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Abstract 

Multi-Foci Beamforming Using Curved Linear Array Transducer for Qualitative 

Identification of Lipids in Human Liver 

 

Waqas Bin Khalid, Ph.D. 

 

University of Pittsburgh, 2020 

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver chronic diseases in the U.S. 

and its prevalence is growing in the world. In the United States, it affects an estimate of 80 to 100 

million people. In less than a decade, NAFLD will likely become the number one cause of liver 

transplants in the country. NAFLD cases have risen rapidly over the last three decades and is the 

most common liver disease in children. NAFLD encompasses a disease spectrum of a variety of 

liver conditions ranging from simple steatosis (SS) to nonalcoholic steatohepatitis (NASH). SS is 

a benign form of the disease, characterized by the accumulation of lipid in the liver. On the other 

hand, NASH is defined by hepatic steatosis with cell injury, hepatic ballooning and various degrees 

of fibrosis. NASH may further develop into cirrhosis, liver failure and hepatocellular carcinoma 

(HCC). A non-invasive, early detection and accurate staging of NAFLD may allow for a timely 

intervention and treatment to prevent the progression of the disease to cirrhosis and HCC. 

We hypothesized a new dual-modality ultrasound imaging combining acoustic radiation force 

impulse (ARFI) imaging and thermal strain imaging (TSI) implemented on a clinical ultrasound 

probe. ARFI imaging utilizes high intensity focused ultrasound to generate a push in a region of 

interest (ROI). The response of the tissue inside the region of excitation due to the acoustic 

radiation push is determined by estimating the displacement between the pre-push reference 

frames and the post-push tracking frames. TSI has been used in the field of medical imaging for 

detecting lipids in atherosclerotic plaques and quantification of liver fat in ob/ob mice. TSI is based 
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on the fact that the speed of sound changes differently in respect to the increase in temperature for 

different tissue composition. Lipids register a decreasing sound speed with increasing temperature, 

whereas water-bearing tissue exhibit an increasing sound speed with increasing temperature. 

Development of the proposed multi-modality system will be a step towards a novel clinical system 

which would permit the creation of a single co-registered image featuring information regarding 

lipid content and liver stiffness.  
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1.0 Introduction 

1.1 Non-Alcoholic Fatty Liver Disease 

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term used to define a variety of 

liver conditions caused by the accumulation of fat. Fat in healthy liver is normal but if it constitutes 

more than 5-10% of the liver’s weight, then it is called NAFLD [1]. NAFLD encompasses a 

spectrum of liver conditions ranging from simple steatosis (SS) to non-alcoholic steatohepatitis 

(NASH), a more aggressive steatosis [2]. SS is a benign form of the disease associated with the 

accumulation of adipose tissue in the liver [3]. NASH is associated with fibrosis, cirrhosis and in 

some cases leads to hepatocellular carcinoma (HCC), ultimately requiring a liver transplant [4].  

NAFLD is the most common chronic liver disease in developing countries. The causes of 

NAFLD remains unknown, however, the origin of NAFLD is not associated with viral causes or 

the consumption of alcohol. There are no symptoms affiliated with NAFLD. Individuals who have 

metabolic syndrome, such as type 2 diabetes, hypertension, hypertriglyceridemia, hyperlipidemia 

and obesity, are more at risk of NAFLD [5]. Moreover, individuals diagnosed with NAFLD are 

more prone to heart diseases [6]. There is no approved drug in the market for treating NAFLD. 

The ailments caused by NAFLD can only be reversed by adopting a healthy lifestyle. This includes 

exercising regularly and maintaining a healthy balanced diet. NAFLD develops in 4 main stages 

[7]. Figure 1.1 shows the stages of NAFLD initiating from a healthy liver and progressing towards 

aggravated stages of NAFLD.  
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Figure 1.1: Stages of NAFLD starting from a healthy liver and advancing towards aggravated stages of NAFLD 

 

Simple Steatosis (SS) 

A healthy liver contains little to no fat. Simple steatosis is harmless deposition of adipose 

tissue inside the liver cells [8]. The detection of this particular stage is referred to an accidental 

discovery, because it is found during medical tests carried out for other reasons such as a routine 

ultrasound scan or elevated levels of liver enzymes detected during a routine blood screening test 

[9]. At this stage, there is no inflammation or damage to the liver cells. It is possible to stop the 

progression of the disease to irreversible stages if it is identified and managed at this stage.  

Non-alcoholic steatohepatitis (NASH) 

Non-alcoholic steatohepatitis is an aggregated form of the disease where the liver has 

inflamed. Inflammation is the natural response of the body to damage or injury, however, in this 

situation it is an indicator that the liver cells are damaged [10]. The damage at this stage can still 

be reverted by regular exercise and a change in diet. If the liver remains undiagnosed, this 

persistent liver cell damage can escalate towards scarring of the liver tissue causing fibrosis and 

cirrhosis [11]. 

Fibrosis  



3 
 

Consistent inflammation leads to scarring of the liver tissue and adjoining blood vessels. 

The scarred liver tissue replaces some of the healthy liver tissue, but the liver is still functional at 

this stage [12]. 

Cirrhosis 

Cirrhosis is defined as the most severe form of the disease due to the persistent 

inflammation over a long period of time. The liver is severely scarred reduced in size accompanied 

with severe inflammation [13]. The damage at this stage is irreversible and permanent and can 

progress towards liver failure, ultimately requiring a liver transplant.  

1.2 Liver Biopsy 

Currently, liver biopsy is the gold standard for diagnosing NAFLD. Liver biopsy is 

successful in differentiating NASH from simple steatosis [14]. However, liver biopsy is invasive 

in nature and can cause medical complications such as bleeding and perforated liver. Moreover, 

liver biopsy suffers from sampling bias as only a very small fraction of the liver tissue is used. The 

distribution of the adipose tissue across the liver is not evenly distributed. Therefore, acquiring a 

small volume of liver tissue may report false negative results. Furthermore, due to the invasive 

nature of the procedure, a longitudinal monitoring of the disease in response to treatment is not 

possible with liver biopsy as this would require repeated measurements [15]. 

Limitations of liver biopsy have been acknowledged by the medical community leading to 

a surge in non-invasive methods for diagnosing the stages of NAFLD. Currently, numerous 

imaging modalities involving ultrasonography (US), computed tomography (CT), magnetic 
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resonance imaging (MRI) are being used to diagnose NAFLD and quantitation of triglycerides 

inside the liver [16]. 

1.3  Imaging Modalities 

Computed Tomography (CT) 

Computed tomography estimates hepatic steatosis quantitatively by measuring the 

attenuation value of liver expressed as Hounsfield units (HU). Attenuation value for a healthy 

normal liver is approximately 55 HU, however, attenuation value of fat is much lower, -100 HU. 

With the accumulation of fat inside the liver, the attenuation value for liver decreases as NAFLD 

develops and progresses. Several studies have revealed a cut off value of 40 HU as an indication 

of fat content greater than 30% [17]. However, the cutoff value is subjected to inconsistency as it 

depends upon the injection rate, patient circulation and phase of enhancement [18]. A major 

concern with CT is that it exposes patients to a high dose of ionizing radiation which precludes its 

use as a screening tool, especially among children.  

Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging is the most accurate imaging modality for estimating hepatic 

steatosis. MRI determines a metric called proton density fat fraction (PDFF) which is a measure 

of fat within the liver tissue. MRI does not expose patients to ionizing radiation, but it remains a 

very expensive imaging modality and is not easily available in remote clinics [19].     

Ultrasound (US) 
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Ultrasound remains a popular choice for diagnosing NAFLD as it does not expose patients 

to ionizing radiation and is comparatively cheap compared to other imaging modalities and is 

easily available in remote clinics. However, US is also subjected to its limitations such as 

subjective assessment depending upon the expertise of the clinician [17]. Additionally, US 

experiences poor results when performed on morbidly obese individuals and suffers from inter- 

and intra-observer variability. Also, US cannot distinguish among the different stages of NAFLD 

[20]. 

1.4  Thermal Strain Imaging (TSI) 

Thermal strain imaging (TSI) is an ultrasound-based imaging modality founded on the 

principle that the speed of sound in a medium is dependent on the temperature based on tissue 

composition. For water bearing tissue, the speed of sound increases with an increase in 

temperature. However, for lipid bearing tissue the speed of sound decreases with an increase in 

temperature [21, 22]. Figure 1.2 shows the relationship of the speed of sound with an increase in 

temperature for water and castor oil.  
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Figure 1.2: Relationship of the speed of sound with temperature for water and castor oil. 

 

Modern ultrasound systems calculate distances by determining the time of the returned 

echoes, assuming that the speed of sound in biological tissue is 1540 m/s. With an increase in 

temperature for water bearing tissue, the speed of sound increases resulting in a shorter return time. 

This results in water bearing tissue appearing closer towards the transducer surface. However, with 

an increase in temperature the speed of sound decreases resulting in a longer return time for lipid 

bearing tissue. This leads to lipid bearing tissue appearing further away from the transducer 

surface. Typically, a temperature rises of ≤ 2°C is enough to generate a change in sound speed. In 

literature, thermal strain imaging has been used interchangeably with temporal strain imaging 

making an emphasis that the signal recorded is merely because of the temporal echo shift rather 
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than a true mechanical strain. The physics of thermal strain imaging can be shown by the following 

equation: 

ⅆu

ⅆz
= −λΔT             (1) 

where ⅆu/ ⅆz  is the thermal strain, λ [°C−1] is the linear coefficient for sound speed vs. 

temperature. At a normal body temperature (37°C), λ is positive for water-bearing tissue with 

values ranging from 0.7 x 10−3 to 1.3 x 10−3 and is negative for lipid-based tissues with values 

ranging from −1.3 x 10−3 to −2.0 x 10−3 [23].  

A typical ultrasound pulse sequence for TSI comprises of three steps. Firstly, a reference 

frame is acquired. Followed by heating to induce a small change in temperature. Lastly, a post-

heating frame is acquired. The schematic for the TSI pulse sequence is shown in Figure 1.3. 

 

 

Figure 1.3: Schematic for the TSI pulse sequence. Ultrasound B-mode images are acquired before and after 

heating 

 

The relative displacement between the pre-heating frame and post-heating frame is 

calculated and a derivative in the direction of wave travel yields the thermal or temporal strain.  
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1.5 Acoustic Radiation Force Impulse (ARFI) Imaging 

Acoustic radiation force impulse (ARFI) imaging has been used to access the mechanical 

properties of tissue. ARFI imaging is clinically available and is essential in determining the 

structural information such as the size of lesions present in breast, prostrate, and kidney which are 

difficulty to visualize with conventional ultrasound B-mode [24]. Acoustic radiation force result 

from the transfer of momentum from an ultrasonic wave to the medium through which it is 

traveling. ARFI utilizes high intensity focused ultrasound to generate a push in a region of interest. 

The response of the tissue inside the region of excitation due to the acoustic radiation push is 

determined by estimating the displacement between the pre-push reference frames and the post-

push tracking frames [13]. Our lab has demonstrated the use of ARFI imaging to study the 

biomechanics of tissues including rotator cuff tendon in response to increasing force. The fibers 

inside the rotator cuff tendon become stiffer on direct application of increasing load. This 

relationship is examined from the displacement recorded by ARFI imaging as the displacement 

value inside the tendon decreases with increasing force implying a stiffer tendon. We have also 

exhibited, ARFI imaging can be used to distinguish among various tissue types. Capsule, muscle 

and tendon each have different mechanical properties, and this was confirmed among the variation 

in the ARFI displacement measurements. We plan to implement this technology on liver to monitor 

the stiffness changes with development of fibrosis in liver. 
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1.6  Motivation 

Many patients with NAFLD remain undiagnosed throughout their life and as 

aforementioned NAFLD can progress into simple steatosis leading to steatohepatitis, advanced 

fibrosis, cirrhosis and eventually cancer. Therefore, ultimately requiring a liver transplant. There 

exists a strong need of noninvasive, inexpensive screening tool that can assess fat accumulation in 

liver to stop the progression of the disease towards HCC. Moreover, to reflect the histopathological 

changes in liver because of hepatic ballooning and scarring of liver tissue, this screening tool 

should also evaluate liver stiffness to reflect the bio-mechanical changes during the evolution of 

the disease. We hypothesize that a new dual-modality ultrasound imaging, combining thermal 

strain imaging (TSI) and acoustic radiation force impulse (ARFI) imaging implemented on a 

commercially available, clinical ultrasound probe can be used to quantitatively estimate fat and 

stiffness of liver. Upon successful validation, the impact of the project will be influential in the 

NAFLD management, being complemented with laboratory assays to provide 1) critical diagnostic 

and prognostic information, 2) cost effective monitoring of the disease and treatment response. 

Therefore, the two specific aims of this project are: 

Specific Aim 1: to develop a dual-modality imaging system combining TSI and ARFI 

using a single clinical ultrasound probe. This imaging system will be used to access lipid content 

as triglycerides build up during NAFLD progression and measure liver stiffness to reflect the 

pathological changes inside liver. Multi-foci beamforming technique is at the heart of designing 

the ultrasound heating and pushing beams for this system. 

Specific Aim 2: to determine the relationship of the combined TSI-ARFI imaging on 

excised human liver specimen with histopathology. This is an essential step in making this dual-
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modality imaging system into a clinical reality. This imaging system will be evaluated by carrying 

out ex-vivo experiments, excised human liver tissue embedded in gelatin phantom will be 

fabricated to validate this imaging technology and correlate the results against histopathology. A 

successful implementation of this aim will make it one step closer towards a clinical realization. 

1.7 Thesis Outline 

The purpose of this thesis is to demonstrate the translation of a combined TSI and ARFI 

imaging sequence on a commercially available curved linear array transducer for abdominal 

imaging.    

Chapter 2 details a study carried out on obese or ob/ob mice using thermal strain imaging 

with a custom designed TSI system. TSI was used to quantify lipid composition of fatty livers at 

different stages in ob/ob mice (n = 28). A strong correlation coefficient was observed (R2 = 0.85) 

between lipid composition measured with US-TSI and hepatic triglyceride content (HTGC). 

