

Title Page

Treelet Dimension Reduction of Diagnoses Among Intensive Care Unit Admissions

by

James Dominic DiSanto

BSc Neuroscience, University of Pittsburgh, 2018

Submitted to the Graduate Faculty of

the Department of Biostatistics in the

Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2020

 ii

Committee Page

UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This thesis was presented

by

James Dominic DiSanto

It was defended on

December 7, 2020

and approved by

Jeanine M. Buchanich, PhD, Research Associate Professor, Biostatistics
Graduate School of Public Health, University of Pittsburgh

Ada Youk, PhD, Research Associate Professor, Biostatistics
Graduate School of Public Health, University of Pittsburgh

Jenna C. Carlson, PhD, Assistant Professor, Biostatistics

Graduate School of Public Health, University of Pittsburgh

Douglas Landsittel, PhD, Professor, Biomedical Informatics

School of Medicine, University of Pittsburgh

Thesis Advisor: Jeanine M. Buchanich, PhD, Research Associate Professor, Biostatistics

Graduate School of Public Health, University of Pittsburgh

 iii

Copyright © by James Dominic DiSanto

2020

 iv

Abstract

Jeanine M. Buchanich, PhD

Treelet Dimension Reduction of Diagnoses Among Intensive Care Unit Admissions

James Dominic DiSanto, MS

University of Pittsburgh, 2020

Abstract

Background: The objective of this thesis is to apply treelet dimension reduction to ICD-

9-CM diagnosis codes and apply the resulting transformation in the prediction of clinical outcomes

of in-hospital mortality, unplanned re-admission, and hospital length of stay.

Data: International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-

CM) codes and patient demographic data (age, sex, insurance coverage) from the Medical

Information Mart for Intensive Care III (MIMIC-III) database prospective cohort study of 38,554

adults admitted to a single intensive care unit from 2001 to 2012.

Methods: We applied treelet dimension reduction to ICD-9-CM diagnosis codes (n=178,

>1% prevalence in the analytic cohort) to identify a transformed feature space of patient diagnoses

that we then used, with patient demographic data, to predict in-hospital mortality, unplanned

hospital re-admission, and length of hospital stay using logistic and negative binomial regression

models.

Results: Treelet dimension reduction for ICD-9-CM diagnosis codes identified reduced

feature spaces in prediction of in-hospital mortality, unplanned hospital re-admission, and length

of stay. The resulting treelet features for each clinical outcome, in addition to patient age, gender,

and payment method, demonstrate improved utility in predicting in-hospital mortality

(AUC=0.858) but limited accuracy in prediction hospital re-admission (AUC=0.661). Treelet

dimension reduction identifies a sparse number of ICD-9-CM diagnosis codes (107 of 178)

 v

retained in the treelet features included in modeling of length of stay (RMSE=10.29).

Public Health Significance: These analyses leverage a large, public database of critical

care admissions, generating predictive models of clinical outcomes using only patient

demographic and comorbidity diagnosis information. The presented analysis builds upon previous

work by applying the novel treelet dimension reduction model on diagnosis data in a dataset of

critical care admissions and demonstrate the utility of diagnosis code data alone in prediction of

clinical outcomes.

Keywords: treelet, dimension reduction, diagnosis codes, generalized linear models

 vi

Table of Contents

1.0 Introduction ... 1

1.1 Clinical Prediction Models... 1

1.2 Modern Healthcare Data ... 3

1.3 High-Dimensional Data & Dimension Reduction.. 4

1.4 Objectives .. 6

2.0 Methods.. 7

2.1 Data .. 7

2.1.1 Data Source ...7

2.1.2 Diagnosis Codes ..8

2.1.3 Covariates ...9

2.1.4 Outcomes ...9

2.2 Statistical Analysis .. 10

2.2.1 Treelet Dimension Reduction ..10

2.2.2 Generalized Linear Modeling ...14

2.2.3 Cross-Validation...16

2.2.4 Model Fit ...18

2.2.5 Model Comparisons ...20

2.2.6 Software...22

3.0 Results .. 23

3.1 Descriptive Statistics .. 23

3.1.1 Patients ..23

 vii

3.1.2 Diagnosis Codes ..24

3.2 Statistical Analysis .. 27

3.2.1 In-Hospital Mortality ...27

3.2.2 Hospital-Readmission ..33

3.2.3 Hospital Length of Stay ...39

3.2.4 Comparative Model Fit..46

4.0 Discussion... 49

4.1.1 Limitations ..55

5.0 Conclusion ... 56

Appendix A Supplemental Tables & Figures ... 58

Appendix B Analytic Code ... 71

Appendix B.1 R Code to Perform Data Cleaning and Exploratory Data Analysis (incl.

Descriptive Statistics) ... 71

Appendix B.2 R Code to Perform Treelet and GLM Fitting (incl. Cross-Validation) 96

Bibliography .. 139

 viii

List of Tables

Table 1: MIMIC-III Data Tables .. 7

Table 2: Analytic Patient Cohort Characteristics.. 24

Table 3: Logistic Regression Model of Mortality... 29

Table 4: Logistic Regression Model of Readmission ... 36

Table 5: Negative Binomial Model of Length of Stay.. 42

Table 6: Comparative Results of Model Performance .. 47

Table 7: Summary of Retained Features and ICD-9-CM Diagnosis Codes 47

Appendix Table 1: Full Regression Estimates (Mortality) ... 62

Appendix Table 2: Full Regression Estimates (Readmission) .. 66

Appendix Table 3: Full Regression Estimates (Length of Stay) ... 67

Appendix Table 4: Abbreviated Treelet Features (Mortality) ... 68

Appendix Table 5: Abbreviated Treelet Features (Readmission) .. 69

Appendix Table 6: Abbreviated Treelet Features (Length of Stay)....................................... 70

 ix

List of Figures

Figure 1: Frequencies of (A) All and (B) 15 Most Common ICD-9-CM Diagnosis Codes .. 25

Figure 2: Correlation Matrix of Included ICD-9-CM Diagnosis Codes 26

Figure 3: Ten Most Correlated Pairs of Diagnosis Codes ... 27

Figure 4: Average Test Briers Score Over 5-Fold Cross-Validation (Mortality Model) 28

Figure 5: Treelet Feature P-Values & β-Coefficients (Mortality) .. 30

Figure 6: Density Curve of Predicted Probabilities of Mortality ... 32

Figure 7: Comparative ROC Curves of Mortality Predictions .. 33

Figure 8: Average Test Briers Score Over 5-Fold Cross-Validation (Readmission Model) 34

Figure 9: Treelet Feature P-Values & β-Coefficients (Readmission)..................................... 36

Figure 10: Density Curve of Predicted Probabilities of Readmission 38

Figure 11: Comparative ROC Curves of Hospital Re-admission Models 39

Figure 12: Average Test Briers Score Over 5-Fold Cross-Validation (Length of Stay Model)

... 41

Figure 13: Treelet Feature P-Values & β-Coefficients (Length of Stay) 42

Figure 14: Scatter Plot of Observed and Predicted Length of Stay Values 44

Figure 15: Density Curves of Predicted & Observed Length of Stay Values........................ 45

Figure 16: Root-Mean-Square Error by Number of Retained Treelet Features 46

Appendix Figure 1: Density Curve of Mortality Model Predicted Probabilities (Treelet

Features Omitted) ... 58

Appendix Figure 2: Density Curve of Readmission Model Predicted Probabilities (Treelet

Features Omitted) ... 58

 x

Appendix Figure 3: Density Curve of Hospital Length of Stay Predictions 59

Appendix Figure 4: Density Curve of Residuals in Prediction of Length of Stay 60

Appendix Figure 5: Scatter Plot of Length of Stay Model Predicted Values (Treelet Features

Omitted) ... 61

 1

1.0 Introduction

1.1 Clinical Prediction Models

Clinical prediction models present useful, empirical methods to assess patient risk, often

modelling outcomes such as mortality, disease-specific remission, hospital resource utilization,

etc. Prediction models may inform both patient treatment (e.g. estimating patient recovery

prognosis following ischemic stroke, comparing estimated benefit and risk of a specific treatment)

and clinical research (e.g. estimating baseline risk of outcome to identify specific risk-groups of

patients for study enrollment) (Steyerberg, 2009). Beyond patient-specific prediction, health-

policy makers and hospital administrators may use models of outcomes such as in-hospital

mortality, hospital length of stay, and unplanned re-admissions as measures of a hospital’s case-

severity and/or resource utilization (Awad, Bader–El–Den, et al., 2017; Quach et al., 2009).

The prediction of mortality (or assessment of patient mortality risk) is notably used at the

hospital- or system-level to account for diversity of illness or injury severity of admissions,

allowing for comparison of care quality across health care systems and/or centers (Quach et al.,

2009). The performance of existing predictive models of mortality remain limited. Studies have

previously explored the predictive utility of comorbidity indices such as the Charlson (Charlson et

al., 1987) and Elixhauser (Elixhauser et al., 1998). These measurement systems assess the presence

or absence of conditions (19 disease groups in the Charlson index, 31 in the Elixhauser) using a

subset of available ICD-9-CM diagnosis codes. Models using these existing indices have estimated

concordance values ranging from ~0.71 to ~0.78 (Quach et al., 2009; Snow et al., 2020). The

APACHE-II (Knaus et al., 1985) is a disease severity classification system that additionally uses

 2

physiological and temporal measurements (e.g. lab values of hematocrit, creatinine, white blood

cell count). Use of APACHE-II scores resulted in improved, but still limited, prediction of in-

hospital mortality, with concordance values ranging from ~0.75 to ~0.84 (Awad, Bader-El-Den,

et al., 2017; Falcão et al., 2019) (see Section 2.2.4 for description of concordance and additional

model fit metrics).

Looking beyond in-hospital mortality, hospital length of stay is an important metric that

inherently captures information related to (and can loosely serve as a proxy measurement of)

hospitalization cost and/or hospital resource utilization (Awad, Bader–El–Den, et al., 2017).

Similarly, individuals who survive their initial hospital admission remain at risk for adverse post-

discharge events and subsequent hospital readmission. In addition to the physical and mental toll

of an unplanned hospital readmission and/or a prolonged hospital course, patients experience

significant, undue financial burden (Mayr et al., 2017). At the hospital system level, the Center for

Medicare and Medicaid Services includes hospital readmission as an assessment of quality of care,

including a financial incentive for hospitals to reduce readmission rates (CMS, n.d.). Predictive

models of hospital readmission and length of stay remain limited both in their predictive

performance and in the availability of the data which the models require (Kansagara et al., 2011).

A review of existing prediction models of mortality and length of stay proposes that future models

should leverage large, commercially or publicly available critical care databases, such as the

Medical Information Mart for Intensive Care III (MIMIC-III) (formerly the Multiparameter

Intelligent Monitoring in Intensive Care or MIMIC-II) data used in this work (Awad, Bader–El–

Den, et al., 2017).

The growth of healthcare data and statistical learning has further catalyzed interest in

statistically-derived prediction models due to the increase in both available sample size and

 3

diversity of available predictors (Steyerberg, 2009). The generalizability of clinical prediction

models is limited to the availability of the required data. That is, models built upon esoteric data

elements (e.g. hospital-specific variables) or highly granular information (e.g. pre-admission lab

values, genetic data), present barriers to effective implementation by requiring collection of the

necessary input information, which may be infeasible when applied to a new hospital or clinical

setting. As a result, the use of large, healthcare data sources must account for not only the

performance of the relevant models but the likely availability of the required data elements.

1.2 Modern Healthcare Data

Due to advances in data collection and management and the digitization of healthcare data

into electronic health records (EHR), hospitals and healthcare systems now maintain an enormous

amount of patient data, with the opportunity to wield this information to improve patient care

(Dash et al., 2019). A single American hospital’s EHR captures an estimated 107 terabytes of data

annually (Pah et al., 2014). With such large data volume, there are significant obstacles to

efficiently collecting, managing, and leveraging pertinent information from the variety of data

sources that are commonly present in a large hospital.

A large component of a hospital’s EHR data comprises patient-level diagnoses of disease,

injury, and associated conditions (Pah et al., 2014). The Center for Medicare and Medicaid

Services presents a codified system of diagnosing diseases (among other clinical care information

such as health services, injury/disease causes, etc.) among patients, referred to as the International

Classification of Diseases, Clinical Modification codes (ICD-CM). The 9th version of the system

(ICD-9-CM) was adopted in the 1980’s and used through 2014, at which point the current 10 th

 4

version (ICD-10-CM) was mandated (having been preliminarily adopted in the late 1990’s) (Topaz

et al., 2013). The ICD-9-CM system included nearly 17,000 unique patient diagnoses, while ICD-

10-CM expands this catalog to over 155,000 unique codes (Topaz et al., 2013).

The volume of diagnosis data present in the EHR is a rich resource to support clinical

research and improve upon existing predictive clinical models (Kennedy et al., 2013). Groups of

ICD-9-CM diagnosis codes in a large dataset may also expectedly represent redundant

information. For example, highly correlated or commonly concurrent diagnoses (e.g. hypertension,

hyperlipidemia, type-2 diabetes mellitus) could be grouped into a single aggregate input

representing this group of diagnoses.

1.3 High-Dimensional Data & Dimension Reduction

High-dimensional data describes data sets with a high number of covariates (or inputs,

features, etc.), which may commonly include highly correlated variables. Such data sets present

elevated risk of overfitting and, in extreme cases where there are a similar or greater number of

predictors than observations, may prevent identification of statistical models using the full feature

set (Hastie et al., 2017). Even in data sets with sufficiently high sample sizes to fit models including

a large number of predictors, high-dimensional data often contain an unknown but non-negligible

amount of noise, correlated pairs of inputs, and/or groups of intercorrelated inputs, and may

contain information that is representable by only a subset of the total inputs. Dimension reduction

techniques present methods to represent high-dimensional data using only a subset of the input

features (such as in feature selection or clustering) or within a new projection of the feature space

to a new space of reduced dimensionality (e.g. principal components analysis [PCA]) (Hastie et

 5

al., 2017). In the context of clinical prediction models, dimension reduction may be applied with

the specific goal of reducing the number of predictors retained in the final model. The diversity of

patient ICD-9-CM diagnosis data within large patient populations may result in highly correlated

or possibly redundant diagnoses. As a result, the use of dimension reduction of ICD-9-CM

diagnosis codes prior to clinical prediction model fitting may improve model performance and/or

identify only a subset of the original diagnoses to include as predictors.

Treelet dimension reduction (also referred to as treelet transformation or simply treelet) is

a recent dimension reduction technique proposed by Dr.’s Ann Lee, Boaz Nadler, and Larry

Wasserman in their work “Treelets – An Adaptive Multi-Scale Basis for Sparse Unordered Data”

(A. B. Lee et al., 2008). The authors present treelet as a dimension reduction technique inspired

by hierarchical clustering and PCA, that attempts to represent the original input variables in a

reduced number of variables and identify only a subset of these transformed variables responsible

for much of the information present in the original data, ideally both reducing the number of

dimension and identifying a sparse space of the original inputs that inform these transformed

features. The authors offer example applications of treelet dimension reduction in datasets of cell

imaging and DNA microarray data. Beyond these clinical examples, the authors use treelet in a

dataset of internet advertisements, transforming data set of 760 original, categorical (binary)

predictors which result in improved classification over the original features. This set of binary

features parallels the structure of a large data set of diagnosis codes, where binary variables may

represent the presence or absence of diagnoses. In fact, treelet has previously been applied in an

observational cohort study of traumatic brain injury (Kumar et al., 2018) to identify groups of

correlated diseases. However, treelet has not yet been applied to a data set of ICD-9-CM diagnosis

codes in the context of critical care admissions or large data sets with a diverse patient population,

 6

which may specifically benefit from the identification of a reduced, sparse feature space of ICD-

9-CM diagnosis codes prior to the construction of clinical models.

1.4 Objectives

The objective of this thesis is to transform a large number of ICD-9-CM diagnosis codes

into a sparse set of features, using treelet dimension reduction, and apply this new feature space in

the prediction of clinical outcomes of in-hospital mortality, unplanned hospital re-admission, and

hospital length of stay. The analyses presented in this work leverage a prospective cohort study of

intensive care unit (ICU) admissions to identify this new feature space before building and

assessing the predictive validity of models built using the treelet-generated features.

Section 2 details the statistical methods used for both dimension reduction (treelet) and

regression (logistic and negative binomial) models. Section 3 presents the results of statistical

analyses, including descriptive statistics and the results of treelet dimension reduction and

supervised models of this work’s three clinical outcomes of interest. Sections 4 and 5, respectively,

contain a final discussion of these results and their possible implications.

 7

2.0 Methods

2.1 Data

2.1.1 Data Source

Data for these analyses were accessed from the Massachusetts Institute of Technology’s

MIMIC-III database (Johnson et al., 2016). The MIMIC-III database contains nearly 60,000

admissions to the ICU of the Beth Israel Deaconess Medical Center in Boston, MA between 2001

and 2012. Information contained in the MIMIC-III data is stored in 26 tables containing distinct

data elements and related metadata. Patient data and admissions were linked by common patient

(SUBJECT_ID) and stay/admission (HADM_ID) identifiers. Information was pulled from the

following MIMIC-III tables:

Table 1: MIMIC-III Data Tables

Table Data Elements

Diagnoses_ICD Diagnoses codes for a given patient’s hospital stay

D_ICD_Diagnoses Text descriptions of diagnosis codes

Admissions Date of admission and discharge for use in isolating first and most recent
hospital admissions and length of stay (using admission and discharge times);

Insurance/Payment method for a given stay

Patients Patient-level data including date of birth, sex, and mortality status

 8

A subset of 7,537 patients were admitted multiple times, resulting in inclusions in the

MIMIC-III database corresponding to each hospital admission. For these patients, only data from

the earliest admission was retained. Data for analysis were restricted to adult patients (>18 years

at date of admission) resulting in 38,554 patients included in the full analytic cohort of mortality

and hospital length of stay. In analysis of the hospital re-admission outcome (described further in

Section 2.1.4), individuals who died within a year of discharge with no hospital re-admission were

excluded from analysis (n=9,661), resulting in an analytic subset of 28,893 patients for analysis of

unplanned hospital re-admission.

2.1.2 Diagnosis Codes

Each patient admission included one or more clinical diagnoses, designated using ICD-9-

CM codes (CMS, 2020, p. 9). To assess diagnosis code validity in the MIMIC-III data, all present

codes were confirmed to correspond to valid, ICD-9-CM diagnoses using the icd package (Wasey

et al., 2020), and sex-specific diagnoses (e.g. codes 600-608 among male patients, 614-630 among

female patients) were confirmed to be accurately diagnosed. ICD-9-CM diagnosis codes with a

“V” or “E” prefix (respectively designating health factors/health service interactions and external

injury causes) and those with <1% prevalence in the analytic cohort were removed , retaining 178

ICD-9-CM diagnosis codes in the final analytic data set. Patients were then assigned indicator

variables corresponding to each diagnosis, with a value of 1 representing presence of a given

diagnosis and otherwise a value of 0.

 9

2.1.3 Covariates

Additional data elements included as covariates in statistical analysis included age,

genotypical sex, and primary payment method/insurance coverage. Age values ranged from 18-

89+ in the original data. For individuals over 89 years old at time of admission, the MIMIC-III

data administrators mask age, such that patient age data was unavailable. As a result, a value of 90

years old (as the minimum possible age for these patients) was assigned to these individuals. Age

was assessed continuously, with values ranging (after imputation) from 18 to 90 years old. Primary

payment method was categorized in the mutually exclusive categories of “Medicare”, “Medicaid”

“private coverage”, “self-pay”, or “other public assistance”.

2.1.4 Outcomes

Clinical outcomes included in-hospital mortality, hospital re-admission, and general

hospital length of stay. Hospital re-admission was identified as a patient having an additional

admission within one year of discharge from their earliest admission. Patients who died within a

year of their initial discharge with no additional hospital admissions were excluded from re-

admission analysis. Lastly hospital length of stay was measured in days of total hospital, from date

of admission to discharge (or to date of death for patients who died during their hospital stay).

 10

2.2 Statistical Analysis

Treelet can be heuristically considered a combination of (and was inspired by) the common

dimension reductions techniques of PCA, wavelets, and hierarchical clustering (A. B. Lee et al.,

2008). In this work, we apply the treelet method to the correlation matrix of ICD-9-CM diagnosis

codes to represent these 178 features with reduced dimensionality. The implementation of treelet

is discussed in further detail in Section 2.2.1. The resulting features are then used in regression

modeling of clinical outcomes: in-hospital mortality, hospital length of stay, and hospital re-

admission. We use cross-validation (see Section 2.2.3) to identify the treelet transformation’s basis

matrix (or simply the specific transformation of our original input variables) that optimizes the

performance of regression and/or classification models (see Sections 2.2.2, 2.2.4). This process

was repeated for each outcome, such that treelet was fit to the analytic cohort for the respective

clinical outcome, cross-validation performed (using the appropriate regression model) within this

cohort to identify the final treelet transformation used, and then the performance of the final model

assessed in the appropriate, outcome-specific test data set.

2.2.1 Treelet Dimension Reduction

Lee et al. proposed the treelet method as a dimension reduction method to represent the

internal or latent structure of noisy, high-dimensional data using a sparse number of features (A.

B. Lee et al., 2008). Treelet attempts to identify correlated variables that may be grouped together

to serve as these sparse features. The method is proposed to both reflect the underlying structure

of the input data (or its similarity matrix) and secondarily to improve regression (or classification)

models by using the transformed, sparse feature space.

 11

Let 𝑝 = 1,2, . . . , 𝑃 represent the number of features in and 𝑛 = 1,2, . . . 𝑁 the number of

observations for an input data set. Treelet begins with the input of a similarity matrix, which is

defined as the 0th level similarity matrix 𝐌𝟎. Commonly (and in this specific analysis) this is the

correlation matrix of the input features. Treelet defines a 0th level basis matrix as the identity

matrix, such that 𝐁0 = 𝐈𝐏×𝐏. Using this 0th level matrix, the method repeats the following process

for levels of l=1,2…,p-1:

In similarity matrix (𝐌𝒍−𝟏), identify the two features of maximum similarity, or:

𝑝𝑖 , 𝑝𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖,𝑗∈𝑃,𝑖<𝑗 (𝐌𝑙−1) (1)

Then identify a Jacobi rotation matrix for a given level as 𝐉𝒍
1. Define the angle of rotation θ𝑙 =

0.5 × 𝑎𝑟𝑐𝑡𝑎𝑛 (2
ρ(i,i)ρ(j,j)

ρ(𝑖,𝑗)
) of variance for features 𝑝𝑖 ,𝑝𝑗 = ρ𝑖,𝑖 , ρ𝑗,𝑗 respectively and similarity of

the two features ρ𝑖,𝑗 . The resulting rotation matrix 𝐉𝒍 is then defined as:

(

1 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋯ ⋮ ⋮ ⋮
0 ⋯ 𝑐𝑜𝑠(θ𝑙) ⋯ −𝑠𝑖𝑛(θ𝑙) ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ 𝑠𝑖𝑛(θ𝑙) ⋯ 𝑐𝑜𝑠(θ𝑙) ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋱ ⋮
0 ⋯ 0 0 0 0 1)

 (2)

1 This rotation is equivalent to performing PCA on features 𝑝𝑖 , 𝑝𝑗 of our input matrix 𝐗, where the values ≠ 0, 1, and

the above Jacobi rotation matrix 𝐉 are equal to the transpose of the local PCA’s resulting rotation matrix

 12

where 𝐉𝐢,𝐢 = 𝐉𝑗,𝑗 = 𝐜𝐨𝐬(θ𝒍),𝐉𝑖 ,𝑗 = 𝑠𝑖𝑛(θ𝑙),𝑎𝑛𝑑 𝐉𝑗,𝑖 = −𝑠𝑖𝑛(θ𝑙). Using this rotation matrix, both

the basis and similarity matrices are updated, where 𝐁𝟏 = 𝐁𝒍−𝟏𝐉𝐥 and 𝐌𝒍 = 𝐉𝐥
𝐓𝐌𝒍−𝟏𝐉𝐥. Then

identify the new features that maximize the updated similarity matrix 𝐌𝑙, and similarly construct

the lth level’s rotation matrix, and repeat this process until p-1 orthonormal bases of the input

matrix have been constructed.

Each rotation can be considered a “grouping” of two features, which may include both an

original input variable and/or a previously grouped treelet feature (containing loadings from

previously grouped input variables). Each basis matrix can be considered a representation of the

cumulative rotations and may be used as the transformation of our original inputs. Relatively small

cut-levels (or the basis matrices identified for the number of rotations much smaller than the

original p inputs) identify transformations with only a small number of rotations, where our basis

matric retains much of the original input data with few grouped features (i.e. only slightly reducing

or transforming the original data). Large cut-levels (approaching p-1 transformations) indicate

basis matrices containing loadings from a large number of rotations, such that a subset of the

columns in these basis matrices likely contain loadings from a large number of the original input

data. As a result, even a small number of features (or small K) retained from a large basis matrix

likely contain loadings from many of the original input variables.

The treelet model identifies p-1 constructed bases. Of which we must then identify the

number of components to retain (or the new dimensionality of the feature space) K and the basis

matrix whose K components are used, 𝐁𝑳, which is analogous to defining a “cut-level” L of the

tree. For a given number of components retain (or a given 𝐾), we use Lee et al.’s proposed

normalized energy score to identify an optimal cut-off (𝐿∗) for the treelet (equivalent to identifying

the optimal basis matrix 𝐁L∗ from which we extract 𝐾 features). The lth basis matrix can be

 13

generally defined by the vectors 𝐁𝐥 = [𝐰1, 𝐰2, … ,𝐰𝑃]
𝑻, and the input matrix similarly as 𝐗 =

[𝐱1, 𝐱2, … 𝐱P]
𝐓. The ith normalized energy score is then defined as:

ε(𝐰𝑖) =
∑ |𝐰𝑖 ⋅ 𝐱𝑛|

2𝑁
𝑛=1

∑ ||𝐱𝑛||
2𝑁

𝑛=1

We then arrange the normalized energy scores for each basis matrix 𝐁𝒍 in descending order. Then

for a given 𝐾, we the identify the basis 𝐁𝑳∗ = 𝒂𝒓𝒈𝒎𝒂𝒙∑ 𝛆(𝐰𝒊)
𝐊
𝒊=𝟏 (i.e. that which maximizes the

summation of the K highest energy scores for a given basis). Thus, for a given 𝐾, we can

deterministically identify an optimal basis matrix 𝐁𝑳∗ as the basis matrix that maximizes the sum

of the 𝐾 highest, normalized energy scores.

The authors propose multiple methods to identify these parameters, dependent upon the

goal of the treelet transformation (A. B. Lee et al., 2008). The treelet method itself does not include

information from an outcome measure or dependent variable and is constructed using only the

structure of the similarity structure (e.g. correlation or covariance matrix) of the input variables.

In the absence of an outcome or prediction model of interest, the final treelet transformation may

be selected using some a priori criteria (e.g. retaining a specific number of treelet features,

retaining all treelet features of the maximum cut-level basis matrix, etc.). In the context of

regression and/or classification, the authors suggest identifying the treelet transformation

parameters that minimize regression or classification error, which we accomplish using cross-

validation (described below and in further detail in Section 2.2.3). We used the process described

above to identify the basis/cut-off (𝐿∗ or 𝐿∗|𝐾∗) for each 𝐾 parameter that maximizes the

normalized energy score. As a result, identifying the final treelet transformation requires simply

 14

identifying the determined pair 𝐾 and (𝐿∗ or 𝐿∗|𝐾∗) that minimizes our model error (see Section

2.2.4 for description of measures of model error/fit).

We identify the treelet dimension reduction’s optimal value of 𝐾 (which we refer to as the

𝐾∗ orthonormal basis) that minimizes cross-validation using over 5-fold cross-validation

(described in further detail in Section 2.2.3) for the models of our respective clinical outcomes.

Thus, while the treelet method itself requires only the input data to identify the p-1 rotations, we

identify the final transformation by observing each transformation’s prediction performance for

the outcome of interest. As a result, we identify a unique transformation for each of our three

respective outcomes (mortality, re-admission, and length of stay).

Once we have identified the optimal 𝐾∗ dimensions to retain and the resulting cut-off 𝐿∗,

equivalent to identify the optimal basis matrix 𝐁𝑳∗ , we restrict inputs to 𝐾∗ dimensions by retaining

only the vectors from the basis matrix with the 𝐾∗ highest normed energy scores ε(𝐰𝑖). We then

project the input matrix to the 𝐾∗ dimensional space by simply multiplying the original input

matrix 𝐗 (of 𝑛 × 𝑝 dimensionality) by the newly formed and restricted basis matrix 𝐁𝐿∗ , resulting

in the new (𝑛 ×𝐾) matrix 𝐗∗.

2.2.2 Generalized Linear Modeling

Generalized linear modeling (GLM) is a family of extensions to ordinary least squares

linear regression that allows for modeling outcomes variables whose distributions do not follow a

standard Gaussian distribution, such as binary outcomes, multinomial outcomes, proportions,

counts, etc (Nelder & Wedderburn, 1972). Ordinary least squares regression models assume that

the outcomes follow identical, independent standard Gaussian distributions, or:

 15

 𝐲 = 𝐗𝜷+ 𝝐, ϵi ∼ 𝐍(𝟎,𝛔
𝟐) (3)

GLM extends this framework while only requiring that the distribution of the outcome, 𝐲, follows

a distribution of the exponential family. This distribution is also referred to as the random

component of a GLM. Each specific extension includes a characteristic link function that specifies

the relationship between the random component and the input data (also referred to as the

“systematic component”).

Outcomes of in-hospital mortality and hospital re-admission were represented as binary

variables, such that the outcomes for these models follow a binomial distribution. As a result, we

fit logistic regression models, with a binomially distributed random component and a logit link-

function. Logistic regression models, therefore, model the logit or log-odds of the respective

outcome’s probability (π):

 𝑙𝑜𝑔𝑖𝑡(πi) = 𝑙𝑜𝑔(
πi

1 − πi
) = 𝐱𝐢𝛃 (4)

The hospital length of stay outcome, as the number days between patient admission and

discharge, is a count variable, taking only positive values. Count outcomes are commonly

modelled using Poisson regression, with a Poisson distributed random component and the log link

function. Poisson regression, however, assumes the equality of the mean and variance of the

outcome, a characteristic of the Poisson probability distribution. Should this assumption not be

met, the outcome variable is described as overdispersed, and the Poisson probability distribution

(and Poisson regression) are inappropriate. Overdispersion can be tested by comparing the

deviance (defined ϕ = −2𝑙𝑛(𝐿), for likelihood 𝐿) of a Poisson regression model to its χn−p
2

 16

distribution under the null hypothesis of no overdispersion (or equal mean and variance).

Overdispersion can be alternatively assessed by simply comparing the mean and variance of the

outcome.

Negative binomial regression is commonly used when the Poisson regression’s assumption

of equal mean-variance assumption is not met (i.e. the data are overdispersed). The negative

binomial’s probability mass function may be expressed as:

 𝑃(𝑦𝑖) =
Γ(𝑦𝑖 +

1
α)

(𝑦𝑖!)Γ(
1
α)
(

1

1 + αμi
)

1
α
(
αμi

1 + αμi
)
𝑦𝑖

 (5)

 where 𝜇𝑖 = 𝑒𝑥𝑝(𝑥𝑖𝛽)

The parameters α, β are then derived via maximum likelihood estimation for the resulting

likelihood function ∏ P𝑁
𝑖=1 (𝑦𝑖). The use of the log-link function, 𝜇𝑖 = 𝑒𝑥𝑝(𝑥𝑖𝛽), restricts the

model’s fitted values to be non-negative, matching the characteristic of the count outcome variable.

