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Abstract 

Impact of Speaking Styles on the Accuracy of Predicted Speech Intelligibility 
 

Pitchulee Uayporn, Ph.D. 
 

University of Pittsburgh, 2020 
 
 
 
 

Conversational speech used in research studies is not true conversational speech that 

individuals use in day-to-day communication. Laboratory-created speech materials are read or 

memorized and repeated and have different acoustic characteristic compared to true conversational 

speech. It is of interest to investigate how speaking styles (clear speech, lab conversational speech, 

and natural conversational speech) impact actual (measured) and predicted speech intelligibility in 

young adults with normal hearing. Two experiments were conducted in the current study. Speech 

stimuli were created using the contents of the Story Retelling Procedure (SRP) (Doyle et al., 2000; 

McNeil et al., 2007) produced by a male talker to create stimuli for each of the three speaking 

styles. Speech recordings were rated by thirty individuals with normal hearing based on how 

natural speech sounded. There was a strong, positive correlation between the speech recordings 

and how listeners perceived the naturalness of speaking styles therefore allowing comparison of 

materials considered clear speech, lab conversational speech, and natural conversational speech.  

Experiment 1 was designed to investigate if there was any significant difference among 

speech intelligibility for clear, laboratory conversational, and natural conversational speech in five 

listening conditions (quiet, +3, 0, -3, and -6 dB SNR). The dependent variable (DV) was proportion 

correct of identified keywords (i.e., speech intelligibility). The results showed that speaking styles 

and listening conditions impact measured speech intelligibility. Specifically, there were significant 

differences in the speech intelligibility between lab conversational speech and natural 
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conversational speech. Moreover, the clear speech speaking style can be used to improve listening 

performance in challenging listening conditions. 

Experiment 2 was designed to investigate if the STMI model can accurately predict speech 

intelligibility for different speaking styles and to evaluate the overall ability of the STMI model to 

capture speech intelligibility in multi-talker babble noise conditions. The results demonstrated that 

the current version of the STMI may not be sensitive enough to predict speech intelligibility for 

different speaking styles when embedded into multi-talker babble. 
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1.0 Introduction 

Communication is essential to the human condition. We communicate with one another in 

several different modes such as talking, writing, reading, listening, and gesturing. However, speech 

is the most common means of communication in humans. Speech is produced by a talker, sound 

waves are transmitted through the air, and eventually perceived by a listener. Speech is a highly 

modulated signal across time in frequency regions and as a function of energy. A large amount of 

informational value is concentrated in relatively few spectro-temporal regions. Speech also is a 

highly redundant signal allowing communication in complex sound environments. Some spectro-

temporal regions survive noise well and, if they can be detected and integrated, often contain 

enough information to allow successful communication in degraded listening environments 

(Mattys, Brooks, & Cooke, 2009). There are numerous factors that can affect the transmission of 

speech such as background noise, room reverberation, hearing loss, distortions in hearing aids or 

other communication devices, speech material, and speaker. As a result of interrupted transmission 

of speech; speech audibility, speech intelligibility, and speech quality will be impacted in varying 

degrees depending on the strength of those factors. 

Generally, the amount of sound that is audible is determined from a physiological point of 

view. The terms speech intelligibility and speech quality often are used interchangeably but, in 

fact, have different meanings. Speech intelligibility refers to the ability of the listener to identify 

the word or set of words that were produced. Speech understanding refers to how well speech 

conveys the meaning to a listener, i.e., the amount of speech items that are recognized correctly. 

Speech quality refers to the quality of the reproduced speech signal with respect to the amount of 

audible distortions. 
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In audiology research and clinical practice, most speech materials used are read-speech 

material which have been deliberately clearly spoken. These materials are referred to as clear 

speech. Clear speech typically is produced when a talker believes that a listener has difficulties in 

perceiving the speech due to the presence of background noise, a hearing loss, or having a different 

native language. Clear speech is distinct from conversational speech which is produced during 

everyday communication. In general, clear speech is louder, slower, carefully pronounced, and has 

longer pauses between words than conversational speech. 

Speech materials may consist of single words and in these cases the significance of clearly 

spoken material versus a conversational presentation will not be particularly relevant. In sentence-

length or longer materials, the difference between clear speech and conversational speech will be 

relevant and performance may impact research findings and clinical recommendations. In the field 

of Audiology, speech materials were created for diagnostic purposes. The use of clear speech 

created a controlled condition that could be used to measure relative differences between ears or 

between time points to identify specific pathological conditions in patients. 

The use of these original materials has been extended to use in assessing treatment choices 

(e.g., signal processing in amplification systems), assessing treatment (e.g., auditory training), and 

are used in research in the development and assessment of new signal processing to be 

implemented in amplification systems. In these applications, the face validity of using clear speech 

comes into question. The treatments being applied or technologies being developed are for use in 

understanding conversational speech. The rationale that relative differences are still what are of 

interest may not be supported since the features of conversational speech (lower fundamental 

formant frequency values, relatively less high frequency energy, shorter pause intervals, faster 



 3 

speaking rates, and co-articulation) may interact with various signal processing strategies 

differently from clear speech. 

There are several studies examining acoustic comparisons of clear and conversational 

speech samples in many languages. Clear speech generally is slower and more precisely articulated 

than conversational speech.  In the English language, the acoustic information of clear speech is 

different from that of conversational speech in terms of static cues (spectral, intensity, and temporal 

cues) and dynamic cues (spectro-intensity, tempo-intensity, and spectro-temporal cues) (Byrd & 

Tan, 1996; Krause & Braida, 2002, 2004; Picheny, Durlach, & Braida, 1986). Because of these 

acoustic differences between clear and conversational speech, audibility might be different and, in 

turn, might impact observed and predicted speech intelligibility. Howell and Kadi-Hanifi (1991) 

demonstrated that  read-speech material cannot represent spontaneous speech acoustically (Howell 

& Kadi-Hanifi, 1991). 

In this document, several topics will be discussed: the characteristics of clear speech, the 

characteristics of conversational speech, the acoustic differences between them, speech 

intelligibility prediction indices such as the Articulation Index (AI), Speech Transmission Index 

(STI), Speech Intelligibility Index (SII), and spectrotemporal modulation index (STMI). This 

review will generate questions related to the impact of using different speech materials to 

characterize speech understanding. Specifically, will characteristic differences in speech materials 

be shown in measured and predicted speech intelligibility? 
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2.0 Speaking Styles 

2.1 Clear Speech 

Clear speech is a speaking style that is adopted by a talker to deliberately produce clear 

speech, and it typically is produced when a talker believes that a listener has difficulties perceiving 

the speech due to the presence of background noise, a hearing loss, or having a different native 

language. Read-speech material can be referred to as clear speech; and the majority of speech 

materials used in audiology research and clinical practice are read-speech. In general, clear speech 

is slower and more precisely articulated than conversational speech because a talker attempts to 

reach the optimal position for a speech sound and eliminates the effects of coarticulation where 

words are linked together and a phoneme starts to possess different characteristics as a result of 

surrounding phonemes. Therefore, several of the phonological features of a speech sound, 

especially in sentence length materials, are more precisely produced in clear speech (Ferguson & 

Kewley-Port, 2007). 

For many years, acoustic comparisons of clear speech and conversational speech have been 

investigated. Clear speech typically has advantages over conversational speech due to a decreased 

speaking rate, longer and more frequent pauses, an expanded formant frequency range, greater 

intensity (sound pressure levels), more salient stop releases, increased energy in the 1-3 kHz range 

of the long-term speech spectrum, increase in modulation depth of low frequency modulations of 

the intensity envelope, and expanded vowel spaces. 

The average intelligibility of clear speech is greater than that of conversational speech 

across talkers and across groups of listeners including listeners with normal hearing (Ferguson, 
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2004; Krause & Braida, 2002; Maniwa, Jongman, & Wade, 2008), listeners with hearing loss 

(Ferguson, 2012; Picheny, Durlach, & Braida, 1985; Schum, 1996; Uchanski, Choi, Braida, Reed, 

& Durlach, 1996), listeners with simulated hearing loss, and listeners using cochlear-implants (Liu, 

Del Rio, Bradlow, & Zeng, 2004). 

2.2 Conversational Speech 

Conversational speech is speech produced during daily communication; therefore, the term 

conversational speech applies to the type of speech produced under casual or typical circumstances 

when no special speaking effort or instruction is made (Uchanski, 2005). Conversational speech 

sometimes is called plain speech because it is the most common and natural verbal communication. 

