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Abstract 

Development and Applications of Quantitative Systems Pharmacology Methods and 

Tools for Drug Discovery 

 

Fen Pei, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

Quantitative Systems Pharmacology (QSP) is a relatively new field, which aims to 

determine the mechanisms of disease progression and mechanisms of action of drugs on multi-

scale systems and to optimize the development of therapeutic strategies through iterative and 

integrated computational and experimental methods. Given the unclear mechanisms and unmet 

medical needs for complex diseases, there is a great need for integrated and efficient computational 

tools to facilitate the drug discovery process. This thesis focuses on the development and 

applications of computational methods for QSP-driven drug discovery, including (1) the 

development of an integrated and efficient chemical-protein-pathway mapping tool for 

polypharmacology and chemogenomics, implemented in the QuartataWeb server, (2) the 

development of machine learning methods for predicting protein-protein interactions (PPIs), and 

(3) the applications of the developed QSP methodology to Huntington’s disease, drug abuse, and 

non-alcoholic fatty liver disease (NAFLD) toward better understanding of disease mechanisms 

and facilitating the design of therapeutic strategies. To build QuartataWeb, we adopted a 

probabilistic matrix factorization (PMF) method using as input two databases: DrugBank v5.0 and 

STITCH v5, so as to predict new chemical-target associations as well as detect similarities among 

drugs/chemicals based on their interaction patterns with targets, as well as similarities between 

targets based on their interaction patterns with drugs/chemicals. Furthermore, this new tool links 
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targets to KEGG pathways and Gene Ontology (GO) annotations, completing the bridge from 

drugs/chemicals to function via protein targets and cellular pathways. In the second study, we 

developed a methodology for automated and efficient identification PPIs using a symmetric 

logistic matrix factorization method. Finally, the applications have been conducted with 

experimental collaborators. We customized our QSP approaches based on specific disease-centric 

inputs and experimental resources, identified the cellular mechanisms underlying the investigated 

diseases or disorders, and proposed drugs to potentially serve as lead compounds for developing 

drugs against Huntington’s disease, drug abuse and NAFLD. Taken together, the development and 

applications of the QSP methodology presented here demonstrate the power of QSP-guided 

hypotheses as a key step required for gaining a better understanding of systems-level events 

underlying complex diseases/disorders and for accelerating drug discovery. 
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Background 

Over the past decade, the field of drug discovery and development has transitioned from a 

target-centric and phenotypic discovery area to include complementary system-level approaches 

(Sorger, et al., 2011; Stern, et al., 2016). The traditional target-centric and phenotypic drug 

discovery and development approach follows a linear set of steps, usually starting with the 

investigation of the basic science of a certain disease, followed by the identification and validation 

of a druggable target or a disease-relevant phenotype. The next step would be to develop target- 

or phenotype-specific assays, to screen against selected compound libraries, then identify hits and 

generate leads. After obtaining the leads, medicinal chemistry methods are used to optimize the 

leads, and ensure safety and acceptable ADMET (absorption, distribution, metabolism, excretion 

and toxicity) properties. Then the efficacy and pharmacokinetics of the candidates are tested using 

preclinical animal models. If a drug candidate passes all these steps, it gradually moves from phase 

I, to II, to III human clinical trials. 

Although traditional drug discovery and development approach has been successful in a 

number of cases, it usually suffers from high cost and low success rate at advanced phases. In a 

recent analysis of data between 2009 and 2018 (Wouters, et al., 2020), the estimated median cost 

of getting a new drug into market was $985 million, and the average cost was $1.3 billion. A 

previous study placed the average cost as $2.8 billion and the typical investigation time was over 

10 years (DiMasi, et al., 2016). The overall failure rate in drug development is as high as 96%, 

including 90% failure during the clinical development (Hingorani, et al., 2019). In addition, in the 

case of complex diseases including neurodegenerative diseases, metabolic syndromes and cancer, 
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with poorly understood pathogenesis, the failure rate is even higher.  For example, there is no 

FDA-approved drug for non-alcoholic fatty liver disease (NAFLD). 

Therefore, there is a great need for improving the efficiency of developing therapeutics and 

for advancing personalized medicine strategies by optimizing the process of drug discovery and 

development. In humans, proteins perform most of their complex functions via interactions with 

other proteins, forming cellular pathways or protein-protein interaction (PPI) networks. It is also 

widely known that many drugs or compounds bind to more than one protein target, and the target 

proteins interact with many other proteins. These interactions modulate the disease sub-network. 

Therefore, the effect of a drug should not by evaluated based on its interaction with a certain target 

only, but based on its overall effect on a disease sub-network. This systems-level approach is aimed 

to replace the traditional “one-gene, one-target, one-mechanism” hypothesis with an in-depth 

understanding of complex networks underlying the disease mechanisms (Bai, et al., 2019; Berg, 

et al., 2010; Bradshaw, et al., 2019; Kiyosawa and Manabe, 2016; Leung, et al., 2013; Perez-

Nueno, 2015; Sorger, et al., 2011; Stern, et al., 2016)  and to develop drugs with desired system-

level effects. 

With advances in experimental techniques, the generation of omics data (genomics, 

transcriptomics, proteomics, and metabolomics), as well as the development of computational 

power and sophisticated algorithms, multi-scale systems analysis has become possible (Cheng, 

2019; Leung, et al., 2013; Li, et al., 2017; Perez-Nueno, 2015). The Quantitative Systems 

Pharmacology (QSP) platform (Stern, et al., 2016) at the Drug Discovery Institute of the University 

of Pittsburgh provides an innovative pipeline for integrated and iterative drug discovery combining 

quantitative experimental and computational tools, instead of the traditional linear process. Most 

of the components in the QSP platform have been applied in traditional approaches, such as 



 xxv 

identification of drug-target interaction, identification of hits and generation of leads, or lead 

optimization. In addition, system level analyses such as inference of pathways involved in disease 

progression and mathematical modeling of disease progression form important elements of the 

platform.  

In this thesis, I focus on the development and application of computational methods that 

are coupled with experimental methods, to generate QSP hypotheses and candidate solutions to 

treat selected diseases/disorders. The thesis contains both QSP method development and QSP 

applications. In the method development part, I introduced or adopted new computational 

algorithms and tools for QSP studies, such as those required for predicting drug-target interactions 

(DTIs) and PPIs and evaluating gene-set enrichment. In the application part, we designed and 

implemented customized workflows for Huntington’s disease, drug abuse, and NAFLD. 

Specifically, we analyzed the targets and pathways of a list of active compounds identified through 

phenotypic screening assays in a Huntington’s disease model, to generate a hypothesis on disease 

mechanisms, and then verified the hypothesis with subsequent biomarker assays. We also 

performed a comprehensive system level drug-target-pathway analysis for drugs of abuse across 

six different categories, and discovered the potential networks of interactions underlying the drug 

addiction process. Finally, we integrated the information retrieved from the connectivity map 

(CMap) tool and a network proximity analysis method to identify repurposable drugs for NAFLD 

patients, using RNA-seq data from NAFLD patients. 

Most of the work presented in this thesis has been published. As the copyrights permit, 

some of the materials from previous publications are reused or quoted with proper citations in the 

following chapters. Some of the studies were accomplished in collaboration with other people 

whose contributions are acknowledged where appropriate. All presented studies were conducted 
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under the supervision and guidance of my doctoral advisors, Drs. Ivet Bahar and D. Lansing 

Taylor. 
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1.0 Development of QuartataWeb: a New Interface for Integrated Chemical-Protein-

Pathway Mapping for Polypharmacology and Chemogenomics 

In this section, we introduce the development of QuartataWeb, a user-friendly server 

developed for polypharmacological and chemogenomics analyses. Using QuartataWeb, users can 

easily obtain information on experimentally verified (known) and computationally predicted (new) 

interactions between 5,494 drugs and 2,807 human proteins compiled in DrugBank (Wishart, et 

al., 2017), and between 315,514 chemicals and 9,457 human proteins in the STITCH (Szklarczyk, 

et al., 2016) database. The predictions are based on a highly efficient machine learning (ML) 

algorithm, probabilistic matrix factorization (PMF) (Cobanoglu, et al., 2013). In addition, 

QuartataWeb links targets to KEGG pathways (Kanehisa, et al., 2017) and Gene Ontology (GO) 

annotations (Huntley, et al., 2015), completing the bridge from drugs/chemicals to function via 

protein targets and cellular pathways. It allows users to query a series of chemicals, drug 

combinations, or multiple targets, to enable multi-drug, multi-target, multi-pathway analyses, 

toward facilitating the design of polypharmacological treatments for complex diseases. 

QuartataWeb is a useful component of our QSP platform and is freely accessible at 

http://quartata.csb.pitt.edu. 

1.1 Introduction 

Lorem ipsum dolor sit amet, It is now widely accepted that many complex diseases are 

associated with multiple targets, which in turn affect multiple pathways, requiring the adoption of 
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QSP approaches for assessing the mechanisms of disease etiology, progression, and treatment 

(Leung, et al., 2013; Ma'ayan, et al., 2014; Perez-Nueno, 2015; Stern, et al., 2016) . The possibility 

of exploiting the promiscuity of drugs via drug repurposing and polypharmacological treatments 

also emerged in recent years as a means of reducing risk and cost in drug development (Ashburn 

and Thor, 2004; Pantziarka, et al., 2018; Sachs, et al., 2017). In parallel, chemogenomics studies 

assist in improving our understanding of disease mechanisms and developing therapeutic strategies 

by providing phenotypic information on ensembles of active compounds screened against families 

of targets. Such studies underscore the importance of developing computational tools that would 

harness the rapidly accumulating data to predict new chemical-target interactions (CTIs) over a 

broad space of chemicals and enable their mapping to pathways and function.  

Several ML approaches have been developed for predicting CTIs over the past decade. 

Most of them are supervised learning methods, such as kernel regression-based method 

(Yamanishi, et al., 2008), correlation-based method (Yamanishi, et al., 2010), random forest 

algorithm (Cao, et al., 2014), bipartite local models (Bleakley and Yamanishi, 2009), and 

kernelized sparse learning SVM (Shi, et al., 2013). Those methods use criteria such as chemical-

chemical similarities based on 2D fingerprints or 3D conformations, protein-protein similarities 

based on sequence or structure properties. These criteria heavily rely on the similarity-representing 

methods and are limited to proteins with structural data. To extend this limitation, other supervised 

methods such as restricted Boltzmann machines (Wang and Zeng, 2013) and Gaussian interaction 

profile kernels (van Laarhoven, et al., 2011) have been developed, which are based on drug-target 

interaction networks without using structural data on chemicals or proteins. The prediction 

accuracy of supervised learning methods might, however, be biased by the inaccurate negative 

sample selection, since the chemical-protein pairs without interactions lack experimental 
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verification. To meet this challenge, semi-supervised methods such as Laplacian regularized least 

square (Xia, et al., 2010) and matrix factorization methods including PMF (Cobanoglu, et al., 

2013) have been developed. PMF is chosen in QuartataWeb because: (i) it does not need negative 

samples to train the model, avoiding bias generated from negative sample selection; (ii)  it does 

not rely on the structure information of chemicals or proteins, rendering it applicable and efficient 

to predict large-scale CTIs; and (iii) PMF shows better performance than several other ML 

methods that use structural information on either ligand or target, and the predictions are 

complementary to those methods (Cobanoglu, et al., 2013; Ezzat, et al., 2017). 

Several resources (see Table 1.1) have been developed in the last decade to address 

different aspects of the emerging needs but an integrated server designed to automate the 

association of multiple CTIs with enriched pathways and function remains to be developed. For 

example, the servers SEA (Keiser, et al., 2007), SwissTargetPrediction (Daina, et al., 2019), and 

SuperPred (Nickel, et al., 2014) predict new CTIs, but not corresponding pathways. DINIES 

(Yamanishi, et al., 2014) and DT-Web (Alaimo, et al., 2015) incorporate pathway information, but 

not large-scale CTIs, their respective data being limited to KEGG and DrugBank. Furthermore, 

existing interfaces are not designed to use as input multiple drugs/targets for polypharmacological 

strategies and/or for complementing chemogenomics efforts. 
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Table 1.1 Existing web servers for drug-target interactions 

Web-servers Chemicals Targets 
Prediction 

method 
Pathways 

SEA 

(Keiser, et al., 2007) 
PubChem 

MDDR (246 

targets) 

physicochemical 

similarities 
no 

DINIES 

(Yamanishi, et al., 

2014) 

KEGG drugs KEGG targets 
similarity based 

ML models 

KEGG 

pathways 

SuperPred 

(Nickel, et al., 2014) 
query-based 

SuperTarget, 

ChEMBL, 

BindingDB 

2D and 3D 

similarities 
no 

PharmMapper 

(Wang, et al., 2017) 
query-based PDB 

pharmacophore 

models 
no 

DR. PRODIS 

(Zhou, et al., 2015) 
DrugBank 

human 

proteome 

structure 

information on 

targets 

no 

iDrug-Target 

(Xiao, et al., 2015) 

the original 

benchmark 

dataset 

the original 

benchmark 

dataset 

chemical 

fingerprints and 

a ML model 

no 

DT-Web 

(Alaimo, et al., 2015) 
DrugBank DrugBank 

network-based 

inference 
no 

BalestraWeb 

(Cobanoglu, et al., 

2015) 

DrugBank 

approved drugs 
DrugBank 

latent factor 

models 
no 

SwissTargetPrediction 

(Daina, et al., 2019) 

280,318 

bioactive small 

molecules 

2,686 targets 

combined 2D 

and 3D 

similarities 

no 

 

We developed the QuartataWeb server to address those needs. QuartataWeb uses known 

(experimentally verified) CTIs from DrugBank and STITCH (Table 1.2 and Figure 1.1) in a PMF 

algorithm (Cobanoglu et al. 2013) to predict new CTIs in the extended space of more than 300,000 

chemicals and 9,000 human proteins. The engine parameters have been optimized to ensure high 

CTI prediction accuracy. The outputs are linked to KEGG pathways and GO Annotations (GOAs) 

(Huntley et al. 2015) to predict the most probable pathways, functions and processes affected by 
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one or more chemicals and to efficiently assist in interpreting and/or guiding chemogenomics and 

polypharmacological studies. 

 

Table 1.2 Data sources used in QuartataWeb 

Data type and properties 

DrugBank 5.1 

(Wishart, et al., 2017) 

STITCH 5 (human) 

(Szklarczyk, et al., 2016) 

Approved All Experimental 

# of drugs/chemicals (N) 1,883 5,494 315,514 

# of targets (M) 2,244 2,807 9,457 

Interaction space (NxM) 4,225,452 15,421,658 2.98 billion 

known interactions (S) 9,253 14,983 5,364,673 

Occupancy of R(a) 

(S/[NxM]) 
0.0022 0.0010 0.0018 

Data type and properties 

KEGG 

(human) 

(Kanehisa, 

et al., 2017) 

GOA (human) 

(Huntley, et al., 2015) 

Molecular 

Function 

Biological 

Process 

Cellular 

component 

# of genes 19,124 2,807 

# of pathways/GO terms 323 2,346 6,892 897 

# of associations 28,664 11,475 39,510 15,160 

      (a) R represents the chemical-target interaction matrix, described in the Method below.  
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Figure 1.1 Promiscuity of drugs/chemicals and targets in DrugBank and STITCH database 

Histogram of the degrees of drugs/chemicals and targets in the bipartite network of CTIs, computed for DrugBank-

approved (A-B), DrugBank–all (C-D) and STITCH-experimental (E-F) datasets. The degree of a given node 

represents the number of links emanating from that node, connected to first neighbors in the network, each node 

representing a drug/chemical or a target protein. Most drugs and targets in DrugBank have degrees below 40. 

Chemicals and targets in STITCH have much larger numbers of interactions (E-F). The distributions of drugs or targets 
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with degree higher than 40 are shown in the insets of panels A-D. The dashed vertical lines indicate the mean (red) 

and median (black) in each case. The corresponding values are given in the insets. 

1.2 Implementation and Pipeline of QuartataWeb 

The QuartataWeb server pipeline is schematically depicted in Figure 1.2. The server can 

be flexibly queried with three types of input: (I) a list of chemicals (or targets) for chemogenomics-

like screening in silico (Figure 1.2A); (II) one or more pairs of chemicals to be administered in 

combination for polypharmacological purposes (Figure 1.2B); and (III) a single chemical and/or 

a single target to be characterized (Figure 1.2C). In response to a list of chemicals entered in type 

I query, QuartataWeb releases newly predicted CTIs and chemical-chemical similarities based on 

pre-computed latent factor models (LFMs) learned from DrugBank or STITCH data, in addition 

to retrieving known CTIs from these datasets, as schematically described in Figure 1.2A. The 

outputted targets are then subjected to target enrichment, which also lead to enrichment scores for 

associated pathways and GOAs (p-values) (See Methods). The same sequence of tasks can be 

carried out for a list of targets entered as input. In the case of Type II input, the same tasks are 

carried out for pairs of chemicals to obtain shared targets, and their enrichment, along with 

enriched pathways and GOAs. Type III input is the simplest query where users enter one chemical, 

one target or a chemical-target pair to identify associated CTIs, similar chemicals or targets, and 

enriched pathways and GOAs. Furthermore, the secondary interactions (2 ̊, beyond the immediate 

neighbors) in the bipartite network of chemical/targets can be visualized. In all cases, outputs are 

presented as tables with several specifications (e.g., drug/chemical identifiers, Gene IDs and 

names, PDB IDs, confidence scores, and enrichment p-values), in addition to visuals such as 
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network representations, bar plots, or heatmaps. The force-directed layout in JavaScript D3 

package has been customized and designed to interactively display the CTIs and pathways 

networks. 
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Figure 1.2 Detailed description of QuartataWeb server workflow for three input types 

(A) In type I input, users enter either a list of chemicals, or a list of targets of interest, details are descripted in the text. 

(B) In Type II input, one or more pairs of chemicals are administrated in combination (and queried in combination), 

and in Type III one chemical, target or a chemical-target pair is given as query. (C) In type II input, a workflow similar 

to that of type I holds, with the exception that, targets, pathways and GO terms that are shared by pairs of chemicals 

(administered in combination, rather than serially) are released as outputs. In type III, the user can retrieve information 

on known and predicted interactions as well as similar chemicals-based on CTI patterns. The space of targets is that 

of human proteins in DrugBank or STITCH. The user can select either database.  Both known and predicted targets 

are mapped to KEGG pathways and GO terms to perform an enrichment analysis. The secondary chemicals that 

interact with these targets can be viewed if the “secondary interactions” option button is selected.  Likewise, the targets 

of the similar chemicals can be viewed by a similar option. When users enter a target in type III query, they can retrieve 

information on CTIs or on target-target similarities, and explore the secondary interactions in a similar way. 
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1.3 Applications of QuartataWeb 

1.3.1 Chemogenomics Analysis for a List of Chemicals 

In many cases, a set of chemicals exhibiting comparable phenotypes are analyzed in 

phenotypic screening. Suppose we are interested in finding out the common mechanism of action 

of this set of chemicals (type I input). Figure 1.3A illustrates such a case where four drugs are in-

putted having the same phenotype. QuartataWeb identifies the common targets along with the 

interaction confidence scores and enrichment scores of the targets.  One may further learn about 

the pathways associated with the shared targets (Figure 1.3B) and the corresponding GOAs 

(Figure 1.3C). The interface also provides tables with detailed information on the pathways and 

GOAs, including their p-values (Figure 1.4), which could help assessing the dominant pathways 

and processes that underlie the shared phenotype. Our recent QSP analysis of 50 drugs of abuse 

serves as an example of the utility of this type of integrated studies (Pei, et al., 2019), as will be 

described in Chapter 3.2. 
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Figure 1.3 Illustration of QuartataWeb output on Input Type I and Input Type III examples 

(A) Identification of targets (dark violet dots, in yellow ellipse) shared by four drugs (Input Type I) indicated by red 

nodes. (B) target-pathway network view of KEGG pathways (green boxes) corresponding to tragets in A. (C) Top 10 

enriched GO molecular function for targets in B. Bar plot shows enrichment p-values. (D) Illustration of ligand-target 

intereactions obtained by Type III input. Second generation of nodes with degrees less than 3 are hidden by applying 

“Trim 2nd generation nodes” button. (E) Chemical-chemical similarities. The option “Display secondary interactions” 

displays targets shared by selected drugs (yellow).  
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Figure 1.4 Illustration of QuartataWeb outputs on pathways and GO term enrichment released by 

QuartataWeb 

(A) KEGG pathways in which all targets are tabulated for four inputted drugs “epinastine, ergoloid mesylate, 

bromocriptine and ziprasidone”. The list is ordered here based on enrichment p-values. (B) GO molecular functions 

for the same targets listed in a sortable table, which is sorted here based on enrichment p-values calculated for the 

targets. 30 KEGG pathways and 46 GO molecular functions are displayed on the results pages (only top 10 are shown 

here in each case). EPT: enrichment p-value based on targets, to describe if a pathway or GOA is overrepresented 
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among the targets; EPD: enrichment p-value based on drugs/chemicals, to describe if a pathway or GOA is 

overrepresented among the chemicals, through the CTIs. 

1.3.2 Polypharmacological Evaluation of Drug Pairs 

Similarly, Figure 1.5 illustrates the output from QuartataWeb for identifying common 

targets given pairs of chemicals (type II input) that trigger comparable responses, e.g., 

aripiprazole/olanzapine, clozapine/trimipramine, methotrimeprazine/epinastine and cabergo-

line/mianserin. The corresponding CTIs are listed in tables, and also displayed in a network viewer 

with an interactive control panel. Links to pathways and GOAs result pages are indicated. In this 

example, 15 among 192 known and 80 predicted (confidence scores > 0.9) targets were identified 

as common targets. Pathways shared by each chemical pair are also listed in the pathway 

enrichment table. This type of analysis applied to drug combinations used in a Huntington’s 

disease model helped elucidate the origin (shared pathways) of observed synergistic effects (Pei, 

et al., 2017). 
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Figure 1.5 A snapshot of the results page from QuartataWeb 

Here four pairs of drugs are fed as an input of type II (see text), displayed by the red spheres in the interactive network 

viewer. Their targets are represented as blue spheres. Targets nodes with coordination number less than eight are 

trimmed (hidden) by clicking “Trim 1st generation nodes” with a cutoff of eight. The viewer control panel on the right 

top of the page is displayed upon clicking the menu button on the top. 2D structures and other information of input 

drug combinations are presented in a table below the network viewer. All CTIs associated with the input drugs are 
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listed in a table at the bottom. Links to pathways- and GO enrichments-analysis pages are provided, as well as the 

option of downloading the entire page and data.  The figure displays the outputs from QuartataWeb, except for the 

yellow labels and arrows included here for facilitating the description. 

1.3.3 Drug Repurposing or Identification of Side-Effects 

Consider loxapine and its target, α2A adrenergic receptor (gene name: ADRA2A) as an 

example. CTIs corresponding to both drug (red sphere) and target (blue sphere) can be viewed in 

peacock representation (Figure 1.3D), where known and predicted CTIs being distinguished by 

the gray and red edges, respectively. Users can interactively select nodes to view primary and 2˚ 

interactions. Loxapine is an antipsychotic agent approved for treating schizophrenia, whose 

primary targets are dopamine and serotonin receptors. The figure displays the 2˚ interactions of a 

serotonin receptor (HTR3C, node colored cyan) which turns out to be a target of many drugs 

associated ADRA2A, some of which are repurposable. Finally, type III input also permits to 

identify similar drugs and shared targets as illustrated for the pair doxepin and loxapine (Figure 

1.3E).   

1.4 Conclusion 

We presented QuartataWeb, an integrated server that offers multiple capabilities for QSP 

analyses using both known associations and machine-learning predictions. We showed that the 

interface can help identify repurposable drugs, side-effects, enriched pathways, as well as shared 

functions, cellular processes and environment for different types of queries. QuartataWeb is 
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expected to serve as a first filter toward designing more effective phenotypic screens and 

polypharmacological strategies. 

1.5 Materials and Methods 

1.5.1 Datasets 

DrugBank and STITCH. The outputs released by QuartataWeb are based on LFMs 

generated by a PMF scheme for three sets of data: approved-drugs in DrugBank 5.1, 

experimentally verified data in DrugBank 5.1, and experimentally verified data on human in 

STITCH 5, shortly referred to as DrugBank-approved, DrugBank-all and STITCH-experimental. 

Table 1.2 lists the content of these data sources. STITCH-experimental contains information on 

more than S = 5.3 million CTIs. This number is only a small percent (0.18%) of the entire space 

of interactions potentially existing between the N = 315,514 chemicals and M = 9,457 targets 

contained in STITCH. DrugBank-approved is considerably smaller, with N = 1,883 drugs and M 

= 2,244 targets. Yet, the occupancy of the interaction space, S/[N×M], is comparable (0.22%). 

Figure 1.1 display the histograms of the numbers of interactions for chemicals and targets in the 

STITCH and DrugBank datasets, respectively. Notably, some chemicals and targets have more 

than 250 interactions in STITCH, and more than 40 in DrugBank. 

KEGG. QuartataWeb uses the 28,664 gene-pathway associations between 19,124 human 

genes and 323 human pathways extracted from KEGG Pathway DB (Table 1.2). Proteins are 

mapped to genes following UniProt (The UniProt, 2017) annotations, and then mapped to 
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pathways through gene-pathway associations. Based on the known and predicted CTIs, 

drugs/chemicals can then be connected to affected pathways. 

GOA.  A total of 2,807 target genes in our datasets were mapped to GO terms, comprising 

11,475 molecular functions, 39,150 biological processes, and 15,160 cellular components (Table 

1.2).  The connection between targets and GO annotations is established through UniProt gene 

identifiers. Likewise, drugs/chemicals are mapped to GOA via the associated known and predicted 

targets, which enables users to assess the molecular functions, biological processes, and cellular 

components potentially affected by the chemicals. 

1.5.2 Probabilistic Matrix Factorization-based Chemical-Target Interaction Prediction 

PMF models the CTI matrix RNM between N chemicals and M targets by two lower-rank 

chemical and target matrices: UT
ND and VDM, where each chemical is represented by a D-

dimensional latent vectors (LVs) ui, and each target is represented by a D-dimensional LV vj. The 

PMF adopts a probabilistic linear model with Gaussian distribution noise, resulting in the 

conditional distribution  

p(𝐑|𝐔, 𝐕, σ2) = ∏ ∏ [𝒩(𝑅𝑖𝑗|𝒖𝒊
𝑻𝒗𝒋, σ2)]

𝐼𝑖𝑗𝑀
𝑗=1

𝑁
𝑖=1                       (1.1) 

                                 

where 𝒩(𝑥|𝜇, σ2) is the probability density function of the Gaussian distribution with 

mean  and variance 2, and Iij is the indicator function equal to 1 if chemical i and target j interact 

with each other, and 0 otherwise. The log-likelihood of U and V is given by 
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ln(p(𝐔, 𝐕|𝐑, σ2, σu
2 , σv

2)) = −
1

2σ2
∑ ∑ 𝐼𝑖𝑗(𝑅𝑖𝑗 − 𝒖𝑖

𝑇𝒗𝑗)
2

−
1

2σu
2 ∑ 𝒖𝑖

𝑇𝒖𝑖
𝑁
𝑖=1 −𝑀

𝑗=1
𝑁
𝑖=1

1

2σv
2 ∑ 𝒗𝑗

𝑇𝒗𝑗
𝑁
𝑖=1 + 𝐶                                                                        (1.2) 

where C is a constant independent of parameters. Maximizing the log-posterior over 

chemical and target features is equivalent to minimizing the sum of squared errors loss function 

with quadratic regularization terms: 

 

𝐸 =  
1

2
∑ ∑ 𝐼𝑖𝑗(𝑅𝑖𝑗 − 𝒖𝑖

𝑇𝒗𝑗)
2

+
𝜆

2

𝑀
𝑗=1

𝑁
𝑖=1 ∑ ∥𝑁

𝑖=1 𝒖𝑖 ∥2+
𝜆

2
∑ ∥𝑀

𝑗=1 𝒗𝑗 ∥2                (1.3) 

To learn an optimal LFM means to find the U and V matrices that minimize the loss 

function. Once the optimal U and V are obtained, the product UTV yields the reconstructed CTI 

matrix �̂�𝑁×𝑀,  

 

�̂�𝑁×𝑀 = 𝐔𝑁×𝐷
T 𝐕𝐷×𝑀                                                    (1.4) 

 

each entry of which (other than those already known) represents the confidence score for 

the occurrence of the corresponding CTI. The histograms of confidence scores computed for 

known and predicted interactions are displayed in Figure 1.6.  
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Figure 1.6 Distribution of interaction confidence scores 

DrugBank-approved (A-B), DrugBank-all (C-D) and STITCH experimental (E-F). The distributions are presented for 

known (A, C and E) and unknown/predicted (B, D and F) interactions for the three datasets. The data for the drug-

target interactions in DrugBank (A and C) are binary (equal to one or zero) since only known interactions are recorded 

without confidence scores, hence the bimodal distributions in panels A and C. Similarly, score of zero is assigned to 

unknown interactions in STITCH dataset (E). The reported confidence scores for the known interactions in STITCH 
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range from 0 to 1, where a higher score means a higher probability of interaction confirmed in experiments. The 

confidence scores for the predictions are evaluated using the PMF method with the optimal training parameters listed 

in Table 1.3. 

 

Table 1.3 Parameters used for training latent factor models in QuartataWeb 

Parameters 
DrugBank-

approved 

DrugBank-

all 

STITCH-

experimental 

Latent vector dimensionality (D) 50 50 100 

Regularization term () 0.01 0.0001 0.5 
(a) Latent factor models (LFMs) are evaluated using the method described in the Supplementary Theory and Methods. 

Details on the evaluation of these optimal parameters can be found on the Theory webpage of QuartataWeb. 

1.5.3 Evaluation of Chemical-Target Interaction Prediction Performance 

The prediction performance of QuartataWeb has been evaluated using 10-fold cross-

validations for DrugBank and STITCH (see Table 1.4). The validation dataset is not included in 

training dataset. As a further test, we hid 70% of known interactions in DrugBank and used the 

remaining 30% in training. The precisions of the predictions for DrugBank-approved and 

DrugBank-all datasets are 0.684 and 0.706, respectively, based on top 1,000 predictions (Figure 

1.7).  
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Table 1.4 Performance of QuartataWeb observed in cross-validation tests 

 
Dataset 

 
cross-

validation 

Training 
set 

Test set Results 

Size(d) Size(d) Positive(e) Negative(f) AUC(g) Sensitivity(h) Specificity(i) 
Precision/ 

RMSE(j) 

DrugBank-
approved (a) 

10-fold 8,328 1,850 925 925 
0.836 ± 
0.010 

0.582 0.992 
0.987 

(Precision) 

DrugBank-all(b) 10-fold 13,485 2,996 1,498 1,498 
0.836 ± 
0.009 

0.492 0.991 
0.984 

(Precision) 

STITCH-
experimen-tal(c) 

10-fold 4,828,203 1,072,934 536,467 536,467 
0.870 ± 
0.015 

N/A N/A 
0.0328 
(RMSE) 

(a) approved drugs and their targets in DrugBank v5; (b) all experimentally verified drugs and targets in DrugBank v5.1; (c)experimentally confirmed 
chemicals and proteins corresponding to human targets in STITCH v5; (d)Size: number of interactions in the training and validation data sets; (e)Positive: 
number of known interactions; (f)Negative: number of false interactions; (g)AUC: area under the receiver operating characteristics curve; (h)Sensitivity: TP / 
(TP + FN); (i)Specificity: TN / (FP + TN); (j)Precision=TP/(TP+FP); root-mean-square error (RMSE) compared to the confidence scores reported in STITCH for 
known interactions. TP: true positive, FP: false positive, FN: false negative, TN: true negative. Sensitivity and Specificity results are not available for STITCH 
as the input training data are continuous confidence score instead of binary input. Instead, we use RMSE as metric. 

 

 

 

Figure 1.7 Performance of QuartataWeb 

Results refer to the approved (red) and all (black) drugs in DrugBank. The abscissa indicates the rank m (1 < m < 

1,000) of top-ranking predictions, among all potential CTIs. The total numbers of interactions are [N x M - 0.3S] = 

4,222,676 and 15,417,163, in the two respective cases, using the values reported in Table 1.2). The ordinate indicates 

the average number of recaptured hidden interactions (TPs). For the 1,000 top ranked predictions average precisions 

of 0.684 and 0.706 are attained in the two respective datasets. 

 

In addition, the top 1,000 predicted drug-target pairs from the LFM generated for the full 

DrugBank-approved (1,883 drugs and 2,244 targets) and DrugBank-all dataset (5,494 drugs and 

2,807 targets) were examined using other CTI DBs STITCH, ChEMBL (Mendez, et al., 2019) and 

TTD  (Li, et al., 2018), respectively. 376 of DrugBank-approved LFM ‘predicted’ pairs were 



 23 

actually listed among the experimentally confirmed pairs in STITCH, 255 pairs were reported in 

ChEMBL, and 14 pairs in TTD, ending up with 459 confirmed pairs (because of the overlaps 

between those confirmed in different databases). 341 of DrugBank-all LFM ‘predicted’ pairs were 

listed in STITCH, 260 pairs in ChEMBL, and 16 pairs in TTD, ending up with 438 confirmed 

pairs. This demonstrated the predictive power of the current tool. The list of confirmed drug-target 

pairs, along with their IDs in different databases can be found here. It remains to be seen if the 

remaining pairs are confirmed in the future. 

Other details on PMF-based evaluations are presented in earlier work (Cobanoglu, et al., 

2013). PMF models were trained using our in-house MATLAB codes (Cobanoglu, et al., 2013; 

Cobanoglu, et al., 2015) and the collaborative filtering toolkit GraphChi (Kyrola, et al., 2012), 

respectively. The parameters adopted in the final LFM for each dataset are listed in Table 1.3. 

1.5.4 Chemical-Target Interaction Pattern-based Similarity 

Chemical-chemical (or target-target similarities) based on CTI patterns are calculated by 

evaluating the correlation cosine between the latent vectors, LVs, generated for drugs (or for 

targets).  

Chemical-chemical or target-target similarities based on CTI patterns are calculated by 

evaluating the correlation cosine between two chemical LVs (ui and uj) or two target LVs (vi and 

vj) as 

 

S𝑢𝑖𝑢𝑗
=  

𝒖𝒊∙𝒖𝒋

|𝒖𝒊||𝒖𝒋|
                                    (1.5) 

 

S𝑣𝑖𝑣𝑗
=  

𝒗𝒊∙𝒗𝒋

|𝒗𝒊||𝒗𝒋|
                                   (1.6) 

http://quartata.csb.pitt.edu/TopPred_DB_1000.php
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The CTI-pattern-based similarities range from -1 to 1, where 1 represents the highest 

similarity.   Histograms of the chemical-chemical or target-target similarities based on CTI patterns 

for each dataset can be found on the Theory page of QuartataWeb.  

1.5.5 Ligand Structure-based Similarity 

The Tanimoto coefficient Tab between the 2D fingerprints of two chemicals is calculated to 

provide a metric of the structural similarity between two ligands (Bajusz, et al., 2015) as 

 

𝑻𝒂𝒃 =
𝒂∙𝒃

∥𝒂∥𝟐+∥𝒃∥𝟐−𝒂∙𝒃
                              (1.7) 

 

where a and b represent 2D fingerprint binary vectors, the Tanimoto coefficient ranges 

from 0 to 1, and 1 is the highest similarity. We generated 2D circular fingerprints based on the 

Morgan algorithm with feature invariants similar to the FCFP (Rogers and Hahn, 2010) using 

RDKit (http://rdkit.org). 

1.5.6 Enrichment Analysis 

We provide enrichment p-values to determine if a protein is overrepresented among the 

targets of a set of chemicals, or if a chemical is overrepresented among the small molecules that 

target a set of proteins. We also provide enrichment values for pathways and GOAs if a pathway 

or GO term is enriched in a list of targets. The p-values are calculated by the hypergeometric test, 

http://quartata.csb.pitt.edu/Theory.php
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then adjusted by False Discovery Rate (FDR) correction using the Benjamini-Hochberg method 

(Benjamini, et al., 2001).  

The hypergeometric p-value (PA) of an item A (e.g. a pathway) in a list of items Bs (e.g. 

targets), is the probability of randomly drawing k0 or more Bs that associate with the evaluated A 

𝑃𝐴 = ∑
(𝐾

𝑘)(𝑀−𝐾
𝑚−𝑘)

(𝑀
𝑚)𝑘0≤𝑘≤𝑚                           (1.8) 

where M is the total number of the background items of type A, m is the total number of Bs 

we identified, and K is the number of Bs that associated with the evaluated A, while k0 is the number 

of Bs we identified that associated with the evaluated A. 

For multiple testing, Benjamini-Hochberg method is applied to correct FDR. Giving T as 

the total number of the evaluated As, the hypergeometric p-values are sorted from smallest to 

largest, and the adjusted p-value of the ith item (pi
*) is calculated as 

 

𝑝𝑖
∗ = 𝑚𝑖𝑛𝑘=𝑖…𝑚[min (

𝑝𝑘𝑇

𝑖
, 1)]                 (1.9) 

The adjustment limits the FDR to a selected cutoff level α (e.g. adjusted p-value < 0.05), 

which indicates that the fraction of false significant As among all significant As identified is 

expected to be less than α.  

 

The enrichment score used in the provided enrichment output bar plots is defined as 

 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒𝑖 =  −log10(𝑝𝑖
∗)             (1.10) 

 

where higher enrichment score represents higher significance. 
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1.5.7 Other Supporting and Visualization Tools 

Known and predicted CTIs, KEGG pathways, GO annotations, PDB data and other 

information from public DBs are constructed in a PostgreSQL DB. Modern JavaScript libraries 

D3 with force-directed graphs and jQuery were employed for developing the customized 

interactive network viewers. Users can view results with user-friendly interactive interfaces and/or 

download tabulated data. The website is compatible with modern browsers (Chrome, Firefox, 

Microsoft Edge and Safari) and operates in Windows, Linux, MacOS and iOS environments.  
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2.0 Predicting Large Scale Protein-Protein Interactions Using Symmetric Logistic Matrix 

Factorization 

Protein-protein interactions (PPIs) play an essential role in enabling and sustaining cellular 

activities. Their accurate assessment at a systems levels is critical to deciphering disease 

mechanisms and developing novel drugs. Computational methods to predict PPIs proved useful in 

complementing expensive experiments and helping reduce false positives, even though with 

growing PPI data the need for more efficient methods emerged.  In this chapter, we propose a 

novel symmetric logistic matrix factorization (symLMF)-based approach to predict PPIs, 

especially useful for large PPI networks. The method utilizes data on experimentally confirmed 

PPIs, projected onto a relatively low-dimensional matrix used for evaluating the pairwise 

probabilities of PPIs. Benchmarking of predictions against two widely used datasets (S. cerevisiae-

benchmark and H. sapiens-benchmark) demonstrated the utility of the new method which 

outperformed most of the state-of-the-art methods applied to human PPIs, and exhibited a 

performance comparable to those of deep learning models despite its conceptual and technical 

simplicity and efficiency. Comparative benchmarking against large datasets (S. cerevisiae-

extended and H.  sapiens-extended) further revealed the higher performance of symLMF compared 

to other matrix factorization methods. Tests performed on human, yeast, and tissue (brain and 

liver)- and disease (neurodegenerative and metabolic disorders)-specific datasets after hiding 50% 

of known interactions showed that 235 to 327 of the top 1000 predictions capture the hidden 

interactions in those specific databases. Notably, many ‘de novo predictions’ made by symLMF 

are verified to actually exist in other PPI databases that were not used for training/testing the 
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method. The new method is expected to be of broad utility as a simple and highly efficient, yet 

effective and accurate, tool for discovering new PPIs, using large-scale data. 

2.1 Introduction 

PPIs play critical roles in various cellular processes, including signal transduction, immune 

response, cellular organization, and cell regulation and death. Uncovering new PPIs is of great 

importance to understanding disease mechanisms and developing novel therapeutic strategies 

(Scott, et al., 2016; Skrabanek, et al., 2008). A plethora of experimental methods including high-

throughput technologies such as yeast two-hybrid screens (Y2H) (Fields and Song, 1989), mass 

spectrometric protein complex identification (MS-PCI) (Ho, et al., 2002), protein microarrays 

(Melton, 2004), mammalian protein-protein interaction trap (MAPPIT) (Lievens, et al., 2016), and 

BioID (Roux, et al., 2018) have been developed for large-scale PPI identification, which generated 

extensive data compiled in public PPI databases, such as BioGRID (Stark, et al., 2006), STRING 

(Szklarczyk, et al., 2019), and DIP (Xenarios, et al., 2002). However, these methods are inherently 

subject to different types of noise and suffer from relatively high false positive and false negative 

rates (Collins, et al., 2007). Besides, most experimental data are biased toward certain protein types 

or cellular localizations, providing an incomplete description of the protein-protein interactome. 

Efficient and robust computational methods, especially those rooted in fundamental theory and 

concepts of machine learning (ML), emerge as powerful tools for facilitating and accelerating the 

consolidation of the data of PPIs including the discovery of new interactions.  

Over the past decade, various ML algorithms have been developed to predict novel PPIs 

based on protein sequence (An, et al., 2019; Chen, et al., 2019; Chen, et al., 2019; Guo, et al., 
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2008; Huang, et al., 2015; Romero-Molina, et al., 2019; Sun, et al., 2017; Wang, et al., 2017; 

Wang, et al., 2019; Wang, et al., 2017; Yao, et al., 2019; You, et al., 2013; Zhang, et al., 2014), 

structure (Johansson-Åkhe, et al., 2019; Sacca, et al., 2014; Zhang, et al., 2012), function 

annotation (Bandyopadhyay and Mallick, 2017), and evolutionary relationship (Emamjomeh, et 

al., 2014; Hamp and Rost, 2015; Kamada, et al., 2014; Xu, et al., 2011). Most of them are 

supervised classification algorithms, where a set of positive/known PPIs and a set of negative 

entries are used to train the model and predict whether protein pairs interact or not. Specifically, 

Guo et al. (Guo, et al., 2008) combined a feature representation using autocovariance and support 

vector machines (SVM) for predicting yeast PPIs; Zhang et al. (Zhang, et al., 2014) used pairwise 

kernel SVMs to avoid the concatenation of protein features; You et al. (You, et al., 2013) used a 

combination of principal component analysis (PCA) and ensemble extreme learning machine 

model to enable better generalization performance and fast learning speed from protein sequence 

data; and Du et al. (Du, et al., 2014) used many physicochemical or biochemical features of the 

proteins in a random forest (RF) algorithm to predict PPIs. 

These ML methods have enabled efficient predictions of PPIs compared to traditional 

experimental detection or computational docking methods. Yet, there are still several inherent 

drawbacks that await to be resolved.  First, most approaches rather focus on feature extraction 

methods while the improvements on prediction accuracy have been limited. Second, the selection 

of negative cases may also bring errors since most of the negative PPIs are not available in public 

domains and the lack of observation/report on a PPI does not necessarily mean that those proteins 

do not interact. In recent years, deep learning methods including stacked autoencoder (Sun, et al., 

2017; Wang, et al., 2017), convolution neural networks (Wang, et al., 2019), and feature 

embedding (Yao, et al., 2019), aimed to tackle the first problem by using data-driven features, 
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resulting in increased prediction accuracy.  However, these methods still suffer from the difficulty 

in choosing negative samples, and usually include heavy parameter tuning which becomes 

inefficient for large-scale PPI predictions. In addition, the “black box” nature of deep learning 

models results in low interpretability of the model and outputs.  

Matrix factorization (MF) models present several advantages that may overcome these 

limitations.  MF models have been highly popular in recommender systems due to their simplicity 

and superior performance, and they have been shown to be efficiently parallelizable and highly 

scalable to large scale datasets. MF models have been successfully applied to predictions of  drug-

target interactions (Cobanoglu, et al., 2013; Cui, et al., 2019; Hao, et al., 2017; Shi, et al., 2018; 

Xia, et al., 2019) and PPIs (Wang, et al., 2013) in previous studies. A major advantage of MF is 

that it recommends top interactions purely based on known patterns of interactions for each 

protein, without dependence on physicochemical, structural, or functional features associated with 

the proteins. In addition, it performs better with large sparse matrices compared to deep learning 

models, due to its simplicity, flexibility, and scalability.  

In this work, we propose a symLMF algorithm to enable efficient and accurate prediction 

of large-scale PPIs. We evaluated the performance of the method using the widely used S. 

cerevisiae and H. sapiens benchmark datasets, and two extended datasets (S. cerevisiae-extended 

and H. sapiens-extended) extracted from BioGRID (Stark, et al., 2006) and STRING (Szklarczyk, 

et al., 2019), as well as four tissue- or disease-specific PPI datasets (brain, liver, neurodegenerative 

disorders, metabolic disorders) extracted from the Integrated Interaction Database (IID) (Kotlyar, 

et al., 2019). The results show that symLMF outperforms most classification methods including 

support vector machines (SVMs) (Guo, et al., 2008; Zhou, et al., 2011), K-nearest neighbor (KNN) 

(Yang, et al., 2010), principle component analysis (PCA) (You, et al., 2013), random forests (RFs) 
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(Ding, et al., 2016), and performs comparably well with respect to the latest deep learning methods 

(Du, et al., 2017; Wang, et al., 2019; Yao, et al., 2019) on the human-benchmark dataset. 

Comparison of the performance of symLMF with those of other matrix factorization models, 

including symmetric probabilistic matrix factorization (symPMF), symmetric non-negative matrix 

factorization (symNMF) and non-negative matrix tri-factorization (NMTF) (Wang, et al., 2013) 

on two extended datasets further reveals the higher accuracy of symLMF.  Applications of 

symLMF to the S. cerevisiae-extended, H. sapiens-extended, and brain, liver, neurodegenerative 

disorders and metabolic disorders datasets where half of the interactions were hidden further 

confirmed the ability of the method to capture hidden data with approximately 280 hits among the 

top 1,000 predictions in each case.  

Finally, the method was trained on the entire S. cerevisiae-extended and H. sapiens-

extended. Compared to the sequence-based interactome prediction program SPRINT (Li and Ilie, 

2017), symLMF shows a higher ability to predict potential PPIs, supported by the fact that about 

half of these top 1,000 predictions are verified to be listed in external PPI databases GPS-Prot 

(Fahey, et al., 2011) and APID (Alonso-Lopez, et al., 2019).  

2.2 Materials and Methodology 

2.2.1 Problem Formalization 

The set of proteins is denoted as 𝑷 = (𝑝𝑖)𝑖=1
𝑚 , where m is the total number of proteins. PPIs 

are represented by a binary matrix 𝒀 ∈ ℝ𝑚×𝑚, where each element 𝑦𝑖𝑗 ∈ {0, 1}. If a protein 𝑝𝑖 has 

been experimentally verified to interact with 𝑝𝑗, 𝑦𝑖𝑗 is set to 1; otherwise it is set to 0. The non-
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zero elements of Y are “interaction pairs” and regarded as positive observations. The zero elements 

of Y are “unknown pairs”, where a pre-defined subset is considered as true negatives in the 

evaluation process.  The object of the study is to predict the interaction probability of a protein-

protein pair and subsequently rank the candidate protein-protein pairs according to their predicted 

probabilities in descending order, such that the top-ranking pairs are predicted to be those most 

likely to interact, and the personalized top-n recommendations are provided for each individual 

protein.  

2.2.2 Data Collection and Datasets Construction 

We used eight different datasets for performance evaluation in this study (Table 2.1): two 

benchmark datasets, two extended datasets, and two tissue-specific and two disease-specific 

datasets. Specifically, S. cerevisiae-benchmark was extracted from the database of interacting 

proteins (DIP, version 2007.02.19) (Xenarios, et al., 2002), and H. sapiens-benchmark from the 

Human Protein References Database (HPRD, v2010.04.13) (Keshava Prasad, et al., 2009; Peri, et 

al., 2003). Two extended datasets were collected from publicly available PPI databases BioGRID 

(v2019.03.25) (Stark, et al., 2006) and STRING (v2019.01.19) (Szklarczyk, et al., 2019), and four 

tissue/disease-specific datasets were collected from the Integrated Interaction Database (IID, 

v2018.1.1) (Kotlyar, et al., 2019).  