HTGC is used to quantify adipose tissue in liver. The ob/ob mice were divided into 3 groups of 

none, mild and moderate, by the degree of steatosis that is used in clinics. Non-parametric Kruskal-

Wallis test was conducted to determine if TSI can potentially differentiate among the different 

stages of NAFLD. Chapter 3 is an introduction to multi-foci beamforming. Chapter 4 successfully 

implements TSI on a single, commercially available curved linear array transducer for heating and 

imaging of organs at a deeper depth. This yielded a heating area from 32 to 96 mm in the axial 

direction and -7 to +7 mm in the lateral direction. The pressure fields generated from simulation 

were in agreement with pressure fields measured with hydrophone. TSI with safe acoustic power 

identified with high contrast a rubber inclusion and liposuction fat tissue embedded in a gelatin 
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block. Chapter 5 establishes the relationship of the combined TSI-ARFI imaging on excised human 

liver specimen with histopathology. Chapter 6 discusses the future directions and constraints of 

this work for future translational efforts. 
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2.0 Noninvasive Assessment of Liver Fat in Ob/Ob Mice Using Ultrasound-Induced 

Thermal Strain Imaging and Its Correlation with Hepatic Triglyceride Content 

2.1 Introduction 

Nonalcoholic fatty liver disease (NAFLD) is a term used for defining a variety of liver 

conditions ranging from simple accumulation of adipose tissue in liver to more aggravated stages 

such as steatosis, fibrosis, cirrhosis and in some cases hepatocellular carcinoma (HCC). Currently, 

there are no obvious causes for NAFLD. The pathological changes inside the liver for NAFLD 

resembles that of alcohol-induced liver injury, however, NAFLD occurs in patients who do not 

abuse alcohol consumption. Obesity is the leading cause of NAFLD and it effects an estimated of 

74% of the obese population and 24% of the general public across the globe [25]. As obesity has 

continued to rise among children so has NAFLD. It is projected that NAFLD may progress to 

cirrhosis in the estimated 8% of the children diagnosed with the disease [26]. With advances in 

treatment for hepatitis, NAFLD will most likely become the number one cause for liver transplant 

in the western hemisphere in less than a decade [27]. Previous studies have shown that 10% to 

29% of NAFLD patients may develop liver cirrhosis within 10 years and 4% to 27% of these 

patients will progress to cancer [28]. However, the progression of NAFLD can be prevented with 

proper diagnosis, a change in diet and regular exercise [29]. Inevitability, there exists a need for a 

clinical technology to accurately identify and monitor early stages of NAFLD.  

Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, needle 

biopsy is subjected to sampling error because only 1/50,000 of the entire liver volume is sampled 

[30]. This quantitate information may be of limited use because of the heterogenous distribution 
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of lipid across the liver. Moreover, liver biopsy is invasive and can lead to medical complications 

such as the risk of infection, formation of hematoma, leakage of bile, and internal bleeding. Finally, 

histological findings from liver biopsy are subjective and dependent upon the experience and 

expertise of the pathologist. Several cases have been reported where children have shown 

resilience to liver biopsy because of the invasive nature of the procedure [31]. 

The limitations of liver biopsy have led to an increase in developing noninvasive methods 

for screening NAFLD. Noninvasive methods include imaging modalities such as computed 

tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US) [32]. CT is the least 

popular choice among these imaging modalities to diagnose NAFLD as patients are exposed to 

high dosage of ionizing radiation and it cannot be used as a diagnostic tool in children. CT has a 

broad spectrum of sensitivity, 54% to 93%, and high specificity, 95% to 100%, for diagnosing 

NAFLD [33]. However, CT has limited diagnostic ability for quantitative evaluation of mild 

steatosis; it is more sensitive to the detection of moderate to advanced steatosis. CT cannot 

differentiate between NASH from simple hepatic steatosis [32].  

MRI is overall more sensitive compared to CT in detecting NAFLD. The average 

sensitivity and specificity ranges for detecting NAFLD are 82.0% to 97.4% and 76.1% to 95.3% 

for MRI [34]. Studies have shown that MRI provides an accurate and more reproducible hepatic 

triglyceride content measurement [35]. With recent advancements in proton MR spectroscopy, the 

entire spectrum of steatosis along with the degree of fibrosis can be evaluated. Unlike CT, MRI 

can differentiate between normal and abnormal tissues i.e. distinguish simple steatosis from 

fibrosis and HCC [36]. MRI does not expose patients to ionizing radiation, but it has a few 

limitations such as the cost associated with MRI scan and not being widely available in remote 
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clinics compared to CT and US. Also, MRI scan is not allowed for the patients with implants that 

are sensitive to magnetic field [37].  

Transabdominal ultrasound remains the preferred choice among imaging modalities when 

it comes to diagnosing NAFLD due to its relatively low cost, widespread availability and safety 

features. Fatty livers in US B-mode images display a variety of features. For example, hyper 

echogenicity of the liver parenchyma due to the fat accumulation compared to the adjacent right 

kidney and spleen [38]. Other common features of fatty liver under US B-mode images include 

attenuation of the ultrasound beam, hepatomegaly, decreased visibility of vascular margins and 

diaphragm [39]. A wide spectrum of sensitivities, 60% to 94%, and specificities, 66% to 95%, for 

ultrasound in diagnosing NAFLD have been reported [40]. However, obesity among patients 

reduces the sensitivity of ultrasound. These studies are nonreproducible and suffer from subjective 

assessment based mostly on an operator and have considerable inter and intra-observer variability 

[41]. US B-mode images may not be conclusive in diagnosing NAFLD if there is a missing or 

deceased organ such as a kidney or spleen that are compared with fatty liver. Moreover, US B-

mode cannot quantify the degree of adipose tissue present in liver and cannot distinguish between 

simple steatosis from steatohepatitis [42].  

Ultrasound induced temporal/thermal strain imaging (US-TSI) is an imaging modality for 

applications pertaining to noninvasive tissue thermometry [43] and detection of lipid rich cores in 

atherosclerotic plaques [44-46]. US-TSI is based on the principle that the speed of sound in a 

medium is dependent upon the temperature for different tissue compositions. Lipids register a 

decreasing sound speed with increasing temperature, whereas water-bearing tissue exhibits an 

increasing sound speed with an increasing temperature [21, 22]. With the rise in temperature inside 

the medium, the US radiofrequency (RF) signal arrives earlier or later at the transducer surface 
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depending on an increase or a decrease in the sound speed. The derivative of these temporal echo 

shifts in the direction of wave propagation yields the thermal strain. With a rise in temperature, 

lipids reveal positive thermal strain and water-based tissues reveal negative thermal strain.  

The governing equation for TSI is as follows: 

         
ⅆu

ⅆz
= (β − λ)ΔT                     (2-1) 

where ⅆu/ ⅆz  is the thermal strain, λ [°C−1] is the linear coefficient for sound speed vs. temperature 

and β [°C−1] is the linear coefficient of thermal expansion.  For temperatures less than 50°C, β is 

an order of magnitude much smaller than λ and can therefore be ignored [47]. Thus, the principal 

equation for TSI becomes: 

ⅆu

ⅆz
= −λΔT            (2-2) 

At a normal body temperature (37°C), λ is positive for water-bearing tissue with values 

ranging from 0.7 x 10−3 to 1.3 x 10−3 and is negative for lipid-based tissues with values ranging 

from −1.3 x 10−3 to −2.0 x 10−3 [23].  

In a previous study carried out by our lab, US-TSI was successful in differentiating between 

normal livers of control mice and fatty livers in obese mice. US-TSI measured a significant 

difference between thermal strains of fatty livers in obese mice and in the control mouse livers. To 

verify and measure the lipid content in mice livers, oil red O histology was performed as a gold 

standard. US-TSI was able to identify fats in excised livers of obese mice with a sensitivity and 

specificity of 70% and 90%. The area under the receiver operating characteristic (ROC) curve was 

0.775 [48]. Due to the limited sample size (n=10) in this study, US-TSI was not able to distinguish 

among the different degree of steatosis in NAFLD. 

In our study, US-TSI was used to quantify lipid composition of fatty livers at different 

degrees of steatosis of ob/ob mice. To validate the results from our imaging modality, lipid 
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composition was correlated against hepatic triglyceride content (HTGC). HTGC is widely used in 

clinics to quantify lipid buildup in fatty liver [49]. With an increased sample size of 28, the mice 

were divided into 3 groups of none, mild and moderate, based upon HTGC values. In comparison 

to the previous study, non-parametric Kruskal-Wallis test was carried out demonstrating that US-

TSI can potentially differentiate among the degrees of steatosis in NAFLD. 
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2.2  Materials and Methods 

2.2.1 Animals 

The postmortem experiment in this study was performed on mice liver. Figure 2.1 details 

the experimental setup and procedure. The mice were obtained from the Jackson Laboratory 

animal facility, Bar Harbor, Maine, under the regulation of approved IACUC protocol. US-TSI 

was performed on a total of 28 ob/ob mice livers. The ob/ob mice were on a high cholesterol diet 

for a duration of 16 weeks. It is reported that by the 7th week mark the ob/ob mice will develop 

hepatic steatosis in 50% of their cells and by the 13th week they will further develop steatosis in 

85% of their hepatocytes [50]. The mice were euthanized by a veterinary technician before US-

TSI was performed. Ultrasound gel was centrifuged to remove the presence of air bubbles in the 

ultrasound gel before being placed on the abdomen of the mice. The experiment was carried out 

at room temperature.  
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Figure 2.1: Experimental setup and protocols 
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2.2.2  Biochemical hepatic triglyceride content (HTGC) analysis 

HTGC measurements were obtained using the protocol described in [51]. The HTGC 

measurements were calculated using a Trig/GB kit (#11877771216, Roche Diagnostics, 

Indianapolis, Indiana) and were recorded as milligram of triglycerides per gram of liver tissue. 

Lipid specimens were extracted from 50 to 100 mg of frozen liver tissue.  

2.2.3 Experimental set-up 

US-TSI requires two systems, a US imaging transducer and a US heating transducer to 

raise the temperature of the tissue during scanning. The first system consisted of a high frequency 

small animal-based imaging system (Vevo2100, FUJIFILM VisualSonics Inc., Canada) equipped 

with a high frequency linear array transducer for imaging (13 to 24 MHz). The second system 

consisted of a custom engineered US heating array transducer. This heating transducer was made 

of six elements assembled in a group of three elements on both sides of the imaging transducer 

aligned in a custom designed manifold. The heating beam width was at least 8 mm in the lateral 

direction and 5 mm wide-ranging in the axial direction providing a larger area for heating. For a 

detailed blueprint of the custom engineered heating array transducer the reader is referred to [52]. 

US-TSI sequence consisted of acquiring pre-frames followed by a heating duration of 9.2 

seconds and then acquiring post-frames as shown in Figure 2.2. The long delay period between 

heating and acquiring post-frames was taken into consideration to avoid any motion being 

introduced by the acoustic radiation force. US B-mode images were acquired before and after 

heating at a frame rate of 10 Hz. The center frequency used for imaging was 21 MHz and 3.55 

MHz for the heating transducer. The custom designed heating transducer ran at a duty cycle of 
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50%. For this study, a homogeneous gelatin phantom was manufactured, and a temperature rise of 

1.5 °C was recorded. Temperature rise during US-TSI was measured inside the gelatin phantom 

using a Type T needle sheathed thermocouple (MT-23/5, Thermoworks, UT, USA) connected to 

a data acquisition module (QuadTemp, Thermoworks, Lindon, UT, USA). Temperature 

measurements were recorded 3 times at an axial depth of 25 mm and 0 mm in the lateral direction. 

 

 

Figure 2.2: Ultrasound pulse sequence for heating and imaging. Two different US systems are required to 

perform US-TSI on mice liver. The first system consists of a high-frequency US linear array imaging transducer 

and the second system consist of a custom-designed US heating array transducer 

 

2.2.4 Signal processing 

US echo displacement between pre and post frames was tracked using speckle tracking 

algorithms. Phase-shift algorithm, Loupas 2-D autocorrelator, was used to estimate the 

displacement. Loupas 2-D algorithm operates on complex IQ data. The axial kernel size for 

displacement was 3.0 wavelengths. For a detailed understanding of Loupas estimator, the reader 
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is referred to [53]. A median filter was applied on the displacement outcome. The kernel size for 

the median filter was 0.55 mm (axial) × 0.27 mm (lateral) [46, 48].  

Thermal strain was computed by taking the derivative in the axial direction using a second 

order savitzky–golay filter. The kernel size for savitzky–golay filter was 1.5 mm. Thermal strain 

maps were color coded within the heating region such that red indicated positive strain and blue 

indicated negative strain. These color-coded thermal strain maps were then overlaid on US B-

mode images for viewing purposes. 

To measure the extent of steatosis in each liver by US-TSI, lipid composition [%] was 

defined as a metric determined by US-TSI. First, the liver contour was identified from the US B-

mode image. Then the number of pixels indicating the positive thermal strain inside the liver was 

determined. Lipid composition ( [number of positive strain pixels > Thresholⅆ] /

 [number of pixels in the liver ] ) was calculated by dividing the positive thermal strain pixels by 

the number of pixels in the liver. For pixels which were counted towards the positive thermal 

strain, a threshold was predetermined. This threshold was computed by taking an average of the 

root mean square (RMS) values outside the heating region for the entire data group. The average 

RMS value calculated was 0.05%.   

2.2.5  Statistical analysis 

The triglyceride build-up during the progression of hepatic steatosis was widely spread 

across the liver lobes. Taking this into consideration, some of the animals were tested twice for 

HTGC values based upon the observation by a clinical pathologist. The HTGC values for medial 

and left lobes were recorded. The data was further classified into two groups of medial and left 

lobes for additional statistical analysis.  
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Analysis of covariance (ANCOVA) was performed to test if the liver lobes had any 

influence on the correlation between HTGC values and lipid composition determined by US-TSI. 

In this scenario, the covariate for ANCOVA analysis were the liver lobes. A pre-condition test for 

ANCOVA was successful before the statistical analysis. A p-value of >0.05 concluded that the 

livers lobes had statistically no effect on the correlation between HTGC values and lipid 

composition. Eventually, this led to combining the data from medial and left lobes into a single 

data entity. For mice that had two HTGC values, a single value was picked from the dataset by a 

normally distributed random generator algorithm, eliminating any possible incidences of bias 

being introduced by the operator.  