Words are produced fluently and are connected together. Coarticulation effects occur frequently 

due to the short amount of time for articulators to move across so many positions. The term reduced 

speech sometimes is used to refer to sounds being deleted or produced less clearly than in careful 

(clear) speech and to speech with syllables or words deleted which mostly occur in casual 

conversation. Therefore, with this speaking style, speech typically fluctuates within speakers, 

across speakers, and in different acoustic environments. 

2.3 Acoustic Differences Between Clear and Conversational Speech 

In this section, the perceptual and acoustic changes that occur when a talker changes from 

a conversational to a clear speech speaking style will be outlined. 
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Studies have examined acoustic changes between clear speech and conversational speech 

not only in the English language, but also in other languages. The focus of this document will 

primarily be on studies investigating the English language. The intelligibility of clear speech is 

greater than that of conversational speech in most cases (Payton, Uchanski, & Braida, 1994; 

Picheny et al., 1985). This finding also is consistent with another study in the Telugu (South 

Indian) language (Durisala, Prakash, Nambi, & Batra, 2011). The investigators compared 

characteristics of clear speech and conversational speech in the Telugu and found that clear speech 

possessed higher fundamental frequency (F0), greater intensity, longer duration, higher consonant-

vowel ratio (CVR), and greater temporal energy than conversational speech; and concluded that 

these acoustic properties contributed to higher intelligibility in clear speech. 

The acoustic properties of speech can be sorted into three dimensions: intensity (i.e., 

amplitude), frequency (i.e., spectral), and time (i.e., temporal). When these dimensions interact 

with one another, dynamic cues are created: intensity and frequency, spectro-intensity cue; 

intensity and time, tempo-intensity cue; and frequency and time, spectro-temporal cue. 

2.3.1 Intensity Domain 

Clear speech is significantly more intense than conversational speech (Picheny et al., 1985, 

1986). Picheny and colleagues reported that clear speech usually is produced at a level 5 to 8 dB 

greater than conversational speech (Picheny et al., 1986). Durisala et al. (2011) also found that the 

intensity of clear speech is relatively 5.5 dB higher than that of conversational speech. However, 

in most experiments, the overall RMS levels of clear speech and conversational speech were 

equated; therefore, the overall level difference cannot be the factor contributing to the higher 

speech intelligibility in clear speech (Uchanski, 2005). 
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2.3.2 Spectral Domain 

When comparing clear and conversational speech, the spectral domain includes spectral 

cues resulting from resonances (i.e., formants) of the vocal tract during production of speech that 

differentiate the two types of speech. Spectral cues help in vowel perception. The vowel perception 

is dependent on the spectral pattern (i.e., spacing between formants). Spectral cues also are helpful 

for the perception of fricatives (such as /s/, /z/, /v/, /f/) which usually have more energy in the 

speech spectrum above 4,000 Hz. Figure 1 shows the spectrogram (the pattern of speech acoustics 

along three dimensions including time, frequency, and intensity) of /asa/ spoken by a female talker. 

The frequency range of the /s/ sound is from 5,000 to 10,000 Hz with the frequency energy around 

8,000 Hz (darkest area). On the other hand, the surrounding vowel /a/ has the frequency energy 

below 2,000 Hz. 

 

Figure 1 Spectrogram of /asa/ 
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Time is represented on the x-axis, while frequency is represented on the y-axis. Intensity 

is represented by the darkness of the areas within the spectrogram. 

2.3.2.1 Fundamental Frequency (F0) and Formant Frequencies 

Fundamental frequency (F0) is a measure of pitch that can be seen in a spectrogram. 

Bradlow and colleagues (2003) investigated speech intelligibility in sentence-length speech 

materials of children with learning disability to perceive compared to that of children without 

learning disability (i.e., control group). Specifically, they tested if listeners could derive substantial 

benefit from the acoustic-phonetic cue enhancements found in naturally-produced clear speech. In 

their experiment, they included speaking style (naturally-produced clear speech vs conversational 

speech) and signal-to-noise ratios (-4 dB vs -8 dB), and talker (male vs female) as variables that 

varied among participants. They also conducted an acoustic analysis of their stimuli to speculate 

whether there were distinct characteristics (between the two speaking styles) that might be 

responsible for speech intelligibility benefits. One of the measures was comparison between the 

fundamental frequency of clear speech and conversational speech. The result of this analysis was 

consistent with a previous study by Picheny et al. (1986) that found that clear speech exhibited an 

increase in mean F0 and F0 range for both talkers relative to conversational speech. For clear 

speech, the mean F0 was increased by 1.12 and 5.43 semitones, and F0 range was increased by 

6.23 and 5.81 semitones, for male and female talkers, respectively (Bradlow, Kraus, & Hayes, 

2003). Experimental results also showed that both groups of children received the clear speech 

benefit (i.e., the children had higher speech intelligibility scores for clear speech than 

conversational speech), and the benefit became larger when the children listened to a female talker 

rather than a male talker. It can be summarized that clear speech generally has a relatively higher 

fundamental frequency (F0) value and a wider range of F0 than conversational speech (in other 
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words, conversational speech has relatively lower F0 values than clear speech). However, it is 

unlikely that a simple increase in F0 in clear speech completely explains the speech intelligibility 

advantage over conversational speech. The increase in F0 in clear speech occurs due to an increase 

in vocal effort that attempts to increase relative intensities of higher frequency components in the 

speech spectrum (Uchanski, 2005). Clear speech additionally shows expanded vowel formant 

frequencies (Bradlow et al., 2003; Picheny et al., 1986). Formant frequencies also are different in 

clear speech compared to conversational speech (Ferguson & Kewley-Port, 2007). Clear speech 

exhibited an increase in F1 and F2 ranges relative to conversational speech (Bradlow et al., 2003). 

2.3.2.2 Long-Term Average Speech Spectrum (LTASS) 

Compared to conversational speech, clear speech has higher energy at higher frequencies 

for the long-term speech spectrum (LTASS) which leads to a decrease in spectral balance (Krause 

& Braida, 2004). In other words, conversational speech has less relative energy above 1000 Hz. 

The authors concluded that poorer speech perception in conversational speech was due to this lack 

of high frequency information inherent in this type of speech production. This finding also is 

consistent with another study that investigated the acoustic characteristic differences between 

spontaneous speech and read speech and how they affected speech recognition (Nakamura, Iwano, 

& Furui, 2008). The researchers used a larger-scale speech corpora consisting of speech with 

various speaking styles. They found that the spontaneous speech showed a reduction of spectral 

space compared to that of read speech (meaning that the spontaneous speech has a shorter speech 

spectrum than the read speech), and they concluded that spectral space is one of the major 

contributing factors for speech recognition (Nakamura et al., 2008). The importance of the 

frequency spectrum has been verified by the speech intelligibility index (SII) which is an index 
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that can be used to quantify the relationship between speech audibility and speech intelligibility. 

Each frequency band contributes different amounts of speech intelligibility. 

2.3.3 Temporal Domain 

Speech is a temporally distributed signal meaning that the cues to individual phonetic 

contrasts in speech are distributed in time. Within this domain, clear and conversational speech are 

drastically different. When speech is spoken in different styles, durational cues also are inherently 

changed. These cues include silent gaps between phonemes, onset of the following phoneme of 

words, and transition between phonemes. Temporal cues are helpful for identifying the presence 

or absence of voicing in consonants (House, 1961) and voiceless fricatives have longer duration 

than their voiced counterparts (Baum & Blumstein, 1987). These cues help to differentiate the 

perception between fricatives and affricates (Kluender & Walsh, 1992; Raphael & Dorman, 1980). 

2.3.3.1 Speaking Rate 

The role of speaking rate has been examined by several investigators. Clear speech is 

significantly slower in speaking rate and contains lengthened pauses between words while 

conversational speech ranges between 160-200 words per minute or 3-4 syllables per second which 

is twice as fast as clear speech (Picheny et al., 1986). This is because there are fewer pauses during 

conversational speech and the overall articulation rate increases.  

Picheny et al. (1986) reported that clear speech has speaking rates of 90 to 100 words per 

minute (WPM), while conversational speech has speaking rates of 160 to 200 WPM. The authors 

concluded that the reason why clear speech had a slower speaking rate was because of the increase 

in  duration of pauses and increase in duration of sound segments. In 2003, Bradlow and colleagues 
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analyzed their sentence speech materials to capture if there were any modifications between clear 

speech and conversational speech that would account for the speech intelligibility differences 

between clear speech and conversational speech between the group of children with learning 

disability and the control group. They analyzed the overall speaking rates of clear speech and 

conversational speech of each talker (male vs female), and they found that both talkers showed 

significant decreases in speaking rates when clear speech was produced; however, they speculated 

that the female talker decreased the speaking rate from conversational speech to clear speech far 

more than male talker (Bradlow et al., 2003). 

