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Many conventional approaches to the hierarchy problem necessitate colored top partners

around the TeV scale, in tension with bounds from direct searches. The Mirror Twin Higgs

(MTH) model address this by positing top partners that are neutral under the Standard

Model (SM) gauge group. The SM Higgs emerges as a pseudo Nambu Goldstone boson

(pNGB) from a spontaneously broken accidental global symmetry. A crucial ingredient is

a Z2 mirror symmetry that exchanges SM fields with partner fields with equal couplings,

removing the quadratic UV sensitivity. However, an exact mirror symmetry is in conflict

with Higgs coupling measurements, the Z2 must be broken to achieve a viable model.

In this thesis, we describe a new dynamical approach. Starting from an exact Z2, we

introduce an additional colored scalar field in the visible sector along with its twin part-

ner field. Given a suitable potential, the mirror sector color scalar field obtains a vacuum

expectation value and spontaneously breaks both the twin color gauge and Z2 symmetries.

Meanwhile, dramatic differences between the twin and visible sectors occur, in terms of

the residual unbroken gauge symmetries, strong confinement scales, and particle spectra.

Assuming a single colored scalar of triplet, sextet, or octet we describe five minimal possibil-

ities. In several cases there is a residual color symmetry, either SU(2)c or SO(3)c, featuring

a low confinement scale relative to ΛQCD. Furthermore, there can be one or more unbroken

abelian gauge symmetries. Couplings between the colored scalar and matter are also allowed,

providing a new source of twin fermion masses. It implies a fraternal-like scenario by lifting

the first and second generation twin fermions. A variety of correlated visible sector effects

can be probed through precision measurements and collider searches, coming from baryon

and lepton number violation, flavor changing processes, CP-violation, electroweak measure-

ments, Higgs couplings, and direct searches at the LHC. This opens up new possibilities for

a viable twin Higgs cosmology with interesting implications for the dark sector physics.
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1.0 Introduction

The Standard Model (SM) of particle physics provides a remarkably successful descrip-

tion of the basic constituents of matter and their interactions. The spectacular discovery of

the Higgs boson in 2012 at the Large Hadron Collider experiments ATLAS and CMS repre-

sents a critical milestone in our understanding, completing the menu of elementary particles

predicted by the SM and confirming our basic understanding of electroweak symmetry break-

ing. However, there are a number of outstanding questions in particle physics and cosmology

that cannot be answered in the SM. In some cases these include empirical mysteries, such

as the origin of the matter-antimatter asymmetry, the dynamics behind neutrino masses,

and the composition of dark matter in the universe. Other questions are of a more concep-

tual nature, from the patterns in the fermion masses and mixings to the smallness of the

cosmological constant and the QCD theta parameter.

In the latter category of theoretical puzzles is the so-called hierarchy problem, related

to the nature of the Higgs boson and the dynamics of electroweak symmetry breaking. It is

this puzzle which motivates the work presented in this thesis. In this introductory chapter

we will give a basic description of the hierarchy problem and discuss some of the traditional

approaches based on the concept of symmetry related partner states. These traditional

solutions have become more constrained as the expansive program of LHC searches for new

colored particles have explored the TeV scale. Finally, we introduce the notion of neutral top

partners which do not face the same experimental constraints from the LHC. This includes

the original Mirror Twin Higgs Model, which is of central importance in this thesis.

1.1 Motivation

The Higgs mechanism [1, 2, 3, 4, 5, 6] explains the dynamical origin of masses of the

elementary particles in the SM [7, 8, 9], namely, the quarks, leptons, and massive electroweak

gauge bosons. Through this mechanism, elementary particle masses are tied to the vacuum

1



expectation value (VEV) of the scalar Higgs field, 〈H〉 ≡ v = 246 GeV, which itself is

ultimately tied to the Higgs squared mass parameter in the Lagrangian of the theory. The

Higgs is the only scalar field in the SM, and according to our current best understanding it

is the only known elementary scalar field present in Nature.

However, there is a well-known potential issue with elementary scalar fields. If new de-

grees of freedom beyond the Standard Model (BSM) are present at a higher energy scale, say

Λ� v, it is expected based on general effective field theory reasoning that this physics will

give a large contribution to the Higgs squared mass parameter. In particular, the natural

expectation is that the Higgs mass squared should be of order Λ2, rather than its experi-

mentally measured value of order v2. Moreover, there are plenty of good reasons to expect

new physics thresholds in nature, such as those related to inflation, grand unification, and

quantum gravity. In particular, the hierarchy problem manifests itself in the vast disparity

between the strength of weak force which governs the beta decay and muon decay processes

in microscopic world and that of gravity which governs the macroscopic and astrophysical

world. The strengths of these two forces are determined by their respective fundamental

physical parameters: the Fermi constant GF = 1/(
√

2v2) and Newton’s gravitational con-

stant GN = 1/M2
Pl, where MPl ∼ 1019 GeV is the Planck mass and v is the electroweak VEV

discussed above. Understanding the observed smallness of the electroweak scale relative

to new high energy physics scales such as the Planck scale is the essence of the hierarchy

problem.

To understand the hierarchy problem more clearly, we will need to examine the La-

grangian that encapsulates the essential dynamics of particles and fields, especially that of

Higgs which is crucial for electroweak interaction and its interaction to any other heavy

particles. Therefore, we begin in the next section by reviewing the structure of the SM and

the Higgs mechanism for the origin of elementary particle masses, before turning to a more

careful description of the hierarchy problem.

2



1.2 The Standard Model and The Higgs Mechanism

The Standard Model is based on the theoretical framework of non-Abelian gauge quan-

tum field theory. It provides the natural generalization of quantum electrodynamics (QED),

which is itself a marriage of Maxwell’s classical theory based on the Abelian U(1)EM gauge

symmetry and quantum mechanics [10, 11, 12]. The SM describes the known non-gravitaitonal

forces, which are mediated by non-abelian Yang-Mills gauge vector fields [13] to describe the

SU(2)L × U(1)Y electroweak [7, 8, 9] and SU(3)c strong interactions [14, 15, 16, 17, 18] of

fermionic matter particles. The matter fields include the quarks, which carry color charge of

the strong interaction and the leptons which only experience the electroweak force. Finally,

there is the Higgs field, responsible for spontaneously breaking the electroweak symmetry

to the unbroken electromagnetism. Through its gauge and Yukawa interactions, the Higgs

endows masses to the electroweak gauge bosons and matter particles.

Field Name Spin Label SU(3)c, SU(2)L, U(1)Y

Hypercharge boson 1 B (1, 1, 0)

Weak bosons 1 W (1, 3, 0)

Gluons 1 G (8, 1, 0)

Quarks

1
2

QL = (uL, dL)T (3, 2, 1
6
)

1
2

uR (3, 1, 2
3
)

1
2

dR (3, 1, −1
3
)

Leptons

1
2

LL = (νL, eL)T (1, 2, −1
2
)

1
2

eR (1, 1, −1)

Higgs 0 H = (H+, H0)T (1, 2, 1
2
)

Table 1: Field content of the Standard Model. We indicate the name of the field, its label,

its spin, and its quantum numbers under the SU(3)c, SU(2)L, U(1)Y interactions.

The field content of the SM is shown in Table 1 in the unbroken phase. The spin 1

gauge bosons mediating the basic interactions include the hypercharge boson B, the SU(2)L
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weak bosons W , and the gluons G of the strong force. The spin 1
2

fermion matter fields

include SU(2)L doublet and singlet quark fields, which after electroweak symmetry breaking

partition into the up-type quark fields with electric charge 2/3 and the down type fields with

electric charge -1/3. There are also the SU(2)L doublet and singlet lepton fields, leading to

the neutrino and charged leptons at low energies. Finally, there is the Higgs field carrying

electroweak charge. It contains the physical h fluctuation identified with the Higgs boson and

the Nambu-Goldstone bosons eaten by the massive W± and Z gauge bosons after symmetry

breaking.

The SM is a renormalizable quantum field theory which can in principle be valid to

very high energy scales that are far beyond the direct reach of existing or planned high

energy accelerator experiments. On the other hand, we know that the SM does not provide

a quantum mechanical description of gravity. Furthermore, it does not account for neutrino

masses, dark matter, the baryon asymmetry, or inflation. We must therefore consider the

SM to be an incomplete theory.

The Higgs boson stands at the center of the SM and may ultimately provide a window

into BSM physics. We will start from the Higgs potential and its Lagrangian. The general

form of the potential is:

V = −µ2H†H + λ(H†H)2, (1)

where the Higgs field is represented as (see Table 1)

H =

 H+

H0

 . (2)

We have chosen the parameters µ2 > 0 and λ > 0 such that the Higgs develops a VEV at

low energies. The VEV can be determined by minimizing the scalar potential and is given

by 〈H〉 = v/
√

21, where v =
√
µ2/λ. Before EWSB, the weak force is transmitted by three

massless vector bosons W 1
µ ,W

2
µ ,W

3
µ , while there is also a hypercharge U(1)Y force carrier Bµ.

1In principle this should be an all order result in the low energy effective theory, combining all the know
and unknown physics.
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After EWSB, in the unitary gauge where the three Nambu-Goldstone bosons are absorbed

by the corresponding weak gauge bosons, the Higgs H can be written as:

H =

 0
v + h√

2

 , (3)

where h(x) is the radial field fluctuation around the minimum of potential, acting as the

physical Higgs boson field which is electrically neutral, and both charge conjugate (C) even

and parity (P) even. Inserting Eq. (3) into (4) and expanding to the quadratic order2 in the

fluctuation h, the mass of the Higgs boson is determined to be mh =
√

2λ v =
√

2µ = 125

GeV. Fixing the VEV and the Higgs mass to their experimental values, v = 246 GeV and

mh = 125.1 GeV, the Higgs potential parameters are then determined to be λ ' 0.13, µ '

88.4 GeV [19].

The Lagrangian of Higgs field is:

L〈 = (DµH)†DµH − V, (4)

where the covariant derivative is given by Dµ = ∂µ − igWµ − ig′ 1
2
Bµ, with Wµ = Wα

µ τ
α,

τα = 1
2
σα, α = 1, 2, 3 the SU(2)L generators, and σα the Pauli matrices. Furthermore, g(g′)

are the coupling constant for weak (hypercharge) force.

The kinetic terms for EW gauge bosons before EWSB are3:

L ⊃ −1

2
Tr(WµνW

µν)− 1

4
BµνB

µν , (5)

where the field strength tensors are Wµν = Wα
µντ

α = DµWν−DνWµ, W
α
µν = ∂µW

α
ν −∂νWα

µ +

gεαβγW β
µW

γ
ν , Bµν = ∂µBν − ∂νBµ.

Upon EWSB, the electroweak gauge boson mass terms arise from the Higgs kinetic term,

L ⊃ |DµH|2. These mass terms can be written as

L ⊃ 1

2

{
g2v2

4

[
(W 1

µ )2 + (W 2
µ )2 + (W 3

µ )2
]

+
g′2v2

B

4
(Bµ)2 − gg′v2

2
W 3
µ B

µ

}
,

= m2
W |W+

µ |2 +
1

2
m2
ZZ

2, (6)

2Note that any higher order in the expansion does not contribute.
3Throughout this thesis, we use the notation L ⊃ O to indicate that the Lagrangian contains the operator

O

5



where we have defined the physical mass eigenstates W , Z, and photon fields:

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), Zµ = cos θWW
3
µ − sin θWBµ, Aµ = cos θWBµ + sin θWW

3
µ .

(7)

The weak mixing angle, θW , is defined such that

sin θW ≡
g′√

g2 + g′2
, cos θW ≡

g√
g2 + g′2

. (8)

The W and Z boson masses can then be written as

mW ≡
g v

2
, mZ ≡

√
g2 + g′2

2
v =

mW

cos θW
, (9)

while the photon Aµ remains massless after symmetry breaking. The electroweak gauge

couplings to fermions stem from the fermion kinetic terms,

L ⊃ f̄LiDLµγ
µfL + f̄RiDRµγ

µfR, (10)

with

DLµ = ∂µ − igWµ − YLg′Bµ (11)

= ∂µ − i
g√
2

(W+
µ σ

+ +W−
µ σ
−)− ieQAµ − igZ(τ 3 − sin2 θWQ)Zµ,

DRµ = ∂µ − g′YRBµ (12)

= ∂µ − ieQAµ + igZ sin2 θWQZµ,

where YL,R is the hypercharge for left/right-handed chiral fermions, and σ± = 1
2
(σ1 ± iσ2).

After EWSB the gauge interactions are reorganized into charged and neutral currents with

respective charge parameters related to the mixing angle. The U(1)EM electric charge gen-

erator is Q = Y + τ 3, with the EM gauge coupling given as e = g sin θW = g′ cos θW , and

gZ = g/ cos θW .

The Yukawa interactions of Higgs field to fermions are:

L ⊃ −ydQ̄LHdR − yuQ̄LH̃uR − ylL̄LHeR + H.c. (13)
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where H̃ = iσ2H
∗ (see also Table 1 for field definitions). Additionally, yd, yu, yl are Yukawa

coupling constants for down, up quarks and leptons, which are in general given by 3 × 3

complex matrices in the generation space. Following electroweak symmetry breaking, the

fermion mass matrices, M = y v√
2
, can be diagonalized through bi-unitary rotations of the

fermion fields, i.e., uR = T uu′R, dR = T dd′R, eR = T le′R, uL = Suu′L, dL = Sdd′L, l = Sll′,

where primed states are mass eigenstates, and T u,d,l, Su,d,l the unitary rotation matrices

for right and left states. In the quark sector, the rotations lead to physical effects deter-

mined by Cabibbo–Kobayashi–Maskawa (CKM) matrix, VCKM = Su†Sd, which describes

quark flavor changing charged current interactions [20, 21]. Similarly, with additional dy-

namics beyond the SM generating neutrino masses, rotations in the lepton sector lead to the

Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [22, 23]. There are no tree level flavor

changing neutral currents (FCNC) in the SM.

Thus, we conclude that the masses of the heavy electroweak gauge bosons and fermions

are dynamically generated through the Higgs mechanism and spontaneous electroweak sym-

metry breaking. In the minimal SM with one elementary Higgs scalar field there is a single

physical Higgs scalar field fluctuation, the existence of which has been spectacularly con-

firmed at the LHC experiments. Next we discuss the experimental status of the Higgs

boson.

1.2.1 Higgs Discovery and Experimental Status

The 2012 discovery of the Higgs boson by the ATLAS [25] and CMS [26] experiments at

the LHC is an important milestone in the journey to understand the properties of elementary

particles, putting into place the last particle predicted in the SM. The discovery was the

culmination of a decades long hunt for the Higgs particle, which surveyed a wide mass range

using a variety of experiments [27].

Since the discovery, the primary effort of the LHC experiments has focused on the in-

vestigation of the basic properties of the Higgs boson, including its spin and CP quantum

numbers and its couplings to other known elementary particles. With the large integrated

luminosity close to 140 fb−1 collected during Run 2 of the LHC at center of mass
√
s = 13
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Figure 1: Feynman diagrams showing the main Higgs production channels at the LHC: gluon

fusion (upper left), vector boson fusion (upper right), production in association with a vector

boson (lower left) and production in association with a tt̄ pair (lower right). The diagrams

are taken from Ref. [24].

Figure 2: Feynman diagrams for the main Higgs decay channels at the LHC : decay to

fermion pairs (upper left), decay to vector boson pairs (upper right), and decays to photons

(lower left and right). The diagrams are taken from Ref. [24].
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TeV, significant progress has been made in this endeavor.

Figures 1 and 2 show the most important Higgs production and decay channels relevant

for proton-proton collisions at the LHC. The importance of these particular processes can

be understood by noting the Higgs particle couples more strongly to heavy particles than to

light particles, which explains the appearance of the heavy fermions (top, bottom, tau) and

heavy vector boson (W , Z) in Figures 1 and 2. The Higgs is produced via gluon fusion (ggF),

weak vector-boson fusion (VBF), Higgs associated with a weak boson (VH), associated with

a pair of tops (ttH). For the 125 GeV Higgs, the predicted production cross sections at
√
s = 13 TeV are listed in Table 2, with a total of 55.1 pb [28]. The dominant production

channel is gluon fusion, gg → h, mediated at one loop through a triangle diagram involving

the top quark, a result of the large Higgs-top Yukawa coupling. The next important property

of the Higgs particle is how it decays after it is produced. At the LHC there are nine decay

channels with noticeable branching ratios for a 125 GeV Higgs [29, 30]: H → bb̄, W+W−,

gg, τ+τ−, cc̄, ZZ, γγ, Zγ, µ+µ−. The Higgs decays primarily to bottom quark pairs, then

to WW ∗ which decay further to leptons or quarks.
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Production channels Cross sectionσi(pb) Decay channels Branching ratioBi

ggF 48.6 bb̄ 5.82× 10−1

VBF 3.77 W+W− 2.14× 10−1

WH 1.36 gg 8.18× 10−2

ZH 0.83 τ+τ− 6.27× 10−2

tt̄H 0.5 cc̄ 2.89× 10−2

... ... ZZ 2.62× 10−2

total 55.1 γγ 2.26× 10−3

Zγ 1.53× 10−3

µ+µ− 2.18× 10−4

Table 2: Predicted production cross sections at
√
s = 13 TeV, and decay branching ratios of

Higgs. [28, 29, 30]

The variety of Higgs production mechanisms and decay channels affords the opportunity

to study various couplings of the Higgs to SM particles. One way the experiments character-

ize these measurements is in terms of the signal strength modifiers, µi, for a given production

or decay channel labeled i. The signal strength tells us the ratio of the experimentally mea-

sured rate and the predicted rate for the particular process under consideration. A signal

strength equal to one within the experimental and theoretical uncertainties tells us that

the measurements are in accord with the theoretical prediction. In Figure 3 we show the

Higgs signal strength parameters for the various production and decay channels measured

by the ATLAS [31] and CMS experiments [24]. We see that all measurements are within 1-2

standard deviations of unity, suggesting that the couplings of the 125 GeV boson to other

SM particles are in good agreement with the predictions of the SM. Currently, the preci-

sion in the rate measurements is of order 20% in the most important channels, suggesting

a corresponding precision in the determination of the corresponding Higgs couplings at the
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Figure 3: Signal strength modifiers for Higgs production (left) and decay (right) channels as

measured by ATLAS (top) [31] and CMS (bottom) [24].
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level of 10%. Ultimately, the high luminosity run of the LHC (HL-LHC) with a dataset of 3

inverse attobarn (ab−1) will be able to measure these couplings down to the few % level [32].

Furthermore, the high energy physics community is exploring options for future lepton and

hadron colliders which will allow for improvements in the Higgs couplings, possibly down to

the percent level [33, 34, 35, 36, 37, 38]. Obviously, it is extremely important to measure

the properties of the Higgs as precisely as possible, as any deviation would provide a clear

sign of BSM physics.

One of the important properties of Higgs boson is its spin and CP quantum numbers.

In the SM, the Higgs is a spin 0 scalar with charge and parity even, JPC = 0++. The

discovery of Higgs was based on two decay channels: diphoton H → γγ and four leptons

H → ZZ → 4l (where l means light leptons e, µ). The diphoton signal indicates that this

particle is C even, assuming C conservation in the process[29], and it cannot be a spin 1

vector boson based on the Landau-Yang theorem[39], leaving the possibilities of 0 and 2.

Depending on the parity and spin of the new particle 0++, 0+−, 2++, 2+−, there are a variety

of ways for its coupling to SM particles. Based on the helicity amplitude, the di-photon

signal can be used to differentiate the spin values, as only the spin 0 scalar is polar-angular

independent. The second channel H → ZZ∗ can be used to differentiate either the parity

of scalar according to its azimuthal angular distribution, or the spin value according to its

threshold behavior. The study of the CMS experiment using the H → ZZ,Zγ∗, γ∗γ∗ → 4l,

H → WW ∗ → lνlν, and H → γγ decays has eliminated a wide range of alternative spin and

parity models at a 99% level or higher [40] in favor of the SM Higgs boson hypothesis. The

study of ATLAS experiment using the H → ZZ∗ → 4l, H → WW ∗ → eνµν and H → γγ

decays has eliminated all the tested alternative spin and parity models in favor of the SM

Higgs boson at more than 99.9% CL [41]. Additionally, the scenario with a mixed CP odd

scalar boson and the SM Higgs boson has also been tested [42], and also in favor of the SM.
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1.3 The Hierarchy Problem

The squared mass term of the Higgs is a relevant operator of mass dimension two. With-

out further symmetries to forbid this term, it will unavoidably receive additive quantum

corrections from all the other fields coupling to the Higgs. In the SM, the leading radiative

correction to the Higgs squared mass comes from a one loop top quark exchange. Using a

momentum cutoff Λ to regularize the loop integral, the correction to the Higgs squared mass

parameter is

δµ2 =
3

8π2
y2
t Λ2. (14)

We see the well-known quadratic divergence, δµ2 ∼ Λ2, that is often discussed in connection

with the hierarchy problem. One can view Λ as the scale where the SM fails to be a valid

description and new physics enters. For example, we might expect that new physics is

present at the Planck scale associated with quantum gravity, in which case we should take

Λ = MPl. Interpreted in this way, we conclude that the correction to the Higgs squared mass

coming from the top loop (14) is much larger than the experimentally measured value of

order (100 GeV)2. To obtain consistency with experiment, the bare Higgs mass parameter

must be precisely fine-tuned to nearly cancel this large correction. This is one way to phrase

the hierarchy problem. On the other hand, one can take the perspective that the quadratic

divergence is an artifact of the momentum cutoff regulator and does not have a physical

interpretation. For instance, using dimensional regularization the quadratic divergences do

not appear.

A sharper statement of the issue can be made in extensions of the SM. As a simple toy

example that is representative of many realistic theories, we can consider the addition of a

heavy scalar field φ to the SM with a coupling to the Higgs field,

V ⊃M2φ†φ+ κφ†φH†H + . . . , (15)

where M2 is the squared scalar mass parameter, and κ describes the interaction between

φ and the Higgs. We will consider the situation |M | � v, i.e., the scalar is much heavier

than the weak scale and the known SM particles. For instance, very similar interactions
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Figure 4: Higgs self energy diagram in the scalar toy model of Eq. (15).

are present in supersymmetric extensions of the SM and in Grand Unified Theories [43, 44].

These new interactions lead to a one loop correction to the Higgs mass term in Eq. (4), as

shown in Figure 4. Regardless of how the loop integral is regularized, we find a correction is

parametrically given by

δµ2 ∼ κ

16π2
M2. (16)

We see that the correction is quadratically sensitive to the heavy scalar mass, and for order

one values of the coupling κ the correction can be much larger than the observed value. To

fit the observed electroweak VEV and Higgs boson mass, the bare Higgs mass parameter

must cancel the large contribution coming from Eq. (16) to a very high precision. This fine

tuning of parameters is unsettling and calls out for a deeper explanation.

While here we discussed an example of a one loop contribution to the Higgs mass, the

hierarchy problem can also manifest at the classical level. For example, if M2 < 0 in the

scalar theory described by Eq. (16), then we would expect φ to also obtain a VEV, 〈φ〉 = vφ,

which is expected to be of order M on dimensional grounds. Substituting the φ VEV

back into the Lagrangian (15), we find an effective contribution to the Higgs squared mass

parameter δµ2 ∼ v2
φ ∼M2 � v.

We now discuss one of the classic approaches to the hierarchy problem, which will bring

focus to the central importance of the top quark and the hypothesis of symmetry related

partner states.
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1.4 Supersymmetry and Colored Top Partners

The hierarchy problem has been with us for several decades, and over time a num-

ber of proposals have been put forth to address the issue. These include supersymmetry

(SUSY) [43], strong dynamics (including models in which the Higgs is composite) [45, 46],

extra spatial dimensions [47, 48], and even anthropic selection [49]. While all of these ideas

are novel and worthy of investigation, here we will briefly review the SUSY solution as it

will provide a foundation as well as a motivation for our later work on the Twin Higgs.

SUSY is an extension of the Poincare group of space-time symmetries. At the level of

quantum fields, it can be described as a symmetry between bosons and fermions. In the

Minimal Supersymmetric Standard Model (MSSM), which is the simplest supersymmetric

extension of the SM, each SM field has associated to it a superpartner field. For instance,

the top quark of the SM will have a supersymmetric top partner, dubbed the top squark or

“stop” for short. Of course, since superpartners have not yet been observed in experiment,

it must be that SUSY is spontaneously broken, much in the same way that the electroweak

symmetry is broken by the Higgs field VEV. A primary consequence of SUSY breaking is to

give the superpartner fields a “soft” mass term, making these states heavy in comparison to

the SM fields. However, if SUSY is to play a role in addressing the hierarchy problem, the

superpartner mass spectrum should not be far above the electroweak scale.

The top and stop play a particularly important role in the context of the hierarchy

problem. Since these states have the strongest interaction with the Higgs field, governed

by the top quark Yukawa coupling yt, they in turn give largest contribution to the Higgs

squared mass parameter. The particular interactions needed to understand this point are

given below:

−L ⊃
(
yt tRQLHu + H.c.