2.2.3 Cross-Validation

Cross-validation is a useful process of data sampling and splitting to build and assess the

predictive ability of statistical models (Harrell, 2001; Shao, 1993). As previously alluded, 5-fold

cross-validation was used to identify the optimal value for the parameter 𝐾∗. Prior to cross-

validation, analytic cohorts were split, such that 20% of each cohort was held-out and remained

unused through any cross-validation or model fitting. The remaining 80% of each analytic cohort

was then randomly grouped into 5 equal sized subsets as “model-fitting” or “cross-validation” data

sets. Because of the additional exclusion criteria for categorization of unplanned hospital

 17

readmission, data splitting was conducted separately for length of stay and mortality analysis

(training n=30,844; test n=7,710) and hospital re-admission (training n=23,115; test n=5,778).

In one iteration of cross-validation, the first subset was held-out of the cross-validation

data, and the treelet model fit on the remaining 4 folds of data. After fitting the treelet model,

within this same subset the original ICD-9-CM diagnosis code variables were transformed using

the basis matrix 𝐁𝐾,𝐿|𝐾 for each pair of parameters 𝐾, 𝐿|𝐾. We then fit the appropriate GLM (using

the previously described logistic or negative binomial models as appropriate) for each outcome,

using the previously described covariates and transformed input matrix, resulting in 177 (p-1 for

p=178) fitted models. Each fitted model was then used to predict the outcome in the first cross-

validation fold, which had been held out from this model-fitting step, and the test-error of each

model then reported for that fold. This process was then repeated five times, such that each cross-

validation fold was used as the cross-validation test data exactly once. We then identified the

values of the 𝐾 parameter (𝐾∗), and the corresponding basis or cut-off level L ∗ |𝐾 ∗ for the final

treelet transformation in assessing the average model fit across the five test folds (see Section 2.2.4

for the performance metrics of model fit/test-error and description of parameter selection).

For identification of the 𝐾 parameter, cross-validation can identify both the value that

maximizes model performance (based on the below described performance measures) and the

smallest value of 𝐾 that produces a performance measure within one standard deviation of the best

performing model. This “one standard deviation rule” allows for the identification of a parameter

value that produces a further reduced model (by reducing the number of retained features, 𝐾) at a

tolerable cost to model performance (Hastie et al., 2015, 2017).

 18

2.2.4 Model Fit

The fit of regression models (for each respective outcome and GLM method) was assessed

during the cross-validation process and in the final hold-out data using similar metrics. In the

logistic regression models of in-hospital mortality and hospital-readmission, the Brier Score

measured accuracy of predicted probabilities (Brier, 1950; Rufibach, 2010). For 𝑁 observations

(or 𝑛𝑖 , 𝑖 = 1,2, … , 𝑁) with predicted probabilities of event 𝑝𝑖̂ and observed outcome 𝑦𝑖 (where 0

represents “no event” and 1 an observed event), the Brier Score is defined as2:

 1

N
∑(𝑝𝑖̂ − 𝑦𝑖)

2

N

i=1

 (6)

Smaller Brier scores indicate more accurate prediction (or better prediction model performance for

binary classification models). The minimum Brier score of 0 indicates perfect prediction (i.e.

predicted probabilities of 0 for all observed non-events and 1 for all observed events).

In negative binomial regression models of hospital length of stay, the mean-squared error

(MSE) of predicted values assessed model fit. For an observed length of stay values 𝑦𝑖 and

corresponding predicted values 𝑦𝑖̂ among 𝑁 observations, the MSE of a model was calculated as:

∑(yi − yî)
2

N

i=1

 (7)

2 Notice this equation is analogous to the calculation of mean-squared error (MSE) in OLS regression, replacing the

predicted outcome 𝑦𝑖̂ in the MSE equation with the predicted probability of 𝑝𝑖̂ calculated from the logit-link function.

 19

Once we have identified the optimal parameters for the treelet models within the 80%

cross-validation subset, we fit a GLM using the treelet basis transformation of the input matrix on

the full 80% cross-validation subset. The resulting fitted model then predicted the outcome in the

hold-out, 20% subset that was not used in the cross-validation process. These test predictions were

compared with the observed outcomes in this hold-out set to assess final model fit.

In logistic regression models for binary outcomes of hospital readmission and in-hospital

mortality, test-model performance was additionally assessed using the area under receiver

operating characteristic (ROC) curve (AUC) values. While the Briers score is used in comparing

models internally (i.e. within cross-validation to identify the number of treelet features to retain),

AUC values are more commonly presented, allowing for comparison of the presented results to

previously reported models. AUC values were attained by the following steps:

1) Identify all possible classification thresholds of predicted probabilities (𝑝̂) that result

in distinct combinations predictions for 𝑛 observations

2) For each threshold, calculate the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) and

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
)

3) Plot 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 against 1 – 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 for all thresholds and corresponding values

4) Calculate the area under this curve

This value is similarly a measure of concordance, as the value calculated above is

equivalent to the proportion of all pairwise comparisons of individuals between the two observed

classes with the predicted probability of an “event” is greater in the individual with an observed

 20

“event”. In “ties”, or pairs with equivalent predicted probabilities, a value of 0.5 is summed (rather

than a 1 or 0 among pairs with non-equal predicted probabilities).

2.2.5 Model Comparisons

To contextualize the results of treelet dimension reduction, the performance of models

containing treelet features are compared to a the Charlson and Elixhauser comorbidity indices as

well as PCA, a common method of dimension reduction, and lasso regression. The Charlson

(Charlson et al., 1987) and Elixhauser (Elixhauser et al., 1998) proposed groups of diagnoses (also

indicated by ICD-9-CM diagnosis codes) thought to be predictive of in-hospital and long-term

mortality. The Charlson index assesses the presence of 19 groups of conditions, including

diagnoses such as history of cerebrovascular infarction, presence of dementia, presence of liver

disease, and other chronic conditions. The Elixhauser index groups diagnoses into 31 categories

indicating groups of diseases related to chronic diseases such as acquired immunodeficiency

syndrome, lymphoma, diabetes, and hypertension (among other conditions). Both indices assess

the presence or absence of relevant ICD-9-CM codes for each patient to create categorical variable

describing patient membership in each indices’ categories. Patients in the presented analyses were

assigned 19 and 31 binary variables for the Charlson and Elixhauser indices respectively,

describing the presence of absence of ICD-9-CM diagnosis codes for each related disease group.

In contrast to the Charlson and Elixhauser indices, which use subsets of ICD-9-CM

diagnosis codes determined independent of the present data, penalized regression aims to identify

a subset of predictors based on models fit using each study’s analytic cohort. More specifically,

lasso regression deliberately bias the β-coefficient estimators through the introduction of a

shrinkage penalty, often referenced as λ, in a regression model. While ordinary least squares

 21

regression (i.e. regression with no shrinkage penalty) identifies a set of β-coefficients that

minimizes the sum of squared errors as, or β̂𝑂𝐿𝑆 = argmin(∑ (𝑦𝑖 −β𝑥𝑖)
2𝑛

𝑖=1). Lasso regression

introduces the shrinkage penalty, such that the lasso minimizes the sum of squared errors including

this small penalty: β̂𝑙𝑎𝑠𝑠𝑜 = argmin(∑ (𝑦𝑖 − β𝑥𝑖)
2 + λ ∑ |β𝑗|

𝑝
𝑗=1

𝑛
𝑖=1). A range of shrinkage

penalty values (or λ values) can be assessed via cross-validation and a value identified that either

minimizes test error or following the previously described “one-standard-deviation rule” to

identify a further reduced number of predictors to retain. The extension of lasso to logistic and

negative binomial regression then simply involves including the shrinkage penalty, λ, in the linear

component of each model.

Lastly, PCA is a common dimension reduction technique that projects original input data

into a smaller dimension space comprised of orthogonal linear combinations of the original inputs,

or principal components. After identifying the resulting principal components, the final

transformation of the original input data requires identifying the number of principal components

to retain. The number of principal components to retain can be determined by assessing the number

of cumulative variance (in the original input data) accounted for by the subsequent number of

principal components using some prior determined threshold.

All PCA and lasso analysis used the same data (including the raining and test data-splits of

model fitting and assignment of cross-validation folds) as the treelet dimension reduction and

resulting model fitting for each respective clinical outcome. In lasso regression, the identified

shrinkage penalty was selected that minimized test-error across 5-fold cross-validation for each

respective outcome (i.e. a unique shrinkage penalty was identified for each clinical outcome). In

the use of PCA prior to model fitting, the minimum number of principal components that accounted

for >60% of the variance among the 178 ICD-9-CM diagnosis codes (for each respective

 22

outcome’s analytic cohort) were retained (n=65 for mortality and length of stay, n=66 for hospital

re-admission). The results of all fit models are then lastly compared to models including indicator

variables of each diagnosis code, with no dimension reduction, transformation, or penalization

performed.

2.2.6 Software

All data management, visualization, and analysis were performed in R, version 4.0.0,

within RStudio, version 1.3.959. The treelet package from Drs. Di Liu and Trent Gaugler was used

for treelet dimension reduction (Gaugler, 2015) and the MASS package for negative binomial

regression modeling (Venables & Ripley, 2002). The tidyverse family of packages was used

extensively for data wrangling and exploratory data analysis in conjunction with the here and icd

packages (Muller, 2017; Wasey et al., 2020; Wickham et al., 2019). The MASS package was used

for its implementation of negative binomial regression (Venables & Ripley, 2002). In addition to

the tidyverse’s ggplot2, the corrplot and lares package were used specifically for exploratory data

visualization, and the gghighlight extension to ggplot2 to visualize treelet parameter identification

(Lares, 2020; Wei & Simko, 2017; Yutani, 2020). The glmnet (Friedman et al., 2010) package

within caret (Kuhn, 2020) and the mpath package (Wang, 2020) were used to extend lasso

regression in logistic and negative binomial regression respectively. Lastly, the pROC package

was used to generate ROC curves and AUC values (Robin et al., 2011).

 23

3.0 Results

Analysis results are presented in two sub-sections, the first (Section 3.1) displays a brief

characterization of this study cohort and the correlation structure of the 178 retained ICD-9-CM

diagnosis codes. Section 3.2 contains sub-sections corresponding to one of the respective clinical

outcomes and containing results related to the cross-validation parameter selection process and the

final treelet and regression modeling test fit. Supplemental tables and figures are included in

Appendix A.

3.1 Descriptive Statistics

3.1.1 Patients

Descriptive outcome and covariate statistics for the analytic cohort of 38,554 patients are

included in Table 2. This analytic cohort of ICU admissions presents an older sample, with a mean

age of nearly 64 years at time of admission, and a majority male but moderately balanced sample

of 56.60% patients and 43.40% female patients. Patients had a median hospital length of stay of 7

days, nearly 15% of patients died during their hospital stay.

 24

Table 2: Analytic Patient Cohort Characteristics

 Analytic Cohort

(n=38,554)

Hospital Readmission Subset

(n=28,894)

Age, Mean (SD) 63.51 (17.55) 60.92 (17.58)

Sex (Male), n (%) 21,820 (56.60%) 16,663 (57.67%)

Hospital Stay (days), Median

(IQR)

7 [4-12] 7 [4-11]

Re-Admission, n (%) N/A 2,153 (7.45%)

In-Hospital Mortality, n (%) 5,586 (14.49%) N/A

Number of ICD-9-CM Diagnosis

Codes per Patient, Median (IQR)

7 [5-9] 6 [4-9]

Primary Payment Method, n (%)

Medicare

Private Insurance

Self-Pay

Medicaid

Other Public Assistance

20,433 (53.00%)

13,243 (34.35%)
546 (1.42%)

3,169 (8.22%)
1,163 (3.02%)

13,633 (47.18%)

11,209 (38.79%)
440 (1.52%)

2,584 (8.94%)
1,027 (3.55%)

IQR = Interquartile Range [25th-75th Percentiles]; SD = Standard Deviation

3.1.2 Diagnosis Codes

Of 6,985 unique ICD-9-CM codes, the exclusion of “E” and “V” codes resulted in 5,992

diagnoses codes remaining. Of these 5,992 diagnosis codes, 178 were retained with >1%

prevalence. Figure 1A displays each diagnosis code frequency in descending order, where we see

a subset of codes in the left-most portion of the graph with a comparatively higher frequency.

Figure 1B specifically displays this information for the top 15 of these most frequent diagnosis

codes, with proportions ranging from 8.65% for “Pneumonia, NOS” (not otherwise specified

[NOS]) to 42.71% for “Hypertension”.

 25

Figure 1: Frequencies of (A) All and (B) 15 Most Common ICD-9-CM Diagnosis Codes

 26

The correlation structure of the diagnosis code data (Figure 2) displays pockets of

correlated diagnosis codes, most noticeably the groups of dark blue squares near the diagonal. The

treelet model uses the correlation structure of the data as the “similarity matrix”, with which we

will represent the 178 ICD-9-CM diagnosis codes with a comparatively more sparse set of features.

Figure 2: Correlation Matrix of Included ICD-9-CM Diagnosis Codes

The most correlated pairs of diagnosis codes are presented in Figure 3. This first pair of

the most highly correlated diagnoses are unsurprisingly related diagnoses (294.10, “Dementia in

conditions classified elsewhere” & 331.0, “Alzheimer’s Disease”) which will be the first joined

pair in the treelet process.

 27

Figure 3: Ten Most Correlated Pairs of Diagnosis Codes

3.2 Statistical Analysis

3.2.1 In-Hospital Mortality

Figure 4 displays the results of the 5-fold cross-validation of the treelet’s 𝐾 parameter,

showing the Brier Score (averaged across the 5 cross-validation folds) for each 𝐾 (and respective

𝐿|𝐾) parameter. The red highlighted point indicates the parameters that minimized the Brier

Score (𝐾 = 174, 𝐿|𝐾 = 4), favoring a model that includes nearly all diagnosis codes. The blue

observation indicates the “sparser parameter” (𝐾 = 123 ,𝐿|𝐾 = 57), that is the minimum 𝐾

value within one standard deviation of the minimized test-error. Using the smaller 𝐾 parameter

allows us to further reduce the feature set with an acceptable “loss” in cross-validation

 28

performance, opting for a sparser model. The final basis matrix for the more sparse (or “one

standard deviation” rule) parameters included 𝐾 = 123 dimensions of the cut level (or the Lth

basis matrix 𝐵𝐿) of 𝐿|𝐾 = 57. This reduced number of retained features includes loadings from

all 178 diagnosis. That is, while we were able to reduce the number of input variables from our

178 original diagnosis codes to 123 treelet features, these retained treelet features do not identify

a sparse feature space (i.e. still requiring information from all 178 diagnoses in our original input

data).

Figure 4: Average Test Briers Score Over 5-Fold Cross-Validation (Mortality Model)

Having identified these parameters, we fit a logistic regression model to the total cross-

validation cohort (n=30,844) predicting in-hospital mortality using age, sex, insurance

coverage/payment method, and the transformation of the diagnoses codes into the new feature

 29

space using the parameters identified above (patient-level information contained in Table 3, full

model results including K=123 treelet features included in Appendix Table 1). This fit logistic

regression model was then then used to predict probabilities of mortality in the 20% hold-out data

set (n=7710), for a final test-performance Brier Score of 0.0916 and AUC of 0.853. Table 3

additionally contains the results of a model fit including only the patient demographic information,

with a final test model Brier Score of 0.1183 and AUC of 0.666. In models of mortality that both

include and exclude the treelet features, older age (β=0.031, p<0.001) and a primary payment

method of Self-Pay (β=1.145 compared to the reference group of “Other Public Assistance”,

p<0.001) demonstrate statistically significant increases in mortality risk. Interestingly, the

inclusion of treelet features results in the statistical significance for our covariates of male sex (β=-

0.118, p=0.004) and Medicare payment method (β=0.328, p=0.032).

Table 3: Logistic Regression Model of Mortality

Model Excluding Treelet Features Model Including Treelet Features*

Predictor β 95% CI P-Value β 95% CI P-Value

Intercept -4.041 [-4.334, -3.747] <0.001 -5.021 [-5.371, -4.671] <0.001

Age 0.031 [0.028, 0.034] <0.001 0.038 [0.035, 0.042] <0.001

Sex (Male) -0.050 [-0.115, 0.015] 0.1343 -0.118 [-0.198, -0.037] 0.004

Insurance

Medicaid

Medicare

Private

Self-Pay

0.374
0.252

0.067
1.145

[0.092, 0.656]
[-0.014, 0.517]

[-0.194, 0.328]
[0.788, 1.503]

0.0093
0.0635

0.6142
<0.001

0.178
0.328

0.103
1.174

[-0.140, 0.497]
[0.029, 0.627]

[-0.191, 0.397]
[0.762, 1.586]

0.273
0.032

0.491
<0.001

Test Model Performance: Brier Score = 0.0917; AUC = 0.858
Test Model Performance (excluding treelet features): Brier Score = 0.1183; AUC = 0.666
*Abbreviated model results presented in Table 3, see Appendix Table 1 for K=123 included

treelet features

 30

Figure 5: Treelet Feature P-Values & β-Coefficients (Mortality)

For the retained treelet features, the p-value for hypothesis tests of β-coefficients are

presented in Figure 5, as well as the value of the β-coefficient values, with the five largest

coefficients labelled (with coefficients presented in descending order of relative normed energy

score). Each bar represents one of 𝐾=123 treelet features included in the final model, with the

height displaying the those with the highest −𝑙𝑛(p − value) (equivalent to the smallest p-value)

and the color displaying the relative value of the point estimate of each feature’s β-coefficient.

In the figure we see subset of treelet features with a much lower p-value and comparatively

higher β-coefficient than many of the retained treelet features. The five, labelled treelet features

(1, 2, 13, 15, and 38) denote features with the highest magnitude beta-coefficient, and the five

tallest bars (treelet features 1, 2, 7, 13, and 15) those with the highest −𝑙𝑛(p − value) (Appendix

Table 4). Among the treelet features retained in the final model of mortality, feature 1 included

 31

loading from all 178 ICD-9-CM diagnosis codes, where the codes with the highest loading

diagnoses corresponding to conditions related to sepsis (codes 995.92 Sepsis; 38.9 Septicemia) or

organ system failure (codes 584.9 kidney failure; 518.81 respiratory failure) as well as otherwise

unspecified pneumonia (code 486.00). Additional features included codes related to

cancers/malignancies (feature 2: codes 198.3, brain/spinal malignancy; 197.7, liver malignancy;

197.0, lung malignancy; 198.5, bone and bone marrow malignant neoplasm), neurological injury

and sequalae (feature 13: 431, intracranial hemorrhage; 430, subarachnoid hemorrhage; 348.5,

cerebral edema), and cardiovascular diagnoses (feature 15: 427.5, cardiac arrest; 427.47,

ventricular fibrillation).

The density curves for the predicted probabilities of the patients in the test (or hold-out)

data set (resulting from the final logistic regression model, including all patient demographic

covariates and 𝐾=123 treelet features) are included in Figure 6. The figure presents two density

curves, stratified by the patients’ observed (or true) mortality status, with the light blue curve

representing the distribution of predicted probabilities among patients who survived their hospital

stay and the red curve among patients who died. We see that patients observed to have survived

their hospital stay have predicted probabilities concentrated below 10% (0 ≤ 𝑝̂ ≤ 0.10). Patients

who died during their hospital stay have more uniformly distributed predicted probabilities, with

separation of predicted probabilities between the two groups beginning most notably in the region

above 37.5% (𝑝̂ ≥ 0.375).

 32

Figure 6: Density Curve of Predicted Probabilities of Mortality

Lastly, Figure 7 compares the ROC curves and AUC of three logistic regression models

of mortality, the first including only the patient demographic variables (represented by the blue

curve), the second including patient demographic covariates as well as the five most significant

treelet features as outlined above (represented by the orange curve), and the third model including

all patient demographic and all 𝐾 = 123 treelet features (represented by the green curve).

Inclusion of the treelet features largely improves upon a model built using only the demographic

covariates. The predicted probabilities of a model including only demographic covariates also

demonstrates poor separation between patients’ observed mortality status (Appendix Figure 1)

compared to the predicted probabilities generated from our model retaining both patient

 33

demographic data and all treelet features (Figure 6). Interestingly, in the ROC curve comparison,

the model including only the five most significant treelet features appears to be largely responsible

for this increase in performance (AUC=0.833 compared to AUC=0.666 for patient demographic

covariates alone, AUC=0.858 for demographic covariates and all treelet features).

Figure 7: Comparative ROC Curves of Mortality Predictions

3.2.2 Hospital-Readmission

Figure 8 includes the results of 5-fold cross-validation of the treelet’s 𝐾 parameter in

prediction of unplanned hospital re-admission, displaying the averaged test performance,

measured via Brier Score, for each 𝐾 (and respective 𝐿|𝐾) parameter. The plot also highlights

 34

the 𝐾 and 𝐿|𝐾 parameter that minimized the Brier Score (𝐾 = 30, 𝐿|𝐾 = 177) and the more

sparse parameter (𝐾 = 5, 𝐿|𝐾 = 177) within one standard deviation of the minimized test-error.

Figure 8: Average Test Briers Score Over 5-Fold Cross-Validation (Readmission Model)

Unlike the results in the mortality treelet, this analysis identifies a reduced feature space,

with markedly fewer features than the initial 178 diagnosis codes. However, both the minimizing

and more sparse values of 𝐾 use a large cut-level of 𝐿|𝐾 = 177, or a basis matrix that has

undergone all transformations of the treelet model. As a result, although the cross-validation

process identifies a much lower number of dimensions to include, the optimal basis matrix (or

the identified 𝐿|𝐾 value) results in basis matrices that similarly include loadings from all 178

diagnosis. As both of the final basis matrices (𝐾 = 30, 𝐾|𝐿 = 177;𝐾 = 5, 𝐾|𝐿 = 177) result in

 35

loadings from all diagnosis codes and the 𝐾 value that minimizes the cross-validation error does

reduce the number of input features for diagnosis code data substantially (from 178 to 30), we

used the minimizing parameters (𝐾 = 30,𝐾|𝐿 = 177) for the final treelet transformation rather

than the more-sparse parameter.

Using the readmission parameters that yielded the lowest Brier Score in cross validation,

we fit a logistic regression model to the total training cohort (n=23,115) predicting hospital

readmission using age, sex, insurance coverage/payment method, and the transformation of the

diagnoses codes into the new feature space (patient covariate results contained in Table 4, full

model results including K=30 treelet features presented in Appendix Table 2). This logistic

regression model was then then used to predict probabilities of unplanned hospital re-admission in

the 20% test (or hold-out) data set (n=5,778), for a final test-performance Brier Score of 0.0681 and

AUC of 0.661, indicating overall poor predictive performance of this model. We see that only the

primary payment methods of Medicaid, Medicare, and Self-Pay were statistically significant

predictors of unplanned hospital re-admission, and among these categories only the Medicaid

category remaining significant with the inclusion of the treelet feature.

 36

Table 4: Logistic Regression Model of Readmission

Model Excluding Treelet Features Model Including Treelet Features*

Predictor β 95% CI P-Value β 95% CI P-Value

Intercept -2.608 [-2.942, -2.274] <0.001 -3.137 [-3.490, 2.783] <0.001

Age -0.002 [-0.006, 0.002] 0.3387 0.002 [-0.002, 0.007] 0.455

Sex (Male) -0.052 [-0.152, 0.048] 0.3078 0.039 [-0.142, 0.064] 0.281

Insurance

Medicaid

Medicare

Private

Self-Pay

0.619

0.394
-0.086

-0.723

[0.303, 0.935]

[0.084, 0.705]
[-0.384, 0.213]

[-1.387, -0.06]

<0.001

0.0129
0.5735

0.0326

0.484

0.310
-0.033

-0.608

[0.162, 0.806]

[0.005, 0.625]
[-0.336, 0.271]

[-1.278, 0.061]

0.003

0.053
0.833

0.075

Test Model Performance: Brier Score = 0.0681; AUC = 0.661
Test Model Performance (excluding treelet features): Brier Score = 0.0692; AUC = 0.574

*Abbreviated model results presented in Table 4, see Appendix Table 2 for K=30 included
treelet features

Figure 9: Treelet Feature P-Values & β-Coefficients (Readmission)

 37

Figure 9 displays both the p-values and relative magnitude of β-coefficients for the 30

treelet features included in the final regression model, with the five most significant coefficients

again labeled. Each bar represents one of 𝐾=30 treelet features included in the final model, with

the height displaying and the color displaying the value of the point estimate of each feature’s β-

coefficient. Among the 30 retained treelet features, the graph prominently displays the importance

of features 1, 2, and 4 (Appendix Table 5). Feature 1 included diagnoses related to organ failure

(codes 584.9, kidney failure; 518.81, respiratory failure; 574.5, cirrhosis) and infection (34,

urinary tract infection). Feature 2 contained similar diagnoses to feature 1 in the treelet features

used in mortality, including diagnoses related to sepsis and organ failure. Lastly, feature 4 included

diagnoses of diabetes and related complications (codes 250.60, diabetes mellitus (type II) with

neurological manifestations; 357.2, diabetes with neuropathy).

Figure 10 presents the density curves for the predicted probabilities of the patients in the

test (or hold-out) data set, resulting from the final logistic regression model, including all patient

demographic covariates and 𝐾=30 treelet features. The distributions are stratified by the patients’

observed readmission status, with the blue curve representing the predicted probabilities of patients

with an observed readmission and red curve for those not readmitted. The density curves

corroborate the low AUC of the final model in our hold-out test data set, demonstrating a poor

separation of predicted probabilities between the patients with observed readmission and those

without.

 38

Figure 10: Density Curve of Predicted Probabilities of Readmission

Lastly, Figure 11 compares the ROC curves and AUC of three models of hospital

readmission, the first including only the patient demographic variables (represented by the blue

curve), the second including patient demographic covariates as well as the five most-significant

treelet features as outlined above (represented by the orange curve), and the third model including

all patient demographic and all 𝐾 = 30 treelet features (represented by the green curve). Inclusion

of the treelet features slightly improves the upon the model built using only the demographic

covariates, indicated by the increased AUC (AUC=0.574 demographic covariates only,

AUC=0.661 including demographic covariates and all treelet features). The predicted probabilities

of a model including only demographic covariates demonstrate comparatively less separation

between patients’ observed readmission status (Appendix Figure 2) compared to those generated

form the model including all treelet features (Figure 10). The model including only the five most

significant treelet features accounts for nearly all model fit observed by including diagnosis data

 39

(AUC=0.661 including all treelet features, AUC=0.658 including five most significant treelet

features).

Figure 11: Comparative ROC Curves of Hospital Re-admission Models

3.2.3 Hospital Length of Stay

A negative binomial regression model was fit to predict hospital length of stay, which

was considered overdispersed with a mean of 9.78 and variance of 112.63 in the full analytic

cohort (see Appendix Figure 3, Appendix B.3 for density curve of length of stay variable). The

 40

Poisson model, fit using the same covariates and observations from our cross-validation data set,

also provided evidence of overdispersion (p<0.001, data not shown).

Figure 12 includes the results of 5-fold cross-validation for prediction of hospital length

of stay, measured via MSE for each 𝐾 (and respective 𝐿|𝐾) parameter. The plot includes both the

𝐾 and 𝐿|𝐾 parameters that minimized MSE (𝐾 = 115,𝐿|𝐾 =63) and those that were within one

standard deviation of the minimum MSE (𝐾 = 46,𝐿|𝐾 = 63). Contrary to the cross-validation

results for predicting in-hospital mortality and hospital readmission, the length-of-stay model

identifies a sparse feature space that minimizes MSE. This yielded the parameters identified

using one-standard deviation rule to further reduce the feature space rather than merely

“correcting” the lack of sparsity. Interestingly, this cross-validation graph also appears to identify

values of K that yield overfitting, as MSE increases as 𝐾 increases past values near the

minimizing value of 115. The final basis matrix for the more sparse (or “one standard deviation”

rule) parameters included 𝐾 = 46 dimensions of the cut level (or the Lth basis matrix 𝑩𝑳) of

𝐿|𝐾 = 63 basis matrix, which included loadings from 107 of 178 diagnosis codes.

 41

Figure 12: Average Test Briers Score Over 5-Fold Cross-Validation (Length of Stay Model)

We then fit a negative binomial model to the total cross-validation cohort (n=30,884)

predicting hospital length of stay using patient-level covariates and diagnoses codes transformed

into the new feature space (results for patient demographic covariates information contained in

Table 5, full model results including K=46 treelet features presented in Appendix Table 3), which

was then then used to predict length of stay values of in the hold-out data set (n=7,710), with an

MSE of 105.82.

 42

Table 5: Negative Binomial Model of Length of Stay

Model Excluding Treelet Features Model Including Treelet Features*

Predictor β 95% CI P-Value β 95% CI P-Value

Intercept 2.310 [2.246, 2.375] <0.001 2.001 [1.942, 2.061] <0.001

Age -0.001 [-0.002, -0.001] <0.001 -0.002 [-0.003, 0.002] <0.001

Sex (Male) 0.025 [0.006, 0.044] 0.010 0.053 [0.035, 0.071] <0.001

Insurance

Medicaid

Medicare

Private

Self-Pay

0.172
0.062

0.008
-0.373

[0.109, 0.235]
[0.003, 0.122]

[-0.049, 0.064]
[-0.471, -0.274]

<0.001
0.0388

0.7862
<0.001

0.114
0.048

0.039
-0.318

[0.058, 0.171]

[-0.006, 0.101]

[-0.12, 0.090]
[-0.407, -0.229]

<0.001

0.079

0.133
<0.001

Test Model Performance: Root-Mean-Square Error = 10.29

Test Model Performance (excluding treelet features): Root-Mean-Square Error = 11.09
*Abbreviated model results presented in Table 5, see Appendix Table 3 for K=46 included
treelet features

Figure 13: Treelet Feature P-Values & β-Coefficients (Length of Stay)

 43

Figure 13 again displays the p-values and relative magnitude of β-coefficients of treelet

features included in the final negative binomial model of hospital length of stay. Each bar

represents one of K=46 retained treelet features. Among notable features with high β-coefficients

and among the lowest p-values, feature 1 includes diagnoses related to sepsis (995.92, severe

sepsis; 389 septicemia; 785.52, septic shock) and organ failure (584.9, acute kidney failure;

518.81, acute respiratory failure) similar to important features identified in both our models of

mortality and readmission. Notably, both feature 12 and feature 14 include only two ICD-9-CM

codes, with feature 12 including 997.4 (digestive complications, not otherwise specified) and

561.0 (paralytic ileus) while feature 14 includes only 518.0 (pulmonary collapse and 511.9

(pleural effusion).

 Figure 14 lastly contains the predicted length of stay values from this negative binomial

model against the true, observed length of stay values, with blue dots representing patients with a

larger predicted than observed length of stay and red dots patients whose length of stay was

underpredicted. The model heavily over-predicted length of stay (with predicted values >80 days)

in a subset of patients with observed length of stays under 50 days while simultaneously

underpredicted length of stay (with predictions under 40 days) in a group of patients with observed

length of stays over 100 days. However, the bulk of observations are contained in the bottom-left

quadrant of the Figure 14, with both predicted and observed length of stays concentrated in a range

of 0 to 50 days.

 44

Figure 14: Scatter Plot of Observed and Predicted Length of Stay Values

Figure 15 further demonstrates this concentration of lower length of stay values, separately

displaying the density curve of the predicted and observed values of patient length of stay (Figure

15). Both the predicted and observed length of stay distributions appear heavily right skewed, with

most values contained in under 30 days. The red curve of predicted values tends to underestimate

length of stay, evidenced by the higher density of lower length of stay values under 20 days,

compared to the blue curve of observed length of stay values which continues with a slightly

increased density through 40 days. The underprediction of length of stay values is corroborated by

the distribution of the errors of the negative binomial model contained in Appendix Figure 4.