A linear regression, Pearson’s correlation coefficient, was used for correlating lipid 

composition determined from US-TSI and HTGC. Then a non-parametric Kruskal-Wallis test was 

carried out to further validate if US-TSI could be used to differentiate among the degree of steatosis 

in NAFLD.  
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2.3 Results 

The results were divided into 3 groups of HTGC values reflecting the degree of steatosis 

in NAFLD. The amount of liver steatosis was classified as follow: none (< 5%), mild (5%-33%) 

and moderate (34%-66%) [54]. Figure 2.3(a) shows the distribution of HTGC values of multiple 

lobes of the liver in mice. The liver lobes were divided into three groups, none (n = 5), mild (n = 

34) and moderate (n = 5) to demonstrate the degree of liver steatosis based on HTGC values. 

Figure 2.3(b) shows the distribution of HTGC values as a result of running the normally distributed 

random generator algorithm.  For mice with two HTGC values, a single value was chosen from 

the dataset to eliminate any possible incidences of bias being introduced by the operator. The liver 

lobes were later divided into three groups, none (n = 3), mild (n = 23) and moderate (n = 2).  

 

Figure 2.3: (a) Histogram of the mice population representing multiple lobes of the liver. The liver lobes were 

divided into three groups, none (n = 5), mild (n = 34) and moderate to severe (n = 5) to demonstrate the degree 

of liver steatosis based on HTGC values. (b) Histogram of the mice population representing a single lobe of the 

liver. For mice with two HTGC values, a single value was chosen from the dataset to eliminate any possible 

incidences of bias being introduced by the operator. The liver lobes were later divided into three groups, none 

(n = 3), mild (n = 23) and moderate to severe (n = 2).  

 

Figure 2.4 shows the results of Pearson’s correlation coefficient between HTGC values and 

lipid composition computed by US-TSI on the combined data set irrespective of the liver lobes. A 
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close correlation (R2 = 0.85) existed between HTGC and US-TSI measurements. A p-value of 2.89 

x 10−12 was calculated. 

 

Figure 2.4: Pearson’s correlation coefficient between HTGC and US-TSI measurements for combined dataset. 

A close correlation (R2 = 0.85) was observed between HTGC and US-TSI measurements of percentage strain. 

A p-value <0.05 was considered significant 

 

The results of the Kruskal-Wallis test are shown in Figure 2.5. This test rejects the null 

hypothesis implying that at least one of the groups had a different mean of lipid composition 

compared to the other groups. Further post hoc analysis such as multiple comparisons tests needed 

to be carried out to determine which group differed from the other. The post hoc test used was the 

Dunn’s test. Table 2.1 shows the results of the Dunn’s test. The first two columns show the groups 

compared to each other. By conventional norm, a two tailed p-value of <0.05 was considered to 
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be statistically significant. Statistical analysis was carried out using the statistics toolbox of 

MATLAB R2019a. 

 

Figure 2.5: Non-parametric, Kruskal-Wallis Test was performed to determine if US-TSI can differentiate 

among the stages of Hepatic Steatosis. The non-parametric test, Kruskal-Wallis was performed to determine if 

there are statistically significant differences between the stages of hepatic steatosis detected by US-TSI. A p-

value <0.05 was considered significant 

 
Table 2.1: P-value for the post hoc test, Dunn’s test 

Stages of NAFLD p-value 

None Mild 

None Moderate 

Mild Moderate 
 

0.0067 

0.0014 

0.1609 
 

 

Figure 2.6 (a - c) shows US B-mode images of mice liver. The approximate region of 

heating is indicated by the curved dotted line in Figure 2.6 (a - c). The liver contour is marked by 

the dashed red line and the strain map is overlaid on the B-mode image in Figure 2.6 (d - f). Figure 

2.6 (a and d) shows the results of a mouse that had not developed any steatosis over the duration 
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of the study. The HTGC value for this mouse was 2%. The corresponding US-TSI map shows the 

area of negative thermal strain indicating no triglyceride accumulation in the liver. The lipid 

composition determined by US-TSI for this mouse was 3.5%. 

Figure 2.6 (b and e) shows the results of a mouse that had developed mild steatosis with an 

HTGC value of 33%. US-TSI map displays an area of slight negative and positive thermal strains. 

The lipid composition determined by US-TSI for this mouse was 28.1%.  

Figure 2.6 (c and f) exhibits the results of a mouse that had advanced steatosis with a HTGC 

value of 44%. US-TSI map displays an area of positive thermal strain indicating the accumulation 

of triglycerides within hepatocytes. The lipid composition determined by US-TSI for this mouse 

was 42.0%. 
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Figure 2.6: (a – c) Ultrasound images acquired using a high-frequency US scanner for medial lobe of the liver 

with no (HTGC = 2%), mild (HTGC = 33%), and moderate (HTGC = 44%), hepatic steatosis. The contour 

shows the boundary of the liver. The dotted line shows the approximate size of the heating beam. (d – f) US-

TSI for the liver section. The lipid composition determined by US-TSI for none data point was 3.5%, for mild 

was 28.1% and for moderate was 42.0% 
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2.4  Discussion 

In this study, we introduced US-TSI to measure the fat content in ob/ob mice to distinguish 

among the degree of steatosis in NAFLD. Our study used HTGC as a benchmark for adipose 

measurement and to find its correlation with lipid composition determined from US-TSI values. 

The degree of steatosis is the first step in calculating the NAFLD activity score (NAS). NAS, 

developed by the NASH clinical research network, is a summation of steatosis, lobular 

inflammation and ballooning scores. NAS accompanied with the fibrosis staging score provides 

an accurate staging of NAFLD [55]. Hence, steatosis score is of utmost importance in calculating 

NAS.  

A single value was chosen from the dataset by a normally distributed random generator 

algorithm for mice with two HTGC values, avoiding all potential incidences of bias introduced by 

the operator. This step was repeated multiple times to account for a scenario where one HTGC 

measurement for a mouse would be an accurate representation of the measurement from US-TSI 

and the second HTGC measurement would be an outlier. A strong correlation (R2 > 0.8) was still 

observed even after performing several iterations of the Pearson’s correlation analysis.  

Statistical analysis such as the Kruskal-Wallis test was performed to differentiate among 

the degree of steatosis in NAFLD. Kruskal-Wallis test was carried out instead of the parametric 

one-way ANOVA since the data points failed to meet the normality test and homogeneity of 

variance test. Moreover, the reason for conducting Dunn’s test was to account for the unequal 

sample size among the different groups. The results from Dunn’s statistical test concluded that 

US-TSI can differentiate between none and mild and none and moderate degree of steatosis. The 

post hoc test failed to conclude if US-TSI can distinguish among the mild and moderate degree of 

steatosis in NAFLD of the disease. However, further statistical analysis, such as simulating data 
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points, to increase the sample size for the none, mild and moderate groups concluded US-TSI can 

also distinguish among the mild and moderate degree of steatosis in NAFLD. Currently, with the 

limited number of sample sizes, US-TSI was unsuccessful in distinguishing between mild and 

moderate degree of steatosis in NAFLD. Future studies will need to experiment on a larger quantity 

of ob/ob mice. A low number of mice population in the none and moderate group can be attributed 

towards mouse gender. Mouse gender can affect their susceptibility to the development of 

NAFLD. It has been reported that male mice exhibit an increased susceptibility to development of 

NAFLD as opposed to female mice [56, 57]. In addition, the mice may be fed on a combination of 

high-fat diet enriched in fructose, carbohydrate and ethanol feeding to increase the mice population 

in the mild to severe group [58]. 

US-TSI requires two separate transducers i.e. one for imaging and one for heating. This is 

a bulky setup for US-TSI operation and may not be practical for the sonographer during the 

scanning operation. In addition, this setup requires a dedicated hardware and electrical system for 

the heating array transducer making it more costly. For clinical translation of US-TSI, the most 

realistic and viable option would be to use a multi-foci beamforming technique where a single 

commercially available transducer is used both for heating and imaging. For clinical setting, a low 

frequency for imaging will be used for a larger penetration depth considering attenuation of 

ultrasound beam. The frequency for heating can be equal to or less than the imaging frequency. 

This possible solution has been successfully devised by our group with computer simulation and 

ex vivo phantom study, using a clinical probe [59, 60]. Moreover, the rise in temperature recorded 

was 0.3°C during the heating duration, which is much less relative to the current temperature rise. 

There were several challenges for an in vivo experiment. Firstly, the physiological motion 

from breathing and cardiac rhythms in mice is more elevated compared to humans, distorting the 
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displacement tracking estimation caused by speckle decorrelation. This physiological motion 

remains extreme even with anesthesia induced in the mice. To compensate for this motion, a 

postmortem study was carried out in this report. Eventually for human subject studies, patients can 

be requested to hold their breath for a few seconds (<5 s) to prevent such motions. To compensate 

for cardiac pulsations, US-TSI frames acquired before and after heating can be synchronized with 

an ECG trigger. Alternatively, advance signal processing techniques using time series analysis can 

be used to reduce motion artifact in US-TSI [61]. Moreover, other speckle tracking algorithms can 

be explored such as Bayesian speckle tracking for estimating ultrasound displacement [62, 63]. In 

the recent years, there has been a surge of machine-learning algorithms in ultrasonics. Machine-

learning algorithms that features speckle tracking can be used for displacement estimation [64, 

65]. 

Secondly, blood perfusion in the liver was neglected in this study. This may possibly affect 

the temperature of the tissue during in vivo operation of US-TSI. This effect along with thermal 

diffusion was not taken into consideration during the postmortem study. Further investigation into 

tissue thermal models or in vivo studies are required to understand and counteract the effect of 

blood perfusion. 

Certain safety measures need to be taken into consideration for future in vivo studies. 

According to the American Institute of Ultrasound in Medicine (AIUM) “there have been no 

significant, adverse biological effects observed due to temperature increases less than or equal to 

2°C above normal, for exposure durations up to 50 hours”. US-TSI induces a small temperature 

change (<2°C). The temperature rise recorded during US-TSI was ~1.5°C. The peak negative 

pressure (PNP) of US heating probe and imaging transducer was determined in a water tank using 

a hydrophone (HNC, Onda Corp., Sunnyvale, CA) connected to a computer controlled transitional 
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stage. The small animal imaging system had a negative peak pressure of −1.27 MPa, while it was 

−1.40 MPa for the heating transducer. Mechanical Index is later computed by using the equation 

MI = NPP/√centerfrequency [66]. MI for the imaging transducer is 0.28 and 0.74 for the custom 

designed heating transducer. According to the Food and Drug Administration (FDA), MI cannot 

exceed above the approved limit of 1.9 [67]. 
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2.5  Conclusion 

This study reports US-TSI was able to detect lipids in fatty livers of ob/ob mice. A strong 

correlation (R2=0.85) between lipid composition estimated by US-TSI and a clinically established 

metric, HTGC, was found. In addition, US-TSI was able to distinguish between none and mild, 

and none and moderate, degrees of steatosis with significance but did not show significant 

difference between mild and moderate degrees of steatosis. Future studies need to be performed 

on excised human liver tissue and human liver tissue in a clinical setting for further validation for 

US-TSI to be used as a clinical diagnostic tool. 
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3.0 Introduction to Multi-Foci Beamforming 

3.1 Introduction 

Ultrasound is one of the most commonly used imaging modalities in the field of medical 

imaging. The term ultrasound refers to sound with frequencies that are not audible by the human 

ear i.e. any sound with range of frequencies above 20 kHz is considered an ultrasound. Medical 

ultrasound systems typically operate in the range of 2 MHz to 20 MHz [68]. A conventional 

ultrasound machine consists of a transducer accompanied by its dedicated electronics and operates 

on the pulse-echo principle. The transducer serves both as a transmitter and receiver of ultrasound 

energy. A transducer typically converts electrical signals to acoustic signals or vice versa. The 

transducer generates high frequency ultrasound pulses which propagate through the patient’s body. 

Echoes are generated at the boundaries of the tissues or organs that are reflected back to the 

transducer. This reflected acoustic signal is converted back to electrical signal. The dedicated 

electronics using digital signal processing techniques convert these electrical signals to grayscale 

images depicting the structure of the human anatomy [69]. Ultrasound transducer consists of a 

sequence of piezo-ceramic crystals, which upon excitation by an electrical impulse generates an 

acoustic wave. The width of each element is approximately ¼ wavelength which is typically 0.2-

0.75 mm in width [70].  

Modern ultrasound systems utilize delay-and-sum beamforming for focusing [71]. An 

ultrasound system typically consists between 64 elements and 256 elements. During transmission 

the user specifies a focal point (𝑥𝑓, 𝑧𝑓) of interest, where 𝑥𝑓 is the lateral coordinate and 𝑧𝑓is the 

axial coordinate. On transmission, the focus is achieved by ensuring that ultrasound pulses 
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transmitted from the transducer elements arrive all together at the focal point so that sound waves 

are added coherently resulting in constructive interference. 

For conventional ultrasound B-mode imaging, a narrow beam width is preferred for better 

image resolution [60]. On the contrary, for TSI, a wide heating ultrasound beam is desired to create 

a larger area for heating [52]. A precursor to TSI technology comprised of a high efficiency heating 

array probe coupled with a high frequency imaging transducer [52]. This meant a much heavier 

and bulkier setup for TSI operation making the scanning operation uncomfortable for the 

sonographer. Moreover, the setup for TSI operation required skilled expertise such as configuring 

the heating probe with the imaging transducer for which the sonographer may not be equipped 

with the right skill set. This TSI system used a series of geometrically focused heating array 

elements to deposit energy into a small and fixed target region. This target region exhibits a similar 

anatomical texture compared to the surrounding tissue; it is quite possible that the target region 

may not get any energy from the heating array. On the contrary, the surrounding tissue may receive 

the energy. Moreover, the separate heating elements would require dedicated system electronics 

and hardware that would increase the cost for companies and end users. The imaging center 

frequency for this TSI system is set at 21 MHz [52]. The ultrasound beam is highly attenuated at 

this frequency and is not suitable for deeper penetration to image abdominal organs of human 

subjects. The most realistic option would be to use a commercially available ultrasound scanner 

that can perform both heating and imaging with a single transducer for clinical translation of TSI. 

Our group has devised a novel beamforming methodology called multi-foci beamforming where 

a single transducer is used both for imaging and heating [59, 60].  Multi-foci beamforming utilizes 

a commercially available off the shelf transducer for TSI operation. Multi-foci beamforming 

comprises of dividing the transducer aperture, first into three sub-apertures, followed by into four 
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sub-apertures. A separate delay profile is applied to each sub-aperture. The 3 foci and 4 foci beams 

are interleaved thus producing a homogeneous region for heating [59, 60].  
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3.2 Materials and Methods 

3.2.1 Sub-aperture Configuration 

The first step in the design of heating beams is to determine the aperture configuration for 

the curved linear array geometry. Curved linear array transducers are primarily designed for 

abdominal imaging based upon the geometry and center frequency of the transducer. 