)
+ y2

t

(
|Q̃Hu|2 + | t̃ |2|Hu|2

)
+m2

Q̃
|Q̃|2 +m2

t̃
| t̃ |2 +

(
ytAt t̃

∗Q̃Hu + H.c.
)
, (17)

where Hu denotes the Higgs field 4, Q (t) are the SU(2) doublet (singlet) fermionic quark

fields associated with the top sector, while Q̃ ( t̃ ) denote their scalar superpartners. Further-

4In contrast to the SM, two Higgs doublet fields are required in the MSSM by gauge anomaly cancellation,
and here Hu is the doublet that couples to up-type quarks.

15



Figure 5: Subset of Higgs self energy correction from one-loop top quark and top squark

exchange in the MSSM.

more, in the second line of Eq. (17) we have written soft SUSY breaking terms, including

the scalar masses and the A term interaction. A crucial consequence of SUSY is evident

in the first line of Eq. (17), namely the relation (or “equality”) between the top and stop

couplings to the Higgs field, which are both governed by the top Yukawa coupling yt. These

interactions generate one loop contributions to the Higgs squared mass, some of which are

shown in Figure. 5. Regulating the momentum integrals with a cutoff, one finds that the

quadratic divergences arising from the top loop are precisely canceled by those from the stop

loop, which is a direct consequence of SUSY relating the top fields with the stop fields and

the strength of the interactions in the first line of Eq. 17. There are however corrections to

the Higgs squared mass that depend on the soft SUSY breaking terms [43, 50]5

δm2
Hu = +

3

8π2
y2
t (m

2
Q̃

+m2
t̃ + |A2

t |) log

(
Λmed

TeV

)
, (18)

where Λmed is the scale at which SUSY breaking effects are communicated to the supersym-

metric SM. We observe that the correction to the Higgs squared mass is governed by the soft

SUSY parameters of the stop sector, which also control the physical stop mass spectrum.

Thus, in order to keep the correction δm2
Hu

small in comparison to the electroweak scale and

have a satisfactory solution to the hierarchy problem, the stops should not be too heavy.

5TeV scale is what we are considering.
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Figure 6: Representative Feynman diagram for stop pair production at the LHC.

We can of course always make the stops heavier, but only at the expense of fine tuning the

Higgs sector soft parameters to balance the contribution in Eq. (18).

The SUSY solution to the hierarchy problem is quite attractive from a theoretical view-

point, although thus far the LHC has not observed any signs of superpartners. In partic-

ular, because the stops are charged under the SU(3)c strong interaction, they should be

abundantly produced at the LHC if they are in the mass range naively suggested by the

naturalness arguments above, as shown in the digram in Figure 6. The current bounds

suggest stop masses should be above 500 GeV - 1 TeV depending on the assumed decay

mode [51, 52, 53, 54]. These and other bounds on superpartners put the SUSY solution to

the hierarchy problem in some tension.

It should be emphasized that it is in principle possible that the stop and other super-

partners are somewhat heavier than our naive expectations, putting them out of direct reach

of the LHC experiments. For instance, if the superpartners are 10 TeV range, they would

still address most of the ‘big’ hierarchy problem by protecting the Higgs from corrections

between the SUSY soft mass scale and the Planck scale. However, there would remain a

‘little’ hierarchy problem between the weak scale and the SUSY soft mass scale [55], which

would still seem to require some fine tuning. It is possible to take this as a hint for some ad-

ditional mechanism that stabilizes the little hierarchy, and this motivates the idea of neutral

top partners.
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1.5 Neutral Top Partners

A creative way to tackle the little hierarchy problem is to suppose the top partners that

cancel the quadratic divergences are neutral under the SM charges, or at least under the

SU(3)c strong interaction. This general idea is referred to as the neutral naturalness [56].

The production cross section at the LHC for color neutral top partners is much reduced in

comparison to colored top partners such as the stops in the MSSM discussed above, and

therefore the potential LHC bounds are evaded in a trivial manner. The first example in

this class of models is Mirror Twin Higgs model [57, 58, 59], which features completely

neutral color top partners. There have been a variety of other models proposed within the

neutral naturalness paradigm, including Folded SUSY [60], the Quirky Little Higgs [61], the

Dark Top[62], and the Orbifold Higgs [56], among others [63, 64, 65, 66, 67, 68, 69, 70, 71].

In many ways, the original Mirror Twin Higgs model [58, 59] stands out from the others

in terms of its elegance and structural simplicity, and motivates the work discussed in this

thesis.
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2.0 The Mirror Twin Higgs

The Mirror Twin Higgs (MTH) [57] and other ‘Neutral Naturalness’ scenarios [59, 58,

60, 62, 61, 56, 63, 64, 65, 66, 67, 68, 69, 70, 71] feature color-neutral symmetry-partner

states which stabilize the electroweak scale, thereby reconciling a natural Higgs with the

increasingly stringent direct constraints on colored states from LHC. The MTH offers an

elegant solution to the little hierarchy problem, and a variety of UV completions based on

SUSY, compositeness, or extra dimensions have been proposed [72, 73, 74, 75, 76, 77, 78,

79, 80]. In this chapter we review the theoretical structure and basic phenomenology of the

MTH. We also discuss some of the outstanding questions in the MTH, which will set the

stage for our investigations on the spontaneous breaking of twin color and Z2.

2.1 Model Construction and Cancellation Mechanism

The original Mirror Twin Higgs (MTH) [57] provides the first and perhaps structurally

simplest Neutral Naturalness model with neutral top partners. The model hypothesizes

an exact copy of the complete Standard Model (SM), which we will refer to as the mirror

sector or twin sector, along with a discrete symmetry that exchanges each SM field with its

corresponding partner in the mirror sector. We will label fields in the visible sector (mirror

sector) as A (B). The Z2 symmetry also requires the coupling constants to be the same

between two sectors, and thus plays an analogous role to SUSY in the MSSM, as discussed

in Chapter 1.4.

Assuming the existence of the mirror sector, let us now narrow our focus on the Higgs

bosons in each sector. An additional important assumption in the model is that the Higgs

sector enjoys an approximate SU(4) global symmetry. Grouping the A and B sector Higgs

doublets into a SU(4) 4-plet,

H =

 HA

HB

 , (19)

19



Figure 7: Two-point function of Higgs in sectors A and B, from loops of top and twin top.

the scalar potential can be written in the first approximation as

V = −µ2H†H + λ(H†H)2 (20)

We assume that the Higgs 4-plet obtains a VEV, 〈H〉 = (0, 0, 0, fH)T . This spontaneously

breaks the global symmetry from SU(4) down to SU(3), leading to the appearance of 7

Nambu-Goldstone bosons. Three of these will be eaten by the twin sector W±
B and ZB

gauge bosons, while the remaining four will serve as the SM Higgs doublet HA. There is an

important question of obtaining the correct vacuum alignment, which will require a source

of Z2 breaking, and we will return to this question shortly.

With this basic setup we are now in a position to discuss the twin protection mechanism.

Let us consider the most important correction to the Higgs potential originating from the

Higgs interactions with the top quark. These interactions can be written as

−L ⊃ yt t̄ARQALHA + yt t̄BRQBLHB + H.c. (21)

The one loop correction to the Higgs self energy arises from the diagrams shown in Figure 7.

Regulating the loop integrals with a hard momentum cutoff, we find the correction to the

Higgs potential

δV = −3y2
t

8π2
Λ2(H†AHA +H†BHB) = −3y2

t

8π2
Λ2H†H. (22)

Crucially, we see that the correction to the Higgs mass terms is an SU(4) invariant, and

thus does not give a contribution to the Nambu-Goldstone boson masses. Therefore, the SM

Higgs boson, being a Nambu-Goldstone Boson, will remain massless under this correction.

We note again the importance of the Z2 symmetry in enforcing the equality of the top Yukawa
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couplings, which is critical in rendering the correction above invariant under the SU(4) global

symmetry. A similar cancellation mechanism operates for the gauge interactions as a result

of the Z2 symmetry.

The Yukawa interactions (21) and gauge interactions, while respecting Z2, do not respect

the global SU(4) symmetry. While the corrections to the mass terms above in Eq. (22)

respect SU(4), top and gauge loops will generate a correction to the Higgs quartic interactions

which breaks SU(4). Since the SU(4) symmetry is no longer exact, we expect the SM

Higgs to be a pseudo-Nambu-Goldstone boson (pNGB) and pick up a small mass. The

contributions to the quartic interactions are only logarithmically sensitive to the UV cutoff

of the theory, and therefore we can naturally have a light pNGB Higgs boson for cutoffs of

order 5-10 TeV. It is in this way that the MTH addresses the little hierarchy problem, and

we emphasize the critical role of the mirror sector top partners that are neutral under the

SM gauge interactions.

It is also interesting to study the cancellation mechanism in a low energy description of

the theory in which the radial mode of the SU(4) Higgs 4-plet is integrated out. To this

end, it is convenient to use a nonlinear realization of symmetry, including only the pNGBs

in the low energy description. We can write the Higgs 4-plet as [57, 81]:

H = eiΠH/fHH0, ΠH =


0 0 0 −ih1

0 0 0 −ih2

0 0 0 0

ih1 ih2 0 0

 , (23)

where we work in unitary gauge in which the B-sector NGBs are absorbed by W±
B , ZB.

Denote h = (h1, h2)T as the SM Higgs doublet we can carry out the matrix exponentiation

in Eq. (23) [81]:

HA = h
fH√
|h|2

sin

(√
|h|2
fH

)
' h,

HB =

 0

fH cos

(√
|h|2
fH

)  '

 0

fH −
|h|2

2fH

 . (24)
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Figure 8: Two-point function of the SM Higgs boson h from loops of top and its twin .

where |h|2 ≡ h†h. Using the expansion above the top Yukawa couplings in Eq. (21) can be

written as

−L ⊃ yt t̄AR hQAL + yt

(
fH −

h†h

2fH

)
t̄BRQBL + H.c. (25)

Thus, we see that the SM Higgs doublet picks up a coupling to the twin top quarks. The

interactions in Eq. (25) give rise to Higgs self energy corrections, shown by the diagrams in

Figure 8, and the quadratic divergence coming from the top quark loop is precisely canceled

by that from the twin top loop.

On the other hand as mentioned, the quartic contributions are only logarithmically

sensitive to the UV cutoff of the theory, and we can end up with a light Higgs boson for

cutoffs below 10 TeV. For example, the top quark Yukawa interactions lead to a one loop

contribution to the quartic, δV ∼ δH(|HA|4 + |HB|4), with δH ∼ (y4
t /16π2) log(Λ/ytfH).

Using Eq. (24), we find a contribution to the pNGB SM Higgs squared mass of order δHf
2
H ,

which is of order (100 GeV)2 for fH of order TeV and Λ of order 5 TeV.

Through the twin protection mechanism discussed above, we see that the little hierarchy

problem can be solved by the MTH, along with the mirror top partners that are neutral.

We now return to the important issue of vacuum alignment. Consider first the most general

Z2 symmetric potential,

V = −µ2H†H + λ(H†H)2 + δH(|HA|4 + |HB|4). (26)

The first two terms are manifestly SU(4) symmetric, while the final quartic terms respects

Z2 but not SU(4), and we expect δH � λ. Extremizing the potential (26), we find that the
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minimum occurs when both Higgs fields have equal VEVs, 〈HA〉 = 〈HB〉 = fH . However,

this vacuum is not phenomenologically viable as it results in dramatic distortions in the

couplings of the Higgs boson to SM fields. Instead, we require a mild hierarchy in the VEVs,

such that 〈HA〉 ∼ v , 〈HB〉 ∼ fH , with v/fH � 1. In this case, the Higgs couplings are

close to their SM values, with deviations of order v2/f 2
H . Current data from LHC Higgs

coupling and precision electroweak measurements require v/fH . 1/3. To obtain the correct

vacuum alignment, we must introduce a small source of Z2 breaking into the potential. The

simplest option is to add a soft Z2 breaking mass term [57], though other possibilities have

been discussed in the literature and we will come back to these below. We note that aligning

the vacuum in this way, such that v/f . 1/3, corresponds to a mild tuning of parameters

at the order 20-30% level.

2.2 Phenomenology

The phenomenology associated with the MTH model is quite distinct in comparison to

other models addressing the hierarchy problem. First, the twin sector fields are completely

neutral under the SM gauge groups, and the only mediator between the two sectors is the

Higgs boson itself. Thus, the direct production rates of mirror sector particles at the LHC,

including the neutral top partners, would be very low. This is true even if the top partners

are relatively light, with masses in the 500 GeV range. In this way, the constraints posed

by direct searches for new colored top partners at the LHC is trivially evaded in the MTH

model.

One of the most important probes of this model arises from the pNGB nature of the

Higgs boson and the modifications to its couplings from their SM predictions. We can see

this by again considering the nonlinearly realization following [81]; see Eq. (23). Working in

the unitary gauge of the visible sector, h1 = 0, h2 = (vH + h)/
√

2, we have

HA =

 0

fH sin
(
vH+h√

2fH

)  , HB =

 0

fH cos
(
vH+h√

2fH

)  . (27)
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It is natural to define as [82]:

vA ≡
√

2fH sinϑ, vB ≡
√

2fH cosϑ, (28)

where we have defined ϑ = vH√
2fH

, and vEW ≡ vA = 246 GeV is the electroweak VEV. The

fermion masses in the two sectors are thus related as mB = mA cotϑ. From the covariant

derivative |DA
µHA|2 and its twin part, we have:

m2
WA =

v2
Ag

2

4
, m2

WB =
v2
Bg

2

4
. (29)

As mentioned in the previous section, if the Z2 symmetry is exact, than the two VEVs would

be equal, the physical Higgs h would be comprised of an equal mixture of visible and twin

sector scalars resulting in an order one modification of the couplings to SM particles and a

large invisible branching ratio to twin sector states. Such a scenario is incompatible with

our current experimental knowledge of the Higgs boson. To avoid this, we need to align the

vacuum such that tanϑ . 1/3 such that vA � vB ' fH . This can be easily achieved by

introducing to the potential a soft explicit breaking term at the cutoff [82]:

V6Z2 = m2(|HA|2 − |HB|2). (30)

Substituting Eq. 27 into the potential Eqs. (26,30) with the SU(4) breaking quartic and soft

Z2 breaking mass terms, we obtain the potential for pNGB Higgs (dropping constant terms):

V = −δHf
4
H

2
sin2

[√
2(vH + h)

fH

]
−m2f 2

H cos

[√
2(vH + h)

fH

]
. (31)

Minimizing the potential, we obtain the condition determining the vacuum angle ϑ:

cos(2ϑ) =
m2

δHf 2
H

. (32)

A mild tuning in the scalar potential parameters is required to obtain ϑ . 1/3.
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The physical couplings of the pNGB Higgs to gauge bosons and fermions can be obtained

by replacing vH → vH +h and expanding about the vacuum. For the gauge boson couplings

we obtain

L ⊃ 2h

vEW

{
cosϑ

[
m2
WA
|WAµ|2 +

m2
ZA

2
Z2
Aµ

]
− tanϑ sinϑ

[
m2
WB
|WBµ|2 +

m2
ZB

2
Z2
Bµ

]}
.

(33)

For the top Yukawa coupling we have:

L ⊃ − yt√
2
h (cosϑ t̄ARtAL − sinϑ t̄BRtBL) + H.c. (34)

In general, the couplings of Higgs to the SM sector are modified by a factor of cosϑ relative

to their SM values. This causes a reduction in the Higgs production cross sections and decay

branching ratios to SM particles by a factor of cos2 ϑ. In addition, the Higgs also obtains

couplings to the B sector particles that are suppressed by the small vacuum angle. Through

these couplings the Higgs can have subdominant decay to mirror sector states leading to

an invisible Higgs decay signature at the LHC. Therefore, in summary we expect the Higgs

event rates in SM final states to be suppressed by a factor of cos2 ϑ, along with a small but

potentially observable invisible Higgs width.

The measurement precision for the ZZ, WW , and γγ couplings to the Higgs is currently

around 10%, and can eventually be probed to the few percent level at the HL-LHC [32]. For

the Higgs invisible decay, an observed(expected) upper limit of 0.19(0.15) at 95% CL was

obtained by CMS experiment [83], while both observed and expected upper limits of 0.13 is

set at 95% CL by the ATLAS experiment [84], and can be further constrained down to few

percent level at the HL-LHC [32]. Therefore ϑ . 1/3 is currently allowed but the HL-LHC

may be able to constrain this further; see Ref [81] for a detailed investigation.
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2.3 Open Questions In The Mirror Twin Higgs

Several open issues exist in this basic framework. First, the Z2 symmetry must be

broken to achieve a phenomenologically viable vacuum, featuring a hierarchy between the

global SU(4) breaking scale and the electroweak scale. From a bottom up perspective a

suitable source of Z2 breaking can be implemented ‘by hand’ in a variety of ways, including

a ‘soft’ breaking mass term in the scalar potential [57] (see previous section for a discussion)

or a ‘hard’ breaking through the removal of a subset of states in the twin sector, as in the

Fraternal Twin Higgs [85]. However, it would be appealing to have a dynamical origin for

the required Z2 breaking source. One possibility is that the Z2 is an exact symmetry of the

theory but is spontaneously broken [86, 87, 88, 89, 90].

A second issue is about the cosmology. Given the large number of states in the mirror

sector which were presumably in equilibrium with the SM radiation bath at early times,

a standard thermal cosmology would predict too many relativistic degrees of freedom at

late times. A detailed study leads to the prediction for the predicted effective neutrino

number ∆Neff ≈ 5.6 [91]. This prediction clashes with observations of primordial element

abundances and the microwave background radiation, which requires ∆Neff < 0.6 at 2σ

level [92]. To address this question, one could remove the lightest first and second generation

twin fermions, which are not strictly required by naturalness considerations. This provides

a simple way to evade this ∆Neff problem [85, 93, 94] and is also connected with how

the Z2 symmetry is ultamately broken. Other mechanisms have also been proposed that

lead to a viable cosmology [95, 96, 91, 97, 98, 99]. Following these successes many other

cosmological topics can be addressed, including the nature of dark matter [100, 93, 101, 95,

102, 103, 97, 104, 105, 106, 107, 108, 109], the order of the electroweak phase transition [110],

baryogenesis [103, 111], and large and small scale structure [112, 113].
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3.0 Motivation for Mirror Color Symmetry Breaking

A spontaneous breaking of the Z2 symmetry can address the vacuum alignment question

and, potentially, lead to a viable thermal cosmology. Furthermore, such Z2 breaking is an

inevitable consequence of a pattern of gauge symmetry breaking in the mirror sector that

differs from the SM’s electroweak symmetry breaking pattern. Interestingly, such sponta-

neous mirror gauge symmetry breaking can dynamically generate effective soft Z2 breaking

mass terms in the scalar potential required for vacuum alignment. They can also produce

new twin fermion and gauge boson mass terms, which mimic the hard breaking of the Fra-

ternal Twin Higgs scenario [85] by raising the light twin sector states. Due to the exact Z2

symmetry, this scenario generically leads to a variety of new phenomena in the visible sector

that can be probed through precision tests of baryon and lepton number violation, quark

and lepton flavor violation, CP violation, the electroweak and Higgs sectors, and directly at

high energy colliders such as the LHC.1

This approach was advocated recently in Ref. [82, 116], which explored the simultaneous

spontaneous breakdown of mirror hypercharge gauge symmetry and Z2 symmetry. In this

work we examine the spontaneous breakdown of the twin color symmetry. Beginning from

a MTH model, with an exact Z2 symmetry, we add a new scalar field charged under SU(3)c

and its twin counterpart. A suitable scalar potential causes the twin colored scalar to

develop a vacuum expectation value (VEV), spontaneously breaking both twin color and

Z2. Depending on the scalar representation and potential, a variety of symmetry breaking

patterns can be realized with distinct consequences. There are several possible residual color

gauge symmetries of the twin sector which may or may not confine, and when they do at

vastly different scales. The possible couplings of the scalar to fermions may also produce new

twin fermion mass terms. All of these possibilities lead to very different twin phenomenology

and the rich variation that can spring from an initially mirror Z2 set up.

While the complete breakdown of twin color was explored in Ref. [116], the aim was a

1Other connections between Twin Higgs models and SM flavor structure have been explored in [104, 114,
115].
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particular cosmology and employed two scalars that acquired VEVs. We focus on a different

part of the vast span of possibilities that is in some sense a minimal set of color breaking

patterns. These follow from the introduction of a single new colored multiplet (in each

sector) which may transform in the triplet, sextet, or octet representation. This scalar field

is assumed to be a singlet under the weak gauge group, though it may carry hypercharge.

The remainder of this thesis explores these possibilities in detail2 and consists of four

chapters organized as follows. First a detailed analysis of minimal possibilities of models is

presented in Chapter 4. In the next Chapter 5 we summarize the five models and discuss their

gauge sector dynamics, with four of them featuring interesting low twin sector confinement

scales. In Chapter 6 the couplings of the colored scalars to fermions are investigated and

shown to dynamically generate new twin fermion mass terms, providing a possible way to

realize a fraternal-like twin fermion spectrum. The correlated effects of these couplings in

the visible sector through a variety of precision tests are discussed in Chapter 7. The new

colored scalars can also be directly probed at the LHC and future high energy colliders,

and we detail the current limits and prospects for these searches in Chapter 8. Finally, we

conclude with some perspectives on future studies in Chapter 9.

2A short version of this work can be found in [117]
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4.0 Spontaneous Breakdown of Twin Color

We begin with a basic description of our setup. We consider the Mirror Twin Higgs

(MTH) model, which contains an exact copy of the SM called the twin sector. In all that

follows the label A (B) denotes visible (twin) sector fields and the exact Z2 exchange symme-

try interchanges A and B fields. This symmetry provides the foundation for the Higgs mass

protection mechanism, as it implies the equality of gauge and Yukawa couplings in the two

sectors. To this base we add the scalar fields, ΦA and ΦB, that are respectively charged un-

der SM and twin SU(3)c gauge symmetries. We will consider the following complex triplet,

complex sextet, and real octet representations for the scalar fields:

(3,1, YΦ), (6,1, YΦ), (8,1, 0). (35)

We will not consider modifications to the SU(2)L weak symmetry breaking pattern, so we

have chosen singlet representations under that group in Eq. (35). Later we will investigate

several specific values of the scalar hypercharge YΦ, which allow different scalar coupling

to fermions. Given an appropriate scalar potential, ΦB obtains a VEV and spontaneously

breaking twin color and Z2. As we will see, this will allow sufficient freedom to align the

vacuum in a phenomenologically viable direction. Later, in Chapter 6 we will also see that

this symmetry breaking can also generate new twin fermion mass terms.

We pause briefly to make a couple of general remarks about our scenario. First, the

phenomenologically desirable vacuum will always have the property that ΦB obtains a VEV,

while ΦA does not. We note that in each case analyzed below, as a consequence of the exact

Z2 symmetry of the models, there is always another vacuum of equal depth for which the

VEV lies entirely in the A sector, i.e., 〈ΦA〉 6= 0 and 〈ΦB〉 = 0. This vacuum is clearly

unacceptable from a phenomenological perspective as it breaks [SU(3)c]A, and our universe

must therefore correspond to the other vacuum, 〈ΦA〉 = 0 and 〈ΦB〉 6= 0. Second, the

spontaneous breaking of the discrete Z2 symmetry raises potential concerns of a domain wall

problem. However, this problem can be circumvented if, for instance, there is a low Hubble

scale during inflation, or if there are additional small explicit sources of Z2 breaking in the

29



theory. See Ref. [82] for further related discussion in scenarios where mirror hypercharge

and Z2 are spontaneously broken.

One may also wonder if a new tuning must be introduced when the mirror color is

spontaneously broken. Indeed, the Fraternal Twin Higgs [85] emphasizes the importance

of twin color in preventing new large two-loop contributions to the Higgs mass due to the

difference in the running of the SM and twin top Yukawa couplings. Because our models begin

from an exact mirror symmetric set up, however, the Yukawa couplings are identical at the

UV cutoff, significantly reducing the estimated tuning compared to Ref. [85]. Furthermore,

the difference in Yukawa running only occurs below the scale of twin color breaking, which

can be well below the UV cutoff, further mitigating the tuning, or fully alleviating the

tuning. Finally, in every case we examine some fraction of the twin gluons remain massless,

causing the twin top Yukawa to run more like its SM counterpart, again reducing the tuning.

Therefore, taken together we expect the two-loop contributions to the Higgs mass to be

unimportant relative to the leading v/f tuning required by the Twin Higgs, and most pNGB

constructions.

4.1 Warmup: Colored Scalar Potential Analysis

To gain some footing, in this subsection we will first analyze the symmetry breaking

dynamics of the colored scalar sector in isolation. This will enable us to highlight some of

the differences in the symmetry breaking for the triplet, sextet and octet cases in Eq. (35).

