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Abstract 

Jeanine M. Buchanich, PhD 
 

Treelet Dimension Reduction of Diagnoses Among Intensive Care Unit Admissions 

 

James Dominic DiSanto, MS 

 
University of Pittsburgh, 2020 

 

 
Abstract 

 

Background: The objective of this thesis is to apply treelet dimension reduction to ICD-

9-CM diagnosis codes and apply the resulting transformation in the prediction of clinical outcomes 

of in-hospital mortality, unplanned re-admission, and hospital length of stay.  

Data: International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-

CM) codes and patient demographic data (age, sex, insurance coverage) from the Medical 

Information Mart for Intensive Care III (MIMIC-III) database prospective cohort study of 38,554 

adults admitted to a single intensive care unit from 2001 to 2012. 

Methods: We applied treelet dimension reduction to ICD-9-CM diagnosis codes (n=178, 

>1% prevalence in the analytic cohort) to identify a transformed feature space of patient diagnoses 

that we then used, with patient demographic data, to predict in-hospital mortality, unplanned 

hospital re-admission, and length of hospital stay using logistic and negative binomial regression 

models.  

Results: Treelet dimension reduction for ICD-9-CM diagnosis codes identified reduced 

feature spaces in prediction of in-hospital mortality, unplanned hospital re-admission, and length 

of stay. The resulting treelet features for each clinical outcome, in addition to patient age, gender, 

and payment method, demonstrate improved utility in predicting in-hospital mortality 

(AUC=0.858) but limited accuracy in prediction hospital re-admission (AUC=0.661). Treelet  

dimension reduction identifies a sparse number of ICD-9-CM diagnosis codes (107 of 178) 
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retained in the treelet features included in modeling of length of stay (RMSE=10.29).  

Public Health Significance: These analyses leverage a large, public database of critical 

care admissions, generating predictive models of clinical outcomes using only patient 

demographic and comorbidity diagnosis information. The presented analysis builds upon previous 

work by applying the novel treelet dimension reduction model on diagnosis data in a dataset of 

critical care admissions and demonstrate the utility of diagnosis code data alone in prediction of 

clinical outcomes. 

Keywords: treelet, dimension reduction, diagnosis codes, generalized linear models 
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1.0 Introduction 

1.1 Clinical Prediction Models 

Clinical prediction models present useful, empirical methods to assess patient risk, often 

modelling outcomes such as mortality, disease-specific remission, hospital resource utilization, 

etc. Prediction models may inform both patient treatment (e.g. estimating patient recovery 

prognosis following ischemic stroke, comparing estimated benefit and risk of a specific treatment) 

and clinical research (e.g. estimating baseline risk of outcome to identify specific risk-groups of 

patients for study enrollment) (Steyerberg, 2009). Beyond patient-specific prediction, health-

policy makers and hospital administrators may use models of outcomes such as in-hospital 

mortality, hospital length of stay, and unplanned re-admissions as measures of a hospital’s case-

severity and/or resource utilization (Awad, Bader–El–Den, et al., 2017; Quach et al., 2009).  

The prediction of mortality (or assessment of patient mortality risk) is notably used at the 

hospital- or system-level to account for diversity of illness or injury severity of admissions, 

allowing for comparison of care quality across health care systems and/or centers (Quach et al., 

2009). The performance of existing predictive models of mortality remain limited. Studies have 

previously explored the predictive utility of comorbidity indices such as the Charlson (Charlson et 

al., 1987) and Elixhauser (Elixhauser et al., 1998). These measurement systems assess the presence 

or absence of conditions (19 disease groups in the Charlson index, 31 in the Elixhauser) using a 

subset of available ICD-9-CM diagnosis codes. Models using these existing indices have estimated 

concordance values ranging from ~0.71 to ~0.78 (Quach et al., 2009; Snow et al., 2020).   The 

APACHE-II (Knaus et al., 1985) is a disease severity classification system that additionally uses 
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physiological and temporal measurements (e.g. lab values of hematocrit, creatinine, white blood 

cell count). Use of APACHE-II scores resulted in improved, but still limited, prediction of in-

hospital mortality, with concordance values ranging from ~0.75 to ~0.84 (Awad, Bader-El-Den, 

et al., 2017; Falcão et al., 2019) (see Section 2.2.4 for description of concordance and additional 

model fit metrics). 

Looking beyond in-hospital mortality, hospital length of stay is an important metric that 

inherently captures information related to (and can loosely serve as a proxy measurement of) 

hospitalization cost and/or hospital resource utilization (Awad, Bader–El–Den, et al., 2017). 

Similarly, individuals who survive their initial hospital admission remain at risk for adverse post-

discharge events and subsequent hospital readmission. In addition to the physical and mental toll 

of an unplanned hospital readmission and/or a prolonged hospital course, patients experience 

significant, undue financial burden (Mayr et al., 2017). At the hospital system level, the Center for 

Medicare and Medicaid Services includes hospital readmission as an assessment of quality of care, 

including a financial incentive for hospitals to reduce readmission rates (CMS, n.d.).  Predictive 

models of hospital readmission and length of stay remain limited both in their predictive 

performance and in the availability of the data which the models require (Kansagara et al., 2011). 

A review of existing prediction models of mortality and length of stay proposes that future models 

should leverage large, commercially or publicly available critical care databases, such as the 

Medical Information Mart for Intensive Care III (MIMIC-III) (formerly the Multiparameter 

Intelligent Monitoring in Intensive Care or MIMIC-II) data used in this work (Awad, Bader–El–

Den, et al., 2017). 

The growth of healthcare data and statistical learning has further catalyzed interest in 

statistically-derived prediction models due to the increase in both available sample size and 
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diversity of available predictors (Steyerberg, 2009). The generalizability of clinical prediction 

models is limited to the availability of the required data. That is, models built upon esoteric data 

elements (e.g. hospital-specific variables) or highly granular information (e.g. pre-admission lab 

values, genetic data), present barriers to effective implementation by requiring collection of the 

necessary input information, which may be infeasible when applied to a new hospital or clinical 

setting. As a result, the use of large, healthcare data sources must account for not only the 

performance of the relevant models but the likely availability of the required data elements. 

1.2 Modern Healthcare Data 

Due to advances in data collection and management and the digitization of healthcare data 

into electronic health records (EHR), hospitals and healthcare systems now maintain an enormous 

amount of patient data, with the opportunity to wield this information to improve patient care 

(Dash et al., 2019). A single American hospital’s EHR captures an estimated 107 terabytes of data 

annually (Pah et al., 2014). With such large data volume, there are significant obstacles to 

efficiently collecting, managing, and leveraging pertinent information from the variety of data 

sources that are commonly present in a large hospital. 

A large component of a hospital’s EHR data comprises patient-level diagnoses of disease, 

injury, and associated conditions (Pah et al., 2014). The Center for Medicare and Medicaid 

Services presents a codified system of diagnosing diseases (among other clinical care information 

such as health services, injury/disease causes, etc.) among patients, referred to as the International 

Classification of Diseases, Clinical Modification codes (ICD-CM). The 9th version of the system 

(ICD-9-CM) was adopted in the 1980’s and used through 2014, at which point the current 10 th 
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version (ICD-10-CM) was mandated (having been preliminarily adopted in the late 1990’s) (Topaz 

et al., 2013). The ICD-9-CM system included nearly 17,000 unique patient diagnoses, while ICD-

10-CM expands this catalog to over 155,000 unique codes (Topaz et al., 2013).  

The volume of diagnosis data present in the EHR is a rich resource to support clinical 

research and improve upon existing predictive clinical models (Kennedy et al., 2013).  Groups of 

ICD-9-CM diagnosis codes in a large dataset may also expectedly represent redundant 

information. For example, highly correlated or commonly concurrent diagnoses (e.g. hypertension, 

hyperlipidemia, type-2 diabetes mellitus) could be grouped into a single aggregate input 

representing this group of diagnoses.  

1.3 High-Dimensional Data & Dimension Reduction 

High-dimensional data describes data sets with a high number of covariates (or inputs, 

features, etc.), which may commonly include highly correlated variables. Such data sets present 

elevated risk of overfitting and, in extreme cases where there are a similar or greater number of 

predictors than observations, may prevent identification of statistical models using the full feature 

set (Hastie et al., 2017). Even in data sets with sufficiently high sample sizes to fit models including 

a large number of predictors, high-dimensional data often contain an unknown but non-negligible 

amount of noise, correlated pairs of inputs, and/or groups of intercorrelated inputs, and may 

contain information that is representable by only a subset of the total inputs. Dimension reduction 

techniques present methods to represent high-dimensional data using only a subset of the input 

features (such as in feature selection or clustering) or within a new projection of the feature space 

to a new space of reduced dimensionality (e.g. principal components analysis [PCA]) (Hastie et 
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al., 2017). In the context of clinical prediction models, dimension reduction may be applied with 

the specific goal of reducing the number of predictors retained in the final model. The diversity of 

patient ICD-9-CM diagnosis data within large patient populations may result in highly correlated 

or possibly redundant diagnoses. As a result, the use of dimension reduction of ICD-9-CM 

diagnosis codes prior to clinical prediction model fitting may improve model performance and/or 

identify only a subset of the original diagnoses to include as predictors.  

Treelet dimension reduction (also referred to as treelet transformation or simply treelet) is 

a recent dimension reduction technique proposed by Dr.’s Ann Lee, Boaz Nadler, and Larry 

Wasserman in their work “Treelets – An Adaptive Multi-Scale Basis for Sparse Unordered Data” 

(A. B. Lee et al., 2008). The authors present treelet as a dimension reduction technique inspired 

by hierarchical clustering and PCA, that attempts to represent the original input variables in a 

reduced number of variables and identify only a subset of these transformed variables responsible 

for much of the information present in the original data, ideally both reducing the number of 

dimension and identifying a sparse space of the original inputs that inform these transformed 

features. The authors offer example applications of treelet dimension reduction in datasets of cell 

imaging and DNA microarray data. Beyond these clinical examples, the authors use treelet in a 

dataset of internet advertisements, transforming data set of 760 original, categorical (binary) 

predictors which result in improved classification over the original features. This set of binary 

features parallels the structure of a large data set of diagnosis codes, where binary variables may 

represent the presence or absence of diagnoses. In fact, treelet has previously been applied in an 

observational cohort study of traumatic brain injury (Kumar et al., 2018) to identify groups of 

correlated diseases. However, treelet has not yet been applied to a data set of ICD-9-CM diagnosis 

codes in the context of critical care admissions or large data sets with a diverse patient population, 
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which may specifically benefit from the identification of a reduced, sparse feature space of ICD-

9-CM diagnosis codes prior to the construction of clinical models. 

1.4 Objectives 

The objective of this thesis is to transform a large number of ICD-9-CM diagnosis codes 

into a sparse set of features, using treelet dimension reduction, and apply this new feature space in 

the prediction of clinical outcomes of in-hospital mortality, unplanned hospital re-admission, and 

hospital length of stay. The analyses presented in this work leverage a prospective cohort study of 

intensive care unit (ICU) admissions to identify this new feature space before building and 

assessing the predictive validity of models built using the treelet-generated features. 

Section 2 details the statistical methods used for both dimension reduction (treelet) and 

regression (logistic and negative binomial) models. Section 3 presents the results of statistical 

analyses, including descriptive statistics and the results of treelet dimension reduction and 

supervised models of this work’s three clinical outcomes of interest. Sections 4 and 5, respectively, 

contain a final discussion of these results and their possible implications.  
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2.0 Methods 

2.1 Data 

2.1.1 Data Source 

Data for these analyses were accessed from the Massachusetts Institute of Technology’s 

MIMIC-III database (Johnson et al., 2016). The MIMIC-III database contains nearly 60,000 

admissions to the ICU of the Beth Israel Deaconess Medical Center in Boston, MA between 2001 

and 2012. Information contained in the MIMIC-III data is stored in 26 tables containing distinct 

data elements and related metadata. Patient data and admissions were linked by common patient 

(SUBJECT_ID) and stay/admission (HADM_ID) identifiers. Information was pulled from the 

following MIMIC-III tables: 

 

Table 1: MIMIC-III Data Tables 

Table Data Elements 

Diagnoses_ICD Diagnoses codes for a given patient’s hospital stay 

D_ICD_Diagnoses Text descriptions of diagnosis codes  

Admissions Date of admission and discharge for use in isolating first and most recent 
hospital admissions and length of stay (using admission and discharge times); 

Insurance/Payment method for a given stay 

Patients Patient-level data including date of birth, sex, and mortality status  
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A subset of 7,537 patients were admitted multiple times, resulting in inclusions in the 

MIMIC-III database corresponding to each hospital admission. For these patients, only data from 

the earliest admission was retained. Data for analysis were restricted to adult patients (>18 years 

at date of admission) resulting in 38,554 patients included in the full analytic cohort of mortality 

and hospital length of stay. In analysis of the hospital re-admission outcome (described further in 

Section 2.1.4), individuals who died within a year of discharge with no hospital re-admission were 

excluded from analysis (n=9,661), resulting in an analytic subset of 28,893 patients for analysis of 

unplanned hospital re-admission. 

2.1.2 Diagnosis Codes 

Each patient admission included one or more clinical diagnoses, designated using ICD-9-

CM codes (CMS, 2020, p. 9). To assess diagnosis code validity in the MIMIC-III data, all present 

codes were confirmed to correspond to valid, ICD-9-CM diagnoses using the icd package (Wasey 

et al., 2020), and sex-specific diagnoses (e.g. codes 600-608 among male patients, 614-630 among 

female patients) were confirmed to be accurately diagnosed. ICD-9-CM diagnosis codes with a 

“V” or “E” prefix (respectively designating health factors/health service interactions and external 

injury causes) and those with <1% prevalence in the analytic cohort were removed , retaining 178 

ICD-9-CM diagnosis codes in the final analytic data set. Patients were then assigned indicator 

variables corresponding to each diagnosis, with a value of 1 representing presence of a given 

diagnosis and otherwise a value of 0. 



 9 

2.1.3 Covariates 

Additional data elements included as covariates in statistical analysis included age, 

genotypical sex, and primary payment method/insurance coverage. Age values ranged from 18-

89+ in the original data. For individuals over 89 years old at time of admission, the MIMIC-III 

data administrators mask age, such that patient age data was unavailable. As a result, a value of 90 

years old (as the minimum possible age for these patients) was assigned to these individuals. Age 

was assessed continuously, with values ranging (after imputation) from 18 to 90 years old. Primary 

payment method was categorized in the mutually exclusive categories of “Medicare”, “Medicaid” 

“private coverage”, “self-pay”, or “other public assistance”.  

2.1.4 Outcomes 

Clinical outcomes included in-hospital mortality, hospital re-admission, and general 

hospital length of stay. Hospital re-admission was identified as a patient having an additional 

admission within one year of discharge from their earliest admission. Patients who died within a 

year of their initial discharge with no additional hospital admissions were excluded from re-

admission analysis. Lastly hospital length of stay was measured in days of total hospital, from date 

of admission to discharge (or to date of death for patients who died during their hospital stay).  
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2.2 Statistical Analysis 

Treelet can be heuristically considered a combination of (and was inspired by) the common 

dimension reductions techniques of PCA, wavelets, and hierarchical clustering (A. B. Lee et al., 

2008). In this work, we apply the treelet method to the correlation matrix of ICD-9-CM diagnosis 

codes to represent these 178 features with reduced dimensionality. The implementation of treelet 

is discussed in further detail in Section 2.2.1. The resulting features are then used in regression 

modeling of clinical outcomes: in-hospital mortality, hospital length of stay, and hospital re-

admission. We use cross-validation (see Section 2.2.3) to identify the treelet transformation’s basis 

matrix (or simply the specific transformation of our original input variables) that optimizes the 

performance of regression and/or classification models (see Sections 2.2.2, 2.2.4). This process 

was repeated for each outcome, such that treelet was fit to the analytic cohort for the respective 

clinical outcome, cross-validation performed (using the appropriate regression model) within this 

cohort to identify the final treelet transformation used, and then the performance of the final model 

assessed in the appropriate, outcome-specific test data set. 

2.2.1 Treelet Dimension Reduction 

Lee et al. proposed the treelet method as a dimension reduction method to represent the 

internal or latent structure of noisy, high-dimensional data using a sparse number of features (A. 

B. Lee et al., 2008). Treelet attempts to identify correlated variables that may be grouped together 

to serve as these sparse features. The method is proposed to both reflect the underlying structure 

of the input data (or its similarity matrix) and secondarily to improve regression (or classification) 

models by using the transformed, sparse feature space.  
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Let 𝑝 = 1,2, . . . , 𝑃 represent the number of features in and 𝑛 = 1,2, . . . 𝑁 the number of 

observations for an input data set. Treelet begins with the input of a similarity matrix, which is 

defined as the 0th level similarity matrix 𝐌𝟎. Commonly (and in this specific analysis) this is the 

correlation matrix of the input features. Treelet defines a 0th level basis matrix as the identity 

matrix, such that 𝐁0 = 𝐈𝐏×𝐏.  Using this 0th level matrix, the method repeats the following process 

for levels of l=1,2…,p-1: 

In similarity matrix (𝐌𝒍−𝟏), identify the two features of maximum similarity, or: 

 

𝑝𝑖 , 𝑝𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖,𝑗∈𝑃,𝑖<𝑗  (𝐌𝑙−1) ( 1 ) 

Then identify a Jacobi rotation matrix for a given level as 𝐉𝒍
1. Define the angle of rotation θ𝑙 =

0.5 × 𝑎𝑟𝑐𝑡𝑎𝑛 (2
ρ(i,i)ρ(j,j)

ρ(𝑖,𝑗)
)  of variance for features 𝑝𝑖 ,𝑝𝑗 = ρ𝑖,𝑖 , ρ𝑗,𝑗  respectively and similarity of 

the two features ρ𝑖,𝑗 . The resulting rotation matrix 𝐉𝒍 is then defined as: 

 

 

(

 
 
 
 

1 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋯ ⋮ ⋮ ⋮
0 ⋯ 𝑐𝑜𝑠(θ𝑙) ⋯ −𝑠𝑖𝑛(θ𝑙) ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ 𝑠𝑖𝑛(θ𝑙) ⋯ 𝑐𝑜𝑠(θ𝑙) ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋱ ⋮
0 ⋯ 0 0 0 0 1)

 
 
 
 

 ( 2 ) 

 

 

1 This rotation is equivalent to performing PCA on features 𝑝𝑖 , 𝑝𝑗  of our input matrix 𝐗, where the values ≠ 0, 1, and 

the above Jacobi rotation matrix 𝐉 are equal to the transpose of the local PCA’s resulting rotation matrix  
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where 𝐉𝐢,𝐢 = 𝐉𝑗,𝑗 = 𝐜𝐨𝐬(θ𝒍),𝐉𝑖 ,𝑗 = 𝑠𝑖𝑛(θ𝑙),𝑎𝑛𝑑 𝐉𝑗,𝑖 = −𝑠𝑖𝑛(θ𝑙). Using this rotation matrix, both 

the basis and similarity matrices are updated, where 𝐁𝟏 = 𝐁𝒍−𝟏𝐉𝐥 and 𝐌𝒍 = 𝐉𝐥
𝐓𝐌𝒍−𝟏𝐉𝐥. Then 

identify the new features that maximize the updated similarity matrix 𝐌𝑙, and similarly construct 

the lth level’s rotation matrix, and repeat this process until p-1 orthonormal bases of the input 

matrix have been constructed.  

Each rotation can be considered a “grouping” of two features, which may include both an 

original input variable and/or a previously grouped treelet feature (containing loadings from 

previously grouped input variables). Each basis matrix can be considered a representation of the 

cumulative rotations and may be used as the transformation of our original inputs. Relatively small 

cut-levels (or the basis matrices identified for the number of rotations much smaller than the 

original p inputs) identify transformations with only a small number of rotations, where our basis 

matric retains much of the original input data with few grouped features (i.e. only slightly reducing 

or transforming the original data). Large cut-levels (approaching p-1 transformations) indicate 

basis matrices containing loadings from a large number of rotations, such that a subset of the 

columns in these basis matrices likely contain loadings from a large number of the original input 

data.  As a result, even a small number of features (or small K) retained from a large basis matrix 

likely contain loadings from many of the original input variables. 

The treelet model identifies p-1 constructed bases. Of which we must then identify the 

number of components to retain (or the new dimensionality of the feature space) K and the basis 

matrix whose K components are used, 𝐁𝑳, which is analogous to defining a “cut-level” L of the 

tree. For a given number of components retain (or a given 𝐾), we use Lee et al.’s proposed 

normalized energy score to identify an optimal cut-off (𝐿∗) for the treelet (equivalent to identifying 

the optimal basis matrix 𝐁L∗ from which we extract 𝐾 features). The lth basis matrix can be 
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generally defined by the vectors 𝐁𝐥 = [𝐰1, 𝐰2, … ,𝐰𝑃 ]
𝑻, and the input matrix similarly as 𝐗 =

[𝐱1, 𝐱2, … 𝐱P]
𝐓. The ith normalized energy score is then defined as: 

 

ε(𝐰𝑖) =
∑ |𝐰𝑖 ⋅ 𝐱𝑛|

2𝑁
𝑛=1

∑ ||𝐱𝑛||
2𝑁

𝑛=1

 

 

We then arrange the normalized energy scores for each basis matrix 𝐁𝒍 in descending order. Then 

for a given 𝐾, we the identify the basis 𝐁𝑳∗ = 𝒂𝒓𝒈𝒎𝒂𝒙∑ 𝛆(𝐰𝒊)
𝐊
𝒊=𝟏  (i.e. that which maximizes the 

summation of the K highest energy scores for a given basis). Thus, for a given 𝐾, we can 

deterministically identify an optimal basis matrix 𝐁𝑳∗  as the basis matrix that maximizes the sum 

of the 𝐾 highest, normalized energy scores. 

The authors propose multiple methods to identify these parameters, dependent upon the 

goal of the treelet transformation (A. B. Lee et al., 2008). The treelet method itself does not include 

information from an outcome measure or dependent variable and is constructed using only the 

structure of the similarity structure (e.g. correlation or covariance matrix) of the input variables. 

In the absence of an outcome or prediction model of interest, the final treelet transformation may 

be selected using some a priori criteria (e.g. retaining a specific number of treelet features, 

retaining all treelet features of the maximum cut-level basis matrix, etc.). In the context of 

regression and/or classification, the authors suggest identifying the treelet transformation 

parameters that minimize regression or classification error, which we accomplish using cross-

validation (described below and in further detail in Section 2.2.3). We used the process described 

above to identify the basis/cut-off (𝐿∗ or 𝐿∗|𝐾∗) for each 𝐾 parameter that maximizes the 

normalized energy score. As a result, identifying the final treelet transformation requires simply 
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identifying the determined pair 𝐾  and (𝐿∗ or 𝐿∗|𝐾∗) that minimizes our model error (see Section 

2.2.4 for description of measures of model error/fit). 

We identify the treelet dimension reduction’s optimal value of 𝐾 (which we refer to as the 

𝐾∗ orthonormal basis) that minimizes cross-validation using over 5-fold cross-validation 

(described in further detail in Section 2.2.3) for the models of our respective clinical outcomes. 

Thus, while the treelet method itself requires only the input data to identify the p-1 rotations, we 

identify the final transformation by observing each transformation’s prediction performance for 

the outcome of interest. As a result, we identify a unique transformation for each of our three 

respective outcomes (mortality, re-admission, and length of stay).  

Once we have identified the optimal 𝐾∗ dimensions to retain and the resulting cut-off 𝐿∗, 

equivalent to identify the optimal basis matrix 𝐁𝑳∗ , we restrict inputs to 𝐾∗ dimensions by retaining 

only the vectors from the basis matrix with the  𝐾∗ highest normed energy scores ε(𝐰𝑖 ). We then 

project the input matrix to the 𝐾∗ dimensional space by simply multiplying the original input 

matrix 𝐗 (of 𝑛 × 𝑝 dimensionality) by the newly formed and restricted basis matrix 𝐁𝐿∗ , resulting 

in the new (𝑛 ×𝐾) matrix 𝐗∗.  

2.2.2 Generalized Linear Modeling 

Generalized linear modeling (GLM) is a family of extensions to ordinary least squares 

linear regression that allows for modeling outcomes variables whose distributions do not follow a 

standard Gaussian distribution, such as binary outcomes, multinomial outcomes, proportions, 

counts, etc (Nelder & Wedderburn, 1972). Ordinary least squares regression models assume that 

the outcomes follow identical, independent standard Gaussian distributions, or: 
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 𝐲 = 𝐗𝜷+ 𝝐, ϵi ∼ 𝐍(𝟎,𝛔
𝟐) ( 3 ) 

 

GLM extends this framework while only requiring that the distribution of the outcome, 𝐲, follows 

a distribution of the exponential family. This distribution is also referred to as the random 

component of a GLM. Each specific extension includes a characteristic link function that specifies 

the relationship between the random component and the input data (also referred to as the 

“systematic component”).  

Outcomes of in-hospital mortality and hospital re-admission were represented as binary 

variables, such that the outcomes for these models follow a binomial distribution.  As a result, we 

fit logistic regression models, with a binomially distributed random component and a logit link-

function. Logistic regression models, therefore, model the logit or log-odds of the respective 

outcome’s probability (π): 

 

 𝑙𝑜𝑔𝑖𝑡(πi) = 𝑙𝑜𝑔(
πi

1 − πi
) = 𝐱𝐢𝛃 ( 4 ) 

 

The hospital length of stay outcome, as the number days between patient admission and 

discharge, is a count variable, taking only positive values. Count outcomes are commonly 

modelled using Poisson regression, with a Poisson distributed random component and the log link 

function. Poisson regression, however, assumes the equality of the mean and variance of the 

outcome, a characteristic of the Poisson probability distribution. Should this assumption not be 

met, the outcome variable is described as overdispersed, and the Poisson probability distribution 

(and Poisson regression) are inappropriate. Overdispersion can be tested by comparing the 

deviance (defined ϕ = −2𝑙𝑛(𝐿), for likelihood 𝐿) of a Poisson regression model to its χn−p
2 
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distribution under the null hypothesis of no overdispersion (or equal mean and variance). 

Overdispersion can be alternatively assessed by simply comparing the mean and variance of the 

outcome.  

Negative binomial regression is commonly used when the Poisson regression’s assumption 

of equal mean-variance assumption is not met (i.e. the data are overdispersed). The negative 

binomial’s probability mass function may be expressed as:  

 

 𝑃(𝑦𝑖) =
Γ(𝑦𝑖 +

1
α)

(𝑦𝑖!)Γ(
1
α)
(

1

1 + αμi
)

1
α
(
αμi

1 + αμi
)
𝑦𝑖

 ( 5 ) 

  where 𝜇𝑖 = 𝑒𝑥𝑝(𝑥𝑖𝛽) 

The parameters α, β  are then derived via maximum likelihood estimation for the resulting 

likelihood function ∏ P𝑁
𝑖=1 (𝑦𝑖). The use of the log-link function, 𝜇𝑖 = 𝑒𝑥𝑝(𝑥𝑖𝛽), restricts the 

model’s fitted values to be non-negative, matching the characteristic of the count outcome variable.  

2.2.3 Cross-Validation 

Cross-validation is a useful process of data sampling and splitting to build and assess the 

predictive ability of statistical models (Harrell, 2001; Shao, 1993). As previously alluded, 5-fold 

cross-validation was used to identify the optimal value for the parameter 𝐾∗. Prior to cross-

validation, analytic cohorts were split, such that 20% of each cohort was held-out and remained 

unused through any cross-validation or model fitting. The remaining 80% of each analytic cohort 

was then randomly grouped into 5 equal sized subsets as “model-fitting” or “cross-validation” data 

sets. Because of the additional exclusion criteria for categorization of unplanned hospital 
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readmission, data splitting was conducted separately for length of stay and mortality analysis 

(training n=30,844; test n=7,710) and hospital re-admission (training n=23,115; test n=5,778). 

In one iteration of cross-validation, the first subset was held-out of the cross-validation 

data, and the treelet model fit on the remaining 4 folds of data. After fitting the treelet model, 

within this same subset the original ICD-9-CM diagnosis code variables were transformed using 

the basis matrix 𝐁𝐾,𝐿|𝐾 for each pair of parameters 𝐾, 𝐿|𝐾. We then fit the appropriate GLM (using 

the previously described logistic or negative binomial models as appropriate) for each outcome, 

using the previously described covariates and transformed input matrix, resulting in 177 (p-1 for 

p=178) fitted models. Each fitted model was then used to predict the outcome in the first cross-

validation fold, which had been held out from this model-fitting step, and the test-error of each 

model then reported for that fold. This process was then repeated five times, such that each cross-

validation fold was used as the cross-validation test data exactly once. We then identified the 

values of the 𝐾 parameter (𝐾∗), and the corresponding basis or cut-off level L ∗ |𝐾 ∗ for the final 

treelet transformation in assessing the average model fit across the five test folds (see Section 2.2.4 

for the performance metrics of model fit/test-error and description of parameter selection).  

For identification of the 𝐾 parameter, cross-validation can identify both the value that 

maximizes model performance (based on the below described performance measures) and the 

smallest value of 𝐾 that produces a performance measure within one standard deviation of the best 

performing model. This “one standard deviation rule” allows for the identification of a parameter 

value that produces a further reduced model (by reducing the number of retained features, 𝐾) at a 

tolerable cost to model performance (Hastie et al., 2015, 2017).  
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2.2.4 Model Fit 

The fit of regression models (for each respective outcome and GLM method) was assessed 

during the cross-validation process and in the final hold-out data using similar metrics. In the 

logistic regression models of in-hospital mortality and hospital-readmission, the Brier Score 

measured accuracy of predicted probabilities (Brier, 1950; Rufibach, 2010). For 𝑁 observations 

(or 𝑛𝑖 , 𝑖 = 1,2, … , 𝑁) with predicted probabilities of event 𝑝𝑖̂ and observed outcome 𝑦𝑖 (where 0 

represents “no event” and 1 an observed event), the Brier Score is defined as2: 

 

 1

N
∑(𝑝𝑖̂ − 𝑦𝑖)

2

N

i=1

 ( 6 ) 

 

Smaller Brier scores indicate more accurate prediction (or better prediction model performance for 

binary classification models). The minimum Brier score of 0 indicates perfect prediction (i.e. 

predicted probabilities of 0 for all observed non-events and 1 for all observed events).  