Picheny and colleagues (1987) extended their previous studies by focusing on the role of 

speaking rate. They artificially slowed down the rate of conversational speech until its overall 

duration was equal to that of clear speech. They also compressed clear speech so that its overall 

duration was equal to that of conversational speech. The results showed that shortening the 

duration of clear speech decreased the intelligibility of the sentences, whereas expanding the 

duration of conversational speech did not improve the intelligibility of the sentences. Uchanski et 

al. (1996) analyzed durational differences between conversational and clear speech, and found 

differences in phonemic segmental durations between the conversational speech and clear speech. 

They used a non-uniform time-scaling technique to artificially slow down the conversational 

speech duration so that its phonemic segmental durations were equal to that of clear speech. They 

also used the same time scaling technique to compress the clear speech duration so that it was 

equal in segmental duration to the conversational speech. Their results showed that slowing down 

the conversational speech resulted in poorer speech intelligibility. Also, speeding up the clear 

speech resulted in poorer intelligibility than the non-processed conversational speech. It can be 
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concluded that the underlying benefits of clear speech versus conversational speech is independent 

of rate.  

Talkers can be trained to produce a form of clear speech at normal conversational rates 

(Krause & Braida, 1995). In 2002, Krause and Braida further investigated the role of speaking rate 

by training talkers with significant public speaking experience to naturally produce clear speech 

and conversational speech at slow, normal, and quick rates. These talkers were trained to produce 

nonsense sentence materials. Each sentence consisted of five to eight words, and key words could 

be noun, verb, and adjective. As a result, they found that clear speech consistently provided an 

intelligibility advantage over conversational speech regardless of speaking rates (see Table 1). For 

example, clear speech with normal speaking rate was intelligible at 59 percent key words correct 

compared to conversational speech at the same speaking rate which was intelligible at 45 percent 

correct (i.e., clear speech had a 14-point advantage over conversational speech at a normal 

speaking rate). Clear speech with slow rate (63% correct) also obtained a 12-point advantage over 

conversational speech with a slow rate (51% correct). At the quick speaking rate, although clear 

speech had higher intelligibility than the conversational counterpart (46% and 27%, respectively), 

they reported that the speaking rate for clear speech (218 WPM) was significantly slower than the 

speaking rate for conversational speech (269 WPM); therefore, there was no statistical advantage 

of clear speech over conversational speech for quick speaking rate. The findings suggest that 

acoustical factors other than reduced speaking rate are responsible for the high intelligibility of 

clear speech (Krause & Braida, 1995, 2002). Additionally, the study demonstrated that clear 

speech does not need to be slow. From this evidence, we can conclude that speaking rate is not a 

contributing factor for clear speech’s intelligibility advantage over that of conversational speech. 
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Table 1 Speech Intelligibility of Each Speaking Mode (Krause & Braida, 2002) 

Speaking Styles 

Speaking Rates 
Clear Speech Conversational Speech 

Slow 63% 51% 

Normal 59% 45% 

Quick 46% 27% 

2.3.3.2 Pauses 

Clear speech typically has more frequent and longer pauses than conversational speech. A 

pause usually is defined as any silent interval (or gap) between words. There are some studies 

examining the role of pauses. In Picheny et al.’s (1986) study, they defined a pause as any silent 

interval between words that was greater than 10 ms and excluded the silent intervals preceding 

word-initial plosives. In Bradlow et al.’s (2003) study, they defined a pause as any period of silence 

of at least 5 ms instead of using the 10 ms criterion because the long-duration cutoff would exclude 

several periods of silence of an intentional pause. Bradlow et al (2003) excluded any silence prior 

to word initial stop consonants because it was impractical to separate a true pause from the stop 

closure. Additionally, the investigators calculated the average pause-to-sentence duration ratio for 

each sentence. Talkers increased the number of pauses, the average pause duration, and the average 

pause-to-sentence duration ratio in clear speech relative to conversational speech (Bradlow et al., 

2003). This finding was also consistent with other studies reporting that the number of occurrences 

of pauses and the average duration of pauses increased for clear speech (Krause & Braida, 2004; 

Picheny et al., 1986).  We can summarize that clear speech contains lengthened pauses between 

words while conversational speech contains fewer pauses. As mentioned above in the speaking 
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rates, one possible reason for conversational speech to have higher speaking rates (about 160-200 

WPM or 3-4 syllables per second) is because of shorter and fewer pauses (Picheny et al., 1986). 

However, the relationship between occurrences of pauses and speech intelligibility is not 

certain, and differences in pause structure do not necessary account for differences in speech 

intelligibility (Picheny et al., 1986; Uchanski et al., 1996). Pauses might help to increase speech 

intelligibility because they provide some additional time for a listener to process the information, 

but it is not always the case that the speech with longer pauses would be understood better. 

Therefore, the existence of pauses seems unlikely to be a contributing factor for speech 

intelligibility differences between clear speech and conversational speech.  

Ronnberg et al. proposed that perception of running speech involves simultaneous 

processing and storage of auditory information. This idea might be supportive of why clear speech 

has increased advantage over conversational speech because clear speech allows listeners more 

time for processing clear auditory information. Similar to vision, you likely perceive a clear image 

better than a blurred one. 

2.3.3.3 Vowel Duration 

Some acoustic studies showed that all vowels are enhanced (lengthened) when clear speech 

is produced, i.e., vowel duration increases. The long vowels are lengthened more than their short 

counterparts. In other words, clear speech enhances the length contrast between long and short 

vowels rather than just lengthening all vowels by the same amount (Krause & Braida, 2009).  

Table 2 summarizes the differences between clear speech and conversational speech for 

the domains discussed thus far including intensity, spectral characteristics, and temporal 

characteristics. In the next section combinations of these speech characteristics will be reviewed. 
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Table 2 Overview of Acoustic Differences between Clear and Conversational Speech 

Cues Clear Speech Conversational Speech 

Intensity • Produced at 5-8 dB greater • Lower fundamental formant 

frequency 

Spectral • Expanded vowel formant frequencies 

(decrease in spectral balance) 

• Less relative energy above 1kHz 

• Less plosive bursts intensity 

(especially in word final position) 

Temporal • Slower speaking rate: 90-100 wpm 

• Phonemic segmental duration 

increased 

• Pause durations increased 

• Greater temporal amplitude 

modulation 

• Faster speaking rate: 160-200 wpm  

• Faster overall rate of articulation 

• Fewer pauses, smaller gaps 

• Boundaries between syllables are not 

distinct 

• Shallow depth of modulation 

2.3.4 Joint Domains 

2.3.4.1 Spectro-Intensity and Spectro-Tempo-Intensity Cues 

Temporal Envelope Modulations and Temporal Fine Structures are examples of joint 

spectro-intensity and spectro-tempo-intensity domains.  Temporal features of speech can be 

divided into three parts: envelope (2-50 Hz), periodicity (50-500 Hz), and temporal fine structure 

(600 Hz and above). The temporal envelope’s relative amplitude and duration are cues and 

translate to manner of articulation, voicing, vowel identity and prosody of speech. Periodicity 

provides information about whether the signal is primarily periodic or aperiodic, e.g., whether the 

signal is a nasal or a stop phoneme. Temporal fine structure (TFS) is the small variation that occurs 
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between periods of a periodic signal or for short periods in an aperiodic sound and contains 

information useful to sound identification such as vowel formants. Both temporal envelope and 

temporal fine structure cues are useful for speech intelligibility (Rosen, 1992). 

Krause & Braida (2004) investigated the effect of temporal modulation between speaking 

styles (clear speech vs conversational speech) with various speaking rates (normal, slow, and fast 

speaking rates). They found that the temporal envelope of clear speech with a slow speaking rate 

has a higher peak in the 1-3 Hz region than that of conversational speech with a normal speaking 

rate, but the increase in modulation is not associated with the change in speaking rate as it showed 

that both of the envelopes of clear speech with normal and slow speaking rates were similar in how 

they differed from that of conversational speech with normal speaking rate  (Krause & Braida, 

2004). When comparing the envelopes between two speaking styles with the normal speaking rate, 

there was an increase in the modulation’s depth for low modulation frequencies which might 

contribute to speech intelligibility in clear speech (Krause & Braida, 2004). The greater the depth, 

the greater the speech intelligibility. 

