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Towards a Somatosensory Neuroprosthesis: Characterizing Microstimulation of

the DRG and Spinal Cord for Sensory Restoration

Ameya Chandrashekhar Nanivadekar, PhD

University of Pittsburgh, 2020

Restoring sensation is key to making prostheses more functional. While there have been

important advances in the design and actuation of prosthetic limbs, these devices lack a

means for providing direct sensory feedback. As such, users must infer information about

limb state from cues like pressure on the residual limb, resulting in diminished control of

prostheses, and reduced adoption and use of these technologies.

The dorsal root ganglia (DRG) are an attractive target for a somatosensory neural in-

terface. The DRG are enlargements of the spinal nerve that house the cell bodies of primary

sensory neurons and provide access to a heterogenous population of somatosensory fibers.

Importantly, the separation of motor and sensory pathways at the spinal roots allows re-

cruitment of sensory afferents without coactivating motor efferents which may otherwise

contaminate a myoelectric control interface.

This dissertation examines a novel way of interfacing with the DRG and dorsal roots

using epineural electrodes, that takes us a step closer towards developing a somatosensory

neuroprosthesis. I begin with an animal model to compare the recruitment properties of

epineural and penetrating electrodes when stimulating afferents in the lumbar DRG. In the

next section, I develop a computational model to explain the mechanism of recruitment

of afferents. Finally, I describe a series of experiments in human upper-limb amputees to

characterize the modality and utility of sensations evoked when the cervical spinal cord and

spinal roots were stimulated.

keywords: dorsal root ganglion, epineural electrodes, computational modeling, spinal cord

stimulation, somatosensory feedback, amputation, neuroprosthesis.
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1.0 Introduction

1.1 The Importance of Somatosensory Feedback

We experience our world through sensation. The human perceptual system has remark-

able adaptations to extract tactile, proprioceptive and nociceptive information from our en-

vironment. Specialized receptors transmit this information at a high resolution to the brain

where an integration of these sensory inputs creates the perception of our environment. We

rely on this percept to inform our interaction with the surroundings, yet we are not always

consciously aware of it. The ability to feel or sense objects predicates how we interact with

them therefore, any disruption can be disorienting and in several cases debilitating.

The loss of somatosensory feedback has a profound impact on the ability of individuals to

interact with their environment and perform activities of daily living. Feedback is required to

monitor the physical state of each body segment, maintain stability amidst perturbations,

and regulate changes in control, especially for complex tasks such as reaching, standing,

and walking. The importance of this feedback is demonstrated in individuals with diabetic

neuropathy for example. These patients have shown an increased risk of falling due to a loss

of sensation from the foot [1]. Patients with large-fiber sensory neuropathies have also shown

severe motor impairments and difficulty maintaining postural stability [2]. Similarly, loss of

sensation in the upper extremities affects fine motor control and the ability to coordinate

movements at multiple joints [3]. Often individuals have to visually attend to the task being

performed in order to supplement the reduced sensory feedback [4].

These issues are mirrored in individuals with amputation. In addition to learning to

use an external prosthesis, amputees have to devise ways of compensating for the lack of

sensory feedback in current state-of-the-art prosthetic devices. The current repertoire of

prostheses ranges from simple cosmetic hands and feet to cable actuated hooks and state-of-

the-art dexterous robotic limbs. However none of these devices provide tactile feedback and

intuitive control remains elusive. In fact, users prefer to use simpler body powered prostheses

because they can infer information about limb state from pressure exerted on the residual
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limb. For upper limb amputees, object manipulation and regulating grip force using visual

feedback alone is slow and cumbersome. Trans-tibial amputees compensate for a lack of

ankle proprioception by increasing reliance on visual feedback, putting them at risk for falls

when visual feedback is unreliable [5, 6, 7]. Additionally, reduced sensory feedback makes

activities such as climbing stairs or walking on uneven terrain difficult and dangerous with

a prosthetic limb [8].

In the United States alone nearly 200,000 people undergo the amputation of a limb for

a variety of reasons each year [9]. Of these potential prosthesis users, only 40% continue

to use their prosthesis [10]. The rate of adoption of prostheses is limited by poor device

functionality, weight, discomfort and a lack of sensory feedback [11, 12, 13, 14]. Without the

development of a prosthetic device that can incorporate sensory feedback, amputees continue

to experience a severe reduction in their quality of life.

Developing a means to restore sensation after amputation is the primary objective of

the work presented in this thesis. This thesis evaluates the dorsal root ganglion and lateral

spinal cord as a target for a potential somatosensory neural interface (SSNI). The discussion

focuses on the performance and mechanism of recruitment of afferents at the DRG via

epineural stimulation. Additionally, the efficacy of lateral spinal cord stimulation to provide

focal, stable and graded sensory feedback in upper limb amputees is demonstrated. While

DRG and dorsal rootlet stimulation is discussed in the context of a prosthetic device for

upper limb amputees the principles and methods of providing sensory feedback should be

generalizable to lower limb prosthetics, and distal neuropathies where artifical somatosensory

feedback is necessary.

Currently, learning to use a prosthetic devices is considered akin to learning skilled tool

use [15]. However, appropriate feedback referred to an artificial hand can to lead to percep-

tions of embodiment [16]. The ultimate goal of this work would lead to the development of

a SSNI that can produce dexterous movements and naturalistic sensations.
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1.2 Delivering Artificial Somatosensory Feedback

Several research groups have explored a variety of approaches to provide sensory feedback

to amputees and examined the effects of feedback on prosthetic control. Novel solutions for

somatosensory feedback include sensory substitution, direct or transcutaneous peripheral

nerve stimulation, spinal cord stimulation, and muscle reinnervation.

Figure 1.1: Illustration of different approaches to restore the sense of touch through a pe-

ripheral nerve interface. A) Regenerative electrodes. B) Extra-fascicular electrodes. C)

Intra-fascicular electrodes. D) Dorsal root ganglion implant. E) Targeted sensory reinner-

vation. Adapted from [17]
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1.2.1 Sensory Substitution

Non-invasive devices have been used to provide feedback via sensory substitution wherein

an alternative modality replaces the one usually employed by the intact pathway. An early

study by Mann et al involved applying vibration on the skin of the residual limb to convey

limb position information to the prosthetic user [18]. This study showed that error on a

task where the position of the prosthetic had to be matched to a target, was reduced by

50% when feedback was provided in this manner [19]. Other groups have also examined this

approach using either vibrotactile, electrotactile or auditory [20, 21, 22, 23, 24] feedback as a

means of conveying sensory information. The advent of wearable electronic devices too has

renewed the interest in using sensory substitution as a tool for rehabilitation and providing

feedback to prosthesis users [25]. However, since the sensations do not appear to emanate

from the missing limb, sensory substitution may require significant learning for amputees to

become adept in utilizing the feedback [26, 27].

Somatotopically-matched feedback, wherein the user perceives the sensation at the con-

tact location on the prostheses, may provide more intuitive signals [28, 29] for prosthetic

control. The current technologies for interfacing with peripheral nerves to restore sensory

feedback include intrafascicular electrodes that penetrate into the nerve, epineural electrodes

that wrap around the nerve, and anastomosis of nerve stumps to an intact muscle (e.g., the

muscles of the chest), in a process known as targeted sensory reinnervation (TSR).

1.2.2 Peripheral Nerve Stimulation

Peripheral nerves have been targeted using a variety of neural interfaces including epineu-

ral cuff electrodes like the flat interface nerve electrode (FINE) [30, 31, 32] or microelectrodes

that penetrate the epineurium, such as the longitudinal intrafascicular electrode (LIFE)

[33], transverse intrafascicular multichannel electrode (TIME) [34, 35], or Utah slant array

[36, 37].
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1.2.2.1 Intrafasciular electrodes Electrodes such as the longitudinal intrafascicular

electrode (LIFE) and transverse intrafascicular multichannel electrode (TIME) are designed

to be implanted in peripheral nerves and penetrate through the epineurium, to achieve

intimate contact with sensory and motor neurons. Rossini and colleagues implanted LIFEs

for 4 weeks in the median and ulnar nerves of a subject with transradial amputation [38].

For this study, stimulation of peripheral nerves provided sensory feedback while using a

prosthetic hand controlled by EMG signals from the biceps and triceps. The participant in

this study reported sensations in the forearm and movement in the phantom hand.

Dhillon and colleagues achieved discrete tactile and proprioceptive sensations with stim-

ulation through LIFEs implanted in median and/or ulnar nerves in 13 upper limb amputees

[39, 40]. In a further study, by Horch et al ., LIFEs were implanted in the median and

ulnar nerves of two transradial amputees [33]. These studies were the first demonstrations

of direct neural feedback through stimulating individual fascicles of peripheral nerve stumps

in amputees to produce graded, discrete sensations of touch or movement, even years after

amputation.

Utah slanted electrode arrays have also been implanted into the median or ulnar nerves

of 3 upper limb amputees to provide sensory feedback [36, 37]. This study demonstrated

that penetrating electrodes could evoke focal cutaneous and proprioceptive percepts in the

phantom hand up to 14 months after implantation. Along with long term efficacy, this

study also demonstrated improvements in dexterous control of a robotic arm when stimu-

lation mirrored the firing pattern of intact neurons. Similarly, Raspopovic and colleagues

explored the use of TIME electrodes to stimulate the median and ulnar nerves in a closed-

loop neuroprosthesis [34, 35]. In that study, a participant incorporated sensory feedback

in real-time, grasping tasks and object discrimination tasks. More recently, this group has

demonstrated that peripheral nerve stimulation of the tibial nerve provided real-time tactile

and proprioceptive feedback that promoted improved mobility, fall prevention, and agility,

in 3 transfemoral amputees [41, 42].
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1.2.2.2 Epineural electrodes Epineural electrodes provide a less invasive approach to

interfacing with peripheral nerves. Because they sit outside the epineurium and are more

mechanically stable than penetrating microelectrodes, epineural electrodes typically achieve

a more stable chronic interface, but with less selective stimulation. A set of studies using

a cuff known as the flat interface nerve electrode (FINE) on the median and ulnar nerve

demonstrated the ability to elicit focal percepts for up to 80 months in 1 subject and 24

months in another [30, 43, 31]. These devices are designed to maintain the oblong cross-

section of peripheral nerves, keeping electrodes closer to those fascicles than can be achieved

with cuffs with a circular cross-section. This study also developed a take-home system to

understand embodiment of a prosthesis and understand whether subjects could learn to use

artificial somatosensory feedback in tasks of daily living [44, 15].

Using a similar epineural cuff electrode, Ortiz-Catalan et al. stimulated the median

and/or ulnar nerves in 4 individuals with upper limb amputation and observed improvements

in grasping coordination during an object lift-and-hold task for a novel osseointegrated upper

limb prosthesis [45, 46, 47]. Additionally, epineural cuff electrodes have been used to restore

sensation and study the impact on postural stability, in two individuals with transtibial

amputation [32].

These approaches have clearly demonstrated the ability to evoke focal sensations that are

perceived to emanate from the upper-limb, even decades after injury. They also demonstrate

very stark improvements in how subjects incorporate this feedback to use their prosthesis.

However, they involve specialized electrodes and surgeries that are not part of common

surgical practice. Further, peripheral nerve approaches often target distal nerves, which

could limit their use in people with proximal amputations, such as shoulder disarticulations.

1.2.2.3 Transcutaneous electrical nerve stimulation Non-invasive somatotopic tech-

niques, such as transcutaneous electrical nerve stimulation, have also been used to recruit

afferent nerve fibers, that run superficially to the skin surface. A benefit of this method is it

does not require surgery and recent studies have shown that it can evoke focal percepts in

the phantom limb for upper [48, 49] and lower limb [50] amputees.
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1.2.3 Targeted Sensory Reinnervation

Targeted sensory reinnervation is an approach that can allow vibrotactile or electrotactile

feedback on the residual limb to be perceived as emanating from the missing limb. This is

achieved by surgically redirecting the nerves that formerly innervated the missing limb to

innervate patches of skin on the residual limb or trunk. Sensory afferents then innervate

the skin and muscles, and tactile stimulation of the reinnervated region produces percepts

in the phantom limb [51]. Kuiken et al . surgically transplanted the residual median, ulnar,

radial, and musculocutaneous nerves to the pectoral musculature in three participants with

transhumeral amputations [52, 53]. After reinnervation, electrical stimulation of the skin

evoked percepts, including touch, pain, temperature, and proprioception, in the phantom

limb.

1.2.4 Spinal Cord Stimulation

Spinal cord stimulation (SCS) is an FDA-approved, commercially available technology

that could potentially be used to restore somatosensation. SCS leads are currently implanted

in approximately 50,000 patients every year in the USA to treat chronic back and limb pain

[54]. In the week-long trial phase that normally precedes permanent implantation of these

devices, the leads are inserted percutaneously into the epidural space on the dorsal side

of the spinal cord via a minimally invasive, outpatient procedure [55]. Clinically-effective

stimulation parameters typically evoke paresthesias (i.e. sensation of electrical buzzing) that

are perceived to be co-located with the region of pain. SCS leads are typically placed over the

dorsal columns along the midline of the spinal cord. This placement results in paresthesias

that are limited to the proximal areas of the trunk and limbs. However, recent studies have

demonstrated that stimulation of lateral structures in the spinal cord and spinal roots can

evoke paresthesias that selectively emanate from the distal regions of the body [56, 57, 58,

59]. As such, these devices provide an attractive option for widespread deployment of a

neuroprosthesis for providing sensory feedback from distal aspects of the amputated limb,

including the hand and fingers.
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1.2.5 Early Stage Novel Approaches

Existing somatosensory neural interfaces face a critical trade-off between invasiveness

and efficacy in providing sensory feedback. There are a host of safety issues associated with

implanting electrodes that penetrate the epineurium, such as LIFEs, TIMEs, and USEAs,

that could affect their long term stability. Electrode insertion results in mechanical damage

to the tissue followed by glial scarring [60], which isolates the electrode from the neurons,

[61] causing changes in the response to stimulation over time [62]. Studies using epineural

electrodes, such as nerve cuffs and FINEs, have demonstrated that it is possible to achieve

a long-term stable interface with distal peripheral nerves [43]. However, the percepts evoked

by these are less focal, which may limit their efficacy in improving control of prosthetic limbs.

In addition, the invasive surgery required to implant these electrodes is a major barrier to

clinical translation. New approaches targeting peripheral nerve structures continue to be

developed in the effort to provide sensory feedback. However, many of these techniques are

still in early stages of development and lack substantial quantitative evidence in randomized,

controlled trials with a focus on sensory restoration.

1.2.5.1 Regenerative electrodes These electrodes are designed to be implanted at the

end of a transected nerve, allowing the nerve to grow through a lumen that contains elec-

trical contacts, providing an intimate contact with the nerve. They provide high selectivity

and long-term stability for both recording and stimulation and address the issue of glial

scarring and mechanical damage to the neural tissue. MacEwan et al . designed macro-sieve

electrodes that were implanted between transected ends of sciatic nerves in adult male rats

[63]. Although their study did not directly address sensory feedback, it demonstrated that

nerve regeneration was possible through these electrodes and the regenerated nerves had

morphology and electrophysiological properties comparable to control fibers. Furthermore,

stimulation through macro-sieve electrodes produced comparable muscle forces and allowed

selective recruitment of fibers up to 3 months post-implant, providing a promising interface

for future neuroprosthetic applications.
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Navarro et al. developed a double-aisle electrode that allows selective stimulation and

recording of nerve fascicles up to 6 months post-implant [64]. Other non-obstructive regen-

erative electrodes, such as the regenerative multielectrode interface [65] and the regenerative

scaffold electrode [66], have also demonstrated a stable interface with amputated peripheral

nerves and may be useful in neuroprosthetic applications for peripheral nerve injury and

sensory restoration.

Regenerative peripheral nerve interfaces (RPNIs) are conceptually similar to TSR, but

involve surgical placement of a small autologous partial muscle graft onto the peripheral

nerve, which reinnervates the graft. RPNIs have been used for the treatment of postampu-

tation neuroma pain [67], and have recently been used for prosthetic control, as the muscle

graft acts as a bioamplifier for descending motor commands in the nerve. Chestek et al .

demonstrated in rhesus macaques, that RPNIs provide a stable interface for recording high

signal-to-noise ratio electromyographic signals for up to 20 months [68]. Long-term survival

of these muscle grafts, up to 20 months post-implant, has also been demonstrated in several

animal experiments using RPNIs for prosthetic control [69, 70]. Additionally, in a study with

two distal transradial amputees, electrical stimulation via RPNIs demonstrated the ability

to evoke cutaneous and proprioceptive sensations [71].

1.2.5.2 Optogenetics This technique is based on genetically modifying neurons to ex-

press light sensitive ion channels (opsin proteins). This provides an attractive method to

activate or inhibit by light, only those neurons that express opsins. Selective recruitment via

optical stimulation of sensory neurons has been demonstrated in a mouse model where the

level of excitation or inhibition was modulated by the intensity of light [72]. However, the

technical feasiblity and ethical and safety concerns related to transgenic approaches to incor-

porate opsins in neurons is a significant barrier that precludes any research into optogenetic

approaches for somatosensory feedback in humans.

1.2.5.3 Focused ultrasound and Infrared nerve stimulation This is another non-

invasive method that has been used to modulate neuronal activity and conduction properties

of nerves [73]. It has also been used in a rat model to modulate the vagus nerve as a poten-
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tial therapy for epilepsy and depression and achieve conduction block for potential analgesic

applications [74, 75, 76]. Infrared nerve stimulation is another non-invasive method that

provides high spatial resolution without the stimulation artifacts that traditional electrical

nerve stimulation produces. Recent studies have shown that infrared stimulation coupled

with electrical stimulation of the sciatic nerve can generate sustained plantarflexor muscle

contraction in rats [77]. Additionally, infrared stimulation can selectively, rapidly, and re-

versibly recruit small-diameter sensory fibers in the mammalian vagus nerve [78]. However,

while technical feasibility may not be an issue for either of these technologies, it is necessary

to characterize the potential for thermally induced damage on nerves and establish safety

limits for usage.

1.3 Dorsal Root Ganglia as a Target for a Somatosensory Neural Interface

Figure 1.2: Anatomy of the spinal roots and periphery

The dorsal root ganglia (DRG) are enlargements of the spinal nerve located bilaterally

in the intraforaminal space at each spinal vertebral level [79]. The DRG contains the cell

bodies of primary sensory axons that innervate the periphery thus providing a compact
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target for accessing large populations of somatosensory fibers [80]. Primary sensory afferents

display a characteristic pseudounipolar morphology and an excitable soma and axon hillock

[81, 82]. Histology studies have shown that the cell bodies of these afferents cluster near

the periphery of the DRG when viewed in cross section [83]. This might explain recent

observations where afferent activity was recorded using non-penetrating epineural arrays on

the DRG surface [84]. These anatomical characteristics may also be useful for recruiting

afferents using epineural electrical stimulation at the DRG.

Furthermore the DRG are segregated from motor efferents in the ventral root thus al-

lowing for stimulation of afferents without risking uncomfortable contractions in residual

muscles in a potential myoelectric control interface for amputees. Several studies have fo-

cused on building encoding models for primary afferent activity at the DRG [85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95, 96, 97]. These encoding models can be used to provide patterned

biomimetic stimulation, while preserving the structure of information relayed to downstream

sensory processing targets.

The spinal segmental level determines the location at the periphery innervated by these

primary afferent neurons such that three to four DRG may provide the sensory representation

of the entire limb [98]. However, while dermatomal segregation exists for large regions of the

limb across DRG, the lack of a consistent somatotopic organization of sensory fibers within

each DRG [99, 100] is a challenge for selective recruitment. Neighboring neurons may convey

varied modalities of sensory information making it difficult to target particular afferent types

and regions of the limb, at the time of electrode implantation. Therefore broad and diverse

electrode coverage is important for a potential SSNI at the DRG.
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1.4 Problem Statement and Hypothesis

While there have been important advances in the design and actuation of prosthetic

limbs, these devices lack a means for providing direct sensory feedback. As such, users must

infer information about limb state from cues like pressure on the residual limb, resulting

in diminished control of prostheses, and reduced adoption and use of these technologies.

Previous work in the Rehab Neural Engineering lab has focused on restoring sensation by

electrically stimulating primary sensory afferents in the dorsal root ganglia (DRG). Recent

animal experiments have demonstrated that stimulation through penetrating microelectrodes

can achieve activation of small populations of primary afferents (PAs) in the DRG with a

high degree of selectivity. These results suggest that the DRG and dorsal spinal cord are

promising neural targets for restoring sensation, however significant challenges remain in the

development of a somatosensory neuroprosthesis.

Currently available penetrating microelectrode technologies are not suitable for long-

term implantation in peripheral nerves or the DRG, as the chronic immune response to their

presence causes a high rate of device failure. Instead, multiple recent studies in human

subjects have demonstrated that it is possible to achieve a chronic, stable stimulation inter-

face with peripheral nerves by placing electrodes on the epineural surface of those nerves.

For clinical translation of a DRG somatosensory neuroprosthesis, epineural electrodes may

provide an ideal interface however they have not been tested in the context of selectively

recruiting neurons within the DRG. This dissertation examines a novel way of interfacing

with the DRG and dorsal roots that can be incorporated into a upper limb prosthesis to

restore sensory feedback. A feline model for primary afferent recruitment will be used to

compare the selectivity of epineural and penetrating stimulation. Next an anatomically and

neurophysiologically accurate computational model of the DRG will be developed to study

the mechanism of afferent recruitment. Finally, a series of experiments with upper limb am-

putees will be described that characterize the locus, modality and utility of percepts evoked

when the cervical spinal cord and spinal roots are stimulated. The following specific aims

will be pursued:
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Aim 1: Compare the selectivity of afferent microstimulation at the DRG us-

ing epineural electrodes and penetrating electrode arrays.

Selectivity is extremely important in the development of a somatosensory neuroprosthesis,

as it can make the difference between a highly focal evoked sensation (e.g. fingertip pressure)

and a diffuse and less useful sensation (e.g whole arm tingle). It is anticipated that the rel-

atively large exposed area and distance from PA targets, will impact recruitment selectivity

of epineural electrodes. To test this hypothesis, we will deliver stimulation at the DRG using

epineural electrodes and characterize the overall patterns of recruitment.

Hypothesis 1.1 : Distribution of distal nerve branches that can be recruited through epineu-

ral stimulation is comparable to penetrating electrodes but fewer epineural electrodes are

capable of selectively recruiting different nerves.

Hypothesis 1.2 : Threshold charge injection is higher while dynamic range is unchanged for

selective recruitment using epineural electrodes

Aim 2: Identify the mechanism of PA recruitment in the DRG for epineural

stimulation and optimize electrode design for increased selectivity.

Recent experiments, have shown that the selectivity achieved with epineural stimulation at

the DRG is nearly as good as that achieved with penetrating microelectrodes. The DRG

houses cell bodies for PAs that are concentrated around the circumference and axons concen-

trated near the center. This unique anatomical structure may impact selectivity achieved by

epineural electrodes. To test this hypothesis, we will model the effects of stimulation through

epineural electrodes, to determine the locus of action potential generation in response to low

amplitude stimulation as well as explore the effects of epineural electrode size and spacing

on the selectivity and dynamic range of stimulation.

Hypothesis 2.1 : Stimulation of the DRG with epineural electrodes results in generation of

action potentials in the axon hillock i.e. where the axon stem exits the neuronal cell body

Hypothesis 2.2 : The size and spacing of PA cell bodies ( 100 µm) near the epineurium en-

ables selective recruitment via epineural stimulation
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Aim 3: Characterize the modulation of evoked percepts as a function of electrode

location and stimulus parameters via stimulation of dorsal spinal cord rootlets

in upper limb amputees.

Selectively activating subpopulations of sensory afferents at the DRG may correspond to

anatomical localization of sensory fibers at the periphery. However, modulating stimulation

parameters may impact the subjective quality of the percept. To test this hypothesis, we will

perform first-in-human experiments to explore the ability to generate sensations via epidural

stimulation of the dorsal spinal rootlets in upper limb amputees.

Hypothesis 3.1 : The intensity, focality, and modality of evoked percepts is correlated with

the stimulation amplitude, location of stimulation cathode and frequency of stimulation re-

spectively.

Hypothesis 3.2 : Percepts evoked per electrode are stable in terms of locus and modality for

a given set of stimulation parameter.

Hypothesis 3.3 : Somatotopically-matched feedback delivered via lateral spinal cord stimula-

tion can be used in a functional object manipulationn task.
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2.0 Selectivity of afferent microstimulation at the DRG using epineural and

penetrating electrode arrays

The contents of this chapter are published as: Nanivadekar AC, Ayers CA, Gaunt RA,

Weber DJ, Fisher LE. (2019). Selectivity of afferent microstimulation at the DRG using

epineural and penetrating electrode arrays. J Neural Eng. 2019 Dec 13;17(1):016011.

2.1 Introduction

By 2020, over 2.2 million people in the United States will be living with limb loss [101].

Approximately 65% of amputations affect the lower limbs [101]. Lower-limb amputations are

commonly associated with mobility issues, decreased balance confidence, and falling [102].

In stark contrast to these statistics, the acceptance rate of prevailing lower-limb prostheses

is below 50% [10]. While there have been important advances in the design and actuation

of prosthetic limbs, these devices lack a means for providing direct sensory feedback and

force the user to rely on visual feedback or infer information about limb state from pressure

exerted on the residual limb by the prosthetic socket. This results in longer rehabilitation,

diminished control of prostheses, and reduced adoption and use of these technologies [103].

Multiple recent studies have demonstrated that stimulation of peripheral nerves in the

residual limbs of amputees can evoke naturalistic sensory percepts, referred to the amputated

limb, even decades after amputation [34, 30, 39, 40, 104]. Recent studies using epineural

nerve-cuff electrodes, which wrap around peripheral nerves, have demonstrated that it is

possible to achieve a long-term stable interface with distal peripheral nerves in people with

arm [30], [43] and leg [32] amputation. While the sensations evoked by stimulation through

these electrodes were highly stable over multiple years, the selectivity of stimulation (i.e. the

ability to evoke sensations in focal areas of the distal limb) was somewhat limited. These

limitations become especially obvious when comparing the focality of sensations generated

by epineural stimulation to what can be achieved by stimulating peripheral nerves with
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penetrating microelectrode arrays, which are inserted into the nerve. For example, micro-

electrode arrays implanted in the median and ulnar nerves of amputees can generate highly

localized sensation in the fingertips and palm [36] of the phantom hand whereas nerve-cuff

electrodes evoke sensations across multiple phalanges and larger areas of the palm and dor-

sum of the phantom hand [31]. Longitudinal intrafascicular electrodes implanted through

peripheral nerves in individuals with upper limb amputation have also demonstrated the

ability to evoke both focal proprioceptive and tactile sensations [104].

Unfortunately, there are a host of safety issues associated with implanting penetrating

microelectrode arrays into neural tissue. Electrode insertion results in mechanical damage to

the tissue followed by glial scarring [105] which isolates the electrode from the neurons [106],

and in the periphery, shifts the fiber composition towards smaller fibers [107]. Additionally,

peripheral nerves are highly stretchable structures that undergo large changes in length as the

limbs move through range of motion [108, 109], causing movement of the electrodes relative

to their neural targets. All of these effects cause changes in the response to stimulation over

time [62].

