 - - - -

13 CARS2 20 PITT 2 1.91E-09 - - - -

14 LTB4R 20 PITT 2 6.88E-08 3 0.96 0 4.39E-04

16 TELO2 10 PITT 3 1.19E-09 - - - -

23 AR 18 PITT 2 1.77E-07 - - - -

23 FTSJ1 1 PITT 2 2.05E-08 - - - -

23 FTSJ1 6 PITT 2 2.41E-08 - - - -

23 FTSJ1 12 PITT 2 1.73E-07 - - - -

23 FTSJ1 28 PITT 2 2.46E-10 - - - -

12 ZNF268 18 Denver 2 6.59E-07 4 0.20 2 1.00

19 ARHGEF18 30 Denver 3 6.89E-07 6 0.17 3 1.00

a Number of variants common in both cohorts
b These genes were not testable because they did not have at least two qualified variants in the replication cohorts. As this was
a gene-level replication, we count any variants in a gene, rather than the particular variants tested in the discovery cohort.

Table 4.5: Discovery and replication results for individual variants in genes identified in

the Denver cohort

Discovery in Denver Replication in PITT

CHR Gene SNP Position Ref/Alt Type CADD

score

Module MAF P-value MAF P-value

12 ZNF268 rs80217340 133778798 C/G missense 9.5 18 0.30% 1.34E-02 0.13% 0.715

rs200561453 133780754 T/C stop gain 36.0 18 0.30% 7.36E-01 0.17% 0.125

19 ARHGEF18 rs140297736 7512016 G/C missense 22.4 30 0.60% 1.73E-04 0.43% 0.175

rs117824875 7533891 A/G missense 12.2 30 0.46% 4.60E-01 0.61% 0.351

rs199567237 7505163 A/G missense 16.5 30 0.53% 4.85E-02 0.65% 0.053
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Table 4.6: Significant genes in the meta-analysis of PITT and Denver

Gene CHR Module Meta

P-value

P-value in

PITT

Num Var in

PITT

P-value in

Denver

Num Var in

Denver

Num var in

botha

C6 5 11 1.55E-07 7.24E-05 8 6.72E-03 4 3

PCSK9 1 16 5.09E-07 1.72E-06 3 6.09E-01 3 3

a Number of variants common in both cohorts

Figure 4.7: Manhattan plot for lower vermilion height highlighting GRAMD1B

in the PITT cohort. The upper orange figure shows the -1og10-transformed SKAT P-

values. The lower blue figure shows the -1og10-transformed CMC p-value, with y-axis in

reverse orientation.
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Table 4.7: Single variant association for GRAMD1B and univariate facial linear distances

in the PITT cohort

Gene Chr Pheno SNP Position Ref/Alt MAF Beta SE P-value

GRAMD1B 11

Lower

Vermilion

Height

rs191981781 123477383 A/G 0.082% 6.17 0.92 2.8E-11

rs7950063 123399604 C/T 0.021% 1.28 1.86 0.49

rs7935338 123473532 A/G 0.041% -0.11 1.32 0.94

known to cause orofacial clefts, a craniofacial malformation that can be associated with alter-

ations in facial shape. These results enhanced our understanding of the genetic architecture

of human facial variation.

Among the identified genes, NECTIN1 is a known important player in craniofacial mor-

phogenesis and has been linked with both syndromic and isolated forms of orofacial clefting

[130–132]. Individuals with cleft lip/palate-ectodermal dysplasia syndrome (OMIM:225060)

have distinctive facial features including an underdeveloped lower jaw [133], which is consis-

tent with the facial segment (chin) where NECTIN1 association was observed in this study.

NECTIN1 protein belongs to the subfamily of immunoglobulin-like adhesion molecules which

are key components of cell adhesion junctions, playing essential roles in the fusion of palatal

shelves during palatogenesis [134]. A handful of NECTIN1 mutations that potentially dis-

rupt gene function have also been documented in non-syndromic cleft patients [135–137].

In the current study, two coding variants in NECTIN1 were implicated, and both encode

amino acid substitution and were predicted to be deleterious on protein function. Further

experimental validation of NECTIN1 was conducted in the laboratory of Eric C. Liao at Mas-

sachusetts General Hospital, where a strong expression of nectin1a was observed in zebrafish

embryo craniofacial structures and mutants exhibited distorted palate structure. Altogether,

our study showed strong supports for the involvement of NECTIN1 in craniofacial traits.

Our results on NECTIN1 were consistent with the proposed shared genetics for normal-

range facial variation and orofacial clefting [108], and further suggested that rare and low-

frequency variants underlie this connection. As a risk gene for facial deformity, NECTIN1
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was implicated in normal-range facial variation for the first time by our study. There was

some evidence from our previous study [126] that NECTIN1 was associated with NSCL/P

in the Latino South American population (Table 4.2), although it did not survive multiple

testing correction. Two other genes, TELO2 and HFE, passed the significance threshold in

the analysis of combined populations. These results were in line with the existing hypothesis

and supported the presence of common genes underlying both normal and abnormal facial

development.

The current study is an important extension and complement of our previous GWAS [31]

by focusing exclusively on coding variants with a MAF below 1%. Importantly, the two

studies generated distinct, non-overlapping candidate genes. Common SNPs in or near

(using a 500kb window on either side) the seven identified genes showed little evidence of

association (p-value > 0.001 for all) with the same facial modules. Nonetheless, it is possible

that there exist trans-acting common GWAS SNPs that regulate the expression of the seven

newly identified genes during facial morphogenesis. Low-frequency variants had much more

salient e↵ects compared to common SNPs (Figure 4.6). It should be noted that this di↵erence

could be a result of the drastically smaller group of variant carriers, and we therefore chose

to refrain from a deeper interpretation of the comparison.

Despite similar sample sizes, the African cohort was much less successful in identify-

ing face-associated low-frequency variants than the European cohort. It is reasonable to

expect the opposite to be true given that Africans are more genetically diverse than other

populations due to their demographic history and possess more population-specific rare and

low-frequency variants [138]. On the other hand, greater genetic variation may actually de-

crease the power to detect those variants due to not enough carriers of specific variants and

less LD. We noted a 23% reduction of qualified genes in the analysis of the Tanzania cohort

compared to that of the PITT cohort. As rarer variants tend to be younger and more popu-

lation specific, causal variants in one population may not be detectable in one of a di↵erent

ancestry. The smaller number of qualified genes in the Tanzania cohort could also be a result

from the fact that the Exome SNP chip used (llumina HumanOmni2.5+Exome-8) was not

specifically design to capture African-specific variants. Another factor that may contribute
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to the di↵erence in the results from the two cohorts was our data-driven facial phenotyp-

ing. Morphological variation extracted by PCA was cohort-specific, and can di↵er a lot in

direction in the high dimensional space even in facial segments where the two cohorts have

similar counterparts. Furthermore, rare variants are expected to have more unique e↵ects

than common SNPs, and therefore do not share genetic e↵ects on di↵erent phenotypes.

Our success in gene discovery demonstrated the power of gene-based collective testing

of rare and low-frequency variants which are usually untestable individually. While some

significant genes harbor variants with a small p-value in our single-variant association tests,

others would have been missed if not tested in aggregate. With a moderate sample size of

a few thousand, it is highly desirable to collapse variants into biologically meaningful units

and perform burden-style tests. In addition to a boost in power, another key benefit with an-

alyzing rare coding variants collectively is the improved biological interpretability compared

to GWASs. The gene-centered design of coding variants facilities much clearer biological

implications and options for experimental follow-up than the GWAS design where coding

and non-coding variants are tested individually. Our success in the functional validation of

NECTIN1 resonates well with this point.

The hierarchical facial segmentation enabled the discovery of genetic e↵ects at di↵erent

scales. For example, the e↵ect of FTSJ1 was observed both globally in the full face and

locally in much more refined areas on the side of the face. By contrast, the e↵ect of NECTIN1

was confined to localized facial parts only. These patterns may help with understanding

gene action during craniofacial morphogenesis and therefore guide future experiments. The

data-driven phenotyping approach obviates the need of selecting traits with some level of

arbitrariness, captures more of the variation of facial shape in 3D space and benefits from

higher e�ciency for gene mapping.

Replication of rare variant association signals presents unique challenges. The prominent

barrier is the limited sample sizes of available replication datasets. The scarceness or even

absence of the carriers in independent populations hindered the replication e↵orts of our

findings. The PITT and Denver data served as independent replication cohorts for each

other, yet only one gene identified in the PITT cohort was available in the Denver cohort.
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This failure of replication should not be taken as an indication of spurious associations in

the discovery analysis, but rather a lack of ability to seek replication, due to the lack of

variant carriers. Similarly, the result that neither of the two genes discovered in the Denver

dataset were replicated in the PITT cohort does not necessarily disapprove the signals but

can be partly explained by di↵erent variants contributing to the gene-level association. We

acknowledge this limitation and hope to o↵set this weakness by testing larger samples with

better genome coverage in future studies.

Despite the whole point being specifically targeting rare and low-frequency variants, this

study still fell short in covering variants in the lower extreme of the MAF spectrum. Given

the limited sample size and the Exome Chip design, this study was not adequately powered

to identify genes harboring extra rare variants which may also contribute to facial traits.

Taking the PITT cohort as an example, variants with a MAF < 0.08% were not included in

the analysis by our filtering criteria, . Although in general complex traits are not expected to

have a large fraction of the heritability explained by rare and private variants, such variants

may be influential, predictive, and actionable at the individual level. We look forward to

whole-exome or whole-genome sequencing e↵orts of large samples in the near future, which

will be able to give deeper insights on the contribution of rare genetic variations and private

mutations.

Meta-analysis to combine results from multiple cohorts is a common practice in GWAS

and an e↵ective approach to increase power. It, however, poses special challenges for studies

whose primary focus is on rare and low-frequency variants. In a strict sense, meta-analysis

requires all cohorts to be polymorphic at the exact same variants in a gene. This “common-

ality” becomes less and less likely as the variants become rarer. With a sample size of a few

thousand, sharing the same variants across cohorts is improbable for low-frequency variants.

Even when the summary statistics from individual cohorts are combined at a gene level, and

thus do not require the genes to have exact same variants, a fair number of genes would still

not be testable in all cohorts. That being said, the very nature of the variants under study

largely diminishes the benefit of a meta-analysis. Although this study did not require a gene

to have identical variants in di↵erent cohorts in the meta-analysis, we still landed with a
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substantial loss of testable genes. Only three out of the nine genes identified in individual

cohorts were common in both; none reached significance level in the meta-analysis. Future

research should seek to phenotype more individuals for a better characterization of the role

of rare and low-frequency variants on facial morphology.

Our findings have implications for future studies on polygenic morphological trait and

the prediction of such phenotypes in the context of precision medicine. An attention to

rare and low-frequency genetic variants is strongly encouraged for future studies on human

craniofacial traits, including both normal-range variation and deformity and malformation.

Although less-frequent variants may not explain sizable heritable variation at the population

level, they can have crucial e↵ect for the individuals who carry them. Given that rare and

low-frequency genetic variation can be highly specific to certain populations and facial shapes

have distinctive ancestry features, future studies may benefit from extending the discovery

of influential low-frequency variants to other ethnic groups. As sample sizes of carefully

phenotyped human cohorts continue to increase, we expect that additional rare and low-

frequency variants will be uncovered and they will further enhance our understanding of

facial morphology.
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5.0 Transcriptome-Wide Association Study

5.1 Background

5.1.1 Overview

The Aim 2 of this dissertation was to study facial morphology from a perspective of the

regulatory role of genetic variants, by conducting TWAS and several follow-up analyses. The

context under which this aim was proposed largely concerns the infamous issue of unknown

function and the challenge of locating the causal gene that accounts for an association signal

in GWASs. Specifically, our GWAS in a larger cohort which included the PITT sample

has identified over 200 significant hits, most of which fall in non-coding intergenic regions

and do not harbor genes with a known role in facial morphology [139]. Connecting 200 loci

to their target genes and mechanism in functional experiments requires substantial amount

of resources. As an alternative route for identifying putative causal genes, this aim was

proposed to leverage the external molecular QTL data which can be used to impute gene

expression in unmeasured samples.

Many existing TWAS applications have shown the dual benefits of TWAS design: (1)

pinpointing putative causal genes at GWAS loci and (2) discovering novel genes not over-

lapping known GWAS loci [5, 6, 77–79]. The former is deemed as an especially appealing

application of TWAS, as GWAS loci usually harbor multiple genes and in most cases it’s

remarkably challenging to make immediate mechanistic interpretations of any of them. The

gain of power in the second benefit (compared to GWAS) comes from the cumulative genetic

e↵ects from multiple eQTLs as well as an eased burden of multiple testing. The current

study benefited from both features of the TWAS design.

It is important to keep in mind that TWAS does not perform causal inference when using

it as a fine-mapping approach to augment GWAS. One should seek for evidence supporting

a causal role from multiple sources. One such source can be a colocalization of GWAS and

eQTL signals. A high probability of colocalization adds to the amount of support that the
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target gene of the eQTLs accounts for the respective GWAS signal, in particular through

regulating gene expression. Another line of evidence can come from conditional analysis,

where the predicted expression level of a TWAS gene is adjusted for as a covariate in the

SNP-trait association test. The current study followed top TWAS genes using both of these

strategies to augment the original TWAS results.

We acknowledge that although getting closer to the underlying mechanism is the primary

goal, TWAS does not necessarily imply causality. The prioritized genes can still be non-

causal and need further verification. Aim 2 was therefore positioned not as an aim to

establish causality but rather an aim where the main focus is prioritization and hypothesis

generation. Genes discovered here will need independent replication as well as functional

validation in future work.

5.1.2 MetaXcan and COLOC software

A number of existing computational programs are available to carry out the analyses

outlined in this aim. The exhaustive comparison and application of various methods was

not a goal of this project; we chose to use PrediXcan/MetaXcan (referred to as MetaXcan

hereafter), based on its improved performance and its acceptance of individual-level data as

input. Features of MetaXcan that were relevant to this study are described below. MetaXcan

released two di↵erent families of prediction models trained on GTEx v8: MASHR-based

and Elastic Net (EN) -based [80]. MASHR stands for Multivariate Adaptive Shrinkage in

R, which was used to smooth cis-eQTL e↵ect size and standard error estimates by taking

advantage of the correlation of gene expression regulation among di↵erent tissues. The

resulting models are parsimonious, which means that only putative causal eQTLs are used

as predictors. In short, MASHR-based models use fine-mapped variants and are biologically

informed. By contrast, EN-based models use all cis-eQTLs of a gene without making further

prioritization. It is a safe, robust alternative with decreased prediction performance, and

is directly comparable to past versions of MetaXcan models. All models use locally-acting

eQTLs (MAF> 1%) located within 1 MB upstream/downstream of the target gene transcript

start/end sites.
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When signals from two di↵erent GWASs are located at the same loci, it is not clear

whether the same variants are responsible for both or whether it is distinct causal variants

close to each other. Intermediate cellular phenotypes, in particular gene expression, are

commonly involved in such two-GWAS comparisons with the hypothesis being that gene

expression mediates the disease signals. A number of GWAS–eQTL colocalization methods

were developed to test this hypothesis, with popular ones including eCaviar [7], RCT [140],

Sherlock [141], COLOC [142], enloc [143] and so on. No single best approach fits all situ-

ations; di↵erent methods are based on di↵erent underlying models and outperform others

when its assumptions hold. COLOC [142] is a Bayesian procedure which gives intuitive pos-

terior probabilities which are easily interpreted. It requires only p-values and SNPs’ MAF,

and its analytical solution enables genome-wide scale computation. For these reasons, we

selected COLOC to test for colocalization between gene expression and facial morphology.

5.2 Methods

5.2.1 Workflow

All Aim 2 analyses were conducted in individual cohorts separately. A flowchart of the

analysis can be viewed in Figure 5.1. Specifically, MetaXcan prediction models in the four

chosen tissues were first used to obtain the genetically regulated gene expression (GRex),

which were then tested for association against 63 multivariate facial modules by canonical

correlation analysis. Genes with a p-value less than the predetermined threshold went into

the follow-up stage where they were further examined by conditional and colocalization

analysis. In parallel with the follow-up inspection, significant genes went through extensive

annotation, literature search and bioinformatics analysis. Significant and suggestive genes

collectively as a group were also annotated by gene-set enrichment tools. The following

subsections describe each step in this workflow in more detail.
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Figure 5.1: TWAS flowchart
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5.2.2 Predicting gene expression by MetaXcan

MetaXcan provides 49 GTEx tissue types and requires a decision made by users regarding

which tissue(s) to use. Due to the context-dependent nature of gene expression regulation,

the ideal choice would be the mechanistically relevant tissue(s) for the phenotype under

study. However, for morphological traits primarily formed during embryonic development,

the optimal tissues and cells are rarely available. Currently there is no available eQTL data

in embryonic craniofacial tissues and their developmental precursors. This study therefore

selected four GTEx tissues that are highly related to facial morphology: muscle skeletal,

subcutaneous adipose, cultured fibroblasts and brain cortex.

This study applied both MASHR-based and EN-based models in MetaXcan to comple-

ment the results from one another. Although EN-based models presumably have inferior

performance compared to MASHR-based models, we found our analysis could benefit from

them in two aspects. First, the sets of SNPs available in our data (either genotyped or

imputed) were better matched to the set of SNPs in EN-based models. In the Tanzania

cohort, 80% of the eQTLs in EN-based models were available; this number dropped down to

55% for MASHR models. With the smaller intersection, fewer genes would be predictable

and testable. Second, the two types of models each have their unique genes although the

majority overlap. Taking the union of the two sets will give a larger set of genes available

for association test.

SNPs passing the quality control criteria in the original GWAS of each cohort [31] were

used to predict gene expression. Specifically, on top of the basic cleaning steps, we further

required SNPs to have a MAF >1% and imputation INFO score > 0.5 (for imputed SNPs)

to be included.