Liu and colleagues (2004) also conducted a study investigating global acoustic properties 

of clear speech and conversational speech and the relationships between speech intelligibility and 

those properties. Temporal envelope and temporal fine structure were properties that were 

examined. The results indicated that temporal envelope carries acoustic cues that contribute to 

increased clear speech intelligibility, while temporal fine structure is important for speech 

recognition in noise for both speaking styles (Liu et al., 2004). 

There have been additional studies confirming that the most prominent cues affecting the 

speech understanding differences between clear speech and conversational speech are temporal 

envelope (in high SNR) and temporal fine structure (in low SNR). These two parameters contribute 
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to the advantage of clear speech over conversational speech (Liu & Zeng, 2006; Lorenzi, Gilbert, 

Carn, Garnier, & Brian, 2006). 

2.3.4.2 Spectro-Temporal Cues 

Because speech is spontaneous and dynamic, the stream of speech sounds varies 

dynamically, and each acoustic feature changes simultaneously. There is a reason to believe that 

not only one acoustic cue is responsible for the clear speech intelligibility advantage. There are 

some experiments showing that the combinations of multiple features actually are responsible for 

the speech intelligibility benefit of clear speech over that of conversational speech.  

Kain and colleagues (2008) investigated the relationship between combinations of acoustic 

characteristics and speech intelligibility of clear speech and conversational speech. They 

introduced the new approach by combining some features of clear speech and conversational 

speech. They extracted clear speech features and replaced them into the conversational speech 

material, therefore, creating a new kind of speech material called Hybrid. For hybrid speech, there 

were two conditions: HYB-DSP, spectral properties, phoneme sequences, and duration were 

manipulated; and HYB-EFN, speech energy, fundamental frequency (F0), and non-speech features 

(e.g., pauses) were manipulated. In the analysis, they compared speech intelligibility of clear 

speech, conversational speech, and hybrid speech. Figure 2 shows the results of the study 

demonstrating that the intelligibility of HYB-DSP speech is significantly higher than baseline 

conversational speech, but there is no significant difference between HYB-EFN and baseline 

conversational speech. Consistent with other literature, clear speech has higher speech 

intelligibility than baseline conversational speech.  They further examined the intelligibility of 

hybrid speech with other possible sets of clear speech’s acoustic features: HYB-D, uses only 

phoneme durations from clear speech; and HYB-SP, uses a combination of spectral features and 
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phoneme sequences from clear speech,  Figure 3 shows that the combination of short term 

spectrum and duration (HYB-DSP) yielded higher speech intelligibility than other hybrid 

conditions that replaced only spectrum, and only duration (Kain, Amano-Kusumoto, & Hosom, 

2008). The speech intelligibility of this combination also approximately reached the same level of 

correctness to that of clear speech. We can conclude that combinations of spectral and temporal 

cues are responsible for increased speech intelligibility when comparing clear speech and 

conversational speech. 

 

Figure 2 Results from Kain et al., 2008 showing Speech Intelligibility Scores for different conditions: 

baseline-conversational (CNV), HYB-EFN, HYB-DSP, and clear speech. The significant different results were 

marked with an asterisk with permission from AIP Publishing. 
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Figure 3 Results from Kain et al., 2008 showing Speech Intelligibility Scores using combination of features 

baseline-conversational (CNV), HYB-DSP HYB-D, HYB-SP, and clear speech. The significant different 

results were marked with an asterisk with permission from AIP Publishing. 

 

Recently, a study looked at an entire formant contour (i.e., the pattern of change in formant 

frequencies across a single word or sentence). The researchers modified the formant contour 

(preserving duration cues of clear speech) of conversational speech to match it with that of clear 

speech and found that this manipulation increased speech intelligibility of the modified 

conversational speech (Amano-Kusumoto, Hosom, Kain, & Aronoff, 2014). They conducted a 

study examining the acoustic features contributing to speech intelligibility and improving speech 

intelligibility of conversational speech by approximating clear speech features. They combined 

acoustic features of clear speech and conversational speech by using a hybridization algorithm, 

and the results showed that there are significant improvements over conversational speech stimuli 

of about 11-23% in sentence-level stimuli. 



 20 

From this evidence, there is a reason to believe that not only spectral cues alone or temporal 

cues alone are responsible for the clear speech intelligibility advantage, but the combination of 

these acoustic cues is important for an increase in speech intelligibility of clear speech over that of 

conversational speech.  Table 3 provides a summary of the speech cues discussed in this section 

and highlights their importance to speech intelligibility. 

 

Table 3 Importance of Acoutic Cues 

Domain Importance Features 

Intensity • Perception of vowels 

• Perception of fricatives 

• Amount of energy e.g., plosive burst  

Spectral • Perception of manner of phonemes 

e.g., voiced and nasality 

• Fundamental formant frequencies 

• Speech energy 

• Vowel space 

Temporal • Perceptual distinction between 

affricates and fricatives 

• Speaking rates 

• Numbers and durations of pauses 

• Articulation rates 

Spectro-

Intensity 

• Identification of voiceless stop 

consonants 

 

Spectro-

temporal 

• Perception of place of articulation • Formant transitions 

• Transition durations 

• Voice onset time 

Tempo-

intensity 

• Identification of stop consonant • Envelope of amplitude fluctuation 

• Depth of modulation frequency 
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Table 3 Importance of Acoutic Cues (continued) 

Domain Importance Features 

Spectro-

tempo-

intensity 

• Ability to understand speech in 

background noise 

• Temporal fine structures 

 

The impaired auditory system has some degree of difficulty using the rapidly changing 

formant transitions as a cue to speech perception (Zeng & Turner, 1990; Turner, Smith, Aldridge, 

& Steward, 1997). Normal hearing listeners mostly rely on the formant transition cue to identify a 

target phoneme. However, there is a study showing that listeners with hearing impairment do not 

perform differently from listeners with normal hearing when using formant transitions in quiet 

conditions (Hedrick & Younger, 2007). 

Besides formant contours (i.e., formant transitions), voice onset time (VOT) is one of the 

spectro-temporal cues. VOT is the duration of the of time between the release of a plosive (i.e., a 

stop consonant) and the beginning of voicing or vocal fold vibration. From Picheny et al.’s (1986) 

study, conversational speech showed shorter VOT compared to clear speech. 

Spectro-temporal cues are useful for both individuals with normal hearing and with hearing 

loss to understand speech and are salient features for the clear speech intelligibility advantage over 

conversational speech. Models predicting speech intelligibility that take spectro-temporal 

properties into account will be reviewed in light of the potential importance of this feature in 

differentiating clear and conversational speech.  

The spectro-tempo-intensity cue (temporal fine structure) is a cue that affects a listener’s 

ability to understand speech in background noise for individuals with normal hearing. The 

temporal fine structure cue helps listeners maintain speech intelligibility in noisy situations; 
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however, it appears that listeners with hearing loss are unable to use this temporal fine structure 

cue to perceive speech in background noise (Qin & Oxenham, 2003; Lorenzi et al., 2006). 

Therefore, this cue might not be of interest to investigate since this cue is not useful for individuals 

with hearing loss who are a population of future interest in this area of work. 
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3.0 Prediction of Speech Intelligibility 

The auditory periphery is composed of the outer ear and middle ear which pre-filter 

acoustic stimuli and attenuate some of the stimuli, then the stimuli is sent to the inner ear where 

the basilar membrane is situated. There are hair cells along the basilar membrane that are tuned by 

frequencies (i.e., tonotopic organization). When these hair cells vibrate, they cause an   electro-

chemical potential difference that innervates an impulse firing an electrostatic signal along the 

auditory nerve fiber. This spectral-temporal representation of the acoustic stimuli is presented to 

the central nervous system and is transmitted to the brain which allows us to hear and understand 

the stimuli. 

Several computational models have been created to estimate how we would hear any 

speech signal and how much we would understand the signal through any signal processing 

techniques under various listening conditions. These computational models also allow us to test 

speech-algorithms for hearing aid signal processing development. 

Testing for speech intelligibility can be a time-consuming process and uses a lot of 

resources especially for diagnosis of hearing impairment. In order to make testing more efficient, 

the audibility index was created several decades ago. In general, we use the term audibility index 

for any index defining speech intelligibility based on importance-weighted measurements of the 

audible speech spectrum (i.e., determining the amount of sound available to a listener). The most 

renowned indices are the Articulation Index (AI) and its successor, the Speech Intelligibility Index 

(SII). 