The dorsal root ganglia (DRG) and dorsal rootlets (DR) are attractive targets for deliver-

ing sensory feedback via electrical stimulation. The DRG contains a heterogenous population

of cutaneous, muscle and nociceptive afferents all of which can be further divided into recep-

tor classes that convey specific information about the state of the limb [80]. Three to four

ganglia account for the innervation of an entire limb [98] while DRG at a single spinal level

may provide access to the entire sensory representation of the foot [110]. Importantly, the

separation of the sensory and motor pathway at the spinal roots allows for stimulation of af-

ferents in the DRG without concomitant stimulation of motor efferents which could directly

activate muscles and contaminate a myoelectric control interface. Additionally, the spine pro-

vides mechanical stability, limiting the movement of the DRG and spinal cord, which may

improve the stability of stimulation. DRG and DR stimulation can also be used with high-

level amputations (above-knee, above-elbow) where access to peripheral nerves is limited.

In fact, ongoing work in our lab has demonstrated that electrical stimulation of the dorsal

rootlets and spinal cord can evoke somatosensory percepts in the missing limbs of upper-limb

amputees [111]. In that study, the stimulation electrodes were relatively large (3x1 mm), and
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stimulation evoked sensations that covered entire digits or regions of the palm. Stimulation

through smaller electrodes might evoke substantially more focal sensations. Prior work in

our lab has demonstrated that microstimulation via penetrating microelectrodes in the DRG

can achieve a highly selective neural interface, recruiting many distinct distal branches of the

sciatic and femoral nerves [112]. This would likely translate into focal percepts in the foot

and leg in humans. However, in chronic experiments, we found a substantial degree of insta-

bility in the response to DRG microstimulation over time [113]. Additionally, these electrode

insertion techniques require extensive exposure of the DRG (e.g. via foraminotomy), which

may pose significant challenges for clinical translation.

One method of overcoming these disadvantages is to use non-penetrating epineural elec-

trodes. Existing minimally invasive surgical techniques for implanting electrodes on or near

the spinal cord and DRG to manage pain [57, 56, 114] can potentially be adapted for im-

planting epineural arrays on the DRG for sensory feedback. Clinically approved epineural

stimulation leads [115, 116, 117] may be amenable to use for sensory feedback easing the

clinical translation process and provide a significant advantage over penetrating technolo-

gies. Additionally, our lab has recently demonstrated that it is possible to achieve single-unit

recording of DRG neurons with electrodes placed on the epineural surface [84] which could

be extended to study the mechanism of DRG stimulation or develop a closed-loop neuropros-

thesis that uses evoked responses to adjust stimulation parameters, similar to other currently

available spinal cord stimulation systems [118].

Because it is challenging or impossible to have animals report on the characteristics of

evoked sensations, nerve cuff recordings from multiple nerve branches have been used by our

lab and others to measure the selectivity of peripheral nerve [119] and DRG stimulation [112].

In this study, we compare the recruitment properties of epineural and penetrating electrodes

when stimulating afferents in the L5, L6 and L7 DRG. Electroneurographic recordings of

evoked responses in many distal branches of the femoral (saphenous, vastus medialis, vas-

tus lateralis, sartorius) and sciatic (tibial, distal tibial, medial and lateral gastrocnemius,

common peroneal, distal common peroneal, sural, cutaneous) nerve were used to assess the

selectivity of DRG stimulation. Compound action potentials (CAPs) recorded from each
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instrumented nerve were used to determine the threshold and dynamic range for selective

recruitment, the distribution of projected fields per DRG, and the conduction velocity of the

recruited afferents.

2.2 Methods

All experiments were performed under the approval of the University of Pittsburgh In-

stitutional Animal Care and Use Committee (IACUC) and the US Army Animal Care and

Use Review Office. Acute experiments were performed in six anesthetized male cats.

2.2.1 Instrumentation

Anesthesia was induced with a ketamine/acepromezine cocktail and maintained via in-

haled isoflurane (1-2%) throughout the experiment. Vital signs (i.e heart rate, core temper-

ature, SpO2, and ETCO2) were monitored continuously. Distal branches of the femoral and

sciatic nerves (Figure 2.1A) were instrumented with two-contact nerve cuffs, which were ei-

ther custom made or purchased (Microprobes, Gaithersburg, MD). Both types of electrodes

were made from split silicone tubing with circumferential fine-wire stainless steel electrodes

with an interelectrode spacing of 3 or 4 mm. The nerve cuff inner diameters ranged from 1

mm to 3 mm depending on the size of the targeted nerve. The sciatic and femoral nerves

were instrumented with five-contact nerve cuffs (Ardiem Medical, Indiana, PA), which had

an interelectrode spacing of 4 mm. Proximal, center, and distal contacts were shorted to-

gether and were used as a reference in a virtual tripole configuration when recording from

the second and fourth contacts within the cuff [120].

Custom book electrodes were designed to match the characteristic branching pattern at

the tibial nerve where it branches into the distal tibial, medial gastrocnemius and lateral

gastrocnemius nerves (Figure 2.1B). A 3-D printed negative mold of this branching geometry
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Figure 2.1: A) Placement of Ripple stimulation electrodes on the epineurium of the L5 and

L6 DRG (left) along with a representation of the 2 epineural electrode designs and images of

32-channel UEA and FMAs (right). B) Schematic of nerve cuff location in the left hindlimb.

C) Nerve cuffs and book electrodes implanted on the sciatic trunk and distal branches.

D) Summary of nerves instrumented and DRG stimulation electrodes used across 6 acute

experiments. Hatching represents instances where a nerve was not instrumented or a DRG

stimulation electrode was not used. E) Example stimulation triggered average ENG recorded

from the sciatic nerve and its common peroneal (middle) and tibial (bottom) branches.
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was used to fabricate the spine and cover of the book electrode. Each channel in the book

electrode contained 2 stainless steel electrodes to mimic a two-contact nerve cuff implanted

on each branch.

Where possible, nerves projecting to members of each major muscle group innervated by

the sciatic and femoral trunks were instrumented. The sciatic branches innervating the ham-

strings were often very proximal, complicating surgical access, although a cuff was implanted

around the nerve innervating biceps femoris in cat G. It was not possible to instrument the

branch of the common peroneal nerve innervating ankle dorsiflexors without reflecting the

biceps femoris tendon; however, the common peroneal nerve was always instrumented prox-

imal and distal to this important branch point. Nerve identities were determined using

known anatomical landmarks and verified by stimulation using a voltage-controlled stimu-

lator (Grass, Warwick, RI) and finding coarse motor thresholds (supplementary table A.1).

Sensory nerves, such as the sural and the sciatic cutaneous branch, were tested to the max-

imum stimulation intensity (20 V, 200 µs pulse width) to verify that there were no evoked

movements. Across the 6 cats, instrumented nerves included the Sciatic (Sci) and Femoral

(Fem) trunks, lateral gastrocnemius (LG), medial gastrocnemius (MG), distal tibial (dTib),

common peroneal (CP), distal common peroneal (dCP), sural (Sur), cutaneous branches of

the sciatic nerve (Cut), saphenous (Sph), vastus lateralis (VL), vastus medialis (VM) and

Sartorius (Srt) nerves (Figure 2.1D).

After nerve cuff implantation, the left L5, L6 and L7 DRG were exposed via laminec-

tomy. Epineural electrodes (4-channel Ripple LLC, Salt Lake City, UT) were placed on the

epineurium of the L5, L6 and L7 DRG of cats G, H, I and J (Figure 2.1C). For cats G and

H, there was no fixation of electrodes to the epineural surface and a threshold search was

repeated for multiple placements of a single array on multiple ganglia. For cats I and J the

epineural electrodes were fabricated with tabs that were used for fixation to the spinal cord

dura. Following epineural testing, penetrating arrays were implanted in the L5-L7 DRG and

threshold search was repeated. Testing epineural arrays first limited the effects of surgical

manipulation and the tissue damage that might occur during high-speed insertion of the

penetrating arrays.
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Penetrating floating microelectrode arrays (32-channel FMA; Microprobes, Gaithersburg,

MD) were inserted in the L6 and L7 DRG of cats E and F. The platinum-iridium electrodes

of each FMA (Figure 2.1) had a variety of lengths (0.7-2.1 mm) designed to span the depth

of the DRG with a pitch of 400 µm and exposed tip sizes of 50 or 150 µm. Utah electrode

arrays (32-channel UEA; Blackrock Microsystems, Salt Lake City, UT) were inserted in the

L5, L6 and L7 DRG of cats G and H. Each UEA contained 32 electrodes in a 4x8 grid and

electrodes were 1 mm long with a pitch of 400 µm. During implantation, a custom vacuum

holder attached to a micromanipulator was used to position the array over the DRG. The

array was positioned so that its long axis was aligned with the proximal/distal axis of the

spinal root. A pneumatic inserter with 1.5 mm of travel (Blackrock Microsystems, Salt Lake

City, UT) was used to rapidly insert the array through the epineurium in the DRG. For all

electrodes, a stainless-steel screw in the iliac crest was used as the return for stimulation

and all stimulation was applied in a monopolar configuration. The cat was placed in a

spinal frame for the duration of the experiment. Motor thresholds were measured again

after transfer to the frame to verify that the cuffs still made adequate contact and that the

instrumented nerves were still intact.

2.2.2 Epineural Electrode Design

The epineural electrode array fabrication process was based on patterned robotic deposi-

tion of alternating layers of insulating medical-grade silicone/polyurethane co-polymer and

a conductive polymer. The conductive polymer traces and electrode sites were formed by

mixing platinum microparticles with the silicone/polyurethane substrate material. This pro-

vided mechanical matching of all the materials throughout the device for high flexibility and

flexural durability. The flexibility of these electrodes allowed for conformation to the surface

of the DRG. The initial design of these arrays, used in cats G and H, comprised of traces

along the length of the array that terminated in 4 contacts arranged in a square layout (Fig-

ure 2.1A). This electrode design was highly susceptible to mechanical perturbations when

placed on the epineural surface. For cats I and J the array design was modified such that the

leads from the array ran parallel to the spinal cord, providing additional friction with the
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epidural surface of the spinal cord to improve mechanical robustness. For these arrays, the

traces terminated in 4 contacts arranged along the length of the DRG. Additionally, tabs

were added to the array substrate to allow fixation to the spinal cord dura. The diameter of

the exposed electrode contacts for both electrode arrays was 375 µm and spacing between

the centers of neighboring contacts was 750 µm (mean ± std post-implant impedance was

16.03 ± 5.29 kΩ).

2.2.3 Experiment Design

The objective of this study was to evaluate the recruitment properties of epineural elec-

trodes in terms of threshold, selectivity, dynamic range, and distribution of recruited nerves.

Threshold charge was defined as the minimum charge injection at the DRG required to elicit

activity in any instrumented nerve. If a single distal nerve branch was activated at threshold,

stimulation was deemed to be selective for that nerve. For each instance of selective recruit-

ment, the dynamic range was determined as the range of stimulation charge over which

selectivity could be maintained before a second nerve was recruited. In the event of non-

selective recruitment, functionally synergistic innervation pathways (e.g. nerves innervating

multiple heads of the gastrocnemius) were identified.

Electroneurogram (ENG) signals were recorded from all nerve cuffs using a Grapevine

Neural Interface Processor (Ripple, Salt Lake City, Utah), using a differential headstage

(Surf-D) with an input range of 5 mV, resolution of 0.2 µV, 0.3 Hz cutoff high-pass filter and

7.5 kHz cutoff low-pass filter. Signal digitization was performed directly on the headstage

at 30 kHz. Stimulation was performed using two IZ2 16-channel stimulus isolators (TDT,

Alachua, FL) and custom LabVIEW software in cats E, F, G and H or nano2+stim head-

stages (Ripple, LLC) for cats I and J. ENG signals typically have a low signal-to-noise ratio.

To reduce this noise and reveal the underlying compound action potential (CAP), high pass

filtering and stimulus triggered averaging was performed for all ENG recordings. Stimulation

artifacts were blanked in software using a 1 ms window, which was at least 0.5 ms longer

than each stimulation pulse and did not exceed the minimum conduction latencies of the

most proximal nerves. Following blanking, ENG data were high-pass filtered at 300 Hz.
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Table 2.1: Epineural stimulation binary search parameters. “Total Electrodes” represents

the number of electrodes that were tested, “Active Electrodes” represents the number of

electrodes that were capable of recruiting any nerve at any charge. “Selective Electrodes”

represents the number of electrodes that recruited a single nerve at threshold. The binary

search was conducted independently at 2 threshold resolutions for cat G at the L5 DRG.

Subject
Threshold resolution (nC) Maximum charge

(nC/phase)
Total

Electrodes
Active

Electrodes
Selective

Electrodes
L5 L6 L7

G 0.08, 0.82 - 0.21 16.38, 15.35 20 10 6

H 0.41 0.41 0.41 16.38 24 23 16

I 1.02 1.02 1.02 61.43 12 11 8

J 0.4 0.4 0.4 28.0 12 8 5

Total 68 52 35

Custom software was written in C++ and MATLAB (Mathworks, Natick, MA) to capture

and display stimulus triggered ENG recordings from all cuff electrodes, to detect responses,

and to coordinate a binary search for threshold as a function of the injected charge.

The methodology for determining recruitment threshold online is detailed elsewhere [112].

Briefly, a high amplitude survey trial was conducted to identify electrodes that evoked CAPs

in the sciatic and femoral nerve branches. During this survey, stimulation was delivered

through each electrode at a rate of 55-58 pulses/second with either 82 or 205 µs/phase

cathodic-leading symmetric pulses. The maximum charge injection for epineural stimulation

was varied between 15-60 nC/phase (Table 1). For penetrating electrodes, the maximum

charge injection was varied between 3-8 nC/phase (Table 2). This maximum amplitude was

chosen to avoid electrode degradation and to avoid activating spinal reflexes that would cause

muscle contraction and movement artifact in the ENG signal. Stimulation electrodes that

did not evoke a response in any nerve branch were excluded from the binary search. For all

other electrodes, a binary search over stimulation charge was carried out to determine the

recruitment threshold for each instrumented nerve. For epineural electrodes, the resolution

for binary search was varied between 0.06 and 0.95 nC/phase (Table 1) and for penetrating
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Table 2.2: Penetrating stimulation binary search parameters. The binary search was con-

ducted independently at 2 threshold resolutions for cat G at the L7 DRG.

Subject
Threshold resolution (nC) Maximum charge

(nC/phase)
Total

Electrodes
Active

Electrodes
Selective

Electrodes
L5 L6 L7

E - 0.20 0.20 3.07 192 61 49

F - 0.20 0.20 8.19 256 38 28

G 0.08 0.12 0.12, 0.41 2.45 128 123 96

H 0.25 0.25 0.25 3.27 96 86 67

Total 672 308 240

electrodes the resolution was varied between 0.17 and 0.71 nC/phase (Table 2). The binary

search resolution used for epineural testing was lower relative to penetrating electrode test-

ing (i.e. stimulation charge was sampled more coarsely) to compensate for the higher survey

trial amplitude. For cat G, the binary search with penetrating electrodes at L5 DRG and

epineural electrodes at L7 was conducted at 2 separate resolutions within the same experi-

ment to reduce the time spent performing a binary search per electrode. A non-parametric

Kruskal-Wallis test confirmed that resolution had no effect on the detected threshold (p >

0.01) for cat G. During the online threshold search, stimulation was repeated 400-600 times

at each amplitude, ENG responses were detected by comparing the RMS of the stimulus trig-

gered averaged ENG response between pre-stimulus baseline and stimulation epochs. The

windowed RMS was calculated using a 250 µs sliding window with 25 µs overlap between

consecutive windows. RMS values exceeding 0.5 µV and one standard deviation of baseline

RMS for four consecutive windows were annotated as stimulation evoked responses. These

parameters were selected empirically to improve accuracy during online detection.

All recorded ENG signals were reanalyzed offline for rigorous statistical testing using

a non-parametric subsampling approach described previously [112]. Briefly, a 99% con-

fidence interval about the baseline mean was established and the detection threshold for

post-stimulation ENG responses was set to one standard deviation above the upper bound

of this interval. For each stimulation amplitude, a random subsample of 90% of the repeti-
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tions were selected 100 times to generate a distribution of ENG responses for each electrode.

The windowed RMS was calculated for each of these subsampled responses using the same

250 µs sliding window with 25 µs overlap. For a time window in the ENG response to be

considered significant, 95% of the subsampled averages had to be supra-threshold during that

time window (supplementary figure A.1A). Additionally, all ENG responses from epineural

stimulation were validated by a human expert. The sensitivity and accuracy of the auto-

mated detection algorithm was calculated using the manual annotations as ground truth.

ENG responses per trial for both epineural and penetrating electrodes along with validated

annotations can be downloaded from the Blackfynn Discover Repository. Additionally, all

ENG responses and selectivity results per trial can be viewed here.

2.2.4 Conduction Velocity

For instances where a CAP was detected at the sciatic or femoral nerve trunks, the

local cross correlation (LCC) was calculated between signals recorded from the second and

fourth contacts of the 5-pole nerve-cuff to determine the conduction velocity of recruited

afferents. The process for calculating LCC is described in detail elsewhere [120]. Briefly,

the cross-correlation between the stimulus-triggered averaged signal recorded on the second

contact and fourth contact was calculated (supplementary figure A.1B). A 0.5 ms sliding

window of the signal recorded from the fourth contact was moved through a 1-10 ms time

window of the stim-triggered average ENG signal recorded on the second contact at 50 µs

steps. If the peak of the LCC exceeded one standard deviation above the cross-correlation

of the noise for 3 consecutive windows, the trial was identified as containing a compound

action potential. The distance between the second and fourth contact (8 mm) was divided

by the cross-correlation lag for the window with the highest LCC to calculate the conduction

velocity of the recruited afferent.
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2.3 Results

Across the four cats (G, H, I, J) where epineural stimulation was delivered, a total of

64 electrodes were tested in 11 ganglia. Fifty-two electrodes produced a response in at least

one nerve at threshold and 67% of these electrodes were able to selectively recruit a single

nerve at threshold. In contrast, for the four cats (E, F, G, H) where penetrating arrays were

tested, a total of 672 electrodes were tested in 10 ganglia, of which 308 produced a response

at maximum amplitude and 79% of these electrodes selectively recruited a single distal

nerve branch at threshold. While the percentage of responsive electrodes evoking selective

responses were higher for penetrating arrays, stimulation at maximum amplitude evoked

responses in fewer penetrating electrodes (45%) compared to epineural electrodes (76%).

The percentage of responsive electrodes varied across subjects for both electrode types. For

penetrating electrodes, the yield of responsive electrodes at maximum amplitude for cats E,

F, G, and H was 31.7%, 14.8%, 96.0%, and 89.6% respectively. For epineural electrodes the

yield for cats G, H, I, and J was 50%, 95.8%, 91.7%, and 66.7%. The maximum amplitude

delivered during epineural stimulation was higher than that for penetrating stimulation and

may explain overall greater recruitment.

2.3.1 Coactivation at Threshold

Threshold responses for stimulation at each DRG were used to generate coactivation

matrices for each electrode type (Figure 2.2). The rows in each coactivation matrix corre-

spond to the nerve recruited at threshold and the columns represent the coactivated nerves.

The non-normalized counts for recruitment and coactivation were calculated to highlight the

differences in recruitment and coactivation per DRG. Additionally, non-normalized counts

allow comparison across multiple nerves recruited at threshold whereas normalizing (supple-

mentary figure A.2A and B) allows a comparison of the instances of coactivation within a

given nerve.

26



Figure 2.2: Count of nerves coactivated at threshold per DRG for stimulation via A) epineu-

ral and B) penetrating electrodes. Dashed line indicates division between femoral and sciatic

nerve branches. Rows represent the nerves recruited and columns represent the nerves coac-

tivated at threshold

With epineural electrodes, stimulation at the L5 DRG recruited femoral and sciatic nerve

branches at threshold. Stimulation at the L6 and L7 DRG exclusively recruited the sciatic

nerve and its branches at threshold except for one instance of vastus medialis recruitment at

L6 and one instance of saphenous recruitment at L7. Epineural stimulation at L6 recruited

the common peroneal and the tibial branch of the sciatic nerve, however LG and MG were

rarely recruited. Whereas stimulation at L7 preferentially recruited the tibial branch of the

sciatic nerve over the common peroneal branch and had a higher recruitment rate for MG and
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LG. With penetrating electrodes, stimulation at L5 primarily recruited the femoral trunk

and its branches (Sph, VL, VM and Srt) with minimal sciatic nerve recruitment. Penetrating

electrode stimulation of the L6 DRG recruited sciatic and femoral branches approximately

equally at threshold with no activation of the LG, MG and VL. While penetrating L7 stim-

ulation predominantly recruited sciatic nerve branches with rare activation of LG and MG,

unlike epineural stimulation at L7. Both electrode types demonstrated preferential activation

of sciatic nerve branches for stimulation at L6 and L7 DRG. However, stimulation with pen-

etrating electrodes at the L6 DRG showed more coactivation of sciatic and femoral branches

than epineural stimulation. This trend was reversed for stimulation at the L5 DRG where

epineural stimulation produced more coactivation of femoral and sciatic nerve branches at

threshold than stimulation with penetrating electrodes. The combined coactivation matrices

for each electrode type (supplementary figure A.2A and B) were calculated by adding the

coactivation matrix at each DRG and normalizing the counts in each row by dividing by

the total number of times that a given nerve was recruited. This was used to determine

the overall tendency of multiple nerves to be coactivated at threshold. The overall pattern

of coactivation at threshold for penetrating and epineural electrodes showed a strong linear

relationship (supplementary figure A.2C) i.e. the likelihood of two nerves being coactivated

at threshold was similar for both electrode types. The Pearson correlation coefficient be-

tween the coactivations for epineural and penetrating stimulation was 0.80 (R2 = 0.64). We

expected that distal nerves would be coactivated with their proximal parents (e.g. tibial or

common peroneal with sciatic nerve). However, this was not always true and is likely a result

of the difficulty in detecting threshold-level ENG signals in large-diameter nerves, where the

signal may be smaller if the electrode is further from the source [112]. Furthermore, the

sciatic and femoral nerves were infrequently coactivated at threshold (<20% of the time).

2.3.2 Selectivity and Dynamic Range

The instances of selective recruitment for each nerve were tallied for each DRG (Figure

2.3A). Stimulation that recruited a single distal nerve at threshold was deemed selective.

Nerves in the same innervation path (e.g. tibial and distal tibial) could be coactivated while
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Figure 2.3: A) Counts of selectively recruited nerves for stimulation via epineural and pen-

etrating electrodes at each DRG. B) Counts for selective recruitment, non-selective recruit-

ment and coactivation of agonists at threshold. Counts for selective recruitment were ob-

tained by adding the counts at each DRG for each nerve in 3A. Nerves in the same innervation

path (e.g., tibial and distal tibial) were allowed to be coactivated while still being consid-

ered selective; however, only activation of the distal most nerve was counted to highlight

differential recruitment of proximal branches

still being considered selective. However, only activation of the distal most nerve was counted

to highlight differential recruitment of proximal branches [112]. Epineural stimulation at the
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L5 DRG recruited more sciatic branches (28%) than penetrating stimulation (6%). For

both electrode types, the distal tibial nerve was most often recruited selectively. This was

followed by the tibial, vastus lateralis, and vastus medialis branches for epineural stimulation

and distal common peroneal and common peroneal branches for penetrating stimulation. For

both electrode types, stimulation at the L5 DRG produced selective responses in the femoral

nerve and its branches. For the L6 and L7 DRG, the likelihood of recruiting the sciatic

nerve or its branches was higher than for L5. Additionally, for functional groups of agonist

muscles, (i.e. quadriceps: VL, VM and plantarflexors: LG, MG), selective recruitment of

each nerve and each functional agonist group was counted separately (2.3B). For epineural

stimulation, the quadriceps were never coactivated at threshold while the plantarflexors

were often (55%) coactivated at threshold. Overall, epineural stimulation yielded at least

one instance of selective recruitment at threshold for all the instrumented nerves except LG.

For penetrating electrodes, plantarflexors (MG and LG) were never coactivated at threshold

while the quadriceps were coactivated infrequently (8.3%).

Using an expert observer as the gold standard, the overall sensitivity, specificity, and

accuracy for ENG response detection was 96.4%, 80.9% and 85.7% respectively (supplemen-

tary table A.2). In several instances, the ENG response detection algorithm erroneously

detected the stimulation artifact as an ENG response, which was greater in the femoral nerve

trunk due to the short distance between the DRG and the femoral nerve cuff. This high

false positive rate (Fem: 30%, Sci: 3%) contributed to the lower detection accuracy in the

femoral nerve and its branches, particularly for cat G and H.

We also quantified the distribution of threshold charge and dynamic range of stimulation

for each instance of selective activation. A D’Agostino-Pearson test was used to determine

that the distributions for threshold and dynamic range for each electrode type (Figure 2.4)

were non-normal (p < 0.01), so a non-parametric Kruskal-Wallis test was used to test for

differences in thresholds and dynamic range across epineural and penetrating stimulation.

The median recruitment threshold and dynamic range for epineural electrodes were 9.67

nC and 1.01 nC respectively. For penetrating electrodes, median recruitment threshold and

dynamic range were 0.90 nC and 0.36 nC respectively. Both threshold and dynamic range

were significantly higher (p < 0.001 for both) for epineural than penetrating electrodes.
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Figure 2.4: A) Distribution of selective recruitment thresholds for stimulation via epineural

(median = 9.67 nC/phase) and penetrating (median = 0.905 nC/phase) electrodes. B) Dis-

tribution of dynamic range for selective recruitment for epineural (median = 1.01 nC/phase)

and penetrating (median = 0.36 nC/phase) stimulation. Dashed lines show median for each

plot.

The choice of resolution for binary search could impact the dynamic range (i.e. a lower

resolution could give the appearance of a higher dynamic range). Since the resolution was

varied between epineural and penetrating electrode experiments, we used a non-parametric
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Kruskal-Wallis test to test for differences in dynamic range across binary search resolutions

for each electrode type (supplementary Figure A.3). For the same binary search resolution

(0.41), there were significant differences (p < 0.01) in the distribution of dynamic range

for penetrating and epineural stimulation. Additionally, the dynamic range for penetrating

stimulation at a lower resolution of 0.082 nC was not significantly different from the dynamic

range detected with a resolution of 0.41 and 1.024 nC with epineural electrodes. These results

indicate that the observed differences in dynamic range were not due to the resolution of

binary search.

Additionally, we used a nonparametric Kruskal-Wallis test (as data were non-normal)

to test for differences in dynamic range and threshold between FMA and UEA penetrating

electrodes. There were significant differences in the thresholds (p < 0.01) between the two

types of penetrating electrodes however no difference was observed in the distribution of

dynamic range. We also tested if there were differences in threshold and dynamic range

across electrode length and exposed tip sizes for the FMAs and no significant differences

were observed. We also tested for differences between the two designs of epineural electrodes

used and found a significant difference in the thresholds (p < 0.01). However, there was no

difference in the dynamic range between both designs. Because of variations in the exper-

imental setup between cats G-H and I-J, there were multiple covarying factors that could

have led to these differences such as the layout of contacts (linear vs square) and fixation to

the spinal dura.