Figure 3.1 shows transducer array geometry for a curved linear array transducer, Philips 

ATL C4-2 in the x-z plane. This transducer comprises of 128 elements. For linear array transducer, 

the -6-dB lateral beam width (BW) and depth of field (DOF) can be approximated from the 

following equations, assuming linear propagation [72]  

𝐵𝑊 = 𝜆 (
𝑍𝑓

𝐷
) =  𝜆 . (𝐹/#)  (3-1) 

𝐷𝑂𝐹 = 8𝜆 (
𝑍𝑓

𝐷
)

2

=  8𝜆. (𝐹/#)2 (3-2) 

where 𝝀 is the wavelength, 𝒁𝒇 is the axial focal depth, 𝑫 is the aperture width, and F-

number (𝑭/#). From the equations above, it can be determined that by dividing the transducer 

elements into sub apertures, at a specific frequency and at a fixed depth, increases the f-number. 

This leads to an increase in the lateral beam width and depth of field. For TSI, a wide heating 

ultrasound beam with a larger depth of field and a broad lateral beam width is needed to form a 

large area for heating.  

As stated earlier, multi-foci beamforming involves dividing the transducer aperture into a 

three sub-aperture and a four sub-aperture. Figure 3.2 (a, b) shows the sub-aperture configuration 

for 3 foci and 4 foci. The 3 foci sub-aperture consists of dividing the transducer aperture as 42-44-
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42 and the 4 foci sub-aperture consists of dividing the transducer aperture as 20-44-44-20. Each of 

the sub-aperture has a different lateral focus. Figure 3.2(c, d) shows the lateral and axial focus for 

each of the sub-aperture. For the 3 foci sub-aperture, the lateral focus was at [-4.40 0.00 4.40] and 

for the 4 foci sub-aperture the lateral focus was at [-6.60 -2.20 2.20 6.60]. The axial focus for the 

3 foci sub-aperture and for the 4 foci sub-aperture was fixed at 70 mm, equivalent to the elevation 

focus of the Philips ATL C4-2 transducer. The 3 foci and 4 foci beams are temporally interleaved 

creating a uniform area for heating resulting in an extended area for heating. 

 

Figure 3.1: Transducer array geometry for a curved linear array transducer, Philips ATL C4-2 in the x-z plane. 

This transducer consists of 128 elements. 
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Figure 3.2: (a) The 3 foci sub-aperture consists of dividing the transducer aperture as 42-44-42 and (b) the 4 

foci sub-aperture consists of dividing the transducer aperture as 20-44-44-20. (c) The lateral focus for 3 foci 

sub-aperture was at [-4.40 0.00 4.40] and for the 4 foci sub-aperture the lateral focus was at [-6.60 -2.20 2.20 

6.60] (d). The axial focus for the 3 foci sub-aperture and for the 4 foci sub-aperture was fixed at 70 mm. 
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3.2.2 Delay Curve 

Assuming the transducer element T0 generates a pulse at t = 0, we would have to determine 

the firing times for the remaining elements for the sound waves to be in-phase at the focal point. 

The first step in determining the time delay is to calculate the distance from the transducer elements 

to the focal point by using the Euclidean distance formula.  

𝑑𝑖 =  √(𝑥𝑖 − 𝑥𝑓)2  + (𝑧𝑖 − 𝑧𝑓)2           (3-3) 

where 𝑥𝑓 is the lateral coordinate and 𝑧𝑓is the axial coordinate of the focus or focal point 

and 𝑥𝑖 is the lateral coordinate and 𝑧𝑖 is the axial coordinate of the ith transducer element.    

The next step is to determine the time it takes for the ultrasound wave to reach the focal 

point, assuming the speed of sound in soft tissue is c = 1540 ms-1, by using the following equation.  

𝑡𝑖 =
𝑑𝑖

𝑐
    (3-4) 

After determining the triggering time, the time delays are given by the following equation. 

τ𝑖 =  𝑡𝑚𝑎𝑥 −  𝑡𝑖  (3-5) 

3.2.3 Pressure Field Simulation 

Once the delay curves have been established the next step is to generate the pressure fields. 

The pressure fields are simulated using the acoustic simulation package, Field II [73]. Table 3.1 

list the parameters for Field II simulation. The attenuation coefficient, 𝛼, was set to 0.5 

dB/cm/MHz, which is the attenuation coefficient reported for soft tissues [72]. The delay curves 

calculated in the preceding step is fed as an input to simulate the pressure field.  
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Table 3.1: Parameters for Field II simulation 

Parameter Value 

Number of elements 128 

Center frequency 3.0 MHz 

Sampling frequency 200 MHz 

Azimuthal element pitch 0.4246 mm 

Elevation element height 13 mm 

Radius 41.219 mm 

Kerf 0.05 mm 

Attenuation 0.5 dB/cm/MHz 

Sub-aperture size 42-44-42 (3 foci beam) 

20-44-44-20 (4 foci beam) 

Grid size 200 × 200 (X × Z) 
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3.3 Results and Discussion 

Figure 3.3(a, b) shows the results of the delay profile for 3 foci and 4 foci sub-aperture.  

 

Figure 3.3: (a, b) Delay curves for 3 foci and 4 foci sub-aperture. 

 

Once the delay profiles have been computed, the next step is to utilize these delay curves 

in simulating the pressure field. Figure 3.4(a, b, c) shows the simulation results of pressure field 

for 3 foci, 4 foci, and the combined beam. 
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Figure 3.4: (a, b, c) Pressure field simulation for 3 foci, 4 foci, and the combined beam using Field II. 

 

 There are two metrics to determine the quality of multi-foci beamforming which are the 

depth of field and the lateral beam width. Depth of field is plotted along the axial axis at the center 

of the transducer geometry while lateral beam width is plotted along the lateral direction where the 

maximum pressure is recorded along the axial axis or at an axial depth of preferred choice. Figure 

3.5(a, b, c) shows the depth of field plot for 3 foci, 4 foci, and the combined beam. The -6-dB 

depth of field estimate for 3 foci was 60 mm, stretched from 34 mm to 94 mm in the axial direction. 

For 4 foci beam, -6-dB depth of field estimate was 20 mm, stretched from 74 mm to 94 mm. The 

-6-dB depth of field estimate for the combined beam was 62 mm, stretched from 34 mm to 96 mm.  
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Figure 3.5: (a) The -6-dB depth of field estimate for 3 foci was 60 mm, stretches from 34 mm to 94 mm in the 

axial direction. For 4 foci beam, -6-dB depth of field estimate was 20 mm, stretches from 74 mm to 94 mm. The 

-6-dB depth of field estimate for the combined beam was 62 mm, stretches from 34 mm to 96 mm. 
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Figure 3.6 (a, b, c) shows the lateral beam width plot for 3 foci, 4 foci, and for the combined 

beam at an axial depth of 60 mm. From Figure 3.6(a) it can be observed, the -6-dB lateral beam 

width estimate for 3 foci is difficult to establish due to the fact that the pressure oscillates across 

the -6-dB threshold. Similarly, this scenario exists for the 4 foci beam as the pressure also oscillates 

across the -6-dB threshold as shown in Figure 3.6(b). However, on combining the 3 foci and 4 foci 

beam, results in a widened lateral beam width and pressure fluctuations across the -6-dB threshold 

are diminished. The -6-dB lateral beam width estimate for the combined beam was 11 mm and 

ranges from -5.5 mm to +5.5 mm. 
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Figure 3.6: (a, b) For 3 foci and 4 foci, the pressure oscillates across the -6-dB threshold. Thus, difficult to 

determine the lateral beam width. However, on combining the 3 foci and 4 foci beam, the -6-dB lateral beam 

width estimate for the combined beam was 11 mm and ranges from -5.5 mm to +5.5 mm. 
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Nguyen implemented a different sub-aperture configuration for 3 foci and 4 foci for a linear 

array transducer in [59, 60]. The 3 foci sub-aperture configuration was [34 30 34] and [34 30 30 

34] for 4 foci sub aperture. For the 3 foci sub aperture the first 15 elements and the last 15 elements 

were not utilized [59, 60]. Figure 3.7 summarizes the results of the sub-aperture configuration in 

[59, 60] implemented for a curved linear array geometry. For the 3 foci sub-aperture, the lateral 

focus was still kept at [-4.40 0.00 4.40] and for the 4 foci sub-aperture the lateral focus was also 

the same [-6.60 -2.20 2.20 6.60]. The axial focus for the 3 foci sub-aperture and for the 4 foci sub-

aperture was also fixed at 70 mm. There are fluctuations in pressure along the depth of field and 

the lateral beam width for the combined beam across the -6-dB threshold. 

It is noteworthy to mention that there is no mathematical equation or function that can 

determine the aperture division for multi-foci beamforming. The division of transducer aperture 

into sub apertures and selection of axial and lateral focus is an iterative approach. This requires 

multiple iterations in order to optimize the area for heating. The best overall combined beam was 

selected using quantitative metrics that would maximize the depth of field and the lateral beam 

width.  
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Figure 3.7: (a, d, g) Pressure field simulation for 3 foci, 4 foci, and the combined beam using Field II. The 3 foci 

sub-aperture was [34 30 34] and [34 30 30 34] for 4 foci sub aperture. (b, e, h) Depth of field plots for 3 foci, 4 

foci, and the combined beam. (c, f, i) Lateral beam width for 3 foci, 4 foci, and the combined beam. There are 

fluctuations in pressure along the depth of field and the lateral beam width for the combined beam across the 

-6-dB threshold. 
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3.4 Conclusion 

In this chapter, we introduced multi-foci beamforming and outline the preliminary steps 

for simulating the pressure field. These novel multi-foci beams create a homogeneous region for 

heating. This is due to the fact of allowing the transducer aperture to be divided into a three sub-

aperture and a four sub-aperture. We also introduced the quality metrics that are pivotal in 

determining the area of the heating region. In the next chapter we examine a modification to the 

current design where each of the sub-aperture has a different lateral and an axial focus, that results 

in an extended area for heating compared to the stated design.  
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4.0 Multi-Foci Thermal Strain Imaging Using A Curved Linear Array Transducer for 

Identification of Lipids In Deep Tissue 

4.1 Introduction 

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease among 

children and adults in the United States and its prevalence is growing in the world. In less than a 

decade, NAFLD will likely become the number one cause of liver transplants in the United States. 

Currently it affects an estimate of 80 to 100 million people in the country [74].  

NAFLD encompasses a disease spectrum of liver conditions ranging from simple steatosis 

(SS) to nonalcoholic steatohepatitis (NASH). SS is a benign form of NAFLD, characterized by the 

accumulation of lipid in the liver. On the other hand, NASH is defined by hepatic steatosis with 

cell injury, hepatic ballooning and various degrees of fibrosis. NASH may further develop into 

cirrhosis, liver failure and hepatocellular carcinoma (HCC) [29].   

Currently, liver biopsy is the gold standard for diagnosing nonalcoholic fatty liver disease 

[14]. However, liver biopsy is invasive in nature and suffers from medical complications such as 

perforation and bleeding. Additionally, needle biopsy is a poor screening tool that is not 

appropriate for longitudinal monitoring or evaluating diagnosis in response to treatment [30].  

Because of the limitations of liver biopsy, there has been an increase in research for noninvasive 

methods for diagnosing NAFLD. Noninvasive methods include imaging modalities such as 

computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US) [32]. CT is 

considered an unacceptable imaging modality for diagnosing NAFLD due to the fact that it 
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exposes patients to high dose of ionizing radiation and remains a poor screening tool among 

children. CT displays a broad spectrum of sensitivity (54-93%) and high specificity (95-100%) for 

diagnosing NAFLD [33]. Currently, MRI is known to be the most accurate imaging modality for 

diagnosing NAFLD and quantification of lipid accumulation in liver. MRI measures proton-

density fat fraction (PDFF) which is a measure of fractional lipid content [75]. For detecting 

NAFLD, the average sensitivity of MRI ranges from 82.0% to 97.4% and the average specificity 

ranges from 76.1% to 95.3% [34]. However, MRI has several limitations including contra-

indications, higher costs associated with scanning and is not easily available in remote clinics.  

Conventional ultrasound remains the preferred choice among radiologists for diagnosing 

NAFLD but assessment for ultrasound remains qualitative and is dependent upon the expertise and 

experience of the physician [39]. A wide range of sensitivities (60–94%) and specificities (66–

95%) for diagnosing NAFLD have been reported for ultrasound [40]. There exists a strong need 

for a noninvasive, precise and an inexpensive screening technology to accurately detect and 

quantify the degree of steatosis in liver because of lipid deposition.  

Several intravascular imaging methods have recently been used for plaque imaging. The 

most frequently used for minimal invasive imaging modality for vessel wall anatomy is 

intravascular ultrasound (IVUS) imaging. In IVUS images, lipid-rich cores of atherosclerotic 

plaques appear hypoechoic. Because of the low contrast between lipid-rich plaques and other 

healthy tissues, additional techniques are utilized for clear distinction [76]. For example, 

intravascular elastography can help differentiate fatty from fibrous plaques based on the tissue 

strain and displacement [77].  

Virtual histology intravascular ultrasound (VH-IVUS) provides information on tissues 

based on the IVUS signal, but therapeutic effectiveness has not been thoroughly validated for 
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plaque analysis [78, 79]. Intravascular optical coherent tomography (IV-OCT) provides high-

resolution superficial images which are adequate to determine the thickness of the fibrous plaque 

[80, 81]. However, IV-OCT suffers from poor imaging depth and the composition of the plaque is 

difficult to discern [82]. Currently, intravascular photoacoustic (IVPA) imaging is being 

extensively studied to provide physiological information based on tissue optical properties and to 

reveal tissue structural information when combined with IVUS or IV-OCT [83, 84]. On the other 

hand, it is difficult to acquire a 1210-nm or 1720-nm pulsed laser source for lipid imaging. There 

are several groups developing new laser sources for lipid imaging, but they are pricey, bulky, and 

not readily available [85-87]. Photothermal strain imaging (pTSI) is based upon the dependence 

of speed of sound on temperature for different types of tissues [88]. Conventional TSI methods 

use microwaves or US as heat sources, while pTSI uses a relatively inexpensive, commercially 

available continuous-wave (CW) laser as a heat source. A major drawback with pTSI is the long 

heating time (1 minute) required to raise the temperature of the tissue. This may influence heat 

conduction into the surrounding tissue and may pose a problem during clinical trials as patients 

may not be able to hold their breath for such long durations to compensate for breathing motion 

[88]. 