Following this analysis, we will investigate the full electroweak and color gauge symmetry

breaking by studying the full scalar potential including the Higgs fields and their interactions.

Throughout we use the standard definitions for the SU(3) generators, T a = 1
2
λa with λa

the Gell-Mann matrices and a = 1, 2, . . . 8. The SU(3) structure constants are given by

f 123 = 1, f 147 = −f 156 = f 246 = f 257 = f 345 = −f 367 =
1

2
, f 458 = f 678 =

√
3

2
. (36)
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4.1.1 Color Triplet Scalar

The first example we consider involves a color triplet scalar. We extend the Mirror Twin

Higgs model with scalar ΦA ∼ (3,1, YΦ) in the visible sector along with its Z2 counterpart

ΦB in the mirror sector. These scalars can be represented as a complex vector, i.e, (ΦA)i,

with color index i = 1, 2, 3 and similarly for ΦB. The Z2 symmetric scalar potential for ΦA

and ΦB is:

VΦ = −µ2 (|ΦA|2 + |ΦB|2) + λ (|ΦA|2 + |ΦB|2)2 + δ
(
|ΦA|4 + |ΦB|4

)
. (37)

The terms involving µ2 and λ respect a large U(6) global symmetry while the δ term preserves

a smaller U(3)A×U(3)B×Z2 symmetry. Note that δ is radiatively generated by the SU(3)c

interactions with characteristic size δ ∼ α2
s ∼ 10−2. We are often interested in the parameter

regime δ � λ. In this case, a vacuum that spontaneously breaks Z2 is obtained for δ < 0 [59].

The desired vacuum is given by

〈ΦAi〉 = 0, 〈ΦB〉 =


0

0

fΦ

 , fΦ =
µ√

2(λ+ δ)
. (38)

We parameterize the fluctuations around the vacuum as

ΦA = φA, ΦB =

 η
(2)
B

fΦ + 1√
2
(ϕB + iηB)

 . (39)

with φA being a triplet under [SU(3)c]A, η
(2)
B a doublet under [SU(2)c]B, and ϕB and ηB

being singlets. Expanding the potential Eq. (37) about the minimum, the scalar masses are

found to be

m2
φA

= −2δf 2
Φ, m2

ϕB
= 4(λ+ δ)f 2

Φ, m2

η
(2)
B

= 0, m2
ηB

= 0. (40)

In the limit |δ| � λ the global symmetry breaking pattern is U(6) → U(5), yielding 11

Nambu-Goldstone bosons (complex [SU(3)c]A triplet φA, complex [SU(2)c]B doublet η
(2)
B ,

and real singlet ηB). The field φA obtains a mass proportional to the U(6) breaking coupling

δ and can be considered to be a pNGB in this limit. The fields η
(2)
B , ηB are exact NGBs and
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are eaten by the five massive twin gluons, which obtain masses of order mGB ∼ gSfΦ. Since

the triplet scalar is also assumed to carry hypercharge YΦ, it will also contribute a mass term

to the twin hypercharge boson. We will examine this shortly when we include the Higgs

fields in the scalar potential. Finally, there is a massive radial mode ϕB with mass of order
√
λfΦ.

4.1.2 Color Sextet Scalar

We next consider the case of color sextet scalars, with ΦA ∼ (6,1, YΦ) in the visible sector

and its Z2 partner ΦB in the mirror sector. These scalars can be represented as complex

symmetric tensor fields, i.e, (ΦA)ij, with i, j = 1, 2, 3 and similarly for ΦB. We start by

considering first the colored scalar sector in isolation, writing the most general Z2 symmetric

potential as

VΦ = −µ2
(

Tr Φ†AΦA + Tr Φ†BΦB

)
+ λ

(
Tr Φ†AΦA + Tr Φ†BΦB

)2

+ δ1

[
(Tr Φ†AΦA)2 + (Tr Φ†BΦB)2

]
+ δ2

[
(Tr Φ†AΦAΦ†AΦA) + (Tr Φ†BΦBΦ†BΦB)

]
, (41)

The terms in the first line of Eq. (41) above respect a larger U(12) global symmetry. The

terms in the second line explicitly break U(12), with δ1 preserving U(6)A×U(6)B×Z2 and δ2

preserving U(3)A×U(3)B×Z2. We will focus on the regime δ1,2 � λ. The vacuum structure

can be analyzed following the techniques of Ref. [118], and is governed by the values δ1 and

δ2. There are two spontaneous Z2 breaking vacuua of interest, which we now discuss.

The first relevant vacuum for the sextet leads to the gauge symmetry breaking pattern

[SU(3)c → SU(2)c]B. The orientation of this vacuum is

〈ΦA ij〉 = 0, 〈ΦB〉 = fΦ


0 0 0

0 0 0

0 0 1

 , fΦ =
µ√

2(λ+ δ1 + δ2)
. (42)

Assuming |δ1,2| � λ, this vacuum is a global minimum for the parameter regions δ2 < 0 and

δ1 < −δ2. The fluctuations around the vacuum can be parameterized as

ΦA = φA, ΦB =

 −iσ2φB
1√
2
η

(2)
B

1√
2
η

(2)T
B fΦ + 1√

2
(ϕB + iηB)

 , (43)
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with φA being a sextet under [SU(3)c]A, φB = φαBτ
α a complex triplet under [SU(2)c]B, η

(2)
B

a doublet under [SU(2)c]B, and ϕB and ηB singlets. Inserting (43) into the potential (41),

the masses of the scalar fluctuations are found to be

m2
φA

= −2(δ1 + δ2)f 2
Φ, m2

ϕB
= 4(λ+ δ1 + δ2)f 2

Φ,

m2
φB

= −2 δ2 f
2
Φ, m2

η
(2)
B

= 0, m2
ηB

= 0. (44)

In the small δ1, δ2 regime the symmetry breaking pattern is U(12) → U(11), supplying

23 Nambu-Goldstone bosons (complex [SU(3)c]A sextet φA, complex [SU(2)c]B triplet φB,

[SU(2)c]B doublet η
(2)
B , and real singlet ηB). The field φA is a pNGB and obtains a mass

proportional to the U(12) breaking couplings δ1, δ2. Furthermore, since δ1 respects a U(6)B

symmetry, which is spontaneously broken to U(5)B, it does not generate a contribution to

the φB mass. However, the coupling δ2 explicitly breaks U(6)B to U(3)B, and therefore

generates a mass for φB, which is therefore also a pNGB. The fields η
(2)
B and ηB are exact

NGBs, and are eaten to generate mass terms for the heavy gluons. There is also the massive

radial model ϕB with its mass proportional to
√
λfΦ.

The second vacuum for the sextet is described by the gauge symmetry breaking pattern

[SU(3)c → SO(3)c]B. The orientation of this vacuum is

〈ΦA〉 = 0, 〈ΦB〉 =
fΦ√

3


1 0 0

0 1 0

0 0 1

 , fΦ =
µ√

2(λ+ δ1 + δ2/3)
. (45)

Assuming |δ1,2| � λ, this vacuum is a global minimum for the parameter regions δ2 > 0 and

δ1 < −δ2/3. The fluctuations around the vacuum can be parameterized as

ΦA = φA, ΦB =
1√
3

[
fΦ +

1√
2

(ϕB + iηB)

]
×


1 0 0

0 1 0

0 0 1

+ φB + iη
(5)
B , (46)
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where we have defined the real [SO(3)c]B quintuplets φB = φāBT
ā and η

(5)
B = ηāBT

ā, with

barred index referring to the broken SU(3) generators, ā = 1, 3, 4, 6, 8. Inserting (46) into

the potential (41), the masses of the scalar fluctuations are found to be

m2
φA

= −2

(
δ1 +

δ2

3

)
f 2

Φ, m2
ϕB

= 4

(
λ+ δ1 +

δ2

3

)
f 2

Φ,

m2
φB

=
4

3
δ2f

2
Φ, m2

η
(5)
B

= 0, m2
ηB

= 0. (47)

In the limit |δ1,2| � λ the symmetry breaking pattern is again U(12) → U(11), yielding 23

Nambu-Goldstone bosons (complex [SU(3)c]A sextet φA, two real [SO(3)c]B quintuplets φB

and η
(5)
B , and real singlet ηB). The field φA obtains a mass proportional to the U(12) breaking

couplings δ1, δ2, and is thus a pNGB. For the δ1 term, since it respects a U(6)B symmetry,

which is spontaneously broken to U(5)B, it does not generate a contribution to the φB mass.

However, the coupling δ2 explicitly breaks U(6)B to U(3)B, and therefore generates a mass

for φB, which is therefore also a pNGB. The fields η
(5)
B and ηB are exact NGBs at this level,

are eaten by the 5 heavy gluons and the hypercharge gauge boson. Finally, there is the

massive radial mode ϕB with its mass proportional to
√
λfΦ.

4.1.3 Color Octet Scalar

The final case we will consider is a real octet scalar, ΦA ∼ (8,1, 0) in the visible sector

and the analogue field in the twin sector. The octet scalar can be written in matrix notation

as (ΦA)ji = Φa
A(T a)ji and similarly for ΦB. A Z2 symmetric potential involving the colored

scalars is given by

VΦ = −µ2
(
Tr Φ2

A + Tr Φ2
B

)
+ λ

(
Tr Φ2

A + Tr Φ2
B

)2

+ δ
[
(Tr Φ2

A)2 + (Tr Φ2
B)2
]

+ V3 + V6. (48)

The terms in the first line of Eq. (48) above respect a larger O(16) global symmetry. The

terms in the second line explicitly break O(16), with δ preserving O(8)A×O(8)B ×Z2. The

potential V3 contains a cubic coupling, Tr Φ3
A+Tr Φ3

B, which preserves SU(3)A×SU(3)B×Z2.

Additionally, we have included a term V6 containing dimension six operators, which will be

discussed below.
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Again following the methods of Ref. [118], we can work out the vacuum structure of the

theory. We first consider the case with V3 and V6 set to zero. The cubic coupling in V3 can

be forbidden by a parity symmetry, ΦA,B → −ΦA,B, while the high dimensional terms in V6

are generally expected to be subleading. For δ < 0 the vacuum spontaneously breaks the Z2

symmetry, and can be parameterized as

〈ΦA〉 = 0, 〈ΦB〉 =
√

2 fΦ (sin β T 3 + cos β T 8), fΦ =
µ√

2 (λ+ δ)
. (49)

The vacuum angle β does not appear in the potential at this level, and thus corresponds to

a flat direction. We now examine several possible dynamical effects which explicitly break

the large O(8)A×O(8)B symmetry, lifting the flat direction and generating a unique ground

state. These include tree level contributions to V3 and V6 as well as radiative contributions

to the potential.

a. Cubic term

Let us first consider the effect of the cubic coupling,

V3 = A (Tr Φ3
A + Tr Φ3

B). (50)

The coupling A is taken to be real and positive without loss of generality, and we consider

the regime A/µ � 1. For δ < 0 the vacuum spontaneously breaks the Z2 symmetry and is

described by the configuration

〈ΦA〉 = 0, 〈ΦB〉 =
√

2 fΦ T 8, fΦ '
µ√

2(λ+ δ)
+

√
3A

8
√

2(λ+ δ)
. (51)

The twin color gauge symmetry is broken from [SU(3)c]B down to [SU(2)c × U(1)c]B. The

scalar fluctuations are parameterized as

ΦA = φA, ΦB = (
√

2 fΦ + ϕB)T 8 +

 φB
1√
2
η

(2)
B

1√
2
η

(2) †
B 0

 , (52)
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where φA is a real octet under [SU(3)c]A, φB = φαBτ
α is a real [SU(2)c]B triplet, η

(2)
B is a

[SU(2)c]B doublet, and ϕB is a singlet. Inserting (52) into the potential (48) and expanding

about the vacuum, the scalar masses are found to be

m2
φA

=

(
−2 δ +

√
3

8

A

fΦ

)
f 2

Φ, m2
φB

=

√
27

8
AfΦ, (53)

m2

η
(2)
B

= 0, m2
ϕB

=

(
4λ+ 4δ −

√
3

8

A

fΦ

)
f 2

Φ.

In the small δ, A/µ regime the symmetry breaking pattern is O(16)→ O(15), generating 15

Nambu-Goldstone bosons (real [SU(3)c]A octet φA, real [SU(2)c]B triplet φB, and [SU(2)c]B

doublet η
(2)
B ). The field φA is a pNGB and obtains a mass proportional to the O(16) breaking

couplings δ and A. Furthermore, since δ respects a O(8)B symmetry, which is spontaneously

broken to O(7)B, it does not generate a contribution to the φB mass. However, the coupling A

explicitly breaks O(8)B to SU(3)B, and therefore generates a mass for φB, which is therefore

also a pNGB. The field η
(2)
B is an exact NGB, and is eaten to generate mass terms for four

heavy gluons. Finally, ϕB is the massive radial mode with its mass proportional to
√
λfΦ.

b. Higher dimension operators

We have seen above that a cubic term in the potential aligns the vacuum in the direction

of T 8. Noting Eq. (49) it is interesting to ask if the vacuum can be aligned in the direction

of T 3. To this end, we will consider the possible effects of a dimension six operator, which is

generally expected to appear given that the Twin Higgs model should have a relatively low

UV cutoff. We impose the parity symmetry ΦA,B → −ΦA,B, which forbids the cubic term.

We consider a simple representative dimension six operator,

V6 =
c

Λ2

(
Tr Φ6

A + Tr Φ6
B

)
, (54)

where Λ is the UV cutoff and c is the Wilson coefficient. We will work in the regime

cµ2/Λ2 � 1. For δ < 0 and c > 0 we find the following Z2 breaking vacuum orientation:

〈ΦA〉 = 0, 〈ΦB〉 =
√

2 fΦ T 3, f 2
Φ '

µ2

2(λ+ δ)
− 3 c µ4

32 (λ+ δ)3 Λ2
. (55)
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The twin color gauge symmetry is broken from [SU(3)c]B down to [U(1)c × U(1)′c]B. The

scalar fluctuations are parameterized as

ΦA = φA, ΦB = (
√

2 fΦ + ϕB)T 3 + φB T
8 +


0 1√

2
ηB

1√
2
η′B

1√
2
η∗B 0 1√

2
η
′′
B

1√
2
η
′∗
B

1√
2
η
′′∗
B 0

 , (56)

Inserting (56) into the potential 48 and 54, and expanding about the vacuum, the scalar

masses are found to be

m2
φA

= −
(

2 δ +
3

4

cf 2
Φ

Λ2

)
f 2

Φ, m2
φB

=
cf 4

Φ

2Λ2
, (57)

m2
ηB

= m2
η
′
B

= m2
η
′′
B

= 0, m2
ϕB

=

(
4λ+ 4 δ +

3 c f 2
Φ

Λ2

)
f 2

Φ.

In the small δ, cµ2/Λ2 limit the symmetry breaking pattern is O(16) → O(15), supplying

15 Nambu-Goldstone bosons (real [SU(3)c]A octet, a real scalar φB, three complex scalars

ηB, η
′
B, η

′′
B). The field φA is a pNGB and obtains a mass proportional to the O(16) breaking

couplings δ and c. Furthermore, since δ respects a O(8)B symmetry, which is spontaneously

broken to O(7)B, it does not generate a contribution to the φB mass. However, the coupling c

explicitly breaks O(8)B to SU(3)B, and therefore generates a mass for φB, which is therefore

also a pNGB with mass proportional to c. The three complex scalars ηB, η
′
B, η

′′
B are true

NGBs, and are eaten by six heavy gluons. Finally, ϕB is the massive radial mode with mass

proportional to
√
λfΦ.

c. Radiative scalar potential

The final dynamical effect we must consider is the radiative contribution to the scalar

potential. Even if the cubic term is not there and dimension six operators are negligible, the

SU(3)c gauge interactions explicitly break the large O(8)A×O(8)B symmetry present in the

first line and first two terms in the second line of the tree-level potential (48), leading to a

radiatively generated potential for the vacuum angle β in Eq. (49). This can be conveniently

studied by computing the one-loop effective potential in MS scheme:

VΦ,1−loop =
3g4

Sf
4
Φ

8π2

2∑
n=0

{
sin4(β − nπ/3) log

[
2g2

Sf
2
Φ sin2(β − nπ/3)

µ̂2

]
− 5

6

}
. (58)
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The potential has minima at β = nπ/3, which, noting Eq. (49), each lead to the gauge

symmetry breaking pattern [SU(3)c → SU(2)c × U(1)c]B. Each is simply an SU(3)c trans-

formation from T 8. Therefore, without loss of generality we consider the vacuum orientation

as given by Eq. (49) with β = 0, i.e.,

〈ΦB〉 =
√

2 fΦ T
8. (59)

So, the analysis mimics that of the cubic term, but with the pNGBs mass of order αsfΦ.

4.2 Full Scalar Potential and Nonlinear Realization

The analysis carried out above can now be straightforwardly adapted to the realistic case

involving both the Higgs and the colored scalar fields in the potential. It will be convenient to

use a nonlinear parameterization of the scalar fields, working in unitary gauge and including

only the light pNGB degrees of freedom. This will allow for a simple and clear description

of the low energy dynamics. Since the technical details of the analyses are similar to each

other and to analysis of the hypercharge scalar in Ref. [82], we have chosen to discuss the

case of the triplet scalar in detail. Following this, we will provide the results and highlight

the differences for the cases of the sextet and octet models.

4.2.1 Color Triplet Scalar

Let us then focus on the case of the triplet scalar (see Section 4.1.1 above), now including

the Higgs fields in the description. The Z2 symmetric scalar potential is given by

V = −M2
H |H|2 + λH |H|4 −M2

Φ |Φ|2 + λΦ |Φ|4 + λHΦ |H|2 |Φ|2 (60)

+ δH
(
|HA|4 + |HB|4

)
+ δΦ

(
|ΦA|4 + |ΦB|4

)
+ δHΦ

(
|HA|2 − |HB|2

) (
|ΦA|2 − |ΦB|2

)
,

where we have defined |H|2 = H†AHA +H†BHB and |Φ|2 = Φ†AΦA + Φ†BΦB. The terms in the

first line of Eq. (60) respect a large U(4)×U(6) global symmetry, while those in the second

line explicitly break this symmetry. We will demand that the symmetry breaking quartic
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interactions δH and δHΦ are small compared to the symmetry preserving quartics λH and

λHΦ, to ensure the twin protection mechanism for the light Higgs boson. Though not strictly

required, if δΦ is small compared to λΦ, the radial mode would decouple and the color triplet

scalar in the visible sector can naturally be lighter than fΦ.

In the absence of the colored scalar fields, the choice δH > 0 would lead to a vacuum

with equal VEVs for HA and HB, which is experimentally excluded as it implies order one

modifications for the light Higgs boson couplings to SM fields. Including the colored scalar

fields helps, we learn from Section 4.1.1 that for negative value of δΦ the scalar ΦB obtains a

VEV while ΦA does not, leading to the spontaneous breaking of the Z2 symmetry. Crucially,

the δHΦ term then generates an effective Z2 breaking mass term for the Higgs scalars. This

allows us to obtain the desired vacuum misalignment, with 〈HA〉 � 〈HB〉.

The nonlinear parameterization for the Higgs fields was given in Eq. 27, while for the

colored scalars we have

ΦA = φA
sin (

√
|φA|2/fΦ)√
|φA|2/fΦ

, ΦB =


0

0

fΦ cos (
√
|φA|2/fΦ)

 . (61)

Here φA is a triplet of [SU(3)c]A and can be represented as a complex vector, (φA)i with

i = 1, 2, 3.

Inserting the nonlinear fields in Eq. (27) and Eq. (61) into the scalar potential, Eq. (60),

and neglecting the constant terms, we find the scalar potential for the pNGB fields:

V = −δHf
4
H

2
sin2

[√
2(vH+h)

fH

]
− δΦf

4
Φ

2
sin2

[
2
√
|φA|2
fΦ

]

+ δHΦf
2
Hf

2
Φ cos

[√
2(vH+h)

fH

]
cos

[
2
√
|φA|2
fΦ

]
. (62)

The potential (62) has a minimum with 〈φA〉 = 0, vH 6= 0 which obeys the relation

f 2
Φ δHΦ + f 2

H δH cos(2ϑ) = 0, (63)
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where we have used the vacuum angle ϑ = vH/(
√

2fH). Expanding the potential about the

minimum and using Eq. (63), we obtain the masses of the physical scalar fields h and φA:

m2
h = 2 f 2

H δH sin2(2ϑ), (64)

m2
φA

= 2

(
−δΦ +

δ2
HΦ

δH

)
f 2

Φ. (65)

To ensure the Higgs mass in Eq. 64 is positive we must require δH > 0, and combining this

requirement with the vacuum relation (63) leads to the condition δHΦ < 0. We must also

demand that m2
φA
> 0 in Eq. (65), which restricts the allowed values of δΦ once δH , δHΦ are

specified.

To make contact with the standard definition of the weak gauge boson masses, we defined

the electroweak VEV and its twin counterpart as in Eq. 28. Using Eqs. (63,64,65,28) we can

trade the parameters fH , δH , δΦ, δHΦ for vA, ϑ, mh, mφA . In particular, the quartic couplings

may be written as

δH =
m2
h

4 v2
A cos2 ϑ

,

δHΦ = −m
2
h

f 2
Φ

cos (2ϑ)

2 sin2 (2ϑ)
,

δΦ = −
m2
φA

2f 2
Φ

+
v2
Am

2
h

f 4
Φ

cos2 ϑ cos2 2ϑ

sin4 2ϑ
. (66)

Fixing the vacuum angle to be sinϑ . 1/3 as suggested by Higgs coupling, decay, and

precision electroweak measurements, and naturalness considerations, the free parameters of

the model can then be chosen as mφA and fΦ. It can be estimated that the natural values of

these parameters lie in the range of 100 GeV - 10 TeV. This follows from imposing certain

restrictions on the symmetry breaking quartics, δΦ and δHΦ, which are related to mφA and fΦ

via Eq. (66). Since the gauge and Yukawa interactions break the large U(4)×U(6) symmetry,

these couplings will be generated radiatively and cannot be taken too small without fine

tuning. The quartic δΦ is generated by the strong interactions at one loop, implying it

should have magnitude larger than roughly α2
s ∼ 10−2. On the other hand, the quartic

δHΦ will be generated at one loop by hypercharge interactions, or at two loops due to top
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Figure 9: Natural region of parameter space (white region) in the mφA − fΦ plane. We have

imposed 10−2 < |δΦ| < 1 (blue contour) and 10−4 < |δHΦ| < 1 (red contour).
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quark Yukawa and strong interactions, and suggesting it should be larger in magnitude than

about 10−4. We also take these couplings to be smaller than the U(4) × U(6) preserving

quartics and thus require |δΦ,HΦ| . 1 for strongly coupled UV completions. Collectively,

these conditions suggest the range 100 GeV - 10 TeV for the parameter mφA and fΦ. Direct

constraints from the LHC will also generally lead to stronger bounds on mφA of order 1 TeV,

as we will discuss later. We show a sketch of the natural parameter space for the triplet

model in Figure. 9.

We will also be interested in the cubic scalar couplings, V ⊃ Ahhhh
3 + Ahφ†AφA

h |φA|2,

which we collect here:

Ahhh =
m2
h

vA

cos(2ϑ)

2 cosϑ
, Ahφ†AφA

= −m
2
h vA
f 2

Φ

cot(2ϑ)

sinϑ
. (67)

The latter Higgs scalar coupling leads to modifications of the Higgs couplings to gluons and

photons, and are discussed in Sec. 8.

A similar analysis can be carried out for color sextet or octet. One important difference

in those models is the presence of additional pNGB scalar degrees of freedom φB in the twin

sector, as was already apparent in Secs. 4.1.2 and 4.1.3. Otherwise, the analyses of the sextet

and octet are very similar to that of the triplet. By a proper normalization, minimizing the

potentials of those pNGB fields leads to the same condition defining the vacuum angle as

was found for the triplet scalar, Eq. (63), as well as the same expression for the physical

Higgs boson mass, Eq. (64). In particular, the trilinear coupling involving the visible sector

Higgs boson and colored scalar are always given by Eq. (67).

4.2.2 Color Sextet

We now discuss the nonlinear parameterization for the color sextet models. Including

the Higgs fields, the full scalar potential including all terms up to dimension 4 is given by

V = −M2
H |H|2 + λH |H|4 −M2

Φ |Φ|2 + λΦ |Φ|4 + λHΦ |H|2 |Φ|2

+ δH
(
|HA|4 + |HB|4

)
+ δΦ1

[
(Tr Φ†AΦA)2 + (Tr Φ†BΦB)2

]
(68)

+ δΦ2

(
Tr Φ†AΦAΦ†AΦA + Tr Φ†BΦBΦ†BΦB

)
+ δHΦ

(
|HA|2 − |HB|2

) (
Tr Φ†AΦA − Tr Φ†BΦB

)
.
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Here we have defined |H|2 = H†AHA +H†BHB and |Φ|2 = Tr Φ†AΦA + Tr Φ†BΦB. As shown in

Sec. 4.1.2 there are two symmetry breaking patterns to consider:

4.2.2.1 [SU(3)c → SU(2)c]B

We can parameterize the colored scalar fields in unitary gauge as

ΦA = φA
sin (φ̂/fΦ)

φ̂/fΦ

, ΦB =

 −iσ
2φB

sin (φ̂/fΦ)

φ̂/fΦ

0

0 fΦ cos (φ̂/fΦ)

 , (69)

where φA is a complex sextet of [SU(3)c]A, φB is a complex triplet under [SU(2)c]B, and

φ̂2 ≡ Trφ†AφA + Trφ†BφB. The sextet is represented as a symmetric tensor, (φA)ij with

i, j = 1, 2, 3, and the complex triplet can be represented as φB = φαBτ
α, with complex

components φαB, α = 1, 2, 3.