5.2.3 Testing the association between the genetically regulated gene expression

(GRex) and facial modules

Canonical correlation analysis (CCA) was used to test the association between GRex

and 63 multivariate facial modules using the R package CCA [144]. CCA finds linear combi-
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nations of the dependent variables (PCs) that maximally correlate with linear combinations

of the independent variables (GRex) and gives the canonical correlation coe�cients between

the paired linear combinations. The canonical correlations were then subject to an asymp-

totic test to assign statistical significance, using the F-approximation of Wilks’s Lambda

as a test statistic. CCA was used in our previous GWAS in the same cohort on the same

set of phenotypes [31]; applying the same statistical method would enable a straightforward

comparison between the results of this TWAS and those of the previous GWAS, by which

GWAS loci can be fine-mapped.

To be consistent with the multiple testing correction strategy in the previous GWAS

for the PITT cohort, we considered two levels of significance thresholds in this study. The

study-wide significance threshold was calculated as 0.05/(e↵ective number of independent

facial modules ⇥ number of genes tested in a tissue). The e↵ective number of independent

modules was computed according to the eigenvalue-based procedure by Li and Ji’s [119],

which was 39 for the PITT modules (which were also the Denver modules) and 40 for the

Tanzania modules. With the intention not to miss any potential candidate genes, a relaxed,

genome-wide significance threshold was also used to identify suggestive genes, which equaled

0.05/number of genes tested in a tissue. This study did not further account for the four

tissue types and the two families of models, in consideration of the co-regulation of gene

expression across tissues and the large number of overlapping genes between models.

5.2.4 Follow-up analysis of TWAS genes

TWAS does not necessarily imply causality. One of the most common causes is LD-

contamination, which occurs when the expression predictor SNPs and phenotype-causing

SNPs are di↵erent but in LD. Additional analysis is required to rule out spurious association

due to LD-contamination. Such analysis can also help with a further prioritization of multi-

gene TWAS loci. We conducted two types of follow-up analyses – conditional analysis for

significant TWAS genes and colocalization analysis for multi-gene TWAS loci.

In a conditional analysis, the marginal SNP-trait association was first obtained by Mul-

tivariate Analysis of Variance (MANOVA), which is equivalent to CCA. Next, the GRex was
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added as a covariate with all other terms being the same. This new model was evaluated by

Multivariate Analysis of Covariance (MANCOVA). This analysis considered a 1 MB flanking

window on either side of the gene.

eQTL Colocalization analysis was carried out for two multi-gene TWAS loci (the chro-

mosome 1p12 and 3q21.3). COLOC [142] was used to estimate the posterior probability of

shared or independent GWAS-eQTL signal. COLOC’s Approximate Bayes Factor (ABF)

analysis estimates the support for five hypotheses:

H0: neither trait has a genetic association in the region

H1: only trait 1 has a genetic association in the region

H2: only trait 2 has a genetic association in the region

H3: both traits are associated, but with di↵erent causal variants

H4: both traits are associated and share a single causal variant

A high posterior probability (PP) of H4 indicates evidence for colocalization. On the

other hand, a low PP of H4 may not indicate evidence against colocalization but rather

simply be the result of limited power, which is supported by a large sum of PP of H0, H1

and H2. By assessing all hypotheses simultaneously, distinct GWAS and eQTL signals can

be distinguished from low power.

Summary statistics of the SNP-gene expression association analysis in the four tissues

selected for TWAS were downloaded from GTEx v8 data repository. Summary statistics of

the facial module GWAS were obtained from our previous publication [31]. Facial GWAS

SNPs were first liftovered to assembly hg38 and then harmonized with the eQTL statistics.

Following the criteria suggested by Barbeira et al. [82], we demanded a colocalized signal to

simultaneously fulfill (1) PP of H4 > 0.5, (2) PP of H3 < 0.5, and (3) PP of H0+H1+H2 <

0.3. To visualize the colocalization, the R package LocusCompareR [145] was used to make

joint scatter plots for facial associations and gene expression associations.
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5.2.5 Gene-set enrichment analysis

FUMA gene-set enrichment analyses were performed to investigate the potential func-

tions of the identified genes. FUMA is a functional mapping and annotation tool for genetic

associations [121], and has a GENE2FUNC function module for gene-set enrichment analy-

sis. We provided two lists of genes as input: (1)The nine genes that passed our study-wide

threshold adjusting for both number of phenotypes and number of genes in any of the three

cohorts; and (2) an expanded list of 71 genes, further incorporating suggestive genes below

the more liberal genome-wide p-value cuto↵, discovered in any of the three cohorts. The

parameters used for FUMA were FDR adjusted p-value (Benjamini-Hochberg procedure) <

0.05 and a minimum of two overlapping genes.

5.3 Results

5.3.1 TWAS

Table 5.1 gives an overview of the TWAS results, listing the number of genes tested

in each tissue type using each of the two models, the corresponding significant p-value

thresholds, and the number of hits for PITT, Denver and Tanzania cohorts separately.

Overall, TWAS in three cohorts identified nine genes at six loci (WARS2/HAO2, RU-

VBL1/EEFSEC/SEC61A1, C1orf53, EYA4, CCDC91, SLK ) being associated with at least

one facial segment with a p-value below the study-wide significance level. Table 5.2 details

the analysis parameters and association statistics. All but SLK were found in the analy-

sis of the PITT cohort; SLK was discovered in the Denver cohort; EEFSEC was the only

significant gene in the Tanzania cohort analysis. RUVBL1, EEFSEC, SEC61A1 and EYA4

showed association with multiple facial segments. Except for CCDC91, all were located

at previously identified face-associated GWAS loci [31], and the associated facial modules

of the same gene in the GWAS and the TWAS were largely consistent. This implies an

overall decent power and reliable performance of the TWAS method. TWAS statistics were

well-behaved and there was no evidence of inflation or deflation (Figure C5 and C6).
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Table 5.1: Overview of TWAS results

Cohort Model Type Tissue Num Genes Study-wide

threshold

Num

Significant

Hits

Genome-

wide

threshold

Num

Suggestive

Hits

PITT MASHR Muscle Skeletal 11915 1.10E-07 3 4.20E-06 13

Brain Cortex 12344 1.00E-07 3 4.10E-06 15

Cells Cultured Fibroblasts 12534 1.00E-07 6 4.00E-06 19

Adipose Subcutaneous 13029 9.80E-08 9 3.80E-06 22

EN Muscle Skeletal 7566 1.70E-07 1 6.60E-06 6

Brain Cortex 5478 2.30E-07 7 9.10E-06 18

Cells Cultured Fibroblasts 8911 1.40E-07 4 5.60E-06 14

Adipose Subcutaneous 8617 1.50E-07 3 5.80E-06 10

Denver MASHR Muscle Skeletal 11863 1.10E-07 0 4.20E-06 4

Brain Cortex 12283 1.00E-07 1 4.10E-06 2

Cells Cultured Fibroblasts 12495 1.00E-07 0 4.00E-06 3

Adipose Subcutaneous 13001 9.90E-08 0 3.80E-06 4

EN Muscle Skeletal 7566 1.70E-07 0 6.60E-06 2

Brain Cortex 5477 2.30E-07 0 9.10E-06 0

Cells Cultured Fibroblasts 8909 1.40E-07 0 5.60E-06 1

Adipose Subcutaneous 8614 1.50E-07 0 5.80E-06 1

Tanzania MASHR Muscle Skeletal 9600 1.30E-07 0 5.20E-06 2

Brain Cortex 9716 1.30E-07 1 5.20E-06 3

Cells Cultured Fibroblasts 10325 1.20E-07 0 4.80E-06 4

Adipose Subcutaneous 10668 1.20E-07 0 4.70E-06 4

EN Muscle Skeletal 7558 1.70E-07 0 6.60E-06 3

Brain Cortex 5467 2.30E-07 1 9.10E-06 6

Cells Cultured Fibroblasts 8894 1.40E-07 0 5.60E-06 5

Adipose Subcutaneous 8614 1.50E-07 0 5.80E-06 6
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Table 5.2: Study-wide significant TWAS genes

Cohort Locus Gene Module P-value Tissue Model Num SNPsa

PITT

12p11.22 CCDC91 21 4.37E-08 Cells Cultured fibroblasts MASHR 3

1p12 HAO2 7 2.52E-08 Adipose Subcutaneous EN 13

1p12 WARS2 7 2.03E-09 Muscle Skeletal MASHR 4

1p12 WARS2 7 1.86E-09 Cells Cultured fibroblasts MASHR 3

1p12 WARS2 7 1.11E-08 Brain Cortex MASHR 2

1q31.3 C1orf53 27 1.22E-07 Muscle Skeletal EN 2

3q21.3 EEFSEC 2 2.07E-09 Adipose Subcutaneous MASHR 2

3q21.3 EEFSEC 2 1.40E-07 Brain Cortex EN 8

3q21.3 EEFSEC 4 6.30E-08 Brain Cortex EN 8

3q21.3 EEFSEC 8 9.45E-11 Brain Cortex EN 8

3q21.3 EEFSEC 8 1.26E-09 Adipose Subcutaneous MASHR 2

3q21.3 EEFSEC 16 4.50E-09 Adipose Subcutaneous EN 50

3q21.3 EEFSEC 16 1.22E-09 Cells Cultured fibroblasts EN 51

3q21.3 EEFSEC 16 3.33E-16 Brain Cortex EN 8

3q21.3 EEFSEC 16 9.99E-16 Adipose Subcutaneous MASHR 2

3q21.3 EEFSEC 16 4.32E-10 Cells Cultured fibroblasts MASHR 2

3q21.3 EEFSEC 16 6.92E-11 Brain Cortex MASHR 2

3q21.3 EEFSEC 32 2.62E-09 Brain Cortex EN 8

3q21.3 EEFSEC 32 1.13E-09 Adipose Subcutaneous MASHR 2

3q21.3 EEFSEC 33 2.85E-10 Cells Cultured fibroblasts EN 51

3q21.3 EEFSEC 33 7.40E-08 Adipose Subcutaneous EN 50

3q21.3 EEFSEC 33 4.06E-14 Brain Cortex EN 8

3q21.3 EEFSEC 33 1.93E-11 Adipose Subcutaneous MASHR 2

3q21.3 EEFSEC 33 9.07E-11 Cells Cultured fibroblasts MASHR 2

3q21.3 EEFSEC 33 2.77E-11 Brain Cortex MASHR 2

3q21.3 EEFSEC 45 1.42E-08 Adipose Subcutaneous MASHR 2

3q21.3 EEFSEC 45 7.25E-08 Brain Cortex EN 8

3q21.3 RUVBL1 2 2.58E-09 Cells Cultured fibroblasts MASHR 2

3q21.3 RUVBL1 16 1.13E-08 Muscle Skeletal MASHR 2

3q21.3 RUVBL1 16 1.06E-09 Cells Cultured fibroblasts MASHR 2

3q21.3 RUVBL1 33 9.25E-10 Muscle Skeletal MASHR 2

3q21.3 SEC61A1 16 3.17E-09 Cells Cultured fibroblasts EN 13

3q21.3 SEC61A1 33 8.67E-08 Cells Cultured fibroblasts EN 13

6q23.2 EYA4 30 3.54E-09 Adipose Subcutaneous MASHR 1
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Table 5.2: Continued from previous page

Cohort Locus Gene Module P-value Tissue Model Num SNPsa

6q23.2 EYA4 60 1.03E-09 Adipose Subcutaneous MASHR 1

6q23.2 EYA4 61 1.29E-08 Adipose Subcutaneous MASHR 1

Denver 10q24.33 SLK 21 8.40E-08 Brain Cortex MASHR 2

Tanzania
3q21.3 EEFSEC 27 2.54E-08 Brain Cortex EN 8

3q21.3 EEFSEC 27 1.14E-07 Brain Cortex MASHR 2
a Number of SNPs used to predict gene expression

Taking the results in the PITT cohort as an example, Figure 5.2 presents a composite

Manhattan plot overlaying p-values for all modules and all tissues. Significant loci were

pointed to their associated phenotypes (in blue). Propagation of signals in facial segments

that are linked across di↵erent levels can be clearly visualized in the plot.

EEFSEC is the sole significant gene shared across cohorts. It is also a multi-e↵ect

gene, i.e. had associations with di↵erent traits spanning multiple facial quadrants. In the

PITT hierarchical clustering rosette, the strongest association of EEFSEC was seen in the

mouth and philtrum quadrant, with gene’s e↵ects started being detectable in the first level

of the hierarchy (module 2) and went all the way to the most localized level (module 32

and 33, upper lip and philtrum). It also showed an e↵ect in the nose quadrant, which has a

close physical proximity to and shares the same upper level segment with lip and philtrum

segments. This association pattern across multiple regions echoed the SNP-trait association

at this locus in previous GWAS [31]. In the analysis of the Tanzania cohort, although the

signal of EEFSEC was less strong, it did show association in the similar nose quadrant.

Besides its robustness across cohorts, EEFSEC signals were also detected across all four

tested tissues.

In addition to the nine study-wide significant genes, we also identified 62 suggestive

genes that surpassed the genome-wide threshold although did not reach the study-wide cuto↵

(Table C1). Some of them were at or nearby facial GWAS association loci, such as CRB1,

WARS2 and RUNX2, yet most suggestive genes have not been implicated in craniofacial

traits before. These genes showed associations with the shape of a variety of facial regions.
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Figure 5.2: Composite Manhattan plot for TWAS results in the PITT cohort.

The plot shows the position of genes on the x-axis and TWAS p-values on the y-axis. A total

of 63⇥4 points are plotted for each gene, representing their p-values for 63 modules in the

analysis of 4 tissues respectively. Horizontal lines for significance threshold were not drawn

because the calculation was tissue-specific. The associated facial modules for each gene that

surpassed the study-wide threshold are shown above the Manhattan plot.
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5.3.2 Conditional analysis for significant TWAS genes

Results from the conditional analysis are summarized in Table 5.3. All genes but

CCDC91 were located at/near to a GWAS peak, as indicated by a minimum SNP-trait

association p-value < 5⇥10-8 before conditioning. After conditioning on the predicted ex-

pression, GWAS signals at CCDC91, EEFSEC, EYA4, HAO2, and SLK were no longer

significant (shown by a minimum p-value > 5⇥10-8 in the 5th column). On the contrary,

although conditioning on C1orf53 largely undermined the SNP-trait association (a 10-order-

of-magnitude larger p-value), this locus remained to be a genome-wide significant one. For

RUVBL1, SEC61A1, and WARS2, there were mixed results in di↵erent tissues and they

were not able to fully explain the GWAS association.

Table 5.3: SNP-trait association p-values before and after conditioning on the predicted

expression of TWAS significant genes

Cohort Gene Module Minimum
p-value
before con-
ditioning

Minimum
p-value
after condi-
tioning

Tissue Model

PITT C1orf53 27 7.55E-19 8.88E-09 Muscle Skeletal EN

PITT CCDC91 21 2.53E-06 1.19E-04 Cells Cultured fibroblasts MASHR

PITT EEFSEC 2 7.86E-10 8.22E-04 Adipose Subcutaneous MASHR

PITT EEFSEC 2 7.86E-10 3.18E-05 Brain Cortex EN

PITT EEFSEC 4 8.00E-09 4.71E-04 Brain Cortex EN

PITT EEFSEC 8 3.05E-12 1.34E-03 Adipose Subcutaneous MASHR

PITT EEFSEC 8 3.05E-12 1.45E-03 Brain Cortex EN

PITT EEFSEC 16 1.43E-17 1.64E-07 Adipose Subcutaneous EN

PITT EEFSEC 16 1.43E-17 7.14E-05 Adipose Subcutaneous MASHR

PITT EEFSEC 16 1.43E-17 7.60E-05 Brain Cortex EN

PITT EEFSEC 16 1.43E-17 2.33E-06 Brain Cortex MASHR

PITT EEFSEC 16 1.43E-17 1.13E-07 Cells Cultured fibroblasts EN

PITT EEFSEC 16 1.43E-17 3.63E-07 Cells Cultured fibroblasts MASHR

PITT EEFSEC 32 4.44E-10 1.87E-03 Adipose Subcutaneous MASHR

PITT EEFSEC 32 4.44E-10 2.04E-03 Brain Cortex EN

PITT EEFSEC 33 3.63E-15 4.94E-07 Adipose Subcutaneous EN

PITT EEFSEC 33 3.63E-15 1.72E-03 Adipose Subcutaneous MASHR
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Table 5.3: Continued from previous page

Cohort Gene Module Minimum
p-value
before con-
ditioning

Minimum
p-value
after condi-
tioning

Tissue Model

PITT EEFSEC 33 3.63E-15 2.29E-03 Brain Cortex EN

PITT EEFSEC 33 3.63E-15 1.27E-03 Brain Cortex MASHR

PITT EEFSEC 33 3.63E-15 1.90E-04 Cells Cultured fibroblasts EN

PITT EEFSEC 33 3.63E-15 4.83E-04 Cells Cultured fibroblasts MASHR

PITT EEFSEC 45 3.20E-08 4.32E-04 Adipose Subcutaneous MASHR

PITT EEFSEC 45 3.20E-08 4.09E-04 Brain Cortex EN

PITT EYA4 30 6.14E-12 1.43E-04 Adipose Subcutaneous MASHR

PITT EYA4 60 1.86E-11 3.49E-03 Adipose Subcutaneous MASHR

PITT EYA4 61 3.34E-10 1.22E-03 Adipose Subcutaneous MASHR

PITT HAO2 7 5.75E-14 1.20E-06 Adipose Subcutaneous EN

PITT RUVBL1 2 7.86E-10 6.89E-04 Cells Cultured fibroblasts MASHR

PITT RUVBL1 16 1.43E-17 1.65E-08 Cells Cultured fibroblasts MASHR

PITT RUVBL1 16 1.43E-17 1.15E-08 Muscle Skeletal MASHR

PITT RUVBL1 33 3.63E-15 6.75E-05 Muscle Skeletal MASHR

PITT SEC61A1 16 1.43E-17 4.94E-07 Cells Cultured fibroblasts EN

PITT SEC61A1 33 3.63E-15 5.51E-07 Cells Cultured fibroblasts EN

PITT WARS2 7 5.75E-14 1.78E-08 Brain Cortex MASHR

PITT WARS2 7 5.75E-14 6.83E-07 Cells Cultured fibroblasts MASHR

PITT WARS2 7 5.75E-14 1.55E-08 Muscle Skeletal MASHR

Denver SLK 21 1.14E-08 1.87E-03 Brain Cortex MASHR

Tanzania EEFSEC 27 1.55E-09 1.72E-05 Brain Cortex EN

Tanzania EEFSEC 27 3.20E-10 2.78E-06 Brain Cortex MASHR

The chromosome 3q21.3, a multi-gene TWAS locus, harbors three genes (EEFSEC,

SEC61A1, RUVBL1 ) which were significant in at least one TWAS test, and one sugges-

tive gene (RPN1 ). Taking results from PITT module 16 in adipose as an example, Figure

5.3 shows the SNP-trait association p-values before (in orange) and after (in black) condi-

tioning on the GRex of EEFSEC. By completely flattening the GWAS peak, the conditional

model showed strong evidence that EEFSEC is the putative mediator at this locus.
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Figure 5.3: SNP-philtrum associations conditioning on EEFSEC at the 3q21.3

locus. Top TWAS panel displays the GRex-module 16 (philtrum) association p-values for

genes at 3q21.3 locus, obtained in subcutaneous adipose tissue. The GWAS panel displays

the SNP association p-values at the same locus, with orange and black dots showing the

unconditioned and conditioned results, respectively. Conditioning on the GRex of EEFSEC

significantly diminished the GWAS signal, in support of a mediating role of EEFSEC.
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5.3.3 COLOC analysis of multi-gene TWAS loci

We performed phenotype-eQTL colocalization analysis for the two multi-gene TWAS

loci, 3q21.3 and 1p12. For 3q21.3, GWAS summary statistics of EEFSEC, SEC61A1, RU-

VBL1, and RPN1 with PITT module 16 and 33 and their eQTL signals in four GTEx tissues

were used as COLOC input data. For 1p12, we used GWAS summary statistics of WARS2

and HAO2 with PITT module 7. Table 5.4 lists signals that met our criteria for a shared

causal SNP. At the 3q21.3, COLOC pointed to EEFSEC in brain cortex and adipose tissue,

and to SEC61A1 in muscle skeletal tissue. Figure 5.4 is a graphic illustration for the first

row in Table 5.4. The colocalized signal is supported by the “diagonal pattern” in the left

panel–p-values from the two plotted GWASs aligned along the diagonal given the local LD

pattern. At the 1p12 locus, HAO2 was highlighted in adipose tissue (Figure 5.5) whereas

WARS2 did not colocalize. A complete list of COLOC results (including those tested but

did not meet the criteria for a colocalized signal) can be seen in Table C2.