2.3.3 Conduction Velocity

Finally, the conduction velocity of recruited afferents in the femoral and sciatic nerve

were compared at threshold and supra-threshold stimulation amplitudes (Figure 2.5). For

epineural stimulation, at threshold only 60-80 m/s (group 1/Aβ) fibers were recruited in

the femoral nerve while slowly conducting fibers (< 50 m/s, group 2) were recruited at

higher amplitudes. For the sciatic nerve, epineural stimulation recruited 40-120 m/s fibers at

threshold while slowly conducting fibers were never recruited at threshold. The relationship
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Figure 2.5: Comparison of stimulation charge injected and the CV of the nerve cuff response

recorded across all stimulation amplitudes (blue) and at recruitment threshold (orange) for

stimulation via A) epineural and B) penetrating electrodes at the lumbar DRG. CV values

were discretized due to sampling frequency limitations of the recording setup. The vertical

grey bars indicate the range of CVs corresponding to group I, Aβ and II afferents.

between stimulation amplitude and conduction velocity of recruited fibers displayed a weak

negative correlation at threshold for the femoral nerve (R2 = 0.39, slope = -2.26 ms−1nC−1,
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p < 0.01) and a weak positive correlation for the sciatic nerve (R2 = 0.35, slope = 1.19

ms−1nC−1, p<0.001) nerve. For penetrating stimulation, the range of fibers (35-120 m/s)

recruited at threshold and supra-threshold stimulation amplitudes was the same for sciatic

and femoral nerves. Stimulation via penetrating electrodes did not recruit any afferents

with a conduction velocity below 35 m/s. For the femoral nerve, the conduction velocity

of recruited afferents at threshold showed a weak negative correlation with the stimulation

charge (R2 = 0.17, slope = -2.44 ms−1nC−1, p<0.001) whereas for afferents in the sciatic nerve

no linear correlation between stimulation amplitude and conduction velocity was observed.

2.4 Discussion

The goal of this study was to determine whether epineural stimulation of the DRG

selectively recruits distal branches of the sciatic and femoral nerves and to compare the

distribution of recruited nerves and recruitment properties with stimulation via penetrating

electrodes. While epineural electrodes provide a clearer path to clinical translation than

penetrating devices, the epineurium is a resistive barrier [121] that increases the separation

between electrodes sites and target neural tissues. Additionally, the size of the active sites on

the epineural electrodes used in these experiments meant that charge density delivered per

pulse of stimulation was lower than with penetrating electrodes. Given the diffuse nature

of epineural stimulation, we expected less selective recruitment and frequent coactivation

of the sciatic and femoral branches. Surprisingly, a majority (67%) of epineural electrodes

selectively recruited a single distal branch of the sciatic or femoral nerve at threshold.

The pattern of recruitment was consistent with known dermatome maps [98] and selec-

tivity was consistent across both electrode types. Stimulation of the L5 DRG selectively

recruited femoral nerve branches innervating the quadriceps while stimulation at the L6

and L7 DRG recruited sciatic nerve branches innervating ankle plantarflexors and distal

branches of the common peroneal and tibial nerves, both of which innervate the skin on

the foot. Several studies have demonstrated that sensory feedback from peripheral afferents

is necessary to modulate locomotor muscle activity and the timing of phase transitions in
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the gait cycle [122, 123, 124, 125, 126]. Specifically, feedback from Golgi tendon organs and

secondary spindle afferents provides approximately 1/3rd of ankle plantarflexor muscle tone

[127]. In the context of clinical translation, these results imply that delivering stimulation at

the caudal lumbar DRG may be sufficient to evoke relevant percepts that are localized to the

missing limb in a somatosensory neuroprosthesis for people with trans-tibial amputation.

Other than the lateral gastrocnemius nerve, epineural stimulation selectively recruited

every instrumented nerve branch at least once. Interestingly, for both epineural and pene-

trating electrodes the distal tibial nerve was frequently recruited selectively. It is unlikely

that distal tibial afferents have an intrinsically low activation threshold. However, it is pos-

sible that afferents innervating the distal tibial nerve represent a greater fraction of afferents

than other nerves in the L6 and L7 DRG, increasing the likelihood of recruitment. While

our primary method to determine selectivity was to identify nerves that were recruited to

the exclusion of all others, another way to consider selectivity is at a functional level. For

example, there were 5 instances in which the lateral and medial gastrocnemius nerves were

coactivated at threshold. Although this coactivation does not represent selectivity in terms

of a single nerve branch, both nerves innervate the agonist muscles that are responsible for

ankle plantarflexion and knee flexion. In terms of delivering relevant sensory feedback, it

may not be necessary to selectively recruit these functionally synergistic nerves. The same

holds for the vastus lateralis and medialis nerves that innervate the quadriceps, although

coactivation at threshold was not observed during epineural stimulation.

As anticipated, epineural stimulation had a higher threshold for selective recruitment

when compared to penetrating electrodes. However, the dynamic range of selectivity was

also significantly higher than that for penetrating electrodes. This means that selectivity for

a given nerve could be maintained over a larger range of charge injection during stimulation.

In the context of clinical translation, a higher dynamic range for selective recruitment may

provide a somatosensory interface that is resilient to electrode encapsulation since increasing

stimulation charge may still recruit the same population of afferents. A larger dynamic

range also provides a larger parameter space within which stimulation can be varied in order

to modulate the subjective quality of an evoked percept. The inherent assumption that

epineural stimulation is diffuse may be true in the context of current spread through neural
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tissue. However, it is plausible that the mechanism of afferent recruitment itself is different

between epineural and penetrating stimulation and serves to counter this diffusivity. The

DRG houses the cell bodies for all sensory afferents that project from the limbs, and in cross-

section, these cell bodies are concentrated near the circumference of the DRG while axons

are concentrated near the center [83]. Additionally, the cell soma and initial segment are

excitable and adapted for spike initiation [128]. Taken together, these observations suggest

a possible mechanism of recruitment wherein epineural stimulation activates regions of the

neuron closer to the epineurium such as the axon hillock or stem, while penetrating electrodes

directly recruit axons present near the center of the DRG. Future work should explore these

potential mechanisms and their implications for the design of electrodes at the DRG. The

subjective quality of evoked percepts may also be modulated by activating fibers of specific

sensory modalities. Afferents can be loosely segregated into separate populations based on

their axonal diameters and corresponding conduction velocities, though those populations

have some overlap [129, 130, 131]. By measuring the conduction velocity of CAPs traveling

through the nerve-cuff electrode, it is possible to infer the most likely sensory modalities of

the activated neurons. Our prior work in acute and chronic preparations using penetrating

electrodes has demonstrated the ability to recruit medium to large diameter fibers in the

DRG [113, 120].

Additionally, modeling studies examining the recruitment of fibers via stimulation of the

DRG have demonstrated that intraneural microstimulation may recruit medium diameter

fibers with greater probability than large diameter fibers [132] while non-penetrating DRG

stimulation drives activity of large myelinated Aβ fibers but does not directly activate small

nonmyelinated C-fibers [79]. In the present study, recruitment of fibers in the L5, L6 and

L7 DRG showed a similar trend. Across all stimulation amplitudes, epineural electrodes

recruited fibers with conduction velocities between 30-120 m/s. Stimulation with penetrating

electrodes recruited a similar range of fibers (35-120 m/s). These conduction velocities

correspond to medium and large diameter fibers such as muscle spindle afferents, Golgi

tendon organs and a variety of cutaneous sensory axons. At threshold, epineural stimulation

recruited fibers in the femoral nerve with conduction velocities between 60-80 m/s, roughly

corresponding to medium diameter fibers.
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Interestingly, fast conducting (120 m/s) fibers were not activated selectively at thresh-

old. For the femoral nerve, stimulation via epineural and penetrating electrodes displayed

a similar negative correlation between the conduction velocity of recruited afferents and the

stimulation charge. For the sciatic nerve, epineural stimulation at threshold predominantly

recruited fibers with conduction velocities between 40-80 m/s with some instances of 120

m/s fibers being recruited. As with the modeling study, this result may occur because of

the higher percentage of cutaneous afferents than fast conducting proprioceptive afferents

in the DRG [133]. In contrast, stimulation via penetrating electrodes recruited a diverse

population of afferents projecting to the sciatic nerve at all stimulation amplitudes. Still,

we have demonstrated that epineural electrodes can recruit a range of sensory afferents and

future work may focus on selective recruitment and activation thresholds for each modality

of sensory afferents with epineural DRG stimulation.

2.4.1 Challenges and Future Work

In this study we have demonstrated that selective recruitment of distal nerve branches

that innervate the hindlimb via epineural stimulation is comparable to the selectivity achieved

via penetrating electrodes. Despite the diffuse nature of epineural stimulation, individual

nerves and functionally synergistic innervation pathways were recruited at threshold and

the dynamic range for selectivity was higher than anticipated. However, there are a few

shortcomings that could be addressed in future work. A large inter-subject variability was

observed in the percentage of epineural electrodes that produced a response at maximum

charge injection. It is possible that this variability is an example of anatomical differences

and inconsistent dermatomes between animals. However, successful array placement and fix-

ation typically determined the efficacy of stimulation. There was no fixation of electrodes to

the epineural surface for cat G and H while epineural electrodes used with cats I and J were

fabricated with tabs on the arrays that were used for fixation to the spinal cord dura. For a

potential somatosensory interface with the DRG, ensuring electrode positioning and contact

with neural tissue throughout the lifetime of the device is critical. Additionally, in terms

of measuring conduction velocity, we were limited by the sampling frequency of the surf-D
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headstage (i.e. 30 kHz). This meant that the resolution for measuring conduction velocity

decreased for higher conduction velocities and we could only detect conduction velocities at

30, 34, 40, 48, 60, 80 and 120 m/s. While no afferents were recruited below 40 m/s it is

possible that the reported conduction velocities are only a close approximation (to the near-

est sample) and selective recruitment by sensory modality may be possible. The difficulty

of selectively recruiting neurons varies throughout the nervous system based on underlying

neural organization. Neural interfaces based in the primary somatosensory [134, 135], and

the visual cortex [136, 137], rely upon the somatotopy and retinotopy of these regions, re-

spectively. The cochlear implant relies on the well-defined tonotopic map of the cochlea [138]

which facilitates recruitment of auditory fibers with similar frequency responses in spatial

restricted locations. While there is dermatomal segregation of afferents from large regions

of the limb across DRG, selective recruitment is important due to the lack of a consistent

somatotopic organization of sensory fibers within each DRG [99, 100]. As with peripheral

nerves, neighboring neurons may innervate different regions within a dermatome or may con-

vey different modalities of sensory information. This means that particular afferent types

and subregions of the limb cannot be targeted a priori with DRG stimulation, making broad

and diverse electrode coverage especially important. In the context of developing a clini-

cal somatosensory interface, further work is necessary to evaluate the effect of modulating

stimulation parameters on recruitment properties. In this study all stimulation was applied

in a monopolar configuration with respect to a distant ground. Maximizing the utility of

epineural electrodes may ultimately require pursuing bipolar stimulation and more complex

current steering techniques to achieve more focal recruitment. The epineural electrodes used

in this study had only four contacts. We tried multiple placements of these electrodes to

compensate for this limitation. Additionally, the large electrode contacts meant multiple

electrodes may have recruited redundant populations of afferents. The size and spacing of

electrodes used in this study was constrained by the fabrication process. Ripple is currently

able to manufacture devices with features of 150 µm that are comparable in size to the cell

body of afferents found in the DRG (20-100 µm) [139]. Ongoing work in our lab is focused

on identifying the optimal electrode size, channel count, spacing, and fixation required for

maximal coverage, selectivity and electrode independence. The primary limiting factors for
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achieving a high-channel epineural interface will possibly be related to anatomy (e.g. surface

area and curvature of the DRG) and stimulation safety (e.g. charge density limits) rather

than electrode properties.

Finally, a fundamental assumption underlying these experiments is that selective recruit-

ment of distal nerve branches corresponds to focal percepts localized to the limb. However,

it is possible that the salience of an evoked percept is more relevant than focality for a

somatosensory neural interface. Stimulation parameters that recruit a nerve may not nec-

essarily evoke a percept and coactivation and non-selectivity may be permissible if evoked

percepts are differentiable. However, addressing the subjective modality of percepts evoked

via DRG stimulation may only be possible by replicating epineural DRG stimulation in hu-

mans. In summary, epineural electrodes represent a compromise between selectivity, safety,

and stability and have been used in several successful neuromodulation devices. The se-

lectivity of epineural stimulation at the DRG represents a viable path forward for clinical

translation for a DRG-based somatosensory neuroprosthesis.
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3.0 Modeling sensory fiber recruitment via epineural and penetrating

stimulation at the DRG

3.1 Introduction

Computational models of neural tissue are a valuable scientific tool that have been used

to analyze and design neurostimulation devices used to treat several neurological diseases and

disorders. Modeling in this context serves two main purposes. First, it provides insight into

the mechanism by which the target neural population is activated [140]. Second, it serves

as a virtual testing platform to explore a large parameter space (lead design, stimulation

configurations, waveform parameters etc) that would be challenging if not impossible to

explore in a clinical or preclinical setting [140, 141].

Additionally, with regards to personalized medicine, patient-specific models that account

for the unique anatomy, electrode position and measured physiological response to stimula-

tion have shown superior clinical efficacy and can be used to optimize clinical application of

technologies, such as deep brain stimulation [142] and spinal cord stimulation [143]. Epidural

stimulation of the spinal cord for treatment of chronic pain was one of the first applications of

computational modeling where a finite element model of the electrical field generated within

the spinal cord was used to estimate the threshold and recruitment of myelinated axons in

response to bipolar stimulation [144, 145]. Subsequent studies have focused on identifying

the population of nerve fibers recruited as a function of the stimulation parameters [146]

and electrode geometry [105] along with refinements to the biophysical model of the neurons

[147] and anatomical models of the spinal cord [148] to explain the mechanism of action of

SCS.

More recently, DRG stimulation was approved by the FDA for treatment of complex

regional pain syndrome of the groin and lower limbs [149, 116] and has been used off-label

for a wide array of pain etiologies, such as phantom limb pain, diabetic neuropathy, etc

[150, 151, 152, 153]. This has also led to several modeling studies focused on understanding

the mechanism of action of DRG stimulation [79, 154]. Prior DRG modeling work has focused
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on building a model of afferent fibers to predict the probability of recruiting a distribution of

fibers as a function of stimulus intensity [132]. This model demonstrated that as stimulation

amplitude increased the number of fibers recruited increased exponentially. Furthermore, it

also predicted that medium-diameter fibers may be recruited with greater probability than

large-diameter fibers. While these results formed the basis for our in vivo experimentation

with penetrating stimulation electrodes, the model does not account for the presence of cell

bodies, the pseudounipolar morphology of DRG afferents, the glomerular structure of the T-

stem axon [81] and assumes that the site of activation always occurs at the nodes of Ranvier

in axons.

Results from our epineural stimulation experiments may contradict this assumption

about the site of activation within afferents in the DRG. When the DRG is viewed in cross-

section, the cell bodies of afferents are clustered around the circumference, while axons are

more densely located near the center of the structure [83]. This unique anatomical structure

may explain the surprising selectivity results we observed. Epineural electrodes are much

closer to cell bodies than to axons, and given that voltage drops exponentially with distance

from an electrode and that epineural stimulation can achieve a high degree of selectivity, it

is possible that the site of activation may not always be the axons.

Several studies modeling the behavior of neurons at the DRG have confirmed empirical

observations regarding the excitability of the soma. The cell soma is adapted for spike

initiation and the excitability of the soma and initial segment is essential for spike invasion

of the soma [128]. Our data present the possibility that epineural stimulation at the DRG

may activate other regions of neurons (e.g. axon hillock, stem), that are closer to the

epineurium while penetrating electrodes directly recruit axons present in higher densities

near the center of the DRG.

In this study, we developed a computational model of the DRG that replicates the unique

geometric arrangement of afferents to identify response to electrical stimulation at the DRG.

By building a model that accurately replicates the anatomy and dynamics of electrical stim-

ulation at the DRG, we can begin to understand how these surprising results occur, and

to take advantage of the unique anatomical structure of the DRG to develop electrodes

that can optimally target PAs for a somatosensory neuroprosthesis. Contemporary studies
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have used a similar model-based approach to design epineural electrodes that maximize the

selectivity of peripheral nerve stimulation [155, 156, 157] for motor and somatosensory neu-

roprostheses. Their simulations investigated multiple electrode configurations to determine

the optimal number and location of contacts for maximum selectivity. The advantage of

such an approach is that it allows for rapid iteration on the design of electrodes to determine

the effects of electrode size, shape, arrangement, and number on the selectivity of stimula-

tion. While this approach has been used extensively in designing electrodes for stimulation

of peripheral nerve, this study marks the first attempt at model-based design for epineural

electrodes at the DRG.

3.2 Methods

To develop an understanding of the underlying mechanisms of stimulation through pen-

etrating and epineural electrodes at the DRG, we 1) developed a computational finite el-

ement model (FEM) that replicates the anatomical and electrical properties of the DRG

and surrounding tissues, 2) calculated the extracellular voltages generated by stimulation

of the tissue through epineural and penetrating electrodes, and 3) simulated the dynamics

of transmembrane ionic current flow with multi-compartmental models of pseudounipolar

neurons placed in this extracellular voltage field.

3.2.1 Models of Sensory Neurons in the DRG

We used the open-source software package NEURON (v7.7) [158] and the pyneuron [159]

library in Python (v3.6) [160] to construct a multi-compartment model of Aβ afferents. The

morphology of these afferents was adapted from previous studies [128, 161]. The Aβ afferents

have a large soma (50-80µm) that leads into a long unmyelinated initial segment followed

by four myelinated internodes (neck), ending at the t-junction. At the t-junction the neuron
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bifurcates into a peripheral and dorsal root axon branch. The dorsal root axon branches

were smaller in diameter than the peripheral branches [162] and were parametrized to the

diameter of the peripheral branch [139] (figure 3.1A).

Figure 3.1: A) Multi-compartment model of primary sensory (Aβ) afferent B) Equivalent

circuit representation of mammalian axon described in the MRG model

A model of the mammalian axon (the MRG model) [147] was used to construct the

neck and axon branches of the neuron model. The MRG model is a double cable model

of a mammalian motor axon that contains nodes of Ranvier separated by ten internodal

segments with an explicit representation for the myelin attachment segment (MYSA), para-

nodal main segment (FLUT) and internode segment (STIN). Nodes in the MRG model
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include fast and persistent sodium (Naf , Nap respectively), slow potassium (Ks) and linear

leakage (Lk) conductances in parallel with the nodal capacitance as shown in figure 3.1B.

Internodal conductance was represented by a single conductance value (Gi) in parallel with

the membrane conductance. To accurately predict the behavior of Aβ sensory afferents, the

membrane conductances at the nodal and internodal compartment of the MRG model were

modified [163, 164]. Specifically, fast potassium (Kf ) channels were added to the nodal and

internodal compartments and slow potassium (Ks), leak (Lk) and hyperpolarization acti-

vated cyclic-nucleotide gated (HCN) channels were added to the internodal compartments.

Additionally, the nodal Lk was increased to 8 mS/cm2 to reduce membrane hyperpolariza-

tion at simulation onset. The A parameter of the Ks β rate constant was increased to 0.06

to better fit experimental values of afterhyperpolarization (AHP) amplitude and duration as

has been described in previous studies [79].

The Naf and Nap channel densities at the nodes of Ranvier in the MRG model are 2000

channels/µm2. Freeze fracture studies of the DRG soma and axon hillock describe the soma

and initial segment as having the same active channels as the nodes, differing only in the

sodium channel densities [82]. Accordingly, for our Aβ afferent model the Naf and Nap

channel densities at the soma were modified to 300 channels/µm2. The initial segment was

divided into a proximal (0 to 6 µm from the soma) and distal section. The Naf and Nap

channel densities were 1000 channels/µm2 at the proximal section and 600 channels/µm2 at

the distal section of the intial segment.

Additionally, the myelin thickness and internode length of our Aβ afferent model were

parametrized to replicate the increased myelination in the neck near the t-junction and the

variable internode length in the first several nodes of the peripheral and dorsal root branches.

3.2.2 Histological Data from Feline Lumbar DRG

Histological data collected from the L6 and L7 DRG in six cats was used to determine

the arrangement of sensory afferent cells within the DRG. We observed that cell bodies were

distributed densely within an annulus of 400 µm beneath the epineurium. With increased

depth from the epineural surface, cell bodies become sparse and most of the endoneurium is
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occupied by axon branches projecting towards the periphery and dorsal root (figure 3.2A).

Nissl staining showed that PA soma are large, roughly round cells with diameters ranging

from about 50-80 µm [165]. These observations were in agreement with a recent study where

the cross sectional area of the DRG was partitioned based on the density of cell bodies.

The highest density of cell bodies was reported in the outer 24% radially and the dorsal

± 61◦ [83] (figure 3.2B). Additionally, we used published data for fiber size distributions in

the L7 DRG of a cat to obtain a log-normal probability distribution for fiber size within a

4-16 µm range of diameters. We used these observations to determine the placement of the

multi-compartment Aβ afferent model within the FEM and the fiber size of the neck and

axon branches.

Figure 3.2: A) Cross section of feline lumbar DRG with schematic representation of epineural

and penetrating electrodes relative to cell soma and axons. B) Density partition model

describing regions of high neuronal soma density (purple). Blue shading represents sectors

where the soma density was significantly different from other regions. Adapted from [83].

C) Example of multi-compartment Aβ afferent models placed in the FEM

3.2.3 Anatomy Based Model of the DRG and Surrounding Tissue

We constructed a 3-dimensional finite-element model of the feline L7 dorsal root ganglion

based on anatomical measurements taken from previous acute experiments. Across multiple

cats, the L7 DRG measured after a laminectomy was 5-8 mm long and 3-3.5 mm in diameter
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at its widest point. The enlargement of the dorsal root ganglion was modeled as an ellipsoid

(prolate spheroid) with a semi-major axis of 3.7 mm and a semi-minor axis of 1.5 mm. The

peripheral and dorsal root branches were modeled as 15 cm long cylinders with a radius of

0.75 mm. The peripheral and central branches connected to the DRG at 3.25 mm from the

center of the ellipsoid. The epineurium and connective tissue was modeled as a 20µm thick

layer that ensheaths the DRG and extends uniformly along the length of the peripheral and

dorsal branches. The DRG and epineurium were placed within 2 concentric cylinders of 3.25

mm and 17.2 mm radius to represent the intraforaminal tissue and bone (figure 3.3).

Figure 3.3: Schematic of DRG finite element model A) Cross section B) 3-dimensional

rendering of the DRG C) Longitudinal section of the DRG and surrounding tissue modeled

as concentric cylinders

A single platinum epineural electrode with a contact diameter of 375 µm and a height

of 100 µm was constructed. Except for the surface of the electrode in contact with the

epineurium all surfaces were encased in a perfect silicone insulator (figure 3.4A). A model

of a single 1mm long Utah array electrode was constructed with a 0.05 mm exposed tip and

parylene-c insulation on all remaining surfaces (3.4B). Additionally, a cylindrical stimulation

return electrode made of stainless steel was inserted into the bone to replicate the stimulation
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ground inserted in the iliac crest during the acute experiments. All model components

were constructed using the SpaceClaim 3D modeling software. Anatomical and electrical

properties of the finite element model were obtained from previous studies [154].

Figure 3.4: Schematic of A) epineural and B) penetrating electrode design

3.2.4 Extracellular Voltage Generated by DRG Stimulation

The 3-dimensional model of the DRG, surrounding tissue and stimulation electrode was

imported into Maxwell 3D (v2020, ANSYS, Canonsburg, Pennsylvania). All biological tis-

sues were modeled with isotropic conductivity except the DRG and spinal root which was

modeled as a two-dimensionally anisotropic material. The longitudinal conductivity (along

the x-axis) was higher than the transverse conductivity (y-z plane).

The epineural electrode was placed on the epineurium such that the longitudinal axis

coincided with the y-axis at the middle of the DRG. The exposed contact of the epineu-

ral electrode was designed to conform to the curved surface of the DRG. The penetrating
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Figure 3.5: A) Result of meshing operation in Maxwell. Extracellular voltages generated by

B) penetrating and C) epineural stimulation calculated from the FEM

electrode was inserted to a depth of 0.9 mm inside the DRG such that its longitudinal axis

coincided with the y-axis at the middle of the DRG. For both electrodes, besides the ’active’

platinum surfaces where charge injection occurred all surfaces were encased in a perfect insu-
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lator to prevent any off-target current spread. The stimulation return electrode was inserted

into the bone component of the model 10 cm from the stimulation electrode to approximate

the distance between the L7 DRG and the iliac crest.

The DC conduction solver in ANSYS Maxwell was used to run frequency-independent

simulations for each electrode. Stimulation was applied by setting a 1 mA current excitation

through the exposed contact surface for each electrode. The edge faces of the bone and the

stimulation return electrode were set to ground boundary conditions (0 V). The voltage field

was calculated by solving the Laplace equation using the conjugate gradient method. The

mesh resolution was set to 0.0001 and auto-adaptive mesh refinement converged to a final

mesh with less than 1% error in the voltage distribution.

For penetrating electrode simulations, the calculated voltages were piece-wise exported

to Python (v3.6) [160] by splitting the DRG structure into 2 regions. The voltage field

within a 10 µm radius of the entire electrode (including insulation) was exported with a

2 µm resolution. For the remaining volume, the voltage field was exported with a 50 µm

resolution. This piece-wise export was done to ensure that the voltage field was accurately

captured within close proximity of the electrode. Past the 10 µm around the electrode the

voltage change was uniform hence a lower resolution was used. This method also reduced

export time from ∼6 hours (at an intermediate resolution) to ∼1.5 hours.

For epineural electrode simulations, the calculated voltage field was exported with a 50

µm resolution. Since the voltage distribution varied smoothly and the DRG volume was

intact (unlike with penetrating electrodes), a piece-wise export was not necessary.

3.2.5 Simulating the Neuronal Response to DRG Stimulation

For each simulation, the position of the soma of the Aβ afferent was assigned. The neck

and t-junction were constrained to the plane of the soma (y-z plane) and the angle of the

neck with the horizontal (z-axis) was determined. The peripheral and dorsal root branches

of the neuron contained 50 nodes each. The trajectories of both branches curved ventrally

prior to entering the nerve roots.
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The extracellular voltage for each compartment of the model was interpolated using a

2-D cubic spline (CloughTocher2DInterpolator using scipy in Python). These values were

applied to the model using the extracellular mechanism in NEURON. For every simulation

the time-course of the membrane potential for each compartment was calculated by solving

the cable equation using a backward Euler implicit integration method with a timestep of

0.01 or 0.005 ms. These simulations were run for cathodic-leading biphasic asymmetric pulses

with a pulse width of either 80 or 200 µs to mimic stimulation parameters used during acute

experiments.

3.2.6 Determine Afferent Recruitment via DRG Stimulation

We validated the Aβ afferent model by simulating a single axon placed in the DRG when

epineural stimulation was applied. The soma of this single afferent model was placed 100 µm

from the boundary of the DRG, ventral to the stimulation electrode. Characteristics of the

somatic action potential reported in experimental studies were used to validate our model

[79].

