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Abstract 

Color Consistency of Zirconium Oxide CEREC Crowns Milled at Different Thicknesses 

 

Talal Alali, B.S, D.D.S 

  

University of Pittsburgh, 2020 

 

 

 

 

Purpose: The purpose of this study was to evaluate the color of full-contour zirconia 

CEREC restorations milled at different material thicknesses which could aid dental practitioners 

in planning full-contour ceramic restorations.  

Method and materials: Two sample crown preparations were made of an individual 

biogeneric copy of a left maxillary central incisor on a model scanned by means of Sirona 

CEREC Omnicam. One sample was prepared at a reduction of 1 mm, while the other was 

prepared at a 2mm reduction. A total of 60 CEREC Ivoclar ZirCad LT blocks were used to create 

10 Samples of monochromic Zirconia crowns milled at 1 mm and 2 mm thicknesses in each of 

Vita classic shades A1, B2, and C2. The optimal thickness of 1 mm was chosen for the control 

groups Based on manufacturer recommendations and optimal thickness of 2 mm was chosen for 

the test groups. Sample crowns were sintered by means of a Sirona SpeedFire oven. No additive 

coloring or glaze was applied. A Canon 80D digital camera equipped with a Canon MR-14EXII 

ring flash and a polarized filter was used to photograph all test and control group specimens. The 

photographs were developed via digital software, Photoshop CC 2019.  The CIE L*a*b* color 

values were measured.  

Results: CIE L*a*b* data for all samples was recorded and statistically analyzed using a 

two sample t-test, STATA.SE v16.  There was a statistically significant difference (P<0.05) in L* 

values when test groups (2mm) were compared with the control groups (1mm) for shades A1, 



 v 

B2, and C2 with P<0.00. ΔE for shades A1, B2 and C2 groups were 3.64, 3.67, and 4.55 

respectively which is higher than the clinically acceptable threshold 3.3. 

Conclusion: An increase in the thickness of Zirconia from 1mm to 2mm demonstrated a 

∆𝐸 >3.3 in all test groups which is detectable by untrained observers. As the thickness if 

Zirconia increased from 1mm to 2 mm, L* decreased in all test    groups. Vita Classic shade C-2 

demonstrated a more dramatic decrease in L* than shade A-1 and B-2 following the Zirconia 

thickness change from 1mm to 2mm.  
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1.0 Introduction 

Production of naturally appearing ceramic restorations has been a major objective ever 

since their introduction (1). The opaque core of ceramo-metal restorations limits both color 

appearance and translucency (2). All ceramic restorations without a metal substructure allow 

more light transmission and consequently improved reproduction of the appearance of natural 

tooth structure (3). Despite the esthetic advantage of glass ceramic restorations, their lack of 

strength has resulted in a demand for increased durability. High strength zirconia-based 

restorations combined with CAD/CAM technology has broadened the range of employment of 

ceramics in restorative dentistry (4). Unfortunately, cohesive failures of veneering porcelain has 

proved to be a major drawback (5, 6). Fabrication of monolithic zirconia restorations consisting 

of a single zirconia material without veneering porcelain could be an alternative solution (7).   

CAD/CAM technology has made it possible to provide patients with accurate, fracture 

resistant, full contour CEREC restorations in a single day. The aesthetics of zirconia CEREC 

restorations depends on multiple factors such as material thickness, color, translucency, anatomic 

features, and shape. Color may vary when zirconia restorations differ in thickness. Evaluation of 

color of full-contour zirconia CEREC restorations milled at different material thicknesses could 

aid dental practitioners in planning full-contour ceramic restorations. 
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2.0 Literature Review 

2.1 Zriconia 

Zirconium oxide (ZrO2) is a highly sintered polycrystalline ceramic dioxide of the 

transition metal zirconium (Zr) which has been utilized in restorative dentistry for approximately 

two decades. It has occupied a distinctive place among dental ceramic materials because of its 

superior mechanical properties including high flexural strength, fracture toughness, and low 

elastic modulus. In addition, zirconia has low corrosion potential, low cytotoxicity, and offers 

minimal adhesion of bacteria (8, 9). These unique properties have encouraged significant 

biomedical research since the 1970’s for uses of zirconia in medicine and dentistry, particularly 

in stress-bearing roles where its strength rivals that of  many alloys (8). 