 45

Figure 15: Density Curves of Predicted & Observed Length of Stay Values

Lastly, Figure 16 displays the root-mean-square error of models including the subsequent

addition of the most significant treelet features (from the model fit including all K=46 treelet

features and patient demographic covariates). That is, the first point represents a model including

patient demographic covariates and treelet feature 1 (the treelet feature with the lowest p-value,

seen in Figure 13), the second point including the same predictors and adding treelet feature 15

(treelet feature with subsequent lowest p-value, Figure 13), and the further points representing the

addition of the remaining treelet features, such that the final point in the furthest right portion of

the graph represents the final model including patient demographic variables and all K=46 treelet

features. The figure displays that the first five treelet features reduces the root-mean-square error

from 10.85 to 10.35, while the remaining 41 treelet features only further reduce the root-mean-

square error to the final value of 10.29. Thus, similar to the improvement in the AUC in the models

of binary outcomes of mortality and unplanned hospital-readmission, the introduction of the five

 46

most significant treelet features appears responsible for the bulk of the model improvement that

results from the inclusion if ICD-9-CM diagnosis codes.

Figure 16: Root-Mean-Square Error by Number of Retained Treelet Features

3.2.4 Comparative Model Fit

In addition to the results of models including the previously described treelet features,

Table 6 contains the test model fit of lasso generalized linear models, models using PCA

transformed features, models using the Charlson and Elixhauser comorbidity indices, and models

including the original, 178 ICD-9-CM diagnosis codes. The models fit using treelet features are

outperformed by the lasso and PCA models across all three clinical outcomes, as well as the models

retaining the original 178 diagnosis codes in models of in-hospital mortality and hospital re-

 47

admission. That is, treelet dimension reduction does not improve the prediction of our clinical

outcomes of in-hospital mortality or hospital re-admission over the original diagnosis data.

Similarly, treelet transformed features of ICD-9-CM diagnosis codes do not outperform more

common dimension reduction methods of lasso or PCA in all three of our clinical outcomes. Of

our dimension reduction models, only the lasso models outperform retaining the original 178 ICD-

9-CM diagnosis codes in models of mortality and re-admission. The Charlson and Elixhauser

comorbidity indices demonstrate little-to-no classification ability for in-hospital mortality or

hospital-readmission and the highest prediction error (compared to the remaining models in Table

6) for each clinical outcome.

Table 6: Comparative Results of Model Performance

 Treelet

(All

Features)

Treelet

(Top 5

Features)

Lasso PCA Charlson Elixhauser All

ICD

Codes

Mortality* 0.858 0.830 0.868 0.860 0.632 0.615 0.867

Readmission* 0.661 0.658 0.669 0.667 0.502 0.513 0.667

Length of

Stay**

10.29 10.35 9.61 10.24 13.48 13.49 11.75

*AUC values reported; **Root-mean-square error presented

Table 7: Summary of Retained Features and ICD-9-CM Diagnosis Codes

 Treelet

(Optimal)

Treelet
(Top 5 Features)

Lasso PCA

In-Hospital Mortality* 123 (178) 5 (38) 170 (170) 66 (178)

Hospital Re-admission** 30 (178) 5 (178) 48 (48) 65 (178)

Hospital Length of Stay* 46 (107) 5 (29) 178 (178) 66 (178)

Number of features retained (Number of ICD-9-CM codes loading onto retained features)

*Models using more-sparse parameters; **Model using test error minimizing parameters

 48

Table 7 reports the number of retained features and the number of ICD-9-CM diagnosis

codes that inform the features for the treelet model, including the optimal K features and the models

including only the five most significant features (labelled “Top 5 features”), as well as the lasso

and PCA models. Each PCA model includes loadings from all 178 ICD-9-CM diagnosis codes (as

PCA retains information from all of the original input variables), accounting for 60% of the

variance in the original ICD-9-CM diagnosis codes in 66 principal components in the analytic

cohort of in-hospital mortality and hospital length of stay and in 65 components in the analytic

cohort of hospital re-admission. The treelet model identifies the smallest number of features

retained in the final model of all three clinical outcomes. The optimal treelet parameter for hospital

length of stay identifies the smallest number of required ICD-9-CM diagnosis codes loading onto

the final, included features. The lasso model of hospital re-admission identifies a much smaller

number of required ICD-9-CM diagnosis codes compared to both the optimal treelet model and

the five most significant treelet features.

 49

4.0 Discussion

This work applied treelet dimension reduction to ICD-9-CM diagnosis codes and used the

resulting, transformed features to fit models of in-hospital mortality, unplanned hospital

readmission, and hospital length of stay in a cohort of critical care admissions. The resulting

predictive models require only ICD-9-CM diagnosis code, patient age, sex, and insurance

coverage/payment method. Treelet dimension reduction represents the original set of ICD-9-CM

code covariates with a smaller number of features and ideally using only a subset of the original

input covariates. This analysis built upon previous work through use of treelet dimension reduction

and through use of the large, publicly available MIMIC-III database, a publicly available data

source of single-center, critical care admissions.

In the analyses of mortality and hospital length of stay, the analytic cohort included 38,554

adult patients (18+ at time of admission). In this cohort, hospital mortality occurred in 14.19% of

patients, and the median length of stay was 7 days, while length of stay values ranged from less

than a day to 294 days (Table 2). Analysis of unplanned hospital re-admission included 28,894

patients, as a subset of patients died within a year of their earliest discharge with no hospital re-

admission.

Among the 178 retained ICD-9-CM diagnosis codes, the most prevalent codes included

expected conditions such as hypertension (42.7%), atrial fibrillation (24.4%), and congestive heart

failure (22.1%) as well as diagnosis of acute kidney (15.8%) and respiratory (14.0%) failure,

anemia (10.2%), and pneumonia (8.7%) (Figure 1). The high prevalence of the acute organ failure

and anemia diagnoses may represent complications among severe trauma admissions (Alder &

Tambe, 2020). The prevalence of pneumonia in this cohort align with previous estimates of

 50

nosocomial pneumonia prevalence in American hospital admissions (Shebl & Gulick, 2020). The

exploration of the correlation structure of the diagnosis codes, and specifically the examination of

the most correlated pairs in Figure 3, showed expectedly related pairs of correlated conditions,

such as dementia without behavioral disturbance and Alzheimer’s disease as the most correlated

pair, and subsequent pairs of correlated codes including severe sepsis and septic shock as well as

diabetes with neurological manifestations and neuropathy in diabetes. These and other, similar

pairs of ICD-9-CM diagnosis codes may be data elements that are seemingly redundant, which

may be best represented by a single combined covariate as they are joined through the treelet

model.

In the fitting of logistic regression models to predict mortality, the cross-validation of the

treelet model identified only minor dimension reduction, as we identified a 𝐾 parameter (which

identified the number of dimensions to retain in the 𝐿|𝐾 basis) of 123. The 123 features in the

transformed treelet basis additionally represented information from all 178 diagnosis codes, such

that the treelet model, while moderately reducing the number of covariates in our final model, did

not yield a sparse feature space. Among the covariate included from the treelet transformation,

feature 1 included loading from all 178 ICD-9-CM diagnosis codes, where the codes with the

highest loading diagnosis commonly corresponding to diagnosis related to sepsis, organ failure,

and pneumonia. Additional features included codes related to cancers/malignancies, neurological

injury, and cardiovascular disease. Severe diagnoses such as malignant neoplasms (Nasir et al.,

2017) and traumatic brain injuries (McCredie et al., 2018) are unsurprising risk factors of in-

hospital mortality, as well as severe complications such as sepsis or organ failure (Paoli et al.,

2018; Rubenfeld et al., 2005).

 51

The resulting model demonstrated good discrimination of in-hospital mortality, evidenced

both by the AUC value of 0.858 (Table 3) and the separation of predicted probabilities of in-

hospital mortality between patients’ true, observed in-hospital mortality status (Figure 6). The

presented prediction model demonstrates improved performance over existing models including

those that use similar ICD-9-CM diagnosis code data but models that include additional laboratory

and physiological data elements (Awad, Bader-El-Den, et al., 2017; Falcão et al., 2019).

In logistic regression modeling of unplanned hospital re-admission, treelet dimension

reduction identified a reduced dimension space, with a selected value of 30 for the 𝐾 parameter

(describing the number of retained dimensions). The included basis (or 𝐿|𝐾 parameter) was the

177th basis matrix, or the final basis matrix, which included loadings from all 178 diagnosis codes.

Thus, although the selected parameters of our treelet model yielded a largely reduced number of

included covariates (contrary to the selected 𝐾 value of 123 in our model of mortality), the

identified basis matrix similarly failed to yield a sparse feature space of our 178 ICD-9-CM

diagnosis codes. The most significant treelet features observed in Figure 9 notably included

feature 1 (involving diagnoses related to organ failure infection), feature 2 (including diagnoses of

sepsis and organ failure similar to those included in feature 1 in the model of mortality), and feature

4 (including diagnoses of diabetes and related complications).

In addition to elevating risk of mortality, the diagnoses related to sepsis and organ systems

failure in feature 2 are also associated with highly increased risk of hospital re-admission

(Goodwin & Ford, 2018). Feature 1 includes diagnoses commonly observed as risk factors for

hospital re-admission in previous research, most notably renal failure and related cirrhosis (Tapper

et al., 2016) and diabetes mellitus (and related conditions) (Ostling et al., 2017). Feature 1

interestingly also includes a diagnosis of urinary tract infection, a risk factor of all-cause hospital

 52

re-admission (MacVane et al., 2015) and specifically re-admission following admission for brain

and/or spinal cord injuries, which often also include respiratory and/or renal failure complications

(Brito et al., 2019; K. Lee & Rincon, 2012; Middleton et al., 2004).

The resulting features did not yield a high-performing prediction model of unplanned

hospital re-admission, with a low AUC value (AUC=0.661, Table 4) and a poor separation of

predicted probabilities (Figure 10). The poor performance of our model corroborates previous

research, which has identified that comorbidity diagnoses and ICD-9-CM diagnosis codes remain

limited in their ability to predict hospital re-admission while demonstrating high performance in

prediction of mortality (Awad, Bader–El–Den, et al., 2017). This shortcoming identifies the need

in prediction of hospital re-admission to not only use information beyond acute care diagnoses but

likely the need to use additional information related to a patient’s environment post-discharge.

These data elements may include information related to discharge location, social determinants of

health (such as social support, nutrition, access to transportation, etc.), assessments of function at

time of discharge, or levels of independence (such as ability to complete activities of daily living)

(Depalma et al., 2013; Greysen et al., 2015).

Treelet dimensions for negative binomial regression modeling of the last clinical outcome,

hospital length of stay, identified a reduced number of covariates to include (𝐾=46) and included

loadings from only 107 of the 178 total ICD-9-CM diagnosis codes. Thus, the treelet dimension

reduction identified a reduced number of covariates within a sparse feature space, requiring only

a subset of the originally included diagnosis codes. Notable treelet features include a group of

diagnoses related to sepsis and renal or respiratory failure. This first (and most significant) treelet

predictor contains similar diagnoses as important features identified in both the mortality and

hospital re-admission models. Sepsis and systemic organ failure are unsurprisingly related to

 53

prolonged hospital stays (Paoli et al., 2018). Interestingly, two treelet features included only two

ICD-9-CM codes, with the first including only 997.4 (digestive complications, not otherwise

specified) and 561.0 (paralytic ileus) and the second only 518.0 (pulmonary collapse and 511.9

(pleural effusion). Bowel obstructions and paralytic ileus are common post-surgery complications

that result in prolonged length of hospital stay (Luckey et al., 2003). While few models exist to

compare the performance of the model presented in this work, the prediction of hospital length of

stay appears to demonstrate only limited utility, with a large root-mean-square error of over 10

days (Table 5). The visualization of predicted and observed length of stay durations in Figure 14

demonstrate that our model is affected by outliers of both large over- and under-prediction of

length of stay. Future models assessing patient length of stay may expand upon existing regression

modeling by assessing patient length of stay and discharge as dynamic processes (Awad, Bader–

El–Den, et al., 2017). While dynamic modeling would require sequentially updated information

from a patient’s acute stay, models including this additional information may improve prediction

by utilizing information related to adverse events and/or complications during acute hospitalization

course that causally affect length of stay duration.

The final section of this work compares the results of models fit using ICD-9-CM diagnosis

code data transformed using treelet dimension reduction, PCA, lasso, and the use of ICD-9-CM

diagnosis codes in the Charlson and Elixhauser indices and simply using indicator variables for

the retained 178 diagnosis codes. Interestingly, the Charlson and Elixhauser indices result in the

worst model performance among the presented models. These results highlight the improved

performance of transformed diagnosis code data in the prediction of clinical outcomes over a priori

indices such as the Charlson and Elixhauser.

 54

Interestingly, neither treelet transformation nor PCA dimension reduction of the original,

178 ICD-9-CM diagnosis codes improved classification performance of hospital mortality or

hospital re-admission compared to models including all 178 diagnosis code variables. Lasso

regression models improved only modestly upon the results of models of mortality or re-admission

including the original ICD-9-CM diagnosis code variables. In modelling hospital length of stay,

models including treelet features, PCA components, and lasso regression models all demonstrate

improved prediction over models including the original ICD-9-CM code data, with only the model

including treelet features identifying a sparse number of ICD-9-CM diagnosis codes in both the

full model (46 treelet features including 107 ICD-9-CM codes) and using only the subset of treelet

features (5 treelet features including 29 ICD-9-CM codes). Thus, while outperformed by the lasso

negative binomial model and modestly by the model including PCA transformed features, the

treelet dimension reduction identified a much smaller number of retained features and required

ICD-9-CM diagnosis codes with only a modest reduction in model fit.

Future studies may also explore the comparative performance of indices that use acute

physiological or lab measurements, such as the APACHE-II model, to compare performance of

transformed physiological data over the original data elements and to compare the added predictive

utility of these data elements over models including only diagnosis codes. The models of mortality

in this work out-perform previous models presented using physiological data, but we may expect

the use of these more granular data elements in the MIMIC-III data set (or similar large EHR

databases) to further improve the performance of prediction models over those including only

demographic and diagnosis data.

 55

4.1.1 Limitations

Date or time of diagnosis is unavailable in the MIMIC-III data. As a result, such that

patients may receive their diagnoses at time of admission or at any point during their acute stay.

Thus, we cannot determine whether the presented models rely solely upon baseline ICD-9-CM

diagnosis codes (i.e. diagnoses present at time of admission). The use of baseline diagnosis code

data may improve the generalizability and ease-of-implementation of diagnosis code prediction

models at the possible cost of prediction performance. The presented model is generated using an

adult population for an all-cause admission ICU. Specialized or sub-population units (e.g. pediatric

ICU, neuro ICU, cardiac ICU, etc.) likely require their own predictive models. The inclusion of a

diverse patient population may lead to reduced prediction performance in the presented analysis,

that may be improved by examining specific sub-populations and relevant data elements or

diagnoses. Lastly, although the cross-validation method sought to combat overfitting of the

presented models, these results have not been assessed for external predictive performance among

new patient populations or data from separate hospitals or healthcare systems.

 56

5.0 Conclusion

The presented work applies treelet, a novel dimension-reduction model, to ICD-9-CM

diagnosis codes. The resulting transformation of diagnosis code with patient demographic

variables were used to fit logistic regression models of in-hospital mortality, unplanned hospital

re-admission, and hospital length of stay. The proposed objectives aimed to build prediction

models requiring minimal information (patient demographic and diagnosis information) and to

identify a reduced dimensionality and possibly a sparse set of ICD-9-CM diagnosis codes to

consider in predicting patient outcomes. The presented work used data from the Medical

Information Mart for Intensive Care (MIMIC-III), a publicly available database of critical care

admissions which has been previously outlined as an important yet underutilized critical care

admissions data source.

While treelet dimension reduction did not identify a sparse number of codes for in-hospital

mortality prediction, the model demonstrated improved model fit performance when compared to

previous models using similar data elements (i.e. patient demographic information and ICD-9-CM

diagnosis codes) as well as improvement over models including patient physiological and lab

measurements over acute hospital stays. Treelet dimension reduction failed to yield a sparse set of

ICD-9-CM codes to consider in prediction of hospital re-admission, where logistic regression

models failed to adequately predict patients’ readmission statuses, aligning with previous research

identifying the limitations of diagnosis code prediction of hospital re-admission. Lastly, treelet

dimension reduction identified a sparse number of ICD-9-CM diagnosis codes, retaining only 102

of 178 included codes, using a reduced number of covariates in negative binomial regression

modeling of hospital length of stay. Evaluation of the negative binomial model of hospital length

 57

of stay in a final, test data set again demonstrated only limited prediction utility. The retained

treelet features in the three included regression models align with previously identified risk factors

of mortality, re-admission, and hospital length of stay respectively.

The results of these analyses demonstrate the useful but limited performance of ICD-9-CM

diagnosis codes as the primary data element considered in prediction of clinical outcomes. While

patient demographic data and diagnosis codes may result in accurate prediction of mortality,

additional information is likely required for improved modeling of hospital length of stay and

unplanned re-admission. Hospital length of stay modeling may benefit from the use of patient

acute care information as well as disease-specific modeling within subset of patients. Hospital re-

admission may benefit from using not only acute care but post-discharge data, including elements

such as those related to patients’ discharge environment and functionality at discharge.

 58

Appendix A Supplemental Tables & Figures

Appendix Figure 1: Density Curve of Mortality Model Predicted Probabilities (Treelet Features Omitted)

Appendix Figure 2: Density Curve of Readmission Model Predicted Probabilities (Treelet Features Omitted)

 59

Appendix Figure 3: Density Curve of Hospital Length of Stay Predictions

 60

Appendix Figure 4: Density Curve of Residuals in Prediction of Length of Stay

 61

Appendix Figure 5: Scatter Plot of Length of Stay Model Predicted Values (Treelet Features Omitted)

 62

Appendix Table 1: Full Regression Estimates (Mortality)

β 95% Conf. Interval P-Value

Intercept -5.02 [-5.37, -4.67] <0.001

Sex (Male) -0.12 [-0.20, -0.04] 0.0043

Age 0.04 [0.03, 0.04] <0.001

Insurance

Medicaid 0.18 [-0.14, 0.50] 0.2728

Medicare 0.33 [0.03, 0.63] 0.0317

Private 0.10 [-0.19, 0.40] 0.4911

Self-Pay 1.17 [0.76, 1.59] <0.001

Treelet Cluster

1 1.56 [1.49, 1.64] <0.001

2 1.64 [1.47, 1.81] <0.001

3 0.19 [0.00, 0.39] 0.0518

4 -0.38 [-0.50, -0.26] <0.001

5 1.16 [0.99, 1.33] <0.001

6 -0.15 [-0.36, 0.06] 0.1697

7 -0.60 [-0.68, -0.52] <0.001

8 0.10 [0.02, 0.19] 0.0191

9 0.09 [-0.07, 0.24] 0.2884

10 -0.50 [-0.84, -0.17] 0.0031

11 0.55 [0.31, 0.79] <0.001

12 0.05 [-0.18, 0.28] 0.67

13 1.76 [1.61, 1.91] <0.001

14 -0.03 [-0.19, 0.12] 0.6873

15 1.99 [1.82, 2.15] <0.001

16 0.41 [0.17, 0.64] <0.001

17 -0.57 [-0.82, -0.33] <0.001

18 0.19 [-0.03, 0.41] 0.0936

19 -0.46 [-0.61, -0.32] <0.001

20 -0.31 [-0.42, -0.20] <0.001

21 -0.09 [-0.30, 0.12] 0.3833

22 0.83 [0.55, 1.10] <0.001

23 -0.31 [-0.64, 0.01] 0.0608

24 -0.17 [-0.4, 0.06] 0.146

25 0.02 [-0.22, 0.27] 0.847

26 -0.21 [-0.56, 0.14] 0.2465

27 -0.42 [-0.55, -0.29] <0.001

28 0.43 [0.26, 0.60] <0.001

29 0.03 [-0.18, 0.23] 0.8038

30 -0.21 [-0.43, 0.01] 0.0561

 63

31 -0.20 [-0.66, 0.26] 0.3858

32 0.00 [-0.19, 0.18] 0.96

33 0.22 [0.02, 0.42] 0.0353

34 -0.23 [-0.43, -0.03] 0.0231

35 -0.06 [-0.26, 0.14] 0.568

36 0.58 [0.29, 0.87] <0.001

37 0.30 [0.11, 0.48] 0.0017

38 1.22 [1.03, 1.42] <0.001

39 -0.21 [-0.46, 0.03] 0.0878

40 -0.48 [-0.68, -0.28] <0.001

41 -0.22 [-0.58, 0.15] 0.2457

42 -0.15 [-0.28, -0.02] 0.0255

43 0.05 [-0.28, 0.39] 0.7559

44 0.21 [0.08, 0.33] 0.0017

45 -0.02 [-0.34, 0.30] 0.8925

46 0.28 [-0.03, 0.58] 0.0752

47 -0.37 [-0.61, -0.13] 0.0027

48 -0.72 [-1.13, -0.31] <0.001

49 -0.29 [-0.56, -0.03] 0.0264

50 -0.31 [-0.63, 0.02] 0.0682

51 -0.06 [-0.19, 0.07] 0.4001

52 -0.33 [-0.51, -0.14] <0.001

53 -0.31 [-0.50, -0.12] 0.0012

54 0.13 [-0.10, 0.35] 0.2803

55 0.18 [-0.08, 0.43] 0.1808

56 0.20 [-0.03, 0.44] 0.083

57 0.81 [0.65, 0.97] <0.001

58 0.08 [-0.20, 0.36] 0.5807

59 -0.32 [-0.58, -0.05] 0.0189

60 -0.65 [-0.95, -0.35] <0.001

61 -0.68 [-1.1, -0.27] 0.0013

62 0.11 [-0.14, 0.36] 0.3946

63 -0.81 [-1.13, -0.49] <0.001

64 -0.19 [-0.36, -0.01] 0.0352

65 -0.45 [-0.82, -0.09] 0.0154

66 0.22 [0.08, 0.37] 0.0022

67 0.36 [0.18, 0.55] <0.001

68 -0.36 [-0.64, -0.09] 0.0088

69 -0.79 [-1.19, -0.39] <0.001

70 0.19 [-0.04, 0.42] 0.1056

71 0.04 [-0.28, 0.35] 0.8149

72 0.03 [-0.28, 0.34] 0.8442

73 0.25 [-0.05, 0.55] 0.0967

 64

74 -0.04 [-0.36, 0.29] 0.8319

75 -0.23 [-0.48, 0.01] 0.0574

76 -0.62 [-1.02, -0.22] 0.0022

77 -0.25 [-0.59, 0.10] 0.1611

78 0.03 [-0.43, 0.48] 0.9141

79 -0.11 [-0.36, 0.14] 0.3836

80 -0.42 [-0.70, -0.14] 0.0029

81 -0.06 [-0.30, 0.17] 0.6022

82 0.10 [-0.13, 0.34] 0.4007

83 -0.26 [-0.59, 0.07] 0.1269

84 -0.58 [-0.87, -0.29] <0.001

85 -0.13 [-0.45, 0.19] 0.4162

86 0.92 [0.69, 1.14] <0.001

87 0.08 [-0.26, 0.42] 0.6456

88 -0.41 [-0.7, -0.12] 0.0055

89 0.19 [-0.12, 0.49] 0.2321

90 -0.13 [-0.43, 0.17] 0.391

91 -0.17 [-0.47, 0.13] 0.2569

92 0.40 [0.16, 0.65] 0.0014

93 -0.18 [-0.52, 0.16] 0.3024

94 -0.26 [-0.58, 0.06] 0.1117

95 0.02 [-0.25, 0.30] 0.8578

96 0.04 [-0.35, 0.43] 0.832

97 -0.21 [-0.56, 0.14] 0.2325

98 -0.66 [-0.95, -0.38] <0.001

99 0.70 [0.49, 0.91] <0.001

100 -0.44 [-0.77, -0.12] 0.0077

101 0.01 [-0.41, 0.42] 0.9725

102 -0.21 [-0.56, 0.14] 0.2424

103 0.47 [0.27, 0.67] <0.001

104 -0.52 [-0.80, -0.25] <0.001

105 -0.11 [-0.35, 0.13] 0.3828

106 -0.46 [-0.77, -0.16] 0.0031

107 0.22 [0.02, 0.42] 0.0325

108 -0.63 [-0.87, -0.39] <0.001

109 -0.14 [-0.41, 0.12] 0.2841

110 0.03 [-0.35, 0.41] 0.8727

111 -0.28 [-0.64, 0.08] 0.1245

112 0.89 [0.64, 1.15] <0.001

113 0.25 [-0.04, 0.54] 0.0916

114 -0.33 [-0.67, 0.01] 0.0567

115 -0.09 [-0.37, 0.19] 0.5218

116 -0.52 [-0.88, -0.15] 0.0055

 65

117 -0.59 [-0.99, -0.19] 0.0042

118 -0.02 [-0.34, 0.30] 0.9107

119 0.34 [0.12, 0.56] 0.0027

120 -0.72 [-1.10, -0.35] <0.001

121 -0.45 [-0.80, -0.10] 0.0111

122 0.09 [-0.20, 0.38] 0.545

123 0.00 [-0.30, 0.29] 0.9763

 66

Appendix Table 2: Full Regression Estimates (Readmission)

β 95% Conf. Interval P-Value

Intercept -3.14 [-3.49, -2.78] <0.001

Sex (Male) -0.04 [-0.14, 0.06] 0.4548

Age 0.00 [0.00, 0.01] 0.2812

Insurance

Medicaid 0.48 [0.16, 0.81] 0.0032

Medicare 0.31 [0.00, 0.63] 0.0535

Private -0.03 [-0.34, 0.27] 0.8331

Self-Pay -0.61 [-1.28, 0.06] 0.0749

Treelet Feature

1 0.71 [0.60, 0.82] <0.001

2 1.10 [0.88, 1.32] <0.001

3 -0.23 [-0.33, -0.12] <0.001

4 0.80 [0.62, 0.98] <0.001

5 -0.29 [-0.74, 0.17] 0.2207

6 0.19 [-0.33, 0.71] 0.4757

7 0.01 [-0.16, 0.17] 0.9227

8 -0.25 [-0.42, -0.08] 0.0048

9 -0.10 [-0.40, 0.20] 0.522

10 0.50 [0.30, 0.70] <0.001

11 0.15 [-0.16, 0.46] 0.3559

12 0.13 [-0.23, 0.49] 0.4765

13 0.22 [-0.18, 0.62] 0.28

14 0.09 [-0.22, 0.41] 0.5659

15 -0.07 [-0.29, 0.15] 0.5273

16 -0.02 [-0.42, 0.39] 0.9268

17 0.20 [-0.02, 0.43] 0.0733

18 0.01 [-0.25, 0.27] 0.9585

19 0.41 [0.16, 0.66] 0.0015

20 0.12 [-0.28, 0.53] 0.5503

21 0.13 [-0.28, 0.53] 0.5381

22 0.52 [0.27, 0.76] <0.001

23 -0.08 [-0.25, 0.09] 0.3584

24 0.00 [-0.19, 0.19] 0.9763

25 0.07 [-0.26, 0.39] 0.6824

26 0.43 [0.09, 0.78] 0.0132

27 0.37 [0.13, 0.61] 0.0025

28 0.55 [0.19, 0.92] 0.0032

29 0.02 [-0.21, 0.26] 0.846

30 0.28 [-0.01, 0.58] 0.0594

 67

Appendix Table 3: Full Regression Estimates (Length of Stay)

β 95% Conf. Interval P-Value

Intercept 2.00 [1.94, 2.06] <0.001

Sex (Male) 0.05 [0.04, 0.07] <0.001
Age 0.00 [0.00, 0.00] <0.001
Insurance

Medicaid
Medicare

Private
Self

0.11
0.05
0.04

-0.32

[0.06, 0.17]
[-0.01, 0.1]

[-0.01, 0.09]
[-0.41, -0.23]

<0.001

0.079
0.134

<0.001
Treelet Feature

1 0.37 [0.35, 0.39] <0.001
3 -0.16 [-0.22, -0.10] <0.001

4 -0.15 [-0.18, -0.12] <0.001
5 0.15 [0.10, 0.19] <0.001
7 -0.09 [-0.10, -0.07] <0.001

8 0.21 [0.19, 0.23] <0.001
9 0.09 [0.05, 0.13] <0.001

11 0.23 [0.16, 0.29] <0.001

12 0.61 [0.56, 0.66] <0.001
13 0.23 [0.18, 0.27] <0.001
14 0.42 [0.38, 0.45] <0.001

15 0.7 [0.65, 0.75] <0.001
17 0.4 [0.34, 0.46] <0.001
19 0.17 [0.14, 0.20] <0.001

20 0.3 [0.28, 0.33] <0.001
22 0.52 [0.47, 0.57] <0.001
23 0.2 [0.12, 0.28] <0.001

24 0.29 [0.22, 0.36] <0.001
25 0.22 [0.16, 0.28] <0.001
26 0.26 [0.18, 0.34] <0.001

32 0.17 [0.13, 0.22] <0.001
33 -0.17 [-0.23, -0.11] <0.001
37 0.11 [0.07, 0.16] <0.001

39 -0.16 [-0.21, -0.10] <0.001
40 -0.25 [-0.33, -0.18] <0.001
41 -0.07 [-0.10, -0.04] <0.001

44 0.61 [0.53, 0.68] <0.001
46 -0.1 [-0.14, -0.06] <0.001

 68

Appendix Table 4: Abbreviated Treelet Features (Mortality)

Treelet Feature ICD-9-CM

Code

Loading Code Description

Feature 1* 584.9 0.555 Acute kidney failure NOS
518.81 0.507 Acute respiratory failure
995.92 0.347 Severe sepsis

389 0.309 Septicemia NOS
785.52 0.272 Septic shock

Feature 2 198.3 0.418 Secondary malignant neoplasm (brain/spine)
197.7 0.539 Secondary malignant neoplasm (liver)
197.0 0.475 Secondary malignant neoplasm (lung)
198.5 0.556 Secondary malignant neoplasm (bone)

Feature 7* 401.9 0.736 Hypertension NOS
414.01 0.524 Coronary atherosclerosis of native coronary artery
250.00 0.255 DMII without complications
272.4 0.238 Hyperlipidemia NEC/NOS
272.0 0.187 Pure hypercholesterolemia

Feature 13 431 0.815 Intracerebral hemorrhage
348.5 0.462 Cerebral edema
331.4 0.144 Obstructive hydrocephalus

430 0.213 Subarachnoid hemorrhage
348.4 0.236 Compression of brain

Feature 15 427.5 0.946 Cardiac arrest
427.41 0.324 Ventricular fibrillation

*Features 1 and 7 contain loadings from 19 and 10 ICD-9-CM codes respectively, only diagnoses
with 5 highest loadings presented

 69

Appendix Table 5: Abbreviated Treelet Features (Readmission)

Treelet Feature ICD-9-CM

Code

Loading Code Description

Feature 1 584.9 0.604 Acute kidney failure NOS
518.81 0.418 Acute respiratry failure
599.0 0.252 Urin tract infection NOS
403.90 0.216 Hy kid NOS w cr kid I-IV
585.9 0.215 Chronic kidney dis NOS
285.9 0.204 Anemia NOS
995.92 0.197 Severe sepsis
389. 0.170 Septicemia NOS

Feature 2 571.5 0.405 Cirrhosis of liver NOS
705.4 0.491 Chrnc hpt C wo hpat coma
571.2 0.484 Alcohol cirrhosis liver
572.3 0.413 Portal hypertension
789.59 0.251 Ascites NEC

Feature 4 357.2 0.573 Neuropathy in diabetes
403.91 0.494 Hyp kid NOS w cr kid V
250.60 0.469 DMII neuro nt st uncntrl
585.6 0.315 End stage renal disease
362.01 0.218 Diabetic retinopathy NOS

Feature 22 427.1 0.889 Parox ventric tachycard
425.4 0.406 Prim cardiomyopathy NEC
410.11 0.116 AMI anterior wall, init
427.5 0.115 Cardiac arrest
785.51 0.097 Cardiogenic shock

*All features contain loadings from additional ICD-9-CM codes, only diagnoses with 5 highest loadings
presented

 70

Appendix Table 6: Abbreviated Treelet Features (Length of Stay)

Treelet Feature ICD-9-CM

Code

Loading Code Description

Feature 1* 584.9 0.555023 Acute kidney failure NOS
518.81 0.506634 Acute respiratory failure
995.92 0.346761 Severe sepsis

389 0.309371 Septicemia NOS
785.52 0.271532 Septic shock

Feature 2 198.3 0.417658 Sec mal neo brain/spine
197.7 0.539451 Second malignant neoplasm (liver)

197 0.47509 Second malignant neoplasm (lung)
198.5 0.555737 Second malignant neoplasm (bone)

Feature 12 997.4 0.546458 Digestive complications NOS
560.1 0.837486 Paralytic ileus

Feature 14 518 0.507345 Pulmonary collapse
511.9 0.861743 Pleural effusion NOS

*Features 1 contains loadings from 19 ICD-9-CM codes respectively, only diagnoses with 5 highest loadings
presented

 71

Appendix B Analytic Code

Raw data publicly accessible (by request) at https://mimic.physionet.org/ (N.B. Data are collected

and stewarded by the Massachusetts Institute of Technology Lab for Computational Physiology,

not the author or advisors of this document or any group at the University of Pittsburgh)

Analytic code is included below as raw, RMarkdown code. Downloadable RMarkdown files (in

addition to test data predictions, CSV files cross-validation performance, and figures)

additionally available at https://github.com/domdisanto/ICD_Diagnoses_Treelet

Appendix B.1 R Code to Perform Data Cleaning and Exploratory Data Analysis (incl.