In negative binomial regression models of hospital length of stay, the mean-squared error 

(MSE) of predicted values assessed model fit. For an observed length of stay values 𝑦𝑖 and 

corresponding predicted values 𝑦𝑖̂ among 𝑁 observations, the MSE of a model was calculated as: 

 

∑(yi − yî)
2

N

i=1

 ( 7 ) 

 

2 Notice this equation is analogous to the calculation of mean-squared error (MSE) in OLS regression, replacing the 

predicted outcome 𝑦𝑖̂ in the MSE equation with the predicted probability of 𝑝𝑖̂  calculated from the logit-link function. 
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Once we have identified the optimal parameters for the treelet models within the 80% 

cross-validation subset, we fit a GLM using the treelet basis transformation of the input matrix on 

the full 80% cross-validation subset. The resulting fitted model then predicted the outcome in the 

hold-out, 20% subset that was not used in the cross-validation process. These test predictions were 

compared with the observed outcomes in this hold-out set to assess final model fit. 

In logistic regression models for binary outcomes of hospital readmission and in-hospital 

mortality, test-model performance was additionally assessed using the area under receiver 

operating characteristic (ROC) curve (AUC) values. While the Briers score is used in comparing 

models internally (i.e. within cross-validation to identify the number of treelet features to retain), 

AUC values are more commonly presented, allowing for comparison of the presented results to 

previously reported models. AUC values were attained by the following steps: 

 

1) Identify all possible classification thresholds of predicted probabilities (𝑝̂) that result 

in distinct combinations predictions for 𝑛 observations 

2)  For each threshold, calculate the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) and 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  (
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠  + 𝐹𝑎𝑙𝑠𝑒  𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
)  

3) Plot 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  against 1 –  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  for all thresholds and corresponding values 

4) Calculate the area under this curve 

 

This value is similarly a measure of concordance, as the value calculated above is 

equivalent to the proportion of all pairwise comparisons of individuals between the two observed 

classes with the predicted probability of an “event” is greater in the individual with an observed 
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“event”. In “ties”, or pairs with equivalent predicted probabilities, a value of 0.5 is summed (rather 

than a 1 or 0 among pairs with non-equal predicted probabilities). 

2.2.5 Model Comparisons  

To contextualize the results of treelet dimension reduction, the performance of models 

containing treelet features are compared to a the Charlson and Elixhauser comorbidity indices as 

well as PCA, a common method of dimension reduction, and lasso regression. The Charlson 

(Charlson et al., 1987) and Elixhauser (Elixhauser et al., 1998) proposed groups of diagnoses (also 

indicated by ICD-9-CM diagnosis codes) thought to be predictive of in-hospital and long-term 

mortality. The Charlson index assesses the presence of 19 groups of conditions, including 

diagnoses such as history of cerebrovascular infarction, presence of dementia, presence of liver 

disease, and other chronic conditions. The Elixhauser index groups diagnoses into 31 categories 

indicating groups of diseases related to chronic diseases such as acquired immunodeficiency 

syndrome, lymphoma, diabetes, and hypertension (among other conditions). Both indices assess 

the presence or absence of relevant ICD-9-CM codes for each patient to create categorical variable 

describing patient membership in each indices’ categories. Patients in the presented analyses were 

assigned 19 and 31 binary variables for the Charlson and Elixhauser indices respectively, 

describing the presence of absence of ICD-9-CM diagnosis codes for each related disease group.  

In contrast to the Charlson and Elixhauser indices, which use subsets of ICD-9-CM 

diagnosis codes determined independent of the present data, penalized regression aims to identify 

a subset of predictors based on models fit using each study’s analytic cohort. More specifically, 

lasso regression deliberately bias the β-coefficient estimators through the introduction of a 

shrinkage penalty, often referenced as λ, in a regression model. While ordinary least squares 
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regression (i.e. regression with no shrinkage penalty) identifies a set of β-coefficients that 

minimizes the sum of squared errors as, or  β̂𝑂𝐿𝑆 = argmin(∑ (𝑦𝑖 −β𝑥𝑖)
2𝑛

𝑖=1 ). Lasso regression 

introduces the shrinkage penalty, such that the lasso minimizes the sum of squared errors including 

this small penalty: β̂𝑙𝑎𝑠𝑠𝑜 = argmin(∑ (𝑦𝑖 − β𝑥𝑖  )
2 + λ ∑ |β𝑗|

𝑝
𝑗=1

𝑛
𝑖=1 ). A range of shrinkage 

penalty values (or λ values) can be assessed via cross-validation and a value identified that either 

minimizes test error or following the previously described “one-standard-deviation rule” to 

identify a further reduced number of predictors to retain. The extension of lasso to logistic and 

negative binomial regression then simply involves including the shrinkage penalty, λ, in the linear 

component of each model.   

Lastly, PCA is a common dimension reduction technique that projects original input data 

into a smaller dimension space comprised of orthogonal linear combinations of the original inputs, 

or principal components. After identifying the resulting principal components, the final 

transformation of the original input data requires identifying the number of principal components 

to retain. The number of principal components to retain can be determined by assessing the number 

of cumulative variance (in the original input data) accounted for by the subsequent number of 

principal components using some prior determined threshold.  

All PCA and lasso analysis used the same data (including the raining and test data-splits of 

model fitting and assignment of cross-validation folds) as the treelet dimension reduction and 

resulting model fitting for each respective clinical outcome. In lasso regression, the identified 

shrinkage penalty was selected that minimized test-error across 5-fold cross-validation for each 

respective outcome (i.e. a unique shrinkage penalty was identified for each clinical outcome). In 

the use of PCA prior to model fitting, the minimum number of principal components that accounted 

for >60% of the variance among the 178 ICD-9-CM diagnosis codes (for each respective 
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outcome’s analytic cohort) were retained (n=65 for mortality and length of stay, n=66 for hospital 

re-admission). The results of all fit models are then lastly compared to models including indicator 

variables of each diagnosis code, with no dimension reduction, transformation, or penalization 

performed.  

2.2.6 Software  

All data management, visualization, and analysis were performed in R, version 4.0.0, 

within RStudio, version 1.3.959. The treelet package from Drs. Di Liu and Trent Gaugler was used 

for treelet dimension reduction (Gaugler, 2015) and the MASS package for negative binomial 

regression modeling (Venables & Ripley, 2002). The tidyverse family of packages was used 

extensively for data wrangling and exploratory data analysis in conjunction with the here and icd 

packages (Muller, 2017; Wasey et al., 2020; Wickham et al., 2019). The MASS package was used 

for its implementation of negative binomial regression (Venables & Ripley, 2002). In addition to 

the tidyverse’s ggplot2, the corrplot and lares package were used specifically for exploratory data 

visualization, and the gghighlight extension to ggplot2 to visualize treelet parameter identification 

(Lares, 2020; Wei & Simko, 2017; Yutani, 2020). The glmnet (Friedman et al., 2010) package 

within caret (Kuhn, 2020) and the mpath package (Wang, 2020) were used to extend lasso 

regression in logistic and negative binomial regression respectively. Lastly, the pROC package 

was used to generate ROC curves and AUC values (Robin et al., 2011). 
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3.0 Results 

Analysis results are presented in two sub-sections, the first (Section 3.1) displays a brief 

characterization of this study cohort and the correlation structure of the 178 retained ICD-9-CM 

diagnosis codes. Section 3.2 contains sub-sections corresponding to one of the respective clinical 

outcomes and containing results related to the cross-validation parameter selection process and the 

final treelet and regression modeling test fit. Supplemental tables and figures are included in 

Appendix A. 

3.1 Descriptive Statistics  

3.1.1 Patients 

Descriptive outcome and covariate statistics for the analytic cohort of 38,554 patients are 

included in Table 2. This analytic cohort of ICU admissions presents an older sample, with a mean 

age of nearly 64 years at time of admission, and a majority male but moderately balanced sample 

of 56.60% patients and 43.40% female patients. Patients had a median hospital length of stay of 7 

days, nearly 15% of patients died during their hospital stay.  
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Table 2: Analytic Patient Cohort Characteristics 

 Analytic Cohort  

(n=38,554) 

Hospital Readmission Subset 

(n=28,894) 

Age, Mean (SD) 63.51 (17.55) 60.92 (17.58) 

Sex (Male), n (%) 21,820 (56.60%) 16,663 (57.67%) 

Hospital Stay (days), Median 

(IQR) 

7 [4-12] 7 [4-11] 

Re-Admission, n (%) N/A 2,153 (7.45%) 

In-Hospital Mortality, n (%) 5,586 (14.49%) N/A 

Number of ICD-9-CM Diagnosis 

Codes per Patient, Median (IQR) 

7 [5-9] 6 [4-9] 

Primary Payment Method, n (%) 

Medicare 

Private Insurance 

Self-Pay 

Medicaid 

Other Public Assistance 

 
20,433 (53.00%) 

13,243 (34.35%) 
546 (1.42%) 

3,169 (8.22%) 
1,163 (3.02%) 

 
13,633 (47.18%) 

11,209 (38.79%) 
440 (1.52%) 

2,584 (8.94%) 
1,027 (3.55%) 

IQR = Interquartile Range [25th-75th Percentiles]; SD = Standard Deviation 

 

3.1.2 Diagnosis Codes 

Of 6,985 unique ICD-9-CM codes, the exclusion of “E” and “V” codes resulted in 5,992 

diagnoses codes remaining. Of these 5,992 diagnosis codes, 178 were retained with >1% 

prevalence. Figure 1A displays each diagnosis code frequency in descending order, where we see 

a subset of codes in the left-most portion of the graph with a comparatively higher frequency. 

Figure 1B specifically displays this information for the top 15 of these most frequent diagnosis 

codes, with proportions ranging from 8.65% for “Pneumonia, NOS” (not otherwise specified 

[NOS]) to 42.71% for “Hypertension”.  



 25 

 

 

Figure 1: Frequencies of (A) All and (B) 15 Most Common ICD-9-CM Diagnosis Codes 
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The correlation structure of the diagnosis code data (Figure 2) displays pockets of 

correlated diagnosis codes, most noticeably the groups of dark blue squares near the diagonal. The 

treelet model uses the correlation structure of the data as the “similarity matrix”, with which we 

will represent the 178 ICD-9-CM diagnosis codes with a comparatively more sparse set of features.  

 

 

Figure 2: Correlation Matrix of Included ICD-9-CM Diagnosis Codes 

 

The most correlated pairs of diagnosis codes are presented in Figure 3. This first pair of 

the most highly correlated diagnoses are unsurprisingly related diagnoses (294.10, “Dementia in 

conditions classified elsewhere” & 331.0, “Alzheimer’s Disease”) which will be the first joined 

pair in the treelet process.  
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Figure 3: Ten Most Correlated Pairs of Diagnosis Codes 

3.2 Statistical Analysis 

3.2.1 In-Hospital Mortality 

Figure 4 displays the results of the 5-fold cross-validation of the treelet’s 𝐾 parameter, 

showing the Brier Score (averaged across the 5 cross-validation folds) for each 𝐾 (and respective 

𝐿|𝐾) parameter. The red highlighted point indicates the parameters that minimized the Brier 

Score (𝐾 = 174, 𝐿|𝐾 = 4), favoring a model that includes nearly all diagnosis codes. The blue 

observation indicates the “sparser parameter” (𝐾 = 123 ,𝐿|𝐾 = 57), that is the minimum 𝐾 

value within one standard deviation of the minimized test-error. Using the smaller 𝐾 parameter 

allows us to further reduce the feature set with an acceptable “loss” in cross-validation 
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performance, opting for a sparser model. The final basis matrix for the more sparse (or “one 

standard deviation” rule) parameters included 𝐾 = 123 dimensions of the cut level (or the Lth 

basis matrix 𝐵𝐿) of 𝐿|𝐾 = 57. This reduced number of retained features includes loadings from 

all 178 diagnosis. That is, while we were able to reduce the number of input variables from our 

178 original diagnosis codes to 123 treelet features, these retained treelet features do not identify 

a sparse feature space (i.e. still requiring information from all 178 diagnoses in our original input 

data). 

 

 

Figure 4: Average Test Briers Score Over 5-Fold Cross-Validation (Mortality Model) 

 

Having identified these parameters, we fit a logistic regression model to the total cross-

validation cohort (n=30,844) predicting in-hospital mortality using age, sex, insurance 

coverage/payment method, and the transformation of the diagnoses codes into the new feature 
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space using the parameters identified above (patient-level information contained in Table 3, full 

model results including K=123 treelet features included in Appendix Table 1). This fit logistic 

regression model was then then used to predict probabilities of mortality in the 20% hold-out data 

set (n=7710), for a final test-performance Brier Score of 0.0916 and AUC of 0.853. Table 3 

additionally contains the results of a model fit including only the patient demographic information, 

with a final test model Brier Score of 0.1183 and AUC of 0.666. In models of mortality that both 

include and exclude the treelet features, older age (β=0.031, p<0.001) and a primary payment 

method of Self-Pay (β=1.145 compared to the reference group of “Other Public Assistance”, 

p<0.001) demonstrate statistically significant increases in mortality risk. Interestingly, the 

inclusion of treelet features results in the statistical significance for our covariates of male sex (β=-

0.118, p=0.004) and Medicare payment method (β=0.328, p=0.032).   

 

Table 3: Logistic Regression Model of Mortality 

 
Model Excluding Treelet Features Model Including Treelet Features* 

Predictor β 95% CI P-Value β 95% CI P-Value 

Intercept  -4.041 [-4.334, -3.747] <0.001 -5.021 [-5.371, -4.671] <0.001 

Age 0.031 [0.028, 0.034] <0.001 0.038 [0.035, 0.042] <0.001 

Sex (Male) -0.050 [-0.115, 0.015] 0.1343 -0.118 [-0.198, -0.037] 0.004 

Insurance 

Medicaid 

Medicare 

Private  

Self-Pay 

 

0.374 
0.252 

0.067 
1.145 

 

[0.092, 0.656] 
[-0.014, 0.517] 

[-0.194, 0.328] 
[0.788, 1.503] 

 

0.0093 
0.0635 

0.6142 
<0.001 

 

0.178 
0.328 

0.103 
1.174 

 

[-0.140, 0.497]  
[0.029, 0.627] 

[-0.191, 0.397] 
[0.762, 1.586] 

 

0.273 
0.032 

0.491 
<0.001 

Test Model Performance: Brier Score = 0.0917; AUC = 0.858 
Test Model Performance (excluding treelet features): Brier Score = 0.1183; AUC = 0.666 
*Abbreviated model results presented in Table 3, see Appendix Table 1 for K=123 included 

treelet features 
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Figure 5: Treelet Feature P-Values & β-Coefficients (Mortality) 

 

For the retained treelet features, the p-value for hypothesis tests of β-coefficients are 

presented in Figure 5, as well as the value of the β-coefficient values, with the five largest 

coefficients labelled (with coefficients presented in descending order of relative normed energy 

score). Each bar represents one of 𝐾=123 treelet features included in the final model, with the 

height displaying the those with the highest −𝑙𝑛(p − value) (equivalent to the smallest p-value) 

and the color displaying the relative value of the point estimate of each feature’s β-coefficient.  

In the figure we see subset of treelet features with a much lower p-value and comparatively 

higher β-coefficient than many of the retained treelet features. The five, labelled treelet features 

(1, 2, 13, 15, and 38) denote features with the highest magnitude beta-coefficient, and the five 

tallest bars (treelet features 1, 2, 7, 13, and 15) those with the highest −𝑙𝑛(p − value) (Appendix 

Table 4). Among the treelet features retained in the final model of mortality, feature 1 included 
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loading from all 178 ICD-9-CM diagnosis codes, where the codes with the highest loading 

diagnoses corresponding to conditions related to sepsis (codes 995.92 Sepsis; 38.9 Septicemia ) or 

organ system failure (codes 584.9 kidney failure; 518.81 respiratory failure) as well as otherwise 

unspecified pneumonia (code 486.00). Additional features included codes related to 

cancers/malignancies (feature 2: codes 198.3, brain/spinal malignancy; 197.7, liver malignancy; 

197.0, lung malignancy; 198.5, bone and bone marrow malignant neoplasm), neurological injury 

and sequalae (feature 13: 431, intracranial hemorrhage; 430, subarachnoid hemorrhage; 348.5, 

cerebral edema), and cardiovascular diagnoses (feature 15: 427.5, cardiac arrest; 427.47, 

ventricular fibrillation).  

The density curves for the predicted probabilities of the patients in the test (or hold-out) 

data set (resulting from the final logistic regression model, including all patient demographic 

covariates and 𝐾=123 treelet features) are included in Figure 6. The figure presents two density 

curves, stratified by the patients’ observed (or true) mortality status, with the light blue curve 

representing the distribution of predicted probabilities among patients who survived their hospital 

stay and the red curve among patients who died. We see that patients observed to have survived 

their hospital stay have predicted probabilities concentrated below 10% (0 ≤ 𝑝̂ ≤ 0.10). Patients 

who died during their hospital stay have more uniformly distributed predicted probabilities, with 

separation of predicted probabilities between the two groups beginning most notably in the region 

above 37.5% (𝑝̂ ≥ 0.375).  
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Figure 6: Density Curve of Predicted Probabilities of Mortality 

 

Lastly, Figure 7 compares the ROC curves and AUC of three logistic regression models 

of mortality, the first including only the patient demographic variables (represented by the blue 

curve), the second including patient demographic covariates as well as the five most significant 

treelet features as outlined above (represented by the orange curve), and the third model including 

all patient demographic and all 𝐾 = 123 treelet features (represented by the green curve).  

Inclusion of the treelet features largely improves upon a model built using only the demographic 

covariates. The predicted probabilities of a model including only demographic covariates also 

demonstrates poor separation between patients’ observed mortality status (Appendix Figure 1) 

compared to the predicted probabilities generated from our model retaining both patient 
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demographic data and all treelet features (Figure 6). Interestingly, in the ROC curve comparison, 

the model including only the five most significant treelet features appears to be largely responsible 

for this increase in performance (AUC=0.833 compared to AUC=0.666 for patient demographic 

covariates alone, AUC=0.858 for demographic covariates and all treelet features).  

 

 

Figure 7: Comparative ROC Curves of Mortality Predictions 

3.2.2 Hospital-Readmission 

Figure 8 includes the results of 5-fold cross-validation of the treelet’s 𝐾 parameter in 

prediction of unplanned hospital re-admission, displaying the averaged test performance, 

measured via Brier Score, for each 𝐾 (and respective 𝐿|𝐾) parameter. The plot also highlights 
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the 𝐾 and 𝐿|𝐾 parameter that minimized the Brier Score (𝐾 = 30, 𝐿|𝐾 = 177) and the more 

sparse parameter (𝐾 = 5, 𝐿|𝐾 = 177) within one standard deviation of the minimized test-error. 

 

 

Figure 8: Average Test Briers Score Over 5-Fold Cross-Validation (Readmission Model) 

  

Unlike the results in the mortality treelet, this analysis identifies a reduced feature space, 

with markedly fewer features than the initial 178 diagnosis codes. However, both the minimizing 

and more sparse values of 𝐾 use a large cut-level of 𝐿|𝐾 = 177, or a basis matrix that has 

undergone all transformations of the treelet model. As a result, although the cross-validation 

process identifies a much lower number of dimensions to include, the optimal basis matrix (or 

the identified 𝐿|𝐾 value) results in basis matrices that similarly include loadings from all 178 

diagnosis. As both of the final basis matrices (𝐾 = 30, 𝐾|𝐿 = 177;𝐾 = 5, 𝐾|𝐿 = 177) result in 



 35 

loadings from all diagnosis codes and the 𝐾 value that minimizes the cross-validation error does 

reduce the number of input features for diagnosis code data substantially (from 178 to 30), we 

used the minimizing parameters (𝐾 = 30,𝐾|𝐿 = 177) for the final treelet transformation rather 

than the more-sparse parameter.  

Using the readmission parameters that yielded the lowest Brier Score in cross validation, 

we fit a logistic regression model to the total training cohort (n=23,115) predicting hospital 

readmission using age, sex, insurance coverage/payment method, and the transformation of the 

diagnoses codes into the new feature space (patient covariate results contained in Table 4, full 

model results including K=30 treelet features presented in Appendix Table 2). This logistic 

regression model was then then used to predict probabilities of unplanned hospital re-admission in 

the 20% test (or hold-out) data set (n=5,778), for a final test-performance Brier Score of 0.0681 and 

AUC of 0.661, indicating overall poor predictive performance of this model. We see that only the 

primary payment methods of Medicaid, Medicare, and Self-Pay were statistically significant 

predictors of unplanned hospital re-admission, and among these categories only the Medicaid 

category remaining significant with the inclusion of the treelet feature.  

 

 

 

 

 

 

 

 



 36 

Table 4: Logistic Regression Model of Readmission 

 
Model Excluding Treelet Features Model Including Treelet Features* 

Predictor β 95% CI P-Value β 95% CI P-Value 

Intercept  -2.608 [-2.942, -2.274] <0.001 -3.137 [-3.490, 2.783] <0.001 

Age -0.002 [-0.006, 0.002] 0.3387 0.002 [-0.002, 0.007] 0.455 

Sex (Male) -0.052 [-0.152, 0.048] 0.3078 0.039 [-0.142, 0.064] 0.281 

Insurance 

Medicaid 

Medicare 

Private  

Self-Pay 

 
0.619 

0.394 
-0.086 

-0.723 

 
[0.303, 0.935]

[0.084, 0.705]  
[-0.384, 0.213] 

[-1.387, -0.06] 

 
<0.001 

0.0129 
0.5735 

0.0326 

 
0.484 

0.310 
-0.033 

-0.608 

 
[0.162, 0.806] 

[0.005, 0.625] 
[-0.336, 0.271] 

[-1.278, 0.061] 

 
0.003 

0.053 
0.833 

0.075 

Test Model Performance: Brier Score = 0.0681; AUC = 0.661 
Test Model Performance (excluding treelet features): Brier Score =  0.0692; AUC = 0.574 

*Abbreviated model results presented in Table 4, see Appendix Table 2 for K=30 included 
treelet features 

 

 

 

Figure 9: Treelet Feature P-Values & β-Coefficients (Readmission) 
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Figure 9 displays both the p-values and relative magnitude of β-coefficients for the 30 

treelet features included in the final regression model, with the five most significant coefficients 

again labeled. Each bar represents one of 𝐾=30 treelet features included in the final model, with 

the height displaying and the color displaying the value of the point estimate of each feature’s β-

coefficient. Among the 30 retained treelet features, the graph prominently displays the importance 

of features 1, 2, and 4 (Appendix Table 5).  Feature 1 included diagnoses related to organ failure 

(codes 584.9, kidney failure; 518.81, respiratory failure; 574.5, cirrhosis) and infection (34, 

urinary tract infection). Feature 2 contained similar diagnoses to feature 1 in the treelet features 

used in mortality, including diagnoses related to sepsis and organ failure. Lastly, feature 4 included 

diagnoses of diabetes and related complications (codes 250.60, diabetes mellitus (type II) with 

neurological manifestations; 357.2, diabetes with neuropathy).  

Figure 10 presents the density curves for the predicted probabilities of the patients in the 

test (or hold-out) data set, resulting from the final logistic regression model, including all patient 

demographic covariates and 𝐾=30 treelet features. The distributions are stratified by the patients’ 

observed readmission status, with the blue curve representing the predicted probabilities of patients 

with an observed readmission and red curve for those not readmitted. The density curves 

corroborate the low AUC of the final model in our hold-out test data set, demonstrating a poor 

separation of predicted probabilities between the patients with observed readmission and those 

without. 
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Figure 10: Density Curve of Predicted Probabilities of Readmission 

 

Lastly, Figure 11 compares the ROC curves and AUC of three models of hospital 

readmission, the first including only the patient demographic variables (represented by the blue 

curve), the second including patient demographic covariates as well as the five most-significant  

treelet features as outlined above (represented by the orange curve), and the third model including 

all patient demographic and all 𝐾 = 30 treelet features (represented by the green curve). Inclusion 

of the treelet features slightly improves the upon the model built using only the demographic 

covariates, indicated by the increased AUC (AUC=0.574 demographic covariates only, 

AUC=0.661 including demographic covariates and all treelet features). The predicted probabilities 

of a model including only demographic covariates demonstrate comparatively less separation 

between patients’ observed readmission status (Appendix Figure 2) compared to those generated 

form the model including all treelet features (Figure 10). The model including only the five most 

significant treelet features accounts for nearly all model fit observed by including diagnosis data 
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(AUC=0.661 including all treelet features, AUC=0.658 including five most significant treelet 

features).  

 

 

Figure 11: Comparative ROC Curves of Hospital Re-admission Models 

3.2.3 Hospital Length of Stay   

A negative binomial regression model was fit to predict hospital length of stay, which 

was considered overdispersed with a mean of 9.78 and variance of 112.63 in the full analytic 

cohort (see Appendix Figure 3, Appendix B.3 for density curve of length of stay variable). The 
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Poisson model, fit using the same covariates and observations from our cross-validation data set, 

also provided evidence of overdispersion (p<0.001, data not shown).   

Figure 12 includes the results of 5-fold cross-validation for prediction of hospital length 

of stay, measured via MSE for each 𝐾 (and respective 𝐿|𝐾) parameter. The plot includes both the 

𝐾 and 𝐿|𝐾 parameters that minimized MSE (𝐾 = 115,𝐿|𝐾 =63) and those that were within one 

standard deviation of the minimum MSE (𝐾 = 46,𝐿|𝐾 = 63). Contrary to the cross-validation 

results for predicting in-hospital mortality and hospital readmission, the length-of-stay model 

identifies a sparse feature space that minimizes MSE. This yielded the parameters identified 

using one-standard deviation rule to further reduce the feature space rather than merely 

“correcting” the lack of sparsity. Interestingly, this cross-validation graph also appears to identify 

values of K that yield overfitting, as MSE increases as 𝐾 increases past values near the 

minimizing value of 115. The final basis matrix for the more sparse (or “one standard deviation” 

rule) parameters included 𝐾 = 46 dimensions of the cut level (or the Lth basis matrix 𝑩𝑳) of 

𝐿|𝐾 = 63 basis matrix, which included loadings from 107 of 178 diagnosis codes.  
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Figure 12: Average Test Briers Score Over 5-Fold Cross-Validation (Length of Stay Model) 

 

We then fit a negative binomial model to the total cross-validation cohort (n=30,884) 

predicting hospital length of stay using patient-level covariates and diagnoses codes transformed 

into the new feature space (results for patient demographic covariates information contained in 

Table 5, full model results including K=46 treelet features presented in Appendix Table 3), which 

was then then used to predict length of stay values of in the hold-out data set (n=7,710), with an 

MSE of 105.82.  
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Table 5: Negative Binomial Model of Length of Stay 

 
Model Excluding Treelet Features Model Including Treelet Features* 

Predictor β 95% CI P-Value β 95% CI P-Value 

Intercept  2.310 [2.246, 2.375]  <0.001 2.001 [1.942, 2.061] <0.001 

Age -0.001 [-0.002, -0.001] <0.001 -0.002 [-0.003, 0.002] <0.001 

Sex (Male) 0.025 [0.006, 0.044]  0.010 0.053 [0.035, 0.071] <0.001 

Insurance 

Medicaid 

Medicare 

Private 

Self-Pay 

 
0.172 
0.062 

0.008 
-0.373 

 
[0.109, 0.235]  
[0.003, 0.122]  

[-0.049, 0.064] 
[-0.471, -0.274] 

 
<0.001 
0.0388 

0.7862 
<0.001 

 
0.114 
0.048 

0.039 
-0.318 

 
[0.058, 0.171] 

[-0.006, 0.101] 

[-0.12, 0.090] 
[-0.407, -0.229] 

 
<0.001 

0.079 

0.133 
<0.001 

Test Model Performance: Root-Mean-Square Error = 10.29 

Test Model Performance (excluding treelet features): Root-Mean-Square Error = 11.09 
*Abbreviated model results presented in Table 5, see Appendix Table 3 for K=46 included 
treelet features 

 

 

 

Figure 13: Treelet Feature P-Values & β-Coefficients (Length of Stay) 
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Figure 13 again displays the p-values and relative magnitude of β-coefficients of treelet 

features included in the final negative binomial model of hospital length of stay. Each bar 

represents one of K=46 retained treelet features. Among notable features with high β-coefficients 

and among the lowest p-values, feature 1 includes diagnoses related to sepsis (995.92, severe 

sepsis; 389 septicemia; 785.52, septic shock) and organ failure (584.9, acute kidney failure; 

518.81, acute respiratory failure) similar to important features identified in both our models of 

mortality and readmission. Notably, both feature 12 and feature 14 include only two ICD-9-CM 

codes, with feature 12 including 997.4 (digestive complications, not otherwise specified) and 

561.0 (paralytic ileus) while feature 14 includes only 518.0 (pulmonary collapse and 511.9 

(pleural effusion).  

 Figure 14 lastly contains the predicted length of stay values from this negative binomial 

model against the true, observed length of stay values, with blue dots representing patients with a 

larger predicted than observed length of stay and red dots patients whose length of stay was 

underpredicted. The model heavily over-predicted length of stay (with predicted values >80 days) 

in a subset of patients with observed length of stays under 50 days while simultaneously 

underpredicted length of stay (with predictions under 40 days) in a group of patients with observed 

length of stays over 100 days. However, the bulk of observations are contained in the bottom-left 

quadrant of the Figure 14, with both predicted and observed length of stays concentrated in a range 

of 0 to 50 days.  
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Figure 14: Scatter Plot of Observed and Predicted Length of Stay Values 

 

Figure 15 further demonstrates this concentration of lower length of stay values, separately 

displaying the density curve of the predicted and observed values of patient length of stay (Figure 

15). Both the predicted and observed length of stay distributions appear heavily right skewed, with 

most values contained in under 30 days. The red curve of predicted values tends to underestimate 

length of stay, evidenced by the higher density of lower length of stay values under 20 days, 

compared to the blue curve of observed length of stay values which continues with a slightly 

increased density through 40 days. The underprediction of length of stay values is corroborated by 

the distribution of the errors of the negative binomial model contained in Appendix Figure 4. 
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Figure 15: Density Curves of Predicted & Observed Length of Stay Values 

 

Lastly, Figure 16 displays the root-mean-square error of models including the subsequent 

addition of the most significant treelet features (from the model fit including all K=46 treelet 

features and patient demographic covariates). That is, the first point represents a model including 

patient demographic covariates and treelet feature 1 (the treelet feature with the lowest p-value, 

seen in Figure 13), the second point including the same predictors and adding treelet feature 15 

(treelet feature with subsequent lowest p-value, Figure 13), and the further points representing the 

addition of the remaining treelet features, such that the final point in the furthest right portion of 

the graph represents the final model including patient demographic variables and all K=46 treelet 

features. The figure displays that the first five treelet features reduces the root-mean-square error 

from 10.85 to 10.35, while the remaining 41 treelet features only further reduce the root-mean-

square error to the final value of 10.29. Thus, similar to the improvement in the AUC in the models 

of binary outcomes of mortality and unplanned hospital-readmission, the introduction of the five 
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most significant treelet features appears responsible for the bulk of the model improvement that 

results from the inclusion if ICD-9-CM diagnosis codes.  