Inserting Eqs. (27) and Eq. (69) into the scalar potential, Eq. (68), and neglecting the

constant terms, we obtain the potential for the pNGB fields:

V = −δHf
4
H

2
sin2

[√
2(vH+h)

fH

]

+ δHΦf
2
Hf

2
Φ cos

[√
2(vH+h)

fH

][
cos2(φ̂/fΦ)− sin2(φ̂/fΦ)

φ̂2

(
Trφ†AφA−Trφ†BφB

)]

+ δΦ1f
4
Φ

{
cos4(φ̂/fΦ) +

2 cos2(φ̂/fΦ) sin2(φ̂/fΦ)

φ̂2
Trφ†BφB +

sin4(φ̂/fΦ)

φ̂4

[
(Trφ†AφA)2 + (Trφ†BφB)2

]}

+ δΦ2f
4
Φ

{
cos4(φ̂/fΦ) +

sin4(φ̂/fΦ)

φ̂4

[
Trφ†AφAφ

†
AφA + Trφ†BφBφ

†
BφB

]}
. (70)

As mentioned, we found the same condition for the vacuum angle as Eq. (63), and the

same physical Higgs boson mass, Eq. (64). Furthermore, we find the following expressions

for the masses of the physical colored scalar fields:

m2
φA

= 2

(
−δΦ1 − δΦ2 +

δ2
HΦ

δH

)
f 2

Φ, (71)

m2
φB

= −2 δΦ2 f
2
Φ, (72)
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With the same definition of the electroweak VEV and its twin counterpart Eq. (28), using

Eqs. (63, 64, 71, 72, 28) we can trade the parameters fH , δH , δΦ1, δΦ2, δHΦ for vA, ϑ, mh,

mφA , and mφB . In particular, the quartic couplings may be written as

δΦ1 = −
m2
φA

2f 2
Φ

+
m2
φB

2f 2
Φ

+
v2
Am

2
h

f 4
Φ

cos2 ϑ cos2 2ϑ

sin4 2ϑ
,

δΦ2 = −
m2
φB

2f 2
Φ

, (73)

where δH and δHΦ are the same as the triplet case Eq. (66).

The similar expression for the cubic scalar coupling V ⊃ Ahhhh
3 +Ahφ†AφA

hTrφ†AφA, and

same coefficients as in Eq. (67), are also obtained.

4.2.2.2 SU(3)→ SO(3)

In this case, we can parameterize the fields in unitary gauge as

ΦA = φA
sin(φ̂/fΦ)

φ̂/fΦ

, ΦB =
fΦ√

3
cos(φ̂/fΦ)


1 0 0

0 1 0

0 0 1

+ φB
sin (φ̂/fΦ)

φ̂/fΦ

, (74)

where φA is a complex sextet of [SU(3)c]A and φB is a real quintuplet under [SO(3)c]B where

φ̂2 ≡ Trφ†AφA + Trφ2
B. In particular, we represent the sextet as a symmetric tensor, (φA)ij

with i, j = 1, 2, 3, and the real quintuplet as φB = φāBT
ā, with real components φāB and index

ā = 1, 3, 4, 6, 8 running over the broken generators.

Inserting Eqs. (27) and Eq. (74) into the scalar potential, Eq. (68), and neglecting the

constant terms, we obtain the potential for the pNGB fields:

V = −δHf
4
H

2
sin2

[√
2(vH+h)

fH

]
+δHΦf

2
Hf

2
Φ cos

[√
2(vH+h)

fH

][
cos2(φ̂/fΦ)− sin2(φ̂/fΦ)

φ̂2

(
Trφ†AφA−Trφ2

B

)]

+ δΦ1f
4
Φ

{
cos4(φ̂/fΦ)+

2 cos2(φ̂/fΦ) sin2(φ̂/fΦ)

φ̂2
Trφ2

B+
sin4(φ̂/fΦ)

φ̂4

[
(Trφ†AφA)2+(Trφ2

B)2
]}

+
1

3
δΦ2f

4
Φ

{
cos4(φ̂/fΦ) +

6 cos2(φ̂/fΦ) sin2(φ̂/fΦ)

φ̂2
Trφ2

B

+
4
√

3 cos(φ̂/fΦ) sin3(φ̂/fΦ)

φ̂3
Trφ3

B +
3 sin4(φ̂/fΦ)

φ̂4

[
Trφ†AφAφ

†
AφA +

1

2
(Trφ2

B)2

]}
. (75)
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Minimizing this potential leads to the same vacuum condition Eq. (63) and Higgs mass

Eq. (64). Furthermore, we find the following expressions for the masses of the physical

colored scalar fields:

m2
φA

= 2

(
−δΦ1 −

δΦ2

3
+
δ2
HΦ

δH

)
f 2

Φ, (76)

m2
φB

=
4

3
δΦ2 f

2
Φ. (77)

Using Eqs. (63,64,76,77,28) we can trade the parameters fH , δH , δΦ1, δΦ2, δHΦ for vA, ϑ, mh,

mφA , and mφB . In particular, the quartic couplings may be written as

δΦ1 = −
m2
φA

2f 2
Φ

−
m2
φB

4f 2
Φ

+
v2
Am

2
h

f 4
Φ

cos2 ϑ cos2 2ϑ

sin4 2ϑ
,

δΦ2 =
3m2

φB

4f 2
Φ

, (78)

where δH and δHΦ are the same as the triplet case Eq. (66).

We again obtain the similar expression with the same coefficients for the cubic scalar

coupling V ⊃ Ahhhh
3 + Ahφ†AφA

hTrφ†AφA, as in Eq. (67). For completeness we note that a

cubic coupling Trφ3
B is present in this case.

4.2.3 Color Octet

Including the Higgs fields, we will consider the following Z2 symmetric scalar potential:

V = −M2
H |H|2 + λH |H|4 −M2

Φ |Φ|2 + λΦ |Φ|4 + λHΦ |H|2 |Φ|2

+ δH
(
|HA|4 + |HB|4

)
+ δΦ

[
(Tr Φ2

A)2 + (Tr Φ2
B)2
]

+ δHΦ

(
|HA|2 − |HB|2

) (
Tr Φ2

A − Tr Φ2
B

)
+ V3 + V6. (79)

Here we have defined |H|2 = H†AHA + H†BHB and |Φ|2 = Tr Φ2
A + Tr Φ2

B. We have included

the possibility of a cubic interaction and higher dimension operators,

V3 = A (Tr Φ3
A + Tr Φ3

B), (80)

V6 =
c

Λ2
(Tr Φ6

A + Tr Φ6
B). (81)
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As discussed in Section 4.1.3, the inclusion of such terms leads to a unique ground state

in which the residual unbroken twin color gauge symmetry is either [SU(2)c × U(1)c]B or

[U(1)c × U(1)′c]B. We now discuss each case in turn:

4.2.3.1 [SU(3)c → SU(2)c × U(1)c]B

In this case, the color octet can be parameterized in unitary gauge as

ΦA = φA
sin (φ̂/fΦ)

φ̂/fΦ

, ΦB =
√

2 fΦ cos (φ̂/fΦ)T 8 +

 φB
sin (φ̂/fΦ)

φ̂/fΦ

0

0 0

 , (82)

where φA is a real octet of [SU(3)c]A, φB is a real triplet under [SU(2)c]B, and φ̂2 ≡ Trφ2
A +

Trφ2
B. We represent the octet as φA = φaAT

a with a = 1, 2, . . . 8 and the triplet as φB = φαBτ
α

with α = 1, 2, 3. All components φaA, φbB are real scalars.

Inserting Eqs. (27) and (82) into the scalar potential, Eq. (79) including the cubic term

V3 (80), we obtain the potential for the pNGB fields:

V = −δHf
4
H

2
sin2

[√
2(vH+h)

fH

]
+ δHΦf

2
Hf

2
Φ cos

[√
2(vH+h)

fH

][
cos2(φ̂/fΦ)− sin2(φ̂/fΦ)

φ̂2

(
Trφ2

A−Trφ2
B

)]

+ δΦf
4
Φ

{
cos4(φ̂/fΦ) +

2 cos2(φ̂/fΦ) sin2(φ̂/fΦ)

φ̂2
Trφ2

B +
sin4(φ̂/fΦ)

φ̂4

[
(Trφ2

A)2 + (Trφ2
B)2
]}

+Af3
Φ

{
−cos3(φ̂/fΦ)√

6
+

√
3 cos(φ̂/fΦ) sin2(φ̂/fΦ)

√
2 φ̂2

Trφ2
B +

sin3(φ̂/fΦ)

φ̂3
Trφ3

A

}
. (83)

The vacuum condition and the Higgs mass are the same as Eq. (63) and Eq. (64).

Furthermore, we find the following expressions for the masses of the physical colored scalar

fields:

m2
φA

=

(
−2 δΦ +

√
3

8

A

fΦ

+
2 δ2

HΦ

δH

)
f 2

Φ, (84)

m2
φB

=

√
27

8
AfΦ. (85)
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Using Eqs. (63,64,84,85,28) we can trade the parameters fH , δH , δΦ, δHΦ, A for vA, ϑ, mh,

mφA , and mφB . In particular, the quartic couplings may be written as

δΦ = −
m2
φA

2 f 2
Φ

+
m2
φB

6f 2
Φ

+
v2
Am

2
h

f 4
Φ

cos2 ϑ cos2 2ϑ

sin4 2ϑ
,

A =

√
8

27

m2
φB

fΦ

, (86)

where δH and δHΦ are the same as the triplet case Eq. (66).

We also obtain the similar expression with the same coefficients for the cubic scalar

coupling V ⊃ Ahhhh
3 + Ahφ†AφA

hTrφ†AφA, as in Eq. (67). For completeness we note that a

cubic coupling Trφ3
A is present in this case, with coupling constant equal to A.

4.2.3.2 [SU(3)c → U(1)c × U(1)′c]B

We can parameterize the fields as

ΦA = φA
sin (φ̂/fΦ)

φ̂/fΦ

, ΦB =
√

2 fΦ cos (φ̂/fΦ)T 3 + φB
sin (φ̂/fΦ)

φ̂/fΦ

T 8, (87)

where φA is a real octet of [SU(3)c]A, φB is a real singlet scalar, and φ̂2 ≡ Trφ2
A + 1

2
φ2
B.

Inserting Eqs. (27) and (87) into the scalar potential, Eq. (79) including the dimension-six

operator V6 (81), we obtain the potential for the pNGB fields:

V = −δHf
4
H

2
sin2

[√
2(vH+h)

fH

]
+ δHΦf

2
Hf

2
Φ cos

[√
2(vH+h)

fH

][
cos2(φ̂/fΦ)− sin2(φ̂/fΦ)

φ̂2

(
Trφ2

A−
1

2
φ2
B

)]

+ δΦf
4
Φ

{
cos4(φ̂/fΦ) +

cos2(φ̂/fΦ) sin2(φ̂/fΦ)

φ̂2
φ2
B +

sin4(φ̂/fΦ)

φ̂4

[
(Trφ2

A)2 +
1

4
φ4
B)

]}
(88)

+
c

Λ2
f6

Φ

{
1

4
cos6(φ̂/fΦ)+

5 cos4(φ̂/fΦ) sin2(φ̂/fΦ)

8 φ̂2
φ2
B+

5 cos2(φ̂/fΦ) sin4(φ̂/fΦ)

48 φ̂4
φ4
B

+
sin6(φ̂/fΦ)

φ̂6

[
Trφ6

A+
11

288
φ6
B

]}
.
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The vacuum condition and the Higgs mass are the same as Eq. (63) and Eq. (64).

Furthermore, we find the following expressions for the masses of the physical colored scalar

fields:

m2
φA

=

(
−2 δΦ −

3

4

c f 2
Φ

Λ2
+

2 δ2
HΦ

δH

)
f 2

Φ, (89)

m2
φB

=
c f 4

Φ

2 Λ2
. (90)

Using Eqs. (63,64,89,90,28) we can trade the parameters fH , δH , δΦ, δHΦ, c for vA, ϑ, mh,

mφA , and mφB . In particular, the quartic couplings may be written as

δΦ = −
m2
φA

2f 2
Φ

−
3m2

φB

4f 2
Φ

+
v2
Am

2
h

f 4
Φ

cos2 ϑ cos2 2ϑ

sin4 2ϑ
,

c

Λ2
=

2m2
φB

f 4
Φ

, (91)

where δH and δHΦ are the same as the triplet case Eq. (66).

We again obtain the similar expression with the same coefficients for the cubic scalar

coupling V ⊃ Ahhhh
3 + Ahφ†AφA

hTrφ†AφA, as in Eq. (67).

In the next chapter, we will sum essential features of those five symmetry breaking

patterns in the context of the twin gauge sector.
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5.0 Twin Gauge Sector

In this chapter we investigate certain features of the gauge sector, including the gauge

boson masses and mixings, their couplings to fermions, the nature of the unbroken non-

abelian and U(1) gauge symmetries and confinement in the twin sector.

As seen above, several twin color breaking patterns are possible depending on the repre-

sentation of the colored scalar and form of the scalar potential. By accounting for both twin

color and electroweak symmetry breaking, we found five distinct patterns of gauge symmetry

breaking:

I : (3,1, YΦ) [SU(3)c × SU(2)L × U(1)Y → SU(2)c × U(1)′EM]B (92)

II : (6,1, YΦ) [SU(3)c × SU(2)L × U(1)Y → SU(2)c × U(1)′EM]B (93)

III : (6,1, YΦ) [SU(3)c × SU(2)L × U(1)Y → SO(3)c]B (94)

IV : (8,1, 0) [SU(3)c × SU(2)L × U(1)Y → SU(2)c × U(1)c × U(1)EM]B (95)

V : (8,1, 0) [SU(3)c × SU(2)L × U(1)Y → U(1)c × U(1)′c × U(1)EM]B (96)

Of these, cases I–IV feature a residual non-Abelian color gauge symmetry and confinement

at a low scale. In cases I, II, and IV, this non-Abelian group is SU(2)c, while in case III it is

SO(3)c. All models except III, where the twin photon picks up a mass from the color sextet

VEV, have one or more unbroken abelian gauge symmetries. At least one of these U(1)s is

similar to the usual electromagnetic (EM) gauge symmetry, with the massless gauge boson

an admixture of weak, hypercharge, and, in cases I and II, color gauge bosons. In the color

octet models there are also color U(1) gauge symmetries which are remnants of [SU(3)c]B.

In MTH models with unbroken color gauge symmetry the confinement scale is similar to

the ordinary QCD confinement scale, ΛA ∼ 1 GeV. In models I–IV confinement naturally

occurs at a much lower scale, because the number of massless gluonic degrees of freedom

contributing to the running below the TeV scale is much smaller. The one-loop beta function

can be written as dα−1
s /d lnQ = b/2π, with

b =
11

3
CAd −

2

3

∑
f

cfTf −
1

6

∑
s

csTs, (97)
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where CAd is the quadratic Casimir for the adjoint representation and Tf (Ts) is the Dynkin

index for fermions (scalars) charged under the strong gauge group. The factors cf = 1(2)

for Majorana (Dirac) fermions, and cs = 1(2) for real (complex) scalars. The fermions in

both the SM and twin sectors all have masses below the TeV scale and transform in the

fundamental representation of the given gauge group, with index Tf = 1
2
. In estimating

the evolution of the strong coupling constant we make the mild assumption that the twin

fermions are married (grouped) into Dirac states, similar to SM fermions. In the simplest

case the twin fermion masses are given by mfB = mfA cotϑ ≈ few × mfA . In the visible

sector, we have CAd = 3 for [SU(3)c]A at all energy scales, while for the twin sector below

fΦ we have CAd = 2 for [SU(2)c]B and CAd = 1
2

for [SO(3)c]B. There may be additional

colored pNGBs in both sectors with TeV masses; the number and particular index Ts are

model dependent.

Before estimating the confinement scale for these models, we note that additional dy-

namical Z2 breaking effects, such as new twin fermion mass terms or a shift in the strong 

gauge coupling at the UV scale, αsB(fΦ) = αsA(fΦ) + δαs, may raise or lower this scale by 

several orders of magnitude. Nevertheless, the general expectation is that the twin confine-

ment scale is much lower than that in the visible sector, in contrast to MTH models with 

unbroken [SU(3)c]B.

5.1 Gauge Interactions In the Twin Sector

5.1.1 Twin Higgs Sector

We will first note some aspects of electroweak symmetry breaking in the twin Higgs 

sector, which is independent of the colored scalar sector and common among all models. The 

dynamics is entirely analogous to those of the visible sector. The twin Higgs HB obtains a

VEV given by

〈HB〉 =

 0
vB√

2

 . (98)
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Upon symmetry breaking electroweak gauge boson mass terms arise from the twin Higgs

kinetic term, L ⊃ |DµHB|2, with covariant derivative DµHB = (∂µ−igWα
Bµτ

α−ig′ 1
2
BBµ)HB.

These mass terms can be written as

L ⊃ 1

2

{
g2v2

B

4

[
(W 1

Bµ)2 + (W 2
Bµ)2 + (W 3

Bµ)2
]

+
g′2v2

B

4
(BBµ)2 − gg′v2

B

2
W 3
BµB

µ
B

}
,

= a2 |W+
Bµ|

2 +
1

2

[
a2 (W 3

Bµ)2 + b2 (BBµ)2 − 2 a bW 3
BµB

µ
B

]
, (99)

where we have defined for later convenience

a ≡ g vB
2
, b ≡ g′vB

2
. (100)

We again emphasize that these are simply the twin analogues of the usual electroweak gauge

boson mass terms Eq. 6. We have not diagonalized the neutral gauge boson sector at this

stage as there can in some models be additional contributions to the mass terms from the

colored scalar sector. We now turn our focus to the colored scalar sector.

5.1.2 Color Triplet Scalar: Case I

We consider here the color triplet scalar with quantum numbers Φ ∼ (3,1, YΦ). The B

sector scalar obtains a VEV,

ΦB =


0

0

fΦ

 , (101)

leading to the spontaneous symmetry breaking pattern [SU(3)c → SU(2)c]B. Twin gluon

and hypercharge mass terms arise from the kinetic term L ⊃ |DµΦB|2, where DµΦB =

(∂µ − igsGa
BµT

a − ig′ YΦBBµ)ΦB. These mass terms can be written as

L ⊃ 1

2

{
g2
sf

2
Φ

2

[
(G4

Bµ)2 + (G5
Bµ)2 + (G6

Bµ)2 + (G7
Bµ)2 +

4

3
(G8

Bµ)2

]
+ 2g′

2
Y 2

Φf
2
Φ(BBµ)2 − 4gsg

′YΦf
2
Φ√

3
G8
BµB

µ
B

}
,

= m2
G |GBµ|2 +

1

2

[
c2 (BBµ)2 + d2 (G8

Bµ)2 − 2 c dG8
BµB

µ
B

]
. (102)
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Here we have defined the vector doublet GBµ under the unbroken [SU(2)c]B gauge symmetry,

GBµ =

 1√
2
(G4

Bµ − iG5
Bµ)

1√
2
(G6

Bµ − iG7
Bµ)

 , (103)

with mass mG ≡ gsfΦ/
√

2. Furthermore, we have defined

c ≡
√

2 g′ YΦ fΦ, d ≡
√

2

3
gs fΦ, (104)

in Eq. (102).

Noting Eqs. (99,102), the mass mixing in the neutral gauge boson sector between W 3
Bµ,

BBµ, and G8
Bµ can be written as

L ⊃ 1

2
X̂T
µM2

X X̂µ, (105)

where we have defined X̂T
µ = (W 3

Bµ, BBµ, G
8
Bµ) and the neutral gauge boson mass matrix,

M2
X =


a2 −ab 0

−ab b2 + c2 −cd

0 −cd d2

 , (106)

where a, b, c, d are defined in Eqs. (100,104) The system can be diagonalized with three

successive rotations, X̂µ = RXµ ≡ R1R2R3Xµ, where XT
µ = (ZBµ, ABµ, Z

′
Bµ) and

R1 =


c1 s1 0

−s1 c1 0

0 0 1

 , R2 =


1 0 0

0 c2 s2

0 −s2 c2

 , R3 =


c3 0 s3

0 1 0

−s3 0 c3

 . (107)

Here c1 ≡ cos θ1, etc., and the mixing angles satisfy

tan θ1 ≡ tan θW =
b

a
=
g′

g
, tan θ2 = −cW

c

d
, tan 2θ3 =

2 c sW
√
c2
W c2 + d2

(a2 + b2 − c2 − d2) + 2 c2 s2
W

.

(108)

Here θ1 = θW is just the usual weak mixing angle. The mass eigenvalues are given by

m2
AB

= 0, m2
ZB ,Z

′
B

=
1

2

{
a2 + b2 + c2 + d2 ∓

√
(a2 + b2 + c2 + d2)2 − 4(a2c2 + a2d2 + b2d2)

}
.

(109)
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We note the presence of a massless twin photon corresponding to an unbroken [U(1)EM]B

gauge symmetry in the twin sector. Assuming fΦ � vB (which, for gs � g, g′ implies

d� a, b, c), we can obtain approximate expressions for the eigenvalues and rotation matrix.

In particular, the heavy ZB, Z ′B states have masses

m2
ZB
' a2 + b2 =

1

4
(g2 + g′2)v2

B, m2
Z′B
' c2 + d2 =

(
2g′2Y 2

Φ +
2

3
g2
s

)
f 2

Φ. (110)

The rotation matrices become

R = R1R2R3 '


cW sW 0

−sW cW − c
d

−sW c
d

cW
c
d

1

 . (111)

The gauge boson-fermion couplings arise from fermion kinetic terms, L ⊃ i ψ†B σ̄
µDµψB,

with covariant derivative Dµ = ∂µ − igsGa
BµT

a − igWα
Bµτ

α − ig′Y BBµ. After the twin elec-

troweak and color symmetry are broken it is natural to split the colored fermions into those

forming doublets and singlets under the unbroken [SU(2)c]B gauge symmetry. We will write

QBi =

 Q̂B î

Q̂B3

 =

 ûB î d̂B î

ûB3 d̂B3

 , ūiB =

 εîĵ ˆ̄uB ĵ

ˆ̄uB 3

 , d̄iB =

 εîĵ ˆ̄dBĵ
ˆ̄dB 3

 , (112)

where hatted fields denote states of definite charge under [SU(2)c]B, and î = 1, 2. For ex-

ample, ˆ̄dB î ( ˆ̄dB 3) is a doublet (singlet) under [SU(2)c]B. In particular, the fermion couplings

to the massless [SU(2)c]B gluons can be written as

L ⊃ gsG
â
Bµ ψ̂

†̂i
B σ̄

µ(τ â)ĵ
î
ψ̂Bĵ (113)

where â = 1, 2, 3, î = 1, 2 denote the [SU(2)c]B indices. The coupling to the massless twin

photon is

L ⊃ eB ABµ ψ̂
†
B σ̄

µQEM
B ψ̂B, (114)

where we have defined the twin electromagnetic coupling,

eB = eAc2 = gsW c2, (115)
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with eA = gsW is the ordinary A-sector electromagnetic coupling, and the generator of the

[U(1)EM]B symmetry,

QEM
B = τ 3 + Y +

√
3YΦ T

8. (116)

The electric charges of the twin leptons are the same as those in the visible sector, while the

twin quarks have the following electric charges:

QEM
B

[
ûB î
]

= −QEM
B

[
ˆ̄u îB
]

=
2

3
+
YΦ

2
,

QEM
B

[
d̂B î
]

= −QEM
B

[ ˆ̄d îB
]

= −1

3
+
YΦ

2
,

QEM
B

[
ûB3

]
= −QEM

B

[
ˆ̄u 3
B

]
=

2

3
− YΦ,

QEM
B

[
d̂B3

]
= −QEM

B

[ ˆ̄d 3
B

]
= −1

3
− YΦ. (117)

We note that the twin electric charges depend on T 8 of the fermion as well as the choice of

scalar hypercharge YΦ. In Table 3 we indicate the electric charges of the twin quark fields

for several choices of YΦ. The reason for the specific choices will be given in Chapter 6.