Thermal strain imaging (TSI) is primarily used for non-invasive thermometry [43] and 

distinguishing lipids from water bearing tissues [44-46, 48]. TSI is an ultrasound-based imaging 

modality centered upon the principle that the speed of sound in a medium is dependent upon 

temperature. Lipids depict a decreasing sound speed with an increase in temperature whereas water 

bearing tissues exhibit an increasing sound speed with an increase in temperature [21, 22]. The 

derivative of the temporal echo shifts due to change in temperature and is within the safety limit 

of less than 2°C that yields the thermal strain. Triglycerides content is quantified from TSI with 
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areas of positive thermal strains as opposed to water bearing tissue which is registered as a negative 

strain. 

TSI has proven its worth in identifying lipid from water bearing tissues in rabbit 

atherosclerotic plaques model and quantification of liver fat in ob/ob or obese mice [46, 48]. TSI 

has successfully been implemented on a single, commercially available clinical linear array 

transducer (Philips ATL L7-4) using novel beamforming technique called multi-foci beamforming 

to detect lipids in excised human atherosclerotic plaques [59, 60]. Ultrasound probes, depending 

on the region of interest being examined, comes in different shapes and sizes. Linear array 

transducers are primarily designed for imaging shallower organs or small structures whereas 

curved linear array transducers are designed for abdominal imaging based on the geometry and 

center frequency of the transducer. However, TSI has not yet been implemented on a curved linear 

array transducer to image abdominal organs.  

In this paper, we implement multi-foci beamforming on a single commercially available 

curved linear array transducer to be used for imaging and heating of abdominal viewing. This was 

achieved by simulating pressure fields and correlating the results with hydrophone measurements 

followed by exhibiting the results on tissue-mimicking gelatin phantoms with a rubber inclusion 

that mimics lipid contents in terms of sound speed change in response to temperature modulation 

and liposuction fat present inside. A successful implementation of this technology would be 

beneficial for prognosis and monitoring of abdominal organs which are prone to accumulation of 

fat such as NAFLD.  

 



54 
 

4.2 Material and Methods 

4.2.1 Background 

The governing equation for TSI is as follows: 

ⅆu

ⅆz
= (β − λ)ΔT  (4-1) 

where ⅆu/ ⅆz  is called thermal strain. This is the derivative of the apparent displacement, 

u, in the direction of wave propagation (axial direction, z) due to the increase in temperature, ΔT. 

𝜆 [°C−1] is the linear coefficient for sound speed vs. temperature and 𝛽 [°C−1] is the linear 

coefficient of thermal expansion. ΔT [°C] is the temperature change in the tissue. For temperatures 

less than 50°C, the linear coefficient of thermal expansion 𝛽 has an order of magnitude much 

smaller than 𝜆 and can therefore be ignored [47]. Thus, the principal equation for TSI becomes: 

ⅆu

ⅆz
= −λΔT   (4-2) 

At normal body temperature (37°C), for water bearing tissues 𝜆 is positive with typical 

values varying between 0.7 x 10−3 to 1.3 x 10−3 and for lipid bearing tissue λ is negative with 

typical values varying between −1.3 x 10−3 to −2.0 x 10−3 [23]. 𝛽 is about one tenth of λ for water 

bearing tissue with values varying between 7.0 x 10−5 to 1.3 x 10−4 and for lipid bearing tissue β 

has values varying between 1.3 x 10−4 to 2.0 x 10−4 [89].  
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4.2.2 Design of ultrasound heating beam 

Single focus beamforming utilizes all the transducer elements to focus at a solo axial and 

lateral position. Single focus beamforming results in a much lesser area for heating. On the 

contrary, for TSI, a wide heating ultrasound beam is preferred to form a large area for heating. 

This means an ultrasound beam with a larger depth of field and a broad lateral beam width is 

desired [52]. For linear arrays the -6-dB lateral beam width (BW) and depth of field (DOF) can be 

approximated from the following equations, assuming linear propagation [72] 

BW = λ (
Zf

D
) =  λ . (F/#)   (4-3) 

DOF = 8λ (
Zf

D
)

2

=  8λ. (F/#)2  (4-4) 

where 𝜆 [mm] is the ultrasound wavelength, 𝑍𝑓 [mm] is the focal depth and 𝐷 [mm] is the 

width of the active aperture. From the equations above, it can be determined that when dividing 

the transducer elements into sub apertures, at a specific frequency and at a fixed depth, the f-

number increases. Ultimately this leads to an increase in the lateral beam width and depth of field.   

Multi-foci beamforming consists of dividing the transducer aperture, first into three sub-

apertures, then into four sub-apertures. A separate delay profile is applied to each sub-aperture. 

Figure 4.1(a, b) shows the sub-aperture configuration for 3 foci and 4 foci. The 3 foci sub-aperture 

consists of dividing the transducer aperture as 42-44-42 and the 4 foci sub-aperture consists of 

dividing the transducer aperture as 20-44-44-20. Each of the sub-aperture has a different lateral 

focus. Figure 4.1(c, d) shows the lateral and axial focus for each of the sub-aperture. For the 3 foci 

sub-aperture, the lateral focus was at [-4.40 0.00 4.40] and for the 4 foci sub-aperture the lateral 

focus was at [-6.60 -2.20 2.20 6.60]. The lateral focus for 3 foci beam was located between the 
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lateral focus for 4 foci beam. As a result, the cumulative heating beam width is equal to a seven 

foci beam. The 3 foci and 4 foci beams are temporally interleaved creating a uniform area for 

heating resulting in an extended area for heating as shown in Figure 4.2. The axial focus for the 3 

foci sub-aperture and for the 4 foci sub-aperture was fixed at 70 mm, equivalent to the elevation 

focus of the Philips ATL C4-2 transducer. 

Multi-foci beamforming has previously been implemented on a linear array transducer, 

Philips ATL L7-4, for identification of atherosclerosis plaque in human carotid endarterectomy 

specimen [59, 60].  

 

Figure 4.1: Transducer array geometry for a curved linear array transducer, Philips ATL C4-2 in the x-z plane. 

This transducer consists of 128 elements. (a) The 3 foci sub-aperture consist of dividing the transducer elements 

as 42-44-42 and (b) the 4 foci sub-aperture consist of dividing the transducer elements as 20-44-44-20. (c) The 

lateral focus for 3 foci sub-aperture was at [-4.40 0.00 4.40] and for the 4 foci sub-aperture the lateral focus was 
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at [-6.60 -2.20 2.20 6.60] (d). The axial focus for the 3 foci sub-aperture and for the 4 foci sub-aperture was fixed 

at 70 mm. 

 

 

Figure 4.2: The 3 foci and 4 foci beams are temporally interleaved resulting in an extended area for heating. 

 

4.2.3 Sub-aperture configuration 

For single focus beamforming, the axial focus was set at 70 mm which is equal to the 

elevation focus of the transducer and the lateral focus was set at 0 mm. For multi-foci 
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beamforming, the 3 foci sub-aperture consists of dividing the elements as 42-44-42 and the 4 foci 

sub-aperture consists of dividing the elements as 20-44-44-20. To maximize the heating area in 

the far field, the axial focus for the 3 foci sub-aperture was changed to [69.0 70.0 69.0] as show in 

Figure 4.3(c). The axial focus for the 4 foci sub-aperture was changed to [74.0 72.5 72.5 74.0] and 

the lateral focus was changed to [-2.30 -1.90 1.90 2.30] as show in Figure 4.3(d). Each of the sub-

apertures has a unique lateral and axial foci to broaden the heating beam to cover a much larger 

region. Figure 4.3(a, b) shows the aperture division for 3 and 4 foci beams. Once the sub-aperture 

configuration for 3 and 4 foci beams were finalized, delay curves were computed and then pressure 

fields were simulated by using the acoustic simulation package, Field II [73]. Table 4.1 lists the 

parameters for Field II simulation.  

Table 4.1: Parameters for Field II simulation  

Parameter Value 

Number of elements 128 

Center frequency 3.0 MHz 

Sampling frequency 12 MHz (200 MHz for Field II) 

Azimuthal element pitch 0.4246 mm 

Elevation element height 13 mm 

Radius 41.219 mm 

Kerf 0.05 mm 

Attenuation 0.5 dB/cm/MHz 

Sub-aperture size 42-44-42 (3 foci beam) 

20-44-44-20 (4 foci beam) 

Grid size 200 × 200 (X × Z) 
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Figure 4.3: (a) The 3 foci sub-aperture consist of dividing the transducer elements as 42-44-42 and (b) the 4 foci 

sub-aperture consist of dividing the transducer elements as 20-44-44-20. (c) The lateral focus for 3 foci sub-

aperture was at [-4.40 0.00 4.40] and the axial focus was [69.0 70.0 69.0]. (d) The lateral focus for 4 foci sub-

aperture was at [-2.30 -1.90 1.90 2.30] and the axial focus was [74.0 72.5 72.5 74.0]. 

4.2.4 Delay curve calculation 

Assuming the transducer element T0 generates a pulse at t = 0, we would have to determine 

the firing times for the remaining elements for the sound waves to be in-phase at the focal point. 

The first step in determining the time delay is to calculate the distance from the transducer elements 

to the focal point by using the Euclidean distance formula.  

𝑑𝑖 =  √(𝑥𝑖 − 𝑥𝑓)2  + (𝑧𝑖 − 𝑧𝑓)2           (4-5) 
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where (𝑥𝑓 , 𝑧𝑓 ) is the lateral and axial coordinate of the focal point and (𝑥𝑖, 𝑧𝑖 ) is the lateral 

and axial coordinate of the 𝑖𝑡ℎ  transducer element. 

The next step is to determine the time it takes for the ultrasound wave to reach the focal 

point, assuming the speed of sound in soft tissue is c = 1540 ms-1, by using the following equation.  

𝑡𝑖 =
𝑑𝑖

𝑐
    (4-6) 

After determining the triggering time, the time delays are given by the following equation. 

τ𝑖 =  𝑡𝑚𝑎𝑥 −  𝑡𝑖  (4-7) 

4.2.5 Hydrophone measurements 

The design for multi-foci heating beams were then executed on a research ultrasound 

scanner (Verasonics Data Acquisition System [VDAS] Vantage Model, Verasonics, Kirkland, 

WA, USA) connected to a curved linear array transducer, Philips ATL C4-2. The pressure field 

from the Philips ATL C4-2 transducer was measured in a water tank using a hydrophone 

(HGL0200, Onda, Sunnyvale, CA, USA) connected to a computer controlled translational stage. 

The hydrophone maneuvered in a 2-D rectangular plane, with an axial dimension starting from 30 

mm to 100 mm with a step size of 1 mm and a lateral range from -30 mm to 30mm with stepper 

increments of 0.5 mm for generating the pressure field.    



61 
 

4.2.6 Temperature rise simulation  

Temperature rise during TSI was simulated using Comsol software (Comsol Multiphysics 

Version 5.1, Comsol, Burlington, MA, USA). Assuming linear propagation, the acoustic pressure 

field was first derived using Field II. The acoustic intensity is computed using the acoustic pressure 

field and is calculated from the following equation: 

I =
P2

2⍴c
   (4-8) 

where 𝐼 [W/cm2] is the acoustic intensity magnitude, 𝑃 [MPa] is the acoustic pressure 

amplitude, ⍴ [kg/m3] is the density and 𝑐 [m/s] is the speed of sound. 

The amount of heat deposited, Q,  into the tissue is calculated using the following equation: 

Q = 2αI   (4-9) 

where 𝛼 [Np/cm] is the absorption coefficient for tissue and 𝐼 [W/cm2] is the acoustic beam 

intensity.  

A tissue phantom model and a model that portrays material properties of fat was developed 

using Comsol. These models were imported into MATLAB to simulate the thermal map. To model 

the heat transfer within biological tissue, Penne’s bioheat transfer equation (BHTE) is used.  

⍴Cp
∂T

∂t
=  ∇. (k∇T) −  ⍴bCbwb(T − Tb) + Q + Qmet  (4-10) 

where 𝑇 is the temperature, ⍴ is the density, 𝐶𝑝 is the specific heat, 𝑘 is the thermal 

conductivity, ⍴𝑏 is the density of blood, 𝐶𝑏 is the specific heat of blood, 𝑤𝑏 is the blood perfusion 

rate, 𝑇𝑏 is the temperature of the blood, 𝑄 is the heat deposition, the absorbed ultrasound energy 
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calculated from the above stated equation and 𝑄𝑚𝑒𝑡 is the metabolic heat source. Table 4.2 lists 

the input parameters for the BHTE simulation. 

Table 4.2: Parameters for penne’s bioheat transfer equation 

Parameter Tissue Phantom        Fat  

Center frequency (MHz) 3.0        3.0  

Initial Temperature (°C) 24        24  

Heating Duration (°C) 2.0        2.0   

Cooling Duration (°C) 2.0        2.0   

Density of tissue (kg/m3) 1044        900  

Speed of Sound (m/s) 1540        1450  

Attenuation (Np/m/MHz) 8.55        9.0  

Specific Heat (J/(kg.K)) 3710        3411  

Thermal Conductivity (W/(m.K)) 0.59        0.5  

 

For a detailed understanding on the construction of tissue phantom model and how heat is 

induced by focused ultrasound the reader is referred to [90].  

Similarly, the pressure field from hydrophone was also used to simulate the temperature 

rise during TSI. 

4.2.7 Temperature measurements 

The peak pressure was recorded at an axial depth of 60 mm. The peak temperature rise 

during TSI was measured using a thermocouple connected to a data acquisition module 

(QuadTemp, Thermoworks, Lindon, UT, USA). Temperature measurements were recorded 3 

times at the peak pressure (60 mm).  
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4.2.8 Phantom construction 

A homogeneous gelatin phantom was fabricated with a rubber inclusion present inside. The 

reason for incorporating rubber in the phantom is that it produces a large positive thermal strain 

and mirrors properties of lipid (Huang et al. 2007). The homogeneous gelatin phantom was 

manufactured by slowly adding 50 g (5% g/mL) of gelatin from porcine skin (Sigma Aldrich Co., 

MO, USA) to 1000 mL of cold water. The solution was allowed to mix homogeneously till it 

became transparent or reached a temperature of approximately 65°C. Once the solution was clear, 

an additional 10 g (1% g/mL) of cellulose (Sigma Aldrich Co., MO, USA) was added. When the 

entire cellulose was completely dissolved, the mixture was poured into a container and kept inside 

a freezer at -20°C for approximately an hour to solidify. Any air bubbles present on the surface 

were carefully removed [91]. The homogeneous gelatin phantom was then kept outside for an 

adequate amount of time to bring it down to room temperature for TSI measurements. During TSI 

operation the transducer was firmly placed on the surface of the gelatin phantom using a clamp. 