 

 

Figure 16: Root-Mean-Square Error by Number of Retained Treelet Features 

3.2.4 Comparative Model Fit 

In addition to the results of models including the previously described treelet features, 

Table 6 contains the test model fit of lasso generalized linear models, models using PCA 

transformed features, models using the Charlson and Elixhauser comorbidity indices, and models 

including the original, 178 ICD-9-CM diagnosis codes. The models fit using treelet features are 

outperformed by the lasso and PCA models across all three clinical outcomes, as well as the models 

retaining the original 178 diagnosis codes in models of in-hospital mortality and hospital re-
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admission. That is, treelet dimension reduction does not improve the prediction of our clinical 

outcomes of in-hospital mortality or hospital re-admission over the original diagnosis data. 

Similarly, treelet transformed features of ICD-9-CM diagnosis codes do not outperform more 

common dimension reduction methods of lasso or PCA in all three of our clinical outcomes. Of 

our dimension reduction models, only the lasso models outperform retaining the original 178 ICD-

9-CM diagnosis codes in models of mortality and re-admission. The Charlson and Elixhauser 

comorbidity indices demonstrate little-to-no classification ability for in-hospital mortality or 

hospital-readmission and the highest prediction error (compared to the remaining models in Table 

6) for each clinical outcome.  

 

Table 6: Comparative Results of Model Performance 

 Treelet 

(All 

Features) 

Treelet 

(Top 5 

Features) 

Lasso PCA Charlson Elixhauser All 

ICD 

Codes 

Mortality* 0.858 0.830 0.868 0.860 0.632 0.615 0.867 

Readmission* 0.661 0.658 0.669 0.667 0.502 0.513 0.667 

Length of 

Stay** 

10.29 10.35 9.61 10.24 13.48 13.49 11.75 

*AUC values reported; **Root-mean-square error presented 

 

Table 7: Summary of Retained Features and ICD-9-CM Diagnosis Codes 

 Treelet 

(Optimal) 

Treelet  
(Top 5 Features) 

Lasso PCA 

In-Hospital Mortality* 123 (178) 5 (38) 170 (170) 66 (178) 

Hospital Re-admission** 30 (178) 5 (178) 48 (48) 65 (178) 

Hospital Length of Stay* 46 (107) 5 (29) 178 (178) 66 (178) 

Number of features retained (Number of ICD-9-CM codes loading onto retained features) 

*Models using more-sparse parameters; **Model using test error minimizing parameters 
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Table 7 reports the number of retained features and the number of ICD-9-CM diagnosis 

codes that inform the features for the treelet model, including the optimal K features and the models 

including only the five most significant features (labelled “Top 5 features”), as well as the lasso 

and PCA models. Each PCA model includes loadings from all 178 ICD-9-CM diagnosis codes (as 

PCA retains information from all of the original input variables), accounting for 60% of the 

variance in the original ICD-9-CM diagnosis codes in 66 principal components in the analytic 

cohort of in-hospital mortality and hospital length of stay and in 65 components in the analytic 

cohort of hospital re-admission. The treelet model identifies the smallest number of features 

retained in the final model of all three clinical outcomes. The optimal treelet parameter for hospital 

length of stay identifies the smallest number of required ICD-9-CM diagnosis codes loading onto 

the final, included features. The lasso model of hospital re-admission identifies a much smaller 

number of required ICD-9-CM diagnosis codes compared to both the optimal treelet model and 

the five most significant treelet features.  
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4.0 Discussion 

This work applied treelet dimension reduction to ICD-9-CM diagnosis codes and used the 

resulting, transformed features to fit models of in-hospital mortality, unplanned hospital 

readmission, and hospital length of stay in a cohort of critical care admissions. The resulting 

predictive models require only ICD-9-CM diagnosis code, patient age, sex, and insurance 

coverage/payment method. Treelet dimension reduction represents the original set of ICD-9-CM 

code covariates with a smaller number of features and ideally using only a subset of the original 

input covariates. This analysis built upon previous work through use of treelet dimension reduction 

and through use of the large, publicly available MIMIC-III database, a publicly available data 

source of single-center, critical care admissions.  

In the analyses of mortality and hospital length of stay, the analytic cohort included 38,554 

adult patients (18+ at time of admission). In this cohort, hospital mortality occurred in 14.19% of 

patients, and the median length of stay was 7 days, while length of stay values ranged from less 

than a day to 294 days (Table 2). Analysis of unplanned hospital re-admission included 28,894 

patients, as a subset of patients died within a year of their earliest discharge with no hospital re-

admission.  

Among the 178 retained ICD-9-CM diagnosis codes, the most prevalent codes included 

expected conditions such as hypertension (42.7%),  atrial fibrillation (24.4%), and congestive heart 

failure (22.1%) as well as diagnosis of acute kidney (15.8%) and respiratory (14.0%) failure, 

anemia (10.2%), and pneumonia (8.7%) (Figure 1). The high prevalence of the acute organ failure 

and anemia diagnoses may represent complications among severe trauma admissions (Alder & 

Tambe, 2020). The prevalence of pneumonia in this cohort align with previous estimates of 
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nosocomial pneumonia prevalence in American hospital admissions (Shebl & Gulick, 2020). The 

exploration of the correlation structure of the diagnosis codes, and specifically the examination of 

the most correlated pairs in Figure 3, showed expectedly related pairs of correlated conditions, 

such as dementia without behavioral disturbance and Alzheimer’s disease as the most correlated 

pair, and subsequent pairs of correlated codes including severe sepsis and septic shock as well as 

diabetes with neurological manifestations and neuropathy in diabetes. These and other, similar 

pairs of ICD-9-CM diagnosis codes may be data elements that are seemingly redundant, which 

may be best represented by a single combined covariate as they are joined through the treelet 

model.  

In the fitting of logistic regression models to predict mortality, the cross-validation of the 

treelet model identified only minor dimension reduction, as we identified a 𝐾 parameter (which 

identified the number of dimensions to retain in the 𝐿|𝐾 basis) of 123. The 123 features in the 

transformed treelet basis additionally represented information from all 178 diagnosis codes, such 

that the treelet model, while moderately reducing the number of covariates in our final model, did 

not yield a sparse feature space. Among the covariate included from the treelet transformation, 

feature 1 included loading from all 178 ICD-9-CM diagnosis codes, where the codes with the 

highest loading diagnosis commonly corresponding to diagnosis related to sepsis, organ failure, 

and pneumonia. Additional features included codes related to cancers/malignancies, neurological 

injury, and cardiovascular disease. Severe diagnoses such as malignant neoplasms (Nasir et al., 

2017) and traumatic brain injuries (McCredie et al., 2018) are unsurprising risk factors of in-

hospital mortality, as well as severe complications such as sepsis or organ failure (Paoli et al., 

2018; Rubenfeld et al., 2005).  
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The resulting model demonstrated good discrimination of in-hospital mortality, evidenced 

both by the AUC value of 0.858 (Table 3) and the separation of predicted probabilities of in-

hospital mortality between patients’ true, observed in-hospital mortality status (Figure 6). The 

presented prediction model demonstrates improved performance over existing models including 

those that use similar ICD-9-CM diagnosis code data but models that include additional laboratory 

and physiological data elements (Awad, Bader-El-Den, et al., 2017; Falcão et al., 2019).   

In logistic regression modeling of unplanned hospital re-admission, treelet dimension 

reduction identified a reduced dimension space, with a selected value of 30 for the 𝐾 parameter 

(describing the number of retained dimensions). The included basis (or 𝐿|𝐾 parameter) was the 

177th basis matrix, or the final basis matrix, which included loadings from all 178 diagnosis codes. 

Thus, although the selected parameters of our treelet model yielded a largely reduced number of 

included covariates (contrary to the selected 𝐾 value of 123 in our model of mortality), the 

identified basis matrix similarly failed to yield a sparse feature space of our 178 ICD-9-CM 

diagnosis codes. The most significant treelet features observed in Figure 9 notably included 

feature 1 (involving diagnoses related to organ failure infection), feature 2 (including diagnoses of 

sepsis and organ failure similar to those included in feature 1 in the model of mortality), and feature 

4  (including diagnoses of diabetes and related complications). 

In addition to elevating risk of mortality, the diagnoses related to sepsis and organ systems 

failure in feature 2 are also associated with highly increased risk of hospital re-admission 

(Goodwin & Ford, 2018). Feature 1 includes diagnoses commonly observed as risk factors for 

hospital re-admission in previous research, most notably renal failure and related cirrhosis (Tapper 

et al., 2016) and diabetes mellitus (and related conditions) (Ostling et al., 2017). Feature 1 

interestingly also includes a diagnosis of urinary tract infection, a risk factor of all-cause hospital 
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re-admission (MacVane et al., 2015) and specifically re-admission following admission for brain 

and/or spinal cord injuries, which often also include respiratory and/or renal failure complications 

(Brito et al., 2019; K. Lee & Rincon, 2012; Middleton et al., 2004). 

The resulting features did not yield a high-performing prediction model of unplanned 

hospital re-admission, with a low AUC value (AUC=0.661, Table 4) and a poor separation of 

predicted probabilities (Figure 10). The poor performance of our model corroborates previous 

research, which has identified that comorbidity diagnoses and ICD-9-CM diagnosis codes remain 

limited in their ability to predict hospital re-admission while demonstrating high performance in 

prediction of mortality (Awad, Bader–El–Den, et al., 2017). This shortcoming identifies the need 

in prediction of hospital re-admission to not only use information beyond acute care diagnoses but 

likely the need to use additional information related to a patient’s environment post-discharge. 

These data elements may include information related to discharge location, social determinants of 

health (such as social support, nutrition, access to transportation, etc.), assessments of function at 

time of discharge, or levels of independence (such as ability to complete activities of daily living) 

(Depalma et al., 2013; Greysen et al., 2015). 

Treelet dimensions for negative binomial regression modeling of the last clinical outcome, 

hospital length of stay, identified a reduced number of covariates to include (𝐾=46) and included 

loadings from only 107 of the 178 total ICD-9-CM diagnosis codes. Thus, the treelet dimension 

reduction identified a reduced number of covariates within a sparse feature space, requiring only 

a subset of the originally included diagnosis codes. Notable treelet features include a group of 

diagnoses related to sepsis and renal or respiratory failure. This first (and most significant) treelet 

predictor contains similar diagnoses as important features identified in both the mortality and 

hospital re-admission models. Sepsis and systemic organ failure are unsurprisingly related to 
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prolonged hospital stays (Paoli et al., 2018).  Interestingly, two treelet features included only two 

ICD-9-CM codes, with the first including only 997.4 (digestive complications, not otherwise 

specified) and 561.0 (paralytic ileus) and the second only 518.0 (pulmonary collapse and 511.9 

(pleural effusion). Bowel obstructions and paralytic ileus are common post-surgery complications 

that result in prolonged length of hospital stay (Luckey et al., 2003). While few models exist to 

compare the performance of the model presented in this work, the prediction of hospital length of 

stay appears to demonstrate only limited utility, with a large root-mean-square error of over 10 

days (Table 5). The visualization of predicted and observed length of stay durations in Figure 14 

demonstrate that our model is affected by outliers of both large over- and under-prediction of 

length of stay. Future models assessing patient length of stay may expand upon existing regression 

modeling by assessing patient length of stay and discharge as dynamic processes (Awad, Bader–

El–Den, et al., 2017). While dynamic modeling would require sequentially updated information 

from a patient’s acute stay, models including this additional information may improve prediction 

by utilizing information related to adverse events and/or complications during acute hospitalization 

course that causally affect length of stay duration.  

The final section of this work compares the results of models fit using ICD-9-CM diagnosis 

code data transformed using treelet dimension reduction, PCA, lasso, and the use of ICD-9-CM 

diagnosis codes in the Charlson and Elixhauser indices and simply using indicator variables for 

the retained 178 diagnosis codes. Interestingly, the Charlson and Elixhauser indices result in the 

worst model performance among the presented models. These results highlight the improved 

performance of transformed diagnosis code data in the prediction of clinical outcomes over a priori 

indices such as the Charlson and Elixhauser. 
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Interestingly, neither treelet transformation nor PCA dimension reduction of the original, 

178 ICD-9-CM diagnosis codes improved classification performance of hospital mortality or 

hospital re-admission compared to models including all 178 diagnosis code variables. Lasso 

regression models improved only modestly upon the results of models of mortality or re-admission 

including the original ICD-9-CM diagnosis code variables. In modelling hospital length of stay, 

models including treelet features, PCA components, and lasso regression models all demonstrate 

improved prediction over models including the original ICD-9-CM code data, with only the model 

including treelet features identifying a sparse number of ICD-9-CM diagnosis codes in both the 

full model (46 treelet features including 107 ICD-9-CM codes) and using only the subset of treelet 

features (5 treelet features including 29 ICD-9-CM codes). Thus, while outperformed by the lasso 

negative binomial model and modestly by the model including PCA transformed features, the 

treelet dimension reduction identified a much smaller number of retained features and required 

ICD-9-CM diagnosis codes with only a modest reduction in model fit.  

Future studies may also explore the comparative performance of indices that use acute 

physiological or lab measurements, such as the APACHE-II model, to compare performance of 

transformed physiological data over the original data elements and to compare the added predictive 

utility of these data elements over models including only diagnosis codes. The models of mortality 

in this work out-perform previous models presented using physiological data, but we may expect 

the use of these more granular data elements in the MIMIC-III data set (or similar large EHR 

databases) to further improve the performance of prediction models over those including only 

demographic and diagnosis data.  
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4.1.1 Limitations 

Date or time of diagnosis is unavailable in the MIMIC-III data. As a result, such that 

patients may receive their diagnoses at time of admission or at any point during their acute stay. 

Thus, we cannot determine whether the presented models rely solely upon baseline ICD-9-CM 

diagnosis codes (i.e. diagnoses present at time of admission). The use of baseline diagnosis code 

data may improve the generalizability and ease-of-implementation of diagnosis code prediction 

models at the possible cost of prediction performance. The presented model is generated using an 

adult population for an all-cause admission ICU. Specialized or sub-population units (e.g. pediatric 

ICU, neuro ICU, cardiac ICU, etc.) likely require their own predictive models. The inclusion of a 

diverse patient population may lead to reduced prediction performance in the presented analysis, 

that may be improved by examining specific sub-populations and relevant data elements or 

diagnoses. Lastly, although the cross-validation method sought to combat overfitting of the 

presented models, these results have not been assessed for external predictive performance among 

new patient populations or data from separate hospitals or healthcare systems.  
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5.0 Conclusion 

The presented work applies treelet, a novel dimension-reduction model, to ICD-9-CM 

diagnosis codes. The resulting transformation of diagnosis code with patient demographic 

variables were used to fit logistic regression models of in-hospital mortality, unplanned hospital 

re-admission, and hospital length of stay. The proposed objectives aimed to build prediction 

models requiring minimal information (patient demographic and diagnosis information) and to 

identify a reduced dimensionality and possibly a sparse set of ICD-9-CM diagnosis codes to 

consider in predicting patient outcomes. The presented work used data from the Medical 

Information Mart for Intensive Care (MIMIC-III), a publicly available database of critical care 

admissions which has been previously outlined as an important yet underutilized critical care 

admissions data source.  

While treelet dimension reduction did not identify a sparse number of codes for in-hospital 

mortality prediction, the model demonstrated improved model fit performance when compared to 

previous models using similar data elements (i.e. patient demographic information and ICD-9-CM 

diagnosis codes) as well as improvement over models including patient physiological and lab 

measurements over acute hospital stays. Treelet dimension reduction failed to yield a sparse set of 

ICD-9-CM codes to consider in prediction of hospital re-admission, where logistic regression 

models failed to adequately predict patients’ readmission statuses, aligning with previous research 

identifying the limitations of diagnosis code prediction of hospital re-admission. Lastly, treelet 

dimension reduction identified a sparse number of ICD-9-CM diagnosis codes, retaining only 102 

of 178 included codes, using a reduced number of covariates in negative binomial regression 

modeling of hospital length of stay. Evaluation of the negative binomial model of hospital length 
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of stay in a final, test data set again demonstrated only limited prediction utility. The retained 

treelet features in the three included regression models align with previously identified risk factors 

of mortality, re-admission, and hospital length of stay respectively.  

The results of these analyses demonstrate the useful but limited performance of ICD-9-CM 

diagnosis codes as the primary data element considered in prediction of clinical outcomes. While 

patient demographic data and diagnosis codes may result in accurate prediction of mortality, 

additional information is likely required for improved modeling of hospital length of stay and 

unplanned re-admission. Hospital length of stay modeling may benefit from the use of patient 

acute care information as well as disease-specific modeling within subset of patients. Hospital re-

admission may benefit from using not only acute care but post-discharge data, including elements 

such as those related to patients’ discharge environment and functionality at discharge.  
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Appendix A Supplemental Tables & Figures 

 

 
Appendix Figure 1: Density Curve of Mortality Model Predicted Probabilities (Treelet Features Omitted) 

 

 
 

 
Appendix Figure 2: Density Curve of Readmission Model Predicted Probabilities (Treelet Features Omitted) 
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Appendix Figure 3: Density Curve of Hospital Length of Stay Predictions 
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Appendix Figure 4: Density Curve of Residuals in Prediction of Length of Stay 
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Appendix Figure 5: Scatter Plot of Length of Stay Model Predicted Values (Treelet Features Omitted) 
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Appendix Table 1: Full Regression Estimates (Mortality) 

 
β 95% Conf. Interval P-Value 

Intercept -5.02 [-5.37, -4.67] <0.001 

Sex (Male) -0.12 [-0.20, -0.04] 0.0043 

Age 0.04 [0.03, 0.04] <0.001 

Insurance    

Medicaid 0.18 [-0.14, 0.50] 0.2728 

Medicare 0.33 [0.03, 0.63] 0.0317 

Private 0.10 [-0.19, 0.40] 0.4911 

Self-Pay 1.17 [0.76, 1.59] <0.001 

Treelet Cluster 
   

1 1.56 [1.49, 1.64] <0.001 

2 1.64 [1.47, 1.81] <0.001 

3 0.19 [0.00, 0.39] 0.0518 

4 -0.38 [-0.50, -0.26] <0.001 

5 1.16 [0.99, 1.33] <0.001 

6 -0.15 [-0.36, 0.06] 0.1697 

7 -0.60 [-0.68, -0.52] <0.001 

8 0.10 [0.02, 0.19] 0.0191 

9 0.09 [-0.07, 0.24] 0.2884 

10 -0.50 [-0.84, -0.17] 0.0031 

11 0.55 [0.31, 0.79] <0.001 

12 0.05 [-0.18, 0.28] 0.67 

13 1.76 [1.61, 1.91] <0.001 

14 -0.03 [-0.19, 0.12] 0.6873 

15 1.99 [1.82, 2.15] <0.001 

16 0.41 [0.17, 0.64] <0.001 

17 -0.57 [-0.82, -0.33] <0.001 

18 0.19 [-0.03, 0.41] 0.0936 

19 -0.46 [-0.61, -0.32] <0.001 

20 -0.31 [-0.42, -0.20] <0.001 

21 -0.09 [-0.30, 0.12] 0.3833 

22 0.83 [0.55, 1.10] <0.001 

23 -0.31 [-0.64, 0.01] 0.0608 

24 -0.17 [-0.4, 0.06] 0.146 

25 0.02 [-0.22, 0.27] 0.847 

26 -0.21 [-0.56, 0.14] 0.2465 

27 -0.42 [-0.55, -0.29] <0.001 

28 0.43 [0.26, 0.60] <0.001 

29 0.03 [-0.18, 0.23] 0.8038 

30 -0.21 [-0.43, 0.01] 0.0561 
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31 -0.20 [-0.66, 0.26] 0.3858 

32 0.00 [-0.19, 0.18] 0.96 

33 0.22 [0.02, 0.42] 0.0353 

34 -0.23 [-0.43, -0.03] 0.0231 

35 -0.06 [-0.26, 0.14] 0.568 

36 0.58 [0.29, 0.87] <0.001 

37 0.30 [0.11, 0.48] 0.0017 

38 1.22 [1.03, 1.42] <0.001 

39 -0.21 [-0.46, 0.03] 0.0878 

40 -0.48 [-0.68, -0.28] <0.001 

41 -0.22 [-0.58, 0.15] 0.2457 

42 -0.15 [-0.28, -0.02] 0.0255 

43 0.05 [-0.28, 0.39] 0.7559 

44 0.21 [0.08, 0.33] 0.0017 

45 -0.02 [-0.34, 0.30] 0.8925 

46 0.28 [-0.03, 0.58] 0.0752 

47 -0.37 [-0.61, -0.13] 0.0027 

48 -0.72 [-1.13, -0.31] <0.001 

49 -0.29 [-0.56, -0.03] 0.0264 

50 -0.31 [-0.63, 0.02] 0.0682 

51 -0.06 [-0.19, 0.07] 0.4001 

52 -0.33 [-0.51, -0.14] <0.001 

53 -0.31 [-0.50, -0.12] 0.0012 

54 0.13 [-0.10, 0.35] 0.2803 

55 0.18 [-0.08, 0.43] 0.1808 

56 0.20 [-0.03, 0.44] 0.083 

57 0.81 [0.65, 0.97] <0.001 

58 0.08 [-0.20, 0.36] 0.5807 

59 -0.32 [-0.58, -0.05] 0.0189 

60 -0.65 [-0.95, -0.35] <0.001 

61 -0.68 [-1.1, -0.27] 0.0013 

62 0.11 [-0.14, 0.36] 0.3946 

63 -0.81 [-1.13, -0.49] <0.001 

64 -0.19 [-0.36, -0.01] 0.0352 

65 -0.45 [-0.82, -0.09] 0.0154 

66 0.22 [0.08, 0.37] 0.0022 

67 0.36 [0.18, 0.55] <0.001 

68 -0.36 [-0.64, -0.09] 0.0088 

69 -0.79 [-1.19, -0.39] <0.001 

70 0.19 [-0.04, 0.42] 0.1056 

71 0.04 [-0.28, 0.35] 0.8149 

72 0.03 [-0.28, 0.34] 0.8442 

73 0.25 [-0.05, 0.55] 0.0967 
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74 -0.04 [-0.36, 0.29] 0.8319 

75 -0.23 [-0.48, 0.01] 0.0574 

76 -0.62 [-1.02, -0.22] 0.0022 

77 -0.25 [-0.59, 0.10] 0.1611 

78 0.03 [-0.43, 0.48] 0.9141 

79 -0.11 [-0.36, 0.14] 0.3836 

80 -0.42 [-0.70, -0.14] 0.0029 

81 -0.06 [-0.30, 0.17] 0.6022 

82 0.10 [-0.13, 0.34] 0.4007 

83 -0.26 [-0.59, 0.07] 0.1269 

84 -0.58 [-0.87, -0.29] <0.001 

85 -0.13 [-0.45, 0.19] 0.4162 

86 0.92 [0.69, 1.14] <0.001 

87 0.08 [-0.26, 0.42] 0.6456 

88 -0.41 [-0.7, -0.12] 0.0055 

89 0.19 [-0.12, 0.49] 0.2321 

90 -0.13 [-0.43, 0.17] 0.391 

91 -0.17 [-0.47, 0.13] 0.2569 

92 0.40 [0.16, 0.65] 0.0014 

93 -0.18 [-0.52, 0.16] 0.3024 

94 -0.26 [-0.58, 0.06] 0.1117 

95 0.02 [-0.25, 0.30] 0.8578 

96 0.04 [-0.35, 0.43] 0.832 

97 -0.21 [-0.56, 0.14] 0.2325 

98 -0.66 [-0.95, -0.38] <0.001 

99 0.70 [0.49, 0.91] <0.001 

100 -0.44 [-0.77, -0.12] 0.0077 

101 0.01 [-0.41, 0.42] 0.9725 

102 -0.21 [-0.56, 0.14] 0.2424 

103 0.47 [0.27, 0.67] <0.001 

104 -0.52 [-0.80, -0.25] <0.001 

105 -0.11 [-0.35, 0.13] 0.3828 

106 -0.46 [-0.77, -0.16] 0.0031 

107 0.22 [0.02, 0.42] 0.0325 

108 -0.63 [-0.87, -0.39] <0.001 

109 -0.14 [-0.41, 0.12] 0.2841 

110 0.03 [-0.35, 0.41] 0.8727 

111 -0.28 [-0.64, 0.08] 0.1245 

112 0.89 [0.64, 1.15] <0.001 

113 0.25 [-0.04, 0.54] 0.0916 

114 -0.33 [-0.67, 0.01] 0.0567 

115 -0.09 [-0.37, 0.19] 0.5218 

116 -0.52 [-0.88, -0.15] 0.0055 
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117 -0.59 [-0.99, -0.19] 0.0042 

118 -0.02 [-0.34, 0.30] 0.9107 

119 0.34 [0.12, 0.56] 0.0027 

120 -0.72 [-1.10, -0.35] <0.001 

121 -0.45 [-0.80, -0.10] 0.0111 

122 0.09 [-0.20, 0.38] 0.545 

123 0.00 [-0.30, 0.29] 0.9763 
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Appendix Table 2: Full Regression Estimates (Readmission) 

 
β 95% Conf. Interval P-Value 

Intercept -3.14 [-3.49, -2.78] <0.001 

Sex (Male) -0.04 [-0.14, 0.06] 0.4548 

Age 0.00 [0.00, 0.01] 0.2812 

Insurance    

Medicaid 0.48 [0.16, 0.81] 0.0032 

Medicare 0.31 [0.00, 0.63] 0.0535 

Private -0.03 [-0.34, 0.27] 0.8331 

Self-Pay -0.61 [-1.28, 0.06] 0.0749 

Treelet Feature    

1 0.71 [0.60, 0.82] <0.001 

2 1.10 [0.88, 1.32] <0.001 

3 -0.23 [-0.33, -0.12] <0.001 

4 0.80 [0.62, 0.98] <0.001 

5 -0.29 [-0.74, 0.17] 0.2207 

6 0.19 [-0.33, 0.71] 0.4757 

7 0.01 [-0.16, 0.17] 0.9227 

8 -0.25 [-0.42, -0.08] 0.0048 

9 -0.10 [-0.40, 0.20] 0.522 

10 0.50 [0.30, 0.70] <0.001 

11 0.15 [-0.16, 0.46] 0.3559 

12 0.13 [-0.23, 0.49] 0.4765 

13 0.22 [-0.18, 0.62] 0.28 

14 0.09 [-0.22, 0.41] 0.5659 

15 -0.07 [-0.29, 0.15] 0.5273 

16 -0.02 [-0.42, 0.39] 0.9268 

17 0.20 [-0.02, 0.43] 0.0733 

18 0.01 [-0.25, 0.27] 0.9585 

19 0.41 [0.16, 0.66] 0.0015 

20 0.12 [-0.28, 0.53] 0.5503 

21 0.13 [-0.28, 0.53] 0.5381 

22 0.52 [0.27, 0.76] <0.001 

23 -0.08 [-0.25, 0.09] 0.3584 

24 0.00 [-0.19, 0.19] 0.9763 

25 0.07 [-0.26, 0.39] 0.6824 

26 0.43 [0.09, 0.78] 0.0132 

27 0.37 [0.13, 0.61] 0.0025 

28 0.55 [0.19, 0.92] 0.0032 

29 0.02 [-0.21, 0.26] 0.846 

30 0.28 [-0.01, 0.58] 0.0594 
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Appendix Table 3: Full Regression Estimates (Length of Stay) 

 
β 95% Conf. Interval P-Value 

Intercept 2.00 [1.94, 2.06] <0.001 

Sex (Male) 0.05 [0.04, 0.07] <0.001 
Age 0.00 [0.00, 0.00] <0.001 
Insurance 

Medicaid 
Medicare 

Private 
Self 

 
0.11 
0.05 
0.04 

-0.32 

 
[0.06, 0.17] 
[-0.01, 0.1] 

[-0.01, 0.09] 
[-0.41, -0.23] 

 
<0.001 

0.079 
0.134 

<0.001 
Treelet Feature    

1 0.37 [0.35, 0.39] <0.001 
3 -0.16 [-0.22, -0.10] <0.001 

4 -0.15 [-0.18, -0.12] <0.001 
5 0.15 [0.10, 0.19] <0.001 
7 -0.09 [-0.10, -0.07] <0.001 

8 0.21 [0.19, 0.23] <0.001 
9 0.09 [0.05, 0.13] <0.001 

11 0.23 [0.16, 0.29] <0.001 

12 0.61 [0.56, 0.66] <0.001 
13 0.23 [0.18, 0.27] <0.001 
14 0.42 [0.38, 0.45] <0.001 

15 0.7 [0.65, 0.75] <0.001 
17 0.4 [0.34, 0.46] <0.001 
19 0.17 [0.14, 0.20] <0.001 

20 0.3 [0.28, 0.33] <0.001 
22 0.52 [0.47, 0.57] <0.001 
23 0.2 [0.12, 0.28] <0.001 

24 0.29 [0.22, 0.36] <0.001 
25 0.22 [0.16, 0.28] <0.001 
26 0.26 [0.18, 0.34] <0.001 