Descriptive Statistics)

title: "Treelet Transform: Identifing clusters of ICD-9 Diagnoses in a Boston

Trauma Center"

subtitle: "Data Cleaning, Exploratory Data Analysis & Visualization"

author: "Dominic DiSanto\n Master's Thesis"

date: "Updated 9/20/2020"

output:

 html_document:

 keep_md: true

 toc: true

 toc_depth: '3'

 code_folding: show

Preparation

Libraries

```{r, message=F, warning=FALSE} 

https://mimic.physionet.org/
https://github.com/domdisanto/ICD_Diagnoses_Treelet


 72 

library(magrittr) # Ceci n'est pas une %>%, loaded via dplyr also but liked 

to include for transparency  

library(dplyr) # General data management, cleaning (admittedly I switch 

between Base R and tidyverse as I code, somewhat stream-of-consciousness ly) 

library(ggplot2) # Visualization 

library(tidyr) # pivot functions for transposing data to/from long and wide 

library(icd) # used in validity check of diagnoses codes 

library(lubridate) # used in evaluating dates, most notably in date of death  

library(lares) # corr_cross function used to identify the top correlations 

within a data frame/design matrix 

library(corrplot) # used for visualizing correlation matrices 

library(here) # Used for data-calls/ease of file path storage usage  

``` 


File Path

This is my first attempt at using the `here` package for improved

functionality of this program. I believe to use the `here` package as written

in my program, your data simply need to be contained in a sub-folder called

Data from where you've saved this file. For transparency, I'll describe

my general (and I think simplistic) file structure for this analysis: Within

a general project folder (say `Treelet`), this script and it's output are

contained in an ***"Analysis"*** subfolder and the data within a ***Data***

subfolder of the same project folder. For the raw input data from MIMIC, I

included a **Raw** sub-folder within the **Data** folder (to isolate raw

MIMIC data from any exported data files or cleaned data).

Because I contain my analysis in a sub-folder of my main project file, I had

to therefore manually set my `.here` file one level above my analytic file.

If you happen to mirror my file structure, you must simply use the command

`set_here("../")`, which will create a `.here` file in your root folder, a

level above the analytic subfolder.


```{r} 

here() 

``` 


Data Cleaning

I will broadly classify the data cleaning in two areas: **Patient Data** and

Diagnoses Data. **Patient data cleaning** will include wrangling of

patient-level demographic and admissions data, identifying patients with

multiple admissions and specifying which admission of interest to use in

analysis, and other individual/person cleaning. **Diagnosis data cleaning**

will involve identifying and cleaning the ICD-9 diagnoses code data to be

included in the treelet transform dimension reduction technique.

These steps are not entirely separate, as the included diagnoses codes will

only involve patients in our analytic cohort from the **patient data

cleaning**, but this separation is useful and somewhat natural due to the

varied input data and steps required in each process.

Cleaning Patient Data

 73

Before meaningfully working with the any data or performing analyses, we must

identify our patient cohort to be used in analysis. The first step will be

identifying an analytic patient cohort. This will include:

- Identify the admission of interest among patients with multiple stays

 - This will be the earliest admission, which we will synonymously

reference as earliest admission or first encounter

- Removing pediatric patients (those under 18 at time of admission)

- Examining and cleaning variables/covariates to an "analytic format", the

exact definition which will be data element dependent but will prepare

elements for proper analysis, exploration, and visualization

Cohort Identification

As mentioned above, we must identify our analytic cohort by:

- Identify the admission of interest among patients with multiple stays

 - This will be the earliest admission, which we will synonymously

reference as earliest admission or first encounter

- Removing pediatric patients (those under 18 at time of admission)

To accomplish both of our goals above, we must first identify the admissions

of interest for each patient. As mentioned preivously, we will use the first

patient encounter in our data set to identify diagnoses to include in our

dimension reduction and information/data to include in our analyses.


```{r} 

admit <- read.csv(here("Data", "Raw", "ADMISSIONS.csv")) 

 

# # Number of patients with multiple visits 

cat("There are", admit %>% group_by(SUBJECT_ID) %>% count() %>% filter(n>1) 

%>% nrow(), "patients in our data set with multiple admissions") 

cat("These individuals with multiple admissions account for", admit %>% 

group_by(SUBJECT_ID) %>% count() %>% filter(n>1) %>% ungroup() %>%  select(n) 

%>% sum(), "visits, including their index dates/first admissions.") 

  # # Of the 58,976 visits, 19,993 are duplicate visits (including first 

encounter) among 7,537 patients 

  # # therefore of the 58,976 visits, 12,456 are removed resulting in 46,520 

unique patient first-encounters 

 

admit_unq <- admit %>%  

  group_by(SUBJECT_ID) %>%  

  filter(ADMITTIME==min(ADMITTIME)) %>%  

  ungroup() %>%  

  select(SUBJECT_ID, HADM_ID, ADMITTIME, DISCHTIME, ADMISSION_TYPE, 

INSURANCE) 

 

if(admit_unq %>% nrow() !=  admit_unq %>% distinct(SUBJECT_ID) %>% nrow()) { 

  print("Problem with admit data, the number of rows and patients in this 

data frame should be equal but are not") 

  break 

} 

``` 


 74

We can now merge in our patient data to each admission of interest to

calculate age and limit our population


```{r} 

pts_raw <- read.csv(here("Data", "Raw", "PATIENTS.csv")) 

 

pts_red <- pts_raw %>% select(SUBJECT_ID, DOB, DOD, GENDER) 

 

admit_pts <- merge(pts_red, admit_unq, by="SUBJECT_ID", all=T) %>% 

  mutate(Age= 

           (difftime(ADMITTIME, DOB, unit="weeks") %>% 

              as.integer()/52) %>% 

           floor()) %>% 

  select(SUBJECT_ID, Age, everything(), -DOB) %>% filter(Age>=18) 

 

 

admit_pts %>% distinct(ADMISSION_TYPE) 

  # Confirming there are no "NEWBORN" admission types 

 

admit_pts <- admit_pts %>% select(-ADMISSION_TYPE) 

``` 


We have now identified our cohort of interest of adults (patients 18 or older

at first admission) and have identified our first-encounters/earliest visits

of interest. There is however some additional cleaning necessary for our

variables of interest to include in EDA and analysis later.

Covariate Cleaning

Cleaning of patient-level characteristics are carried out and described

below. This section will not include analysis or visualization, which are

saved for the EDA section of this program.

Age

In examining the data and the MIMIC-III metadata/documentation, I noticed

that `Age` values occur of 301, where patients who were older tha 89 at time

of admission have their (randomized) date-of-birth's set to 300+ years prior

to their hospital admittance. As dates are randomly jittered I am unable to

impute these values using admit or discharge times. As a result, I will set

these values to simply 1 year higher than the maximum age (that is less than

300).


```{r} 

admit_pts %>% count(Age) %>% arrange(desc(Age)) %>% head() 

 

admit_pts <- admit_pts %>%  

  mutate(Age = 

    case_when(Age>100 ~ 90, 

              TRUE ~ Age) 

  ) 

 

admit_pts %>% count(Age) %>% arrange(desc(Age)) %>% head() 

``` 


Mortality

 75

The MIMIC-III data offers two sources for mortality status (and related date

of death):

 `DOD_HOSP` - In-hospital mortality collected and stored in the hospital's

local database

 `DOD_SSN` - Date of death as obtained from the social security death index

(SSDI), which includes deaths up to 4-years post-discharge

Both of these variables are aggregated into a generic `DOD` variable of date

of death, which prioritizes `DOD_HOSP` if both sources have a recorded date

of death. In presenting this data to the Capstone committee, we had decided

to use "in-hospital mortality", and I planned to simply use the `DOD_HOSP`

variable. However I noticed that among patients with multiple visits,

`DOD_HOSP` would capture in-hospital mortality at a later visit (and not the

visit of interest which we've discussed and isolated). Therefore I will use

the generic `DOD` variable, and identify in-hospital mortality as present for

any patient with a DOD date equal to or less than their discharge date.

Otherwise, in-hospital mortality will be set as surviving the patient's stay.

One detail I will include is that I will *not* consider time differences when

assessing this difference. I will simply see if the date of death `DOD` and

time of discharge `DISCHTIME` are the same year-month-date or if `DOD` is

less than `DISCHTIME`. Lastly, there are patients whose `DOD` is immediately

greater than their `DISCHTIME`. As a buffer, I will consider in-patient

mortality as present or patients as expiring during their stay if `DOD` is

within 24 hours of `DISCHTIME`.


```{r} 

admit_pts %>%  

  filter(DOD!="" & as.Date(ymd_hms(DOD))!=as.Date(ymd_hms(DISCHTIME))) %>%  

  select(SUBJECT_ID, Age, DOD, DISCHTIME) %>% sample_n(5) 

  # Examinign random patients with disparate `DOD` and `DISCHTIME` values 

   

 

admit_pts %>% 

  filter(DOD!="" & as.Date(ymd_hms(DOD))>as.Date(ymd_hms(DISCHTIME)))  %>% 

  mutate(dodlag = as.integer(difftime(DOD, DISCHTIME, unit="hours"))) %>%   

  arrange(dodlag) %>% head() 

  # Examining some of the differences in time that are small between DOD and 

DISCHTIME 

 

 

admit_pts <- admit_pts %>%  

  mutate(InHospMortality = 

           case_when( 

             DOD!="" & as.Date(ymd_hms(DOD)) <= as.Date(ymd_hms(DISCHTIME)) ~ 

1, 

             DOD!="" & as.integer(as.Date(ymd_hms(DOD)) - 

as.Date(ymd_hms(DISCHTIME)))<=24 ~ 1, 

             TRUE ~ 0 

           )) 

 

``` 


 76

Payment/Insurance


```{r} 

admit_pts %>% count(INSURANCE) 

``` 


The `Self Pay` category is (comparatively) somewhat small, but as of now I

don't think there is any need to collapse these groups considerign even this

small proportion is nearly 550 observations.

General Hospital Length of Stay


```{r} 

admit_pts <- admit_pts %>%  

  mutate(HospitalLOS = 

           floor(as.numeric(difftime(DISCHTIME, ADMITTIME, unit="days")))) 

 

``` 


Hospital Re-admission

For re-admission, I will explore whether to use 30-day or 90-day readmission.

I found literature using both as "short-term" and "early-" hospital

readmission. I will also specifically look at emergency/urgent readmission

(not elective).


```{r} 

readmit_dts <- admit %>% filter(ADMISSION_TYPE %in% c("EMERGENCY", "URGENT") 

& # filtering out elective admissions  

                   admit$SUBJECT_ID %in% c(admit_pts %>% 

select(SUBJECT_ID))[[1]]) %>%  # identifying only patients in our analytic 

cohort 

  group_by(SUBJECT_ID) %>% filter(ADMITTIME!=min(ADMITTIME)) %>% # removing 

our index visits  

  filter(ADMITTIME==min(ADMITTIME)) %>% ungroup() %>%  # now saying give me 

the admittime closest to your index admittance 

  select(SUBJECT_ID, ReadmitDate=ADMITTIME) # finally, simply selecting the 

SUBJECT_ID and readmitdate  

 

admit_pts <- merge(admit_pts,readmit_dts, by="SUBJECT_ID", all.x=T)  %>%  

  mutate(TimeToReadmit =  

           case_when( 

             !is.na(ReadmitDate) ~ as_date(ReadmitDate) - as_date(ADMITTIME), 

             TRUE ~ NA_real_ 

             ) 

         )  

``` 


I have identified our time to hospital readmission, but have not examined or

limited the data. Let's first visualize the distribution:


```{r} 

admit_pts %>% filter(!is.na(TimeToReadmit)) %>%  

  ggplot(aes(x=TimeToReadmit)) + 

  geom_density() + theme_minimal() + 



 77 

  xlab("Days to Hospital Readmission") + ylab("Density") + 

  ggtitle("Density Curve of Days to Unplanned/Emergent Readmission") + 

  geom_vline(aes(xintercept=30, color="30 Days"), alpha=0.4,  lwd=1.2, lty=2)  

+   

  geom_vline(aes(xintercept=90, color="90 Days"), lwd=1.2, lty=2, alpha=0.4,) 

+ 

  geom_vline(aes(xintercept=365, color="365 Days"), lwd=1.4, lty=2) + 

  scale_color_manual(name="Days to Readmission", 

                     values=c(`30 Days`="red", `90 Days`="blue", `365 

Days`="lightblue")) + 

  theme(legend.position=c(0.72, 0.5), legend.box.margin = margin(6, 6, 6, 6)) 

 

 

``` 


This distribution looks very skewed. I added lines to the 30 and 90 days

marks, as I was interested in these benchmarks, but I can't fully assess

possible sample size of this group while excluding no readmission (from the

above `filter` statement) and from a density curve. Below is a frequency

table:


```{r} 

admit_pts %>% mutate(ReadmitCats =  

                       case_when( 

                 is.na(TimeToReadmit)  ~ "No readmit", 

                 TimeToReadmit >= 350 ~ "Greater than 1 year", 

                 TimeToReadmit >= 90 ~ "From 90 to 365 days", 

                 TimeToReadmit >= 30 ~ "30-90 days", 

                 TRUE ~ "0-30 days" 

               )) %>% count(ReadmitCats) 

 

``` 


From the above table, with fairly low frequencies for the 0-30 and 30-90 days

ranges alone, I will use readmission with the following calendar year (i.e.

next 365 days). Within this chunk, we will also limit the analytic cohort

specific to readmission variable.

I will ensure that the readmit variable `Yr1Readmit` is only calculated for

patients who survived out to one year (i.e. `DOD`-`DISCHTIME`\leq 365

days). When examining readmission, we should only include those patients who

1) survived out to one year (regardless of readmission status) and 2) among

patients who died, patients who were readmitted within one year prior to

their date of death:


```{r} 

admit_pts <- admit_pts %>% mutate(TimeToMort =  

                                    case_when( 

                                      DOD!="" ~ as.Date(ymd_hms(DOD)) - 

as.Date(ymd_hms(DISCHTIME)), 

                                      TRUE  ~ 9999 

                                      ),  

                                  Yr1Readmit = 

                                    case_when( 

                                      TimeToMort>365 & TimeToReadmit<=365 ~ 

1,  



 78 

                                      TimeToMort>365 ~ 0, 

                                      TRUE ~ NA_real_ 

                                      ), 

                                  TimeToReadmit_Recalc = # if we do a time-

to-event analysis, including this recalculated variable  

                                    case_when( 

                                      TimeToReadmit<=365 ~ TimeToReadmit, 

                                      TRUE ~ 366 

                                      ) 

                                  ) #%>% select(-ReadmitDate, -TimeToReadmit) 

``` 


Diagnoses Codes

Now that we have cleaned our patient-level data elements, we can begin

working with the diagnosis code data. This will include:

 1. Removal of V and E diagnoses codes related to health factors and

causes of admission respectively outside of morbidity diagnosis

 2. Ensuring the validity of our ICD-9 codes through a definition check

and a quick spot-check of gender-specific codes

 3. Limiting our diagnoses codes to only those that met our prevalence

threshold of 1%

Imports


```{r} 

icd_raw <- read.csv(here("Data", "Raw", "DIAGNOSES_ICD.csv"), 

stringsAsFactors = F) %>% select(-ROW_ID) 

 

cat("There are", icd_raw %>% nrow(), "rows in our raw, ICD-9 diagnosis code 

data.\n") 

cat("There are", icd_raw %>% distinct(SUBJECT_ID) %>% nrow(), "unique 

`SUBJECT_ID` values (representign patients) in this data.\n") 

cat("Lastly, there are", icd_raw %>% distinct(ICD9_CODE) %>% nrow(), 

"distinct ICD-9 diagnosis codes in this data set.") 

``` 


Removing V & E Codes

I will first remove any duplicated diagnoses codes within a patient *and*

visit. I will also remove the V and E codes which correspond to Health

Services/Factors and Causes of Injury/Illness respectively, separate from

diagnoses.


```{r} 

icd_precln <- icd_raw %>% distinct(SUBJECT_ID, HADM_ID, ICD9_CODE, .keep_all 

= T) %>%  

  filter(substring(ICD9_CODE, 1, 1)!="E" & substring(ICD9_CODE, 1, 1)!="V") 

#removing V and E codes 

 

icd_precln %>% sample_n(5) 



 79 

``` 


Checking Code Definitions

Using the `icd` package's built-in `is_defined` function, which tests whether

a given input value 1) follows valid formatting for an ICD-9 code (5 or less

characters, numeric or alphanumeric for V, E codes (which we've excluded))

and 2) is defined using a call to CMS, which keeps a list of what the package

refers to as "canonical" ICD-9 codes:


```{r} 

icd_precln %>% mutate(valid = is_defined(ICD9_CODE)) %>% filter(valid==F & 

ICD9_CODE!="") 

``` 


Gender Code Spot-Check

Although we will note exhaustively examine ICD-9 codes that may be mutually

exclusive or gender-specific, we can spot check some large ranges of these

codes to re-assure ourselves of the data's validity.

ICD-9 codes ranging from 600 to 608 are specific to males, so we can spot-

check to see if any female patients were erroneously diagnosed with these

codes:


```{r} 

icd_precln %>% filter(ICD9_CODE>="6000" & ICD9_CODE<"6090") %>%  

  merge(pts_raw, by="SUBJECT_ID") %>% count(GENDER) 

``` 


And we can perform a similar check using female-specific codes ranging from

614 to 629:


```{r} 

icd_precln %>% filter(ICD9_CODE>="6140" & ICD9_CODE<"6300") %>%  

  merge(pts_raw, by="SUBJECT_ID") %>% count(GENDER) 

``` 


Thankfully our spot checks appear to corroborate the ICD-9 data validity!

Limiting to Our Cohort

We must first limit our ICD data to only those patients/visits of interest

for our analysis, which we have thankfully already cleaned and can simply use

as a merging "limiter":


```{r} 

icd_cohort <- admit_pts %>% select(SUBJECT_ID, HADM_ID) %>%   

  merge(icd_precln, by=c("SUBJECT_ID", "HADM_ID"), all.x=T) %>% select(-

SEQ_NUM) 

``` 


 80

Subsetting by Prevalence

Now we will finalize our diagnosis by subsetting our diagnoses codes to those

with a minimum of 1% event rate in our cohort. The relatively large number of

unique diagnoses codes contain a number of rare diseases, with extremely low

variance. As a result, we will truncate to codes with a sufficiently high

proportion or event rate:


```{r} 

icd_1pct <- icd_cohort %>% count(ICD9_CODE) %>% 

filter(n>(0.01*nrow(admit_pts))) %>% pull(ICD9_CODE) 

length(icd_1pct) 

icd_cohort <- icd_cohort %>% mutate(ICD9_CODE =  

                           case_when( 

                             ICD9_CODE %in% icd_1pct ~ ICD9_CODE, 

                             TRUE ~ NA_character_) 

                           ) %>% distinct(SUBJECT_ID, HADM_ID, ICD9_CODE)  

``` 


Data Cleaning Concluding Notes

The above data wrangling corresponds to the inclusion, validity-checking, and

coding of data for categories to be considered analysis. This data cleaning

code does *not* perfectly prepare data for analysis. Treelet dimension

reduction will require the calculation and input of a correlation and/or

variance-covariance matrix, while modelling or descriptive analysis may

require coercion of data elements to/from factors and integers or other

coding changes. These small changes, which will change the structure of the

data but not the content or information contained therein, are left as *ad

hoc* programming done within each relevant analytic section.

EDA

Diagnosis Code Data

Diagnosis Frequency

We can look broadly at the frequency of all of our diagnoses codes, with the

below plot simply arranged in descending order:


```{r} 

icd_cohort %>% count(ICD9_CODE)  %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>% 

  ggplot(aes(x=reorder(ICD9_CODE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("Frequency Plot of All Diagnoses Codes",  

          subtitle = paste("(Including only codes with 1% prevalence or 

greater)\nn=", nrow(icd_cohort %>% count(ICD9_CODE)),  

                           " unique diagnoses, among",  

                           nrow(admit_pts), "patients")) +  

    ylab("Frequency") + xlab("Distinct (Unlabelled) ICD-9 Codes") + 

theme_minimal() + 

    theme(axis.text.x=element_blank(), text=element_text(size=13.5)) 



 81 

 

``` 


As it is impossible to elucidate much useful information from this visual,

due to the volume of data, we can examine simply the most common diagnoses

codes, arbitrarily picking the top 15 for legibility of plots:


```{r} 

icd_descr <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 

 

# Percentages 

icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  

  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>% 

  mutate(Prop=n/nrow(icd_cohort %>% distinct(SUBJECT_ID))) %>% 

select(ICD9_CODE, n, Prop) 

 

 

icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  

  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>%  

  ggplot(aes(x=reorder(SHORT_TITLE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("Frequency of the 15 Most Common Diagnoses") +  

    ylab("Frequency") + xlab("ICD-9 Code") + theme_minimal() + 

    theme(axis.text.x=element_text(angle=60, vjust=0.9, hjust=0.8)) 

    # this is a really unfortunately x-axis, couldn't find a better angle or 

adjustment for the x-axis unfortunately  

 

``` 


And re-plotting with Thesis-friendly captions:


```{r, freq_plots} 

icd_cohort %>% count(ICD9_CODE)  %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>% 

  ggplot(aes(x=reorder(ICD9_CODE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("A", #"Frequency Plot of All Diagnoses Codes",  

          # subtitle = paste("(Including only codes with 1% prevalence or 

greater)\nn=", nrow(icd_cohort %>% count(ICD9_CODE)),  

          #                  " unique diagnoses, among",  

          #                  nrow(admit_pts), "patients") 

          ) +  

    ylab("Frequency") + xlab("Distinct (Unlabelled) ICD-9 Codes") + 

theme_minimal() + 

    theme(axis.text.x=element_blank(), text=element_text(size=15)) 

 

icd_descr <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 

 

icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  



 82 

  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>%  

  mutate(Prop = paste0(round(100*n / nrow(icd_cohort %>% 

distinct(SUBJECT_ID)), 1), '%')) %>%  

  ggplot(aes(x=reorder(SHORT_TITLE, -n), y=n, label=Prop)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("B", #"Frequency of the 15 Most Common Diagnoses" 

            ) +  

    ylab("Frequency") + xlab("ICD-9 Code") + theme_minimal() + 

    theme(axis.text.x=element_text(angle=60, vjust=0.9, hjust=0.8), 

text=element_text(size=15)) + 

    # geom_text(vjust=1.2, color="white", size=3.31, hjust=0.45) 

    geom_text(vjust=-0.9, angle=15) + ylim(c(0, 19000)) 

    # this is a really unfortunate x-axis, couldn't find a better angle or 

adjustment for the x-axis  

 

``` 


Correlation Matrix Among Top Diagnoses

Looking at the correlation matrix of these most common diagnoses codes (as

the correlation of diagnoses is what will determine the hierarchy of

clustering in the treelet method):


```{r} 

icd_cohort %>% filter(!is.na(ICD9_CODE) & ICD9_CODE %in% ( 

        icd_cohort %>% count(ICD9_CODE) %>%  

        arrange(desc(n)) %>% 

        merge(icd_descr, by="ICD9_CODE", all.x=T) %>%  

        arrange(desc(n)) %>%  

        ungroup() %>%   

        filter(row_number()<=15) %>% pull(ICD9_CODE) 

        )) %>% 

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x))  %>%  

  select(-SUBJECT_ID) %>%  

  cor() %>%   

  corrplot::corrplot(type="upper", diag=F, order="hclust", method = "shade") 

``` 


Correlation Matrix Among All Included ($1% \geq$ Prevalence) Codes


```{r} 

x <- (icd_cohort %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x))  %>%  

  select(-SUBJECT_ID) %>%  

  cor()) 

 

x[x>1] <- 1 



 83 

x %>% corrplot::corrplot(type="upper", diag=F, order = "hclust", method = 

"color", tl.pos = "n") 

 

``` 


Most Correlated Diagnoses

In addition to the `corrplot` package's visualiation of an input correlation

matrix, we can use the `corr_cross` package to examine the upper limit of our

diagnoses code's correlations. In the plot below, "Correlation %" simply

refers to the scaled correlation coefficient (e.g. a "Correlation %" of

89.45% corresponds to a correlation coefficient $\rho=0.8945$):


```{r, warning=F} 

top10_corr_plot <- icd_cohort %>%  

  filter(!is.na(ICD9_CODE)) %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, 1)) %>%  

  select(-SUBJECT_ID) %>%  

  corr_cross(top=10, plot=F) 

 

 

top10_corr_plot %>% mutate(Pair = paste0(group1, ", ", group2)) %>%  

  ggplot(aes(x=reorder(Pair, corr), y=round(corr, 2))) + 

  geom_bar(stat='identity', fill="black", alpha=0.6) +  

  geom_text(aes(y =round(corr, 2)-0.04, label=round(corr, 2)), 

            color="white", alpha=0.75) +  

  coord_flip() + theme_minimal() + 

  theme(text=element_text(size=13.5)) + 

  ylab("Correlation Coefficient") + xlab("ICD-9 Diagnosis Code Pair") 

 

``` 


And then examine a matrix-plot of these diagnoses as well:


```{r} 

 

top_corr_vars <- c(top10_corr_plot %>% mutate(vars=substr(key, 2, 

nchar(key))) %>% pull(vars),  

                   top10_corr_plot %>% mutate(vars=substr(mix, 2, 

nchar(mix))) %>% pull(vars)) %>% unique() 

                      

 

icd_cohort %>%  

  filter(!is.na(ICD9_CODE)) %>%  

    mutate(values=1) %>%  

    pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

    mutate_all(function(x) ifelse(is.na(x), 0, 1)) %>%  

    select(!!!top_corr_vars) %>% cor() %>%  

      corrplot::corrplot(type="upper", diag=F, order="hclust", method = 

"shade") 



 84 

``` 


Patient Level Data

We can briefly/descriptively examine some of our patient level data,

observing frequencies or distributions of our covariates and examining

possible relationships of our patient characteristics to mortality,

readmission, and hospital length of stay where appropriate. Much of these

visualizations were purely exploratory in nature. In instances where data

were changed/re-categorized or otherwise altered based on the visualization,

I have included comments/annotations. Otherwise, these figures are presented

without commentary.

Number of Diagnoses


```{r} 

icd_cohort %>% count(SUBJECT_ID) %>% summarise(Mean=quantile(n)[3], 

                                               P25=quantile(n)[2], 

                                               P75=quantile(n)[4]) 

``` 


Mortality


```{r} 

admit_pts %>% mutate(MortalityType= 

                     factor(case_when( 

                       InHospMortality==1 ~ "In-Hospital Mortality", 

                       TRUE ~ "Survived to Discharge") 

                   )) %>% count(MortalityType) %>% 

mutate(prop=paste0(round(n/nrow(admit_pts), 4)*100, '%')) %>%  

  ggplot(aes(x=reorder(MortalityType, -n), y=n, fill=MortalityType, 

label=prop)) +  

    geom_text(position = position_dodge(.9), 

              vjust = -0.2, 

              size = 4) + 

  geom_col() + ylab("Frequency") + xlab("Mortality Status") + 

scale_fill_brewer(palette=2, type = "qual") + 

  ggtitle("Frequency of In-Hospital Mortality Status") + theme_minimal() + 

theme(legend.position = "none")  

 

``` 


Payment/Insurance

```{r} 

admit_pts %>% count(INSURANCE) %>% 

mutate(prop=paste0(round(n/nrow(admit_pts), 4)*100, '%')) %>%  

  ggplot(aes(x=reorder(INSURANCE, -n), y=n, fill=INSURANCE, label=prop)) +  

    geom_text(position = position_dodge(.9), 

              vjust = -0.2, 

              size = 4) + 



 85 

  geom_col() + ylab("Frequency") + xlab("Payment Method") + 

scale_fill_brewer(palette=2, type = "qual") + 

  ggtitle("Frequency of Insurance Status/Payment Method") + theme_minimal() + 

theme(legend.position = "none")  

 

``` 


With the two small groups of `Self Pay` and `Government`, I will contradict

what I wrote earlier and collapse these categories. `Self Pay` will be

collapsed into the `Private` category, and `Government` will be combined with

`Medicaid` as `Medicaid/Non-Medicare Public Assistance`:


```{r} 

admit_pts %>%  

  count(INSURANCE) %>% mutate(prop=paste0(round(n/nrow(admit_pts), 4)*100, 

'%'),  

                                 InsuranceBin = 

                                   case_when( 

                                     INSURANCE == "Self Pay" | INSURANCE == 

"Private" ~ "Private/Self-Pay", 

                                     INSURANCE=='Medicaid' | INSURANCE == 

'Government' ~ 'Medicaid/Public Assistance', 

                                     TRUE ~ INSURANCE)) %>%  

  ggplot(aes(x=reorder(InsuranceBin, -n), y=n, fill=reorder(INSURANCE, n), 

label=prop)) +  

  geom_col() + ylab("Frequency") + xlab("Payment Method") + 

scale_fill_brewer(palette=2, type = "qual") + 

  ggtitle("Frequency of Insurance Status/Payment Method") + theme_minimal() + 

theme(legend.position = "none")  

 

``` 


General Hospital Length of Stay


```{r} 

los_graph <- admit_pts %>%  

  mutate(GenLOS=ceiling(difftime(DISCHTIME, ADMITTIME, units = "days") %>% 

as.numeric())) %>% select(SUBJECT_ID, GenLOS, DISCHTIME, ADMITTIME) # %>%  

 

# quantile(los_graph$GenLOS) 

 

los_graph %>%   ggplot(aes(x=GenLOS)) + geom_density(fill="lightblue", 

alpha=0.4) + theme_minimal() + 

  xlab("General Hospital Length of Stay") + ylab("Density") +  

  ggtitle("Distribution of General Hospital Length of Stay (Days)") + 

  annotate(geom="text", x=150, y=0.05, label=paste0("Length of stay values 

ranged from 1 to ", max(los_graph$GenLOS), " days.")) + 

  annotate(geom="text", x=150, y=0.04, label=paste0("Our length of stay 

values have a mean of ", round(mean(los_graph$GenLOS), 2), " and variance \n 

of ", 

                                                    

round(var(los_graph$GenLOS),2), ", suggesting overdispersion of this 

variable.")) 

 

 

``` 


 86

We unsurprisingly see a heavy skew in our length of stay data which is highly

overdispersed (variance of 113 is more than ~13x greater than our mean of

under 10 days).