I (3,1, YΦ)

ψ̂
YΦ 5/3 2/3 −1/3 −4/3

QEM
B

[
ûB î

]
=−QEM

B

[
ˆ̄u îB
]

3/2 1 1/2 0

QEM
B

[
d̂B î
]
=−QEM

B

[ ˆ̄d îB
]

1/2 0 −1/2 −1

QEM
B

[
ûB3

]
=−QEM

B

[
ˆ̄u 3
B

] −1 0 1 2

QEM
B

[
d̂B3

]
=−QEM

B

[ ˆ̄d 3
B

] −2 −1 0 1

Table 3: Twin quark electric charges for different choices of the triplet scalar hypercharge

YΦ in case I.

One may have concern that the massless gluons and photon in the B sector might lead

to some trouble, for instance additional relativistic degrees of freedom at the time of Big

Bang Nucleosynthesis (BBN), or the problem of kinetic mixing between visible and twin

photons. To this end, we can break the residual SU(2)c × U(1)′EM symmetries completely,

by introducing two more copies of scalars.
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5.1.3 Color Sextet Scalar

Next, we examine the gauge sector in models with a color sextet scalar with quantum

numbers Φ ∼ (6,1, YΦ).

5.1.3.1 case II: [SU(3)c → SU(2)c]B

In this case, the B sector colored scalar obtains a VEV with vacuum orientation

〈ΦB〉 = fΦ


0 0 0

0 0 0

0 0 1

 , (118)

leading to the symmetry breakdown [SU(3)c → SU(2)c]B. Twin gluon and hypercharge

mass terms arise from the kinetic term L ⊃ Tr [(DµΦB)†(DµΦB)], where DµΦB = (∂µΦB −

igsG
a
Bµ(T aΦB + ΦBT

aT )− ig′ YΦBBµΦB). These mass terms can be written as

L ⊃ 1

2

{
g2
sf

2
Φ

[
(G4

Bµ)2 + (G5
Bµ)2 + (G6

Bµ)2 + (G7
Bµ)2 +

8

3
(G8

Bµ)2

]
+ 2g′

2
Y 2

Φf
2
Φ(BBµ)2 − 8gsg

′YΦf
2
Φ√

3
G8
BµB

µ
B

}
,

= m2
G |GBµ|2 +

1

2

[
c2 (BBµ)2 + d2 (G8

Bµ)2 − 2 c dG8
BµB

µ
B

]
. (119)

From here the analysis closely follows the triplet case examined above with only a few mod-

ifications. In particular, in Eq. (119) we have introduced the vector doublet GBµ under the

unbroken [SU(2)c]B gauge symmetry, as in Eq. (103), with mass mG ≡ gsfΦ. Furthermore,

we have defined

c ≡
√

2 g′ YΦ fΦ, d ≡ 2

√
2

3
gs fΦ, (120)

in Eq. (119). We note d is twice as big as in the triplet case. With the definitions (100,120),

the neutral gauge boson mass matrix takes the same form as Eq. (106) and can be brought to

the mass basis through a series of orthogonal transformations as in Eq. (107). In particular,

we find a massless twin photon and two heavy neutral gauge bosons ZB, Z ′B with approximate

masses

m2
ZB
' a2 + b2 =

1

4
(g2 + g′2)v2

B, m2
Z′B
' c2 + d2 =

(
2g′2Y 2

Φ +
8

3
g2
s

)
f 2

Φ. (121)
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The fermion couplings to the massless twin gluons and twin photon have the same form as

Eqs. (113,114). The generator of the [U(1)EM]B symmetry,

QEM
B = τ 3 + Y +

√
3

2
YΦ T

8. (122)

We note the contribution from the color group is half as in the triplet case. The electric

charges of the twin leptons are the same as those in the visible sector, while the twin quarks

have the following electric charges:

QEM
B

[
ûB î
]

= −QEM
B

[
ˆ̄u îB
]

=
2

3
+
YΦ

4
,

QEM
B

[
d̂B î
]

= −QEM
B

[ ˆ̄d îB
]

= −1

3
+
YΦ

4
,

QEM
B

[
ûB3

]
= −QEM

B

[
ˆ̄u 3
B

]
=

2

3
− YΦ

2
,

QEM
B

[
d̂B3

]
= −QEM

B

[ ˆ̄d 3
B

]
= −1

3
− YΦ

2
. (123)

In Table 4 we indicate the electric charges of the twin quark fields for the several choices of

YΦ.

II (6,1, YΦ)

ψ̂
YΦ 4/3 1/3 −2/3

QEM
B

[
ûB î

]
=−QEM

B

[
ˆ̄u îB
]

1 3/4 1/2

QEM
B

[
d̂B î
]
=−QEM

B

[ ˆ̄d îB
]

0 −1/4 −1/2

QEM
B

[
ûB3

]
=−QEM

B

[
ˆ̄u 3
B

]
0 1/2 1

QEM
B

[
d̂B3

]
=−QEM

B

[ ˆ̄d 3
B

] −1 −1/2 0

Table 4: Twin quark electric charges for different choices of the sextet scalar hypercharge

YΦ in case II.

56



5.1.3.2 case III: [SU(3)c → SO(3)c]B

In this case, the B sector colored scalar obtains a VEV with vacuum orientation

〈ΦB〉 =
fΦ√

3


1 0 0

0 1 0

0 0 1

 , (124)

leading to the symmetry breakdown [SU(3)c → SO(3)c]B. Twin gluon and hypercharge

mass terms arise from the kinetic term L ⊃ Tr [(DµΦB)†(DµΦB)], where DµΦB = (∂µΦB −

igsG
a
Bµ(T aΦB + ΦBT

aT )− ig′ YΦBBµΦB). These mass terms can be written as

L ⊃ 1

2

{
4

3
g2
sf

2
Φ

[
(G1

Bµ)2 + (G3
Bµ)2 + (G4

Bµ)2 + (G6
Bµ)2 + (G8

Bµ)2
]

+ 2 g′
2
Y 2

Φf
2
Φ(BBµ)2

}
,

= m2
Ḡ Tr [ḠBµḠ

µ
B] +

1

2
c2 (BBµ)2. (125)

Here we have defined the real quintuplet vector ḠBµ under the unbroken [SO(3)c]B gauge

symmetry,

ḠBµ = Ḡā
BµT

ā, ā = 1, 3, 4, 6, 8, (126)

with mass mG ≡ 2gsfΦ/
√

3. The barred indices (126) denote the broken [SU(3)c]B genera-

tors. Furthermore, we have defined

c ≡
√

2 g′ YΦ fΦ, (127)

in Eq. (125), as before. Noting Eqs. (99,125), the mass mixing in the neutral gauge boson

sector between W 3
Bµ, BBµ can be written as

L ⊃ 1

2
X̂T
µM2

X X̂µ, (128)

where we have defined X̂T
µ = (W 3

Bµ, BBµ) and the neutral gauge boson mass matrix,

M2
X =

 a2 −ab

−ab b2 + c2

 , (129)
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where a, b, c are defined in Eqs. (100,127). The system via the rotations, X̂µ = RXµ where

XT
µ = (ZBµ, ABµ) and

R =

 cWB
sWB

−sWB
cWB

 . (130)

Here cWB
≡ cos θWB

, etc., and the mixing angle satisfies

tan (2 θWB
) =

2 a b

b2 + c2 − a2
. (131)

Here θWB
6= θW is not the same as the usual weak mixing angle. The mass eigenvalues are

given by

m2
ZB ,AB

=
1

2

{
a2 + b2 + c2 ∓

√
(a2 + b2 + c2)2 − 4a2c2

}
. (132)

We observe that the twin photon picks up a mass, and there are no unbroken U(1) gauge

symmetries in the low energy effective theory. Assuming fΦ � vB, which implies c � a, b,

the approximate expressions of the neutral gauge boson masses are

m2
ZB
' a2 =

g2 v2
B

4
, m2

AB
' b2 + c2 = g′2

(
2Y 2

Φ f
2
Φ +

v2
B

4

)
. (133)

The gauge boson-fermion couplings arise from fermion kinetic terms, L ⊃ i ψ†B σ̄
µDµψB,

with covariant derivative Dµ = ∂µ − igsG
a
BµT

a − igWα
Bµτ

α − ig′Y BBµ. In particular, af-

ter spontaneous symmetry breaking, the quarks transform as vectors under the ubroken

[SO(3)c]B gauge symmetry, with interactions

L ⊃ gsG
â
Bµ ψ

†i
B σ̄µ (T â)ji ψBj (134)

where â = 2, 5, 7 denote the unbroken [SU(3)c]B generators (equivalently the [SO(3)c]B

generators) and i = 1, 2, 3. This applies to both chiral quarks, as before.

5.1.4 Color Octet Scalar

Finally, we examine the gauge sector in models with a real color octet scalar with quantum

numbers Φ ∼ (8,1, 0).
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5.1.4.1 case IV: [SU(3)c → SU(2)c × U(1)c]B

In this case, the B sector colored scalar obtains a VEV with vacuum orientation

〈ΦB〉 =
√

2 fΦ T
8, (135)

leading to the symmetry breakdown [SU(3)c → SU(2)c × U(1)c]B. Twin gluon mass

terms arise from the kinetic term L ⊃ Tr [(DµΦB)(DµΦB)], where DµΦB = (∂µΦB −

igsG
a
Bµ[T a,ΦB]). These mass terms can be written as

L ⊃ 3g2
sf

2
Φ

4

[
(G4

Bµ)2 + (G5
Bµ)2 + (G6

Bµ)2 + (G7
Bµ)2

]
= m2

G |GBµ|2, (136)

where we have introduced the vector doublet GBµ under the unbroken [SU(2)c]B gauge

symmetry, as in Eq. (103), with mass mG ≡
√

3
2
gsfΦ.

The dynamics of the electroweak sector is the same as in the visible sector, leading

to massive W±, Z boson and a massless photon. There are two unbroken U(1) gauge

symmetries. One is just the usual electromagnetism, with generator QEM
B = τ 3 + Y and

coupling constant eB = gg′/
√
g2 + g′2. All twin fermions have the usual electric charges.

The other unbroken U(1) gauge symmetry is [U(1)c]B, with generator T 8 and massless gauge

boson G8
Bµ.

The quarks decompose into doublets and singlets under the unbroken [SU(2)c]B gauge

symmetry, and can be represented as in Eq. (112). The doublet and singlet quarks have

identical electric charges. The [U(1)c]B interaction term can be written as

L ⊃ gsG
8
Bµ ψ

†i
B σ̄

µ (T 8)ji ψBj

⊃
(

gs

2
√

3

)
G8
Bµ

[
ψ̂†̂iB σ̄

µ ψBî − 2 ψ̂†3B σ̄µ ψB3

]
. (137)

Note there is a minus sign for the right chirality Weyl quarks ˆ̄q for opposite charge under

T 8.
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5.1.4.2 case V: [SU(3)c → U(1)c × U(1)′c]B

In this case, the B sector colored scalar obtains a VEV with vacuum orientation

〈ΦB〉 =
√

2 fΦ T
3, (138)

leading to the symmetry breakdown [SU(3)c → U(1)c×U(1)′c]B. Twin gluon mass terms arise

from the kinetic term L ⊃ Tr [(DµΦB)(DµΦB)], where DµΦB = (∂µΦB − igsGa
Bµ[T a,ΦB]).

These mass terms can be written as

L ⊃ g2
sf

2
Φ

[
(G1

Bµ)2 + (G2
Bµ)2

]
+
g2
sf

2
Φ

4

[
(G4

Bµ)2 + (G5
Bµ)2 + (G6

Bµ)2 + (G7
Bµ)2

]
(139)

with G3
Bµ and G8

Bµ remaining massless. The low energy gauge symmetry is

[U(1)EM × U(1)c × U(1)′c]B, (140)

with respective generators QEM
B = τ 3 + Y , T 3, T 8. The massive gluons in Eq. (139) can be

grouped into complex vectors which carry charges under the U(1)c gauge symmetries. In

particular, G1,2
B couple to G3

B but not G8
B, while G4,5,6,7

B couple to both G3
B and G8

B. Similarly,

the different colors of quarks couple with different strengths to the massless U(1) color gluons

according to the generators T 3, T 8, while their electric charges are the same as those in the

visible sector.
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5.2 Twin Confinement

In this section we consider aspects of twin confinement for models I-IV in which the twin

color gauge symmetry [SU(3)c]B is spontaneously broken to a nonabelian subgroup, either

[SU(2)c]B or [SO(3)c]B. We will restrict ourselves to a one-loop analysis of the running

coupling constant, using the one-loop beta function Eq. 97.

We first discuss the UV matching condition for the strong coupling constants of the

visible and twin sector. The Z2 and twin color symmetries are spontaneously broken at a

scale fΦ between 1 TeV and the UV cutoff Λ ∼ 5 − 10 TeV. Above the scale fΦ the beta

functions of the two sectors are identical. Thus, we match the visible and twin sector gauge

couplings at Q = fΦ according to relation

αBs (fΦ) = αAs (fΦ) + δαs, (141)

where a small nonzero δαs is in general allowed after spontaneous Z2 symmetry breaking. For

instance, such a shift in the coupling in Eq. (141) could arise from Z2 symmetric dimension

six operators, e.g., in the case of the color triplet scalar we may have

L ⊃ cG
Λ2
|ΦA|2GAµνG

µν
A +

cG
Λ2
|ΦB|2GBµνG

µν
B , (142)

and similarly in other cases. When ΦB obtains a VEV, and following canonical normalization

of the twin gluon kinetic term, we obtain a shift in the strong coupling given by

δαs
αAs
≡ αBs − αAs

αAs
' 4cGf

2
Φ

Λ2
. (143)

This shift is expected to be of order 10% or smaller, depending on the nature of the UV

dynamics generating operators such as Eq. (142).

It is also possible that some of the twin fermions are significantly heavier, which can be

realized through spontaneous Z2 breaking effects.

We will now analyze each of the four cases containing an unbroken non-abelian color

group in the twin sector at low energy.
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5.2.1 Color Triplet: Case I

For the case of the color triplet scalar we have the symmetry breaking pattern [SU(3)c →

SU(2)c]B. The visible sector contains a (complex) color triplet scalar φA in the effective

theory, having index Ts = 1
2
. The beta function coefficients (97) are therefore given by

bA = 11− 2

3
nAf −

1

6
nAs , (144)

bB =
22

3
− 2

3
nBf , (145)

where nAf (nBf ) denotes the number of light Dirac fermions in the A (B) sector, and nAs = 0

or 1 is the number of light triplet scalars in the A sector.

Integrating the renormalization group equations, the confinement scales of the visible

and twin sectors, ΛA and ΛB, respectively, can then be related implicitly through Eq. (141):

2π

log


nH∏
i=1

(
mi
qB

ΛB

)2/3
( fΦ

ΛB

)10/3


=
2π

log

[(
mcAmbAmtA

Λ3
A

)2/3(
mφA

ΛA

)1/6(
fΦ

ΛA

)41/6
] + δαs, (146)

where the product on the left hand side runs over the nH heavy quark flavors in the twin

sector with masses mi
qB
> ΛB. Furthermore, if δαs is negligible we can write ΛB explicitly

as a function of ΛA and the other mass scales:

ΛB = ΛA

[( ∏nH
i=1m

i
qB

mcAmbAmtAΛnH−3
A

)4(
Λ22
A

mφAf
21
Φ

)]1/[2(2nH+10)]

. (147)

Fixing αAs (mZ) = 0.1179 (corresponding to ΛA = 140 MeV), δαs = 0, mφ = 1 TeV, fΦ = 3

TeV, and assuming the twin quarks are a factor of 3 heavier than the ordinary quarks, we

find ΛB ' 1 MeV, which is below the lightest up-type quark mass in the twin sector.

In Figure 10 we plot the evolution of the strong coupling in the visible and twin sector. We

observe that the twin strong coupling diverges near scales of order ΛB ∼ MeV, in agreement

with the estimate performed above. Allowing for nonzero δαs can cause the twin confinement

scale to be larger or smaller, as illustrated in Figure 10.
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Figure 10: Left: Evolution of the strong fine structure constants in the visible sector (red)

and twin sector (blue) for the case of the color triplet scalar. The symmetry breaking pattern

in this case is [SU(3)c → SU(2)c]B. Here we have fixed αAs (mZ) = 0.1179 and δαs = 0. Right:

The twin confinement scale as a function of the UV coupling shift δαs/α
A
s . In both plots

all twin fermions are assumed to be a factor of 3 heavier than the ordinary fermions (no

additional Z2 breaking effects beyond scalar VEVs). We have also assumed mφA = 1 TeV

and fΦ = 3 TeV.
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5.2.2 Color Sextet

5.2.2.1 case II: [SU(3)c → SU(2)c]B

For the case of the color sextet scalar with VEV 〈ΦB〉 ∼ diag(0, 0, 1), the symmetry

breaking pattern is [SU(3)c → SU(2)c]B. The visible sector contains a (complex) color

sextet scalar φA in the effective theory, having index Ts = 5
2
. Furthermore, the twin sector

contains a complex color triplet scalar φB in the effective theory, having index Ts = 2. The

beta function coefficients (97) are therefore given by

bA = 11− 2

3
nAf −

5

6
nAs , (148)

bB =
22

3
− 2

3
nBf −

2

3
nBs . (149)

Integrating the renormalization group equations, the confinement scales of the visible

and twin sectors, ΛA and ΛB, respectively, can then be related implicitly through Eq. (141):

2π

log


nH∏
i=1

(
mi
qB

ΛB

)2/3
(mφB

ΛB

)2/3(
fΦ

ΛB

)8/3


=
2π

log

[(
mcAmbAmtA

Λ3
A

)2/3(
mφA

ΛA

)5/6(
fΦ

ΛA

)37/6
] + δαs,

(150)

where the product on the left hand side runs over the nH heavy quark flavors in the twin

sector with masses mi
qB
> ΛB. Furthermore, if δαs is negligible we can write ΛB explicitly

as a function of ΛA and the other mass scales:

ΛB = ΛA

[( ∏nH
i=1m

i
qB

mcAmbAmtAΛnH−3
A

)4
(
m4
φB

Λ22
A

m5
φA
f 21

Φ

)]1/[2(2nH+10)]

. (151)

The evolution of the strong coupling constants is both qualitatively and quantitatively

similar to the case of the color triplet examined above; see Figure 10. Fixing αAs (mZ) =

0.1179 (ΛA = 140 MeV), δαs = 0, mφA = mφB = 1 TeV, fΦ = 3 TeV, and assuming the twin

quarks are a factor of 3 heavier than the ordinary quarks, we find ΛB ' 1 MeV, which is

below the lightest up-type quark mass in the twin sector.

64



5.2.2.2 case III: [SU(3)c → SO(3)c]B

For the case of the color sextet scalar with VEV 〈ΦB〉 ∼ diag(1, 1, 1), the symmetry

breaking pattern is [SU(3)c → SO(3)c]B. The visible sector contains a (complex) color

sextet scalar φA in the effective theory, having index Ts = 5
2
, as before, while the twin sector

contains a real quintuplet scalar φB in the effective theory, having index Ts = 5
2
. The beta

function coefficients (97) are therefore given by

bA = 11− 2

3
nAf −

5

6
nAs , (152)

bB =
11

6
− 2

3
nBf −

5

12
nBs . (153)

Integrating the renormalization group equations, the confinement scales of the visible

and twin sectors, ΛA and ΛB, respectively, can then be related implicitly through Eq. (141):

2π

log


nH∏
i=1

(
miqB
ΛB

)2/3
(mφB

ΛB

)5/12 ( fΦ

ΛB

)−31/12


=
2π

log

(mcAmbAmtA
Λ3
A

)2/3 (
mφA

ΛA

)5/6 ( fΦ

ΛA

)37/6
 + δαs, (154)

where the product on the left hand side runs over the nH heavy quark flavors in the twin

sector with masses mi
qB
> ΛB. Furthermore, if δαs is negligible we can write ΛB explicitly

as a function of ΛA and the other mass scales:

ΛB = ΛA

[( ∏nH
i=1m

i
qB

mcAmbAmtAΛnH−3
A

)8
(
m5
φB

Λ110
A

m10
φA
f 105

Φ

)]1/[2(4nH−13)]

. (155)

Fixing αAs (mZ) = 0.1179 (ΛA = 140 MeV), δαs = 0, mφA = mφB = 1 TeV, fΦ = 3 TeV,

and assuming the twin quarks are a factor of 3 heavier than the ordinary quarks, we find

ΛB ' 10−23 GeV.

In Figure 11 we plot the evolution of the strong coupling in the visible and twin sector.

We observe that the twin strong coupling diverges near scales of order ΛB ∼ 10−23 GeV, in

agreement with the estimate performed above. Allowing for nonzero δαs can cause the twin

confinement scale to be larger or smaller, as illustrated in Figure 11.

We note that in this case the confinement scale is many orders of magnitude below the

QCD confinement scale. This is a consequence of the smaller color charge of the [SO(3)c]B

gluons, in comparison to the [SU(2)c]B case. One observes from Figure 11 that asymptotic
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Figure 11: Left: Evolution of the strong fine structure constants in the visible sector (red)

and twin sector (blue) for the case of the color sextet scalar with symmetry breaking pattern

[SU(3)c → SO(3)c]B. Here we have fixed αAs (mZ) = 0.1179 and δαs = 0. Right: The twin

confinement scale as a function of the UV coupling shift δαs/α
A
s . All twin fermions are

assumed to be a factor of 3 heavier than the ordinary fermions (no additional Z2 breaking

effects beyond scalar VEVs). We have assumed mφA = mφB = 1 TeV, fΦ = 3 TeV.
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freedom is lost for some range of scales below fΦ. Even at very low energy scales below the

twin quark masses where asymptotic freedom is restored, the beta function, while negative,

is comparatively small in magnitude, and thus the coupling runs very slowly.

5.2.3 Color Octet: Case IV

For the case of the color octet scalar with VEV 〈ΦB〉 ∼ T 8, the symmetry breaking

pattern is [SU(3)c → SU(2)c]B. The visible sector contains a (real) color octet scalar φA in

the effective theory, having index Ts = 3. Furthermore, the twin sector contains a (real) color

triplet scalar φB in the effective theory, having index Ts = 2. The beta function coefficients

(97) are therefore given by

bA = 11− 2

3
nAf −

1

2
nAs , (156)

bB =
22

3
− 2

3
nBf −

1

3
nBs . (157)

Integrating the renormalization group equations, the confinement scales of the visible

and twin sectors, ΛA and ΛB, respectively, can then be related implicitly through Eq. (141):

2π

log


nH∏
i=1

(
mi
qB

ΛB

)2/3
(mφB

ΛB

)1/3(
fΦ

ΛB

)3


=
2π

log

[(
mcAmbAmtA

Λ3
A

)2/3(
mφA

ΛA

)1/2(
fΦ

ΛA

)13/2
] + δαs,

(158)

where the product on the left hand side runs over the nH heavy quark flavors in the twin

sector with masses mi
qB
> ΛB. Furthermore, if δαs is negligible we can write ΛB explicitly

as a function of ΛA and the other mass scales:

ΛB = ΛA

[( ∏nH
i=1m

i
qB

mcAmbAmtAΛnH−3
A

)4
(
m2
φB

Λ22
A

m3
φA
f 21

Φ

)]1/[2(2nH+10)]

. (159)

The evolution of the strong coupling constants is both qualitatively and quantitatively

similar to the case of the color triplet examined above; see Figure 10. Taking the same

αAs (mZ) = 0.1179 (ΛA ' 140 MeV), δαs = 0, mφA = mφB = 1 TeV, fΦ = 3 TeV, and

assuming the twin quarks are a factor of 3 heavier than the ordinary quarks, we find ΛB ' 1

MeV, which is below the lightest up-type quark mass in the twin sector.
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5.3 Summary

We can write a general expression of ΛB in terms of ΛA and other mass scales, if δαs is

negligible:

ΛB = ΛA

( (∏nH
i=1m

i
qB

)2Tf

mcAmbAmtAΛ
2TfnH−3
A

) 2
4TfnH+3b6

 m
cBs
6
TBs n

B
s

φB
Λ7−b6
A

m
cAs
6
TAs n

A
s

φA
f

7−b6− c
A
s
6
TAs n

A
s +

cBs
6
TBs n

B
s

Φ


3

4TfnH+3b6

(160)

where TAs is the Dynkin index for scalar representation in the A sector, TBs is the Dynkin

index in the B sector unbroken group, and cA,Bs = 1(2) for real (complex) scalars in A(B)

sector. nA,Bs ∈ {0, 1} the number of active scalars in A(B) sector. b6 = 11
3
CAd − 4cfTf is bB

for all the six active twin quarks below fΦ without scalars running. For other symbols, refer

to Eq. 97.

In summary, cases I, II, and IV have very similar gauge dynamics at low energy owing

to the unbroken [SU(2)c × U(1)
(′)
EM]B color and electromagnetic gauge symmetries. We saw

that the twin strong coupling becomes large near scales of order ΛB ∼ MeV, as displayed in

the left panel of Fig. 10. As mentioned above, this is primarily a consequence of having fewer

twin gluonic degrees of freedom and thus a smaller bB in Eq. (97). The running is essentially

identical in those three cases with residual [SU(2)c]B. The only difference is the contribution

of TeV scale colored scalar degrees of freedom, which have essentially no quantitative impact

on the results.