32 0.17 [0.13, 0.22] <0.001 
33 -0.17 [-0.23, -0.11] <0.001 
37 0.11 [0.07, 0.16] <0.001 

39 -0.16 [-0.21, -0.10] <0.001 
40 -0.25 [-0.33, -0.18] <0.001 
41 -0.07 [-0.10, -0.04] <0.001 

44 0.61 [0.53, 0.68] <0.001 
46 -0.1 [-0.14, -0.06] <0.001 
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Appendix Table 4: Abbreviated Treelet Features (Mortality) 

Treelet Feature ICD-9-CM 

Code 

Loading Code Description 

Feature 1* 584.9 0.555 Acute kidney failure NOS  
518.81 0.507 Acute respiratory failure  
995.92 0.347 Severe sepsis  

389 0.309 Septicemia NOS  
785.52 0.272 Septic shock 

Feature 2 198.3 0.418 Secondary malignant neoplasm (brain/spine)  
197.7 0.539 Secondary malignant neoplasm (liver)  
197.0 0.475 Secondary malignant neoplasm (lung)  
198.5 0.556 Secondary malignant neoplasm (bone) 

Feature 7* 401.9 0.736 Hypertension NOS  
414.01 0.524 Coronary atherosclerosis of native coronary artery  
250.00 0.255 DMII without complications  
272.4 0.238 Hyperlipidemia NEC/NOS  
272.0 0.187 Pure hypercholesterolemia 

Feature 13 431 0.815 Intracerebral hemorrhage  
348.5 0.462 Cerebral edema  
331.4 0.144 Obstructive hydrocephalus  

430 0.213 Subarachnoid hemorrhage  
348.4 0.236 Compression of brain 

Feature 15 427.5 0.946 Cardiac arrest  
427.41 0.324 Ventricular fibrillation 

*Features 1 and 7 contain loadings from 19 and 10 ICD-9-CM codes respectively, only diagnoses 
with 5 highest loadings presented  
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Appendix Table 5: Abbreviated Treelet Features (Readmission) 

Treelet Feature ICD-9-CM 

Code 

Loading Code Description 

Feature 1 584.9 0.604 Acute kidney failure NOS  
518.81 0.418 Acute respiratry failure  
599.0 0.252 Urin tract infection NOS  
403.90 0.216 Hy kid NOS w cr kid I-IV  
585.9 0.215 Chronic kidney dis NOS  
285.9 0.204 Anemia NOS  
995.92 0.197 Severe sepsis  
389. 0.170 Septicemia NOS 

Feature 2 571.5 0.405 Cirrhosis of liver NOS  
705.4 0.491 Chrnc hpt C wo hpat coma  
571.2 0.484 Alcohol cirrhosis liver  
572.3 0.413 Portal hypertension  
789.59 0.251 Ascites NEC 

Feature 4 357.2 0.573 Neuropathy in diabetes  
403.91 0.494 Hyp kid NOS w cr kid V  
250.60 0.469 DMII neuro nt st uncntrl  
585.6 0.315 End stage renal disease  
362.01 0.218 Diabetic retinopathy NOS 

Feature 22 427.1 0.889 Parox ventric tachycard  
425.4 0.406 Prim cardiomyopathy NEC  
410.11 0.116 AMI anterior wall, init  
427.5 0.115 Cardiac arrest  
785.51 0.097 Cardiogenic shock 

*All features contain loadings from additional ICD-9-CM codes, only diagnoses with 5 highest loadings 
presented  
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Appendix Table 6: Abbreviated Treelet Features (Length of Stay) 

Treelet Feature ICD-9-CM 

Code 

Loading Code Description 

Feature 1* 584.9 0.555023 Acute kidney failure NOS  
518.81 0.506634 Acute respiratory failure  
995.92 0.346761 Severe sepsis  

389 0.309371 Septicemia NOS  
785.52 0.271532 Septic shock 

Feature 2 198.3 0.417658 Sec mal neo brain/spine  
197.7 0.539451 Second malignant neoplasm (liver)  

197 0.47509 Second malignant neoplasm (lung)  
198.5 0.555737 Second malignant neoplasm (bone) 

Feature 12 997.4 0.546458 Digestive complications NOS  
560.1 0.837486 Paralytic ileus 

Feature 14 518 0.507345 Pulmonary collapse  
511.9 0.861743 Pleural effusion NOS 

*Features 1 contains loadings from 19 ICD-9-CM codes respectively, only diagnoses with 5 highest loadings 
presented  
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Appendix B Analytic Code  

Raw data publicly accessible (by request) at https://mimic.physionet.org/  (N.B. Data are collected 

and stewarded by the Massachusetts Institute of Technology Lab for Computational Physiology, 

not the author or advisors of this document or any group at the University of Pittsburgh) 

 

Analytic code is included below as raw, RMarkdown code. Downloadable RMarkdown files (in 

addition to test data predictions, CSV files cross-validation performance, and figures) 

additionally available at  https://github.com/domdisanto/ICD_Diagnoses_Treelet  

 

Appendix B.1 R Code to Perform Data Cleaning and Exploratory Data Analysis (incl. 

Descriptive Statistics) 

--- 

title: "Treelet Transform: Identifing clusters of ICD-9 Diagnoses in a Boston 

Trauma Center" 

subtitle: "Data Cleaning, Exploratory Data Analysis & Visualization" 

author: "Dominic DiSanto\n Master's Thesis" 

date: "Updated 9/20/2020" 

output:  

  html_document: 

    keep_md: true 

    toc: true 

    toc_depth: '3' 

    code_folding: show 

--- 

 

## Preparation 

 

 

## Libraries 

```{r, message=F, warning=FALSE} 

https://mimic.physionet.org/
https://github.com/domdisanto/ICD_Diagnoses_Treelet
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library(magrittr) # Ceci n'est pas une %>%, loaded via dplyr also but liked 

to include for transparency  

library(dplyr) # General data management, cleaning (admittedly I switch 

between Base R and tidyverse as I code, somewhat stream-of-consciousness ly) 

library(ggplot2) # Visualization 

library(tidyr) # pivot functions for transposing data to/from long and wide 

library(icd) # used in validity check of diagnoses codes 

library(lubridate) # used in evaluating dates, most notably in date of death  

library(lares) # corr_cross function used to identify the top correlations 

within a data frame/design matrix 

library(corrplot) # used for visualizing correlation matrices 

library(here) # Used for data-calls/ease of file path storage usage  

``` 

 

 

## File Path 

 

This is my first attempt at using the `here` package for improved 

functionality of this program. I believe to use the `here` package as written 

in my program, your data simply need to be contained in a sub-folder called 

**Data** from where you've saved this file. For transparency, I'll describe 

my general (and I think simplistic) file structure for this analysis: Within 

a general project folder (say `Treelet`), this script and it's output are 

contained in an ***"Analysis"*** subfolder and the data within a ***Data*** 

subfolder of the same project folder. For the raw input data from MIMIC, I 

included a **Raw** sub-folder within the **Data** folder (to isolate raw 

MIMIC data from any exported data files or cleaned data).  

 

Because I contain my analysis in a sub-folder of my main project file, I had 

to therefore manually set my `.here` file one level above my analytic file. 

If you happen to mirror my file structure, you must simply use the command 

`set_here("../")`, which will create a `.here` file in your root folder, a 

level above the analytic subfolder.       

 

 

```{r} 

here() 

``` 

 

 

## Data Cleaning   

 

I will broadly classify the data cleaning in two areas: **Patient Data** and 

**Diagnoses Data**. **Patient data cleaning** will include wrangling of 

patient-level demographic and admissions data, identifying patients with 

multiple admissions and specifying which admission of interest to use in 

analysis, and other individual/person cleaning. **Diagnosis data cleaning** 

will involve identifying and cleaning the ICD-9 diagnoses code data to be 

included in the treelet transform dimension reduction technique.   

   

These steps are not entirely separate, as the included diagnoses codes will 

only involve patients in our analytic cohort from the **patient data 

cleaning**, but this separation is useful and somewhat natural due to the 

varied input data and steps required in each process.  

 

 

### Cleaning Patient Data   
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Before meaningfully working with the any data or performing analyses, we must 

identify our patient cohort to be used in analysis. The first step will be 

identifying an analytic patient cohort. This will include:   

- Identify the admission of interest among patients with multiple stays 

    - This will be the earliest admission, which we will synonymously 

reference as earliest admission or first encounter  

- Removing pediatric patients (those under 18 at time of admission) 

- Examining and cleaning variables/covariates to an "analytic format", the 

exact definition which will be data element dependent but will prepare 

elements for proper analysis, exploration, and visualization 

 

 

#### Cohort Identification 

 

 

As mentioned above, we must identify our analytic cohort by:   

- Identify the admission of interest among patients with multiple stays 

    - This will be the earliest admission, which we will synonymously 

reference as earliest admission or first encounter  

- Removing pediatric patients (those under 18 at time of admission) 

 

 

To accomplish both of our goals above, we must first identify the admissions 

of interest for each patient. As mentioned preivously, we will use the first 

patient encounter in our data set to identify diagnoses to include in our 

dimension reduction and information/data to include in our analyses.  

 

```{r} 

admit <- read.csv(here("Data", "Raw", "ADMISSIONS.csv")) 

 

# # Number of patients with multiple visits 

cat("There are", admit %>% group_by(SUBJECT_ID) %>% count() %>% filter(n>1) 

%>% nrow(), "patients in our data set with multiple admissions") 

cat("These individuals with multiple admissions account for", admit %>% 

group_by(SUBJECT_ID) %>% count() %>% filter(n>1) %>% ungroup() %>%  select(n) 

%>% sum(), "visits, including their index dates/first admissions.") 

  # # Of the 58,976 visits, 19,993 are duplicate visits (including first 

encounter) among 7,537 patients 

  # # therefore of the 58,976 visits, 12,456 are removed resulting in 46,520 

unique patient first-encounters 

 

admit_unq <- admit %>%  

  group_by(SUBJECT_ID) %>%  

  filter(ADMITTIME==min(ADMITTIME)) %>%  

  ungroup() %>%  

  select(SUBJECT_ID, HADM_ID, ADMITTIME, DISCHTIME, ADMISSION_TYPE, 

INSURANCE) 

 

if(admit_unq %>% nrow() !=  admit_unq %>% distinct(SUBJECT_ID) %>% nrow()) { 

  print("Problem with admit data, the number of rows and patients in this 

data frame should be equal but are not") 

  break 

} 

``` 
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We can now merge in our patient data to each admission of interest to 

calculate age and limit our population    

  

```{r} 

pts_raw <- read.csv(here("Data", "Raw", "PATIENTS.csv")) 

 

pts_red <- pts_raw %>% select(SUBJECT_ID, DOB, DOD, GENDER) 

 

admit_pts <- merge(pts_red, admit_unq, by="SUBJECT_ID", all=T) %>% 

  mutate(Age= 

           (difftime(ADMITTIME, DOB, unit="weeks") %>% 

              as.integer()/52) %>% 

           floor()) %>% 

  select(SUBJECT_ID, Age, everything(), -DOB) %>% filter(Age>=18) 

 

 

admit_pts %>% distinct(ADMISSION_TYPE) 

  # Confirming there are no "NEWBORN" admission types 

 

admit_pts <- admit_pts %>% select(-ADMISSION_TYPE) 

``` 

 

We have now identified our cohort of interest of adults (patients 18 or older 

at first admission) and have identified our first-encounters/earliest visits 

of interest. There is however some additional cleaning necessary for our 

variables of interest to include in EDA and analysis later. 

 

#### Covariate Cleaning 

 

Cleaning of patient-level characteristics are carried out and described 

below. This section will not include analysis or visualization, which are 

saved for the EDA section of this program.  

 

##### Age 

 

In examining the data and the MIMIC-III metadata/documentation, I noticed 

that `Age` values occur of 301, where patients who were older tha 89 at time 

of admission have their (randomized) date-of-birth's set to 300+ years prior 

to their hospital admittance. As dates are randomly jittered I am unable to 

impute these values using admit or discharge times. As a result, I will set 

these values to simply 1 year higher than the maximum age (that is less than 

300). 

 

```{r} 

admit_pts %>% count(Age) %>% arrange(desc(Age)) %>% head() 

 

admit_pts <- admit_pts %>%  

  mutate(Age = 

    case_when(Age>100 ~ 90, 

              TRUE ~ Age) 

  ) 

 

admit_pts %>% count(Age) %>% arrange(desc(Age)) %>% head() 

``` 

 

 

##### Mortality  
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The MIMIC-III data offers two sources for mortality status (and related date 

of death): 

  `DOD_HOSP` - In-hospital mortality collected and stored in the hospital's 

local database 

  `DOD_SSN` - Date of death as obtained from the social security death index 

(SSDI), which includes deaths up to 4-years post-discharge 

   

Both of these variables are aggregated into a generic `DOD` variable of date 

of death, which prioritizes `DOD_HOSP` if both sources have a recorded date 

of death. In presenting this data to the Capstone committee, we had decided 

to use "in-hospital mortality", and I planned to simply use the `DOD_HOSP` 

variable. However I noticed that among patients with multiple visits, 

`DOD_HOSP` would capture in-hospital mortality at a later visit (and not the 

visit of interest which we've discussed and isolated). Therefore I will use 

the generic `DOD` variable, and identify in-hospital mortality as present for 

any patient with a DOD date equal to or less than their discharge date. 

Otherwise, in-hospital mortality will be set as surviving the patient's stay.   

   

One detail I will include is that I will *not* consider time differences when 

assessing this difference. I will simply see if the date of death `DOD` and 

time of discharge `DISCHTIME` are the same year-month-date or if `DOD` is 

less than `DISCHTIME`. Lastly, there are patients whose `DOD` is immediately 

greater than their `DISCHTIME`. As a buffer, I will consider in-patient 

mortality as present or patients as expiring during their stay if `DOD` is 

within 24 hours of `DISCHTIME`.  

 

 

```{r} 

admit_pts %>%  

  filter(DOD!="" & as.Date(ymd_hms(DOD))!=as.Date(ymd_hms(DISCHTIME))) %>%  

  select(SUBJECT_ID, Age, DOD, DISCHTIME) %>% sample_n(5) 

  # Examinign random patients with disparate `DOD` and `DISCHTIME` values 

   

 

admit_pts %>% 

  filter(DOD!="" & as.Date(ymd_hms(DOD))>as.Date(ymd_hms(DISCHTIME)))  %>% 

  mutate(dodlag = as.integer(difftime(DOD, DISCHTIME, unit="hours"))) %>%   

  arrange(dodlag) %>% head() 

  # Examining some of the differences in time that are small between DOD and 

DISCHTIME 

 

 

admit_pts <- admit_pts %>%  

  mutate(InHospMortality = 

           case_when( 

             DOD!="" & as.Date(ymd_hms(DOD)) <= as.Date(ymd_hms(DISCHTIME)) ~ 

1, 

             DOD!="" & as.integer(as.Date(ymd_hms(DOD)) - 

as.Date(ymd_hms(DISCHTIME)))<=24 ~ 1, 

             TRUE ~ 0 

           )) 

 

``` 
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##### Payment/Insurance 

 

```{r} 

admit_pts %>% count(INSURANCE) 

``` 

 

The `Self Pay` category is (comparatively) somewhat small, but as of now I 

don't think there is any need to collapse these groups considerign even this 

small proportion is nearly 550 observations.   

   

   

##### General Hospital Length of Stay  

 

```{r} 

admit_pts <- admit_pts %>%  

  mutate(HospitalLOS = 

           floor(as.numeric(difftime(DISCHTIME, ADMITTIME, unit="days")))) 

 

``` 

 

 

##### Hospital Re-admission 

 

For re-admission, I will explore whether to use 30-day or 90-day readmission. 

I found literature using both as "short-term" and "early-" hospital 

readmission. I will also specifically look at emergency/urgent readmission 

(not elective).  

 

```{r} 

readmit_dts <- admit %>% filter(ADMISSION_TYPE %in% c("EMERGENCY", "URGENT") 

& # filtering out elective admissions  

                   admit$SUBJECT_ID %in% c(admit_pts %>% 

select(SUBJECT_ID))[[1]]) %>%  # identifying only patients in our analytic 

cohort 

  group_by(SUBJECT_ID) %>% filter(ADMITTIME!=min(ADMITTIME)) %>% # removing 

our index visits  

  filter(ADMITTIME==min(ADMITTIME)) %>% ungroup() %>%  # now saying give me 

the admittime closest to your index admittance 

  select(SUBJECT_ID, ReadmitDate=ADMITTIME) # finally, simply selecting the 

SUBJECT_ID and readmitdate  

 

admit_pts <- merge(admit_pts,readmit_dts, by="SUBJECT_ID", all.x=T)  %>%  

  mutate(TimeToReadmit =  

           case_when( 

             !is.na(ReadmitDate) ~ as_date(ReadmitDate) - as_date(ADMITTIME), 

             TRUE ~ NA_real_ 

             ) 

         )  

``` 

 

I have identified our time to hospital readmission, but have not examined or 

limited the data. Let's first visualize the distribution: 

 

```{r} 

admit_pts %>% filter(!is.na(TimeToReadmit)) %>%  

  ggplot(aes(x=TimeToReadmit)) + 

  geom_density() + theme_minimal() + 
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  xlab("Days to Hospital Readmission") + ylab("Density") + 

  ggtitle("Density Curve of Days to Unplanned/Emergent Readmission") + 

  geom_vline(aes(xintercept=30, color="30 Days"), alpha=0.4,  lwd=1.2, lty=2)  

+   

  geom_vline(aes(xintercept=90, color="90 Days"), lwd=1.2, lty=2, alpha=0.4,) 

+ 

  geom_vline(aes(xintercept=365, color="365 Days"), lwd=1.4, lty=2) + 

  scale_color_manual(name="Days to Readmission", 

                     values=c(`30 Days`="red", `90 Days`="blue", `365 

Days`="lightblue")) + 

  theme(legend.position=c(0.72, 0.5), legend.box.margin = margin(6, 6, 6, 6)) 

 

 

``` 

 

 

This distribution looks very skewed. I added lines to the 30 and 90 days 

marks, as I was interested in these benchmarks, but I can't fully assess 

possible sample size of this group while excluding no readmission (from the 

above `filter` statement) and from a density curve. Below is a frequency 

table:   

   

```{r} 

admit_pts %>% mutate(ReadmitCats =  

                       case_when( 

                 is.na(TimeToReadmit)  ~ "No readmit", 

                 TimeToReadmit >= 350 ~ "Greater than 1 year", 

                 TimeToReadmit >= 90 ~ "From 90 to 365 days", 

                 TimeToReadmit >= 30 ~ "30-90 days", 

                 TRUE ~ "0-30 days" 

               )) %>% count(ReadmitCats) 

 

``` 

 

From the above table, with fairly low frequencies for the 0-30 and 30-90 days 

ranges alone, I will use readmission with the following calendar year (i.e. 

next 365 days). Within this chunk, we will also limit the analytic cohort 

specific to readmission variable.  

 

I will ensure that the readmit variable `Yr1Readmit` is only calculated for 

patients who survived out to one year (i.e. `DOD`-`DISCHTIME`$\leq$ 365 

days). When examining readmission, we should only include those patients who 

1) survived out to one year (regardless of readmission status) and 2) among 

patients who died, patients who were readmitted within one year prior to 

their date of death:   

   

```{r} 

admit_pts <- admit_pts %>% mutate(TimeToMort =  

                                    case_when( 

                                      DOD!="" ~ as.Date(ymd_hms(DOD)) - 

as.Date(ymd_hms(DISCHTIME)), 

                                      TRUE  ~ 9999 

                                      ),  

                                  Yr1Readmit = 

                                    case_when( 

                                      TimeToMort>365 & TimeToReadmit<=365 ~ 

1,  
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                                      TimeToMort>365 ~ 0, 

                                      TRUE ~ NA_real_ 

                                      ), 

                                  TimeToReadmit_Recalc = # if we do a time-

to-event analysis, including this recalculated variable  

                                    case_when( 

                                      TimeToReadmit<=365 ~ TimeToReadmit, 

                                      TRUE ~ 366 

                                      ) 

                                  ) #%>% select(-ReadmitDate, -TimeToReadmit) 

``` 

 

 

 

### Diagnoses Codes 

 

Now that we have cleaned our patient-level data elements, we can begin 

working with the diagnosis code data. This will include:   

    1. Removal of V and E diagnoses codes related to health factors and 

causes of admission respectively outside of morbidity diagnosis 

    2. Ensuring the validity of our ICD-9 codes through a definition check 

and a quick spot-check of gender-specific codes  

    3. Limiting our diagnoses codes to only those that met our prevalence 

threshold of 1% 

 

 

#### Imports 

 

 

```{r} 

icd_raw <- read.csv(here("Data", "Raw", "DIAGNOSES_ICD.csv"), 

stringsAsFactors = F) %>% select(-ROW_ID) 

 

cat("There are", icd_raw %>% nrow(), "rows in our raw, ICD-9 diagnosis code 

data.\n") 

cat("There are", icd_raw %>% distinct(SUBJECT_ID) %>% nrow(), "unique 

`SUBJECT_ID` values (representign patients) in this data.\n") 

cat("Lastly, there are", icd_raw %>% distinct(ICD9_CODE) %>% nrow(), 

"distinct ICD-9 diagnosis codes in this data set.") 

``` 

 

   

##### Removing V & E Codes   

 

I will first remove any duplicated diagnoses codes within a patient *and* 

visit. I will also remove the V and E codes which correspond to Health 

Services/Factors and Causes of Injury/Illness respectively, separate from 

diagnoses.  

 

 

```{r} 

icd_precln <- icd_raw %>% distinct(SUBJECT_ID, HADM_ID, ICD9_CODE, .keep_all 

= T) %>%  

  filter(substring(ICD9_CODE, 1, 1)!="E" & substring(ICD9_CODE, 1, 1)!="V") 

#removing V and E codes 

 

icd_precln %>% sample_n(5) 
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``` 

 

##### Checking Code Definitions 

 

Using the `icd` package's built-in `is_defined` function, which tests whether 

a given input value 1) follows valid formatting for an ICD-9 code (5 or less 

characters, numeric or alphanumeric for V, E codes (which we've excluded)) 

and 2) is defined using a call to CMS, which keeps a list of what the package 

refers to as "canonical" ICD-9 codes: 

 

 

```{r} 

icd_precln %>% mutate(valid = is_defined(ICD9_CODE)) %>% filter(valid==F & 

ICD9_CODE!="") 

``` 

 

 

##### Gender Code Spot-Check 

 

Although we will note exhaustively examine ICD-9 codes that may be mutually 

exclusive or gender-specific, we can spot check some large ranges of these 

codes to re-assure ourselves of the data's validity. 

 

ICD-9 codes ranging from 600 to 608 are specific to males, so we can spot-

check to see if any female patients were erroneously diagnosed with these 

codes: 

 

```{r} 

icd_precln %>% filter(ICD9_CODE>="6000" & ICD9_CODE<"6090") %>%  

  merge(pts_raw, by="SUBJECT_ID") %>% count(GENDER) 

``` 

 

And we can perform a similar check using female-specific codes ranging from 

614 to 629: 

 

```{r} 

icd_precln %>% filter(ICD9_CODE>="6140" & ICD9_CODE<"6300") %>%  

  merge(pts_raw, by="SUBJECT_ID") %>% count(GENDER) 

``` 

 

Thankfully our spot checks appear to corroborate the ICD-9 data validity!  

 

 

##### Limiting to Our Cohort 

 

We must first limit our ICD data to only those patients/visits of interest 

for our analysis, which we have thankfully already cleaned and can simply use 

as a merging "limiter":   

 

 

```{r} 

icd_cohort <- admit_pts %>% select(SUBJECT_ID, HADM_ID) %>%   

  merge(icd_precln, by=c("SUBJECT_ID", "HADM_ID"), all.x=T) %>% select(-

SEQ_NUM) 

``` 
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#### Subsetting by Prevalence 

 

Now we will finalize our diagnosis by subsetting our diagnoses codes to those 

with a minimum of 1% event rate in our cohort. The relatively large number of 

unique diagnoses codes contain a number of rare diseases, with extremely low 

variance. As a result, we will truncate to codes with a sufficiently high 

proportion or event rate: 

 

```{r} 

icd_1pct <- icd_cohort %>% count(ICD9_CODE) %>% 

filter(n>(0.01*nrow(admit_pts))) %>% pull(ICD9_CODE) 

length(icd_1pct) 

icd_cohort <- icd_cohort %>% mutate(ICD9_CODE =  

                           case_when( 

                             ICD9_CODE %in% icd_1pct ~ ICD9_CODE, 

                             TRUE ~ NA_character_) 

                           ) %>% distinct(SUBJECT_ID, HADM_ID, ICD9_CODE)  

``` 

 

 

 

### Data Cleaning Concluding Notes 

 

The above data wrangling corresponds to the inclusion, validity-checking, and 

coding of data for categories to be considered analysis. This data cleaning 

code does *not* perfectly prepare data for analysis. Treelet dimension 

reduction will require the calculation and input of a correlation and/or 

variance-covariance matrix, while modelling or descriptive analysis may 

require coercion of data elements to/from factors and integers or other 

coding changes. These small changes, which will change the structure of the 

data but not the content or information contained therein, are left as *ad 

hoc* programming done within each relevant analytic section.  

 

 

## EDA  

 

### Diagnosis Code Data  

 

 

#### Diagnosis Frequency 

 

We can look broadly at the frequency of all of our diagnoses codes, with the 

below plot simply arranged in descending order: 

 

```{r} 

icd_cohort %>% count(ICD9_CODE)  %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>% 

  ggplot(aes(x=reorder(ICD9_CODE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("Frequency Plot of All Diagnoses Codes",  

          subtitle = paste("(Including only codes with 1% prevalence or 

greater)\nn=", nrow(icd_cohort %>% count(ICD9_CODE)),  

                           " unique diagnoses, among",  

                           nrow(admit_pts), "patients")) +  

    ylab("Frequency") + xlab("Distinct (Unlabelled) ICD-9 Codes") + 

theme_minimal() + 

    theme(axis.text.x=element_blank(), text=element_text(size=13.5)) 
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``` 

 

 

As it is impossible to elucidate much useful information from this visual, 

due to the volume of data, we can examine simply the most common diagnoses 

codes, arbitrarily picking the top 15 for legibility of plots: 

 

```{r} 

icd_descr <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 

 

# Percentages 

icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  

  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>% 

  mutate(Prop=n/nrow(icd_cohort %>% distinct(SUBJECT_ID))) %>% 

select(ICD9_CODE, n, Prop) 

 

 

icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  

  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>%  

  ggplot(aes(x=reorder(SHORT_TITLE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("Frequency of the 15 Most Common Diagnoses") +  

    ylab("Frequency") + xlab("ICD-9 Code") + theme_minimal() + 

    theme(axis.text.x=element_text(angle=60, vjust=0.9, hjust=0.8)) 

    # this is a really unfortunately x-axis, couldn't find a better angle or 

adjustment for the x-axis unfortunately  

 

``` 

 

And re-plotting with Thesis-friendly captions: 

 

 

```{r, freq_plots} 

icd_cohort %>% count(ICD9_CODE)  %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>% 

  ggplot(aes(x=reorder(ICD9_CODE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("A", #"Frequency Plot of All Diagnoses Codes",  

          # subtitle = paste("(Including only codes with 1% prevalence or 

greater)\nn=", nrow(icd_cohort %>% count(ICD9_CODE)),  

          #                  " unique diagnoses, among",  

          #                  nrow(admit_pts), "patients") 

          ) +  

    ylab("Frequency") + xlab("Distinct (Unlabelled) ICD-9 Codes") + 

theme_minimal() + 

    theme(axis.text.x=element_blank(), text=element_text(size=15)) 

 

icd_descr <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 

 

icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  
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  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>%  

  mutate(Prop = paste0(round(100*n / nrow(icd_cohort %>% 

distinct(SUBJECT_ID)), 1), '%')) %>%  

  ggplot(aes(x=reorder(SHORT_TITLE, -n), y=n, label=Prop)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("B", #"Frequency of the 15 Most Common Diagnoses" 

            ) +  

    ylab("Frequency") + xlab("ICD-9 Code") + theme_minimal() + 

    theme(axis.text.x=element_text(angle=60, vjust=0.9, hjust=0.8), 

text=element_text(size=15)) + 

    # geom_text(vjust=1.2, color="white", size=3.31, hjust=0.45) 

    geom_text(vjust=-0.9, angle=15) + ylim(c(0, 19000)) 

    # this is a really unfortunate x-axis, couldn't find a better angle or 

adjustment for the x-axis  

 

``` 

 

 

#### Correlation Matrix Among Top Diagnoses 

 

Looking at the correlation matrix of these most common diagnoses codes (as 

the correlation of diagnoses is what will determine the hierarchy of 

clustering in the treelet method):   

   

```{r} 

icd_cohort %>% filter(!is.na(ICD9_CODE) & ICD9_CODE %in% ( 

        icd_cohort %>% count(ICD9_CODE) %>%  

        arrange(desc(n)) %>% 

        merge(icd_descr, by="ICD9_CODE", all.x=T) %>%  

        arrange(desc(n)) %>%  

        ungroup() %>%   

        filter(row_number()<=15) %>% pull(ICD9_CODE) 

        )) %>% 

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x))  %>%  

  select(-SUBJECT_ID) %>%  

  cor() %>%   

  corrplot::corrplot(type="upper", diag=F, order="hclust", method = "shade") 

``` 

 

 

#### Correlation Matrix Among All Included ($1% \geq$ Prevalence) Codes 

 

```{r} 

x <- (icd_cohort %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x))  %>%  

  select(-SUBJECT_ID) %>%  

  cor()) 

 

x[x>1] <- 1 
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x %>% corrplot::corrplot(type="upper", diag=F, order = "hclust", method = 

"color", tl.pos = "n") 

 

``` 

 

 

#### Most Correlated Diagnoses 

In addition to the `corrplot` package's visualiation of an input correlation 

matrix, we can use the `corr_cross` package to examine the upper limit of our 

diagnoses code's correlations. In the plot below, "Correlation %" simply 

refers to the scaled correlation coefficient (e.g. a "Correlation %" of 

89.45% corresponds to a correlation coefficient $\rho=0.8945$): 