Hospital Re-admission


```{r} 

admit_pts %>% filter(!is.na(Yr1Readmit)) %>% count(Yr1Readmit) %>% 

mutate(prop=paste0(100*round(n/nrow(admit_pts[!is.na(admit_pts$Yr1Readmit),])

, 4), "%")) %>%  

  ggplot(aes(x=reorder(Yr1Readmit, -n), y=n, fill=as.factor(Yr1Readmit), 

label=prop)) + 

  geom_text(position = position_dodge(.9), 

              vjust = -0.32, 

              size = 4) + 

  geom_bar(stat="identity") + ylab("Frequency") + xlab("Unplanned Readmission 

Within One-Year of Discharge") + 

  ggtitle("Frequency of Unplanned Readmission in MIMIC Data") +  

  scale_fill_brewer(palette=2, type = "qual") + theme_minimal() +  

  scale_x_discrete(label= c("No Readmission", "Readmitted")) + 

theme(legend.position = "none") 

 

``` 


Not only can we look at the simple binary readmission status, we also have

time to re-admission, which we previously visualized among all patients but

can look at simply within our subset of patients who were readmitted within

our single, calendar year of interest:


```{r} 

admit_pts %>% filter(Yr1Readmit==1) %>%  

  ggplot(aes(x=TimeToReadmit_Recalc)) + 

  geom_density(fill="white") + theme_minimal() + 

  xlab("Days to Hospital Readmission") + ylab("Density") + 

  ggtitle("Density Curve of Days to Unplanned/Emergent Readmission") + 

  geom_vline(aes(xintercept=30, color="30 Days"), alpha=0.4,  lwd=1.2, lty=2)  

+   

  geom_vline(aes(xintercept=90, color="90 Days"), lwd=1.2, lty=2, alpha=0.4,) 

+ 

  geom_vline(aes(xintercept=365, color="365 Days"), lwd=1.4, lty=2) + 

  scale_color_manual(name="Days to Readmission", 

                     values=c(`30 Days`="red", `90 Days`="blue", `365 

Days`="lightblue")) + 

  theme(legend.position=c(0.72, 0.5), legend.box.margin = margin(6, 6, 6, 6)) 

 

``` 


Age


```{r} 

# mean(admit_pts$Age) 

# sd(admit_pts$Age) 

quantile(admit_pts$Age) 



 87 

 

admit_pts %>% 

  ggplot(aes(x=Age)) + 

  geom_density(fill="white") + theme_minimal() + 

  xlab("Age") + ylab("Density") + 

  ggtitle("Density Curve of Age") 

 

``` 


Gender


```{r} 

admit_pts %>% count(GENDER) %>% 

mutate(prop=paste0(100*round(n/nrow(admit_pts), 4), "%")) %>%  

  ggplot(aes(x=reorder(GENDER, -n), y=n, fill=GENDER, label=prop)) + 

  geom_text(position = position_dodge(.9), 

              vjust = -0.32, 

              size = 4) + 

  geom_bar(stat="identity") + ylab("Frequency") + xlab("Gender") + 

  ggtitle("Frequency of Gender in MIMIC Data") +  

  scale_fill_brewer(palette=2, type = "qual") + theme_minimal() 

 

``` 


We have a fairly balanced data set with respect to gender, with men

outnumbering women (which we would expect in a data set of critical care

admissions).

Final Data Export

For the exploratory analysis above, the diagnosis data and patient-

characteristic data have been contained in separate data frames. Below I

pivot the diagnosis data (as previously done when determining the correlation

matrix of our diagnosis data) from `icd_cohort` into `icd_wide` and merge the

resulting pivoted data frame with the patient characteristics data contained

in `admit_pts`. The final dataframe is then titled `cohort_full`. This data

frame is used in this file, but I also export it as the standalone cohort and

if in the future I would prefer to separate the data cleaning and EDA from

the dimension reduction and regression modelling results of my thesis.


```{r} 

icd_wide <- icd_cohort %>%   

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x)) %>% select(-`NA`) 

 

cohort_full <- merge(icd_wide, admit_pts, by="SUBJECT_ID") 

 



 88 

colnames(cohort_full)[c(grep("[0-9]$", colnames(cohort_full)))] <- 

paste0("X", colnames(cohort_full)[c(grep("[0-9]$", colnames(cohort_full)))]) 

 

write.csv(cohort_full, 

          here("Data", "cohort_full.csv"), 

          row.names = F) 

``` 


Appendixes


```{r, warning=F, message=F} 

require(magrittr) # Ceci n'est pas une %>%  

require(dplyr) # General data management, cleaning (admittedly I switch 

between Base R and tidyverse as I code, somewhat stream-of-consciousness ly) 

require(ggplot2) # Visualization 

require(comorbidity) # Used to easily generate Elixhauser comorbdity 

grouping/categorization [8/23/2020 Note: may be excluded if Elixhauser or 

Charlson not used] 

require(tidyr) # pivot functions for transposing data to/from long and wide 

require(icd) # used in validity check of diagnoses codes 

require(lubridate) # used in evaluating dates, most notably in date of death  

require(lares) # corr_cross function used to identify the top correlations 

within a data frame/design matrix 

require(corrplot) # used for visualizing correlation matrices  

require(here) # Used for data-calls/ease of file path storage usage 

require(treelet) # for treelet modelling 

require(ggdendro) # trying ggplot's dnedrogram extension 

 

if(!("cohort_full" %in% ls())) { 

  cohort_full <-  read.csv(here("Data", "cohort_full.csv")) 

} 

 

``` 


Appendix A: Thesis Table & Figure Generation

Redundant code from the main body of cleaning and EDA code, but I wanted to

consolidate relevant table & figure genereation code. This is not an

exhaustive list of tables & figures, including only those captured in the

descriptive analyses (Results 3.1).

Table 2A & 2B: Cohort Descriptives


```{r} 

stat_sum <- function(data, var, stat, category=NULL) { 

  quovar <- deparse(substitute(var)) 

  if(stat=="mean") output_txt <- paste0(mean(data[,quovar]) %>% round(2), " 

(", sd(data[,quovar]) %>% round(2), ")") 

  if(stat=="median") output_txt <- paste0(median(data[,quovar]) %>% round(2), 

" [", quantile(data[,quovar])[2] %>% round(2), "-", 

quantile(data[,quovar])[4] %>% round(2), "]") 

  if(stat=="proportion" | stat=="prop") { 



 89 

    if(is.null(category)) stop("When requesting proportion for categorical 

vaiablevariable, please specify ") 

    freq <- data[data[,quovar]==category & !is.na(data[,quovar]),] %>% nrow() 

    prop <- (100*(data[data[,quovar]==category & !is.na(data[,quovar]),] %>% 

nrow()) / nrow(data[!is.na(data[,quovar]),])) %>% round(2) 

    output_txt <- paste0(freq, " (", prop, "%)") 

  } 

  return(output_txt) 

} 

 

## 1A: Mortality & LOS Cohort (n=38,554) 

  # Calculating number of ICD-9-CM Diagnosis Codes per patient (Median [IQR]) 

before table 

    icd_quantiles <- icd_cohort %>% count(SUBJECT_ID) %>% pull(n) %>% 

quantile() 

     

  # Generating the table in an easy copy/paste format 

    (sumtbl <- cohort_full %>% summarize( 

      # `Age, Mean (SD)` = paste0(round(mean(Age), 2), " (", 

round(sd(Age),2), ")"), 

      # `Sex (Male), n (%)` = paste0(sum(cohort_full$GENDER=="M"), " (", 

round(100*sum(cohort_full$GENDER=="M")/nrow(cohort_full), 2), "%)"), 

      # `Hospital Stay (days), Median (IQR)` = paste0(median(HospitalLOS), " 

[", quantile(HospitalLOS)[2], "-", quantile(HospitalLOS)[4], "]"), 

      `Age, Mean (SD)` = stat_sum(data=., var=Age, stat="mean"), 

      `Sex (Male), n (%)` = stat_sum(data=., var=GENDER, stat="prop", 

category = "M"), 

      `Hospital Stay (days), Median (IQR)` = stat_sum(., var=HospitalLOS, 

stat="median"), 

      `Re-Admission*, n (%)`= "", 

      `In-Hospital Mortality, n (%)` = stat_sum(., InHospMortality, "prop", 

1), 

      `Number of ICD-9-CM Diagnosis Codes per Patient, Median (IQR)` = 

paste0(icd_quantiles[3], " [", icd_quantiles[2], "-", icd_quantiles[4], "]"), 

      `Primary Payment Method, n (%)` = "", 

      `Medicare` = stat_sum(., INSURANCE, "prop", "Medicare"), 

      `Private Insurance` = stat_sum(., INSURANCE, "prop", "Private"), 

      `Self-Pay` = stat_sum(., INSURANCE, "prop", "Self Pay"), 

      `Medicaid` = stat_sum(., INSURANCE, "prop", "Medicaid"), 

      `Other Public Assistance` = stat_sum(., INSURANCE, "prop", 

"Government") 

    ))  

 

    data.frame(colnames(sumtbl), 

               t(sumtbl[1,]), 

               row.names = NULL) %>% write.table("clipboard") 

     

 

 

## 1B: Reamdission Cohort (n=28,893) 

    readmit_cohort <- cohort_full %>% filter(!is.na(Yr1Readmit)) 

     

    readmit_icds <- icd_cohort %>% filter(SUBJECT_ID %in% (readmit_cohort %>% 

pull(SUBJECT_ID))) 

    readmit_quantiles <- readmit_icds %>% count(SUBJECT_ID) %>% pull(n) %>% 

quantile() 

  



 90 

        

    (sumtbl_readmit <- readmit_cohort %>% summarize( 

      # `Age, Mean (SD)` = paste0(round(mean(Age), 2), " (", 

round(sd(Age),2), ")"), 

      # `Sex (Male), n (%)` = paste0(sum(cohort_full$GENDER=="M"), " (", 

round(100*sum(cohort_full$GENDER=="M")/nrow(cohort_full), 2), "%)"), 

      # `Hospital Stay (days), Median (IQR)` = paste0(median(HospitalLOS), " 

[", quantile(HospitalLOS)[2], "-", quantile(HospitalLOS)[4], "]"), 

      `Age, Mean (SD)` = stat_sum(data=., var=Age, stat="mean"), 

      `Sex (Male), n (%)` = stat_sum(data=., var=GENDER, stat="prop", 

category = "M"), 

      `Hospital Stay (days), Median (IQR)` = stat_sum(., var=HospitalLOS, 

stat="median"), 

      `Re-Admission*, n (%)`= stat_sum(., Yr1Readmit, "prop", 1), 

      `In-Hospital Mortality, n (%)` = stat_sum(., InHospMortality, "prop", 

1), 

      `Number of ICD-9-CM Diagnosis Codes per Patient, Median (IQR)` = 

paste0(readmit_quantiles[3], " [", readmit_quantiles[2], "-", 

readmit_quantiles[4], "]"), 

      `Primary Payment Method, n (%)` = "", 

      `Medicare` = stat_sum(., INSURANCE, "prop", "Medicare"), 

      `Private Insurance` = stat_sum(., INSURANCE, "prop", "Private"), 

      `Self-Pay` = stat_sum(., INSURANCE, "prop", "Self Pay"), 

      `Medicaid` = stat_sum(., INSURANCE, "prop", "Medicaid"), 

      `Other Public Assistance` = stat_sum(., INSURANCE, "prop", 

"Government") 

    ))  

     

 

# All results combined     

data.frame(colnames(sumtbl), 

       t(sumtbl[1,]), 

       t(sumtbl_readmit[1,]), 

       row.names = NULL) %>% write.table("clipboard") 

     

 

``` 


Figure 1A & 1B: Diagnosis Code Frequency

```{r} 

icd_cohort %>% count(ICD9_CODE)  %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>% 

  ggplot(aes(x=reorder(ICD9_CODE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("A", #"Frequency Plot of All Diagnoses Codes",  

          # subtitle = paste("(Including only codes with 1% prevalence or 

greater)\nn=", nrow(icd_cohort %>% count(ICD9_CODE)),  

          #                  " unique diagnoses, among",  

          #                  nrow(admit_pts), "patients") 

          ) +  

    ylab("Frequency") + xlab("Distinct (Unlabelled) ICD-9 Codes") + 

theme_minimal() + 

    theme(axis.text.x=element_blank(), text=element_text(size=15)) 

 

icd_descr <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 



 91 

 

icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  

  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>%  

  mutate(Prop = paste0(round(100*n / nrow(icd_cohort %>% 

distinct(SUBJECT_ID)), 1), '%')) %>%  

  ggplot(aes(x=reorder(SHORT_TITLE, -n), y=n, label=Prop)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("B", #"Frequency of the 15 Most Common Diagnoses" 

            ) +  

    ylab("Frequency") + xlab("ICD-9 Code") + theme_minimal() + 

    theme(axis.text.x=element_text(angle=60, vjust=0.9, hjust=0.8), 

text=element_text(size=15)) + 

    # geom_text(vjust=1.2, color="white", size=3.31, hjust=0.45) 

    geom_text(vjust=-0.9, angle=15) + ylim(c(0, 19000)) 

    # this is a really unfortunate x-axis, couldn't find a better angle or 

adjustment for the x-axis  

``` 


Figure 3: Correlation Matrix

```{r} 

cormat <- (icd_cohort %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x))  %>%  

  select(-SUBJECT_ID) %>%  

  cor()) 

 

cormat %>% corrplot::corrplot(type="upper", diag=F, order = "hclust", col = 

colorRampPalette(c("red","white", "blue"))(10), method = "color", tl.pos = 

"n") 

``` 


Figure 4: Highest Correlation Bar Graph

```{r} 

top10_corr_plot <- icd_cohort %>%  

  filter(!is.na(ICD9_CODE)) %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, 1)) %>%  

  select(-SUBJECT_ID) %>%  

  corr_cross(top=10, plot=F) 

 

top10_corr_plot <- top10_corr_plot %>%  mutate(group1 =  

                             paste0(substr(group1, 0, 3), ".", substr(group1, 

4, nchar(group1))), 

                           group2 =  

                             paste0(substr(group2, 0, 3), ".", substr(group2, 

4, nchar(group2)))) 

 

barplot <- top10_corr_plot %>% mutate(Pair = paste0(group1, ", ", group2)) 

%>%  

  ggplot(aes(x=reorder(Pair, corr), y=round(corr, 2))) + 



 92 

  geom_bar(stat='identity', fill="black", alpha=0.6) +  

  geom_text(aes(y =round(corr, 2)-0.04, label=round(corr, 2)), 

            color="white", alpha=0.75) +  

  coord_flip() + theme_minimal() + 

  theme(text=element_text(size=13.5)) + 

  ylab("Correlation Coefficient") + xlab("ICD-9 Diagnosis Code Pair") 

 

require(gridExtra) 

require(grid) 

 

corrtbl <- c(top10_corr_plot %>% pull(group1) %>% unique(), 

             t(t(top10_corr_plot %>% pull(group2) %>% unique()))) %>% 

unique() %>% data.frame(ICD9_CODE=.) %>% 

  merge(icd_descr %>% select(ICD9_CODE, SHORT_TITLE) %>%  

          mutate(ICD9_CODE = paste0(substr(ICD9_CODE, 0, 3), ".", 

substr(ICD9_CODE, 4, nchar(ICD9_CODE)))), by="ICD9_CODE", all.x=T) %>% 

arrange(ICD9_CODE) %>%  

  mutate(SHORT_TITLE = case_when(is.na(SHORT_TITLE) ~ "Digestive system 

complications NOS", 

                                 ICD9_CODE=="250.60" ~  "Diabetes (II) with 

neurological manifestations",  

                                 ICD9_CODE=="294.10" ~  "Dementia without 

behavioral disturbance", 

                                 ICD9_CODE=="403.90" ~  "Hypertensive chronic 

kidney disease, stage I-IV", 

                                 ICD9_CODE=="403.91" ~  "Hypertensive chronic 

kidney disease, stage V+", 

                                 ICD9_CODE=="585.9" ~  "Chronic kidney 

disease NOS", 

                                 TRUE ~ SHORT_TITLE)) %>% select(`ICD-9-CM 

Code`=ICD9_CODE, `Description`=SHORT_TITLE)  %>% tableGrob(rows = NULL) 

 

 

grid.arrange(barplot, 

             corrtbl, 

             nrow=1, 

             as.table=T) 

 

``` 


Appendix B: Unused Exporatory Analyses

My lazy calling of packages and data, so that analysis does not require

running all cleaning and EDA code above:

Precursor Dimension Reduction

Prior to the treelet cross-validation process, Dr. Carlson suggested fitting

PCA to evaluate a possible range of values for the K number of clusters

parameter to fit in the treelet cross-validation process. I thought it may be

interesting to similarly do some (similarly preliminary) agglomerative

hierarchical clustering to the data.

PCA Precursor


```{r} 



 93 

icd_pca <- cohort_full %>% select(starts_with("X")) %>% prcomp(center=T, 

scale=T) 

 

icd_pca_df <- data.frame(PC = 1:178, 

                         Var = icd_pca$sdev^2) %>%  

              mutate(PropVar = Var / nrow(.), 

                     CmltvPropVar = cumsum(PropVar)) 

 

icd_pca_df %>% ggplot(aes(x=PC, y=PropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Proportion of Variance Explained") + xlab("Principal Component") + 

  ggtitle("Proportion of Variance Explained by Individual Principal 

Component") 

 

icd_pca_df %>% ggplot(aes(x=PC, y=CmltvPropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Cumulative Proportion of Variance Explained") + xlab("Principal 

Component") + 

  ggtitle("Cumulative Proportion of Variance Explained by Principal 

Component") 

 

``` 


Preliminary Treelet

Full dendrogram of our treelet, not particularly useful/insightful but

thanfully it is simple and quick to fit our treelet, retaining results for

all levels

```{r, warning=F, message=F} 

# compute correlation matrix 

icd_cor <- cohort_full %>% select(starts_with("X")) %>% cor() 

 

# run treelet 

tt_results <- treelet::Run_JTree(icd_cor, nrow(icd_cor)-1, 1:nrow(icd_cor)-1) 

``` 


Treelet Identification


```{r} 

tt_results %>% str() 

``` 


Dendrogram Vizualization

```{r} 

# Converting the covariance matrix --> correlation matrix --> distance matrix 

  # currently simply for the highest level of the covariance matrix 

dist_mat <- as.dist( 

  1-cov2cor(tt_results$TreeCovs[[nrow(icd_cor)-1]]) 

  ) 



 94 

 

# Making the result easily plotted in a dendrogram 

  dendr <- dendro_data(hclust(dist_mat), type="rectangle") 

 

# Modifying the axis position of the labels slightly to reduce length of the 

final visual 

  dendr$segments[segment(dendr)$yend==0, "yend"] <- 

min(segment(dendr)[segment(dendr)$yend>0, "yend"])*0.95 

  dendr$labels$y <- min(segment(dendr)[segment(dendr)$yend>0, "yend"]) 

  dendr$labels$label <- stringr::str_replace(dendr$labels$label, "X", "") 

   

# Plot 

  ggplot() +  

    geom_segment(data=segment(dendr), aes(x=x, y=y, xend=xend, yend=yend)) +  

    geom_text(data=label(dendr), aes(x=x, y=y, label=label, hjust=0), size=3) 

+ 

    coord_flip() + scale_y_reverse(expand=c(0.2, 0)) +  

    theme(axis.line.y=element_blank(), 

          axis.ticks.y=element_blank(), 

          axis.text.y=element_blank(), 

          axis.title.y=element_blank(), 

          panel.background=element_rect(fill="white")) + 

    ggtitle("Example Dendrogram of All Data", subtitle = "Maximum Cut-Off 

Chosen Arbitrarily\nVisual and results incomplete, only included 

demonstratively") 

     

 

``` 


The above visualization is impossible to decipher, but (again solely for

current presentation and familiaring myself with the treelet function's

output structure), we can visualize the treelet for only the first 20

conjoinings/clusterings:


```{r, warning=F, message=F} 

# pick zposition of interest (i.e. cut-level) and take the covariance matrix 

from that level 

  # tt_results$Zpos[1:20,] 

 

# need to extract the numeric label to the actual diagnosis code 

  labels_df <- cov2cor(tt_results$TreeCovs[[ncol(icd_cor)-1]]) %>% colnames() 

%>% data.frame(code = ., label=1:178) 

   

  codes_mat <- tt_results$Zpos[1:20,] %>% as.data.frame() %>%  

    merge(labels_df, by.x="V1", by.y="label", all.x=T)  %>%  

    merge(labels_df, by.x="V2", by.y="label", all.x=T) %>%  

    select(CodeLab1=code.x, CodeLab2=code.y) %>% as.matrix() 

 

  "X99592" %in% codes_mat 

 

   

   

  dist_mat <- as.dist( 

    1 - cov2cor(tt_results$TreeCovs[[ncol(icd_cor)-1]]) %>% .[colnames(.) 

%in% codes_mat,colnames(.) %in% codes_mat] 



 95 

  ) 

 

dendr <- dendro_data(hclust(dist_mat), type="rectangle") 

 

dendr$segments[segment(dendr)$yend==0, "yend"] <- 

min(segment(dendr)[segment(dendr)$yend>0, "yend"])*0.95 

dendr$labels$y <- min(segment(dendr)[segment(dendr)$yend>0, "yend"]) 

dendr$labels$label <- stringr::str_replace(dendr$labels$label, "X", "") 

 

ggplot() +  

  geom_segment(data=segment(dendr), aes(x=x, y=y, xend=xend, yend=yend)) +  

  geom_text(data=label(dendr), aes(x=x, y=y, label=label, hjust=0), size=3) + 

  coord_flip() + scale_y_reverse(expand=c(0.2, 0)) +  

  theme(axis.line.y=element_blank(), 

        axis.ticks.y=element_blank(), 

        axis.text.y=element_blank(), 

        axis.title.y=element_blank(), 

        panel.background=element_rect(fill="white")) 

   

 

``` 


Trying to subset labels in the full dendrogram


```{r, warning=F, message=F} 

# compute correlation matrix 

icd_cor <- cohort_full %>% select(starts_with("X")) %>% cor() 

 

# run treelet 

tt_results <- treelet::Run_JTree(icd_cor, nrow(icd_cor)-1, 1:nrow(icd_cor)-1) 

 

# Converting the covariance matrix --> correlation matrix --> distance matrix 

  # currently simply for the highest level of the covariance matrix 

dist_mat <- as.dist( 

  1-cov2cor(tt_results$TreeCovs[[nrow(icd_cor)-1]]) 

  ) 

 

# Making the result easily plotted in a dendrogram 

  dendr <- dendro_data(hclust(dist_mat), type="rectangle") 

 

# Modifying the axis position of the labels slightly to reduce length of the 

final visual 

  dendr$segments[segment(dendr)$yend==0, "yend"] <- 

min(segment(dendr)[segment(dendr)$yend>0, "yend"])*0.95 

  dendr$labels$y <- min(segment(dendr)[segment(dendr)$yend>0, "yend"]) 

  dendr$labels[!(dendr$labels$label %in% codes_mat), "label"] <- "" 

  dendr$labels$label <- stringr::str_replace(dendr$labels$label, "X", "") 

 

# Plot 

  ggplot() +  

    geom_segment(data=segment(dendr), aes(x=x, y=y, xend=xend, yend=yend)) +  

    geom_text(data=label(dendr), aes(x=x, y=y, label=label, hjust=0), size=3) 

+ 

    coord_flip() + scale_y_reverse(expand=c(0.2, 0)) +  



 96 

    theme(axis.line.y=element_blank(), 

          axis.ticks.y=element_blank(), 

          axis.text.y=element_blank(), 

          axis.title.y=element_blank(), 

          panel.background=element_rect(fill="white")) + 

    ggtitle("Example Dendrogram of All Data", subtitle = "Maximum Cut-Off 

Chosen Arbitrarily\nVisual and results incomplete, only included 

demonstratively") 

     

 

``` 


Appendix B.2 R Code to Perform Treelet and GLM Fitting (incl. Cross-Validation)

title: "Treelet Transform: Identifing clusters of ICD-9 Diagnoses in a Boston

Trauma Center"

subtitle: "Data Analysis: Treelet & GLM Fitting"

author: "Dominic DiSanto\n Master's Thesis"

date: "Updated 9/20/2020"

output:

 html_document:

 keep_md: true

 toc: true

 toc_depth: '3'

 code_folding: show

Preparation

Libraries

```{r, message=F, warning=FALSE} 

library(magrittr) # Ceci n'est pas une %>%, loaded via dplyr also but liked 

to include for transparency  

library(dplyr) # General data management, cleaning (admittedly I switch 

between Base R and tidyverse as I code, somewhat stream-of-consciousness ly) 

library(ggplot2) # Visualization 

library(tidyr) # pivot functions for transposing data to/from long and wide 

library(icd) # used in validity check of diagnoses codes 

library(lubridate) # used in evaluating dates, most notably in date of death  

library(lares) # corr_cross function used to identify the top correlations 

within a data frame/design matrix 



 97 

library(corrplot) # used for visualizing correlation matrices 

library(here) # Used for data-calls/ease of file path storage usage  

library(treelet) # Used for treelet analysis  

library(ggdendro) # Used for dendrogram visualization of Treelet analysis 

library(gghighlight) # Used in cross-validation visualizations 

library(MASS) # Used for glm.nb negative binomial regression function  

require(stringr) # Some regex matching for filtering in the visualiation of 

p-values & coefficients from GLM's  

require(pROC) 

 

select <- dplyr::select # Masking the MASS select function, somethign to do 

with ridge regression I think, in favor of dplyr's `select()` function for 

wrangling 

 

`%nin%` <- Negate(`%in%`) # Creating the inverse function of %in%, simpler 

than working with the !(...) negating logic syntax and saves me the extra 

parenthetical blocks 

``` 


File Path & Import

Loading data via `here` package


```{r} 

here() 

 

cohort_full <-  read.csv(here("Data", "cohort_full.csv")) 

colnames(cohort_full) <- cohort_full %>% colnames() %>% gsub(pattern = "X", 

"", x = .) 

# cohort_full %>% head() 

 

diagnosis_labs <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 

``` 


Treelet Cross-Validation Function

Defining the function that fits the treelet, and retains the characteristics

of:

- The "best K-basis" or the optimal L|K parameter for each K

- The retained K features for each given K

- All p-1 basis matrices from the fit treelet


```{r} 

treelet_process <- function(x_mat, cov_mat){ 

 

  tt_results <- tt_results <- treelet::Run_JTree(cov_mat, nrow(cov_mat)-1, 

1:nrow(cov_mat)-1) # Running the `treelet` package's implementation and 

retaining all (1) to (p-1) results 

  energy <- list() # empty list to store energy scores 

 

      for(L in 1:length(tt_results$basis)) { # repeating this for all basis 

matrices identified in the treelet above 

         



 98 

        basisk <- tt_results$basis[[L]] # storing the specific basis 

        w_x <- t(basisk) %*% t(x_mat) # applying the basis matrix to the 

original input matri of diagnosis codes  

     

          num_vec <- rowSums(abs(w_x)^2) # numerator vector -> calculation of 

the p-1 values for the numerator of the energy score calculation 

          den_vec <- x_mat^2 %>% colSums() # similar to the above line but 

the denominator calculation, column summed over all n observations 

              names(num_vec) <- NULL # removing dimension names o fmatrix 

              names(den_vec) <- NULL 

     

        energy[[L]] <- matrix(c(1:ncol(x_mat), num_vec / den_vec), ncol=2, 

dimnames = list(NULL, c("W_i", "Energy"))) # generating energy scores 

    } 

 

  # Creating blank objects   

    optimal_L <- matrix(c(1:length(energy), rep(NA, length(energy))), 

nrow=length(energy), dimnames = list(NULL, c("K", "Optimal L"))) # empty list 

set 

    retained_fts <- rep(list(rep(list(rep(NA, length(energy))), 

length(energy))), length(energy)) # empty list set 

 

  # Reordering the energy matrices in descending order of normed energy score 

    energy_ordered <- lapply(1:length(energy), function(L) 

energy[[L]][energy[[L]][,2] %>% order(decreasing = T),]) # sorting all p-1 

energy vectors in descending order 

 

  # Identifying optimal L 

    optimal_L <- matrix(c(1:length(energy_ordered), # identifying the basis 

matrix with the highest energy summation for every given K 

                      sapply(1:length(energy_ordered),  

                             function(K) which.max(sapply(1:length(energy),  

                                                          function(x) 

sum(energy_ordered[[x]][1:K,2]) 

                                                          ) 

                                                   ))), 

                      ncol=2, dimnames=list(NULL, c("GivenK", 

"OptimalBasis_L"))) 

 

  # And retained fts 

    retained_fts <- lapply(1:length(energy_ordered), 

                            function(x) 

energy_ordered[[optimal_L[x,2]]][optimal_L[1:x,1], 1]) # then the retained 

features of the basis that represent the K highest energy score columns 

 

  return(list(basis_mats=tt_results$basis, 

              optimal_params=optimal_L, 

              retained_fts=retained_fts)) 

} 

``` 


Cross-Validation Data Split

 99

Splitting the data into a cross-validation set (80%) and hold-out test set

(20%). Within the 80% cross-validation set, I then create a new variable

identifying the five folds to be used in the cross-validation process.