We constructed the extended and tissue/disease-specific datasets following the rules 

suggested earlier (Guo, et al., 2008). Specifically, to construct positive datasets (datasets of 

interacting protein-protein pairs), the protein pairs with sequence identities of 40% or higher were 

removed because these are considered as homologous, and protein fragments with < 50 amino 

acids were removed. For the negative datasets (datasets of non-interacting protein-protein pairs), 
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the proteins were randomly paired with other proteins in the positive dataset subject to the three 

requirements: (1) the negative pairs cannot appear in the positive dataset; (2) the number of 

negative pairs is equal to the number of positive pairs; and (3) the two proteins in a negative pair 

do not share subcellular localization. For matrix factorization models, negative examples are not 

required in the training process; the negative datasets were constructed mainly for evaluation 

purposes. Protein-protein sequence similarity was calculated using the Protr R package (Xiao, et 

al., 2015), and the cellular component (CC) annotations were from Gene Ontology (GO) 

Consortium CC terms. Pairs that shared one or more GO CC terms were excluded from the set of 

negative pairs. Details on the generation of each dataset are presented below, and statistical data 

for each dataset are shown in Table 2.1. 

Benchmark datasets. The S. cerevisiae-benchmark dataset (Guo, et al., 2008) was 

collected from the core subset of DIP. It contains 11,188 protein pairs including 5,594 positive and 

5,594 negative pairs. The H. sapiens-benchmark dataset (Huang, et al., 2015) was collected from 

HPRD, and consisted of 3,899 positive and 4,262 negative pairs. These two datasets have been 

widely used for benchmarking state-of-the-art-methods (An, et al., 2019; Chen, et al., 2019; 

Huang, et al., 2015; Wang, et al., 2017; Wang, et al., 2019; Wang, et al., 2017; You, et al., 2013). 

The benchmark datasets comprised interactions detected by multiple small-scale screens, and 

might be biased and only represent a small fraction of the complete PPI networks. 

Extended datasets. Since the sizes of the benchmark datasets were limited, we constructed 

two extended datasets for S. cerevisiae and H. sapiens based on the overlaps between the PPIs 

from the BioGRID and STRING databases, namely S. cerevisiae-extended, H. sapiens-extended. 

The physical interaction subsets from BioGRID and experimental subsets from STRING were 

selected, and their overlapping PPIs were used in order to reduce the noise from individual 
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databases and obtain more reliable PPI data. Following the rules described above, we ended up 

with 5,142 proteins, that formed 56,316 positive and 56,316 negative pairs in the S. cerevisiae-

extended dataset, and 14,455 proteins, with 285,618 positive and 285,618 negative pairs in the H. 

sapiens-extended dataset. 

Tissue-specific datasets and disease-specific datasets. The human tissue-specific 

datasets were extracted from IID, where PPIs are assigned to the tissues that predominantly express 

the proteins.  IID has a total number of 4,927,742 PPIs for 18 species, based on three types of 

evidence: experimental detection (from nine curated databases), orthology, and in silico 

predictions. Only the human subset with experimental support was used as source data to extract 

tissue-specific PPIs. Most PPIs are annotated with one or more tissues/conditions. We selected 2 

tissues (brain and liver) and 2 disease conditions (neurodegenerative and metabolic disorders) as 

examples to investigate the tissue-specific and condition-specific PPI networks. Positive and 

negative pairs were generated following the requirements as described above. 
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Table 2.1 Description of the eight datasets used in the present study and corresponding symLMF model 

parameters 

Properties\Dataset 
S. cerevisiae-
benchmark 

H. sapiens-
benchmark 

S. cerevisiae-
extended 

H. sapiens-
extended 

Number of proteins 2,526 2,835 5,142 14,407 

Number of positive pairs 5,594 3,899 56,316 157,967 

Number of negative pairs 5,594 4,262 56,316 157,967 

maximal degree 88 71 810 807 

median degree 2 2 11 10 

sparsity 99.82% 99.90% 99.57% 99.85% 

percentage of proteins 
with one interaction 

32.80% 44.84% 9.33% 9.90% 

Model parameters (r, , c) 60, 10-4, 2 40, 10-4, 1 130, 10-6, 1 110, 10-6, 3 

Properties\Dataset Brain Liver 
Neurodegenerative 

disorders 
Metabolic 
disorders 

Number of proteins 11,167 10,627 820 1,063 

Number of positive pairs 225,200 218,239 5,881 5,131 

Number of negative pairs 225,200 218,239 5,881 5,131 

maximal degree 1,838 1,831 191 168 

median degree 21 21 7 5 

sparsity 99.64% 99.61% 98.25% 99.09% 

percentage of proteins 
with one interaction 

2.90% 2.76% 8.78% 14.09% 

Model parameters (r, , c) 100, 10-6, 1 90, 10-6, 1 90, 10-4, 2 100, 10-4, 2 

r: dimensionality of latent vector;   𝜆: regularization parameter; c: weight of positive pairs relative to 

negative pairs 

2.2.3 Symmetric Logistic Matrix Factorization (symLMF) 

In this work, we develop PPI prediction models based on a symmetric logistic matrix 

factorization (symLMF) algorithm. Logistic matrix factorization (LMF) (Johnson, 2014) has been 

demonstrated to be effective for personalized recommendations. Considering the symmetric nature 

of Y for PPI space, we adopted a symmetric version of LMF, factorizing the observation matrix Y 
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to a lower dimensional matrix 𝐇 ∈ ℝ𝑚×𝑟 , where r (r << m) is the number of latent factors, 

schematically described as 

 

Each protein 𝑝𝑖 is described by a latent vector 𝒉𝑖, and the interaction probability 𝑝(𝑙𝑖𝑗)  

between 𝑝𝑖 and 𝑝𝑗  is modeled by a logistic function 𝑙𝑖𝑗 parameterized by the inner product of 

𝒉𝑖 and 𝒉𝑗  

𝑝(𝑙𝑖𝑗|𝒉𝒊, 𝒉𝒋, 𝛽𝑖 , 𝛽𝑗) =  
exp(𝒉𝒊𝒉𝒋

𝑻+𝛽𝑖+𝛽𝑗)

1+exp(𝒉𝒊𝒉𝒋
𝑻+𝛽𝑖+𝛽𝑗)

                                                       (2.1) 

where 𝛽𝑖 and 𝛽𝑗  represent the biases of proteins i and j that accounts for the variations in 

interaction behaviors of different proteins. As we can see in Table 2.1 and Figure 2.1, some 

proteins are highly promiscuous (i.e. they interact with a large number of proteins), while others 

are more specific (i.e. interact with one or a few proteins). The bias terms are latent factors 

associated with every protein that are meant to offset these interaction biases. The final logistic 

function helps constraint the interaction probability between 0 and 1. 
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Figure 2.1 Distribution of the protein degrees (number of connections at the nodes, each node representing on 

protein)  in the PPI network described by eight datasets 
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(A) S. cerevisiae-benchmark, (B) H. sapiens-benchmark, (C) S. cerevisiae-extended, (D) H. sapiens-extended, (E) 

Brain, (F) Liver, (H) Neurodegenerative disease, (I) Metabolic disorders. The x-axis represents the protein degree 

(number of interacting partners for a given protein), y-axis corresponds to the count number of proteins with a certain 

degree. The plots show that the degrees of the proteins are right-skewed, where a small number of outliers have 

extremely large degrees. In this case, the median values are better than the mean values to describe the data averages. 

 

In the PPI datasets, the positive pairs have been experimentally verified, while the negative 

pairs are sampled examples without experimental verification. In order to ensure more accurate 

predictions of PPIs, we assign a weight c to each positive example (c ≥ 1); whereas each negative 

pair is assigned the weight c = 1. Increasing c places more weight on the experimentally verified 

PPIs. Thus, c serves as a hyperparameter that can be tuned to yield the best results. 

By assuming all the training examples are independent, the likelihood of the observations 

Y given the parameters H and 𝛽 is 

ℒ(𝐘|𝐇, 𝜷) =  ∏ 𝑝(𝑙𝑖𝑗|𝒉𝑖 , 𝒉𝒋, 𝛽𝑖 , 𝛽𝑗)𝑐𝑦𝑖𝑗
𝑖,𝑗 (1 − 𝑝(𝑙𝑖𝑗|𝒉𝒊, 𝒉𝒋, 𝛽𝑖 , 𝛽𝑗))1−𝑦𝑖𝑗                     (2.2) 

We assume zero-mean spherical Gaussian priors with variance 𝜎𝑖
2  (=  𝜎2 for all 𝑖) on 

protein latent factor vectors to help regularize the model and avoid over fitting. 

𝑝(𝐇|𝜎2) =  ∏ 𝒩(𝒉𝒊|0, 𝜎𝑖
2𝐈)𝑖 =   ∏

1

𝜎√2𝜋𝑖 𝑒−
1

2
(

𝒉𝒊
𝜎

)
2

                                (2.3) 

where I is the identity matrix of order r.  Using Bayesian inference  𝑝(𝐇 |𝐘, 𝜎2, 𝜷) =

𝑝(𝒀|𝑯, 𝜷)𝑝(𝑯|𝜎2𝐈),  the log of the posterior distribution is derived as 

𝑙𝑜𝑔 𝑝(𝐇|𝐘, 𝜎2) =  ∑ [𝑐𝑦𝑖𝑗(𝒉𝒊𝒉𝒋
𝑻 + 𝛽𝑖 + 𝛽𝑗) − (1 − 𝑦𝑖𝑗  + 𝑐𝑦𝑖𝑗)log (1 + exp(𝒉𝒊𝒉𝒋

𝑻 + 𝛽𝑖 +𝑖,𝑗

𝛽𝑗)) −
1

2𝜎2
∑ ‖𝒉𝒊‖

2
𝑖  ] + 𝐶                                                                                                                    (2.4) 

where C is a constant. Our goal is to learn H and 𝜷 that maximize the log posterior using 

the regularization parameter 𝜆 = 1/2𝜎2. This is equivalent to minimizing the objective function 
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𝑚𝑖𝑛
𝑯,𝜷

{ ∑ [(1 + 𝑐𝑦𝑖𝑗 − 𝑦𝑖𝑗) log(1 + exp(𝒉𝒊𝒉𝒋
𝑻 + 𝛽𝑖 + 𝛽𝑗)) − 𝑐𝑦𝑖𝑗(𝒉𝒊𝒉𝒋

𝑻 + 𝛽𝑖 + 𝛽𝑗)𝑖,𝑗 ] +

𝜆 ∑ ‖𝒉𝒊‖
2

𝑖 }                                                                                                                                              (2.5) 

 

which is solved using Adam stochastic gradient descent method (Kingma and Ba, 2014). 

2.2.4 Other Related Matrix Factorization Methods 

2.2.4.1 Symmetric Probabilistic Matrix Factorization (symPMF) 

PMF is a machine learning technique widely used in recommender systems, and has been 

applied in predicting drug-target interactions (Cobanoglu, et al., 2013), RNA-disease associations 

(Ha, et al., 2020; Xuan, et al., 2019),drug-disease associations (Yang, et al., 2014), and clustering 

of microarray data (Dueck, et al., 2005). Its symmetric version, symPMF, directly models the 

probability of interaction between two proteins without taking the logistic function, as 

𝑝(𝑙𝑖𝑗|𝒉𝒊, 𝒉𝒋, 𝛽𝑖 , 𝛽𝑗) =  𝒉𝒊𝒉𝒋
𝑻 + 𝛽𝑖 + 𝛽𝑗                                                                        (2.6) 

Like symLMF, symPMF assumes zero-mean spherical Gaussian priors on protein latent 

factor vectors, such that the objective function becomes: 

min
𝑯,𝜷

∑ (1 + 𝑐𝑦𝑖𝑗 − 𝑦𝑖𝑗)(𝑦𝑖𝑗 −  𝒉𝒊𝒉𝒋
𝑻 − 𝛽𝑖 − 𝛽𝑗)

2
𝑖,𝑗 − 𝜆 ∑ ‖𝒉𝒋‖

2
𝑖                              (2.7) 

2.2.4.2 Symmetric Non-Negative Matrix Factorization (symNMF) 

In the NMF method, the input non-negative matrix is decomposed into two non-negative 

matrices. The non-negativity constraint of NMF makes the resulting matrices easier to interpret, it 

is also widely used in clustering problems due to its inherent clustering property. Here we adopted 

its symmetric version, symNMF, to predict PPIs. The probability of interaction and objective 
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function of symNMF has the same form as those of symPMF (Equations 2.6 and 2.7), with the 

only difference that the symNMF constraints the latent vectors to be non-negative. 

2.2.4.3 Non-Negative Matrix Tri-Factorization (NMTF) 

NMTF (Wang, et al., 2013) has been proposed to predict candidate PPIs by decomposeing 

the symmetric input PPI matrix Y ∈ ℝ𝑚×𝑚 into two low-rank non-negative factor matrices, H ∈

ℝ𝑚×𝑟  and S ∈ ℝ𝑟×𝑟, that approximate the input matrix as Y = HSHT. Each row in H represents 

the latent factor vector for a protein, and S encodes the latent factor interactions. The corresponding 

objective function is simply 

𝒎𝒊𝒏
𝐇≥𝟎,   𝐒≥𝟎

‖𝐘 − 𝐇𝐒𝐇𝐓‖𝟐                                                                   (2.8) 

Note that symPMF, symNMF and NMTF are MF methods similar to symLMF, with 

differences mainly residing in the latent factor constraints.  

2.2.5 Hyperparameter Selection 

The dimensionality r of the latent vectors, the regularization parameter , and the positive 

sample weight c are three hyperparameters that need to be optimized for training the symLMF 

model for each dataset. Empirically, we varied r from 10 to 150 at intervals of r = 10, 𝜆 as [10-

10, 10-8, 10-6, 10-4, 10-2], and c as integers from 1 to 5 (inclusive) using a random search. This 

helped us to narrow down 𝜆  to 10-6 or 10-4 and perform a grid search/screening for r and c. The 

resulting optimal hyperparameters can be found in the last row corresponding to each dataset in 

Table 2.1. 
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2.2.6 Cross-Validation and Performance Evaluation 

To evaluate the performance of the proposed method, we used five-fold cross-validations, 

i.e. we randomly divided the dataset into five even subsets, and each subset was selected as a test 

set while the remaining four were used for training. The whole procedure was repeated 10 times 

using different dataset distributions to eliminate any bias. The following metrics were used to 

evaluate the model predictions compared to those obtained by state-of-the-art methods:  prediction 

accuracy, recall, precision, and Matthews correlation coefficient (MCC), defined as 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    (2.9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                        (2.10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (2.11) 

 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                (2.12) 

 

where TP (true positive) is the number of the predicted PPIs found in the positive data set; 

FP (false positive) is the number of the falsely predicted PPIs that are not actually in the positive 

dataset; FN (false negative) is the number of noninteracting pairs that are falsely predicted to 

interact; TN (true negative) is the number of true noninteracting pairs predicted correctly. MCC is 

a measure of the global quality of binary classification, which is a correlation coefficient between 
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observed and predicted results. It ranges from -1 to 1, where 0 represents completely random 

prediction, -1 means consistently wrong prediction and 1 is perfectly accurate prediction. For most 

recommendation applications of MF, ranking helps us to select the most promising PPIs or suggest 

the top n binding partners for a certain protein. Therefore, we added four metrics to complement 

the comparison of MF models: (i) area under the receiver operating curve (AUC), where the 

receiver operating curve (ROC) plot shows the TP rate plotted against FP rate; (ii) area under the 

precision-recall curve (AUPR), a plot of precision against recall at different thresholds. Both AUC 

and AUPR vary from 0 to 1, with 0.5 representing completely random prediction, and 1.0 referring 

to perfect prediction; and (iii – iv) mean AUC and AUPR, denoted as mAUC and mAUPR, 

obtained from the averages over the interactions of each individual protein, as well as the predicted 

results. These two metrics give us the average prediction performance per protein, to make an 

assessment on the prediction accuracy rate for each protein.  

The data and code to generate/reproduce the results reported in this chapter are available 

at: https://github.com/Fengithub/symLMF-PPI 

2.3 Results and Discussion 

2.3.1 Performance Comparisons with State-of-the-Art Algorithms on Benchmark Datasets 

Demonstrate the Superiority of the Proposed Method 

We compared the performance of our method to several state-of-the-art methods, in 

addition to three other MF models (symPMF, symNMF, NMTF).  

https://github.com/Fengithub/symLMF-PPI
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The methods used with the S. cerevisiae-benchmark dataset are as follows: (a) three SVM 

classifiers, the first two (Guo, et al., 2008) utilizing feature extraction techniques auto cross 

covariance (ACC) and auto covariance (AC), and the third, local descriptors of protein sequence 

(Zhou, et al., 2011); (b) a KNN algorithm-based model (Yang, et al., 2010) that also uses local 

descriptors as features; (c) a combination of PCA with ensemble-extreme-learning-machine- based 

on protein sequences (You, et al., 2013); (d) two classifiers that use deep neural networks (DNNs) 

based on protein descriptors (DNN-1) (Du, et al., 2017) and protein sequences (DNN-2) (Li, et al., 

2018); and (e) two natural language processing (NLP) methods, Bio2Vec (Wang, et al., 2019) 

algorithm developed by Wang et al. that converts protein sequences into vectors and uses them in 

convolution neural networks (CNNs) to model PPIs, and Res2vec (Yao, et al., 2019) where vectors 

obtained from protein residues are fed as input for downstream deep learning model.  

In the case of the H. sapiens-benchmark dataset, in addition to the above mentioned DNN-

2, CNN-Bio2vec and DNN-Rec2vec methods, three RF models (Ding, et al., 2016) and a weighted 

sparse representation classifier (WSRC) (Huang, et al., 2015) were evaluated. The RF algorithms 

use three different methods for extracting protein features, namely multivariate mutual information 

(MMI), normalized Moreau-Broto Autocorrelation (NMBAC) and a combination of them. WSRC 

uses discrete cosine transform on substitution matrix representation of the protein sequences to 

generate features.  

To generate comparable results, we used the same five-fold cross-validation as adopted in 

previous studies, as described in Cross-Validation and Performance Evaluation section. The results 

are presented in Figure 2.2, Table 2.2 and Table 2.3. Figure 2.2 displays the accuracy, recall, 

precision and MCC values obtained with different methods (abscissa) in the respective panels A-

D, each shown in pairs (for S. cerevisiae-benchmark (left), and H. sapiens-benchmark (right) 
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datasets.  symLMF results (red bars) generally stand out in comparison to other MF methods 

(symPMF, symNMF, NMTF; light red bars) and most of the classification methods that include 

variations of SVMs, KNNs and PCA-EELM (blue bars). symLMF also outperforms the deep 

learning model DNN-1, however, its performance with respect to the other three deep learning-

based methods DNN-2, CNN-Bio2vec and DNN-Res2vec (green bars) depends on the dataset, 

being lower/higher in yeast/human datasets. In fact, in the application to H. sapiens-benchmark 

dataset, symLMF reaches an accuracy percent of 98.88 ± 0.41, recall of 99.66 ± 0.20 and MCC of 

97.76 ± 0.80 (see Table 2.3) outperforming all other models based on these metrics. As to 

precision, WSRC shows the highest performance 99.59 even though that of symLMF (98.03 ± 

0.82) is close. 
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Figure 2.2. Comparison of the performance of different methods tested against two benchmark datasets. 

Panels A-D show the results (accuracy, recall, precision and MCC, respectively) from 5-fold cross-validations, using 

different metrics. Each bar refers to a different method, indicated along the lower abscissa. The methods are organized 

in three groups: MF-based (Group 1; red/orange bars), including the proposed symLMF (red bars), deep-learning or 

NN-based methods (Group 3; green bars); and others (Group 2; blue bars). In each panel, two sets of results are 

presented, referring to the performance of 13 methods against the S. cerevisiae-benchmark dataset (left) and the 

performance of 11 methods against the H. sapiens-benchmark dataset (right). 
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Table 2.2 Comparison of the performance of all methods using the S. cerevisiae-benchmark dataset 

Model Accuracy (%) Recall (%) Precision (%) MCC (%) 

symLMF 

symPMF 

symNMF 

NMTF 

SVM-ACC (Guo, et al., 2008) 

SVM-AC (Guo, et al., 2008) 

SVM-LD (Zhou, et al., 2011) 

KNN-LD (Yang, et al., 2010) 

PCA-EELM (You, et al., 2013) 

DNN-1 (Li, et al., 2018) 

DNN-2 (Du, et al., 2017) 

CNN-Bio2vec (Wang, et al., 

2019) 

DNN-Res2vec (Yao, et al., 2019) 

90.30 ± 1.03 90.40 ± 1.10 90.22 ± 1.03 80.61 ± 2.07 

86.69 ± 0.99 77.16 ± 1.93 95.34 ± 0.59 74.76 ± 1.78 

85.33 ± 0.80 80.12 ± 1.38 89.45 ± 0.89 71.06 ± 1.56 

74.76 ± 0.97 53.88 ± 0.65 92.52 ± 2.34 54.51 ± 1.42 

89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A 

87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A 

88.56 ± 0.33 87.37 ± 0.22 89.50 ± 0.60 77.15 ± 0.68 

86.15 ± 1.17 81.03 ± 1.74 90.24 ± 1.34 N/A 

87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 77.36 ± 0.44 

76.61 ± 0.51 79.63 ± 1.43 75.10 ± 0.66 53.32 ± 1.05 

94.43 ± 0.30 92.06 ± 0.36 96.65 ± 0.59 88.97 ± 0.62 

93.30 92.70 93.55 87.49 

94.78 ± 0.61 92.99 ± 0.66 96.45 ± 0.87 89.62 ± 1.23 

 

Table 2.3 Comparison of the performance of all methods using the H. sapiens-benchmark dataset 

Model Accuracy (%) Recall (%) Precision (%) MCC (%) 

symLMF 98.88 ± 0.41 99.66 ± 0.20 98.03 ± 0.82 97.76 ± 0.80 

symPMF 85.10 ± 0.71 70.94 ± 1.50 97.09 ± 0.46 72.30 ± 1.23 

symNMF 91.95 ± 0.58 90.79 ± 1.00 92.25 ± 1.20 83.88 ± 1.16 

NMTF 66.52 32.22 93.38 40.56 

RF-MMI (Ding, et al., 2016) 96.08 95.05 96.97 92.71 
RF-NMBAC (Ding, et al., 

2016) 95.59 94.06 96.94 91.21 
RF-MMI+NMBAC (Ding, et 

al., 2016) 97.56 96.57 98.30 95.13 

WSRC (Huang, et al., 2015) 96.30 92.63 99.59 92.82 

DNN-2 (Du, et al., 2017) 98.14 96.95 99.13 96.29 
CNN-Bio2vec (Wang, et al., 

2019) 
97.31 96.28 98.48 94.76 

DNN-Res2vec (Yao, et al., 

2019) 98.71 ± 0.30 98.54 ± 0.55 98.77 ± 0.53 97.43 ± 0.61 

 

Since the relative ranking is usually used to suggest top predictions in MF recommendation 

applications, in addition to the above metrics, we added four new metrics for the comparison of 

matrix factorization models: AUC, AUPR, mAUC, mAUPR. Figure 2.3A-B and Table 2.4, show 
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that symLMF performs outperforms all MF methods, with regard to all comparison metrics, except 

precision on the S. cerevisiae-benchmark dataset. 

 

Figure 2.3 Comparison of the performance of MF methods on benchmark and extended datasets 

(A) S. cerevisiae-benchmark (B) H. sapiens-benchmark (C) S. cerevisiae-extended (D) H. sapiens-extended. The 

abscissa lists the eight performance metrics, and the ordinate represents the corresponding mean values over five-fold 

cross-validations. 
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Table 2.4 Performance of MF models tested againist different benchmarking datasets 

Dataset Model AUC AUPR mAUC mAUPR 

 S. cerevisiae-
benchmark 

symLMF 0.953 ± 0.007 0.959 ± 0.008 0.912 ± 0.010 0.902 ± 0.011 

symPMF 0.928 ± 0.007 0.948 ± 0.005 0.895 ± 0.009 0.897 ± 0.010 

symNMF 0.901 ± 0.003 0.923 ± 0.004 0.826 ± 0.008 0.006 ± 0.017 

NMTF 0.796 ± 0.008 0.851 ± 0.009 0.773 ± 0.023 0.830 ± 0.021 

 H. sapiens-
benchmark  

symLMF 0.994 ± 0.002 0.993 ± 0.005 0.969 ± 0.016 0.978 ± 0.011 

symPMF 0.955 ± 0.008 0.958 ± 0.008 0.900 ± 0.029 0.902 ± 0.021 

symNMF 0.949 ± 0.002 0.960 ± 0.002 0.865 ± 0.019 0.866 ± 0.017 

NMTF 0.714 ± 0.010 0.807 ± 0.009 0.706 ± 0.025 0.774 ± 0.025 

Dataset Model AUC AUPR mAUC mAUPR 

S. cerevisiae-
extended 

symLMF 0.942 ± 0.001 0.949 ± 0.001 0.892 ± 0.003 0.882 ± 0.002 

symPMF 0.941 ± 0.001 0.946 ± 0.001 0.890 ± 0.001 0.8814 ± 0.002 

symNMF 0.894 ± 0.002 0.895 ± 0.003 0.819 ± 0.002 0.799 ± 0.003 

NMTF 0.904 ± 0.003 0.910 ± 0.003 0.832 ± 0.005 0.821 ± 0.006 

H. sapiens-
extended 

symLMF 0.944 ± 0.001 0.955 ± 0.001 0.877 ± 0.002 0.853 ± 0.003 

symPMF 0.936 ± 0.001 0.944 ± 0.001 0.862 ± 0.001 0.838 ± 0.002 

symNMF 0.923 ± 0.001 0.930 ± 0.001 0.835 ± 0.002 0.806 ± 0.002 

NMTF 0.906 ± 0.001 0.922 ± 0.001 0.809 ± 0.002 0.790 ± 0.001 

Dataset Model Accuracy (%) Recall (%) Precision (%) MCC (%) 

S. cerevisiae-
extended 

symLMF 87.65 ± 0.31 87.55 ± 0.22 87.74 ± 0.45 75.31 ± 0.63 

symPMF 87.70 ± 0.21 84.87 ± 0.22 89.97 ± 0.29 75.53 ± 0.43 

symNMF 81.99 ± 0.28 77.71 ± 0.43 84.99 ± 0.47 64.22 ± 0.56 

NMTF 83.96 ± 0.28 81.38 ± 0.53 85.81 ± 0.19 68.01 ± 0.54 

H. sapiens-
extended 

symLMF 88.00 ± 0.08 85.18 ± 0.18 90.28 ± 0.12 77.12 ± 0.16 

symPMF 86.99 ± 0.11 84.95 ± 0.15 85.56 ± 0.14 74.04 ± 0.23 

symNMF 85.20 ± 0.07 78.94 ± 0.31 90.24 ± 0.19 70.96 ± 0.11 

NMTF 83.44 ± 0.09 72.64 ± 0.29 92.64 ± 0.18 64.49 ± 0.16 

 

Taken together, these results demonstrate the strong performance of our proposed 

symLMF. Although DNN-Res2vec shows higher performance with the yeast (but not human) 

dataset, the complexity of the model makes it less efficient to train, which may be a challenge for 

large-scale datasets. Precisely, DNN-Res2vec method includes two training processes: (a) 

unsupervised representation learning (Res2vec) to generate residue representations, where each 

protein sequence ends up with a vector representation of 17,000 elements; (b) two separate DNNs 

with four layers for feature extracting, a merged layer for feature integration, and two layers for 
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classification. Apparently, MF models are much simpler, resulting in much more efficient training 

than deep learning models, which is particularly useful on large datasets. We further evaluated the 

performance of MF models on two extended datasets. 

2.3.2 Applications to Extended Datasets Support the Utility of the Proposed Method in 

Predicting Large-scale PPIs 

With continual development of high-throughput technologies, a large number of PPIs have 

been detected recently, revealing PPI networks that are much larger and more extensive than the 

two widely used benchmark datasets considered above. Therefore, we constructed two extended 

datasets by integrating two comprehensive databases, BioGrid and STRING (see Materials and 

Method section for details). As summarized in Table 2.1, the number of proteins in the S. 

cerevisiae-extended dataset is twice as large as that of the S. cerevisiae-benchmark dataset, and 

the number of interactions is higher by 10-fold; the number of proteins in the H. sapiens-extended 

dataset is five times as large as that of the H. sapiens-benchmark dataset, and the number of 

interactions increased forty times. To evaluate the scalability of symLMF, we compared its 

performance with respect to the other three MF models on these two extended datasets.  

As shown in Figure 2.3C-D and Table 2.4, among the four MF models, symLMF ranks 

first based on all metrics except precision where it ranks second. This detailed analysis further 

corroborates the superior performance of symLMF over the three other MF methods, and 

significantly, it establishes its utility as an effective approach for large datasets.  

In the next section, we further validate its performance on additional tests with four 

tissue/disease-specific datasets. 
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2.3.3 Performance of symLMF on Tissue/Disease-Specific Datasets 

To test the predictive ability of our proposed method symLMF on different datasets, we 

applied it to four tissue/disease-specific datasets. In this experiment, we selected protein-protein 

interactomes for brain, liver, metabolic disorders, and neurodegenerative disorders as examples of 

tissue/disease-specific datasets. As described in Table 2.1, the numbers of proteins in the brain 

and liver datasets are significantly high (comparable to that of H. sapiens-extended dataset) while 

the population of proteins with one interaction only is much lower, resulting in a high number of 

interactions (positive pairs) compared to all four datasets used above. As to the metabolic and 

neurodegenerative disorders datasets, they are smaller than all others in terms of the number of 

proteins/nodes in the PPI network even though their connectivity (number of positive pairs) is 

comparable to those of the yeast and human benchmark sets, due to the higher degree of the 

individual nodes. 

  Table 2.5 summarizes the detailed performance of symLMF on these tissue/disease-

specific datasets. The AUC values are 0.9515 (brain), 0.9523 (liver), 0.9107 (metabolic disorders) 

and 0.9407 (neurodegenerative disorders), and accuracy values are 88.66% (brain), 88.78% (liver), 

81.37% (metabolic disorders) and 86.11% (neurodegenerative disorders). Compared to the H. 

sapiens-extended dataset, the brain, liver, and neurodegenerative disorders datasets exhibit a 

similar or slightly better overall performance compared to the metabolic disorders dataset. These 

results further validate that symLMF performs well on extended, tissue-specific, and disorder-

specific datasets. 
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Table 2.5 Performance of symLMF on tissue/disease-specific datasets 

Dataset AUC AUPR mAUC mAUPR 

H. sapiens-extended 0.944 ± 0.001 0.955 ± 0.0008 0.877 ± 0.0024 0.853 ± 0.0025 

Brain 0.952 ± 0.0005 0.957 ± 0.0006 0.901 ± 0.0019 0.862 ± 0.0032 

Liver 0.952 ± 0.0004 0.958 ± 0.0004 0.903 ± 0.0008 0.864 ± 0.0024 

Neurodegenerative disorders 0.941 ± 0.0052 0.952 ± 0.0039 0.897 ± 0.0077 0.885 ± 0.0117 

Metabolic disorders 0.911 ± 0.0058 0.926 ± 0.0054 0.860 ± 0.0074 0.863 ± 0.0130 

Dataset Accuracy (%) Recall (%) Precision (%) MCC (%) 

H. sapiens-extended 88.00 ± 0.08 85.18 ± 0.18 90.28 ± 0.12 77.12 ± 0.16 

Brain 88.66 ± 0.05 87.48 ± 0.09 89.59 ± 0.07 77.33 ± 0.10 

Liver 88.78 ± 0.07 87.52 ± 0.09 89.78 ± 0.11 77.58 ± 0.14 

Neurodegenerative disorders 86.11 ± 1.05 90.44 ± 0.81 83.24 ± 1.28 72.49 ± 2.07 

Metabolic disorders 81.37 ± 1.04 88.01 ± 1.30 77.70 ± 1.07 63.31 ± 2.07 

 

2.3.4 Ability of symLMF To Recapitulate Hidden Protein-Protein Interactions with 

Limited Data 

As a more stringent test, 50% of the known interactions in each of the datasets (S. 

cerevisiae-extended, H. sapiens-extended, brain, liver, neurodegenerative disorders, metabolic 

disorders) were randomly hidden; and the resulting interaction matrix was used to predict the 

hidden interactions using symLMF. The predicted interactions were rank-ordered by their 

confidence score, and each of the top 1,000 predictions was checked to assess whether it is a TP 

(a hidden known interaction) or a FP (or an interaction not present in the original dataset). Note 

that the method gives us a lower bound for precision (TP/ (TP + FP)) because the predictions are 

labeled as TP only if they are annotated in our source datasets, although they can be true but not 

yet observed experimentally or annotated in the datasets. The experiments were repeated 5 times 

with different randomly selected hidden parts, and in each simulation, the model was trained 10 

times with different random initializations, resulting in overall 50 runs per dataset. 
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Figure 2.4, presents the results averaged over these independent runs for each dataset. The 

curves in panel A display the number of TPs captured as a function of size of the predicted (rank-

ordered) interactions. The panel B lists the fraction of TPs and recall for each dataset, compared 

to random predictions.  We note that 327 hidden interactions are captured among the 1,000 

predictions for H. sapiens-extended, i.e. the precision is 0.327, and becomes the lowest in the case 

of metabolic disorders (0.235). Compared to random predictors symLMF yields an 818-fold 

improvement in this case. The performance for tissue/disorder specific predictions is lower. Yet, 

the TPs or recall percentage are 38-fold (neurodegenerative disorders) and 51-fold (metabolic 

disorders) enhanced over random. 

These results permit us to draw two conclusions. First, a precision of 28 ±5% is attained in 

the top 1,000 predictions upon adopting a symLMF method for identifying hidden/unknown 

interactions in a sparse dataset (half of the original data is hidden), irrespective of the size of the 

interaction space. As we can see, the interaction space of S. cerevisiae-extended, H. sapiens-

extended, brain or liver datasets are about 2 orders of magnitude larger those of the 

neurodegenerative- and metabolic-disorders datasets. Second, the symLMF method outperforms a 

random predictor by 38 to 818 folds at the level of top 1,000 predictions. Notably, the 

enhancements over random increases exponentially with the size of the dataset, as illustrated in 

panel C. This increase in predictive power with increasing number of proteins supports the utility 

of the method in the applications to large datasets.   
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Figure 2.4 Ability of the symLMF to recapitulate the hidden protein-protein interactions in the top 1,000 

predicted pairs and improved performance with increasing size of dataset 

(A) Results from in silico experiments performed by randomly hiding 50% of entries in each dataset (see text). The 

ordinate shows the number of hidden interactions captured as a function of the number of 1 < m < 1,000 rank-ordered 

predictions (x-axis) for the six different datasets. The curves are color-coded by the corresponding datasets: S. 

cerevisiae-extended (red), H. sapiens-extended (orange), brain (brown), liver (green), neurodegenerative disorders 

(blue), and metabolic disorders (purple). (B) True positives and enhancement with respect to random tabulated for the 

six datasets; (C) Increase in enhancement over random as a function of the size (number of proteins) of the datasets. 

 

2.3.5 De Novo Predictions of Protein-Protein Interactions 

As a final test, we used our method to predict new (potential) protein-protein interactions 

after training with the whole dataset of S. cerevisiae-extended and H. sapiens-extended. The final 
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models were trained using the optimal hyperparameters, with 20 repeated runs with random 

initialization. We selected the top 1,000 predicted protein-protein pairs obtained from each model, 

and cross-checked the possible occurrence of these PPIs in recent integrated resources, mainly the 

web-based PPI platform GPS-Prot (updated on Feb 2019) (Fahey, et al., 2011) and a 

comprehensive protein interactome database APID (Alonso-Lopez, et al., 2016).  The GPS-Prot 

houses different HIV-host interaction datasets as well as PPIs between human proteins derived 

from six publicly accessible databases, MINT (Licata, et al., 2012), BioGRID (Stark, et al., 2006), 

DIP (Xenarios, et al., 2002), IntAct (Kerrien, et al., 2007), MIPS (Mewes, et al., 2006) and HPRD 

(Keshava Prasad, et al., 2009). GPS-Prot assigns a score for each PPI based on the number of 

independent publications supporting the PPI, and the reliability of the related experimental 

techniques. We examined the scores from GPS-Prot for the top 1,000 predictions from our H. 

sapiens-extended model (yeast PPIs are not included in GPS-Prot). APID is also a comprehensive 

database of PPIs obtained from several of the abovementioned databases including BioGRID, DIP, 

HPRD, IntAct and MINT. APID offers a pipeline to identify the PPIs with “experimental 

evidences”. These were used to evaluate our top predictions made for both S. cerevisiae-extended 

and H. sapiens-extended datasets. 

As illustrated in Figure 2.5A, among the top 1,000 predictions made for the S. cerevisiae-

extended dataset (symLMF-yeast), 498 are found in APID along with corresponding experimental 

evidences; and among the top 1,000 predictions from H. sapiens-extended model (symLMF-

human), a total number of 559 PPIs are found in either GPS-Prot or APID, mainly 538 in GPS-

Prot and 512 in APID, 491 of which are shared between the two datasets. The hit ratio of symLMF-

yeast model and symLMF-human model reaches 0.498 and 0.559 respectively, supporting the 

ability of symLMF models to make new predictions. 
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Besides that, we also compared symLMF with the sequence-based PPI prediction program 

SPRINT (Scoring PRotein INTeractions) (Li and Ilie, 2017), which can effectively predict the 

entire human interactome. We extracted the top 1,000 predictions of SPRINT using the human 

dataset from BioGRID (SPRINT-human), and found that 124 of them appear in GPS-Prot, and 118 

in APID with experimental evidences, ending up with 159 PPIs in total (due to 83 shared PPIs). 

Our symLMF method thus yields a 3.5-fold improvement over SPRINT, in terms of the PPIs 

verified among the top 1,000 predictions for the human interactome. This result further highlights 

the importance of learning from protein-protein interaction patterns (as in symLMF) rather than 

sequence-based properties (as in SPRINT) for accurate assessment of potential PPIs.  

It was interesting to observe that the set of 1,000 PPIs predicted by symLMF and SPRINT 

were somewhat different and involved in different pathways.  Among the top 1,000 PPIs predicted 

by symLMF and SPRINT, only 8 overlapped (Figure 2.5B). The two PPI lists contained 370 and 

378 proteins respectively, with 85 overlapping proteins (Figure 2.5C). The top 20 enriched 

pathways obtained upon mapping them to KEGG (Kanehisa, et al., 2017) human pathways is 

shown in Figure 2.5D. Among them, only four (ubiquitin-mediated proteolysis, HIV-1 infection, 

pathways in cancer, and human cytomegalovirus infection) are shared between symLMF and 

SPRINT predictions. The most enriched pathways deduced from symLMF and SPRINT 

predictions show different compositions: symLMF is dominated by pathways from immune 

system (6/20) and infectious diseases (5/20), while SPRINT is dominated by infectious diseases 

(8/20) and cancer (6/20) pathways.    
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Figure 2.5 Comparison of the top 1,000 predictions between symLMF and SPRINT models 

(A) The number of PPIs identified in external databases among the top 1,000 predictions for symLMF and SPRINT 

models. The ordinate shows the number of PPIs identified in external databases as a function of the number of 1 < m 

< 1,000 rank-ordered predictions (x-axis) for the three different models, symLMF-human (red), symLMF-yeast (blue), 

SPRINT-human (green). (B) Overlapping predicted PPIs between the top 1,000 PPIs predicted by symLMF-human 

and SPRINT-human. (C) Overlapping proteins corresponding to the proteins in top 1,000 predictions from symLMF-

human and SPRINT-human. (D) Most enriched 20 pathways corresponding to the top 1,000 PPIs predicted by 
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symLMF-human (left) and SPRINT-human (right) Y-axis lists the top 20 enriched pathways, x-axis is the 

corresponding -log10(adjusted p-value). Four pathways marked by red circles overlap between symLMF-human and 

SPRINT-human. Pathways are color-coded by different biological functions shown in the lower key. 

2.4 Conclusion 

A plethora of ML models have been developed in the last two decades for identifying PPIs, 

many of them being sequence-based binary classifiers. The major challenge in sequence-based 

methods has been to find a suitable way to extract features from protein sequence. Pioneering 

studies include SVM classifiers using a conjoint triad feature extraction method (Shen, et al., 

2007), or auto-covariance (AC) with predefined physical chemical properties (Guo, et al., 2008). 

Recently, embedding techniques including Res2vec (Yao, et al., 2019) derived from natural 

language processing have been developed, aiming at learning protein representations from raw 

sequence data. In this work, we tackled the problem from a matrix completion perspective by 

proposing a symLMF-based methodology, which decomposed the observed PPI matrix into low-

dimensional protein latent factors, without using the protein’s sequence or structural information. 

The method is simple to implement, highly scalable, and has been shown to outperform many 

complex feature extraction-based classification approaches. Importantly, it can be advantageously 

used for large-scale PPI predictions for entire interactomes.  

The applicability of the proposed method to large datasets is worth further attention, given 

that completing the whole interactome is important in understanding the mechanisms of PPI 

networks or corresponding biological processes. When training on benchmark datasets with 

limited number of proteins and interactions, deep learning models such as CNN-Bio2vec, DNN-
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Res2vec were able to construct better models than symLMF upon using sequence information. 

However, when it comes to large datasets like the extended datasets we generated, modeling on 

104 sequences and 105 interactions with deep learning becomes too expensive computationally. 

Our study demonstrated that a simple symLMF model, without using sequence or structure data, 

but simply known interaction patterns, can predict large-scale PPIs efficiently and accurately, even 

with very sparse input. The method is applicable to PPIs specific to particular tissues or diseases, 

as demonstrated by the applications to PPIs involved in the brain, liver, neurodegenerative 

disorders and metabolic disorders. 

Another benefit of the new method is that it releases an estimate on the interaction 

probability of a protein pair, which enables recommending the most promising binding partners 

for a target protein of interest. A major application of it is to generate testable hypotheses, which 

can be further utilized in drug discovery for disease conditions. As demonstrated in our study, the 

top-ranking predictions exhibit a high precision, which are likely to provide useful guidance for 

experimental tests and help save time and cost. Finally, while we focused on the introduction of a 

new methodology, symLMF, and demonstrating its application to predicting binary PPIs, symLMF 

can be extended to analyzing ternary interactions and predicting such complex interactions, 

provided that there are sufficient training data to develop such an extension. 
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3.0 Application of Quantitative Systems Pharmacology Methods to three complex 

diseases/disorders 

In the previous chapters, we presented several QSP models, methods, and tools that bridge 

drugs/chemicals to pathways and cellular functions through their targets. In the present chapter, I 

will discuss three applications of QSP towards better understanding the disease mechanisms and/or 

proposing novel drug candidates for complex diseases. These diseases share common challenges: 

1. they exhibit heterogeneities in populations and disease stages, 2. the underlying molecular 

mechanisms that drive the disease progression are not fully understood, 3. existing treatments are 

ineffective due to the complexity of the underlying cellular networks. Therefore, there is an urgent 

need for understanding the molecular mechanisms that underlie these diseases toward designing 

novel preventive or therapeutic strategies. The rapidly accumulating data as well as advances in 

machine learning (ML) methods and computing technology discussed in the previous chapters 

present an opportunity to systematically mine existing data and draw inferences on potential new 

strategies. 

In the first study (Pei, et al., 2017), we report the implementation of QSP to Huntington’s 

disease (HD), with the application of a chemogenomics platform to identify strategies to protect 

neuronal cells from mutant huntingtin induced death. Using the STHdhQ111 cell model, we 

investigated the protective effects of small molecule probes having diverse canonical modes-of-

action to infer pathways of neuronal cell protection connected to drug mechanism. Several 

mechanistically diverse protective probes were identified, most of which showed less than 50% 

efficacy. Specific combinations of these probes were synergistic in enhancing efficacy. 

Computational analysis of these probes revealed a convergence of pathways indicating activation 
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of PKA. Analysis of phospho-PKA levels showed lower cytoplasmic levels in STHdhQ111 cells 

compared to wild STHdhQ7 cells, and these levels were increased by several of the protective 

compounds. Pharmacological inhibition of PKA activity reduced protection supporting the 

hypothesis that protection may be working, in part, through activation of the PKA network. This 

systems-level procedure can be broadly applied to any discovery strategy involving small molecule 

modulation of disease phenotype. 

In the second study (Pei, et al., 2019), we carried out a comprehensive analysis of the 

cellular pathways implicated in a diverse set of 50 drugs of abuse using QSP methods. The analysis 

of the drug/ligand-target interactions compiled in DrugBank and STITCH databases revealed 142 

known and 48 newly predicted targets, which have been further analyzed to identify the KEGG 

pathways enriched at different stages of drug addiction process, as well as those implicated in cell 

signaling and regulation events associated with drug abuse. Apart from synaptic neurotransmission 

pathways detected as a common upstream signaling module that ‘senses’ the early effects of drugs 

of abuse, pathways involved in neuroplasticity are distinguished as determinants of neuronal 

morphological changes. Notably, many signaling pathways converge on important targets such as 

mammalian target of rapamycin (mTOR) complex 1 (mTORC1). The latter is proposed to act as a 

universal effector of the persistent restructuring of neurons in response to continued use of drugs 

of abuse.  

In the third study, we analyzed the gene expression profiles of a cohort of NAFLD patients, 

and identified the genes and pathways that are essential for stages of NAFLD progression defined 

by pathology reads (steatosis, inflammation, fibrosis). Based on the gene signature associated with 

NAFLD progression, we integrated the data from connectivity map (CMap) (Lamb, et al., 2006; 

Subramanian, et al., 2017) and results from network proximity analyses (Guney, et al., 2016) to 
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propose repurposable drug candidates for NAFLD. Instead of targeting a specific molecular target 

involved in NAFLD, our proposed drugs target multiple proteins that are involved in one or 

multiple networks dominating different stages of NAFLD. These mechanistically diverse drugs 

could serve as probes with the potential to be repurposed singly or in combinations for NAFLD 

treatment, and tested in the human liver microphysiological system (MPS) (Taylor, et al., 2019). 

3.1 Huntington’s Disease: Connecting Neuronal Cell Protective Pathways and Drug 

Combinations 

3.1.1 Introduction 

HD is a neurodegenerative disease characterized by personality changes, generalized motor 

dysfunction, and mental deterioration. Symptoms generally develop in the third to fifth decade of 

life, and the disease ends in dementia and death. HD is rare, affecting 4 to 10 cases in 100,000 

people, yet its pathology is strikingly similar to other more common and complex 

neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. HD displays an 

autosomal-dominant inheritance and an abnormal extension of the number of glutamine repeats at 

the N-terminus of a single protein (huntingtin, HTT) (Zuccato, et al., 2010). Mutant HTT (mHTT) 

has been shown to satisfy Koch’s postulates for causing this devastating neurological disorder in 

which striatal neuronal subtypes exhibit particular but not exclusive vulnerability (Zuccato, et al., 

2010). 

HTT (and mHTT) is a large protein that interacts with many binding partners (Clabough, 

2013), and a number of key pathogenic mechanisms have been described in HD, including aberrant 



 62 

caspase activation, mitochondrial dysfunction (Chen, et al., 2000; Ona, et al., 1999; Wang, et al., 

2003; Wang, et al., 2008; Yano, et al., 2014), ER stress, transcriptional dysregulation, altered 

calcium signaling, proteasome inhibition, defects in vesicle transport, and altered neurotransmitter 

release and activity (Chen, et al., 2000; Ona, et al., 1999; Zuccato, et al., 2010). However, despite 

knowledge of the causal gene, and the existence of multiple rodent models that recapitulate key 

molecular, cellular, and behavioral phenotypes of the human disease (Zuccato, et al., 2010), drug-

like molecules that can reduce mHTT protein expression, increase its clearance, or prevent mutant 

HTT-induced cell death have yet to be successfully identified in clinical trials. The slow progress 

toward effective therapy has been attributed to an insufficient knowledge of those biological 

functions of mHTT that are critical in HD. Furthermore, resulting pleiotropic effects have made it 

difficult to distinguish whether particular aspects of mHTT-associated dysregulation are actually 

mechanistically linked to disease progression (i.e., pathogenic), epiphenomena, or disease-

ameliorating compensatory effects. 