The contact between ultrasound probe and gelatin surface was made using degassed water. 

To further validate our technology, an additional homogeneous gelatin phantom was 

constructed with liposuction fat inside. Liposuction fat was obtained from a patient undergoing 

bilateral breast reduction and a written consent was received. Liposuction fat is a mixture of oil, 

fat, residual fluids and some blood particles at room temperature. It was centrifuged for 5 minutes 

to separate the 3 different layers. The topmost, oil layer was removed and the remaining fat was 

poured into a container and kept inside a -20°C freezer to allow the fat fragments to aggregate to 

create a single large piece of liposuction fat. The liposuction fat was later fixated in a homogeneous 

gelatin phantom for further testing. Similarly, the gelatin phantom was kept outside for an ample 
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time to bring it down to room temperature and the ultrasound transducer was clamped and coupled 

to the surface of the phantom using degassed water.  

4.2.9 TSI pulse sequence 

A typical beam sequence for TSI consists of acquiring frames before and after heating. 

Repeating high intensity multi-foci beam for a longer duration of 2.0 seconds led to an increase in 

temperature via absorption by the propagating medium. Phase based tracking algorithm, Loupas, 

was used to measure displacement between pre and post frames in the axial direction. The kernel 

size for tracking the displacement was 3.0 wavelengths. Thermal strain was computed by taking 

the derivative using a second order savitzky-golay filter of 15 mm in the axial direction. Thermal 

strain maps were color coded within the heating region so that red indicated positive strain 

corresponding to lipid presence and blue indicated negative strain corresponding to water bearing 

tissue. Figure 4.4 shows the pulse sequence for multi-foci TSI.  

Focused imaging was used for acquiring B-mode images before and after heating. A F/2 

configuration was used for transmission and reception of scan lines. The axial focus was set at 60 

mm. The center frequency used for imaging pulses was 3.0 MHz with a pulse length of 2 cycles. 

The heating duration was kept at 2.0 seconds with a duty cycle of 5 %. The center frequency used 

for heating pulses was 3.0 MHz and the number of cycles for 3 foci and 4 foci were kept at 64.  
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Figure 4.4: For TSI pulse sequence, repeating this high intensity multi-foci beam for a longer duration (2.0 

seconds) can lead to an increase in temperature via absorption by the propagating medium. 

4.2.10 Peak negative pressure (PNP) 

The non-thermal effects of multi-foci beamforming were also taken into consideration. 

Mechanical Index (MI) was computed as it is a measure of the acoustic power of the ultrasound 

beam [66]. Peak negative pressure (PNP) is measured during the hydrophone experiment at the 

respective excitation voltage. Mechanical Index is later computed by using the equation MI =

NPP/√centerfrequency.  
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4.3 Results and Discussion 

4.3.1 Optimization of sub-aperture configuration 

It is noteworthy to mention that there is no mathematical equation or function that can 

determine the aperture division for multi-foci beamforming. The division of transducer aperture 

into sub apertures and selection of axial and lateral foci is an optimization problem. This requires 

multiple iterations in order to optimize the area for heating. The current design underwent multiple 

iterations before finalizing on the sub-aperture division and position of the axial and lateral foci. 

The best overall combined beam is chosen using quantitative metrics that would optimize the 

heating area and furthermore increase the temperature of the tissue over an extended area. The 

number of elements in each sub-aperture is determined by considering that fewer elements in each 

sub-aperture may not deposit enough energy to contribute to an increase in tissue temperature or 

that having a large number of elements in each sub-aperture may result in an increase in 

temperature (> 2 °C) that will cause adverse biological effects. 

A different sub-aperture configuration for 3 foci and 4 foci for a linear array transducer 

was implemented in [59, 60] . The 3 foci sub-aperture configuration was [34 30 34] and [34 30 30 

34] for 4 foci sub aperture. For the 3 foci sub aperture the first 15 elements and the last 15 elements 

were not utilized. This sub-aperture configuration was implemented for a curved linear array 

geometry. For the 3 foci sub-aperture, the lateral focus was kept at [-4.40 0.00 4.40] and for the 4 

foci sub-aperture the lateral focus was at [-6.60 -2.20 2.20 6.60]. The axial focus for the 3 foci sub-

aperture and for the 4 foci sub-aperture was fixed at 70 mm. There were fluctuations in pressure 
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along the depth of field and the lateral beam width for the combined beam across the -6-dB 

threshold. 

4.3.2 Pressure field 

Figure 4.5 shows the results of this design in comparison with single focus beamforming. 

Figure 4.5 (a, e) depicts the delay profile for multi-foci and single focus beamforming. Figure 4.5 

(b, f) depicts the pressure field generated using Field II. All pressure fields generated were 

normalized with respect to the peak pressure. 

The depth of field for multi-foci beamforming is ~64 mm (Figure 4.5(d)) which is much 

larger in comparison to the single focus beamforming which is 28 mm (Figure 4.5(h)). Similarly, 

the lateral beam width at 70 mm for multi-foci beamforming is ~13 mm (Figure 4.5(c)) which is 

also higher in comparison to single focus beamforming. The lateral beam width for single focus 

beamforming is 1.5 mm (Figure 4.5(g)). 

Figure 4.6 exhibits the result of the pressure field beam pattern from simulation and from 

hydrophone measurements. Figure 4.7(a – c) exhibits the depth of field plot for 3 Foci, 4 Foci and 

combined pressure beams. The depth of field plot from simulation draws a parallel with results 

from hydrophone measurements. Figure 4.7(d – e) exhibits the lateral beam width plots. The lateral 

beam width plot for each of the beams is along the axial value where maximum pressure occurs 

along the depth of field. For 3 Foci beam, the maximum pressure occurs at a depth of 60 mm, 4 

Foci occurs at 88 mm and the combined beam occurs at 60 mm. The lateral beam width from 

hydrophone measurements for each of the beams showcase a strong association with results from 

simulation.   
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At -6-dB full width half maximum (FWHM) beam width, the heating area for multi-foci 

beamforming for curved linear array transducer was from -7 to +7 mm in the lateral direction and 

32 to 96 mm in the axial direction. Previous study by [60] demonstrating multi-foci beamforming 

implemented on a linear array transducer for identifying lipid rich cores in excised human 

atherosclerotic plaques resulted in a heating area from -4 to +4 mm in the lateral direction and 20 

to 30 mm in the axial direction.  

 Hydrophones designed for diagnostic ultrasound can be damaged under high acoustic 

pressures in the near field. Therefore, the hydrophone is kept at a distance of 30 mm from the 

surface of the transducer, which is common to avoid irreversible damages to the hydrophone. Other 

alternatives such as clad needle hydrophones and optical hydrophones can be used to determine 

the acoustic pressure in the near field [92]. 

The results from multi-foci beamforming for curved linear array transducer demonstrate 

that scanning of organs at a deeper depth is more achievable than a linear array transducer because 

the liver is approximately located 40 to 50 mm below the surface of the skin [93].   
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Figure 4.5: Comparison of multi-foci beamforming with single focus beamforming. (a) Delay profile for multi-

foci beamforming is generated using delay and sum algorithm. (b) Pressure field is simulated with Field II, 

normalized to the peak acoustic pressure. The lateral beam width at various depths is shown in (c). The beam 

width is wider compared to single focus beamforming (g) as this is preferred for TSI. (d) The depth of field plot 

depicts a large depth of field compared to single focus beamforming (h). The depth of field is approximately ~ 

64 mm. Single focus beamforming involves exploiting all of the transducer elements to focus at a solo axial and 

lateral position. The axial and lateral focus were set at 70 mm and 0 mm. (e) Delay curve for single focus 

beamforming and (f) Pressure field simulated with Field II normalized to the peak acoustic pressure. 
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Figure 4.6: (a) – (c) Simulation results from Field II (3 Foci, 4 Foci and Combined Pressure field). (d) – (e) 

Results from hydrophone experiment (3 Foci, 4 Foci and Combined Pressure field). 

 

Figure 4.7: (a) – (c) Depth of field plot both for simulation and hydrophone experiment. (d) – (e) Lateral beam 

width plot both for simulation and hydrophone experiment. 

Tissue thermal response 

 

Figure 4.8 displays the thermal map from both simulated pressure field and hydrophone. 

Figure 4.8(a) represents the simulated temperature map and (b) represents the temperature map 
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generated using pressure field from hydrophone for 2.0 seconds of heating. From simulation, the 

rise in temperature at 60 mm is ~ 1.6°C (Figure 4.8(a)) and the rise in temperature at 60 mm is ~ 

1.8°C (Figure 4.8(b)). 

 

Figure 4.8: Simulation and experimental thermal results. (a) Simulated temperature map for 2.0 seconds of 

heating using penne’s bioheat transfer equation. (b) Temperature map generated using pressure field from 

hydrophone as input for 2.0 seconds of heating using pen 

 

Figure 4.9(a) displays a B-mode image of a homogeneous gelatin phantom with the tip of 

the thermocouple needle at 60 mm. Figure 9(b) displays the actual rise in temperature of the 

homogeneous gelatin phantom during TSI for 2.0 seconds of heating. The temperature rise 

recorded during TSI is ~1.0°C. Moreover, Figure 4.9(b) displays the simulated increase in 

temperature for the tissue and fat model. 

The difference in temperature measurement between experimental value and the value 

from simulation may be due to 1) variation in tissue thermal properties of the fabricated gelatin 

and the tissue phantom properties from simulation and 2) conduction of heat alongside the 

thermocouple needle [60]. Furthermore, Penne’s bioheat transfer equation assumes that 1) 

metabolic heat is distributed linearly within the human body, 2) tissue thermal properties do not 
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change, 3) blood flow rate is constant, and 4) blood temperature is constant and equal to human 

body temperature [94, 95]. Though, this bioheat model is the most frequently used, but Penne’s 

assumptions do not always hold true. The rate of blood flow varies between arteries and capillaries. 

In addition, a lot of convective metabolic heat transfer happens through blood perfusion, and 

metabolic heat exchange often takes place between small and loosely spaced vessels. Ultimately, 

these conditions influence the model of bioheat transfer, which, in turn, does not remain valid and 

precise in all instances. According to the American Institute of Ultrasound in Medicine (AIUM), 

“there have been no significant, adverse biological effects observed due to temperature increases 

less than or equal to 2°C above normal, for exposure durations up to 50 hours”. 

Unlike previously used TSI systems, multi-foci beamforming eliminates the prerequisite 

of separate transducer for heating and rejects the notion for dedicated electronics. Moreover, the 

prospect of implementing this technology on commercially available clinical ultrasound systems 

is promising. 
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Figure 4.9: Temperature rise during TSI was recorded. (a) The tip of the thermocouple can be seen from the 

B-mode image. Temperature measurements were repeated 3 times at a depth of 60 mm. The peak temperature 

rise during TSI was 1.0 oC as shown in (b), measured using a thermocouple. (b) Simulated temperature increase 

for tissue and fat model overlaid on the measured curve. 

4.3.3 Phantom experiment results 

Rubber—Figure 4.10(a) illustrates B-mode with rubber inclusion in the middle. The diameter (14 

mm) of the rubber inclusion is equal to the lateral beam width of the heating beam at 60 mm. With 

a temperature increase of 1.0°C, the expected range of strains are -0.07% to -0.13% for water-

bearing tissue and 0.13% to 0.2% for lipid bearing tissue, calculated using the TSI principle 

equation. The average strain produced in rubber is 0.6%, which is greater than the theoretical value 

as shown in Figure 4.10(b).  

Rubber is known to have a higher thermal conductivity and absorption coefficient. These 

characteristics cause a greater rise in temperature and produces a much larger positive strain in 

rubber.  
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Figure 4.10: B-mode (a) and TSI image (b) of a cylindrical rubber (d = 14 mm) inclusion embedded in gelatin. 

 

Liposuction fat— Figure 4.11(a) illustrates a B-mode with liposuction fat present inside of gelatin 

phantom. TSI pulse sequence was implemented on the phantom. TSI was able to distinguish the 

liposuction fat from the background water-based gelatin as evident in Figure 4.11(b) with an 

average strain of 0.16% which is in accordance with the theoretical value calculated.  

To showcase that our technology can be used to diagnose real life scenarios in particular 

nonalcoholic fatty liver disease, we tested the efficacy of our technology on a gelatin phantom 

model with liposuction fat implanted inside.  

The average strain reported inside the region of interest was calculated by taking an average 

of the number of pixels greater than a specific threshold. This threshold was determined by first 

measuring the root mean square (RMS) value of the non-heating region to the left and right of the 

heating region. The RMS value for non-heating region to the left was 0.029% and the RMS value 

for non-heating region to the right was 0.027%. After calculating the RMS value of the non-heating 

region, an average RMS value was measured. The average RMS value was 0.03%. 
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Figure 4.11: B-mode (a) and TSI image (b) of a liposuction fat embedded in gelatin. 

4.3.4 Delay in TSI pulse sequence 

For the TSI pulse sequence, a short time delay of 50 µs between acquiring pre-frames and 

heating pulse sequence was attributed due to a hardware constraint on the VDAS ultrasound 

scanner. This wait was to allow the hardware to transition from regular B-mode imaging profile to 

a high intensity focused ultrasound profile. The long delay period between heating pulse sequence 

and acquisition of post-frames was adopted to compensate for any motion introduced because of 

the acoustic radiation force [45]. 

4.3.5 Non-thermal effects 

Figure 4.12 depicts the voltage versus PNP curve for the multi-foci heating beam. The PNP 

at a driving voltage of 20.0 V is 3.24 MPa. MI for the heating beam sequence is 1.8. According to 

the Food and Drug Administration (FDA), MI cannot exceed above the approved limit of 1.9 [67]. 