The length of stay and mortality models use the same cohort (the same

inclusion criteria), so the same data splits are used for both of these

analyses Our readmission cohort is limited only to patients who were

readmitted or who survived out to one year withour readmission, so the data

split is conduced separately for this subset of patients

Mortality & Length of Stay


```{r} 

set.seed(2824) 

 

hold_out_pts <- sample(1:nrow(cohort_full), size=nrow(cohort_full)/5, replace 

= F) 

 

holdout_test <- cohort_full[hold_out_pts,] 

# nrow(holdout_test) 

 

cv_data <- cohort_full[setdiff(1:nrow(cohort_full), hold_out_pts),] 

# nrow(cv_data) 

 

(nrow(holdout_test) + nrow(cv_data)) == nrow(cohort_full) 

 

cv_data$fold <- sample(c(rep(1, ceiling(nrow(cv_data)/5)), 

                         rep(2, ceiling(nrow(cv_data)/5)), 

                         rep(3, ceiling(nrow(cv_data)/5)), 

                         rep(4, ceiling(nrow(cv_data)/5)), 

                         rep(5, ceiling(nrow(cv_data)/5)) 

                         ), 

                       size=nrow(cv_data), replace=F 

                       ) 

 

table(cv_data$fold) 

cat("\n") 

cat("Printing frequency of \"Self-Pay\" insurane category across CV 

folds...\n") 

count <- cv_data %>% filter(INSURANCE=="Self Pay") %>% count() 

cat(paste0("Full analytic data (n=", nrow(cv_data), "): " ,  count, " (", 

round(100*count/nrow(cv_data), 2) ,"%)\n")) 

 

for(i in 1:max(cv_data$fold)){ 

  count <- cv_data %>% filter(fold==i) %>% filter(INSURANCE=="Self Pay") %>% 

count() 

  cat(paste0("Fold ", i, ": ", count, " (", round(100*count/nrow(cv_data %>% 

filter(fold==i)), 2) ,"%)\n")) 

} 

``` 


Hospital Readmission


```{r} 

set.seed(70221) 

 



 100 

cohort_readmit <- cohort_full %>% filter(!is.na(Yr1Readmit)) 

 

hold_out_readmit <- sample(1:nrow(cohort_readmit), 

size=nrow(cohort_readmit)/5, replace = F) 

 

holdout_test_readmit <- cohort_readmit[hold_out_readmit,] 

# nrow(holdout_test) 

 

cv_data_readmit <- cohort_readmit[setdiff(1:nrow(cohort_readmit), 

hold_out_readmit),] 

# nrow(cv_data) 

 

(nrow(holdout_test_readmit) + nrow(cv_data_readmit)) == nrow(cohort_readmit) 

 

cv_data_readmit$fold <- sample(c(rep(1, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(2, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(3, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(4, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(5, ceiling(nrow(cv_data_readmit)/5)) 

                         ), 

                       size=nrow(cv_data_readmit), replace=F 

                       ) 

 

table(cv_data_readmit$fold) 

 

cat("\n") 

cat("Printing frequency of \"Self-Pay\" insurane category across CV 

folds...\n") 

count <- cv_data_readmit %>% filter(INSURANCE=="Self Pay") %>% count() 

cat(paste0("Full analytic data (n=", nrow(cv_data_readmit), "): " ,  count, " 

(", round(100*count/nrow(cv_data_readmit), 2) ,"%)\n")) 

 

for(i in 1:max(cv_data_readmit$fold)){ 

  count <- cv_data_readmit %>% filter(fold==i) %>% filter(INSURANCE=="Self 

Pay") %>% count() 

  cat(paste0("Fold ", i, ": ", count, " (", 

round(100*count/nrow(cv_data_readmit %>% filter(fold==i)), 2) ,"%)\n")) 

} 

``` 


Treelet Cross-Valdiation and Results Export

For each of our outcomes, similar processes are followed, which include:

1) Fitting the treelet model, using the previously defined `treelet_process`

function, for each training fold

2) Then for K=1,2,...p-1 in this identified treelet:

 a) Fitting the appropriate regression model in the training data using

the K dimensions and corresponding optimal Lth basis

 b) Using this fit model to predict probability of outcome (or outcome,

in the length of stay negative binomial model)

 c) Assess test fit (Briers & AUC for mortality, readmission; MSE for

length of stay)

 d) Export a data frame that contains test error for each K parameter and

fold, and the average test Brier Score and AUC (so 177 observations (for 1 to

 101

p-1 values of K), and 13 columns, a K value, test-fold specific Brier Score

and AUC values, and the two averages)

*A procedural note, the three outcome specific processes below include the

same `brier`, `auc`, and `performance_df` named objects, so that each chunk

writes over the results of the previous (not saving the resulting R objects

for each section, which are large and tend to obstruct my R session), but

each chunk exports the results in its final step.*

In-Hospital Mortality


```{r} 

 

brier <- list(c(), c(), c(), c(), c()) 

auc <- list(c(), c(), c(), c(), c()) 

 

 

for (fold_no in 1:max(cv_data$fold)) { 

   

  train_cv <- cv_data[cv_data$fold!=fold_no, ] 

  test_cv <- cv_data[cv_data$fold==fold_no, ] 

     

  train_xmat <- train_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  train_cov <- cov(train_xmat) 

 

  test_xmat <- test_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

   

  tt_fold <- treelet_process(x_mat = train_xmat, cov_mat = train_cov) 

   

  for(K in 1:length(tt_fold$basis_mats)){ 

        # basis_l <- tt_fold$basis_mats[[K]][,tt_fold$retained_fts[[K]]] 

        basis_no <- tt_fold$optimal_params[i,2] 

        basis_l <- tt_fold$basis_mats[[basis_no]][,tt_fold$retained_fts[[K]]] 

     

        k_mat <- train_xmat %*%  basis_l 

         

        train_glm_df <- train_cv %>% select(InHospMortality, GENDER, Age, 

INSURANCE) %>% cbind(., k_mat) 

        if(K==1) colnames(train_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column  

        # train_glm <- glm(train_cv$InHospMortality ~ train_cv$GENDER + 

train_cv$Age + as.factor(train_cv$INSURANCE) + train_cv$HospitalLOS + k_mat , 

        #                  family = "binomial") 

         

        train_glm <- glm(InHospMortality ~ . , data=train_glm_df, 

                         family = "binomial") 

         

        test_kmat <- test_xmat %*% basis_l 

        test_glm_df <- test_cv %>% select(InHospMortality, GENDER, Age, 

INSURANCE) %>% cbind(., test_kmat) 

        if(K==1) colnames(test_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column 



 102 

         

        phat <- predict(object = train_glm, newdata = test_glm_df, 

type="response")  

       

        brier[[fold_no]][K] <- sum((phat - test_cv$InHospMortality)^2) / 

nrow(test_cv) 

        auc[[fold_no]][K] <- pROC::roc(test_cv$InHospMortality, phat)$auc 

         

    } 

} 

 

 

performance_df <- data.frame(K=c(1:length(brier[[1]])),  

                             BS_F1 = brier[[1]], 

                             BS_F2 = brier[[2]], 

                             BS_F3 = brier[[3]], 

                             BS_F4 = brier[[4]], 

                             BS_F5 = brier[[5]], 

                             AUC_F1 = auc[[1]], 

                             AUC_F2 = auc[[2]], 

                             AUC_F3 = auc[[3]], 

                             AUC_F4 = auc[[4]], 

                             AUC_F5 = auc[[5]])  

 

performance_df2 <- performance_df %>% mutate(BS_TestAvg =  

                            rowMeans(select(performance_df, 

starts_with("BS"))), 

                          AUC_TestAvg = 

                            rowMeans(select(performance_df, 

starts_with("AUC")))) 

 

write.csv(performance_df2, 

here("Results/MortalityModel_CVPerformance_NoLOS_NewKLCode.csv"), row.names = 

F) 

 

``` 


Hospital Readmission


```{r} 

brier <- list(c(), c(), c(), c(), c()) 

auc <- list(c(), c(), c(), c(), c()) 

 

 

for (fold_no in 1:max(cv_data_readmit$fold)) { 

   

  train_cv <- cv_data_readmit[cv_data_readmit$fold!=fold_no, ] 

  test_cv <- cv_data_readmit[cv_data_readmit$fold==fold_no, ]  

     

  train_xmat <- train_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  train_cov <- cov(train_xmat) 

 



 103 

  test_xmat <- test_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

   

  tt_fold <- treelet_process(x_mat = train_xmat, cov_mat = train_cov) 

   

  for(K in 1:length(tt_fold$basis_mats)){ 

        # basis_l <- tt_fold$basis_mats[[K]][,tt_fold$retained_fts[[K]]] 

        basis_no <- tt_fold$optimal_params[K,2] 

        basis_l <- tt_fold$basis_mats[[basis_no]][,tt_fold$retained_fts[[K]]] 

 

        k_mat <- train_xmat %*%  basis_l 

         

        train_glm_df <- train_cv %>% select(Yr1Readmit, GENDER, Age, 

INSURANCE, HospitalLOS) %>% cbind(., k_mat) 

        if(K==1) colnames(train_glm_df)[6] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column  

        # train_glm <- glm(train_cv$InHospMortality ~ train_cv$GENDER + 

train_cv$Age + as.factor(train_cv$INSURANCE) + train_cv$HospitalLOS + k_mat , 

        #                  family = "binomial") 

         

        train_glm <- glm(Yr1Readmit ~ . , data=train_glm_df, 

                         family = "binomial") 

         

        test_kmat <- test_xmat %*% basis_l 

        test_glm_df <- test_cv %>% select(Yr1Readmit, GENDER, Age, INSURANCE, 

HospitalLOS) %>% cbind(., test_kmat) 

        if(K==1) colnames(test_glm_df)[6] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column 

         

        phat <- predict(object = train_glm, newdata = test_glm_df, 

type="response")  

       

        brier[[fold_no]][K] <- sum((phat - test_cv$Yr1Readmit)^2) / 

nrow(test_cv) 

        auc[[fold_no]][K] <- pROC::roc(test_cv$Yr1Readmit, phat)$auc 

         

    } 

} 

 

performance_df_readmit <- data.frame(K=c(1:length(brier[[1]])),  

                             BS_F1 = brier[[1]], 

                             BS_F2 = brier[[2]], 

                             BS_F3 = brier[[3]], 

                             BS_F4 = brier[[4]], 

                             BS_F5 = brier[[5]], 

                             AUC_F1 = auc[[1]], 

                             AUC_F2 = auc[[2]], 

                             AUC_F3 = auc[[3]], 

                             AUC_F4 = auc[[4]], 

                             AUC_F5 = auc[[5]])  

 

performance_df2_readmit <- performance_df_readmit %>% mutate(BS_TestAvg =  

                            rowMeans(select(performance_df_readmit, 

starts_with("BS"))), 

                          AUC_TestAvg = 

                            rowMeans(select(performance_df_readmit, 

starts_with("AUC")))) 



 104 

 

 

write.csv(performance_df2_readmit, 

here("Results/ReadmissionModel_CVPerformance_NewKLCode.csv"), row.names = F) 

 

 

``` 


Hospital Length of Stay

Cross-validation data splits are the same as the mortality data


```{r} 

 

MSE <- list(c(), c(), c(), c(), c()) 

 

# fold_no = 5 

 

for (fold_no in 1:max(cv_data$fold)) { 

   

  train_cv <- cv_data[cv_data$fold!=fold_no, ] 

  test_cv <- cv_data[cv_data$fold==fold_no, ] 

     

  train_xmat <- train_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  train_cov <- cov(train_xmat) 

 

  test_xmat <- test_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

   

  tt_fold <- treelet_process(x_mat = train_xmat, cov_mat = train_cov) 

   

  for(K in 1:length(tt_fold$basis_mats)){ 

        # basis_l <- tt_fold$basis_mats[[K]][,tt_fold$retained_fts[[K]]] 

        basis_no <- tt_fold$optimal_params[i,2] 

        basis_l <- tt_fold$basis_mats[[basis_no]][,tt_fold$retained_fts[[K]]] 

         

        k_mat <- train_xmat %*%  basis_l 

         

        train_glm_df <- train_cv %>% select(HospitalLOS, GENDER, Age, 

INSURANCE) %>% cbind(., k_mat) 

        if(K==1) colnames(train_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column  

        # train_glm <- glm(train_cv$InHospMortality ~ train_cv$GENDER + 

train_cv$Age + as.factor(train_cv$INSURANCE) + train_cv$HospitalLOS + k_mat , 

        #                  family = "binomial") 

         

        train_glm <- glm.nb(HospitalLOS ~ . , data=train_glm_df) 

         

        test_kmat <- test_xmat %*% basis_l 

        test_glm_df <- test_cv %>% select(HospitalLOS, GENDER, Age, 

INSURANCE) %>% cbind(., test_kmat) 

        if(K==1) colnames(test_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column 

         



 105 

        yhat <- predict(object = train_glm, newdata = test_glm_df, 

type="response")  

       

        MSE[[fold_no]][K] <- sum((yhat - test_cv$HospitalLOS)^2) / 

nrow(test_cv) 

         

         

    } 

} 

 

 

nb_MSE_df <- data.frame(K=c(1:length(MSE[[1]])),  

                             MSE_F1 = MSE[[1]], 

                             MSE_F2 = MSE[[2]], 

                             MSE_F3 = MSE[[3]], 

                             MSE_F4 = MSE[[4]], 

                             MSE_F5 = MSE[[5]])  

 

nb_MSE_df2 <- nb_MSE_df %>% mutate(MSE_TestAvg =  

                            rowMeans(select(nb_MSE_df, starts_with("MSE")))) 

 

write.csv(nb_MSE_df2, here("Results/LOSModel_MSE_DF_newKLCode.csv"), 

row.names = F) 

 

``` 


Tables & Figures

Having fit the treelet models above, we can now explore the results of the

cross-validation processes. Each outcome section below includes chunks that:

1) Plot the cross-validation error for each K parameter (`Cross-Validation

Figures`) and identify the K and L|K parameter

2) Export the cluster membership and loadings

3) Build the final model on the full cross-validation set and assess test

fit, including object-specific figures to be included in thesis manuscript

Mortality


```{r} 

mortality_performance <- 

read.csv(here("Results/Treelet_KLOpt_WithinCVLoop/MortalityModel_CVPerformanc

e_NoLOS_NewKLCode.csv")) 

 

k_1sd <- 

mortality_performance[mortality_performance$BS_TestAvg<=(min(mortality_perfor

mance$BS_TestAvg) + sd(mortality_performance$BS_TestAvg)), ] %>% .[1,1] 

 

mortality_performance <- mortality_performance %>% mutate(ParamFlag =  

                                   case_when( 

                                     BS_TestAvg==min(BS_TestAvg) ~ "Minimizes 

Briers Score", 

                                     K==k_1sd ~ "More Sparse Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 

 



 106 

``` 


Cross-Validation Figure


```{r, warning=F, message=F} 

ggplot(mortality_performance, aes(x=K, y=BS_TestAvg, color = 

as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("In-Hospital Mortality Model") +  

  xlab("Value of Parameter K") + ylab("Average Briers Score (Across 5 Test 

Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) +  

  theme(legend.position=c(0.75, 0.75), text = element_text(size=13.5)) 

 

         

# which.min(mortality_performance$BS_TestAvg) 

#  

# # AUC Graph if of any interest  

# ggplot(mortality_performance, aes(x=K, y=AUC_TestAvg)) + 

#   geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

#   theme_minimal() + ggtitle("In-Hospital Mortality Model") + 

#   xlab("Value of Parameter K") + ylab("Average AUC (Across 5 Test Folds)") 

 

``` 


Cluster Membership/Loading Export


```{r} 

# Subsetting the highlighted K parameters above 

  mortality_performance[!is.na(mortality_performance$ParamFlag),]  

  # opt_Ks_mortality <-  

 

# Refitting the treelet process in our training data to pull optimal L's for 

our highlighted K's 

  cv_xmat <- cv_data  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  cv_cov <- cov(cv_xmat) 

 

  tt_fnc_mortality <- treelet_process(cv_xmat, cv_cov) 

 

  tt_fnc_mortality$optimal_params[c(123, 174),] 

  tt_fnc_mortality$retained_fts[[123]] 

   

  # For our 1-standard deviation parameter, pulling K-features from the Lth 

basis matrix 

  final_basis_mortality <- 

tt_fnc_mortality$basis_mats[[57]][,tt_fnc_mortality$retained_fts[[123]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<123) 

 

  labels_df <- cv_cov %>% colnames() %>% 

    data.frame(code = ., label=1:ncol(cv_cov)) 

 

  loading_mat_mortality <- merge(final_basis_mortality, labels_df, 



 107 

                                 all.x=T, by.y="label", by.x="LabelIndex") 

 

   

  holder <- sapply(2:(ncol(loading_mat_mortality)-2), function(x) 

matrix(c(loading_mat_mortality[loading_mat_mortality[,x]!=0, "code"], 

                                                                         

loading_mat_mortality[loading_mat_mortality[,x]!=0, x]),  

                                                                         

ncol=2))   

   

  # Lazily using a for loop to transform to an exportable csv 

  i = 1 

  reformat_loadingmat <- as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2) 

   

  for (i in 2:length(holder)){ 

  reformat_loadingmat <- rbind(reformat_loadingmat,  

                               as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2)) 

  } 

   

   

  write.csv(loading_mat_mortality, 

            here("Results/LoadingMatrix_Mortality.csv")) 

   

  # Pulling in labels for the full matrix 

  reformat_loadingmat_labs <- reformat_loadingmat %>% 

mutate(Order=row_number()) %>%   

    merge(diagnosis_labs %>% select(ICD9_CODE, SHORT_TITLE), by.x="Code", 

by.y="ICD9_CODE", all.x=T) %>% arrange(Order) %>% select(-Order) 

   

  write.csv(reformat_loadingmat_labs, 

            here("Results/LoadingMatrix_Mortality_Redux.csv"), na = "") 

   

 

   

``` 


Building Final Model and Assessting Test Fit

Using 1-Standard Deviation Parameter, building the logistic regression model

on our the 80% cross-validation subset


```{r} 

final_basis <- 

tt_fnc_mortality$basis_mats[[57]][,tt_fnc_mortality$retained_fts[[123]]] 

 

cv_xmat_transform <- cv_xmat %*% final_basis 

 

cv_predictors <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality) 

%>% cbind(., cv_xmat_transform) %>% as.data.frame() 



 108 

 

dim(cv_predictors) 

 

train_glm <- glm(InHospMortality ~ . , data=cv_predictors, family = 

"binomial") 

# train_glm %>% summary() 

# confint(train_glm, parm = 1:7) 

 

test_xmat <- holdout_test  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

test_xmat_transform <- test_xmat %*% final_basis 

test_predictors <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

 

phat <- predict(object = train_glm, newdata = test_predictors, 

type="response")  

       

brier_test <- sum((phat - test_predictors$InHospMortality)^2) / 

nrow(holdout_test) 

auc_test <- pROC::roc(test_predictors$InHospMortality, phat)$auc 

 

# Exporting full model estimates  

ci95s <- confint.default(train_glm) # Using Wald approximation for confidence 

intervals, profile likelihood using confint() from MASS takes minutes to run 

(when it isn't crashing my R session)  

 

cbind(train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(Estimate) %>% round(2), 

      CI=paste0("[", (ci95s %>% round(2))[,1], ", ", (ci95s %>% 

round(2))[,2], "]"), 

      train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(`Pr(>|z|)`) %>% round(4)) %>% write.table("clipboard") 

``` 


Graphing P-values/Coefficients


```{r} 

# Height = -log(PValue); Color=Coefficient 

train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

mutate(Covariate=rownames(.), Order=row_number()) %>% 

select(PValue=`Pr(>|z|)`, everything()) %>%  

  filter(stringr::str_detect(Covariate, "[0-9]")) %>% arrange(desc(Estimate)) 

%>% mutate(Label = case_when(row_number()<=5 ~ str_replace_all(Covariate, 

"`", ""), 

                                                                                                           

TRUE ~ "")) %>% arrange(Order) %>% 

  ggplot(aes(x=reorder(Covariate, Order), y=-log(PValue), fill=Estimate)) + 

    geom_bar(stat="identity") + theme_minimal() + 

  geom_text(aes(label=Label, group=Label), 

            hjust=-0.45, vjust=0.95) + 

  theme(axis.text.x = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 



 109 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.9, 0.65)) +  

  labs(caption="Inset text notes feature numbers of five highest 

coefficients") + 

  xlab ("Treelet Feature") + ylab("-log(P-Value)") + 

  scale_fill_continuous(type="viridis", name="Coefficient", direction=-1)  

 

``` 


Graphing Phat Distributions


```{r} 

phat_df <- as.data.frame(cbind("EventProb" = phat, 

"ObsOut"=test_predictors$InHospMortality)) 

 

phat_df %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of In-Hospital Mortality")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Mortality", "Mortality Event"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of In-Hospital 

Mortality") 

 

 

``` 


Fitting Model Without ICD Codes


```{r} 

cv_predictors_noicd <- cv_predictors %>% select(-matches("[0-9]")) 

 

train_glm_noicd <- glm(InHospMortality ~ . , data=cv_predictors_noicd, family 

= "binomial") 

#train_glm_noicd %>% summary() 

# confint(train_glm, parm = 1:7) 

 

test_predictors_noicd <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality)  

 

phat_noicd <- predict(object = train_glm_noicd, newdata = 

test_predictors_noicd, type="response")  

       

brier_test_noicd <- sum((phat_noicd - 

test_predictors_noicd$InHospMortality)^2) / nrow(test_predictors_noicd) 

auc_test_noicd <- pROC::roc(test_predictors_noicd$InHospMortality, 

phat_noicd)$auc 

 

# Exporting full model estimates  

ci95s_noicd <- confint.default(train_glm_noicd) # Using Wald approximation 

for confidence intervals, profile likelihood using confint() from MASS takes 

minutes to run (when it isn't crashing my R session)  



 110 

 

cbind(train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(Estimate) %>% round(3), 

      CI=paste0("[", (ci95s_noicd %>% round(3))[,1], ", ", (ci95s_noicd %>% 

round(3))[,2], "]"), 

      train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(`Pr(>|z|)`) %>% round(4)) #%>% write.table("clipboard") 

 

``` 


Fitting with Most Significant Features

```{r} 

# Pulling the five most significant  

# train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

arrange(`Pr(>|z|)`) %>% tibble::rownames_to_column() %>% 

filter(str_detect(rowname,"[0-9]")) 

 

top5_tt_ftrs <- train_glm %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% arrange(`Pr(>|z|)`) %>%  

  tibble::rownames_to_column() %>% filter(str_detect(rowname, "[0-9]")) %>% 

filter(row_number()<=5) %>% pull(rowname) %>%  

  str_replace_all("`", "") 

 

top5_train_df <- cv_predictors %>% dplyr::select(GENDER, Age, INSURANCE, 

InHospMortality, `1`, `15`, `13`, `2`, `7`) 

 

top5_glm <- glm(InHospMortality ~ ., data=top5_train_df, family="binomial") 

 

test_predictors_top5 <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality) %>% cbind(., test_xmat_transform) %>% as.data.frame() %>%  

  select(GENDER, Age, INSURANCE, InHospMortality, all_of(top5_tt_ftrs)) 

 

phat_top5 <- predict(object = top5_glm, newdata = test_predictors_top5, 

type="response")  

       

brier_test_noicd <- sum((phat_top5 - test_predictors_top5$InHospMortality)^2) 

/ nrow(test_predictors_top5) 

auc_test_noicd <- pROC::roc(test_predictors_top5$InHospMortality, 

phat_top5)$auc 

 

 

``` 


Retained ICD-9-CM Does in 5 Features

```{r} 

top5_tt_ftrs_cols <- sapply(top5_tt_ftrs, function(x) paste0("V", x))  

names(top5_tt_ftrs_cols) <- NULL 

 

loading_mat_mortality %>% select(!!top5_tt_ftrs_cols, code) %>%  

  filter(V1!=0 | V15!=0 | V13!=0 | V2!=0 | V7!=0) %>% pull(code) %>% unique() 

%>% length() 

``` 


Model of ICD Codes (No treelet features)

 111

```{r} 

retained_codes <- loading_mat_mortality$code %>% unique() 

length(retained_codes) 

 

retain_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality, 

!!retained_codes) 

 

retain_train_glm <- glm(InHospMortality ~ . , data=retain_traindf, family = 

"binomial") 

 

retain_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, !!retained_codes) 

retain_phat <- predict(object = retain_train_glm, newdata = retain_test_df, 

type="response")  

       

sum((retain_phat - retain_test_df$InHospMortality)^2) / nrow(retain_test_df) 

  pROC::roc(retain_test_df$InHospMortality, retain_phat)$auc 

 

   

# Logistic Regression of All Codes 

all_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality, 

matches("[0-9]$")) 

all_train_glm <- glm(InHospMortality ~ . , data=all_traindf, family = 

"binomial") 

all_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, matches("[0-9]$")) 

all_phat <- predict(object = all_train_glm, newdata = all_test_df, 

type="response")  

       

sum((all_phat - all_test_df$InHospMortality)^2) / nrow(retain_test_df) 

pROC::roc(all_test_df$InHospMortality, all_phat)$auc 

 

``` 


Comparative Treelet ROC Curves


```{r, warning=F, message=F} 

 

roc_obj_noicd <- pROC::roc(test_predictors_noicd$InHospMortality, phat_noicd) 

roc_obj <- pROC::roc(test_predictors$InHospMortality, phat) 

roc_top5 <- pROC::roc(test_predictors_top5$InHospMortality, phat_top5) 

 

pROC::ggroc(list(roc_obj, roc_top5, roc_obj_noicd), lwd=1.4) +  

  theme_minimal() + 

  xlab("Specificity") + ylab("Sensitivity") + 

  theme(axis.text.x = element_blank(), 

        # panel.grid.major = element_blank(), 

        # panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.6, 0.2)) +  

  scale_color_brewer(type="qual", palette=2, 



 112 

                     name="Model", 

                     labels = c("Including All ICD-9-CM Treelet Features 

(AUC=0.858)", 

                                "Including 5 Most Significant ICD-9-

CM\nTreelet Features (AUC=0.830)", 

                                "Excluding ICD-9-CM Treelet Features 

(AUC=0.666)")) + 

  ggtitle("Comparative ROC Curves of Mortality Predictions in Test Data") 

 

 

``` 


Probability Distributions of No ICD Model


```{r} 

phat_df_noicd_readmit <- as.data.frame(cbind("EventProb" = 

phat_readmit_noicd, "ObsOut"=test_predictors_readmit_noicd$Yr1Readmit)) 

 

phat_df_noicd_readmit %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.14, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of In-Hospital Mortality")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Mortality", "Mortality Event"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of Hospital Re-

admission") 

``` 


Readmission

Figures of Model Validation


```{r} 

readmit_performance <- 

read.csv(here("Results/Treelet_KLOpt_WithinCVLoop/ReadmissionModel_CVPerforma

nce_NewKLCode.csv")) 

# readmit_performance <- performance_df2_readmit 

readmit_performance <- readmit_performance %>% mutate(BS_TestAvg =  

                            rowMeans(select(readmit_performance, 

starts_with("BS_F"))), 

                          AUC_TestAvg = 

                            rowMeans(select(readmit_performance, 

starts_with("AUC_F")))) 

 

k_1sd_readmit <- 

readmit_performance[readmit_performance$BS_TestAvg<=(min(readmit_performance$

BS_TestAvg) + sd(readmit_performance$BS_TestAvg)), ] %>% .[1,1] 

 

readmit_performance <- readmit_performance %>% mutate(ParamFlag =  

                                   case_when( 

                                     BS_TestAvg==min(BS_TestAvg) ~ "Minimizes 

Briers Score", 



 113 

                                     K==k_1sd_readmit ~ "More Sparse 

Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 

 

ggplot(readmit_performance, aes(x=K, y=BS_TestAvg, 

color=as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("Hospital Readmission Model") +  

  xlab("Value of Parameter K") + ylab("Average Briers Score (Across 5 Test 

Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) + 

  theme(legend.position=c(0.65, 0.75), text = element_text(size=13.5)) 

 

readmit_performance %>% mutate(ParamFlag =  

                                 case_when( 

                                   is.na(ParamFlag) ~ "Unspecified", 

                                   TRUE ~ ParamFlag 

                                 )) %>%  

  ggplot(aes(x=K, y=BS_TestAvg)) + 

  geom_line(lwd=1.1, alpha=0.33) + geom_point(aes(x=K, y=BS_TestAvg, 

color=as.factor(ParamFlag)), size=2.5, inherit.aes = F) + 

  geom_point(size=1, alpha=0.2) +  

  theme_minimal() + ggtitle("Hospital Readmission Model") +  

  xlab("Value of Parameter K") + ylab("Average Briers Score (Across 5 Test 

Folds)") +  

  labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6, limits = c("Minimizes Briers 

Score", "More Sparse Parameter")) + 

  theme(legend.position=c(0.78, 0.25), text = element_text(size=13.5))  

 

# AUC CV Plot if of any interest later 

# ggplot(readmit_performance, aes(x=K, y=AUC_TestAvg)) + 

#   geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

#   theme_minimal() + ggtitle("Readmission Mortality Model") + 

#   xlab("Value of Parameter K") + ylab("Average AUC (Across 5 Test Folds)") 

 

``` 


Cluster Membership/Loading Export


```{r} 

readmit_performance [!is.na(readmit_performance $ParamFlag),] 

 

cv_readmit_xmat <- cv_data_readmit  %>% select(matches("0|1|2|4|5|6|9")) %>% 

select(-Yr1Readmit) %>% as.matrix() 

cv_readmit_cov <- cov(cv_readmit_xmat) 

 

tt_fnc_readmit <- treelet_process(cv_readmit_xmat, cv_readmit_cov) 

 

tt_fnc_readmit$optimal_params[c(readmit_performance 

[!is.na(readmit_performance $ParamFlag),] %>% pull(K)),] 

 

# Matrix of loadings  



 114 

 # For our 1-standard deviation parameter, pulling K-features from the Lth 

basis matrix 

  final_basis_readmit <- 

tt_fnc_readmit$basis_mats[[177]][,tt_fnc_readmit$retained_fts[[30]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<30) 

 

   

  labels_df <- cv_readmit_cov %>% colnames() %>% 

    data.frame(code = ., label=1:ncol(cv_readmit_cov)) 

 

  loading_mat_readmit <- merge(final_basis_readmit, labels_df, 

                                 all.x=T, by.y="label", by.x="LabelIndex") 

 

   

  holder <- sapply(2:(ncol(loading_mat_readmit)-2), function(x) 

matrix(c(loading_mat_readmit[loading_mat_readmit[,x]!=0, "code"], 

                                                                         

loading_mat_readmit[loading_mat_readmit[,x]!=0, x]),  

                                                                         

ncol=2))   

   

  # Lazily using a for loop to transform to an exportable csv 

  i = 1 

  reformat_loadingmat_readmit <- as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2) 

   

  for (i in 2:length(holder)){ 

  reformat_loadingmat_readmit <- rbind(reformat_loadingmat_readmit,  

                               as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2)) 

  } 

   

   

  reformat_loadingmat_readmit_labs <- reformat_loadingmat_readmit %>% 

mutate(Order=row_number()) %>%   

    merge(diagnosis_labs %>% select(ICD9_CODE, SHORT_TITLE), by.x="Code", 

by.y="ICD9_CODE", all.x=T) %>% arrange(Order) %>% select(-Order) 

   

   

  write.csv(loading_mat_readmit, 

            here("Results/LoadingMatrix_Readmit.csv")) 

   

  write.csv(reformat_loadingmat_readmit_labs, 

            here("Results/LoadingMatrix_Readmit_Redux.csv"), na = "") 

   

 

``` 


 115

Building Final Model & Assessing Test Fit

Using 1-Standard Deviation Parameter, building the logistic regression model

on our the 80% cross-validation subset


```{r} 

final_basis_readmit <- 

tt_fnc_readmit$basis_mats[[177]][,tt_fnc_readmit$retained_fts[[30]]] 

 

cv_xmat_transform_readmit <- cv_readmit_xmat %*% final_basis_readmit 

 

cv_predictors_readmit <- cv_data_readmit %>% select(GENDER, Age, INSURANCE, 

Yr1Readmit) %>% cbind(., cv_xmat_transform_readmit) %>% as.data.frame() 

 

train_glm_readmit <- glm(Yr1Readmit ~ . , data=cv_predictors_readmit, family 

= "binomial") 

# train_glm_readmit %>% summary() 

# confint(train_glm, parm = 1:7) 

 

 

test_xmat_readmit <- holdout_test_readmit  %>% 

select(matches("0|1|2|4|5|6|9")) %>% select(-Yr1Readmit) %>% as.matrix() 

test_xmat_transform <- test_xmat_readmit %*% final_basis_readmit 

 

test_predictors_readmit <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

 

phat_readmit <- predict(object = train_glm_readmit, newdata = 

test_predictors_readmit, type="response")  

       

brier_test <- sum((phat_readmit - test_predictors_readmit$Yr1Readmit)^2) / 

nrow(test_predictors_readmit) 

auc_test <- pROC::roc(test_predictors_readmit$Yr1Readmit, phat_readmit)$auc 

brier_test 

auc_test 

 

# Exporting full model estimates  

ci95s_readmit <- confint.default(train_glm_readmit) # Using Wald 

approximation for confidence intervals, profile likelihood using confint() 

from MASS takes minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_readmit %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(Estimate) %>% round(2), 

      CI=paste0("[", (ci95s_readmit %>% round(2))[,1], ", ", (ci95s_readmit 

%>% round(2))[,2], "]"), 

      train_glm_readmit %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(`Pr(>|z|)`) %>% round(4)) %>% write.table("clipboard") 

``` 


Graphing P-values/Coefficients

```{r} 

train_glm_readmit %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

mutate(Covariate=rownames(.), Order=row_number()) %>% 

select(PValue=`Pr(>|z|)`, everything()) %>%  

  filter(stringr::str_detect(Covariate, "[0-9]")) %>% arrange(desc(Estimate)) 

%>% mutate(Label = case_when(row_number()<=5 ~ str_replace_all(Covariate, 

"`", ""), 



 116 

                                                                                                           

TRUE ~ "")) %>% arrange(Order) %>% 

  ggplot(aes(x=reorder(Covariate, Order), y=-log(PValue), fill=Estimate)) + 

    geom_bar(stat="identity") + theme_minimal() + 

  geom_text(aes(label=Label, group=Label), 

            hjust=-0.9, vjust=0.95) + 

  theme(axis.text.x = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.9, 0.65)) +  

  labs(caption="Inset text notes feature numbers of five highest 

coefficients") + 

  xlab ("Treelet Feature") + ylab("-log(P-Value)") + 

  scale_fill_continuous(type="viridis", name="Coefficient", direction=-1)  

 