Treating HD, or any complex disease, requires a thorough understanding of its mechanisms 

of progression. Identifying disease mechanisms is hindered by epistasis, pleiotropy and 

heterogeneity (Gough, et al., 2017), all of which are intrinsic and often confounding characteristics 

in complex diseases (Chakravarti, et al., 2013). An attractive path to systematically understanding 

mechanisms of disease progression is QSP, an approach that integrates and iterates computational 

and experimental methods to determine molecular pathogenesis (Perez-Nueno, 2015; Stern, et al., 

2016). A chemogenomics component of QSP involves perturbing disease phenotypes in clinically 

relevant assays with mechanistically annotated compounds, and using the known mode-of-action 

of active compounds to infer cellular pathways that are related to the disease and its modulation 

(see Figure 3.1). Concordance in the perturbation of a disease phenotype among a set of 



 63 

structurally diverse chemical probes sharing an annotated common mechanism can provide 

compelling evidence for the role of a particular target/pathway in the molecular etiology (Wagner 

and Schreiber, 2016). In turn, a discordance with such a probe set could lead to the identification 

of a novel disease-specific mechanism. This finely tunable pharmacological approach is 

complementary to genetic approaches (Wagner and Schreiber, 2016). 
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Figure 3.1 Chemogenomics component of the QSP platform 

(a) Libraries of mechanism annotated probe compounds are screened in a clinically relevant phenotypic assay to 

identify phenotype modulating probes. (b) Targets for the active probes are identified from various drug-target 

databases and then are associated with biological pathways using information from protein-pathway databases. (c) 

Using a systems level analysis of all pathways identified, computational analysis is performed to predict the optimal 

modulating pathways/networks based on the activity of the respective probes (i.e., activation or inhibition of pathways 

in relation to the known effects of the pathway on the phenotype). (d) Predicted pathway/network hypotheses are 

tested in phenotypic assays by i) testing additional compounds known to modulate the pathways, ii) testing compounds 

predicted by advanced ML methods that will modulate the pathway, iii) modulate pathways by knock-down and 
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knock-in approaches, and/or iv) evaluate probes in pathway specific phenotypic assays. If pathways are not confirmed, 

then the hypothesis is refined with the new information gained from the testing, additional probes are identified, and 

the new hypothesis is tested. If pathways are confirmed, then the active probes are advanced to in vivo testing. (e) At 

the initial screening analysis stage, the heterogeneity of phenotype modulating response is assessed. If no 

heterogeneity is detected, then proceed as above. However, if heterogeneity is detected, then hypotheses are developed 

and tested to characterize the basis of the heterogeneity (e.g., effects of combinations of different compounds). The 

information gained from the heterogeneity analysis is used to inform the prediction of the phenotype modulating 

pathways/networks. (f) The outputs of this strategy are i) a systems level understanding of the pathways/networks 

involved in the clinically relevant phenotype which enables the design of optimal therapeutic strategies, and ii) 

probes/drugs that can be advanced to in vivo and clinical testing. 

 

We initiated the QSP approach and implemented the chemogenomic strategy investigating 

the protective effects of small molecule probes with diverse canonical molecular mechanisms of 

action in a well-established striatal neuronal cell model (STHdhQ111) for HD (Trettel, et al., 2000). 

The objective of this work is to generate testable hypotheses regarding disease mechanism and 

potential mechanisms involved in protection of neuronal cells from mHTT dependent toxicity. We 

report here on the first two iterations of the QSP approach. We identified a number of small 

molecule probes with a range of distinct canonical mechanisms that protect the STHdhQ111cells 

from mHTT-induced death. We found that the response of the cell population to most of the 

compounds was heterogeneous, i.e., not all of the cells within a population were protected by the 

compounds, which was not unexpected since heterogeneous responses to compounds are common 

(Gough, et al., 2014). Interestingly, testing of combinations of moderately active compounds 

identified specific combinations that synergistically increased the efficacy of protection. Analysis 

of the canonical mechanisms of 10 compound pairs that synergistically protected STHdhQ111 cells 

showed a convergence of pathways leading to the activation of PKA and PKG. Cytoplasmic 
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phospho-PKA levels were lower in STHdhQ111 than in the wild type STHdhQ7 cells under stress 

conditions, and these levels were increased by several of the protective compounds. In addition, 

co-incubation with the PKA inhibitor H89 inhibited the protective effects of the compounds. Our 

results suggest that active PKA may have a role in the protective effects of these compounds. The 

information gained from the annotated compounds and combination analysis provided input for 

inference of neuronal cell protective pathways. 

3.1.2 Results 

3.1.2.1 Characterization of neuronal cell protective compounds in the STHdhQ111 model 

We employed the well-established STHdhQ111 cell model for HD (Lu, et al., 2013; Trettel, 

et al., 2000) to identify compounds that would protect neuronal cells from mHTT-dependent cell 

death. In this model, serum deprivation (which mimics the clinical stress of growth factor 

deprivation) of the STHdhQ111 cells containing mHTT results in cell death, whereas under the same 

conditions the STHdhQ7 wild type cells are resistant to cell death. The propidium iodide (PI) 

readout enables an unbiased assessment of cell death by measuring an irreversible step that is 

common to all cytotoxic mechanisms (Kroemer, et al., 2009). Under serum-depleted conditions, 

~50 percent of the STHdhQ111 cells underwent cell death as evident by positive nuclear PI staining, 

compared to less than 10 percent of the wild type STHdhQ7 cells (Figure 3.2). From screens of the 

LOPAC1280 library, the NCATS Pharmaceutical Collection17, and a library of 83 compounds 

computationally predicted to be neuroprotective (see Methods), we confirmed the activity of 32 

compounds (Figure 3.3). 
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Figure 3.2 Heterogeneity in mutant huntingtin (mHTT) induced neurotoxicity in STHdhQ111 cells 

a) STHdhQ111 and STHdhQ7 cells were incubated under serum free conditions for 24h at 37oC, labeled with Hoechest 

(blue) and PI (red) and imaged. B) Under stress conditions only ~ 50% of the STHdhQ111 cells die as evident by only 

half of the Hoechst positive cells labeling with PI. Only about 5-7% of the STHdhQ7 cells die under these conditions. 

C) Histograms quantifying the intensity of PI in the nucleus of STHdhQ111 cells (left) and STHdhQ7 cells (right). 
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Figure 3.3 Compounds with confirmed neuroprotective activity in the STHdhQ111 model 

Compound titrations were tested for protective activity in the 384-well PI assay. Compounds representing a diverse 

set of canonical mechanisms show only partial efficacy in protecting STHdhQ111 cells from mHTT induced cell death. 

(a) Compounds reported in the literature to be associated with central nervous system (CNS) activity: 1) 3-tropanyl-

indole-3-carboxylate hydrochloride; 2) Benztropine mesylate; 3) Cyproheptadine hydrochloride; 4) Domperidone; 5) 

Isoetarine mesylate; 6) JWH-015; 7) Loxapine succinate; 8) Meclizine; 9) Mianserin hydrochloride; 10) PD 168,077 

maleate; 11) Quipazine, N-methyl-,dimaleate; 12) Ruthenium red; 13) SB 203186; 14) Triprolidine hydrochloride; 

15) Vinpocetine. (b) Compounds reported to be associated with non-CNS activity: 16) (Z)-Gugglesterone; 17) 

Beclomethasone; 18) Betamethasone; 19) Budesonide; 20) Ethoxzolamide; 21) Flutamide; 22) Hydrocortisone; 23) 

Lansoprazole; 24) Lonidamine; 25) m-Iodobenzylguanidine hemisulfate; 26) Papaverine hydrochloride; 27) 
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Prednisolone; 28) Sodium Nitroprusside; 29) Vorinostat; 30) Tetradecylthioacetic acid; 31) Triamcinolone; 32) U-

83836 dihydrochloride. Results are from triplicate samples run in at least two independent experiments (Error bars are 

+/−SE). 

 

Interestingly, the level of protection afforded by the majority of the compounds did not 

reach 100%, exhibiting plateaus in the dose-response curves between 30% and 50%. We verified 

that the neuronal cell protection observed was not an overestimate simply due to an undetectable 

loss of dead cells (Figure 3.4), and that partial protection was not simply due to limited solubility 

within the efficacious dose range (Appendix Appendix A.1). The spectral properties of PI are red 

shifted relative to the majority of small molecule compounds, thus avoiding compound 

interference (quenching). Preliminary analysis of the hit compounds in an LDH-based cell death 

assay with a format and readout distinct from that of PI showed similar curves for the hit 

compounds (data not shown) as seen in the PI assay. For a subset of compounds, we also examined 

the direct effect on quenching the PI signal and found that quenching did not occur (Figure 3.5). 

These results indicate that the partial protection was an outcome of compound perturbation of 

mHTT-induced biology under these experimental conditions. 

We searched the DrugBank and STITCH DBs for the canonical targets of the 32 active 

compounds. Ten compounds had no known targets in either DB; the remaining set of 22 displayed 

a diverse range of canonical mechanisms of action targeting 75 proteins on a number of pathways 

(Appendix Appendix A.2 and Appendix A.3). Many of the canonical targets have known 

functions that are critical to CNS activity. For example, histamine receptors, the target of 7 hit 

compounds, are associated with multiple neuropsychiatric disorders. Receptors of the 

neurotransmitters serotonin and dopamine are also targets of several of our hit compounds. Nine 

active compounds did not share any targets with other hits in the screen, suggesting that either 
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multiple mechanisms are capable of conferring neuronal cell protection or some of the active 

compounds operate through shared non-canonical mechanisms. 

 

Figure 3.4 Change in total and dead cell numbers with compound treatment relative to DMSO 

A greater percent change in the number of dead cells (PI positive, red bars) was seen compared to the change in total 

cell number (blue bars) indicating that the decrease in dead cell number was not simply due to loss of cells from the 

plate. Panel numbers are the compounds listed in Figure 3.3. 
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Figure 3.5 Protective compounds are not quenching the PI signal 

Two sets of STHdhQ111 cells were treated with a compound titration (set 1) or DMSO (set 2) as per the standard 384-

well protocol. At 24 hrs, both sets were labeled with PI and imaged. After imaging, to set 2 was added the compound 

titration and incubated at room temperature for 30 minutes and then imaged. The Percent Recovery was calculated for 

both sets. The blue curves show the compound titration curves of set 1 where the compounds were added before the 

PI. The red curves are the DMSO curves in set 2 before compound addition, and the green curves are the compound 

titration added to set 2 after PI addition. The compounds did not show the characteristic response curve when added 

after the PI indicating that the Percent Recovery seen with the compounds was not due to quenching of the PI signal. 

The analysis is from three independent runs (+/- S.E.). 

3.1.2.2 Combinations show enhanced protective effects 

The diversity of canonical mechanisms of the compounds exhibiting protection and the 

partial maximal protection for any one compound suggested the presence of more than one 

protective mechanism, where the sufficiency for any one mechanism to afford complete protection 

in an individual cell varied across the cell population. To explore this further, we asked if the 

efficacy of neuronal cell protection could be enhanced with pairwise combinations of compounds 

with different canonical mechanisms. We implemented the combination screen using 25 of the 
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confirmed LOPAC hits and ethoxzolamide, one of the computationally predicted hits. We screened 

268 compound pairs with each compound at a single concentration that was on or near the plateau 

of the activity of the respective individual compound, and compared the percent recovery (i.e., 

protection from cell death) of compound combinations to that of the individual compounds (See 

Figure 3.6 as an example). From the 268 pairs tested, 109 pairs showed enhanced toxicity. 

Toxicity is defined as the loss of cells from the well using the criteria of total cell number being 

below 3 SD of the total number of cells in the DMSO controls. For the remaining 159 pairs of 

combinations (Appendix Appendix A.4), we determined if the combination effect was additive, 

synergistic, or antagonistic by calculating a combination index using the Bliss Independence 

Model (Bliss, 1939; Greco, et al., 1995). We found that 61 combination pairs in this screen had 

synergistic interactions (Figure 3.7a, Appendix Appendix A.4) while 90 pairs were calculated to 

be antagonistic and 8 appeared to be additive. We verified the synergistic assessment of the single 

point analysis by selecting 20 pairs of compounds, testing them in concentration response 

experiments, and calculating the combination index using the method of Chou and Talalay (Chou 

and Talalay, 1984). All of the pairs tested in this analysis were determined to be synergistic (Figure 

3.7b). This test gave us confidence in the assessment of the other combinations used in the single 

point experiments. 

Bliss independence (additivity) exists when the effects of compounds are statistically 

independent: applying one compound neither enhances nor diminishes the effects of the other. 

Whereas independence implies completely separate mechanisms, synergism and antagonism each 

imply a relationship between mechanisms, either within cells, across the population, or both. 

Antagonism at the population level can occur between compounds that share a therapeutic target 

and therefore compete with each other. Similarly, synergy can arise from mutually exclusive 
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mechanisms manifested in non-overlapping cell subpopulations. Any given cell will respond to 

only one compound in the synergistic pair, minimizing the number of cells that are redundantly 

protected by both compounds. The results of our combination screens support these mechanisms. 

Forty-five of the 90 antagonistic pairs of compounds identified in our screen have known targets. 

Fifteen of these pairs (33%) are compounds that share at least one target. In contrast, target sharing 

is observed in only 2 of the 41 synergistic pairs (5%) with known targets. 
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Figure 3.6 Combinations of probes with different canonical mechanisms provide enhanced protection of 

STHdhQ111 cells 

(a) Using domperidone and papaverine as an example, concentrations of compounds that were on the plateau of the 

activity curve were chosen for combination experiments. In this example, 6 μM domperidone and 25 μM papaverine 

were selected. (b) Compounds were combined and tested in the 384-well PI assay. The percent activity of the 

combination was compared with the activity of the single compounds run in parallel, and the ratio of the combined 

activity to that of the single compound with the highest activity is taken as the combination ratio. For domperidone 

and papaverine the combination ratio shown here is 1.74 (n = 3 independent experiments, error bars are +/−SE). The 

combination experiments in panel b were run independently from the titration experiments in panel a. 
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Figure 3.7 Combinations of probes show synergistic protection in STHdh Q111 cells 

(a) Active LOPAC probes were screened in combinations using a single concentration of each probe. Combination 

numbers refer to the combinations listed in Appendix Appendix A.4. Bliss Independence Model analysis indicated 61 

combinations to be synergistic in the single concentration combination screen. The Bliss Independence Model 

compares the predicted activity of probe combinations to the experimentally observed activity of the combination51. 

The Bliss Combination Index (BCI) is the ratio of the observed combination activity to the predicted combination 

activity based on the activity of the individual compounds. A BCI > 1 indicates synergy (green bars) and a BCI < 1 

indicates antagonism (red bars), while BCI = 1 indicates additivity (blue bars). To accommodate additive BCI 

calculations not equaling 1 exactly, a cutoff of 0.99–1.01 was assigned to classify synergy and antagonism. (Results 

from at least 2 independent runs, error bars are the Median Absolute Deviation). (b) 20 probe pairs were selected and 

tested using 4 different concentrations, 2 each from the plateau and linear portions of the single compound 

concentrations curves. Curves were analyzed by the method of Chou and Talely (Chou and Talalay, 1984), and the 
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isobolograms are plotted. Points below the diagonal line represent synergistic activity of the two compounds (n = 2 

independent runs). The panel numbers are the Combination Numbers for the combinations tested listed in Appendix 

Appendix A.4. 

3.1.2.3 Inferring protection-relevant pathways from the compounds’ canonical mechanisms 

The mechanistic diversity and synergistic effects of the compounds affording protection 

from mHTT-induced cell death suggested functional interrelationships among their targets. 

Synergy can arise from mechanistic interactions within the cell if two compounds affect distinct 

upstream effectors of a common mechanism. Each provides partial protection to the cell, and both, 

when combined, may confer sufficient protection to permit survival. Alternatively, targets on the 

same pathway may be heterogeneously expressed in a correlated fashion within the population, 

causing some cells to modulate the targeted pathway in response to one compound, and other cells 

to modulate the same pathway through an alternative mechanism. Assays with binary readouts, 

such as the PI assay used here, mask the mechanistic origins of synergy. We therefore turn to 

pathway analysis to investigate whether the observed synergy results from pathway convergence 

within cells, or from mutually exclusive modulation of pathways across a heterogeneous 

population. 

Sixteen compounds were associated with the 41 synergistic pairs that had known targets. 

In 21 of these synergistic pairs, the compound targets shared at least one pathway as annotated in 

the KEGG database. The canonical targets for compounds in 10 of these 21 pairs converged on 

either the cAMP/PKA signaling pathway, the cGMP/PKG signaling pathway, or both (Appendix  

Error! Reference source not found. and Table 3.1). At random, we would expect to find only three 

synergistic pairs on these pathways (enrichment factor of 3.73, see Methods). No other pathway 
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contained targets of more than four synergistic pairs, as was seen in both calcium signaling and 

gap junction pathways. 

Table 3.1 Synergistic compound pairs that coverge on PKA/PKG signaling 

Combination Compound 1 MOA Compound 2 MOA 

Sodium Nitroprusside 
Loxapine succinate 

Nitric oxide synthase D2/3 receptor antagonist 

Sodium Nitroprusside 
Domperidone 

Nitric oxide synthase D2/3 receptor antagonist 

Sodium Nitroprusside 
Mianserin HCl 

Nitric oxide synthase 5HT and a-2C adrenergic antagonist 

Isoetarine mesylate 
Loxapine succinate 

E-1/2 adrenergic receptor agonist D2/3 receptor antagonist 

Isoetarine mesylate 
Papaverine HCl 

E-1/2 adrenergic receptor agonist PDE10A inhibitor 

Domperidone 
Papaverine HCl 

D2/3 receptor antagonist PDE10A inhibitor 

Isoetarine mesylate 
Mianserin HCl 

E-1/2 adrenergic receptor agonist 5HT and a-2C adrenergic antagonist 

Sodium Nitroprusside 
Isoetarine mesylate 

Nitric oxide synthase E-1/2 adrenergic receptor agonist 

Benztropine mesylate 
Isoetarine mesylate 

M1 receptor antagonist E-1/2 adrenergic receptor agonist 

Domperidone 
Isoetarine mesylate 

D2/3 receptor antagonist E-1/2 adrenergic receptor agonist 

 

We hypothesized that synergistic neuronal cell protection could arise in pairs of 

compounds that had the same effect on cAMP or cGMP signaling, but through distinct 

complementary mechanisms. For example, isoetarine is an agonist of the β1 adrenergic receptor 

(β1AR) (Isoetarine, 2016), which couples to Gs and stimulates conversion of ATP to cAMP by 

adenylate cyclase (AC). Benztropine is an antagonist of the M1 muscarinic receptor (Benztropine, 

2016), blocking the Gi-coupled inhibition of AC activity. Thus, both compounds have the potential 

to increase PKA activity, but through different mechanisms: isoetarine stimulates AC, and 

benztropine antagonizes an AC inhibitor. Another example is the synergistic combination of 

domperidone and papaverine. Similar to benztropine, domperidone can elevate cAMP levels by 

antagonizing D2R (Barone, 1999). Papaverine inhibits the phosphodiesterases PDE4B and 10A 
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(Pöch and Kukovetz, 1971), reducing the hydrolysis of cAMP into AMP. The net effect of this 

combination is to increase cAMP levels and PKA activity through two complementary 

mechanisms. Thus, increasing cAMP levels and correspondingly activated PKA levels or by 

analogy cGMP/PKG levels may lead to cytoprotection. Multiple compounds targeting the same 

pathway is distinct from multiple compounds interacting with the same target. Whereas in the latter 

compounds may compete for the same target site and thus do not lead to enhanced modulation of 

the target, modulating different points on a pathway can result in synergy enabling more control 

in regulating the output of the pathway. 

Because cAMP/PKA signaling is a key pathway involved in cell survival and has been 

implicated in the pathophysiology of HD (Lin, et al., 2013), we tested whether these synergistic 

compounds may be working through augmenting cAMP and activating PKA. We assessed the 

ability of benztropine, domperidone, isoetarine, loxapine, mianserin, papaverine, and sodium 

nitroprusside to modulate cAMP levels in the STHdhQ111 cells. cAMP levels were measured 15, 

30, and 120 minutes after initial compound treatment in the presence of serum, which paralleled 

the pre-treatment stage of the PI assay, as it was anticipated that cAMP induction would be a 

relatively rapid response. All compounds, except for mianserin, showed at least a 2-fold increase 

in cAMP over the DMSO control at 15 minutes, which returned to control levels within 2 hours 

(Figure 3.8). Though only isoetarine showed a statistically significant increase in cAMP levels at 

15 and 30 minutes, the overall profile of increased levels at 15 mins and the gradual decrease over 

time for all of the compounds suggested that a transient induction of cAMP did occur shortly after 

initial compound treatment. Sodium nitroprusside, which primarily acts through stimulating 

cGMP, also produced an increase in cAMP. This 2-fold increase in cAMP by the protective 

compounds contrasted the 250-fold increase in cAMP levels induced by forskolin. Interestingly, 
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forskolin did not show up as a hit in the LOPAC screen, nor did it show any protective effects 

when subsequently tested as a control in the PI assay run in parallel with the cAMP analysis (data 

not shown). 

 

Figure 3.8 Protective compounds can induce cAMP 

cAMP levels were determined in STHdhQ111 cells after incubation with benztropine (25 μM), domperidone (6 μM), 

isoetarine (50 μM), loxapine (6 μM), mianserin (25 μM), papaverine (25 μM), and sodium nitroprusside (66 μM) for 

15, 30, and 120 minutes. Though isoetarine was the only compound to show a statistically significant change at 15 

and 30 minutes, except for mianserin, the other compounds showed at least a two-fold increase in cAMP levels at 

15 mins. Over time the induced levels of cAMP decreased back to the control levels. Forskolin significantly induced 

cAMP levels at 15 and 30 minutes with the highest levels seen at 15 minutes. The values are the average from three 

independent experiments (+/−S.E.) except papaverine where n = 2. All compounds except forskolin are plotted on the 

blue scale on the left, while forskolin is plotted on the grey scale on the right. The three panel rows are 15, 30, and 

120 minutes. T-test was used to assess changes in cAMP levels relative to the STHdhQ111 cells treated with DMSO. 

 

To determine if PKA may be involved in the protective effect of these compounds, we 

incubated the STHdhQ111 cells with benztropine, domperidone, isoetarine, loxapine, mianserin, 

papaverine, and sodium nitroprusside in the presence the PKA inhibitor H89 under the standard 
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PI protection assay conditions. H89 has been used extensively in the literature as a selective and 

potent inhibitor of PKA (Chijiwa, et al., 1990; Davies, et al., 2000). If the protection from cell 

death by these compounds involved activation of PKA, then the addition of an inhibitor of PKA 

would be expected to reverse the protective effects of the compounds. Co-incubation of 10 μM 

H89 with the Gi-coupled GPCR antagonists domperidone, loxapine, and mianserin resulted in 56, 

52, and 35 percent reduction, respectively, in the level of protection, while the Gs-coupled agonist 

isoetarine resulted in a 34 percent reduction, the PDE inhibitor papaverine a 55 percent reduction, 

and the s-GC agonist sodium nitroprusside a 17 percent reduction compared to compound alone 

(Figure 3.9a). Since the primary canonical mechanism of sodium nitroprusside is activation of 

PKG, and given that H89 is ~10-fold selective for PKA over PKG, the absence of a marked effect 

with sodium nitroprusside is not unexpected. The relatively lower effect of H89 on the PKG 

activator sodium nitroprusside compared to the PKA activators is consistent with the canonical 

mechanisms of these compounds. To confirm inhibition of PKA activity by H89 under the 

conditions of the PI assay we measured the levels of nuclear pCREB using high content analysis 

(Figure 3.10). Consistent with the heterogeneity seen in the response of the STHdhQ111 cells to 

protection by the compounds, a heterogeneous distribution of pCREB levels was also detected 

(Figure 3.11). The levels of pCREB were decreased in the presence of 10 μM H89 in all cases 

indicating inhibition of PKA activity (Figure 3.9b). While H89 has been used extensively as a 

selective and potent inhibitor of PKA to understand the biology of PKA signal transduction, it has 

been reported that H89 has other effects as well(Murray, 2008). To address this, we also tested the 

effects of PKI, a reportedly more selective PKA inhibitor, on the activity of these compounds, 

however, PKI by itself was toxic to the STHdhQ111 cells which overshadowed any potential effect 

in inhibiting protection (data not shown). 
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Figure 3.9 PKA inhibitor H89 inhibits the protective effects of several probes 

(a) The protection of STHdhQ111 cells from mHTT induced cell death by domperidone (6 μM), isoetarine (50 μM), 

loxapine (12.5 μM), mianserin (50 μM), papaverine (50 μM), and sodium nitroprusside (200 μM) co-incubated with 

the PKA inhibitor H89 (10 μM) was assessed in the 384-well PI assay. Benztropine (50 μM) was also tested, however, 

combination with H89 resulted in increased toxicity over the cell death seen in the DMSO control. The concentrations 
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used were chosen to be on plateau of their respective activity curves (see Fig. 2). DMSO is H89 alone which showed 

no significant protection or toxicity. Analysis is from triplicate samples run in four independent experiments (Error 

bars are +/−SE). T-test was used to assess changes in the percent recovery levels relative to the STHdhQ111 cells treated 

with compound without H89. While only papaverine showed a statistically significant decrease, the other compounds 

showed a trend for H89 inhibition of the protective effects. (b) The integrated intensity of the pCREB signal was 

measured in the nucleus of the STHdhQ111 cells treated as above. CREB is a substrate for PKA and is used here as a 

surrogate marker for PKA activity to demonstrate inhibition of PKA activity by H89. Analysis is from triplicate 

samples run in four independent experiments (Error bars are +/−SE). T-test was used to assess changes in the pCREB 

intensity relative to the STHdhQ111 cells treated with compound without H89. 
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Figure 3.10 H89 inhibits phosphorylation of CREB at Ser 133 

STHdhQ111 cells were treated either 10 µM H89 (a and c) in DMSO or DMSO alone (b and d) under the standard 

serum-free stress conditions at 37oC for 24 before being fixed and labeled with anti-pCREB (Ser133). The nuclei were 

stained with Hoechst 33342. Images were acquired with a 40x objective. The pCREB images were scaled to 248 – 

7903 gray levels and the nuclei were scaled to 562 – 14649 gray levels. The dimmer intensity of the pCREB in the 

presence of H89 indicates inhibition of PKA. 
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Figure 3.11 PKA activation is heterogeneous within the STHdhQ111 cell population 

STHdhQ111 cells were treated with DMSO or protective compounds in the absence (green) or presence (red) of the 

PKA inhibitor H89 (10 µM) under the standard serum-free stress conditions at 37oC for 24 before being fixed and 

labeled with anti-pCREB (Ser133). Images were acquired at 10x magnification and analyzed as described in Methods. 

HistoBox plots14 were generated showing the distribution of nuclear pCREB levels in the cell population. The plots 

represent the cumulative data from triplicate replicates run in each of four experiments. The average levels in the 

populations were calculated 14 along with the PHIs as described by Gough et al. . Quadratic entropy (QE, diversity 

measure) values > 0.03, Kolmogorov-Smirnov (KS, non-normality measure) values > 0.05, and percent outliers (POL) 

> 4.5 indicate non-normal, heterogeneous populations. These data show a high degree of heterogeneity in PKA activity 

as measured by its substrate CREB. Addition of H89 to the cells lowered the degree of heterogeneity in all cases, but 

did not completely normalize the populations. 

 

To further assess PKA activation, we quantified the levels of PKA phosphorylated at 

threonine 197 (pPKA) in the catalytic subunit using high-content analysis. We examined the pPKA 

levels at 24 hours after serum free conditions since this was the condition where we measured the 

protection of the compounds. The levels of cytoplasmic pPKA were lower in the STHdhQ111cells 
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relative to the STHdhQ7 (Figure 3.12), consistent with the hypothesis that elevated pPKA was 

associated with neuronal cell survival. Benztropine, isoetarine, loxapine, mianserin, and sodium 

nitroprusside exhibited a concentration-dependent increase in cytoplasmic pPKA approaching the 

levels of the wild type STHdhQ7 cells. The concentration response for domperidone, papaverine 

and forskolin was less pronounced. In contrast to the cytoplasm, the nuclear pPKA levels in the 

STHdhQ111 cells were higher than in the STHdhQ7cells (Figure 3.12). None of the compounds 

showed a marked concentration-dependent decrease in the nuclear levels. The increase in cytosolic 

pPKA correlated with the percent recovery for these compounds (Figure 3.13); however, the 

concentration response curves between the compounds were distinct from each other. If pPKA 

were the only factor responsible for the protective effects of these compounds, then the 

concentration response curves for the pPKA effect on recovery would be expected to be the same. 

The fact that they were different suggests additional mechanisms were involved in the protection 

phenotype for these compounds. 
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Figure 3.12 Protective compounds can activate PKA 

Cytoplasmic and nuclear pPKA levels were measured in STHdhQ111 cells after incubation with benztropine, 

domperidone, isoetarine, loxapine, mianserin, papaverine, and Sodium Nitroprusside for 24h under serum free 

conditions following the protocol used for the PI protection assay. For cytoplasm levels the upper and lower dotted 

lines are the average level of STHdhQ7 and STHdhQ111 cells, respectively. For nuclear levels the upper and lower dotted 

lines are the average level of STHdhQ111 and STHdhQ7 cells, respectively. Data are the average from three independent 

experiments (+/- S.E.). T-test was used to assess changes in pPKA levels relative to the STHdhQ111 cells treated with 

DMSO. SNP = Sodium Nitroprusside. 
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Figure 3.13 Correlation between Percent Recovery from mHTT toxicity and pPKA levels 

The Percent Recovery assessed in the PI assay is plotted against the relative levels of pPKA induced by the compounds 

measured in the High content assay. All compounds increased pPKA though some were more effective and showed a 

robust concentration response (see Figure 3.9). Different response curves were observed among the protective 

compounds. Forskolin was not protective, but did show pPKA levels in the range where protection was seen for the 

other compounds. The Percent Recovery analysis is from triplicate samples run in least two independent runs, and the 

pPKA analysis is from triplicate samples run in three independent runs (+/- S.E.). 

3.1.2.4 Some compounds may be protecting by non-canonical mechanisms 

Our pathway analysis was based on using canonical mechanisms of action for the identified 

compounds; however, we hypothesized that the protective activity of some of the compounds 

might be through alternative mechanisms, as well. Several structurally distinct carbonic anhydrase 

inhibitors were present in the library of compounds, but only one of them, ethoxzolamide, showed 

protective activity in the PI assay (Figure 3.14). To determine if ethoxzolamide was acting through 

its canonical carbonic anhydrase inhibition mechanism, we synthesized its methyl sulfonyl analog 

in which the amine group that is critical for the carbonic anhydrase inhibition by this drug class 

(Supuran, et al., 2003) was replaced by an isosteric methyl group. We demonstrated that the methyl 
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sulfonyl analog of ethoxzolamide was approximately 7-times more potent than ethoxzolamide 

itself and equally efficacious (Figure 3.15). Though the methyl sulfonyl analog for inhibition of 

carbonic anhydrase was not tested directly, the activity of the methyl sulfonyl analog suggests that 

the protective activity observed with ethoxzolamide may be due to a distinct mechanism and not 

due to its canonical carbonic anhydrase inhibition. 

 

Figure 3.14 Comparison of carbonic anhydrase inhibitors in protecting STHdhQ111 cells 

Inhibitors include ethoxzolamide (green), acetazolamide (red), dorzolamide (orange), and brinzolamide (blue), only 

ethoxzolamide demonstrated increased protection. 
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Figure 3.15 Ethoxzolamide may not work through the canonical carbonic anhydrase mechanism 

The methyl sulfonyl analog of ETX does not contain the sulfonamide group of ETX and it is not expected to inhibit 

carbonic anhydrase (Supuran, et al., 2003), though we did not test this directly. This analog is 7-fold more potent than 

ETX in protecting STHdhQ111 cells from stress induced cell death in the propidium iodide assay suggesting that the 

mechanism of protection of ETX is not through carbonic anhydrase inhibition. Acetazolamide, brinzolamide and 

dorzolamide, all reported carbonic anhydride inhibitors, did not protect STHdhQ111 cells (see Figure 3.14) further 

supporting the idea that inhibition of carbonic anhydrase is not a protective mechanism. Interestingly, the methyl 

sulfonyl analog only protected ~50% of the STHdhQ111 cells consistent with the existence of distinct protection 

mechanisms in different subpopulations of cells. 

3.1.3 Discussion 

Despite major technological advances in genome editing, differentiation of patient-derived 

iPSCs, and recapitulation of complex disease phenotypes in human microphysiological models 

(i.e., organs-on-a-chip), our knowledge of disease mechanism is often the limiting factor for 

optimizing therapeutic strategies for patient cohorts. QSP has emerged as an approach to address 

this void (Perez-Nueno, 2015; Stern, et al., 2016). Commensurate with advances in the 

development of clinically relevant models, and complementary to systematic genetic approaches 
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(Martz, et al., 2014), we anticipate an increased use of mechanistically diverse and well annotated 

chemical libraries, especially those containing FDA approved drugs, to probe disease mechanism. 

This small molecule approach has the potential to lead directly to drug repurposing and optimal 

drug combination strategies that maximize efficacy and minimize toxicity, as well as to serve as a 

starting point for selecting targeted libraries for additional discovery efforts. Thus, we expect that 

this approach will play an increasingly important role in mechanistic studies and drug development 

efforts to address many of the 7,000 rare diseases that exist worldwide. In the case of HD, screening 

identified several drugs having well-defined canonical modes of action that partially protected 

against mutant HTT-induced neuronal cell death. The fact that only the mutant cell line shows cell 

death under the stress conditions demonstrates that this phenotype is disease dependent, and the 

fact that the compounds are protective in the mutant cell line indicates that they are active in 

reversing the disease dependent phenotype. Many combinations exhibited significant synergy, 

suggesting a functional network association among them involving PKA (PKG) signaling. 

The analysis reported here suggested that cAMP/PKA signaling was involved in the 

protection of neuronal cells from mHTT-induced toxicity in the STHdhQ111 model. Several lines 

of evidence from the literature suggest that altered activity of the PKA (PKG) signaling is directly 

pathogenic and does not simply represent a beneficial compensatory mechanism for averting 

mHTT-induced cell death. Single cell analysis employing an optical pulse-chase method 

(Tsvetkov, et al., 2013) has demonstrated that neuron-to-neuron variation in protein homeostasis 

capacity (i.e., proteasome activity) contributes substantially to a given cell’s susceptibility to the 

effects of misfolded proteins (Tsvetkov, et al., 2013). Specifically pertinent to HD, striatal neurons 

were, on average, more vulnerable to disease-causing misfolded mHTT and cleared a 

corresponding mHTT reporter more slowly than cortical and cerebellar neurons. Statistical 
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modeling linked intrinsic protein homeostasis capacity in striatal, cortical, and cerebellar neurons 

to their vulnerability to mHTT-induced degeneration. Furthermore, animal models of HD show 

that mHTT stress-induced impairment of the proteasomal capacity in the striatum is associated 

with lowered PKA activity (Lin, et al., 2013). This reduced PKA activity is caused by the 

accumulation of negative regulatory PKA subunits that are normally controlled by proteasomal 

degradation. Since it has also been shown that full proteasomal activity depends upon PKA 

phosphorylation, a feed-forward loop of diminished PKA and proteasomal activity has been 

suggested as an important component of HD pathogenesis. Consistent with the results presented 

here, pharmacologic intervention corroborated this hypothesis, as agents that increase cAMP and 

activate PKA restored proteasomal activity and ameliorated motor impairment (Tsvetkov, et al., 

2013). By analogy, very recent results indicate a similar feed-forward loop operative in other 

tauopathies (Myeku, et al., 2016). Our results showing the inhibition of the protective activity of 

the compounds by a PKA inhibitor, a lower level of cytosolic pPKA in the mHTT cells relative to 

the wt cells under stress conditions, and the association of increasing pPKA with increasing 

recovery from cell death are consistent with the observations in the literature. The lack of a marked 

increase in pPKA by domperidone or papaverine does not necessarily contradict the observation 

that the PKA inhibitor H89 prevented protection by these compounds. The spatiotemporal 

activation and regulation of cAMP and PKA is complex (Allen and Zhang, 2006; Baillie, et al., 

2005; DiPilato, et al., 2004; Rinaldi, et al., 2015; Sample, et al., 2012) and the 24 hour time point 

may not have been optimal to capture activation by all of the mechanisms. However, the fact that 

the PKA recovery curves were different among the compounds suggests that factors in addition to 

activation of PKA per se may also contribute to neuronal cell protection. 
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Forskolin also increased pPKA to levels that were associated with protection by the other 

compounds yet itself was not protective, further suggesting that additional factors are important 

for protection. Since forskolin was unable to induce protection from cell death in STHdhQ111 cells, 

it appears that regulatory nuances beyond simply a global and robust stimulation of cAMP 

downstream of specific GPCR machinery are necessary to elicit a protective response. While the 

inability of forskolin to protect could result from its well-known off-target effects (e.g., glucose 

transporter (Morris, et al., 1991)), strong nonselective stimulation of cAMP could result in 

antagonistic combinatorial effects consistent with our results showing that the majority of 

combinations of partially protective compounds were indeed antagonistic (or toxic). On the other 

hand, an intrinsic characteristic of cAMP/PKA signaling is compartmentalization, and subcellular 

localized generation of cAMP is tightly coupled to activation of PKA(Allen and Zhang, 2006; 

DiPilato, et al., 2004; Rinaldi, et al., 2015; Sample, et al., 2012). Therefore, it is tempting to 

speculate that crosstalk between two cAMP/PKA compartments could provide the basis for the 

observed synergy between two compounds acting along the cAMP/PKA signaling axis and result 

in the necessary spatial and temporal modulation of cAMP/PKA signaling to elicit a protective 

response. We expect that extension of the imaging analysis initiated in this study in conjunction 

with additional cAMP/PKA signaling biosensors will enable the role of signaling 

compartmentalization in the protection from the pleiotropic effects of mutant HTT to be 

determined and perhaps offer insights into the mechanistic underpinnings of the pathogenic 

dysregulation. 

We found that the canonical targets of a number of compounds converge on a plausible 

mechanism for neuroprotection from mHTT toxicity, and that the literature supports the role of 

this mechanism in HD. However, this mechanism alone neither explains all of our results nor 
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provides a clear path to an HD therapeutic. Given the pleiotropic nature of mHTT, and evidenced 

by our synergistic results that do not involve cAMP/PKA signaling, we anticipate that other 

protective mechanisms exist. Further, although the present work focuses on within-pathway 

convergence as the mechanism of synergy, it is also possible that the synergistic effects that we 

see result from mechanistic heterogeneity within the cellular population. Addressing this 

possibility could provide insight into the basis for distinct vulnerabilities among subpopulations 

of mHTT-expressing cells and the relationships among the different pathways regulating their 

susceptibility to stress-induced cell death. In the next iteration of the QSP cycle, we are broadening 

the analysis to obtain a more complete picture of pathways and networks involved in the protection 

of the Q111 cells based on the canonical mechanisms of active probes. In addition, the canonical 

mechanisms may not be the only mechanisms through which compounds protect from mHTT 

toxicity, as exemplified by the activity of the ethoxzolamide analog. Although mHTT is 

pleiotropic, small molecule compounds can also interact with multiple targets; it has been 

estimated that most drugs bind to on average 6 targets (Kell, et al., 2013). Indeed, modulation of 

non-canonical targets in addition to activation of the PKA pathway by the seven probes could help 

explain why we see only partial inhibition of recovery by H89. Exploring non-canonical 

mechanisms has the potential to lead to the identification of novel pathways for neuronal cell 

protection and emphasizes the value of assembling chemical libraries containing structurally 

distinct probes that have the same canonical mechanism. Thus, in subsequent iterations of the QSP 

analysis we are applying various approaches (Schenone, et al., 2013) including chemical 

proteomics (Rix and Superti-Furga, 2009; Wright and Sieber, 2016) to identify the targets to which 

the protective compounds are binding, and computationally expanding the potential targets and 

pathways to predict non-canonical interactions of the protective compounds. We are also actively 



 94 

expanding the scope of potential mechanisms by analyzing additional synergistic neuronal cell 

protective pairs and screening larger mechanistically annotated libraries (e.g. NCATS 

Pharmacologically Active Chemical Toolbox library). Key to this whole approach is the systems 

level analysis that ensures a mechanistically unbiased assessment of the biology, which will enable 

more efficient and novel approaches to therapeutic design in the long run. 

The work presented here represents the first two iterations of the QSP platform approach 

developed at the University of Pittsburgh (Stern, et al., 2016) starting with mechanism-annotated 

probe compounds and a clinically relevant phenotypic assay, and leading to the identification of 

disease-relevant pathways. We show that an integrated chemogenomic strategy using information 

about probes that modulate a clinical phenotype can lead to testable hypotheses and provide 

insights to targetable biological mechanisms for disease treatment. To our knowledge, this is the 

first report of such an approach applied to HD, which can be broadly applied to any discovery 

strategy involving small molecule modulation of a disease phenotype. 

3.1.4 Materials and Methods 

3.1.4.1 Computational predictions of drug-target binding 

We identified 83 compounds as potentially neuroprotective using a latent factor model 

(LFM) combined with structural similarity. Our LFM approach, Balestra (Cobanoglu, et al., 2013; 

Cobanoglu, et al., 2015), is based on probabilistic factorization of the incomplete drug-target 

interaction matrix. Given a binary matrix, R, of interactions between N drugs and M targets, 

Balestra decomposes it into the product of two matrices, U and V, that express the drugs and targets 

in terms of D latent variables: 



 95 

𝑹𝑵×𝑴 = 𝑼𝑵×𝑫
𝑻 𝑽𝑫×𝑴                            (3.1) 

This decomposition assigns values – loosely comparable to interaction probabilities – to 

the previously undetermined elements of R. Our LFM was trained on chemical-target interaction 

data from DrugBank (version 4.0.0, approved drug subset) and STITCH (version 3.0, experimental 

data only) databases. We identified from the same DBs all canonical targets of 15 hit compounds 

from an earlier mitochondrial screen (Wang, et al., 2008) and 9 compounds that are in clinical 

trials for neuroprotection in HD. Compounds that the LFM predicted to have interaction values 

greater than 0.9 were selected as potentially neuroprotective. In addition to the LFM, the ROCS 

module in OpenEye software (Hawkins, et al., 2007) was used to predict neuroprotective 

compounds based on 3D structural similarity. A separate query was built based on the 3D shape 

and heavy atom properties of each of the 15 compounds from the mitochondrial screen. Each query 

was used to search compounds in DrugBank, and the top ranked compounds were selected based 

on the OpenEye ComboScore measure of shape and atom properties. The final set of predicted 

neuroprotective compounds was generated by merging the results from LFM prediction and 3D 

structural similarity search. 

3.1.4.2 Pathway analysis 

All canonical targets for the probes that showed cell protection were identified in 

DrugBank (version 4.5.0, approved drug subset) and STITCH ligand-protein interaction database 

(version 4.0, human subset with an experimental confidence score greater than 0.7), as well as data 

mining from the literature. The 32 probes were mapped to 75 targets and detailed drug-target 

interaction mapping was shown in detail in Appendix Appendix A.2. Each target, and each probe 

by association, was then mapped to one or more pathways in the KEGG pathway database 
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(http://www.kegg.jp, version 07, 2016, homo sapiens), ending up with 34 pathways as shown in 

Appendix Appendix A.3. We identified for further analysis all synergistic pairs of compounds in 

which the two compounds had different targets on the same pathway. 

Over-representation of pathways among synergistic pairs in our screen is quantified using 

the enrichment factor 

𝐸𝐹𝑖 =  

𝑁𝑝𝑎𝑖𝑟𝑠𝑖
𝑁𝑝𝑎𝑖𝑟𝑠

(
𝑁𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠𝑖
𝑁𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠

)

2                               (3.2) 

where 𝑁𝑝𝑎𝑖𝑟𝑠𝑖 is the number of synergistic pairs mapped into pathway i, 𝑁𝑝𝑎𝑖𝑟𝑠=61 is the 

total number of synergistic pairs identified in our combination screen, 𝑁𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠𝑖 is the 

number of compounds from DrugBank and STITCH that mapped into pathway i, and 

𝑁𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 is the total number of compounds we used from DrugBank and STITCH. The 

enrichment factor of a pathway is its propensity to be targeted by synergistic compound pairs in 

our screen. 
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3.2 Drug Abuse: Addiction Progression Mechanism and the Effector Role of mTORC 1 

3.2.1 Introduction 

Drug addiction is a chronic relapsing disorder characterized by compulsive, excessive, and 

self-damaging use of drugs of abuse. It is a debilitating condition that potentially leads to serious 

physiological injury, mental disorder and death, resulting in major health and social economic 

impacts worldwide (Lee, et al., 2016; Nestler, 2013). Substances with diverse chemical structures 

and mechanisms of action are known to cause addiction. Except for alcohol and tobacco, 

substances of abuse are commonly classified into six groups based on their primary targets or 

effects: cannabinoids (e.g. cannabis), opioids (e.g. morphine, heroin, fentanyl), CNS depressants 

(e.g. pentobarbital, diazepam), CNS stimulants (e.g. cocaine, amphetamine), hallucinogens (e.g. 

ketamine, lysergic acid diethylamide) and anabolic steroids (e.g. nandrolone, oxymetholone).  

The primary actions of drugs of abuse have been well studied. In spite of the pleiotropy 

and heterogeneity of drugs of abuse, they share similar phenotypes: from acute intoxication to 

chronic dependence (Taylor, et al., 2013), the reinforcement shift from positive to negative through 

a three-stage cycle involving binge/intoxication, withdrawal/negative effect, and 
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preoccupation/anticipation (Koob and Volkow, 2016). Notably, virtually all drugs of abuse 

augment dopaminergic transmission in the reward system (Wise and Koob, 2014). However, the 

detailed cellular pathways of addiction processes are still far from known. For example, cocaine 

acts primarily as an inhibitor of dopamine (DA) transporter (DAT) and results in DA accumulation 

in the synapses of DA neurons (Shimada, et al., 1991; Volkow, et al., 1997). However, it has been 

shown that DA accumulation per se is not sufficient to account for the rewarding process 

associated with cocaine addiction; serotonin (5-HT) and noradrenaline/norepinephrine (NE) also 

play important roles (Rocha, et al., 1998; Sora, et al., 1998). Another example is ketamine, a 

nonselective antagonist for N-methyl-d-aspartate (NMDA) receptor (NMDAR), notably most 

effective in the amygdala and hippocampal regions of neurons (Collingridge, et al., 1983). In 

addition to its primary action, ketamine affects a number of other neurotransmitter receptors, 

including sigma-1 (Mendelsohn, et al., 1985) substance P (Okamoto, et al., 2003), opioid 

(Hustveit, et al., 1995), muscarinic acetylcholine (mACh) (Hirota, et al., 2002), nicotinic 

acetylcholine (nACh) (Coates and Flood, 2001), serotonin (Kapur and Seeman, 2002), and γ-

aminobutyric acid (GABA) receptors (Hevers, et al., 2008). The promiscuity of drugs of abuse 

brings an additional layer of complexity, which prevents the development of efficient treatment 

against drug addiction.   

In recent years there has been significant progress in the characterization of 

drug/target/pathway relations driven by the accumulation of drug-target interactions and pathways 

data, as well as the development of ML, in silico genomics, chemogenomics and QSP tools. 

Several innovative studies started to provide valuable information on substance abuse targets and 

pathways. For example, Li et al. curated 396 drug abuse related genes from the literature and 

identified five common pathways underlying the reward and addiction actions of cocaine, alcohol, 



 99 

opioids and nicotine (Li, et al., 2008). Hu et al. analyzed the genes related to nicotine addiction via 

a pathway and network-based approach (Hu, et al., 2018). Biernacka et al. performed genome-

wide analysis on 1165 alcohol-dependence cases and identified two pathways associated with 

alcohol dependence (Biernacka, et al., 2013). Xie et al. generated chemogenomics knowledgebases 

focused on G-protein coupled receptors (GPCRs) related to drugs of abuse in general (Xie, et al., 

2014), and cannabinoids in particular (Xie, et al., 2016). Notably, these studies have shed light on 

selected categories or subgroups of drugs. There is a need to understand the intricate couplings 

between multiple pathways implicated in the cellular response to drugs of abuse, identify 

mechanisms common to various categories of drugs while distinguishing those unique to selected 

categories.  

We undertake here such a systems-level approach using a dataset composed of six different 

categories of drugs of abuse. Following a QSP approach proposed earlier (Stern, et al., 2016), we 

provide a comprehensive, unbiased glimpse of the complex mechanisms implicated in addiction. 

Specifically, as shown in Figure 3.16, a set of 50 drugs of abuse with a diversity in chemical 

structures and pharmacological actions were collected as probes, and the known targets of these 

drugs as well as the targets predicted using our PMF method (Cobanoglu, et al., 2013) were 

analyzed to infer biological pathways associated with drug addiction. Our analysis yielded 142 

known and 48 predicted targets and 173 pathways permitting us to identify both generic 

mechanisms regulating the responses to drug abuse as well as specific mechanisms associated with 

selected categories, which could both facilitate the development of auxiliary agents for treatment 

of addiction.  
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Figure 3.16 Workflow of the QSP analysis 

(A) 50 drugs of abuse with a diversity of chemical structures and pharmacological actions were collected as probes. 