Zirconia is polymorphic. Its crystal structures or phases can exist as monolithic (m), 

tetragonal (t) or cubic (c) depending on temperature and pressure. The most stable monolithic 

phase is at room temperature. As the temperature rises to about 1170°C, the monolithic phase 

transforms into the tetragonal phase, accompanied by a volume shrinkage of approximately 4-

5%. The tetragonal phase evolves into the cubic phase at about 2370°C, with only minimal 

additional volumetric changes (10, 11). The addition of dopants like yttrium oxide (Y2O3), 

calcium oxide (CaO) or magnesium oxide (MgO) into the ZrO2-lattice, stabilizes the tetragonal 

and the cubic phases at room temperature as metastable phases (12). They can transform to the 

monolithic phase under the influence of crack initiation in the ceramic. This tetragonal to 

monolithic phase transformation is associated with 4-5 % volumetric expansion which results in 

compressive forces at a crack tip slowing its propagation. This unique phenomenon is termed 
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"transformation toughening" and contributes to Zirconia's high fracture toughness compared to 

brittle conventional ceramics (13). 

The initial generations of dental zirconia were all yttrium stabilized-tetragonal 

polycrystalline zirconia consisting of fine grain zirconia with small amounts of Y2O3 as dopant. 

These fully crystalline 3Y-TZP ceramics (IPS e.max ZirCAD LT and MO) were composed as 

follows: 

 

Component Content 

Zirconium oxide (ZrO2) 88.0 - 95.5 wt% 

Yttrium oxide (Y2O3) > 4.5 - ≤ 6.0 wt% 

Hafnium oxide (HfO2) ≤ 5.0 wt% 

Aluminum oxide (Al2O3) ≤ 1.0 wt% 

Other oxides for coloring ≤ 1.0 wt% 

 

 

 

 

3Y-TZP commercially available for the fabrication of dental crowns and fixed partial 

dentures has been processed either by soft machining of pre-sintered blanks followed by high 

temperature sintering, or by hard machining of fully sintered blocks.  

.  

Table 1: Composiion of 3Y-TZP 
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2.1.1 Soft Machining.  

Since its development in 2001(14), direct ceramic machining of pre-sintered 3Y-TZP has 

become increasingly popular and has now been offered by an increasing number of 

manufacturers. The die or a wax pattern is initially scanned, followed by a computer designed 

enlarged restoration (CAD). Finally, a pre-sintered ceramic blank is milled by computer aided 

machining (CAM). The restoration is then sintered at high temperature. Several variations of this 

process exist depending on the scanning process and compensation for the considerable sintering 

shrinkage of 3Y-TZP (∼25%). This approach has the advantages of rapid milling, reduced 

cutting forces, increased tool life, potentially better surface quality, and prevention of moisture 

absorption by the zirconia blanks eliminating the need for drying the milled zirconia prior to 

sintering (15, 16).  

Typically the 3Y-TZP powder used in the fabrication of zirconia blanks contains a binder 

that enables cold isostatic pressing. The binder is later eliminated during the pre-sintering phase. 

It also contains about 2% by weight HfO2, classically difficult to separate from ZrO2. These 

powders have only minor variations in chemical composition. The powders consist of spray-

dried agglomerates of much smaller crystals that are about 40nm in diameter. The blanks are 

manufactured by cold isostatic pressing. The mean pore size of the compacted powder is very 

small and in the order of 20–30nm with a very narrow pore size distribution (14). 

Binder elimination during pre-sintering heat treatment has to be carefully controlled. If 

the temperature increase is too rapid, the elimination of binder and associated burn out products 

can lead to cracking of the blanks. The pre-sintering temperature of the blanks affects the 

hardness and machinability. Adequate hardness is needed for the handling of the blanks but if the 

hardness is too great, it might adversely affect machinability. The pre-sintering heat treatment 
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temperature also affects the surface roughness of a machined blank. Since higher pre-sintering 

temperatures lead to rougher surfaces, slower heating rates are preferred. The density of each 

blank is carefully measured so that the appropriate compensating shrinkage occurs during final 

sintering. The final density of the pre-sintered blanks is approximately 40% of the theoretical 

density (6.08 g/cm3). The density gradient within the blanks is less than 0.3% of the theoretical 

density in all directions (14). 