To determine the threshold of activation of Aβ afferents we placed the soma of the neuron

along a uniform grid in the y-z plane with a 100 µm spacing. The stem axon projected

toward the center of the DRG. Thresholds were calculated to an accuracy of 0.1 µA using a

binary search algorithm. This was repeated at each placement of the soma for neurons with

peripheral axon diameters of 8 and 16 µm. Separate simulations were run for epineural and

penetrating electrodes.

To determine the site of action potential initiation along the neuron the DRG FEM was

populated with Aβ afferents to resemble the organization of soma and axons reported in

studies of DRG histology discussed previously. A 2-dimensional cross section of the DRG

at the middle of the ganglion (y-z plane at x=0, radius of cross section = 1.5 mm) was

populated with a total of 2500 neurons. The fiber diameter of these neurons was drawn

from the log-normal function described previously [133] and the afferents were organized

according to parameters described in the partition model of the DRG [83] (i.e. soma were

clustered towards the dorsal annulus and axons were clustered towards the center). Of the
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Table 3.1: Validation metrics for multicompartment model of Aβ afferent

Parameter Model value Experimental range

Soma AP amplitude 111.5 mV 109.72 ± 11.21 mV [166, 128]
AP duration 0.95 ms 1.29 ± 0.59 ms [167]
Rise time 0.41 ms 0.61 ± 0.13 ms [168]
Fall time 0.54 ms 0.89 ± 0.41 ms [168]
AHP amplitude 4.6 mV 7.9 ± 4.2 mA [167]
Resting potential -79 mV -80 mV [164]

2500 neurons in a given cross section, 500 neurons had a soma in the same plane as the

DRG cross section while the remaining 2000 neurons had cell somas distributed randomly

along the length of the DRG. For epineural stimulation a threshold search was carried out

for all neurons where the t-junction or cell soma was placed above the x-z plane at y=750

µm. For penetrating stimulation a threshold search was carried out for all neurons where

the t-junction or cell soma was placed within a 600 µm radius of the tip of the pentrating

electrode. For each electrode, multiple simulations were run where the position of the 2500

neurons were varied.

3.3 Results

3.3.1 NEURON Model Validation and Recruitment Thresholds

We created a multi-compartment model of an Aβ afferent to investigate the mechanism

of recruitment via DRG stimulation. This model combined the psuedounipolar morphology

[128] of the DRG afferents, the membrane dynamics of sensory specific MRG axons [147]

and the differential distribution of ion channels at the soma and initial segment [82, 79]

reported in previous studies. We compared the somatic action potential characteristics,

with experimental values reported in the literature to validate our model (Table 3.1).
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3.3.2 Recruitment Thresholds for Epineural and Penetrating Electrodes

We quantified the threshold for recruiting Aβ afferents and the location of spike initiation

for neurons with peripheral branch fiber diameters of 8 and 16 µm. For epineural stimulation,

(figure 3.6) the thresholds for recruitment followed the gradient of extracellular voltage as

expected, i.e. thresholds increased with distance from the electrode. Within a 100 µm

annulus, on the dorsal side of the DRG, roughly corresponding to the region of densely

populated cell soma, the threshold for recruitment was 22.29 ± 0.94 µA across all fiber

diameters. The minimum threshold for recruitment (20.9 µA) was observed for cell somas

placed directly beneath the electrode inside the DRG. The distribution of thresholds was

similar for cell soma placed near the electrode, for each fiber diameter. As the distance

increased, neurons with fiber diameters of 16 µm displayed a lower threshold whereas 8 µm

fibers were not recruited.

Figure 3.6: Distribution of recruitment thresholds for epineural stimulation. Neurons were

placed on a uniform grid at 100 µm spacing. The approximate location of the stimulating

electrode is denoted by an X

When the location of spike initiation was overlaid on the distribution of thresholds (figure

3.6 dotted lines), we observed that the region of low thresholds close to the electrode, coin-

cided with instances where spike initiation occurred in the neck and initial segment of the

neuron. However, spike initiation at the initial segment was constrained to a narrow region

of tissue that extended 500-600 µm deep and 800-1000 µm along the length of the DRG.
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This pattern of recruitment mirrors the anisotropy of the DRG. For neurons placed beyond

this region, spike initiation occurred at the t-junction, peripheral or central axon branch.

For instances where spike initiation occured at the initial segment, univariate analyses for

the effect of fiber diameter on the threshold did not show a significant difference. Univariate

analyses for the effect of spike initiation on the threshold showed a significant difference in

the threshold (p<0.01) and follow-up non-parametric tests (Tukey-HSD) showed that there

was a significant difference between thresholds for spike initiation at the initial segment and

t-junction, and initial segment and the axon branches.

Figure 3.7: Distribution of recruitment thresholds for penetrating stimulation

For stimulation via penetrating electrodes, recruitment thresholds within a 200 µm ra-

dius of the electrode were similar for all fiber diameters. Univariate analyses for the effect

of fiber diameter on the threshold did not show a significant difference. This observation

is similar to the pattern of recruitment reported in prior DRG modeling work [132]. When

the location of spike initiation was overlaid on the distribution of thresholds, we observed

that spike initiation predominantly occurred at the axon branches. For the range of stimu-

lation amplitudes tested during our acute experiments, spike initiation rarely occured at the

initial segment. A univariate analysis showed no significant difference between thresholds

for instances where spike initiation occured at the t-junction and the axon branches. These

results implied that recruitment via penetrating electrodes was governed by distance of the

fiber from the electrode only.

53



3.3.3 Mechanism of Selective Recruitment of Afferents via DRG Stimulation

We populated the DRG model with Aβ afferents to resemble a realistic distribution of

neurons (in terms of fiber diameter and soma density) in order to identify the possible mech-

anism of recruitment observed during our acute experiments. For the range of stimulation

amplitudes tested during our experiments, epineural stimulation resulted in spike initiation

at the initial segment for a majority (61%) of the recruited neurons. Conversely, penetrat-

ing electrodes primarily recruited peripheral or central axon branches in nearly 65% of the

instances of afferent recruitment while spike initiation occured at the t-junction 30% of the

time (figure 3.8A).

The distribution of thresholds as a function of distance from the electrode, (figure 3.8B)

was used to identify the order of recruitment of afferents. For epineural stimulation at

stimulation amplitudes below 50 µA, spike initiation occurred primarily at the initial segment

of the neuron. As stimulation amplitude was increased neurons placed farther from the

electrode were recruited at the t-junction and axon branches. Recruitment of afferents

selectively at the initial segment was possible up to a distance of approximately 350 µm

from the electrode. Conversely, for penetrating electrodes there was no obvious order in

which afferents were recruited. Spike initiation occurred at the peripheral branch, central

branch or t-junction with nearly equal probability within 200 µm of the electrode.

We also constructed recruitment curves for each electrode type to quantify the number of

neurons recruited for a unit increase in the stimulation amplitude (figure 3.8C) for a typical

population of DRG afferents. The slope of the recruitment curve at 50% activation was

0.03 and 0.005 for penetrating and epineural stimulation respectively. The steeper slope for

penetrating electrode stimulation resembles the narrower dynamic range for stimulation via

penetrating electrodes observed in acute experiments. Across 10 simulations, penetrating

electrodes recruited a single neuron at the minimum stimulus amplitude in six instances

and recruited as many as five neurons at threshold for one simulation. At the minimum

threshold, epineural stimulation recruited a single neuron in four instances and recruited a
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Figure 3.8: Summary of results showing A) locus of spike initiation for epineural and pene-

trating stimulation B) distribution of thresholds as a function of distance from stimulating

electrode and locus of spike initiation C) recruitment curves for epineural (yellow) and pen-

etrating (purple) electrodes
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maximum of three neurons in two separate instances. These results suggest that epineural

stimulation can recruit individual neurons near the periphery of the DRG by initiating spikes

at the initial segment.

3.4 Discussion

The unique electrical and morphological properties of the sensory afferents, combined

with data showing selective recruitment via epineural stimulation at the DRG suggest an

alternative mechanism of recruitment than what has been reported for peripheral nerve

stimulation. The goal of this study was to develop a computational model of sensory (Aβ)

afferents and replicate their unique geometric arrangement within a structural model of the

DRG to shed light on the mechanisms of action and locus of activation of epineural and

penetrating stimulation.

3.4.1 Electrical Properties of the Initial Segment

We constructed a model of an Aβ afferent that produced somatic action potential char-

acteristics that agreed with reported experimental data. A key modification in our model

was the inclusion of an initial segment where the Naf and Nap conductances varied along

the length of the compartment.

Recruitment via penetrating electrode stimulation was primarily driven by proximity

of the neuron to the electrode and was unaffected by the presence of an excitable initial

segment and soma. Epineural stimulation generated action potentials at the initial segment

more frequently than any other location along the neuron. However, the initial segment does

not have an inherently lower threshold than the t-junction or the nodes of Ranvier. In terms

of excitability, the initial segment has nearly half the sodium channel density of the nodes

of Ranvier making it far less excitable. In fact, for distances greater than 400 µm from the

electrode, the threshold for generating an action potential at the initial segment was almost
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equal to the threshold for generating an action potential at a t-junction (figure 3.8B). This

indicates that initial segment excitability alone is not responsible for selective recruitment

via epineural DRG stimulation.

3.4.2 Mechanism of recruitment via DRG Stimulation

Sensory afferents have a characteristic arrangement within the DRG such that the soma

are densely packed near the circumference and the axons of these neurons are clustered

towards the center. This organization is consistent throughout the length of the DRG and

has been observed for lumbar and sacral DRG. The number of densely packed cell bodies

exceeds the number of axons interspersed at the periphery, by 2-3 orders of magnitude.

These observations imply that at the periphery of the DRG, there are fewer t-junctions than

cell soma and initial segments. Additionally, due to the size of the soma, the number of

excitable entities (initial segments) packed into a unit volume at the periphery is much lower

than the number of excitable axons packed into a unit volume at the center. Our results

show that at low amplitudes of epineural stimulation neurons are activated at their initial

segment and the probability of recruiting a t-junction or axon increases with amplitude and

distance of the soma from the stimulation electrode. We also replicated the greater dynamic

range of recruitment observed with epineural electrodes by modeling a realistic packing of

cell soma at the periphery. Ongoing work is focused on identifying the effect of soma size and

packing density on the dynamic range of recruitment. Our results indicate that the greater

distribution of excitable initial segments at the periphery may enable selective recruitment

via epineural stimulation.

3.4.3 Limitations and Future Directions

While we were able to achieve our objective of building a model of the DRG and positing

a possible mechanism for selective recruitment of afferents via DRG stimulation, there are

a number of improvements to our model that may inform future studies. We made several

simplifications with regards to the morphology of the neuron model where the soma, initial

segment and neck were in the same plane, the stem axon projected towards the center of the
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DRG and the trajectories of the axon and central branches were idealized. In reality, the

axon hillock, initial segment and neck wrap around the cell soma forming a tight glomerulus.

It is unclear how this glomerulus affects the electrical excitability of the neuron, but it would

certainly affect how densely we can pack the soma in our model.

The properties of the epineurium used in our model were drawn from previous litera-

ture pertaining to electrical properties of the dura. In fact, at the spinal roots, the dense

irregularly arranged collagen fibers and fibroblasts of the dura blend with the epineurium

of peripheral nerves [169]. These matrix differences between the dura and epineurium likely

alter the volume of tissue activated during epineural stimulation. As such future work should

focus on studying the electrical and structural properties of the epineurium and the impact

on recruitment.

An initial objective of this study was to develop a platform to allow testing of stimula-

tion paradigms and optimize the design of novel epineural electrodes to maximize coverage

and selectivity. Alas, that proved a bridge too far for the scope of this thesis however, the

model described in this chapter is a starting point for ongoing efforts in the lab to deter-

mine the ideal number, location, and size of stimulation electrode contacts, and designing

stimulation parameters that maximize the dynamic range and selectivity of stimulation. Ad-

ditionally, the model developed herein included Aβ primary sensory neurons only. In reality,

the DRG contain a heterogenous population of sensory afferents that include high and low

threshold mechanoreceptors (Aα fibers), small diameter sensory fibers (Aδ fibers) and no-

ciceptive fibers (C-fibers) [154]. Incorporating these neurons into our model may further

highlight the differences in the mechanism of recruitment across fiber types and help develop

stimulation paradigms that are relevant for providing somatosensory feedback in a potential

somatosensory neuroprosthesis.
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4.0 Sensory restoration by epidural stimulation of the lateral spinal cord in

upper-limb amputees

The contents of this chapter are published as: Chandrasekaran S*, Nanivadekar AC*,

McKernan GP, Helm ER, Boninger ML, Collinger JL, Gaunt RG, Fisher LE (2020). Sen-

sory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees.

eLife. 2020 July 21; 9:e54349. * These authors contributed equally to this work.

4.1 Introduction

Individuals with amputations consistently state that the lack of somatosensory feedback

from their prosthetic device is a significant problem that limits its utility [11] and is often a

primary cause of prosthesis abandonment [12, 170]. In the case of upper-limb amputations,

the absence of somatosensory feedback particularly affects the ability to generate the finely

controlled movements that are required for object manipulation [11, 171, 172, 170]. Although

sophisticated myoelectric prostheses with multiple degrees of freedom [173] are becoming in-

creasingly available, their potential is limited because they provide little or no somatosensory

feedback [10, 12, 174, 175]. In fact, body-powered devices are often preferred because of the

feedback they provide through their harness and cable system [176, 177, 178, 179]. Partially

addressing this limitation, advanced robotic prosthetic arms have been designed with embed-

ded sensors that could be harnessed to provide somatosensory signals to a neural interface

[180, 181, 182]. Thus, developing a robust and intuitive means to deliver somatosensory

information to the nervous system is an important endeavor to ensure the adoption and use

of the latest advancements in prosthetics.

Several research groups have explored the potential of peripheral nerve stimulation to

provide sensory feedback to people with amputation and examined the effects of feedback on

prosthetic control. Sensory restoration has been achieved using a variety of neural interfaces

including epineural cuff electrodes like the spiral cuff [46, 45] and flat interface nerve electrode
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[30] or microelectrodes that penetrate the epineurium, such as the longitudinal intrafascicular

electrode [33], transverse intrafascicular multichannel electrode [34], or Utah slant array

[36]. Targeted sensory reinnervation is another approach that can allow vibrotactile or

electrotactile feedback on the residual limb to be perceived as emanating from the missing

limb [16, 51]. This is achieved by first surgically redirecting nerves that formerly innervated

the missing limb to patches of skin on the residual limb or elsewhere, and then providing

electrical or mechanical stimulation to the newly innervated site [53, 52]. These approaches

can evoke focal sensations that are perceived to emanate from the upper-limb, even decades

after injury, and can improve the control of prosthetic limbs. However, all of these approaches

involve specialized electrodes and/or surgeries that are not part of common surgical practice.

Further, these approaches often target nerves in the distal limb, which could limit their use

in people with proximal amputations such as shoulder disarticulations.

Spinal cord stimulation (SCS) systems are an FDA-approved, commercially available

technology that could potentially be used to restore somatosensation. SCS leads are currently

implanted in approximately 50,000 patients every year in the USA to treat chronic back and

limb pain [54]. The standard clinical approach begins with a week-long trial phase with

temporarily implanted leads, and if patients experience pain relief, permanent implantation

occurs during an hour-long follow-up procedure. For the trial phase, SCS leads are inserted

percutaneously into the epidural space on the dorsal side of the spinal cord via a minimally

invasive, outpatient procedure [55]. Clinically effective stimulation parameters typically

evoke paresthesias (i.e. sensation of electrical buzzing) that are perceived to be co-located

with the region of pain. SCS leads are usually placed over the dorsal columns along the

midline of the spinal cord which limits the evoked paresthesias to the proximal areas of

the trunk and limbs. However, recent studies have demonstrated that stimulation of lateral

structures in the spinal cord and spinal roots can evoke paresthesias that selectively emanate

from the distal regions of the body [58, 59, 57, 56], likely by stimulating the same sensory

afferent neurons that are targeted by peripheral nerve stimulation for prosthetic applications

[183]. As such, these devices provide an attractive option for widespread deployment of a

neuroprosthesis than can evoke somatosensory percepts from distal aspects of the amputated

limb, including the hand and fingers.
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In this study, we implanted percutaneous SCS leads into the lateral epidural space of four

people with upper-limb amputations and characterized the sensations evoked when the cervi-

cal spinal cord and spinal roots were stimulated. The goals of the study were to demonstrate

the feasibility of lateral SCS to restore somatosensation and to guide technical development

for future studies that will include full implantation of SCS leads and stimulators. In all

subjects, lateral SCS evoked sensations that were perceived to emanate from the missing

limb, including focal regions in the hand, regardless of the level of amputation (trans-radial

to shoulder disarticulation). These sensations were stable throughout the 29-day testing

period and showed only minor changes in area and location. Additionally, in some cases, it

was possible to evoke naturalistic, rather than paresthetic sensations, though the incidence

of naturalistic sensations varied by subject. Considering these results along with the ex-

tensive clinical use of SCS, this approach to somatosensory restoration could be one that is

beneficial to a diverse population of amputees, including those with proximal amputations.

Further, these percutaneously implanted SCS devices are a useful tool for the development

of somatosensory neuroprosthetic systems, especially for research projects that focus on ad-

vanced prosthetic control but have not developed their own technologies and techniques for

restoring sensory feedback.

4.2 Methods

4.2.1 Study Design

The aim of this study was to investigate whether electrical stimulation of lateral struc-

tures in the cervical spinal cord could evoke sensations that are consistently perceived to

emanate from the missing hand and arm. We also aimed to characterize those sensations

and establish the relationship between stimulation parameters and the perceptual quality

of evoked sensory percepts. Four subjects with upper-limb amputations (three females, one

male; Table 4.1) were recruited for this study. Three amputations were between the elbow

and shoulder and one was below the elbow. The time since amputation ranged from 2 to 16
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years. All procedures and experiments were approved by the University of Pittsburgh and

Army Research Labs Institutional Review Boards and subjects provided informed consent

before participation.

Table 4.1: Demographic, amputation, and study-related information for each subject.

Subject Age Gender
Amputation characteristics Implant

durationYears since Side Level Cause

1 67 Female >5 Right
Shoulder

disarticulation
Necrotizing

fasciitis 29 days

2 33 Male >16 Left Transhumeral Trauma 15 days

3 38 Female >2 Right Transhumeral Trauma 29 days

4 44 Female >3 Right Transradial
Compartment

syndrome 29 days

4.2.2 Electrode Implantation

SCS leads were implanted through a minimally invasive, outpatient procedure performed

under local anesthesia. With the subject in a prone position, three 8- or 16-contact SCS

leads (Infinion, Boston Scientific) were percutaneously inserted into the epidural space on the

dorsal side of the C5–C8 spinal cord through a 14-gauge Tuohy needle. Contacts were 3 mm

long, with 1 mm inter-contact spacing. Leads were steered via a stylet under fluoroscopic

guidance, and electrode placement was iteratively adjusted based on the subjects’ report of

the location of sensations evoked by intraoperative stimulation. The entire procedure usually

took approximately 3–4 hours. The leads were maintained for up to 29 days and subsequently

explanted by gently pulling on the external portion of the lead. Subjects attended testing

sessions 3–4 days per week during the implantation period. The testing sessions lasted up

to a maximum of 8 hours. Lead location and migration were monitored via weekly coronal

and sagittal X-rays throughout the duration of implant.
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4.2.3 Neural Stimulation

During testing sessions, stimulation was delivered using three 32-channel stimulators

(Nano 2+Stim; Ripple, Inc.). The maximum current output for these stimulators was 1.5

mA per channel. In order to achieve the higher current amplitudes required for SCS, a

custom-built circuit board was used to short together the output of groups of four channels,

thereby increasing the maximum possible output to 6 mA per channel resulting in a total of

8 effective channels per stimulator. Custom adapters were used to connect each stimulator

to 8 contacts on each of the implanted leads. Custom software in MATLAB was used to

trigger and control stimulation.

Stimulation pulse trains were charge-balanced, cathodic-first square pulses, with either

asymmetric or symmetric cathodic and anodic phases. For asymmetric pulses, the anodic

phase was twice the duration and half the amplitude of the cathodic phase. Stimulation was

performed either in a monopolar configuration, with the ground electrode placed at a distant

location such as on the skin at the shoulder or hip, or in a multipolar configuration with

one or more local SCS contacts acting as the return path. Stimulation frequencies and pulse

widths ranged from 1–300 Hz and 50–1000 µs, respectively. The interphase interval was 60

µs. All stimulus amplitudes reported in this manuscript refer to the first phase amplitude.

4.2.4 Recording Perceptual Responses

The first few sessions of testing were primarily devoted to recording the location and

perceptual quality of sensory percepts evoked with various stimulation configurations. An

auditory cue was provided to denote the onset of stimulation. At the offset of each stim-

ulation train, the subject used a touchscreen interface developed in Python (Figure 4.1)

to document the location and perceptual quality of the evoked sensation. This interface

can be downloaded from Github. The location of the sensory percept was recorded by the

subject using a free-hand drawing indicating the outline of the evoked percept on an im-

age of the appropriate body segment (i.e., hand, arm or torso). The percept quality was

recorded using several descriptors: mechanical (touch, pressure, or sharp), tingle (electrical,

tickle, itch, or pins and needles), movement (vibration, movement across skin, or movement

63

https://github.com/pitt-rnel/perceptmapper


Figure 4.1: Touchscreen interface for describing evoked sensory percepts. (A) Panel for

free hand drawing to show the location and extent of the sensory percept. (B) and (C)

Questionnaire to describe the modality and intensity of the sensory percept and associated

phantom limb pain, if any.

of body/limb/joint), temperature, pain due to stimulation, and phantom limb pain. Each

descriptor had an associated scale ranging from 0–10 to record the corresponding perceived

intensity. Additionally, the subject was instructed to rate the naturalness (0–10) and the

depth of the perceived location of the percept (on or below the skin, or both). This set

of descriptors have been used previously to characterize evoked sensory percepts [184, 185].

The order of stimulation electrodes and amplitudes was randomized to prevent subjects

from predicting the location and perceptual qualities of sensations from previous trials. All

percepts that were localized ipsilateral to the amputation were included for analysis in this

work. In Figure 4.2, only those percepts which show less than 70% area overlap (as in [32])

with any other percept are shown for clarity.
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4.2.5 Analyzing Sensory Percepts

For each trial, subjects were allowed to report more than one descriptor simultaneously.

Each unique combination of ‘mechanical’, ‘movement’, and ‘tingle’ descriptors was consid-

ered a separate modality for the evoked percept. All percepts that contained a descriptor

for tingle (‘electric current’, ‘tickle’, ‘sharp’, ‘pins and needles’) were considered paresthetic

and were grouped together. A sunburst plot was constructed for each subject to analyze the

fraction of paresthetic and non-paresthetic percepts that contained mechanical or movement

components. Therefore, all unique modalities were divided in to three groups: paresthetic

percepts that had ‘tingle’ but no ‘mechanical’ or ‘movement’ component (Figure 4.4, teal

sectors), mixed percepts that had a ‘mechanical’ and/or ‘movement’ component and ‘tingle’

(Figure 4.4, grey sectors), and non-paresthetic percepts that only had ‘mechanical’ and/or

‘movement’ components (Figure 4.4 red sectors). For each sunburst plot, the inner, middle,

and outer annuli represent ‘tingle’, ‘mechanical’, and ‘movement’ modality descriptors, re-

spectively. Each sector represents a unique descriptor and the size of each sector represents

the fraction of all percepts that contained the corresponding descriptor. This allows us to

identify the distribution of unique modalities, such that, for a given sector in the tingle an-

nulus (for example, n = 761 for Subject 2, ‘tingle’), we can identify the fraction of percepts

that had a specific mechanical descriptor (e.g. ’sharp’ n = 245) and the fraction of these

percepts that had a specific movement descriptor (e.g. ‘vibration’ = 104).

The spinal cord segment targeted by stimulation through each electrode was inferred

from the X-ray images. We used the pedicles of each vertebra to mark the boundaries that

separated each spinal root (Figure 4.3B). These boundaries provided an anatomical marker

to establish where each electrode was located, in the rostrocaudal axis. Similarly, boundaries

were drawn on the body segment outline images to divide them into 7 anatomical segments

(Figure 4.3A) including thumb, D2–D3, D4–D5, wrist, forearm, elbow, and upper arm.

The sensory percepts were categorized as being associated with one of the seven anatomical

segments based on which segment contained the maximal area of the perceived sensation. For

this analysis, only those electrodes that evoked a sensory percept ipsilateral (n = 315) to the

amputation were included. Electrodes that only evoked bilateral (n = 64) and contralateral
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(n = 68) sensations at threshold would not be useful for neuroprosthetic applications for

people with unilateral amputation and were excluded. Dermatome maps were generated per

subject, by determining the proportion of electrodes situated at each spinal level that evoked

a sensation in a specific anatomical region.

4.2.6 Quantifying Lead and Percept Migration

The intraoperative fluoroscopy image, superimposed over the X-rays from the first and

last week of testing, gave an indication of gross movements of the leads. Using bony land-

marks, the X-ray from the first week was aligned to the intraoperative fluoroscopy image,

and each subsequent X-ray was aligned to the X-ray from the previous week using an affine

transformation method in MATLAB. The SCS contact that appeared to be most parallel

to the plane of imaging was used to determine the scale length for the image (SCS contacts

are 3 mm in length). For each lead, the distance between the rostral tips of the electrodes

as seen in the aligned image pairs (Figure 4.7) was measured to determine the rostro-caudal

migration. Positive values signified caudal migration and negative values signified rostral

migration.

For all electrodes that evoked a percept in the missing hand, the threshold charge was

calculated for each week. A one-way ANOVA was performed for each subject to test for dif-

ferences in thresholds across weeks. For subjects where a significant difference was reported,

a post-hoc multiple pairwise comparison analysis using the Tukey HSD was performed to

identify the pairs of consecutive weeks with a significant difference in thresholds. To quantify

migration of perceived sensations, we measured the change in the position of the centroid

and the change in area of each percept that was localized to the hand. For sensations that

included a percept outside the hand, we only used the hand percept in these calculations,

as this is the most relevant location for a somatosensory neuroprosthesis. We chose the

minimum stimulus amplitude that was tested at least once per week for the highest number

of weeks during the implant. We quantified the migration of the mean percept centroid for

each week, with respect to the mean percept centroid for the previous week. This analysis

was repeated for all electrodes. Similarly, to quantify the change in percept area, the mean
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area of the percept for each week was compared to the mean area for the previous week.

The distances were converted to millimeters using the average hand length of 189 mm (as

measured from the tip of the middle finger to the wrist) and average palmar area of 75 cm2

of a human male [186, 187, 188, 189, 190, 191]. All electrodes that were tested in at least

two of the weeks were included in the analysis.

We also constructed separate auto-regressive time series models to examine the changes in

distributions for both area and centroid migration over time, adjusting for autocorrelations

in the data. The AUTOREG procedure in SAS estimates and forecasts linear regression

models for time series data when the errors are autocorrelated or heteroscedastic. If the

error term is autocorrelated (which occurs with time series data), the efficiency of ordinary

least-squares (OLS) parameter estimates is adversely affected and standard error estimates

are biased, thus the autoregressive error model corrects for serial correlation. For models

with time-dependent regressors, the, AUTOREG procedure performs the Durbin t-test and

the Durbin h-test for first-order autocorrelation and reports marginal significance levels.