(B) 142 known targets of these drugs were identified through drug-target interaction database DrugBank and chemical-

protein interaction database STITCH. (C) 48 predicted targets were predicted using our PMF method (Cobanoglu, 

et al., 2013). (D) 173 human pathways were inferred from the KEGG pathways database by mapping the known 

and predicted targets. (E,F) The pathways were grouped into 5 clusters. The functioning of identified targets and 

pathways and their involvement in drug addiction were comprehensively examined. 

 

A key step in our approach is to identify the targets for drugs of abuse. There exists various 

drug-target interaction DBs, web servers and computational models, as summarized recently 

(Chen, et al., 2016). The drug-target interaction DBs utilized in this work are DrugBank (Wishart, 

et al., 2017) and STITCH (Szklarczyk, et al., 2016). DrugBank is a bioinformatics and 

cheminformatics resource that combines drug data with comprehensive target information. It is 

frequently updated, with the current version containing 10,562 drugs, 4,493 targets and 

corresponding 16,959 interactions. Since most of drugs of abuse are approved or withdrawn drugs, 

DrugBank is a good source for obtaining information on their interactions. STITCH, on the other 

hand, is much more extensive. It integrates chemical-protein interactions from experiments, other 

DBs, literature and predictions, resulting in data on 430,000 chemicals and 9,643,763 proteins 
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across 2,031 genomes. We have used the subset of human protein-chemicals data supported by 

experimental evidence. The method of approach adopted here is an important advance over our 

original PMF-based ML methodology for predicting drug-target interactions (Cobanoglu, et al., 

2013).  First, the approach originally developed for mining DrugBank has been extended to 

analyzing the STITCH DB, the content of which is 2-3 orders of magnitude larger than DrugBank 

(based on the respective numbers of interactions). Second, the information on predicted drug-target 

associations is complemented by pathway data on humans inferred from the KEGG pathway DB 

(December 2017 version) (Kanehisa, et al., 2017) upon pathway enrichment analysis of known 

and predicted targets. Third, the outputs are subjected to extensive analyses to detect recurrent 

patterns and formulate new hypotheses for preventive or therapeutic strategies against drug abuse. 

3.2.2 Results 

3.2.2.1 Functional similarity of drugs of abuse does not imply structural similarity, 

consistent with the multiplicity of their actions 

Figure 3.17 presents a quantitative analysis of the functional and structural diversity of the 

examined n = 50 drugs of abuse, and the similarities among the m = 142 known targets of these 

addictive drugs. The n × n maps in Figure 3.17A,B display the drug-drug pairwise 

distances/dissimilarities based on their 2D fingerprints (Figure 3.17A), and their interaction 

patterns with their targets. Figure 3.17C-D display the corresponding dendrograms. The drugs are 

indexed and color-coded as in Appendix Appendix B.1 and Appendix Appendix B.2. As 

expected, drugs belonging to the same functional category (same color) exhibit more similar 

interaction patterns (Figure 3.17D). However, we also note outliers, such as cocaine lying among 

opioids, as opposed to its categorization as a CNS stimulant, or promethazine, a CNS depressant, 
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lying among hallucinogens (shown by arrows). The peculiar behavior of cocaine is consistent with 

its high promiscuity (see Figure 3.18A for the number of targets associated with each examined 

drug). This type of promiscuity becomes even more apparent when the drugs are organized based 

on their structure (or 2D fingerprints; see section Materials and Methods) as may be seen in Figure 

3.17A. For example, opioids (cyan labels/arc; clustered together in Figure 3.17B,D based on their 

interactions) are now distributed in two or more branches of the structure-based dendrogram in 

Figure 3.17C; likewise, CNS depressants (blue) and cannabinoids (light brown), grouped each as 

a single cluster in target-based dendrograms in Figure 3.17D, are now distributed into two or more 

clusters in Figure 3.17C. 
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Figure 3.17 Dataset of 50 drugs of abuse: structure and interaction similarities, and classification of their 

targets 

(A–D) Drug-drug distance maps for the studied 50 addictive drugs based on (A) 2D structure fingerprints and (B) 

interaction patterns with targets using the correlation cosines between their target vectors (see Materials and Methods), 

and corresponding dendrograms (C,D). The indices of drugs of abuse in (A,B) follow the same order as those used in 

Appedix Appendix B.1. The drug labels in (C,D) are color-coded based on their categories: CNS stimulants (green), 

CNS depressants (blue), opioids (cyan), cannabinoids (light brown), anabolic steroids (black) and hallucinogens 

(magenta). Note that the drugs of abuse in the same category do not necessarily show structural similarities nor similar 

interaction pattern with targets. (E) Pairwise distance map for the 142 known targets based on their interaction patterns 

with the 50 drugs. The indices in (E) follows the same order as those listed clockwise in the dendrogram (F). The tree 

maps in (C,D,F) are generated based on the respective distances values in the (A,B,E). 
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Figure 3.18 Promiscuity of drugs of abuse and their targets, and major families of proteins targeted by drugs 

of abuse 

Number of known (gray) and predicted (white) interactions are shown by bars for (A) Drugs of abuse and (B) their 

targets. The examined set consists of 50 drugs of abuse and a total of 142 known and 48 predicted targets, involved in 

445 (known) and 161 (predicted) interactions. (A) displays the number of interactions known or predicted for all 50 

drugs. (B) Displays the results for the targets that interact with at least 4 known drugs (36 targets). The colors used 
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for names of drugs and targets are same as those used in Figure 3.17. (C) Displays the distribution of families of 

proteins targeted by drugs of abuse. 

 

Overall these results suggest that the functional categorization of the drugs does not 

necessarily comply with their structural characteristics. The similar functionality presumably 

originates from targeting similar pathways, but the difference in the structure suggests that either 

their targets, or the binding sites on the same target, are different; or the binding is not selective 

enough such that multiple drugs can bind the same site. Consequently, a diversity of pathways or 

a multiplicity of cellular responses are triggered by the use and abuse of these drugs. 

3.2.2.2 The Selected Drugs and Identified Targets Are Highly Diverse and Promiscuous 

We evaluated the similarities between proteins targeted by drugs of abuse, based on their 

interaction patterns with the studied drugs of abuse. Figure 3.17E-F display the respective target-

target distances, and corresponding dendrogram. We discern several groups of targets clustered 

together in consistency with their biological functions. For example, practically all GABA receptor 

subtypes (brown) are clustered together. This large cluster also includes the riboflavin transporter 

2A (SLC52A2), which may be required for GABA release (Tritsch, et al., 2012). On the other 

hand, the different subtypes of serotonin (or 5-hydroxytryptamine, 5-HT) receptors (5HTRs) 

participate in distinct clusters pointing to the specificity of different subtypes vis-à-vis different 

drugs of abuse (labeled in Figure 3.17F). 

The large majority of neurotransmitter transporters, such as Na+/Cl−-dependent GABA 

transporters (SLC6A1) and glycine transporter (SLC6A9) are in the same cluster (pink, labeled). 

Acetylcholine receptors also lie close to (or are even interspersed among) Na+/Cl−-dependent 
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neurotransmitter transporters, presumably due to shared drugs such as cocaine. However, the three 

transporters playing a crucial role in developing drug addiction, DAT, NE transporter (NET) and 

serotonin transporter (SERT) (labeled SLC6A2: NET, SLC6A3: DAT, SLC6A4: SERT) are 

distinguished by from all other neurotransmitter transporters as a completely disjoint group. The 

corresponding branch of the dendrogram (highlighted by the yellow circle) also includes vesicular 

amino acid transporters and trace amine-associated receptor 1 (TAAR1) known to interact with 

these transporters (Miller, 2011). We also note in the same branch two seemingly unrelated targets: 

flavin monoamine oxidase which draws attention to the role of oxidative events; and α2-adrenergic 

receptor subtypes A-C, which uses NE as a chemical messenger for mediating stimulant effects 

such as sensitization and reinstatement of drug seeking, and adenylate cyclase as another 

messenger to regulate cAMP levels (Sofuoglu and Sewell, 2009). 

We identified 445 known interactions between these 50 drugs and 142 targets. We observe 

an average of 8.9 interactions per drug and 3.1 interactions per target. There are 23 promiscuous 

drugs that target at least 10 proteins as shown in Figure 3.18A. Cocaine, the most promiscuous 

psychostimulant, interacts with 45 known, and 3 predicted targets. It is known that cocaine binds 

DAT to lock it in the outward-facing state (OFS) and block the reuptake of DA. It similarly 

antagonizes SERT and NET (Heikkila, et al., 1975; Sora, et al., 1998), and also affects muscarinic 

acetylcholine receptors (mAChRs) M1 and M2 (Williams and Adinoff, 2008). Our PMF model 

also predicted a potential interaction between cocaine and M5. While this interaction is not listed 

in current DBs, there is experimental evidence suggesting that muscarinic AChR M5 plays an 

important role in reinforcing the effects of cocaine (Fink-Jensen, et al., 2003), in support of the 

PMF model prediction. 
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The PMF model enables us to predict novel targets. For example, anabolic steroid 

nandrolone has only two known interactions, and cannabinoid cannabichromene has one. 

However, 10 new targets were predicted with high confidence scores for each of them (Figure 

3.19A). This is due to the data available in STITCH DB, which offers a large training dataset that 

enhances the performance of our ML approach. Overall, 89 new interactions were predicted for 

known targets, and 42 novel targets were predicted with 72 interactions. Figure 3.18C displays 

the distribution of all targets among different protein families. As will be further elaborated below, 

among the newly identified drug-target pairs, nandrolone-MAPK14 (mitogen-activated protein 

kinase 14, also known as p38α) and canabichromene-IKBKB (inhibitor of NFκ-B kinase subunit 

β) play a role in regulating mTORC1 signaling, which will be shown to be a potential effector of 

drug addiction. 
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Figure 3.19 Prediction of new targets for known drugs of abuse 

(A) Drug-target interactions are shown for three drugs of abuse, cocaine, cannabichromene and nandrolone. The colors 

of the drug nodes are consistent with the label colors in Figure 3.17C; the diamond nodes represent targets, the color 

of the target nodes is consistent with the label colors in Figure 3.17F; diamonds nodes with red borders represent 

predicted targets, diamond nodes without borders are the known targets; blue edges are known interactions and red 

edges are predicted interactions. Note that the norephinephrine transporter (NET/SLC6A2) and dopamine transporter 

(DAT/SLC6A3) are shared between cocaine and cannabichromene. Corticotropin-releasing factor receptor 1 

(CRHR1) was predicted to be a new target shared between cannabichromene and nandrolone. (B) Drug-target 

interactions are shown for opioid receptors. Green diamonds are opioid receptors (OPRs): OPRM1, OPRD1 and 

OPRK1; 12 opioids interact with three OPRs either by existing evidence or prediction; hallucinogens ketamine and 
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dextromethorphan also interact with three OPRs; a novel interaction between OPRM1 and the CNS stimulant 

methylphenidate was predicted. 

 

Turning to targets, three opioid receptors (OPRM1, OPRD1, and OPRL1) exhibit the 

highest level of promiscuity (Figure 3.19B). The μ-type opioid receptor (OPRM1) interacts with 

14 known drugs including all opioids as well as ketamine and dextromethorphan. We also 

predicted a novel interaction between OPRM1 and the CNS stimulant methylphenidate. This is 

consistent with experimental observations that methylphenidate upregulates OPRM1's activity in 

the reward circuitry in a mouse model (Zhu, et al., 2011). Furthermore, tissue-based transcriptome 

analysis (Uhlen, et al., 2015) shows that 69% of our 190 targets are expressed in the brain, and 49 

of them show elevated expression levels in the brain compared to other tissue types (Table 3.2). 

Among all the targets, NMDA receptor 1 (GRIN1) shows the highest elevated expression. It is 

also one of the top 5 enriched genes overall in the brain (Uhlen, et al., 2015). 
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Table 3.2 Enrichment of the 190 targets of addictive drugs in the brain and others 

Category(a) Count Ref(b) ER(c) Targets(d) 

Elevated in 
brain 

49 1460 3.4% 

HTR5A; GABRB1; GRIA2; GABRG2; GABRG1; CHRNB2; 
GRIN2B; HTR2A; HTR2C; SLC6A17; GABRA5; GABRA4; 
GRIN1; GABRD; GABRA1; GABRB2; GABRA3; GABRA2; 
HRH3; P2RY12; SLC6A1; SLC6A7; OPRL1; CNR1; 
CACNA1A; GRIN3A; SLC6A11; SLC6A15; CHRM5; CHRM4; 
CHRM3; CHRM1; CHRNA4; OPRK1; GABRB3; ADRA1B; 
GRIK2; GABRQ; GRIN2C; GRIN2A; HTR3B; OPRD1; 
GRIN2D; HTR1A; CCKBR; GLP1R; DRD5; CRHR1; DRD1 

Moderately 
expressed in 
brain 

82 13058 0.6% 

SLC52A2; RAC2; PGRMC1; RAC1; CHRNB1; GABRP; CYBA; 
BRD4; PRCP; TSPO; SIGMAR1; ERBB2; NR3C1; HDAC6; 
S1PR1; EPHX2; MAPK14; PPARD; HMGCR; CTSS; CDK2; 
NR1H2; DPP7; NCF2; NCF1; SLC6A6; NCF4; GABRG3; 
SLC6A9; SLC6A8; ADRB2; BCHE; ADRB1; TMIGD3; 
ADRA2A; ADRA2C; HRH1; SLC6A13; SLC6A12; SLC6A16; 
CHRM2; CYBB; HTR7; AR; CARTPT; CHRNA2; POMC; 
ACHE; TACR1; ADRA1A; SLC6A20; ADRA1D; KCNH2; ALB; 
MAOB; MAOA; CHRNA7; HTR1B; GABRE; HTR1E; HTR1F; 
CHRNA5; PTGS2; IGF1R; PTGDR2; CRHR2; CALCRL; 
DHFR; PIK3CA; EGFR; THRB; IKBKB; PPARG; DHFR2; 
PTAFR; TYMS; SRD5A1; TRPV2; TRPV1; F10; P2RX7; 
CHEK1 

Not 
detected in 
brain 

59 5095 1.2% 

CHRNE; SLC6A2; SLC6A5; SLC6A4; GABRR1; CHRNA10; 
AOX1; GPR55; TRPA1; GABRA6; CNR2; CHRNB3; CHRNB4; 
ADRA2B; XDH; SLC6A19; SLC6A18; PGR; HTR2B; NPPB; 
SLC6A14; SCN11A; HTR3E; GRIN3B; OPRM1; CHRNG; 
CHRNA1; CHRNA3; CHRNA9; TAAR1; ORM1; ORM2; DRD2; 
DRD3; ADRB3; HTR3C; CHRND; HTR3A; HTR1D; SLC18A2; 
SLC18A1; SCN5A; VDR; ESR2; CCKAR; GCGR; TRPV4; 
CALCA; SLC6A3; GABRR2; GABRR3; HRH4; SCN10A; HTR6; 
HTR3D; CHRNA6; SLC18A3; GLRA1; DRD4 

Total 190 19613   

(a)Categories of targets (genes) are defined based on the mRNA expression levels of genes with the unit of Transcript 

Per Million (TPM). Elevated in brain: > 5-fold higher than other tissues (targets in bold are the most enriched in the 

brain); Moderately expressed in brain: at least 1 TPM in brain and other tissues; Not detected in brain: less than 1 

TPM in brain.  
(b)Number of genes in human proteome belong to each category. 
(c)Enrichment ratio (ER) is the ratio of between numbers in Count and Ref columns. The ER in category of “Elevated 

in brain” is ~5-fold higher than that in “Moderately expressed in brain”.  
(d)Predicted targets are colored in red. 
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Taken together, the 50 selected drugs of abuse and the 142 known and 48 novel targets we 

identified cover a diversity of biological functions, are involved in many cellular pathways, and 

are generally promiscuous. In order to reveal the common mechanisms that underlie the 

development and escalation of drug addiction and also distinguish the effects specific to selected 

drugs, we proceed now to a detailed pathway analysis, presented next. 

3.2.2.3 Pathway enrichment analysis reveals the major pathways implicated in various 

stages of addiction development 

Our QSP analysis yielded a total of 173 pathways, including 114 associated with the known 

targets of the examined dataset of drugs of abuse, and 59 associated with the predicted targets. 

These pathways can be grouped in five categories (Figure 3.20; Figure 3.21, Figure 3.22): 
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Figure 3.20 Results from pathway and target enrichments analysis 

Five broad categories of pathways are distinguished among those involving the targets of drug abuse: NT, synaptic 

neurotransmission pathways; SG, signal transduction pathways; DS, disease-associated pathways; ANS, autonomic 

nervous system-innervation pathways; and NP, neuroplasticity related pathways. (A) Numbers of pathways (red bars) 

and targets (gray bars) of drug abuse lying in the five categories, based on data available in DrugBank and STITCH. 

The pink and white stacked bars are the corresponding numbers for pathways and targets additionally predicted by 

PMF. (B) Overlaps between the target content of the five pathway categories. Note that all targets belonging to the 

NP category pathways are represented in the other four categories. 
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Figure 3.21 Pathways distinguished by the high propensity of targets of abused drugs 

The bars here represent the number of known (gray) and predicted (white) proteins targeted by drugs of abuse in each 

pathway. Up to 7 pathways have been included in each case. 
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Figure 3.22 Pathway and target enrichments in five functional categories and the overlap of targets in 

different categories 

(A) Numbers of drug addiction relative pathways (red) and targets (gray) of the five pathway categories (NT: 

neurotransmission related pathways; SG: signal transduction pathways; DS: disease pathways; ANS: ANS-innervation 

related pathways and NP: neuroplasticity related pathways) identified from known (left) targets and predicted targets 

(right) exclude those pathways and targets involved in known drug-target interactions, respectively. (B) Numbers of 

overlapped known (left) and predicted (right) targets between NT, DS and SG pathway categories. (C) Overlap results 

as (B) between NT, SG and NP pathway categories. (D) Overlap results as (B) between NT, ANS and NP pathway 

categories.  
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Synaptic Neurotransmission (NT). Six significantly enriched (with adjusted p-value < 

0.05) pathways are associated with synaptic neurotransmission: dopaminergic, serotonergic, 

glutamatergic, synaptic vesicle cycle, cholinergic, and GABAergic synapses pathways. Sixty-eight 

known targets and 7 predicted targets are involved in these pathways. This is consistent with the 

fact that neurotransmission plays a dominant role in the rewarding system and is key to drug 

addiction (Volkow, et al., 2003). 

Signal Transduction (SG). Forty-six intracellular signaling pathways were mapped by 92 

targets comprised of 66 known and 25 predicted targets. Notably, many of these pathways have 

been reported to play a role in mediating the effects of drugs of abuse. These include the top five 

[calcium signaling (Li, et al., 2008), retrograde endocannabinoid signaling (Mechoulam and 

Parker, 2013), cGMP-PKG signaling (Shen, et al., 2016), cAMP signaling (Philibin, et al., 2011), 

and Rap1 signaling (Cahill, et al., 2016)] as well as some pathways with relatively low enrichment 

score (i.e., 0.2 < adjusted p-value), such as TNF signaling (Zhu, et al., 2018), MAPK signaling 

(Sun, et al., 2016), PI3K-Akt signaling (Neasta, et al., 2011), NF-κB signaling (Nennig and 

Schank, 2017), and mTOR signaling (Neasta, et al., 2014).  We note that many receptors targeted 

by drugs of abuse take part in the KEGG neuroactive ligand-receptor interaction pathway. In the 

interest of focusing on intracellular signaling effects, we have not included these in the SG 

category; they are listed in the “Other Pathways”. 

Autonomic Nervous System-Innervation (ANS). We also identified 10 pathways 

regulating ANS-innervated systems such as endocrine secretion, taste transduction, and circadian 

entrainment. Recent evidences suggested drugs of abuse such as morphine (Al-Hasani and 

Bruchas, 2011) and cocaine (Moeller, et al., 1997; Prosser, et al., 2014) can influence ANS-
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innervated systems and may contribute to the withdrawn symptoms associated with drug addiction. 

Thirty-seven known and 9 predicted targets take part in these pathways. 

Neuroplasticity (NP). Eight enriched pathways with potential to alter the morphology of 

neurons, were found to be related to drug addiction. Among them, long-term potentiation (LTP) 

and long-term depression (LTD) are key to reward-related learning and addiction by modifying 

the fine tuning of dopaminergic firing (Jones and Bonci, 2005). Axon guidance pathway regulates 

the growth direction of neuron cells (Bahi and Dreyer, 2005). Regulation of actin cytoskeleton 

plays important role in morphological development and structural changes of neurons (Luo, 2002). 

Gap junctions connect neighboring neurons via intercellular channels that allow direct electrical 

communication (Belousov and Fontes, 2013) and regulate the efficiency of communication 

between electrical synapses (Belousov and Fontes, 2013). Nineteen known targets and 5 predicted 

targets are involved in these pathways. Insulin-like growth factor 1 receptor (IGF1R) is predicted 

as a target of drug triazolam. IGF1R is involved in LTP, adherens junction and focal adhesion 

pathways. It functions via canonical signaling pathways noted above in the SG category, such as 

the PI3K-Akt-mTOR and Ras-Raf-MAPK pathways (Lee, et al., 2016) and it plays important role 

in neuroplasticity (Lee, et al., 2016). We note that the NP group involves many pathways directly 

relevant to drug addiction (Bahi and Dreyer, 2005; Kalivas and Volkow, 2011; Moradi, et al., 

2013; Rothenfluh and Cowan, 2013). There is no target unique to this particular group of pathways 

(Figure 3.20B). However, the fact that the targets belonging to the NP group are also shared by 

other groups consolidates the significance of these targets. 

Disease-Associated Pathways (DS). Fifty enriched pathways mapped by 51 known and 

17 predicted targets are associated with diverse diseases in different organs such as brain, liver, 

and lung. They also cover various drug addiction mechanisms including: nicotine addiction, 
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morphine addiction, cocaine addiction, amphetamine addiction, and alcoholism. Additionally, 

there are “other pathways” such as those involved in cell migration, differentiation, immune 

responses, and metabolic events. 

Taken together, the enrichment analysis reveals five major categories of pathways that 

regulate the three stages of drug addiction cycle: (1) binge and intoxication, (2) withdrawal and 

negative affect, and (3) preoccupation and anticipation (or craving) (Koob and Volkow, 2010). 

Drugs of abuse directly affect neurotransmission pathways: they increase the accumulation of DA 

and other neurotransmitters in the synaptic and extrasynaptic regions, which in turn results in the 

hedonic feeling (stage 1) and triggers the DA reward system. Dysregulation of ANS-innervation 

pathways may cause negative effects and feelings (stage 2) and feedback to the CNS. Addictive 

drugs impair executive processes by disrupting the reward system (neurotransmission pathways) 

and imparting morphological changes via neuroplasticity pathways (e.g., LTD and LTP), which 

then result in craving (stage 3). Below, we present an in-depth analysis of the role of these 

pathways or their shared targets in drug addiction. 

3.2.2.4 Selected targets shared by dominant pathways emerge as common mediators of 

drug addiction 

We next analyzed the overlapping targets between the pathways in different functional 

categories. 

First, we note that eight pleiotropic proteins are shared by all five categories (at the 

intersection of the five Venn diagrams in Figure 3.20B): AMPA receptor (subtype GluA2; 

GRIA2), NMDA receptors 1 and 2A-D (designated as GRIN1, GRIN2A, GRIN2B, GRIN2C, and 

GRIN2D) and voltage-dependent calcium channel Cav2.1 (or CACNA1A) as well as the predicted 

target phosphatidylinositol 3-kinase class 1A catalytic subunit α (PIK3CA). 
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Second, 15 proteins are distinguished as targets of four of these major pathways: Serotonin 

receptors 5HTR2-A, -B and -C), GABAA receptors 1-6 (GABRA1- GABRA6), β-1 adrenergic 

receptor 1 (ADRB1), Ras-related C3 botulinum toxin substrate 1 (RAC1; member of Rho family 

of GTPases), mAChR M3 (CHRM3) and DA receptor D2 (DRD2), and two predicted targets - 

p38α (MAPK14) and DA receptor D1 (DRD1). 

AMPA receptor plays a crucial role in LTP and LTD, which are vital to neuroplasticity, 

memory and learning (Volkow, et al., 2016). Serotonin receptors, expressed in both the CNS and 

the peripheral nervous system (e.g., gastrointestinal tract), are responsible for anxiety, impulsivity, 

memory, mood, sleep, thermoregulation, blood pressure, gastrointestinal motility, and nausea 

(Pytliak, et al., 2011). They have been proposed to be therapeutic targets for treating cocaine use 

disorder (Howell and Cunningham, 2015). RAC1 is involved in five neuroplasticity pathways, 

including axon guidance, adherens junction and tight junction pathways, and 13 intracellular signal 

transduction pathways. It regulates neuroplasticity, as well as apoptosis and autophagy 

(Natsvlishvili, et al., 2015). DA receptor D2 is a target of 28 drugs of abuse (out of 50 examined 

here) and is involved in cAMP signaling, and gap junction pathways, in addition to dopaminergic 

signaling. It is implicated in reward mechanisms in the brain (Blum, et al., 1996) and the regulation 

of drug-seeking behaviors (Edwards, et al., 2007). Finally, PI3K turns out to be the most 

pleiotropic target among those targeted by drugs of abuse, being involved in 61 pathways identified 

here, including neuroplasticity pathways such as axon guidance, and several downstream signaling 

pathways such as PI3K-Akt, mTOR, Ras and Jak-STAT pathways. 

Overall, the above listed 23 proteins shared by at least four different groups of pathways 

are distinguished here as highly pleiotropic proteins involved in the large majority of pathway 

categories implicated in drug abuse. Most of them are ligand- or voltage-gated ion channels or 
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neurotransmitter receptors, mainly AMPAR, NMDAR, Cav2.1, mAChR, and serotonin and DA 

receptors. However, it is interesting to note the targets PI3K and p38α, not currently reported in 

DrugBank and STITCH, emerge as highly pleiotropic targets of the drugs of abuse. These are 

suggested by the current analysis to directly or indirectly affect addiction development and await 

future experimental validation. Finally, a number of proteins take part in specific drug-abuse-

related pathways and might serve as targets for selective treatments.  

3.2.2.5 Pathway Enrichment Highlights the Interference of Drugs of Abuse with Synaptic 

Neurotransmission 

It is broadly known that neurotransmitters such as DA, 5-HT, NE, endogenous opioids, 

ACh, endogenous cannabinoids, Glu, and GABA are implicated in drug addiction (Benarroch, 

2012; Everitt and Robbins, 2005; Parolaro and Rubino, 2008; Tomkins and Sellers, 2001). Our 

analysis also showed that the serotonergic synapse (adjusted p-value p∗i = 2.01E-18), GABAergic 

synapse (p∗i = 1.19E-17), cholinergic synapse (p∗i = 2.36E-07), dopaminergic synapse (p∗i = 1.66E-

06) and glutamatergic synapse (p∗i = 1.86E-03) pathways were significantly enriched. A total 

number of 34 drugs (across six different groups) target at least one of these pathways. However, 

the identification of a pathway does not necessarily mean that the drug directly affects that 

particular neurotransmitter transport/signaling. There may be indirect effects due to the crosstalk 

between synaptic signaling pathways. For example, the ionotropic glutamate receptors NMDAR 

and AMPAR are also the downstream mediators in the dopaminergic synapse pathway. Likewise, 

GABARs are downstream mediators in the serotonergic synapse pathway. 

 

In Figure 3.23, we highlight five major neurotransmission events that directly mediate 

addiction, and illustrate how eight drugs of abuse interfere with them. Despite the promiscuity of 
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the drugs of abuse, some selectively map onto a single synaptic neurotransmission pathway. For 

example, psilocin [a hallucinogen whose structure is similar to 5HT (Diaz, 1997)] interacts with 

several types of 5HTRs, regulating serotonergic synapse exclusively (see Figure 3.22). In contract, 

loperamide (not shown) affects all neurotransmission pathways by interacting with the voltage-

dependent P/Q-type calcium channel (VGCC), regulating calcium flux on synapses. Cocaine 

targets four of these synaptic neurotransmission events (serotonergic, GABAergic, cholinergic, 

and dopaminergic synapses), through its interactions with 5-HT3R, sodium- and chloride-

dependent GABA transporter (GAT), muscarinic (M1 and M2) and nicotinic AChRs, and DAT, 

respectively. Methadone affects three synaptic neurotransmissions, including serotonergic 

synapse, dopaminergic synapse, and glutamatergic synapse through the interactions with SERT, 

DAT, and glutamate receptors (NMDAR), respectively. 
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Figure 3.23 The impact of drugs of abuse on synaptic neurotransmission 

Five major neurotransmission events are highlighted, mediated by (counterclockwise, starting from top): GABA 

receptors and transporters, ionotropic glutamate receptors (NMDAR and AMPAR) and cation channels, serotonin 

(5HT) receptors (5-HTR) and transporters (SERT), muscarinic or nicotinic AChRs, and dopamine (DA) receptors and 

transporters. Vesicular monoamine transporters (VMAT) that translocate DA are also shown. Drugs affecting the 

different pathways are listed, color coded with their categories, as presented in Figure 3.17. Solid red arrows indicate 

a known drug-target interaction, dashed red arrows indicate predicted drug-target interactions. Other molecules shown 

in the diagram are: KA, kainate receptor; MAO, monoamine oxidase; HVA, homovanillate; 3-MT, 3-

methoxytyramine; MOR, mu-type opioid receptor; AChE, acetylcholinesterase; and 5-H1AA, 5-

hydroxyindoleacetate. 

 

It is worth noting that the current analysis helps us generate new hypotheses, yet to be 

experimentally validated, on the ways drugs of abuse affect neurotransmission. In addition to the 
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new role of the muscarinic AChR M5 suggested by the current analysis in section the selected 

drugs and identified targets are highly diverse and promiscuous, our PMF model suggested that 

cannabichromene, a cannabinoid whose primary target is the transient receptor (TRPA1), could 

interact with DAT and thus regulate dopaminergic transmission, which will require further 

examination. 

The above synaptic neurotransmission events act as upstream signaling modules that 

“sense” the early effects of drug abuse. In the next section, we focus on the downstream signaling 

events elicited by drug abuse. 

3.2.2.6 mTORC1 emerges as a potential downstream-effector activated by drugs abuse 

The calcium-, cAMP-, Rap1-, Ras-, AMPK-, ErbB-, MAPK-, and PI3K-Akt-signaling 

pathways in the SG category crosstalk with each other and form a unified signaling network. As 

shown in Figure 3.24, ligand-binding to GPCRs modulates the production of cAMP, which leads 

to the activation of Rap1. Activated Rap1 modules the Ca2+ signaling by inducing the production 

of inositol triphosphate (IP3) and also activates the PI3K-Akt signaling cascade. Stimulations of 

ErbB family of receptor tyrosine kinases (related to epidermal growth factor receptor EGFR) as 

well as insulin-like growth factor receptor IGF1R trigger both PI3K-Akt and MAPK signaling 

cascades (proteins colored blue in Figure 3.24). Notably all these pathways merge and regulate a 

group of downstream proteins (shown in dark yellow in Figure 3.24); and at the center of this 

cluster lies the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) which is likely to 

be synergistically regulated by all these merging pathways. 
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Figure 3.24 A unified signaling network mediates the effects of drugs of abuse 

Black arrows represent the activation, inhibition, and translocation events during signal transduction. Solid gray 

arrows represent the known drug-target interactions. Dashed gray arrows represent predicted drug-target interactions. 

The diagram illustrates the targets of several drugs of abuse belonging to different categories: loperamide, fentanyl, 

heroin, morphine, and methadone from opioids; midomafetamine, ketamine, dextromethorphan, LSD, and psilocin 

from hallucinogens; triazolam, diazepam, alprazolam, pentobarbital, eszopiclone, flunitrazepam, and zaleplon from 

CNS depressants; cannabichromene, 2-AG, cannabinol, and dronabinol from cannabinoids; methamphetamine, 

cocaine, AMPH, and phendimetrazine from CNS stimulants; and nandrolone from anabolic steroids. mTORC1 

emerges as a hub where the effects on several targets of addictive drugs appear to be consolidated to lead to cell death 

and/or protein synthesis in the CNS, and in particular, to AMPAR/PSD95 synthesis that induces morphological 

changes in the dendrites. 

 

mTORC1 is not only a master regulator of autophagy (Rabanal-Ruiz, et al., 2017), but also 

controls protein synthesis and transcription (Ma and Blenis, 2009). It has been reported to promote 

neuroadaptation following exposure to drugs of abuse including cocaine, alcohol, morphine and 
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Δ9-tetrahydrocannabinol (THC) (Neasta, et al., 2014). Our results lead to the hypothesis that 

mTORC1 may act as a universal effector of the cellular response to drug abuse at an advanced 

(preoccupation and anticipation, or craving) stage, controlling the synthesis of selected proteins 

and ensuing cell growth, which may result in persistent alterations in the dendritic morphology 

and neuronal circuitry. 

In Figure 3.24, selected interactions between drugs from different substance groups and 

their targets are highlighted using gray arrows. The figure illustrates that not only many known 

drug-target interactions, but also predicted ones involved in the unified signaling network. For 

example, our PMF model predicted that diazepam would interact with PI3K to influence mTORC1 

signaling (dashed gray arrows denote predictions). It has been reported that Ro5-4864, a 

benzodiazepine derivative of diazepam suppresses activation of PI3K (Yousefi, et al., 2013), 

which corroborates our prediction. We further predicted that cannabichromene may interact with 

IκB kinase β (IKKβ) to regulate mTORC1 by inhibiting TSC1/2. Interestingly, another 

cannabinoid, arachidonoyl ethanolamine, is known to directly inhibits IKKβ (Sancho, et al., 2003). 

Taken together, our results suggest a unified network that underlies the development of drugs 

addiction, in which mTORC1 appears to play a key effector role. 

3.2.3 Discussion 

In the present study we focused on the targets and pathways affected by drugs of abuse, 

toward gaining a systems-level understanding of key players and dominant interactions that control 

the response to drug abuse and the development of drug addiction. Using ML methods, we focused 

on 50 drugs of abuse that form a chemically and functionally diverse set, and analyzed their 142 

targets as well as the corresponding cellular pathways and their crosstalk. Our analysis identified: 
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(i) 48 additional proteins targeted by drugs of abuse, including PIK3CA, IKBKB, EGFR, 

and IGF1R, are shown to be key mediators of downstream effects of drug abuse. 

(ii) 161 new interactions between the drugs of abuse and the known and predicted targets, 

including those between cocaine and M5, methylphenidate and OPRM1, and diazepam and PI3K, 

not reported in existing DBs, but supported by prior experiments, and others (e.g., the interactions 

of cannabichromene with IKBKB and DAT) that await experimental validation. 

(iii) A dataset of 70 pathways, composed of 6 neurotransmission pathways, 46 signal 

transduction pathways, 8 neuroplasticity pathways and 10 autonomic nervous system innervation 

pathways which are proposed to govern different stages of the molecular, cellular and tissue level 

responses to drug abuse and in addiction development. 

Overall, our comprehensive analysis led to new hypotheses on drug-target interactions and 

signaling and regulation mechanism elicited by drugs of abuse in general, along with those on 

selected targets and pathways for specific drugs. Below we elaborate on the biological and 

biomedical implications of these findings. 

3.2.3.1 Persistent restructuring in neuronal systems as a feature underlying drug addiction 

Enriched pathways in the neuroplasticity category include gap junction, LTP, LDP, 

adherens junction, regulation of actin cytoskeleton, focal adhesion, axon guidance, and tight 

junction. These are responsible for the changes in the morphology of dendrites. For instance, DA 

regulates excitatory synaptic plasticity by modulating the strength and size of synapses through 

LTP and LTD (De Roo, et al., 2008; Volkow and Morales, 2015). The restructuring of dendritic 

spines involves the rearrangements of cytoskeleton and actin-myosin (Volkow and Morales, 2015). 

The axon guidance molecules guide the direction of neuronal growth. 
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Drugs of abuse can induce the changes in CNS through these pathways. For example, 

chronic exposure to cocaine increases dendritic spine density in medium spiny neurons (Russo, et 

al., 2010). The disruption in axon guidance pathway and alteration in synaptic geometry can result 

in drug-related plasticity (Bahi and Dreyer, 2005). The persistent restructuring in the CNS caused 

by drugs of abuse is responsible for long-term behavioral plasticity driving addiction (Russo, et 

al., 2010; Volkow, et al., 2003; Volkow and Morales, 2015). As will be further discussed below, 

mTORC1 plays a central role in the synthesis of new proteins (e.g., AMPARs) and thereby 

neuronal (dendrites) growth, alteration of the synaptic geometry and therefore rewiring of the 

neuronal circuitry. 

3.2.3.2 ANS may mediate the negative-reinforcement of drug addiction 

The current study further points to pathways regulating the ANS-innervated systems. As 

the NP pathways influence the neuroplasticity in the ANS, we hypothesize that drugs of abuse 

might induce a persistent restructuring in the ANS as well. The drug-related plasticity in ANS may 

lead to the dysregulation of ANS-innervated systems and cause negative effects and feelings 

during the second stage of drug addiction. Drug addiction is well known as a brain disease (Volkow 

and Morales, 2015). However, many drugs of abuse can disrupt the activity of ANS and cause 

disorders in ANS-innervated systems (Al-Hasani and Bruchas, 2011; Huang, 2017). For example, 

opioids (e.g., morphine) alter neuronal excitability and neurotransmission in the ANS (Wood and 

Galligan, 2004), and induce disorders in gastrointestinal system, smooth muscle, skin, 

cardiovascular, and immune system (Al-Hasani and Bruchas, 2011). Cannabinoids (e.g., THC) 

modulate the exocytotic NE release in ANS-innervated organs through presynaptic cannabinoid 

receptors (Ishac, et al., 1996). 
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The pathways we identified in the ANS category regulate insulin secretion, gastric acid 

secretion, vascular smooth muscle contraction, pancreatic secretion, salivary secretion, and renin 

secretion. Their dysfunction may be associated with the autonomic withdrawal syndrome, such as 

thermoregulatory disorder (chills and sweats) and gastrointestinal upset (abdominal cramps and 

diarrhea), which has been observed in drug/substance users (Wise and Koob, 2014). In addition, 

the stress and depression caused by these negative effects may be part of the negative 

reinforcement of drug addiction (Koob and Le Moal, 2001; Self and Nestler, 1995). In other words, 

the drug induced ANS disorders can feedback to CNS and mediate the negative reinforcement. 

Compared to the structural changes in CNS, the disorder and persistent restructuring in ANS is 

less studied and it could be a future direction in the study of development of drug addiction and 

related diseases. 

3.2.3.3 mTORC1 appears as a key mediator of cellular morphological changes elicited in 

response to continued drug abuse 

The functioning and regulation of mTOR signaling has been elucidated over the past two 

decades. It became clear that mTORC1 plays a crucial role in regulating diverse cellular processes 

including protein synthesis, autophagy, lipid metabolism, and mitochondrial biogenesis (Saxton 

and Sabatini, 2017). In the brain, mTORC1 coordinates neural development, circuit formation, 

synaptic plasticity, and long-term memory (Lipton and Sahin, 2014). The dysregulation of 

mTORC1 pathway is associated with many neurodevelopmental and neurodegenerative diseases 

such as Parkinson's disease and Alzheimer's disease. mTORC1 has been noted to be an important 

mediator of the development of drug addiction and relapse vulnerability (Dayas, et al., 2012). 

Accumulating evidences show that pharmacological inhibition of mTORC1 (often through 

rapamycin treatment) can prevent sensitization of methamphetamine-induced place preference 
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(Narita, et al., 2005), reduce craving in heroin addicts (Shi, et al., 2009), attenuate the expression 

of alcohol-induced locomotor sensitization (Neasta, et al., 2010), suppress the expression of 

cocaine-induced place preference (Bailey, et al., 2012), protect against the expression of drug-

seeking and relapse by reducing AMPAR (GluA1) and CaMKII levels (James, et al., 2014), and 

inhibit reconsolidation of morphine-associated memories (Lin, et al., 2014). 

Our unbiased computational analysis based on a diverse set of 50 drugs of abuse supports 

the hypothesis that mTORC1 may act as a universal effector or controller of neuroadaptations 

induced by drugs of abuse (Neasta, et al., 2014). The major signal transduction pathways we 

identified that involve targets of drugs of abuse interconnect and converge to the mTORC1 

signaling cascade (Figure 3.24). Most drugs of abuse in our list target upstream regulators of 

mTORC1, including membrane receptors (e.g., GPCRs, RTKs and NMDAR), kinases (e.g., PI3K, 

p38α, and IKKβ), and ion channels (e.g., CaV2.1 and TRPV2). Notably, the impact of some of 

these known or predicted targets has been experimentally confirmed. For example, blockade of the 

known target NMDAR using MK801 reduces the amnesic-like effects of cannabinoid THC 

(Puighermanal, et al., 2009). Likewise, inhibition of PI3K (a predicted target) by LY294002 

suppresses morphine-induced place preference in rats (Cui, et al., 2010) and the expression of 

cocaine-sensitization (Izzo, et al., 2002). Our results thus provide a pool of candidate targets 

implicated in cellular responses to addictive drugs, which await to be consolidated by further tests. 

The downstream effectors of mTORC1, which specifically mediate drug behavioral 

plasticity is far from known. mTORC1 can mediate the activation of S6Ks and 4E-BPs, which 

leads to increased production of proteins required for synaptic plasticity including AMPAR and 

PSD-95 (Dayas, et al., 2012). EM reconstruction of hippocampal neuropil showed the variability 

in the size and shape of dendrites depending on synaptic activity (Bartol, et al., 2015), which in 
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turn correlates with information storage. Recently studies have revealed that Atg5- and Atg7-

dependent autophagy in dopaminergic neurons regulates cellular and behavioral responses to 

morphine (Su, et al., 2017). Cocaine exposure results in ER stress-induced and mTORC1-

dependent autophagy (Guo, et al., 2015). Fentanyl induces autophagy via activation of 

ROS/MAPK pathway (Yao, et al., 2016). Methamphetamine induces autophagy through the κ-

opioid receptor (Ma, et al., 2014). These observations are consistent with the currently inferred 

role of mTORC1 as a downstream effector of cellular responses to drug addiction. 

3.2.3.4 Drug repurposing opportunities for combating drug addiction 

Autophagy modulating drugs have been shown to have therapeutic effects against liver and 

lung diseases. The signaling network presented in Figure 3.24 involves many targets of such 

drugs. For instance, carbamazepine affects IP3 production and enhances autophagy via calcium-

AMPK-mTORC1 pathway (Hidvegi, et al., 2010). It has been identified as a potential drug for 

treating α1-antitrypsin deficiency, hepatic fibrosis, and lung proteinopathy (Hidvegi, et al., 2010; 

Hidvegi, et al., 2015). Rapamycin is a potential drug for lung disease such as fibrosis 

(Abdulrahman, et al., 2011; Patel, et al., 2012). Other liver and lung drugs which facilitate the 

removal of aggregates by promoting autophagy may also affect drug-related neurodegenerative 

disorders. Table 3.3 summarizes 15 autophagy-modulating drugs for liver and lung diseases. 

Target identification and pathway analysis of this subset of drugs using the same protocol as those 

adopted for the 50 drugs of abuse indeed confirmed that drugs of abuse and liver/lung drugs share 

many common pathways (Figure 3.25). Notably, among those pathways, neuroactive ligand-

receptor interactions, calcium signaling, and serotonergic synapse pathways are among the top 10 

enriched pathways of both drugs of abuse and liver/lung drugs. Amphetamine addiction and 

alcoholism are also enriched by targets of liver/lung drugs. Thus, an interesting future direction is 
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to examine whether autophagy modulating drugs for liver and lung diseases could be repurposed, 

if necessary, by suitable refinements to increase their selectivity, for treating drug addiction. 

  



 131 

Table 3.3 Fifteen drugs for liver and lung diseases 

No. Drug name 
DrugBank 

ID 
Pubchem 

ID 
Disease Reference 

1 Carbamazepine DB00564 2554 
α1-antitrypsin deficiency; 

hepatic fibrosis; lung 
Proteinopathy 

(Hidvegi, et al., 2010; 

Hidvegi, et al., 2015) 

2 Fluphenazine DB00623 3372 
α1-antitrypsin deficiency; 

lung Proteinopathy 

(Hidvegi, et al., 2015; Li, et 

al., 2014) 

3 Cantharidin NA 5944 α1-antitrypsin deficiency (Krichevsky, et al., 2010) 

4 Pimozide DB01100 16362 α1-antitrypsin deficiency (Park, et al., 2010) 

5 Tamoxifen DB00675 2733525 α1-antitrypsin deficiency (de Mol, et al., 2010) 

6 Phenylbutyric Acid NA 4775 α1-antitrypsin deficiency (Burrows, et al., 2000) 

7 Vorinostat NA 5311 α1-antitrypsin deficiency (Bouchecareilh, et al., 2012) 

8 Glycerol DB09462 753 α1-antitrypsin deficiency (Burrows, et al., 2000) 

9 Fluspirilene DB04842 3396 α1-antitrypsin deficiency (O'Reilly, et al., 2014) 

10 Ezetimibe NA 150311 α1-antitrypsin deficiency (Yamamura, et al., 2014) 

11 Gemfibrozil DB01241 3463 COPD-emphysema (Bodas, et al., 2017) 

12 Fisetin NA 5281614 COPD-emphysema (Bodas, et al., 2017) 

13 Cysteamine NA 6058 COPD-emphysema 
(Bodas, et al., 2016; 

Shivalingappa, et al., 2016) 

14 S-Nitrosoglutathione NA 104858 COPD-emphysema (Bodas, et al., 2017) 

15 Rapamycin NA 5284616 lung fibrosis; cystic fibrosis 

(Abdulrahman, et al., 2011; 
Patel, et al., 2012) 

(Kouvelas, et al., 2008) 
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Figure 3.25 The enriched overlapping pathways for lung/liver drugs and drugs of abuse 

Enrichment p-values based on known (gray) targets or merged (lightgray) targets (including both known and predicted 

targets) are calculated separately for each pathway, the pathways are ranked by the p-value calculated by merged 

targets of lung/liver drugs. There are 10 overlapping pathways with enrichment score (-log10(p-value)) over 2, 

between the pathways enriched by the examined sets of lung/liver drugs and drugs of abuse. Note that the neuroactive 

ligand-receptor interaction pathway, which has the highest enrichment score (known: 16.8, merged: 6.5 for lung/liver 

drugs; known: 104.6, merged: 93.05 for drugs of abuse) is not shown for visualization purpose. 

3.2.4 Materials and Methods 

3.2.4.1 Selection of drugs of abuse and their known targets 

We selected as input 50 drugs commonly known as drugs of abuse using two basic criteria: 

(i) diversity in terms of structure and mode of action, and (ii) availability of information on at least 

one human target protein in DrugBank v5 or STITCH v5. The selected drugs represent six different 

categories: CNS stimulants, CNS depressants, opioids, cannabinoids, anabolic steroids, and 

hallucinogens (see Appendix Appendix B.1 and Appendix Appendix B.2). 
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A dataset of 142 known targets were retrieved from DrugBank and STITCH DBs for these 

50 drugs. The list includes all targets reported for these drugs in DrugBank, and those with high 

confidence score, based on experiments, reported in STITCH. Each chemical-target interaction is 

annotated with five confidence scores in STITCH: experimental, DB, text-mining, prediction, and 

a combination score of the previous four, each ranging from 0 to 1. We selected the human protein 

targets with experimental confidence scores of 0.4 or higher, ending up with 142 targets and 445 

drug-target interactions. 