There are several underlying factors contributing to speech understanding that need to be 

incorporated into a speech intelligibility predictor’s algorithm. Speech styles are one of them. As 
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discussed previously, the listeners’ speech intelligibility performance is significantly reduced for 

conversational speech compared to clear speech. This is due to the fact that conversational speech 

is significantly different from clear speech acoustically. Therefore, it is important for researchers 

to carefully select speech materials to be used in testing that can closely represent speech in the 

daily communication that individuals encounter if the goal is to estimate how the individual will 

perform in real-world conditions. The majority of speech perception studies use clearly spoken 

words, read sentences or passages to be able to control for the acoustic characteristics of the 

stimuli. However, they do not fully represent speech that individuals encounter in their daily 

communication. In addition, several models that predict or estimate speech intelligibility are 

developed using clear speech stimuli. Therefore, it is questionable whether those models would be 

capable of providing an accurate prediction when conversational speech is of interest. In this 

document, we will discuss some of the main and widely used models. Some of them might be able 

to account for some of the acoustic differences between clear and conversational speech and be 

able to predict speech intelligibility of conversational speech accurately. We will examine whether 

some of the salient acoustic properties that differentiate the speech intelligibility of clear and 

conversational speech would be captured in predicted speech intelligibility generated by these 

models. 

3.1 Articulation Index (AI) 

The Articulation Index is the best-known index for estimating speech intelligibility. It was 

originally invented by Fletcher in the Bell Laboratories in the 1920s, and it was developed for 

about thirty years until the Articulation Index was published by Fletcher and Galt in 1950. When 
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Fletcher retired, research focused on the Articulation Index was discontinued. As a consequence, 

the Fletcher and Galt version of the Articulation Index never was used in real practice. The first 

Articulation Index that was used in practice was the American National Standards Institute 1969 

version (ANSI, 1969) which was a simpler version of the Articulation Index calculation used in 

communication research during World War II. In 1947, French and Steinberg published a review 

of speech intelligibility research and its potential problems, and they identified that the Audibility 

Index could be used to predict speech intelligibility (French & Steinberg, 1947). 

The ANSI S3.5-1969 version of the Articulation Index (ANSI, 1969) calculates the 

effectiveness of the speech communication channel by providing an index between 0 and 1. The 

frequency range is between 150 and 8000 Hz, and it is divided into twenty bands whose frequency 

limits are chosen based on the importance of that frequency to the long-term average speech 

spectrum (LTASS) (French & Steinberg, 1947). The width of each frequency band is adjusted to 

make the bands equal in importance. These adjustments were made on the basis of intelligibility 

tests with low-pass and high-pass filtered speech, which revealed a maximum contribution from 

the frequency region around 2500 Hz. Auditory masking also is accounted for within each octave 

band within the Articulation Index. For the Articulation Index, using two key assumptions: 1) each 

frequency band contributes independently and 2) the contribution of each band is dependent on 

the effective signal-to-noise ratio (SNR) within that band. Therefore, the speech and noise signals 

must be defined to obtain an accurate calculation. When conditions are optimal, each frequency 

band would equally contribute 5% to the Articulation Index’s result of 1 (which means the signal 

is fully audible to a listener). On the other hand, when conditions are not optimal, only part of the 

speech signal would be transmitted in each frequency band resulting in the Articulation Index’s 

result of less than 1 (a less audible signal). 
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An Articulation Index of 1 is not required for 100% understanding (Killion, Mueller, 

Pavlovic, & Humes, 1993). To convert the Articulation Index into a predicted speech intelligibility 

(i.e., speech understanding), an articulation-to-intelligibility transfer function must be applied. The 

transfer function assumes that the predicted speech intelligibility depends on the proportion of time 

the speech spectrum exceeds the audibility threshold or the noise. The Articulation Index can 

provide accurate predictions of average speech intelligibility over a wide range of conditions  

including broadband noises (Egan & Weiner, 1949; Miller, 1947), high- and low-pass filtering 

(Fletcher & Galt, 1950) and distortions of the communication (Beranek, 1947). It also has been 

used to model the loss of speech intelligibility resulting from sensorineural hearing impairments 

(Fletcher, 1952, 1953; Humes, Dirks, Bell, Ahlstrom, & Kincaid, 1986; Ludvigsen, 1987). 

However, several studies have found that the Articulation Index overestimates the performance of 

individuals with hearing loss (Egan & Weiner, 1949; Fletcher & Galt, 1950; Hulsch, 1975). In 

addition, the Articulation Index is less effective under nonlinear distortions and reverberation 

conditions. 

3.2 Speech Intelligibility Index (SII) 

The Speech Intelligibility Index (SII) was created to overcome some of the difficulties 

found in the Articulation Index. Compared to the Articulation Index, the SII provides a more 

general framework which allows users to flexibly define some basic input variables such as speech 

signal level, background noise level, the listener’s auditory threshold, and the reference point for 

the measurement (i.e., at the ear drum level or free-field level). The SII also corrects for upward 

spread of masking and high presentation levels. Unlike the Articulation Index that used 20 bands 
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of differing sizes, the SII provides some options for frequency bands with equal sizes to use in its 

calculation (i.e., octave bandwidths, equal bandwidths, 1/3 octave bandwidths, and critical 

bandwidths). The SII also provides frequency importance functions (FIFs) which are used to 

determine the contribution to speech intelligibility of each frequency band. 

The American National Standard’s Methods for the Calculation of the Speech Intelligibility 

Index (ANSI, 1997) is a mathematical method of quantifying loss of speech audibility and it has 

been used to predict the speech recognition performance of individuals with normal hearing and 

hearing loss. It has been developed over time and its complexity has grown to improve  accuracy 

in its prediction. The SII is currently the most widely used audibility index in both clinical 

audiology and hearing research. It provides a numerical expression of the audibility of an average 

speech signal based on the intensity of the speech signal of interest, the listener’s hearing 

thresholds, and noise levels. The numerical value ranges from 0 to 1 representing the proportion 

of speech information available to a listener. The value of 0 indicates that none of the speech 

information is audible to the listener, while the value of 1 indicates speech information is fully 

audible to the listener. The general SII formula is: 

𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑆𝑆𝑖𝑖𝐴𝐴𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Where Ii is the band-importance functions of the speech material of interest, Ai is the band 

audibility, and n is the number of frequency bands used in summation. In order to create a SII 

value, the band audibility coefficient and band-importance function are multiplied together for 

each frequency band, and then they are summed up across the total number of frequency bands 

used in the computational procedure (ANSI, 1997). There are several factors affecting the 

calculated SII value such as band-importance functions, hearing thresholds, noise levels, 

computational bands, types of stimuli, etc. The factor with the most impact on the calculation is 



 28 

the frequency-importance functions. They are determined by the amount of degradation in speech 

recognition or speech understanding that occurs when the target band is filtered out.  

The SII provides a way of quantifying the audibility of speech and its effect on 

intelligibility (ANSI, 1997). The SII is based on the assumption that speech intelligibility can be 

predicted from the amount of long-term-average speech spectra of the speech and background 

noise reaching the ear that is above the hearing threshold of the listener (Ching et al., 2013).  

Since the result of the SII calculation is the audibility, it cannot directly estimate or predict the 

average speech intelligibility. Therefore, another conversion is needed. A transfer function is used 

to translate audibility into predicted speech intelligibility. The shape of the appropriate transfer 

function (Sherbecoe & Studebaker, 2002; Studebaker & Sherbecoe, 1991, 1993; Studebaker, 

Sherbecoe, McDaniel, & Gwaltney, 1999) depends on the speech material (e.g., word level, 

sentence level). Several researchers have used the predicted values of the SII to determine the 

impact of audibility on a speech signal to the resulting speech intelligibility.  

Because the SII procedure is a simplified model of the auditory periphery, the procedure 

can be extended to include some conditions that are not accounted for in the standard procedure.  

Rhebergen and Versfeld (2004) proposed an extension of the SII called extended speech 

intelligibility index (ESII) to account for any fluctuations in the masking noise (Rhebergen & 

Versfeld, 2004) by dividing the SII calculation into short time frames in order to account for 

fluctuating noise. However, the ESII requires access to the target speech and the interfering noise 

separately and cannot be used in cases where the mixture is degraded or enhanced by some type 

of signal processing algorithm. This modification slightly increased the predicted values of the SII. 

This adapted version of the SII has not been used by other researchers.  
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Another SII modification was introduced by Kates and Arehart (2005) to improve the 

accuracy of estimating speech intelligibility under conditions of additive noise and peak-clipping 

and center clipping distortion. They believed that these conditions could affect speech 

intelligibility performance of individuals with hearing loss using hearing aids, and there is no 

metric that could successfully capture the change in speech intelligibility when these conditions 

take place especially in hearing aid or other communication systems (Kates & Arehart, 2005). 