2.1.2 Hard Machining  

Pre-sintered Y-TZP blocks are processed in a high pressure inert gas atmosphere at 

temperatures between 1400 and 1500 ◦C (17, 18). The result is a very high density exceeding 

99% of the theoretical density. The blocks can then be machined using a milling system specially 

designed to handle the increased hardness and difficult machinability of fully sintered Y-TZP 

(19, 20). 

2.1.3 Colour in Dentistry  

Achieving natural optical properties using artificial materials is one of the main 

challenges in restorative dentistry. Color is undoubtedly one of the major parameters considered 

by patients when judging the esthetics of a restoration (21). 

The Munsell Color Order System and the International Commission on Illumination 

System (CIE) are two principle systems used to describe color. The Munsell system is based on 

three color coordinates: value describes lightness, hue describes the nature of the color, and 

chroma describes color saturation. The CIE system is based on the coordinates L*, a*, b*. The 
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L* coordinate represents the brightness of an object. The  a* coordinate represents the red 

(positive value) or green (negative value) chromacity. The b* coordinate represents the yellow 

(positive value) or blue (negative value) chromacity (22-24). Among these color parameters, it is 

generally accepted that the value (L) is the most critical for shade matching. It has been reported 

that a ∆L of [±2] is the clinically acceptable change threshold (25). Changes related to the a* 

and/or b* coordinates are better tolerated when clinically assessing color match (26). 

     A 50:50% perceptibility threshold refers to a situation where 50% of observers notice a 

difference in colour between two objects while the other 50% perceive no difference. The 

difference in colour that is acceptable for 50% of observers corresponds to a 50:50% 

acceptability threshold (AT). If 50% of observers consider a dental restoration to require colour 

correction while the other 50% consider the colour difference to be acceptable, the difference 

between those two thresholds is considered the industry tolerance limit and indicates how much 

perceptible difference can be tolerated while still considering a colour match to be acceptable 

(27). 

It is widely agreed that ∆E > 1 is perceptible (22, 25, 28-49). The acceptability threshold 

in the literature ranges from ∆E 2.0 to 4.0. The majority of the studies have determined that the 

50% acceptability threshold is ∆E= 3.7 (27, 30, 32-35, 41, 43, 44, 46, 48, 50-52). One-third of 

clinical studies reporting ∆E= 3.7 as a 50% acceptability threshold in the literature refer to the 

clinical study by Johnston and Kao(30) in 1989. The systematic review stated that recent dental 

literature is lacking and most of the recent clinical studies refer to studies that have been done 

three decades ago where the aesthetic demands have been changed. 

Color formulas are designed to provide a quantitative representation of color differences 

between two objects. The most extensively used ∆E formula is derived from the CIE L*a*b* 
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system, which approximates uniformed distances between color coordinates: 

 

∆𝐸𝑎𝑏 = √[(∆𝐿 ∗)2 +  (∆𝑎 ∗)2 + (∆𝑏 ∗)2] 

 

  

 

Figure 1:The cubical CIE Lab color space(53) 

 

 

.  
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2.1.4 REVIEW OF COMPUTER-AIDED DESIGN/COMPUTER- AIDED 

MANUFACTURING (CAD/CAM) SYSTEMS  

CAD/CAM fabrication along with the development of new ceramic systems has been 

replacing conventional lost wax restoration fabrication in restorative dentistry.  (54) Duret et al. 

introduced the commercial Sopha system, in the early 1970’s. However, it did not gain 

popularity due to limitations of the computer systems of that time (54, 55). 

By the mid 1980’s, the chairside CEREC system was developed by Mormann and 

colleagues for fabrication of ceramic inlays and onlays (56).  