The generator of the unbroken electromagnetic symmetry for each case are

I : (3,1, YΦ) QEM
B = τ 3 + Y +

√
3YΦ T

8 , (161)

II : (6,1, YΦ) QEM
B = τ 3 + Y +

√
3

2
YΦ T

8 , (162)

IV : (8,1, 0) QEM
B = τ 3 + Y . (163)

In cases I and II the twin electric charges depends on a particle’s T 8 as well as the colored

scalar’s hypercharge YΦ. This occurs because the triplet and sextet can carry hypercharge,

which leads to mass mixing between the neutral hypercharge and color gauge bosons. On

the other hand, the octet in case IV is real, so the EM generator is identical to the SM.
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Since not charged under color, the twin electric charges of the twin leptons are equal to

the electric charges of the visible leptons. Following symmetry breaking, the twin quark fields

decompose into doublets and singlets under the unbroken [SU(2)c]B, which carry distinct

electric charges. Before symmetry breaking, we denote the quark fields as QB ∼ (3,2, 1
6
),

ūB ∼ (3̄,1,−2
3
), d̄B ∼ (3̄,1, 1

3
) using two component Weyl fermions. These fields decompose

as in Eq. 112. In Table 3 and Table 4 we indicate the electric charges of the twin quark

fields for the several choices of YΦ for these cases. These choices of YΦ allow Yukawa-type

couplings of the colored scalar to pairs of fermions, and their implications are explored in

Sec. 6.

We emphasize here the great difference in the twin particle spectrum compared to the

basic MTH model. Though much of the dynamics are determined by the Z2 twin symmetry

with the SM fields, we end up with new unconfined quarks, from the part of the field along

the VEV direction (3rd color direction), as well as new SU(2)c bound states. Insights

into this bound state spectrum and dynamics of the phase transition can be found in, for

example, [119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], but a few qualitative

items are worth mentioning. First, the lightest quark masses are a few MeV, which is

just above the confinement scale so mesons, composed of a quark and an anti-quark, and

baryons, composed of two quarks, can likely be simulated as nonrelativisitic bound states.

In the absence of additional scalar couplings to matter there is a conserved baryon number

that renders the lightest twin baryon stable, which may be interesting from a cosmological

perspective. In addition, the mass of the lightest SU(2) glueball is m0 ∼ 5 ΛB [131, 132]

so it is likely that the glueball and meson/baryon spectrum will overlap. However, as the
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lightest glueball is a 0++ state it will decay rapidly to a pair of twin photons.1

In case III, with sextet scalar, the unbroken twin color symmetry is [SO(3)c]B. We

found that the twin strong coupling diverges near scales of order ΛB ∼ 10−23 GeV, many,

many orders of magnitude below the QCD confinement scale, as displayed in the left panel

of Fig. 11. This is due to smaller color charge of the [SO(3)c]B gluons, in comparison to the

[SU(2)c]B case. Interestingly there are no unbroken U(1) gauge symmetries in this case, as

the sextet VEV lifts the twin photon, with mass of order g′YΦfΦ. The heavy twin gluons

pick up a mass of order gsfΦ, and form a quintuplet under the unbroken [SO(3)c]B gauge

1Here we show how to evaluate the decay rate of glueball.
The effective operator for two gluons and two photons coupling can be found from the box diagram of

four photons: the Euler-Heisenberg Lagrangian[133]

L =
α2

180m4
f

{
−5((Fµν)2)2 + 14FµνF

ναFαβF
βµ
}
, (164)

where mf is the mass of the fermions running inside the box. Replace two of them by gluons and permutate,
we get[134]:

Lggγγ =
αSαQ

2
f

180m4
f

[−5(Fµν)2(Gaαβ)2 − 10(FµνG
µνa)(FαβG

αβa) (165)

+28FµνF
νλGaλσG

σµa + 14FµνG
νλaFλσG

σµa].

The first term in the bracket is what we need. There is a net correction of 5
90 × (− 3

10 ) = − 1
60 if projecting

onto the basis of the eigen operators S, P, T, L[135], to the Naive Dimensional Analysis for glueball-photon
coupling operator:

LNDA
gblγγ = 1

2
(g3eQf )2

16π2m4
f

(Fµν)2(Gaαβ)2 =
αSαQ

2
f

2m4
f

(Fµν)2(Gaαβ)2. (166)

From the effective operator, the glueball decay effective vertex can be described by a decay
constant[85][136]:

< Vac|(Gµν)2|0++ >= f0, (167)

where 4πα̂3f0 = 3.06m3
o.

Thus, the decay width of the lightest twin glueball 0++ to twin photons is:

Γ0++→γBγB =
∑
f

(αsαQ
2
f )2f2

0m
3
0++

16πm8
f

(
1

60
)2 ∼

m9
0++

m8
uB

, (168)

where the lightest twin up quark is dominant.
Explicit esitimation of the radiative decay of glueballs, with the twin confinement scale Λ ∼ MeV , gives

its lifetime:

τ0++ ∼ 10−10 secs. (169)
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symmetry. The twin quarks on the other hand transform in the fundamental representation

of [SO(3)c]B. This again shows how different the twin and visible sectors can be, even

though they are fundamentally related by the Z2 symmetry. If the twin sector is much

colder than the SM, as perhaps motivated by Neff bounds, the quarks would just barely

act like quirks2 [137], but with the width of the color flux tubes connecting them set by

1/ΛB the scale of confining forces being about that of a planet. Similarly, the lightest bound

states are glueballs with small masses likely a few times ΛB, and these objects are again

roughly Earth-sized. However, we typically expect that the twin quarks and gluons were in

equilibrium at some point in the early universe, and the cosmic evolution of this dark sector

with such a low confinement scale brings with it many open questions. Such novel dynamics

and their cosmological implications is clearly worth further exploration.

In the color octet model of case V there is no residual non-Abelian gauge symmetry.

There are, however, three unbroken abelian symmetries, [U(1)c × U(1)′c × U(1)EM]B, with

generators T 3, T 8, and QEM
B = τ 3 + Y , respectively. The heavy gluons can be grouped

into complex vectors which carry charges under the U(1)
(′)
c gauge symmetries. Those heavy

gluons and fermions of different colors couple with different strengths to the massless U(1)

color gluons according to the generators T 3, T 8, while their twin electric charges are the

same as the electric charges of their Z2 partners in the visible sector. We expect in this

model that there can be a rich variety of nuclear and atomic states, some of which may have

important cosmological applications.

2Additional heavy particles charged under a new unbroken non-abelian SU(N)c gauge group as well as
the standard model. The new gauge group gets strong at a scale Λ < m, and breaking of gauge strings is
exponentially suppressed due to its large mass. Quirk production results in strings that are long compared
to 1/Λ, leading to exotic phenomena.
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6.0 Scalar Couplings to Matter

Thus far we have only considered the dynamics of the scalar potential and gauge sector.

We now investigate the consequences of new couplings of the colored scalars to fermions.

These couplings have two primary motivations. First, they cause the visible sector colored

scalar φA to decay, explaining in a simple way the absence of stable colored relics. Sec-

ond, following spontaneous color breaking in the mirror sector, such couplings produce new

dynamical twin fermion mass terms. Consequently, the spectrum of twin fermions can be de-

formed with respect to the mirror symmetric model, which may have important consequences

for cosmology and phenomenology. We emphasize, however, that the exact Z2 symmetry in

our setup produces tight correlations between variations in the twin mass spectrum and vis-

ible sector phenomenology, including the indirect precision tests (Sec. 7) and collider signals

of φA (Sec. 8).

Given these motivations, we focus mainly on couplings involving a single colored scalar to

a pair of fermions. Fermions are written using two component left chirality Weyl spinors. The

quantum numbers of the visible sector fields are QT
A = (uA, dA)T ∼ (3,2, 1

6
), ūA ∼ (3̄,1,−2

3
),

d̄A ∼ (3̄,1, 1
3
), LTA = (νA, eA)T ∼ (1,2,−1

2
), ēA ∼ (1,1, 1), HA ∼ (1,2, 1

2
) and similarly for

the mirror sector. In Table 5 we have catalogued all weak SU(2)L singlet fermion bilinear

operators having nontrivial color quantum numbers. The table shows the hypercharge and

color quantum numbers of the operator, as well as the possible colored scalar representations

that can couple to the operator to form a complete gauge singlet. We note that contraction

of SU(2)L indices is indicated by the parentheses, e.g., (QH) = εαβQαHβ, (H†Q) = H†αQα.

For the SU(2)L singlet, color triplet (3,1, YΦ), sextet (6,1, YΦ), and real octet (8,1, 0) scalars

considered in this work, we find eight distinct representations that allow such couplings, with

quantum numbers

(3,1, 2
3
), (3,1,−1

3
), (3,1,−4

3
), (3,1, 5

3
),

(6,1, 1
3
), (6,1,−2

3
), (6,1, 4

3
),

(8,1, 0), (8,1, 1). (170)
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These representations are shown in Table 6, along with the complete set of couplings to

fermion bilinears which respect the full SM gauge symmetry. The table also indicates the

corresponding decays of φA and the twin fermion mass terms generated by each coupling,

which will be discussed in more detail below. We will also make a few brief remarks below

regarding possible couplings beyond those in Table 6.
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Fermion bilinear Hypercharge SU(3)c Φ

(QQ) 1/3 3̄ + 6 (3,1,−1
3
), (6̄,1,−1

3
)

(H†Q)(QH) 1/3 3̄ + 6 (3,1,−1
3
), (6̄,1,−1

3
)

(QH)(QH) 4/3 3̄ + 6 (3,1,−4
3
), (6̄,1,−4

3
)

(H†Q)(H†Q) −2/3 3̄ + 6 (3,1, 2
3
), (6̄,1, 2

3
)

(QH) ū 0 1 + 8 (8,1, 0)

(H†Q) ū −1 1 + 8 (8,1, 1)

(QH) d̄ 1 1 + 8 (8,1,−1)

(H†Q) d̄ 0 1 + 8 (8,1, 0)

(QL) −1/3 3 (3̄,1, 1
3
)

(H†Q)(LH) −1/3 3 (3̄,1, 1
3
)

(QH)(H†L) −1/3 3 (3̄,1, 1
3
)

(QH)(LH) 2/3 3 (3̄,1,−2
3
)

(H†Q)(H†L) −4/3 3 (3̄,1, 4
3
)

(QH) ē 5/3 3 (3̄,1,−5
3
)

(H†Q) ē 2/3 3 (3̄,1,−2
3
)

ū ū −4/3 3 + 6̄ (3̄,1, 4
3
), (6,1, 4

3
)

ū d̄ −1/3 3 + 6̄ (3̄,1, 1
3
), (6,1, 1

3
)

ū (LH) −2/3 3̄ (3,1, 2
3
)

ū (H†L) −5/3 3̄ (3,1, 5
3
)

ū ē 1/3 3̄ (3,1,−1
3
)

d̄ d̄ 2/3 3 + 6̄ (3̄,1,−2
3
), (6,1,−2

3
)

d̄ (LH) 1/3 3̄ (3,1,−1
3
)

d̄ (H†L) −2/3 3̄ (3,1, 2
3
)

d̄ ē 4/3 3̄ (3,1,−4
3
)

Table 5: SU(2)L singlet operators with nontrivial color charge containing a fermion bilinear.

The final column shows scalar field representations that couple to the operator.
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Φ
Coupling to

φA decay Twin fermion mass terms
fermion bilinear

[SU(2)c × U(1)′EM]B

(3,1,− 1
3 )

Φ (QQ) φA → ū d̄ ûB d̂B
Φ† (QL) φA → u e, d ν ûB3 eB , d̂B3 νB

Φ† ū d̄ φA → ū d̄ ˆ̄uB
ˆ̄dB

Φ ū ē φA → u e ˆ̄uB3 ēB

Φ d̄ (LH) φA → d ν ˆ̄dB3 νB
Φ (H†Q)(QH) φA → ū d̄ ûB d̂B
Φ† (H†Q)(LH) φA → dν d̂B3 νB
Φ† (QH)(H†L) φA → u e ûB3 eB

(3,1, 2
3 )

Φ† d̄ d̄ φA → d̄ d̄ ˆ̄dB
ˆ̄dB

Φ ū (LH) φA → u ν ˆ̄uB3 νB

Φ d̄ (H†L) φA → d ē ˆ̄dB3 eB
Φ† (H†Q) ē φA → d ē d̂B3 ēB

Φ (H†Q)(H†Q) φA → d̄ d̄ d̂B d̂B
Φ† (QH)(LH) φA → u ν ûB3 νB

(3,1,− 4
3 )

Φ† ū ū φA → ū ū ˆ̄uB ˆ̄uB

Φ d̄ ē φA → d e ˆ̄dB3 ēB
Φ (QH) (QH) φA → ū ū ûB ûB

Φ† (H†Q)(H†L) φA → d e d̂B3 eB

(3,1, 5
3 )

Φ† (QH) ē φA → u ē ûB3 ēB
Φ ū (H†L) φA → u ē ˆ̄uB3 eB

[SU(2)c × U(1)′EM]B [SO(3)c]B

(6,1, 1
3 )

Φ† (QQ) φA → u d ûB3 d̂B3 uB dB

Φ ū d̄ φA → u d ˆ̄uB3
ˆ̄dB3 ūB d̄B

Φ† (QH)(H†Q) φA → u d ûB3 d̂B3 uB dB

(6,1,− 2
3 )

Φ d̄ d̄ φA → d d ˆ̄dB3
ˆ̄dB3 d̄B d̄B

Φ†(H†Q)(H†Q) φA → d d d̂B3 d̂B3 dB dB

(6,1, 4
3 )

Φ ū ū φA → uu ˆ̄uB3 ˆ̄uB3 ūB ūB
Φ†(QH)(QH) φA → uu ûB3 ûB3 uB uB

[SU(2)c × U(1)c × U(1)EM]B [U(1)c × U(1)′c × U(1)EM]B

(8,1, 0)
Φ (QH)ū φA → u ū ûB ˆ̄uB − 2ûB3 ˆ̄uB3 ûB1 ˆ̄uB1 − ûB2 ˆ̄uB2

Φ (H†Q)d̄ φA → d d̄ d̂B
ˆ̄dB − 2d̂B3

ˆ̄dB3 d̂B1
ˆ̄dB1 − d̂B2

ˆ̄dB2

Table 6: SU(2)L singlet scalar representations and allowed couplings to fermion bilinears.

Each coupling leads to the indicated decays of φA to SM fermions, as well as new twin

fermion mass terms for the indicated unbroken twin gauge symmetry.
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6.1 Lagrangians

We now write the allowed couplings of the colored scalar to fermions for each of the cases

listed in Eq. (170)

6.1.1 Φ ∼ (3,1, 2
3
)

We note that in this case Φ† has the same quantum numbers of the SU(2)L singlet quark

ū. The Lagrangian contains the following interactions:

−L ⊃ 1

2
λd̄d̄ Φ†d̄ d̄+

cūL
Λ

Φ ū (LH) +
cd̄L
Λ

Φ d̄ (H†L) +
cQē
Λ

Φ†(H†Q) ē

+
cQQ
2Λ2

Φ (H†Q)(H†Q) +
cQL
Λ2

Φ† (QH)(LH) + H.c. (171)

We have suppressed all indices in writing the Lagrangian, but it is straightforward to restore

them as needed. A couple of examples are given below:

1

2
λd̄d̄ Φ†d̄ d̄ =

1

2
(λd̄d̄)IJ εijk Φ†id̄jI d̄kJ ,

cūL
Λ

Φ ū (LH) =
(cūL)JI

Λ
Φi ū

iI εαβLαJHβ, (172)

where I, J are generation indices, i, j, k are color indices, and a, b are SU(2)L indices. We

note that the couplings λd̄d̄, cQQ in Eq. (171) are antisymmetric in the generation space, i.e.,

(λd̄d̄)JI = −(λd̄d̄)IJ , etc.

6.1.2 Φ ∼ (3,1,−1
3
)

We note that in this case Φ† has the same quantum numbers of the SU(2)L singlet quark

d̄. The Lagrangian contains the following interactions:

−L ⊃ 1

2
λQQ Φ(QQ) + λQL Φ†(QL) + λūd̄ Φ† ū d̄+ λūē Φ ū ē+

cd̄L
Λ

Φ d̄ (LH)

+
cQQ
Λ2

Φ (QH) (H†Q) +
cQL1

Λ2
Φ† (H†Q)(LH) +

cQL2

Λ2
Φ† (QH)(H†L) + H.c. (173)

The coupling λQQ in Eq. (173) is symmetric in the generation space, (λQQ)JI = (λQQ)IJ .
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6.1.3 Φ ∼ (3,1,−4
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λūū Φ†ū ū+ λd̄ē Φ d̄ ē+

cQQ
2Λ2

Φ (QH)(QH) +
cQL
Λ2

Φ† (H†Q)(H†L) + H.c. (174)

The couplings λūū, cQQ in Eq. (174) are antisymmetric in the generation space.

6.1.4 Φ ∼ (3,1, 5
3
)

The Lagrangian contains the following interactions:

−L ⊃ cQē
Λ

Φ†(QH) ē+
cūL
Λ

Φ ū (H†L) + H.c. (175)

6.1.5 Φ ∼ (6,1, 1
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λQQ Φ†(QQ) + λūd̄ Φ ū d̄+

cQQ
Λ2

Φ† (H†Q)(QH) + H.c. (176)

The couplings λQQ in Eq. (176) is antisymmetric in the generation space.

6.1.6 Φ ∼ (6,1,−2
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λd̄d̄ Φ d̄ d̄+

cQQ
2Λ2

Φ† (H†Q)(H†Q) + H.c. (177)

The couplings λd̄d̄, cQQ in Eq. (177) are symmetric in the generation space.

6.1.7 Φ ∼ (6,1, 4
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λūū Φ ū ū+

cQQ
2Λ2

Φ†(QH)(QH) + H.c. (178)

The couplings λūū, cQQ in Eq. (178) are symmetric in the generation space.
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6.1.8 Φ ∼ (8,1, 0)

The Lagrangian contains the following interactions:

−L ⊃ cQū
Λ

Φ(QH) ū+
cQd̄
Λ

Φ(H†Q) d̄+ H.c. (179)

6.1.9 Φ ∼ (8,1, 1)

1 The Lagrangian contains the following interactions:

−L ⊃ cQū
Λ

Φ (H†Q) ū+
cQd̄
Λ

Φ†(QH) d̄+ H.c. (180)

6.2 Decay of φA

Here we consider the allowed decay modes of the colored scalar to fermions for each of

the cases listed in Eq. (170).

6.2.1 Φ ∼ (3,1, 2
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λd̄d̄ Φ†A d̄A d̄A +

cūL
Λ

ΦA ūA (LAHA) +
cd̄L
Λ

ΦA d̄A (H†ALA) +
cQē
Λ

Φ†A(H†AQA) ēA

+
cQQ
2Λ2

ΦA (H†AQA)(H†AQA) +
cQL
Λ2

Φ†A (QAHA)(LAHA) + H.c.

⊃ 1

2
λd̄d̄ φ

†
A d̄A d̄A +

cūLvA√
2Λ

φA ūA νA +
cd̄LvA√

2Λ
φA d̄A eA +

cQēvA√
2Λ

φ†A dA ēA

+
cQQv

2
A

4Λ2
φA dA dA +

cQLv
2
A

2Λ2
φ†A uA νA + H.c. (181)

where in the second line we have used Eqs. (27,61). The interactions in Eq. (181) lead to

the following decays of φA:

φA → d̄+ d̄ (φA → j + j),

φA → u+ ν (φA → j + 6ET ),

φA → d+ ē (φA → j + `+). (182)

1list here for future convenience, though not really considered in our models.
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A word on notation here: as an example d̄ above (without the subscript A) denotes the

outgoing particle state in the decay rather than the field variable in the Lagrangian, in this

case anti-down quark. On the other hand, d denotes down quark. Different flavors particle

are of course possible in the decays above. Furthermore ν denotes neutrino or anti-neutrino.

6.2.2 Φ ∼ (3,1,−1
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λQQ ΦA(QAQA) + λQL Φ†A(QALA) + λūd̄ Φ†A ūA d̄A + λūē ΦA ūA ēA +

cd̄L
Λ

ΦA d̄A (LAHA)

+
cQQ
Λ2

ΦA (QAHA) (H†AQA) +
cQL1

Λ2
Φ†A (H†AQA)(LAHA) +

cQL2

Λ2
Φ†A (QAHA)(H†ALA) + H.c.

⊃ λQQ φA uA dA + λQL φ
†
A uA eA − λQL φ

†
A dA νA + λūd̄ φ

†
A ūA d̄A + λūē φA ūA ēA

+
cd̄LvA√

2Λ
φA d̄A νA +

cQQv
2
A

2Λ2
φA uA dA +

cQL1v
2
A

2Λ2
φ†A dA νA +

cQL2v
2
A

2Λ2
φ†A uA eA + H.c. (183)

The interactions in Eq. (235) lead to the following decays of φA:

φA → ū+ d̄ (φA → j + j),

φA → u+ e (φA → j + `−),

φA → d+ ν (φA → j + 6ET ). (184)

6.2.3 Φ ∼ (3,1,−4
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λūū Φ†AūA ūA + λd̄ē ΦA d̄A ēA +

cQQ
2Λ2

ΦA (QAHA)(QAHA) +
cQL
Λ2

Φ†A (H†AQA)(H†ALA) + H.c.

⊃ 1

2
λūū φ

†
AūA ūA + λd̄ē φA d̄A ēA +

cQQv
2
A

4Λ2
φA uA uA +

cQLv
2
A

2Λ2
φ†A dA eA + H.c. (185)

The interactions in Eq. (185) lead to the following decays of φA:

φA → ū+ ū (φA → j + j),

φA → d+ e (φA → j + `−). (186)
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6.2.4 Φ ∼ (3,1, 5
3
)

The Lagrangian contains the following interactions:

−L ⊃ cQē
Λ

Φ†A(QAHA) ēA +
cūL
Λ

ΦA ūA (H†ALA) + H.c.

⊃ cQēvA√
2Λ

φ†A uA ēA +
cūLvA√

2Λ
φA ūA eA + H.c. (187)

The interactions in Eq. (187) lead to the following decays of φA:

φA → u+ ē (φA → j + `+). (188)

6.2.5 Φ ∼ (6,1, 1
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λQQ Φ†A(QAQA) + λūd̄ ΦA ūA d̄A +

cQQ
Λ2

Φ†A (H†AQA)(QAHA) + H.c.

⊃ λQQ φ
†
A uA dA + λūd̄ φA ūA d̄A +

cQQv
2
A

2Λ2
φ†A uA dA + H.c. (189)

The interactions in Eq. (189) lead to the following decays of φA:

φA → u+ d (φA → j + j). (190)

6.2.6 Φ ∼ (6,1,−2
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λd̄d̄ ΦA d̄A d̄A +

cQQ
2Λ2

Φ†A (H†AQA)(H†AQA) + H.c.

⊃ 1

2
λd̄d̄ φA d̄A d̄A +

cQQv
2
A

4Λ2
φ†A dA dA + H.c. (191)

The interactions in Eq. (191) lead to the following decays of φA:

φA → d+ d (φA → j + j). (192)
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6.2.7 Φ ∼ (6,1, 4
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λūū ΦA ūA ūA +

cQQ
2Λ2

Φ†A(QAHA)(QAHA) + H.c.

⊃ 1

2
λūū φA ūA ūA +

cQQv
2
A

4Λ2
φ†A uA uA + H.c. (193)

The interactions in Eq. (193) lead to the following decays of φA:

φA → u+ u (φA → j + j). (194)

6.2.8 Φ ∼ (8,1, 0)

The Lagrangian contains the following interactions:

−L ⊃ cQū
Λ

ΦA(QAHA) ūA +
cQd̄
Λ

ΦA(H†AQA) d̄A + H.c.

⊃ cQū vA√
2Λ

φA uA ūA +
cQd̄ vA√

2Λ
φA dA d̄A + H.c. (195)

The interactions in Eq. (240) lead to the following decays of φA:

φA → u+ ū (φA → j + j).

φA → d+ d̄ (φA → j + j). (196)

6.2.9 Φ ∼ (8,1, 1)

2 The Lagrangian contains the following interactions:

−L ⊃ cQū
Λ

Φ (H†Q) ū+
cQd̄
Λ

Φ†(QH) d̄+ H.c.

⊃ cQū vA√
2Λ

φA dA ūA +
cQd̄ vA√

2Λ
φ†A uA d̄A + H.c. (197)

The interactions in Eq. (240) lead to the following decays of φA:

φA → u+ d̄ (φA → j + j). (198)

2list here for future convenience, though not really considered in our models.