Table 5.4: COLOC analysis of multi-gene TWAS loci (only show the colocalized signals)

Locus Module Gene Tissue PP.H0+H1+H2a PP.H3b PP.H4c

3q21.3 33 EEFSEC Brain Cortex 1.14E-03 0.34 0.66

33 SEC61A1 Muscle Skeletal 1.30E-02 0.39 0.60

33 EEFSEC Adipose Subcutaneous 3.99E-07 0.45 0.55

1p12 7 HAO2 Adipose Subcutaneous 9.83E-04 0.47 0.53

a A small sum of the PP of H0, H1 and H2 indicates a high power for the colocalization analysis

b Posterior probability of di↵erent causal variants

c Posterior probability of shared causal variant

5.3.4 Gene-set enrichment analysis

Several GWAS catalog phenotypes were enriched among the nine study-wide significant

TWAS genes, including gestational age at birth, chronic obstructive pulmonary disease,

anthropometric measurements and cancers (Figure 5.6a). Most of these terms remained
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Figure 5.4: Locuscompare plot for EEFSEC. Top right: regional scatter plot for PITT

module 33 GWAS. Bottom right: regional scatter plot for EEFSEC expression GWAS in

brain cortex. Left: joint distribution of the p-values from the two GWASs. Color indicates

LD with the lead SNP.
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Figure 5.5: Locuscompare plot for HAO2. Top right: regional scatter plot for PITT

module 7 GWAS. Bottom right: regional scatter plot for HAO2 expression GWAS in adipose

subcutaneous. Left: Joint distribution of the p-values from the two GWASs. Color indicates

LD with the lead SNP.
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significant when the extended list comprised of 71 significant and suggestive genes was used

as input (Figure 5.6b). The top enriched gene ontology (GO) molecular functions were

ribonucleotide binding and adenyl nucleotide binding (Figure 5.6c), suggesting regulatory

roles of the involved genes.

(a) GWAS catalog terms enriched among the nine significant TWAS genes

(b) GWAS catalog terms enriched among 71 significant and suggestive TWAS genes

(c) GO molecular function terms enriched among 71 significant and suggestive TWAS genes

Figure 5.6: Significant enrichment terms for TWAS results by FUMA
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5.3.5 TWAS identified novel genes not revealed by previous GWAS

CCDC91 was a novel facial gene that has not been discovered before, including in our

previous GWAS where SNPs nearby had small p-values but did not reach genome-wide

significance (Figure C1 bottom panel). In this TWAS, CCDC91 was significantly associated

with nose shape morphology in fibroblasts and was suggestive in adipose tissue. Other genes

in the vicinity did not show association.

Among genes with a TWAS p-value < 10-6 in at least one module, we tested SNP-face

associations for all eQTLs used in predicting gene expression in the TWAS. Table C3 shows

that four genes (CCDC91, LTB4R, ADH6, and LINC01006 ) had no eQTL SNPs which

yielded a p-value < 10-6. A visualization of each gene’s region can be viewed in Figure C1-

C4. In fact, the eQTLs of the latter three all showed p-values > 10-4, two orders of magnitude

greater than that of the gene-level association. These genes represent cases where TWAS

was able to confer greater power for gene discovery than GWAS due to the collective e↵ect

of multiple eQTL SNPs.

5.4 Discussion

In this chapter, we conducted TWAS in three independent cohorts with a goal of iden-

tifying potentially functional mediators of the SNP-trait associations. Our results empha-

sized the important role of gene expression regulation in the genetic control of facial shape

variation. Nine genes reached the study-wide significance level in four relevant tissues; an

additional set of 62 genes showed suggestive association with facial shape. Results from

conditional analysis sorted out putative mediating genes from genes that were not able to

account for the GWAS signal. At multi-gene TWAS loci, a single gene can be prioritized

based on eQTL colocalization. Our results highlighted EEEFSEC being a promising candi-

date for future studies pursuing mechanistic understanding of facial genetics. In addition to

genes already implicated in previous facial GWAS, this study also identified three novel can-

didates (CCDC91, LTB4R, ADH6 ), some of which have relevant craniofacial function. Taken
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together, these findings facilitated gene prioritization at facial GWAS loci and demonstrated

the benefits of TWAS in mapping facial genes.

Gene-set enrichment analysis showed several interesting connections between facial mor-

phology and other complex traits/diseases. The EEFSEC/RUVBL1/SEC61A1 locus was

found to be associated with gestational duration in previous GWAS [146], which raises inter-

esting questions such as whether gestational age at birth influences facial shape and how far

into later life this e↵ect persists. Previous studies to some extend provided support for an ef-

fect of gestational age on certain dimensions of facial features. For example, a study reported

di↵erential orbital and ocular measures of babies born at di↵erent gestational age [147]; An-

other group found gestational age associated with linear distances between several facial

landmarks [148]. However, the long-term e↵ect of gestational age on facial morphology into

adulthood may be another interesting question, on which there has not been studied previ-

ously. Whether there is a genetic component underlying this connection is a natural following

step awaiting further study.

It is not surprising that face-associated genes were enriched for other anthropometric

traits such as BMI and waist-to-hip ratio, given that adiposity and fat distribution influence

both faces and anthropometrics. Our results also suggested a potential correlation of facial

morphology and lung conditions, which has not been reported before. When further adding

suggestive genes to the input list, the ribonucleotide binding term in the GO molecular

function analysis showed a significant enrichment, suggesting regulatory activity being an

important mechanism through which genes a↵ect facial morphology. Studies dissecting the

correlation between normal-range facial variation and other complex traits from a genetic

perspective are just starting, and findings from this study generated interesting hypotheses

to be tested in future research.

Results from TWAS, conditional, and colocalization analysis all featured EEFSEC be-

ing the most likely functional gene mediating the SNP-trait association at 3q21.3. EEFSEC

is also a multi-e↵ect facial gene with association signals seen in di↵erent facial quadrants.

Possible mechanisms for multi-e↵ect genes include (1) variants in the same gene may have

e↵ects across multiple cell populations; (2) variants act early in facial development, presum-
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ably before or not long after the initial appearance of facial prominences, which are then

carried along to di↵erent facial regions. EEFSEC is a translation factor necessary for the

synthesis of selenoprotein. Selenoprotein is the major active form of micronutrient selenium

in human body and supports various cellular and organismal activities, including mammalian

development [149]. So far there is little known role of EEFSEC in facial morphogenesis; its

face-related function remains to be explored.

LTB4R represents an interesting novel gene that was not observed in GWAS. Two rare

missense variants in this gene were found to influence the shape of nose in the PITT cohort

(Results from Chapter 4). In the current study, the e↵ect of LTB4R was detected in the

mandible segment. It is another multi-e↵ect gene a↵ecting facial regions spanning di↵erent

quadrants, and even more intriguingly, with SNPs located at the opposite ends of the al-

lele frequency spectrum both contributing their e↵ects. Future study into the mechanism

of LTB4R e↵ects would be particularly insightful. It is not unreasonable that quantitative

changes in gene expression level a↵ects traits in a somewhat di↵erent but still related way

than qualitative alternation in protein function (caused by changes in amino acid sequence).

It is also possible that di↵erent facial regions are sensitive to di↵erent cues during morpho-

genesis, with some respond in a dose-dependent manner while others do not display such

relationship. LTB4R is a receptor for leukotriene B4, a potent chemoattractant involved in

inflammation and immune response. So far there has been no study on LTB4R in the context

of facial development; future research is needed to demonstrate the biological relevance of

this gene.

In addition to LTB4R, this study also nominated CCDC91 and ADH6 as novel facial

candidates. CCDC91 was shown to have a critical role in promoting the transport of carrier

vesicles between the Golgi and lysosomes [150], and has been linked to skeletal problems

such as hyperostosis and ossification. ADH6 belongs to alcohol dehydrogenase family which

encode enzymes involved in alcohol and drug metabolism. Polymorphisms of ADH6 were

found to be associated with alcohol consumption, alcohol dependence, and schizophrenia

[151–153]. What roles these genes play in craniofacial development remain an open question

be in investigated in future studies.
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Similar to what we observed in Chapter 4, TWAS in the Tanzania population was less

fruitful than that in the PITT cohort, despite comparable sample sizes. This in fact is gener-

ally true for many studies involving both African and European populations. Explanations

may include (1) historically, African genomes have undergone more recombination events

and therefore have less LD compared to the Europeans; (2) the external eQTL resources and

gene expression imputation models were originally built using data of majority Whites, and

extrapolation to another population, especially one of a di↵erent ancestry, would inevitably

introduce extra uncertainty; (3) compared to the Europeans, fewer genes were tested in the

Tanzania cohort due to a smaller overlap between African SNPs (genotyped and imputed)

and European eQTLs. The cohort-specific nature of the multivariate facial phenotypes com-

plicates a meta-analysis of the two cohorts, which we did not end up pursuing in this project.

The unavailability of craniofacial-specific omics data is a notable challenge for any study

of craniofacial phenotypes, including the current one. Most of the cartilage, bone and con-

nective tissues that make up the developing head are derived from craniofacial neural crest

cells formed early in embryonic development. The nature and timing of the processes in-

volved make it extremely di�cult to collect the most relevant tissues and cell types in their

native contexts. Such data are not available for us to build up our own craniofacial-specific

eQTL resource and gene expression prediction model. We compromised by analyzing four

adult tissue types that are closely related to facial structure, and these tissues represented

the best options for the purpose of this study. Suboptimal though as compared to craniofa-

cial neural crest cells from an embryonic development point of view, they are still essential

components of the head and have great impacts on the morphology of the facial surface.

Our tissue choices were intended to approximate the gene expression regulation in (1) fa-

cial bones and the attached muscles, (2) fibroblasts and adipocytes, which are the principal

active cells of the connective tissues forming the base of the skull and face, and (3) frontal

bone, which forms the forehead and interacts closely with brain cortex. The relevance of

the selected tissue and cell types was also supported by the largest-so-far GWAS of normal-

range facial variation from our group, where a subset of the identified GWAS peaks were

enriched for enhancer activity in in vitro-derived osteoblasts, chondrocytes, di↵erentiating

skeletal muscle myoblasts, fibroblasts, and keratinocytes [139]. Even though the best avail-
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able eQTL data were originally generated from steady-state bulk postmortem tissues and the

expression regulation of them can be very di↵erent from that happening earlier in embryonic

development, they still bear useful information and reflect biological processes progressively

modifying facial morphology later in life. By analyzing the selected tissues, our study did

achieve a fair amount of discoveries including genes previously implicated in face-related

traits, demonstrating the usefulness of these four tissues in studying facial variation.

Given the limited tissue availability, the unknown aspects about facial growth, and a

high level of tissue- and developmental-stage-specificity of expression regulation, this study

refrained from comparing across tissues to not over-interpreting the results. That said, the

current data was not able to answer questions such as which tissue contributes the most and

should be considered as the most relevant for studying craniofacial conditions.

An inherent limitation of TWAS is that gene expression prediction can only be as good

as the current knowledge on gene regulation, which is far from complete. Theoretically,

prediction accuracy is capped by the heritability mediated by the genetic component of gene

expression levels. Indeed, that cap is even stronger because the prediction only makes use

of the cis subset with detectable e↵ects coming from common variants. A recent study

on UK Biobank molecular data estimated this upper boundary to be 11%± 2% across 42

common traits and 48 GTEx tissues [154], suggesting at best a modest capability in gene

expression imputation of the cis-eQTL data. Another illuminating finding from their study

was that the majority of the phenotype heritability mediated by gene expression is explained

by genes with weak QTL e↵ect sizes. Solving the problem of unknown functions will need

more studies focusing on weak eQTLs, tissue- and context-specific eQTLs, trans-eQTLs

without cis mediators, and rare eQTLs. Growing knowledge on the genetic architecture of

gene expression will eventually improve the e↵ectiveness of future TWAS.

Interpreting TWAS results presents a specific challenge – it is not always possible to

pinpoint a single putative functional gene among all genes at a certain locus. This issue

represents another intrinsic limitation of TWAS design and is a result of complexities at

several layers. First, attrition of predictable genes occurs during the gene expression model

training and testing processes where many genes were lost due to unsatisfactory prediction
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accuracy. The typical numbers of predictable genes range from a few thousands to around

15 thousand in di↵erent tissues, which accounts for 10% ⇠ 50% of all human genes. Because

gene prioritization relies on comparison among genes, when some genes are not available

for testing, it is dangerous to prioritize the best available one to be the most likely causal

one. Second, attrition of predictable genes also occurs when the intersection of variants

in the GWAS and eQTLs in the prediction models does not contain enough SNPs. Third,

there can be cases where multiple adjacent genes are significant in TWAS. A true disease-

causing biology for all genes is possible, but most of time this is due to shared eQTLs or

distinct eQTLs in high LD. Such a scenario was indeed observed in this study for EEFSEC

and RUVBL1 in the PITT cohort. As shown in figure 5.7, the two genes are next to each

other and both had significant association with the philtrum shape. A further examination

revealed that they shared one of the eQTLs. Fourth, interpreting TWAS results can be

challenging when genes shared eQTLs or have distinct eQTLs in high LD. In these cases,

conditional analysis may not be able to sort out the causal gene because SNP-trait association

signals will diminish after conditioning on the GRex of both genes. Figure 5.8a and 5.8b

display the marginal SNP-trait association statistics before and after conditioning on the

TWAS-predicted expression of EFFSEC and RUVBL1, respectively. Both accounted for the

GWAS signal to a similar degree, posing an apparent challenge in designating a single gene

for follow-up experimentation. However, this di�culty in assigning a causal gene is not to

abrogate the value of a TWAS. Indeed, no single fine-mapping approach can do a perfect

job and the convergence of evidence from various sources should su�ce as strong support

for certain genes being functional. We therefore enhanced TWAS associations with results

from conditional and colocalization analyses to make the best rigorous interpretation with

bearing the limitations in mind.

In summary, analyses in this chapter demonstrated how eQTL data can be e�ciently

utilized to aid with GWAS loci fine-mapping as well as to identify novel candidate genes for

normal-range facial variation. Our findings have made an important step forward from the

earlier GWAS e↵ort and paved the way for future functional experiments. These results will

ultimately help with the construction and refinement of our mechanistic understanding of

processes governing human facial morphology.
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Figure 5.7: An example TWAS locus where two genes had significant association.

At the 3q21.3 locus, both RUVBL1 and EEFSEC were associated with philtrum shape in

fibroblast cells. The top TWAS panel displays the gene-module association -log10(p-value)

for genes annotated in the following Gene panel. The eQTL GWAS P panel highlights the

eQTL SNPs used for predicting EEFSEC expression, with BP coordinates on the x-axis

and GWAS -log10(p-value) on the y-axis. The bottom GWAS panel displays the GWAS

-log10(p-value) for SNPs in this region.
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(a) Conditioning on EEFSEC

Figure 5.8: Conditional analysis may fall short in sorting out the putative causal

gene when nearby genes share eQTLs. Considering the example in Figure 5.7, condi-

tioning on both (a) EEFSEC and (b) RUVBL1 was able to partially reduce the association

signal. The GWAS panel shows the SNP-module association p-values before (blue) and after

(magenta) conditioning on gene expression.
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(b) Conditioning on RUVBL1

Figure 5.8: Conditional analysis may fall short in sorting out the putative causal

gene when nearby genes share eQTLs (cont.)
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6.0 Variance Quantitative Trait Locus (vQTL) Analysis

6.1 Background

This chapter focuses on studying the genetic control of facial shape variability as well as

detecting gene by gene (G ⇥ G) and gene by environment (G ⇥ E) interaction e↵ects by

taking advantage of the strategy of “variance prioritization” [101]. The main analysis per-

formed was a genome-wide screen for loci associated with the variances of both multivariate

facial modules and univariate facial distances, followed by a series of inspections into the

underlying mechanism of the identified vQTLs.