 

 

```{r, warning=F} 

top10_corr_plot <- icd_cohort %>%  

  filter(!is.na(ICD9_CODE)) %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, 1)) %>%  

  select(-SUBJECT_ID) %>%  

  corr_cross(top=10, plot=F) 

 

 

top10_corr_plot %>% mutate(Pair = paste0(group1, ", ", group2)) %>%  

  ggplot(aes(x=reorder(Pair, corr), y=round(corr, 2))) + 

  geom_bar(stat='identity', fill="black", alpha=0.6) +  

  geom_text(aes(y =round(corr, 2)-0.04, label=round(corr, 2)), 

            color="white", alpha=0.75) +  

  coord_flip() + theme_minimal() + 

  theme(text=element_text(size=13.5)) + 

  ylab("Correlation Coefficient") + xlab("ICD-9 Diagnosis Code Pair") 

 

``` 

   

   

   

And then examine a matrix-plot of these diagnoses as well:   

   

```{r} 

 

top_corr_vars <- c(top10_corr_plot %>% mutate(vars=substr(key, 2, 

nchar(key))) %>% pull(vars),  

                   top10_corr_plot %>% mutate(vars=substr(mix, 2, 

nchar(mix))) %>% pull(vars)) %>% unique() 

                      

 

icd_cohort %>%  

  filter(!is.na(ICD9_CODE)) %>%  

    mutate(values=1) %>%  

    pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

    mutate_all(function(x) ifelse(is.na(x), 0, 1)) %>%  

    select(!!!top_corr_vars) %>% cor() %>%  

      corrplot::corrplot(type="upper", diag=F, order="hclust", method = 

"shade") 
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``` 

 

 

 

#### Patient Level Data 

 

We can briefly/descriptively examine some of our patient level data, 

observing frequencies or distributions of our covariates and examining 

possible relationships of our patient characteristics to mortality, 

readmission, and hospital length of stay where appropriate. Much of these 

visualizations were purely exploratory in nature. In instances where data 

were changed/re-categorized or otherwise altered based on the visualization, 

I have included comments/annotations. Otherwise, these figures are presented 

without commentary. 

 

##### Number of Diagnoses 

 

```{r} 

icd_cohort %>% count(SUBJECT_ID) %>% summarise(Mean=quantile(n)[3], 

                                               P25=quantile(n)[2], 

                                               P75=quantile(n)[4]) 

``` 

 

 

 

##### Mortality  

 

 

```{r} 

admit_pts %>% mutate(MortalityType= 

                     factor(case_when( 

                       InHospMortality==1 ~ "In-Hospital Mortality", 

                       TRUE ~ "Survived to Discharge") 

                   )) %>% count(MortalityType) %>% 

mutate(prop=paste0(round(n/nrow(admit_pts), 4)*100, '%')) %>%  

  ggplot(aes(x=reorder(MortalityType, -n), y=n, fill=MortalityType, 

label=prop)) +  

    geom_text(position = position_dodge(.9), 

              vjust = -0.2, 

              size = 4) + 

  geom_col() + ylab("Frequency") + xlab("Mortality Status") + 

scale_fill_brewer(palette=2, type = "qual") + 

  ggtitle("Frequency of In-Hospital Mortality Status") + theme_minimal() + 

theme(legend.position = "none")  

 

``` 

 

 

##### Payment/Insurance 

```{r} 

admit_pts %>% count(INSURANCE) %>% 

mutate(prop=paste0(round(n/nrow(admit_pts), 4)*100, '%')) %>%  

  ggplot(aes(x=reorder(INSURANCE, -n), y=n, fill=INSURANCE, label=prop)) +  

    geom_text(position = position_dodge(.9), 

              vjust = -0.2, 

              size = 4) + 
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  geom_col() + ylab("Frequency") + xlab("Payment Method") + 

scale_fill_brewer(palette=2, type = "qual") + 

  ggtitle("Frequency of Insurance Status/Payment Method") + theme_minimal() + 

theme(legend.position = "none")  

 

``` 

 

With the two small groups of `Self Pay` and `Government`, I will contradict 

what I wrote earlier and collapse these categories. `Self Pay` will be 

collapsed into the `Private` category, and `Government` will be combined with 

`Medicaid` as `Medicaid/Non-Medicare Public Assistance`: 

 

```{r} 

admit_pts %>%  

  count(INSURANCE) %>% mutate(prop=paste0(round(n/nrow(admit_pts), 4)*100, 

'%'),  

                                 InsuranceBin = 

                                   case_when( 

                                     INSURANCE == "Self Pay" | INSURANCE == 

"Private" ~ "Private/Self-Pay", 

                                     INSURANCE=='Medicaid' | INSURANCE == 

'Government' ~ 'Medicaid/Public Assistance', 

                                     TRUE ~ INSURANCE)) %>%  

  ggplot(aes(x=reorder(InsuranceBin, -n), y=n, fill=reorder(INSURANCE, n), 

label=prop)) +  

  geom_col() + ylab("Frequency") + xlab("Payment Method") + 

scale_fill_brewer(palette=2, type = "qual") + 

  ggtitle("Frequency of Insurance Status/Payment Method") + theme_minimal() + 

theme(legend.position = "none")  

 

``` 

 

 

##### General Hospital Length of Stay  

 

```{r} 

los_graph <- admit_pts %>%  

  mutate(GenLOS=ceiling(difftime(DISCHTIME, ADMITTIME, units = "days") %>% 

as.numeric())) %>% select(SUBJECT_ID, GenLOS, DISCHTIME, ADMITTIME) # %>%  

 

# quantile(los_graph$GenLOS) 

 

los_graph %>%   ggplot(aes(x=GenLOS)) + geom_density(fill="lightblue", 

alpha=0.4) + theme_minimal() + 

  xlab("General Hospital Length of Stay") + ylab("Density") +  

  ggtitle("Distribution of General Hospital Length of Stay (Days)") + 

  annotate(geom="text", x=150, y=0.05, label=paste0("Length of stay values 

ranged from 1 to ", max(los_graph$GenLOS), " days.")) + 

  annotate(geom="text", x=150, y=0.04, label=paste0("Our length of stay 

values have a mean of ", round(mean(los_graph$GenLOS), 2), " and variance \n 

of ", 

                                                    

round(var(los_graph$GenLOS),2), ", suggesting overdispersion of this 

variable.")) 

 

 

``` 
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We unsurprisingly see a heavy skew in our length of stay data which is highly 

overdispersed (variance of 113 is more than ~13x greater than our mean of 

under 10 days). 

  

 

##### Hospital Re-admission 

 

```{r} 

admit_pts %>% filter(!is.na(Yr1Readmit)) %>% count(Yr1Readmit) %>% 

mutate(prop=paste0(100*round(n/nrow(admit_pts[!is.na(admit_pts$Yr1Readmit),])

, 4), "%")) %>%  

  ggplot(aes(x=reorder(Yr1Readmit, -n), y=n, fill=as.factor(Yr1Readmit), 

label=prop)) + 

  geom_text(position = position_dodge(.9), 

              vjust = -0.32, 

              size = 4) + 

  geom_bar(stat="identity") + ylab("Frequency") + xlab("Unplanned Readmission 

Within One-Year of Discharge") + 

  ggtitle("Frequency of Unplanned Readmission in MIMIC Data") +  

  scale_fill_brewer(palette=2, type = "qual") + theme_minimal() +  

  scale_x_discrete(label= c("No Readmission", "Readmitted")) + 

theme(legend.position = "none") 

 

``` 

 

 

Not only can we look at the simple binary readmission status, we also have 

time to re-admission, which we previously visualized among all patients but 

can look at simply within our subset of patients who were readmitted within 

our single, calendar year of interest: 

 

```{r} 

admit_pts %>% filter(Yr1Readmit==1) %>%  

  ggplot(aes(x=TimeToReadmit_Recalc)) + 

  geom_density(fill="white") + theme_minimal() + 

  xlab("Days to Hospital Readmission") + ylab("Density") + 

  ggtitle("Density Curve of Days to Unplanned/Emergent Readmission") + 

  geom_vline(aes(xintercept=30, color="30 Days"), alpha=0.4,  lwd=1.2, lty=2)  

+   

  geom_vline(aes(xintercept=90, color="90 Days"), lwd=1.2, lty=2, alpha=0.4,) 

+ 

  geom_vline(aes(xintercept=365, color="365 Days"), lwd=1.4, lty=2) + 

  scale_color_manual(name="Days to Readmission", 

                     values=c(`30 Days`="red", `90 Days`="blue", `365 

Days`="lightblue")) + 

  theme(legend.position=c(0.72, 0.5), legend.box.margin = margin(6, 6, 6, 6)) 

 

``` 

 

 

##### Age 

 

```{r} 

# mean(admit_pts$Age) 

# sd(admit_pts$Age) 

quantile(admit_pts$Age) 
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admit_pts %>% 

  ggplot(aes(x=Age)) + 

  geom_density(fill="white") + theme_minimal() + 

  xlab("Age") + ylab("Density") + 

  ggtitle("Density Curve of Age") 

 

``` 

 

 

##### Gender 

 

 

```{r} 

admit_pts %>% count(GENDER) %>% 

mutate(prop=paste0(100*round(n/nrow(admit_pts), 4), "%")) %>%  

  ggplot(aes(x=reorder(GENDER, -n), y=n, fill=GENDER, label=prop)) + 

  geom_text(position = position_dodge(.9), 

              vjust = -0.32, 

              size = 4) + 

  geom_bar(stat="identity") + ylab("Frequency") + xlab("Gender") + 

  ggtitle("Frequency of Gender in MIMIC Data") +  

  scale_fill_brewer(palette=2, type = "qual") + theme_minimal() 

 

``` 

 

 

We have a fairly balanced data set with respect to gender, with men 

outnumbering women (which we would expect in a data set of critical care 

admissions). 

 

 

 

 

## Final Data Export 

 

For the exploratory analysis above, the diagnosis data and patient-

characteristic data have been contained in separate data frames. Below I 

pivot the diagnosis data (as previously done when determining the correlation 

matrix of our diagnosis data) from `icd_cohort` into `icd_wide` and merge the 

resulting pivoted data frame with the patient characteristics data contained 

in `admit_pts`. The final dataframe is then titled `cohort_full`. This data 

frame is used in this file, but I also export it as the standalone cohort and 

if in the future I would prefer to separate the data cleaning and EDA from 

the dimension reduction and regression modelling results of my thesis.  

 

 

```{r} 

icd_wide <- icd_cohort %>%   

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x)) %>% select(-`NA`) 

 

cohort_full <- merge(icd_wide, admit_pts, by="SUBJECT_ID") 
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colnames(cohort_full)[c(grep("[0-9]$", colnames(cohort_full)))] <- 

paste0("X", colnames(cohort_full)[c(grep("[0-9]$", colnames(cohort_full)))]) 

 

write.csv(cohort_full, 

          here("Data", "cohort_full.csv"), 

          row.names = F) 

``` 

 

 

## Appendixes  

 

 

```{r, warning=F, message=F} 

require(magrittr) # Ceci n'est pas une %>%  

require(dplyr) # General data management, cleaning (admittedly I switch 

between Base R and tidyverse as I code, somewhat stream-of-consciousness ly) 

require(ggplot2) # Visualization 

require(comorbidity) # Used to easily generate Elixhauser comorbdity 

grouping/categorization [8/23/2020 Note: may be excluded if Elixhauser or 

Charlson not used] 

require(tidyr) # pivot functions for transposing data to/from long and wide 

require(icd) # used in validity check of diagnoses codes 

require(lubridate) # used in evaluating dates, most notably in date of death  

require(lares) # corr_cross function used to identify the top correlations 

within a data frame/design matrix 

require(corrplot) # used for visualizing correlation matrices  

require(here) # Used for data-calls/ease of file path storage usage 

require(treelet) # for treelet modelling 

require(ggdendro) # trying ggplot's dnedrogram extension 

 

if(!("cohort_full" %in% ls())) { 

  cohort_full <-  read.csv(here("Data", "cohort_full.csv")) 

} 

 

``` 

 

 

 

### Appendix A: Thesis Table & Figure Generation 

 

Redundant code from the main body of cleaning and EDA code, but I wanted to 

consolidate relevant table & figure genereation code. This is not an 

exhaustive list of tables & figures, including only those captured in the 

descriptive analyses (Results 3.1). 

 

#### Table 2A & 2B: Cohort Descriptives 

 

```{r} 

stat_sum <- function(data, var, stat, category=NULL) { 

  quovar <- deparse(substitute(var)) 

  if(stat=="mean") output_txt <- paste0(mean(data[,quovar]) %>% round(2), " 

(", sd(data[,quovar]) %>% round(2), ")") 

  if(stat=="median") output_txt <- paste0(median(data[,quovar]) %>% round(2), 

" [", quantile(data[,quovar])[2] %>% round(2), "-", 

quantile(data[,quovar])[4] %>% round(2), "]") 

  if(stat=="proportion" | stat=="prop") { 
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    if(is.null(category)) stop("When requesting proportion for categorical 

vaiablevariable, please specify ") 

    freq <- data[data[,quovar]==category & !is.na(data[,quovar]),] %>% nrow() 

    prop <- (100*(data[data[,quovar]==category & !is.na(data[,quovar]),] %>% 

nrow()) / nrow(data[!is.na(data[,quovar]),])) %>% round(2) 

    output_txt <- paste0(freq, " (", prop, "%)") 

  } 

  return(output_txt) 

} 

 

## 1A: Mortality & LOS Cohort (n=38,554) 

  # Calculating number of ICD-9-CM Diagnosis Codes per patient (Median [IQR]) 

before table 

    icd_quantiles <- icd_cohort %>% count(SUBJECT_ID) %>% pull(n) %>% 

quantile() 

     

  # Generating the table in an easy copy/paste format 

    (sumtbl <- cohort_full %>% summarize( 

      # `Age, Mean (SD)` = paste0(round(mean(Age), 2), " (", 

round(sd(Age),2), ")"), 

      # `Sex (Male), n (%)` = paste0(sum(cohort_full$GENDER=="M"), " (", 

round(100*sum(cohort_full$GENDER=="M")/nrow(cohort_full), 2), "%)"), 

      # `Hospital Stay (days), Median (IQR)` = paste0(median(HospitalLOS), " 

[", quantile(HospitalLOS)[2], "-", quantile(HospitalLOS)[4], "]"), 

      `Age, Mean (SD)` = stat_sum(data=., var=Age, stat="mean"), 

      `Sex (Male), n (%)` = stat_sum(data=., var=GENDER, stat="prop", 

category = "M"), 

      `Hospital Stay (days), Median (IQR)` = stat_sum(., var=HospitalLOS, 

stat="median"), 

      `Re-Admission*, n (%)`= "", 

      `In-Hospital Mortality, n (%)` = stat_sum(., InHospMortality, "prop", 

1), 

      `Number of ICD-9-CM Diagnosis Codes per Patient, Median (IQR)` = 

paste0(icd_quantiles[3], " [", icd_quantiles[2], "-", icd_quantiles[4], "]"), 

      `Primary Payment Method, n (%)` = "", 

      `Medicare` = stat_sum(., INSURANCE, "prop", "Medicare"), 

      `Private Insurance` = stat_sum(., INSURANCE, "prop", "Private"), 

      `Self-Pay` = stat_sum(., INSURANCE, "prop", "Self Pay"), 

      `Medicaid` = stat_sum(., INSURANCE, "prop", "Medicaid"), 

      `Other Public Assistance` = stat_sum(., INSURANCE, "prop", 

"Government") 

    ))  

 

    data.frame(colnames(sumtbl), 

               t(sumtbl[1,]), 

               row.names = NULL) %>% write.table("clipboard") 

     

 

 

## 1B: Reamdission Cohort (n=28,893) 

    readmit_cohort <- cohort_full %>% filter(!is.na(Yr1Readmit)) 

     

    readmit_icds <- icd_cohort %>% filter(SUBJECT_ID %in% (readmit_cohort %>% 

pull(SUBJECT_ID))) 

    readmit_quantiles <- readmit_icds %>% count(SUBJECT_ID) %>% pull(n) %>% 

quantile() 
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    (sumtbl_readmit <- readmit_cohort %>% summarize( 

      # `Age, Mean (SD)` = paste0(round(mean(Age), 2), " (", 

round(sd(Age),2), ")"), 

      # `Sex (Male), n (%)` = paste0(sum(cohort_full$GENDER=="M"), " (", 

round(100*sum(cohort_full$GENDER=="M")/nrow(cohort_full), 2), "%)"), 

      # `Hospital Stay (days), Median (IQR)` = paste0(median(HospitalLOS), " 

[", quantile(HospitalLOS)[2], "-", quantile(HospitalLOS)[4], "]"), 

      `Age, Mean (SD)` = stat_sum(data=., var=Age, stat="mean"), 

      `Sex (Male), n (%)` = stat_sum(data=., var=GENDER, stat="prop", 

category = "M"), 

      `Hospital Stay (days), Median (IQR)` = stat_sum(., var=HospitalLOS, 

stat="median"), 

      `Re-Admission*, n (%)`= stat_sum(., Yr1Readmit, "prop", 1), 

      `In-Hospital Mortality, n (%)` = stat_sum(., InHospMortality, "prop", 

1), 

      `Number of ICD-9-CM Diagnosis Codes per Patient, Median (IQR)` = 

paste0(readmit_quantiles[3], " [", readmit_quantiles[2], "-", 

readmit_quantiles[4], "]"), 

      `Primary Payment Method, n (%)` = "", 

      `Medicare` = stat_sum(., INSURANCE, "prop", "Medicare"), 

      `Private Insurance` = stat_sum(., INSURANCE, "prop", "Private"), 

      `Self-Pay` = stat_sum(., INSURANCE, "prop", "Self Pay"), 

      `Medicaid` = stat_sum(., INSURANCE, "prop", "Medicaid"), 

      `Other Public Assistance` = stat_sum(., INSURANCE, "prop", 

"Government") 

    ))  

     

 

# All results combined     

data.frame(colnames(sumtbl), 

       t(sumtbl[1,]), 

       t(sumtbl_readmit[1,]), 

       row.names = NULL) %>% write.table("clipboard") 

     

 

``` 

 

 

 

#### Figure 1A & 1B: Diagnosis Code Frequency 

```{r} 

icd_cohort %>% count(ICD9_CODE)  %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>% 

  ggplot(aes(x=reorder(ICD9_CODE, -n), y=n)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("A", #"Frequency Plot of All Diagnoses Codes",  

          # subtitle = paste("(Including only codes with 1% prevalence or 

greater)\nn=", nrow(icd_cohort %>% count(ICD9_CODE)),  

          #                  " unique diagnoses, among",  

          #                  nrow(admit_pts), "patients") 

          ) +  

    ylab("Frequency") + xlab("Distinct (Unlabelled) ICD-9 Codes") + 

theme_minimal() + 

    theme(axis.text.x=element_blank(), text=element_text(size=15)) 

 

icd_descr <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 
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icd_cohort %>% count(ICD9_CODE) %>% arrange(desc(n)) %>% 

filter(!is.na(ICD9_CODE)) %>%  

  merge(icd_descr, by="ICD9_CODE", all.x=T) %>% arrange(desc(n)) %>% 

ungroup() %>%  filter(row_number()<=15) %>%  

  mutate(Prop = paste0(round(100*n / nrow(icd_cohort %>% 

distinct(SUBJECT_ID)), 1), '%')) %>%  

  ggplot(aes(x=reorder(SHORT_TITLE, -n), y=n, label=Prop)) + 

    geom_bar(stat="identity", fill="navyblue", alpha=0.65) + 

    ggtitle("B", #"Frequency of the 15 Most Common Diagnoses" 

            ) +  

    ylab("Frequency") + xlab("ICD-9 Code") + theme_minimal() + 

    theme(axis.text.x=element_text(angle=60, vjust=0.9, hjust=0.8), 

text=element_text(size=15)) + 

    # geom_text(vjust=1.2, color="white", size=3.31, hjust=0.45) 

    geom_text(vjust=-0.9, angle=15) + ylim(c(0, 19000)) 

    # this is a really unfortunate x-axis, couldn't find a better angle or 

adjustment for the x-axis  

``` 

 

#### Figure 3: Correlation Matrix 

```{r} 

cormat <- (icd_cohort %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, x))  %>%  

  select(-SUBJECT_ID) %>%  

  cor()) 

 

cormat %>% corrplot::corrplot(type="upper", diag=F, order = "hclust", col = 

colorRampPalette(c("red","white", "blue"))(10), method = "color", tl.pos = 

"n") 

``` 

 

 

#### Figure 4: Highest Correlation Bar Graph 

```{r} 

top10_corr_plot <- icd_cohort %>%  

  filter(!is.na(ICD9_CODE)) %>%  

  mutate(values=1) %>%  

  pivot_wider(id_cols="SUBJECT_ID", names_from="ICD9_CODE", 

values_from="values") %>%  

  mutate_all(function(x) ifelse(is.na(x), 0, 1)) %>%  

  select(-SUBJECT_ID) %>%  

  corr_cross(top=10, plot=F) 

 

top10_corr_plot <- top10_corr_plot %>%  mutate(group1 =  

                             paste0(substr(group1, 0, 3), ".", substr(group1, 

4, nchar(group1))), 

                           group2 =  

                             paste0(substr(group2, 0, 3), ".", substr(group2, 

4, nchar(group2)))) 

 

barplot <- top10_corr_plot %>% mutate(Pair = paste0(group1, ", ", group2)) 

%>%  

  ggplot(aes(x=reorder(Pair, corr), y=round(corr, 2))) + 
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  geom_bar(stat='identity', fill="black", alpha=0.6) +  

  geom_text(aes(y =round(corr, 2)-0.04, label=round(corr, 2)), 

            color="white", alpha=0.75) +  

  coord_flip() + theme_minimal() + 

  theme(text=element_text(size=13.5)) + 

  ylab("Correlation Coefficient") + xlab("ICD-9 Diagnosis Code Pair") 

 

require(gridExtra) 

require(grid) 

 

corrtbl <- c(top10_corr_plot %>% pull(group1) %>% unique(), 

             t(t(top10_corr_plot %>% pull(group2) %>% unique()))) %>% 

unique() %>% data.frame(ICD9_CODE=.) %>% 

  merge(icd_descr %>% select(ICD9_CODE, SHORT_TITLE) %>%  

          mutate(ICD9_CODE = paste0(substr(ICD9_CODE, 0, 3), ".", 

substr(ICD9_CODE, 4, nchar(ICD9_CODE)))), by="ICD9_CODE", all.x=T) %>% 

arrange(ICD9_CODE) %>%  

  mutate(SHORT_TITLE = case_when(is.na(SHORT_TITLE) ~ "Digestive system 

complications NOS", 

                                 ICD9_CODE=="250.60" ~  "Diabetes (II) with 

neurological manifestations",  

                                 ICD9_CODE=="294.10" ~  "Dementia without 

behavioral disturbance", 

                                 ICD9_CODE=="403.90" ~  "Hypertensive chronic 

kidney disease, stage I-IV", 

                                 ICD9_CODE=="403.91" ~  "Hypertensive chronic 

kidney disease, stage V+", 

                                 ICD9_CODE=="585.9" ~  "Chronic kidney 

disease NOS", 

                                 TRUE ~ SHORT_TITLE)) %>% select(`ICD-9-CM 

Code`=ICD9_CODE, `Description`=SHORT_TITLE)  %>% tableGrob(rows = NULL) 

 

 

grid.arrange(barplot, 

             corrtbl, 

             nrow=1, 

             as.table=T) 

 

``` 

 

 

### Appendix B: Unused Exporatory Analyses 

 

My lazy calling of packages and data, so that analysis does not require 

running all cleaning and EDA code above: 

 

#### Precursor Dimension Reduction 

 

Prior to the treelet cross-validation process, Dr. Carlson suggested fitting 

PCA to evaluate a possible range of values for the $K$ number of clusters 

parameter to fit in the treelet cross-validation process. I thought it may be 

interesting to similarly do some (similarly preliminary) agglomerative 

hierarchical clustering to the data.  

 

#### PCA Precursor  

 

```{r} 
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icd_pca <- cohort_full %>% select(starts_with("X")) %>% prcomp(center=T, 

scale=T) 

 

icd_pca_df <- data.frame(PC = 1:178, 

                         Var = icd_pca$sdev^2) %>%  

              mutate(PropVar = Var / nrow(.), 

                     CmltvPropVar = cumsum(PropVar)) 

 

icd_pca_df %>% ggplot(aes(x=PC, y=PropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Proportion of Variance Explained") + xlab("Principal Component") + 

  ggtitle("Proportion of Variance Explained by Individual Principal 

Component") 

 

icd_pca_df %>% ggplot(aes(x=PC, y=CmltvPropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Cumulative Proportion of Variance Explained") + xlab("Principal 

Component") + 

  ggtitle("Cumulative Proportion of Variance Explained by Principal 

Component") 

 

``` 

 

 

 

 

#### Preliminary Treelet 

 

 

Full dendrogram of our treelet, not particularly useful/insightful but 

thanfully it is simple and quick to fit our treelet, retaining results for 

all levels 

```{r, warning=F, message=F} 

# compute correlation matrix 

icd_cor <- cohort_full %>% select(starts_with("X")) %>% cor() 

 

# run treelet 

tt_results <- treelet::Run_JTree(icd_cor, nrow(icd_cor)-1, 1:nrow(icd_cor)-1) 

``` 

 

 

#### Treelet Identification 

 

 

```{r} 

tt_results %>% str() 

``` 

 

 

 

##### Dendrogram Vizualization  

```{r} 

# Converting the covariance matrix --> correlation matrix --> distance matrix 

  # currently simply for the highest level of the covariance matrix 

dist_mat <- as.dist( 

  1-cov2cor(tt_results$TreeCovs[[nrow(icd_cor)-1]]) 

  ) 
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# Making the result easily plotted in a dendrogram 

  dendr <- dendro_data(hclust(dist_mat), type="rectangle") 

 

# Modifying the axis position of the labels slightly to reduce length of the 

final visual 

  dendr$segments[segment(dendr)$yend==0, "yend"] <- 

min(segment(dendr)[segment(dendr)$yend>0, "yend"])*0.95 

  dendr$labels$y <- min(segment(dendr)[segment(dendr)$yend>0, "yend"]) 

  dendr$labels$label <- stringr::str_replace(dendr$labels$label, "X", "") 

   

# Plot 

  ggplot() +  

    geom_segment(data=segment(dendr), aes(x=x, y=y, xend=xend, yend=yend)) +  

    geom_text(data=label(dendr), aes(x=x, y=y, label=label, hjust=0), size=3) 

+ 

    coord_flip() + scale_y_reverse(expand=c(0.2, 0)) +  

    theme(axis.line.y=element_blank(), 

          axis.ticks.y=element_blank(), 

          axis.text.y=element_blank(), 

          axis.title.y=element_blank(), 

          panel.background=element_rect(fill="white")) + 

    ggtitle("Example Dendrogram of All Data", subtitle = "Maximum Cut-Off 

Chosen Arbitrarily\nVisual and results incomplete, only included 

demonstratively") 

     

 

``` 

 

 

The above visualization is impossible to decipher, but (again solely for 

current presentation and familiaring myself with the treelet function's 

output structure), we can visualize the treelet for only the first 20 

conjoinings/clusterings: 

 

 

```{r, warning=F, message=F} 

# pick zposition of interest (i.e. cut-level) and take the covariance matrix 

from that level 

  # tt_results$Zpos[1:20,] 

 

# need to extract the numeric label to the actual diagnosis code 

  labels_df <- cov2cor(tt_results$TreeCovs[[ncol(icd_cor)-1]]) %>% colnames() 

%>% data.frame(code = ., label=1:178) 

   

  codes_mat <- tt_results$Zpos[1:20,] %>% as.data.frame() %>%  

    merge(labels_df, by.x="V1", by.y="label", all.x=T)  %>%  

    merge(labels_df, by.x="V2", by.y="label", all.x=T) %>%  

    select(CodeLab1=code.x, CodeLab2=code.y) %>% as.matrix() 

 

  "X99592" %in% codes_mat 

 

   

   

  dist_mat <- as.dist( 

    1 - cov2cor(tt_results$TreeCovs[[ncol(icd_cor)-1]]) %>% .[colnames(.) 