Structure-based and interaction-pattern-based similarities between pairs of drugs were 

evaluated using two different criteria. The former was based on structure-based distance calculated 

as the Tanimoto distance between their 2D structure fingerprints. Tanimoto distances were 

evaluated using Python RDKit suite (RDKit: Open-Source Cheminformatics Software. 

https://www.rdkit.org/). Similarities based on their interactions patterns with known targets were 

evaluated by evaluating target-based distances. To this aim, we represented each drug i by a 142-

dimensional “target vector” di, the entries of which represent the known targets and are assigned 

values of 0 or 1, depending on the existence/observation of an interaction between the 

corresponding target and drug i. Interaction-pattern similarities between drug pairs i and j were 

evaluated by calculating the correlation cosine cos(di . dj) = (di . dj)/(|di| |dj|) between these vectors, 

and the corresponding cosine distance is [1–cos(di . dj)]. Likewise, ligand-based distances between 

target pairs i and j were evaluated as the cosine distance between the 50-dimensional vectors ti and 

tj corresponding to the two targets, the entries of which are 0 or 1 depending on absence or 

existence of an interaction between the target and the corresponding drug of abuse. 
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3.2.4.2 Probabilistic matrix factorization (PMF) based drug-target interaction prediction 

Using this PMF based ML approach (Cobanoglu, et al., 2013; Cobanoglu, et al., 2015), we 

trained two PMF models, one based on 11,681 drug-target interactions between 6,640 drugs and 

2,255 targets from DrugBank v5, and the other based on 8,579,843 chemical-target interactions 

for 311,507 chemicals and 9,457 targets from STITCH v5 human experimentally confirmed 

subset, respectively. We evaluated the confidence scores in the range [0, 1] for each predicted 

drug-target interaction, in both cases. We selected the interactions with confidence scores higher 

than 0.7 within the top 10 predicted targets for each input drug. This led to 161 novel interactions 

identified between 27 out of the 50 input drugs and 89 targets (composed of 41 known and 48 

novel targets). 

3.2.4.3 Pathway Enrichment Analysis 

We mapped the 50 drugs with 142 known and 48 predicted targets to the KEGG pathways 

(version December 2017, homo sapiens). 114 and 173 pathways were mapped by 142 known 

targets and all targets (both known and predicted) respectively. In order to prioritize enriched 

pathways, we calculated the hypergeometric p-values based on the targets as the enrichment score 

as described in Chapter 1.5.6.  

The source code used for generating the results reported in this study is available at 

https://github.com/Fengithub/DA. 
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3.3 Non-Alcoholic Fatty Liver Disease (NAFLD): Identification of Repurposable Drugs 

3.3.1 Introduction 

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of progressive disease 

stages from simple steatosis (fatty liver) termed NAFL to a more serious condition, nonalcoholic 

steatohepatitis (NASH), involving inflammation, hepatocyte damage (i.e., ballooning) and most 

often pericellular fibrosis (Brunt, et al., 2015; Satapathy and Sanyal, 2015). NASH itself is a risk 

factor for cirrhosis and end-stage liver disease requiring liver transplantation and for hepatocellular 

carcinoma (HCC) that insidiously can progress asymptomatically before cirrhosis is diagnosed 

(Loomba and Sanyal, 2013; Mikolasevic, et al., 2018). The prevalence of NAFLD is 

approximately 25% across adult populations world-wide with the proportion of those with NASH 

predicted to increase over the next decade (Demir, et al., 2015). Despite the major public health 

problem NAFLD presents and the economic burden it exacts, no single drug has yet been 

specifically approved for NAFLD (Polyzos, et al., 2020). The challenges facing this unmet need 

appear to be rooted in the complexity and intrinsic heterogeneity of NAFLD that has variable rates 

of progression and clinical manifestations across individual patients, with most patients 

progressing to advanced fibrosis over decades in contrast to approximately 20% who progress 
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much more rapidly (McPherson, et al., 2015; Sanyal, 2019).This heterogeneity appears to reflect 

the complex pathogenesis of NAFLD involving diverse but convergent signaling cues from the 

environment, the microbiome, metabolism, comorbidities, and genetic risk factors (Friedman, et 

al., 2018). 

Therefore to more accurately predict disease progression and response to emerging 

therapies for NAFLD, the research community has adopted systems-based approaches such as 

QSP that can comprehensively and unbiasedly integrate molecular, cell, and clinical data to 

generate predictive models of disease progression (Mardinoglu, et al., 2018). These can then be 

iteratively tested in experimental models to identify emergent disease-specific networks and 

predictive biomarkers mechanistically linked to NAFLD pathogenesis (Taylor, et al., 2019; 

Wooden, et al., 2017). An overarching goal of implementing a QSP approach for addressing 

NAFLD heterogeneity is to identify NAFLD subtypes having distinguishable mechanisms of 

disease progression. It is hypothesized that this disease subclassification that has remained elusive 

thus far, will enable precision medicine, leading to therapeutic advances optimized for individual 

patients (Stern, et al., 2016). The integration of molecular, cell, and clinical data has begun to 

generate molecular signatures for NAFLD progression (Middleton, et al., 2018) but the 

experimental testing of predicted mechanistic hypotheses and therapeutic strategies has been 

limited by the availability of preclinical models that recapitulate critical aspects of the human 

disease (Mann, et al., 2016). For example, whereas steatosis can be recapitulated in murine models, 

fibrosis, a key clinical biomarker of NASH progression, is not generally observed (Hebbard and 

George, 2011). Furthermore, even if significant fibrosis was observed in animal models, it is 

unlikely that they would mimic the disease heterogeneity observed in the clinic. To meet the need 

for developing preclinical patient-specific NAFLD models we and others have developed MPS 
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that recapitulate critical aspects of normal acinus multicellular architecture and function 

(Edmondson, et al., 2014; Taylor, et al., 2019). When these systems are perfused with non-

esterified fatty acids, glucose, insulin, and inflammatory cytokines mimicking a metabolic 

syndrome milieu that promotes hepatic insulin resistance, clinically relevant NASH-like changes 

were observed (Feaver, et al., 2016; Kostrzewski, et al., 2020). These changes include increases in 

de novo lipogenesis, gluconeogenesis, oxidative and ER stress, production of inflammatory and 

fibrogenic cytokines accompanied by hepatocyte injury and enhanced stellate cell activation. 

Overall, human liver, biomimetic MPS appear to mirror key aspects of NAFLD progression and 

provide a model consistent with the conceptual framework that NAFLD represents the hepatic 

expression of the metabolic syndrome in the majority of patients (Lee-Montiel, et al., 2017; Li, et 

al., 2018; Vernetti, et al., 2017; Vernetti, et al., 2016). 

Herein, we describe the implementation of a QSP-based platform (Figure 3.26) that starts 

with the computational modeling of individual patient-derived hepatic RNAseq data encompassing 

a full spectrum of NAFLD disease states from simple steatosis, NASH, to cirrhosis (Gerhard, et 

al., 2018). Gene signatures specifically associated with NAFLD progression are derived and then 

approved and investigational drugs that are predicted to normalize these gene signatures are 

identified. These drugs, prioritized by independent but convergent criteria and serving as 

mechanistic probes with the potential to be repurposed for a NAFLD indication, are tested in the 

liver MPS to determine their predicted effects on gene expression and corresponding ability to halt 

or reverse NAFLD progression. 
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Figure 3.26 Overview of workflow used to predict drugs for NAFLD via clinical gene expression profiles 

Section 1 shows the steps (A-D) that were used to understand the system-level (genes, pathways) mechanism of 

NAFLD based on the clinical gene expression data of NAFLD cohort. (A) The approach starts with RNA-seq data 

derived from NAFLD patient liver samples from a representative cohort of the NAFLD spectrum. Raw gene 

expression data was first pseudo-aligned to the Ensembl v94 (Zerbino, et al., 2018) human transcriptome via 

Kallisto (Bray, et al., 2016). (B) The gene expression levels for each patient were mapped to MSigDB v7.0 C2 

KEGG (Liberzon, et al., 2011) pathways using gene set variation analysis (GSVA). The resulting patient x 

pathway matrix was clustered using hierarchal clustering, and three clusters were created by cutting the dendrogram 

at the 3rd level (see Figure 3.26 and Table 3.4). (C) Then, differentially expressed genes (DEGs) and differentially 

regulated pathways (DRPs) within each cluster comparison were identified. (D) These DRPs were categorized into 

different categories based on domain knowledge of KEGG pathways involved in NAFLD progression, termed 

NAFLD categories, DEGs mapped on each DRP were annotated with the corresponding category of that pathway, see 

Appendix Appendix C.1. In section 2, we used the results from section 1 to create representative gene signatures 

composed of genes which are responsible for driving disease progression, and predicted drugs with modulating effects 

on these gene signatures using CMap. (E) Using the results from step D, gene-sets of the up and down regulated DEGs 
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from four NAFLD related categories of three comparisons were generated as gene signatures, respectively, ending up 

with 12 gene signatures. (F) These gene signatures were used as inputs to perform CMap using the L1000 dataset 

respectively, top ranked drugs were considered as NAFLD gene expression potential modulators and were selected 

for further analysis (Appendix Appendix C.3 and Appendix Appendix C.4). In section 3, we used to rank and filter 

drugs modulating NAFLD subnetwork from the CMap prediction list (section 2) using an independent Network 

Proximity method, where the NAFLD network was created by using the data from section 1. (G) Liver PPI network 

were used as the background network, DEGs mapped on 11 pathways closely related to NAFLD were selected as the 

NAFLD sub-network. (H) targets of the drugs predicted by CMap were identified using drug-target interaction 

database, DrugBank. (I) Network Proximity were calculated to measure the relationship between targets of each drug 

in step H and the NAFLD subnetwork within the background PPI network in step G (Appendix Appendix C.5). The 

top ranked drugs were selected as potential drugs modulating NAFLD gene expression profiles, and closely targeting 

NAFLD subnetwork as well. Section 4, Steps J-K were used to further analyse the mechanisms of each predicted drug 

and select a final set of drugs for testing. J) The mechanisms of the predicted drugs and the drugs in clinical trials were 

analysed through a drug-target-pathway analysis tool, QuartataWeb, targets and pathways related to NAFLD were 

highlighted (Appendix Error! Reference source not found. and Figure 3.30). (K) The overall analysis leads to a 

proposed list of drugs that are potentially effective for NAFLD, and are planned to test with human liver MPS model. 

3.3.2 Results 

3.3.2.1 Patient clustering based on pathway variation is consistent with NAFLD clinical 

stages 

Figure 3.27 shows the results of unsupervised clustering of KEGG pathway enrichment 

scores from the 182 patient samples across different stages of NAFLD including 36 normal, 46 

steatosis, 50 lob inflammation and 50 fibrosis. The dendrogram was cut at the 3rd level, this 

resulted in 3 clusters that were each significantly enriched in one of the stages (Figure 3.27). The 

first cluster is composed of 43.3% normal patients and 48.1% patients with simple steatosis, termed 
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Normal & Steatosis (N&S), highlighting the challenge of distinguishing these two cohorts by gene 

expression analysis alone when inflammation is not present. The second cluster is predominated 

by patients with lobular inflammation but little or no fibrosis (70.3%), termed Predominately 

Lobular Inflammation (PLI). The third cluster is comprised of patients with advanced disease 

having fibrosis, termed Predominately Fibrosis (PF). The sample clustering is significantly 

associated (Pearson's Chi-squared Test) with NAFLD stage (p < 2.2e-16) and type 2 diabetes 

(T2D) status (p = 0.01). Details of the sample composition of each cluster could be found in Table 

3.4. The clustering in Figure 3.27 also shows that the distribution of sex, body mass index (BMI) 

and age are similar across different clusters, while the occurrence of T2D in cluster PF (55%) is 

relatively higher than that of cluster N&S (32%) and PLI (32%).  
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Figure 3.27 Unsupervised clustering of individual patients based on KEGG pathway enrichment scores gene 

set variation analysis (GSVA) broadly follows disease stage 

The heatmap shows hierarchical clustering of individual samples based on the enrichment of MSigDB v7.0 C2 KEGG 

pathways, using the standard GSVA pipeline, except that the batch variables predicted by SVA were first removed 

from the gene expression matrix before the matrix was used as input for GSVA. The columns are individual samples, 

rows are KEGG pathways which are grouped according to the KEGG pathway groups. Both rows and columns have 

been clustered. The plots above the heatmap show the patient metadata: the top 2 bar indicates the color-coded 

diagnosis and patient sex, the third indicates (with a black tick mark) if the patient is diagnosed with T2D, and the last 

2 plots show the BMI and age of the patient. Each entry of the heatmap represents the enrichment score for a particular 

pathway based on the gene expression profile of an individual patient. The 3 column clusters are named according to 

the predominate patient classification in each cluster: the first is almost entirely normal & steatosis (N&S) patients, 

the second is predominately lobular inflammation (PLI), and the third is predominately Fibrosis (PF), details of sample 
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proportion in each cluster is shown in Table 3.4. Comparing PLI vs. N&S, PF vs. N&S, and PF vs. PLI, yields a total 

of 59, 125, 50 DRPs (adjusted p-value < 0.001), respectively. 

 

Table 3.4 Distribution of 182 patient samples in each patient cluster based on GSVA clustering 

Stage 

Normal 

Steatosis 
Lobular 

Inflammation 
Fibrosis 

T2D 

Cluster Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 3.5 Stage 4 

N&S 
35 26 12 3 1 1 1 0 25 

(44.3%) (32.9%) (15.2%) (3.8%) (1.3%) (1.3%) (1.3%) (0.0%) (31.6%) 

PLI 
0 2 1 23 3 1 3 4 12 

(0.0%) (5.4%) (2.7%) (62.2%) (8.1%) (2.7%) (8.1%) (10.8%) (32.4%) 

PF 
1 4 1 11 9 15 11 14 36 

(1.5%) (6.1%) (1.5%) (16.7%) (13.6%) (22.7%) (16.7%) (21.2%) (54.5%) 

total 
36 32 14 37 13 17 15 18 73 

(19.8%) (17.6%) (7.7%) (20.3%) (7.1%) (9.3%) (8.2%) (9.9%) (40.1%) 

Table showing the percentage of each stage and counts for each of the NAFLD patient categories shown in 

Figure 3.27. The last column shows the number of patients with T2D. 

3.3.2.2 The differentially regulated pathways (DRPs) identified among different patient 

clusters reveals the major pathways implicated in NAFLD progression  

The comparisons of PLI vs. N&S, PF vs. N&S and PF vs. PLI yielded a total of 139 DRPs 

(FDR < 0.001), including 45 (32%) metabolism pathways, 31 (22%) human disease pathways, 28 

(20%) organismal systems pathways, 14 (10%) environmental information processing pathways, 

11 (8%) genetic information pathways and 10 (7%) cellular process pathways, as shown in Figure 

3.28A. Overall, this set of pathways is consistent with the intrinsic heterogeneity of NAFLD that 

reflects the diverse but convergent impacts of the environment, metabolism, comorbidities, and 

genetic risk factors (Sanyal, 2019). More specifically, many of these DRPs can be grouped into at 

least one of four categories that comprise our current conceptual framework of NAFLD 

progression (Figure 3.28B-C): C1. Insulin resistance and oxidative stress, C2. Cell stress, 
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apoptosis and lipotoxicity, C3. Inflammation, C4. Fibrosis, as well as C5. Disease related 

pathways, C6. Other associated pathways that relate to comorbidities such as cardiovascular 

disease and cancer. Finally, a seventh category (C7) is comprised of three DRPs with no clear 

association to NAFLD or the metabolic syndrome. The detailed pathway description and 

categorization can be found in Appendix Appendix C.1.  

 

Figure 3.28 Distribution of the enriched KEGG pathways  in KEGG pathway groups and NAFLD pathway 

categories 

(A) Number of enriched pathways (FDR < 0.001) identified between the PLI vs N&S and PF vs N&S in 6 KEGG 

pathway groups. The details of the pathway groups and subgroups for each comparison can be found in Appendix 

Appendix C.1. (B) Number of enriched pathways categorized according to the NAFLD disease progression. Details 

of the pathways in each category are in Appendix Appendix C.2. (C) Number of pathways overlapped among 

categories C1-C4. 

 

Insulin resistance and oxidative stress. Insulin resistance plays a central role in the 

pathophysiology of NAFLD, leads to the concept that NAFLD represents the hepatic expression 
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of the metabolic syndrome. As the development of NAFL and further into NASH, mitochondria 

injury, increased cycling of the cytochrome P450 system, and changes in peroxisomal function 

potentially drive the hepatic oxidative stress. A total number of 29 DRPs were categorized in this 

category. For example, regulation of actin cytoskeleton pathway is associated with oxidative stress 

through Keap1-Nrf2-ARE pathway, actin cytoskeleton helps localize the Nrf2 in the cytoplasm, 

while Nrf2 is activated by hepatic oxidants, protecting cell from oxidative stress (Chambel, et al., 

2015). 

Cell stress, apoptosis and lipotoxicity. In the patients with NASH, excess lipids increase 

and induce apoptosis, which leads to cell injury and death. Multiple cellular process and signaling 

pathways (e.g. apoptosis, cell cycle, MAPK signaling pathways), lipid metabolic pathways (e.g. 

fatty acid degradation), vitamins and xenobiotics metabolism pathways (e.g. one carbon pool by 

folate, metabolism of xenobiotics by cytochrome p450) are involved in this process. A total 

number of 43 DRPs were categorized in this category. 

Inflammation. As NASH progresses, an activated innate immune system and increased 

inflammation response are observed. Immune pathways such as antigen processing and 

presentation, B cell receptor signaling pathways, Fc epsilon RI signaling pathway are involved in 

this process. Besides that, melanogenesis is hypothesized to abate oxidative and inflammation in 

adipose tissue (Page, et al., 2011). In the renin-angiotensin system, experimental and clinical 

findings show that Angiotensin-(1-7) by binding to Mas receptor opposes Angiotensin II actions 

mediated by AT1 receptors in liver tissue, by eliciting anti-inflammatory, anti-oxidative and anti-

fibrotic effects (Simoes, et al., 2017). Experimental studies show the crosstalk between renin-

angiotensin system and insulin signaling, resulting in the worsening of insulin resistance (Paschos 

and Tziomalos, 2012). A total number of 29 DRPs were categorized in this category. 
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Fibrosis. Fibrosis is widely recognized as the hallmark of disease progression in NASH. 

Driver pathways of fibrogenesis such as TGF-beta signaling (Feaver, et al., 2016), Hedgehog 

signaling  (Syn, et al., 2009) are identified. Other cellular and signaling pathways including p53 

signaling pathway, regulation of actin cytoskeleton and gap junction are demonstrated to be 

associated with fibrosis. Multiple amino acid metabolism (Gaggini, et al., 2018) and glycan 

metabolism pathways (Rostami and Parsian, 2013) are also identified and might play a role in the 

fibrosis process. A total number of 24 DRPs were categorized in this category. 

Disease related pathways. There are 31 DRPs are associated with human diseases, 

including cancer, cardiovascular diseases, immune diseases, neurodegenerative disease, infectious 

diseases, endocrine and metabolic diseases. These diseases might be the complications of NAFLD, 

such as cardiovascular diseases or immune diseases. 

Other associated pathways. There are 9 pathways in this category that might be 

associated with NAFLD, including pathways in circulatory systems, excretory system, nervous 

system, and sensory system. These pathways might contribute to the causal relationship between 

NAFLD and other systems, for example, cardiovascular risk, where the exact mechanisms are not 

fully elucidated. 

No established relationship. As far as we know, there is no evidence showing the 

relationship between NAFLD and the remaining 3 pathways, oocyte melosis, dorso-ventral axis 

formation and progesterone-mediated oocyte maturation pathway.  

Taken together, the pathway enrichment analysis reveals four major categories (C1-C4) 

with 96 pathways that regulate the different stages of NAFLD progression. We then demonstrated 

the links between the these DRPs and NAFLD progression by analyzing the top 10 enriched DRPs 

for each comparison. 
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As shown in Figure 3.29A, the top 10 most enriched DRPs for both the PF vs. N&S and 

the PLI vs. N&S comparisons are consistent with the metabolic underpinning, and resultant 

cellular stress and inflammatory response intrinsic to NAFLD pathogenesis. In these two 

comparisons, hepatic fructose uptake and metabolism would support de novo lipogenesis (DNL) 

that is largely unregulated providing a major source of excess free fatty acids in patients with 

NAFLD (Softic, et al., 2016). Mitochondrial and peroxisomal beta-oxidation of this excess of fatty 

acids leads to production of reactive oxygen species (ROS) (Aon, et al., 2014) that exceeds the 

regulatory capacity of the Keap1-Nrf-ARE pathway (Chambel, et al., 2015) resulting in oxidation 

of NADPH derived from the fructose dependent pentose phosphate pathway (Jin, et al., 2018). 

Excess free fatty acids also lead to ceramides through glycosphingolipid biosynthesis and these 

toxic lipids in conjunction with ROS directly down-modulate insulin receptor signaling to promote 

insulin resistance (Rostami and Parsian, 2013). A hallmark of the latter is enhanced 

gluconeogenesis evidenced by dysregulated glyoxylate and dicarboxylate metabolism (Kanehisa, 

et al., 2017). Excess lipids also promote endoplasmic reticulum (ER) stress and the unfolded 

protein response (UPR) in patients with NASH (Maiers and Malhi, 2019) consistent with the 

prominent DRP, ubiquitin-mediated proteolysis, for these two comparisons (Luo, et al., 2018). The 

UPR is now known to be a critical link between cell stress, inflammation, apoptosis (Maiers and 

Malhi, 2019) contributing to the perturbation of cell-cell communication involving gap junction 

dysregulation mediating NAFLD progression (Hernandez-Guerra, et al., 2019).  

Not surprisingly, Complementary to the 10 most enriched DRPs in each of the PF vs. N&S 

and PLI vs. N&S comparisons, the comparison between PLI and PF is consistent with fibrosis 

being the widely recognized hallmark of disease progression in NASH (Figure 3.29A). Each of 
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the 10 DRPs in this latter comparison have been shown to have a role in NASH-mediated hepatic 

fibrosis with several involved in stellate cell activation.  

Besides that, there are 4 pathways (Figure 3.29B) shared by all three comparisons, 

including gap junction, wnt signaling pathway, RNA degradation, amino sugar and nucleotide 

sugar metabolism, which also show up in the top 10 pathways list of at least one of the three 

comparisons (marked with a red star in Figure 3.29A). The dysfunction of gap junctions affects a 

wide variety of liver processes, such as differentiation, cell death, inflammation and fibrosis, and 

there exit drugs that modulate gap junction, it can be an attractive target pathway for NAFLD 

(Hernandez-Guerra, et al., 2019). Wnt signaling inhibits the adipocyte differentiation, its impaired 

function may trigger lipotoxicity (Gunaratnam, et al., 2014). It is also demonstrated to play the 

major role in liver fibrosis and inflammation in mice models (Wang, et al., 2015). Studies have 

shown that various regulatory non-coding RNAs play essential role in hepatic lipid regulation, 

inflammation and fibrosis (Sulaiman, et al., 2019). Amino sugar and nucleotide sugar metabolism 

links to many carbohydrate metabolisms including fructose, glucose, glycan et el. These are major 

mediators of insulin resistance, oxidative stress, lipotoxicity and inflammation in NAFLD process 

(Jensen, et al., 2018).  
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Figure 3.29 Top 10 differentially regulated pathways (A) and overlapping pathways (B) among three 

comparisons 

(A). The top differentially regulated pathways ranked by the FDR adjusted p values through the linear modelling 

equivalent of a two sample, moderated t-test of each comparison (only pathways in NAFLD category 1-4 were 

included). X-axis represent the –log10(p value) of each pathway, y-axis on the left are pathway names, y-axis on the 

right are NAFLD pathway category labels of the corresponding pathway. The color of each bar codes the pathway 

categories of each pathway. (B). The Venn diagram of the overlapping differentially regulated pathways among three 

comparisons (only pathways in NAFLD category 1-4 are included). 

 

Together, the analysis of this transcriptomic data set appears to have corroborated the 

clinical relevance of these DRPs in the context of NAFLD and the conceptual framework for its 

progression. Details of the full list of DRPs for each comparison can be found in Appendix 

Appendix C.2. Although each of these identified DRPs has the potential to be a drug target, their 

large number and diversity, the prospect of redundancy and the uncertainty regarding their 

individual contribution to NAFLD pathogenesis especially across a heterogeneous patient 
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population, all present challenges to translating the information into therapeutic strategies.  To help 

meet this overarching challenge we hypothesize that differentially expressed gene signatures for 

each of the 4 NAFLD categories will reflect disease-specific networks for different stages of 

disease progression. These disease-specific networks will model how individual category-specific 

DRPs contribute and communicate to form emergent hubs that can be pharmacologically 

modulated. We have tested this hypothesis using the following approach. 

3.3.2.3 Drug predictions via connectivity map (CMap) 

In order to predict drugs that modulate individual components of NAFLD progression. We 

classified the DEGs that mapped on to the categorized DRPs identified in the three comparisons. 

For each of these comparisons, a DEG signature resulted for each NAFLD progression category 

C1. insulin resistance and oxidative stress, C2. cell stress, apoptosis and lipotoxicity, C3. 

inflammation, C4. Fibrosis, generating a total of 12 gene signatures. Each of these 12 gene 

signatures was then used as input to query CMap (Lamb, et al., 2006; Subramanian, et al., 2017). 

CMap connects the differentially expressed gene signature between two disease states to drugs and 

other pharmacologically active compounds that can normalize the gene signature. In the context 

of this study, the output of CMap enables the pharmacologic testing of the hypothesis that 

normalization of the gene signatures between two disease states will halt or even reverse disease 

progression in a NAFLD model (see below). The output connectivity score ranges from -0.91 to 

0.90, representing respectively the inverse to the most similar gene signature produced by the 

corresponding pharmacologic agent in comparison to the input signature. Since our objective is to 

identify drugs that can be repurposed for preventing NAFLD progression, we focused on CMap 

outputs present in DrugBank that could promote the inversion of the disease-associated gene 

signature in each NAFLD category. The top 10 ranked drugs for each of the 12 queries were 
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selected, resulting in 70 unique predicted drugs, 38 of which appeared as an output in more than 

one query (see Appendix Appendix C.3 and Appendix Appendix C.4).  

For PLI vs. N&S, the top-ranking drug for C1 is yohimbine and respectively, 

diethylcarbamazine for C2, dorsomorphin for C3, and guanfacine for C4. Yohimbine has 12 

annotated targets, that include adrenoceptor Α 2A-C (ADRA2A-C), dopamine receptor D2 & 3, 

(DRD2-2), 5-hydroxytryptamine receptors 1 & 2 (HTR1A-B & D, HTR2A-C), and the potassium 

inwardly rectifying channel family member KCNJ1. ADRA2A has been associated with both 

alcoholic and nonalcoholic liver disease (Jia, et al., 2018), as well as liver fibrosis in animal models 

down-modulating hepatic stellate cell activation (Schwinghammer, et al., 2020). HTR2A has been 

shown to contribute to steatosis in mice (Choi, et al., 2018). Upregulation of DRD2 was previously 

shown in NAFLD patients (Mehta, et al., 2014). Both DRD2 and HTR2A-C are in the KEGG gap 

junction pathway. Diethylcarbamazine targets arachidonate 5-Lipoxygenase (ALOX5) and 

prostaglandin-endoperoxide synthase 1 (PTGS1). ALOX5 is in the KEGG Fc epsilon RI signaling 

pathway. Animal studies have shown that ALOX5 (Ma, et al., 2017; Martinez-Clemente, et al., 

2010) plays a role in steatosis induced inflammation. PTGS1 has likewise been implicated in 

inflammation (Henkel, et al., 2018). Guanfacine targets ADRA2A-B, which is discussed above. 

For PF vs. N&S, the top drug using the gene sets from C1-C3 is dorsomorphin. This drug 

targets activin receptor type-1 (ACVR1) and peptidyl-prolyl cis-trans isomerase (FKBP1A). Both 

of these genes have previously been implicated in NAFLD, through their roles in BMP signaling 

(Herrera, et al., 2017). Also, ACVR1 activation in Kupffer cells promotes a pro-inflammatory 

phenotype (Kiagiadaki, et al., 2018). ACVR1 is in the KEGG TGF-beta signaling pathway 

and cytokine-cytokine receptor interaction pathways. The top drug from C4 is amonafide, which 
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targets DNA Topoisomerase II Α & Beta (TOP2A, TOP2B). A meta-analysis had found that 

TOP2A expression was positively correlated with NAFLD (Ryaboshapkina and Hammar, 2017).  

For PF vs. PLI, the top drug using the gene sets from C1-C4 is gliquidone, which is used 

to treat T2D. It targets ATP binding cassette subfamily C member 8 (ABCC8) and potassium 

inwardly rectifying channel subfamily J member 8 (KCNJ8). ABCC8 is a member of ABC 

transporters KEGG pathway. Variants of these genes are associated with T2D (Gloyn, et al., 2003). 

They are also thought to play a role in NAFLD, specifically connecting the metabolic and liver 

disease phenotypes (Blackett and Sanghera, 2013).  

Overall, the top predicted drugs tend to have targets that have associations with NAFLD. 

These are both mechanistic associations demonstrated through animal models, and observations 

from patients.  

3.3.2.4 Predicted drug prioritization using network proximity analysis 

To prioritize the list of 70 drugs from CMap we constructed a NAFLD subnetwork and 

used proximity to this network (Guney, et al., 2016) to enhance the specificity and relevance of 

the CMap analysis for NAFLD. In essence this algorithm connects NAFLD-associated gene 

signatures to drug-target profiles and maps the targets of a particular drug to the network protein 

nodes. Drugs with target profiles that most closely overlap with a subset of protein nodes in the 

NAFLD network are prioritized for further analysis (see below). 

Construction of NAFLD associated protein-protein interaction network. The current 

conceptual framework of NAFLD involves diverse but convergent pathways. The KEGG pathway 

DB annotated a map showing the stage-dependent progression of NAFLD. In the first stage, lipid 

accumulation caused by insulin resistance and suppression of free fatty acids (FAAs) disposal. In 

addition, two transcription factors, SREBP-1c and PPAR-α, activate key enzymes of lipogenesis 
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and increase the synthesis of FAAs in liver. In the second stage, as a consequence of the 

progression to NASH, the production of reactive oxygen species (ROS) is enhanced due to 

oxidation. The lipid peroxidation can further cause the production of cytokines, promoting cell 

death, inflammation and fibrosis. The activation of JNK, which is induced by ER stress, TNF-α 

and FAAs, is also associated with NAFLD progression. Increased JNK promotes cytokine 

production and initiation of HCC. We used the NAFLD pathway as the main pathway, then 

expended to its 10 neighboring pathways that are known to crosstalk with the main NAFLD 

pathway, ending up with a NAFLD network comprising 11 associated pathways. The 10 

neighboring pathways were TNF signaling pathway, insulin signaling pathway, type II diabetes 

mellitus, PI3K-Akt signaling pathway, adipocytokine signaling pathway, PPAR signaling 

pathway, fatty acid biosynthesis, protein processing in endoplasmic reticulum, oxidative 

phosphorylation and apoptosis. Among these pathways, apoptosis appeared in the top 10 pathways 

of both PF vs. N&S and PLI vs. N&S, oxidative phosphorylation appeared in the top 10 pathways 

of PLI vs. N&S (Figure 3.29A).  

Given the total number of 2209 DEGs in our three comparisons PLI vs. N&S, PF vs. N&S 

and PF vs. PLI, 183 DEGs mapped to these 11 NAFLD associated pathways. We then mapped 

these 183 DEGs on the liver protein-protein interactome (Marinka Zitnik and Leskovec, 2018), 

resulting in a subnetwork with 104 protein nodes and 308 PPIs (see Figure 4). The degrees of the 

subnetwork nodes range from 1 to 17, with 5.92 neighbors on average. The top 10 hub proteins 

were mitogen-activated protein kinase 8 (MAPK8), NF-kappa-B essential modulator (IKBKG), 

mitogen-activated protein kinase 3 (MAPK3), protein kinase C α (PRKCA), caspase 8 (CASP8), 

signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 

kinase kinase 7 (MAP3K7), 14-3-3 protein gamma (YWHAG) and protein kinase C zeta type 
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(PRKCZ). MAPK8 and IKBKG were two proteins with the most interaction partners (degree = 

17) in our subnetwork. MAPK8 is a member of the MAP kinase and JNK family, acting as an 

integration point for multiple biochemicals signals, it involves in 7 of the 11 NAFLD associated 

pathways including NAFLD main pathway, TNF signaling pathway, insulin signaling pathway, 

Type II diabetes mellitus, adipocytokine signaling pathway, protein processing in endoplasmic 

reticulum and apoptosis. IKBKG is a regulatory subunit of the IKK core complex which 

phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-

kappa-B complex and ultimately the degradation of the inhibitor. IKBKG is involved in 4 of the 

11 NAFLD associated pathways including TNF signaling pathway, PI3K-Akt signaling pathway, 

adipocytokine signaling pathway and apoptosis. 

Predicted drugs prioritized by network proximity. The NAFLD PPI subnetwork 

constructed in the previous section were considered as the disease module, we prioritized 49 of the 

70 drugs predicted by CMap by evaluating the significance of the distance between their targets 

and our NAFLD disease module in the background liver PPI interactome, using the network 

proximity measure proposed by (Guney, et al., 2016). The remaining 21 drugs do not have 

annotated targets in the liver PPI interactome, therefore were not involved in the network proximity 

analysis. The network proximity measure for each drug is represented by a z-score ranging from -

3.60 to 1.89, negative z-score means the targets of the drug is closer to the disease module than a 

random set of targets. Therefore, the lower the z-score of a predicted drug the more likely it is to 

modulate the signaling in our NAFLD disease module (see Appendix Appendix C.5). 

3.3.2.5 Comparison of the predicted drugs and NAFLD clinical trial drugs  

In order to further understand the mode of action of our predicted drugs and make a rational 

list of drugs for experimental testing, we examined the targets and pathways of all 49 predicted 
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drugs, as well as 84 drugs under clinical trials (detailed information of these drugs are listed in 

Appendix Appendix C.7) for NAFLD or NASH from DrugBank. Eight out of those 84 drugs 

including exenatide, emricasan, pradigastat, niacin, selonsertib, atorvastatin, pentoxifylline and 

simtuzumab, show positive result at a certain clinical trial phase. The results of the remaining 76 

drugs are either not submitted or negative. 

According to the drug-target-mapping using QuartataWeb, we mapped 23 predicted drugs 

and 20 clinical trial drugs that directly link to the 11 NAFLD associated pathways through their 

targets, detailed relationship among the drugs, targets and pathways are shown in Appendix Error! 

Reference source not found.. Eleven of the 20 clinical trial drugs affect the NAFLD main pathway, 

while only 5 of the 23 predicted drugs affect the NAFLD main pathway, suggesting the diversity 

of our predicted drugs compared with the clinical trial drugs. Emricasan affects the NAFLD main 

pathway, TNF signaling pathway and apoptosis by targeting two caspases CASP3 and CASP7. 

3.3.2.6 Selection of the final list of drugs to test in Liver MPS  

The focus of the present study has been the construction of a computational platform 

pipeline to anchor the prediction of drugs for potential repurposing.  There are multiple approaches 

to ranking drugs out of this pipeline.  Here, we propose the most promising drugs for the initial 

experimental testing to demonstrate a proof of concept. We selected 19 drugs from the 49 

calculated drugs with network proximity Z-score below zero (statistically targeting the disease 

module), then excluded the ones that have not been approved or with serious hepatotoxicity side 

effects, ending up with 12 drugs. We plan to initially test a few drugs on one of the multiple 

phenotypic characteristics of NAFLD, steatosis.  8 drugs targeting steatosis-related pathways 

according to the KEGG pathway map were selected as the first experimental set. The steatosis-

related targets and pathways of these drugs are shown in Figure 3.30. There are six steatosis-
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related pathways and seven targets targeted by these 8 drugs. Specifically, everolimus is a mTOR 

inhibitor, which plays a role in PI3K-Akt signaling pathway, Type II diabetes mellitus, and insulin 

signaling pathway. Celecoxib interact with 3-Phosphoinositide dependent protein kinase 1 

(PDPK1), which is involved in PI3K-Akt signaling pathway, insulin signaling pathway, TNF 

signaling pathway, PPAR signaling pathway. Promazine, dosulepin and ziprasidone interact with 

cholinergic receptor muscarinic 1 and 2 (CHRM1, CHRM2), which are involved in PI3K-Akt 

signaling pathway. Quinapril interacts with angiotensin converting enzyme (ACE), which plays a 

role in renin-angiotensin system. Isradipine blocks calcium voltage-gated channels (CACNA1C, 

CACNA1D), which are important components of the type II diabetes mellitus pathway. Curcumin 

interacts with peroxisome proliferator activated receptor gamma (PPARG), which modulates the 

PPAR signaling pathway. Taken together, the identification of these targets and pathways indicates 

the potential modulating effects of the 8 drugs on steatosis, however, these might not be the only 

mechanisms because other drug-target interactions might exist but not annotated in DrugBank yet, 

and potential side effects should also be taken into consideration. Therefore, we listed the 

indication, MOA, adverse effects and literature support of each drug in Appendix Appendix C.6, 

which help us to manually select the most promising drugs to test. On the other hand, the other 

drugs that don’t target the analyzed steatosis-related pathways might also be interesting to explore 

in future studies, they might work either through unknown drug-target interactions or novel 

steatosis mechanisms. 
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Figure 3.30 Subnetwork of the steatosis-related targets and pathways of the 8 prioritized drugs 

The black nodes represent genes and the edges are associations between them as indicated in KEGG pathways. The 

shaded regions covering the nodes show the corresponding KEGG pathways. The labelled gene nodes represent the 

targets of the prioritized drugs, they are angiotensin I converting enzyme (ACE), cholinergic receptor muscarinic 1 

(CHRM1), calcium voltage-gated channel subunit α1 A (CACNA1A), prostaglandin-endoperoxide synthase 2 

(COX2), 3-phosphoinositide dependent protein kinase 1 (PDPK1), peroxisome proliferator activated receptor gamma 

(PPARG), and mechanistic target of rapamycin kinase (mTOR) (listed in red boxes). 
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3.3.3 Discussion 

In this study, we carried out a data-driven, unbiased and efficient QSP approach that 

focused on identifying potential drugs that could be repurposed for a NAFLD indication. The 

overall analysis was driven by the RNA-seq data from a representative cohort of the NAFLD 

patients and a NAFLD associated PPI network derived from KEGG pathway map, toward gaining 

a system-level understanding of the key players involved in the steatosis, inflammation and fibrosis 

in NAFLD progression, leading to network-based drug repurposing. By constructing 12 gene 

signatures from 4 pre-defined NAFLD progression associated categories and 3 NAFLD 

indications, we obtained 70 drugs that have the potential to reverse gene signatures. By 

constructing a NAFLD associated PPI network and utilizing network proximity to further 

evaluated the drug effects of these drugs to the NAFLD disease module, leading to a rationale of 

selecting 2 potential steatosis drugs to test in the fully validated, human liver acinus MPS 

(LAMPS) model that can readily quantify steatosis and secrotome content.  However, the 

computational pipeline developed here will be used in the future to explore a large range of drug 

selection approaches.  The human vascularized liver microphysiology system (vLAMPS) has been 

developed to explore complex liver diseases such as NAFLD and the Metabolic Syndrome where 

many read-outs are required to test the impact of drugs on parameters such as steatosis, oxidative 

stress, secretome contents, immune cell infiltration, fibrosis, insulin resistance, etc.  Future drug 

testing will be performed on the vLAMPS characterizing the impact of each drug on all of the 

parameters, not just steatosis. 
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3.3.3.1 QSP approach complemented the target-centric drug design for NAFLD  

NAFLD is a highly prevalent disease and important unmet medical needs (Younossi, et al., 

2018). Due to the intrinsic heterogeneity in NAFLD progression and the complexity of underlie 

molecular networks, the therapeutic benefits of many existing drugs under clinical trials for 

NAFLD remain to be proven (Polyzos, et al., 2020). A significant amount of research focus on 

designing target-centric drugs, including obeticholic acid (a farnesoid X receptor agonist) 

(Mudaliar, et al., 2013; Neuschwander-Tetri, et al., 2015; Pockros, et al., 2019; Younossi, et al., 

2019), elafibronor (a peroxisome proliferator activated receptor [PPAR]-α/δ dual agonist) (Ratziu, 

et al., 2016), cenicriviroc (a CC chemokine receptor antagonist) (Friedman, et al., 2018), 

selonsertib (an apoptosis signal-regulating kinase-1 inhibitor) (Loomba, et al., 2018) and 

resmetirom (a thyroid hormone receptor agonist) (Harrison, et al., 2019). Among which, 

obeticholic acid has been rejected for fibrosis due to nonalcoholic steatohepatitis (NASH) by FDA 

recently. Therefore, there’s an urgent need to seek new strategies and advance the treatment. On 

the other hand, as the accumulation of more and more multi-scale data and the development of 

computational and systems biology techniques, designing drugs that targeting the multiple key 

driver pathways or networks for NAFLD rather than a specific target becomes achievable and 

might be more efficient. In this work, we took the advantage of an unbiased, data-driven QSP 

approach for this aim. 

The patient cohort we are using contains 182 patients distributed in normal, steatosis, 

lobular inflammation and fibrosis stages, is the largest and most diverse data sample analyzed in 

similar studies to our knowledge, which enable us to perform unbiased data analysis. Our analysis 

shows that the patients’ clinical stages are consistent with their gene profile clusters to some extent, 

indicating the treatment for early stage might be different from later stages. Therefore, in the next 
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step, we identified DEGs and DRPs in three different comparisons, corresponding to different 

stage comparisons. Given the large amount of DEGs and DRPs identified in each comparison, we 

categorized them in different groups according to the current knowledge of NAFLD progression, 

in order to predict drugs focusing on a specific phenotype, as well as the ones work for multiple 

phenotypes. This categorization could be changed if more insights or new relationships between 

pathways and NAFLD gained in the future. Network proximity helps us to adjust the potential 

error caused by CMap prediction alone, and further filter drugs. The overall workflow is rationale 

to identify system-level drugs half or reverse the NAFLD progression, which complement the 

target-centric strategies. New discoveries of the NAFLD mechanisms and further experimental 

testing are required to adjust the process in the next QSP iteration.  

3.3.3.2 Evidences support the potential effect of our proposed drugs 

Due to the loss of experimental time during the COVID-19 shut-down, we have focused 

on the computational platform with just proof of concept on testing the modulating effects of our 

proposed drugs just for steatosis. Therefore, we selected the most promising predicted drugs for 

steatosis based on evidences collected from CMap prediction, network prioritizing, targets on 

steatosis-related pathways and literature support of its relationship with NAFLD. 

The first one is Everolimus, which is an FDA approved drug used as an immunosuppresent 

to prevent rejection of organ transplants and in the treatment of renal cell cancer and other tumors. 

In our analysis, it is predicted by CMap C1 (rank 1st), C3 (rank 1st) and C4 (rank 2nd) with relatively 

high ranking (see Appendix Appendix C.3). The network proximity analysis also gives very 

promising result with a ranking of 5th (see Appendix Appendix C.5). Specifically, its target 

mTOR plays an essential role in three NAFLD steatosis-related pathways: PI3K-Akt signaling 

pathway, type II diabetes mellitus and insulin signaling pathway (see Appendix Appendix C.6). 
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Furthermore, it has been reported that Everolimus inhibited hepatic lipid accumulation and 

improved metabolic parameters in a fast food induced mice model of NASH, even though the 

inflammatory and fibrotic responses still exhibited despite the reduced hepatic steatosis (Love, et 

al., 2017). Therefore, it would be of great interest to test its effect on steatosis in our liver MPS 

model, and also investigate its potential in reducing the inflammatory and fibrotic responses in 

human models in future studies. 

The second proposed drug is celecoxib, an FDA approved nonsteroidal anti-inflammatory 

drug indicated for pain relieve caused by osteoarthritis, rheumatoid arthritis and ankylosing 

spondylitis. In our analysis, it is predicted by CMap C2 (rank 5th) (see Appendix Appendix C.3) 

with a network proximity ranking of 19th (see Appendix Appendix C.5). Celecoxib targets COX-

2 enzyme, evidence shows that it partially restores autophagic flux via downregulation of COX-2 

and alleviates steatosis in vitro and in vivo (Liu, et al., 2018). In addition, a non-selective COX 

inhibitor aspirin was shown to be protective of NAFLD progression in a retrospective study 

(Simon, et al., 2019), further support that inhibiting COX-2 might help celecoxib to alleviate 

steatosis. Besides its primary target, we also identified that it interacts with PDPK1, which plays 

a role in four steatosis-related pathways insulin signaling pathway, PI3K-Akt signaling pathway, 

TNF signaling pathway and PPAR signaling pathway. This might help explain why celecoxib, as 

an anti-inflammatory drug, shows up in the top list of C2 instead of C3 in CMap prediction. Studies 

also show that celecoxib attenuates liver steatosis and inflammation in NAFLD in a rat model 

(Chen, et al., 2011). Taken together, it is worthwhile to test celecoxib in our liver MPS model. 

The other 6 drugs passed the filter of our computational pipeline but with weaker literature 

evidence can also be found in Appendix Appendix C.5, which can serve as references for future 

analysis. We have to point out that without well designed mechanistic experimental verification, 
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the mechanisms of how these drugs work in NAFLD network remain unclear, the predictions and 

supporting evidences only help us to generate potential hypotheses and reduce the amount of test.  

3.3.3.3 Drug combinations have the potential to advance the NAFLD treatment 

Depending on the underlying mechanisms of action, certain drugs might be more effective 

on steatosis, while the others might be more effective on inflammation or fibrosis. In our analysis, 

the top list of drugs predicted by CMap category C1 or C2 in might be more effective on steatosis, 

while the drugs predicted by category C3 might be more effective on inflammation, C4 might be 

effective on fibrosis. Given the multifactorial pathogenesis of NAFLD, the drugs that predicted by 

multiple categories, or combination usage of drugs from complementary categories may prove to 

be more effective and suitable for NAFLD in the long term. For a specific NAFLD stage or 

condition, combination strategies targeting different key driver pathways would also be interesting 

to explore in future studies. For example, our predicted drug quinapril targets the renin-angiotensin 

system, different from other major steatosis-related pathways targeted by the two proposed drugs. 

It is also reported that quinapril helps attenuate the progression of metabolic syndrome (Khan, et 

al., 2004). Therefore, quinapril can be a good candidate to combine with one of the proposed drugs 

for potential beneficial effects. 

3.3.4 Materials and Methods 

3.3.4.1 Generation of gene expression profiles 

The RNA-seq data are derived from patient samples of wedge biopsies taken from livers 

of patients undergoing bariatric surgery, as described in Gerhard et al., 2018 (Gerhard, et al., 2018). 

Patients were diagnosed according to the predominant liver histology finding as normal, steatosis, 
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lobular inflammation, or fibrosis (Gerhard, et al., 2018) . Patients were further grouped into disease 

stages according liver histology (Gerhard, et al., 2018). RNA was extracted from the tissue samples 

and paired end libraries were prepared from polyA-selected RNA (Gerhard, et al., 2018). 

Sequencing was performed using an illumina HiSeq2000 (Gerhard, et al., 2018).  

Figure 3.26A represents the data pre-processing, paired fastq-files were pseudoaligned to 

the human Ensembl (Frankish, et al., 2017) v94 transcriptome using Kallisto (Bray, et al., 2016) 

following the recommended pipeline. Estimated transcript abundances were then summarized into 

gene-level estimates using Tximport (Soneson, et al., 2015) with the settings recommended for 

LIMMA-VOOM (Law, et al., 2014; Ritchie, et al., 2015). Subsequent data analysis followed the 

standard LIMMA linear modelling approach (Law, et al., 2016; Smyth, 2004), with exceptions of 

using quantile normalization and surrogate variable analysis (SVA) (Leek, et al., 2012; Leek and 

Storey, 2007) to identify batch effects.  

3.3.4.2 KEGG pathway analysis and identification of differentially expressed genes (DEGs) 

and differentially regulated pathways (DRPs)  

Pathway analysis was performed on the resulting gene expression matrix obtained from the 

previous step (Figure 3.26B). The gene expression levels were first pre-processed so that the batch 

effects predicted from SVA were removed from the data using the removeBatchEffect function 

from LIMMA. Next the gene expression values for each patient were mapped to MSigDB v7.0 C2 

KEGG (Liberzon, et al., 2011) pathways using gene set variation analysis (GSVA) (Hanzelmann, 

et al., 2013). The resulting sample x pathway matrix was clustered using hierarchal clustering, and 

new groups were created by cutting the column dendrogram at the 3rd level. New groups were 

defined based on the samples within each cluster.  
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DEGs were identified by first row scaling the gene expression data and then applying the 

standard LIMMA-VOOM pipeline (Figure 3.26C) (Law, et al., 2014; Ritchie, et al., 2015; Smyth, 

2004). The results are from pairwise contrasts of the 3 new groups identified in the clustering step. 