81



6.2.10 Summary

In summary, from Table 6, the visible sector colored scalars φA can decay in a variety of

ways, depending on their quantum numbers and the particular couplings allowed by gauge

symmetry. Color triplets can decay to a pair of SM quarks, a quark and a neutrino, or a quark

and a charged lepton. For example, the scalar ΦA ∼ (3,1, 2
3
) decays as φA → d̄ d̄, u ν, d ē.

On the other hand, color sextets (octets) decay strictly to pairs of quarks (quark-antiquark

pairs). For instance, in the case of the sextet scalar Φ ∼ (6,1,−2
3
) decays as φA → dd.

Taking into account the various flavors of quark and lepton, there are a variety of potential

collider signatures of the colored scalars, which we explore in Chapter 8. Of course, the

colored scalar can decay in more channels than those listed in Table 6. One possibility is that

φA decays to a pair of SM bosons. For instance, the color octet may decay to a pair of gluons

through the dimension five operator Tr ΦAGAGA. Another interesting possibility emerges

if operators that couple fields in the two sectors are present. These are typically higher

dimension operators, and can naturally arise when ‘singlet’ fields [138], which transform by

at most a sign under Z2, are integrated out. As an example, taking ΦA,B ∼ (3,1, 2
3
), we

can write the operator (ΦAūA)(ΦBūB) ⊃ fΦ φAūA ˆ̄uB3, leading to the decay of φA to one SM

quark and one twin quark. The same operator could allow the twin quark to decay back into

the visible sector via an off-shell φA.

6.3 Twin Fermion Mass Terms

6.3.1 Technical Note On Fermion Masses In SU(2) Gauge Theory

Consider an SU(2) gauge theory with two flavors of left chirality fermions in the funda-

mental representation. We can write these fermions as

ψ = ψα î, χ = χα î (199)
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where α is a Lorentz spinor index and î is an SU(2) color index. We can write a mass term

coupling the two fermions in several ways:

−L ⊃ mψχ+ H.c.

= mεαβ εîĵ ψβ ĵ χα î + H.c.

= −mεαβ εîĵ χβ ĵ ψα î + H.c.

= −mχψ + H.c. (200)

=
1

2
mψχ− 1

2
mχψ + H.c.

=
1

2

[
ψ χ

] 0 m

−m 0

 ψ

χ

+ H.c.

From the equation above, we can also see that a mass term involving the same fermion

vanishes identically, i.e.,

ψψ = 0. (201)

6.3.2 Higgs Yukawa Couplings

We now examine the new twin fermion masses generated by ΦB. These depend on the

particular scalar representation and symmetry breaking pattern. For each model, there are

of course the usual mass terms that arise solely from twin electroweak symmetry breaking,

−L ⊃ ye(H
†
BLB) ēB + yu(QBHB)ūB + yd(H

†
BQB)d̄B +

cν
Λν

(LBHB)(LBHB) + H.c.

⊃ y` vB√
2
eB ēB +

yu vB√
2
uBūB +

yd vB√
2
dBd̄B +

cν v
2
B

2Λν

νBνB + H.c. (202)

These terms generate twin fermion masses which are related to those in the SM by factors

of vB/vA = cotϑ.
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6.3.3 Φ ∼ (3,1, 2
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λd̄d̄ Φ†Bd̄B d̄B +

cūL
Λ

ΦB ūB (LBHB) +
cd̄L
Λ

ΦB d̄B (H†BLB) +
cQē
Λ

Φ†B(H†BQB) ēB

+
cQQ
2Λ2

ΦB (H†BQB)(H†BQB) +
cQL
Λ2

Φ†B (QBHB)(LBHB) + H.c.

⊃ 1

2
λd̄d̄fΦ

ˆ̄dB
ˆ̄dB +

cūLvBfΦ√
2Λ

ˆ̄u3
B νB +

cd̄LvBfΦ√
2Λ

ˆ̄d 3
B eB +

cQēvBfΦ√
2Λ

d̂ 3
B ēB

− cQQv
2
BfΦ

4Λ2
d̂B d̂B +

cQLv
2
BfΦ

2Λ2
û3
BνB + H.c. (203)

where in the second line we have set the scalar to its VEV, 〈Φi〉 = fΦδi3 (Eq. (38)), effecting

the spontaneous symmetry breakdown of [SU(3)c×SU(2)L×U(1)Y → SU(2)c×U(1)′EM]B.

We have also used the quark decomposition in Eq. (112).

Interestingly, there are new mass terms in Eq. (203) beyond those generated by the Higgs

VEV. In particular, we may have a “Majorana” type mass term for the down-type quark

fields since they are not charged under the unbroken twin electromagnetic gauge symmetry;

see Table 33. There are also mass terms which marry (couple) “3rd color” ([SU(2)c]B singlet)

quark fields with neutrinos or charged leptons. From the electric charges in Table 3 it is

easy to verify that the operators in the second line of Eq. (203) respect the unbroken twin

electromagnetic gauge symmetry.

We have suppressed all indices in writing the Lagrangian, but it is straightforward to

restore them as needed. A couple of examples from the second line in Eq. (203) are presented

below:

1

2
λd̄d̄fΦ

ˆ̄dB
ˆ̄dB =

1

2
(λd̄d̄)IJfΦ ε îĵ ˆ̄d I

Bĵ
ˆ̄d J
Bî
,

cūLvBfΦ√
2Λ

ˆ̄uB3 νB =
(cūL)JI vBfΦ√

2Λ
ˆ̄u IB3 νBJ (204)

where I, J are generation indices and î, ĵ are [SU(2)c]B color indices. Hatted quark fields

with definite [SU(2)c]B transformation properties were defined in Eq. (112).

3Strictly speaking these are not Majorana mass terms, since they couple quarks of different flavor and
color.
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For convenience, we note here again that the couplings λd̄d̄, cQQ in Eq. (171) are anti-

symmetric in the generation space, i .e., (λd̄d̄)JI = −(λd̄d̄)IJ , etc.

Different physical mass hierarchies can arise depending on the size of the various couplings

in Eq. (203). For instance, consider a simple case in which only λ12
d̄d̄

= −λ21
d̄d̄
6= 0. Define the

following mass parameters:

md =
ydvB√

2
, ms =

ysvB√
2
, Md = λ12

d̄d̄fΦ. (205)

Using Eq. (112), and the convention in Eq. (200), we can then write the mass terms in the

[SU(2)c]B doublet down and strange sectors. We have from the Higgs Yukawa coupling (202)

−L ⊃ md dB i d̄
i
B + H.c.

⊃ md ε
αβ d̂B β î ε

îĵ ˆ̄dBαĵ + H.c.

⊃ md ε
αβ εîĵ ˆ̄dB β ĵ d̂Bαî + H.c.

⊃ md
ˆ̄dB d̂B + H.c. (206)

and similarly for the strange quark. From Eq. (203) we also get a term

−L ⊃ 1

2
λIJd̄d̄ ε`mnΦ† `B d̄mI

B d̄nJB + H.c.

⊃ 1

2
λIJd̄d̄fΦ εm̂n̂ ε

m̂ĵ εn̂î εαβ ˆ̄d I
B β ĵ

ˆ̄d J
B α î

+ H.c.

⊃ 1

2
λIJd̄d̄fΦ ε

αβ εîĵ ˆ̄d I
B β ĵ

ˆ̄d J
B α î

+ H.c.

⊃ λ12
d̄d̄fΦ ε

αβ εîĵ ˆ̄dB β ĵ ˆ̄sB α î + H.c.

⊃ Md
ˆ̄dB ˆ̄sB + H.c. (207)

Putting everything together, we have

−L ⊃ Md
ˆ̄dB ˆ̄sB +md

ˆ̄dB d̂B +ms ˆ̄sB ŝB + H.c. (208)

=
1

2

[
ˆ̄dB ˆ̄sB d̂B ŝB

]


0 Md md 0

−Md 0 0 ms

−md 0 0 0

0 −ms 0 0




ˆ̄dB

ˆ̄sB

d̂B

ŝB

+ H.c.
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In the limit Md � ms,md, a seesaw mechanism operates, and there are two mass eigenstates

fermions with approximate mass eigenvalues Md and msmd/Md. Taking fΦ ∼ Λ ∼ 5 TeV,

sinϑ ' 1/3, and λ12
d̄d̄

order one, we find Md ∼ 5 TeV, and msmd/Md ∼ 100 eV.

On the other hand, if both λ12
d̄d̄

= −λ21
d̄d̄
6= 0 and c12

QQ = −c21
QQ 6= 0 both give large

contributions to the quark masses relative to those from the Higgs Yukawa couplings. Define

the following mass parameters:

md =
ydvB√

2
, ms =

ysvB√
2
, Md = λ12

d̄d̄fΦ. Md = −
c12
QQv

2
BfΦ

2Λ2
, (209)

The mass terms for the [SU(2)c]B doublet down type quarks are in this case given by

−L ⊃ Md
ˆ̄dB ˆ̄sB +Md d̂B ŝB +md

ˆ̄dB d̂B +ms ˆ̄sB ŝB + H.c. (210)

=
1

2

[
ˆ̄dB ˆ̄sB d̂B ŝB

]


0 Md md 0

−Md 0 0 ms

−md 0 0 Md

0 −ms −Md 0




ˆ̄dB

ˆ̄sB

d̂B

ŝB

+ H.c.

In the limit Md,Md � ms,md, there are two mass eigenstates with approximate masses

equal to Md and Md. Taking fΦ ∼ Λ ∼ 5 TeV, sinϑ ' 1/3, and order one values for λ12
d̄d̄

and

c12
QQ, we find Md ∼ 5 TeV, and Md ∼ 50 GeV.

6.3.4 Φ ∼ (3,1,−1
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λQQ ΦB(QBQB) + λQL Φ†B(QBLB) + λūd̄ Φ†B ūB d̄B + λūē ΦB ūB ēB +

cd̄L
Λ

ΦB d̄B (LBHB)

+
cQQ
Λ2

ΦB (QBHB) (H†BQB) +
cQL1

Λ2
Φ†B (H†BQB)(LBHB) +

cQL2

Λ2
Φ†B (QBHB)(H†BLB) + H.c.

⊃ −λQQ fΦ ûB d̂B + λQL fΦ ûB3 eB − λQL fΦ d̂B3 νB + λūd̄ fΦ ˆ̄uB
ˆ̄dB + λūē fΦ ˆ̄uB3 ēB

+
cd̄LvBfΦ√

2Λ
ˆ̄d 3
B νB −

cQQv
2
BfΦ

2Λ2
ûB d̂B +

cQL1v
2
BfΦ

2Λ2
d̂B3 νB +

cQL2v
2
BfΦ

2Λ2
ûB3 eB + H.c. (211)

There are new mass terms in Eq. (211) beyond those generated by the Higgs VEV. There

are mass terms which marry (couple) [SU(2)c]B doublet up with doublet down type quarks,

as well as “3rd color” ([SU(2)c]B singlet) quark fields with neutrinos or charged leptons.
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From the electric charges in Table 3 it is easy to verify that the operators in the second line

of Eq. (211) respect the unbroken twin electromagnetic gauge symmetry.

Note again the coupling λQQ in Eq. (173) is symmetric in the generation space, (λQQ)JI =

(λQQ)IJ .

In principle, a Majorana type mass term for d̂B3 and ˆ̄d 3
B is also possible since it has zero

electric charge, see Table 3. It is only generated in dimension six operators involving two

triplet scalars as Φ†B(H†BQB) ΦBd̄B → ˆ̄dB3d̂B3.

6.3.5 Φ ∼ (3,1,−4
3
)

The Lagrangian contains the following interactions:

−L ⊃ 1

2
λūū Φ†BūB ūB + λd̄ē ΦB d̄B ēB +

cQQ
2Λ2

ΦB (QBHB)(QBHB)

+
cQL
Λ2

Φ†B (H†BQB)(H†BLB) + H.c.

⊃ 1

2
λūū fΦ ˆ̄uB ˆ̄uB + λd̄ē fΦ

ˆ̄d 3
B ēB −

cQQv
2
BfΦ

4Λ2
ûB ûB +

cQLv
2
BfΦ

2Λ2
d̂B3 eB + H.c.

(212)

There are new mass terms in Eq. (212) beyond those generated by the Higgs VEV. In

particular, we may have a “Majorana” type mass term for the up-type quark fields since

they are not charged under the unbroken twin electromagnetic gauge symmetry; see Table 3.

There are mass terms which marry “3rd color” ([SU(2)c]B singlet) down quark fields with

charged leptons. From the electric charges in Table 3 it is easy to verify that the operators

in the second line of Eq. (212) respect the unbroken twin electromagnetic gauge symmetry.

6.3.6 Φ ∼ (3,1, 5
3
)

The Lagrangian contains the following interactions:

−L ⊃ cQē
Λ

Φ†B(QBHB) ēB +
cūL
Λ

Φ ūB (H†BLB) + H.c.

⊃ cQē vBfΦ√
2Λ

ûB3 ēB +
cūL vBfΦ√

2Λ
ˆ̄u3
B eB + H.c. (213)
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We see that for this model there are mass terms which marry “3rd color” ([SU(2)c]B singlet)

up quark fields with charged leptons. From the electric charges in Table 3 it is easy to verify

that the operators in the second line of Eq. (213) respect the unbroken twin electromagnetic

gauge symmetry, for it carries the same charge as electron.

6.3.7 Discussion of Triplet

Twin fermion masses can be distorted away from the MTH expectation in a variety of

ways, but there are correlated effects in the visible sector due to the Z2 related interactions.

For example, if both λd̄d̄ and cūL in Eq. (203) are nonzero, both baryon number and lepton

number are violated by one unit, leading to nucleon decay in the visible sector. These and

other indirect constraints on scalar-fermion couplings are outlined in Chapter. 7.

6.3.8 Φ ∼ (6,1, 1
3
)

Next for color sextet, we examine each of the two possible gauge symmetry breaking

patterns in turn.

[SU(3)c → SU(2)c]B

In this case the sextet scalar obtains a VEV, 〈ΦB ij〉 = fΦδi3δj3. The Lagrangian contains

the following interactions which generate the twin quark masses:

−L ⊃ 1

2
λQQ Φ†B(QBQB) + λūd̄ ΦB ūB d̄B +

cQQ
Λ2

Φ†B (QBHB)(H†BQB) + H.c.

⊃ λQQfΦ ûB3 d̂B3 + λūd̄fΦ ˆ̄u3
B

ˆ̄d 3
B +

cQQv
2
BfΦ

2Λ2
ûB3 d̂B3 + H.c. (214)

We see that for this model there are mass terms which marry “3rd color” ([SU(2)c]B singlet)

up and down quark fields. From the electric charges in Table 4 it is easy to verify that the

operators in the second line of Eq. (214) respect the unbroken twin electromagnetic gauge

symmetry, for they are charged 1/2 and opposite.

[SU(3)c → SO(3)c]B
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In this case 〈ΦB ij〉 = fΦ√
3
δij. The Lagrangian contains the following interactions:

−L ⊃ 1

2
λQQ Φ†B(QBQB) + λūd̄ ΦB ūB d̄B +

cQQ
Λ2

Φ†B (QBHB)(H†BQB) + H.c.

⊃ λQQfΦ√
3

uB dB +
λūd̄ fΦ√

3
ūB d̄B +

cQQv
2
BfΦ

2
√

3Λ2
uB dB + H.c. (215)

In this case there are new mass terms that marry the up and down type quarks, which

transform as vectors under the unbroken [SO(3)c]B gauge symmetry. The presence of such

mass terms is consistent with the fact that there are no unbroken U(1) gauge symmetries

in the low energy theory. We have suppressed the [SO(3)c]B color and generation indices in

(215). To demonstrate how the indices are contracted, we provide an example:

λQQfΦ√
3

uB dB =
(λQQ)IJfΦ√

3
uBiI dBiJ , (216)

where i = 1, 2, 3 is an [SO(3)c]B color index and I, J = 1, 2, 3 are generation indices.

6.3.9 Φ ∼ (6,1,−2
3
)

[SU(3)c → SU(2)c]B

In this case 〈ΦB ij〉 = fΦδi3δj3. The Lagrangian contains the following interactions:

−L ⊃ 1

2
λd̄d̄ ΦB d̄B d̄B +

cQQ
2Λ2

Φ†B (H†BQB)(H†BQB) + H.c.

⊃ 1

2
λd̄d̄ fΦ

ˆ̄d 3
B

ˆ̄d 3
B +

cQQv
2
BfΦ

4Λ2
d̂B3 d̂B3 + H.c. (217)

We see that Majorana mass terms for the “3rd color” ([SU(2)c]B singlet) down quark fields

are generated. This is consistent with the fact that these quark fields are not charged under

the unbroken twin electromagnetic gauge symmetry; see Table 4.

[SU(3)c → SO(3)c]B

In this case 〈ΦB ij〉 = fΦ√
3
δij. The Lagrangian contains the following interactions:

−L ⊃ 1

2
λd̄d̄ ΦB d̄B d̄B +

cQQ
2Λ2

Φ†B (H†BQB)(H†BQB) + H.c.

⊃ λd̄d̄ fΦ

2
√

3
d̄B d̄B +

cQQ v
2
BfΦ

4
√

3 Λ2
dB dB + H.c. (218)
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We see that Majorana mass terms for the [SO(3)c]B down quark fields are generated. The

presence of such mass terms is consistent with the fact that there are no unbroken U(1)

gauge symmetries in the low energy theory.

6.3.10 Φ ∼ (6,1, 4
3
)

[SU(3)c → SU(2)c]B

In this case 〈ΦB ij〉 = fΦδi3δj3. The Lagrangian contains the following interactions:

−L ⊃ 1

2
λūū ΦB ūB ūB +

cQQ
2Λ2

Φ†B(QBHB)(QBHB) + H.c.

⊃ 1

2
λūū fΦ ˆ̄u3

B
ˆ̄u3
B +

cQQv
2
BfΦ

4Λ2
ûB3 ûB3 + H.c. (219)

We see that Majorana mass terms for the “3rd color” ([SU(2)c]B singlet) up quark fields are

generated. This is consistent with the fact that these quark fields are not charged under the

unbroken twin electromagnetic gauge symmetry; see Table 4.

[SU(3)c → SO(3)c]B

In this case 〈ΦB ij〉 = fΦ√
3
δij. The Lagrangian contains the following interactions:

−L ⊃ 1

2
λūū ΦB ūB ūB +

cQQ
2Λ2

Φ†B(QBHB)(QBHB) + H.c.

⊃ λūū fΦ

2
√

3
ūB ūB +

cQQv
2
BfΦ

4
√

3Λ2
uB uB + H.c. (220)

We see that Majorana mass terms for the [SO(3)c]B up quark fields are generated. The

presence of such mass terms is consistent with the fact that there are no unbroken U(1)

gauge symmetries in the low energy theory.
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6.3.11 Summary of Sextet

In contrast to the triplet case, no lepton mass terms are generated from those couplings.

There are, however, new type of mass terms generated for quarks. The new mass terms can

dominate over the usual EW ones for large enough couplings, and may or may not feature

a seesaw behavior in analogy with the color triplet example discussed above. In the case

of first symmetry breaking pattern, only the ‘3rd color’, [SU(2)c]B singlet quark obtains a

mass. Conversely, in the second case of symmetry breaking pattern to [SO(3)c]B, all quark

colors can be lifted.

6.3.12 Φ ∼ (8,1, 0)

Likely for color octet, we examine each of the two possible gauge symmetry breaking

patterns in turn.

[SU(3)c → SU(2)c × U(1)c]B

In this case, the octet scalar obtains a VEV, ΦB =
√

2fΦT
8. The Lagrangian contains

the following interactions:

−L ⊃ cQū
Λ

ΦB(QBHB) ūB +
cQd̄
Λ

ΦB(H†BQB) d̄B + H.c.

⊃ cQū vB fΦ

2
√

3 Λ

(
ˆ̄uB ûB − 2 ûB3 ˆ̄u3

B

)
+
cQd̄ vB fΦ

2
√

3 Λ

(
ˆ̄dB d̂B − 2 d̂B3

ˆ̄d 3
B

)
+ H.c. (221)

We note that the mass terms in (221) respect the unbroken [SU(2)c × U(1)c × U(1)EM]B

gauge symmetry. Interestingly, all quark colors obtain a mass from a single interaction.4

[SU(3)c → U(1)c × U(1)′c]B

In this case, the octet scalar obtains a VEV, ΦB =
√

2fΦT
3. The Lagrangian contains

the following interactions:

−L ⊃ cQū
Λ

ΦB(QBHB) ūB +
cQd̄
Λ

ΦB(H†BQB) d̄B + H.c.

⊃ cQūvBfΦ

2Λ

(
uB1 ū

1
B − uB2 ū

2
B

)
+
cQd̄vBfΦ

2Λ

(
dB1 d̄

1
B − dB2 d̄

2
B

)
+ H.c. (222)

4also note that the generation indices of the first term in the parenthesis should be switched compared
to the second term.
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Only the first and second quark colors are lifted, while there is no mass term generated for

the 3rd color quarks with a single scalar. The mass terms are consistent with the unbroken

[U(1)c × U(1)′c × U(1)EM]B gauge symmetry.

6.3.13 Φ ∼ (8,1, 1)

5 For the color octet with charge, the hypercharge boson gets a mass, but there is no

mixing with gluons. Thus the U(1)EM is completely broken.

[SU(3)c → SU(2)c × U(1)c]B

Note that here the cubic coupling Eq. 80 is not allowed, though we can still use other

couplings like Eq. 81 to align the VEV. The Lagrangian contains the following interactions:

−L ⊃ cQū
Λ

Φ (H†Q) ū+
cQd̄
Λ

Φ†(QH) d̄+ H.c.

⊃ cQū vB fΦ

2
√

3 Λ

(
ˆ̄uB d̂B − 2 d̂B3 ˆ̄u3

B

)
+
cQd̄ vB fΦ

2
√

3 Λ

(
ˆ̄dB ûB − 2 ûB3

ˆ̄d 3
B

)
+ H.c. (223)

We note that the mass terms in (223) respect the unbroken [SU(2)c × U(1)c]B gauge sym-

metry.6

[SU(3)c → U(1)c × U(1)′c]B

The Lagrangian contains the following interactions:

−L ⊃ cQū
Λ

Φ (H†Q) ū+
cQd̄
Λ

Φ†(QH) d̄+ H.c.

⊃ cQūvBfΦ

2Λ

(
dB1 ū

1
B − dB2 ū

2
B

)
+
cQd̄vBfΦ

2Λ

(
uB1 d̄

1
B − uB2 d̄

2
B

)
+ H.c. (224)

The mass terms in (224) respect the unbroken [U(1)c × U(1)′c]B gauge symmetry.

In both cases, the presence of such mass terms is consistent with the fact that there is

no unbroken U(1)EM gauge symmetry in the low energy theory.

5list here for future convenience, though not considered in our models
6also note that the generation indices of the first term in the parenthesis should be switched compared

to the second term.

92



6.3.14 Summary of Octet

As with the sextet, no lepton mass terms are generated from those couplings, while the

resulting quark mass terms are similar to the standard ones arising from the Higgs Yukawa

couplings (202) in that they marry SU(2)L singlet and doublet quarks. The precise form of

the quark masses depend on the pattern of gauge symmetry breaking. The mass terms can

be as large as O(100 GeV) for order one Wilson coefficients and fΦ ∼ Λ.

6.3.15 Other Sources of Twin Fermion Masses

Thus far we have considered twin fermion masses involving a single colored scalar field,

and all such possibilities of this type are shown in Table 6. Additional options arise from

couplings involving two colored scalars. First, there is always the possibility of coupling the

gauge singlet operator |ΦB|2 to the usual Higgs Yukawa operators, e.g., |ΦB|2(H†LB)ēB. Af-

ter ΦB obtains a VEV, effective Yukawa couplings are generated in the twin sector, which can

exceed the SM ones by a factor of 10 for the light generations without spoiling naturalness,

considering the scalar coupling terms λΦ|ΦA|2|ΦB|2 in the effective potential and a loop sup-

pression factor, see the discussion in Ref. [82] for further details. Furthermore, we can couple

two color triplet scalars to pairs of quark fields in nontrivial ways to generate new twin quark

masses. As an illustration consider Φ ∼ (3,1, 2
3
), with operator ΦB i ΦB j ū

i
B ū

j
B ⊃ f 2

Φ
ˆ̄uB3 ˆ̄uB3,

which provides an additional mass term beyond those presented in Eq. (203).
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7.0 Indirect Constraints

The previous section showed that the spontaneous breakdown of twin color and Z2 can

also dynamically generate new twin fermion mass terms, when there are sizable couplings be-

tween the colored scalar fields and matter fields. The exact Z2 symmetry correlates these new

masses to visible sector phenomena, including baryon and lepton number violation, quark

and lepton flavor changing processes, CP-violation, and deviations in electroweak probes.

Indirect tests in the visible sector can limit the size and structure of the new twin fermion

mass terms. Given the range of models and possible new couplings (see Table 6), a complete

vetting of these constraints is beyond our scope. Instead, we provide illustrative examples

of the characteristic phenomena that can occur. Many of the phenomena we consider here

occur in the context of R-parity violating supersymmetry; for a review see Ref. [139].