4.2.7 Detection Thresholds

A two-alternative forced choice task was used to determine detection thresholds. The

subject was instructed to focus on a fixation cross on a screen. Two one-second-long windows,

separated by a variable delay period, were presented and indicated by a change in the color

of the fixation cross. Stimulation was randomly assigned to one of the two windows. After

the second of the two windows, the fixation cross disappeared, and the participant was

asked to report which window contained the stimulus. The stimulus amplitude for each

trial was varied using a threshold tracking method [192, 193] with a ‘one-up, three-down’

design. In this design, an incorrect answer resulted in an increase in stimulus amplitude

for the next trial while three consecutive correct trials were required before the stimulus

amplitude was decreased. Stimulus amplitude was always changed by a factor of 2 dB. Five

changes in direction of the stimulus amplitude, either increasing to decreasing or vice versa,

signaled the end of the task. Using this task design, the detection threshold was determined

online as the average of the last 10 trials before the fifth change in direction. A detection
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threshold calculated this way corresponds approximately to correctly identifying the window

containing the stimulus 75% of the time [194]. To get a finer estimate of the detection

threshold we also used a non-adaptive design in a subset of trials for Subject 4, where we

presented a predetermined set of stimulus amplitudes. This block of stimulus amplitudes was

repeated up to 8 times and the presentation sequence was randomized within each block. A

cumulative-normal psychometric curve was fit to both types of detection experiments post-

hoc using the Palamedes toolbox [195] with the guessing rate γ and lapse rate λ held fixed

at 0.5 and 0 respectively. The detection threshold was calculated as the stimulus amplitude

at the 75% accuracy level. Tasks in which accuracy levels for all stimulus amplitudes were

< 0.6 or > 0.9 were omitted from this analysis. We carried out a goodness-of-fit analysis

with 1000 simulations using the Palamedes toolbox and discarded any fit with probability

of transformed likelihood ratio (pTLR) less than 0.05. pTLR signifies the proportion of

simulated likelihood ratios that were smaller than the likelihood ratio obtained from the

data and it spans 0–1 with a higher value signifying a better fit and values below 0.05

signifying an unacceptable fit. Thresholds calculated for the same electrodes on different

days were averaged together to obtain a mean detection threshold for each electrode, with

all other stimulus parameters (e.g. frequency, pulse width) held constant.

4.2.8 Just-Noticeable Differences

A similar two-alternative forced choice task was used to determine just-noticeable differ-

ences (JND) for stimulation amplitude. The design of the task was identical to the detection

task except stimulation was provided in both the windows and the subject was instructed

to choose the window where the stimulus was perceived as being at a higher intensity. One

of the stimulation amplitudes in every trial was held constant while the other was chosen

randomly from a list of stimulus amplitudes constituting a block. The constant amplitude

was either fixed at 2.5 mA for the lower standard amplitude or at 4.0 mA for the higher

standard amplitude. The windows in which standard and the test amplitude were adminis-

tered was randomized as well. This block of stimulus amplitudes was repeated up to 8 times

and the presentation sequence was randomized within each block. A cumulative-normal
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psychometric curve was fit to the data post-hoc using the Palamedes toolbox [195] with

the guessing rate γ and lapse rate λ held fixed at 0.5 and 0 respectively. The JND was

calculated as the stimulus amplitude at the 75% accuracy level. Tasks in which accuracy

levels for all stimulus amplitudes were < 0.6 or > 0.9 were omitted from this analysis. We

carried out a goodness-of-fit analysis with 1000 simulations using the Palamedes toolbox

and discarded any fit with pTLR< 0.05. To determine average JNDs at the two different

standard amplitudes, we included data from only those electrodes for which testing at both

standard amplitudes were carried out in the same session. JNDs calculated for the same

standard amplitude on different electrodes were averaged together to obtain a mean JND for

each standard amplitude. As JNDs were expected to be highly subject-specific, data from

different subjects were not pooled together.

4.2.9 Perceived Intensities of the Evoked Sensory Percepts

A free magnitude estimation task was used to determine the relationship between stim-

ulus amplitude and perceived intensity of the evoked sensations [196, 197, 198, 199]. In this

task, subjects were instructed to rate the perceived intensity on an open-ended numerical

scale as stimulation amplitude was varied randomly. A block of stimulus amplitudes con-

sisted of 6–10 values linearly spaced between the detection threshold of the electrode being

tested and the highest value that did not evoke a painful percept up to 6 mA. This block of

chosen amplitudes was presented six times and the presentation sequence was randomized

within each block. The subject was instructed to scale the response appropriately such that

a doubling in perceived intensity was reported as a doubling in the numerical response. Zero

was used to denote that no sensation was perceived in response to the stimulus. During the

first block, the subject experienced the full range of stimulation amplitudes while establish-

ing their subjective scale, so data from this block were not included in the analysis. Data

across electrodes or across different testing sessions were compared after normalizing each

electrode to its mean response.
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We performed a post-hoc analysis to determine the maximum number of intensities a

subject would likely be able to discriminate. For each electrode, stimulation amplitude

was normalized to the maximum amplitude tested and the range of stimulation amplitude

was partitioned into three or five linearly spaced discrete values. Similarly, the perceived

intensities reported by the subjects were normalized to the maximum reported intensity

and partitioned into three or five discrete linearly spaced ranges. Across all subjects, the

distribution of the binned reported intensity for each discretized stimulation level was used

to estimate how reliably subjects would be able to to distinguish feedback at three or five

different amplitudes (Figures 4F, B.3).

To determine whether stimulation amplitude had differential effects on the area and in-

tensity of evoked percepts, we computed the least-squares regression line for the relationship

between stimulation amplitude and percept intensity and from magnitude estimation trials

and stimulation amplitude and percept area from percept mapping trials. The two-side p-

values (pint and parea, respectively) for each line were obtained for the null hypothesis that

the slope of the regression line was zero and the slopes of the two lines were compared for

each electrode. Instances where the slopes of each line were significantly different indicate

electrodes where stimulation amplitude can modulate percept intensity independent of the

area of the percept.

4.3 Results

4.3.1 SCS Evokes Sensory Percepts Localized to the Missing Limb

Three SCS leads were implanted in the cervical epidural space in each of four individuals

with upper-limb amputation (Table 4.1). The percutaneous implant was maintained for the

full 29-day duration of the study for all subjects except Subject 2, who requested removal of

the leads after two weeks due to personal factors and discomfort from caudal migration of one
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of the leads. We stimulated with both monopolar and multipolar electrode configurations.

Stimulus amplitudes, frequencies, and pulse widths ranged 0–6 mA, 1–300 Hz, and 50–1000

µs, respectively.

Figure 4.2: Representative sensory percept locations. Colored areas represent selected pro-

jected fields that were reported for more than two testing sessions and remained stable for

at least two weeks. Each color represents a unique stimulation electrode per subject. If a

pair of percepts had more than 70% overlap, only the more focal percept is shown here [32].
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In all four subjects, epidural SCS evoked sensory percepts in distinct regions of the miss-

ing limb including the fingers, palm, and forearm. While some sensory percepts were diffuse

and covered the entire missing limb, other percepts were localized to a very specific area,

such as the ulnar region of the palm or wrist, or individual fingers. Figure 4.2 shows select

representative percepts for all subjects. In Subjects 1 and 2, only multipolar stimulation

evoked sensory percepts that were localized to focal regions of the missing hand and fingers

( B.1). In Subjects 2 and 3, most percepts were accompanied by a sensation on the residual

limb. This was the case even when there was a percept that was focally restricted to a

distal region of the missing limb, such as a finger (e.g. purple thumb/shoulder sensation in

Subject 2, Figure 4.2). These additional proximal sensations emanated predominantly from

the end of the residual limb. The incidence rate of such simultaneous sensations varied from

0% and 8% for Subjects 1 and 4 to 92% and 98% for Subjects 2 and 3. There were also

a subset of mono- and multi-polar electrodes that evoked sensations bilaterally or only in

the contralateral intact limb (14.3% and 15.4% of all electrodes that generated a sensation

across all subjects n=447). While these sensations might be useful in a neuroprosthesis for

people with bilateral amputation, they were not a focus of this study and were not included

in any of the analyses presented here.

We sought to determine if stimulation of specific regions of the spinal cord consistently

evoked sensations that were perceived to emanate from specific regions of the arm and hard

across subjects. We hypothesized that the location of the perceived sensation would be

driven by the location of the cathodic electrode with respect to the spinal cord according

to expected dermatomes. Figure 4.3 shows the proportion of sensory percepts in a specific

anatomical region (dashed lines, Figure 4.3A) evoked by electrodes situated at each spinal

level (Figure 4.3B, C). There were notable similarities between the perceived locations and

dermatomes [200, 201], however there was considerable inter-subject variability and sensa-

tions were not evoked in all regions of the hand in all subjects (Figure 4.3C). For example,

sensations reported in the thumb were predominantly evoked by electrodes located near the

C6 root in Subjects 2 and 4 (0%, 67%, 26%, and 50% for Subjects 1-4 respectively). Sim-

ilarly, a high proportion of the percepts localized to the 2nd and 3rd digits were evoked

by electrodes near the C7 root in Subjects 2 and 3 (0%, 50%, 66%, and 23%, for Subjects
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Figure 4.3: Schematic of dermatomes, adapted from Lee et al., 2008. Overlapping dermatome

areas are shown in lighter shades. Dotted lines indicate our division of different regions of

the fingers, hand, and arm. B) An example of the segmentation of the spinal cord (from

Subject 4) used to determine the location of each stimulation electrode. C) Heat maps show

the relative proportion of electrodes located at different spinal levels to the total number of

percepts emanating from a specific region of the arm. The spinal level of each electrode was

defined by the position of the cathode with respect to the spinal levels as seen in the X-rays.

Spinal levels that have no electrodes nearby are marked with gray hatching.

1-4, respectively). However, sensations in 4th and 5th digits (within the C8 dermatome)

were evoked predominantly by electrodes near the C7 root in Subjects 2 and 3 (0%, 75%,

78%, and 23% in Subjects 1-4, respectively). Interestingly, for Subject 4, electrodes near

the C6 root produced most of the percepts in the hand ( 2nd and 3rd digits: 52%, 4th
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and 5th digits: 45%). Moreover, almost all the electrodes in Subject 1, including those

that evoked focal percepts in the fingers and palm, were located near the T1 root. Overall,

these results demonstrate that, while there was some consistency between the locations of

stimulation and dermatomes, there was considerable inter-subject variability in many of the

evoked sensations.

Table 4.2: Descriptors provided for characterizing the evoked percepts. The various descrip-

tors that subjects were asked to choose from while describing the modality and intensity of

the evoked sensory percept. Visual analog scales (VAS) were presented as a slider bar and

no specific numbers were shown.

Naturalness Depth Mechanical Tingle Movement Temperature

Skin surface Touch Electrical Vibration

Below Skin Pressure Tickle Body/limb/joint

Diffuse Sharp Itch Across skin

Both Pins & Needles

VAS
(Totally Unnatural
to Totally Natural)

VAS
(intensity)

VAS
(intensity)

VAS
(intensity)

VAS
(Very Cold
to Very Hot

We asked the subjects to describe the evoked sensations using a set of words provided in

a predefined list (Table 4.2). This allowed us to standardize the descriptions of the percepts

across subjects and put them in context of previous research [184, 185]. Subjects could re-

port more than one modality simultaneously. All sensations that had an ‘electrical tingle’,

’pins and needles’, ‘sharp’ or ‘tickle’ component were considered paresthetic. If these sensa-

tions also included descriptors for mechanical, movement, or temperature modalities, they

were considered mixed modality sensations. Sensations that did not include any paresthetic

descriptors were considered naturalistic. The unique combinations of percept descriptors

used by each subject along with the fraction of naturalistic, paresthetic, and mixed modality

sensations are shown in Figure 4.4. For Subjects 1, 2, and 4, most sensory percepts were

either paresthetic or of mixed modality (90.2%, 75.2%, and 96.5%, respectively). Subject 1

reported 74.2% of these percepts as purely paresthetic, whereas only a small fraction of these

percepts were reported as purely paresthetic by Subjects 2 and 4 (4.1% and 0.3%). For Sub-
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Figure 4.4: Sunburst plot showing the combination of paresthetic (teal), naturalistic (red),

and mixed (grey) percept descriptors used by each subject. Each annulus represents a modal-

ity descriptor that the subjects could select. The innermost annulus represents sensations

where a ‘tingle’ descriptor was used. The middle annulus represents the fraction of each

tingle descriptor that co-occurred with a ‘mechanical’ descriptor. The outermost annulus

represents the fraction of tingle and mechanical descriptors that co-occurred with a ‘move-

ment’ descriptor. For Subjects 1, 2, and 4, most sensory percepts were either paresthetic or of

mixed modality (90.2%, 75.2%, and 96.5%, respectively). Subject 3 predominantly reported

naturalistic sensations (79.9%) with most of those percepts described as pure vibration.
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ject 2 the evoked percept was most frequently described as tingle-pressure and for Subject 4

the evoked percept was most frequently described as tingle-pressure-vibration. Subject 3 pre-

dominantly reported naturalistic sensations (79.9%) with most of those percepts described

as pure vibration. In fact, for this subject, 80% of all evoked percepts contained a ‘vibration’

component, and most mixed modality percepts (97.8%) were described as tingle-vibration

with only one instance of a purely paresthetic percept.

More naturalistic modalities, like “touch” and “pressure”, were elicited to varying de-

grees among the subjects (0.5%, 60.5%, 25.2% and 75.8% of unique stimulation parameter

combinations for Subjects 1-4, respectively). Interestingly, sensation described as purely

touch or pressure were reported in 8.25% and 19.5% of all evoked percepts in Subjects 2

and 3, respectively. Otherwise, these naturalistic sensations were commonly accopmanied

by a paresthesia, as particularly seen in Subject 4. Percepts containing a dynamic (‘move-

ment’) component that may be described as proprioceptive were evoked at least once in all

subjects. Subjects were able to describe distinct proprioceptive sensations in the phantom

limb such as opening and closing of the hand, movement of the thumb, and flexing of the

elbow. However, unlike the tactile percepts that were predominantly stable across days,

these proprioceptive sensations could be repeatedly evoked only for a few minutes even with

consistent stimulus parameters. Only in the case of Subject 4 (the subject with trans-radial

amputation), were we able to evoke sensations of thumb and wrist movement reliably over

longer time courses, spanning multiple days and weeks. Interestingly, these proprioceptive

percepts were elicited by a set of three closely situated electrodes over a narrow range of

stimulus parameters (stimulus amplitude = 3 mA, stimulus frequency = 1–5 Hz).

Varying the stimulation frequency influenced the modality of the evoked sensation in

Subject 3, but not in the other subjects. For Subject 3, the sensory percepts that were

described as “touch” or “pressure” occurred in up to 90% of trials at low stimulation fre-

quencies (below 20 Hz) while stimulation frequencies above 50 Hz evoked percepts that were

always characterized as mixed modality. Subject 1 never reported these naturalistic sensa-

tions, which could be because we never stimulated at frequencies below 20 Hz, while Subjects

2 and 4 reported naturalistic, mixed, and paresthetic sensations independent of the stimulus

frequency.
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4.3.2 Psychophysical Assessment of Evoked Percepts

We quantified the detection threshold for sensations in the missing limb in all four sub-

jects using a two-alternative forced-choice paradigm. Because Subjects 2 and 3 frequently

experienced co-evoked sensations in the phantom and on the residual limb, for psychophysical

assessments, we asked them to focus only on the distal phantom percept whenever stimu-

lation co-evoked a sensation in the residual limb. In this task, the subject reported which

of two intervals contained the stimulus train. With a randomized presentation of various

stimulation amplitudes, we measured the detection threshold as the minimum amplitude at

which the subject could correctly report the interval containing the stimulation train with

75% accuracy (Figure 4.5A). Mean detection thresholds (Figure 4.5B) for Subjects 1-4 were

3.75 mA (n = 2 electrodes), 1.25 ± 0.36 mA (n = 5 electrodes), 1.58 ± 0.39 mA (n = 14

electrodes) and 1.94 ± 0.27 mA (n = 14 electrodes), respectively.

We measured just-noticeable differences (JND) in stimulation amplitude with a two-

alternative forced choice task in Subjects 3 and 4. We evaluated the goodness-of-fit using

the probability of transformed likelihood ratio (pTLR), which spans 0–1 with a higher value

signifying a better fit and values below 0.05 signifying an unacceptable fit. In Subject 3, for

one electrode, the subject could perceive a change of 86 µA (slope, β = 0.045, pTLR = 0.58)

at 75% accuracy when the standard amplitude was 2.5 mA, and a higher standard amplitude

of 4 mA increased the JND to 280 µA (slope, β = 0.073, pTLR = 0.83; Figure 4.5C). In

Subject 4, the JNDs showed a similar dependence on standard amplitude with mean JND2.5

= 60 ± 21 µA (median slope, β = 0.040, median pTLR = 0.79) and mean JND4.0 = 338 ±

98 µA (median slope, β = 0.005, median pTLR = 0.40, n = 5 electrodes; Figure 4.5D and

B.2). To put these numbers in context, for Subject 4, with mean threshold at approximately

2 mA and maximum stimulation amplitude at 6 mA, the JNDs represent 1.3% (at standard

amplitude of 2.5 mA) and 9% (at standard amplitude of 4 mA) of the available stimulation

range.

To measure the relationship between stimulation amplitude and sensation intensity, sub-

jects performed a free magnitude estimation task, in which they were instructed to rate

perceived intensity on an open-ended numerical scale as stimulation amplitude was varied
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Figure 4.5: A) Example data from a detection task for a single electrode from Subject 2.

Data were collected using a threshold tracking method and a psychometric function was fit

to the data. The detection threshold was determined to be 982 µA.
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Figure 4.5: B) Scatter plot showing the distribution of all the detection thresholds for Sub-

jects 1 (blue), 2 (orange), 3 (green) and 4 (purple). C) Example data for the just-noticeable

differences at two different standard amplitudes for one electrode in Subject 3 and D) Subject

4. Error bars represent SD. E) Example data from Subject 3 of a free magnitude estimation

task carried out on two different days (light and dark green circles) for a single electrode.

Data from multiple days was compared after normalizing each electrode to its mean response.

Perceived intensity varied linearly with stimulus amplitude for each individual testing session

(dashed and solid green lines) as well as when taken together (black solid line). The slope

of these lines was measured in units of mA-1 F) Distribution of the stimulation amplitude

and the reported intensity of the evoked percept for all subjects. Stimulation amplitude and

reported intensity were independently discretized into three linearly spaced (low, medium,

and high) bins and subject ratings of sensation intensity accurately predicted these bins. The

stacked bar graph represents the percentage of times a binned magnitude response occurred

for the corresponding discretized amplitude.

randomly. They were instructed to scale their response such that a doubling in perceived

intensity was reported as a doubling in the numerical response. To control for variability

across different electrodes and across different testing sessions, we normalized each electrode

to the mean of its response. We observed that as stimulation amplitude was increased, the

perceived intensity of the sensory percept increased linearly for all subjects; an effect that

was consistent across repetitions of the task on multiple days (Figure 4.5E). A linear fit was

determined to be better than or at least as good as a sigmoid or logarithmic fit based on

adjusted R2 values, and all electrodes had a significant linear relationship between stimulus

amplitude and perceived intensity, (pint < 0.01, F-test, where pint is the two-sided p-value for

the null hypothesis that the slope of the regression line was zero). This linear relationship

between amplitude and intensity was maintained even though different electrodes were tested

with different pulse widths and frequencies. Table 4.3 shows a complete list of stimulation

parameters used for these experiments.
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Table 4.3: Summary of psychophysics testing for each subject. For detection and discrimi-

nation trials the threshold (TH) and JND per stimulation channel are listed along with the

corresponding frequency and pulse width that were used.

Subject Electrode Receptive Field
Minimum modal

amplitude
(mA)

Detection Discrimination Magnitude estimation

TH

(mA)

F

(Hz)

PW

(µs)

JNDlow

(µA)

JNDhigh

(µA)

F

(Hz)

PW

(µs)
slope R2

1

1 D1-D2 5.48 2.05 100 200 618 100 1000 0.37 0.62

2 Palm (ulnar) 5.0 1.86 100 800 1.07 0.42

3 Palm (ulnar) 4.0 2.13 100 200 1.7 0.68

2

1 Hand 4.0 1.14 20 200 3.18 0.78

2 Thumb 3.0 1.21 20 200 245 20 200 2.36 0.71

3 Hand 4.0 2.21 0.76

4 Palm, D1 3.0 1.11 20 200 2.74 0.7

5 Thumb 3.0 0.92 20 200 1.2 0.33

3

1 Hand 6.0 1.98 50 200 0.94 0.74

2 Hand 5.0 2.85 50 200 1.33 0.73

3 Hand 5.0 1.77 50 200 151 50 200 1.27 0.76

4 Palm, D1-D4 3.0 0.97 50 200

5 Palm, D3-D4 4.0 1.28 50 200 1.22 0.87

6 Palm, D1-D4 5.0 1.53 50 200 1.18 0.74

7 Palm, D1-D4 4.0 1.58 0.79

8 Palm, D3-D4 5.0 1.65 50 200 1.39 0.81

9 Palm, D2-D4 3.0 1.43 0.69

4

1 Hand 3.0 1.52 50 200

2 D2, D4 4.0 2.13 50 200

3 D2 2.0

4 D1, D2 3.0 2.05 50 200 62 222 50 200 1.37 0.88

5 Thumb, D1, D2 3.0 2.13 50 200 527 50 200 1.39 0.83

6 Thumb, D1, D2 3.0 1.33 0.87

7 Thumb, D1 3.0 1.97 50 200

8 Thumb, D1 3.0 1.98 50 200 27 647 50 200 1.49 0.92

9 Palm, Thumb, D1-D3 3.0 2.05 50 200 59 516 50 200 1.32 0.91

10 D2, D3 3.0 1.99 50 200 44 488 50 200 1.29 0.86

11 Thumb, D1, D2 3.0 2.01 50 200 54 300 100 200 1.32 0.91

12 Hand 3.0

13 Hand 3.0

14 Hand 2.0 1.95 50 200

15 Hand 3.0 2.1 50 200

16 Thumb, D1 3.0 1.86 50 200 96 360 50 200 1.36 0.89

These results taken together show that subjects should be able to perceive graded sensory

feedback for linearly spaced gradations greater than the JND for each electrode. The number

of gradations in stimulation determines the number of discrete targets (such as identifying

three different levels of force) that can be represented in a functional task. To identify

the optimal gradation for functionally relevant sensory feedback via SCS, we partitioned
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stimulation amplitudes and subject responses during the free magnitude estimation task

into three or five discrete linearly spaced ranges. The partitioned data were used to estimate

how reliably subjects can distinguish sensations for each of these amplitude ranges. Figure

4.5F shows the distribution of the normalized subject responses for a 3-target task where

the overal accuracy was 72%. All subjeccts reported sensations in the low and high range

of stimulation with a high accuracy (79% and 95% accuracy, respectively) with medium

targets having an accuracy of 54%. When the data were partitioned into 5 discrete ranges,

the overall accuracy was 46% (Figure B.3). In the context of clinical translation, these

results indicate that it may be possible for the user to discriminate three specific intensity

levels based on stimulation amplitude alone.

Since we found a consistent linear relationship between percept intensity and stimulation

amplitude, we quantified the changes in percept area that occurred as the stimulation am-

plitude was increased. In a prosthetic device, being able to modulate the percept intensity

independent of the area is critical to deliver graded feedback that remains focal. Figure 4.6A

shows an example of a percept where the area and centroid remain stable as the stimulation

amplitude is increased. To examine the effect of stimulation amplitude on the area and

intensity of the evoked percept, we computed the least-squares regression line for area versus

stimulation amplitude and obtained the two-sided p-value (parea) for the null hypothesis that

the slope of the regression line was zero. We also compared the slope of this regression line

with the slope of the linear fit between stimulation amplitude and reported intensity (ob-

tained from magnitude estimation trials) for each electrode to identify whether percept area

and intensity were modulated independently (Figure 4.6B). Across all electrodes (n = 24),

the slope of the linear fit for area was less than the slope for intensity. For three electrodes,

both area and intensity were modulated by stimulation amplitude (parea < 0.01, median β =

0.25 and pint < 0.01 median β = 1.36). For the remaining 21 electrodes, only intensity, but

not area, was modulated by stimulation amplitude (parea > 0.05, median β = 0.01 and pint

< 0.01, median β = 1.33). This indicates that for most electrodes, it is possible to modulate

percept intensity independent of percept area.
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Figure 4.6: A) Example of the stability of percept area with increasing amplitude for one

electrode in Subject 3. B) Summary of the relationship between stimulation amplitude and

percept characteristics for each electrode that evoked a percept in the phantom hand. The

slope of the linear fit between stimulation amplitude and reported intensity was obtained from

magnitude estimation trials. The slope of the linear fit between stimulation amplitude and

percept area was obtained from percept mapping trials. Lighter shades represent electrodes

where parea < 0.01. The null hypothesis is that the slope of the linear fit is zero.
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4.3.3 Stability of SCS Electrodes and Evoked Sensory Percepts

Lead migration is a common clinical complication for SCS, with an incidence rate as

high as 15–20% [202, 55, 203, 204]. Lead migration would change the location and modal-

ity of evoked sensations, which could limit the long-term viability of SCS and would also

complicate the scientific utility of percutaneous SCS as a testbed for novel neuroprosthetic

techniques. We performed weekly X-rays that allowed us to monitor the position of the

leads and quantify migration over the duration of the implant. Superimposing the intraop-

erative fluoroscopy image and the final X-ray (Figure 4.7A) revealed that lead migration was

largely restricted to the rostro-caudal axis. In all subjects, the largest caudal migration was

observed when comparing the intraoperative fluoroscopy image with the X-ray at the end

of first week (Figure 4.7B). One of the leads in Subject 2 almost completely migrated out

of the epidural space in this post-operative period (Figure 4.7B), rendering it unusable for

stimulation experiments. In contrast to the migration that occurred during the first week,

X-rays from the first and last week of testing showed minimal lead migration (Figure 4.7B).

In the weeks following the initial migration, the median migration in the rostro-caudal direc-

tion across the three leads in any subject never exceeded 5 mm. For all subjects, the initial

placement of the leads rostral to the target cervical levels prevented loss of coverage of those

spinal levels following the caudal migration of the leads.

We assessed the stability of each evoked percept throughout the duration of the study

(e.g. Figure 4.8A) in terms of the threshold charge (Figure 4.8B) for evoking a percept in the

missing hand. A one-way ANOVA performed for each subject confirmed that there was no

significant difference in the threshold charge for each week for Subjects 1, 2 and 3 (p > 0.01,

F = 2.3, 1.1, 1.7 respectively). For Subject 4, there was a significant change in threshold

after weeks one and three (p < 0.01, F = 9.0). A post-hoc multiple pairwise comparison

analysis using the Tukey HSD test confirmed that there was a significant increase in the

thresholds between weeks one and two (p < 0.01) and a significant decrease between weeks

three and four (p < 0.01).
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Figure 4.7: A) Composite image showing the changes in the position of the SCS leads in

the epidural space. The intraoperative fluoroscopy image (contacts appear black) showing

the position of the leads immediately after implantation is superimposed over the X-rays

(contacts appear white) from week 4 for each subject. The labels on the left mark the dorsal

root exiting at that level. The approximate location of the spinal cord and the roots is also

shown in yellow overlay. For scale, each contact is 3 mm long. B) Weekly migration of

the rostral tip of each of the leads for the four subjects (blue, orange, green, and purple

circles for Subjects 1–4, respectively). For week 1, the comparison was between the weekly

X-ray and the intraoperative fluoroscopic image. For subsequent weeks, the comparison was

done between the weekly X-ray and the one from the preceding week. Median migrations

are shown (solid lines). The X-ray for Subject 2 was taken from week 2, before leads were

explanted.