6.1.1 Mechanisms for a SNP variance e↵ect

Several underlying genetic mechanisms can manifest themselves as phenotypic variance

heterogeneity across genotype groups [86]. Explanations for an observed variance e↵ect

include (1) the presence of a genuine interaction e↵ect; (2) confounding by a mean-variance

relationship for a non-normal phenotypic distribution; (3) induction by a nearby causal SNP

with a mean e↵ect; (4) induction by surrounding (multiple) rare causal variants. Sorting

out mechanisms of potential biological interest from mechanisms simply reflecting statistical

artifacts will provide valuable insights into the genetic architecture of the trait under study.

6.1.2 Variance prioritization applications

Answering the question of which mechanism(s) underlie an observed variance e↵ect is

a challenging task and would demand a lot of data. However, for the purpose of variance

prioritization as described by Pare and colleague [101], such e↵ort is not necessarily needed.

The idea is to perform pre-screening and gather a set of SNPs enriched in interaction e↵ects,

and then search for the interacting factors using more direct approaches. The enriched

set is comprised of SNPs conferring genetic variance e↵ects, which can be relatively easily
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identified. This strategy has been shown useful by Wang and colleagues who conducted a

large-scale G ⇥ E scan for 13 quantitative traits in UK Biobank [8]. They identified 75

vQTLs associated with nine traits at an experiment-wise significance level, among which

obesity-related phenotypes were disproportionally represented. By directly testing for SNP

interactions with sex, age, smoking, physical activity and sedentary behavior, the study

reported 16 out of the 75 showing significant G ⇥ E e↵ects. When compared with a randomly

chosen set of SNPs with QTL e↵ects only, the set of 75 identified vQTLs was much more

enriched for G ⇥ E e↵ects. Findings from their paper also supported a polygenic model

of phenotypic variance, indicating the existence of a large number of yet-to-be-discovered

vQTLs with small e↵ects. The BMI study by Yang et al [102] presents another exemplar

application. The authors reported a vQTL in the FTO gene conferring a di↵erence of 0.5

kilograms in standard deviation of weight between the opposite homozygous groups. They

further showed that this variance e↵ect was consistent with the reported FTO - environment

factor interactions for BMI.

The variance prioritization strategy has also been applied to molecular traits such as

gene expression, DNA methylation and protein concentration [86,101,104,105]. For instance,

significant vQTLs were identified for two cardiovascular protein biomarkers in the Women’s

Genome Health Study, and the observed variance heterogeneity was suggested to be explained

by an interaction between vQTL SNPs and BMI/smoking [101].

6.1.3 A review of variance homogeneity test

Several classical tests for homogeneity of variance exist, including Bartlett’s test [155],

Levene’s test [156] and the Fligner-Killen test [157]. These tests are routinely conducted to

check the assumption of variance homoscedasticity of many widely used statistical tests, such

as Analysis of Variance (ANOVA) and Student’s T-test. Bartlett’s test requires normally-

distributed data and has a significantly elevated false positive rate when this assumption is

violated. Levene’s test is more robust to departures from normality, and a more robust ver-

sion of Levene’s test can be achieved by substituting the group mean by the group median.

Fligner-Killen test is also robust to the normality assumption. Newer parametric methods,
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such as double generalized linear model [158] and likelihood-based test [159] were later devel-

oped to complement the traditional tests. More recently, Young and colleague [9] proposed

their Heteroskedastic Linear Mixed Model, which is a statistical technique built upon double

generalized linear models but goes beyond that by introducing a test for a dispersion e↵ect

independent of the mean-variance relationship of the phenotypic distribution. There is no

universal single best method; these test statistics have di↵erent properties and may perform

better than one another under di↵erent scenarios.

All of the aforementioned tests were initially proposed and mostly applied for testing

the variance of a single variable. There has not been as much attention paid to vari-

ance/covariance in a multivariate setting, i.e. statistical tests for assessing the equality

of two or more covariance matrices. Meanwhile, statistical theories of the variance lag far

behind that of the mean. As a consequence, methods for variance are a lot less mature

than methods for mean. As of the completion of this dissertation research, only Box’s M

test is readily applicable in multivariate settings to compare two or more covariance matri-

ces [160]. However, Box’s M test is well-known for being extremely sensitive to the violation

of normality and the presence of outliers. Although bootstrapping was suggested to help

with maintaining correct type I error rate, such a procedure can be prohibitively compu-

tationally intensive, preventing its application to the whole genome. There is a need for a

robust, computationally tractable approach for testing variance heterogeneity of multivariate

phenotypes.

6.2 Methods

All analyses in this chapter were conducted in the PITT and the Tanzania datasets

separately. The smaller Denver cohort was not included due to insu�cient power. In brief, a

multivariate generalization of Levene’s test was first implemented for a genome-wide search

for vQTLs. Lead SNPs at detected vQTLs were then subjected to a series of result look-

ups from Chapter 4 and 5 as well as from previous GWAS to sort out which could not be
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explained by statistical artifacts. SNPs prioritized from the above procedure were further

explored in interaction analysis where G ⇥ G and G ⇥ sex e↵ects were formally tested in a

regression framework. Finally, stratified analysis was performed to verify that the detected

interaction e↵ect of a vQTL truly accounts for its variance e↵ect. As in Chapter 4, the PITT

cohort was analyzed for both multivariate facial modules and univariate facial distances.

6.2.1 Levene’s test with median and its multivariate generalization

This study used Levene’s test with median and its multivariate generalization to identify

SNPs associated with the variability of facial shape.The conventional Levene’s test is equiv-

alent to a test of group di↵erences in mean deviation, with the deviation calculated as the

absolute di↵erence between the phenotypic value and its group-specific mean. This prop-

erty implies that in parallel with the univariate Levene - ANOVA relationship, multivariate

Levene’s test can be operationalized by Multivariate Analysis of Variance (MANOVA) [161].

Specifically, the multivariate test was done by first taking the absolute deviation of each ob-

servation from its genotype group mean along each dimension (facial module PC), followed

by a MANOVA with Pillai’s multivariate test statistic on all dimensions in one facial module

together. The statistical analysis was conducted using the Anova function (which also runs

MANOVA) in the R package car.

6.2.2 Multiple testing correction

Detecting di↵erences in group variances demands larger sample sizes than detecting dif-

ferences in group means. Given that the sample of this study is smaller than the typical

sample size of previous vQTL studies, we raised the MAF minimum cuto↵ for the sake of

maintaining statistical power. On top of the quality control filters imposed in the TWAS in

Chapter 5, SNPs with a MAF < 0.2 were further excluded from the vQTL analysis, giving a

total of 2,818,796 qualified SNPs (genotyped and imputed) in the PITT cohort and 2,929,496

in the Tanzania cohort. Given this customized MAF filter, the conventional genome-wide

significance threshold of 5x10-8 may no longer be appropriate for multiple testing correction.
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We therefore used Genetic Type 1 Error Calculator [162] to recalibrate the e↵ective number

of tests (Me↵) and the corresponding p-value threshold in each cohort separately. A p-value

< 0.05/Me↵ was considered as genome-wide significant, and a p-value < 0.05/Me↵/number

of independent facial modules (or facial distances) was considered study-wide significant.

6.2.3 Power calculation

This project is the first of its kind in studying variance e↵ect for facial traits and we do

not have a justified speculation of the genetic e↵ect sizes in prior. We therefore carried out

a post hoc power calculation for MANOVA in the G*Power software [163]. A wide range

of parameter choices were explored, and for illustrative purposes we chose the following

based on the real phenotype and genetic data: three comparison groups (corresponds to

the three genotype groups for any SNP tested); 11 dependent variables (for one of modules

where significant vQTLs were detected); ↵ = 1⇥10-7; e↵ect size being the maximum of the

empirical e↵ect size. The actual ↵ level used in this study (see Results) was not in the

acceptable range of G*Power; the closest ↵ allowed was 1⇥10-7.

6.2.4 Exploration of the mechanisms of variance heterogeneity for lead SNPs

at vQTL

Several underlying genetic mechanisms can manifest themselves as phenotypic variance

heterogeneity across groups. For (1) variance heterogeneity induced by a mean-variance

relationship, we checked whether such a relationship exists by plotting absolute deviation

versus group mean. For (2) variance heterogeneity induced by a nearby causal SNP with

mean e↵ect, we obtained the GWAS statistics of SNPs residing within 500 kb on either side

of the lead vQTL SNP in the corresponding facial modules where the vQTLs were identified.

For (3) variance heterogeneity induced by surrounding (multiple) rare causal variants, we

obtained the gene-based association test p-values of genes overlapping with the same region

as above, in the corresponding facial modules where the vQTLs were identified (from Chapter

4 results). For (4) variance heterogeneity as a result of interaction e↵ects, we conducted tests
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for vQTL ⇥ all other genome-wide SNPs and vQTL ⇥ sex, with more details described in

the next sections.

6.2.5 G ⇥ E and G ⇥ G for lead SNPs at vQTL

We carried out formal interaction tests for the lead SNP at genome-wide significant

vQTLs using a two-way MANOVA. Two-way MANOVA extends the traditional one-way

MANOVA by including a second independent variable and an interaction term between the

two factors. In the MANOVA model for a particular facial module, all of the PCs within

this module would be the dependent variables, and the independent variables include vQTL,

a second factor, and an interaction term vQTL ⇥ the second factor. The second factor can

be any of the SNPs that were included in the vQTL analysis (MAF > 0.2) for G ⇥ G, and

for G ⇥ E we restricted this second factor to be sex of the participants. For the sake of

preserving power and not missing potential signals, we used 5⇥10-8 to declare a significant

interaction e↵ect without further adjusting for the number of vQTLs tested.

6.2.6 vQTL analysis for univariate facial traits

The 24 univariate facial traits were also analyzed in the PITT cohort. In Chapter 4 we

showed that there were 17 independent traits among all 24, and the multivariate analysis

in the current chapter have estimated the e↵ective number of SNPs to be 448,915. The

threshold used for declaring significance was therefore 6.55⇥10-9 (0.05/448,915/17). We used

conventional Levene’s test with median implemented in the OSCA software package (http://

cnsgenomics.com/software/osca) [164] for an e�cient genome-wide search. Top vQTLs were

examined for the aforementioned four possible mechanisms in a similar manner. The G ⇥ G

test was done by PLINK command –epistasis and the G ⇥ E test was done by fitting a linear

regression model with the interaction term using PLINK command –linear. Colocalization

plots for vQTL summary statistics and G ⇥ G summary statistics were generated by R

package LocusCompareR [145].

As described in the Results section below, we detected a suggestive vQTL signal at the
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PRICKLE1 locus and a significant G ⇥ G e↵ect between PRICKLE1 and FOCAD. With the

assistance from Seongwon Cha’s group at the Korea Institute of Oriental Medicine, we sought

to validate these signals in an independent set of 5643 Korean individuals. A description of

the cohort and genotype and phenotype data can be found in Cha et al 2018 [40]. The exact

facial feature (cranial base width) was not available; zygion-to-zygion distance (zyR-zyL)

was used as an substitute. Both are measures of facial base width and are highly similar

to each other. The landmarks for calculating zyR-zyL can be seen in Fig 1C of Cha et al

2018 [40]. The same test in OSCA, Levene’s test of homogeneity with median, was applied to

SNPs in and near PRICKLE1 using a 500 kb flanking window on either side, while adjusting

for age, sex, height and weight. All SNPs located ± 500 kb of PRICKLE1 were tested for

interaction with all SNPs located ± 500 kb of FOCAD (the gene that PRICKLE1 was

interacting with in the PITT cohort) using the same method as in the discovery analysis,

i.e. –epistasis function in PLINK. Initially, all SNPs with a MAF > 0.01 were analyzed. We

then implemented a post hoc MAF filter, the lower boundary of which was set based on the

minimum cuto↵ value which was able to give a well-behaved Q-Q plot. This cuto↵ was 0.2

for the vQTL test (consistent with the discovery analysis) and 0.1 for the G ⇥ G test. The

independent number of SNPs was computed according to the eigenvalue-based procedure by

Li and Ji’s [119], using the 1000 Genome EAS data. For the vQTL test at the PRICKLE1

locus, a p-value below 0.05/53 = 9.4⇥10-4 was considered a significant replication. For the

G ⇥ G analysis, we used the conventional genome-wide threshold of 5⇥10-8. Whenever a

specific SNP identified in the PITT cohort was not available in the Korean cohort, proxy

SNPs were searched based on LD in the CEU population and if available, used as substitutes.

6.3 Results

6.3.1 Genome-wide vQTL scans for the multivariate facial modules

The Me↵ was calculated to be 448,915 for the PITT data and 852,329 for the Tanzania

data. We therefore used a genome-wide p-value threshold of 1.11⇥10-7 (0.05/448,915) and
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a study-wide threshold of 2.86⇥10-9 (0.05/448,915/39, with 39 independent facial modules

for the PITT sample) for the analysis in the PITT cohort, and a genome-wide threshold of

5.87⇥10-8 and a study-wide threshold of 1.47⇥10-9 for the analysis in the Tanzania cohort.

We did not identify any SNP at the study-wide significance level. However, eight loci

yielded suggestive signals at the genome-wide level. Four of them were detected in the PITT

cohort, and the a↵ected facial regions included nose, lip, cheek and mandible (Table 6.1).

Another four were identified in the Tanzania cohort and showed association with the shape

variability of nose and zygoma area (Table 6.2). Multivariate Levene’s test for the involved

facial modules were well-behaved and there was no sign of inflation or deflation (Figure D1).

Zooming into the eight suggestive loci, SNPs’ p-values and genes in vicinity can be viewed

in Figure 6.1 - 6.8 panel (a). Most identified vQTLs did not overlap with coding regions,

although there were two loci falling inside known genes. The chromosome 17q21.32 locus

overlapped with a long non-coding RNA gene, and the lead SNP of 11q14.2 was an intronic

SNP of gene PRSS23. The absence of an association “tower” at some loci could be a result

of correlated SNPs being excluded if their MAF was below 20%. None of these loci harbor

or lie close to a GWAS peak (Figure 6.1–6.8 panel (b)), nor were they reported in any

previous facial morphology studies. A couple vQTLs harbor genes with some evidence of

craniofacial relevance from past studies of cell lines, animal models, and human syndromes

(see Discussion).

6.3.2 A post hoc power calculation for multivariate Levene’s test

Figure 6.9 shows the power of detecting a global di↵erence in a MANOVA as a function

of total sample size, for an example module (module 37, where genome-wide significant

vQTLs were identified). At an ↵ level of 1⇥10-7, the current sample size (N=2329) was

able to detect a variance e↵ect equal to or larger than the observed maximum e↵ect size

with a power greater than 90%. The power calculation assumed a balanced group size, i.e.

same-sized groups of three genotypes, which was not true for most of the SNPs. With other

parameters held constant, one should expect a lower power given this imbalance.
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Table 6.1: Genome-wide significant vQTLs in the PITT cohort

Locus SNP BP MAF Module P-value

8q23.3 rs13278165 117467575 0.420 35 8.88E-08

rs35954699 117467839 0.420 35 8.88E-08

rs34447117 117467891 0.419 35 9.74E-08

10p11.22 rs806812 32357760 0.355 37 4.26E-08

rs73477 32400396 0.357 37 7.06E-08

rs211428 32401087 0.357 37 7.06E-08

rs2370703 32402827 0.357 37 7.06E-08

rs405040 32406709 0.359 37 2.79E-08

10q25.3 rs7083764 115557964 0.410 2 5.25E-08

rs4918871 115559190 0.410 2 3.95E-08

rs4918872 115559311 0.404 2 1.02E-07

rs4918873 115559458 0.404 2 1.02E-07

rs9783229 115560438 0.410 2 3.21E-08

rs9783196 115560876 0.410 2 3.49E-08

rs10885508 115560970 0.410 2 3.49E-08

rs7098623 115561346 0.410 2 2.86E-08

rs10787503 115562202 0.411 2 1.53E-08

rs4917669 115566844 0.409 2 2.18E-08

rs7899612 115578872 0.409 2 2.27E-08

17q21.32 rs3744772 46713532 0.285 6 1.08E-07

rs4793963 46715759 0.344 6 7.29E-08

rs4793596 46717306 0.285 6 1.01E-07

87



Table 6.2: Genome-wide significant vQTLs in the Tanzania cohort

Locus SNP BP MAF Module P-value

2q22.3 rs1919443 148398301 0.249 51 4.40E-08

rs73011961 148404905 0.247 51 2.86E-08

4q13.1 rs935719 62035605 0.437 3 9.24E-09

11q14.2 rs57622507 86597905 0.253 47 3.16E-08

13q21.22 rs9542643 71864264 0.241 50 4.90E-08

rs9529870 71864348 0.241 50 3.87E-08

6.3.3 Little overlap of identified vQTLs between the two cohorts

SNPs that passed the genome-wide threshold in either cohorts were looked up in the other

for evidence of replication. Due to the cohort-specific facial segmentation procedure, all 63

facial modules were considered regardless of which module was originally involved in the

vQTL. This led to 4 loci ⇥ 40 independent modules for looking up PITT vQTL SNPs in the

Tanzania cohort and 4 loci ⇥ 39 independent modules for going the other direction. The full

lookup results can be viewed in the a�liated supplementary file of this dissertation (Table

S2); Table D1 presents results in the best module where a SNP obtained the minimum p-value

in the lookup cohort. Most of the SNPs did not show evidence of replication. The only one

that had a significant p-value after Bonferroni correction was rs806812 at the chromosome

10p11.22. It was identified in PITT upper lip module and showed the best association with

a Tanzania cheek module (p-value = 2.6⇥10-4).