``` 


Graphing Phat Distributions


```{r} 

phat_readmit_df <- as.data.frame(cbind("EventProb" = phat_readmit, 

"ObsOut"=test_predictors_readmit$Yr1Readmit)) 

 

phat_readmit_df %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of Unplanned Hospital 

Readmission")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Readmission", "Readmission"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of Unplanned Hospital 

Readmission") 

 

 

``` 


Fitting Model Without ICD Codes


```{r} 

cv_predictors_readmit_noicd <- cv_predictors_readmit %>% select(-

matches("^[0-9]")) 

 

train_glm_readmit_noicd <- glm(Yr1Readmit ~ . , 

data=cv_predictors_readmit_noicd, family = "binomial") 

 

test_predictors_readmit_noicd <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit)  

 



 117 

phat_readmit_noicd <- predict(object = train_glm_readmit_noicd, newdata = 

test_predictors_readmit_noicd, type="response")  

       

brier_test_noicd <- sum((phat_readmit_noicd - 

test_predictors_readmit_noicd$Yr1Readmit)^2) / 

nrow(test_predictors_readmit_noicd) 

auc_test_noicd <- pROC::roc(test_predictors_readmit_noicd$Yr1Readmit, 

phat_readmit_noicd)$auc 

 

# Exporting full model estimates  

ci95s_readmit_noicd <- confint.default(train_glm_readmit_noicd) # Using Wald 

approximation for confidence intervals, profile likelihood using confint() 

from MASS takes minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_readmit_noicd %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% select(Estimate) %>% round(3), 

      CI=paste0("[", (ci95s_readmit_noicd %>% round(3))[,1], ", ", 

(ci95s_readmit_noicd %>% round(3))[,2], "]"), 

      train_glm_readmit_noicd %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% select(`Pr(>|z|)`) %>% round(4)) #%>% 

write.table("clipboard") 

 

``` 


Fitting with Most Significant Features

```{r} 

# Pulling the five most significant  

# train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

arrange(`Pr(>|z|)`) %>% tibble::rownames_to_column() %>% 

filter(str_detect(rowname,"[0-9]")) 

 

top5_tt_ftrs_readmit <- train_glm_readmit %>% summary() %>% .$coefficients 

%>% as.data.frame() %>% arrange(`Pr(>|z|)`) %>%  

  tibble::rownames_to_column() %>% filter(str_detect(rowname, "[0-9]")) %>% 

filter(row_number()<=5) %>% pull(rowname) %>%  

  str_replace_all("`", "") 

 

top5_train_df_readmit <- cv_predictors_readmit %>% dplyr::select(GENDER, Age, 

INSURANCE, Yr1Readmit, all_of(top5_tt_ftrs_readmit)) 

 

top5_glm_readmit <- glm(Yr1Readmit ~ ., data=top5_train_df_readmit, 

family="binomial") 

 

test_predictors_top5_readmit <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

%>%  

  select(GENDER, Age, INSURANCE, Yr1Readmit, all_of(top5_tt_ftrs_readmit)) 

 

phat_top5_readmit <- predict(object = top5_glm_readmit, newdata = 

test_predictors_top5_readmit, type="response")  

       

brier_test_noicd <- sum((phat_top5_readmit - 

test_predictors_top5_readmit$Yr1Readmit)^2) / 

nrow(test_predictors_top5_readmit) 

auc_test_noicd <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_top5_readmit)$auc 

 



 118 

 

``` 


Retained ICD-9-CM Does in 5 Features

```{r} 

top5_tt_ftrs_readmit_cols <- sapply(top5_tt_ftrs_readmit, function(x) 

paste0("V", x))  

names(top5_tt_ftrs_readmit_cols) <- NULL 

 

loading_mat_readmit %>% select(!!top5_tt_ftrs_readmit_cols, code) %>%  

  filter(V1!=0 | V2!=0 | V4!=0 | V10!=0 | V3!=0) %>% pull(code) %>% unique() 

%>% length() 

``` 


Model of ICD Codes (No treelet features)


```{r} 

retained_codes <- loading_mat_readmit$code %>% unique() 

length(retained_codes) 

 

readmit_retain_traindf <- cv_data_readmit %>% select(GENDER, Age, INSURANCE, 

Yr1Readmit, !!retained_codes) 

 

readmit_retain_train_glm <- glm(Yr1Readmit ~ . , data=readmit_retain_traindf, 

family = "binomial") 

 

readmit_retain_test_df <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit, !!retained_codes) 

readmit_retain_phat <- predict(object = readmit_retain_train_glm, newdata = 

readmit_retain_test_df, type="response")  

       

sum((readmit_retain_phat - readmit_retain_test_df$Yr1Readmit)^2) / 

nrow(readmit_retain_test_df) 

  pROC::roc(readmit_retain_test_df$Yr1Readmit, readmit_retain_phat)$auc 

 

   

# Logistic Regression of All Codes 

all_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality, 

matches("[0-9]$")) 

all_train_glm <- glm(InHospMortality ~ . , data=all_traindf, family = 

"binomial") 

all_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, matches("[0-9]$")) 

all_phat <- predict(object = all_train_glm, newdata = all_test_df, 

type="response")  

       

sum((all_phat - all_test_df$InHospMortality)^2) / nrow(retain_test_df) 

pROC::roc(all_test_df$InHospMortality, all_phat)$auc 

 

``` 


Comparative ROC


```{r, warning=F, message=F} 

 



 119 

roc_obj_noicd_readmit <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_readmit_noicd) 

roc_obj_readmit <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_readmit) 

roc_top5_readmit <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_top5_readmit) 

 

pROC::ggroc(list(roc_obj_readmit, roc_top5_readmit, roc_obj_noicd_readmit), 

lwd=1.4) +  

  theme_minimal() + 

  xlab("Specificity") + ylab("Sensitivity") + 

  theme(axis.text.x = element_blank(), 

        # panel.grid.major = element_blank(), 

        # panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.64, 0.2)) +  

  scale_color_brewer(type="qual", palette=2, 

                     name="Model", 

                     labels = c("Including All ICD-9-CM Treelet Features 

(AUC=0.661)", 

                                "Including 5 Most Significant ICD-9-CM 

Treelet Features (AUC = 0.658)", 

                                "Excluding ICD-9-CM Treelet Features  

(AUC=0.574)")) + 

  ggtitle("Comparative ROC Curves of Hospital Re-admission Predictions in 

Test Data") 

 

 

``` 


Probability Distributions of No ICD Model


```{r} 

phat_df_noicd <- as.data.frame(cbind("EventProb" = phat_noicd, 

"ObsOut"=test_predictors_noicd$InHospMortality)) 

 

phat_df_noicd %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of In-Hospital Mortality")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Mortality", "Mortality Event"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of In-Hospital 

Mortality") 

``` 


 120

Length of Stay

Figures of Model Validation


```{r} 

los_performance <- 

read.csv(here("Results/Treelet_KLOpt_WithinCVLoop/LOSModel_MSE_DF_NewKLCode.c

sv")) 

# los_performance <- 

read.csv(here("Results/Treelet_KKOpt_WithinCVLoop/LOSModel_MSE_DF.csv")) 

 

k_1sd_los <- 

los_performance[los_performance$MSE_TestAvg<=(min(los_performance$MSE_TestAvg

) + sd(los_performance$MSE_TestAvg)), ] %>% .[1,1] 

 

los_performance <- los_performance %>% mutate(ParamFlag =  

                                   case_when( 

                                     MSE_TestAvg==min(MSE_TestAvg) ~ 

"Minimizes MSE", 

                                     K==k_1sd_los ~ "More Sparse Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 

 

 

ggplot(los_performance, aes(x=K, y=MSE_TestAvg, color = 

as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("Hospital Length of Stay Model") +  

  xlab("Value of Parameter K") + ylab("Average Mean-Squared Error\n(Across 5 

Test Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) +  

  theme(legend.position=c(0.75, 0.75), text = element_text(size=13.5)) 

 

``` 


Cluster Membership/Loading Export


```{r} 

los_performance [!is.na(los_performance $ParamFlag),] 

 

cv_los_xmat <- cv_data  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

cv_los_cov <- cov(cv_los_xmat) 

 

tt_fnc_los <- treelet_process(cv_los_xmat, cv_los_cov) 

 

tt_fnc_los$optimal_params[c(46, 115),] 

tt_fnc_los$retained_fts[[46]] 

 

# Matrix of loadings  

 # For our 1-standard deviation parameter, pulling K-features from the Lth 

basis matrix 



 121 

  final_basis_los <- 

tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<46) 

 

  labels_df <- cv_los_cov %>% colnames() %>% 

    data.frame(code = ., label=1:ncol(cv_los_cov)) 

 

  loading_mat_los <- merge(final_basis_los, labels_df, 

                                 all.x=T, by.y="label", by.x="LabelIndex") 

 

   

  holder <- sapply(2:(ncol(loading_mat_los)-2), function(x) 

matrix(c(loading_mat_los[loading_mat_los[,x]!=0, "code"], 

                                                                     

loading_mat_los[loading_mat_los[,x]!=0, x]), 

                                                                   ncol=2))   

   

  # Lazily using a for loop to transform to an exportable csv 

  i = 1 

  reformat_loadingmat_los <- as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2) 

   

  for (i in 2:length(holder)){ 

  reformat_loadingmat_los <- rbind(reformat_loadingmat_los,  

                               as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2)) 

  } 

   

  reformat_loadingmat_los_labs <- reformat_loadingmat_los %>% 

mutate(Order=row_number()) %>%   

    merge(diagnosis_labs %>% select(ICD9_CODE, SHORT_TITLE), by.x="Code", 

by.y="ICD9_CODE", all.x=T) %>% arrange(Order) %>% select(-Order) 

   

  length(unique(reformat_loadingmat_los$Code)) 

   

  write.csv(loading_mat_los, 

            here("Results/LoadingMatrix_LOS.csv")) 

   

  write.csv(reformat_loadingmat_los_labs, 

            here("Results/LoadingMatrix_LOS_Redux.csv"), na = "") 

   

# Number of non-zero features 

  # More Sparse  

    final_basis_los <- 

tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<46) 

  # "Optimal" 



 122 

    opt_basis_los <- 

tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[115]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<116) 

 

``` 


Building Final Model and Assessting Test Fit

First fitting the Poisson model to assess overdispersion using the resulting

deviance and χ^2 distribution.


```{r} 

final_basis <- tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] 

 

cv_xmat_transform <- cv_los_xmat %*% final_basis 

 

 

cv_predictors <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS) %>% 

cbind(., cv_xmat_transform) %>% as.data.frame() 

 

poisson_los <- glm(HospitalLOS ~ . , data=cv_predictors, family="poisson") 

poisson_los$deviance / poisson_los$df.residual # Values near 1 indicate 

evenly dispersed data (mean ~= variance), our value of 5.78 indicates 

overdispersion (variance ~=5.8*mean) 

 

pchisq(poisson_los$deviance, df=poisson_los$df.residual, lower.tail = F) 

  # Unsurprisingly significant 

 

``` 


Now fitting the negative binomial model, again using the 1-Standard Deviation

Parameter, on our the 80% cross-validation subset


```{r} 

final_basis <- tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] 

 

cv_xmat_transform <- cv_los_xmat %*% final_basis 

 

cv_predictors <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS) %>% 

cbind(., cv_xmat_transform) %>% as.data.frame() 

 

dim(cv_predictors) 

 

train_glm_los <- glm.nb(HospitalLOS ~ . , data=cv_predictors) 

# train_glm_los %>% summary() 

# train_glm_los %>% str() 

 

# confint(train_glm_los, parm = 1:7) 

 



 123 

test_xmat <- holdout_test  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

test_xmat_transform <- test_xmat %*% final_basis 

test_predictors <- holdout_test %>% select(GENDER, Age, INSURANCE, 

HospitalLOS) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

 

yhat <- predict(object = train_glm_los, newdata = test_predictors, 

type="response")  

 

(MSE <- sum((yhat - test_predictors$HospitalLOS)^2) / nrow(holdout_test)) %>% 

sqrt() 

 

# Exporting full model estimates  

ci95s_los <- confint.default(train_glm_los) # Using Wald approximation for 

confidence intervals, profile likelihood using confint() from MASS takes 

minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_los %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(Estimate) %>% round(2), 

      CI=paste0("[", (ci95s_los %>% round(2))[,1], ", ", (ci95s_los %>% 

round(2))[,2], "]"), 

      train_glm_los %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(`Pr(>|z|)`) %>% round(4)) %>% write.table("clipboard") 

``` 


Plotting residuals

```{r} 

residuals <- yhat - test_predictors$HospitalLOS 

 

resid_note <- deparse(bquote("Residuals = "* hat(y) * "-y")) 

resid_note_2 <- "Residuals = Predicted - Observed" 

 

data.frame(Residuals=residuals) %>% ggplot(aes(x=Residuals)) + geom_density() 

+ 

  xlim(c(-40, 40)) + theme_minimal() + ylab("Density)") + 

  # annotate(geom="text", x=-35, y=0.035, label=resid_note, parse=T) +  

  annotate(geom="text", x=-21.8, y=0.08, label=resid_note_2) 

 

qqnorm(residuals) 

qqline(residuals) 

``` 


Graphing P-Value/Coefficients

```{r} 

train_glm_los %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

mutate(Covariate=rownames(.), Order=row_number()) %>% 

select(PValue=`Pr(>|z|)`, everything()) %>%  

  filter(stringr::str_detect(Covariate, "[0-9]")) %>% arrange(desc(Estimate)) 

%>% mutate(Label = case_when(row_number()<=5 ~ str_replace_all(Covariate, 

"`", ""), 

                                                                                                           

TRUE ~ "")) %>% arrange(Order) %>% 

  ggplot(aes(x=reorder(Covariate, Order), y=-log(PValue), fill=Estimate)) + 

    geom_bar(stat="identity") + theme_minimal() + 

  geom_text(aes(label=Label, group=Label), 

            hjust=-0.35, vjust=0.95) + 



 124 

  theme(axis.text.x = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.9, 0.65)) +  

  labs(caption="Inset text notes feature numbers of five highest 

coefficients") + 

  xlab ("Treelet Feature") + ylab("-log(P-Value)") + 

  scale_fill_continuous(type="viridis", name="Coefficient", direction=-1)  

``` 


LOS Density Curve

```{r} 

# Total Cohort 

cohort_full %>% ggplot(aes(x=HospitalLOS)) + 

  geom_density(lwd=1.3) + theme_minimal() +  

  xlab("Length of Stay (Days)") + ylab("Density") + 

  xlim(c(0, 150)) + 

  geom_text(label="Figure truncated at x=150 for legibility.\n n=12 patients 

with values >150 days not included in this visual", x=100, y=0.015) + 

  NULL 

 

(cohort_full %>% arrange(desc(HospitalLOS)) %>% filter(HospitalLOS>=150) %>% 

pull(HospitalLOS)) %>% length() 

 

mean(cohort_full$HospitalLOS) 

sd(cohort_full$HospitalLOS) 

 

# # CV Training Cohort 

# cv_data %>% ggplot(aes(x=HospitalLOS)) + 

#   geom_density() + theme_minimal() 

#  

# mean(cv_data$HospitalLOS) 

# sd(cv_data$HospitalLOS) 

 

``` 


Diagnositics


```{r} 

# Poisson 

los_poisson <- glm(HospitalLOS ~ ., data=cv_predictors, family="poisson") 

los_poisson %>% summary() 

 

# Negative Binomial # using cv_predictors, the resulting `los_nb` object is 

the same as the training glm fit earlier, simply renamed not to overwrite 

that object  

los_nb <- glm.nb(HospitalLOS ~ . , data=cv_predictors) 

los_nb %>% summary() 

 

 



 125 

1/train_glm_los$theta 

 

llik_diff <- -2*(logLik(los_poisson) - logLik(los_nb)) 

 

pchisq(llik_diff, df=1, lower.tail = F) 

 

summary(cohort_full$HospitalLOS) 

 

pois_nb_comp <- data.frame(PoissonYhat = predict(object=los_poisson, 

newdata=test_predictors), 

                           NegBinYhat = predict(object=los_nb, 

newdata=test_predictors)) 

 

pois_nb_comp %>% ggplot(aes(x=NegBinYhat, y=PoissonYhat)) + 

  geom_point() + theme_minimal() + xlab("Negative Binomial Predictions") + 

  ylab("Poisson Predictions") 

 

``` 


Scatterplot of Observed vs Predictive


```{r} 

yhat_df <- as.data.frame(cbind("PredictedLOS" = yhat, 

"ObservedLOS"=test_predictors$HospitalLOS)) 

 

 

#  

# inset <- yhat_df %>% ggplot(aes(x=ObservedLOS, y=PredictedLOS, 

color=as.factor(PredictedLOS>ObservedLOS))) + 

#   geom_point(alpha=0.3) + theme_minimal() + 

#   theme(legend.position="none", text=element_text(size=13.5)) + 

scale_color_manual(values=c("lightblue", "violetred4")) + 

#   xlim(c(0, 100)) + ylim(c(0, 50)) +  

#   # ylab("Predicted Length of Stay") + xlab("Observed Length of Stay")  +  

#   # scale_color_manual(name="Prediction Error Direction",  

#   #                     labels=c("Predicted LOS > Observed LOS", "Predicted 

LOS < Observed LOS"), 

#   #                     values=c("lightblue", "violetred4")) + 

#   # ggtitle("Scatter Plot of Predicted and Observed Length of Stay Values") 

#   NULL 

#  

#  

# inset_tibble <- tibble(y=25, x=200, 

#                        plot=list(inset)) 

 

yhat_df %>% ggplot(aes(x=ObservedLOS, y=PredictedLOS, 

color=as.factor(PredictedLOS>ObservedLOS))) + 

  geom_point(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Predicted Length of Stay") + xlab("Observed Length of Stay")  + 

  scale_color_manual(name="Prediction Error Direction", 

                      labels=c("Observed LOS > Predicted LOS", "Observed LOS 

< Predicted LOS"), 

                      values=c("dodgerblue", "violetred4")) + 

  ggtitle("Scatter Plot of Predicted and Observed Length of Stay Values") + 

  # geom_text(x=125, y=30, label="Correlation of Predicted and\nObserved 

Length of Stay Values = 0.393") +  



 126 

  NULL  

 

``` 


Residuals and Number of Diagnoses


```{r} 

num_diagnoses_df <- cbind(yhat_df, 

                          NumDiagnoses = holdout_test %>% 

select(matches("^[0-9]")) %>% rowSums()) %>%  

                    mutate(Resid=PredictedLOS-ObservedLOS, 

                           absResid = abs(PredictedLOS-ObservedLOS)) 

 

num_diagnoses_df %>% ggplot(aes(group=NumDiagnoses, y=Resid)) + 

  geom_boxplot() + theme_minimal() + xlab("Number of ICD Diagnoses per 

Patient") + 

  ylab("Predicted LOS - Observed LOS") 

 

num_diagnoses_df %>% ggplot(aes(x=NumDiagnoses, y=absResid)) + 

  geom_point() + theme_minimal() + xlab("Number of ICD Diagnoses per 

Patient") + 

  ylab("|Predicted LOS - Observed LOS|") 

 

num_diagnoses_df %>% ggplot(aes(x=ObservedLOS, y=Resid)) + 

  geom_point() + theme_minimal() + xlab("Observed Length of Stay") + 

  ylab("Predicted LOS - Observed LOS") 

 

``` 


Distribution of Observed and Predicted LOS Values


```{r} 

los_dens_df <- rbind(yhat_df %>% select(LOS=PredictedLOS) %>% 

mutate(Type="Predicted"), 

                     yhat_df %>% select(LOS=ObservedLOS) %>% 

mutate(Type="Observed")) 

 

los_dens_df %>% ggplot(aes(x=LOS, fill=as.factor(Type))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Length of Stay Value (Days)")  +  

  scale_fill_manual(name="Type of Data",  

                      labels=c("Observed", "Predicted"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted & Observed Length of Stay Values") + 

  xlim(c(0, 75)) 

 

 

``` 


Fitting Model Without ICD Codes

 127

```{r} 

cv_predictors_noicd <- cv_predictors %>% select(-matches("[0-9]")) 

 

train_glm_noicd <- glm.nb(HospitalLOS ~ . , data=cv_predictors_noicd) 

#train_glm_noicd %>% summary() 

# confint(train_glm, parm = 1:7) 

 

test_predictors_noicd <- holdout_test %>% select(GENDER, Age, INSURANCE, 

HospitalLOS)  

 

yhat_noicd <- predict(object = train_glm_noicd, newdata = 

test_predictors_noicd, type="response")  

       

(MSE <- sum((yhat_noicd - test_predictors_noicd$HospitalLOS)^2) / 

nrow(test_predictors_noicd)) %>% sqrt() 

 

# Exporting full model estimates  

ci95s_noicd <- confint.default(train_glm_noicd) # Using Wald approximation 

for confidence intervals, profile likelihood using confint() from MASS takes 

minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(Estimate) %>% round(3), 

      CI=paste0("[", (ci95s_noicd %>% round(3))[,1], ", ", (ci95s_noicd %>% 

round(3))[,2], "]"), 

      train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(`Pr(>|z|)`) %>% round(4)) #%>% write.table("clipboard") 

 

``` 


Fitting with Most Significant Features

```{r} 

# Pulling the five most significant  

# train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

arrange(`Pr(>|z|)`) %>% tibble::rownames_to_column() %>% 

filter(str_detect(rowname,"[0-9]")) 

 

top_tt_ftrs_los <- train_glm_los %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% arrange(`Pr(>|z|)`) %>%  

  tibble::rownames_to_column() %>% filter(str_detect(rowname, "[0-9]")) %>% 

pull(rowname) %>%  

  str_replace_all("`", "") 

 

for (i in 1:46){ 

  los_subdf <- cv_predictors %>% select(GENDER, Age, INSURANCE, HospitalLOS, 

all_of(top_tt_ftrs_los[1:i])) 

  sub_los_glm <- glm.nb(HospitalLOS ~ ., data=los_subdf) 

   

  los_test_subdf <- holdout_test %>% select(GENDER, Age, INSURANCE, 

HospitalLOS) %>% cbind(., test_xmat_transform) %>% as.data.frame() %>%  

  select(GENDER, Age, INSURANCE, HospitalLOS, all_of(top_tt_ftrs_los[1:i])) 

   

  yhat_sub <- predict(object = sub_los_glm, newdata = los_test_subdf, 

type="response")  

       

  RMSE_sub <- (MSE <- sum((yhat_sub - los_test_subdf$HospitalLOS)^2) / 

nrow(los_test_subdf)) %>% sqrt() 



 128 

 

  if(i ==1) RMSE_vec <- RMSE_sub else{ 

  RMSE_vec <- c(RMSE_vec, RMSE_sub) 

  } 

 

} 

 

data.frame(RMSE = RMSE_vec, FeaturesRetained = 1:46)  %>%  

  ggplot(aes(x=FeaturesRetained, y=RMSE_vec)) + 

  geom_point() + geom_line() + 

  theme_minimal() + 

  ylab("Root MSE") + xlab("Number of Treelet Features Retained") 

   

 

``` 


Retained ICD-9-CM Does in 5 Features

```{r} 

top_tt_ftrs_los_cols <- sapply(top_tt_ftrs_los, function(x) paste0("V", x))  

%>% .[1:5] 

names(top_tt_ftrs_los_cols) <- NULL 

 

loading_mat_los %>% select(!!top_tt_ftrs_los_cols, code) %>%  

  filter(V1!=0 | V12!=0 | V14!=0 | V20!=0 | V15!=0) %>% pull(code) %>% 

unique() %>% length() 

``` 


Model of ICD Codes (No Treelet Features)


```{r} 

retained_codes <- loading_mat_los$code %>% unique() 

length(retained_codes) 

retain_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS, 

!!retained_codes) 

retain_train_glm <- glm.nb(HospitalLOS ~ . , data=retain_traindf) 

retain_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, !!retained_codes) 

retain_yhat <- predict(object = retain_train_glm, newdata = retain_test_df, 

type="response")  

       

(sum((retain_yhat - retain_test_df$InHospMortality)^2) / 

nrow(retain_test_df)) %>% sqrt() 

 

# And trying all codes 

retainall_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS, 

matches("^[0-9]")) 

retainall_train_glm <- glm.nb(HospitalLOS ~ . , data=retainall_traindf) 

retainall_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, matches("^[0-9]")) 

retainall_yhat <- predict(object = retainall_train_glm, newdata = 

retainall_test_df, type="response")  

       

(sum((retainall_yhat - retainall_test_df$InHospMortality)^2) / 

nrow(retainall_test_df)) %>% sqrt() 

 



 129 

``` 


Prediction Scatter Plot of No ICD Model


```{r} 

yhat_noicd_df <- as.data.frame(cbind("PredictedLOS" = yhat_noicd, 

"ObservedLOS"=test_predictors_noicd$HospitalLOS)) 

 

 

yhat_noicd_df %>% ggplot(aes(x=ObservedLOS, y=PredictedLOS, 

color=as.factor(PredictedLOS>ObservedLOS))) + 

  geom_point(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Predicted Length of Stay") + xlab("Observed Length of Stay")  + 

  scale_color_manual(name="Prediction Error Direction", 

                      labels=c("Predicted LOS > Observed LOS", "Predicted LOS 

< Observed LOS"), 

                      values=c("dodgerblue", "violetred4")) + 

  ggtitle("Scatter Plot of Predicted and Observed Length of Stay Values") + 

  # geom_text(x=125, y=30, label="Correlation of Predicted and\nObserved 

Length of Stay Values = 0.393") +  

  NULL  

``` 


Appendix Analysis: Comparative Models

Exploratory analysis to see how the results of the treelet modelling above

compares with the application of PCA, lasso, and possibly the use of the

Charlson and/or Elixhauser comorbidity indexes as a predictor


```{r} 

require(caret) 

 

cv5 <- caret::trainControl(method="cv",  

                    number=5) 

 

cv_data %>% head() 

cv_data_readmit %>% head() 

``` 


Mortality

LASSO


```{r} 

lasso_mortality <-  caret::train(as.factor(InHospMortality) ~ ., 

                   data = cv_data %>% select(matches("^[0-9]"), 

InHospMortality, Age, GENDER, INSURANCE),  

                   method="glmnet", 

                   metric="AUC", 



 130 

                   trControl=cv5) 

 

phat_lasso <- predict(object = lasso_mortality, newdata = holdout_test, 

type="prob") 

 

((lasso_mortality$finalModel %>% 

coef(lasso_mortality$bestTune$lambda))[,1]!=0) %>% sum() 

(lasso_mortality$finalModel %>% coef(lasso_mortality$bestTune$lambda))[,1] 

%>% .[.==0] 

  # Uses 176 of 184 covariates (excludes 250.00, 780.39, 274.9, 714.0, 585.9, 

441.2, 491.21, 785.0, and Private Insurance) 

 

(lasso_auc_mortality <- pROC::auc(holdout_test$InHospMortality, 

phat_lasso[,1]) %>% round(4)) 

 

lasso_mortality$results  

 

``` 


PCA

```{r} 

pca_results <- prcomp(cv_data %>% select(matches("^[0-9]")), center = T, 

scale. = T) 

 

(pca_mortality_df <- data.frame(PC = 1:178, 

                         Var = pca_results$sdev^2) %>%  

              mutate(PropVar = Var / nrow(.), 

                     CmltvPropVar = cumsum(PropVar))) 

 

 

pca_mortality_df %>% ggplot(aes(x=PC, y=PropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Proportion of Variance Explained") + xlab("Principal Component") + 

  ggtitle("Proportion of Variance Explained by Individual Principal 

Component") 

 

 

pca_mortality_df %>% ggplot(aes(x=PC, y=CmltvPropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Cumulative Proportion of Variance Explained") + xlab("Principal 

Component") + 

  ggtitle("Cumulative Proportion of Variance Explained by Principal 

Component") 

 

 

 

n_retain <- pca_mortality_df %>% filter(CmltvPropVar<=0.5) %>% nrow() 

 

rotate_icd <- (cv_data %>% select(matches("^[0-9]")) %>% as.matrix())  %*%  

pca_results$rotation[,1:n_retain] 

 

 

pca_glm <- glm(InHospMortality ~ . , 

               data = cv_data %>% select(InHospMortality, Age, GENDER, 

INSURANCE) %>% cbind(., rotate_icd), 

               family="binomial")    



 131 

 

 

test_rotate <- (holdout_test %>% select(matches("^[0-9]")) %>% as.matrix())  

%*%  pca_results$rotation[,1:n_retain] 

   

   

test_pcadf <- holdout_test %>% select(InHospMortality, Age, GENDER, 

INSURANCE) %>% cbind(., test_rotate) 

 

test_pca_phat <- predict(newdata = test_pcadf, object=pca_glm, 

type="response") 

 

(pca_auc_mortality <- pROC::auc(predict = test_pca_phat, response = 

holdout_test$InHospMortality) %>% round(4)) 

   

``` 


Charlson & Elixhauser

Re-importing ICD data (to include all Charlson & Elixhauser codes)


```{r} 

all_diags <- read.csv(here("/Data/Raw/DIAGNOSES_ICD.csv")) 

 

icd_train <- cv_data %>% select(SUBJECT_ID) %>% merge(., all_diags %>% 

select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

icd_test <- holdout_test %>% select(SUBJECT_ID) %>% merge(., all_diags %>% 

select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

 

# Using Charlson/Elixhauser group membership 

  mortality_charlson_train <- icd_train %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., cv_data %>% select(InHospMortality, Age, GENDER, 

INSURANCE)) 

  mortality_elix_train <- icd_train %>% comorbid_elix() %>% as.data.frame() 

%>% cbind(., cv_data %>% select(InHospMortality, Age, GENDER, INSURANCE)) 

   

  mortality_charlson_test <- icd_test %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., holdout_test %>% select(InHospMortality, Age, 

GENDER, INSURANCE)) 

  mortality_elix_test <- icd_test %>% comorbid_elix() %>% as.data.frame() %>% 

cbind(., holdout_test %>% select(InHospMortality, Age, GENDER, INSURANCE)) 

   

  charlson_glm <- glm(InHospMortality ~ ., data=mortality_charlson_train, 

family = "binomial") 

  elix_glm <- glm(InHospMortality ~ ., data=mortality_elix_train, family = 

"binomial") 

 

  elix_phat <- predict(object = elix_glm, newdata = mortality_elix_test) 

  elix_auc <- pROC::auc(predict = elix_phat, 

response=holdout_test$InHospMortality) %>% round(4) 

   

  charlson_phat <- predict(object = charlson_glm, newdata = 

mortality_charlson_test) 

  charlson_auc <- pROC::auc(predict = charlson_phat, 

response=holdout_test$InHospMortality)[1] %>% round(4) 

 



 132 

 

# Using "score" (sum of group memberships, i.e. number of groups with a 

diagnosis) 

  charlson_score_train <- icd_train %>% comorbid_charlson() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

  elix_score_train <- icd_train %>% comorbid_elix() %>% as.data.frame() %>% 

mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

 

  charlson_score_test <- icd_test %>% comorbid_charlson() %>% as.data.frame() 

%>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

  elix_score_test <- icd_test %>% comorbid_elix() %>% as.data.frame() %>% 

mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

 

  charlson_score_glm <- glm(InHospMortality ~ ., data=charlson_score_train, 

family = "binomial") 

  elix_score_glm <- glm(InHospMortality ~ ., data=elix_score_train, family = 

"binomial") 

 

  elix_score_phat <- predict(object = elix_score_glm, newdata = 

elix_score_test) 

  elix_score_auc <- pROC::auc(predict = elix_score_phat, 

response=holdout_test$InHospMortality) %>% round(4) 

   

  charlson_score_phat <- predict(object = charlson_score_glm, newdata = 

charlson_score_test) 

  charlson_score_auc <- pROC::auc(predict = charlson_score_phat, 

response=holdout_test$InHospMortality)[1] %>% round(4) 