Moreover, MI may not be the most accurate indicator of mechanical bioeffect of ultrasound such 
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as cavitation. Multiple studies in water have shown that long ultrasound pulses will cause inertial 

cavitation (IC) activity [96, 97]. 

 

Figure 4.12: TSI pulse sequence is run at an excitation voltage of 20.0 V. Peak negative pressure (PNP) was 

measured in a water tank using a hydrophone. Mechanical Index (= PNP / √(𝑐𝑒𝑛𝑡𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)) was calculated 

to be 1.8. For clinical translation, it is necessary to have the MI below 1.9 to meet the FDA-approved limit. 

4.3.6 Limitations 

There are a few limitations that are needed to be taken into consideration with TSI systems 

for future in vivo experiments. These include potential thermal damages to transducer, 

physiological motion arising from breathing, cardiac pulsations and blood perfusion in the liver. 

The TSI heating beams were implemented on the VDAS. The VDAS was connected to an 

external power source to draw more voltage from the system. This generated high intensity focused 

ultrasound beams increasing the temperature of the tissue via absorption by the propagating 
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medium. The current excitation voltage was set at 20.0 V. Driving the transducer at a high voltage 

for a long period of time or repeated TSI pulse sequences without any delay in between can cause 

severe irreversible effects to the piezo ceramic materials of the transducer elements. With 

advancements in transducer technology, development of new ultrasound probes for heating or 

acoustic radiation force impulse (ARFI) transducers will have to compensate for thermal damages 

to the piezo ceramic materials. A possible solution would be to design a transducer with a built-in 

cooling mechanism. 

The naturally occurring physiological motion arising from breathing and cardiac pulsations 

during in-vivo testing may result in poor estimation of displacement. For a human subject study, 

the concern with motion arising from breathing may be resolved by requesting the patients to hold 

their breath for a few seconds (< 5 s). To compensate for cardiac pulsations, B-mode frames before 

and after heating can be synchronized with an ECG trigger. 

During thermal simulation blood perfusion in the liver was not considered. For in-vivo 

operations, blood perfusion in liver may possibly affect the temperature of the tissue. Additional 

simulations should be carried out to understand the effect of blood perfusion. 

The next phase of the project would involve carrying out ex-vivo experiments with excised 

human liver tissue embedded in gelatin. The excised human liver tissue would be attained from 

patients diagnosed with fatty liver disease. However, for in-vivo testing on patients diagnosed with 

fatty liver disease, further investigation needs to be carried out to devise a heating beam to have a 

larger lateral beam width that is wide enough to cover a sizable portion of the liver as the adipose 

distribution across the liver is heterogeneous.  
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4.3.7 Future applications 

The use of multi-foci beamforming can be twofold, not only can it be used for heating the 

tissue but also to generate an acoustic radiation force push which is beneficial in determining the 

bio-mechanical properties of tissue using elastography methods such as acoustic radiation force 

impulse (ARFI) imaging. Currently, no such multimodal imaging tool exists. A successful 

implementation of this dual-modality imaging system will be a step towards a novel clinical system 

which would permit the creation of a single co-registered image featuring information regarding 

lipid content and stiffness of tissue.   
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4.4 Conclusion 

In this paper, multi-foci beamforming implemented on a curved linear array transducer for 

abdominal imaging was reported. The multi-foci beam yielded an extended area of uniform heating 

from -7 to +7 mm in the lateral direction and 32 to 96 mm in the axial direction, evidenced in 

hydrophone measurements. The maximum temperature rise at the focal point measured 1.0°C 

within 2.0 seconds which is within the safety limits before any adverse biological effects develop. 

TSI pulse sequence utilizing multi-foci beamforming identified with high contrast rubber inclusion 

and liposuction fat embedded in tissue-mimicking gelatin phantoms. This work warrants further 

transitional investigation using excised human liver tissue diagnosed with fatty liver disease. 
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5.0 Multi-Foci Beamforming for Simultaneous Acoustic Radiation Force Impulse And 

Thermal Strain Imaging 

5.1 Introduction 

Currently, manual palpation is the preferred choice for a routine clinical exam to physically 

determine the health of tissue. For instance, during routine breast exams, manual palpation is 

valuable in identifying stiff lesions in the breast as an early sign of breast cancer. However, 

assessment from manual palpation is subjective and more inclined towards large and superficial 

structures [24, 98]. Recently, the demand for methods designed to access the biomechanical 

properties of tissues with improved sensitivity and specificity in comparison to manual palpation 

has increased. Ultrasound-based elasticity imaging methods has shown its potential in determining 

the stiffness of soft tissues deep within the human body. The elasticity of soft tissues has been 

correlated to the pathological conditions within tissue such that a hard tissue indicates the presence 

of a stiffer mass, inflammation and infection whereas a soft or compliant tissue is an indication of 

a healthy tissue [24, 98, 99].  

Conventional ultrasound, B-mode imaging, utilizes acoustic impedance properties to 

differentiate among regions of tissues. In contrast, ultrasound-based elasticity imaging techniques 

utilize biomechanical properties to differentiate among regions of tissues. This is achieved by 

excitation of soft tissues and monitoring the response as a result of the excitation. This response 

can yield qualitative or quantitative information about the stiffness of the tissue [24, 98, 99]. The 

methods of excitation are numerous and can be introduced by applying an external force, for 

example an ultrasound transducer compressed against the skin surface in strain imaging [100-102]. 
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Likewise, an external mechanical vibrator can be used to oscillate the tissue in sonoelasticity, 

transient elastography, magnetic resonance elastography (MRE) [103, 104]. Moreover, naturally 

occurring physiological based sources such as breathing, cardiac rhythms and arterial pulsations 

can be used to reveal elasticity information in cardiac strain-rate imaging [77, 105-108]. In our 

work, we will focus on elasticity imaging methods based upon acoustic radiation force (ARF).  

ARF based elasticity methods applies acoustic radiation force as the source of mechanical 

excitation. Acoustic radiation force results from the transfer of momentum from the ultrasonic 

wave to the tissue due to the absorption and scattering mechanisms [109]. There are two elasticity 

imaging methods based upon ARF excitation, shear wave elasticity imaging (SWEI) and acoustic 

radiation force impulse imaging (ARFI) [109, 110].  

ARF methods generate shear waves within tissue perpendicular to the direction of the 

ultrasound wave. SWEI methods monitor the propagating speed of the shear waves away from the 

region of excitation (ROE) to calculate the shear modulus. Shear modulus is given by the following 

equation, which is a measure of tissue elasticity. 

𝜇 = 𝜌𝑐𝑠
2   (5-1) 

where 𝜇 is the shear modulus [Pa], 𝜌 is density of soft tissue which is assumed to be 1000 

kg/m3 and 𝑐𝑠 is the shear wave propagation [m/s]. Higher shear wave speed corresponds to stiffer 

tissues and slower shear wave speed corresponds to compliant tissues [110, 111].     

ARFI monitors the response of the tissue in the direction of wave propagation i.e. within 

the radiation force ROE. The magnitude of the acoustic radiation force is calculated by the 

following equation: 
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𝐹 =  
2𝛼𝐼

𝑐
   (5-2) 

where 𝐹 [kg/(s2cm2)] is the magnitude of the radiation force, 𝛼 [Np/m] is the acoustic 

absorption coefficient, 𝐼 [W/cm2] is the acoustic intensity of the beam and 𝑐 [m/s] is the speed of 

sound. The magnitude of this force is typically on the order of dynes. This force is in the form of 

a body force [24, 109].  

ARFI methods utilize short durations of high intensity focused ultrasound pulse to generate 

a push in a localized region of excitation. The response of the tissue inside the region of excitation 

is determined by estimating the displacement using correlation-based methods. ARFI creates tissue 

displacement in the range of 1 to 15 𝜇𝑚. The magnitude of the tissue displacement is inversely 

proportional to the tissue elastic shear modulus. Smaller displacements are related to stiffer tissues 

and larger displacements are related to compliant tissues [24, 109]. ARFI imaging is beneficial in 

revealing biomechanical information of tissues which is not possible with conventional B-mode 

imaging. ARFI imaging has been used in clinics for multiple applications. For example, ARFI 

imaging has been used to access the stiffness of both cardiac and vascular tissues during the cardiac 

cycle [112, 113] and it has been valuable in distinguishing the soft vulnerable atherosclerosis 

plaques from the stiffer and more stable ones [114, 115]. It has also been used in cancer imaging 

to identify the stiffer tumor lesions in the breast [116]. Furthermore, ARFI imaging is essential in 

determining the structural information such as the size of lesions present in prostrate and kidneys 

that are difficulty to visualize with conventional ultrasound B-mode [117]. 

In ARFI, a single transducer is used to generate the push and monitor the deformation 

response. At a given lateral position, a typical ARFI pulse sequence consists of 1) a reference pulse 

(A-line) which serves as a baseline position for the tissue before applying acoustic radiation force 
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2) followed by pushing pulses along the same reference A-line responsible for generating the 

acoustic radiation force to introduce motion in a localized region and 3) then a series of tracking 

pulses which are immediately applied after acoustic radiation force to record the deformation 

response and recovery of the soft tissue. This combination of reference pulse, pushing pulse and 

tracking pulse is replicated across the aperture in the lateral direction to drive biomechanical 

information [118].  

The shape of the displacement field, generated by the high intensity focused acoustic 

pulses, is dependent upon the transducer focal configurations which is characterized by the 

dimensionless f-number, (𝐹/#).  

𝐹/# =  
𝑧

𝐷
   (5-3) 

where 𝑧 is the acoustic focal depth and 𝐷 is the width of the active aperture. The active 

aperture width, 𝐷, is defined by the following equation: 

𝐷 = 𝑁 . 𝑑   (5-4) 

where 𝑁 is the number of elements and 𝑑 is the element pitch. Element pitch is the distance 

between the centers of two successive transducer elements.  

For a given f-number of 1.3 at a focal depth of 25 mm, the first step involves computing 

the number of pushing lines. This step is similar to calculating the number of scan lines in 

beamforming in linear array transducer for focused imaging. Using the equation for f-number, the 

aperture width is calculated at 65.38 wavelengths. This is followed by calculating the number of 

transducer elements needed to generate the pushing line. The number of active elements required 

were 65 (= 65.38 / 1.00). The element pitch was 1.00 wavelengths. 
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A lower f-number indicates a greater number of active elements for pushing, therefore 

depositing higher amounts of energy and generating greater displacements at the expense of a 

smaller ROE. A trade off exists between the f-number and the number of active elements. Table 1 

summarizes the results of the number of pushing lines and the number of active elements for 

different f-number configurations.  

Table 5.1: The number of pushing lines and the number of active elements for different f-number 

configurations 

F/# No. of Lines No. of Active Elements 

1.0 44 85 

1.3 64 65 

1.5 72 57 

1.7 78 51 

2.0 86 43 

 

The devised multi-foci beam can also be used to generate an acoustic radiation force push. 

This multi-foci push is localized to a specific region i.e. the region of excitation and it generates 

displacement in a smaller window as opposed to a conventional ARFI (parallel transmit and 

receive) where a large field of view (FOV) is displaced by the radiation force. The multi-foci beam 

can be simultaneously used for ARFI push and TSI heating. In ARFI imaging, the time it takes for 

the tissue to return back to its baseline position after the acoustic radiation force is over a period 

of 1 to 10 ms. Moreover, heating the tissue takes hundreds of milliseconds and declines in seconds. 

These differences in temporal responses for ARFI and TSI can be monitored simultaneously.   
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5.2 Materials and Methods 

5.2.1 Excised Human Liver Tissue 

Excised human liver tissue specimens were obtained from the Pitt Biospecimen Core 

(PBC) facility under an approved University of Pittsburgh IRB code (19030357). Two samples 

were surgically excised from two patients diagnosed with alcoholic liver diseases (ALD). The 

samples were kept frozen at -80°C. PBC also provided the pathology reports, approved by a 

physician, for each patient. The pathology report for the first specimen identified the patient as a 

55 to 60-year-old male, diagnosed with alcoholic liver disease, cirrhosis and severe 

encephalopathy. A CT-scan of the abdomen was performed in 2010 to verify the cirrhosis in liver 

and the patient was recommended a liver transplant. The pathology report for the second specimen 

identified the patient as a 65 to 70-year-old male, diagnosed with alcoholic liver disease. A CT-

scan of the abdomen in 2009 showed cirrhotic liver morphology with stigmata of portal 

hypertension and this patient was also recommended a liver transplant. A prolonged history of 

drinking heavily can lead to a severe and potentially fatal condition, eventually requiring a liver 

transplant. Figure 5.1 shows the excised human liver tissue specimens. The excised human liver 

tissues were defrosted and embedded in gelatin phantoms for ex-vivo measurements. A tissue 

mimicking gelatin phantom was fabricated. 
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Figure 5.1: Excised human liver tissue specimens diagnosed with alcoholic liver disease 
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5.2.2 Phantom Construction 

The homogeneous gelatin phantom was manufactured by gradually adding 50 g (5% g/mL) 

of porcine skin gelatin (Sigma Aldrich Co., MO, USA) to 1000 mL of cold water. The solution 

was allowed to mix homogeneously until it became transparent or reached an approximate 

temperature of 65°C. A further 10 g (1% g/mL) of cellulose (Sigma Aldrich Co., MO, USA) was 

added once the solution was clear. When the whole cellulose was completely dissolved, the 

mixture was poured into an empty container and kept inside the freezer at -20°C for about an hour 

to solidify. Any air bubbles on the surface have been carefully removed. The homogeneous gelatin 

phantom was then kept outside for a sufficient amount of time to reduce it to room temperature for 

ARFI and TSI measurements. 

5.2.3 ARFI-TSI Imaging Pulse Sequence 

The ARFI pulse sequence consists of acquiring pre-frames followed by a multi-foci push 

and then acquiring post-frames. Phase-shift method, Loupas, was used for tracking displacement 

in the axial direction. This algorithm utilizes the demodulated in-phase and quadrature data for 

tracking displacement as opposed to a cross-correlation method that operates in the time-domain 

on RF data. This segment of the ultrasound pulse sequence discloses information about the 

mechanical properties of the tissue. Tissue mimicking homogeneous gelatin phantom was 

manufactured to display the displacement map resulting from the radiation force. 

For TSI pulse sequence, repeating this high intensity multi-foci beam for a longer duration 

(2.0 seconds) can lead to an increase in temperature via absorption by the propagating medium. 