6.3.4 Mechanisms of the observed variance heterogeneity

Four common mechanisms for SNP variance e↵ects were scrutinized for the lead SNPs at

the eight detected vQTLs. This section shows that the three mechanisms reflecting statistical

artifacts were unlikely in our data, and in the next section we detail how G ⇥ G e↵ects could

possibly explain the observed variance heterogeneity at some vQTLs.
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Figure 6.1: PITT vQTL: Regional plot of the 8q23.3 locus in module 35 (na-

solabial)
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Figure 6.2: PITT vQTL: Regional plot of the 10q25.3 locus in module 2 (nose,

mouth)
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Figure 6.3: PITT vQTL: Regional plot of the 10p11.22 locus in module 37 (upper
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Figure 6.4: PITT vQTL: Regional plot of the 17q21.32 locus in module 6 (lower

face)
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Figure 6.5: Tanzania vQTL: Regional plot of the 2q22.3 locus in module 51
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Figure 6.6: Tanzania vQTL: Regional plot of the 4q13.1 locus in module 3 (nose,

eye)
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Figure 6.7: Tanzania vQTL: Regional plot of the 11q14.2 locus in module 47
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(b) GWAS

Figure 6.8: Tanzania vQTL: Regional plot of the 13q21.22 locus in module 50

(nose)
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Figure 6.9: Post hoc power calculation for the vQTL analysis

(1) Variance heterogeneity induced by a mean-variance relationship. For this to be true,

the SNP has to have a mean e↵ect on the phenotype. As already mentioned, our previous

GWAS did not identify any SNPs at the eight vQTLs to have mean e↵ects. Therefore, the

mean-variance relationship cannot be the underlying causal of the detected vQTLs.

(2) Variance heterogeneity induced by a nearby causal SNP with mean e↵ect. Figure

6.1–6.8 panel (b) show that none of the eight identified loci overlap with a GWAS signal in

a 1 MB window, which means that the presence of a nearby common SNP with mean e↵ects

was highly unlikely.

(3) Variance heterogeneity induced by surrounding (multiple) rare causal variants. In

Chapter 4 we tested the e↵ects of rare and low-frequency variants by aggregating coding

SNPs into genes. Summary statistics of genes located in a 1 MB window centered at the

lead SNP of each vQTL were retrieved from Chapter 4 results and displayed in Table 6.3.

There was no evidence for any of these genes to have a significant e↵ect on the corresponding

facial module.
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Table 6.3: Results of gene-based rare and low-frequency variant association test at vQTLs

Cohort vQTL Module Gene MultiSKAT

p-value

Number of

variants

PITT 10p11.22 2 CASP7 0.30 2

CCDC186 0.04 2

DCLRE1A 0.44 8

HABP2 0.50 6

NHLRC2 0.39 3

NRAP 0.08 7

PLEKHS1 0.69 2

TDRD1 0.79 4

VWA2 0.51 4

17q21.32 6 HOXB2 0.78 2

HOXB4 0.87 2

HOXB9 0.79 2

TTLL6 0.42 3

10p11.22 37 CCDC7 0.45 7

EPC1 0.43 2

KIF5B 0.96 2

Tanzania 11q14.2 47 CCDC81 0.09 5

FZD4 0.43 7

TMEM135 1.00 7

13q21.22 50 DACH1 0.03 2

2q22.3 51 ACVR2A 0.06 2

ORC4 0.66 6
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6.3.5 G ⇥ Sex and G ⇥ G

Table 6.4 shows G ⇥ sex test p-values by fitting a MANOVA model. None of the lead

SNPs showed evidence of G ⇥ sex e↵ect.

Table 6.4: G ⇥ sex results for the lead SNP at the eight vQTLs

Cohort Locus Lead SNP BP Module G ⇥ sex p-value

PITT 8q23.3 rs13278165 117467575 35 (nasolabial) 0.90

10p11.22 rs405040 32406709 37 (upper lip) 0.45

10q25.3 rs10787503 115562202 2 (nose, mouth) 0.35

17q21.32 rs4793963 46715759 6 (lower face) 0.27

Tanzania 2q22.3 rs73011961 148404905 51 (nose) 0.78

4q13.1 rs935719 62035605 3 (nose, eye) 0.94

11q14.2 rs57622507 86597905 47 (zygoma) 0.44

13q21.22 rs9529870 71864348 50 (nose) 0.97

The G ⇥ G tests did not yield signals at a significance level of 5⇥10-8/8 (8 lead SNPs

tested). One PITT vQTL and one Tanzania vQTL showed suggestive SNP ⇥ SNP interac-

tion at a relaxed threshold of 5⇥10-8 (Table 6.5). SNP rs73011961 was detected to interact

with the GPC6 locus in the Tanzania data (Figure D2c). The PITT vQTL 10p11.22 showed

a possible interaction with CPO and another locus near EPHA4 (Figure D2). Q-Q plots and

Manhattan plots of the genome-wide interaction analysis for the two involved facial modules

can be viewed in Figure D3.

Table 6.5: Suggestive G ⇥ G for lead vQTL SNPs

Cohort Module vQTL Locus vQTL lead

SNP

Interacting

locus

Interacting

lead SNP

Interaction

p-value

Tanzania 51 (nose) 2q22.3 rs73011961 13q31.3 rs7333716 2.81E-08

PITT 37 (upper lip) 10p11.22 rs405040 2q33.3 rs2084940 2.73E-08

2q36.1 rs11885148 1.10E-08
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6.3.6 vQTL analysis for univariate facial traits

Although no study-wide significant vQTL was identified for any of the 24 facial distances,

a few loci had p-values close to the threshold and were considered as suggestive hits. Table

D2 shows the top associated SNP for each of the 24 traits. After examining into these sug-

gestive signals, we identified the PRICKLE1 -cranial base width association as particularly

interesting and therefore focused on this association in the remaining of the Results section.

The top associated SNP for the variance of cranial base width was rs1796391 (MAF

= 0.25), which falls in one of the introns of PRICKLE1 (Figure 6.10a). It yielded a p-

value=8.8⇥10-8 in the Levene’s homogeneity test, and its minor allele was associated larger

phenotypic variance. Levene’s test statistics for cranial base width were well-behaved and

there was no sign of inflation nor deflation (Figure D4).

Similar to how we followed up on the vQTLs of facial modules, we assessed three mech-

anisms as potential sources for the variance heterogeneity at rs1796391. SNP rs1796391 was

not associated with the mean of cranial base width (GWAS p-value=0.18), nor did any of the

SNPs located within 500 kb from rs1796391 show significant mean e↵ect (Figure 6.10b). A

linear regression model including the rs1796391 ⇥ sex term was fitted to test for a possible

G ⇥ E e↵ect, and neither the 1df test for the interaction e↵ect only nor the 2df test for

both the main and the interaction e↵ects yield significant results (1df test p-value=0.69, 2df

test p-value=0.45). We looked up gene-based association summary statistics from Aim1,

and PRICKLE1 had a CMC p-value=0.32 and a SKAT p-value=0.83. These numbers sug-

gested that three of the possible mechanisms under consideration were unlikely to explain

the variance e↵ect of the PRICKLE1 locus in cranial base width.

In the genome-wide search of SNPs interacting with PRICKLE1 SNP rs1796391, we de-

tected a significant G ⇥ G with the second locus being FOCAD on chromosome 9. The SNP

pair consisting of rs1796391 (PRICKLE1 ) and rs10511683 (FOCAD) gave an interaction

p-value=8.1⇥10-9; no other SNPs at the FOCAD locus had an interaction p-value below

5⇥10-8 (Figure 6.11a). SNP rs10511683 was intronic and did not show a mean e↵ect on

cranial base width (Figure 6.11b). Figure 6.12 presents a visualization of the SNP ⇥ SNP

interaction e↵ect, where the non-parallel pattern of the red, green, and purple line indicated
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Figure 6.10: Regional plot of the PRICKLE1 locus in cranial base width in the

PITT cohort
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the di↵erential conditional e↵ects of rs10511683 depending on the genotype at rs1796391.

The table to the right in Figure 6.11 displays association results of rs10511683 before and

after the stratified analysis. The minor allele of rs10511683 in FOCAD was associated with

wider cranial base in people carrying the AA genotype at rs1796391 (PRICKLE1 ), whereas

it had an opposite e↵ect direction in the GG group. The p-values in both AA and GG

group were small, despite not meeting the genome-wide threshold. These opposite e↵ects

o↵set each other when the interacting locus was not taken into consideration, shown by the

non-significant p-value in the first row of the table.

We performed two analyses to further explore the relationship between the detected

vQTL signal and the G ⇥ G signal. First, focusing on the PRICKLE1 locus, we compared

the p-values from the Levene’s tests with the p-values from the G ⇥ G tests in Figure 6.13.

The upper right cluster in the left panel supported a colocalization of the signals from the two

analyses while taking into account the local LD structure. Although this does not prove that

the interaction was indeed the underlying cause for the variance heterogeneity, the colocal-

ization at minimum demonstrates a possibility of such explanation. Second, we repeated the

Levene’s test for rs1796391 (PRICKLE1 ) after stratifying the entire sample by individual’s

genotype at rs10511683 (FOCAD). If the variance heterogeneity at rs1796391 (PRICKLE1 )

was induced by its interaction with rs10511683 (FOCAD), we would expect to see weakened

signals in each stratum. In accordance with this expectation, the stratum-specific vQTL

signals were substantially less significant compared with the unstratified p-value = 8.8⇥10-8

(Figure 6.14). We caution that the stratification inevitably led to a reduced power and

a tendency for higher variance in smaller groups, which complicated the interpretation of

this result. Nonetheless, results from these two analyses suggest that the G ⇥ G e↵ect can

potentially account for the observed variance heterogeneity at rs1796391 (PRICKLE1 ).

From figure 6.12, we noted one individual in the minor allele homozygous group appeared

to be an outlier of cranial base width. We examined the influence of this outlier on the

vQTL and G ⇥ G results by performing a sensitivity analysis with this individual removed.

Levene’s test gave a p-value = 9.03⇥10-7, and the same SNP pair yielded a G ⇥ G p-value =

4.65⇥10-8. Figure 6.15, which is the same to figure 6.12 except that the outlying observation
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Figure 6.11: Regional plot of the FOCAD locus in cranial base width in the

PITT cohort
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Figure 6.12: Interaction e↵ect between rs1796391 (PRICKLE1 ) and rs10511683

(FOCAD) in cranial base width. Left: boxplots show the residual value of cranial base

width (after regressing out age, age2, sex, height, weight and facial size) in three genotype

groups of the vQTL rs1796391 (PRICKLE1 ), colored by the genotype at the interacting

SNP rs10511683 in FOCAD (SNP2 in the figure). Standard deviations were shown above

each box. Middle: X-axis and Y-axis are the same as in the boxplots to the left, but further

stratified and colored by rs10511683 (FOCAD). The non-parallel pattern is the hallmark

of statistical interaction. Right: Association (with the mean of cranial base width) beta

coe�cients, p-values and sample sizes of rs10511683 (FOCAD) in the entire sample (top

row) and in three strata defined by rs1796391 (PRICKLE1 ) (following rows).
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Figure 6.13: Locuscompare plot for PRICKLE1. Top right: regional scatter plot for

the vQTL scan of cranial base width. Bottom right: regional scatter plot for the G ⇥ G test

between rs10511683 (FOCAD) and SNPs at the PRICKLE1 locus. Left: joint distribution

of the p-values from the two analyses. Colored by LD with rs1796391.
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Figure 6.14: Stratified vQTL analysis of PRICKLE1. Plots show the residual value

of cranial base width (after regressing out age, age2, sex, height, weight and facial size) in

three genotype groups of the vQTL rs1796391 (PRICKLE1 ). The left, middle, and right

panels correspond to the AA, AG, and GG genotype at rs10511683 (FOCAD), respectively.

Shown above each boxplot are the standard deviations of the phenotype, group sizes, and

the p-values from the Levene’s test in that genotype group of rs10511683. The vQTL signals

in each stratum were less significant than that in the unstratified analysis.
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was excluded, demonstrates the presence of variance heterogeneity and the interaction e↵ect

in the remaining samples. As one would expect, The signals were slightly weakened compared

to the original analyses. These results suggest that the detected PRICKLE1 vQTL and its

interaction e↵ect were not materially a↵ected by the phenotypic outlier, which is expected

given the robustness of Levene’s test with median.

Figure 6.15: Sensitivity analysis of the PRICKLE1 vQTL. This figure shows the

same analyses as in figure 6.12, except that the phenotypic outlier in the homozygous group

was removed. Left: boxplots show the residual value of cranial base width (after regressing

out age, age2, sex, height, weight and facial size) in three genotype groups of the vQTL

rs1796391 (PRICKLE1 ), colored by the genotype at the interacting SNP rs10511683 in

FOCAD (SNP2 in the figure). Standard deviations were shown above each box. Middle: X-

axis and Y-axis are the same as in the boxplots to the left, but further stratified and colored

by rs10511683 (FOCAD). The non-parallel pattern is the hallmark of statistical interaction.

Right: Association (with the mean of cranial base width) beta coe�cients, p-values and

sample sizes of rs10511683 (FOCAD) in the entire sample (top row) and in three strata

defined by rs1796391 (PRICKLE1 ) (following rows).

We sought to validate the vQTL and G ⇥ G signal of PRICKLE1 in an independent

set of Korean individuals. A minimum MAF cuto↵ of 0.2 (as used in the discovery analysis)

was able to generate well-behaved test statistics on the Q-Q plot (Figure D5). The e↵ective

number of tests among the 663 qualified SNPs at the PRICKLE1 was 53. No SNPs survived
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the Bonferroni correction (0.05/53=9.4⇥10-4, Figure 6.16). The lead SNP at PRICKLE1

from the PITT analysis were not available in the replication cohort. Four proxy SNPs which

had a r2=1 with the lead SNP rs1796391 were identified, yet none of them showed evidence

of influencing phenotypic variance (p-value > 0.1 for all; Table 6.6 and 6.7).
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Figure 6.16: Results of the vQTL test for PRICKLE1 locus in the replication

cohort. There is little evidence of replication.

Since the lead interacting SNPs from the analysis of the PITT cohort were not available

in the replication cohort, we looked for proxy SNPs based on LD. Four proxies were identified

for FOCAD interacting SNP rs10511683 with r2 ranging from 0.63 to 0.77 (Table 6.6). These

four SNPs were tested for pairwise interaction e↵ects with each of the aforementioned four

proxies for PRICKLE1 SNP rs1796391, the results of which were summarized in Table 6.8.

There was no evidence of the presence of significant interaction e↵ect when only these 16

SNP pairs were taken into account.

We further expanded the test region under consideration by analyzing all SNPs located in
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Table 6.6: Proxy SNPs identified for rs1796391 (PRICKLE1 ) and rs10511683 (FOCAD)

in the replication cohort

Gene Proxy SNP CHR:BP MAFa r2b

PRICKLE1

rs1796362 12:42873184 0.221 1

rs1796361 12:42873402 0.221 1

rs2708068 12:42873478 0.224 1

rs1669916 12:42878879 0.209 1

FOCAD

rs4978017 9:20739231 0.333 0.631

rs10757149 9:20831915 0.348 0.767

rs2026994 9:20834837 0.348 0.647

rs2151001 9:20836862 0.293 0.697

a minor allele frequency in the replication cohort

b r2 with either rs1796391 or rs10511683 in the 1000 Genome CEU population

Table 6.7: vQTL replication analysis results for the proxy SNPs of the discovery lead SNP

rs1796391

SNP Beta P-value

rs1796362 -0.039 0.104

rs1796361 -0.039 0.102

rs2708068 -0.039 0.102

rs1669916 -0.038 0.123
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Table 6.8: G ⇥ G test p-values for the proxy SNP pairs in the replication cohort

PRICKLE1 proxy SNP

rs1669916 rs1796361 rs1796362 rs2708068

FOCAD proxy SNP

rs10757149 0.257 0.248 0.247 0.249

rs2026994 0.268 0.261 0.260 0.260

rs2151001 0.146 0.151 0.150 0.166

rs4978017 0.264 0.242 0.239 0.227

the 1 Mb window centered around PRICKLE1 and FOCAD. Using a MAF filter of 0.1, 906

PRICKLE1 SNPs and 796 FOCAD SNPs were tested for pairwise G ⇥ G. Figure D6 shows

that the distribution of the resulting 721176 p-values was consistent with the null expectation,

except for p-values at the tail. Two pairs of SNPs passed the conventional genome-wide

threshold: rs10964862 (FOCAD) ⇥ rs11181736 (PRICKLE1 ) with a p-value=4.53⇥10-9

and rs10964862 (FOCAD) ⇥ rs11181735 (PRICKLE1 ) with a p-value=9.33⇥10-9. The top

interacting SNPs in the replication cohort were 340 kb and 380 kb away from that in the

PITT cohort. SNP rs10964862 (FOCAD) showed significant or nearly significant interaction

with multiple SNPs at the PRICKLE1 locus (Figure 6.17). This SNP does not overlap with

known coding sequence.

6.4 Discussion

With a shift in focus from facial shape mean to facial shape variability, this study for

the first time examined the genetic basis of normal-range facial morphology from a variance

perspective and demonstrated the existence and research value of vQTL. The extension of

a conventional variance homogeneity test to multivariate outcomes helped with prototyping

the statistical pipeline for application in future cross-trait settings. The result that none

of the discovered vQTLs overlapped with known GWAS loci highlights the unique value of
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Figure 6.17: Replication of PRICKLE1 ⇥ FOCAD interaction. Regional plot

showing the interaction p-values between rs10964862 (FOCAD) and SNPs at the PRICKLE1

locus
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vQTL studies. Such loci can only be uncovered via a study focusing on phenotypic variance

rather than on phenotypic means; the genes they harbor were completely missing by previous

GWAS. By carefully scrutinizing the possible mechanisms for the discovered vQTLs, we

uncovered SNP by SNP interactions pointing to biologically relevant genes. These findings

expanded our understanding of the genetic control of human facial morphology and have

great potential in guiding future studies to further forward field knowledge.