7.1 Baryon and Lepton Number Violation

The couplings of the new colored scalars to fermions lead to the possibility of baryon

and lepton number violating phenomena. In particular, the models with color triplet scalars

generically lead to the violation of these symmetries. On the other hand, in the simplest

setup the color sextet and octet scalars do not cause B or L violation.

Let us consider this in more detail before examining specific tests of these symmetries.

We will examine the model Lagrangians presented in Section 6.1. For any given model

Lagrangian, if only one coupling is nonzero and all others are zero, B and L are good

symmetries since the scalar Φ can be assigned definite charge under B and L. However,

if two or more of these couplings do not vanish, these symmetries can be violated. Let us

consider in particular pairs of nonvanishing couplings in each model.

Φ ∼ (3,1, 2
3
):

We have the following cases:
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• Pairs that conserve both B and L:

(λd̄d̄, cQQ), (cūL, cd̄L), (cūL, cQē), (cd̄L, cQē). (225)

• Pairs that conserve B but violate L by two units:

(cūL, cQL), (cd̄L, cQL), (cQē, cQL). (226)

• Pairs that violate both B by one unit and L by one unit:

(λd̄d̄, cūL), (λd̄d̄, cd̄L), (λd̄d̄, cQē), (λd̄d̄, cQL),

(cūL, cQQ), (cd̄L, cQQ), (cQē, cQQ), (cQQ, cQL). (227)

Φ ∼ (3,1,−1
3
):

We have the following cases:

• Pairs that conserve both B and L:

(λQQ, λūd̄), (λQQ, cQQ), (λQL, λūē), (λQL, cQL1), (λQL, cQL2),

(λūd̄, cQQ), (λūē, cQL1), (λūē, cQL2), (cQL1, cQL2). (228)

• Pairs that conserve B but violate L by two units:

(λQL, cd̄L), (λūē, cd̄L), (cd̄L, cQL1), (cd̄L, cQL2). (229)

• Pairs that violate both B by one unit and L by one unit:

(λQQ, λQL), (λQQ, λūē), (λQQ, cd̄L), (λQQ, cQL1), (λQQ, cQL2),

(λQL, λūd̄), (λQL, cQQ), (λūd̄, λūē), (λūd̄, cd̄L), (λūd̄, cQL1),

(λūd̄, cQL2), (λūē, cQQ), (cd̄L, cQQ), (cQQ, cQL1), (cQQ, cQL2). (230)

Φ ∼ (3,1,−4
3
):

We have the following cases:

• Pairs that conserve both B and L:

(λūū, cQQ), (λd̄ē, cQL), (231)
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Figure 12: Tree level contribution to proton decay.

• Pairs that violate both B by one unit and L by one unit:

(λūū, λd̄ē), (λūū, cQL), (λd̄ē, cQQ), (cQQ, cQL). (232)

Φ ∼ (3,1, 5
3
):

There is just one pair, (cQē, cūL), and in this case both B and L are conserved.

For models with sextet or octet scalars: One can easily see that B and L are conserved

in these models.

7.1.1 B Violation

In triplet models with hypercharge YΦ = 2
3
,−1

3
,−4

3
the proton may decay, which leads

to strong constraints on certain combinations of couplings. For a comprehensive review

on proton decay see Ref. [140]. For example, consider Φ ∼ (3,1,−1
3
) with non-vanishing

couplings to the first generation,

L ⊃ λ11
QL Φ†A (Q1

AL
1
A) + λ11

ūd̄ Φ†A ū
1
A d̄

1
A + H.c.

⊃ λ11
QL φ

†
A uA eA + λ11

ūd̄ φ
†
A ūA d̄A + H.c. . (233)
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In this case, tree level exchange of φA allows the proton to decay into a pion and positron,

p+ → e+π0, with decay width

Γ(p+ → e+π0) =
|λ11
QL λ

11∗
ūd̄
|2

m4
φA

|α|2(1 + F +D)2mp

64πf 2

(
1− m2

π

m2
p

)2

(234)

' (1034 yr)−1


√
|λ11
QL λ

11∗
ūd̄
|

4× 10−13

4(
TeV

mφA

)4

where |α| = 0.0090 GeV3 [141] is the nucleon decay hadronic matrix element, F + D '

1.267 [142] is a baryon chiral Lagrangian parameter, and f = 131 MeV. The current limits

from Ref. [143] for this channel are τp/Br(p+ → e+π0) > 1.6 × 1034 yrs at 90% C.L. The

non-observation of proton decay generally places strong limits on pairs of couplings that

violate B in triplet scalars models. Depending on the flavor structure of the couplings, there

may be other proton decay modes and other nucleon/baryon decays allowed.

In scenarios with a single colored scalar in the visible sector, nucleon decays with ∆B = 1

are usually the most sensitive probes of B violating couplings. Processes like neutron-

antineutron oscillations and dinucleon decays with ∆B = 2 are expected to be less sensitive.

However, if there are additional colored scalar fields of different hypercharge present and

suitable coupling between scalars in the potential then such ∆B = 2 processes can be

observable; see e.g., Ref. [144] for a recent study.

7.1.2 L Number Violation

In triplet models with YΦ = 2
3
,−1

3
, certain combinations of scalar-fermion couplings

can violate lepton number by two units while conserving baryon number. In such cases we

generally expect that neutrino masses are generated radiatively. For instance, consider again

Φ ∼ (3,1,−1
3
), but with the following interactions:

−L ⊃ λQL Φ†A(QALA) +
cd̄L
Λ

ΦA d̄A (LAHA) + H.c.

⊃ −λQL φ†A dA νA +
cd̄LvA√

2Λ
φA d̄A νA + H.c. . (235)
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Figure 13: One-loop contributions to neutrino masses.

These interactions break lepton number by two units. Neutrino masses will be generated at

one loop, with characteristic size

mν ∼
λQL cd̄Lmd vA

16
√

2π2Λ
log

(
Λ

mφA

)
≈ 0.1 eV

(
λQL cd̄L

10−7

)(
5 TeV

Λ

)
. (236)

Here we have fixed mφA = 1 TeV and used the bottom mass for md, which leads to the

strongest constraint.

7.2 Quark and Lepton FCNC

The interactions of the colored scalars with matter in Table 6 can also lead to new tree

level or radiative flavor changing neutral currents (FCNCs) in the quark and lepton sectors.

A variety of rare FCNC processes are possible, many of which impose strong constraints on

the new scalar-fermion couplings.

For instance, sextet and octet models can mediate new tree level contributions to ∆F = 2

transitions in the kaon system. Taking Φ ∼ (6,1,−2
3
) as an example, we write the interaction

L ⊃ 1

2
λd̄d̄ φA d̄A d̄A + H.c. . (237)
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If the diagonal couplings λ11
d̄d̄

and λ22
d̄d̄

are nonvanishing, then tree level sextet scalar exchange

generates the effective interaction

L ⊃ Csd
V,RR (s̄Aγ

µPRdA)(s̄Aγ
µPRdA) + H.c. , (238)

with Wilson coefficient

Csd
V,RR =

λ11∗

d̄d̄
λ22
d̄d̄

8m2
φA

≈
(

1

104 TeV

)2(
TeV

mφA

)2(λ11∗

d̄d̄
λ22
d̄d̄

10−7

)
. (239)

Current constraints from Kaon mixing K0− K̄0 on such operators probe new physics scales

of order 104 TeV [145]1, which, noting Eq. (239), limits the typical size of these couplings to

be at the level of 10−3 or smaller.

Octet scalars, Φ ∼ (8,1, 0), can also induce neutral meson mixing at tree level. After

electroweak symmetry breaking, the scalar-quark coupling is

−L ⊃
cQd̄ vA√

2Λ
φA dA d̄A + H.c. . (240)

If, for instance, c12
Qd̄

is nonzero, exchange of φA generates the effective interaction

L ⊃ Csd
S,LL (s̄ iAPLdAj)(s̄

j
APLdAi) + H.c. , (241)

where i, j denote color indices. The Wilson coefficient is given by

Csd
S,LL =

(c12
Qd̄

)2 v2
A

8m2
φA

Λ2
≈
(

1

104 TeV

)2(
TeV

mφA

)2(
5 TeV

Λ

)2
(

c12
Qd̄

6× 10−3

)2

. (242)

While color triplet scalars do not mediate tree level ∆F = 2 transitions, sizable loop contri-

butions to these operators can arise. As an example consider Φ ∼ (3,1,−1
3
) with interaction

−L = λūd̄ φ
†
A ūA d̄A + H.c. . (243)

1See e.g., Table IV in Ref. [145] for the bounds on ReC1
K and ImC1

K . The Kaon mass difference ∆mK <
5 × 10−19 GeV was measured by KTeV experiment at Fermilab [146], the CP violating parameter εK ∼
2× 10−3 was first established in 1964 [147],
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Figure 14: One-loop box diagrams contributing to kaon mixing, for the first type: left, and

second type: right, respectively.

There are two types of one-loop box diagrams that generate contributions to kaon mix-

ing [148, 149]. The first involves the exchange of two colored scalars and leads to the effective

Lagrangian (238). In the limit mφA � mt, the Wilson coefficient is

−Csd
V,RR =

(∑
I λ

I2
ūd̄
λI1∗
ūd̄

)2

64π2m2
φA

≈
(

1

104 TeV

)2(
TeV

mφA

)2(∑
I λ

I2
ūd̄
λI1∗
ūd̄

3× 10−3

)2

. (244)

The second type of diagram involves the exchange of one W boson and one colored scalar,

leading to the effective Lagrangian

L ⊃ Csd
S,RL

[
(s̄ iA PR dAi)(s̄

j
A PL dAj)− (s̄ iA PR dAj)(s̄

j
A PL dAi)

]
+ H.c. . (245)

For anarchic couplings2 λūd̄ and heavy scalar mass mφA � mt, the leading contribution is

Csd
S,RL =

GF

8
√

2π2
VtdV

∗
ts λ

32
ūd̄ λ

31∗
ūd̄

m2
t

m2
φ

log

(
m2
φ

m2
W

)
≈
(

1

104 TeV

)2(
TeV

mφA

)2( λ32
ūd̄
λ31∗
ūd̄

2× 10−3

)
,

(246)

where VIJ are the CKM matrix elements between up-type quark I and down-type quark J.

Thus, the typical constraints on the couplings in this case are at the 10−2–10−1 level.

2couplings of the same order, without hierarchy in strength for different flavors.
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Figure 15: One-loop contributions to rare muon decay µ→ eγ.

Color triplets can also facilitate lepton flavor violation, such as the decay µ → eγ. If

Φ ∼ (3,1,−1
3
), for example, the coupling λQL in Eq. (233) is

−L ⊃ λQL Φ†A(QALA) + H.c. . (247)

The µ→ eγ branching ratio is found to be

Br(µ→ eγ) = τµ
α |
∑

I λ
I1∗
QLλ

I2
QL|2m5

µ

214 π4m4
φ

' 4× 10−13

(
1 TeV

mφ

)4
(
|
∑

I λ
I1∗
QLλ

I2
QL|2

2× 10−6

)
, (248)

where τµ ' 2.2 × 10−6 s is the muon lifetime. The MEG experiment has placed a 90% CL

upper bound on the branching ratio, Br(µ → eγ)MEG < 4.2× 10−13 [150]. So, for a colored

triplet with mass of order 1 TeV, the couplings are typically constrained to be smaller than

about 0.04.
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Figure 16: One-loop contributions to electron EDM.

7.3 Electric Dipole Moments

When multiple scalar-fermion couplings are present in the theory new physical complex

phases appear. These can source (cause) new flavor-diagonal CP violation in the form of

fermion electric dipole moments (EDMs). To illustrate, we investigate the contribution to

electron electric dipole moment coming from a triplet Φ ∼ (3,1,−1
3
) with interactions

−L ⊃ λQLΦ†A (QALA) + λūē ΦA ūA ēA + H.c. . (249)

Exchange of up-type quarks leads to an electron EDM at one loop, described by the effective

Lagrangian

L ⊃ − i
2
de ēA σµνγ

5eA F
µν
A . (250)

In the case of flavor anarchic couplings, the top loop dominates and leads to the prediction

de '
emt

32π2m2
φ

[
7 + 4 log

(
m2
t

m2
φ

)]
Im[λ31

QL λ
31
ūē] ≈ 10−29 e cm

(
1 TeV

mφA

)2(Im[λ31
QL λ

31
ūē]

10−10

)
.

(251)

The best constraint on the electron EDM comes from the ACME collaboration: |de| <

1.1×10−29e cm [151]. We see that for generic complex phases the constraints on the couplings

are quite severe for this scenario. We expect that the neutron EDM can also provide a

promising probe of certain combinations of couplings.
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7.4 Charged Current Processes

The new interactions of fermions with colored scalars can also lead to new charged

current processes. To illustrate, we consider here the decays of charged pions that occur for

Φ ∼ (3,1,−1
3
) with interaction

L ⊃ λQL Φ†A (QA LA) + H.c. (252)

Nonvanishing (λQL)11 or (λQL)12 lead to a modification to the lepton universality ratio,

Rπ ≡
Γ(π− → e−ν̄e)

Γ(π− → µ−ν̄µ)
' RSM

π

(
1 +

|λ11
QL|2 − |λ12

QL|2

2
√

2GF |Vud|m2
φA

)
. (253)

We have neglected the effects of decays such as π− → e−ν̄µ, etc., which do not interfere

with the SM weak contribution, retaining only the dominant coherent contributions. The

SM prediction [152] and measured value [153] are

RSM
π = 1.2352(2)× 10−4, Rexp

π = 1.2344(30)× 10−4, (254)

where the experimental uncertainty dominates the theoretical uncertainty. We apply a 2σ

C.L. bound by demanding the new physics correction in Eq. (253) is less than twice the

experimental uncertainty. This leads to the constraint√
|λ11
QL|2 − |λ12

QL|2 < 0.4
( mφA

1 TeV

)
. (255)

In addition to pion decays, such couplings may be probed in hadronic tau decays as well as

tests of charged current universality in the quark sector.
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7.5 Discussion

Evidently, interactions between the colored scalar and matter can manifest in a host of

precision tests. The exact Z2 symmetry in our scenario ties any constraints coming from

these measurements to the possible form and maximum size of the new twin fermion mass

terms generated by those couplings (see Sec. 6). We have seen that some of these constraints

can be quite stringent (e.g., from baryon number violation, EDM, or tree level FCNCs),

although it is clear that they hinge, in many cases, on a particular coupling combination

or flavor structure. Though it is beyond the scope of this work, it would be interesting to

explore more broadly how the various patterns of new twin fermion mass terms arising from

twin gauge symmetry breaking intersect with experimental constraints.
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8.0 Collider Phenomenology

8.1 Higgs Coupling Modifications

A coupling between the colored scalar and the Higgs fields is an essential ingredient

in our scenario. This couplings allows for viable electroweak vacuum alignment, following

spontaneous Z2 breaking by the ΦB VEV. Consequently, the physical Higgs scalar and the

colored scalars are coupled, V ⊃ Ahφ†AφA
h |φA|2, where Ahφ†AφA

is given in Eq. (67). Through

this coupling the new colored, charged scalars generate one loop contributions to the hγγ

and hgg effective couplings, which can modify the decay of the Higgs to two photons or the

production of the Higgs in gluon fusion. These modifications can be expressed in terms of

modifications of the Higgs partial widths. Assuming 2mφ � mh, we find (see e.g., Ref. [154]):

Γ(h→ γγ)

Γ(h→ γγ)SM

'
∣∣∣∣ cosϑ− cΦ dΦ Y

2
Φ

AhφAφ∗A vA

6m2
φA

SM
γγ

∣∣∣∣2, (256)

Γ(h→ gg)

Γ(h→ gg)SM

'
∣∣∣∣ cosϑ+ cΦ TΦ

AhφAφ∗A vA

3m2
φA

SM
gg

∣∣∣∣2, (257)

where ASM
γγ ≈ 6.5, ASM

gg ≈ 1.4, dΦ is the dimension of the scalar representation, TΦ is its

Dynkin index, and cΦ = 1 (1
2
) for complex (real) scalars. As mentioned in the introduction,

the LHC has measured the hγγ and hgg couplings with 10% precision [31, 155]. For sinϑ .

1/3, we find that current measurements can only probe relatively light scalars and low

symmetry breaking scales fΦ, typically below about 300 (500 GeV) for color triplet (sextet

and octet) scalars. In most cases direct searches for pair produced colored scalars yield

stronger limits. However, as these searches depend on the assumed decay mode, Higgs

coupling measurements still offer a complementary test of light colored and charged scalars.

Looking forward, the Higgs coupling measurements at the HL-LHC and at future colliders

may be able to achieve percent level precision, probing smaller values of sinϑ and/or heavy

colored scalar masses. The radial modes of the color symmetry breaking will also have a

small effect upon the Higgs couplings, but as shown for the analogous hypercharge case the

effect is typically negligible [82].
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8.2 Direct Searches for Colored Scalars

The colored scalar field φA in the visible sector can naturally have a mass near the TeV

scale and could therefore be produced in large numbers at hadron colliders like the LHC.

We concentrate on pair production, p p → φA φ
∗
A, since as an inevitable consequence of the

strong interaction it provides the most robust probe of the colored scalars. There can also

be single φA production channels provided the scalar-fermion couplings discussed in Sec. 6

are sizeable, e.g., qq′ → φA, qg → φA`, etc, but we focus on the various signatures expected

from colored scalar pair production.

For the color triplet, we use the pair production cross sections for the lightest scalar

top quark in the Minimal Supersymmetric Standard Model in the decoupling limit (heavy

squarks and gluinos) from Ref. [156], based on resummed results at the next-to-leading

logarithmic (NLL) accuracy matched to next-to-leading order (NLO) predictions. For the

color sextet scalars, we use the leading order calculatiuon from Ref. [157]. NLO results exist

in the literature for color octet scalar production [158, 159], and we use the results for real

octet scalars from Ref. [159]. In Figure 17 we show the cross sections for pair production,

σ(pp→ φAφ
∗
A) as a function of the scalar mass.

8.2.1 Signatures

• Squark searches: Color triplet scalars with quantum numbers (3,1,−1
3
), (3,1, 2

3
) can

decay to any quark flavor and a neutrino, φA → q ν, where the q can be either a top,

bottom, or light quark. The resulting collider signatures are identical to those of squark

pair production in the Minimal Supersymmetric Standard Model, in which the squark

decays to a quark and a massless stable neutralino. Therefore, searches for first and

second generation squarks, sbottoms, and stops can be directly applied to these scenarios.

A CMS search based on 137 fb−1 at
√
s = 13 TeV rules out a single squark decaying

to a light jet and massless neutralino for squark masses below about 1.2 TeV [51], while

comparable limits have been obtained by an ATLAS search [160]. Final states containing

a bottom or top quark along with a neutrino resemble sbottom or stop searches, which
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Figure 17: Pair production cross sections at the LHC for electroweak singlet, color triplet,

sextet, and octet scalars φA.
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constrain the triplet scalars to be heavier than about 1.2 TeV [51, 52]. The HL-LHC

and, especially, a future 100 TeV hadron collider will be able to significantly extend the

mass reach for such scalars. Taking stops as an example, the HL-LHC (3 ab−1,
√
s = 14

•

TeV) will be able to constrain scalar masses up to about 1.6 TeV [161], while a future 

100 TeV collider can probe scalars as heavy as 10 TeV [162].

Leptoquark Searches: The color triplet models may also feature ‘leptoquark’ signals 

if the scalar decays to a quark and a charged lepton. A number of searches have been 

carried out targeting various leptoquark signals, depending on the flavor of the quark and 

charged lepton in the decay. Searches for first- and second-generation leptoquarks focus 

on the signature ``jj, with ` being an electron or muon. The best limits to date exclude 

scalar masses in the 1.4–1.6 TeV range and below [163, 164, 165]. The scalar may also 

have a significant branching ratio into a light jet and a neutrino. To cover these scenarios 

experiments have searched for the `νjj final state, though these tend to give somewhat 

weaker constraints in comparison to the ``jj channel. In the future, the HL-LHC will 

be able to probe first and second generation leptoquarks in the 2–3 TeV range, while a 

future 100 TeV hadron collider will be able to extend the reach to the 10 TeV range and 

beyond; see, e.g., Ref. [166] for a phenomenological study of the prospects in the µµjj 

channel.

      Various searches for third generation leptoquarks exist in which the scalar decays 

involve one or more of τ, b, t. For example, scalars decaying to tτ (bτ) are constrained to be 

heavier than about 900 GeV (1 TeV) by ATLAS and CMS searches [167, 168, 169]. 

There is also a CMS search in the tµ channel that constrains scalar masses below 1.4 

TeV [170]. Bounds on scalar leptoquarks decaying to te have been obtained from a recast 

of a CMS SUSY multipleptons analysis [171, 172] and probe scalar masses below about 

900 GeV. Finally, ATLAS searches [173] for scalar leptoquarks decaying to be and bµ 

place mass limits in the 1.5 TeV range. See Refs. [171, 174] for a comprehensive guide 

to leptoquark searches.

• Diquark Searches: Colored triplets, sextets, and octets may also decay to pairs of

quarks or quark-antiquark pairs, φA → qq or φA → qq̄. Pair produced colored scalars

then form four quark final states. Both ATLAS [53] and CMS [54] have searched for such
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paired dijet resonances using a portion of the Run 2 dataset, and constrain color triplet

scalars below about 500 GeV (600 GeV) when the scalar decays to light jets (one bottom

jet and one light jet). The ATLAS study also gives an interpretation in the context

of color octet scalars decaying to a pair of jets, limiting octet scalars below about 800

GeV. Because the pair production cross section for sextet scalars is comparable to that

of octets [157, 158, 159], we expect similar limits for sextets decaying to pairs of light

jets. In the long term, we expect the full HL-LHC dataset to improve the mass reach by

a factor of two or more. Decays to tt̄ are another interesting channel though a dedicated

study for pair produced scalars decaying in this manner has not yet been undertaken by

the collaborations. However, a recast of a CMS analysis of SM four top production has

been performed [175] and constrains color octets with masses below about 1 TeV. By

scaling up to the full HL-LHC 3ab−1 dataset at
√
s = 14 TeV this limit can be extended

to octet masses of about 1.3 TeV [176] .

• Long-lived Particle Signatures: The signatures discussed above assume prompt scalar

decays. However, if the couplings of the scalar to fermions discussed in Sec. 6 are sup-

pressed, the scalar may be long-lived on collider scales. A variety of potential signatures

exist in this case, many of which are quite striking and have small SM backgrounds.

Examples include heavy stable R-hadrons, displaced vertices and kinked tracks. There

is an active program at the LHC to search for signatures of this kind, and we refer the

readers to the recent review articles [177, 178] for an in-depth survey.
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9.0 Conclusions

The Mirror Twin Higgs provides an elegant symmetry-based understanding of the appar-

ent little hierarchy between the EW scale and the dynamics at the 5–10 TeV scale posited

to address the big hierarchy problem. Arguments related to vacuum alignment and cosmol-

ogy suggest that the mirror symmetry protecting the light Higgs must be broken, and an

attractive possibility is that this Z2 breaking is spontaneous in nature. In this work, we

have investigated the simultaneous spontaneous breakdown of the twin color gauge symme-

try and Z2. Remarkably, despite being related by an exact mirror symmetry in the UV, vast

differences between the two sectors are exhibited in the low energy effective theory below

the TeV scale as a result of spontaneous symmetry breaking. These differences manifest in

the residual unbroken gauge symmetries, color confinement scale, and particle spectrum.

The richness of these effects is tied to the variety of possible colored scalar representations

and associated symmetry breaking patterns. We have outlined five minimal possibilities for

models with a single color triplet, sextet, or octet, and explored how the twin sector departs

from the mirror onset. In particular, we have shown how new dynamical mass terms may

be generated for the twin fermions. These effects are tied by the discrete Z2 symmetry

to precision tests in the visible sector, allowing additional handles on uncovering the twin

structure without direct access to many of the states. Furthermore, the new colored states

may be probed at the LHC and at future high energy colliders. This richness is mostly

confined to the twin sector, because only this sector experiences the color breaking. Except

for qualitative difference in precision tests between the triplet and others, the visible sector

phenomenology is largely the same, illustrating the variety possible in a twin sector that is

identical to the SM at high energies.

There are a number of open questions worthy of further consideration. Seeing as depar-

tures from MTH scenarios are often motivated by cosmology it would be very interesting to

examine the possible cosmological histories within our models. For instance, the addition of

a new colored field could play a role in baryogenesis. Moreover, the twin baryons and other

bound states of the various residual color symmetries may provide interesting dark matter
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candidates or manifest as a new form of dark radiation. In many cases these dark sectors

may exhibit novel gauge interactions, including new long range forces and/or very low con-

finement scales. Another direction concerns the possible UV completions of our models. In

particular, we expect that the new colored scalars utilized in this work may find a natural

home in supersymmetric completions as a superpartner of a quark, or in composite Higgs

models as a colored pNGB.
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