Ultimately, post frames are collected at the end of this heating duration. These post-frames are 
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used to track displacement in the axial direction. Thermal strain is computed by taking the 

derivative in the axial direction. Thermal strain maps are color coded within the heating region 

such that red indicates a positive strain implying lipid presence and blue indicates a negative strain 

implying to water bearing tissue.  

To measure the degree of steatosis in each of the excised human liver tissues by TSI, lipid 

composition [%] was defined as a metric. First, a region of interest (ROI) was determined i.e. the 

liver region insonified by the heating beam was identified from the US B-mode image. Then the 

number of pixels representing the positive thermal strain inside the liver ROI was determined. 

Lipid composition was calculated by dividing the pixels indicating the positive thermal strain over 

the liver ROI insonified by the heating beam. A threshold was predetermined for pixels which was 

counted towards the positive thermal strain. This threshold was computed by taking an average of 

the root mean square (RMS) values outside the heating region for each of the strain maps. The 

average RMS value calculated was 0.017%.   

The stiffness of the liver insonified by the ARFI pushing beam was calculated by the mean 

ARFI displacement magnitude inside the ROI. 

5.2.4 Tissue Thermal Response 

In addition to generating the acoustic radiation force, acoustic energy is absorbed resulting 

in heat generated within the tissue. Temperature rise during ARFI imaging was measured using a 

Type T needle sheathed thermocouple (MT-23/5, Thermoworks, UT, USA) connected to a data 

acquisition module (QuadTemp, Thermoworks, Lindon, UT, USA). Temperature measurements 
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were recorded 3 times at an axial depth of 60 mm and 0 mm in the lateral direction. In the preceding 

chapter, temperature rise was measured for TSI pulse sequence. 

5.2.5 Experimental Set-up 

Ultrasound gel was used as a coupling medium between the transducer surface and the 

surface of the gelatin phantom. Commercially available ultrasound gel contains a lot of air bubbles. 

Ultrasound gel was centrifuged to remove the presence of any air bubbles. The transducer was 

clamped using an ultrasound probe holder. The ultrasound probe holder was mounted on a 

motorized linear translation stage (BiSlide MN10, Velmex, Bloomfield, NY, USA). The 

translation stage incorporates a stepper motor driven to sweep across the specimen during 

ultrasound scanning. 400 steps per revolution of the stepper motor corresponds to 1.0 mm of 

distance traversed.  

For specimen 1, ultrasound scanning was performed on the longitudinal or long axis i.e. 

scanning was carried out in a plane parallel to the liver. A total of 5 slices were acquired. Each TSI 

slice was 1 mm apart. For specimen 2, ultrasound scanning was performed on the transverse or 

short axis i.e. scanning was carried out in a plane perpendicular to the liver. A total of 8 slices were 

acquired and each TSI slice was 3 mm apart. 

5.2.6 Histology 

After performing TSI, excised human liver tissue specimens underwent histopathological 

process to determine the amount of adipose tissue. Fresh frozen sections of the tissue, 10 – 50 µm 

in thickness, were cut and stained with oil red o (ORO). The oil red o stain is used to identify the 



90 
 

presence of fat in specimens of fatty liver disease. Under oil red o staining, the red dye indicates 

lipid presence and the blue dye indicates water bearing tissue. To quantify the degree of steatosis 

in each liver specimen, the area corresponding to the amount of lipid present in the specimen was 

calculated. This was done by dividing the area of red stain over the total area of the specimen. This 

image analysis was conducted using the ImageJ software (National Institutes of Health, Bethesda, 

MD). Livers with percentage steatosis ≥20% were considered fatty [48]. 

5.2.7 Statistical Analyses 

A linear regression, Pearson’s correlation coefficient (R2), was used to determine the 

correlation between the lipid composition established by histology and TSI. Statistical analysis 

was carried out using the statistics toolbox of MATLAB R2020a. 
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5.3 Results and Discussion 

5.3.1 Multi-foci ARFI Push 

Figure 5.2 shows the results of testing the multi-foci ultrasound beam on a homogeneous 

gelatin phantom. Figure 5.2(a) shows a B-mode image of the gelatin phantom. Figure 5.2(b) 

displays an ARFI displacement map. The displacement is generated in an axial region 

corresponding to the depth of field plot from the Field II simulation, as indicated on the ARFI 

displacement map. Figure 5.2(c) shows a depth of field plot similar to the simulation result. Plane 

wave imaging (PWI) was used for tracking. PWI utilizes an unfocused transmit beam where all 

the transducer elements are fired simultaneously at the same time. PWI yields a higher frame rate 

compromising image resolution and contrast.  

In an ARFI displacement map, darker regions represent a decrease displacement indicating 

the presence of a stiffer mass compared to the bright copper shade which represents higher 

displacement indicating the presence of a soft, malleable mass.   
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Figure 5.2: Multi-foci ARFI push was tested on a homogeneous gelatin phantom. (a) B-mode image of the 

gelatin phantom. Plane wave imaging was used instead of focused imaging to generate the b-mode image. (b) 

ARFI displacement map shown at the time of peak displacement. Displacement is registered in an axial window 

corresponding to the depth of field from Field II simulation. (c) the depth of field plot. The peak displacement 

occurs at 60 mm which correlates with results from simulation. 
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5.3.2 Temperature Measurement 

Figure 5.3 displays the rise in temperature of the homogeneous gelatin phantom during the 

multi-foci ARFI pulse sequence. The temperature rise recorded during the multi-foci ARFI 

pushing pulse is barely perceptible. The maximum temperature rise at the focal point for ARFI 

imaging varies from 0.02°C to 0.2°C [98]. 

 

Figure 5.3: Temperature rise recorded during multi-foci ARFI pushing pulse  

 

 

 

 



94 
 

5.3.3 Excised Human Liver Tissue Results 

To demonstrate that our technology can be used to diagnose real-life ailments, in particular 

nonalcoholic fatty liver disease, we tested the effectiveness of the combined ARFI-TSI pulse 

sequence on multiple gelatin phantom models with excised human liver tissue embedded inside. 

Figure 5.4(a) shows the B-mode image of the excised human liver tissue implanted in gelatin. The 

approximate region of heating is indicated by the dotted curved red line in Figure 5.4(a). The liver 

contour is marked by the dashed white line and the strain map is overlaid on the B-mode image in 

Figure 5.4(b). Figure 5.4(c) shows the corresponding oil red o histology. The black box on the 

strain map and histology indicates the heating area. Figure 5.4(d) reveals the corresponding 

displacement map overlaid on the B-mode. Histologically determined lipid composition and 

results from TSI have shown a strong correlation. The lipid composition determined by TSI for 

this slice of liver was 90.2% and 86.3% from histology. The mean displacement inside the ROI 

was 6.35 µm. 

For specimens with larger dimensions, a routine procedure during histology is to cut the 

specimen into 2 pieces. The specimens are cut in a manner so that they can correctly overlay on 

top of the microscopic slide. Figure 5.4(c) shows the specimen cut into 2 sections.  

Figure 5.5 shows the results of Pearson's correlation coefficient between lipid composition 

determined by histology and TSI for the 5 sections. A correlation of R2 = 0.67 between the two 

measurements was observed.  
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Figure 5.4: (a) B-mode image of the excised human liver tissue implanted in gelatin. (b) Strain map is overlaid 

on the b-mode image. (c) The corresponding oil red o histology. The black box on strain map and histology 

matches to the heating area. (d) corresponding displacement map overlaid on the B-mode. 
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Figure 5.5: Pearson's correlation coefficient (R2 = 0.67) between lipid composition determined by histology and 

TSI for the 5 sections. 

 

The average displacement value reported within the ROE is more of a qualitative metric 

than a quantitative data. ARFI imaging does not disclose quantitative metric such as the speed of 

shear wave that can be used to measure the shear modulus. The mean displacement value reported 

by ARFI imaging may be less effective in revealing the biomechanical properties of soft tissue 

because of the limited field of view for multi-foci push. To resolve this challenge, ARFI 

measurements were also recorded in the adjacent regions i.e. on the homogeneous gelatin phantom. 

Figure 5.7 shows the mean ARFI displacement for liver and gelatin. The mean ARFI displacement 

inside the liver was 49% lower compared to the neighboring gelatin, indicating stiffer mechanical 

properties. 
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Figure 5.7: Mean ARFI displacement inside the liver and neighboring gelatin for the 5 sections. 

 

One limitation of this study was the sample size of the liver tissues. An inadequate number 

of excised human liver tissue samples were used. Also, the contrast of results between the excised 

human liver tissue samples and a control group was unable to be demonstrated. Because of this, a 

complete statistical analysis was not carried out and quantitative measurements of the sensitivity 

and specificity of TSI were not performed preventing to generate a receiver operating characteristic 

(ROC) curve. Moreover, this study does not incorporate specimens that would reflect an entire 

spectrum of steatosis. These excised human liver tissue specimens were acquired from patients 

diagnosed with ALD with a history of alcohol abuse, exhibiting an excessive buildup of fat inside 

the liver cells. For future studies, it would be beneficial to have specimens that can be divided into 
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4 categories according to the severity of NAFLD: no NAFLD (≤5%), mild NAFLD (5% - 33%), 

moderate NAFLD (34% - 66%), and severe NAFLD (>66%) [119]. 

The average liver diameter for a healthy adult is roughly 14.0 cm [120]. The lateral beam 

width for TSI at 60 mm is 14 mm. The lesions arising from deposition of hepatic lipids are 

unevenly distributed throughout the liver parenchyma. The current design covers a very small 

fraction of the liver volume. This may give a rise to sampling error and staging inaccuracies. 

Further research for a design of multi-foci beamforming that can cover a substantial width of the 

liver is needed.  

For clinical applications where visualization of structural information is of significance, 

for example in lesion identification and ablation procedure, a multi-foci beam with a large field of 

view can be advantageous. With the current design, ARFI imaging reveals qualitative information 

only within the ROE, thus neighboring regions next to ROE must be excited to showcase the 

contrast in displacement measurements. This will help to separate the rigid mass from the 

conforming masses. A possible area of investigation would be in cancer imaging, where ARFI can 

be used to differentiate malignant and benign lesions based on their displacement differences. 

 

 

 

 

 



99 
 

5.4 Conclusion 

This dual modality imaging system provides a relatively uniform heating for TSI 

applications over an extended area. In addition, this system also generates an acoustic radiation 

force push which uncovers biomechanical properties of soft tissue. Lipid enriched excised human 

liver tissues were detected successfully in good agreement with histological findings. Furthermore, 

the mean displacement value calculated also suggested the presence of a stiffer mass. The ability 

to use this dual modality ARFI-TSI imaging system as a non-invasive screening test could spare 

the patients from medical complications and cost of a liver biopsy. 
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6.0 Conclusions and Future Work 

6.1 Conclusions 

The purpose of this work is to demonstrate a dual modality imaging system i.e. combining 

thermal strain imaging (TSI) and acoustic radiation force impulse (ARFI) imaging as a tool for 

measuring the amount of adipose tissue build up inside liver and assessing the bio-mechanical 

properties of liver. The results presented in this dissertation have demonstrated that TSI can be 

used to distinguish lipid bearing tissue from water bearing tissue. Moreover, further investigation 

indicated that multi-foci beamforming can be used to generate an acoustic radiation force in the 

direction of wave propagation.  

Chapter 2 entails the utilization of a custom designed thermal strain imaging system for 

identification of lipids in obese mice. This custom engineered thermal strain imaging system had 

a separate transducer for heating and imaging. This setup required dedicated electronics and skilled 

expertise in setting up the equipment for scanning. Moreover, the center frequency for imaging 

(21 MHz) was impractical for scanning abdominal organs.  These fundamental limitations of 

separate transducers lead to the discovery of multi-foci beamforming. Multi-foci beamforming 

involves dividing the transducer elements into three sub-aperture and four sub-aperture. Each sub-

aperture has a unique axial and lateral focus. The beams from 3 and 4 foci are interleaved thus 

producing a broad homogeneous region that can be used both for heating and pushing.  
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6.2 Future Work 

6.2.1 Size of Heating Area 

The multi-foci beamforming approach presented in this work for a curved linear array 

transducer yields an extended area of uniform heating from -7 to +7 mm in the lateral direction 

and 32 to 96 mm in the axial direction. However, for in-vivo testing on patients diagnosed with 

fatty liver disease, additional research needs to be carried out to devise a heating beam with a larger 

lateral beam width that is wide enough to cover a sizable portion of the liver as the lipid distribution 

across the liver is heterogeneous. A possible alternative is to explore an ultrasound elasticity 

imaging method, comb push ultrasound shear elastography (CUSE), where a large field of view 

(FOV) is insonofied. In CUSE, the elements of a linear array transducer are divided into sub-

groups and each sub-group is responsible for generating a focused ultrasound beam arranged in a 

comb pattern (comb-push) for shear wave propagation [121, 122]. The sub-group division 

specified in CUSE can be studied for the sub-aperture configuration for multi-foci beamforming.  

6.2.2 Motion Artifact Correction 

Motion correction will need to be addressed when TSI is introduced in clinics. The 

displacement signal recorded through TSI is typically on the order of microns. However, hand 

motion introduced by sonographer during scanning, respiratory motion of the patient, and cardiac 

motion all have greater orders of magnitude and will utterly corrupt the displacement signal. This 

will produce a signal with a poor signal-to-noise ratio (SNR). However, these issues can be 

addressed by the following. The patients can be requested to hold their breath for a few seconds 
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(<5 s) to prevent motion arising from breathing. To compensate for cardiac pulsations, B-mode 

frames acquired before and after heating can be synchronized with an ECG trigger. Alternatively, 

advance signal processing techniques using time series analysis can be used to reduce motion 

artifact in US-TSI [61]. Moreover, other speckle tracking algorithms can be explored such as 

Bayesian speckle tracking for estimating ultrasound displacement [62, 63]. In the recent years, 

there has been a surge of machine-learning algorithms in ultrasonics. Machine-learning algorithms 

that features speckle tracking can be used for displacement estimation [64, 65]. 

Currently, we have successfully programmed an ARFI-TSI pulse sequence for a curved 

linear array transducer and tested benchtop using tissue mimicking phantoms and performed ex 

vivo experiments on human liver samples, one step towards a clinical translation of this 

technology.  The results from excised human liver tissue has been validated against histology. The 

impact of the project will be influential in the NAFLD management, being complemented with 

laboratory assays to provide 1) critical diagnostic and prognostic information, 2) cost effective 

monitoring of the disease and treatment response. 
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