Their goal was to accurately predict speech intelligibility under the effects of broadband noise and 

nonlinear distortion reproduced by hearing aids and other communication systems. They also 

validated the procedure in groups of individuals with normal hearing and hearing loss.  They found 

that the most effective procedure was to divide the speech signal into three amplitude-level 

regions: low (between 10 and 30 below the overall RMS), mid (between 0 and 10 dB below the 

overall RMS), and high (above the overall RMS); then compute the coherence SII separately for 

the signal segments in each region, and then estimate speech intelligibility from a weighted 

combination of the three coherence SII values. 

3.3 Speech Transmission Index (STI) 

Steeneken and Houtgast (1980) proposed the speech transmission index (STI) which is a 

physical method for evaluating the quality of speech-transmission channels. The STI value ranges 

from 0 to 1 (bad to excellent). The STI value of 1 indicates that a speech-transmission channel 

carries out the speech perfectly, i.e., the intact speech remains perfectly intelligible; while the value 

of 0 indicates that the speech information is completely lost when transferred through a channel. 

Similar to the SII, the STI is a monaural model that is based on the SNR in a number of frequency 
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bands. For the STI, the SNR in each band is related to the reduction of amplitude modulations 

caused by the transmission system. The reduction of modulations is determined by the decrease of 

the modulation index of sinusoidally modulated noise signals in different modulation frequency 

bands, divided into octave bands. Additionally, STI has transmission index values, similar to 

frequency-importance functions in SII, for weighting the contribution of each individual band to 

the STI value. However, there are some differences between the STI and the SII. The signal used 

in the STI is a speech-like signal (i.e., amplitude-modulated speech-shaped noise) rather than a 

real speech signal used in SII. The concept of the STI is that the speech intelligibility is related to 

the preservation of the spectral differences between the consecutive phonemes that is the temporal 

envelope of the speech. This means a decrease in speech intelligibility is associated with the 

reduction in the modulation depth of the temporal envelope. However, the STI calculation is 

simpler than that of SII because the SII accounts for upward spread of masking and hearing acuity 

(van Wingaarden & Drullman, 2008). Basically, to derive the STI value, the modulation depth of 

the signal in each frequency band is measured, multiplied by the transmission index value of each 

frequency band, and then the products are summed across frequency. The STI is highly correlated 

with speech intelligibility scores when the environment is degraded by noise, reverberation, and 

hearing loss. 

3.4 Speech Intelligibility Prediction Based on Mutual Information (SIMI) 

The speech intelligibility prediction based on mutual information (SIMI) (Jensen & Taal, 

2014) is a monaural speech intelligibility prediction approach that is based on mutual information 

between critical-band amplitude envelopes of a clean signal and a noisy/processed signal. This 
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method also predicts speech in noise when noise is not necessarily stationary. The authors expected 

that if the mutual information is zero, then the predicted intelligibility of the noisy signal will be 

zero, i.e., none of the noisy signal can be understood. On the other hand, if the noisy signal 

envelopes provide some information about the clean signal (i.e., mutual information is positive), 

the intelligibility of the noisy/processed signal would be at some level dependent on the amount 

of mutual information. The relationship between the mutual information and the intelligibility of 

the noisy signal was shown to be positively strong. However, there are some concerns about the 

model. First, the model compares amplitude envelopes between the clean signal and noisy signal. 

In reality, we do not have access to the same information in both conditions simultaneously, so 

this method is questionable. Second, the model developers aimed at simplicity by not mentioning 

the impact of band- importance functions. They assumed that each spectral band contributes 

equally. There are several studies that have addressed importance of frequency bands and they 

showed that each band contributed to speech understanding differently (ANSI, 1997; McCreery & 

Stelmachowicz, 2011; Pavlovic, 1994; Ricketts, Henry, & Hornsby, 2005; Steeneken & Houtgast, 

1999). This model has not been used in investigations outside of the investigator’s laboratory or 

in real world application. 

3.5 Spectro-Temporal Modulation Index (STMI) 

Although the Articulation Index (AI), Speech Intelligibility Index (SII), and Speech 

Transmission Index (STI) are the primary speech intelligibility prediction models that have been 

used widely, there is another method proposed for calculating speech intelligibility: the Spectro-

Temporal Modulation Index (STMI) (Chi, Gao, Guyton, Ru, & Shamma, 1999; Elhilali, Chi, & 
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Shamma, 2003). The STMI is a physiologically motivated model of auditory processing that is 

capable of measuring speech intelligibility and effects of noise, reverberation, and other distortions 

by assessing the integrity of both spectral and temporal modulations in a speech signal. Generally 

speaking, the STMI measures the changes in the auditory model output. Like the STI, the STMI 

has specific weighting functions for the speech spectrum. However, the STMI elaborates the STI 

in that it explicitly incorporates the joint spectro-temporal modulations of the speech signal into 

the calculation. The STMI can be derived directly from a speech sample by quantifying the 

difference between the spectro-temporal modulation content of the clean and noisy speech signals. 

First, the clean speech is analyzed, and its 4-D output is averaged over the stimulus duration to 

generate the 3-D template of the speech token. The noisy speech signal is then analyzed in the 

same way, and the outputs of both speech signals are subtracted (Figure 4). The prediction of STMI 

was validated by comparing to actual speech intelligibility performance of human subjects (Elhilali 

et al., 2003). As seen in their results, there is a good relationship between the STMI and the 

intelligibility scores (Figure 5). Thus, they proposed that the STMI is a method that can accurately 

measure speech intelligibility, especially in reverberant and noisy conditions. 

 

Figure 4 Schematic of the STMI Computation from a Speech Sample (Elhilali et al., 2003) with Permission 

from Elsevier. 
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Figure 5 Relationship between STMI and Speech Intelligibility Scores (Elhilali et al., 2003) with Permission 

from Elsevier. 

 

Although the STMI is not widely used, it is a model based on physiological findings in the 

primary auditory cortex and on psychoacoustical measurements of human sensitivity to spectral 

and temporal modulations. The model is validated showing that its prediction matches with the 

actual speech intelligibility performance. The model is sensitive to the joint modulations between 

spectral and temporal meaning and accounts for changes in the spectro-temporal content of the 

speech signals which are salient features contributing to speech intelligibility differences between 

clear speech and conversational speech although the model was not specifically developed for 

comparing speech styles. This model might be able to capture the differences in spectro-temporal 

features between clear speech and conversational speech, and therefore precisely predict the 

expected speech intelligibility of conversational speech, as well as that of clear speech. 

Table 4 provides a summary of the speech intelligibility models reviewed in this section. 

The type of measure and factors that are included in the measure are highlighted. 
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Table 4 Comparison between Speech Intelligibility Predictive Models 

Models Type of measure Factors including in the measure 

Articulation Index 

(AI) 

Static measure • Effective SNR within a number of bands 

• each band equally contributes 5% 

20 equally spaced bands 

Speech Intelligibility 

Index (SII) 

Static measure • Extend from AI 

• Various frequency band spacing 

• Assign weights to each band 

• Account for masking 

• Need transfer function to transform 

audibility to predicted intelligibility 

Speech Transmission 

Index (STI) 

Temporal measure • Indirect measure 

• Predict speech intelligibility loss due to 

channel effects 

Spectro-Temporal 

Modulation Index 

(STMI) 

Measure that 

accounts for 

physiological effects 

of the auditory 

periphery 

• Employs auditory model to allow the 

analysis of joint spectro-temporal 

modulations in speech to assess the effect of 

noise, reverberations, and other distortions 

• Sensitive to non-linear distortion and still 

works when multiple distortions occur 
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4.0 Summary and Statement of the Problem 

Speech materials used in the audiology clinic and the speech individuals encounter in their 

daily life are substantially different. It is of interest to examine the relationship between speaking 

style and predictions of speech intelligibility. The impact of speaking styles on predicting speech 

intelligibility performance is not well understood. As demonstrated in the literature, there are 

speech intelligibility performance differences between listening to clear speech and conversational 

speech. Currently, there are many researchers attempting to identify the salient features of clear 

speech that contribute to the speech intelligibility advantage over that of conversational speech.  