%in% codes_mat,colnames(.) %in% codes_mat] 
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  ) 

 

dendr <- dendro_data(hclust(dist_mat), type="rectangle") 

 

dendr$segments[segment(dendr)$yend==0, "yend"] <- 

min(segment(dendr)[segment(dendr)$yend>0, "yend"])*0.95 

dendr$labels$y <- min(segment(dendr)[segment(dendr)$yend>0, "yend"]) 

dendr$labels$label <- stringr::str_replace(dendr$labels$label, "X", "") 

 

ggplot() +  

  geom_segment(data=segment(dendr), aes(x=x, y=y, xend=xend, yend=yend)) +  

  geom_text(data=label(dendr), aes(x=x, y=y, label=label, hjust=0), size=3) + 

  coord_flip() + scale_y_reverse(expand=c(0.2, 0)) +  

  theme(axis.line.y=element_blank(), 

        axis.ticks.y=element_blank(), 

        axis.text.y=element_blank(), 

        axis.title.y=element_blank(), 

        panel.background=element_rect(fill="white")) 

   

 

``` 

 

 

 

Trying to subset labels in the full dendrogram 

 

 

```{r, warning=F, message=F} 

# compute correlation matrix 

icd_cor <- cohort_full %>% select(starts_with("X")) %>% cor() 

 

# run treelet 

tt_results <- treelet::Run_JTree(icd_cor, nrow(icd_cor)-1, 1:nrow(icd_cor)-1) 

 

# Converting the covariance matrix --> correlation matrix --> distance matrix 

  # currently simply for the highest level of the covariance matrix 

dist_mat <- as.dist( 

  1-cov2cor(tt_results$TreeCovs[[nrow(icd_cor)-1]]) 

  ) 

 

# Making the result easily plotted in a dendrogram 

  dendr <- dendro_data(hclust(dist_mat), type="rectangle") 

 

# Modifying the axis position of the labels slightly to reduce length of the 

final visual 

  dendr$segments[segment(dendr)$yend==0, "yend"] <- 

min(segment(dendr)[segment(dendr)$yend>0, "yend"])*0.95 

  dendr$labels$y <- min(segment(dendr)[segment(dendr)$yend>0, "yend"]) 

  dendr$labels[!(dendr$labels$label %in% codes_mat), "label"] <- "" 

  dendr$labels$label <- stringr::str_replace(dendr$labels$label, "X", "") 

 

# Plot 

  ggplot() +  

    geom_segment(data=segment(dendr), aes(x=x, y=y, xend=xend, yend=yend)) +  

    geom_text(data=label(dendr), aes(x=x, y=y, label=label, hjust=0), size=3) 

+ 

    coord_flip() + scale_y_reverse(expand=c(0.2, 0)) +  
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    theme(axis.line.y=element_blank(), 

          axis.ticks.y=element_blank(), 

          axis.text.y=element_blank(), 

          axis.title.y=element_blank(), 

          panel.background=element_rect(fill="white")) + 

    ggtitle("Example Dendrogram of All Data", subtitle = "Maximum Cut-Off 

Chosen Arbitrarily\nVisual and results incomplete, only included 

demonstratively") 

     

 

``` 

 

 

 

 

 

Appendix B.2 R Code to Perform Treelet and GLM Fitting (incl. Cross-Validation) 

--- 

title: "Treelet Transform: Identifing clusters of ICD-9 Diagnoses in a Boston 

Trauma Center" 

subtitle: "Data Analysis: Treelet & GLM Fitting" 

author: "Dominic DiSanto\n Master's Thesis" 

date: "Updated 9/20/2020" 

output:  

  html_document: 

    keep_md: true 

    toc: true 

    toc_depth: '3' 

    code_folding: show 

--- 

 

## Preparation 

 

 

## Libraries 

```{r, message=F, warning=FALSE} 

library(magrittr) # Ceci n'est pas une %>%, loaded via dplyr also but liked 

to include for transparency  

library(dplyr) # General data management, cleaning (admittedly I switch 

between Base R and tidyverse as I code, somewhat stream-of-consciousness ly) 

library(ggplot2) # Visualization 

library(tidyr) # pivot functions for transposing data to/from long and wide 

library(icd) # used in validity check of diagnoses codes 

library(lubridate) # used in evaluating dates, most notably in date of death  

library(lares) # corr_cross function used to identify the top correlations 

within a data frame/design matrix 
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library(corrplot) # used for visualizing correlation matrices 

library(here) # Used for data-calls/ease of file path storage usage  

library(treelet) # Used for treelet analysis  

library(ggdendro) # Used for dendrogram visualization of Treelet analysis 

library(gghighlight) # Used in cross-validation visualizations 

library(MASS) # Used for glm.nb negative binomial regression function  

require(stringr) # Some regex matching for filtering in the visualiation of 

p-values & coefficients from GLM's  

require(pROC) 

 

select <- dplyr::select # Masking the MASS select function, somethign to do 

with ridge regression I think, in favor of dplyr's `select()` function for 

wrangling 

 

`%nin%` <- Negate(`%in%`) # Creating the inverse function of %in%, simpler 

than working with the !(...) negating logic syntax and saves me the extra 

parenthetical blocks 

``` 

 

 

## File Path & Import 

 

Loading data via `here` package  

 

```{r} 

here() 

 

cohort_full <-  read.csv(here("Data", "cohort_full.csv")) 

colnames(cohort_full) <- cohort_full %>% colnames() %>% gsub(pattern = "X", 

"", x = .) 

# cohort_full %>% head() 

 

diagnosis_labs <- read.csv(here("Data", "Raw", "D_ICD_DIAGNOSES.csv")) 

``` 

 

 

 

## Treelet Cross-Validation Function 

 

Defining the function that fits the treelet, and retains the characteristics 

of:   

- The "best K-basis" or the optimal L|K parameter for each K    

- The retained K features for each given K    

- All p-1 basis matrices from the fit treelet    

 

 

```{r} 

treelet_process <- function(x_mat, cov_mat){ 

 

  tt_results <- tt_results <- treelet::Run_JTree(cov_mat, nrow(cov_mat)-1, 

1:nrow(cov_mat)-1) # Running the `treelet` package's implementation and 

retaining all (1) to (p-1) results 

  energy <- list() # empty list to store energy scores 

 

      for(L in 1:length(tt_results$basis)) { # repeating this for all basis 

matrices identified in the treelet above 

         



 98 

        basisk <- tt_results$basis[[L]] # storing the specific basis 

        w_x <- t(basisk) %*% t(x_mat) # applying the basis matrix to the 

original input matri of diagnosis codes  

     

          num_vec <- rowSums(abs(w_x)^2) # numerator vector -> calculation of 

the p-1 values for the numerator of the energy score calculation 

          den_vec <- x_mat^2 %>% colSums() # similar to the above line but 

the denominator calculation, column summed over all n observations 

              names(num_vec) <- NULL # removing dimension names o fmatrix 

              names(den_vec) <- NULL 

     

        energy[[L]] <- matrix(c(1:ncol(x_mat), num_vec / den_vec), ncol=2, 

dimnames = list(NULL, c("W_i", "Energy"))) # generating energy scores 

    } 

 

  # Creating blank objects   

    optimal_L <- matrix(c(1:length(energy), rep(NA, length(energy))), 

nrow=length(energy), dimnames = list(NULL, c("K", "Optimal L"))) # empty list 

set 

    retained_fts <- rep(list(rep(list(rep(NA, length(energy))), 

length(energy))), length(energy)) # empty list set 

 

  # Reordering the energy matrices in descending order of normed energy score 

    energy_ordered <- lapply(1:length(energy), function(L) 

energy[[L]][energy[[L]][,2] %>% order(decreasing = T),]) # sorting all p-1 

energy vectors in descending order 

 

  # Identifying optimal L 

    optimal_L <- matrix(c(1:length(energy_ordered), # identifying the basis 

matrix with the highest energy summation for every given K 

                      sapply(1:length(energy_ordered),  

                             function(K) which.max(sapply(1:length(energy),  

                                                          function(x) 

sum(energy_ordered[[x]][1:K,2]) 

                                                          ) 

                                                   ))), 

                      ncol=2, dimnames=list(NULL, c("GivenK", 

"OptimalBasis_L"))) 

 

  # And retained fts 

    retained_fts <- lapply(1:length(energy_ordered), 

                            function(x) 

energy_ordered[[optimal_L[x,2]]][optimal_L[1:x,1], 1]) # then the retained 

features of the basis that represent the K highest energy score columns 

 

  return(list(basis_mats=tt_results$basis, 

              optimal_params=optimal_L, 

              retained_fts=retained_fts)) 

} 

``` 

 

 

 

## Cross-Validation Data Split   
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Splitting the data into a cross-validation set (80%) and hold-out test set 

(20%). Within the 80% cross-validation set, I then create a new variable 

identifying the five folds to be used in the cross-validation process.  

 

The length of stay and mortality models use the same cohort (the same 

inclusion criteria), so the same data splits are used for both of these 

analyses Our readmission cohort is limited only to patients who were 

readmitted or who survived out to one year withour readmission, so the data 

split is conduced separately for this subset of patients 

 

### Mortality & Length of Stay  

 

```{r} 

set.seed(2824) 

 

hold_out_pts <- sample(1:nrow(cohort_full), size=nrow(cohort_full)/5, replace 

= F) 

 

holdout_test <- cohort_full[hold_out_pts,] 

# nrow(holdout_test) 

 

cv_data <- cohort_full[setdiff(1:nrow(cohort_full), hold_out_pts),] 

# nrow(cv_data) 

 

(nrow(holdout_test) + nrow(cv_data)) == nrow(cohort_full) 

 

cv_data$fold <- sample(c(rep(1, ceiling(nrow(cv_data)/5)), 

                         rep(2, ceiling(nrow(cv_data)/5)), 

                         rep(3, ceiling(nrow(cv_data)/5)), 

                         rep(4, ceiling(nrow(cv_data)/5)), 

                         rep(5, ceiling(nrow(cv_data)/5)) 

                         ), 

                       size=nrow(cv_data), replace=F 

                       ) 

 

table(cv_data$fold) 

cat("\n") 

cat("Printing frequency of \"Self-Pay\" insurane category across CV 

folds...\n") 

count <- cv_data %>% filter(INSURANCE=="Self Pay") %>% count() 

cat(paste0("Full analytic data (n=", nrow(cv_data), "): " ,  count, " (", 

round(100*count/nrow(cv_data), 2) ,"%)\n")) 

 

for(i in 1:max(cv_data$fold)){ 

  count <- cv_data %>% filter(fold==i) %>% filter(INSURANCE=="Self Pay") %>% 

count() 

  cat(paste0("Fold ", i, ": ", count, " (", round(100*count/nrow(cv_data %>% 

filter(fold==i)), 2) ,"%)\n")) 

} 

``` 

 

### Hospital Readmission  

 

 

```{r} 

set.seed(70221) 
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cohort_readmit <- cohort_full %>% filter(!is.na(Yr1Readmit)) 

 

hold_out_readmit <- sample(1:nrow(cohort_readmit), 

size=nrow(cohort_readmit)/5, replace = F) 

 

holdout_test_readmit <- cohort_readmit[hold_out_readmit,] 

# nrow(holdout_test) 

 

cv_data_readmit <- cohort_readmit[setdiff(1:nrow(cohort_readmit), 

hold_out_readmit),] 

# nrow(cv_data) 

 

(nrow(holdout_test_readmit) + nrow(cv_data_readmit)) == nrow(cohort_readmit) 

 

cv_data_readmit$fold <- sample(c(rep(1, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(2, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(3, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(4, ceiling(nrow(cv_data_readmit)/5)), 

                         rep(5, ceiling(nrow(cv_data_readmit)/5)) 

                         ), 

                       size=nrow(cv_data_readmit), replace=F 

                       ) 

 

table(cv_data_readmit$fold) 

 

cat("\n") 

cat("Printing frequency of \"Self-Pay\" insurane category across CV 

folds...\n") 

count <- cv_data_readmit %>% filter(INSURANCE=="Self Pay") %>% count() 

cat(paste0("Full analytic data (n=", nrow(cv_data_readmit), "): " ,  count, " 

(", round(100*count/nrow(cv_data_readmit), 2) ,"%)\n")) 

 

for(i in 1:max(cv_data_readmit$fold)){ 

  count <- cv_data_readmit %>% filter(fold==i) %>% filter(INSURANCE=="Self 

Pay") %>% count() 

  cat(paste0("Fold ", i, ": ", count, " (", 

round(100*count/nrow(cv_data_readmit %>% filter(fold==i)), 2) ,"%)\n")) 

} 

``` 

 

 

## Treelet Cross-Valdiation and Results Export 

 

For each of our outcomes, similar processes are followed, which include: 

 

1) Fitting the treelet model, using the previously defined `treelet_process` 

function, for each training fold 

2) Then for K=1,2,...p-1 in this identified treelet:    

     a) Fitting the appropriate regression model in the training data using 

the K dimensions and corresponding optimal Lth basis   

     b) Using this fit model to predict probability of outcome (or outcome, 

in the length of stay negative binomial model)    

     c) Assess test fit (Briers & AUC for mortality, readmission; MSE for 

length of stay)    

     d) Export a data frame that contains test error for each K parameter and 

fold, and the average test Brier Score and AUC (so 177 observations (for 1 to 
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p-1 values of K), and 13 columns, a K value, test-fold specific Brier Score 

and AUC values, and the two averages) 

 

 

*A procedural note, the three outcome specific processes below include the 

same `brier`, `auc`, and `performance_df` named objects, so that each chunk 

writes over the results of the previous (not saving the resulting R objects 

for each section, which are large and tend to obstruct my R session), but 

each chunk exports the results in its final step.*   

   

   

### In-Hospital Mortality 

 

 

```{r} 

 

brier <- list(c(), c(), c(), c(), c()) 

auc <- list(c(), c(), c(), c(), c()) 

 

 

for (fold_no in 1:max(cv_data$fold)) { 

   

  train_cv <- cv_data[cv_data$fold!=fold_no, ] 

  test_cv <- cv_data[cv_data$fold==fold_no, ] 

     

  train_xmat <- train_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  train_cov <- cov(train_xmat) 

 

  test_xmat <- test_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

   

  tt_fold <- treelet_process(x_mat = train_xmat, cov_mat = train_cov) 

   

  for(K in 1:length(tt_fold$basis_mats)){ 

        # basis_l <- tt_fold$basis_mats[[K]][,tt_fold$retained_fts[[K]]] 

        basis_no <- tt_fold$optimal_params[i,2] 

        basis_l <- tt_fold$basis_mats[[basis_no]][,tt_fold$retained_fts[[K]]] 

     

        k_mat <- train_xmat %*%  basis_l 

         

        train_glm_df <- train_cv %>% select(InHospMortality, GENDER, Age, 

INSURANCE) %>% cbind(., k_mat) 

        if(K==1) colnames(train_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column  

        # train_glm <- glm(train_cv$InHospMortality ~ train_cv$GENDER + 

train_cv$Age + as.factor(train_cv$INSURANCE) + train_cv$HospitalLOS + k_mat , 

        #                  family = "binomial") 

         

        train_glm <- glm(InHospMortality ~ . , data=train_glm_df, 

                         family = "binomial") 

         

        test_kmat <- test_xmat %*% basis_l 

        test_glm_df <- test_cv %>% select(InHospMortality, GENDER, Age, 

INSURANCE) %>% cbind(., test_kmat) 

        if(K==1) colnames(test_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column 
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        phat <- predict(object = train_glm, newdata = test_glm_df, 

type="response")  

       

        brier[[fold_no]][K] <- sum((phat - test_cv$InHospMortality)^2) / 

nrow(test_cv) 

        auc[[fold_no]][K] <- pROC::roc(test_cv$InHospMortality, phat)$auc 

         

    } 

} 

 

 

performance_df <- data.frame(K=c(1:length(brier[[1]])),  

                             BS_F1 = brier[[1]], 

                             BS_F2 = brier[[2]], 

                             BS_F3 = brier[[3]], 

                             BS_F4 = brier[[4]], 

                             BS_F5 = brier[[5]], 

                             AUC_F1 = auc[[1]], 

                             AUC_F2 = auc[[2]], 

                             AUC_F3 = auc[[3]], 

                             AUC_F4 = auc[[4]], 

                             AUC_F5 = auc[[5]])  

 

performance_df2 <- performance_df %>% mutate(BS_TestAvg =  

                            rowMeans(select(performance_df, 

starts_with("BS"))), 

                          AUC_TestAvg = 

                            rowMeans(select(performance_df, 

starts_with("AUC")))) 

 

write.csv(performance_df2, 

here("Results/MortalityModel_CVPerformance_NoLOS_NewKLCode.csv"), row.names = 

F) 

 

``` 

 

 

 

 

### Hospital Readmission  

 

```{r} 

brier <- list(c(), c(), c(), c(), c()) 

auc <- list(c(), c(), c(), c(), c()) 

 

 

for (fold_no in 1:max(cv_data_readmit$fold)) { 

   

  train_cv <- cv_data_readmit[cv_data_readmit$fold!=fold_no, ] 

  test_cv <- cv_data_readmit[cv_data_readmit$fold==fold_no, ]  

     

  train_xmat <- train_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  train_cov <- cov(train_xmat) 
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  test_xmat <- test_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

   

  tt_fold <- treelet_process(x_mat = train_xmat, cov_mat = train_cov) 

   

  for(K in 1:length(tt_fold$basis_mats)){ 

        # basis_l <- tt_fold$basis_mats[[K]][,tt_fold$retained_fts[[K]]] 

        basis_no <- tt_fold$optimal_params[K,2] 

        basis_l <- tt_fold$basis_mats[[basis_no]][,tt_fold$retained_fts[[K]]] 

 

        k_mat <- train_xmat %*%  basis_l 

         

        train_glm_df <- train_cv %>% select(Yr1Readmit, GENDER, Age, 

INSURANCE, HospitalLOS) %>% cbind(., k_mat) 

        if(K==1) colnames(train_glm_df)[6] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column  

        # train_glm <- glm(train_cv$InHospMortality ~ train_cv$GENDER + 

train_cv$Age + as.factor(train_cv$INSURANCE) + train_cv$HospitalLOS + k_mat , 

        #                  family = "binomial") 

         

        train_glm <- glm(Yr1Readmit ~ . , data=train_glm_df, 

                         family = "binomial") 

         

        test_kmat <- test_xmat %*% basis_l 

        test_glm_df <- test_cv %>% select(Yr1Readmit, GENDER, Age, INSURANCE, 

HospitalLOS) %>% cbind(., test_kmat) 

        if(K==1) colnames(test_glm_df)[6] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column 

         

        phat <- predict(object = train_glm, newdata = test_glm_df, 

type="response")  

       

        brier[[fold_no]][K] <- sum((phat - test_cv$Yr1Readmit)^2) / 

nrow(test_cv) 

        auc[[fold_no]][K] <- pROC::roc(test_cv$Yr1Readmit, phat)$auc 

         

    } 

} 

 

performance_df_readmit <- data.frame(K=c(1:length(brier[[1]])),  

                             BS_F1 = brier[[1]], 

                             BS_F2 = brier[[2]], 

                             BS_F3 = brier[[3]], 

                             BS_F4 = brier[[4]], 

                             BS_F5 = brier[[5]], 

                             AUC_F1 = auc[[1]], 

                             AUC_F2 = auc[[2]], 

                             AUC_F3 = auc[[3]], 

                             AUC_F4 = auc[[4]], 

                             AUC_F5 = auc[[5]])  

 

performance_df2_readmit <- performance_df_readmit %>% mutate(BS_TestAvg =  

                            rowMeans(select(performance_df_readmit, 

starts_with("BS"))), 

                          AUC_TestAvg = 

                            rowMeans(select(performance_df_readmit, 

starts_with("AUC")))) 
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write.csv(performance_df2_readmit, 

here("Results/ReadmissionModel_CVPerformance_NewKLCode.csv"), row.names = F) 

 

 

``` 

 

 

### Hospital Length of Stay  

 

Cross-validation data splits are the same as the mortality data  

 

```{r} 

 

MSE <- list(c(), c(), c(), c(), c()) 

 

# fold_no = 5 

 

for (fold_no in 1:max(cv_data$fold)) { 

   

  train_cv <- cv_data[cv_data$fold!=fold_no, ] 

  test_cv <- cv_data[cv_data$fold==fold_no, ] 

     

  train_xmat <- train_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  train_cov <- cov(train_xmat) 

 

  test_xmat <- test_cv %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

   

  tt_fold <- treelet_process(x_mat = train_xmat, cov_mat = train_cov) 

   

  for(K in 1:length(tt_fold$basis_mats)){ 

        # basis_l <- tt_fold$basis_mats[[K]][,tt_fold$retained_fts[[K]]] 

        basis_no <- tt_fold$optimal_params[i,2] 

        basis_l <- tt_fold$basis_mats[[basis_no]][,tt_fold$retained_fts[[K]]] 

         

        k_mat <- train_xmat %*%  basis_l 

         

        train_glm_df <- train_cv %>% select(HospitalLOS, GENDER, Age, 

INSURANCE) %>% cbind(., k_mat) 

        if(K==1) colnames(train_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column  

        # train_glm <- glm(train_cv$InHospMortality ~ train_cv$GENDER + 

train_cv$Age + as.factor(train_cv$INSURANCE) + train_cv$HospitalLOS + k_mat , 

        #                  family = "binomial") 

         

        train_glm <- glm.nb(HospitalLOS ~ . , data=train_glm_df) 

         

        test_kmat <- test_xmat %*% basis_l 

        test_glm_df <- test_cv %>% select(HospitalLOS, GENDER, Age, 

INSURANCE) %>% cbind(., test_kmat) 

        if(K==1) colnames(test_glm_df)[5] <- "`1`"     # Account for 

weirdness in column naming from cbind() when test_kmat has one column 
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        yhat <- predict(object = train_glm, newdata = test_glm_df, 

type="response")  

       

        MSE[[fold_no]][K] <- sum((yhat - test_cv$HospitalLOS)^2) / 

nrow(test_cv) 

         

         

    } 

} 

 

 

nb_MSE_df <- data.frame(K=c(1:length(MSE[[1]])),  

                             MSE_F1 = MSE[[1]], 

                             MSE_F2 = MSE[[2]], 

                             MSE_F3 = MSE[[3]], 

                             MSE_F4 = MSE[[4]], 

                             MSE_F5 = MSE[[5]])  

 

nb_MSE_df2 <- nb_MSE_df %>% mutate(MSE_TestAvg =  

                            rowMeans(select(nb_MSE_df, starts_with("MSE")))) 

 

write.csv(nb_MSE_df2, here("Results/LOSModel_MSE_DF_newKLCode.csv"), 

row.names = F) 

 

``` 

 

 

## Tables & Figures 

 

Having fit the treelet models above, we can now explore the results of the 

cross-validation processes. Each outcome section below includes chunks that: 

 

1) Plot the cross-validation error for each K parameter (`Cross-Validation 

Figures`) and identify the K and L|K parameter  

2) Export the cluster membership and loadings   

3) Build the final model on the full cross-validation set and assess test 

fit, including object-specific figures to be included in thesis manuscript 

 

### Mortality 

 

```{r} 

mortality_performance <- 

read.csv(here("Results/Treelet_KLOpt_WithinCVLoop/MortalityModel_CVPerformanc

e_NoLOS_NewKLCode.csv")) 

 

k_1sd <- 

mortality_performance[mortality_performance$BS_TestAvg<=(min(mortality_perfor

mance$BS_TestAvg) + sd(mortality_performance$BS_TestAvg)), ] %>% .[1,1] 

 

mortality_performance <- mortality_performance %>% mutate(ParamFlag =  

                                   case_when( 

                                     BS_TestAvg==min(BS_TestAvg) ~ "Minimizes 

Briers Score", 

                                     K==k_1sd ~ "More Sparse Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 
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``` 

 

#### Cross-Validation Figure 

 

```{r, warning=F, message=F} 

ggplot(mortality_performance, aes(x=K, y=BS_TestAvg, color = 

as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("In-Hospital Mortality Model") +  

  xlab("Value of Parameter K") + ylab("Average Briers Score (Across 5 Test 

Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) +  

  theme(legend.position=c(0.75, 0.75), text = element_text(size=13.5)) 

 

         

# which.min(mortality_performance$BS_TestAvg) 

#  

# # AUC Graph if of any interest  

# ggplot(mortality_performance, aes(x=K, y=AUC_TestAvg)) + 

#   geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

#   theme_minimal() + ggtitle("In-Hospital Mortality Model") + 

#   xlab("Value of Parameter K") + ylab("Average AUC (Across 5 Test Folds)") 

 

``` 

 

#### Cluster Membership/Loading Export 

 

```{r} 

# Subsetting the highlighted K parameters above 

  mortality_performance[!is.na(mortality_performance$ParamFlag),]  

  # opt_Ks_mortality <-  

 

# Refitting the treelet process in our training data to pull optimal L's for 

our highlighted K's 

  cv_xmat <- cv_data  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

  cv_cov <- cov(cv_xmat) 

 

  tt_fnc_mortality <- treelet_process(cv_xmat, cv_cov) 

 

  tt_fnc_mortality$optimal_params[c(123, 174),] 

  tt_fnc_mortality$retained_fts[[123]] 

   

  # For our 1-standard deviation parameter, pulling K-features from the Lth 

basis matrix 

  final_basis_mortality <- 

tt_fnc_mortality$basis_mats[[57]][,tt_fnc_mortality$retained_fts[[123]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<123) 

 

  labels_df <- cv_cov %>% colnames() %>% 

    data.frame(code = ., label=1:ncol(cv_cov)) 

 

  loading_mat_mortality <- merge(final_basis_mortality, labels_df, 
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                                 all.x=T, by.y="label", by.x="LabelIndex") 

 

   

  holder <- sapply(2:(ncol(loading_mat_mortality)-2), function(x) 

matrix(c(loading_mat_mortality[loading_mat_mortality[,x]!=0, "code"], 

                                                                         

loading_mat_mortality[loading_mat_mortality[,x]!=0, x]),  

                                                                         

ncol=2))   

   

  # Lazily using a for loop to transform to an exportable csv 

  i = 1 

  reformat_loadingmat <- as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2) 

   

  for (i in 2:length(holder)){ 

  reformat_loadingmat <- rbind(reformat_loadingmat,  

                               as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2)) 

  } 

   

   

  write.csv(loading_mat_mortality, 

            here("Results/LoadingMatrix_Mortality.csv")) 

   

  # Pulling in labels for the full matrix 

  reformat_loadingmat_labs <- reformat_loadingmat %>% 

mutate(Order=row_number()) %>%   

    merge(diagnosis_labs %>% select(ICD9_CODE, SHORT_TITLE), by.x="Code", 

by.y="ICD9_CODE", all.x=T) %>% arrange(Order) %>% select(-Order) 

   

  write.csv(reformat_loadingmat_labs, 

            here("Results/LoadingMatrix_Mortality_Redux.csv"), na = "") 

   

 

   

``` 

 

 

 

#### Building Final Model and Assessting Test Fit 

 

Using 1-Standard Deviation Parameter, building the logistic regression model 

on our the 80% cross-validation subset  

 

```{r} 

final_basis <- 

tt_fnc_mortality$basis_mats[[57]][,tt_fnc_mortality$retained_fts[[123]]] 

 

cv_xmat_transform <- cv_xmat %*% final_basis 

 

cv_predictors <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality) 

%>% cbind(., cv_xmat_transform) %>% as.data.frame() 
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dim(cv_predictors) 

 

train_glm <- glm(InHospMortality ~ . , data=cv_predictors, family = 

"binomial") 

# train_glm %>% summary() 

# confint(train_glm, parm = 1:7) 

 

test_xmat <- holdout_test  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

test_xmat_transform <- test_xmat %*% final_basis 

test_predictors <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

 

phat <- predict(object = train_glm, newdata = test_predictors, 

type="response")  

       

brier_test <- sum((phat - test_predictors$InHospMortality)^2) / 

nrow(holdout_test) 

auc_test <- pROC::roc(test_predictors$InHospMortality, phat)$auc 

 

# Exporting full model estimates  

ci95s <- confint.default(train_glm) # Using Wald approximation for confidence 

intervals, profile likelihood using confint() from MASS takes minutes to run 

(when it isn't crashing my R session)  

 

cbind(train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(Estimate) %>% round(2), 

      CI=paste0("[", (ci95s %>% round(2))[,1], ", ", (ci95s %>% 

round(2))[,2], "]"), 

      train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(`Pr(>|z|)`) %>% round(4)) %>% write.table("clipboard") 

``` 

 

##### Graphing P-values/Coefficients 

 

```{r} 

# Height = -log(PValue); Color=Coefficient 

train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

mutate(Covariate=rownames(.), Order=row_number()) %>% 

select(PValue=`Pr(>|z|)`, everything()) %>%  

  filter(stringr::str_detect(Covariate, "[0-9]")) %>% arrange(desc(Estimate)) 

%>% mutate(Label = case_when(row_number()<=5 ~ str_replace_all(Covariate, 

"`", ""), 

                                                                                                           

TRUE ~ "")) %>% arrange(Order) %>% 

  ggplot(aes(x=reorder(Covariate, Order), y=-log(PValue), fill=Estimate)) + 

    geom_bar(stat="identity") + theme_minimal() + 

  geom_text(aes(label=Label, group=Label), 

            hjust=-0.45, vjust=0.95) + 

  theme(axis.text.x = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 
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        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.9, 0.65)) +  

  labs(caption="Inset text notes feature numbers of five highest 

coefficients") + 

  xlab ("Treelet Feature") + ylab("-log(P-Value)") + 

  scale_fill_continuous(type="viridis", name="Coefficient", direction=-1)  

 

``` 

 

 

 

###### Graphing Phat Distributions  

 

```{r} 

phat_df <- as.data.frame(cbind("EventProb" = phat, 

"ObsOut"=test_predictors$InHospMortality)) 

 

phat_df %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of In-Hospital Mortality")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Mortality", "Mortality Event"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of In-Hospital 

Mortality") 

 

 

``` 

 

 

##### Fitting Model Without ICD Codes 

 

```{r} 

cv_predictors_noicd <- cv_predictors %>% select(-matches("[0-9]")) 

 

train_glm_noicd <- glm(InHospMortality ~ . , data=cv_predictors_noicd, family 

= "binomial") 

#train_glm_noicd %>% summary() 

# confint(train_glm, parm = 1:7) 

 

test_predictors_noicd <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality)  

 

phat_noicd <- predict(object = train_glm_noicd, newdata = 

test_predictors_noicd, type="response")  

       

brier_test_noicd <- sum((phat_noicd - 

test_predictors_noicd$InHospMortality)^2) / nrow(test_predictors_noicd) 

auc_test_noicd <- pROC::roc(test_predictors_noicd$InHospMortality, 

phat_noicd)$auc 

 

# Exporting full model estimates  

ci95s_noicd <- confint.default(train_glm_noicd) # Using Wald approximation 

for confidence intervals, profile likelihood using confint() from MASS takes 

minutes to run (when it isn't crashing my R session)  
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cbind(train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(Estimate) %>% round(3), 

      CI=paste0("[", (ci95s_noicd %>% round(3))[,1], ", ", (ci95s_noicd %>% 

round(3))[,2], "]"), 

      train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(`Pr(>|z|)`) %>% round(4)) #%>% write.table("clipboard") 

 

``` 

 

##### Fitting with Most Significant Features 

```{r} 

# Pulling the five most significant  

# train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

arrange(`Pr(>|z|)`) %>% tibble::rownames_to_column() %>% 

filter(str_detect(rowname,"[0-9]")) 

 

top5_tt_ftrs <- train_glm %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% arrange(`Pr(>|z|)`) %>%  

  tibble::rownames_to_column() %>% filter(str_detect(rowname, "[0-9]")) %>% 

filter(row_number()<=5) %>% pull(rowname) %>%  

  str_replace_all("`", "") 

 

top5_train_df <- cv_predictors %>% dplyr::select(GENDER, Age, INSURANCE, 

InHospMortality, `1`, `15`, `13`, `2`, `7`) 

 

top5_glm <- glm(InHospMortality ~ ., data=top5_train_df, family="binomial") 

 

test_predictors_top5 <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality) %>% cbind(., test_xmat_transform) %>% as.data.frame() %>%  

  select(GENDER, Age, INSURANCE, InHospMortality, all_of(top5_tt_ftrs)) 

 

phat_top5 <- predict(object = top5_glm, newdata = test_predictors_top5, 

type="response")  

       

brier_test_noicd <- sum((phat_top5 - test_predictors_top5$InHospMortality)^2) 

/ nrow(test_predictors_top5) 

auc_test_noicd <- pROC::roc(test_predictors_top5$InHospMortality, 

phat_top5)$auc 

 

 