DRPs were identified in the same way except that the output GSVA data was used instead of gene 

expression data. Each DRP was assigned as an integral component to one or more of 4 distinctly 

annotated categories known to be involved in NAFLD progression as described in the Results. The 

up- and down-regulated genes mapping to the DRPs in each category were then used to generate 

gene signatures. For each of the three pairwise comparisons among the three newly generated 

clusters (see above) 4 category-specific gene signatures were generated resulting in 12 total gene 

signatures. These signatures were then used to query an extensively annotated connectivity map 

to identify drugs with the potential to normalize each of these gene signatures (Figure 3.26D). 

3.3.4.3 Drug predictions via CMap 

Drugs were then predicted (Figure 3.26F) using the LINCS L1000 level 5 (GSE92742) 

expression DB (Subramanian, et al., 2017) that was downloaded from the University of Pittsburgh 

Center for Research Computing’s HTC cluster. The DB was filtered to keep only small molecule 

perturbation instances. This yielded a total of 205,034 unique instances which consists of 20,413 

compounds, 71 cell types, 6 & 24 hr time-points, and a range of concentrations. This DB consists 

of perturbation signatures (PS), which is a vector of continuous gene expression values for each 

perturbagen. We used our 12 gene signatures generated in the previous step as input to query 

CMap, the tool calculated the similarity of the query signature with each perturbation signature in 

the L1000 DB, and assigned a connectivity score (z-score) for each compound perturbation based 

on the adjusted enrichment statistic of the similarities. The compounds were ranked by their z-

scores in an ascending order, where lower z-score represents better reverse effect of the input 
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signature. Compounds not in DrugBank were removed, and the top 10 ranked compounds for each 

input signature were selected for further analysis. 

3.3.4.4 Drug prioritization via network proximity 

The resulting drugs were further selected by network proximity (Figure 3.26G). The basic 

idea of network proximity is to evaluate the significance of the network distance between a drug 

and a given disease module. The methodology has been developed by Guney E et el., (Guney, et 

al., 2016) and based on the assumption that a drug is effective to a disease by targeting proteins 

within or in the immediate vicinity of the corresponding disease module. In essence this approach 

provides an independent criterion for increasing the specificity of the CMap analysis to enable 

drug prioritization for experimental testing.  

Construction of NAFLD associated protein-protein interaction network. We 

constructed a NAFLD associated protein-protein interaction network by identifying the DEGs that 

take part in 11 NAFLD related pathways and the protein-protein interactions (PPIs) among these 

DEGs translated proteins in liver interactome. In details, we select the KEGG pathway map of 

NAFLD, which illustrates a stage-dependent progression of NAFLD, and is closely connected with 

10 other pathways, including TNF signaling pathway, Insulin signaling pathway, Type II diabetes 

mellitus, PI3K-Akt signaling pathway, Adipocytokine signaling pathway, PPAR signaling 

pathway, Fatty acid biosynthesis, Protein processing in endoplasmic reticulum, oxidative 

phosphorylation and Apoptosis. Among the total number of 2209 DEGs, 183 DEGs were mapped 

on these 11 NAFLD associated pathways. We then mapped these 183 DEGs on the liver protein-

protein interactome (Marinka Zitnik and Leskovec, 2018), resulting in a subnetwork with 104 

protein nodes and 308 PPIs (as shown in Figure 4). This subnetwork served as the NAFLD 
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associated PPI network and the 104 proteins served as the NAFLD disease proteins in the network 

proximity calculation in the following drug prioritizing step. 

Construction of the drug-target interaction network. We constructed the drug-target 

interaction (DTI) network on the 70 CMap predicted drugs by acquiring DTIs from DrugBank 

(v5.1.5) (Wishart, et al., 2018). A total number of 192 DTIs were identified between 51 drugs and 

115 protein targets, with no annotated targets for the remaining 19 drugs. 

The constructed NAFLD associated PPI network (see above) serves as the disease module 

containing 104 NAFLD disease proteins (S). For each drug, given a set of targets (T) from the 

constructed DTI network (see above), the closest distance measured by the average shortest 

distance path between nodes s and the nearest disease protein t in the human liver PPI interactome 

was calculated as: 

𝒅(𝑺, 𝑻) =  
𝟏

‖𝑻‖
∑ 𝐦𝐢𝐧𝐬∈𝐒 𝒅(𝒔, 𝒕)𝒕∈𝑻          (3.3) 

Then a reference distance distribution was constructed, corresponding to the expected 

distance between two randomly selected groups of proteins of the same size and degree distribution 

as the original disease proteins and drug targets in the network. This procedure was repeated 1000 

times, the mean and standard deviation of the reference distance distribution were used to calculate 

a z-score by converting an observed distance to a normalized distance. After the calculation, each 

drug was assigned a z-score to evaluate its effects on NAFLD disease module, where lower z-

score represents that the targets of the drug is closer to the disease module, namely more effective 

of the drug. 
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3.3.4.5 Identification of targets and pathways for predicted and clinical trial drugs 

The targets and pathways from both the clinical and predicted drugs (Figure 3.26I) are 

evaluated using our in-house drug-target-pathway mapping tool QuartataWeb (Li, et al., 2020). 

This was used to map both the clinical and predicted drugs to targets and pathways, with the 

updated data sources: DrugBank (v5.1.5) and KEGG (updated on October 23, 2019). Drugs were 

mapped to targets based on the DTI annotations and the corresponding targets were mapped to 

pathways based on gene-pathway associations, leading to the drug-target-pathway relationships. 

We focused on the 11 NAFLD associated pathways defined in previous section and reported 23 

predicted drugs and 20 clinical drugs that mapped on these pathways. 
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4.0 Future Directions 

Over the past decade, the aim of drug discovery has shifted from designing selective ligands 

for a specific target to understanding how drugs modulate cellular networks, in order to predict 

drug targets and their role in human pathophysiology, leading to a new paradigm of QSP (Perez-

Nueno, 2015). New methods and tools have been developed to efficiently learn from drug-target 

interactions, drug-drug interactions, protein-protein interactions and pathway-gene associations so 

as to generate information and accelerate translational science. However, we are still far from 

achieving the goals of QSP. Huge efforts are needed for precise modeling of biological networks 

and more comprehensive frameworks are needed to combine computational and experimental QSP 

approaches. In this work, I focused on developing computational QSP methods and tools to 

explore/enable their applications in understanding disease mechanisms and developing novel 

therapeutic strategies for complex diseases. Our study demonstrated the power of machine learning 

(ML) models in facilitating the prediction of drug-target interactions and protein-protein 

interactions, and novel applications of QSP in understanding and discovering drugs for complex 

diseases including HD, drug abuse, and NAFLD. Below, I will briefly recap the conclusions 

reached from the analyses described in each chapter and discuss future directions of improvements 

or applications. 
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4.1 Future Development of QuartataWeb 

In Chapter 1.0, we developed an integrated chemical-target-pathway mapping tool 

QuartataWeb for chemogenomics and polypharmacology analysis. Using QuartataWeb, users can 

retrieve data and generate information on experimentally verified and computational predicted 

drug-target interactions from DrugBank or chemical-protein interaction from STITCH; the targets 

are linked to KEGG pathways and GO annotations, which enable understanding the drug effects 

via targets and cellular pathways. It allows users to query a list of chemicals, drug combinations, 

or multiple targets.  

The current version of QuartataWeb depends on four publicly available DBs: DrugBank, 

STITCH, KEGG and GOA. The ML methodology (and model parameters) should be updated 

when there are significant changes in new releases of these DBs. Besides that, many other popular 

drug/chemical-target interaction and pathway DBs based can be included based on our framework. 

The following DBs can be taken into consideration: SuperTarget (Hecker, et al., 2012), ZINC 

(Irwin, et al., 2012), TTD (Li, et al., 2018) and ChEMBL(Mendez, et al., 2019). SuperTarget 

provides comprehensive data services including 332,828 interactions between 6,219 proteins and 

195,770 compounds. ZINC is a free and curated large collection of commercially available 

compounds. ChEMBL is a large bioactivity DB including 15,207,914 biological activities about 

2,275,906 small molecules and 12,091 targets based on publications from several core Medicinal 

Chemistry journals.  

Even though PMF predicts drug-target interaction with high efficiency and accuracy, it has 

difficulty predicting interactions involving new drugs or targets for which there are no known 

interactions. These are usually referred to as “cold-start” problem in recommendation systems. 

Since the CTI datasets are usually located at or near low-dimensional nonlinear manifolds, 
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advanced matrix factorization methods can be adopted to solve this problem in the future such as 

the variations of Graph Regularized Matrix Factorization (Cui, et al., 2019; Ezzat, et al., 2017; 

Mongia and Majumdar, 2020). 

In terms of the cellular effects of chemicals, QuartataWeb first links chemicals to targets, 

then map their targets to pathways and GO annotations, thus the corresponding pathways and GO 

annotations can be used to infer the cellular effects of these chemicals. However, many chemicals 

are promiscuous, and their targets are involved in multiple pathways and networks, such that the 

actual impact of chemicals on cellular networks may be very complex. Pathways and GO 

annotations only partially disclose the underlying biological processes. Other biological processes 

such as protein-protein interactions and gene regulations may also play an important role in disease 

development or therapy. In the future, additional analyses of protein-protein interaction networks 

and network-based metrics might help further evaluate the cellular effects of chemicals or targets. 

4.2 Future Development and Application of PPI Prediction 

In Chapter 2.0, we adapted a symLMF-based methodology to predict large-scale PPIs, 

purely based on the existing PPI network, without dependence of any protein sequence or structure 

information. We showed that the proposed method can be efficiently applied in completing the 

entire interactomes, or recommending the most promising interaction partners of a certain protein. 

Actually, symLMF can be broadly applied to many settings including non-binary input. Future 

analysis could focus on applying symLMF to other PPI prediction task, e.g. estimating binding 

affinities. In PPI binding affinity predictions, the protein complex interface properties are essential 

to determine the binding affinity, and the impact of mutations should also be considered. 
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Therefore, individual binding sites instead of proteins should be considered as items in the 

symLMF model. As more and more high-quality binding affinity data would be available in the 

future, it would be interesting to evaluate if symLMF is able to capture the latent factors of different 

binding sites, enable more precise protein-protein binding predictions.  

In addition, considering our big picture of developing integrated QSP tools, it will be 

valuable to develop a large-scale PPI prediction web-server using symLMF algorithm, and 

integrate it with the QuartataWeb described in Chapter 1.0. The integration of PPI networks would 

complement the pathway and GOA analyses of the cellular effects of any input drugs or targets of 

interest. In these analyses, context-specific (tissues, disease conditions et al.) PPI networks can 

provide valuable insights into key research questions like identifying disease mechanisms or 

effective drugs. Therefore, applying symLMF on context-specific PPI networks is suggested in 

future web server development. Besides, studies confirmed that interacting proteins tend to be 

located within the same compartment, or in physically adjacent compartments (Gandhi, et al., 

2006). In practice, it is suggested to remove PPIs between two proteins not sharing any subcellular 

localizations not only in training datasets, but also in predictions.  

4.3 Future Work of Three Applications of QSP 

In Chapter 3.0, we demonstrated the applications of QSP methodology to three complex 

diseases/disorders: HD, drug abuse and NAFLD. QSP application can start from any components 

and customize specific workflows based on the available data sources and tools. In the first study, 

we started from the phenotypic screening of active compound probes and drug combinations 

against a well-established HD model, and identified important neuronal cell protection related 
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pathways through an initial chemogenomics analysis. In the future, it would be of interest to 

explore medium spiny neurons derived from human iPSC in the context of human neuronal MPS 

(Pamies, et al., 2017) that recapitulate critical cell intrinsic and extrinsic microenvironments. 

Further development of a comprehensive computational model of disease progression through the 

integration of the chemogenomic analysis and transcriptomic profiles of HD in both mouse and 

human tissues would be helpful, which will enable refinement of testable hypotheses. Furthermore, 

additional iterations of experimentally testing hypotheses and refining models should lead to 

emergent properties of HD disease and therapeutic strategy design. 

In the second study of Chapter 3.0, we selected 50 representative drugs of abuse from 6 

different categories and carried out a comprehensive analysis of the targets and pathways of these 

drugs. Our study identified key pathways at different stages of drug addiction cycle, as well as the 

cell signaling and regulation events associated with drug abuse. The results invite attention to new 

targets of addictive drugs and pathways implicated in the development of addiction, as well as new 

therapeutic opportunities, beyond those usually investigated by previous studies. The validation of 

our predictions requires comprehensive wet-lab bioactivity assays in the future. In particular, the 

establishment of the proposed role of mTORC1 would require in vitro and in vivo longitudinal 

studies given that our current study points to the involvement of mTORC1 at later stages of drug 

addiction. A similar combined computational-experimental framework as described in Section 3.1 

could be adopted to extend the current study and establish new strategies, which would provide 

insights into the pleiotropy of the targets of addictive drugs as well as the common signaling 

platforms that may serve as mediators of drug addiction. In addition, knowledge of pathways 

implicated in drug addiction may be used, as a next step, to construct kinetic models to 

quantitatively assess the orchestration of signals induced by pathway crosstalk.  
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Furthermore, both target-centric and network-centric drug repurposing strategies can be 

carried out based on the exploring of addiction mechanisms. Known or newly verified targets of 

abused drugs can be queried in QuartataWeb (Chapter 1.0) to obtain their interacting drugs. Input 

Type III of the tool helps to obtained target-centric repurposable drug candidates, both known and 

predicted.  Input Type I helps to identify polypharmalogical drugs that targeting multiple targets, 

or suggest drug combinations that targeting complementary key components of a network. The 

network effects of the drug can be further quantitatively modeled in the abovementioned kinetic 

models. 

In the third study of Chapter 3.0, we implemented a QSP approach that started with the 

pathway enrichment analysis of RNA-seq data from a full spectrum of NAFLD patients, then 

proposed two most promising drugs to halt or reverse NAFLD progression by integrating CMap 

and Network Proximity methods. As a next step, we would test the proposed drugs in the liver 

acinus MPS model (LAMPS), and perform another iteration of drug repurposing with adjusted 

criteria based on the test results. In particular, there are three steps that could be adjusted in future 

studies: 1. Use an alternative cutoff value (top 10 in our current study) to select drugs predicted by 

CMap. 2. Include non-approved (experimental) drugs for testing if the results of the selected 

approved drugs turn out to be negative, even though non-approved drugs have more safety 

concerns, drugs under investigations for other indications can be promising for NAFLD. 3. We 

plan to initially test a few drugs on one of the multiple phenotypic characteristics of NAFLD, 

steatosis, so drugs targeting steatosis-related pathways were prioritized. In future studies, the 

pathways and networks of other phenotypic characteristics of NAFLD could be utilized to 

prioritize other phenotypic modulating drugs. In addition, our current approach provides new 

hypotheses for the potential mechanisms of the proposed drugs by computationally identifying 
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their targets and pathways. Further mechanistic experiments should provide more insights into the 

MOAs of specific drugs of interest after the testing of more drugs in the vascularized liver acinus 

MPS (vLAMPS). This should also enhance our understanding of NAFLD progression and 

optimize our development of personalized therapeutic strategies. 
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Appendix A Supporting Materials for the Huntington’s Disease Study 

Appendix A.1 Relative solubility of protective compounds 

Compounds were prepared in DMSO and diluted as describe in Methods. To demonstrate 

that the maximum concentrations used in the PI assay were below their aqueous solubility limit, 2 

Pl of the top four DMSO concentrations were diluted in 38 Pl PBS (pH 7.4) and their optical 

absorbance was measured from 230 to 1000 nm. A linear plot of concentration vs peak absorbance 

(after subtraction of DMSO/PBS blank) indicated that the aqueous solubility limit had not been 

reach in that concentration range. A plateau in the curve suggested that the solubility limit was 

being reached for the compound. 

 Max 
Relative 

 
 

Absorbance 
 

Compound Name Solubility n 
Wavelength  (PM)  

 

(nM) 
 

    
     

(Z)-Gugglesterone 250 > 50 2 

3-tropanyl-indole-3-carboxylate hydrochloride 230 > 50 3 

Beclomethasone 240 > 50 2 

Benztropine mesylate 230 > 50 3 

Betamethasone 240 > 50 2 

Budesonide 250 25 2 

Cyproheptadine hydrochloride 230 > 50 2 

Domperidone 230 > 50 2 

Ethoxzolamide 300 100 - 200 2 

Flutamide 230 > 50 2 

Hydrocortisone 250 > 50 2 

Isoetarine mesylate 230 > 200 2 

JWH-015 - ND  

Lansoprazole 280 > 200 2 

Lonidamine 230 > 200 2 

Loxapine succinate 230 > 50 3 

Meclizine 230 25 2 
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Mianserin hydrochloride 230 > 50 3 

m-Iodobenzylguanidine hemisulfate 230 > 50 2 

Papaverine hydrochloride 240 > 50 4 

PD 168,077 maleate 230 > 50 3 

Quipazine, N-methyl-,dimaleate 240 25 3 

Ruthenium red 540 > 50 3 

SB 203186 230 > 50 2 

Sodium Nitroprusside 230 > 200 2 

Tetradecylthioacetic acid 230 > 50 2 

Triamcinolone 240 > 50 3 

Triprolidine hydrochloride 230 > 50 3 

U-83836 dihydrochloride 230 25 2 
     

Vinpocetine 230 > 50 2 
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Appendix A.2 Targets from DrugBank and STITCH for 32 identified probes 

Targets were ranked by the number of interacting probes, probes interact with each target 

were listed in the corresponding row. 

Target 

ID 

Uniprot 

ID 
Target name 

Probes 

Count 
Probes 

T1 P35367 Histamine H1 receptor 7 

Meclizine, Domperidone, Benzatropine, 

Loxapine, Cyproheptadine, Mianserin, 

Triprolidine 

T2 P28223 5-hydroxytryptamine receptor 2A  6 

Loxapine, Benzatropine, Domperidone, 

Quipazine, N-methyl-,dimaleate, 

Mianserin, Cyproheptadine 

T3 P04150 Glucocorticoid receptor  6 

Triamcinolone, Budesonide, 

Betamethasone, Hydrocortisone, 

Beclomethasone, Prednisolone 

T4 P18825 Α-2C adrenergic receptor  5 
Mianserin, Benzatropine, Loxapine, 

Domperidone, Cyproheptadine 

T5 P35462 D(3) dopamine receptor 5 
Domperidone, Cyproheptadine, 

Benzatropine, Loxapine, Mianserin 

T6 P14416 D(2) dopamine receptor 5 
Benzatropine, Mianserin, Domperidone, 

Loxapine, Cyproheptadine 

T7 P28335 5-hydroxytryptamine receptor 2C 5 

Mianserin, Loxapine, Benzatropine, 

Quipazine, N-methyl-,dimaleate, 

Cyproheptadine 

T8 P08172 
Muscarinic acetylcholine receptor 

M2 
4 

Benzatropine, Loxapine, 

Cyproheptadine, Mianserin 

T9 P08173 
Muscarinic acetylcholine receptor 

M4 
4 

Loxapine, Cyproheptadine, 

Benzatropine, Mianserin 

T10 P11229 
Muscarinic acetylcholine receptor 

M1 
4 

Mianserin, Loxapine, Cyproheptadine, 

Benzatropine 

T11 P08913 Α-2A adrenergic receptor 4 
Benzatropine, Mianserin, 

Cyproheptadine, Loxapine 

T12 P18089 Α-2B adrenergic receptor 4 
Benzatropine, Cyproheptadine, 

Loxapine, Mianserin 

T13 P41595 5-hydroxytryptamine receptor 2B 4 

Benzatropine, Quipazine, N-

methyl-,dimaleate, Mianserin, 

Cyproheptadine 

T14 P08912 
Muscarinic acetylcholine receptor 

M5 
4 

Cyproheptadine, Loxapine, Mianserin, 

Benzatropine 

T15 P20309 
Muscarinic acetylcholine receptor 

M3 
4 

Cyproheptadine, Benzatropine, 

Loxapine, Mianserin 

T16 P34969 5-hydroxytryptamine receptor 7 3 Loxapine, Cyproheptadine, Mianserin 

T17 Q9H3N8 Histamine H4 receptor  3 Cyproheptadine, Mianserin, Loxapine 

T18 Q01959 
Sodium-dependent dopamine 

transporter  
3 Loxapine, Benzatropine, Mianserin 

T19 P21728 D(1A) dopamine receptor 3 Cyproheptadine, Loxapine, Mianserin 
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T20 P25100 Α-1D adrenergic receptor 3 
Cyproheptadine, Mianserin, 

Benzatropine 

T21 P50406 5-hydroxytryptamine receptor 6 3 Cyproheptadine, Mianserin, Loxapine 

T22 P08908 5-hydroxytryptamine receptor 1A 3 Mianserin, Loxapine, Cyproheptadine 

T23 P31645 
Sodium-dependent serotonin 

transporter 
3 

Quipazine, N-methyl-,dimaleate, 

Loxapine, Mianserin 

T24 P28221 5-hydroxytryptamine receptor 1D 2 Mianserin, Loxapine 

T25 P23975 
Sodium-dependent noradrenaline 

transporter  
2 Loxapine, Mianserin 

T26 P35368 Α-1B adrenergic receptor 2 Loxapine, Mianserin 

T27 P21918 D(1B) dopamine receptor 2 Loxapine, Mianserin 

T28 P35348 Α-1A adrenergic receptor 2 Loxapine, Mianserin 

T29 P25021 Histamine H2 receptor 2 Cyproheptadine, Loxapine 

T30 P08588 Beta-1 adrenergic receptor 2 Loxapine, Isoetarine 

T31 P98153 
Integral membrane protein 

DGCR2/IDD 
1 Ethoxzolamide 

T32 Q9UBN7 Histone deacetylase 6 1 Vorinostat 

T33 Q9ULX7 Carbonic anhydrase 14  1 Ethoxzolamide 

T34 P04083 Annexin A1  1 Hydrocortisone 

T35 P10636 Microtubule-associated protein tau 1 Lansoprazole 

T36 P41145 Kappa-type opioid receptor 1 Mianserin 

T37 Q9UKV0 Histone deacetylase 9 1 Vorinostat 

T38 P47898 5-hydroxytryptamine receptor 5A 1 Loxapine 

T39 Q16790 Carbonic anhydrase 9  1 Ethoxzolamide 

T40 P35218 
Carbonic anhydrase 5A, 

mitochondrial 
1 Ethoxzolamide 

T41 Q8N1Q1 Carbonic anhydrase 13  1 Ethoxzolamide 

T42 Q13547 Histone deacetylase 1 1 Vorinostat 

T43 P46098 5-hydroxytryptamine receptor 3A 1 Loxapine 

T44 P28566 5-hydroxytryptamine receptor 1E 1 Loxapine 

T45 Q9BY41 Histone deacetylase 8  1 Vorinostat 

T46 Q99720 
Sigma non-opioid intracellular 

receptor 1 
1 Benzatropine 

T47 Q12809 
Potassium voltage-gated channel 

subfamily H member 2 
1 Domperidone 

T48 P30939 5-hydroxytryptamine receptor 1F  1 Mianserin 

T49 P35869 Aryl hydrocarbon receptor  1 Flutamide 

T50 P43166 Carbonic anhydrase 7  1 Ethoxzolamide 

T51 Q14432 
cGMP-inhibited 3',5'-cyclic 

phosphodiesterase A  
1 Papaverine 

T52 P28222 5-hydroxytryptamine receptor 1B  1 Loxapine 

T53 Q969S8 Histone deacetylase 10  1 Vorinostat 

T54 P16066 Atrial natriuretic peptide receptor 1 1 Nitroprusside 
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T55 P23280 Carbonic anhydrase 6 (EC 4.2.1.1)  1 Ethoxzolamide 

T56 Q8WUI4 Histone deacetylase 7 1 Vorinostat 

T57 P56524 Histone deacetylase 4 1 Vorinostat 

T58 Q96DB2 Histone deacetylase 11 1 Vorinostat 

T59 P08185 Corticosteroid-binding globulin 1 Hydrocortisone 

T60 O43570 Carbonic anhydrase 12 1 Ethoxzolamide 

T61 P07550 Beta-2 adrenergic receptor 1 Isoetarine 

T62 P21917 D(4) dopamine receptor 1 Loxapine 

T63 Q9Y2D0 
Carbonic anhydrase 5B, 

mitochondrial 
1 Ethoxzolamide 

T64 P00918 Carbonic anhydrase 2 1 Ethoxzolamide 

T65 P22748 Carbonic anhydrase 4 1 Ethoxzolamide 

T66 P34972 Cannabinoid receptor 2 1 JWH-015 

T67 Q9UQL6 Histone deacetylase 5 1 Vorinostat 

T68 P20648 
Potassium-transporting ATPase α 

chain 1 
1 Lansoprazole 

T69 P10275 Androgen receptor 1 Flutamide 

T70 Q9Y233 
cAMP and cAMP-inhibited cGMP 

3',5'-cyclic phosphodiesterase 10A 
1 Papaverine 

T71 P00915 Carbonic anhydrase 1 1 Ethoxzolamide 

T72 P21554 Cannabinoid receptor 1 1 JWH-015 

T73 Q92769 Histone deacetylase 2 1 Vorinostat 

T74 Q07343 
cAMP-specific 3',5'-cyclic 

phosphodiesterase 4B 
1 Papaverine 

T75 O15379 Histone deacetylase 3 1 Vorinostat 

 

Appendix A.3 Mapping of 32 identified probes and targets in KEGG human pathways 

Pathways are ranked by the number of mapped probes, probe targets that mapped into each 

pathway and the corresponding probes were listed in the corresponding pathway row. Target 

information for each target ID is listed in Appendix A.2. 
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Index Pathway Name 
Probes 
count 

Targets in this 
pathway 

Probes in this pathway 

1 
Calcium signaling 
pathway 

9 

T8, T2, T10, T27, 
T7, T29, T19, T13, 
T16, T21, T14, 
T30, T20, T15, 
T26, T1, T61, T38, 
T28 

Mianserin, Domperidone, Benzatropine, 
Cyproheptadine, (Quipazine,N-
methyl-,dimaleate), Loxapine, Isoetarine, 
Meclizine, Triprolidine 

2 
Inflammatory 
mediator regulation 
of TRP channels 

8 T1, T7, T2, T13 

Mianserin, Domperidone, Benzatropine, 
Cyproheptadine, (Quipazine,N-
methyl-,dimaleate), Loxapine, Meclizine, 
Triprolidine 

3 
cGMP-PKG signaling 
pathway 

8 
T54, T4, T51, T20, 
T30, T11, T12, 
T26, T61, T28 

Nitroprusside, Mianserin, Domperidone, 
Benzatropine, Cyproheptadine, Loxapine, 
Papaverine, Isoetarine 

4 
cAMP signaling 
pathway 

8 

T8, T54, T10, T27, 
T44, T52, T51, 
T24, T48, T21, 
T19, T30, T6, T22, 
T74, T61 

Nitroprusside, Mianserin, Domperidone, 
Benzatropine, Cyproheptadine, Loxapine, 
Papaverine, Isoetarine 

5 Gap junction 7 
T2, T7, T13, T19, 
T30, T6 

Mianserin, Domperidone, Benzatropine, 
Cyproheptadine, (Quipazine,N-
methyl-,dimaleate), Loxapine, Isoetarine 

6 Alcoholism 6 

T32, T56, T75, 
T58, T18, T53, 
T42, T73, T45, T6, 
T67, T37, T19, T57 

Vorinostat, Mianserin, Domperidone, 
Benzatropine, Cyproheptadine, Loxapine 

7 
Rap1 signaling 
pathway 

6 T72, T6 
Mianserin, Domperidone, Benzatropine, 
JWH-015, Cyproheptadine, Loxapine 

8 
Serotonergic 
synapse 

6 

T43, T44, T2, T24, 
T52, T7, T13, T48, 
T21, T16, T22, 
T38, T23 

Mianserin, Domperidone, Benzatropine, 
Cyproheptadine, Quipazine, N-
methyl-,dimaleate, Loxapine 

9 
Amphetamine 
addiction 

5 T19, T18, T42 
Loxapine, Benzatropine, Vorinostat, 
Cyproheptadine, Mianserin 

10 
Dopaminergic 
synapse 

5 
T5, T18, T27, T19, 
T6, T62 

Loxapine, Domperidone, Benzatropine, 
Cyproheptadine, Mianserin 

11 Cocaine addiction 5 T19, T18, T6 
Loxapine, Domperidone, Benzatropine, 
Cyproheptadine, Mianserin 

12 Parkinson's disease 5 T19, T18, T6 
Loxapine, Domperidone, Benzatropine, 
Cyproheptadine, Mianserin 

13 Morphine addiction 4 T74, T19, T51, T70 
Loxapine, Papaverine, Mianserin, 
Cyproheptadine 
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14 Cholinergic synapse 4 
T8, T9, T14, T10, 
T15 

Loxapine, Benzatropine, Cyproheptadine, 
Mianserin 

15 
PI3K-Akt signaling 
pathway 

4 T8, T10 
Loxapine, Benzatropine, Cyproheptadine, 
Mianserin 

16 
Ras signaling 
pathway 

3 T16 Loxapine, Mianserin, Cyproheptadine 

17 Purine metabolism 2 T74, T54, T51, T70 Papaverine, Nitroprusside 

18 Endocytosis 2 T61, T30 Loxapine, Isoetarine 

19 
AMPK signaling 
pathway 

2 T28 Loxapine, Mianserin 

20 Pathways in cancer 2 T69, T73, T42 Flutamide, Vorinostat 

21 
Oxidative 
phosphorylation 

1 T68 Lansoprazole 

22 
Retrograde 
endocannabinoid 
signaling 

1 T72 JWH-015 

23 Alzheimer's disease 1 T35 Lansoprazole 

24 
Proximal tubule 
bicarbonate 
reclamation 

1 T64, T65 Ethoxzolamide 

25 Huntington's disease 1 T73, T42 Vorinostat 

26 
Nitrogen 
metabolism 

1 

T64, T65, T63, 
T50, T55, T33, 
T71, T39, T60, 
T40, T41 

Ethoxzolamide 

27 Cell cycle 1 T73, T42 Vorinostat 

28 
Transcriptional 
misregulation in 
cancer 

1 T73, T42 Vorinostat 

29 
Longevity regulating 
pathway - multiple 
species 

1 T73, T42 Vorinostat 

30 MicroRNAs in cancer 1 T57, T42 Vorinostat 

31 
Notch signaling 
pathway 

1 T73, T42 Vorinostat 

32 
MAPK signaling 
pathway 

1 T35 Lansoprazole 

33 
Epstein-Barr virus 
infection 

1 T57, T67, T73, T42 Vorinostat 

34 Viral carcinogenesis 1 

T32, T58, T75, 
T53, T42, T73, 
T45, T56, T67, 
T37, T57 

Vorinostat 
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Appendix A.4 Combination Pairs 

Each combination is represented by two compound names connected with an underscore. 

Combination  Combination  

Number Combination Number Combination 

1 Betamethasone_Lonidamine 81 Ruthenium red_Budesonide 

2 
Sodium 

Nitroprusside_Triamcinolone 
82 

Ruthenium red_3-tropanyl-indole-3-
carboxylate hydrochloride 

3 
Sodium 

Nitroprusside_Betamethasone 
83 

Triprolidine hydrochloride_3-tropanyl-
indole-3-carboxylate hydrochloride 

4 
Sodium 

Nitroprusside_Beclomethasone 
84 Beclomethasone_Budesonide 

5 Ethoxzolamide_Beclomethasone 85 Ethoxzolamide_JWH-015 

6 
Triprolidine 

hydrochloride_Betamethasone 
86 Triprolidine hydrochloride_Domperidone 

7 
Domperidone_Isoetarine 

mesylate 
87 

Triprolidine hydrochloride_Quipazine,N-
methyl-,dimaleate 

8 
Sodium 

Nitroprusside_Budesonide 
88 

Triamcinolone_3-tropanyl-indole-3-
carboxylate hydrochloride 

9 
Isoetarine mesylate_m-

lodobenzylguanidine hemisulfate 
89 Ethoxzolamide_Lansoprazole 

10 
Sodium Nitroprusside_Isoetarine 

mesylate 
90 Beclomethasone_Betamethasone 

11 
Sodium 

Nitroprusside_Lansoprazole 
91 Ethoxzolamide_Mianserin hydrochloride 

12 Ethoxzolamide_Betamethasone 92 
Ethoxzolamide_m-lodobenzylguanidine 

hemisulfate 

13 
Sodium Nitroprusside_Mianserin 

hydrochloride 
93 

Budesonide_3-tropanyl-indole-3-
carboxylate hydrochloride 

14 
Beclomethasone_Quipazine,N-

methyl-,dimaleate 
94 Ruthenium red_Lonidamine 

15 
Sodium Nitroprusside_Loxapine 

succinate 
95 Triprolidine hydrochloride_Budesonide 

16 
Ethoxzolamide_Loxapine 

succinate 
96 

Triamcinolone_Cyproheptadine 
hydrochloride 

17 Ethoxzolamide_Domperidone 97 
3-tropanyl-indole-3-carboxylate 

hydrochloride_PD168,077 maleate 

18 Ruthenium red_Betamethasone 98 Ethoxzolamide_PD168,077 maleate 

19 
3-tropanyl-indole-3-carboxylate 

hydrochloride_Isoetarine 
mesylate 

99 Budesonide_Isoetarine mesylate 

20 
Benztropine mesylate_Isoetarine 

mesylate 
100 

Triamcinolone_Quipazine,N-
methyl-,dimaleate 

21 
Isoetarine mesylate_Loxapine 

succinate 
101 Ruthenium red_Benztropine mesylate 

22 
Domperidone_m-

lodobenzylguanidine hemisulfate 
102 Triamcinolone_Budesonide 
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23 
Sodium Nitroprusside_U-83836 

dihydrochloride 
103 Ruthenium red_Triprolidine hydrochloride 

24 
Tetradecylthioacetic 

acid_Budesonide 
104 

Sodium Nitroprusside_Cyproheptadine 
hydrochloride 

25 
Betamethasone_Quipazine,N-

methyl-,dimaleate 
105 

3-tropanyl-indole-3-carboxylate 
hydrochloride_Papaverine hydrochloride 

26 
Tetradecylthioacetic 
acid_Betamethasone 

106 Ethoxzolamide_Isoetarine mesylate 

27 
Tetradecylthioacetic 

acid_Isoetarine mesylate 
107 Lonidamine_Benztropine mesylate 

28 
Isoetarine mesylate_Mianserin 

hydrochloride 
108 

3-tropanyl-indole-3-carboxylate 
hydrochloride_Mianserin hydrochloride 

29 
Isoetarine mesylate_Papaverine 

hydrochloride 
109 Sodium Nitroprusside_Ethoxzolamide 

30 
Betamethasone_Isoetarine 

mesylate 
110 Lansoprazole_Loxapine succinate 

31 
Triamcinolone_Benztropine 

mesylate 
111 Ethoxzolamide_Papaverine hydrochloride 

32 Domperidone_Lansoprazole 112 
Ruthenium red_Quipazine,N-

methyl-,dimaleate 

33 
Beclomethasone_Isoetarine 

mesylate 
113 

Mianserin hydrochloride_Papaverine 
hydrochloride 

34 
Sodium 

Nitroprusside_Lonidamine 
114 Tetradecylthioacetic acid_Flutamide 

35 
Triprolidine 

hydrochloride_Beclomethasone 
115 

Mianserin hydrochloride_PD168,077 
maleate 

36 Triamcinolone_Lonidamine 116 Domperidone_Loxapine succinate 

37 
Beclomethasone_3-tropanyl-

indole-3-carboxylate 
hydrochloride 

117 Lonidamine_Domperidone 

38 
Betamethasone_3-tropanyl-

indole-3-carboxylate 
hydrochloride 

118 
Benztropine mesylate_m-

lodobenzylguanidine hemisulfate 

39 Beclomethasone_Domperidone 119 Flutamide_Loxapine succinate 

40 
Tetradecylthioacetic 
acid_Triamcinolone 

120 
Tetradecylthioacetic acid_Quipazine,N-

methyl-,dimaleate 

41 
Sodium 

Nitroprusside_Triprolidine 
hydrochloride 

121 Ruthenium red_Isoetarine mesylate 

42 Triamcinolone_Domperidone 122 
Tetradecylthioacetic acid_3-tropanyl-
indole-3-carboxylate hydrochloride 

43 Ethoxzolamide_Budesonide 123 Tetradecylthioacetic acid_Lonidamine 

44 
Domperidone_Papaverine 

hydrochloride 
124 Domperidone_Mianserin hydrochloride 

45 
Isoetarine mesylate_PD168,077 

maleate 
125 

Triprolidine hydrochloride_Benztropine 
mesylate 

46 Ethoxzolamide_Triamcinolone 126 Ethoxzolamide_Ruthenium red 

47 
Sodium Nitroprusside_3-

tropanyl-indole-3-carboxylate 
hydrochloride 

127 
Lansoprazole_m-lodobenzylguanidine 

hemisulfate 

48 
Betamethasone_Benztropine 

mesylate 
128 

Loxapine succinate_Mianserin 
hydrochloride 
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49 Ethoxzolamide_Lonidamine 129 
Benztropine mesylate_Papaverine 

hydrochloride 

50 
Triamcinolone_Isoetarine 

mesylate 
130 Ruthenium red_Triamcinolone 

51 
Domperidone_PD168,077 

maleate 
131 Triamcinolone_Beclomethasone 

52 
Ethoxzolamide_Triprolidine 

hydrochloride 
132 Domperidone_Flutamide 

53 
Loxapine succinate_m-

lodobenzylguanidine hemisulfate 
133 

3-tropanyl-indole-3-carboxylate 
hydrochloride_Loxapine succinate 

54 
Budesonide_Quipazine,N-

methyl-,dimaleate 
134 

Lonidamine_Quipazine,N-
methyl-,dimaleate 

55 Beclomethasone_Lonidamine 135 
Tetradecylthioacetic acid_Benztropine 

mesylate 

56 
Sodium 

Nitroprusside_Domperidone 
136 Cyproheptadine hydrochloride_Lonidamine 

57 
Ethoxzolamide_Benztropine 

mesylate 
137 

Tetradecylthioacetic acid_Triprolidine 
hydrochloride 

58 Ruthenium red_Domperidone 138 Tetradecylthioacetic acid_Domperidone 

59 
Ethoxzolamide_Quipazine,N-

methyl-,dimaleate 
139 Budesonide_Benztropine mesylate 

60 
Loxapine succinate_PD168,077 

maleate 
140 

Cyproheptadine 
hydrochloride_Quipazine,N-

methyl-,dimaleate 

61 
3-tropanyl-indole-3-carboxylate 

hydrochloride_m-
lodobenzylguanidine hemisu 

141 
Beclomethasone_Cyproheptadine 

hydrochloride 

62 Budesonide_Lonidamine 142 Benztropine mesylate_Loxapine succinate 

63 
Triamcinolone_Triprolidine 

hydrochloride 
143 

Papaverine hydrochloride_PD168,077 
maleate 

64 
Sodium 

Nitroprusside_Benztropine 
mesylate 

144 
Betamethasone_Cyproheptadine 

hydrochloride 

65 
Triprolidine 

hydrochloride_Isoetarine 
mesylate 

145 Triprolidine hydrochloride_Flutamide 

66 
Triprolidine 

hydrochloride_Lonidamine 
146 

m-lodobenzylguanidine 
hemisulfate_PD168,077 maleate 

67 
Tetradecylthioacetic acid_(Z)-

Gugglesterone 
147 

Lonidamine_3-tropanyl-indole-3-
carboxylate hydrochloride 

68 
Ethoxzolamide_3-tropanyl-

indole-3-carboxylate 
hydrochloride 

148 
Ethoxzolamide_Cyproheptadine 

hydrochloride 

69 
Beclomethasone_Benztropine 

mesylate 
149 

Tetradecylthioacetic acid_Cyproheptadine 
hydrochloride 

70 
Loxapine succinate_Papaverine 

hydrochloride 
150 

m-lodobenzylguanidine 
hemisulfate_Papaverine hydrochloride 

71 Ruthenium red_Beclomethasone 151 
Ruthenium red_Cyproheptadine 

hydrochloride 

72 
Ethoxzolamide_Tetradecylthioace

tic acid 
152 Benztropine mesylate_Domperidone 

73 Lonidamine_Isoetarine mesylate 153 
Sodium Nitroprusside_Tetradecylthioacetic 

acid 
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74 Triamcinolone_Betamethasone 154 
Triprolidine hydrochloride_Cyproheptadine 

hydrochloride 

75 Betamethasone_Budesonide 155 Sodium Nitroprusside_Ruthenium red 

76 Lonidamine_Flutamide 156 Isoetarine mesylate_Lansoprazole 

77 Triamcinolone_Flutamide 157 
Flutamide_m-lodobenzylguanidine 

hemisulfate 

78 Budesonide_Domperidone 158 
3-tropanyl-indole-3-carboxylate 

hydrochloride_Benztropine mesylate 

79 
Tetradecylthioacetic 

acid_Beclomethasone 
159 Ruthenium red_Tetradecylthioacetic acid 

80 Ethoxzolamide_Flutamide   

 

Appendix A.5 Synergistic Pairs 

Compound combinations were run at least once on two different days. n= the total number 

of combination samples analyzed. An n = 2 indicates a combination was run only once on each of 

the two days. 

  Avg   Avg   
Combination 

Combination 

Percent 

Std n* 

Combi 

Std 

Median 

Number Recovery Ratio BCI 
1 Betamethasone_Lonidamine 84.68 6.12 4 1.98 0.62 1.39 
2 Sodium Nitroprusside_Triamcinolone 89.08 4.62 5 1.89 0.34 1.34 
3 Sodium Nitroprusside_Betamethasone 96.89 4.67 5 1.81 0.39 1.27 
4 Sodium Nitroprusside_Beclomethasone 94.51 2.60 5 1.78 0.26 1.26 
5 Ethoxzolamide_Beclomethasone 86.85 2.49 5 1.72 0.11 1.23 
6 Triprolidine hydrochloride_Betamethasone 91.41 2.80 4 1.59 0.28 1.22 
7 Domperidone_Isoetarine mesylate 78.69 12.41 4 1.79 0.12 1.20 
8 Sodium Nitroprusside_Budesonide 100.88 1.04 5 1.50 0.08 1.19 
9 Isoetarine mesylate_m-lodobenzylguanidine hemisulfate 71.92 6.76 4 1.86 0.06 1.17 

10 Sodium Nitroprusside_Isoetarine mesylate 80.63 5.73 5 1.87 0.36 1.17 
11 Sodium Nitroprusside_Lansoprazole 82.22 6.02 4 1.56 0.08 1.17 
12 Ethoxzolamide_Betamethasone 77.30 33.72 6 1.55 0.02 1.15 
13 Sodium Nitroprusside_Mianserin hydrochloride 75.42 8.10 4 1.63 0.20 1.14 
14 Beclomethasone_Quipazine,N-methyl-,dimaleate 79.64 2.89 2 1.66 0.15 1.14 
15 Sodium Nitroprusside_Loxapine succinate 80.46 2.19 4 1.49 0.03 1.13 
16 Ethoxzolamide_Loxapine succinate 74.43 4.13 4 1.38 0.03 1.13 
17 Ethoxzolamide_Domperidone 81.30 17.04 6 1.68 0.27 1.12 

18 Ruthenium red_Betamethasone 79.17 7.01 4 1.51 0.34 1.12 
19 3-tropanyl-indole-3-carboxylate hydrochloride_Isoetarine mesylate 69.62 3.52 4 1.76 0.08 1.12 
20 Benztropine mesylate_Isoetarine mesylate 65.81 2.06 4 1.71 0.24 1.12 
21 Isoetarine mesylate_Loxapine succinate 80.01 4.50 4 1.48 0.06 1.11 
22 Domperidone_m-lodobenzylguanidine hemisulfate 72.00 3.99 4 1.64 0.04 1.11 
23 Sodium Nitroprusside_U-83836 dihydrochloride 84.34 2.71 5 1.45 0.12 1.11 
24 Tetradecylthioacetic acid_Budesonide 96.68 1.02 4 1.43 0.07 1.11 
25 Betamethasone_Quipazine,N-methyl-,dimaleate 83.07 0.57 2 1.50 0.12 1.11 
26 Tetradecylthioacetic acid_Betamethasone 85.04 3.50 4 1.42 0.19 1.11 
27 Tetradecylthioacetic acid_Isoetarine mesylate 88.66 4.19 2 1.39 0.08 1.10 
28 Isoetarine mesylate_Mianserin hydrochloride 73.47 5.54 4 1.60 0.34 1.10 
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29 Isoetarine mesylate_Papaverine hydrochloride 74.95 6.28 4 1.57 0.02 1.10 
30 Betamethasone_Isoetarine mesylate 82.64 9.58 2 1.48 0.04 1.10 
31 Triamcinolone_Benztropine mesylate 74.81 0.50 2 1.31 0.30 1.09 
32 Domperidone_Lansoprazole 79.79 12.84 4 1.51 0.11 1.08 
33 Beclomethasone_Isoetarine mesylate 77.04 5.53 2 1.47 0.01 1.08 
34 Sodium Nitroprusside_Lonidamine 66.90 22.35 5 1.39 0.09 1.08 
35 Triprolidine hydrochloride_Beclomethasone 86.17 3.73 4 1.42 0.15 1.08 
36 Triamcinolone_Lonidamine 58.55 8.25 4 1.72 0.49 1.07 
37 Beclomethasone_3-tropanyl-indole-3-carboxylate  hydrochloride 78.29 3.15 2 1.53 0.01 1.07 
38 Betamethasone_3-tropanyl-indole-3-carboxylate  hydrochloride 82.88 8.42 2 1.49 0.02 1.07 
39 Beclomethasone_Domperidone 83.70 0.17 2 1.42 0.02 1.07 
40 Tetradecylthioacetic acid_Triamcinolone 77.97 5.99 4 1.32 0.29 1.07 
41 Sodium Nitroprusside_Triprolidine hydrochloride 86.41 5.97 5 1.46 0.25 1.07 
42 Triamcinolone_Domperidone 73.41 1.45 2 1.25 0.01 1.07 
43 Ethoxzolamide_Budesonide 87.19 3.45 6 1.29 0.03 1.07 
44 Domperidone_Papaverine hydrochloride 75.42 11.88 4 1.58 0.19 1.07 
45 Isoetarine mesylate_PD168,077 maleate 71.38 2.48 4 1.57 0.15 1.07 
46 Ethoxzolamide_Triamcinolone 61.43 7.36 6 1.54 0.33 1.06 
47 Sodium Nitroprusside_3-tropanyl-indole-3-carboxylate hydrochloride 68.86 12.35 5 1.53 0.13 1.06 
48 Betamethasone_Benztropine mesylate 85.13 0.92 2 1.44 0.29 1.05 
49 Ethoxzolamide_Lonidamine 64.69 6.30 6 1.61 0.37 1.05 
50 Triamcinolone_Isoetarine mesylate 61.87 12.97 2 1.39 0.12 1.05 
51 Domperidone_PD168,077 maleate 72.46 5.13 4 1.55 0.17 1.04 
52 Ethoxzolamide_Triprolidine hydrochloride 77.82 7.22 6 1.29 0.17 1.04 
53 Loxapine succinate_m-lodobenzylguanidine hemisulfate 73.76 2.68 4 1.36 0.00 1.04 
54 Budesonide_Quipazine,N-methyl-,dimaleate 85.41 12.39 2 1.25 0.12 1.04 
55 Beclomethasone_Lonidamine 69.30 21.92 4 1.37 0.03 1.03 
56 Sodium Nitroprusside_Domperidone 61.74 25.78 5 1.26 0.37 1.03 
57 Ethoxzolamide_Benztropine mesylate 58.69 10.99 6 1.46 0.23 1.02 
58 Ruthenium red_Domperidone 80.82 1.76 2 1.37 0.05 1.01 
59 Ethoxzolamide_Quipazine,N-methyl-,dimaleate 60.16 7.97 4 1.59 0.17 1.01 
60 Loxapine succinate_PD168,077 maleate 75.92 2.61 4 1.40 0.01 1.01 

 3-tropanyl-indole-3-carboxylate  hydrochloride_m-lodobenzylguanidine       

61 hemisulfate 61.79 2.27 4 1.57 0.07 1.01 
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Appendix B Supporting Materials for the Drug Abuse Study  

Appendix B contains the information and structure of the addictive drugs in the drug 

addiction study (see Section 3.2.2).  

Appendix B.1 Dataset of 50 addictive drugs and their corresponding groups and identifiers 

‘# of targets’ counts the number of targets of drugs recorded in either DrugBank v5 or 

STITCH v5.  