The literature points to spectro-temporal features (i.e., formant transition, duration of the formant 

transition, and voice onset time) of speech as one feature that might be responsible for the clear 

speech intelligibility advantage over conversational speech. Although the Articulation Index (AI), 

Speech Intelligibility Index (SII), and Speech Transmission Index (STI) are the primary speech 

intelligibility prediction models that have been used widely and validated, they only incorporate 

some of the static cues of speech with inclusion of either spectral or temporal features. They do 

not account for the dynamic cues like spectro-temporal cues which may be the salient contributing 

factors for speech intelligibility when comparing conversational and clear speech. In order to 

investigate the impact of speaking styles comprised of the same speech stimuli on predicting 

speech intelligibility, the features of the Spectro-temporal Modulation Index (STMI) make it a 

potentially more preferred model to accurately predict the speech intelligibility of both clear 

speech and conversational speech. It would be of interest to test the prediction of this model as 

compared to measured speech intelligibility performance of clear and conversational speech in that 
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the model is designed to account for the feature (e.g., spectro-temporal cues) that investigators 

have identified as a salient difference between these speech materials. 
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5.0 Research Question, Specific Aims, and Hypotheses 

Clarity of speech signals plays an important role in determining speech intelligibility, 

especially in noise. The clarity of speech signals can vary among speaking styles e.g., from clearly 

spoken (hyper-articulated) to conversationally spoken (hypo-articulated). Speaking styles can 

affect the perception of words and with different context the target word can be perceived 

differently (Vitela, Warner, & Lotto, 2013). There is flap reduction in conversational speech or 

reduced speech (Warner, 2005), meaning that the occurrence of brief tapping on the alveolar ridge 

with the tongue is minimized when conversational (or reduced) speech is produced. Conversational 

speech can be thought of as a form of distorted speech given that there are omissions and deletions 

in many sounds. It would be important to be able to accurately estimate the speech intelligibility 

from a true representation of speech signals that individuals encounter in daily communication to 

have good face validity of hearing assessment and treatment outcome assessments. 

This proposed study aims to investigate the impact of speaking styles (clear speech, natural 

conversational speech, and conversational speech in lab setting) on the actual performance (i.e., 

measured speech intelligibility outcomes) and the predicted performance (i.e., the predicted speech 

intelligibility derived from a selected predictive model, i.e., STMI). This investigation also will 

examine the accuracy of the prediction of speech intelligibility by examining the correlation 

between actual performance and predicted performance. This research design will allow capturing 

the differences in speech intelligibility among these speaking styles and evaluation of the STMI 

model that incorporates spectro-temporal modulations in its ability to capture the differences in 

speech intelligibility among these speaking styles. 
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Research Question: How do various speaking styles (i.e., clear speech, natural 

conversational speech, and conversational speech in lab setting) impact the accuracy of the 

prediction of speech intelligibility? 

Specific Aim 1: To determine if there is any significant difference among speech 

intelligibility of clear speech, laboratory conversational speech, and natural conversational speech. 

Null Hypothesis for Specific Aim 1: There is no significant difference among speech 

intelligibility of those speech stimuli. 

Alternative Hypothesis for Specific Aim 1: Speech intelligibility of clear speech is greater 

than that of both laboratory and natural conversational speech; however, the speech intelligibility 

of natural conversational speech would be less than that of laboratory conversational speech.  

Specific Aim 2: To determine if a selected speech intelligibility model, STMI model, can 

accurately predict speech intelligibility of various speaking styles (i.e., clear speech, natural 

conversational speech, and conversational speech in lab setting). 

Null Hypothesis for Specific Aim 2: There is no relationship between the predicted speech 

intelligibility outcomes and the actual speech intelligibility performance. The STMI model does 

not have the ability to predict speech intelligibility correctly for each speaking styles. 

Alternative Hypothesis for Specific Aim 2: There is a positive relationship between the 

predicted speech intelligibility outcomes and the actual speech intelligibility performance. The 

STMI model has the ability to predict precise speech intelligibility for each speaking styles. 

Therefore, there will be differences in the predicted speech intelligibility obtained from the STMI 

model. 

Significance: The findings of the proposed study will assist in better treatment 

recommendations for individuals with hearing loss when considering speech intelligibility within 
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a framework of conversational speech. Since evidence-based prescription formulas for hearing aid 

fittings are based on clear speech intelligibility and ignore the changes caused by true 

conversational speech, implementing true conversational speech in a predictive model could help 

to improve the quality of care of individuals using amplification devices. The proposed study will 

investigate the accuracy of prediction of speech intelligibility among speaking styles: clear speech 

(slowly read speech which is a typical type of speech material in audiological assessment), 

laboratory conversational speech (read speech or sometimes memorized speech that is spoken in a 

conversational/casual manner by a talker), and natural conversational speech (spontaneous speech 

that is induced by asking a talker to retell stories to his friends). 
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6.0 Research Design and Methods 

In order to answer the research question, speech materials selection was carefully 

considered to ensure that the materials represented the real-world listening environment so that 

outcomes could be generalized to everyday communication and would exhibit performance that is 

expected to be seen in real life. The study was designed to compare the measured speech 

intelligibility of clear speech, laboratory conversational speech, and natural conversational speech 

in various listening conditions obtained from adults with normal hearing. The measured speech 

intelligibility and the predicted speech intelligibility obtained from the STMI predictive model 

which is designed to be sensitive to spectro-temporal modulation of speech was compared. 

Spectro-temporal modulations are believed to contribute to the intelligibility of speech and may 

differentiate between types of speaking style. To answer the research question, a cross-sectional, 

within-subject research design with multiple subjects was used. 

6.1.1 Research Participants 

Power analysis was calculated via G-Power using 3x5 two-factor within-subject repeated 

measure with alpha of 0.05. A small effect size (0.2) and medium effect size (0.5) were used in the 

calculation, resulting in a required sample size of 24 and 15 subjects, respectively in order to 

achieve 95% statistical power. However, data from 36 participants were collected for the current 

study to ensure that we had sufficient data for the analysis. 

Because of the COVID-19 pandemic and the suspension of all in-person research, some of 

the inclusion and exclusion criteria were modified to make remote data collection possible. For 
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instance, the hearing test was completed using hearing test apps such as uHear (for iOS) and 

Hearing Test (for Android). This was considered acceptable given that the goal was not to establish 

specific hearing thresholds, but rather to rule out significant hearing loss. Potential participants 

were asked to upload their hearing test results when completing the questionnaire via Qualtrics. 

The link to the questionnaire was available to pre-screen individuals prior to the consent process 

to ensure that individuals had the necessary computer hardware and system (such as a camera, a 

microphone, and a pair of headphones) and were in good health required for the research.  Inclusion 

criteria are described in Table 5.  

Table 5 Inclusion Criteria 

In-person Testing Criteria Remote testing Criteria 

- Age between 18 to 35 years old - Age between 18 to 35 years old 

- Native American English speakers - Native American English speakers 

- Conventional pure tone air-conduction 

hearing thresholds within normal limits for 

both ears 

o Testing from 250 – 8000 Hz 

including 3000 and 6000 Hz 

o Hearing threshold < 25 dB HL at all 

testing frequencies 

- Hearing’s result from an application shows 

within normal hearing range for both ears 

o uHear (iOS): from 1000 – 6000 Hz, 

level could not be specified. (See 

more detail below) 

o Hearing Test (Android): from 

1000-8000 Hz, hearing level < 25 

dB HL. 

- Normal, type A tympanogram - N/A due to inaccessibility 
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Table 5 Inclusion Criteria (continued) 

In-person Testing Criteria Remote testing Criteria 

- Word recognition score at 40 dB SL within 

the 95% confidence interval according 

their PTA (the average of thresholds at 

500, 1000, and 2000 Hz) on the 

Northwestern University Auditory Test 

No. 6 (NU-6) determined by the SPRINT 

Chart for 25-word lists (See Appendix C). 

- NU-6 Word Recognition score is 90% or 

higher when testing at comfortable level. 

- 95% CI cannot be determined due to lack 

of hearing level at 500 Hz and unknown 

specific hearing level when uHear app is 

used. 

- The Montreal Cognitive Assessment 

(MoCA) score 26 or higher (out of 30) 

- MoCA score is 26 or above (out of 30) 

 

The uHear app does not include the details of hearing level for each testing frequency when 

hearing test results were generated. However the app classified the test results into six categories: 

normal hearing (up to 25 dB HL), mild hearing loss (26-40 dB HL), moderate hearing loss (41-55 

dB HL), moderately severe hearing loss (56-70 dB HL), severe hearing loss (71-90 dB HL), and 

profound hearing loss (greater than 90 dB HL). The testing frequencies provided in the app are 

500, 1000, 2000, 4000, and 6000 Hz. Therefore, the hearing level at 3000 and 8000 Hz could not 

be tested via the app. 