In 1987, Swiss dentist, Dr. Werner Mörmann, and Italian electrical engineer, Marco 

Brandestini, introduced the first digital intraoral scanner which evolved into CEREC® by Sirona 

Dental Systems LLC (Charlotte, NC) which was the first commercially available CAD/CAM 

system for dental restorations (57, 58). Since then many different digital impression and 

CAD/CAM milling systems have been introduced. With the availability of systems capable of 

capturing 3D virtual images from the tooth preparation, chairside restorations can be made either 

directly via CAD/CAM systems or remotely at a dental laboratory from an accurate master 

model of the tooth preparation(57).  
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3.0 Null Hypothesis 

. There is no change in color consistency of CEREC Zirconia crowns milled at 1 mm and 

2 mm thicknesses using Vita Classic shades A 1, B 2 and C2 
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4.0 Method and Materials 

Using Sirona CEREC Omnicam, a dental model was scanned and an individual 

biogeneric copy of the maxillary left central incisor was generated (figure 2). Two sample crown 

preparations were made using depth cut and diamond chamfer burs. One sample was prepared 

with a 1 mm reduction while the second sample was prepared with a 2 mm reduction. The crown 

preparations were scanned by means of a Sirona CEREC Omnicam. Preparation thicknesses 

were verified by superimposing the bigeneric individual copy and utilizing preparation analysis 

tools (Figure 3, 4, 5). Ivoclar ZirCad LT was used as the fabrication material of choice. A total of 

60 CEREC MC XL blocks were used to create 10 Samples of monochromic Zirconia crowns 

milled at 1 mm and 2 mm thicknesses in each of Vita classic shades A 1, B 2, and C 2 (Figure 4, 

5, 6).  In addition, all sample blocks had the same LOT number. Crowns were sintered by means 

of a SpeedFire oven (Figure 7), Sirona. No additive coloring or glaze was applied. Each sample 

crown was inserted into the prepared dental models with the identical stump shade. 
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Figure 2: Biogeneric Individual copy of tooth #9 

Figure 3: Biogeneric Copy Supperimposed with Crown Preparation 
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Figure 4: Verifying 1 mm Middle Thrid Crown Thickness 

 

 

Figure 5: Verifying 2 mm Middle Thrid Crown Thickness 
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Figure 6: CEREC MC XL Milling Machine 

Figure 7: Crown Sintered in Sirona Speed Fire Furnace 
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4.1 Control and Test Groups 

Based on manufacturer recommendations for Ivoclar ZirCad LT, the optimal thickness of 

1 mm was chosen for the control groups for shades A 1, B 2, and C 2. The optimal thickness of 2 

mm was chosen for the ZirCad crowns of the test groups for shades A 1, B 2, and C 2. 

. 

Table 2: Control and test groups of sample 

 

 

 

 

 

4.2 Color Measurements  

 A Canon 80D digital camera equipped with a Canon MR-14EXII ring flash was used to 

photograph all test and control group specimens. All the photographs were exposed using the 

same camera settings: ISO 100, Shutter Speed 1/125, F 22. The camera was mounted on a tripod 

to control object to lens distance (Figure 9). A polarized filter, Polar_eyes, was employed   to 

remove any flash glare as (Figure 10 and 11). Photographs were taken one minute apart to allow 

the ring flash to fully recharge. The photographs were developed via digital software, Photoshop 

CC 2019.  The CIE L*a*b* color values were measured as shown in Figure 12.  

Group A 1 B 2 C 2 

Control (1 mm) 10 10 10 

Test (2 mm) 10 10 10 
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The CIE color space of each reading was measured and recorded in terms of the 3 

coordinate values (L*, a*, b*). Mean coordinate values and the standard deviations (SD) were 

calculated for each group by means of two-sample t-test. ∆E (color difference value) was 

calculated between the control group and test groups' means, according to the formula: 

∆𝐸𝑎𝑏 = √[(∆𝐿 ∗)2 +  (∆𝑎 ∗)2 + (∆𝑏 ∗)2] 
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Figure 8: Polar_eyes Cross Poliralization Filter 

 

 

 

Figure 9: Camera Mounted on Tripod with a Fixed Lens-to-Object Distance 
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Figure 10: Photo Taken Without Poliraization Showing Light Reflection 

 

 

 

 