We also characterized stability in terms of the size (area) and location (centroid) of

percepts evoked in the missing hand. The centroid and area were calculated for all percepts

evoked at the minimum stimulus amplitude that was tested at least once each week during

the implant. If no stimulus amplitude was tested during every week of testing, the lowest

stimulus amplitude that was tested for the next highest number of weeks (for at least two

weeks) was chosen. We quantified the migration of the mean centroid location across all

stimulus repetitions for each week with respect to the mean centroid location of the previous
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Figure 4.8: A) Example sensory percepts from the hand for a single electrode in Subjects 1–4.

For Subject 2, the percepts are shown for weeks 1 and 2 only, as the leads were explanted after

that. The percepts shown were evoked by the minimum stimulus amplitude that was tested

at least once per week for the maximal number of weeks. Each column shows the location of

all percepts evoked for that week of testing. Multiple examples of the percepts evoked during

the week are superimposed on each other as indicated by different shades. B) Time course

of the average stimulation threshold (in nC) for evoking a percept in the phantom hand for

each subject. Weeks with a significant change in threshold are annotated with an asterisk.

C) Stability of the location of the evoked percept in the phantom hand. For each electrode,

the centroid location of the evoked percept was compared between successive weeks. D)

Stability of the area of the evoked percept in the phantom hand. For each electrode, the

area of the evoked percept was compared between successive weeks.
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week for each electrode (Figure 4.8C). Across all subjects, the evoked percepts exhibited a

median migration of 25.2 mm between weeks 1 and 2, 11.6 mm between weeks 2 and 3, and

9.9 mm between weeks 3 and 4. This week-to-week decrease in centroid migration follows the

trend of decreased week-to-week vertical electrode migration (Figure 4.8B). Similarly, the

change in area for each week was calculated with respect to the mean area of the previous

week for each electrode (Figure 4.8D). Across all subjects, the median change in area of

percepts evoked in the missing hand was 8.1 cm2 between weeks 1 and 2, 0.14 cm2 between

weeks 2 and 3, and 1.1 cm2 between weeks 3 and 4. We constructed two separate auto-

regressive time series model to examine the changes in distributions of area and centroid

distance over time, adjusting for autocorrelations in the data. We found a significant decrease

in area over time across all weeks, (β = -0.201, p < 0.01). For centroid migration, there was

a decrease during weeks 2 (β = -23.224, p < 0.05) and 3 (β = -40.585, p < 0.01).

4.4 Discussion

In this work, we show that epidural SCS has the potential to be an effective and stable

approach for restoring sensation in people with upper-limb amputations. Further, we believe

that percutaneous SCS can be used as an effective platform for development of somatosen-

sory neuroprostheses, especially for labs that focus on advanced prosthetic control but have

not developed their own stimulation technologies. The electrodes used in this study are

commercially available and were implanted using standard surgical techniques under local

anesthesia during a procedure spanning 3-4 hours. In all subjects, we were able to evoke

sensory percepts that were focal and localized to the distal missing limb. Critically, this in-

cluded people with amputations ranging from trans-radial through shoulder disarticulation.

The repertoire of sensory percepts elicited varied across subjects and thus, this approach

would require user-dependent characterization, which is similar to the results reported by

other studies of peripheral somatosensory neuroprostheses [32, 44, 42, 43]. While most of

the stimulation parameters evoked paresthesias, some of the percepts were more naturalistic.
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The intensity of the evoked sensations could be modulated by varying stimulation amplitude

with little or no increase in the perceived area of the evoked sensations. Below we summarize

these results and discuss their implications for the design of a somatosensory neuroprosthesis.

4.4.1 Epidural SCS Evokes Sensations Localized to the Missing Hand and Arm

SCS-evoked sensory percepts were perceived to emanate from the missing limb in all

subjects. Some percepts were highly localized to a single finger or focal region of the palm,

while others were diffuse, covering large regions of the limb. In our second and third subjects,

distal sensations were often accompanied by a secondary sensation at the residual limb. It

is unclear whether these secondary sensations are a result of neuroplastic changes in the

representation of the amputated hand in the cortex or are a limitation of the selectivity of

the SCS electrodes used in this study. Future studies in people with intact limbs undergoing

lateral SCS may help to differentiate these effects, since those subjects would not have sim-

ilar neuroplastic changes. Factors that may limit stimulation selectivity with our approach

include the thickness of the cerebrospinal fluid in the subdural space and the relatively large

size of the contacts on the SCS leads. Consequently, the sensory percepts evoked in this

study were sometimes more diffuse than those reported in other studies using peripheral

neurostimulation approaches [32, 36, 34, 43]. Importantly though, they are comparable in

focality to those used to effectively deliver sensory feedback during recent long-term take-

home studies of bidirectional prosthesis using peripheral nerve stimulation (Cuberovic et al.,

2019) or targeted reinnervation [205].

In all except Subject 4, monopolar stimulation primarily evoked sensations in the forearm

and upper arm, whereas multipolar stimulation allowed us to evoke sensations that were

localized to distal regions of the missing hand and wrist. We could not identify any difference

(e.g. in surgical technique) that led to this difference in focality of monopolar stimulation for

Subject 4 as compared to all other subjects. In all subjects, the leads were steered toward

the lateral spinal cord and spinal roots, ipsilateral to the amputation. At this location,

the dorsal rootlets fan out under the dura before entering the spinal cord at the dorsal

root entry zone. In the cervical spinal cord, the rootlets are each approximately 0.4–1.3
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mm in diameter and densely packed with few spaces between them [206, 207, 208]. This

arrangement, superficially resembling the flattened peripheral nerve cross-section achieved

by the flat interface nerve electrode [32, 43], may lend itself to a higher degree of selective

activation than could be achieved with stimulation of more traditional SCS targets such as

the dorsal columns or the dorsal root ganglia, although this may require development of new

SCS devices with more optimal electrode sizing and spacing.

The relationship between the locations of the electrodes and that of the evoked percepts

showed marked inter-subject variability and deviation from expected dermatomes. For ex-

ample, all electrodes in Subject 1 were in the T1 region, but the reported sensations were

in the missing hand, a region covered by the C6–C8 dermatomes. Recently, it has been

recognized that dermatomes inadequately reflect inter-individual variability in dermatome

coverage and overlap, suggesting that the variability observed in our study may reflect nat-

ural inter-subject differences [201]. However, a limitation of this study is that we did not

directly image the spinal cord or dorsal roots. As such, we could not determine the exact

spatial arrangement of the implanted SCS electrodes relative to target neural structures.

Several research groups have developed highly detailed computational modeling techniques

to study how the electric fields generated in SCS interact with neural structures [183, 209].

These techniques could potentially help illuminate the specific neural targets and pathways

that were activated in this study. These observations combined with simulation studies could

also inform the design of stimulation schemes and novel electrodes to improve the selectivity

of our somatosensory neuroprosthesis.

4.4.2 Stimulation Parameters Primarily Modulate Intensity of Sensation

With respect to the perceptual qualities of evoked sensations in this study, we observed a

robust relationship between stimulus amplitude and percept intensity. Every electrode tested

across all four subjects demonstrated a statistically significant linear relationship between

stimulation amplitude and perceived intensity. This is similar to what has been observed with

peripheral nerve stimulation [44, 41]. Interestingly, we observed JNDs to be proportional

to the stimulation amplitude with higher stimulation amplitudes resulting in larger JNDs.
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Such a relationship between JNDs and stimulus amplitude is consistent with Weber’s law

which governs the behavior of most peripheral sensory receptors [210]. We also observed that

subject responses could accurately be separated into three, but not five, separate intensity

categories (i.e. low, medium, and high) based on the stimulation amplitude, which suggests

that they would be able to successfully perform a 3-level discrimination task, based only

on perceived intensity, such as identifying three different force levels exerted by objects of

different stiffnesses. These expected performance levels are similar to those demonstrated by

others using peripheral nerve stimulation to restore somatosensation [34], and it is possible

that they could improve with time and training, continuous (rather than discrete) modulation

of amplitude, and the addition of active efferent control of a prosthesis. Future work should

focus on demonstration of such closed-loop control with sensory feedback using lateral SCS.

An increase in stimulus amplitude is thought to increase perceived intensity by recruiting

a larger volume of somatosensory afferent neurons [31]. An increase in the volume of recruited

neurons could also result in an increase in percept area. However, we observed little to no

effect of increasing stimulation amplitude on percept area. It is possible that the anatomical

distance between adjacent spinal roots reduces this effect [211]. Additionally, it is currently

unknown whether there is strong somatotopic organization of the fanned-out dorsal rootlets

where they enter the spinal cord (i.e. whether neighboring rootlets innervate neighboring

patches of skin). The minor changes in focality of sensation as amplitude increases may be

due to the presence of this somatotopic organization and recruitment of neurons in adjacent

rootlets.

A primary aim of providing artificial somatosensory feedback has been to evoke natu-

ralistic sensations, particularly those described as touch or pressure. Most of the percepts

reported in this and previous studies of somatosensory neuroprostheses have been described

as paresthesias. Most of the percepts evoked by our stimulation paradigm were described as

paresthesias. However, for Subjects 2 and 3, we report that 8.25% and 19.5% of all evoked

percepts were described as touch or pressure alone. Studies that relied on peripheral nerve

stimulation to restore somatosensory feedback have reported similar proportions of natu-

ralistic percepts, e.g. 8-30% as touch-like percepts [41, 212, 30] and 2-29% as pressure-like

percepts [48, 37, 41, 212]. Continuous modulation of stimulus parameters, such as modu-
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lating pulse width [32, 30] or varying charge density [32] have been proposed to evoke more

naturalistic cutaneous or proprioceptive sensations. However, a recent study demonstrated

that patterned stimulation did not reliably change paresthetic sensations to more naturalis-

tic ones [47]. Additionally, biomimetic stimulus trains [213, 35] have been proposed to evoke

more naturalistic sensations, though none of these approaches have established a stimula-

tion paradigm that reliably elicits naturalistic sensations across subjects. We too, did not

uncover a reliable way to evoke naturalistic sensation during the course of this study. Thus,

the choice of electrodes and stimulation parameters would have to be optimized for each

individual user to evoke percepts with the desired modalities.

Only one subject (Subject 4, trans-radial amputation) reported proprioceptive percepts

that were repeatedly evoked over more than a few minutes. This result aligns with other

studies, which often report only limited examples of proprioceptive percepts [37], or which

describe proprioceptive sensations that result directly from muscle contractions in the resid-

ual limb [41]. While SCS did not evoke overt reflexive movements of the residual limb in

any subject at the stimulation amplitudes used in this study, it is possible that these pro-

prioceptive percepts result from small reflexive contractions of residual limb muscles which

themselves activate muscle spindle afferents. Complex coordination of activation of muscle

spindle and cutaneous (e.g. slowly adapting type II) afferents may be required for directly

evoking realistic kinesthetic percepts. Future work should explore the downstream effects of

stimulation of proprioceptive and cutaneous afferents on perception of kinesthesia. Regard-

less, we propose that even though we evoked primarily paresthetic sensations, the ability

to evoke these percepts via a clinically translatable approach in individuals with high-level

amputations establishes the promise of this approach towards restoring sensation.

4.4.3 Percutaneous SCS Electrodes and Evoked Percepts are Stable Over One

Month

The location of the implanted SCS electrodes and the corresponding evoked percepts

showed only minor migration across the duration of implantation. In clinical practice, SCS

lead migration is a common complication, occurring in as many as 15–20% of cases [202, 55,
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203, 204], and is typically classified by a complete loss of paresthetic coverage of the region of

interest. Repeated monitoring of both the physical location of the SCS leads and the evoked

sensations demonstrated that there was some migration immediately after implantation, but

minimal movement thereafter. As a preemptive measure against loss of coverage due to the

initial migration, we opted to use 16-contact leads in Subjects 2–4. By placing the leads

such that the most rostral contacts were above the target spinal levels, we ensured continued

coverage even in the case of caudal migration. It is worth noting that we did not anchor

these leads to any bony structures or nearby tissue. Future permanently implanted systems

for restoring sensation using SCS can utilize these anchoring techniques and thereby reduce

or eliminate lead migration [203]. The stability in the electrodes is reflected in the stability

of the evoked percepts. In the hand region, we observed a migration of evoked percepts

of 10–25 mm, which is similar to the shift reported in peripheral stimulation approaches

[43]. Moreover, given that the spatial acuity in the palm region is approximately 8–10 mm

[214, 215, 216, 217], the scale of migration observed is within the range that would not likely

be detectable by the user.

4.4.4 Comparison to Alternative Approaches

The techniques described in this study have both important advantages and disadvan-

tages that should be considered when selecting an approach for restoring sensation after

upper-limb amputation. A major advantage of the percutaneous approach described here is

that there is a relatively low barrier to initiating clinical studies because the electrodes are

commercially available from multiple manufacturers and the surgical procedures are com-

monly performed at most major medical centers. However, this reliance on commercially

available electrodes also likely limited selectivity and focality. Regardless, a great deal of

technical and scientific development can be achieved with this approach before moving on

to more complex studies involving custom electrodes and implantable stimulators.

Another major advantage of the approach is its viability for people with high-level am-

putations, in which the peripheral nerve has been amputated. In this population, the spinal

cord and roots typically remain intact, and we have demonstrated that stimulation of those
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structures can produce focal sensations in the missing hand. Currently, the only other viable

neuroprosthetic techniques for restoring sensation after proximal amputation are invasive

approaches such as targeted reinnervation or stimulation of structures in the central nervous

system.

As compared to other techniques that focus on peripheral nerve stimulation, such as

epineural stimulation with cuff electrodes or penetrating stimulation with Utah arrays or

longitudinal intrafascicular electrodes, our results demonstrate substantially less focal per-

cepts and less consistent coverage of each individual digit across subjects. Further, sensations

in the hand were often accompanied by a sensation on the residual limb. It is currently un-

clear to what degree this is a limitation of the relatively large size of the electrodes we used

here, as opposed to a fundamental limitation of the selectivity of epidural SCS. Future work

will focus on computational studies to explore this question and design new electrodes that

can more selectively target the sensory afferents in the dorsal rootlets to maximize the selec-

tivity and focality of our approach. With respect to clinical applications, the 3-fold dynamic

range afforded by the stimulus amplitude is similar to those reported previously [41]. Though

the absolute current values we used are an order of magnitude higher than those required

for peripheral nerve stimulation, epidural stimulation systems are widely used in a clinical

setting and also in patient homes. This suggests that a neuroprosthetic device based on this

approach can be effectively utilized in clinical or home setting.

An important limitation of this study is that we focused on characterizing the sensations

evoked by SCS but did not demonstrate that those sensations could be used as part of a

closed-loop neuroprosthetic system. While we demonstrate that many of the qualities of the

evoked sensations are similar to those reported by others (e.g. sensation intensity modu-

lates linearly with stimulation amplitude), it will be critical to demonstrate that sensations

remain stable and are useful during closed-loop prosthetic applications. For example, while

we did not control subject posture during any of our experiments, it will be important to

demonstrate that sensations remain stable during intentional movements of the neck, shoul-

ders, and arms. Certainly, future work will focus on achieving these demonstrations and

characterizing the effects of sensory restoration via SCS on dexterous control of prosthetic

limbs.
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4.5 Conclusions

Since this approach targets proximal neural pathways, SCS-mediated sensory restoration

lends itself to use for a wide range of populations, such as individuals with proximal am-

putations and those with peripheral neuropathies in which stimulation of peripheral nerves

may be difficult or impossible. Provided that the injury does not affect the dorsal roots and

spinal cord, our results suggest that these techniques can be effective in restoring sensation,

regardless of the level of limb loss. Moreover, the widespread clinical use of SCS and the

well-understood risk profile provide a potential pathway towards clinical adoption of these

techniques for a somatosensory neuroprosthesis.
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5.0 Closed-loop stimulation of cervical spinal cord and dorsal roots in

upper-limb amputees to enable sensory discrimination

The contents of this chapter are in preparation for submission as a journal article by:

Chandrasekaran S*, Nanivadekar AC*, Helm ER, Boninger ML, Collinger JL, Gaunt RG,

Fisher LE. * These authors contributed equally to this work.

5.1 Introduction

People with upper-limb amputation rely heavily on sustained visual attention when per-

forming everyday activities with a prosthesis [10, 11]. This reliance on visual cues leads to

sub-optimal motor control in various situations such as attempting to grasp an object that

is out of the line of sight, or rapidly modulating grip force to prevent object slipping [218].

Surveys of users of upper-limb prostheses have reported somatosensory feedback as a top

unmet need [172, 10].

Normal haptic perception requires an interplay between tactile and proprioceptive modal-

ities of sensory information [17]. Broadly, tactile information conveys contact with the ob-

ject, the optimal pressure required to interact with the object to prevent slip, and the surface

features of the object [17]. Meanwhile, proprioceptive information conveys the state and ori-

entation of the hand and fingers which enables inference of object location, shape, and size

[17]. Several studies have demonstrated the effectiveness of artificial somatosensory feedback

in conveying these multiple modalities of information during use of a prosthesis. When tac-

tile information was delivered by electrical stimulation of peripheral nerves in the residual

limb, study participants demonstrated improvements manipulating objects [219], controlling

grip force [220, 221, 37], and identifying object compliance [34, 33, 48, 222]. Further, elec-

trical stimulation designed to mimic mechanoreceptor firing patterns can enable amputees

to discriminate naturalistic textures [223, 224].
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Proprioceptive sensations have been far more challenging to evoke reliably with electrical

stimulation of peripheral nerves. Instead, prior studies have typically conveyed propriocep-

tive information by remapping the intensity of an evoked tactile sensation based on a signal

such as grasp aperture or finger joint angle. With these techniques, participants could dis-

criminate sizes of objects with a success rate better than chance [33, 48, 222].

We have previously shown that stimulation of the lateral cervical spinal cord can evoke

focal sensations in the missing fingers and hand, even in people with high level amputations,

such as at the proximal humerus or shoulder. The goals of this study were to provide func-

tionally relevant sensory feedback in real-time via lateral spinal cord stimulation (SCS) and

to identify factors affecting the utility of this feedback to an amputee using a prosthesis. We

used FDA-approved, commercially available SCS leads to provide somatosensory feedback

to two subjects with upper-limb amputation. Subjects were asked to interact with an object

using a sensorized DEKA [225, 226] hand or a virtual representation of that hand, rendered

in MuJoCo [227, 228]. Subject 1 used a DataGlove worn on her contralateral, intact hand

to proportionally control the aperture of the prosthesis, and Subject 2 used EMG signals

from the residual limb to trigger threshold-based constant velocity closing of the prosthetic

hand. Tactile sensory feedback was provided by varying the stimulus amplitude in real-time

to modulate the intensity of the evoked percept. Subjects were asked to determine the size

or compliance of the object based on this feedback. With less than an hour of training,

both subjects were able to use the sensory feedback to perform the discrimination tasks at a

success level above chance. Additionally, specific features of the control system such as the

peak stimulus amplitude, the rate of change of stimulation, and the aperture of the prosthetic

hand at object contact encoded size and compliance of the presented objects. Each subjects’

ability to attend to these features determined their performance on the object discrimination

task. These results demonstrate that percepts evoked via SCS can be modulated to provide

meaningful, functionally relevant sensory feedback to amputees in real-time. However, the

design of the control system determines what sensory information is available to the subjects.
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5.2 Methods

5.2.1 Study Design

We have previously demonstrated that the intensity of percepts evoked via SCS is linearly

related to the amplitude of stimulation. The aim of this study was to modulate the intensity

of the percept in real-time while subjects used a sensorized prosthetic hand to interact with

objects of different size and compliance. Subjects were asked to identify each object and

the utility of sensory feedback via SCS was measured in terms of their overall performance

on this task. To characterize the factors affecting the utility of sensory feedback, subjects

performed the object discrimination task using two separate sensor-stimulation mappings

(linear and exponential), and two different control environments (real and virtual prosthetic

hand).

Two subjects with upper-limb amputations were recruited for this study. Subject 1 had

a transhumeral amputation on the right arm while Subject 2 had a transradial amputation

on the right arm. Neither subject had experience using a prosthetic limb before participating

in these experiments. The time since amputation was greater than 2 years for both subjects.

All procedures and experiments were approved by the University of Pittsburgh and Army

Research Labs Institutional Review Boards and Subjects provided informed consent before

participation.

5.2.2 Electrode Implantation

SCS leads were implanted through a minimally invasive, outpatient procedure performed

under local anesthesia. With the subject in a prone position, three 16-contact SCS leads

(Infinion, Boston Scientific) were percutaneously inserted into the epidural space on the

lateral aspect of the C5–C8 spinal cord (Figure 5.1) through a 14-gauge Tuohy needle.

Contacts were 3 mm long, with 1 mm inter-contact spacing. Leads were steered via a stylet

under fluoroscopic guidance, and electrode placement was iteratively adjusted based on the

subjects’ verbal report of the location of sensations evoked by intraoperative stimulation.

The entire procedure took approximately 3–4 hours. The leads were maintained for up to
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29 days and subsequently explanted by gently pulling on the external portion of the lead.

subjects attended testing sessions 3–4 days per week during the implantation period. The

testing sessions lasted up to a maximum of 8 hours.

5.2.3 Neural Stimulation

During testing sessions, stimulation was delivered using three 32-channel stimulators

(Nano 2+Stim; Ripple, Inc.). The maximum current output for these stimulators was 1.5

mA per channel. In order to achieve the higher current amplitudes required for SCS, a

custom-built circuit board was used to connect together the output of groups of four channels,

thereby increasing the maximum possible output to 6 mA per channel. Custom software in

MATLAB was used to trigger and control stimulation.

Stimulation pulse trains were charge-balanced, cathodic-first square pulses, with sym-

metric cathodic and anodic phases. Stimulation was performed either in a monopolar con-

figuration, with the ground electrode placed at a distant location such as on the skin at the

shoulder or hip, or in a multipolar configuration with one or more local SCS contacts acting

as the return path. Stimulation frequencies and pulse widths ranged 1–300 Hz and 50–1000

µs, respectively. The interphase interval was 60 µs. All stimulus amplitudes reported in this

manuscript refer to the first phase amplitude.

5.2.4 Recording Perceptual Responses

The methodology for recording perceptual responses, characterizing their psychophysical

properties, and determining their stability at threshold have been detailed elsewhere [111].

Briefly, at the offset of each stimulation train, subjects used a touchscreen interface [229]

developed in Python to document the location and perceptual quality of the evoked sensation.

The location of the sensory percept was recorded using a free-hand drawing indicating the

outline of the evoked percept on an image of the appropriate body segment, i.e., hand, arm

or torso. The percept quality was recorded using several descriptors that have been used

previously to characterize evoked percepts [184, 135].
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5.2.5 Motor Control of Prosthetic Hand

Subjects performed an object discrimination task using a sensorized DEKA hand (Mo-

bius Bionics) or a virtual representation of that hand, rendered in MuJoCo. Neither subject

was a regular prosthesis user, so implementing a complex control scheme to achieve dex-

terous handling of objects would have required considerable training. Instead, each subject

controlled the aperture of the prosthetic hand using a customized control signal. Subject 1

wore a Data Glove (Fifth Dimension Technologies, 5DT) on her contralateral, intact hand.

The grasp aperture from the Data Glove was used to proportionally control the aperture of

the real and virtual DEKA hand. Subject 2 had stroke-induced paralysis in her contralat-

eral arm and could not use the Data Glove to control the DEKA hand. Therefore, bipolar

surface EMG was recorded from the residual muscle in the ipsilateral forearm. EMG data

were recorded at 2000 Hz, high-pass filtered at 10 Hz, downsampled to 50 Hz and rectified.

This rectified EMG signal was normalized to the peak EMG recorded during a maximum

voluntary contraction prior to each session. When this signal crossed a manually defined

threshold (upon elbow flexion), the DEKA hand was commanded to close at a constant

velocity of 15 degrees/s. Any time the processed EMG signal was below threshold, the hand

was commanded to open at a constant velocity of 30 degrees/s.

5.2.6 Real-time Somatosensory Feedback via SCS

A subset of SCS electrodes that evoked focal percepts localized to the phantom hand

and fingertips were used to provide real-time somatotopically matched feedback during the

object discrimination task. Sensors embedded in the fingertips of the DEKA hand or virtual

sensors in MuJoCo measured the force generated upon contact with the presented object.

Each sensor was mapped to specific SCS electrodes such that the receptive field of the evoked

percept overlapped with the location of the sensors in the hand. Custom software was written

in MATLAB (Mathworks, Natick, MA) to process the contact force and control stimulation

in real-time with an update rate of 50 Hz. Sensor signals were low-pass filtered using a 4th

order Butterworth filter with a cutoff at 4 Hz. We implemented a linear and an exponential

transformation between contact force and stimulus amplitude. For a linear transformation,
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the contact force was first normalized to a scale ranging from 0 to 1 as shown in equation

5.1,

Fn =
(F − Fmin)

(Fmax − Fmin)
(5.1)

where, Fn is the normalized contact force, F is the instantaneous contact force, Fmax and Fmin

are the upper and lower limits of the contact force measured by the sensor, respectively. The

instantaneous amplitude of stimulation A was determined as shown in equation 5.2,

A = Fn · (Amax − Amin) + Amin (5.2)

where, Amax and Amin are the upper and lower limits of the stimulus amplitude. For an

exponential transformation, the instantaneous amplitude of stimulation A, was determined

as shown in equation 5.3

A =

Amin · eωF if F >1

0 if F ≤ 1

(5.3)

where, F the instantaneous contact force measured by the sensor, ω is an empirically assigned

scaling factor (0.005 to 0.025), and Amin is the lower limit of the stimulus amplitude. Subject

1 performed the object discrimination task using both sensor-stimulus transformations. Her

performance using each transformation is reported separately. Subject 2 performed the

object discrimination task using the linear transformation only.

5.2.7 Object Discrimination Task Design

Table 5.1 provides a summary of the control scheme and number of object presentations

for the physical and virtual object discrimination task for Subjects 1 and 2.

5.2.7.1 Virtual DEKA hand in MuJoCo Both subjects used a virtual representa-

tion of the DEKA hand to perform the object discrimination task in a virtual environment

designed using MuJoCo. For Subject 1, spheres of three different sizes (small, medium, and

large) and compliances (soft, medium, and hard) were presented (Figure 5.2A). For the size

discrimination task, objects of three different sizes were presented 36 times in random order

resulting in a total of 108 object presentations. A linear transform between sensor force and
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Table 5.1: Summary of object discrimination trials and control scheme per subject

Subject
Control
Scheme

Control
Environment

Object presentations per task

Size task Compliance task

linear exponential linear exponential control

1
Contralateral
Data Glove

virtual DEKA 36 72 18 90 -

real DEKA 55 21 - - -

2
ipsilateral

EMG
virtual DEKA 15 - 75 - 30

real DEKA 30 - 60 - 15

stimulation was used for 36 of these presentations and an exponential transform was used for

72 presentations. For the compliance discrimination task, three different compliances were

presented 36 times in random order resulting in a total of 108 object presentations. A linear

transform between sensor force and stimulation was used for 18 of these presentations and

an exponential transform was used for 90 presentations.