``` 

 

 

###### Retained ICD-9-CM Does in 5 Features 

```{r} 

top5_tt_ftrs_cols <- sapply(top5_tt_ftrs, function(x) paste0("V", x))  

names(top5_tt_ftrs_cols) <- NULL 

 

loading_mat_mortality %>% select(!!top5_tt_ftrs_cols, code) %>%  

  filter(V1!=0 | V15!=0 | V13!=0 | V2!=0 | V7!=0) %>% pull(code) %>% unique() 

%>% length() 

``` 

 

 

 

##### Model of ICD Codes (No treelet features) 
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```{r} 

retained_codes <- loading_mat_mortality$code %>% unique() 

length(retained_codes) 

 

retain_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality, 

!!retained_codes) 

 

retain_train_glm <- glm(InHospMortality ~ . , data=retain_traindf, family = 

"binomial") 

 

retain_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, !!retained_codes) 

retain_phat <- predict(object = retain_train_glm, newdata = retain_test_df, 

type="response")  

       

sum((retain_phat - retain_test_df$InHospMortality)^2) / nrow(retain_test_df) 

  pROC::roc(retain_test_df$InHospMortality, retain_phat)$auc 

 

   

# Logistic Regression of All Codes 

all_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality, 

matches("[0-9]$")) 

all_train_glm <- glm(InHospMortality ~ . , data=all_traindf, family = 

"binomial") 

all_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, matches("[0-9]$")) 

all_phat <- predict(object = all_train_glm, newdata = all_test_df, 

type="response")  

       

sum((all_phat - all_test_df$InHospMortality)^2) / nrow(retain_test_df) 

pROC::roc(all_test_df$InHospMortality, all_phat)$auc 

 

``` 

 

 

##### Comparative Treelet ROC Curves 

 

```{r, warning=F, message=F} 

 

roc_obj_noicd <- pROC::roc(test_predictors_noicd$InHospMortality, phat_noicd) 

roc_obj <- pROC::roc(test_predictors$InHospMortality, phat) 

roc_top5 <- pROC::roc(test_predictors_top5$InHospMortality, phat_top5) 

 

pROC::ggroc(list(roc_obj, roc_top5, roc_obj_noicd), lwd=1.4) +  

  theme_minimal() + 

  xlab("Specificity") + ylab("Sensitivity") + 

  theme(axis.text.x = element_blank(), 

        # panel.grid.major = element_blank(), 

        # panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.6, 0.2)) +  

  scale_color_brewer(type="qual", palette=2, 
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                     name="Model", 

                     labels = c("Including All ICD-9-CM Treelet Features 

(AUC=0.858)", 

                                "Including 5 Most Significant ICD-9-

CM\nTreelet Features (AUC=0.830)", 

                                "Excluding ICD-9-CM Treelet Features 

(AUC=0.666)")) + 

  ggtitle("Comparative ROC Curves of Mortality Predictions in Test Data") 

 

 

``` 

 

 

 

##### Probability Distributions of No ICD Model 

 

```{r} 

phat_df_noicd_readmit <- as.data.frame(cbind("EventProb" = 

phat_readmit_noicd, "ObsOut"=test_predictors_readmit_noicd$Yr1Readmit)) 

 

phat_df_noicd_readmit %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.14, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of In-Hospital Mortality")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Mortality", "Mortality Event"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of Hospital Re-

admission") 

``` 

 

### Readmission 

 

#### Figures of Model Validation 

 

 

```{r} 

readmit_performance <- 

read.csv(here("Results/Treelet_KLOpt_WithinCVLoop/ReadmissionModel_CVPerforma

nce_NewKLCode.csv")) 

# readmit_performance <- performance_df2_readmit 

readmit_performance <- readmit_performance %>% mutate(BS_TestAvg =  

                            rowMeans(select(readmit_performance, 

starts_with("BS_F"))), 

                          AUC_TestAvg = 

                            rowMeans(select(readmit_performance, 

starts_with("AUC_F")))) 

 

k_1sd_readmit <- 

readmit_performance[readmit_performance$BS_TestAvg<=(min(readmit_performance$

BS_TestAvg) + sd(readmit_performance$BS_TestAvg)), ] %>% .[1,1] 

 

readmit_performance <- readmit_performance %>% mutate(ParamFlag =  

                                   case_when( 

                                     BS_TestAvg==min(BS_TestAvg) ~ "Minimizes 

Briers Score", 
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                                     K==k_1sd_readmit ~ "More Sparse 

Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 

 

ggplot(readmit_performance, aes(x=K, y=BS_TestAvg, 

color=as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("Hospital Readmission Model") +  

  xlab("Value of Parameter K") + ylab("Average Briers Score (Across 5 Test 

Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) + 

  theme(legend.position=c(0.65, 0.75), text = element_text(size=13.5)) 

 

readmit_performance %>% mutate(ParamFlag =  

                                 case_when( 

                                   is.na(ParamFlag) ~ "Unspecified", 

                                   TRUE ~ ParamFlag 

                                 )) %>%  

  ggplot(aes(x=K, y=BS_TestAvg)) + 

  geom_line(lwd=1.1, alpha=0.33) + geom_point(aes(x=K, y=BS_TestAvg, 

color=as.factor(ParamFlag)), size=2.5, inherit.aes = F) + 

  geom_point(size=1, alpha=0.2) +  

  theme_minimal() + ggtitle("Hospital Readmission Model") +  

  xlab("Value of Parameter K") + ylab("Average Briers Score (Across 5 Test 

Folds)") +  

  labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6, limits = c("Minimizes Briers 

Score", "More Sparse Parameter")) + 

  theme(legend.position=c(0.78, 0.25), text = element_text(size=13.5))  

 

# AUC CV Plot if of any interest later 

# ggplot(readmit_performance, aes(x=K, y=AUC_TestAvg)) + 

#   geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

#   theme_minimal() + ggtitle("Readmission Mortality Model") + 

#   xlab("Value of Parameter K") + ylab("Average AUC (Across 5 Test Folds)") 

 

``` 

 

 

#### Cluster Membership/Loading Export 

 

```{r} 

readmit_performance [!is.na(readmit_performance $ParamFlag),] 

 

cv_readmit_xmat <- cv_data_readmit  %>% select(matches("0|1|2|4|5|6|9")) %>% 

select(-Yr1Readmit) %>% as.matrix() 

cv_readmit_cov <- cov(cv_readmit_xmat) 

 

tt_fnc_readmit <- treelet_process(cv_readmit_xmat, cv_readmit_cov) 

 

tt_fnc_readmit$optimal_params[c(readmit_performance 

[!is.na(readmit_performance $ParamFlag),] %>% pull(K)),] 

 

# Matrix of loadings  
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 # For our 1-standard deviation parameter, pulling K-features from the Lth 

basis matrix 

  final_basis_readmit <- 

tt_fnc_readmit$basis_mats[[177]][,tt_fnc_readmit$retained_fts[[30]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<30) 

 

   

  labels_df <- cv_readmit_cov %>% colnames() %>% 

    data.frame(code = ., label=1:ncol(cv_readmit_cov)) 

 

  loading_mat_readmit <- merge(final_basis_readmit, labels_df, 

                                 all.x=T, by.y="label", by.x="LabelIndex") 

 

   

  holder <- sapply(2:(ncol(loading_mat_readmit)-2), function(x) 

matrix(c(loading_mat_readmit[loading_mat_readmit[,x]!=0, "code"], 

                                                                         

loading_mat_readmit[loading_mat_readmit[,x]!=0, x]),  

                                                                         

ncol=2))   

   

  # Lazily using a for loop to transform to an exportable csv 

  i = 1 

  reformat_loadingmat_readmit <- as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2) 

   

  for (i in 2:length(holder)){ 

  reformat_loadingmat_readmit <- rbind(reformat_loadingmat_readmit,  

                               as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2)) 

  } 

   

   

  reformat_loadingmat_readmit_labs <- reformat_loadingmat_readmit %>% 

mutate(Order=row_number()) %>%   

    merge(diagnosis_labs %>% select(ICD9_CODE, SHORT_TITLE), by.x="Code", 

by.y="ICD9_CODE", all.x=T) %>% arrange(Order) %>% select(-Order) 

   

   

  write.csv(loading_mat_readmit, 

            here("Results/LoadingMatrix_Readmit.csv")) 

   

  write.csv(reformat_loadingmat_readmit_labs, 

            here("Results/LoadingMatrix_Readmit_Redux.csv"), na = "") 

   

 

``` 
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#### Building Final Model & Assessing Test Fit  

Using 1-Standard Deviation Parameter, building the logistic regression model 

on our the 80% cross-validation subset  

 

```{r} 

final_basis_readmit <- 

tt_fnc_readmit$basis_mats[[177]][,tt_fnc_readmit$retained_fts[[30]]] 

 

cv_xmat_transform_readmit <- cv_readmit_xmat %*% final_basis_readmit 

 

cv_predictors_readmit <- cv_data_readmit %>% select(GENDER, Age, INSURANCE, 

Yr1Readmit) %>% cbind(., cv_xmat_transform_readmit) %>% as.data.frame() 

 

train_glm_readmit <- glm(Yr1Readmit ~ . , data=cv_predictors_readmit, family 

= "binomial") 

# train_glm_readmit %>% summary() 

# confint(train_glm, parm = 1:7) 

 

 

test_xmat_readmit <- holdout_test_readmit  %>% 

select(matches("0|1|2|4|5|6|9")) %>% select(-Yr1Readmit) %>% as.matrix() 

test_xmat_transform <- test_xmat_readmit %*% final_basis_readmit 

 

test_predictors_readmit <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

 

phat_readmit <- predict(object = train_glm_readmit, newdata = 

test_predictors_readmit, type="response")  

       

brier_test <- sum((phat_readmit - test_predictors_readmit$Yr1Readmit)^2) / 

nrow(test_predictors_readmit) 

auc_test <- pROC::roc(test_predictors_readmit$Yr1Readmit, phat_readmit)$auc 

brier_test 

auc_test 

 

# Exporting full model estimates  

ci95s_readmit <- confint.default(train_glm_readmit) # Using Wald 

approximation for confidence intervals, profile likelihood using confint() 

from MASS takes minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_readmit %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(Estimate) %>% round(2), 

      CI=paste0("[", (ci95s_readmit %>% round(2))[,1], ", ", (ci95s_readmit 

%>% round(2))[,2], "]"), 

      train_glm_readmit %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(`Pr(>|z|)`) %>% round(4)) %>% write.table("clipboard") 

``` 

 

##### Graphing P-values/Coefficients 

```{r} 

train_glm_readmit %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

mutate(Covariate=rownames(.), Order=row_number()) %>% 

select(PValue=`Pr(>|z|)`, everything()) %>%  

  filter(stringr::str_detect(Covariate, "[0-9]")) %>% arrange(desc(Estimate)) 

%>% mutate(Label = case_when(row_number()<=5 ~ str_replace_all(Covariate, 

"`", ""), 
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TRUE ~ "")) %>% arrange(Order) %>% 

  ggplot(aes(x=reorder(Covariate, Order), y=-log(PValue), fill=Estimate)) + 

    geom_bar(stat="identity") + theme_minimal() + 

  geom_text(aes(label=Label, group=Label), 

            hjust=-0.9, vjust=0.95) + 

  theme(axis.text.x = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.9, 0.65)) +  

  labs(caption="Inset text notes feature numbers of five highest 

coefficients") + 

  xlab ("Treelet Feature") + ylab("-log(P-Value)") + 

  scale_fill_continuous(type="viridis", name="Coefficient", direction=-1)  

 

``` 

 

 

##### Graphing Phat Distributions 

 

```{r} 

phat_readmit_df <- as.data.frame(cbind("EventProb" = phat_readmit, 

"ObsOut"=test_predictors_readmit$Yr1Readmit)) 

 

phat_readmit_df %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of Unplanned Hospital 

Readmission")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Readmission", "Readmission"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of Unplanned Hospital 

Readmission") 

 

 

``` 

 

##### Fitting Model Without ICD Codes 

 

```{r} 

cv_predictors_readmit_noicd <- cv_predictors_readmit %>% select(-

matches("^[0-9]")) 

 

train_glm_readmit_noicd <- glm(Yr1Readmit ~ . , 

data=cv_predictors_readmit_noicd, family = "binomial") 

 

test_predictors_readmit_noicd <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit)  
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phat_readmit_noicd <- predict(object = train_glm_readmit_noicd, newdata = 

test_predictors_readmit_noicd, type="response")  

       

brier_test_noicd <- sum((phat_readmit_noicd - 

test_predictors_readmit_noicd$Yr1Readmit)^2) / 

nrow(test_predictors_readmit_noicd) 

auc_test_noicd <- pROC::roc(test_predictors_readmit_noicd$Yr1Readmit, 

phat_readmit_noicd)$auc 

 

# Exporting full model estimates  

ci95s_readmit_noicd <- confint.default(train_glm_readmit_noicd) # Using Wald 

approximation for confidence intervals, profile likelihood using confint() 

from MASS takes minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_readmit_noicd %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% select(Estimate) %>% round(3), 

      CI=paste0("[", (ci95s_readmit_noicd %>% round(3))[,1], ", ", 

(ci95s_readmit_noicd %>% round(3))[,2], "]"), 

      train_glm_readmit_noicd %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% select(`Pr(>|z|)`) %>% round(4)) #%>% 

write.table("clipboard") 

 

``` 

 

##### Fitting with Most Significant Features 

```{r} 

# Pulling the five most significant  

# train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

arrange(`Pr(>|z|)`) %>% tibble::rownames_to_column() %>% 

filter(str_detect(rowname,"[0-9]")) 

 

top5_tt_ftrs_readmit <- train_glm_readmit %>% summary() %>% .$coefficients 

%>% as.data.frame() %>% arrange(`Pr(>|z|)`) %>%  

  tibble::rownames_to_column() %>% filter(str_detect(rowname, "[0-9]")) %>% 

filter(row_number()<=5) %>% pull(rowname) %>%  

  str_replace_all("`", "") 

 

top5_train_df_readmit <- cv_predictors_readmit %>% dplyr::select(GENDER, Age, 

INSURANCE, Yr1Readmit, all_of(top5_tt_ftrs_readmit)) 

 

top5_glm_readmit <- glm(Yr1Readmit ~ ., data=top5_train_df_readmit, 

family="binomial") 

 

test_predictors_top5_readmit <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

%>%  

  select(GENDER, Age, INSURANCE, Yr1Readmit, all_of(top5_tt_ftrs_readmit)) 

 

phat_top5_readmit <- predict(object = top5_glm_readmit, newdata = 

test_predictors_top5_readmit, type="response")  

       

brier_test_noicd <- sum((phat_top5_readmit - 

test_predictors_top5_readmit$Yr1Readmit)^2) / 

nrow(test_predictors_top5_readmit) 

auc_test_noicd <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_top5_readmit)$auc 
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``` 

 

###### Retained ICD-9-CM Does in 5 Features 

```{r} 

top5_tt_ftrs_readmit_cols <- sapply(top5_tt_ftrs_readmit, function(x) 

paste0("V", x))  

names(top5_tt_ftrs_readmit_cols) <- NULL 

 

loading_mat_readmit %>% select(!!top5_tt_ftrs_readmit_cols, code) %>%  

  filter(V1!=0 | V2!=0 | V4!=0 | V10!=0 | V3!=0) %>% pull(code) %>% unique() 

%>% length() 

``` 

 

 

 

##### Model of ICD Codes (No treelet features) 

 

```{r} 

retained_codes <- loading_mat_readmit$code %>% unique() 

length(retained_codes) 

 

readmit_retain_traindf <- cv_data_readmit %>% select(GENDER, Age, INSURANCE, 

Yr1Readmit, !!retained_codes) 

 

readmit_retain_train_glm <- glm(Yr1Readmit ~ . , data=readmit_retain_traindf, 

family = "binomial") 

 

readmit_retain_test_df <- holdout_test_readmit %>% select(GENDER, Age, 

INSURANCE, Yr1Readmit, !!retained_codes) 

readmit_retain_phat <- predict(object = readmit_retain_train_glm, newdata = 

readmit_retain_test_df, type="response")  

       

sum((readmit_retain_phat - readmit_retain_test_df$Yr1Readmit)^2) / 

nrow(readmit_retain_test_df) 

  pROC::roc(readmit_retain_test_df$Yr1Readmit, readmit_retain_phat)$auc 

 

   

# Logistic Regression of All Codes 

all_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, InHospMortality, 

matches("[0-9]$")) 

all_train_glm <- glm(InHospMortality ~ . , data=all_traindf, family = 

"binomial") 

all_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, matches("[0-9]$")) 

all_phat <- predict(object = all_train_glm, newdata = all_test_df, 

type="response")  

       

sum((all_phat - all_test_df$InHospMortality)^2) / nrow(retain_test_df) 

pROC::roc(all_test_df$InHospMortality, all_phat)$auc 

 

``` 

 

##### Comparative ROC 

 

```{r, warning=F, message=F} 
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roc_obj_noicd_readmit <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_readmit_noicd) 

roc_obj_readmit <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_readmit) 

roc_top5_readmit <- pROC::roc(test_predictors_top5_readmit$Yr1Readmit, 

phat_top5_readmit) 

 

pROC::ggroc(list(roc_obj_readmit, roc_top5_readmit, roc_obj_noicd_readmit), 

lwd=1.4) +  

  theme_minimal() + 

  xlab("Specificity") + ylab("Sensitivity") + 

  theme(axis.text.x = element_blank(), 

        # panel.grid.major = element_blank(), 

        # panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.64, 0.2)) +  

  scale_color_brewer(type="qual", palette=2, 

                     name="Model", 

                     labels = c("Including All ICD-9-CM Treelet Features 

(AUC=0.661)", 

                                "Including 5 Most Significant ICD-9-CM 

Treelet Features (AUC = 0.658)", 

                                "Excluding ICD-9-CM Treelet Features  

(AUC=0.574)")) + 

  ggtitle("Comparative ROC Curves of Hospital Re-admission Predictions in 

Test Data") 

 

 

``` 

 

 

 

##### Probability Distributions of No ICD Model 

 

```{r} 

phat_df_noicd <- as.data.frame(cbind("EventProb" = phat_noicd, 

"ObsOut"=test_predictors_noicd$InHospMortality)) 

 

phat_df_noicd %>% ggplot(aes(x=EventProb, fill=as.factor(ObsOut))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Predicted Probability of In-Hospital Mortality")  +  

  scale_fill_manual(name="Observed Outcome",  

                      labels=c("No Mortality", "Mortality Event"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted Probabilities of In-Hospital 

Mortality") 

``` 
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### Length of Stay  

 

 

 

 

#### Figures of Model Validation 

 

```{r} 

los_performance <- 

read.csv(here("Results/Treelet_KLOpt_WithinCVLoop/LOSModel_MSE_DF_NewKLCode.c

sv")) 

# los_performance <- 

read.csv(here("Results/Treelet_KKOpt_WithinCVLoop/LOSModel_MSE_DF.csv")) 

 

k_1sd_los <- 

los_performance[los_performance$MSE_TestAvg<=(min(los_performance$MSE_TestAvg

) + sd(los_performance$MSE_TestAvg)), ] %>% .[1,1] 

 

los_performance <- los_performance %>% mutate(ParamFlag =  

                                   case_when( 

                                     MSE_TestAvg==min(MSE_TestAvg) ~ 

"Minimizes MSE", 

                                     K==k_1sd_los ~ "More Sparse Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 

 

 

ggplot(los_performance, aes(x=K, y=MSE_TestAvg, color = 

as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("Hospital Length of Stay Model") +  

  xlab("Value of Parameter K") + ylab("Average Mean-Squared Error\n(Across 5 

Test Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) +  

  theme(legend.position=c(0.75, 0.75), text = element_text(size=13.5)) 

 

``` 

 

#### Cluster Membership/Loading Export 

 

```{r} 

los_performance [!is.na(los_performance $ParamFlag),] 

 

cv_los_xmat <- cv_data  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

cv_los_cov <- cov(cv_los_xmat) 

 

tt_fnc_los <- treelet_process(cv_los_xmat, cv_los_cov) 

 

tt_fnc_los$optimal_params[c(46, 115),] 

tt_fnc_los$retained_fts[[46]] 

 

# Matrix of loadings  

 # For our 1-standard deviation parameter, pulling K-features from the Lth 

basis matrix 
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  final_basis_los <- 

tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<46) 

 

  labels_df <- cv_los_cov %>% colnames() %>% 

    data.frame(code = ., label=1:ncol(cv_los_cov)) 

 

  loading_mat_los <- merge(final_basis_los, labels_df, 

                                 all.x=T, by.y="label", by.x="LabelIndex") 

 

   

  holder <- sapply(2:(ncol(loading_mat_los)-2), function(x) 

matrix(c(loading_mat_los[loading_mat_los[,x]!=0, "code"], 

                                                                     

loading_mat_los[loading_mat_los[,x]!=0, x]), 

                                                                   ncol=2))   

   

  # Lazily using a for loop to transform to an exportable csv 

  i = 1 

  reformat_loadingmat_los <- as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2) 

   

  for (i in 2:length(holder)){ 

  reformat_loadingmat_los <- rbind(reformat_loadingmat_los,  

                               as.data.frame(holder[[i]]) %>% 

mutate(Feature=case_when(row_number()==1 ~ paste("Cluster", i), 

                                                                                 

TRUE ~ NA_character_)) %>% select(Feature, Code=V1, Loading=V2)) 

  } 

   

  reformat_loadingmat_los_labs <- reformat_loadingmat_los %>% 

mutate(Order=row_number()) %>%   

    merge(diagnosis_labs %>% select(ICD9_CODE, SHORT_TITLE), by.x="Code", 

by.y="ICD9_CODE", all.x=T) %>% arrange(Order) %>% select(-Order) 

   

  length(unique(reformat_loadingmat_los$Code)) 

   

  write.csv(loading_mat_los, 

            here("Results/LoadingMatrix_LOS.csv")) 

   

  write.csv(reformat_loadingmat_los_labs, 

            here("Results/LoadingMatrix_LOS_Redux.csv"), na = "") 

   

# Number of non-zero features 

  # More Sparse  

    final_basis_los <- 

tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<46) 

  # "Optimal" 
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    opt_basis_los <- 

tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[115]]] %>% 

    as.data.frame() %>%  

    mutate(LabelIndex = row_number(), 

           RowMissCount = rowSums(.==0)) %>% 

    filter(RowMissCount<116) 

 

``` 

 

 

 

 

 

#### Building Final Model and Assessting Test Fit 

 

First fitting the Poisson model to assess overdispersion using the resulting 

deviance and $\chi^2$ distribution. 

 

```{r} 

final_basis <- tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] 

 

cv_xmat_transform <- cv_los_xmat %*% final_basis 

 

 

cv_predictors <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS) %>% 

cbind(., cv_xmat_transform) %>% as.data.frame() 

 

poisson_los <- glm(HospitalLOS ~ . , data=cv_predictors, family="poisson") 

poisson_los$deviance / poisson_los$df.residual # Values near 1 indicate 

evenly dispersed data (mean ~= variance), our value of 5.78 indicates 

overdispersion (variance ~=5.8*mean) 

 

pchisq(poisson_los$deviance, df=poisson_los$df.residual, lower.tail = F) 

  # Unsurprisingly significant 

 

``` 

 

Now fitting the negative binomial model, again using the 1-Standard Deviation 

Parameter, on our the 80% cross-validation subset  

 

```{r} 

final_basis <- tt_fnc_los$basis_mats[[63]][,tt_fnc_los$retained_fts[[46]]] 

 

cv_xmat_transform <- cv_los_xmat %*% final_basis 

 

cv_predictors <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS) %>% 

cbind(., cv_xmat_transform) %>% as.data.frame() 

 

dim(cv_predictors) 

 

train_glm_los <- glm.nb(HospitalLOS ~ . , data=cv_predictors) 

# train_glm_los %>% summary() 

# train_glm_los %>% str() 

 

# confint(train_glm_los, parm = 1:7) 
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test_xmat <- holdout_test  %>% select(matches("0|1|2|4|5|6|9")) %>% select(-

Yr1Readmit) %>% as.matrix() 

test_xmat_transform <- test_xmat %*% final_basis 

test_predictors <- holdout_test %>% select(GENDER, Age, INSURANCE, 

HospitalLOS) %>% cbind(., test_xmat_transform) %>% as.data.frame() 

 

yhat <- predict(object = train_glm_los, newdata = test_predictors, 

type="response")  

 

(MSE <- sum((yhat - test_predictors$HospitalLOS)^2) / nrow(holdout_test)) %>% 

sqrt() 

 

# Exporting full model estimates  

ci95s_los <- confint.default(train_glm_los) # Using Wald approximation for 

confidence intervals, profile likelihood using confint() from MASS takes 

minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_los %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(Estimate) %>% round(2), 

      CI=paste0("[", (ci95s_los %>% round(2))[,1], ", ", (ci95s_los %>% 

round(2))[,2], "]"), 

      train_glm_los %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

select(`Pr(>|z|)`) %>% round(4)) %>% write.table("clipboard") 

``` 

 

##### Plotting residuals 

```{r} 

residuals <- yhat - test_predictors$HospitalLOS 

 

resid_note <- deparse(bquote("Residuals = "* hat(y) * "-y")) 

resid_note_2 <- "Residuals = Predicted - Observed" 

 

data.frame(Residuals=residuals) %>% ggplot(aes(x=Residuals)) + geom_density() 

+ 

  xlim(c(-40, 40)) + theme_minimal() + ylab("Density)") + 

  # annotate(geom="text", x=-35, y=0.035, label=resid_note, parse=T) +  

  annotate(geom="text", x=-21.8, y=0.08, label=resid_note_2) 

 

qqnorm(residuals) 

qqline(residuals) 

``` 

 

 

##### Graphing P-Value/Coefficients 

```{r} 

train_glm_los %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

mutate(Covariate=rownames(.), Order=row_number()) %>% 

select(PValue=`Pr(>|z|)`, everything()) %>%  

  filter(stringr::str_detect(Covariate, "[0-9]")) %>% arrange(desc(Estimate)) 

%>% mutate(Label = case_when(row_number()<=5 ~ str_replace_all(Covariate, 

"`", ""), 

                                                                                                           

TRUE ~ "")) %>% arrange(Order) %>% 

  ggplot(aes(x=reorder(Covariate, Order), y=-log(PValue), fill=Estimate)) + 

    geom_bar(stat="identity") + theme_minimal() + 

  geom_text(aes(label=Label, group=Label), 

            hjust=-0.35, vjust=0.95) + 
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  theme(axis.text.x = element_blank(), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank(), 

        panel.border = element_blank(), 

        panel.background = element_blank(), 

        axis.title.x = element_text(size=16), 

        axis.title.y = element_text(size=16), 

        legend.title = element_text(size=12.4), 

        legend.text =  element_text(size=10), 

        legend.position = c(0.9, 0.65)) +  

  labs(caption="Inset text notes feature numbers of five highest 

coefficients") + 

  xlab ("Treelet Feature") + ylab("-log(P-Value)") + 

  scale_fill_continuous(type="viridis", name="Coefficient", direction=-1)  

``` 

 

##### LOS Density Curve 

```{r} 

# Total Cohort 

cohort_full %>% ggplot(aes(x=HospitalLOS)) + 

  geom_density(lwd=1.3) + theme_minimal() +  

  xlab("Length of Stay (Days)") + ylab("Density") + 

  xlim(c(0, 150)) + 

  geom_text(label="Figure truncated at x=150 for legibility.\n n=12 patients 

with values >150 days not included in this visual", x=100, y=0.015) + 

  NULL 

 

(cohort_full %>% arrange(desc(HospitalLOS)) %>% filter(HospitalLOS>=150) %>% 

pull(HospitalLOS)) %>% length() 

 

mean(cohort_full$HospitalLOS) 

sd(cohort_full$HospitalLOS) 

 

# # CV Training Cohort 

# cv_data %>% ggplot(aes(x=HospitalLOS)) + 

#   geom_density() + theme_minimal() 

#  

# mean(cv_data$HospitalLOS) 

# sd(cv_data$HospitalLOS) 

 

``` 

 

 

##### Diagnositics 

 

```{r} 

# Poisson 

los_poisson <- glm(HospitalLOS ~ ., data=cv_predictors, family="poisson") 

los_poisson %>% summary() 

 

# Negative Binomial # using cv_predictors, the resulting `los_nb` object is 

the same as the training glm fit earlier, simply renamed not to overwrite 

that object  

los_nb <- glm.nb(HospitalLOS ~ . , data=cv_predictors) 

los_nb %>% summary() 
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1/train_glm_los$theta 

 

llik_diff <- -2*(logLik(los_poisson) - logLik(los_nb)) 

 

pchisq(llik_diff, df=1, lower.tail = F) 

 

summary(cohort_full$HospitalLOS) 

 

pois_nb_comp <- data.frame(PoissonYhat = predict(object=los_poisson, 

newdata=test_predictors), 

                           NegBinYhat = predict(object=los_nb, 

newdata=test_predictors)) 

 

pois_nb_comp %>% ggplot(aes(x=NegBinYhat, y=PoissonYhat)) + 

  geom_point() + theme_minimal() + xlab("Negative Binomial Predictions") + 

  ylab("Poisson Predictions") 

 

``` 

 