Index Drug group and name 
DrugBank 

ID 
Pubchem 

ID 
# of 

targets 
Reference 

1 

C
N

S
 S

ti
m

u
la

n
ts

 

Cocaine DB00907 446220 45 (Gawin and Ellinwood, 1988) 

2 Methylphenidate DB00422 4158 3 (Klein-Schwartz, 2002) 

3 Methamphetamine DB01577 10836 11 (Winslow, et al., 2007) 

4 Amphetamine DB00182 3007 17 (Kramer, et al., 1967) 

5 Phenmetrazine DB00830 4762 2 (Mellar and Hollister, 1982) 

6 Phendimetrazine DB01579 30487 3 (Bolin, et al., 2016) 

7 

C
N

S
 D

e
p

re
s

s
a

n
ts

 

Pentobarbital DB00312 4737 27 (Griffiths, et al., 1979) 

8 Zaleplon DB00962 5719 2 (Dooley and Plosker, 2000) 

9 Zolpidem DB00425 5732 13 (Madrak and Rosenberg, 2001) 

10 Glutethimide DB01437 3487 16 (Jones and Mayberry, 1986) 

11 Flunitrazepam DB01544 3380 16 (Druid, et al., 2001) 
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12 Diazepam DB00829 3016 24 (Woody, et al., 1975) 

13 Lorazepam DB00186 3958 17 (Troisi 2nd, et al., 1993) 

14 Triazolam DB00897 5556 20 (Fleming, 1983) 

15 Alprazolam DB00404 2118 17 (Rush, et al., 1993) 

16 Chlordiazepoxide DB00475 2712 16 (Hollister, et al., 1961) 

17 Promethazine DB01069 4927 19 (Tsay, et al., 2015) 

18 Eszopiclone DB00402 969472 17 (Hajak, et al., 2003) 

19 
Gamma 
Hydroxybutyric Acid 
(GHB) 

DB01440 11266 2 (Galloway, et al., 2000) 

20 

O
p

io
id

s
 

Meperidine NA 4058 2 (Joranson, et al., 2000) 

21 Fentanyl DB00813 3345 3 (Gold, et al., 2006) 

22 Methadone DB00333 4095 11 (Cicero and Inciardi, 2005) 

23 Loperamide DB00836 3955 5 (Lasoff, et al., 2017) 

24 Oxymorphone DB01192 5284604 3 (Babalonis, et al., 2016) 

25 Hydromorphone DB00327 5284570 3 (Walsh, et al., 2008) 

26 Hydrocodone DB00956 5284569 2 (Babalonis, et al., 2016) 

27 Oxycodone DB00497 5284603 5 (Harris, et al., 2014) 

28 Codeine DB00318 5284371 3 (Kathiramalainathan, et al., 2000) 

29 Morphine DB00295 5288826 4 (Preston, et al., 1991) 

30 Heroin DB01452 5462328 3 (Buttner, et al., 2000) 

31 Buprenorphine DB00921 644073 4 (O'Connor, et al., 1988) 

32 

C
a

n
n

a
b

in
o

i
d

s
 

Cannabichromene NA 30219 1 (Poklis, et al., 2010) 

33 Dronabinol DB00470 16078 3 (Calhoun, et al., 1998) 
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34 Cannabidiol DB09061 644019 2 (Robson, 2011) 

35 Cannabinol NA 2543 2 (Yamamoto, et al., 2003) 

36 Anandamide NA 5281969 2 (Solinas, et al., 2007) 

37 2-AG NA 5282280 2 (Solinas, et al., 2007) 

38 

S
te

ro
id

s
 

Oxandrolone DB00621 5878 1 (Bahrke and Yesalis, 2004) 

39 Oxymetholone DB06412 5281034 2 (Bahrke and Yesalis, 2004) 

40 Nandrolone DB13169 9904 2 (Kouvelas, et al., 2008) 

41 

H
a

ll
u

c
in

o
g

e
n

s
 

Psilocin NA 4980 11 (Ludwig and Levine, 1965) 

42 Dimethyltryptamine DB01488 8441 3 (Winstock, et al., 2014) 

43 Psilocybin DB11664 10624 5 (Passie, et al., 2002) 

44 
Lysergic Acid 
Diethylamide (LSD) 

DB04829 5761 12 (Simpson, et al., 1997) 

45 Ketamine DB01221 3821 20 (Dotson, et al., 1995) 

46 Phencyclidine DB03575 6468 10 (Slavney, et al., 1977) 

47 Midomafetamine DB01454 1615 8 (Seger, 2010) 

48 Mescaline NA 4076 2 (Neiman, et al., 2000) 

49 Dextrorphan NA 5360697 1 (Schwartz, 2005) 

50 Dextromethorphan DB00514 5360696 21 (Boyer, 2004) 
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Appendix B.2 2D structures of the dataset of 50 addictive drugs 

The names of drugs/chemicals are colored green, blue, red, cyan, light brown, black and 

magenta for the 6 CNS stimulants, 13 CNS depressants, 12 opioids, 7 cannabinoids, 4 anabolic 

steroids and 10 hallucinogens, respectively. 
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Appendix C Supporting Materials for the NAFLD Study  

Appendix C contains the information of differentially regulated pathways and supporting 

materials for drug prediction in the NAFLD study (see Section 3.3.2).  

Appendix C.1 Categorization of differentially regulated pathways 

C1: Insulin resistance and oxidative stress; C2: Cell Stress, apoptosis and lipotoxicity; C3: 

Inflammation; C4: Fibrosis 

KEGG Pathway Group: Metabolism (number: 45, percentage: 32%) 

KEGG Pathway 
Subgroup 

KEGG ID Pathway Name 
NAFLD 

Pathway 
Category 

References 

Amino acid 
metabolism 

(n = 9) 

hsa00340 Histidine metabolism C1  

hsa00260 
Glycine, serine and threonine 

metabolism 
C2  

hsa00360 Phenylalanine metabolism C2 (Kim, et al., 2018) 

hsa00330 Arginine and proline metabolism C3 
(Dumas, et al., 

2014) 

hsa00380 Tryptophan metabolism C3 (Oates, et al., 2019) 

hsa00250 
Alanine, aspartate and glutamate 

metabolism 
C3, C4 (Oates, et al., 2019) 

hsa00290 
Valine, leucine and isoleucine 

biosynthesis 
C4 

(Gaggini, et al., 
2018) 

hsa00350 Tyrosine metabolism C4  

hsa00280 
Valine, leucine and isoleucine 

degradation 
C4 

(Gaggini, et al., 
2018) 

Carbohydrate 
metabolism 

(n = 10) 

hsa00052 Galactose metabolism C1 
(Basaranoglu, et al., 

2013) 

hsa00020 Citrate cycle (TCA cycle) C1  

hsa00650 Butanoate metabolism C1 (Endo, et al., 2013) 

hsa00562 Inositol phosphate metabolism C1 
(Kanehisa, et al., 

2017) 
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hsa00500 Starch and sucrose metabolism C1  

hsa00630 
Glyoxylate and dicarboxylate 

metabolism 
C1, C2 

(Kanehisa, et al., 
2017) 

hsa00030 Pentose phosphate pathway C1, C2 (Jin, et al., 2018) 

hsa00520 
Amino sugar and nucleotide sugar 

metabolism 
C1, C2, 

C3 
(Jensen, et al., 

2018) 

hsa00051 Fructose and mannose metabolism 
C1, C2, 

C3 
(Jegatheesan and 
De Bandt, 2017) 

hsa00010 Glycolysis / Gluconeogenesis C1, C4 (Zhao, et al., 2020) 

Energy metabolism 
(n = 2) 

hsa00190 Oxidative phosphorylation C1  

hsa00920 Sulfur metabolism C1  

Glycan biosynthesis 
and metabolism 

(n = 8) 

hsa00511 Other glycan degradation C4 
(Rostami and 
Parsian, 2013) 

hsa00533 
Glycosaminoglycan biosynthesis - 

keratan sulfate 
C4 

(Rostami and 
Parsian, 2013) 

hsa00603 
Glycosphingolipid biosynthesis - 

globo and isoglobo series 
C4 

(Rostami and 
Parsian, 2013) 

hsa00604 
Glycosphingolipid biosynthesis - 

ganglio series 
C4 

(Rostami and 
Parsian, 2013) 

hsa00531 Glycosaminoglycan degradation C4 
(Rostami and 
Parsian, 2013) 

hsa00532 
Glycosaminoglycan biosynthesis - 

chondroitin sulfate / dermatan 
sulfate 

C4 
(Rostami and 
Parsian, 2013) 

hsa00601 
Glycosphingolipid biosynthesis - 

lacto and neolacto series 
C4 

(Rostami and 
Parsian, 2013) 

hsa00534 
Glycosaminoglycan biosynthesis - 

heparan sulfate / heparin 
C4 

(Rostami and 
Parsian, 2013) 

Lipid metabolism 
(n = 5) 

hsa00564 Glycerophospholipid metabolism C2  

hsa00561 Glycerolipid metabolism C2  

hsa00120 Primary bile acid biosynthesis C2  

hsa00140 Steroid hormone biosynthesis C2  

hsa00071 Fatty acid degradation C2  

Metabolism of 
cofactors and 

vitamins 
(n = 4) 

hsa00860 
Porphyrin and chlorophyll 

metabolism 
C1  

hsa00770 Pantothenate and CoA biosynthesis C1  

hsa00760 
Nicotinate and nicotinamide 

metabolism 
C1 

(Guarino and 
Dufour, 2019) 

hsa00670 One carbon pool by folate C2 
(Radziejewska, et 

al., 2019) 

Metabolism of other 
amino acids (n = 2) 

hsa00480 Glutathione metabolism C1 (Liu, et al., 2015) 

hsa00450 Selenocompound metabolism C1  
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Metabolism of 
terpenoids and 

polyketides (n = 1) 
hsa00900 Terpenoid backbone biosynthesis C1 (Kuzuyama, 2017) 

Nucleotide 
metabolism (n = 2) 

hsa00230 Purine metabolism C1 (Cai, et al., 2014) 

hsa00240 Pyrimidine metabolism C1, C2 (Le, et al., 2013) 

Xenobiotics 
biodegradation and 
metabolism (n = 2) 

hsa00983 Drug metabolism - other enzymes C2 (Naik, et al., 2013) 

hsa00980 
Metabolism of xenobiotics by 

cytochrome P450 
C2 (Naik, et al., 2013) 

KEGG Pathway Group: Human Diseases (number: 31, percentage: 22%) 

Cancer: overview  
(n = 1) 

hsa05200 Pathways in cancer C5  

Cancer: specific 
types 

(n = 14) 

hsa05210 Colorectal cancer C5  

hsa05216 Thyroid cancer C5  

hsa05214 Glioma C5  

hsa05215 Prostate cancer C5  

hsa05217 Basal cell carcinoma C5  

hsa05223 Non-small cell lung cancer C5  

hsa05222 Small cell lung cancer C5  

hsa05212 Pancreatic cancer C5  

hsa05218 Melanoma C5  

hsa05221 Acute myeloid leukemia C5  

hsa05213 Endometrial cancer C5  

hsa05220 Chronic myeloid leukemia C5  

hsa05211 Renal cell carcinoma C5  

hsa05219 Bladder cancer C5  

Cardiovascular 
disease 
(n = 4) 

hsa05416 Viral myocarditis C5  

hsa05414 Dilated cardiomyopathy (DCM) C5  

hsa05410 
Hypertrophic cardiomyopathy 

(HCM) 
C5  

hsa05412 
Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 
C5  

Endocrine and 
metabolic disease  

(n = 1) 
hsa04940 Type I diabetes mellitus C5  

Immune disease 
(n = 4) 

hsa05322 Systemic lupus erythematosus C5  

hsa05332 Graft-versus-host disease C5  

hsa05330 Allograft rejection C5  

hsa05340 Primary immunodeficiency C5  

Infectious disease: 
bacterial (n = 2) 

hsa05130 
Pathogenic Escherichia coli 

infection 
C5  

hsa05110 Vibrio cholerae infection C5  
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Infectious disease: 
parasitic (n = 1) 

hsa05140 Leishmaniasis C5  

Neurodegenerative 
disease 
(n = 4) 

hsa05016 Huntington disease C5  

hsa05010 Alzheimer disease C5  

hsa05012 Parkinson disease C5  

hsa05020 Prion diseases C5  

KEGG Pathway Group: Organismal Systems (number: 28, percentage: 20%) 

Circulatory system 
(n = 2) 

hsa04260 Cardiac muscle contraction C6 
(Mangi, et al., 

2017),(Ismaiel and 
Dumitrascu, 2019) 

hsa04270 
Vascular smooth muscle 

contraction 
C6 

(Pasarin, et al., 
2017) 

Development and 
regeneration (n = 2) 

hsa04360 Axon guidance C3 
(Taipale, et al., 

2018) 

hsa04320 Dorso-ventral axis formation C7  

Endocrine system 
(n = 5) 

hsa04916 Melanogenesis C1, C3 (Page, et al., 2011) 

hsa04614 Renin-angiotensin system 
C1, C3, 

C4 

(Paschos and 
Tziomalos, 2012; 

Simoes, et al., 2017) 

hsa03320 PPAR signaling pathway C2 
(Liss and Finck, 

2017) 

hsa04912 GnRH signaling pathway C2 
(Kanehisa, et al., 

2017) 

hsa04914 
Progesterone-mediated oocyte 

maturation 
C7  

Excretory system  
(n = 2) 

hsa04964 
Proximal tubule bicarbonate 

reclamation 
C6  

hsa04962 
Vasopressin-regulated water 

reabsorption 
C6 (Li, et al., 2019) 

Immune system 
(n = 13) 

hsa04664 Fc epsilon RI signaling pathway C3  

hsa04620 Toll-like receptor signaling pathway C3  

hsa04660 T cell receptor signaling pathway 
C1, C3, 

C4 
(Van Herck, et al., 

2019) 

hsa04662 B cell receptor signaling pathway C3  

hsa04666 
Fc gamma R-mediated 

phagocytosis 
C3  

hsa04650 
Natural killer cell mediated 

cytotoxicity 
C3  

hsa04670 
Leukocyte transendothelial 

migration 
C3  

hsa04062 Chemokine signaling pathway C3  

hsa04621 
NOD-like receptor signaling 

pathway 
C3  

hsa04672 
Intestinal immune network for IgA 

production 
C3  
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hsa04612 
Antigen processing and 

presentation 
C3  

hsa04622 
RIG-I-like receptor signaling 

pathway 
C3  

hsa04640 Hematopoietic cell lineage C3  

Nervous system 
(n = 2) 

hsa04722 Neurotrophin signaling pathway C6 

(Davis, et al., 
2012),(Muirhead 
and Monaghan, 

2012) 

hsa04720 Long-term potentiation C6 (Ross, et al., 2012) 

Sensory system 
(n = 2) 

hsa04740 Olfactory transduction C6 
(Paz-Filho, et al., 

2013) 

hsa04742 Taste transduction C6  

KEGG Pathway Group: Environmental Information Processing (number: 14, percentage: 10%) 

Membrane 
transport 

(n = 1) 
hsa02010 ABC transporters C2 

(Hardwick, et al., 
2011; Naik, et al., 

2013) 

Signal transduction 
(n = 9) 

hsa04070 
Phosphatidylinositol signaling 

system 
C1 

(Matsuda, et al., 
2013) 

hsa04330 Notch signaling pathway C1 
(Zhao, et al., 

2018),(Valenti, et 
al., 2013) 

hsa04370 VEGF signaling pathway C2  

hsa04012 ErbB signaling pathway C2  

hsa04310 Wnt signaling pathway 
C2, C3, 

C4 
(Zhao, et al., 2020) 

hsa04010 MAPK signaling pathway C2, C4 (Zhao, et al., 2020) 

hsa04630 Jak-STAT signaling pathway C3 
(Riordan and 

Nadeau, 2014) 

hsa04350 TGF-beta signaling pathway C4 
(Feaver, et al., 

2016) 

hsa04340 Hedgehog signaling pathway C4 (Syn, et al., 2009) 

Signaling molecules 
and interaction 

(n = 4) 

hsa04512 ECM-receptor interaction C2  

hsa04514 Cell adhesion molecules (CAMs) C2  

hsa04060 
Cytokine-cytokine receptor 

interaction 
C3 

(Braunersreuther, 
et al., 2012) 

hsa04080 
Neuroactive ligand-receptor 

interaction 
C6  

KEGG Pathway Group: Genetic Information Processing (number: 11, percentage: 8%) 

Folding, sorting and 
degradation 

(n = 4) 

hsa04120 Ubiquitin mediated proteolysis 
C1, C2, 

C3 
(Luo, et al., 2018) 

hsa03050 Proteasome C2 
(Feaver, et al., 

2016) 

hsa04130 
SNARE interactions in vesicular 

transport 
C2  
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hsa03018 RNA degradation 
C2, C3, 

C4 
 

Replication and 
repair 
(n = 4) 

hsa03450 Non-homologous end-joining C2  

hsa03410 Base excision repair C2  

hsa03430 Mismatch repair C2  

hsa03440 Homologous recombination C2  

Transcription (n = 2) 
hsa03022 Basal transcription factors C2  

hsa03020 RNA polymerase C2  

Translation (n = 1) hsa03010 Ribosome C2  

KEGG Pathway Group: Cellular Processes (number: 10, percentage: 7%) 

Cell growth and 
death 
(n = 4) 

hsa04115 p53 signaling pathway 
C1, C2, 

C4 
(Krstic, et al., 2018; 

Yan, et al., 2018) 

hsa04210 Apoptosis 
C2, C3, 

C4 
(Kanda, et al., 2018) 

hsa04110 Cell cycle C2  

hsa04114 Oocyte meiosis C7  

Cell motility (n = 1) hsa04810 Regulation of actin cytoskeleton C1, C4 
(Chambel, et al., 

2015) 

Cellular community 
– eukaryotes 

(n = 3) 

hsa04520 Adherens junction C2  

hsa04510 Focal adhesion C2  

hsa04540 Gap junction 
C2, C3, 

C4 
(Hernandez-Guerra, 

et al., 2019) 

Transport and 
catabolism (n = 2) 

hsa04142 Lysosome C2 (Du, et al., 2020) 

hsa04146 Peroxisome C2, C3 
(Orabona, et al., 

2018) 
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Appendix C.2 Differentially regulated pathways of each comparison 

PF vs. N&S 

Pathway Name 

NAFLD 

Pathway 

Category 

KEGG 

Pathway 

Group 

KEGG 

Pathway 

Subgroup 

Adjusted 

p-value 

(FDR) 

logFoldChange 

Ubiquitin mediated 

proteolysis 
C2 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

8.3E-24 1.51 

Fructose and 

mannose 

metabolism 

C1, C3 Metabolism 
Carbohydrate 

metabolism 
8.3E-24 -1.53 

Apoptosis C2 
Cellular 

Processes 

Cell growth 

and death 
2.2E-23 1.5 

Glycosphingolipid 

biosynthesis - globo 

and isoglobo series 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

1.5E-22 -1.5 

Gap junction 
C2, C3, 

C4 

Cellular 

Processes 

Cellular 

community - 

eukaryotes 

1.6E-22 1.5 

Glyoxylate and 

dicarboxylate 

metabolism 

C1, C2 Metabolism 
Carbohydrate 

metabolism 
2E-22 -1.46 

Wnt signaling 

pathway 

C2, C3, 

C4 

Environmental 

Information 

Processing 

Signal 

transduction 
4.4E-20 1.42 

Pentose phosphate 

pathway 
C1, C2 Metabolism 

Carbohydrate 

metabolism 
1.3E-19 -1.4 

Amino sugar and 

nucleotide sugar 

metabolism 

C1, C2, 

C3 
Metabolism 

Carbohydrate 

metabolism 
1.6E-19 -1.4 

T cell receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
2.5E-19 1.39 

TGF-beta signaling 

pathway 
C4 

Environmental 

Information 

Processing 

Signal 

transduction 
5.2E-19 1.36 

Glycine, serine and 

threonine 
metabolism 

C2 Metabolism 
Amino acid 

metabolism 
5.6E-19 -1.38 
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Ribosome C2 

Genetic 

Information 

Processing 

Translation 2.9E-18 -1.29 

Sulfur metabolism C1 Metabolism 
Energy 

metabolism 
4E-18 -1.34 

Tyrosine 

metabolism 
C4 Metabolism 

Amino acid 

metabolism 
4E-18 -1.35 

Galactose 

metabolism 
C1 Metabolism 

Carbohydrate 

metabolism 
4.8E-18 -1.33 

Oxidative 

phosphorylation 
C1 Metabolism 

Energy 

metabolism 
1E-17 -1.29 

Adherens junction C2 
Cellular 

Processes 

Cellular 

community - 

eukaryotes 

9.9E-17 1.3 

Alanine, aspartate 

and glutamate 

metabolism 

C3, C4 Metabolism 
Amino acid 

metabolism 
6.9E-16 -1.26 

Cell cycle C2 
Cellular 

Processes 

Cell growth 

and death 
2.3E-15 1.24 

Glycosaminoglycan 

biosynthesis - 

keratan sulfate 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

8E-15 -1.2 

Citrate cycle (TCA 

cycle) 
C1 Metabolism 

Carbohydrate 

metabolism 
8.1E-15 -1.22 

Fc epsilon RI 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
1.5E-14 1.21 

Proteasome C2 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

3.5E-14 -1.19 

B cell receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
3.6E-14 1.19 

Jak-STAT signaling 

pathway 
C3 

Environmental 

Information 

Processing 

Signal 

transduction 
4.5E-14 1.19 

Arginine and proline 

metabolism 
C3 Metabolism 

Amino acid 

metabolism 
5.2E-14 -1.19 

Pyrimidine 

metabolism 
C1, C2 Metabolism 

Nucleotide 

metabolism 
5.6E-14 -1.19 
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Non-homologous 

end-joining 
C2 

Genetic 

Information 

Processing 

Replication 

and repair 
5.6E-14 1.15 

Basal transcription 

factors 
C2 

Genetic 

Information 

Processing 

Transcription 7.1E-14 1.1 

Phenylalanine 

metabolism 
C2 Metabolism 

Amino acid 

metabolism 
3.4E-13 -1.15 

One carbon pool by 

folate 
C2 Metabolism 

Metabolism of 

cofactors and 

vitamins 

3.9E-13 -1.15 

Melanogenesis C1, C3 
Organismal 

Systems 

Endocrine 

system 
7E-13 1.14 

Fc gamma R-

mediated 

phagocytosis 

C3 
Organismal 

Systems 

Immune 

system 
1.1E-12 1.13 

Histidine 

metabolism 
C1 Metabolism 

Amino acid 

metabolism 
2.3E-12 -1.11 

Other glycan 

degradation 
C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

3.1E-12 -1.07 

Toll-like receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
3.1E-12 1.11 

Regulation of actin 

cytoskeleton 
C1, C4 

Cellular 

Processes 
Cell motility 3.3E-12 1.08 

Natural killer cell 

mediated 

cytotoxicity 

C3 
Organismal 

Systems 

Immune 

system 
3.8E-12 1.1 

Glycosphingolipid 

biosynthesis - lacto 

and neolacto series 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

5.3E-12 -1.1 

Purine metabolism C1 Metabolism 
Nucleotide 

metabolism 
5.5E-12 -1.09 

Leukocyte 

transendothelial 

migration 

C3 
Organismal 

Systems 

Immune 

system 
1.3E-11 1.08 

Chemokine 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
3.2E-11 1.05 
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RNA polymerase C2 

Genetic 

Information 

Processing 

Transcription 7.5E-11 -1.04 

PPAR signaling 

pathway 
C2 

Organismal 

Systems 

Endocrine 

system 
9.5E-11 -1.02 

VEGF signaling 

pathway 
C2 

Environmental 

Information 

Processing 

Signal 

transduction 
9.5E-11 1.03 

GnRH signaling 

pathway 
C2 

Organismal 

Systems 

Endocrine 

system 
5.5E-10 0.99 

NOD-like receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
5.7E-10 0.99 

Tryptophan 

metabolism 
C3 Metabolism 

Amino acid 

metabolism 
7.1E-10 -0.99 

Cytokine-cytokine 

receptor interaction 
C3 

Environmental 

Information 

Processing 

Signaling 

molecules and 

interaction 

9.7E-10 0.98 

Glycolysis / 

Gluconeogenesis 
C1, C4 Metabolism 

Carbohydrate 

metabolism 
1.8E-09 -0.97 

Drug metabolism - 

other enzymes 
C2 Metabolism 

Xenobiotics 

biodegradation 

and 

metabolism 

1.1E-08 -0.92 

Glycosphingolipid 

biosynthesis - 

ganglio series 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

1.2E-08 -0.9 

Glycosaminoglycan 

degradation 
C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

1.3E-08 -0.9 

Butanoate 

metabolism 
C1 Metabolism 

Carbohydrate 

metabolism 
1.7E-08 -0.91 

Glycerophospholipid 

metabolism 
C2 Metabolism 

Lipid 

metabolism 
2.9E-08 -0.89 

Glycerolipid 

metabolism 
C2 Metabolism 

Lipid 

metabolism 
3.3E-08 -0.88 

Intestinal immune 

network for IgA 

production 

C3 
Organismal 

Systems 

Immune 

system 
4.6E-08 0.88 
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Phosphatidylinositol 

signaling system 
C1 

Environmental 

Information 

Processing 

Signal 

transduction 
8.3E-08 0.87 

Glutathione 

metabolism 
C1 Metabolism 

Metabolism of 

other amino 

acids 

1E-07 -0.85 

Antigen processing 

and presentation 
C3 

Organismal 

Systems 

Immune 

system 
1.1E-07 0.85 

Base excision repair C2 

Genetic 

Information 

Processing 

Replication 

and repair 
1.6E-07 -0.83 

Focal adhesion C2 
Cellular 

Processes 

Cellular 

community - 

eukaryotes 

2.1E-07 0.82 

Valine, leucine and 

isoleucine 

biosynthesis 

C4 Metabolism 
Amino acid 

metabolism 
2.3E-07 0.82 

p53 signaling 

pathway 

C1, C2, 

C4 

Cellular 

Processes 

Cell growth 

and death 
5.3E-07 0.81 

Selenocompound 

metabolism 
C1 Metabolism 

Metabolism of 

other amino 

acids 

5.3E-07 -0.81 

SNARE interactions 

in vesicular transport 
C2 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

2.9E-06 0.76 

RNA degradation 
C2, C3, 

C4 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

3.3E-06 0.71 

Primary bile acid 

biosynthesis 
C2 Metabolism 

Lipid 

metabolism 
3.4E-06 -0.76 

Cell adhesion 

molecules (CAMs) 
C2 

Environmental 

Information 

Processing 

Signaling 

molecules and 

interaction 

4.3E-06 0.73 

RIG-I-like receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
8.6E-06 0.73 

Peroxisome C2, C3 
Cellular 

Processes 

Transport and 

catabolism 
1.2E-05 -0.71 

Steroid hormone 

biosynthesis 
C2 Metabolism 

Lipid 

metabolism 
1.6E-05 -0.7 
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Mismatch repair C2 

Genetic 

Information 

Processing 

Replication 

and repair 
1.7E-05 0.69 

Porphyrin and 

chlorophyll 

metabolism 

C1 Metabolism 

Metabolism of 

cofactors and 

vitamins 

1.9E-05 -0.7 

Axon guidance C3 
Organismal 

Systems 

Development 

and 

regeneration 

2.5E-05 0.68 

Fatty acid 

degradation 
C2 Metabolism 

Lipid 

metabolism 
3.6E-05 -0.67 

Renin-angiotensin 

system 

C1, C3, 

C4 

Organismal 

Systems 

Endocrine 

system 
3.8E-05 0.67 

Inositol phosphate 

metabolism 
C1 Metabolism 

Carbohydrate 

metabolism 
3.9E-05 0.67 

ErbB signaling 

pathway 
C2 

Environmental 

Information 

Processing 

Signal 

transduction 
5.2E-05 0.66 

Notch signaling 

pathway 
C1 

Environmental 

Information 

Processing 

Signal 

transduction 
5.6E-05 0.65 

Hedgehog signaling 

pathway 
C4 

Environmental 

Information 

Processing 

Signal 

transduction 
7.3E-05 0.65 

ABC transporters C2 

Environmental 

Information 

Processing 

Membrane 

transport 
8.4E-05 -0.64 

Metabolism of 

xenobiotics by 

cytochrome P450 

C2 Metabolism 

Xenobiotics 

biodegradation 

and 

metabolism 

0.00021 -0.61 

Terpenoid backbone 

biosynthesis 
C1 Metabolism 

Metabolism of 

terpenoids and 

polyketides 

0.00034 -0.59 

MAPK signaling 

pathway 
C2, C4 

Environmental 

Information 

Processing 

Signal 

transduction 
0.00038 0.58 

Valine, leucine and 

isoleucine 

degradation 

C4 Metabolism 
Amino acid 

metabolism 
0.00048 -0.57 
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Homologous 

recombination 
C2 

Genetic 

Information 

Processing 

Replication 

and repair 
0.00092 0.54 

PLI vs. N&S 

Basal transcription 

factors 
C2 

Genetic 

Information 

Processing 

Transcription 8.2E-17 1.55 

Ribosome C2 

Genetic 

Information 

Processing 

Translation 3.2E-16 -1.48 

Ubiquitin mediated 

proteolysis 
C2 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

7.5E-16 1.4 

Glyoxylate and 

dicarboxylate 

metabolism 

C1, C2 Metabolism 
Carbohydrate 

metabolism 
2.6E-14 -1.34 

Oxidative 

phosphorylation 
C1 Metabolism 

Energy 

metabolism 
3.9E-13 -1.33 

RNA degradation 
C2, C3, 

C4 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

4.7E-13 1.4 

Apoptosis C2 
Cellular 

Processes 

Cell growth 

and death 
7E-13 1.25 

Fructose and 

mannose 

metabolism 

C1, C3 Metabolism 
Carbohydrate 

metabolism 
3E-12 -1.2 

Other glycan 

degradation 
C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

4.5E-12 -1.3 

Non-homologous 

end-joining 
C2 

Genetic 

Information 

Processing 

Replication 

and repair 
4E-11 1.23 

TGF-beta signaling 

pathway 
C4 

Environmental 

Information 

Processing 

Signal 

transduction 
2E-10 1.15 

Glycosaminoglycan 

biosynthesis - 

keratan sulfate 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

6E-09 -1.09 

Sulfur metabolism C1 Metabolism 
Energy 

metabolism 
4.1E-08 -1 
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Galactose 

metabolism 
C1 Metabolism 

Carbohydrate 

metabolism 
4.2E-08 -1 

Glycosphingolipid 

biosynthesis - globo 

and isoglobo series 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

5.1E-08 -0.95 

Valine, leucine and 

isoleucine 

biosynthesis 

C4 Metabolism 
Amino acid 

metabolism 
1.1E-07 1.04 

Alanine, aspartate 

and glutamate 

metabolism 

C3, C4 Metabolism 
Amino acid 

metabolism 
6.3E-07 -0.93 

PPAR signaling 

pathway 
C2 

Organismal 

Systems 

Endocrine 

system 
6.8E-07 -0.96 

Glycosphingolipid 

biosynthesis - 

ganglio series 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

8.6E-07 -0.97 

Glycosaminoglycan 

degradation 
C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

1.3E-06 -0.95 

Gap junction 
C2, C3, 

C4 

Cellular 

Processes 

Cellular 

community - 

eukaryotes 

1.9E-06 0.84 

Base excision repair C2 

Genetic 

Information 

Processing 

Replication 

and repair 
3.3E-06 -0.92 

Pentose phosphate 

pathway 
C1, C2 Metabolism 

Carbohydrate 

metabolism 
5E-06 -0.82 

Glutathione 

metabolism 
C1 Metabolism 

Metabolism of 

other amino 

acids 

5E-06 -0.9 

Glycine, serine and 

threonine 

metabolism 

C2 Metabolism 
Amino acid 

metabolism 
5E-06 -0.83 

Proteasome C2 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

1.4E-05 -0.82 

Phenylalanine 

metabolism 
C2 Metabolism 

Amino acid 

metabolism 
2.4E-05 -0.81 

Tyrosine 

metabolism 
C4 Metabolism 

Amino acid 

metabolism 
2.4E-05 -0.78 
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Adherens junction C2 
Cellular 

Processes 

Cellular 

community - 

eukaryotes 

3.3E-05 0.77 

Cell cycle C2 
Cellular 

Processes 

Cell growth 

and death 
3.8E-05 0.77 

Glycerophospholipid 

metabolism 
C2 Metabolism 

Lipid 

metabolism 
3.8E-05 -0.82 

Glycerolipid 

metabolism 
C2 Metabolism 

Lipid 

metabolism 
5.3E-05 -0.8 

Mismatch repair C2 

Genetic 

Information 

Processing 

Replication 

and repair 
5.3E-05 0.82 

Lysosome C2 
Cellular 

Processes 

Transport and 

catabolism 
5.3E-05 -0.83 

ECM-receptor 

interaction 
C2 

Environmental 

Information 

Processing 

Signaling 

molecules and 

interaction 

7.3E-05 -0.8 

Jak-STAT signaling 

pathway 
C3 

Environmental 

Information 

Processing 

Signal 

transduction 
0.00026 0.7 

Amino sugar and 

nucleotide sugar 

metabolism 

C1, C2, 

C3 
Metabolism 

Carbohydrate 

metabolism 
0.00031 -0.66 

Pyrimidine 

metabolism 
C1, C2 Metabolism 

Nucleotide 

metabolism 
0.00056 -0.66 

Fc epsilon RI 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
0.00056 0.66 

Renin-angiotensin 

system 

C1, C3, 

C4 

Organismal 

Systems 

Endocrine 

system 
0.00068 0.7 

Glycosaminoglycan 

biosynthesis - 

chondroitin sulfate / 

dermatan sulfate 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

0.0007 -0.7 

Toll-like receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
0.00071 0.66 

Citrate cycle (TCA 

cycle) 
C1 Metabolism 

Carbohydrate 

metabolism 
0.00077 -0.64 

Wnt signaling 

pathway 

C2, C3, 

C4 

Environmental 
Information 

Processing 

Signal 

transduction 
0.00088 0.6 
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PF vs. PLI 

Regulation of actin 

cytoskeleton 
C1, C4 

Cellular 

Processes 
Cell motility 4.2E-09 1.24 

Focal adhesion C2 
Cellular 

Processes 

Cellular 

community - 

eukaryotes 

1E-06 1.09 

Cell adhesion 

molecules (CAMs) 
C2 

Environmental 

Information 

Processing 

Signaling 

molecules and 

interaction 

1E-06 1.08 

T cell receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
1.1E-05 0.88 

ECM-receptor 

interaction 
C2 

Environmental 

Information 

Processing 

Signaling 

molecules and 

interaction 

1.5E-05 0.96 

Histidine 

metabolism 
C1 Metabolism 

Amino acid 

metabolism 
1.5E-05 -0.91 

Wnt signaling 

pathway 

C2, C3, 

C4 

Environmental 

Information 

Processing 

Signal 

transduction 
3.1E-05 0.82 

Chemokine 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
4.5E-05 0.87 

Notch signaling 

pathway 
C1 

Environmental 

Information 

Processing 

Signal 

transduction 
5.1E-05 0.89 

Fc gamma R-

mediated 

phagocytosis 

C3 
Organismal 

Systems 

Immune 

system 
6.9E-05 0.83 

Intestinal immune 

network for IgA 

production 

C3 
Organismal 

Systems 

Immune 

system 
7.9E-05 0.85 

B cell receptor 

signaling pathway 
C3 

Organismal 

Systems 

Immune 

system 
7.9E-05 0.81 

Hematopoietic cell 

lineage 
C3 

Organismal 

Systems 

Immune 

system 
9.9E-05 0.86 

Axon guidance C3 
Organismal 

Systems 

Development 

and 

regeneration 

0.00011 0.84 

Amino sugar and 

nucleotide sugar 

metabolism 

C1, C2, 

C3 
Metabolism 

Carbohydrate 

metabolism 
0.00012 -0.74 
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Leukocyte 

transendothelial 

migration 

C3 
Organismal 

Systems 

Immune 

system 
0.00013 0.79 

Natural killer cell 

mediated 

cytotoxicity 

C3 
Organismal 

Systems 

Immune 

system 
0.00021 0.76 

Antigen processing 

and presentation 
C3 

Organismal 

Systems 

Immune 

system 
0.00022 0.79 

Selenocompound 

metabolism 
C1 Metabolism 

Metabolism of 

other amino 

acids 

0.00032 -0.77 

Gap junction 
C2, C3, 

C4 

Cellular 

Processes 

Cellular 

community - 

eukaryotes 

0.00036 0.67 

Valine, leucine and 

isoleucine 

degradation 

C4 Metabolism 
Amino acid 

metabolism 
0.00037 -0.77 

Pantothenate and 

CoA biosynthesis 
C1 Metabolism 

Metabolism of 

cofactors and 

vitamins 

0.00051 -0.76 

Melanogenesis C1, C3 
Organismal 

Systems 

Endocrine 

system 
0.00053 0.7 

RNA degradation 
C2, C3, 

C4 

Genetic 

Information 

Processing 

Folding, 

sorting and 

degradation 

0.00053 -0.69 

VEGF signaling 

pathway 
C2 

Environmental 

Information 

Processing 

Signal 

transduction 
0.0006 0.71 

Steroid hormone 

biosynthesis 
C2 Metabolism 

Lipid 

metabolism 
0.00063 -0.74 

Glycosaminoglycan 

biosynthesis - 

heparan sulfate / 

heparin 

C4 Metabolism 

Glycan 

biosynthesis 

and 

metabolism 

0.00063 -0.75 

Nicotinate and 

nicotinamide 

metabolism 

C1 Metabolism 

Metabolism of 

cofactors and 

vitamins 

0.00069 -0.74 

Starch and sucrose 

metabolism 
C1 Metabolism 

Carbohydrate 

metabolism 
0.00089 -0.72 

Arginine and proline 

metabolism 
C3 Metabolism 

Amino acid 

metabolism 
0.00089 -0.67 
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Peroxisome C2, C3 
Cellular 

Processes 

Transport and 

catabolism 
0.00094 -0.71 

 

Appendix C.3 Predicted drugs for 12 input signatures using CMap 

The drugs (approved) are ranked in descending order based on CMAP score. The 1st rank 

represents the drug with the smallest CMap score, the 2nd the 2nd most, etc. Category (C1: Insulin 

Resistance and Oxidative Stress, C2: Cell Stress, Apoptosis and Lipotoxicity, C3: Inflammation, 

C4: Fibrosis) 

DrugBank 
ID 

Drug Name Targets Comparison Category Rank 

DB02546 Vorinostat 
HDAC1|HDAC2|HDAC3|
HDAC6|HDAC8|acuC1 

PF vs. N&S C4 1 

PF vs. N&S C2 2 

PF vs. PLI C2 4 

PF vs. PLI C3 5 

PF vs. N&S C1 8 

DB00947 Fulvestrant ESR1 

PF vs. N&S C2 1 

PLI vs. N&S C1 2 

PF vs. N&S C1 4 

PLI vs. N&S C2 4 

PLI vs. N&S C4 10 

DB01251 Gliquidone ABCC8|KCNJ8 

PF vs. PLI C1 1 

PF vs. PLI C2 1 

PF vs. PLI C3 1 

PF vs. PLI C4 1 

DB01259 Lapatinib EGFR|ERBB2 

PF vs. PLI C1 2 

PF vs. PLI C3 2 

PF vs. PLI C2 3 

PF vs. PLI C4 7 

DB00317 Gefitinib EGFR 

PF vs. PLI C3 4 

PF vs. PLI C1 5 

PF vs. PLI C4 5 

PLI vs. N&S C1 7 
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DB06774 Capsaicin TRPV1|PHB2 

PF vs. PLI C2 2 

PF vs. N&S C3 6 

PF vs. PLI C4 6 

PF vs. N&S C2 10 

DB11672 Curcumin 
PPARG|VDR|ABCC5|CBR

1|GSTP1 

PF vs. PLI C2 7 

PF vs. PLI C2 8 

PF vs. PLI C3 8 

PF vs. PLI C1 10 

DB01590 Everolimus MTOR 

PF vs. N&S C1 1 

PF vs. N&S C3 1 

PF vs. N&S C4 2 

DB00390 Digoxin ATP1A1 

PF vs. N&S C3 2 

PF vs. N&S C4 4 

PF vs. N&S C2 6 

DB00288 Amcinonide NR3C1|ANXA1 

PF vs. PLI C1 3 

PF vs. PLI C4 4 

PF vs. PLI C2 6 

DB01175 Escitalopram 
SLC6A4|SLC6A3|SLC6A2|
ADRA1A|CHRM1|HRH1 

PF vs. N&S C1 2 

PLI vs. N&S C1 5 

PLI vs. N&S C2 10 

DB00920 Ketotifen HRH1|PGD 

PF vs. N&S C1 3 

PF vs. PLI C1 6 

PF vs. N&S C2 9 

DB00420 Promazine 

DRD2|HTR2A|HTR2C|DR
D1|DRD4|CHRM4|CHRM
2|CHRM3|CHRM1|ADRA
1B|CHRM5|ADRA1A|HR

H1|ADRA1D 

PF vs. PLI C1 4 

PF vs. PLI C4 8 

PF vs. PLI C2 10 

DB01380 
Cortisone 
acetate 

NR3C1 

PF vs. PLI C3 6 

PF vs. PLI C2 9 

PF vs. PLI C4 10 

DB00850 Perphenazine DRD2|DRD1|CALM1 
PLI vs. N&S C4 8 

PLI vs. N&S C1 10 
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PLI vs. N&S C3 10 

DB01183 Naloxone 
OPRM1|OPRD1|OPRK1|
CREB1|ESR1|TLR4|CES1 

PLI vs. N&S C4 2 

PLI vs. N&S C1 4 

DB09167 Dosulepin 

HTR1A|HTR2A|HRH1|CH
RM1|CHRM2|CHRM3|C

HRM4|CHRM5|ADRA2A|
ADRA1A|SLC6A2|SLC6A4 

PLI vs. N&S C2 2 

PLI vs. N&S C3 4 

DB01396 Digitoxin ATP1A1 
PLI vs. N&S C3 1 

PF vs. N&S C4 7 

DB00270 Isradipine 
CACNA1C|CACNA2D1|CA
CNB2|CACNA1H|CACNA
2D2|CACNA1D|CACNA1S 

PF vs. PLI C3 3 

PF vs. PLI C2 5 

DB00283 Clemastine HRH1 
PLI vs. N&S C3 2 

PLI vs. N&S C4 6 

DB01623 Thiothixene DRD2|DRD1|HTR2A 
PLI vs. N&S C2 3 

PF vs. N&S C1 7 

DB00933 Mesoridazine HTR2A|DRD2 
PF vs. N&S C3 5 

PF vs. N&S C4 5 

DB04910 Oxibendazole TUBB4B 
PLI vs. N&S C4 4 

PLI vs. N&S C3 6 

DB00539 Toremifene ESR1|SHBG 
PF vs. N&S C4 3 

PF vs. PLI C1 8 

DB00136 Calcitriol VDR|HOXA10 
PF vs. N&S C4 6 

PLI vs. N&S C4 7 

DB00737 Meclizine HRH1|NR1I3 

PF vs. N&S C2 4 

PF vs. N&S C1 10 
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DB00613 Amodiaquine HNMT 

PLI vs. N&S C1 6 

PLI vs. N&S C4 9 

DB04946 Iloperidone 

HTR2A|DRD2|DRD1|DRD
3|DRD4|HTR1A|HTR6|H
TR7|ADRA1A|HRH1|ADR

A2C 

PF vs. N&S C2 7 

PLI vs. N&S C2 9 

DB00783 Estradiol 

ESR1|ESR2|NR1I2|CHRN
A4|NCOA2|GPER1|MT-

ATP6|BECN1|HSD17B2|E
SRRG 

PLI vs. N&S C2 8 

PLI vs. N&S C1 9 

DB00836 Loperamide 
OPRM1|OPRD1|OPRK1|
CACNA1A|POMC|CALM1

|NR1I3 

PF vs. N&S C3 9 

PLI vs. N&S C3 9 

DB01392 Yohimbine 

ADRA2A|ADRA2B|ADRA
2C|HTR1A|HTR1B|HTR1
D|DRD2|DRD3|HTR2A|H

TR2C|KCNJ1|HTR2B 

PLI vs. N&S C1 1 

DB00711 
Diethylcarba

mazine 
ALOX5|PTGS1 PLI vs. N&S C2 1 

DB01018 Guanfacine ADRA2A|ADRA2B PLI vs. N&S C4 1 

DB01357 Mestranol ESR1 PF vs. PLI C4 2 

DB00670 Pirenzepine CHRM1 PF vs. N&S C2 3 

DB00768 Olopatadine 
HRH1|HRH2|HRH3|S100
A1|S100A12|S100B|S10

0A13|S100A2 
PF vs. N&S C3 3 

DB01406 Danazol 
ESR1|AR|PGR|GNRHR|G

NRHR2|CCL2 
PF vs. PLI C4 3 

DB00441 Gemcitabine RRM1|TYMS|CMPK1 PLI vs. N&S C1 3 

DB01193 Acebutolol ADRB1|ADRB2 PLI vs. N&S C3 3 

DB06786 Halcinonide SMO PLI vs. N&S C4 3 

DB00630 
Alendronic 

acid 
FDPS|PTPN4|PTPRS|PTP

RE|ATP6V1A 
PF vs. N&S C3 4 

DB00796 
Candesartan 

cilexetil 
AGTR1 PF vs. N&S C1 5 
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DB00246 Ziprasidone 

DRD2|DRD1|DRD5|HTR2
A|DRD3|DRD4|HTR1A|H
TR1B|HTR1D|HTR1E|HT
R2C|HTR3A|HTR6|HTR7

|HRH1|ADRA1A|ADRA1B
|ADRA2A|ADRA2B|ADRA
2C|CHRM1|CHRM2|CHR

M3|CHRM4|CHRM5 

PF vs. N&S C2 5 

DB00482 Celecoxib 
PTGS2|PDPK1|CA2|CA3|

ABCB5|ABCG2|ABCB1 
PLI vs. N&S C2 5 

DB00594 Amiloride 
SCNN1A|SCNN1B|SCNN1
G|SCNN1D|AOC1|ASIC2

|ASIC1|SLC9A1|PLAU 
PLI vs. N&S C3 5 

DB00656 Trazodone 
HTR2A|HTR2C|SLC6A4|H
TR1A|HRH1|ADRA1A|AD

RA2A 
PLI vs. N&S C4 5 

DB00890 Dienestrol ESR1|SHBG PF vs. N&S C1 6 

DB00928 Azacitidine DNMT1 PLI vs. N&S C2 6 

DB01118 Amiodarone 
KCNH2|ADRB1|CACNA1

H|CACNA2D2|THRA|THR
B|PPARG 

PF vs. N&S C3 7 

DB00584 Enalapril ACE PF vs. PLI C1 7 

DB00807 Proparacaine SCN10A PF vs. PLI C3 7 

DB00881 Quinapril ACE PLI vs. N&S C2 7 

DB00960 Pindolol 
ADRB1|ADRB2|HTR1A|H

TR1B|ADRB3 
PLI vs. N&S C3 7 

DB06228 Rivaroxaban F10 PF vs. N&S C2 8 

DB02789 
Pregnenolon

e 
SULT2B1|NR1I2 PF vs. N&S C3 8 

DB01179 Podofilox TOP2A|TUBA4A|TUBB PF vs. N&S C4 8 

DB00585 Nizatidine HRH2 PLI vs. N&S C1 8 

DB00458 Imipramine 

SLC6A2|HTR2A|SLC6A4|
HRH1|ADRA1A|ADRA1D
|CHRM1|CHRM2|CHRM
3|CHRM4|CHRM5|KCND
2|KCND3|HTR2C|ADRA1
B|HTR7|DRD1|DRD2|KC
NH2|SLC6A3|HTR1A|HT

R6|KCNH1|ORM2 

PLI vs. N&S C3 8 

DB00748 
Carbinoxami

ne 
HRH1 PF vs. N&S C1 9 

DB00903 
Etacrynic 

acid 
ATP1A1|SLC12A1|LEF1|

GSTP1 
PF vs. N&S C4 9 

DB00834 Mifepristone PGR|NR3C1|KLK3|NR1I2 PF vs. PLI C1 9 
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DB01138 
Sulfinpyrazon

e 
ABCC2|ABCC1|SLC22A12

|NR1I2 
PF vs. PLI C3 9 

DB00481 Raloxifene 
ESR1|ESR2|SERPINB9|TF

F1 
PF vs. PLI C4 9 

DB01438 
Phenazopyrid

ine 
SCN1A PF vs. N&S C3 10 

DB09242 Moxonidine ADRA2A|NISCH PF vs. N&S C4 10 

DB09074 Olaparib PARP1|PARP2|PARP3 PF vs. PLI C3 10 

 

Appendix C.4 Predicted small molecules for 12 input signatures using CMap 

The small molecules (not approved) are ranked in descending order based on CMAP score. 