For Subject 2, cylinders of three different sizes and compliance levels were presented

(Figure 5.4A). For each presentation, the subject had 10 seconds to explore the object.

For the size discrimination task, objects of three different sizes (and hard compliance) were

presented 5 times in random order resulting in a total of 15 object presentations. For the

compliance discrimination task, three different compliances (and large size) were presented

25 times in random order resulting in a total of 75 object presentations. A linear transform

between sensor force and stimulation was used for all trials. Subject 2 also performed

control trials for compliance discrimination wherein somatosensory feedback via SCS was

not provided. For these trials, objects of three different compliances were presented 10 times

in random order resulting in a total of 30 object presentations.

5.2.7.2 Physical DEKA hand Subject 1 was presented with cubes of four different

sizes (extra small, small, medium, and large) and identical compliance (Figure 5.2C). The

order of presentation was randomized and the subject performed the task without visual

feedback. A timeout for object exploration was not enforced, however the subject never
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explored an object for more than 10 seconds. The number of presentations for each object

during a session was variable. A linear transform between sensor force and stimulation

was used for 9, 18, 12, and 16 presentations of the four sizes, respectively. An exponential

transform was used for 6, 7, 4, and 4 presentations of the four sizes, respectively (Table 5.1).

Subject 2 was presented with cylinders of three different sizes (small, medium, and large)

or compliances (soft, medium, and hard) (Figure 5.4C). The design of these objects was

changed from cubes to cylinders to reduce the slippage between the fingers and the corners

of objects observed in Subject 1. The subject was given 20 seconds to explore each object.

For the size discrimination task, objects of three different sizes (all with hard compliance)

were presented 10 times in random order resulting in a total of 30 object presentations. For

the compliance discrimination task, three different compliances (all with medium size) were

presented 20 times in random order resulting in a total of 60 object presentations. The

subject performed the task without visual and audio feedback. A linear transform between

sensor force and stimulation was used for all object presentations. Subject 2 also performed

control trials for compliance discrimination wherein somatosensory feedback via SCS was not

provided. For these trials objects of three different sizes were presented 5 times in random

order resulting in a total of 15 object presentations.

5.2.7.3 Statistical Analysis We characterized the relationship between hand aperture,

contact force, and stimulation amplitude for each object presentation to identify how size

and compliance were encoded through stimulation. This also allows us to postulate on

the strategy employed by each subject during the object discrimination task. For each

subject, separate multivariate analyses of variance (MANOVA) were performed for object

discrimination tasks involving the real and virtual DEKA hand. Size and compliance were the

independent variables and hand aperture at stimulation onset, peak amplitude of stimulation

and rate of the change of stimulation were the dependent variables. Subsequent univariate

analysis (ANOVA) was carried out for each independent variable and follow up post-hoc

(Tukey-HSD) tests were carried out for dependent variables that displayed a significant

effect.
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5.3 Results

5.3.1 SCS Evokes Sensory Percepts Localized to the Missing Limb

Three SCS leads were implanted in the cervical epidural space in each of two individuals

with upper-limb amputation (Subjects 3 and 4 in Table 4.1 are referred to as Subjects

1 and 2 here). In both subjects, epidural SCS evoked sensory percepts in focal regions

of the missing limb including the fingers, palm, and forearm. In this study, we used a

subset of electrodes (n=3 in Subject 1, and n=1 in Subject 2) to provide somatotopically-

Figure 5.1: Representative sensory percepts for Subjects 1-2. Colored areas represent the

stable projected fields of the electrodes that were used during closed loop object discrimina-

tion tasks. Each color represents a unique stimulation electrode per subject. Simultaneously

evoked percepts in the residual forearm are shown inset for the respective electrodes.
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Table 5.2: Comparison of performance on object discrimination task for each sensor-

stimulation transform

Subject
Control

Environment

Accuracy (%)

Size task Compliance task

linear exponential linear exponential control

1
virtual DEKA 63 74 27 46 -

real DEKA 58 42 - - -

2
virtual DEKA 27 - 51 - 37

real DEKA 27 - 60 - 47

matched sensory feedback in real-time as subjects interacted with objects of varying size or

compliance. Figure 5.1 shows representative sensory percepts evoked by these electrodes that

were localized to the missing hand in each subject. A complete overview of the perceptual

quality, stability and psychophysical properties of percepts evoked via SCS has been detailed

in chapter 4.

5.3.2 SCS Provides Functionally Relevant Somatosensory Feedback

Table 5.2 provides a summary of each subject’s performance on the physical and virtual

object discrimination task.

5.3.2.1 Subject 1: Size discrimination using the virtual DEKA hand in MuJoCo

Optimal performance using exponential sensor-stimulus transform

To assess the functional utility of somatosensory feedback via SCS, we asked Subject 1 to

explore objects of three different sizes and compliances in a virtual environment (MuJoCo)

(Figure 5.2A). The subject was most successful in determining the size of the objects using an

exponential transformation between sensor force and stimulation amplitude, (Figure 5.2B),

with an overall accuracy of 74%. The highest overall accuracy within a single session wherein

103



objects were presented in random order was 94%. Across multiple sessions, the subject

correctly identified large and small objects (92% and 79% accuracy respectively) more often

than medium objects (50%). Interestingly, when the subject misidentified medium-sized

objects, they were always incorrectly identified as large-sized objects.

Figure 5.2: Object discrimination results for Subject 1. A) Representation of DEKA hand

in MuJoCo virtual environment with spherical object. B) Confusion matrices for object

discrimination task using virtual DEKA hand and exponential sensor-stimulus transform.

C) Experimental setup for object discrimination task with physical DEKA hand and Data-

Glove. D) Confusion matrix for object size discrimination task using a linear sensor-stimulus

transform.

104



When performance on the size discrimination task was analyzed for each object com-

pliance (Supplementary Figure C.1A), Subject 1 had the highest accuracy when presented

with soft objects (95%) as opposed to medium and hard objects (71% and 54%). Objects

with stiffer compliance were frequently misidentified as larger sizes.

Linear Transformation

When a linear transformation between sensor force and stimulation amplitude was used

the overall performance on the size detection task decreased to 63% (Figure 5.3A). Moreover,

there was greater misidentification between objects of adjacent size when a linear transform

was used. Anecdotally, the subject reported that the perceived intensity of stimulation for

medium and large objects was very similar. These results indicate that the exponential

transform provided optimal separation between the three object sizes.

5.3.2.2 Subject 1: Compliance discrimination using the virtual DEKA hand in

MuJoCo

Optimal performance using exponential sensor-stimulus transform

The subject was less accurate when determining object compliance with an overall ac-

curacy of 46% across all sessions and object sizes, and with a peak performance of 50%

for a single session when all three compliances were presented in random order. However,

the subject was consistently more successful in identifying the soft object (70% accuracy).

Furthermore, when identifying object compliance for different object sizes (Supplementary

Figure C.1B), the subject performed below chance levels when presented with small objects

(overall accuracy 13%) but performance improved as object size increased (27% and 67%

for medium and large objects, respectively). Interestingly, for medium and large objects the

subject correctly identified soft objects with a high accuracy (100% and 80%) but she could

only correctly identify all three compliances at above chance levels for the large object (70%,

50% and 80% for soft, medium and hard respectively).

Linear Transform

Similar to size discrimination when a linear transformation between sensor force and

stimulation amplitude was used the overall performance on the compliance detection task

decreased to below chance levels (27%).

105



Figure 5.3: A) Comparison of the performance of Subject 1 on the object discrimination task

using the virtual DEKA hand and a linear mapping between sensor force and stimulation

amplitude. B) Comparison of the performance of Subject 1 on the object discrimination

task using the physical DEKA hand and an exponential mapping between sensor force and

stimulation amplitude.
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5.3.2.3 Subject 1: Size discrimination using the DEKA hand

Optimal performance using using linear sensor-stimulus transform

The subject also used a physical DEKA hand to explore and identify objects of four

different sizes with an overall accuracy of 58% (Figure 5.2C). The subject achieved accuracy

rates of 89% and 62% with the largest and smallest objects (chance level = 25%), respectively.

The confusion matrix (Figure 5.2D) shows that, for the two intermediate sizes, the subject

commonly misidentified them as objects of adjacent sizes. Moreover, 52% of all errors were

misidentifications of these intermediate objects as the next larger size. This trend was similar

to the misidentification of intermediate objects observed with in the virtual environment.

Exponential transform

When an exponential transformation between sensor force and stimulation amplitude

was used the overall performance on the size detection task decreased to 42% (Figure 5.3B).

For both transforms the extra-small objects were identified with high accuracy (89% and

83% respectively), however, the exponential transform resulted in greater misidentification

of all other objects.

5.3.2.4 Subject 2: Size discrimination using the virtual DEKA hand in MuJoCo

Subject 2 also used the virtual DEKA hand to identify object size for hard objects using

a linear transformation between sensor force and stimulation amplitude only. The overall

accuracy on this task was 27% (below chance levels) (Figure 5.4B). The subject never cor-

rectly identified small objects and frequently misidentified medium objects as small objects

.

5.3.2.5 Subject 2: Compliance discrimination using the virtual DEKA hand

in MuJoCo The subject performed the compliance discrimination task for medium-sized

objects with an overall accuracy of 51%. The highest overall accuracy within a single session

wherein objects were presented in random order was 60%. However, objects of adjacent

compliance were frequently misidentified and only the soft objects were identified with an

accuracy greater than 50%. Additionally, when sensory feedback was removed during control

trials, the overall accuracy decreased to 36% (Supplementary Figure C.3A).
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5.3.2.6 Subject 2: Size discrimination using the DEKA hand Subject 2 used

the physical DEKA hand to identify three different sizesof cylindrical objects. The overall

accuracy on this task was 27% (below chance levels) and was comparable to the performance

with the virtual DEKA hand. Accuracy for the size identification task was below chance

levels (i.e. 33%) for all sessions of testing.

Figure 5.4: A) Representation of DEKA hand in MuJoCo virtual environment with cylin-

drical object. B) Confusion matrices for object discrimination task performance with virtual

DEKA hand using linear sensor-stimulus transform. C) Experimental setup for object dis-

crimination task with physical DEKA hand and ipsilateral EMG electrodes. D) Confusion

matrices for object discrimination task using linear sensor-stimulus transform.
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5.3.2.7 Subject 2: Compliance discrimination using the DEKA hand Com-

pared to size discrimination, the subject identified the object compliance with a higher over-

all accuracy (60%). The confusion matrix in Figure 5.4D shows that for compliance detection

tasks, the Subject was able to identify the soft, medium, and hard objects with accuracies

of 60%, 55%, and 65%, respectively. Similar to the trend observed in Subject 1, 54% of all

errors were misidentifications of the object as the next less compliant object. Performance

on the compliance discrimination task was similar for small (67%), medium (60%) and large

(54%) sized objects (Supplementary Figure C.2). Additionally, when sensory feedback was

removed during control trials, the overall accuracy decreased to 46% (Supplementary Figure

C.3B).

5.3.3 Object Size and Compliance are Encoded by Independent Features of

Stimulation

To understand which features of sensory feedback were used by each subject to determine

object size or compliance, we characterized the relationship between hand aperture at stim-

ulation onset, peak amplitude of stimulation, and the rate of change of stimulation for each

object presentation (Figures 5.5 and 5.6). For objects with the same size, stimulation onset

occurred at the same aperture across multiple trials. Furthermore, for objects with the same

size the rate of change of stimulation after object contact and the maximum stimulation

amplitude were both dependent on the compliance of the object.

5.3.3.1 Subject 1: virtual DEKA hand in MuJoCo For Subject 1, when using the

virtual DEKA hand and an exponential sensor-stimulus transform, size and compliance of

the object showed a significant multivariate effect on the contact aperture, peak stimulation

amplitude, and rate of change of stimulation as a group. Univariate analysis showed that

there was a statistically significant relationship between object size and both contact aperture

and peak stimulation amplitude (p < 0.01). Post-hoc tests showed that the contact aperture

was significantly different (p < 0.01) for all object sizes. A separate univariate analysis

showed that there was a statistically significant relationship between object compliance and
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both the rate of change of stimulation and the peak stimulation amplitude (p < 0.01).

Post-hoc tests showed that the rate of change of stimulation was significantly different (p <

0.01) between hard-medium and hard-soft objects. The peak stimulation amplitude was

significantly different for hard and soft objects only (p < 0.01).

Figure 5.5: Relationship between sensor force and prosthetic hand aperture using the A)

virtual DEKA and C) physical DEKA for Subject 1. Standard deviational ellipses for the

rate of change of stimulation amplitude and motor position at stimulation onset for each

object using the B) virtual DEKA and D) physical DEKA for Subject 1. The color of the

lines and ellipses represent object size and the line style represents the compliance of the

object. Arrows in panel A represent the approximate motor position at object contact.

110



These results indicate that for Subject 1 contact aperture contained reliable information

regarding object size (Figure 5.5B). The significant difference in contact aperture for all sizes

may also explain the subject’s high overall accuracy on the size discrimination task (74%

accuracy). Conversely, peak stimulation amplitude and the rate of change of stimulation

reliably encoded hard and soft objects only resulting in greater misidentification of medium

objects and an overall lower accuracy. Supplementary table C.1 summarizes the distribution

of stimulation onset times and rate of change of stimulation for each object.

5.3.3.2 Subject 1: physical DEKA hand With the physical DEKA hand and a linear

sensor-stimulus transform, object size was the only independent variable since all objects had

a medium compliance. Univariate analysis showed that there was a statistically significant

relationship between object size and the contact aperture for all sizes and a post-hoc analysis

confirmed that the contact aperture was significantly different for each pair of object sizes.

This result indicates that the subject could identify object size reliably from contact aperture

alone (Figure 5.5D).

5.3.3.3 Subject 2: virtual DEKA hand in MuJoCo For Subject 2, when using the

virtual DEKA hand, size and compliance of the object showed a significant multivariate ef-

fect on the contact aperture, peak stimulation amplitude, and rate of change of stimulation

as a group. Univariate analysis showed that there was a statistically significant relationship

between object size and contact aperture (p < 0.01) only. Post-hoc tests showed that the

contact aperture was significantly different (p < 0.01) for all object sizes. A separate uni-

variate analysis also showed that there was a statistically significant relationship between

object compliance and contact aperture (p < 0.01). Post-hoc tests showed that the contact

aperture was significantly different (p < 0.01) between hard-medium and hard-soft objects

only (p < 0.01).

These results indicate that both object size and compliance were encoded in the contact

aperture alone. However, this subject was better at identifying object compliance (51%)

than size (27%). Additionally, only medium-sized objects were used during the compliance

detection task. A one-way ANOVA and subsequent post-hoc analysis confirmed that for
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Figure 5.6: Relationship between sensor force and prosthetic hand aperture using the A)

virtual DEKA and C) physical DEKA hand for Subject 2. B) Standard deviational ellipses

for the rate of change of stimulation amplitude and motor position at stimulation onset for

each object using the virtual DEKA hand for Subject 2. D) Standard deviational ellipses for

the maximum stimulation amplitude and motor position for each object using the physical

DEKA for Subject 2. The color of the lines and ellipses represent object size and the line

style represents the compliance of the object. Arrows in panel A represent the approximate

motor position at object contact.
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medium sized objects there was a significant difference in the rate of change of stimulation

for each compliance. Therefore, it is possible that the subject relied on the rate of change

of stimulation in addition to the contact aperture, to determined object compliance (Figure

5.6B).

5.3.3.4 Subject 2: physical DEKA hand For the object discrimination task with the

physical DEKA hand, size and compliance of the object showed a significant multivariate

effect on the contact aperture, peak stimulation amplitude, and rate of change of stimulation

as a group. Univariate analysis showed that there was a statistically significant relationship

between object size and contact aperture (p < 0.01). Post-hoc tests showed that the contact

aperture was significantly different (p < 0.01) for all object sizes. A separate univariate anal-

ysis showed that there was a statistically significant relationship between object compliance

and both the contact aperture and the peak stimulation amplitude (p < 0.01). Post-hoc

tests showed that the peak stimulation amplitude was significantly different for all object

compliances (p < 0.01). The contact aperture was significantly different (p < 0.01) between

hard-medium and hard-soft objects only.

These results again indicate that contact aperture encodes the object size and compli-

ance. However, the peak stimulation amplitude conveys additional information regarding

the compliance of the object (Figure 5.6D), which may explain the subjects improved per-

formance on the compliance detection task.

5.4 Discussion

5.4.1 Subjects can use Somatosensory Feedback via SCS during an Object Dis-

crimination Task

In this study, we demonstrate that somatotopically-matched real-time feedback provided

by SCS can be used by subjects to determine object size or compliance. Subject 1 was

consistently more adept at determining object size (up to 74% accuracy) while Subject 2
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achieved a higher accuracy level in determining object compliance (up to 60% accuracy).

Both subjects could readily use the sensory feedback with minimal training and acclimati-

zation. However, performance varied based on the control strategy (real or virtual DEKA

hand) and the sensor-stimulation transformation (linear or exponential).

5.4.2 Task Performance is Dependent on Detection of Features in Stimulation

5.4.2.1 Subject 1 For Subject 1, when using the virtual DEKA hand, an exponential

sensor-stimulus transform resulted in highest accuracy on the size discrimination tasks (expo-

nential: 74%, linear: 63%). Whereas with the physical DEKA hand, a linear transformation

resulted in highest accuracy for size discrimination (linear: 58%; exponential: 42%). Addi-

tionally, for the compliance discrimination task with the virtual DEKA hand an exponential

transform resulted in highest accuracy as compared to a linear transform (46% and 27%

respectively). For the same SCS electrodes and identical range of stimulation amplitude this

observation implies that optimal delivery of somatosensory feedback is dependent on the

dynamics of the control system.

Providing true proprioceptive information through artificial somatosensory feedback has

consistently been a difficult challenge for somatosensory neuroprostheses. Most studies have

provided grasp aperture information by remapping it to a tactile sensation [48] or to a

sensation of movement of a specific finger or joint [222]. Recently, it has been shown that

grasp aperture information is key to determining object size [48]. Subject 1 had proportional

control of the DEKA hand through a DataGlove on her contralateral intact hand. This

control strategy provided the subject with information about hand aperture through the

intact sensory pathways of proprioception on the contralateral limb. Combined with the

onset of stimulation upon object contact, this proprioceptive information could provide a

reliable estimate of object size. However, this subject misidentified the medium object in at

least 50% of the trials. Our results indicate a significant relationship between grasp aperture

and object size. However, the difference in grasp aperture between large, medium, and

small objects was 6-8 angular degrees. It is possible that Subject 1 could reliably detect

larger changes in angular degrees and therefore performed better when identifying large and
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small objects. This suggests that even with natural proprioception, it can be difficult to

determine object size without any reference to the adjacent object sizes. Additionally, grasp

aperture inferred from the contralateral hand did not provide any information regarding

object compliance. The subject’s poorer performance on the compliance detection task may

be attributed to the inability to reliably detect the rate of change of stimulation after object

contact.

5.4.2.2 Subject 2 Subject 2 used an EMG signal to achieve constant velocity control of

hand aperture. This method constrained the trajectory of the prosthetic fingers and provided

a reliable measure of the stimulation dynamics upon object contact. Additionally, there was

no proprioceptive feedback to infer the grasp aperture and the subject had to rely entirely

on the rate of change of stimulation and peak stimulation amplitude. Previous studies have

shown subjects potentially using this information to discriminate between objects of different

compliances [34]. In this study, Subject 2 also showed an improvement (up to 60% accuracy)

over Subject 1 in determining object compliance. Our results indicate that object compliance

has a strong relationship with stimulation dynamics upon object contact. It is possible that

Subject 2 was inherently better at discriminating the rate of change of stimulation (using

the virtual DEKA) and the peak stimulus amplitude (using the real DEKA). Her decreased

performance in the absence of any stimulation also indicate that she was utilizing feedback

delivered via SCS.

Additionally, grasping the object required a sustained elbow flexion (i.e. suprathreshold

EMG signal). In the absence of proprioceptive feedback, Subject 2 may have attended to the

time delay between the onset of elbow flexion and the onset of stimulation to infer the grasp

aperture at object contact. However, the subject was not provided any feedback regarding

the state of the EMG signal. Therefore, for each trial the time delay between the onset

of elbow flexion and the onset of grasp was variable. The subject could not have reliably

estimated grasp aperture from the time delay, and this may explain her decreased accuracy

on the size discrimination task.
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5.4.3 Considerations for Closed-Loop Prosthesis Design

In this study we have demonstrated that SCS provides somatosensory feedback that

subjects can use to identify the size and compliance of objects. However, there are a few

shortcomings that could be addressed in future work. The percutaneous SCS study described

herein lasted for 29 days in both subjects. Initial experiments focused on mapping evoked

percepts and studying their psychophysics. This information is vital to determining the

electrodes and stimulation parameters to use during the object discrimination task. However,

this also constrained the number of repetitions of the object discrimination task that could

administered. Neither subjects had prior experience using a prosthesis, and these tasks

were performed without extensive prior training. It is possible that over time subjects can

learn to attend to specific changes in the stimulation and improve their performance on

the object discrimination tasks. Future work should focus on tracking subject performance

across multiple days of using this feedback to interact with objects.

Previously reported psychophysics data showed that both subjects could discriminate

three specific intensity levels (72% accuracy) based on trains of stimulation that had three

discrete amplitudes. In this study, somatosensory feedback was modulated in real-time.

Therefore, subjects had to attend to the dynamics of stimulation (rate of change, peak

amplitude) instead of the instantaneous intensity of the evoked percept. However, our psy-

chophysics testing did not quantify subjects’ ability to detect changes in stimulation dy-

namics. In fact, identifying the sensor-stimulus transform that provided optimal separation

for different objects was a major challenge. Future work should focus on characterizing the

threshold and just-noticeable difference for dynamic properties of stimulation to identify the

optimal sensor-stimulus transform.

Additionally, it is worth noting that the object discrimination task used in this study and

several other studies is essentially a modified magnitude estimation task. When all other

object properties are held constant a single feature of stimulation (e.g. peak amplitude)

can encode a distinct property of an object (e.g. compliance). Subjects that can perceive

gradation in this feature will demonstrate higher accuracy. However, these results may not

generalize to a potential somatosensory neuroprosthesis. When presented with a novel object,
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the same features of stimulation may encode multiple object properties and the utility of

this feedback may be limited. Studies that monitor subject performance during activities

of daily living and novel interactions are necessary to characterize the functional utility of

artificial somatosensory feedback.
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6.0 Summary of results and Future work

This dissertation chronicles work done towards evaluating a potential somatosensory

neural interface at the dorsal roots and the dorsal root ganglia. Specifically, we evaluated

the performance of epineural stimulation at the DRG in a feline model, developed a com-

putational model to identify the mechanism of action for DRG stimulation and carried out

first-in-human experiments to restore sensation via epidural stimulation in individuals with

amputation. There still remains a significant amount of work towards developing a clinically

viable somatosensory neuroprosthesis. However, we have established an approach to iterate

on the design and efficacy of novel neural interfaces in pre-clinical studies and validate the

functional utility of these interfaces in clinical studies.

6.1 Selective Recruitment at the DRG

Selectivity is an important requirement for a somatosensory neural interface to deliver

focal feedback. We have shown previously that microstimulation of the lumbar dorsal root

ganglia (L5-L7 DRG) using penetrating microelectrodes selectively recruits distal branches of

the sciatic and femoral nerves in an acute preparation. However, a variety of challenges limit

the clinical translatability of DRG microstimulation via penetrating electrodes. For clinical

translation of a DRG somatosensory neural interface, electrodes placed on the epineural

surface of the DRG may be a viable path forward.

In chapter 2, we evaluated the recruitment properties of epineural electrodes and com-

pared their performance with that of penetrating electrodes. Specifically, we compared the

number of selectively recruited distal nerve branches and the threshold stimulus intensities

between penetrating and epineural electrode arrays. Given the diffuse nature of epineural

stimulation, we expected less selective recruitment and frequent coactivation of the sciatic

and femoral branches. Surprisingly, a majority (67%) of epineural electrodes selectively re-
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cruited a single distal branch of the sciatic or femoral nerve at threshold. Overall, epineural

stimulation yielded at least one instance of selective recruitment for all instrumented nerves

and functionally agonist muscles.

The epineural electrodes we used had a large contact area (∼375 µm), and were placed

far (∼1-2 mm) from the neural targets in the DRG, separated by a thick epineurium. As

anticipated, epineural stimulation had a higher threshold for selective recruitment however,

the dynamic range of selectivity was also significantly higher than that for penetrating elec-

trodes. In the context of clinical translation, a higher dynamic range within which the same

population of afferents can be recruited is desirable. It provides a larger parameter space to

modulate the subjective quality of percepts and also serves to counter the effect of increased

thresholds due to electrode encapsulation or migration.

The pattern of recruitment via epineural stimulation was also consistent with known

hindlimb dermatomes such that stimulation at the L5 DRG recruited nerves projecting to

the quadriceps and stimulation at the L6 and L7 DRG recruited nerves projecting to distal

regions of the foot and ankle. Our results showed that the epineural stimulation at the

caudal lumbar DRG provides access to the entire sensory representation of the foot. Despite

higher recruitment thresholds, epineural stimulation provides comparable selectivity and

superior dynamic range to penetrating electrodes. These results suggest that it may be

possible to achieve a highly selective neural interface with the DRG without penetrating the

epineurium. An epineural somatosensory interface at the DRG may be sufficient to evoke

relevant percepts that are localized to the missing limb in a somatosensory neuroprosthesis

for people with an amputation.

Future improvements to these epineural arrays should include a higher number of elec-

trodes with smaller contacts. An array of epineural electrodes with a low pitch may have

multiple electrodes recruiting the same nerve or sensory modality. This built-in redundancy

is important to compensate for the potential effects of array migration. Furthermore, an

increased number of electrodes allows for a larger parameter space within which to vary

stimulation. Current steering techniques can be used to fine tune the population of afferents

recruited based on their receptive field and modality. In this study all stimulation was de-

livered in a monopolar configuration with a constant frequency. However, evidence from our
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clinical studies with epidural SCS suggests that multipolar stimulation where the frequency

is varied, changes the modality of the evoked percept. It is possible that selective recruit-

ment of afferents based on their modality may be independent of the stimulation amplitude.

Establishing the relationship between the modality of recruited afferents and specific param-

eters of stimulation (amplitude, frequency, pulse width) may improve recruitment selectivity

and optimize navigation of the parameter space.

Another consideration for the design of epineural arrays is the implant procedure for

future clinical studies. For the pre-clinical study described in chapter 2, we performed a

laminectomy to expose the DRG and place the electrode arrays. However, we also per-

formed studies in human cadavers to identify less invasive, clinically viable alternatives to a

laminectomy. These studies indicated that a small (8-10 mm diameter) foraminotomy at the

joint between the vertebrae may expose the spinal root and allow optimal electrode place-

ment at the DRG. While a foraminotomy is a fairly common, minimally invasive, outpatient

procedure, significant modifications will be required to steer the electrode array into the fora-

men and ensure fixation at the DRG. Furthermore, the flexibility of the silicone substrate

of the array and adhesion to the surrounding tissue are a challenge that preclude the use of

these arrays clinically.