##### Scatterplot of Observed vs Predictive 

 

```{r} 

yhat_df <- as.data.frame(cbind("PredictedLOS" = yhat, 

"ObservedLOS"=test_predictors$HospitalLOS)) 

 

 

#  

# inset <- yhat_df %>% ggplot(aes(x=ObservedLOS, y=PredictedLOS, 

color=as.factor(PredictedLOS>ObservedLOS))) + 

#   geom_point(alpha=0.3) + theme_minimal() + 

#   theme(legend.position="none", text=element_text(size=13.5)) + 

scale_color_manual(values=c("lightblue", "violetred4")) + 

#   xlim(c(0, 100)) + ylim(c(0, 50)) +  

#   # ylab("Predicted Length of Stay") + xlab("Observed Length of Stay")  +  

#   # scale_color_manual(name="Prediction Error Direction",  

#   #                     labels=c("Predicted LOS > Observed LOS", "Predicted 

LOS < Observed LOS"), 

#   #                     values=c("lightblue", "violetred4")) + 

#   # ggtitle("Scatter Plot of Predicted and Observed Length of Stay Values") 

#   NULL 

#  

#  

# inset_tibble <- tibble(y=25, x=200, 

#                        plot=list(inset)) 

 

yhat_df %>% ggplot(aes(x=ObservedLOS, y=PredictedLOS, 

color=as.factor(PredictedLOS>ObservedLOS))) + 

  geom_point(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Predicted Length of Stay") + xlab("Observed Length of Stay")  + 

  scale_color_manual(name="Prediction Error Direction", 

                      labels=c("Observed LOS > Predicted LOS", "Observed LOS 

< Predicted LOS"), 

                      values=c("dodgerblue", "violetred4")) + 

  ggtitle("Scatter Plot of Predicted and Observed Length of Stay Values") + 

  # geom_text(x=125, y=30, label="Correlation of Predicted and\nObserved 

Length of Stay Values = 0.393") +  
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  NULL  

 

``` 

 

##### Residuals and Number of Diagnoses 

 

```{r} 

num_diagnoses_df <- cbind(yhat_df, 

                          NumDiagnoses = holdout_test %>% 

select(matches("^[0-9]")) %>% rowSums()) %>%  

                    mutate(Resid=PredictedLOS-ObservedLOS, 

                           absResid = abs(PredictedLOS-ObservedLOS)) 

 

num_diagnoses_df %>% ggplot(aes(group=NumDiagnoses, y=Resid)) + 

  geom_boxplot() + theme_minimal() + xlab("Number of ICD Diagnoses per 

Patient") + 

  ylab("Predicted LOS - Observed LOS") 

 

num_diagnoses_df %>% ggplot(aes(x=NumDiagnoses, y=absResid)) + 

  geom_point() + theme_minimal() + xlab("Number of ICD Diagnoses per 

Patient") + 

  ylab("|Predicted LOS - Observed LOS|") 

 

num_diagnoses_df %>% ggplot(aes(x=ObservedLOS, y=Resid)) + 

  geom_point() + theme_minimal() + xlab("Observed Length of Stay") + 

  ylab("Predicted LOS - Observed LOS") 

 

``` 

 

 

 

 

##### Distribution of Observed and Predicted LOS Values 

 

```{r} 

los_dens_df <- rbind(yhat_df %>% select(LOS=PredictedLOS) %>% 

mutate(Type="Predicted"), 

                     yhat_df %>% select(LOS=ObservedLOS) %>% 

mutate(Type="Observed")) 

 

los_dens_df %>% ggplot(aes(x=LOS, fill=as.factor(Type))) + 

  geom_density(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Density") + xlab("Length of Stay Value (Days)")  +  

  scale_fill_manual(name="Type of Data",  

                      labels=c("Observed", "Predicted"), 

                      values=c("lightblue", "violetred4")) + 

  ggtitle("Density Curve of Predicted & Observed Length of Stay Values") + 

  xlim(c(0, 75)) 

 

 

``` 

 

 

 

##### Fitting Model Without ICD Codes 
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```{r} 

cv_predictors_noicd <- cv_predictors %>% select(-matches("[0-9]")) 

 

train_glm_noicd <- glm.nb(HospitalLOS ~ . , data=cv_predictors_noicd) 

#train_glm_noicd %>% summary() 

# confint(train_glm, parm = 1:7) 

 

test_predictors_noicd <- holdout_test %>% select(GENDER, Age, INSURANCE, 

HospitalLOS)  

 

yhat_noicd <- predict(object = train_glm_noicd, newdata = 

test_predictors_noicd, type="response")  

       

(MSE <- sum((yhat_noicd - test_predictors_noicd$HospitalLOS)^2) / 

nrow(test_predictors_noicd)) %>% sqrt() 

 

# Exporting full model estimates  

ci95s_noicd <- confint.default(train_glm_noicd) # Using Wald approximation 

for confidence intervals, profile likelihood using confint() from MASS takes 

minutes to run (when it isn't crashing my R session)  

 

cbind(train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(Estimate) %>% round(3), 

      CI=paste0("[", (ci95s_noicd %>% round(3))[,1], ", ", (ci95s_noicd %>% 

round(3))[,2], "]"), 

      train_glm_noicd %>% summary() %>% .$coefficients %>% as.data.frame() 

%>% select(`Pr(>|z|)`) %>% round(4)) #%>% write.table("clipboard") 

 

``` 

 

##### Fitting with Most Significant Features 

```{r} 

# Pulling the five most significant  

# train_glm %>% summary() %>% .$coefficients %>% as.data.frame() %>% 

arrange(`Pr(>|z|)`) %>% tibble::rownames_to_column() %>% 

filter(str_detect(rowname,"[0-9]")) 

 

top_tt_ftrs_los <- train_glm_los %>% summary() %>% .$coefficients %>% 

as.data.frame() %>% arrange(`Pr(>|z|)`) %>%  

  tibble::rownames_to_column() %>% filter(str_detect(rowname, "[0-9]")) %>% 

pull(rowname) %>%  

  str_replace_all("`", "") 

 

for (i in 1:46){ 

  los_subdf <- cv_predictors %>% select(GENDER, Age, INSURANCE, HospitalLOS, 

all_of(top_tt_ftrs_los[1:i])) 

  sub_los_glm <- glm.nb(HospitalLOS ~ ., data=los_subdf) 

   

  los_test_subdf <- holdout_test %>% select(GENDER, Age, INSURANCE, 

HospitalLOS) %>% cbind(., test_xmat_transform) %>% as.data.frame() %>%  

  select(GENDER, Age, INSURANCE, HospitalLOS, all_of(top_tt_ftrs_los[1:i])) 

   

  yhat_sub <- predict(object = sub_los_glm, newdata = los_test_subdf, 

type="response")  

       

  RMSE_sub <- (MSE <- sum((yhat_sub - los_test_subdf$HospitalLOS)^2) / 

nrow(los_test_subdf)) %>% sqrt() 
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  if(i ==1) RMSE_vec <- RMSE_sub else{ 

  RMSE_vec <- c(RMSE_vec, RMSE_sub) 

  } 

 

} 

 

data.frame(RMSE = RMSE_vec, FeaturesRetained = 1:46)  %>%  

  ggplot(aes(x=FeaturesRetained, y=RMSE_vec)) + 

  geom_point() + geom_line() + 

  theme_minimal() + 

  ylab("Root MSE") + xlab("Number of Treelet Features Retained") 

   

 

``` 

 

###### Retained ICD-9-CM Does in 5 Features 

```{r} 

top_tt_ftrs_los_cols <- sapply(top_tt_ftrs_los, function(x) paste0("V", x))  

%>% .[1:5] 

names(top_tt_ftrs_los_cols) <- NULL 

 

loading_mat_los %>% select(!!top_tt_ftrs_los_cols, code) %>%  

  filter(V1!=0 | V12!=0 | V14!=0 | V20!=0 | V15!=0) %>% pull(code) %>% 

unique() %>% length() 

``` 

 

 

 

##### Model of ICD Codes (No Treelet Features) 

 

```{r} 

retained_codes <- loading_mat_los$code %>% unique() 

length(retained_codes) 

retain_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS, 

!!retained_codes) 

retain_train_glm <- glm.nb(HospitalLOS ~ . , data=retain_traindf) 

retain_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, !!retained_codes) 

retain_yhat <- predict(object = retain_train_glm, newdata = retain_test_df, 

type="response")  

       

(sum((retain_yhat - retain_test_df$InHospMortality)^2) / 

nrow(retain_test_df)) %>% sqrt() 

 

# And trying all codes 

retainall_traindf <- cv_data %>% select(GENDER, Age, INSURANCE, HospitalLOS, 

matches("^[0-9]")) 

retainall_train_glm <- glm.nb(HospitalLOS ~ . , data=retainall_traindf) 

retainall_test_df <- holdout_test %>% select(GENDER, Age, INSURANCE, 

InHospMortality, matches("^[0-9]")) 

retainall_yhat <- predict(object = retainall_train_glm, newdata = 

retainall_test_df, type="response")  

       

(sum((retainall_yhat - retainall_test_df$InHospMortality)^2) / 

nrow(retainall_test_df)) %>% sqrt() 
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``` 

 

 

##### Prediction Scatter Plot of No ICD Model 

 

```{r} 

yhat_noicd_df <- as.data.frame(cbind("PredictedLOS" = yhat_noicd, 

"ObservedLOS"=test_predictors_noicd$HospitalLOS)) 

 

 

yhat_noicd_df %>% ggplot(aes(x=ObservedLOS, y=PredictedLOS, 

color=as.factor(PredictedLOS>ObservedLOS))) + 

  geom_point(alpha=0.3) + theme_minimal() + 

  theme(legend.position=c(0.7, 0.6), text=element_text(size=13.5)) + 

  ylab("Predicted Length of Stay") + xlab("Observed Length of Stay")  + 

  scale_color_manual(name="Prediction Error Direction", 

                      labels=c("Predicted LOS > Observed LOS", "Predicted LOS 

< Observed LOS"), 

                      values=c("dodgerblue", "violetred4")) + 

  ggtitle("Scatter Plot of Predicted and Observed Length of Stay Values") + 

  # geom_text(x=125, y=30, label="Correlation of Predicted and\nObserved 

Length of Stay Values = 0.393") +  

  NULL  

``` 

 

 

## Appendix Analysis: Comparative Models 

 

 

Exploratory analysis to see how the results of the treelet modelling above 

compares with the application of PCA, lasso, and possibly the use of the 

Charlson and/or Elixhauser comorbidity indexes as a predictor  

 

 

 

```{r} 

require(caret) 

 

cv5 <- caret::trainControl(method="cv",  

                    number=5) 

 

cv_data %>% head() 

cv_data_readmit %>% head() 

``` 

 

 

###  Mortality 

 

 

#### LASSO 

 

```{r} 

lasso_mortality <-  caret::train(as.factor(InHospMortality) ~ ., 

                   data = cv_data %>% select(matches("^[0-9]"), 

InHospMortality, Age, GENDER, INSURANCE),  

                   method="glmnet", 

                   metric="AUC", 
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                   trControl=cv5) 

 

phat_lasso <- predict(object = lasso_mortality, newdata = holdout_test, 

type="prob") 

 

((lasso_mortality$finalModel %>% 

coef(lasso_mortality$bestTune$lambda))[,1]!=0) %>% sum() 

(lasso_mortality$finalModel %>% coef(lasso_mortality$bestTune$lambda))[,1] 

%>% .[.==0] 

  # Uses 176 of 184 covariates (excludes 250.00, 780.39, 274.9, 714.0, 585.9, 

441.2, 491.21, 785.0, and Private Insurance) 

 

(lasso_auc_mortality <- pROC::auc(holdout_test$InHospMortality, 

phat_lasso[,1]) %>% round(4)) 

 

lasso_mortality$results  

 

``` 

 

 

#### PCA 

```{r} 

pca_results <- prcomp(cv_data %>% select(matches("^[0-9]")), center = T, 

scale. = T) 

 

(pca_mortality_df <- data.frame(PC = 1:178, 

                         Var = pca_results$sdev^2) %>%  

              mutate(PropVar = Var / nrow(.), 

                     CmltvPropVar = cumsum(PropVar))) 

 

 

pca_mortality_df %>% ggplot(aes(x=PC, y=PropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Proportion of Variance Explained") + xlab("Principal Component") + 

  ggtitle("Proportion of Variance Explained by Individual Principal 

Component") 

 

 

pca_mortality_df %>% ggplot(aes(x=PC, y=CmltvPropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Cumulative Proportion of Variance Explained") + xlab("Principal 

Component") + 

  ggtitle("Cumulative Proportion of Variance Explained by Principal 

Component") 

 

 

 

n_retain <- pca_mortality_df %>% filter(CmltvPropVar<=0.5) %>% nrow() 

 

rotate_icd <- (cv_data %>% select(matches("^[0-9]")) %>% as.matrix())  %*%  

pca_results$rotation[,1:n_retain] 

 

 

pca_glm <- glm(InHospMortality ~ . , 

               data = cv_data %>% select(InHospMortality, Age, GENDER, 

INSURANCE) %>% cbind(., rotate_icd), 

               family="binomial")    
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test_rotate <- (holdout_test %>% select(matches("^[0-9]")) %>% as.matrix())  

%*%  pca_results$rotation[,1:n_retain] 

   

   

test_pcadf <- holdout_test %>% select(InHospMortality, Age, GENDER, 

INSURANCE) %>% cbind(., test_rotate) 

 

test_pca_phat <- predict(newdata = test_pcadf, object=pca_glm, 

type="response") 

 

(pca_auc_mortality <- pROC::auc(predict = test_pca_phat, response = 

holdout_test$InHospMortality) %>% round(4)) 

   

``` 

 

 

#### Charlson & Elixhauser 

 

Re-importing ICD data (to include all Charlson & Elixhauser codes) 

 

```{r} 

all_diags <- read.csv(here("/Data/Raw/DIAGNOSES_ICD.csv")) 

 

icd_train <- cv_data %>% select(SUBJECT_ID) %>% merge(., all_diags %>% 

select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

icd_test <- holdout_test %>% select(SUBJECT_ID) %>% merge(., all_diags %>% 

select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

 

# Using Charlson/Elixhauser group membership 

  mortality_charlson_train <- icd_train %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., cv_data %>% select(InHospMortality, Age, GENDER, 

INSURANCE)) 

  mortality_elix_train <- icd_train %>% comorbid_elix() %>% as.data.frame() 

%>% cbind(., cv_data %>% select(InHospMortality, Age, GENDER, INSURANCE)) 

   

  mortality_charlson_test <- icd_test %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., holdout_test %>% select(InHospMortality, Age, 

GENDER, INSURANCE)) 

  mortality_elix_test <- icd_test %>% comorbid_elix() %>% as.data.frame() %>% 

cbind(., holdout_test %>% select(InHospMortality, Age, GENDER, INSURANCE)) 

   

  charlson_glm <- glm(InHospMortality ~ ., data=mortality_charlson_train, 

family = "binomial") 

  elix_glm <- glm(InHospMortality ~ ., data=mortality_elix_train, family = 

"binomial") 

 

  elix_phat <- predict(object = elix_glm, newdata = mortality_elix_test) 

  elix_auc <- pROC::auc(predict = elix_phat, 

response=holdout_test$InHospMortality) %>% round(4) 

   

  charlson_phat <- predict(object = charlson_glm, newdata = 

mortality_charlson_test) 

  charlson_auc <- pROC::auc(predict = charlson_phat, 

response=holdout_test$InHospMortality)[1] %>% round(4) 
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# Using "score" (sum of group memberships, i.e. number of groups with a 

diagnosis) 

  charlson_score_train <- icd_train %>% comorbid_charlson() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

  elix_score_train <- icd_train %>% comorbid_elix() %>% as.data.frame() %>% 

mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

 

  charlson_score_test <- icd_test %>% comorbid_charlson() %>% as.data.frame() 

%>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

  elix_score_test <- icd_test %>% comorbid_elix() %>% as.data.frame() %>% 

mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test %>% 

select(InHospMortality, Age, GENDER, INSURANCE)) 

 

  charlson_score_glm <- glm(InHospMortality ~ ., data=charlson_score_train, 

family = "binomial") 

  elix_score_glm <- glm(InHospMortality ~ ., data=elix_score_train, family = 

"binomial") 

 

  elix_score_phat <- predict(object = elix_score_glm, newdata = 

elix_score_test) 

  elix_score_auc <- pROC::auc(predict = elix_score_phat, 

response=holdout_test$InHospMortality) %>% round(4) 

   

  charlson_score_phat <- predict(object = charlson_score_glm, newdata = 

charlson_score_test) 

  charlson_score_auc <- pROC::auc(predict = charlson_score_phat, 

response=holdout_test$InHospMortality)[1] %>% round(4) 

``` 

 

 

```{r} 

# Printout Results 

cat("Elixhauser Categorical AUC: ", elix_auc, "\n") 

cat("Charlson Categorical AUC: ", charlson_auc, "\n") 

cat("Elixhauser Score AUC: ", elix_score_auc, "\n") 

cat("Charlson Score AUC: ", charlson_score_auc, "\n") 

cat("PCA AUC (retaining", n_retain, "PC's):", pca_auc_mortality, "\n") 

cat("LASSO AUC:", lasso_auc_mortality, "\n") 

 

``` 

 

 

### Readmission 

 

 

#### LASSO 

 

```{r} 

glmnet_readmit <-  train(as.factor(Yr1Readmit) ~ ., 
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                   data = cv_data_readmit %>% select(matches("^[0-9]"), 

Yr1Readmit, Age, GENDER, INSURANCE),  

                   method="glmnet", 

                   metric="AUC", 

                   trControl=cv5) 

 

 

phat_readmit <- predict(object = glmnet_readmit, newdata = 

holdout_test_readmit, type="prob") 

 

(retained_fts_lasso <- ((glmnet_readmit$finalModel %>% 

coef(glmnet_readmit$bestTune$lambda))[,1]!=0) %>% sum()) 

  # Uses only 48 of 184 covariates (excludes 250.00, 780.39, 274.9, 714.0, 

585.9, 441.2, 491.21, 785.0, and Private Insurance) 

 

(lasso_auc_readmit <- pROC::auc(holdout_test_readmit$Yr1Readmit, 

phat_readmit[,1]) %>% round(4)) 

``` 

 

#### PCA 

 

```{r} 

pca_readmit <- prcomp(cv_data_readmit %>% select(matches("^[0-9]")), center = 

T, scale. = T) 

 

(pca_readmit_df <- data.frame(PC = 1:178, 

                         Var = pca_readmit$sdev^2) %>%  

              mutate(PropVar = Var / nrow(.), 

                     CmltvPropVar = cumsum(PropVar))) 

 

 

pca_readmit_df %>% ggplot(aes(x=PC, y=PropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Proportion of Variance Explained") + xlab("Principal Component") + 

  ggtitle("Proportion of Variance Explained by Individual Principal 

Component") 

 

 

pca_readmit_df %>% ggplot(aes(x=PC, y=CmltvPropVar)) + 

  geom_point(size=5, alpha=0.4) + geom_line(lwd=0.75) + theme_minimal() + 

  ylab("Cumulative Proportion of Variance Explained") + xlab("Principal 

Component") + 

  ggtitle("Cumulative Proportion of Variance Explained by Principal 

Component") 

 

 

n_retain <- pca_readmit_df %>% filter(CmltvPropVar<=0.5) %>% nrow() 

 

rotate_readmit <- (cv_data_readmit %>% select(matches("^[0-9]")) %>% 

as.matrix())  %*%  pca_readmit$rotation[,1:n_retain] 

 

 

pca_readmit_glm <- glm(Yr1Readmit ~ . , 

               data = cv_data_readmit %>% select(Yr1Readmit, Age, GENDER, 

INSURANCE) %>% cbind(., rotate_readmit), 

               family="binomial")    
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test_rotate_readmit <- (holdout_test_readmit %>% select(matches("^[0-9]")) 

%>% as.matrix())  %*%  pca_readmit$rotation[,1:n_retain] 

   

test_pca_readmitdf <- holdout_test_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE) %>% cbind(., test_rotate_readmit) 

 

test_pca_phat_readmit <- predict(newdata = test_pca_readmitdf, 

object=pca_readmit_glm, type="response") 

 

(pca_auc_readmit <- pROC::auc(predict = test_pca_phat_readmit, response = 

holdout_test_readmit$Yr1Readmit) %>% round(4)) 

   

``` 

 

 

#### Charlson & Elixhauser 

```{r} 

all_diags <- read.csv(here("/Data/Raw/DIAGNOSES_ICD.csv")) 

 

icd_train_readmit <- cv_data_readmit %>% select(SUBJECT_ID) %>% merge(., 

all_diags %>% select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

icd_test_readmit <- holdout_test_readmit %>% select(SUBJECT_ID) %>% merge(., 

all_diags %>% select(SUBJECT_ID, ICD9_CODE), by="SUBJECT_ID") 

 

# Using Charlson/Elixhauser group membership 

  readmit_charlson_train <- icd_train_readmit %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., cv_data_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

  readmit_elix_train <- icd_train_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% cbind(., cv_data_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

   

  readmit_charlson_test <- icd_test_readmit %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., holdout_test_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

  readmit_elix_test <- icd_test_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% cbind(., holdout_test_readmit %>% select(Yr1Readmit, Age, 

GENDER, INSURANCE)) 

   

  charlson_glm_readmit <- glm(Yr1Readmit ~ ., data=readmit_charlson_train, 

family = "binomial") 

  elix_glm_readmit <- glm(Yr1Readmit ~ ., data=readmit_elix_train, family = 

"binomial") 

 

  elix_phat_readmit <- predict(object = elix_glm_readmit, newdata = 

readmit_elix_test) 

  elix_auc_readmit <- pROC::auc(predict = elix_phat_readmit, 

response=holdout_test_readmit$Yr1Readmit) %>% round(4) 

   

  charlson_phat_readmit <- predict(object = charlson_glm_readmit, newdata = 

readmit_charlson_test) 

  charlson_auc_readmit <- pROC::auc(predict = charlson_phat_readmit, 

response=holdout_test_readmit$Yr1Readmit)[1] %>% round(4) 
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# Using "score" (sum of group memberships, i.e. number of groups with a 

diagnosis) 

  charlson_score_train_readmit <- icd_train_readmit %>% comorbid_charlson() 

%>% as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data_readmit %>% 

select(Yr1Readmit, Age, GENDER, INSURANCE)) 

  elix_score_train_readmit <- icd_train_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., cv_data_readmit %>% 

select(Yr1Readmit, Age, GENDER, INSURANCE)) 

 

  charlson_score_test_readmit <- icd_test_readmit %>% comorbid_charlson() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test_readmit 

%>% select(Yr1Readmit, Age, GENDER, INSURANCE)) 

  elix_score_test_readmit <- icd_test_readmit %>% comorbid_elix() %>% 

as.data.frame() %>% mutate(score = rowSums(.)) %>% select(score) %>%   

                                             cbind(., holdout_test_readmit 

%>% select(Yr1Readmit, Age, GENDER, INSURANCE)) 

 

  charlson_score_glm_readmit <- glm(Yr1Readmit ~ ., 

data=charlson_score_train_readmit, family = "binomial") 

  elix_score_glm_readmit <- glm(Yr1Readmit ~ ., 

data=elix_score_train_readmit, family = "binomial") 

 

  elix_score_phat_readmit <- predict(object = elix_score_glm_readmit, newdata 

= elix_score_test_readmit) 

  elix_score_auc_readmit <- pROC::auc(predict = elix_score_phat_readmit, 

response=holdout_test_readmit$Yr1Readmit) %>% round(4) 

   

  charlson_score_phat_readmit <- predict(object = charlson_score_glm_readmit, 

newdata = charlson_score_test_readmit) 

  charlson_score_auc_readmit <- pROC::auc(predict = 

charlson_score_phat_readmit, response=holdout_test_readmit$Yr1Readmit)[1] %>% 

round(4) 

``` 

 

 

 

```{r} 

   

# Printout Results 

cat("Elixhauser Categorical AUC: ", elix_auc_readmit, "\n") 

cat("Charlson Categorical AUC: ", charlson_auc_readmit, "\n") 

cat("Elixhauser Score AUC: ", elix_score_auc_readmit, "\n") 

cat("Charlson Score AUC: ", charlson_score_auc_readmit, "\n") 

cat("PCA AUC (retaining ", n_retain, " components):", pca_auc_readmit, "\n") 

cat("LASSO AUC (retaining", retained_fts_lasso, "features):", 

lasso_auc_readmit, "\n") 

``` 

 

 

 

### Length of Stay 

 

Due to the length of stay and mortality data sets having the same training 

data/cross-validation splits, I can simply re-use the PCA and 
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Charlson/Elixhauser data used in the Mortality section and fit the negative 

binomial models 

 

#### LASSO  

```{r} 

require(mpath) 

 

los_traindf <- cv_data %>% select(matches("^[0-9]"), HospitalLOS, Age, 

GENDER, INSURANCE) 

 

lasso_train_results <- glmregNB(formula = HospitalLOS ~ ., data = 

los_traindf) 

 

los_train_yhat <- predict(object = lasso_train_results, los_traindf, 

type="response") 

 

for(i in 1:ncol(los_train_yhat)) { 

  yhat_vec <- los_train_yhat[,i] 

   

  if(i==1) RMSE <- (sum((yhat_vec - los_traindf$HospitalLOS)^2) / 

length(yhat_vec)) %>% sqrt() else{ 

    RMSE <- c(RMSE, (sum((yhat_vec - los_traindf$HospitalLOS)^2) / 

length(yhat_vec)) %>% sqrt()) 

  } 

} 

 

 

lambda_results <- data.frame(lambda=lasso_train_results$lambda,  

                             RMSE) 

 

lambda_results <- lambda_results %>% mutate(ParamFlag =  

                                   case_when( 

                                     RMSE==min(RMSE) ~ "Minimizes RMSE", 

                                     

lambda==max(lambda_results[lambda_results$RMSE<=(min(lambda_results$RMSE) + 

sd(lambda_results$RMSE)), "lambda"]) ~ "More Sparse Parameter", 

                                     TRUE ~ NA_character_ 

                                   )) %>% ungroup() 

 

ggplot(lambda_results, aes(x=lambda, y=RMSE, color=as.factor(ParamFlag))) + 

  geom_line(lwd=1.1, alpha=0.6) + geom_point(size=2.5) + 

  theme_minimal() + ggtitle("Length of Stay LASSO") +  

  xlab("Value of Shrinkage Lambda") + ylab("RMSE (Across 5 Test Folds)") +  

  gghighlight(ParamFlag!=0) + labs(color="Optimal Parameters") + 

  scale_color_brewer(type = "qual", palette = 6) +  

  theme(legend.position=c(0.2, 0.75), text = element_text(size=13.5)) 

 

 

lambda_1sd <- lambda_results %>% filter(ParamFlag == "More Sparse Parameter") 

%>% pull(lambda) 

 

los_test_yhat <- predict(object = lasso_train_results, holdout_test, 

type="response") 

 

lambda_1sd_test <- 

colnames(los_test_yhat)[which.min(abs(colnames(los_test_yhat) %>% 

as.numeric() - lambda_1sd))] 
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test_rmse <- (sum((los_test_yhat[, lambda_1sd_test] - 

holdout_test$HospitalLOS)^2)/nrow(holdout_test)) %>% sqrt() 

 

# And using the optimal lambda 

lambda_1sd_opt <- lambda_results %>% filter(ParamFlag == "Minimizes RMSE") 

%>% pull(lambda) 

 

lambda_1sd_test_opt <- 

colnames(los_test_yhat)[which.min(abs(colnames(los_test_yhat) %>% 

as.numeric() - lambda_1sd_opt))] 

 

 

test_rmse <- (sum((los_test_yhat[, lambda_1sd_test_opt] - 

holdout_test$HospitalLOS)^2)/nrow(holdout_test)) %>% sqrt() 

 

 

# Outputting number of features retained in teh 1-SD lambda  

(retained_fts_los_lasso <- lasso_train_results %>% coef(lambda_1sd)) 

 

retained_fts_los_lasso %>% nrow() 

``` 

 

#### PCA  

 

```{r} 

pca_nb <- glm.nb(HospitalLOS ~ . , 

               data = cv_data %>% select(HospitalLOS, Age, GENDER, INSURANCE) 

%>% cbind(., rotate_icd)) 

 

 

n_retain <- pca_readmit_df %>% filter(CmltvPropVar<=0.5) %>% nrow() 

 

 

test_rotate <- (holdout_test %>% select(matches("^[0-9]")) %>% as.matrix())  

%*%  pca_results$rotation[,1:n_retain] 

 

test_los_pcadf <- holdout_test %>% select(HospitalLOS, Age, GENDER, 

INSURANCE) %>% cbind(., test_rotate) 

 

test_yhat_pca <- predict(newdata = test_los_pcadf, object=pca_nb, 

type="response") 

 

(pca_rmse_los <- (sum((test_yhat_pca - 

test_los_pcadf$HospitalLOS)^2)/nrow(test_los_pcadf)) %>% sqrt()) 

 

``` 

 

 

#### Charlson & Elixhauser 

 

```{r} 

mortality_charlson_train <- icd_train %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., cv_data %>% select(HospitalLOS, Age, GENDER, 

INSURANCE)) 
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mortality_elix_train <- icd_train %>% comorbid_elix() %>% as.data.frame() %>% 

cbind(., cv_data %>% select(HospitalLOS, Age, GENDER, INSURANCE)) 

   

mortality_charlson_test <- icd_test %>% comorbid_charlson() %>% 

as.data.frame() %>% cbind(., holdout_test %>% select(HospitalLOS, Age, 

GENDER, INSURANCE)) 

mortality_elix_test <- icd_test %>% comorbid_elix() %>% as.data.frame() %>% 

cbind(., holdout_test %>% select(HospitalLOS, Age, GENDER, INSURANCE)) 

   

charlson_nb <- glm.nb(HospitalLOS ~ ., data=mortality_charlson_train) 

elix_nb <- glm.nb(HospitalLOS ~ ., data=mortality_elix_train) 

 

elix_yhat <- predict(object = elix_nb, newdata = mortality_elix_test) 

charlson_yhat <- predict(object = charlson_nb, newdata = 

mortality_charlson_test) 

 

 

(charlson_rmse_los <- (sum((charlson_yhat - 

mortality_charlson_test$HospitalLOS)^2)/nrow(mortality_charlson_test)) %>% 

sqrt() )  

(elix_rmse_los <- (sum((elix_yhat - 

mortality_elix_test$HospitalLOS)^2)/nrow(mortality_elix_test)) %>% sqrt() ) 

 

``` 
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