Figure 11: Photo Taken With Poliraization to Remove Glare and Light Reflection 
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Figure 12: : CIE L*a*b* Analysis Using Adbobe Lightroom CC 
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5.0 Results 

CIE L*a*b* data for all samples was recorded and statistically analyzed using a two-

sample t-test, STATASE v16. ΔE mean values and standard deviations of the test and control 

groups are listed in (table 3). There was a statistically significant difference (P<0.05) in L* 

values when test groups (2mm) were compared with the control groups (1mm) for shades A1, 

B2, and C2 with P< 0.00. The a* values showed a statistically significant difference when the 

test groups were compared with control groups for shades A1 and B2 with P< 0.00. However, for 

shade C2 there was no statistically significant difference (P= 0.6). The b* values showed a 

statistically significant difference when test groups were compared with the control groups for 

shade C2 with P<0.00 while for shades A1 and B2 there was no statistically significant 

difference with P= 0.44 and 0.55 respectively. The ΔE values for all test groups were above the 

perceptibility threshold (ΔE > 1). ΔE for shades A1 and B2 groups were 3.64 and 3.67 

respectively which is more than the clinically acceptable range ((ΔE) < 3.3), while the ΔE for C2 

group was 4.55 which is significantly higher than the clinically acceptable range. 
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Table 3: Mean CIE L*a*b* values (standard deviation) of test group with their color differences (∆E ) 

compared to the control group 

 

 

 

 

 

 

Control and 

Test Groups 

L* 

(SD) 

a* 

(SD) 

b* 

(SD) 

∆E 

A1 (Control) 

1 mm Thickness 

72.86 

(0.17) 

2.27 

(0.42) 

11.97 

(0.66) 

 

A1 (Test) 

2 mm Thickness 

69.32 

(0.23) 

3.09 

(0.34) 

12.21 

(0.70) 

3.64 

B2 (Control) 

1 mm Thickness 

69 

(0.19) 

3.64 

(0.47) 

17.24 

(1.34) 

 

B2 (Test) 

2 mm Thickness 

65.47 

(0.12) 

4.58 

(0.70) 

17.59 

(1.22) 

3.67 

C2 (Control) 

1 mm Thicknes 

63.05 

(0.15) 

6.17 

(0.88) 

20.9 

(0.86) 

 

C2 ( Test) 

2 mm Thickness 

59.16 

(0.15) 

6.16 

(0.59) 

18.54 

(0.99) 

4.55 
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6.0 Discussion 

This study evaluated the effect that different ceramic thicknesses had on the final color of 

monolithic zirconia crowns.   The results revealed a significant difference in CIE Lab and ΔE 

values related to the zirconia thickness. Therefore the null hypothesis was rejected.  

Different values of ΔE in terms of perceptibility and acceptability have been reported in 

the literature. Vichi et al.(59) divided ΔE into three ranges where ΔE less than 1 is undetectable 

by the human eye, ΔE values greater than 1 but less than 3.3 though detectable by a skilled 

operator are considered clinically acceptable, and ΔE values greater than 3.3 are observable by 

an untrained observer and are considered unacceptable (60-63). Accordingly, this study 

considerd ΔE = 3.3 as the acceptability threshold to evaluate color difference among the test 

samples. The increased thickness of zirconia from 1 mm to 2 mm demonstrated a color 

difference of ΔE > 3.3 in all test groups which was detectable by untrained observers. 

This study found that as the thickness of zirconia increased from 1 mm to 2 mm, L* 

values decreased in all test groups. The thickness of the zirconia not only affected the color, but 

the selected shade of test crowns. Of note in this study was the fact that shade C 2 had a more 

dramatic color change (ΔE = 4.55) compared to shades A 1 and B 2 (ΔE 3.64 and 3.67 

respectively) when the thicknesses of the zirconia was increased. Consequently, as the value 

(brightness) of a selected shade decreased (from shade A 1 to C 2), increasing the thickness of a 

zirconia crown may exhibit an increased ΔE color change. 