6.2 Mechanism of Afferent Recruitment at the DRG

In addition to selectively recruiting afferents, being able to modulate their response and

provide graded feedback is critical for a somatosensory neuroprosthesis. Additionally, since

afferents at the DRG do not display any consistent somatotopy, designing electrodes that

provide sufficient coverage of the DRG is also necessary. An understanding of the mechanism

of recruitment via DRG stimulation and the neural structures that play a role in epineural

stimulation are crucial to optimize the delivery of stimulation.

In chapter 3, we developed a computational model of the DRG and sensory afferents

to study the mechanism of recruitment via DRG stimulation. We showed that epineural

stimulation primarily activated neural structures arranged near the periphery. A majority of
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these structures were the excitable initial segment or axon hillocks of afferents at the DRG.

In some instances, the large t-junction of pseudounipolar neurons was also recruited. Due

to the high stimulation amplitudes and proximity to the electrodes, recruitment of neurons

was invariant to the diameter of the axon branches, unlike the reverse recruitment seen

in peripheral nerves. Furthermore, this model indicated that the superior dynamic range

of epineural stimulation observed in chapter 2 may be due to densely packed large soma

and sparse axons at the periphery. This suggests that the neural targets of stimulation via

epineural and penetrating electrodes may be different. The comparable selectivity between

epineural and penetrating stimulation is due to a combination of anatomical differences and

inherent differences in the electrical properties of the neural targets being activated.

A majority of the effort on this project was spent validating the model of the DRG to

explain the selectivity results seen in chapter 2. However, future work should use this model

and the methodology described herein to optimize the design of novel electrodes. Specifically,

this model can be used to perform simulations in which the electrode size, spacing, and

location are varied to examine the effects of these geometric properties on neural activation.

The overlap in afferent populations recruited for neighboring electrodes and the dynamic

range of stimulation for each arrangement of electrodes, can be used to design epineural

electrodes that allow for increased selectivity.

Future revisions to this model should also include the diverse modality of afferents present

at the DRG. Specifically, including multi-compartment models of Aα, Aδ and C-fibers may

help identify the differences in recruitment across fiber types. Additionally, several studies

have documented changes in non-nociceptive sensory neurons that may contribute to neu-

ropathic pain post-injury or amputation [230, 231, 232]. Modeling these changes in channel

expression and membrane excitability along with novel electrode interfaces may lead to in-

novations in DRG and spinal cord stimulation that improves patient outcomes.
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6.3 Epidural Stimulation to Restore Sensation in Amputees

6.3.1 Upper-Limb Amputees

Restoring somatosensory feedback to people with limb amputations is crucial to improve

prosthetic control. Multiple studies have demonstrated that peripheral nerve stimulation

and targeted reinnervation can provide somatotopically relevant sensory feedback. While

effective, the surgical procedures required for these techniques remain a major barrier to

translatability.

In chapter 4, we demonstrated in four people with upper-limb amputation that epidural

spinal cord stimulation (SCS), a common clinical technique to treat pain, evoked somatosen-

sory percepts that were perceived as emanating from the missing arm and hand. Over up

to 29 days, stimulation evoked sensory percepts in consistent locations in the missing hand

regardless of time since amputation or level of amputation. Evoked sensations were occasion-

ally described as naturalistic (e.g. touch or pressure), but were often paresthesias. Increasing

stimulus amplitude increased the perceived intensity linearly, without increasing area of the

sensations.

We also demonstrated that somatotopically-matched tactile feedback delivered via SCS

could be used to discriminate object size and compliance. We observed that one partici-

pant performed best in discriminating objects while the other participant performed best

in discriminating object compliance. At the same time, discrimination of the other object

property in both participants respectively was only slightly above or at chance level. We

also showed that the task design and control schema dictated which object property could be

reliably determined by the participant using the somatosensory feedback. Our observations

suggest that while artificial somatosensory feedback provided via spinal cord stimulation can

be readily used to infer information about the real-world with minimal training, the control

schema of prosthetic devices dictates the efficacy of this feedback.
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6.3.2 Lower-Limb amputees

Lower-limb prostheses provide significant capabilities to lower-limb amputees (LLAs),

and have a higher adoption rate than upper-limb prostheses [233]. There are however sev-

eral deficiencies in the current technology of lower-limb prostheses. A primary concern for

LLAs using prostheses is a lowered confidence in maintaining balance and a fear of falling. An

important factor in this reduced balance may be the loss of proprioceptive and somatosensory

feedback from the amputated limb. In fact, multiple research groups have developed both

non-invasive [50] and invasive approaches [32, 234, 235, 41, 42] to restore sensation in the

lower limb by stimulating the residual sciatic and tibial nerves. These studies demonstrated

that sensory feedback localized to the phantom limb significantly improved the postural

stability of LLAs and improved mobility, decreased incidents of falling, and enhanced em-

bodiment of the prosthesis.

A major advantage of using SCS for sensory restoration is that we can target specific

dermatomes (or spinal levels) based on the nature of the amputation, with minimal mod-

ifications to our electrode implant procedure. Our study described in chapters 4 and 5

demonstrated that cervical SCS can evoke meaningful percepts localized to the amputated

limb in upper-limb amputees. We recently extended this study to include lower limb am-

putees and deliver sensory feedback via lumbosacral (L4-S1) SCS. In two individuals with

trans-tibial amputation, we showed that stimulation can evoke percepts in the phantom limb

at the calf, ankle, toes and sole of the foot (Figure 6.1). While these are frequently accom-

panied by sensations in the residual limb, both subjects were able to discriminate them from

sensations in the phantom limb. Similar to the observation in upper-limb amputees, we were

also able to evoke a variety of sensory modalities with Subject 1 reporting more naturalistic

percepts than Subject 2 (Figure 6.2).

Considering these results along with the extensive clinical use of SCS, this approach to

somatosensory restoration may be beneficial to a diverse population of amputees, including

those with proximal amputations. However, future work should focus on the chronic stability

of both the implanted electrodes and the evoked percepts. The study described in chapter 4

utilized commercially available SCS electrodes because of the low barrier to initiating clinical
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Figure 6.1: Representative sensory percept locations in lower limb amputee subjects. Colored

areas represent selected projected fields that were reported for more than two testing sessions

and remained stable for at least two weeks. Each color represents a unique stimulation

electrode per subject.

studies. These electrodes were not designed for chronic percutaneous implant and mitigating

lead migration through surgical techniques (e.g. strain relief loop, securing the electrode to

the fascia) or design modifications is critical. A future somatosensory neural interface at

the spinal cord will likely require custom electrodes and implantable stimulators that remain

stable while the user performs activities of daily living.

Additionally, it is possible that the SCS electrodes we used limited the selectivity and

focality of evoked percepts. Smaller electrode contacts that approximate the size and angle

of dorsal rootlets as they enter the spinal cord may provide a better interface to target

individual rootlets and generate more focal percepts. This approach may also avoid the

large residual limb sensations that were evoked in our subjects.

124



Figure 6.2: Sunburst plot showing the combination of paresthetic (teal), naturalistic (red),

and mixed (grey) percept descriptors used by each subject. Subject 1, predominantly re-

ported naturalistic sensations (77.4%) with most of those percepts described as having a low

frequency (vibration) or high frequency (buzz) oscillatory component to them. For Subject

2 most sensory percepts were either paresthetic or of mixed modality (73.8%)

Lastly, a thorough investigation of the functional and psychosocial consequences of using

a sensory-enabled prosthesis is important. Our study focusing on object discrimination using

closed-loop stimulation is a proof-of-concept for how stimulation may be delivered in real-

time. However, it is important to monitor and observe how subjects use this feedback in

their homes and communities, unconstrained to specific tasks [44]. This will help develop

rigorous outcome measures for prosthetic embodiment, self-image, social interaction, and

overall quality of life and also highlight user priorities with regards to naturalistic feedback,

sensory discrimination, and prosthetic control.
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6.4 Understanding Phantom Limb Pain

Beyond the functional deficits that result from amputation, up to 85% of amputees

have pain that appears to emanate from their missing limb, known as phantom limb pain

(PLP) [236, 237, 238]. PLP has many different presentations, ranging from mild to severe,

intermittent to constant, and can have physical, psychological and functional impacts on

amputees who experience it. The varying presentations and mechanisms of PLP make it

difficult to effectively provide long-term pain relief. Studies have shown that improving

sensory discrimination through residual limb stimulation and improving usage of a traditional

prosthetic can reduce PLP [239, 240, 241].

In our studies, we administered the McGill Pain questionnaire (MPQ) once before im-

plantation, weekly during the 29-day study, and one month after explant and saw a decrease

in MPQ scores over the course of the implant period 6.3. In some subjects this decrease

was clinically significant (greater than 5 points) and lasted up to one month after the study

was completed. These observations suggest that a neuroprosthetic approach to treatment of

PLP via a somatosensory neural interface at the spinal cord may be possible. The primary

hypothesis for treatment of pain using SCS is that stimulation activates Aβ fibers, leveraging

pain gating mechanisms in the spinal cord [242]. Aβ fibers typically relay information from

cutaneous mechanoreceptors that convey touch and pressure-like sensations. It is plausible

therefore that the reduction in PLP observed in our subjects was a consequence of evoking

percepts in the phantom limb.

Studies have shown that physical activity and psychological factors modulate PLP [243,

244]. By virtue of being enrolled in our study, subjects experience a change in their daily

routine. This may confound the reduction in PLP that we observe in these subjects. Never-

theless, characterizing the sensory modality of evoked percepts, and stimulation parameters

that are associated with adequate pain control may provide insight in to the mechanism of

acute and chronic changes in PLP.
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Figure 6.3: McGill Pain Questionnaire (MPQ) scores for phantom limb pain across all am-

putee subjects. The questionnaire was administered prior to the study to measure baseline

PLP and once every week throughout the duration of the study. All subjects showed a

clinically significant decrease in their MPQ scores. For two subjects this decrease in PLP

lasted up to one month after explant

Additionally, a phenomenon known as proprioceptive memory is thought to contribute

to PLP in amputees [245, 246, 247]. The phantom limb is perceived to be in a contorted

position and no amount of attempted movement relieves this sensation. In such cases, it is

possible that evoking proprioceptive sensations may reduce PLP as well.
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6.5 Exploring Proprioception

Proprioception relies on the dynamic activity of a distributed network of afferents and is

dependent on higher order processing. The activity of a variety of muscular and cutaneous

afferents encodes specific information about the kinematic state of the limb [97]. This activity

is integrated in the somatosensory cortex to generate a perception of movement or limb

position [248].

Prior studies have shown that single muscle spindle afferents encode joint position but

do not produce conscious percepts of joint movement [249]. However, activating an ensemble

of cutaneous [250, 251, 252, 253], or muscular [254, 255, 256, 257, 258] afferents can produce

illusory movements of the fingers and hand. Additionally, proprioceptive afferents are large

diameter fibers with low recruitment thresholds. This suggests that we should be able to

readily recruit these afferents and evoke proprioceptive percepts via electrical stimulation.

An early study focusing on peripheral nerve stimulation to restore sensory feedback showed

that evoked proprioceptive sensations were subtle and subjects had to focus on the stim-

ulation to perceive these sensations [39]. Subsequent studies, including ours (Figure 6.4)

have reported occasional movement (or proprioceptive) sensations. However, evoking stable

proprioceptive percepts has been far more challenging as compared to tactile or cutaneous

sensations.

One possible explanation for the absence of proprioceptive percepts may be the nature of

recruitment of these afferents. Cutaneous afferents inhibit pre-synaptic inhibition of propri-

oceptive afferents [259, 260, 261, 262, 263, 264]. We would expect therefore, that cutaneous

and proprioceptive percepts would frequently co-occur. However, it is possible that this

circuitry is interrupted when cutaneous afferents are recruited via electrical stimulation.

Pre-synaptic inhibition may prevent the recruitment of enough afferents to be generate a

conscious percept. This mechanism may also explain why proprioceptive percepts appear

vague and subtle. Future work should focus on identifying the mechanism of inhibition of

proprioceptive afferents and devise stimulation paradigms to activate proprioceptive and

cutaneous afferents selectively.
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Figure 6.4: Example of a proprioceptive percept evoked in one subject. The subject described

feeling his hand opening and closing. On a separate occasion for the same stimulating

electrode, he described feeling his thumb flexing and extending

Another possible avenue for evoking proprioceptive percepts may involve replicating the

dynamic activity of afferent via stimulation. For our study focused on mapping the location

and modality of evoked percepts, we primarily delivered trains of stimulation with constant

parameters (amplitude, frequency and pulse width). Instead, delivering time-variable elec-

trical stimulation may replicate the dynamic activity of afferents that convey proprioceptive

information. Specifically, using biomimetic stimulus patterns based on muscle spindle firing

rates may produce more naturalistic and proprioceptive percepts.

Another factor that may impact artificial proprioception may be higher order processing.

While the cortical mechanisms of proprioception and sensory feedback are outside the scope

of this thesis, several studies have shown that embodiment and cognitive integration improves

prosthesis control and sensory acuity [265, 41]. It is possible that increasingly immersive
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experimental paradigms may help subjects focus on their phantom limb and improve the

perception of evoked proprioceptive percepts. Advancements in virtual reality (VR) and

augmented reality technologies can be used to deliver visuotactile feedback while subjects

perform a task in a virtual environment. Future work should focus on developing similar

testing paradigms that may improve the embodiment and naturalness of evoked percepts

and improve detection of subtle proprioceptive percepts.
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Appendix A

Motor Thresholds, ENG Detection Performance and Dynamic Range Statistics

Table A.1: Post-implant nerve cuff motor thresholds. Nerve identities were determined

using known anatomical landmarks and verified by finding coarse motor thresholds using a

voltage-controlled stimulator.

Nerve cuff
Motor Threshold (V)

G H I J

F
e
m

o
ra

l
b
ra

n
ch

Femoral contact 2 0.24 0.36 0.32 0.25

Femoral contact 4 0.24 0.36 0.48 0.38

Saphenous 20 6 40 30

Vastus Medialis 15 0.28 0.27 <0.1

Vastus Lateralis 0.22 1 - -

Sartorius 24 50 0.23 0.4

S
ci

a
ti

c
b
ra

n
ch

Sciatic contact 2 0.5 0.33 0.3 0.31

Sciatic contact 4 0.65 0.28 0.36 0.26

Tibial 0.29 12 0.1 0.18

Medial Gastrocnemius 0.25 0.14 0.12 0.12

Lateral Gastrocnemius 0.18 0.15 0.1 0.8

Distal Tibial 0.18 0.17 0.16 0.28

Common Peroneal 0.15 18 1 0.21

Distal Common Peroneal 16 21 0.26 0.32

Biceps Femoris 27 18 - -

Sural NR 0.26 3.5 4.1
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Table A.2: Accuracy of the automated ENG detection algorithm per nerve cuff per

epineural stimulation subject. Accuracy was calculated from true positive (TP), true

negative (TN), false positive (FP), and false negative (FN) rates using the formula:

(TP+TN)/(TP+TN+FP+FN) where an expert reviewer’s manual annotations were used

as ground truth for detection of ENG responses.

Nerve cuff
Detection Accuracy (%)

G H I J

F
e
m

o
ra

l
b
ra

n
ch

Femoral Nerve 52.34 76.96 73.94 95.32

Saphenous 42.02 89.77 89.94 62.79

Vastus Medialis 45.60 92.34 86.23 77.47

Vastus Lateralis 46.39 85.36 - -

Sartorius 37.71 82.50 90.17 93.79

S
ci

a
ti

c
b
ra

n
ch

Sciatic Nerve 94.27 96.99 100.00 99.19

Tibial 97.12 97.76 97.62 76.97

Lateral Gastrocnemius 93.67 96.79 100.00 97.49

Medial Gastrocnemius 96.30 95.80 99.40 93.82

Distal Tibial 96.40 98.23 100.00 92.44

Common Peroneal 93.33 97.17 91.43 54.84

Distal Common Peroneal 88.52 98.11 88.22 79.88

Sural 100.00 - - 92.90

Lateral Cutaneous - 94.50 99.42 74.86

Medial Cutaneous - 94.56 99.43 -
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Figure A.1: A) Example of automated ENG detection for a single trial. Top panel shows the

stimulus triggered average ENG from the common peroneal nerve (blue) compared to the

baseline ENG. Hatched section denotes 1 ms blanking period for stimulation artifact. Middle

panel displays the average windowed RMS calculated using a 250 µs sliding window with 25

µs overlap between consecutive windows. Red dashed line indicates 99% confidence interval.

Bottom panel shows the percentage of the subsampled averages that were supra-threshold

(95%). B) Example of the local cross correlation calculated between ENG recorded on the

2nd (blue) and 4th (yellow) contact of the sciatic nerve cuff. Maximum of LCC is used to

calculate the conduction velocity.
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Figure A.2: Normalized coactivation matrix for A) epineural and B) penetrating stimulation

calculated by adding the coactivation matrix at each DRG and normalizing the counts in

each row by dividing by the total number of times that a given nerve was recruited. C)

Relationship between epineural and penetrating coactivation where each dot in the scatter

plot represents one active-coactive nerve pair

Figure A.3: Distribution of dynamic ranges for each resolution of binary search and elec-

trode type. Horizontal lines indicate distributions with significant differences using Dunn’s

nonparametric comparisons for post hoc Kruskal-Wallis testing
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Appendix B

Receptive Fields and Psychophysics for SCS Electrodes

Figure B.1: The number of electrodes that evoked a sensory percept at a specific anatomical

location. Lighter, hatched colored bars indicate multipolar electrodes and darker colored bars

indicate monopolar electrodes.
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Figure B.2: Psychometric curves fit to response of Subject 4 to JND tasks on 4 electrodes

as shown in Figure 4D.
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Figure B.3: Confusion matrix for stimulation amplitude and the reported intensity of the

evoked percept for all subjects. Stimulation amplitude and reported intensity were indepen-

dently discretized into five linearly spaced bins. Overall accuracy of predicting stimulation

bins from subject ratings of sensation intensity was lower than the three-target task shown

in Figure 4F.
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Appendix C

Closed-Loop Object Discrimination Task Performance

Figure C.1: Confusion matrices for the performance of Subject 1 on the A) compliance

discrimination task for each object size and the B) size discrimination task for each object

compliance using the virtual DEKA hand.
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Figure C.2: Confusion matrices for the performance of Subject 2 on the compliance dis-

crimination task for each object size using the physical DEKA hand.

Figure C.3: Confusion matrices for the performance of Subject 2 on the compliance dis-

crimination task in the absence of any somatosensory feedback via SCS using the A) virtual

DEKA and B) physical DEKA hand
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Table C.1: Summary of hand aperture and stimulation dynamics for each object when using

the virtual (MuJoCo) and physical DEKA hand

Subject
Control

Environment Object size

Maximum stimulation amplitude
(mA)

Rate of change of stimulation
(mA.au-1)

Hand aperture at stim onset
(au)

hard medium soft hard medium soft hard medium soft

1

MuJoCo

large 5.38±0.15 4.6±1.33 4.21±1.5 6.8±1.96 2.44±1.46 0.6±0.35 42.41±0.07 44.05±0.92 45.19±1.14

medium 4.92±1.4 4.14±1.62 3.2±0.85 7.08±4.96 0.99±0.77 0.17±0.08 50.7±0.08 52.24±0.73 53.98±0.95

small 3.34±0.87 2.4±0.4 1.9±0.16 1.52±1.2 0.2±0.16 0.18±0.29 63.7±0.26 67.14±1.58 71.46±3.93

DEKA

large 2.29±0.11 18.04±4.38 41.92±1.81

medium 2.32±0.05 14.33±9.68 47.7±1.34

small 2.31±0.08 13.6±9.24 54.93±3.37

extra small 2.28±0.06 11.16±10.2 75.1±1.9

2

MuJoCo

large 4.5±0.0 2.9±0.02 17.3±0.02

medium 4.5±0.0 4.5±0.01 4.46±0.1 7.99±1.37 1.3±0.15 0.47±0.03 21.98±0.04 22.82±0.27 23.74±0.49

small 4.5±0.0 12.57±0.58 25.88±0.0

DEKA

large 3.58±0.13 3.46±0.07 3.2±0.05 3.28±6.95 2.15±4.12 0.11±0.02 23.6±1.9 25.76±1.49 27.45±1.48

medium 3.79±0.24 3.53±0.19 3.07±0.12 3.42±5.91 1.61±3.83 0.12±0.06 26.1±1.97 27.69±1.55 29.48±0.72

small 4.0±0.27 3.42±0.1 3.09±0.05 0.39±0.25 0.29±0.18 0.12±0.01 29.76±2.85 32.96±2.97 34.93±2.74
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S. Došen, M. Marković, D. Farina, and T. Keller, “Integrated and flexible multichan-
nel interface for electrotactile stimulation,” Journal of Neural Engineering, vol. 13,
no. 4, p. 046014, 2016.

[22] M. Strbac, M. Isakovic, M. Belic, I. Popovic, I. Simanic, D. Farina, T. Keller, and
S. Dosen, “Short- and Long-Term Learning of Feedforward Control of a Myoelec-
tric Prosthesis with Sensory Feedback by Amputees,” IEEE transactions on neu-
ral systems and rehabilitation engineering: a publication of the IEEE Engineering in
Medicine and Biology Society, vol. 25, no. 11, pp. 2133–2145, 2017.

[23] H. J. B. Witteveen, E. A. Droog, J. S. Rietman, and P. H. Veltink, “Vibro- and elec-
trotactile user feedback on hand opening for myoelectric forearm prostheses,” IEEE
transactions on bio-medical engineering, vol. 59, pp. 2219–2226, Aug. 2012.

[24] E. Raveh, S. Portnoy, and J. Friedman, “Myoelectric Prosthesis Users Improve Per-
formance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback
Is Disturbed,” Archives of Physical Medicine and Rehabilitation, vol. 99, no. 11,
pp. 2263–2270, 2018.

[25] P. B. Shull and D. D. Damian, “Haptic wearables as sensory replacement, sensory aug-
mentation and trainer – a review,” Journal of NeuroEngineering and Rehabilitation,
vol. 12, p. 59, July 2015.

[26] C. E. Stepp, Q. An, and Y. Matsuoka, “Repeated Training with Augmentative Vi-
brotactile Feedback Increases Object Manipulation Performance,” PLOS ONE, vol. 7,
p. e32743, Feb. 2012. Publisher: Public Library of Science.

143



[27] C. Antfolk, M. D’Alonzo, M. Controzzi, G. Lundborg, B. Rosén, F. Sebelius, and
C. Cipriani, “Artificial redirection of sensation from prosthetic fingers to the phan-
tom hand map on transradial amputees: vibrotactile versus mechanotactile sensory
feedback,” IEEE transactions on neural systems and rehabilitation engineering: a pub-
lication of the IEEE Engineering in Medicine and Biology Society, vol. 21, pp. 112–120,
Jan. 2013.

[28] D. Zhang, H. Xu, P. B. Shull, J. Liu, and X. Zhu, “Somatotopical feedback versus non-
somatotopical feedback for phantom digit sensation on amputees using electrotactile
stimulation,” Journal of NeuroEngineering and Rehabilitation, vol. 12, May 2015.

[29] G. Chai, D. Zhang, and X. Zhu, “Developing Non-Somatotopic Phantom Finger Sen-
sation to Comparable Levels of Somatotopic Sensation through User Training With
Electrotactile Stimulation,” IEEE transactions on neural systems and rehabilitation
engineering: a publication of the IEEE Engineering in Medicine and Biology Society,
vol. 25, no. 5, pp. 469–480, 2017.

[30] D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, J. Tyler, and D. J. Tyler, “A
neural interface provides long-term stable natural touch perception,” Science Trans-
lational Medicine, vol. 6, pp. 257ra138–257ra138, Oct. 2014. Publisher: American
Association for the Advancement of Science Section: Research Article.

[31] E. L. Graczyk, M. A. Schiefer, H. P. Saal, B. P. Delhaye, S. J. Bensmaia, and D. J.
Tyler, “The neural basis of perceived intensity in natural and artificial touch,” Science
Translational Medicine, vol. 8, pp. 362ra142–362ra142, Oct. 2016.

[32] H. Charkhkar, C. E. Shell, P. D. Marasco, G. J. Pinault, D. J. Tyler, and R. J.
Triolo, “High-density peripheral nerve cuffs restore natural sensation to individuals
with lower-limb amputations,” Journal of Neural Engineering, vol. 15, p. 056002, July
2018. Publisher: IOP Publishing.

[33] K. Horch, S. Meek, T. G. Taylor, and D. T. Hutchinson, “Object discrimination with
an artificial hand using electrical stimulation of peripheral tactile and proprioceptive
pathways with intrafascicular electrodes,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 19, no. 5, pp. 483–489, 2011.

[34] S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa, G. D. Pino,
J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C. M. Oddo,
L. Citi, A. L. Ciancio, C. Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli,
T. Stieglitz, P. M. Rossini, and S. Micera, “Restoring Natural Sensory Feedback in

144



Real-Time Bidirectional Hand Prostheses,” Science Translational Medicine, vol. 6,
pp. 222ra19–222ra19, Feb. 2014. Publisher: American Association for the Advance-
ment of Science Section: Research Article.

[35] G. Valle, A. Mazzoni, F. Iberite, E. D’Anna, I. Strauss, G. Granata, M. Controzzi,
F. Clemente, G. Rognini, C. Cipriani, T. Stieglitz, F. M. Petrini, P. M. Rossini, and
S. Micera, “Biomimetic Intraneural Sensory Feedback Enhances Sensation Natural-
ness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis Case
Study Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness,
Tactile Sensitivity, and Man,” Neuron, vol. 100, pp. 1–9, 2018.

[36] T. S. Davis, H. A. C. Wark, D. T. Hutchinson, D. J. Warren, K. O’Neill, T. Schein-
blum, G. A. Clark, R. A. Normann, and B. Greger, “Restoring motor control and
sensory feedback in people with upper extremity amputations using arrays of 96 micro-
electrodes implanted in the median and ulnar nerves,” Journal of Neural Engineering,
vol. 13, p. 036001, Mar. 2016. Publisher: IOP Publishing.

[37] J. A. George, D. T. Kluger, T. S. Davis, S. M. Wendelken, V. E. Okorokova, Q. He,
C. C. Duncan, D. T. Hutchinson, Z. C. Thumser, D. T. Beckler, P. D. Marasco, S. J.
Bensmaia, and G. A. Clark, “Biomimetic sensory feedback through peripheral nerve
stimulation improves dexterous use of a bionic hand,” Science Robotics, vol. 4, no. 32,
p. eaax2352, 2019.

[38] P. M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. Cipri-
ani, L. Denaro, V. Denaro, G. Di Pino, F. Ferreri, E. Guglielmelli, K.-P. Hoffmann,
S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, and P. Dario, “Double nerve in-
traneural interface implant on a human amputee for robotic hand control,” Clinical
Neurophysiology, vol. 121, pp. 777–783, May 2010.

[39] G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function
in peripheral nerve stumps of amputees: implications for neural control of artificial
limbs,” The Journal of Hand Surgery, vol. 29, pp. 605–615, July 2004.
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