The 1st rank represents the drug with the smallest CMap score, the 2nd the 2nd most, etc. Category 

(C1: Insulin Resistance and Oxidative Stress, C2: Cell Stress, Apoptosis and Lipotoxicity, C3: 

Inflammation, C4: Fibrosis) 

DrugBank 
ID 

Drug Name Targets Comparison Category Rank 

DB08597 

6-[4-(2-
piperidin-1-

ylethoxy)phen
yl]-3-pyridin-

4-
ylpyrazolo[1,5
-a]pyrimidine 

ACVR1|FKBP1A 

PF vs. N&S C1 1 

PLI vs. N&S C1 1 

PF vs. N&S C2 1 

PF vs. N&S C3 1 

PLI vs. N&S C3 1 

PLI vs. N&S C4 1 

PLI vs. N&S C2 8 

DB08059 Wortmannin 
PIK3CG|PLK1|PIK3R1|PIK

3CA 

PLI vs. N&S C3 3 

PF vs. PLI C4 3 

PF vs. PLI C3 5 

PF vs. N&S C1 7 

PLI vs. N&S C1 7 

PF vs. N&S C2 9 

PLI vs. N&S C4 10 
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DB08607 

(5R)-5-(4-
{[(2R)-6-

HYDROXY-
2,5,7,8-

TETRAMETHYL
-3,4-

DIHYDRO-2H-
CHROMEN-2-
YL]METHOXY}
BENZYL)-1,3-

THIAZOLIDINE
-2,4-DIONE 

CYP2C8 

PF vs. PLI C2 1 

PF vs. PLI C3 1 

PF vs. PLI C1 2 

PF vs. PLI C4 2 

PF vs. N&S C4 4 

PLI vs. N&S C4 9 

DB02424 Geldanamycin 
HSP90AB1|HSP90AA1|H

SP90B1 

PF vs. N&S C3 3 

PLI vs. N&S C4 3 

PF vs. N&S C1 4 

PLI vs. N&S C3 6 

PF vs. N&S C4 6 

DB04297 

7-[4-
(Dimethylami
no)Phenyl]-N-
Hydroxy-4,6-
Dimethyl-7-

Oxo-2,4-
Heptadienami

de 

HDAC8|acuC1|HDAC7 

PF vs. N&S C4 2 

PF vs. PLI C2 5 

PF vs. N&S C1 6 

PF vs. PLI C2 7 

PF vs. PLI C3 9 

DB02656 LY-294002 PIM1|PIK3CG 

PF vs. PLI C4 5 

PF vs. PLI C1 6 

PF vs. PLI C3 7 

PLI vs. N&S C3 8 

PF vs. N&S C4 9 

DB07863 

2-chloro-5-
nitro-N-

phenylbenza
mide 

NCOA2|PPARG|RXRA 

PF vs. N&S C1 2 

PLI vs. N&S C1 4 

PF vs. N&S C2 6 

PF vs. N&S C4 7 

DB12445 Nitroaspirin PTGS1 

PF vs. PLI C2 2 

PF vs. PLI C3 3 

PF vs. PLI C1 7 

PF vs. PLI C4 8 

DB00466 Picrotoxin PF vs. PLI C2 3 
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GABRR1|GABRA1|GLRA2
|GLRA3|GLRA1 

PF vs. PLI C3 4 

PF vs. PLI C1 8 

PF vs. PLI C4 9 

DB08142 AT-7519 CDK2|CDK1 

PF vs. PLI C2 8 

PF vs. PLI C3 8 

PF vs. PLI C1 9 

PLI vs. N&S C2 10 

DB05022 Amonafide TOP2A|TOP2B 

PF vs. N&S C4 1 

PF vs. N&S C3 2 

PF vs. N&S C1 3 

DB02932 
(R)-

Bicalutamide 
AR 

PF vs. PLI C1 1 

PF vs. PLI C4 1 

PF vs. PLI C2 4 

DB03701 Vanoxerine SLC6A3 

PLI vs. N&S C4 2 

PLI vs. N&S C3 4 

PLI vs. N&S C1 5 

DB04581 
1-

benzylimidazo
le 

QPCT 

PF vs. PLI C1 4 

PF vs. PLI C4 7 

PF vs. PLI C2 10 

DB03496 Alvocidib 

CDK2|CDK5|CDK9|CDK1
|CDK6|EGFR|CDK4|CDK
8|CDK7|PYGM|PYGB|PY

GL 

PLI vs. N&S C2 6 

PF vs. PLI C4 6 

PF vs. N&S C2 10 

DB04017 Clorgiline MAOA 
PLI vs. N&S C2 1 

PLI vs. N&S C1 3 

DB03467 Naringenin 
ttgR|ESR1|AKR1C1|CYP1
B1|KANSL3|SHBG|CYP19

A1|ESR2 

PLI vs. N&S C2 2 

PF vs. N&S C2 3 

DB07859 

4-(4-
CHLOROPHEN
YL)-4-[4-(1H-
PYRAZOL-4-

YL)PHENYL]PI
PERIDINE 

PRKACA|PKIA|AKT2|GSK
3B 

PF vs. PLI C1 3 

PF vs. PLI C4 4 

DB03783 Phenacetin PTGS1 PF vs. N&S C2 5 
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PLI vs. N&S C2 5 

DB02860 Calyculin A PPP1CC 
PF vs. N&S C2 2 

PLI vs. N&S C2 9 

DB13877 Iniparib PARP1 
PLI vs. N&S C3 2 

PF vs. N&S C4 10 

DB12116 
Epigallocatech

in gallate 
AHR|DNMT1|DHFRL1 

PLI vs. N&S C4 5 

PLI vs. N&S C3 7 

DB02587 Colforsin 
ADCY2|GNAS|ADCY5|CF

TR 

PF vs. N&S C4 3 

PF vs. PLI C1 10 

DB08784 

2-(4-CHLORO-
PHENYLAMIN
O)-NICOTINIC 

ACID 

NMRAL1 
PLI vs. N&S C2 3 

PLI vs. N&S C1 10 

DB13061 MLN8054 AURKA 
PF vs. N&S C2 4 

PF vs. N&S C1 10 

DB06075 Linsitinib IGF1R 
PF vs. N&S C3 6 

PF vs. N&S C4 8 

DB04348 
Taurocholic 

Acid 
CEL|FABP6|NR1H4 

PF vs. PLI C1 5 

PF vs. PLI C4 10 

DB14061 Hycanthone ABCB1 
PLI vs. N&S C4 6 

PF vs. PLI C2 9 

DB12742 Amuvatinib 
KIT|MET|RET|PDGFRA|F

LT3|RAD51 

PF vs. N&S C1 8 

PF vs. N&S C3 9 

DB08435 

(5E,14E)-11-
oxoprosta-
5,9,12,14-

tetraen-1-oic 
acid 

PPARG PF vs. PLI C3 2 

DB04175 Mdl-29951 FBP1 PLI vs. N&S C1 2 

DB11582 
Thiocolchicosi

de 
GABRA1|GLRA1|TNFSF1

1 
PF vs. N&S C3 4 

DB01103 Quinacrine PLA2G6|PLA2G4A|PLCL1 PLI vs. N&S C2 4 

DB07697 

1-(2,3-
dihydro-1,4-
benzodioxin-
6-ylsulfonyl)-

4-[(4-
methoxyphen

PKM PLI vs. N&S C4 4 
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yl)sulfonyl]pip
erazine 

DB12518 Raclopride DRD2 PF vs. N&S C1 5 

DB05913 OSI-930 KIT|FLT1 PF vs. N&S C3 5 

DB02665 
(1R,2S)-2-

Phenylcyclopr
opanaminium 

PRSS1 PF vs. N&S C4 5 

DB08073 

(2S)-1-(1H-
INDOL-3-YL)-

3-{[5-(3-
METHYL-1H-
INDAZOL-5-

YL)PYRIDIN-3-
YL]OXY}PROP
AN-2-AMINE 

AKT2|GSK3B|PRKACA|PK
IA 

PLI vs. N&S C3 5 

DB04690 Camptothecin TOP1 PF vs. PLI C2 6 

DB08167 
Methylthionin

ium 
ACHE PF vs. PLI C3 6 

DB12200 Tivantinib MET PLI vs. N&S C1 6 

DB13520 Metergoline SCN2A PF vs. N&S C2 7 

DB07129 

(2R)-1-(2,6-
dimethylphen
oxy)propan-2-

amine 

PLAU PF vs. N&S C3 7 

DB08348 

N~2~,N~2~-
DIMETHYL-

N~1~-(6-OXO-
5,6-

DIHYDROPHE
NANTHRIDIN-

2-
YL)GLYCINAMI

DE 

eta|EEF2|chxA|PARP3|P
ARP15 

PLI vs. N&S C2 7 

DB09186 Nisoxetine SLC6A4 PLI vs. N&S C4 7 

DB12191 Obatoclax BCL2 PF vs. N&S C2 8 

DB11781 Tosedostat NPEPPS|LTA4H PF vs. N&S C3 8 

DB04149 (R)-Rolipram PDE4B|PDE4D PLI vs. N&S C1 8 

DB06393 Xaliproden HTR1A PLI vs. N&S C4 8 

DB12693 Ritanserin HTR2A PF vs. N&S C1 9 
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DB04513 

N-(6-
Aminohexyl)-
5-Chloro-1-

Naphthalenes
ulfonamide 

CALM1|TNNC1|TNNI3 PLI vs. N&S C1 9 

DB05134 Tanespimycin HSP90AA1|HSP90AB1 PLI vs. N&S C3 9 

DB03880 Batimastat 
MMP8|MMP12|MMP16

|ADAM28|ADAMTS5 
PF vs. N&S C3 10 

DB05482 
7-ethyl-10-

hydroxycampt
othecin 

TOP1 PF vs. PLI C3 10 

DB08437 Puromycin 

RPL10L|RPL13A|RPL23|R
PL15|RPL19|RPL23A|RSL
24D1|RPL26L1|RPL8|RPL

37|RPL3|RPL11|aat 

PLI vs. N&S C3 10 

 

Appendix C.5 Ranking of the 49 drugs predicted by CMap using network proximity z-

score 

Rank Drug 
DrugBank 

ID 
Known Targets 2D Structure 

Z-

score 

1 Troglitazone DB00197 

PPARG, SERPINE1, ACSL4, 

SLC29A1, ESRRG, ESRRA, 

PPARD, PPARA, GSTP1  

-3.60 

2 Lapatinib DB01259 ERBB2, EGFR 

 

-2.58 
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3 Wortmannin DB08059 

PIK3CG, PLK1, PIK3R1, 

PIK3CA 

 

-2.32 

4 

2-chloro-5-nitro-

N-

phenylbenzamid

e 

DB07863 NCOA2, PPARG, RXRA 

 

-2.04 

5 Everolimus DB01590 MTOR 

 

-1.95 

6 

(2S)-1-(1H-

INDOL-3-YL)-3-

{[5-(3-METHYL-

1H-INDAZOL-5-

YL)PYRIDIN-3-

YL]OXY}PROPAN

-2-AMINE 

DB08073 

AKT2, GSK3B, PRKACA, 

PKIA 

 

-1.70 

7 

4-(4-

CHLOROPHENYL

)-4-[4-(1H-

PYRAZOL-4-

DB07859 PRKACA, PKIA, AKT2, GSK3B 

 

-1.70 
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YL)PHENYL]PIPE

RIDINE 

8 Promazine DB00420 

DRD2, HTR2A, HTR2C, 

DRD1, DRD4, CHRM4, 

CHRM2, CHRM3, CHRM1, 

ADRA1B, CHRM5, ADRA1A, 

HRH1, ADRA1D  

-1.42 

9 Isradipine DB00270 

CACNA1C, CACNA2D1, 

CACNB2, CACNA1H, 

CACNA2D2, CACNA1D, 

CACNA1S 
 

-1.08 

10 Alendronic acid DB00630 

FDPS, PTPN4, PTPRS, 

PTPRE, ATP6V1A 

 

-1.01 

11 Quinapril DB00881 ACE 

 

-0.86 

12 Dosulepin DB09167 

HTR1A, HTR2A, HRH1, 

CHRM1, CHRM2, CHRM3, 

CHRM4, CHRM5, ADRA2A, 
 

-0.76 
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ADRA2B, ADRA2C, 

ADRA1A, ADRA1B, 

ADRA1D, SLC6A2, SLC6A4 

13 Ziprasidone DB00246 

DRD2, DRD1, DRD5, HTR2A, 

DRD3, DRD4, HTR1A, 

HTR1B, HTR1D, HTR1E, 

HTR2C, HTR3A, HTR6, 

HTR7, HRH1, ADRA1A, 

ADRA1B, ADRA2A, 

ADRA2B, ADRA2C, CHRM1, 

CHRM2, CHRM3, CHRM4, 

CHRM5 

 

-0.76 

14 Colforsin DB02587 ADCY2, GNAS, ADCY5, CFTR 

 

-0.47 

15 Curcumin DB11672 

PPARG, VDR, ABCC5, CBR1, 

GSTP1 
 

-0.45 

16 

Candesartan 

cilexetil 
DB00796 AGTR1 

 

-0.13 
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17 Amiloride DB00594 

SCNN1A, SCNN1B, 

SCNN1G, SCNN1D, AOC1, 

ASIC2, ASIC1, SLC9A1, PLAU  

-0.09 

18 Azacitidine DB00928 DNMT1 

 

-0.05 

19 Celecoxib DB00482 

PTGS2, PDPK1, CA2, CA3, 

CDH11 

 

-0.03 

20 Gefitinib DB00317 EGFR 

 

0.00 

21 Bicalutamide DB01128 AR 

 

0.00 

22 Naloxone DB01183 

OPRM1, OPRD1, OPRK1, 

CREB1, ESR1, TLR4, CES1 

 

0.00 
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23 (R)-Bicalutamide DB02932 AR 

 

0.00 

24 Danazol DB01406 

ESR1, AR, PGR, GNRHR, 

GNRHR2, CCL2 

 

0.00 

25 Ketotifen DB00920 HRH1, PGD 

 

0.00 

26 Perphenazine DB00850 DRD2, DRD1, CALM1 

 

0.00 

27 Trichostatin A DB04297 HDAC8, acuC1, HDAC7 

 

0.25 

28 Digoxin DB00390 ATP1A1 

 

0.31 

29 Digitoxin DB01396 ATP1A1 

 

0.31 
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30 

6-[4-(2-

piperidin-1-

ylethoxy)phenyl]

-3-pyridin-4-

ylpyrazolo[1,5-

a]pyrimidine 

DB08597 ACVR1, FKBP1A 

 

0.36 

31 Amonafide DB05022 TOP2A, TOP2B 

 

0.38 

32 Geldanamycin DB02424 

HSP90AA1, HSP90AB1, 

HSP90B1 

 

0.43 

33 Calyculin A DB02860 PPP1CC 

 

0.44 

34 Escitalopram DB01175 

SLC6A4, CHRM1, HRH1, 

HTR1A, HTR2A, ADRA1A, 

ADRA1B, ADRA1D, HTR2C, 

ADRA2A, ADRA2B, 

ADRA2C, DRD2, SLC6A2, 

SLC6A3 

 

0.47 
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35 

Cortisone 

acetate 

DB01380 NR3C1 

 

0.48 

36 Iniparib DB13877 PARP1 

 

0.49 

37 Vorinostat DB02546 

HDAC8, HDAC1, HDAC2, 

HDAC3, HDAC6, acuC1  
0.51 

38 Capsaicin DB06774 TRPV1, PHB2 

 

0.57 

39 Amcinonide DB00288 NR3C1, ANXA1 

 

0.58 

40 Trazodone DB00656 

HTR2A, HTR2C, SLC6A4, 

HTR1A, HRH1, ADRA1A, 

ADRA2A, Htr2c 

 

0.72 
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41 

Diethylcarbamaz

ine 

DB00711 ALOX5, PTGS1 

 

0.77 

42 Calcitriol DB00136 VDR, HOXA10 

 

0.80 

43 Rivaroxaban DB06228 F10 

 

1.01 

44 Iloperidone DB04946 

HTR2A, DRD2, DRD1, DRD3, 

DRD4, HTR1A, HTR6, HTR7, 

ADRA1A, HRH1, ADRA2C 

 

1.04 

45 Yohimbine DB01392 

ADRA2A, ADRA2C, 

ADRA2B, HTR1A, HTR1B, 

HTR1D, DRD2, DRD3, 

HTR2A, HTR2C, KCNJ1, 

KCNJ10, KCNJ11, KCNJ12, 

KCNJ14, KCNJ15, KCNJ8, 

HTR2B 

 

1.09 
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46 Naringenin DB03467 

ttgR, ESR1, AKR1C1, 

CYP1B1, KANSL3, SHBG, 

CYP19A1, ESR2  

1.61 

47 Olopatadine DB00768 

HRH1, HRH2, HRH3, 

S100A1, S100A12, S100B, 

S100A13, S100A2 
 

1.65 

48 Gemcitabine DB00441 

RRM1, TYMS, CMPK1 

 

1.89 

Appendix C.6 Drug information of the selected 8 drugs for modulating steatosis 

DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 
CMap 

prediction 
Network 
proximity 

DB01590 Everolimus 

PI3K-Akt signaling pathway 
(mTOR), Type II diabetes 
mellitus(mTOR), Insulin 

signaling pathway(mTOR) 

C1, C3, C4 

Z-score: -
1.95 

Rank: 5 

Indication 

Postmenopausal women with advanced hormone receptor-positive, 
HER2-negative breast cancer (advanced HR+BC), progressive 
neuroendocrine tumors of pancreatic origin (PNET) with unresectable, 
locally advanced or metastatic disease, advanced renal cell carcinoma 
(RCC), renal angiomyolipoma and tuberous sclerosis complex (TSC). 

MOA 
Everolimus is a mTOR inhibitor that binds with high affinity to the FK506 
binding protein-12 (FKBP-12), thereby forming a drug complex that 
inhibits the activation of mTOR. The result of everolimus inhibition of 
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mTOR is a reduction in cell proliferation, angiogenesis, and glucose 
uptake. 

Adverse effects Stomatitis, infections, asthenia, fatigue, cough, and diarrhea. 

Contraindications 
Hypersensitivity to everolimus, to other rapamycin derivatives, or to any 
of the excipients. 

Notes 

Everolimus inhibited hepatic lipid accumulation and improved metabolic 
parameters in a fast food induced mice model of NASH, however, 
inflammatory and fibrotic responses still exhibited despite the reduced 
hepatic steatosis (Love, et al., 2017). Everolimus is an approved 
immunosuppressant for liver transplantation (Yee and Tan, 2017). 
However, in patients the drug is shown to promote hyperglycemia (Xu, et 
al., 2016) and hyperlipidemia (Kasiske, et al., 2008).  

 

DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 
CMap 

prediction 
Network 
proximity 

DB00482 Celecoxib 

Insulin signaling pathway 
(PDPK1), PI3K-Akt signaling 

pathway (PDPK1), TNF 
signaling pathway (PDPK1), 

PPAR signaling pathway 
(PDPK1) 

C2 

Z-score: -
0.03 

Rank: 19 

Indication 
Rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, short-term 
pain, menstrual cramps 

MOA 

Celecoxib is a selective noncompetitive inhibitor of cyclooxygenase-2 
(COX-2) enzyme, which reduces the synthesis of metabolites that include 
prostaglandin E2 (PGE2), prostacyclin (PGI2), thromboxane (TXA2), 
prostaglandin D2 (PGD2), and prostaglandin F2 (PGF2). Resultant 
inhibition of these mediators leads to the alleviation of pain and 
inflammation. (Gong, et al.) 

 

Celecoxib exerts anticancer effects by binding to the cadherin-11 
(CDH11) protein. (Zhu, et al.) In addition, celecoxib has been found to 
inhibit carbonic anhydrase enzymes 2 and 3, further enhancing its 
anticancer effects. (Nishimori, et al.; Weber, et al.)  

 

Celecoxib may cause an increased risk of thrombotic events. The risk of 
thrombosis resulting from COX-2 inhibition is caused by the 
vasoconstricting actions of thromboxane A2, leading to enhanced 
platelet aggregation. 
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Adverse effects 
Cardiovascular risk, gastrointestinal risk, renal effects, advanced renal 
disease, anaphylactoid reactions, skin reactions 

Contraindications 

Hypersensitivity to celecoxib, patients who have demonstrated allergic-
type reactions to sulfonamides, patients who have experienced asthma, 
urticaria, or allergic-type reactions after taking aspirin or other NSAIDs, 
treatment of peri-operative pain in the setting of coronary artery bypass 
graft (CABG) surgery. 

Notes 

Celecoxib attenuates liver steatosis and inflammation in NAFLD in a rat 
model (Chen, et al., 2011). Celecoxib partially restores autophagic flux via 
downregulation of COX-2 and alleviates steatosis in vitro and in vivo (Liu, 
et al., 2018). Aspirin is a non-selective COX inhibitor which was shown to 
be protective of NAFLD progression in a retrospective study (Simon, et 
al., 2019).  

 

DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 
CMap 

prediction 
Network 
proximity 

DB09167 Dosulepin 
PI3K-Akt signaling pathway 

(CHRM1, CHRM2) 
C2, C3 

Z-score: -
0.76 

Rank: 12 

Indication Depressive illness 

MOA 

By binding to noradrenaline transporter (NAT) and serotonin transporter 
(SERT) in an equipotent manner and inhibiting the reuptake activity, 
dosulepin increases the free levels of noradrenaline and 5HT at the 
synaptic cleft. 

 

Dosulepin displays affinity towards α2-adrenoceptors and to a lesser 
extent, α1-adrenoceptors (Gillman). Inhibition of presynaptic α2-
adrenoceptors by dosulepin facilitates noradrenaline release and further 
potentiates the antidepressant effects. It also downregulates central β-
adrenoceptors by causing a decline in the number of receptors and 
reduces noradrenaline-induced cyclic AMP formation. Dosulepin binds to 
5HT1A and 5HT2A receptors in the cerebral cortex and hippocampus as 
an antagonist. 5HT1A receptors are autoreceptors that inhibit 5HT 
release and 5HT2A receptors are Gi/Go-coupled receptors that reduces 
dopamine release upon activation. Antagonism at 5HT2A receptors may 
also improve sleep patterns. Dosulepin also binds to muscarinic 
acetylcholine receptors and causes antimuscarinic side effects such as 
dry mouth. By acting as an antagonist at histamine type 1 (H1) receptors, 
dosulepin mediates a sedative effect. 
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Adverse effects 
central nervous system effects, anticholinergic effects, cardiovascular 
effects, gastrointestinal system and blurred vision. 

Contraindications 
Epilespsy, TCAs should not be used concomitantly or within 14 days of 
treatment with monoamine oxidase inhibitors, acute recovery phase, 
liver failure, hypersensitivity to dosulepin 

Notes 

Tricyclic antidepressants (TCA) are not as commonly used due to safety 
concerns (Peretti, et al., 2000). The association between this class of 
drug and liver injury is weak (Cosmin Sebastian Voican, et al., 2014). One 
study found that another TCA, Amineptine, to cause microvesicular 
steatosis in mice (Le Dinh, et al., 1988). However, a recent retrospective 
study found that TCA use decreased fibrosis progression in hepatitis C 
patients (Chen, et al., 2018).  

 

DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 
CMap 

prediction 
Network 
proximity 

DB00881 Quinapril 
Renin-angiotensin system 

(ACE) 
C2 

Z-score: -
0.86 

Rank: 11 

Indication Hypertension, heart failure 

MOA 

Angiotensin II constricts coronary blood vessels and is positively 
inotropic, which under normal circumstances, would increase vascular 
resistance and oxygen consumption.4 This action can eventually lead to 
myocyte hypertrophy and vascular smooth muscle cell proliferation.4 
Angiotensin II also stimulates production of plasminogen activator 
inhibitor-1 (PAI-1), increasing the risk of thrombosis.2 

 

Quinaprilat prevents the conversion of angiotensin I to angiotensin II by 
inhibition of angiotensin converting enzyme, and also reduces the 
breakdown of bradykinin.1,2 Reduced levels of angiotensin II lead to 
lower levels of PAI-1, reducing the risk of thrombosis, especially after a 
myocardial infarction.2 

Adverse effects 
Head and neck angioedema, intestinal angioedema, anaphylactoid 
reactions, hepatic failure (rare), hypotension (rare), 
neutropenia/agranulocytosis. 

Contraindications 
Hypersensitive to quinapril and in patients with a history of angioedema 
related to previous treatment with an ACE inhibitor 

Notes 
Quinapril reduces markers of vascular oxidative stress and may 
attenuate the progression of the pathophysiology seen in the metabolic 
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syndrome (Khan, et al., 2004). Quinapril treatment increases insulin-
stimulated endothelial function and adiponectin gene expression in type 
2 diabetes patients (Hermann, et al., 2006), can be considered in 
combination therapy.  

 

DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 

CMap 

prediction 

Network 

proximity 

DB00246 Ziprasidone 
PI3K-Akt signaling pathway 

(CHRM1, CHRM2) 
C2 

Z-score: -
0.76 

Rank: 12 

Indication 
Oral form: schizophrenia, bipolar I disorder. Injectable formulation: acute 

agitation in schizophrenia.  

MOA 

Ziprasidone binds to serotonin-2A (5-HT2A) and dopamine D2 receptors, 
with a higher 5-HT2A/D2 receptor affinity ratio when compared to other 
antipsychotics. (Stahl and Shayegan) Ziprasidone offers enhanced 
modulation of mood, notable negative symptom relief, overall cognitive 
improvement and reduced motor dysfunction which is linked to it's 
potent interaction with 5-HT2C, 5-HT1D, and 5-HT1A receptors in brain 
tissue. (Stahl and Shayegan) Ziprasidone can bind moderately to 
norepinephrine and serotonin reuptake sites which may contribute to its 
antidepressant and anxiolytic activity. (Stahl and Shayegan) 

Adverse effects 
Schizophrenia, bipolar mania, somnolence, respiratory tract infection, 
extrapyramidal symptoms, dystonia, vital sign changes, weight gain, ECG 
changes. 

Contraindications 
Hypersensitivity, dementia-related psychosis, QT syndrome, cardiac 
arrhythamias 

Notes 

Anti-psychotics as class are associated with weight gain, metabolic 
syndrome, and NAFLD (Xu and Zhuang, 2019). However, compared to 
other antipsychotics, ziprasidone had least impact on weight gain, 
minimal risk for hyperlipidemia, and actually decreased hepatic glucose 
production (Xu and Zhuang, 2019).  

DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 
CMap 

prediction 
Network 
proximity 

DB00270 Isradipine 
Type II diabetes mellitus 
(CACNA1C, CACNA1D) 

C2, C3 

Z-score: -
1.08 

Rank: 9 

Indication Mild to moderate essential hypertension 
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MOA 

Isradipine binds directly to inactive calcium channels stabilizing their 
inactive conformation. Since arterial smooth muscle depolarizations are 
longer in duration than cardiac muscle depolarizations, inactive channels 
are more prevalent in smooth muscle cells. Alternative splicing of the α-1 
subunit of the channel gives isradipine additional arterial selectivity. At 
therapeutic sub-toxic concentrations, isradipine has little effect on 
cardiac myocytes and conduction cells. 

Adverse effects 
Headache, edema, dizziness, palpitation, flushing, tachycardia, chest 

pain, rash 

Contraindications 
Hypersensitivity to isradipine or other calcium channel blockers; 
hypotension (<90 mm Hg systolic). 

Notes 

Calcium channel blockers have been suggested for restoring autophagic 
flux and treating metabolic pathologies in mouse models of obesity 
(Park, et al., 2014). However, a study found that it had no effect on 
metabolic syndrome in patients  (Widimsky and Sirotiakova, 2006).  

 

DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 
CMap 

prediction 
Network 
proximity 

DB00420 Promazine 
PI3K-Akt signaling pathway 

(CHRM1, CHRM2) 
C1, C2, C4 

Z-score: -
1.42 

Rank: 8 

Indication 
Moderate and severe psychomotor agitation; agitation or restlessness in 
the elderly. 

MOA 

Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT 
receptor types 2A and 2C, muscarinic receptors 1 through 5, α(1)-
receptors, and histamine H1-receptors. Promazine's antipsychotic effect 
is due to antagonism at dopamine and serotonin type 2 receptors, with 
greater activity at serotonin 5-HT2 receptors than at dopamine type-2 
receptors. This may explain the lack of extrapyramidal effects. Promazine 
does not appear to block dopamine within the tubero-infundibular tract, 
explaining the lower incidence of hyperprolactinemia than with typical 
antipsychotic agents or risperidone. Antagonism at muscarinic receptors, 
H1-receptors, and α(1)-receptors also occurs with promazine. 

Adverse effects 
Nervous system side effects, tardive dyskinesia, fever, hypotension, 
insomnia, nausea, vomiting, constipation, and diarrhea. 

Notes 
Currently not approved for use in the United States. Studies show that 
antipsychotics including promazine might induce metabolic syndrome 
and NAFLD (Xu and Zhuang, 2019).  
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DrugBank ID Drug Name 
Steatosis-related pathways 

(targets) 
CMap 

prediction 
Network 
proximity 

DB11672 Curcumin 
PPAR signaling pathway 

(PPARG) 
C1, C2, C3 

Z-score: -
0.45 

Rank: 15 

Indication NA 

MOA 

Curcumin acts as a scavenger of oxygen species, such as hydroxyl radical, 
superoxide anion, and singlet oxygen and inhibit lipid peroxidation as 
well as peroxide-induced DNA damage. Curcumin mediates potent anti-
inflammatory agent and anti-carcinogenic actions via modulating various 
signaling molecules. It suppresses a number of key elements in cellular 
signal transduction pathways pertinent to growth, differentiation, and 
malignant transformation; it was demonstrated in vitro that curcumin 
inhibits protein kinases, c-Jun/AP-1 activation, prostaglandin 
biosynthesis, and the activity and expression of the enzyme 
cyclooxygenase (COX)-2. 

Adverse effects Diarrhea, headache, rash, yellow stool, nausea, diarrhea 

Contraindications NA 

Notes 

Clinical trial showed that curcumin supplementation was associated with 
significant decrease in hepatic fibrosis, nuclear-kappa B activity, hepatic 
steatosis and serum level of enzymes, and tumor necrosis-α. However, 
the curcumin supplementation plus lifestyle modification is not superior 
to lifestyle modification alone in amelioration of inflammation (Saadati, 
et al., 2019). Another clinical trial showed that nano-curcumin improves 
glucose indices, lipids, inflammation and nesfatin in overweight and 
obese patients with NAFLD (Jazayeri-Tehrani, et al., 2019). It is 
demonstrated that NAFLD severity is reduced with the use of curcumin 
(White and Lee, 2019). There have been numerous clinical trials for many 
different indications that used this compound which have not been 
successful (Nelson, et al., 2017). Curcumin also has overall unfavorable 
pharmacokinetics/pharmacodynamics (Nelson, et al., 2017).  
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Appendix C.7 Drugs in clinical trials for NAFLD and NASH 

DrugBank ID Drug Name Drug Type* Condition Phase Recruitment Status Result 

DB00169 Cholecalciferol SMD NAFLD 4 Completed Not submitted 

DB09038 Empagliflozin SMD NAFLD 4 Completed Not submitted 

DB01120 Gliclazide SMD NAFLD 4 Completed Not submitted 

DB09198 Lobeglitazone SMD NAFLD 4 Completed Not submitted 

DB00331 Metformin SMD NAFLD 4 Completed Not submitted 

DB09539 
Omega-3-acid 

ethyl esters 
SMD NAFLD 4 Completed 

Influences bio-
markers 

DB01132 Pioglitazone SMD NAFLD 4 Completed 
Needs future 

work 

DB01261 Sitagliptin SMD NAFLD 4 Completed Not submitted 

DB11094 Vitamin D SMD NAFLD 4 Completed Not submitted 

DB01276 Exenatide BD NAFLD 4 Completed 
Safe and 
effective 

DB13961 Fish oil BD NAFLD 4 Completed Not effective 

DB00047 
Insulin 

glargine 
BD NAFLD 4 Completed Not submitted 

DB06655 Liraglutide BD NAFLD 4 Completed Not submitted 

DB12625 Evogliptin SMD NAFLD 4 
Enrolling by 
Invitation 

- 

DB00381 Amlodipine SMD NAFLD 4 Recruiting - 

DB00222 Glimepiride SMD NAFLD 4 Recruiting - 

DB00790 Perindopril SMD NAFLD 4 Recruiting - 

DB00191 Phentermine SMD NAFLD 4 Recruiting - 

DB00966 Telmisartan SMD NAFLD 4 Recruiting - 

DB11824 Tofogliflozin SMD NAFLD 4 Recruiting - 

DB01220 Rifaximin SMD NAFLD 4 Terminated - 

DB00847 Cysteamine SMD NAFLD 3 Completed Not effective 

DB11994 Diacerein SMD NAFLD 3 Completed Not submitted 

DB12539 Oltipraz SMD NAFLD 3 Completed Not submitted 

DB05408 Emricasan SMD NAFLD 2 Completed 
Safe and 
effective 

DB01039 Fenofibrate SMD NAFLD 2 Completed Not submitted 

DB12030 
Fluorescein 

lisicol 
SMD NAFLD 2 Completed Not submitted 

DB05123 Gemcabene SMD NAFLD 2 Completed Not submitted 

DB12866 Pradigastat SMD NAFLD 2 Completed 
Safe and 
effective 
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DB09298 Silibinin SMD NAFLD 2 Completed Not submitted 

DB12435 Tipelukast SMD NAFLD 2 Completed Not submitted 

DB09046 Metreleptin BD NAFLD 2 Completed 
Improves bio-

markers 

DB15194 Cotadutide SMD NAFLD 2 Recruiting - 

DB14801 Lanifibranor SMD NAFLD 2 Recruiting - 

DB13928 Semaglutide SMD NAFLD 2 Recruiting - 

DB08869 Tesamorelin SMD NAFLD 2 Recruiting - 

DB00052 Somatotropin BD NAFLD 2 Recruiting - 

DB01025 Amlexanox SMD NAFLD 2 
Active Not 
Recruiting 

- 

DB08887 
Icosapent 

ethyl 
SMD NAFLD 2 

Active Not 
Recruiting 

- 

DB15365 Pegbelfermin BD NAFLD 2 
Active Not 
Recruiting 

- 

DB15212 Pemafibrate SMD NAFLD 2 
Active Not 
Recruiting 

- 

DB00284 Acarbose SMD NAFLD 2 Terminated - 

DB00973 Ezetimibe SMD NAFLD 2 Terminated - 

DB00451 Levothyroxine SMD NAFLD 2 Terminated - 

DB05063 Mitoquinone SMD NAFLD 2 Terminated - 

DB01586 
Ursodeoxychol

ic acid 
SMD NAFLD 2 Terminated - 

DB06695 
Dabigatran 

etexilate 
SMD NAFLD 1 Completed - 

DB00627 Niacin SMD NAFLD NA Completed Effective 

DB11627 
Hepatitis B 

Vaccine 
(Recombinant) 

BD NAFLD NA Recruiting - 

DB04876 Vildagliptin SMD NAFLD NA Unknown Status - 

DB00316 
Acetaminophe

n 
SMD NAFLD NA Withdrawn - 

DB06817 Raltegravir SMD NASH 4 
Enrolling by 
Invitation 

- 

DB00678 Losartan SMD NASH 3 Completed Not submitted 

DB14916 Selonsertib SMD NASH 3 Completed 
Safe and 
effective 

DB11860 Aramchol SMD NASH 3 Recruiting - 

DB11758 Cenicriviroc SMD NASH 3 Recruiting - 

DB06292 Dapagliflozin SMD NASH 3 Recruiting - 

DB05187 Elafibranor SMD NASH 3 Recruiting - 
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DB05990 
Obeticholic 

acid 
SMD NASH 3 

Active Not 
Recruiting 

- 

DB01076 Atorvastatin SMD NASH 2 Completed 
Safe and 
effective 

DB15125 Belapectin SMD NASH 2 Completed Not submitted 

DB06756 
Glycine 
betaine 

SMD NASH 2 Completed Not submitted 

DB12720 Nivocasan SMD NASH 2 Completed Not submitted 

DB00338 Omeprazole SMD NASH 2 Completed Not submitted 

DB00806 Pentoxifylline SMD NASH 2 Completed Effective 

DB09308 Solithromycin SMD NASH 2 Completed Not submitted 

DB13946 
Testosterone 
undecanoate 

SMD NASH 2 Completed Not submitted 

DB05185 TRO19622 SMD NASH 2 Completed Not submitted 

DB00412 Rosiglitazone SMD NASH 2 Completed Not submitted 

DB12152 Simtuzumab BD NASH 2 Completed 
Safe and 
effective 

DB15168 Cilofexor SMD NASH 2 
Active Not 
Recruiting 

- 

DB15171 Tirzepatide BD NASH 2 Not Yet Recruiting - 

DB00945 
Acetylsalicylic 

acid 
SMD NASH 2 Recruiting - 

DB12885 CF-102 SMD NASH 2 Recruiting - 

DB00930 Colesevelam SMD NASH 2 Unknown Status - 

DB05372 CP-945598 SMD NASH 1 Completed Not submitted 

DB11242 Gelatin SMD NASH 1 Completed Not submitted 

DB15373 Tilmanocept SMD NASH 1 Completed Not submitted 

DB00160 Alanine SMD NASH NA Completed Not submitted 

DB00811 Ribavirin SMD NASH NA Unknown Status - 

DB00008 
Peginterferon 

alfa-2a 
BD NASH NA Unknown Status - 

DB00022 
Peginterferon 

alfa-2b 
BD NASH NA Unknown Status - 

* SMD: Small molecule drug, BD: Biotechdrug 

NA: used to describe trials without FDA-defined phases, including trials of devices or behavioral interventions. 
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Appendix C.8 Targets and pathways of 23 predicted drugs and 20 clinical trial drugs for 

NAFLD 

Only the predefined 11 NAFLD associated pathways and the targets and drugs mapped on 

these pathways are listed here. 

Predicted Drugs 

DrugBank 
ID 

Drug Name 
Drug 
Type 

Network 
Z-score 

CMap 
Comparison 

Target 
Gene 
Name 

Pathway Name 

DB00197 Troglitazone SMD -3.60 PF vs. PLI 

ACSL4 

PPAR signaling pathway 

Fatty acid biosynthesis 

Adipocytokine signaling pathway 

PPARA 

PPAR signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

PPARG PPAR signaling pathway 

PPARD PPAR signaling pathway 

DB01259 Lapatinib SMD -2.58 PF vs. PLI 
EGFR PI3K-Akt signaling pathway 

ERBB2 PI3K-Akt signaling pathway 

DB08059 Wortmannin SMD -2.32 PLI vs. N&S 

PIK3CA 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

Apoptosis 

TNF signaling pathway 

Type II diabetes mellitus 

Non-alcoholic fatty liver disease (NAFLD) 

PIK3R1 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

Apoptosis 

TNF signaling pathway 

Type II diabetes mellitus 

Non-alcoholic fatty liver disease (NAFLD) 

PIK3CG PI3K-Akt signaling pathway 

DB07863 

2-chloro-5-
nitro-N-
phenylbenza
mide 

SMD -2.04 PF vs. N&S RXRA 

PPAR signaling pathway 

PI3K-Akt signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 
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PPARG PPAR signaling pathway 

DB01590 Everolimus SMD -1.95 PF vs. N&S MTOR 

Adipocytokine signaling pathway 

Type II diabetes mellitus 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

DB08073 

(2S)-1-(1H-
INDOL-3-YL)-
3-{[5-(3-
METHYL-1H-
INDAZOL-5-
YL)PYRIDIN-3-
YL]OXY}PROP
AN-2-AMINE 

SMD -1.70 PLI vs. N&S 

PRKACA Insulin signaling pathway 

GSK3B 

Non-alcoholic fatty liver disease (NAFLD) 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

AKT2 

Adipocytokine signaling pathway 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

Apoptosis 

TNF signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

DB07859 

4-(4-
CHLOROPHEN
YL)-4-[4-(1H-
PYRAZOL-4-
YL)PHENYL]PI
PERIDINE 

SMD -1.70 PF vs. PLI 

PRKACA Insulin signaling pathway 

GSK3B 

Non-alcoholic fatty liver disease (NAFLD) 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

AKT2 

Adipocytokine signaling pathway 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

Apoptosis 

TNF signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

DB00420 Promazine SMD -1.42 PF vs. PLI 
CHRM2 PI3K-Akt signaling pathway 

CHRM1 PI3K-Akt signaling pathway 

DB00270 Isradipine SMD -1.08 PF vs. PLI 
CACNA1C Type II diabetes mellitus 

CACNA1D Type II diabetes mellitus 

DB00630 
Alendronic 
acid 

SMD -1.01 PF vs. N&S ATP6V1A Oxidative phosphorylation 

DB00246 Ziprasidone SMD -0.76 PF vs. N&S 
CHRM1 PI3K-Akt signaling pathway 

CHRM2 PI3K-Akt signaling pathway 

DB09167 Dosulepin SMD -0.76 PLI vs. N&S 
CHRM2 PI3K-Akt signaling pathway 

CHRM1 PI3K-Akt signaling pathway 

DB11672 Curcumin SMD -0.45 PF vs. PLI PPARG PPAR signaling pathway 

DB00482 Celecoxib SMD -0.03 PLI vs. N&S 

PTGS2 TNF signaling pathway 

PDPK1 
PPAR signaling pathway 

Apoptosis 
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Insulin signaling pathway 

PI3K-Akt signaling pathway 

DB01406 Danazol SMD 0.00 PF vs. PLI CCL2 TNF signaling pathway 

DB00850 Perphenazine SMD 0.00 PLI vs. N&S CALM1 Insulin signaling pathway 

DB01183 Naloxone SMD 0.00 PLI vs. N&S 
CREB1 

TNF signaling pathway 

PI3K-Akt signaling pathway 

TLR4 PI3K-Akt signaling pathway 

DB00317 Gefitinib SMD 0.00 
PF vs. PLI; 
PLI vs. N&S 

EGFR PI3K-Akt signaling pathway 

DB02424 Geldanamycin SMD 0.43 PF vs. N&S 

HSP90AB1 

Protein processing in endoplasmic 
reticulum 

PI3K-Akt signaling pathway 

HSP90AA1 

Protein processing in endoplasmic 
reticulum 

PI3K-Akt signaling pathway 

HSP90B1 

Protein processing in endoplasmic 
reticulum 

PI3K-Akt signaling pathway 

DB02860 Calyculin A SMD 0.44 PF vs. N&S PPP1CC Insulin signaling pathway 

DB01175 Escitalopram SMD 0.47 
PF vs. N&S; 
PLI vs. N&S 

CHRM1 PI3K-Akt signaling pathway 

DB13877 Iniparib SMD 0.49 PLI vs. N&S PARP1 Apoptosis 

DB01392 Yohimbine SMD 1.09 PLI vs. N&S KCNJ11 Type II diabetes mellitus 

Clinical Trial Drugs 

DB00412 Rosiglitazone SMD -3.27 NASH 

RXRA 

PPAR signaling pathway 

PI3K-Akt signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

RXRG 
PPAR signaling pathway 

Adipocytokine signaling pathway 

ACSL4 

PPAR signaling pathway 

Fatty acid biosynthesis 

Adipocytokine signaling pathway 

PPARA 

PPAR signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

RXRB 
PPAR signaling pathway 

Adipocytokine signaling pathway 
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PPARG PPAR signaling pathway 

PPARD PPAR signaling pathway 

DB00052 Somatotropin BD -2.66 NAFLD 
PRLR PI3K-Akt signaling pathway 

GHR PI3K-Akt signaling pathway 

DB01132 Pioglitazone SMD -2.59 NAFLD 

PPARD PPAR signaling pathway 

PPARG PPAR signaling pathway 

PPARA 

PPAR signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

DB05187 Elafibranor SMD -2.59 NASH 

PPARD PPAR signaling pathway 

PPARG PPAR signaling pathway 

PPARA 

PPAR signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

DB00451 Levothyroxine SMD -2.36 NAFLD 
ITGB3 PI3K-Akt signaling pathway 

ITGAV PI3K-Akt signaling pathway 

DB01039 Fenofibrate SMD -1.89 NAFLD PPARA 

PPAR signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

DB09198 Lobeglitazone SMD -1.70 NAFLD PPARG PPAR signaling pathway 

DB13961 Fish oil BD -1.68 NAFLD 

PTGS2 TNF signaling pathway 

SREBF1 
Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

NFKB1 

Adipocytokine signaling pathway 

Apoptosis 

TNF signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

PI3K-Akt signaling pathway 

CACNA1D Type II diabetes mellitus 

PPARD PPAR signaling pathway 

PPARA 

PPAR signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

CACNA1C Type II diabetes mellitus 

PPARG PPAR signaling pathway 

DB00966 Telmisartan SMD -1.46 NAFLD PPARG PPAR signaling pathway 

DB00381 Amlodipine SMD -1.28 NAFLD 
CACNA1B Type II diabetes mellitus 

CACNA1C Type II diabetes mellitus 

DB05408 Emricasan SMD -1.24 NAFLD CASP7 TNF signaling pathway 
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Apoptosis 

Non-alcoholic fatty liver disease (NAFLD) 

CASP3 

Apoptosis 

TNF signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

DB00945 
Acetylsalicylic 
acid 

SMD -0.83 NASH 

PRKAB1 

Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

PRKAB2 

Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

PRKAG3 

Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

PTGS2 TNF signaling pathway 

PRKAA2 

Non-alcoholic fatty liver disease (NAFLD) 

Insulin signaling pathway 

Adipocytokine signaling pathway 

PI3K-Akt signaling pathway 

PRKAA1 

Non-alcoholic fatty liver disease (NAFLD) 

Insulin signaling pathway 

Adipocytokine signaling pathway 

PI3K-Akt signaling pathway 

MYC PI3K-Akt signaling pathway 

MAPK3 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

TNF signaling pathway 

Apoptosis 

Type II diabetes mellitus 

MAPK1 

Insulin signaling pathway 

PI3K-Akt signaling pathway 

TNF signaling pathway 

Apoptosis 

Type II diabetes mellitus 

NFKBIA 

Adipocytokine signaling pathway 

Apoptosis 

TNF signaling pathway 

PRKAG1 
Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 
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Adipocytokine signaling pathway 

TP53 
Apoptosis 

PI3K-Akt signaling pathway 

IKBKB 

Adipocytokine signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Apoptosis 

TNF signaling pathway 

Type II diabetes mellitus 

PI3K-Akt signaling pathway 

Insulin signaling pathway 

PRKAG2 

Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

CCND1 PI3K-Akt signaling pathway 

HSPA5 
Protein processing in endoplasmic 
reticulum 

CASP3 

Apoptosis 

TNF signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

DB01120 Gliclazide SMD -0.54 NAFLD 
VEGFA PI3K-Akt signaling pathway 

ABCC8 Type II diabetes mellitus 

DB09539 
Omega-3-acid 
ethyl esters 

SMD -0.23 NAFLD SREBF1 
Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

DB00338 Omeprazole SMD -0.12 NASH ATP4A Oxidative phosphorylation 

DB00316 
Acetaminoph
en 

SMD -0.04 NAFLD PTGS2 TNF signaling pathway 

DB00047 
Insulin 
glargine 

BD 0.29 NAFLD 

IGF1R PI3K-Akt signaling pathway 

INSR 

Non-alcoholic fatty liver disease (NAFLD) 

Insulin signaling pathway 

Type II diabetes mellitus 

PI3K-Akt signaling pathway 

DB00331 Metformin SMD 0.49 NAFLD PRKAB1 

Insulin signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

Adipocytokine signaling pathway 

DB11994 Diacerein SMD 0.61 NAFLD 

CYP2E1 Non-alcoholic fatty liver disease (NAFLD) 

NR1H3 
PPAR signaling pathway 

Non-alcoholic fatty liver disease (NAFLD) 

DB01025 Amlexanox SMD 0.84 NAFLD 
IL3 

Apoptosis 

PI3K-Akt signaling pathway 

FGF1 PI3K-Akt signaling pathway 
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