Our analysis of the multivariate facial modules identified novel candidate loci and genes,

a few of which were reported to have relevant function in bone, limb, and craniofacial struc-

tures in previous studies. For example, the Tanzania vQTL signal at 2q22.3 is near to three

genes with some previous evidence: ACVR2A has a role in cranial neural crest cell pat-

terning and acvr2a-depleted zebrafish exhibited defects in cartilage, bone, and pharyngeal

tooth structures [165]; mutations in ORC4 can cause Meier-Gorlin syndrome 2 whose clin-

ical hallmarks include flat philtrum, micrognathia and mandibular hypoplasia [166]; MBD5

represents another gene which underlies human craniofacial syndromes [167]. Loci where

interaction signals were detected also had promising candidate genes. For instance, one of

the identified interaction loci in the Tanzania data harbors gene GPC6 (Figure D2c). In

a previous study, GPC6 was able to impair ossification and cause omodysplasia (OMIM

604404) when disrupted by mutations [168]. Omodysplasia patients displayed short limbs,

short stature, posteriorly rotated ears and mild micrognathia. Expression of mouse Gpc6

was detected in proliferative chondrocytes at growth plate. Though supportive, these lines

of evidences do not prove the functional role of these genes at the vQTLs. Like any other

GWASs, fine-mapping is needed to prioritize potential causal genes.

Our vQTL analysis of the traditional facial distance phenotypes also generated new

insights. PRICKLE1 has been shown to play crucial roles in craniofacial morphogenesis in

animal experiments and rare human syndromes but has never been reported being significant

in human population studies, regardless of whether a candidate strategy or a genome-wide

search was performed. By studying variance e↵ects, our analysis of cranial base width

for the first time highlighted PRICKLE1 in a human association study. Although this

signal did not surpass the study-wide significance threshold, we still consider it as being a
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promising finding given its relevant biology and relatively small size of the study cohort.

Several factors may contribute to the failure of replication of the PRICKLE1 vQTL. First,

the signal was discovered in European population while the replication cohort was of Asian

ancestry. Di↵erences in LD structure, the nonavailability of the original top SNPs, and/or

di↵erences in genetic and environmental background may all have a role in shaping the

distribution of the variance e↵ect itself and/or our ability to detect variance e↵ects. Second,

the facial phenotypes were slightly di↵erent in the two cohorts. Despite a lack of variance

e↵ects, we did replicate the G ⇥ G signal in the Korean dataset if we consider a window

surrounding the original signal. The LD di↵erence in the two populations may explain the

shift in the location of the interaction signal. SNPs involved in the replication signal did not

overlap with known regulatory elements of PRICKLE1/FOCAD. Their role in the context

of craniofacial morphogenesis needs to be examined in future studies.

PRICKLE1 serves as a signaling factor in the noncanonical Wnt pathway, the disruption

of which is known to cause cleft palate and stunt limb growth [169–171]. A recently study

characterized the functions of Prickle1a and Prickle1b in zebrafish cranial neural crest cell

development during epithelial-to-mesenchymal transition and migration [172]. Studies in

mouse also support its essential role in craniofacial development. Prickle1 missense allele

mutant mice were microcephalic and displayed several craniofacial defects including a cleft

lip, incompletely penetrant cleft palate, and a shorter proximal-distal axis of the head [173].

These phenotypes were a result of the abnormal migration and di↵erentiation of osteoblast

precursors in the frontal bone in the absence of functioning Prickle1 protein. Sequencing

studies of craniofacial syndrome patients implicated both rare and common PRICKLE1

variants [174]. Our findings suggest that PRICKLE1 influences facial width and disease risk

not by shifting the average level of the phenotype but instead via its control over how variable

the phenotype can be. We further demonstrated the G ⇥ G e↵ect between PRICKLE1 and

FOCAD. There is so far little known about FOCAD except it being a potential tumor

suppressor gene. The biological relevance of this PRICKLE1 ⇥ FOCAD signal is currently

being studied at one of our collaborators, Heather Szabo-Rogers’s laboratory using Prickle1

mutant mice, and the preliminary results are promising.
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Consistent with findings from previous studies, our results suggested that vQTLs are

much less common than QTLs (loci a↵ecting phenotypic mean) for complex human traits.

Studies on both more proximal molecular phenotypes and more distal disease status have all

indicated a lesser contribution of vQTLs than QTLs to trait heritability [86, 101,104]. This

may also be a simple consequence of not having enough power to detect vQTLs, given the

complexity and method immaturity in studying variance itself. Findings from existing vQTL

studies are not at odds with the possibility of a large amount of vQTLs, each with a modest

e↵ect size or moderate-to-large e↵ect size that only manifest under certain conditions. More

studies in this area are needed to give further insights.

As aforementioned, variance heterogeneity can emerge from several di↵erent underlying

mechanisms. How common these mechanisms are relative to one another is not known. This

brings about the inherent limitation of the “variance prioritization” strategy - one cannot

make immediate interpretation of the vQTL e↵ect. We caution that although our data did

not support mechanisms other than the interaction explanation, we cannot completely rule

out other possibilities because the real causal SNPs may not be genotyped or imputed well

and therefore their untagged causal e↵ect may still confound a vQTL analysis. Additionally,

we were not able to examine non-genetic factors other than sex in the G ⇥ E test, leaving

the possibility that the detected vQTLs may interact with other unmeasured environmental

factors in shaping facial morphology. Nonetheless, we have carefully scrutinized the mech-

anisms of the identified vQTLs within the capacity of available data and made meaningful

justification for the most plausible one.

One factor that may or may not have a↵ected our analysis was the complicated math-

ematical transformation that the multivariate facial phenotypes have gone through. Phe-

notype transformation has been suggested to have an influence on the power and/or false-

positive rate of vQTL analysis [175]. The PC phenotypes used were standardized to have a

mean of 0 and a variance of 1 in the entire sample, which may have added a layer of complex-

ity to the variance test as well as brought extra vulnerability. However, imaging phenotypes

do not have a natural “as-is” value like those directly quantifiable ones, such as height or bone

mineral density, and they have to be transformed in some way. Our PC phenotypes have
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been shown to be successful for gene mapping purpose in the previous GWAS [31]. Because

the e↵ects of phenotypic transformation is largely understudied for variance equality tests,

it is also possible that such transformation may in fact be beneficial. The standardization

process pulled the data closer to a normal distribution, and the pre-adjustment of covari-

ates can lead to a minor improvement in statistical power [8]. One future direction from

here is to evaluate the consequence of various types of variable transformation on variance

homogeneity tests.

We acknowledge the limited power for detecting variance heterogeneity and suggest that

there likely are more vQTLs for human facial shape that were undetected given the current

sample size. Likewise, interactions involving the vQTLs could also have remained undetected

due to insu�cient power. This power issue is consistent with the fact that we failed to

identify any study-wide significant signals. Our genome-wide significant vQTLs and G ⇥

G e↵ects should not be considered genuine biological e↵ects before successful replication in

independent samples and verification by functional experiments. We were lucky to have

access to an independent replication cohort via an external collaboration. Yet experimental

validation was not a manageable task given the scope of the current dissertation work, and

will continue to remain challenging even beyond the current project. Nevertheless, findings

from this chapter raise interesting hypotheses which have great potential in generating novel

insights by future investigations.

This vQTL aim is particularly innovative in that (1) vQTL is a highly understudied topic

in current human genetics and has never been a theme of any kind in studies of human facial

morphology; and (2) to the best of our knowledge, there has not been a single vQTL study on

multivariate phenotypes in the literature, indicating a lack of attention on such phenotypes

and insu�cient research on statistical approaches suitable for multivariate settings. The

multivariate analysis pipeline developed in this project provided an exemplar upon which

studies of other multivariate phenotypes can build. As the first real case of vQTL study

of multivariate phenotypes, this chapter demonstrated how a conventional variance equality

test can be generalized and applied to 3D facial features, highlighted the potential of such a

design to reveal interaction e↵ects, and underscored the need to go beyond marginal e↵ects
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in future facial GWAS. Insights gained from this aim are also instructive for other complex,

polygenic human traits and disorders. As biobank-scale cohorts with genome, phenome

and exposome data are becoming increasingly available, the power of vQTL studies will

eventually rise to a level where researchers will become much more confident in working on

variance e↵ects than they are today. We believe those studies will be able to add great value

to our understanding of human genetics.
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7.0 Conclusion

7.1 Summary

By leveraging existing genome-wide data and state-of-the-art advances in 3D facial phe-

notype modeling, this dissertation study addressed several gaps in current research and made

important findings on human facial morphology. In Chapter 4 we performed an Exome-wide

investigation of the role of rare and low-frequency genetic variants in a gene-based manner.

Our findings extended the spectrum of genetic factors involved in facial morphology from

common to rare and low-frequency variants. We highlighted novel candidate genes, some of

which have shown promising evidence of verification in follow up experiments at a collab-

orating lab. The TWAS analysis in Chapter 5 represented a meaningful extension of our

previous GWAS e↵ort and refined potential mediating genes for establishing mechanistic

connection. This work also pointed to novel genes where the individual SNPs never reached

the genome-wide threshold in previous GWASs. Finally, the vQTL chapter featured the

importance of studying variability as a phenotype in advancing the knowledge of genotype-

phenotype relationships in complex traits. The variance prioritization strategy was shown to

be useful in the discovery of G ⇥ G e↵ects for facial morphology. These results expanded our

understanding of the genetic basis of normal-range facial variation and will have important

implications for future studies.

7.2 Significance

This dissertation project contributed to the genetic knowledge of human facial morphol-

ogy in several aspects: (1) showing for the first time the role of rare and low-frequency

variants and identifying promising genes in preliminary functional experiments; (2) refining

GWAS loci for potential mediating genes as well as discovering novel candidate genes; and
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(3) exploring the genetic factors underlying facial shape variability and uncovering gene by

gene interaction e↵ects. Findings from this study forwarded our understanding of the genetic

architecture of facial shape variation, which will inform further exploration into the biology

of craniofacial morphogenesis and the pathogenesis of craniofacial anomalies. The imple-

mentation of several recently developed statistical tools helped to evaluate and generalize

their utility as well as identify their limitations. In the long-term, knowledge gained from

this study will help lay the necessary scientific foundation for real-world applications such

as DNA-informed facial prediction for clinical and forensic purposes.
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Appendix A

Supplementary materials for Chapter 2

Table A1: Genes identified in normal-range facial variation GWAS

Gene Function Associated trait Referencea

ACAD9,

RAB7A

Regulates vesicle tra�c Philtrum 3

ALX3 Intercanthal width 9

ASPM Mitotic spindle Chin 3

BC039327 ncRNA Nose prominence 3

CACNA2D3 Pronasale to left alare 8

C5orf64 Pronasale to left alare 8

C5orf50 Eyes to nasion, Zygions to nasion 7

CDH18 Nose bridge 3

COL17A1 Eyes to nasion 7

DCHS2 Likely function in cell ad-

hesion, cartilage di↵erentia-

tion

Columella inclination, nose protrusion,

nose tip angle

1

DHX35 Alae width 2

Columella/nose tip 3

DLX6,

DYNC1L1

Homeobox transcription

factor

Chin 3

EDAR Tumor necrosis factor re-

ceptor

Chin protrusion 1

EPHB3,

DVL3

Ephrin Nose bridge 3
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Table A1: Continued from previous page

Gene Function Associated trait Referencea

EYA4,

RPS12

Ribosomal protein, may

function in eye development

Forehead 3

FREM1 Expressed in the nasal mid-

line

Central upper lip height 6

GL13 SHH signaling pathway Nose wing breadth 1

HDAC8 Orbital spacing 6

Intercanthal width 9

HNRNPR Upper facial height, midfacial width 4

HOXD clus-

ter

Morphogenesis Mouth, philtrum, nose width 3

Curvature of eyelid 2

KCTD15 Nose tip 3

MAFB Cranial base width 9

MBTPS1 Craniofacial patterning Upper facial profile height 5

NHP2,

ZNF345A

Chin 3

OSR1-

WDR35

Right facial angle of en-ex-go 2

PABP1,

C1L2A,

HADC8

Histone deacetylase Intercanthal distance 9

PARK2 Proteasomal degradation Upper facial height 6

PAX1 Chondrocyte di↵erentiation Nose wing breadth 1

Nasal width 9

Nasal width 3

PAX3 Active transcription factor

in neural crest cells

Prominence and vertical position of na-

sion

8

Nasion position 1
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Table A1: Continued from previous page

Gene Function Associated trait Referencea

Nose quadrant 3

Eyeballs to nasion 7

Eyeballs to nasion 9

PAX9 Dental and craniofacial de-

velopment

Cranial base width 9

PCDH15 Upper facial profile prominence 5

PDE8A Expressed in ectoderm Allometry, inner canthal distance 4

PKDCC Mandible 3

PRDM16 Nasal width and height 7

Nasal width and height 9

SCHIP1 Centroid size, face height and width 4

SOX9 Acts during chondrocyte

di↵erentiation

Nose prominence, nose width 3

SUPT3H,

RUNX2

Bone development Nasal width 1

Nasal width 3

TBX15,

WARS2

Upper face quadrant 3

TMEM163 Cadherin family Eye height width and depth 5

TMTC2 Right endocanthion 8

TP63 Development signaling, ep-

ithelial morphogenesis

Distance between eyeballs 7

TRPC6 Cation channel subunit Upper facial depth 9

WDR27 Eye tail length 2

ZNF219 Transcription partner of

SOX9

Nasal ala length 9

a 1-Adhikari et al., 2016; 2-Cha et al., 2018; 3-Claes et al., 2018; 4-Cole et al., 2016; 5-Crouch et al.,

2018; 6-Lee et al., 2017; 7-Liu et al., 2012; 8-Paternoster et al., 2012; 9-Sha↵er et al., 2016
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Appendix B

Supplementary materials for Chapter 4

Figure B1: Multivariate outlier for PITT module 27. The outlier in the upper right

fell far apart from the remaining data.
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Figure B2: Distribution of PCs in PITT module 27. Panels in upper right triangle

display the pairwise Q-Q plots. Panels in Bottom left triangle display the pairwise scatter

plots. Histograms of individual PCs are shown along the diagonal. The PC values of the

outlier identified in Figure B1 are highlighted in red.
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Figure B3: Pairwise Pearson correlation between individual PCs in 31 modules

and 24 facial distances. Left: module 1-13; right: module 14-31. Rows are PCs and

columns are facial distances. PCs are grouped into modules and within each module the

rows are clustered by hierarchical clustering. Columns are also clustered. Color indicates

Pearson correlation. The two sets of facial phenotypes were largely uncorrelated.
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Figure B4: Q-Q plots for MultiSKAT analysis of 31 facial modules in the PITT

cohort. Genomic inflation factor � is shown in the top left corner of each sub figure.
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Figure B4: Q-Q plots for MultiSKAT analysis of 31 facial modules in the PITT

cohort(cont.). Genomic inflation factor � is shown in the top left corner of each sub figure.
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Figure B4: Q-Q plots for MultiSKAT analysis of 31 facial modules in the PITT

cohort(cont.). Genomic inflation factor � is shown in the top left corner of each sub figure.
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Figure B5: Expression of MultiSKAT significant genes in GTEx tissues relevant

to facial morphology. Genes are arranged in rows and tissues in columns. Dendrogram

shows similarity in expression levels. TPM, transcripts per million.
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Figure B6: Q-Q plots for MultiSKAT analysis of 31 facial modules in the Tan-

zania cohort. Genomic inflation factor � is shown in the top left corner of each sub figure.
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Figure B6: Q-Q plots for MultiSKAT analysis of 31 facial modules in the Tan-

zania cohort (cont.). Genomic inflation factor � is shown in the top left corner of each

sub figure.
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Figure B6: Q-Q plots for MultiSKAT analysis of 31 facial modules in the Tan-

zania cohort (cont.). Genomic inflation factor � is shown in the top left corner of each

sub figure.
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Table B1: Previous genotype-phenotype associations for variants in the seven MultiSKAT significant genes. Only shows those

with a p-value < 10-4 in the PhenoScanner database

SNP hg19 coordinates Trait Study PMID Ancestry Year

rs117788141 chr13:111357899 Cause of death: thoracic aortic aneurysm, ruptured Neale B UKBB European 2017

Cause of death: myelodysplastic syndrome, unspecified Neale B UKBB European 2017

Intracranial injury Neale B UKBB European 2017

Treatment with indometacin Neale B UKBB European 2017

Treatment with movelat cream Neale B UKBB European 2017

rs137852591 chrX:66941751 Height GIANT 28146470 Mixed 2017

Height GIANT 28146470 European 2017

rs142863092 chr11:119548369 Cause of death: vascular dementia, unspecified Neale B UKBB European 2017

Treatment with progynova 1mg tablet Neale B UKBB European 2017

Osteoporosis with pathological fracture Neale B UKBB European 2017

Deafness Neale B UKBB European 2017

Treatment with lamotrigine Neale B UKBB European 2017

Self-reported tennis elbow or lateral epicondylitis Neale B UKBB European 2017

Cause of death: multiple myeloma Neale B UKBB European 2017

Self-reported uterine or endometrial cancer Neale B UKBB European 2017

rs151097801 chr13:111296817 Cause of death: organ-limited amyloidosis Neale B UKBB European 2017

Cause of death: myelodysplastic syndrome, unspecified Neale B UKBB European 2017

Home area population density: postcode not linkable Neale B UKBB European 2017

Cause of death: malignant neoplasms of independent multiple sites Neale B UKBB European 2017

Treatment with clonazepam Neale B UKBB European 2017

Other and unspecified injuries of lower leg Neale B UKBB European 2017

Home area population density: Scotland large urban area Neale B UKBB European 2017

Other demyelinating diseases of central nervous system Neale B UKBB European 2017
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Table B1: Previous genotype-phenotype associations for variants in the seven MultiSKAT significant genes (cont.)