Tabatabaian et al (64). tested shade A-2 monolithic zirconia specimens with thicknesses 

of 0.7, 0.9 and 1.1 mm from 2 different manufacturers. They found that as the zirconia thickness 

increased the L* value decreased and the impact of the ΔE change on the final color was 
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significant regardless of the brand of zirconia. The ideal thickness of a zirconia restoration 

should be 0.9 mm in order to match the targeted shade. The results of this study were similar. 

The zirconia crowns used in the control groups had a thickness of 1 mm. The zirconia specimens 

in the test groups had a thickness of 2 mm and showed a decrease in L* values along with 

significant changes in ΔE. 

Kim et al. (65) studied the color change of 2 mm thickness zirconia specimens after being 

reduced 0.1 mm at a time until 1 mm thickness is reached. The study showed a noticeable color 

change ΔE > 3.7 even after the first 0.1 mm of reduction. They also observed that L* values 

decreased as the thickness of zirconia crowns increased. This can be  explained by the increased 

absorption of light by the thicker specimens. The authors stated that using only shade A 2 was a 

significant limitation of their study.  

Giti and Hojati (66) found that for zirconia specimens in shade A 2, a decrease in 

thickness from 2 to 1 mm resulted in a clinically detectable color difference (ΔE>3.7) as well as 

an increase in the  L* values of the specimens. The authors stated that using only shade A 2 was 

a limitation of their study and suggested that further research was needed using different shades 

of zirconia specimens. 
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7.0 Conclusion 

1. An increase in the thickness of Zirconia from 1mm to 2mm demonstrated  

a ∆𝐸 >3.3 in all test groups which is detectable by untrained observers. 

2. As the thickness if Zirconia increased from 1mm to 2 mm, L* decreased in all test 

groups. 

3. Vita Classic shade C-2 demonstrated a more dramatic decrease in L* than 

 shade A-1 and B-2 following the Zirconia thickness change from 1mm to 2mm. 
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Appendix A  

 

Appendix Table 1: Shadde A 1 CIE L*a*b* Data 

 

 

 

 

 

 

 

 

1 mm Thickness 2 mm Thickness 

L* a* b* L* a* b* 

72.9 2.5 11.8 69.2 2.9 12 

73 1.9 12.4 69.1 2.5 12.7 

72.8 2.9 13 69.4 2.8 11.8 

72.7 2 13.2 69.7 2.7 12.6 

72.8 2.3 11.4 69.6 3.4 12 

72.5 2.5 11.5 69.4 3.4 11.5 

72.9 2.7 11.4 69.2 3.3 12.6 

73.1 2.3 11.7 69 3.1 13.7 

73 2.2 11.7 69.1 3.5 11.9 

72.9 1.4 11.6 69.5 3.3 11.3 
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Appendix Table 2: Shade B 2 CIE L*a*b* Data 

1 mm Thickness 2 mm Thickness 

L* a* b* L* a* b* 

68.8 3.6 17.8 65.5 4.8 18 

69.1 4.4 16.1 65.4 5.6 15.5 

68.9 3.5 19.3 65.2 4.2 19.6 

69.1 3.4 16.3 65.5 3.6 18.6 

69.1 3.4 19.3 65.5 5.3 17.7 

68.8 4.1 16.6 65.6 4.9 18.4 

68.7 3.6 16.6 65.6 4.3 16.1 

69 2.7 16.6 65.6 5.3 16.7 

69.2 4.1 18.3 65.4 3.7 17.3 

69.3 3.6 15.5 65.4 4.1 18 
 

Appendix Table 3: Shade C 2 CIE L*a*b* Data 

1 mm Thickness 2 mm Thickness 

L* a* b* L* a* b* 

63.2 6.5 21.9 59.1 5.7 18.8 

63.1 6.5 20.6 59.1 6.5 18.8 

63 6.8 20.3 59.4 5.3 19 

63.1 6.7 19.6 58.9 6.8 17.4 

63.1 6.8 20.5 59.3 6.2 16.7 

63.3 7.2 20.6 59.3 5.3 18.7 

62.9 5.6 20.8 59 5.9 18.7 

62.8 4.2 20.5 59.1 6.9 17.7 

63.1 5.8 21.7 59.2 6.3 19.8 

62.9 5.6 22.5 59.2 6.7 19.8 
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