``` 



```{r} 

# Printout Results 

cat("Elixhauser Categorical AUC: ", elix_auc, "\n") 

cat("Charlson Categorical AUC: ", charlson_auc, "\n") 

cat("Elixhauser Score AUC: ", elix_score_auc, "\n") 

cat("Charlson Score AUC: ", charlson_score_auc, "\n") 

cat("PCA AUC (retaining", n_retain, "PC's):", pca_auc_mortality, "\n") 

cat("LASSO AUC:", lasso_auc_mortality, "\n") 

 

``` 


Readmission

LASSO


```{r} 

glmnet_readmit <-  train(as.factor(Yr1Readmit) ~ ., 



 133 

                   data = cv_data_readmit %>% select(matches("^[0-9]"), 

Yr1Readmit, Age, GENDER, INSURANCE),  

                   method="glmnet", 

                   metric="AUC", 

                   trControl=cv5) 

 

 

phat_readmit <- predict(object = glmnet_readmit, newdata = 

holdout_test_readmit, type="prob") 

 

(retained_fts_lasso <- ((glmnet_readmit$finalModel %>% 

coef(glmnet_readmit$bestTune$lambda))[,1]!=0) %>% sum()) 

  # Uses only 48 of 184 covariates (excludes 250.00, 780.39, 274.9, 714.0, 

585.9, 441.2, 491.21, 785.0, and Private Insurance) 

 

(lasso_auc_readmit <- pROC::auc(holdout_test_readmit$Yr1Readmit, 

phat_readmit[,1]) %>% round(4)) 

``` 


PCA


```{r} 

pca_readmit <- prcomp(cv_data_readmit %>% select(matches("^[0-9]")), center = 

T, scale. = T) 

 

(pca_readmit_df <- data.frame(PC = 1:178, 

                         Var = pca_readmit$sdev^2) %>%  

              mutate(PropVar = Var / nrow(.), 

                     CmltvPropVar = cumsum(PropVar))) 

 

 

pca_readmit_df %>% ggplot(aes(x=PC, y=PropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Proportion of Variance Explained") + xlab("Principal Component") + 

  ggtitle("Proportion of Variance Explained by Individual Principal 

Component") 

 

 

pca_readmit_df %>% ggplot(aes(x=PC, y=CmltvPropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Cumulative Proportion of Variance Explained") + xlab("Principal 

Component") + 

  ggtitle("Cumulative Proportion of Variance Explained by Principal 

Component") 

 

 

n_retain <- pca_readmit_df %>% filter(CmltvPropVar<=0.5) %>% nrow() 

 

rotate_readmit <- (cv_data_readmit %>% select(matches("^[0-9]")) %>% 

as.matrix())  %*%  pca_readmit$rotation[,1:n_retain] 

 

 

pca_readmit_glm <- glm(Yr1Readmit ~ . , 

               data = cv_data_readmit %>% select(Yr1Readmit, Age, GENDER, 

INSURANCE) %>% cbind(., rotate_readmit), 

               family="binomial")    

 



 134 

 

test_rotate_readmit <- (holdout_test_readmit %>% select(matches("^[0-9]")) 

%>% as.matrix())  %*%  pca_readmit$rotation[,1:n_retain] 

   

test_pca_readmitdf <- holdout_test_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE) %>% cbind(., test_rotate_readmit) 

 

test_pca_phat_readmit <- predict(newdata = test_pca_readmitdf, 

object=pca_readmit_glm, type="response") 

 

(pca_auc_readmit <- pROC::auc(predict = test_pca_phat_readmit, response = 

holdout_test_readmit$Yr1Readmit) %>% round(4)) 

   

``` 


Charlson & Elixhauser

```{r} 

all_diags <- read.csv(here("/Data/Raw/DIAGNOSES_ICD.csv")) 

 

icd_train_readmit <- cv_data_readmit %>% select(SUBJECT_ID) %>% merge(., 

all_diags %>% select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

icd_test_readmit <- holdout_test_readmit %>% select(SUBJECT_ID) %>% merge(., 

all_diags %>% select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

 

# Using Charlson/Elixhauser group membership 

  readmit_charlson_train <- icd_train_readmit %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., cv_data_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

  readmit_elix_train <- icd_train_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% cbind(., cv_data_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

   

  readmit_charlson_test <- icd_test_readmit %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., holdout_test_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

  readmit_elix_test <- icd_test_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% cbind(., holdout_test_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

   

  charlson_glm_readmit <- glm(Yr1Readmit ~ ., data=readmit_charlson_train, 

family = "binomial") 

  elix_glm_readmit <- glm(Yr1Readmit ~ ., data=readmit_elix_train, family = 

"binomial") 

 

  elix_phat_readmit <- predict(object = elix_glm_readmit, newdata = 

readmit_elix_test) 

  elix_auc_readmit <- pROC::auc(predict = elix_phat_readmit, 

response=holdout_test_readmit$Yr1Readmit) %>% round(4) 

   

  charlson_phat_readmit <- predict(object = charlson_glm_readmit, newdata = 

readmit_charlson_test) 

  charlson_auc_readmit <- pROC::auc(predict = charlson_phat_readmit, 

response=holdout_test_readmit$Yr1Readmit)[1] %>% round(4) 

 

 



 135 

# Using "score" (sum of group memberships, i.e. number of groups with a 

diagnosis) 

  charlson_score_train_readmit <- icd_train_readmit %>% comorbid_charlson() 

%>% as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data_readmit %>% 

select(Yr1Readmit, Age, GENDER, INSURANCE)) 

  elix_score_train_readmit <- icd_train_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data_readmit %>% 

select(Yr1Readmit, Age, GENDER, INSURANCE)) 

 

  charlson_score_test_readmit <- icd_test_readmit %>% comorbid_charlson() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test_readmit 

%>% select(Yr1Readmit, Age, GENDER, INSURANCE)) 

  elix_score_test_readmit <- icd_test_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test_readmit 

%>% select(Yr1Readmit, Age, GENDER, INSURANCE)) 

 

  charlson_score_glm_readmit <- glm(Yr1Readmit ~ ., 

data=charlson_score_train_readmit, family = "binomial") 

  elix_score_glm_readmit <- glm(Yr1Readmit ~ ., 

data=elix_score_train_readmit, family = "binomial") 

 

  elix_score_phat_readmit <- predict(object = elix_score_glm_readmit, newdata 

= elix_score_test_readmit) 

  elix_score_auc_readmit <- pROC::auc(predict = elix_score_phat_readmit, 

response=holdout_test_readmit$Yr1Readmit) %>% round(4) 

   

  charlson_score_phat_readmit <- predict(object = charlson_score_glm_readmit, 

newdata = charlson_score_test_readmit) 

  charlson_score_auc_readmit <- pROC::auc(predict = 

charlson_score_phat_readmit, response=holdout_test_readmit$Yr1Readmit)[1] %>% 

round(4) 

``` 



```{r} 

   

# Printout Results 

cat("Elixhauser Categorical AUC: ", elix_auc_readmit, "\n") 

cat("Charlson Categorical AUC: ", charlson_auc_readmit, "\n") 

cat("Elixhauser Score AUC: ", elix_score_auc_readmit, "\n") 

cat("Charlson Score AUC: ", charlson_score_auc_readmit, "\n") 

cat("PCA AUC (retaining ", n_retain, " components):", pca_auc_readmit, "\n") 

cat("LASSO AUC (retaining", retained_fts_lasso, "features):", 

lasso_auc_readmit, "\n") 

``` 


Length of Stay

Due to the length of stay and mortality data sets having the same training

data/cross-validation splits, I can simply re-use the PCA and

 136

Charlson/Elixhauser data used in the Mortality section and fit the negative

binomial models

LASSO

```{r} 

require(mpath) 

 

los_traindf <- cv_data %>% select(matches("^[0-9]"), HospitalLOS, Age, 

GENDER, INSURANCE) 

 

lasso_train_results <- glmregNB(formula = HospitalLOS ~ ., data = 

los_traindf) 

 

los_train_yhat <- predict(object = lasso_train_results, los_traindf, 

type="response") 

 

for(i in 1:ncol(los_train_yhat)) { 

  yhat_vec <- los_train_yhat[,i] 

   

  if(i==1) RMSE <- (sum((yhat_vec - los_traindf$HospitalLOS)^2) / 

length(yhat_vec)) %>% sqrt() else{ 

    RMSE <- c(RMSE, (sum((yhat_vec - los_traindf$HospitalLOS)^2) / 

length(yhat_vec)) %>% sqrt()) 

  } 

} 

 

 

lambda_results <- data.frame(lambda=lasso_train_results$lambda,  

                             RMSE) 

 

lambda_results <- lambda_results %>% mutate(ParamFlag =  

                                   case_when( 

                                     RMSE==min(RMSE) ~ "Minimizes RMSE", 

                                     

lambda==max(lambda_results[lambda_results$RMSE<=(min(lambda_results$RMSE) + 

sd(lambda_results$RMSE)), "lambda"]) ~ "More Sparse Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 

 

ggplot(lambda_results, aes(x=lambda, y=RMSE, color=as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("Length of Stay LASSO") +  

  xlab("Value of Shrinkage Lambda") + ylab("RMSE (Across 5 Test Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) +  

  theme(legend.position=c(0.2, 0.75), text = element_text(size=13.5)) 

 

 

lambda_1sd <- lambda_results %>% filter(ParamFlag == "More Sparse Parameter") 

%>% pull(lambda) 

 

los_test_yhat <- predict(object = lasso_train_results, holdout_test, 

type="response") 

 

lambda_1sd_test <- 

colnames(los_test_yhat)[which.min(abs(colnames(los_test_yhat) %>% 

as.numeric() - lambda_1sd))] 



 137 

 

 

test_rmse <- (sum((los_test_yhat[, lambda_1sd_test] - 

holdout_test$HospitalLOS)^2)/nrow(holdout_test)) %>% sqrt() 

 

# And using the optimal lambda 

lambda_1sd_opt <- lambda_results %>% filter(ParamFlag == "Minimizes RMSE") 

%>% pull(lambda) 

 

lambda_1sd_test_opt <- 

colnames(los_test_yhat)[which.min(abs(colnames(los_test_yhat) %>% 

as.numeric() - lambda_1sd_opt))] 

 

 

test_rmse <- (sum((los_test_yhat[, lambda_1sd_test_opt] - 

holdout_test$HospitalLOS)^2)/nrow(holdout_test)) %>% sqrt() 

 

 

# Outputting number of features retained in teh 1-SD lambda  

(retained_fts_los_lasso <- lasso_train_results %>% coef(lambda_1sd)) 

 

retained_fts_los_lasso %>% nrow() 

``` 


PCA


```{r} 

pca_nb <- glm.nb(HospitalLOS ~ . , 

               data = cv_data %>% select(HospitalLOS, Age, GENDER, INSURANCE) 

%>% cbind(., rotate_icd)) 

 

 

n_retain <- pca_readmit_df %>% filter(CmltvPropVar<=0.5) %>% nrow() 

 

 

test_rotate <- (holdout_test %>% select(matches("^[0-9]")) %>% as.matrix())  

%*%  pca_results$rotation[,1:n_retain] 

 

test_los_pcadf <- holdout_test %>% select(HospitalLOS, Age, GENDER, 

INSURANCE) %>% cbind(., test_rotate) 

 

test_yhat_pca <- predict(newdata = test_los_pcadf, object=pca_nb, 

type="response") 

 

(pca_rmse_los <- (sum((test_yhat_pca - 

test_los_pcadf$HospitalLOS)^2)/nrow(test_los_pcadf)) %>% sqrt()) 

 

``` 


Charlson & Elixhauser


```{r} 

mortality_charlson_train <- icd_train %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., cv_data %>% select(HospitalLOS, Age, GENDER, 

INSURANCE)) 



 138 

mortality_elix_train <- icd_train %>% comorbid_elix() %>% as.data.frame() %>% 

cbind(., cv_data %>% select(HospitalLOS, Age, GENDER, INSURANCE)) 

   

mortality_charlson_test <- icd_test %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., holdout_test %>% select(HospitalLOS, Age, 

GENDER, INSURANCE)) 

mortality_elix_test <- icd_test %>% comorbid_elix() %>% as.data.frame() %>% 

cbind(., holdout_test %>% select(HospitalLOS, Age, GENDER, INSURANCE)) 

   

charlson_nb <- glm.nb(HospitalLOS ~ ., data=mortality_charlson_train) 

elix_nb <- glm.nb(HospitalLOS ~ ., data=mortality_elix_train) 

 

elix_yhat <- predict(object = elix_nb, newdata = mortality_elix_test) 

charlson_yhat <- predict(object = charlson_nb, newdata = 

mortality_charlson_test) 

 

 

(charlson_rmse_los <- (sum((charlson_yhat - 

mortality_charlson_test$HospitalLOS)^2)/nrow(mortality_charlson_test)) %>% 

sqrt() )  

(elix_rmse_los <- (sum((elix_yhat - 

mortality_elix_test$HospitalLOS)^2)/nrow(mortality_elix_test)) %>% sqrt() ) 

 

``` 


 139

Bibliography

Alder, L., & Tambe, A. (2020). Acute Anemia. In StatPearls. StatPearls Publishing.
http://www.ncbi.nlm.nih.gov/books/NBK537232/

Awad, A., Bader–El–Den, M., & McNicholas, J. (2017). Patient length of stay and mortality

prediction: A survey. Health Services Management Research, 30(2), 105–120.

https://doi.org/10.1177/0951484817696212

Awad, A., Bader-El-Den, M., McNicholas, J., & Briggs, J. (2017). Early hospital mortality
prediction of intensive care unit patients using an ensemble learning approach.
International Journal of Medical Informatics, 108, 185–195.

https://doi.org/10.1016/j.ijmedinf.2017.10.002

Brier, G. W. (1950). Verification of Forecasts Expressed in Terms of Probability. Monthly Weather
Review, 78(1), 1–3.

Brito, A., Costantini, T. W., Berndtson, A. E., Smith, A., Doucet, J. J., & Godat, L. N. (2019).
Readmissions After Acute Hospitalization for Traumatic Brain Injury. The Journal of

Surgical Research, 244, 332–337. https://doi.org/10.1016/j.jss.2019.06.071

Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying

prognostic comorbidity in longitudinal studies: Development and validation. Journal of
Chronic Diseases, 40(5), 373–383. https://doi.org/10.1016/0021-9681(87)90171-8

CMS. (n.d.). Hospital Readmissions Reduction Program (HRRP) Overview. Retrieved October

28, 2020, from https://www.qualitynet.org/inpatient/hrrp

CMS. (2020, April 14). ICD-9-CM Diagnosis and Procedure Codes: Abbreviated and Full Code

Titles. https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare:

Management, analysis and future prospects. Journal of Big Data, 6(1), 54.
https://doi.org/10.1186/s40537-019-0217-0

Depalma, G., Xu, H., Covinsky, K. E., Craig, B. A., Stallard, E., Thomas, J., & Sands, L. P. (2013).

Hospital readmission among older adults who return home with unmet need for ADL

disability. The Gerontologist, 53(3), 454–461. https://doi.org/10.1093/geront/gns103

Elixhauser, A., Steiner, C., Harris, D. R., & Coffey, R. M. (1998). Comorbidity measures for use
with administrative data. Medical Care, 36(1), 8–27. https://doi.org/10.1097/00005650-
199801000-00004

http://www.ncbi.nlm.nih.gov/books/NBK537232/
https://doi.org/10.1177/0951484817696212
https://doi.org/10.1016/j.ijmedinf.2017.10.002
https://doi.org/10.1016/j.jss.2019.06.071
https://doi.org/10.1016/0021-9681(87)90171-8
https://www.qualitynet.org/inpatient/hrrp
https://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/codes
https://doi.org/10.1186/s40537-019-0217-0
https://doi.org/10.1093/geront/gns103
https://doi.org/10.1097/00005650-199801000-00004
https://doi.org/10.1097/00005650-199801000-00004

 140

Falcão, A. L. E., Barros, A. G. de A., Bezerra, A. A. M., Ferreira, N. L., Logato, C. M., Silva, F.
P., do Monte, A. B. F. O., Tonella, R. M., de Figueiredo, L. C., Moreno, R., Dragosavac,

D., & Andreollo, N. A. (2019). The prognostic accuracy evaluation of SAPS 3, SOFA and
APACHE II scores for mortality prediction in the surgical ICU: An external validation

study and decision-making analysis. Annals of Intensive Care, 9(1), 18.
https://doi.org/10.1186/s13613-019-0488-9

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22.

Gaugler, D. L. and T. (2015). treelet: An Adaptive Multi-Scale Basis for High-Dimensional, Sparse

and Unordered Data (1.1) [Computer software]. https://CRAN.R-

project.org/package=treelet

Goodwin, A. J., & Ford, D. W. (2018). Readmissions Among Sepsis Survivors: Risk Factors and
Prevention. Clinical Pulmonary Medicine, 25(3), 79–83.
https://doi.org/10.1097/CPM.0000000000000254

Greysen, S. R., Stijacic Cenzer, I., Auerbach, A. D., & Covinsky, K. E. (2015). Functional

impairment and hospital readmission in Medicare seniors. JAMA Internal Medicine,
175(4), 559–565. https://doi.org/10.1001/jamainternmed.2014.7756

Harrell, F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models,
Logistic Regression, and Survival Analysis (Updated September 4, 2020). Springer Science

& Business Media.

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Second Edition). Springer.

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso
and Generalizations. Chapman & Hall/CRC.

Kansagara, D., Englander, H., Salanitro, A., Kagen, D., Theobald, C., Freeman, M., & Kripalani,
S. (2011). Risk Prediction Models for Hospital Readmission: A Systematic Review. JAMA,

306(15), 1688. https://doi.org/10.1001/jama.2011.1515

Kennedy, E. H., Wiitala, W. L., Hayward, R. A., & Sussman, J. B. (2013). Improved

cardiovascular risk prediction using nonparametric regression and electronic health record
data. Medical Care, 51(3), 251–258. https://doi.org/10.1097/MLR.0b013e31827da594

Knaus, W. A., Draper, E. A., Wagner, D. P., & Zimmerman, J. E. (1985). APACHE II: A severity

of disease classification system. Critical Care Medicine, 13(10), 818–829.

Kuhn, M. (2020). caret: Classification and Regression Training. https://CRAN.R-

project.org/package=caret

https://doi.org/10.1186/s13613-019-0488-9
https://cran.r-project.org/package=treelet
https://cran.r-project.org/package=treelet
https://doi.org/10.1097/CPM.0000000000000254
https://doi.org/10.1001/jamainternmed.2014.7756
https://doi.org/10.1001/jama.2011.1515
https://doi.org/10.1097/MLR.0b013e31827da594
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=caret

 141

Kumar, R. G., Juengst, S. B., Wang, Z., Dams-OʼConnor, K., Dikmen, S. S., OʼNeil-Pirozzi, T.
M., Dahdah, M. N., Hammond, F. M., Felix, E. R., Arenth, P. M., & Wagner, A. K. (2018).

Epidemiology of Comorbid Conditions Among Adults 50 Years and Older With Traumatic
Brain Injury. The Journal of Head Trauma Rehabilitation, 33(1), 15–24.

https://doi.org/10.1097/HTR.0000000000000273

Lares, B. (2020). lares: Analytics, Data Mining & Machine Learning Sidekick (4.9.2) [Computer

software]. https://github.com/laresbernardo/lares

Lee, A. B., Nadler, B., & Wasserman, L. (2008). Treelets—An adaptive multi-scale basis for
sparse unordered data. The Annals of Applied Statistics, 2(2), 435–471.
https://doi.org/10.1214/07-AOAS137

Lee, K., & Rincon, F. (2012, October 23). Pulmonary Complications in Patients with Severe Brain

Injury [Review Article]. Critical Care Research and Practice; Hindawi.
https://doi.org/10.1155/2012/207247

Luckey, A., Livingston, E., & Taché, Y. (2003). Mechanisms and treatment of postoperative ileus.
Archives of Surgery (Chicago, Ill.: 1960), 138(2), 206–214.

https://doi.org/10.1001/archsurg.138.2.206

MacVane, S. H., Tuttle, L. O., & Nicolau, D. P. (2015). Demography and burden of care associated

with patients readmitted for urinary tract infection. Journal of Microbiology, Immunology,
and Infection = Wei Mian Yu Gan Ran Za Zhi, 48(5), 517–524.

https://doi.org/10.1016/j.jmii.2014.04.002

Mayr, F. B., Talisa, V. B., Balakumar, V., Chang, C.-C. H., Fine, M., & Yende, S. (2017).

Proportion and Cost of Unplanned 30-Day Readmissions After Sepsis Compared With
Other Medical Conditions. JAMA, 317(5), 530. https://doi.org/10.1001/jama.2016.20468

McCredie, V. A., Alali, A. S., Scales, D. C., Rubenfeld, G. D., Cuthbertson, B. H., & Nathens, A.

B. (2018). Impact of ICU Structure and Processes of Care on Outcomes After Severe

Traumatic Brain Injury: A Multicenter Cohort Study. Critical Care Medicine, 46(7), 1139–
1149. https://doi.org/10.1097/CCM.0000000000003149

Middleton, J. W., Lim, K., Taylor, L., Soden, R., & Rutkowski, S. (2004). Patterns of morbidity

and rehospitalisation following spinal cord injury. Spinal Cord, 42(6), 359–367.

https://doi.org/10.1038/sj.sc.3101601

Muller, K. (2017). here: A Simpler Way to Find Your Files (0.1) [Computer software].
https://CRAN.R-project.org/package=here

Nasir, S. S., Muthiah, M., Ryder, K., Clark, K., Niell, H., & Weir, A. (2017). ICU Deaths in
Patients With Advanced Cancer. The American Journal of Hospice & Palliative Care,

34(2), 173–179. https://doi.org/10.1177/1049909115625279

https://doi.org/10.1097/HTR.0000000000000273
https://github.com/laresbernardo/lares
https://doi.org/10.1214/07-AOAS137
https://doi.org/10.1155/2012/207247
https://doi.org/10.1001/archsurg.138.2.206
https://doi.org/10.1016/j.jmii.2014.04.002
https://doi.org/10.1001/jama.2016.20468
https://doi.org/10.1097/CCM.0000000000003149
https://doi.org/10.1038/sj.sc.3101601
https://cran.r-project.org/package=here
https://doi.org/10.1177/1049909115625279

 142

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the Royal
Statistical Society: Series A (General), 135(3), 370–384. https://doi.org/10.2307/2344614

Ostling, S., Wyckoff, J., Ciarkowski, S. L., Pai, C.-W., Choe, H. M., Bahl, V., & Gianchandani,

R. (2017). The relationship between diabetes mellitus and 30-day readmission rates.
Clinical Diabetes and Endocrinology, 3(1), 3. https://doi.org/10.1186/s40842-016-0040-x

Pah, A. R., Rasmussen-Torvik, L. J., Goel, S., Greenland, P., & Kho, A. N. (2014). Big Data: What
Is It and What Does It Mean for Cardiovascular Research and Prevention Policy. Current

Cardiovascular Risk Reports, 9(1), 424. https://doi.org/10.1007/s12170-014-0424-3

Paoli, C. J., Reynolds, M. A., Sinha, M., Gitlin, M., & Crouser, E. (2018). Epidemiology and Costs

of Sepsis in the United States—An Analysis Based on Timing of Diagnosis and Severity
Level*. Critical Care Medicine, 46(12), 1889–1897.

https://doi.org/10.1097/CCM.0000000000003342

Quach, S., Hennessy, D. A., Faris, P., Fong, A., Quan, H., & Doig, C. (2009). A comparison

between the APACHE II and Charlson Index Score for predicting hospital mortality in
critically ill patients. BMC Health Services Research, 9(1), 129.

https://doi.org/10.1186/1472-6963-9-129

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011).

PROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics, 12, 77.

Rubenfeld, G. D., Caldwell, E., Peabody, E., Weaver, J., Martin, D. P., Neff, M., Stern, E. J., &

Hudson, L. D. (2005). Incidence and outcomes of acute lung injury. The New England

Journal of Medicine, 353(16), 1685–1693. https://doi.org/10.1056/NEJMoa050333

Rufibach, K. (2010). Use of Brier score to assess binary predictions. Journal of Clinical
Epidemiology, 63(8), 938–939. https://doi.org/10.1016/j.jclinepi.2009.11.009

Shao, J. (1993). Linear Model Selection by Cross-validation. Journal of the American Statistical
Association, 88(422), 486–494. https://doi.org/10.1080/01621459.1993.10476299

Shebl, E., & Gulick, P. G. (2020). Nosocomial Pneumonia. In StatPearls. StatPearls Publishing.

http://www.ncbi.nlm.nih.gov/books/NBK535441/

Snow, G. L., Bledsoe, J. R., Butler, A., Wilson, E. L., Rea, S., Majercik, S., Anderson, J. L., &

Horne, B. D. (2020). Comparative evaluation of the clinical laboratory-based
Intermountain risk score with the Charlson and Elixhauser comorbidity indices for
mortality prediction. PLOS ONE, 15(5), e0233495.

https://doi.org/10.1371/journal.pone.0233495

Steyerberg, E. (2009). Clinical Prediction Models: A Practical Approach to Development,
Validation, and Updating. Springer-Verlag. https://doi.org/10.1007/978-0-387-77244-8

https://doi.org/10.2307/2344614
https://doi.org/10.1186/s40842-016-0040-x
https://doi.org/10.1007/s12170-014-0424-3
https://doi.org/10.1097/CCM.0000000000003342
https://doi.org/10.1186/1472-6963-9-129
https://doi.org/10.1056/NEJMoa050333
https://doi.org/10.1016/j.jclinepi.2009.11.009
https://doi.org/10.1080/01621459.1993.10476299
http://www.ncbi.nlm.nih.gov/books/NBK535441/
https://doi.org/10.1371/journal.pone.0233495
https://doi.org/10.1007/978-0-387-77244-8

 143

Tapper, E. B., Halbert, B., & Mellinger, J. (2016). Rates of and Reasons for Hospital Readmissions
in Patients With Cirrhosis: A Multistate Population-based Cohort Study. Clinical

Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American
Gastroenterological Association, 14(8), 1181-1188.e2.

https://doi.org/10.1016/j.cgh.2016.04.009

Topaz, M., Shafran-Topaz, L., & Bowles, K. H. (2013). ICD-9 to ICD-10: Evolution, Revolution,

and Current Debates in the United States. Perspectives in Health Information Management
/ AHIMA, American Health Information Management Association, 10(Spring).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692324/

Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (Fourth Edition).

Springer. http://www.stats.ox.ac.uk/pub/MASS4

Wang, Z. (2020). mpath: Regularized Linear Models (0.4-2.16) [Computer software].
https://CRAN.R-project.org/package=mpath

Wasey, J. O., Murphy, W., Lee, E., Odisho, A., & R Core Team. (2020). icd: Comorbidity
Calculations and Tools for ICD-9 and ICD-10 Codes (4.0.9) [Computer software].

https://github.com/jackwasey/icd

Wei, T., & Simko, V. (2017). R package “corrplot”: Visualization of a Correlation Matrix (0.84)

[Computer software]. https://github.com/taiyun/corrplot

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., Francois, R., Grolemund, G.,
Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M.,
Muller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019).

Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686.

Yutani, H. (2020). gghighlight: Highlight Lines and Points in “ggplot2” (0.3.0) [Computer
software]. https://CRAN.R-project.org/package=gghighlight

https://doi.org/10.1016/j.cgh.2016.04.009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692324/
http://www.stats.ox.ac.uk/pub/MASS4
https://cran.r-project.org/package=mpath
https://github.com/jackwasey/icd
https://github.com/taiyun/corrplot
https://cran.r-project.org/package=gghighlight

	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1.0 Introduction
	1.1 Clinical Prediction Models
	1.2 Modern Healthcare Data
	1.3 High-Dimensional Data & Dimension Reduction
	1.4 Objectives

	2.0 Methods
	2.1 Data
	2.1.1 Data Source
	Table 1: MIMIC-III Data Tables

	2.1.2 Diagnosis Codes
	2.1.3 Covariates
	2.1.4 Outcomes

	2.2 Statistical Analysis
	2.2.1 Treelet Dimension Reduction
	2.2.2 Generalized Linear Modeling
	2.2.3 Cross-Validation
	2.2.4 Model Fit
	2.2.5 Model Comparisons
	2.2.6 Software

	3.0 Results
	3.1 Descriptive Statistics
	3.1.1 Patients
	Table 2: Analytic Patient Cohort Characteristics

	3.1.2 Diagnosis Codes
	Figure 1: Frequencies of (A) All and (B) 15 Most Common ICD-9-CM Diagnosis Codes
	Figure 2: Correlation Matrix of Included ICD-9-CM Diagnosis Codes
	Figure 3: Ten Most Correlated Pairs of Diagnosis Codes

	3.2 Statistical Analysis
	3.2.1 In-Hospital Mortality
	Figure 4: Average Test Briers Score Over 5-Fold Cross-Validation (Mortality Model)
	Table 3: Logistic Regression Model of Mortality
	Figure 5: Treelet Feature P-Values & β-Coefficients (Mortality)
	Figure 6: Density Curve of Predicted Probabilities of Mortality
	Figure 7: Comparative ROC Curves of Mortality Predictions

	3.2.2 Hospital-Readmission
	Figure 8: Average Test Briers Score Over 5-Fold Cross-Validation (Readmission Model)
	Table 4: Logistic Regression Model of Readmission
	Figure 9: Treelet Feature P-Values & β-Coefficients (Readmission)
	Figure 10: Density Curve of Predicted Probabilities of Readmission
	Figure 11: Comparative ROC Curves of Hospital Re-admission Models

	3.2.3 Hospital Length of Stay
	Figure 12: Average Test Briers Score Over 5-Fold Cross-Validation (Length of Stay Model)
	Table 5: Negative Binomial Model of Length of Stay
	Figure 13: Treelet Feature P-Values & β-Coefficients (Length of Stay)
	Figure 14: Scatter Plot of Observed and Predicted Length of Stay Values
	Figure 15: Density Curves of Predicted & Observed Length of Stay Values
	Figure 16: Root-Mean-Square Error by Number of Retained Treelet Features

	3.2.4 Comparative Model Fit
	Table 6: Comparative Results of Model Performance
	Table 7: Summary of Retained Features and ICD-9-CM Diagnosis Codes

	4.0 Discussion
	4.1.1 Limitations

	5.0 Conclusion
	Appendix A Supplemental Tables & Figures
	Appendix Figure 1: Density Curve of Mortality Model Predicted Probabilities (Treelet Features Omitted)
	Appendix Figure 2: Density Curve of Readmission Model Predicted Probabilities (Treelet Features Omitted)
	Appendix Figure 3: Density Curve of Hospital Length of Stay Predictions
	Appendix Figure 4: Density Curve of Residuals in Prediction of Length of Stay
	Appendix Figure 5: Scatter Plot of Length of Stay Model Predicted Values (Treelet Features Omitted)
	Appendix Table 1: Full Regression Estimates (Mortality)
	Appendix Table 2: Full Regression Estimates (Readmission)
	Appendix Table 3: Full Regression Estimates (Length of Stay)
	Appendix Table 4: Abbreviated Treelet Features (Mortality)
	Appendix Table 5: Abbreviated Treelet Features (Readmission)
	Appendix Table 6: Abbreviated Treelet Features (Length of Stay)

	Appendix B Analytic Code
	Appendix B.1 R Code to Perform Data Cleaning and Exploratory Data Analysis (incl. Descriptive Statistics)
	Appendix B.2 R Code to Perform Treelet and GLM Fitting (incl. Cross-Validation)

	Bibliography