SNP Beta Se P-value Direction N N cases N controls N studies Unit Dataset

rs117788141 -0.061 0.0075 4.87E-16 - 7637 7 7630 1 risk di↵ Neale-B UKBB EUR 2017

-0.061 0.009 1.21E-11 - 7637 10 7627 1 risk di↵ Neale-B UKBB EUR 2017

-0.006 0.0012 4.86E-06 - 337199 440 336759 1 risk di↵ Neale-B UKBB EUR 2017

-0.004 0.0009 1.34E-05 - 337159 232 336927 1 risk di↵ Neale-B UKBB EUR 2017

-0.002 0.0005 3.86E-05 - 337159 73 337086 1 risk di↵ Neale-B UKBB EUR 2017

rs137852591 0.11 0.024 4.1E-06 + 458927 0 458927 147 IVNT GIANT Height Mixed 2017

0.11 0.024 7.7E-06 + 381625 0 381625 106 IVNT GIANT Height EUR 2017

rs142863092 -0.057 0.0092 5.93E-10 - 7637 11 7626 1 risk di↵ Neale-B UKBB EUR 2017

-0.004 0.0008 5.6E-07 - 337159 141 337018 1 risk di↵ Neale-B UKBB EUR 2017

-0.003 0.0006 3.65E-06 - 337199 76 337123 1 risk di↵ Neale-B UKBB EUR 2017

-0.003 0.0006 5.59E-06 - 323978 78 323900 1 risk di↵ Neale-B UKBB EUR 2017

-0.006 0.0013 6.51E-06 - 337159 408 336751 1 risk di↵ Neale-B UKBB EUR 2017

-0.004 0.0009 1.96E-05 - 337159 179 336980 1 risk di↵ Neale-B UKBB EUR 2017

-0.103 0.0258 6.18E-05 - 7637 87 7550 1 risk di↵ Neale-B UKBB EUR 2017

-0.007 0.0019 7.49E-05 - 337159 843 336316 1 risk di↵ Neale-B UKBB EUR 2017

rs151097801 0.0615 0.0075 4.06E-16 + 7637 7 7630 1 risk di↵ Neale-B UKBB EUR 2017

0.061 0.009 1.58E-11 + 7637 10 7627 1 risk di↵ Neale-B UKBB EUR 2017

0.0012 0.0002 1.3E-08 + 333997 12 333985 1 risk di↵ Neale-B UKBB EUR 2017

0.0597 0.0128 3.03E-06 + 7637 20 7617 1 risk di↵ Neale-B UKBB EUR 2017

0.0044 0.0009 3.26E-06 + 337159 237 336922 1 risk di↵ Neale-B UKBB EUR 2017

0.0023 0.0005 6.09E-06 + 337199 70 337129 1 risk di↵ Neale-B UKBB EUR 2017

0.0339 0.0076 8.95E-06 + 333997 18867 315130 1 risk di↵ Neale-B UKBB EUR 2017

0.0033 0.0008 2.43E-05 + 337199 163 337036 1 risk di↵ Neale-B UKBB EUR 2017
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Table B2: MultiSKAT results of ARHGEF18, CARS2, NECTIN1, and TELO2 in the

Tanzania cohort

Module
MultiSKAT p-value of genes

ARHGEF18 CARS2 NECTIN1 TELO2

1 0.921 0.896 0.979 0.141

2 0.801 0.577 0.476 0.326

3 0.618 0.103 0.254 0.175

4 0.988 0.779 0.931 0.594

5 0.775 0.161 0.177 0.093

6 0.742 0.617 0.536 0.097

7 0.400 0.300 0.751 0.944

8 0.939 0.650 0.953 0.173

9 0.896 0.460 0.663 0.975

10 0.879 0.287 0.411 0.008

11 0.679 0.038 0.584 0.307

12 0.795 0.310 0.840 0.265

13 0.470 0.019 0.114 0.049

14 0.297 0.131 0.665 0.973

15 0.632 0.156 0.952 0.224

16 0.989 0.659 0.177 0.250

17 0.091 0.988 0.110 0.045

18 0.603 0.077 0.302 0.992

19 0.551 0.594 0.144 0.739

20 0.982 0.127 0.950 0.157

21 0.198 0.033 0.962 0.050

22 0.007 0.040 0.406 0.079

23 0.251 0.067 0.580 0.272

24 0.983 0.191 0.627 0.658

25 0.300 0.547 0.436 0.307

26 0.760 0.748 0.077 0.251

27 0.982 0.180 0.503 0.029

28 0.321 0.131 0.576 0.976

29 0.652 0.353 0.697 0.969

30 0.999 0.418 0.957 0.732

31 0.591 0.043 0.734 0.053
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Appendix C

Supplementary materials for Chapter 5

Table C1: Suggestive TWAS genes

Cohort Locus Gene Module P-value Tissue Model Num SNPsa

PITT 1q31.3 C1orf53 13 2.23E-07 Muscle Skeletal EN 2

PITT 1q31.3 C1orf53 55 1.11E-06 Muscle Skeletal EN 2

PITT 1q43 CHML 35 2.82E-06 Brain Cortex EN 108

PITT 1q31.3 CRB1 13 5.80E-07 Muscle Skeletal MASHR 1

PITT 1q31.3 CRB1 27 3.66E-07 Muscle Skeletal MASHR 1

PITT 1q31.3 CRB1 55 2.26E-06 Muscle Skeletal MASHR 1

PITT 1q42.2 NTPCR 59 1.29E-06 Adipose Subcutaneous MASHR 4

PITT 1p12 TBX15 1 5.73E-07 Cells Cultured fibroblasts MASHR 1

PITT 1p12 TBX15 1 5.73E-07 Brain Cortex MASHR 1

PITT 1p12 TBX15 3 3.03E-06 Cells Cultured fibroblasts MASHR 1

PITT 1p12 TBX15 3 3.03E-06 Brain Cortex MASHR 1

PITT 1p12 TBX15 25 1.62E-07 Cells Cultured fibroblasts MASHR 1

PITT 1p12 TBX15 25 1.62E-07 Brain Cortex MASHR 1

PITT 1p12 WARS2 7 3.14E-07 Muscle Skeletal EN 49

PITT 1p12 WARS2 7 6.44E-07 Adipose Subcutaneous EN 23

PITT 1p12 WARS2 7 3.37E-07 Adipose Subcutaneous MASHR 3

PITT 1p12 WARS2 7 2.51E-07 Cells Cultured fibroblasts EN 18

PITT 1p12 WARS2 7 3.07E-07 Brain Cortex EN 34

PITT 1p12 WARS2 15 1.34E-06 Muscle Skeletal MASHR 4

PITT 1p12 WARS2 15 3.19E-06 Cells Cultured fibroblasts MASHR 3

PITT 1p12 WARS2 15 5.15E-06 Brain Cortex EN 34

PITT 1p12 WARS2 15 1.58E-06 Brain Cortex MASHR 2

PITT 1p12 WARS2 61 3.09E-07 Muscle Skeletal MASHR 4

PITT 1p12 WARS2 61 1.38E-06 Cells Cultured fibroblasts MASHR 3

PITT 1p12 WARS2 61 1.00E-06 Brain Cortex MASHR 2

PITT 1q21.3 ZBTB7B 29 1.85E-06 Adipose Subcutaneous MASHR 1

135



Table C1: Continued from previous page

Cohort Locus Gene Module P-value Tissue Model Num SNPsa

PITT 1q42.13 ZNF678 8 6.70E-06 Brain Cortex EN 61

PITT 2q11.2 CIAO1 62 2.55E-06 Brain Cortex EN 26

PITT 2q37.3 HDLBP 6 1.79E-06 Cells Cultured fibroblasts EN 22

PITT 2q37.3 HDLBP 12 1.84E-06 Cells Cultured fibroblasts EN 22

PITT 2p21 LINC01914 52 4.57E-06 Adipose Subcutaneous EN 13

PITT 3q21.3 EEFSEC 4 4.39E-07 Adipose Subcutaneous MASHR 2

PITT 3q21.3 EEFSEC 4 5.55E-06 Cells Cultured fibroblasts EN 51

PITT 3q21.3 EEFSEC 4 3.16E-06 Brain Cortex MASHR 2

PITT 3q21.3 EEFSEC 8 8.36E-07 Adipose Subcutaneous EN 50

PITT 3q21.3 EEFSEC 8 1.14E-06 Cells Cultured fibroblasts EN 51

PITT 3q21.3 EEFSEC 8 5.36E-07 Cells Cultured fibroblasts MASHR 2

PITT 3q21.3 EEFSEC 8 1.87E-07 Brain Cortex MASHR 2

PITT 3q21.3 EEFSEC 22 4.58E-07 Adipose Subcutaneous MASHR 2

PITT 3q21.3 EEFSEC 32 4.57E-07 Adipose Subcutaneous EN 50

PITT 3q21.3 EEFSEC 33 3.17E-06 Muscle Skeletal EN 25

PITT 3q21.3 EEFSEC 37 4.21E-06 Brain Cortex EN 8

PITT 3q27.1 EPHB3 4 2.01E-06 Brain Cortex MASHR 2

PITT 3q27.1 EPHB3 17 2.55E-06 Brain Cortex MASHR 2

PITT 3p25.3 IRAK2 20 9.07E-06 Brain Cortex EN 6

PITT 3q21.3 RUVBL1 5 3.10E-06 Cells Cultured fibroblasts MASHR 2

PITT 3q21.3 RUVBL1 8 3.64E-06 Muscle Skeletal MASHR 2

PITT 3q21.3 RUVBL1 16 5.01E-06 Cells Cultured fibroblasts EN 55

PITT 3q21.3 RUVBL1 45 1.74E-06 Cells Cultured fibroblasts MASHR 2

PITT 3q21.3 SEC61A1 32 1.23E-06 Cells Cultured fibroblasts EN 13

PITT 3q21.3 SEC61A1 33 1.65E-06 Muscle Skeletal MASHR 2

PITT 4q23 ADH6 21 7.55E-07 Cells Cultured fibroblasts EN 64

PITT 4q23 ADH6 43 4.45E-06 Cells Cultured fibroblasts EN 64

PITT 6p21.33 CCHCR1 57 3.08E-06 Brain Cortex EN 14

PITT 6q23.2 EYA4 7 4.78E-07 Adipose Subcutaneous MASHR 1

PITT 6q23.2 EYA4 15 2.23E-06 Adipose Subcutaneous MASHR 1

PITT 6q23.2 EYA4 63 2.86E-07 Adipose Subcutaneous MASHR 1

PITT 6p21.1 RUNX2 10 1.84E-06 Adipose Subcutaneous MASHR 1

PITT 7q36.3 LINC01006 14 9.49E-07 Adipose Subcutaneous MASHR 2

PITT 11p11.2 ATG13 33 3.92E-06 Cells Cultured fibroblasts MASHR 1
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Table C1: Continued from previous page

Cohort Locus Gene Module P-value Tissue Model Num SNPsa

PITT 11q12.2 CCDC86 49 1.73E-06 Brain Cortex EN 27

PITT 11q12.2 CCDC86 51 4.56E-06 Brain Cortex EN 27

PITT 12p11.22 CCDC91 21 5.70E-06 Adipose Subcutaneous EN 80

PITT 12p11.22 CCDC91 21 3.73E-06 Cells Cultured fibroblasts EN 20

PITT 12p11.22 CCDC91 43 1.41E-07 Cells Cultured fibroblasts MASHR 3

PITT 12q21.31 NTS 58 1.14E-06 Adipose Subcutaneous EN 17

PITT 14q12 LTB4R 54 8.58E-07 Muscle Skeletal EN 16

PITT 15q24.1 CLK3 11 2.42E-06 Muscle Skeletal MASHR 1

PITT 15q24.1 CLK3 11 2.42E-06 Adipose Subcutaneous MASHR 1

PITT 15q24.1 CLK3 11 2.42E-06 Cells Cultured fibroblasts MASHR 1

PITT 15q24.1 CLK3 11 2.42E-06 Brain Cortex MASHR 1

PITT 15q24.1 CLK3 25 2.59E-06 Muscle Skeletal MASHR 1

PITT 15q24.1 CLK3 25 2.59E-06 Adipose Subcutaneous MASHR 1

PITT 15q24.1 CLK3 25 2.59E-06 Cells Cultured fibroblasts MASHR 1

PITT 15q24.1 CLK3 25 2.59E-06 Brain Cortex MASHR 1

PITT 16q24.3 DBNDD1 35 1.82E-06 Adipose Subcutaneous MASHR 5

PITT 17q21.33 MYCBPAP 9 4.28E-06 Adipose Subcutaneous EN 45

PITT 17q11.2 RHOT1 17 3.42E-06 Muscle Skeletal MASHR 1

PITT 19p13.2 ICAM5 21 2.96E-06 Cells Cultured fibroblasts MASHR 1

PITT 19p13.2 ICAM5 21 2.96E-06 Brain Cortex MASHR 1

PITT 22q12.1 C22orf31 51 3.17E-06 Brain Cortex EN 90

Denver 3q13.31 ZDHHC23 61 5.13E-07 Muscle Skeletal MASHR 1

Denver 3q13.31 ZDHHC23 61 5.13E-07 Adipose Subcutaneous MASHR 1

Denver 3q13.31 ZDHHC23 61 5.13E-07 Cells Cultured fibroblasts MASHR 1

Denver 5q11.2 PLK2 63 3.29E-07 Muscle Skeletal MASHR 2

Denver 6p21.2 MTCH1 30 2.32E-07 Cells Cultured fibroblasts MASHR 1

Denver 9q34.3 NDOR1 36 1.10E-06 Adipose Subcutaneous MASHR 2

Denver 9q34.3 NDOR1 50 4.23E-06 Adipose Subcutaneous EN 11

Denver 10q22.1 KIF1BP 3 1.99E-06 Adipose Subcutaneous MASHR 1

Denver 10q24.33 SLK 21 2.14E-06 Cells Cultured fibroblasts MASHR 2

Denver 11q23.3 USP2 26 3.84E-06 Brain Cortex MASHR 2

Denver 15q24.3 HMG20A 41 4.13E-06 Muscle Skeletal EN 5

Denver 16q13 RSPRY1 59 1.20E-06 Muscle Skeletal MASHR 2

Denver 19p13.3 GZMM 4 2.30E-06 Adipose Subcutaneous MASHR 1
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Table C1: Continued from previous page

Cohort Locus Gene Module P-value Tissue Model Num SNPsa

Denver 19q13.33 TSKS 56 5.13E-06 Muscle Skeletal EN 2

Denver 20q13.33 STMN3 30 3.88E-06 Cells Cultured fibroblasts EN 5

Denver 20q13.33 TNFRSF6B 30 3.33E-06 Muscle Skeletal MASHR 2

Tanzania 1p13.3 C1orf194 1 6.61E-07 Brain Cortex MASHR 2

Tanzania 1p21.2 CDC14A 4 4.62E-06 Brain Cortex MASHR 1

Tanzania 3q21.3 RPN1 18 8.01E-06 Brain Cortex EN 103

Tanzania 3q21.3 RPN1 56 6.42E-06 Brain Cortex EN 103

Tanzania 5p15.33 CTD-2012J19.3 27 1.81E-06 Adipose Subcutaneous EN 14

Tanzania 5q23.1 HSD17B4 31 5.69E-06 Adipose Subcutaneous EN 51

Tanzania 5q31.1 VDAC1 60 4.20E-06 Adipose Subcutaneous MASHR 1

Tanzania 5q31.3 PCDHA3 13 7.14E-06 Brain Cortex EN 21

Tanzania 7q11.23 FGL2 4 4.88E-06 Adipose Subcutaneous EN 7

Tanzania 7q11.23 FGL2 4 4.02E-06 Cells Cultured fibroblasts EN 12

Tanzania 7q33 LRGUK 8 9.21E-07 Adipose Subcutaneous EN 39

Tanzania 8p21.3 ATP6V1B2 7 3.53E-06 Adipose Subcutaneous MASHR 1

Tanzania 8q24.3 CPSF1 62 2.48E-06 Brain Cortex EN 34

Tanzania 12p12.1 ST8SIA1 45 3.19E-06 Muscle Skeletal EN 9

Tanzania 14q11.2 CMTM5 22 6.24E-07 Muscle Skeletal MASHR 1

Tanzania 14q23.3 PLEKHG3 21 3.99E-06 Cells Cultured fibroblasts MASHR 2

Tanzania 14q24.3 PTGR2 10 2.47E-06 Adipose Subcutaneous MASHR 5

Tanzania 14q24.3 PTGR2 10 2.41E-06 Cells Cultured fibroblasts MASHR 6

Tanzania 15q15.2 CCNDBP1 24 4.72E-06 Brain Cortex EN 7

Tanzania 15q26.3 CERS3 49 3.06E-06 Adipose Subcutaneous EN 18

Tanzania 16q12.1 SIAH1 42 1.78E-06 Adipose Subcutaneous EN 13

Tanzania 17p11.2 FBXW10 53 6.18E-06 Muscle Skeletal EN 15

Tanzania 17p11.2 PRPSAP2 42 6.67E-06 Brain Cortex EN 25

Tanzania 17q11.2 SGK494 63 3.89E-06 Cells Cultured fibroblasts EN 24

Tanzania 19q13.2 AC006129.1 60 1.21E-06 Cells Cultured fibroblasts EN 18

Tanzania 19p13.11 YJEFN3 17 1.06E-06 Muscle Skeletal MASHR 3

Tanzania 19q13.43 ZNF471 60 5.37E-06 Muscle Skeletal EN 41

Tanzania 19q13.43 ZNF667-AS1 60 2.41E-06 Cells Cultured fibroblasts MASHR 2

a Number of SNPs used to predict gene expression
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Figure C1: TWAS regional plot of CCDC91. TWAS of PITT module 21 (nose bridge)

in fibroblasts using the MASHRmodel identified CCDC91. The top TWAS panel displays the

gene-module association -log10(p-value) for genes annotated in the following Gene panel. The

eQTL GWAS P panel highlights the eQTL SNPs used for predicting CCDC91 expression,

with BP coordinates on the x-axis and GWAS -log10(p-value) on the y-axis. The bottom

GWAS panel displays the GWAS -log10(p-value) for all SNPs located within 1 MB on either

side of CCDC91.
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Figure C2: TWAS regional plot of LTB4R. TWAS of PITT module 54 (mandible) in

Muscle Skeletal using the EN model identified LTB4R. Figure layout same as above.
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Figure C3: TWAS regional plot of LINC01006. TWAS of PITT module 14 (eye

area) in Adipose Subcutaneous using the MASHR model identified LINC01006. Figure

layout same as above.
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Figure C4: TWAS regional plot of ADH6. TWAS of PITT module 21 (nose bridge)

in fibroblasts using the EN model identified ADH6. Figure layout same as above.
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Figure C5: Q-Q plots for TWAS using the MASHR model. For simplicity, each

figure contains p-values for analyzing all 63 facial modules. Figure titles indicate the cohort,

tissue and type of prediction model used. Genomic inflation factor � is shown in the top left

corner of each sub figure.
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Figure C6: Q-Q plots for TWAS using the EN model. For simplicity, each figure

contains p-values for analyzing all 63 facial modules. Figure titles indicate the cohort, tissue

and type of prediction model used. Genomic inflation factor � is shown in the top left corner

of each sub figure.
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Table C2: COLOC results at the 3q21.3 and the 1p12 locus

Locus Module Gene Tissue PP.H0+H1+H2a PP.H3b PP.H4c Met colocalization criteriad

3q21.3

33 EEFSEC Brain Cortex 1.14E-03 0.34 0.66 Y

33 SEC61A1 Muscle Skeletal 1.30E-02 0.39 0.60 Y

33 EEFSEC Adipose Subcutaneous 3.99E-07 0.45 0.55 Y

33 EEFSEC Cells Cultured fibroblasts 6.18E-06 0.55 0.45 N

16 EEFSEC Brain Cortex 2.12E-03 0.63 0.37 N

16 EEFSEC Adipose Subcutaneous 6.65E-07 0.74 0.26 N

16 EEFSEC Cells Cultured fibroblasts 9.15E-06 0.81 0.19 N

16 SEC61A1 Muscle Skeletal 2.66E-02 0.80 0.18 N

33 SEC61A1 Brain Cortex 0.59 0.25 0.17 N

16 RUVBL1 Brain Cortex 0.70 0.18 0.13 N

33 RUVBL1 Brain Cortex 0.72 0.18 0.10 N

16 SEC61A1 Brain Cortex 0.64 0.27 8.90E-02 N

16 RPN1 Brain Cortex 0.33 0.63 4.56E-02 N

33 RUVBL1 Muscle Skeletal 0.80 0.16 4.02E-02 N

33 RPN1 Brain Cortex 0.33 0.63 3.59E-02 N

16 RUVBL1 Adipose Subcutaneous 0.76 0.21 3.50E-02 N

33 RUVBL1 Adipose Subcutaneous 0.76 0.21 3.30E-02 N

16 RUVBL1 Muscle Skeletal 0.80 0.16 3.24E-02 N

33 SEC61A1 Adipose Subcutaneous 0.31 0.68 1.23E-02 N

16 SEC61A1 Adipose Subcutaneous 0.31 0.68 1.23E-02 N
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Table C2: COLOC results at the 3q21.3 and the 1p12 locus (cont.)

Locus Module Gene Tissue PP.H0+H1+H2a PP.H3b PP.H4c Met colocalization criteriad

3q21.3

33 RPN1 Muscle Skeletal 2.50E-03 1.00 9.70E-05 N

16 RPN1 Muscle Skeletal 2.50E-03 1.00 9.69E-05 N

33 SEC61A1 Cells Cultured fibroblasts 1.32E-09 1.00 3.15E-05 N

16 RUVBL1 Cells Cultured fibroblasts 4.95E-07 1.00 3.01E-05 N

33 RUVBL1 Cells Cultured fibroblasts 4.96E-07 1.00 9.25E-06 N

16 SEC61A1 Cells Cultured fibroblasts 7.36E-12 1.00 5.56E-06 N

33 EEFSEC Muscle Skeletal 1.73E-09 1.00 2.51E-06 N

16 EEFSEC Muscle Skeletal 4.19E-10 1.00 7.04E-07 N

33 RPN1 Cells Cultured fibroblasts 2.14E-09 1.00 7.79E-10 N

16 RPN1 Cells Cultured fibroblasts 8.18E-10 1.00 2.75E-10 N

33 RPN1 Adipose Subcutaneous 1.33E-09 1.00 3.36E-11 N

16 RPN1 Adipose Subcutaneous 7.52E-12 1.00 1.98E-13 N

1p12

7 HAO2 Adipose Subcutaneous 9.83E-04 0.47 0.53 Y

7 WARS2 Brain Cortex 4.08E-08 1.00 7.26E-04 N

7 WARS2 Muscle Skeletal 4.09E-08 1.00 6.10E-06 N

7 WARS2 Adipose Subcutaneous 4.09E-08 1.00 4.23E-06 N

7 WARS2 Cells Cultured fibroblasts 4.09E-08 1.00 4.04E-06 N
a A small sum of the PP of H0, H1 and H2 indicates a high power for the colocalization analysis
b Posterior probability of di↵erent causal variants
c Posterior probability of shared causal variant
d Criteria include (1) PP.H4 > 0.5, (2) PP.H3 < 0.5, and (3) PP.H0+H1+H2 < 0.3. Y=yes, N=no
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Table C3: Genes yielding stronger gene-level association in TWAS than SNP-level associ-

ation in GWAS

TWAS gene-level association GWAS SNP-level association

Gene Module P-value Model eQTL SNP eQTL BP P-value

LTB4R 54 8.60E-07 EN rs17090828 23819813 0.300

Muscle Skeletal rs2180852 23964516 0.192

rs2281703 24551567 0.705

rs2759407 24569947 0.236

rs2295978 24656251 0.102

rs2295977 24657226 0.095

rs2281472 24775846 3.9E-04

rs6573722 24793647 0.376

rs3759625 24809683 0.648

rs3759630 24810413 0.550

rs8014581 24812899 0.648

rs7143637 25049603 0.301

rs898766 25284005 0.013

rs12890808 25285800 0.013

rs8007588 25287011 0.021

rs7143241 25687817 0.898

ADH6 21 7.60E-07 EN rs6532729 99146436 0.433

Fibroblasts rs1045655 99393671 0.929

rs4699349 99486957 0.193

rs4699353 99509133 0.594

rs17027853 99528088 0.252

rs13148540 99545196 0.253

rs10470954 99586508 0.375

rs13145463 99771854 0.536

rs2924584 99988208 0.510
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Table C3: Continued from previous page

TWAS gene-level association GWAS SNP-level association

Gene Module P-value Model eQTL SNP eQTL BP P-value

rs7662987 99991642 0.173

rs7684986 99991676 0.173

rs11547772 99992793 0.146

rs1061187 99992853 0.173

rs6827292 99992994 0.001

rs1803037 99993151 0.173

rs28730646 99993478 4.4E-04

rs28730644 99993686 0.001

rs17595424 99993869 0.173

rs7683802 99995138 0.173

rs4699699 99997179 0.173

rs4699701 99998447 0.173

rs13118409 99998736 0.173

rs13145727 99998866 0.173

rs13119035 99999130 0.173

rs13146416 99999160 0.173

rs13125919 99999848 0.173

rs7683704 100004226 0.091

rs17216887 100010273 0.034

rs7667261 100011300 0.001

rs7681427 100013959 0.001

rs7687322 100014342 0.001

rs5003497 100021242 0.001

rs6822742 100023959 0.001

rs6823388 100023999 0.001

rs6819724 100028451 0.001

rs10026860 100058770 0.875
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Table C3: Continued from previous page

TWAS gene-level association GWAS SNP-level association

Gene Module P-value Model eQTL SNP eQTL BP P-value

rs13148577 100060836 0.761

rs1800759 100065509 0.372

rs4148884 100066287 0.877

rs12649136 100070816 0.887

rs2156731 100072567 0.962

rs9307238 100136182 0.187

rs17028758 100185697 0.005

rs17028770 100189327 0.005

rs2298753 100257907 0.398

rs3762896 100268131 0.298

rs4147542 100268553 0.298

rs11936869 100273173 0.284

rs17586163 100274571 0.355

rs11499823 100274749 0.350

rs7661978 100284199 0.677

rs1072626 100407267 0.729

rs13126513 100444684 0.526

rs7665289 100448167 0.580

rs11734413 100512350 0.328

rs13306568 100529777 0.094

rs10516449 100553510 0.408

rs2162385 100673132 0.167

rs6813978 100890487 0.598

rs3886172 100932401 0.503

rs4699769 100979170 0.938

rs6853633 101125207 0.653

rs2866207 101129818 0.554
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Table C3: Continued from previous page

TWAS gene-level association GWAS SNP-level association

Gene Module P-value Model eQTL SNP eQTL BP P-value

rs6839368 101136908 0.976

LINC01006 14 9.49E-07 MASHR rs76141520 156432793 0.015

Adipose Subcu-

taneous

rs7788200 156433243 5.0E-04

CCDC91 21 4.37E-08 MASHR rs10843100 28270034 2.5E-06

Fibroblasts rs34742695 28286355 0.218

rs139966291 28300347 0.180

CCDC91 43 1.41E-07 MASHR rs10843100 28270034 4.0E-06

Fibroblasts rs34742695 28286355 0.108

rs139966291 28300347 0.222
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Appendix D

Supplementary materials for Chapter 6
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Figure D1: Q-Q plots for the vQTL analysis. Only facial modules where suggestive

vQTLs were identified are shown for simplicity. See sub figure titles for cohort and facial

module. Genomic inflation factor � is shown in the top left corner of each sub figure.

Statistics were well behaved for all analyses shown here.
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(a) The PITT vQTL rs405040 ⇥ 2q33.3 in module 37 (upper lip)
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(b) The PITT vQTL rs405040 ⇥ 2q36.1 in module 37 (upper lip)

Figure D2: Locuszoom plot for suggestive G ⇥ G involving lead vQTL SNPs
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(c) The tanzania vQTL rs73011961 ⇥ 13q31.3 in module 51 (nose)

Figure D2: Locuszoom plot for suggestive G ⇥ G involving lead vQTL SNPs

(cont.)
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(a) The PITT vQTL rs405040 in module 37 (upper lip)

(b) The Tanzania vQTL rs73011961 in module 51 (nose)

Figure D3: Plots for the genome-wide search of G ⇥ G. The fixed interacting factors

were the lead vQTL SNPs indicated in the sub figure titles. The red horizontal line in (a)

and the blue horizontal line in (b) denote genome-wide significance level (5⇥10-8).

Figure D4: Q-Q and Manhattan plot for the vQTL test of cranial base width in

the PITT cohort
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Figure D5: Q-Q plot for the vQTL test of zygion-to-zygion distance in the Korean

replication cohort. We ran the test for genome-wide SNPs only to determine the minimum

MAF requirement su�cient for removing systematic inflation. This plot shows the results

from including SNPs with a MAF> 0.2, where the genomic inflation factor � was satisfactory.

In the subsequent replication analysis, only PRICKLE1 SNPs above this MAF cuto↵ were

considered.
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Figure D6: Q-Q plot for the G ⇥ G test of zygion-to-zygion distance in the

replication cohort. SNPs with a MAF > 0.1 were included.
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Table D1: Lookups of vQTLs in the PITT and the Tanzania cohorts

Discovery Lookup best results

Cohort Loci Module SNP P-value Module

PITT 8q23.3 35 rs13278165 0.0200 29

nasolabial rs35954699 0.0233 29

rs34447117 0.0202 29

10p11.22 37 rs806812 0.0003 19

upper lip rs73477 0.0435 6

rs211428 0.0320 21

rs2370703 0.0299 21

rs405040 0.0346 57

10q25.3 2 rs4918871 0.0222 34

nose rs4918872 0.0199 34

mouth rs4918873 0.0199 34

rs9783229 0.0199 34

rs9783196 0.0219 34

rs7098623 0.0170 57

rs10787503 0.0306 3

rs4917669 0.0164 34

rs7899612 0.0121 59

17q21.32 6 rs3744772 0.0452 14

lower face rs4793963 0.0310 14

rs4793596 0.0464 14

Tanzania 4q13.1 3

nose,eyes

rs935719 0.0051 13

13q21.22 50 rs9529870 0.0088 2

nose rs9542643 0.0093 2
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Table D2: Top vQTL for each of the 24 univariate facial distances in the PITT cohort

Trait Chr BP SNP MAF Beta P-value NMISS

LowFaceDepth 3 104414583 rs2947779 0.38 0.16 8.35E-08 2210

CranBaseWidth 12 42882153 rs1796391 0.25 0.19 8.76E-08 2200

NasalAlaLength 10 130048037 rs12256165 0.20 -0.19 1.00E-07 2300

CutLowLipHeight 20 9742096 rs4816172 0.21 0.19 1.07E-07 2305

LabFisWidth 13 59685916 rs9538303 0.30 0.17 1.83E-07 2296

NasalBdgLength 7 128158603 rs55638891 0.20 -0.19 1.89E-07 2272

MorphFaceHeight 3 185217189 rs2140287 0.46 -0.15 3.06E-07 2236

LowFaceHeight 10 73716143 rs4746102 0.30 0.16 5.37E-07 2259

NasalHeight 12 63691758 rs1146106 0.33 -0.16 6.06E-07 2320

LowLipHeight 21 37816927 rs11088349 0.25 0.17 6.20E-07 2285

UpLipHeight 1 34988954 rs10493058 0.49 0.14 8.76E-07 2318

OutCanthWidth 6 118655020 rs72967533 0.47 0.14 1.06E-06 2277

PhilLength 11 44893024 rs835760 0.23 0.17 1.09E-06 2255

UpFaceDepth 4 17170581 rs1522074 0.38 -0.15 1.19E-06 2226

LowVermHeight 1 208805883 rs2404677 0.21 0.17 1.25E-06 2308

UpVermHeight 1 42634101 rs6701382 0.23 0.17 1.30E-06 2212

NasalWidth 9 139929080 rs41317014 0.25 -0.16 1.48E-06 2299

SubNasalWidth 7 138358456 rs17160449 0.39 0.14 1.62E-06 2315

InCanthWidth 11 1380289 rs6421028 0.32 0.15 1.80E-06 2302

MidFaceDepth 13 55082227 rs6561782 0.24 0.17 2.50E-06 2164

PalpFisLength 1 187855391 rs147654748 0.27 -0.16 2.69E-06 2258

PhilWidth 4 114108991 rs4834321 0.49 0.14 2.95E-06 2318

NasalPro 5 42963864 rs11954543 0.47 0.13 4.55E-06 2304

UpFaceHeight 12 63691758 rs1146106 0.33 0.14 6.30E-06 2318
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Appendix E

List of Abbreviations

3D - three-dimensional

ABF - approximate bayes factor

ANOVA - analysis of variance

CCA - canonical correlation analysis

CMC - combined multivariate and collapsing

CNCC - cranial neural crest cell

eQTL - expression quantitative trait locus

EN - elastic net

G ⇥ E - gene by environment interaction

G ⇥ G - gene by gene interaction

GO - gene ontology

GRex - genetically regulated gene expression

GTEx - gene-tissue expression

GWAS - genome-wide association study

LD - linkage disequilibrium

Me↵ - e↵ective number of tests

MAC - minor allele count

MAF - minor allele frequency

MANCOVA - multivariate analysis of covariance
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MANOVA - multivariate analysis of variance

NSCL/P - nonsyndromic cleft lip with or without cleft palate

OFC - orofacial clefts

PC - principal component

PCA - principal component analysis

PP - posterior probability

QTL - quantitative trait locus

SKAT - sequence kernel association test

SNP - single nucleotide polymorphism

TIGAR - transcriptome-integrated genetic association resource

TWAS - transcriptome-wide association study

vQTL - variance quantitative trait locus
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Bork-Jensen, Michiel L Bots, Erwin P Bottinger, Donald W Bowden, Ivan Brand-
slund, Gerome Breen, Murray H Brilliant, Linda Broer, Amber A Burt, Adam S
Butterworth, David J Carey, Mark J Caulfield, John C Chambers, Daniel I Chasman,
Yii-Der Ida Chen, Rajiv Chowdhury, Cramer Christensen, Audrey Y Chu, Massim-
iliano Cocca, Francis S Collins, James P Cook, Janie Corley, Jordi Corominas Gal-
bany, Amanda J Cox, Gabriel Cuellar-Partida, John Danesh, Gail Davies, Paul I W
de Bakker, Gert J de Borst, Simon de Denus, Mark C H de Groot, Renée de Mutsert,
Ian J Deary, George Dedoussis, Ellen W Demerath, Anneke I den Hollander, Joe G
Dennis, Emanuele Di Angelantonio, Fotios Drenos, Mengmeng Du, Alison M Dunning,
Douglas F Easton, Tapani Ebeling, Todd L Edwards, Patrick T Ellinor, Paul Elliott,
Evangelos Evangelou, Aliki-Eleni Farmaki, Jessica D Faul, Mary F Feitosa, Shuang
Feng, Ele Ferrannini, Marco M Ferrario, Jean Ferrières, Jose C Florez, Ian Ford, Myr-
iam Fornage, Paul W Franks, Ruth Frikke-Schmidt, Tessel E Galesloot, Wei Gan,
Ilaria Gandin, Paolo Gasparini, Vilmantas Giedraitis, Ayush Giri, Giorgia Girotto,
Scott D Gordon, Penny Gordon-Larsen, Mathias Gorski, Niels Grarup, Megan L
Grove, Vilmundur Gudnason, Stefan Gustafsson, Torben Hansen, Kathleen Mullan
Harris, Tamara B Harris, Andrew T Hattersley, Caroline Hayward, Liang He, Iris M
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manesh, Stefan Weiss, Alexander Teumer, Seung Hoan Choi, Lu-Chen Weng, Se-
bastian Clauss, Rajat Deo, Daniel J Rader, Svati H Shah, Albert Sun, Jemma C
Hopewell, Stephanie Debette, Ganesh Chauhan, Qiong Yang, Bradford B Worrall,
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