Although both hearing apps, the uHear and the Hearing Test, can provide test result at 500 

Hz, the author decided to exclude the test result at 500 Hz and below due to the fact that low 

frequency hearing thresholds are often compromised by the participant’s listening environment, 

headphones, and how headphones are worn. 
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Exclusion criteria for both testing protocols included: 

- Have recent middle ear problems (within the last 3 months of the test date) 

and/or still in doctor’s care 

- Have constant ringing or buzzing in his/her ear(s) 

- Have ear surgery within the last 3 months. 

- Have been diagnosed with any neurological condition or psychological disorder 

and still in treatment 

- Have been diagnosed with motor speech disorder 

Exclusion criteria were added when remote protocols were administered to ensure that 

participants would be able to complete the experiment. The added exclusion criteria included: 

- Uncomfortable using a computer  

- Not willing to wear circum-aural headphones 

- Computer does not have a camera and a microphone 

 

Thirty-eight participants completed the screening tests and signed consents. For screening 

tests, they were asked a series of case history questions to ensure eligibility for the study (Appendix 

B). The questionnaire included demographic, medical, and audiologic questions. An otoscopic 

examination was performed when in-person protocols were administered to ensure that the 

participant’s ear canals were free from occluding wax. The hearing test and word recognition test 

were administered. Lastly, the Montreal Cognitive Assessment (MoCA) was administered to 

ensure that participants did not have significant cognitive function and working memory problems. 

Two participants did not meet the screening criteria for the study and were excluded from 

participation. Therefore, thirty-six individuals participated in the current study. Five participants 
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were male and thirty-one were female between 19 and 31 years old (Mean = 23.23). Most 

participants were recruited from a program of the University of Pittsburgh’s Clinical and 

Translational Science Institute (CTSI) via the Pitt+Me™ Research Registry. While some 

participants were recruited from classes taught in the Communication Science and Disorder (CSD) 

programs, flyers, and word of mouth through friends.  Participants were paid $20 for their research 

participation upon completion. If they did not qualify for the main experiment, they were paid $5 

for their time spent during the screening tasks. Ten individuals participated in the research 

activities in person at the HEAR Core Laboratory in the Forbes Tower building at the University 

of Pittsburgh, while twenty-six participants completed the protocol remotely via online 

appointments. All of the ten participants who completed the research protocols in lab had clinically 

normal hearing in both ears (25 dB HL or less) as measured by pure-tone audiometry at octave 

frequencies from 250 – 8,000 Hz and at half-octave frequencies at 3,000 and 6,000 Hz. Their 

Northwestern University Auditory Test No. 6 (NU-6) 25-word list (Tillman & Carhart, 1966) word 

recognition testing scores were between 88% and 100% and were within 95% confidence interval 

according to their pure tone average as plotted on the sprint chart for 25-word lists (Thibodeau, 

2000). Their middle ear status also was assessed by otoscopic examination and tympanometry and 

showed no sign of middle ear problem. The other twenty-six participants who completed the study 

remotely took an online hearing test via mobile application (either uHear for iOS users or Hearing 

Test for Android users) and the results showed that they had normal hearing in both ears defined 

as having thresholds better than 25 dB HL across 1000 to 6000 Hz for results obtained from uHear 

app and 1000 to 8000 Hz for results obtained from Hearing Test app.   Their NU-6 word 

recognition scores at comfortable listening levels as determined by the subject were between 92% 

and 100% (Mean = 98.31%). To determine comfortable listening levels, participants were asked 
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to adjust their computer volume while listening to a 1000-Hz calibration pure tone used for speech 

test calibration until they heard the sound comfortably and the volume was kept at that setting 

throughout the test. 

These participants did not have objective middle ear evaluation but were included if they 

indicated they had not had any middle ear problems.  None of the participants in the study reported 

any recent middle ear problems (within the last three months), neurological disorder, psychological 

disorder, or motor speech disorder. Their Montreal Cognitive Assessment (MoCA) scores were 

between 26 and 30 (Mean = 28.08) indicating cognitive function and working memory within 

normal limits. 

6.1.2 Materials 

6.1.2.1 Stimuli 

Speech stimuli used in this study were extracted from contents of the Story Retelling 

Procedure (SRP) (Doyle et al., 2000; McNeil et al., 2007) which is a test for differential diagnosis 

of persons with aphasia. It elicits connected spoken speech by having a person listen to a passage 

that ranges from 1 minute to 1 minute and 40 seconds and then retell the story. All retold passages 

were recorded with a male talker in a clear speaking manner. A listener is asked to listen to the 

whole story at once, and then retells the story in his/her own words. The correct Information Units 

(IUs) are scored, then the %IUs is computed. There are four forms containing three passages, so 

there are total of twelve passages (a sample passage is shown in Figure 6). Each passage contains 

about 111-162 IUs (or an average of 152 IUs) which is defined as an identified word, phrase, or 

acceptable alternative from the story stimulus that is intelligible and informative and that conveys 

accurate and relevant information about the story (McNeil, Doyle, Fossett, Park, & Goda, 2001). 
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The Percent Information Units (%IUs) is calculated to examine how many correct IUs a listener 

achieved compared to the total number of words. The %IUs can be used to quantify the 

informativeness of connected language on story retellings in the same way as using a percent 

correct from several auditory tests. 

The rationale of using the contents of the SRP test is that it allows a standard talker (who 

produced speech used in the current study) to produce speech in three different speaking styles: 

clear speech, laboratory conversational speech, and natural conversational speech. Specifically the 

talker could produce natural speech by retelling the story which results in more conversational-

like speaking styles that individuals encounter in day-to-day conversation and there is an option 

for using other reasonable alternative words that convey the similar meaning which allows for 

systematic scoring in the main experiment. 

 

Figure 6 Loan Passage, one of the twelve SRP passages 

 

When creating clear speech and laboratory conversational speech, the standard talker was 

asked to read the story aloud in a clear and conversational speaking manner. Natural conversational 

speech was created by asking the talker to retell the story that he heard as if talking to a friend. 

Speech materials were created using all twelve stories from the SRP test. The content of each story 
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was produced by a standard male talker in three speaking styles. The talker was instructed with 

the following instructions to produce speech stimuli for each speaking style accordingly. The 

speaker was instructed to say a passage three times for each speaking style. The following 

instructions from Schum (1996) were adapted and given. 

Instruction for clear speech: 

“I want you to read a story aloud in a clear manner. Imagine that you are speaking to a 

person with hearing-impairment. I want you to speak as clearly and precisely as possible and try 

to produce each word as accurately as you can.” 

Instruction for laboratory conversational speech (conversational speech in lab 

setting): 

“I want you to read a story and make yourself familiar with it. Memorize the story as much 

as you can. You may look at the story while you are saying it. Keep in mind that I want you to 

speak clearly and naturally. Conversational speech is different from the clearly spoken speech you 

used before. For example, you tend to talk faster in conversation.” 

Instruction for natural conversational speech (naturally produced conversational 

speech): 

“You will hear a story. Listen to it carefully. After that I want you to retell the story in your 

own words as close as possible to the one you heard. Speak naturally as you would in conversation 

with your friends and family and imagine that you are telling them a story with details as much as 

you can.” 

Initially, there were three male talkers who produced recordings of each speaking style for 

all twelve passages, but only recordings of one single talker were chosen. In total, a hundred and 

eight passages were recorded. These were recorded at a rate of 44.1 kHz in a double-wall sound 
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booth. The speaker was seated in the sound booth with his mouth 5 inches away from a microphone 

(bandwidth 20 – 20,000 Hz). The microphone was routed to a PC digital recorder with settings for 

a mono recording. The sensitivity of the microphone was adjusted to prevent any peak clipping of 

the speaker’s voice. These recordings were played to thirty young-adult listeners with clinically 

normal hearing. These recordings were presented binaurally at a comfortable listening level under 

Sennheiser HD 280 Pro headphones in a random order of speakers and speaking styles. Listeners 

were asked to listen to recordings and then provided a rating based on how natural the recording 

sounded to them. For each recording they provided ratings from a scale of 1 (speech is extremely 

clear) to 7 (speech is extremely natural, sounds like they were talking to people). Spearman Ranked 

Order Correlation by talkers was conducted between subject ratings and speech production of the 

recordings. Cohen’s standard was used to evaluate the strength of the relationship, where 

coefficients between .10 and .29 represent a small association, coefficients between .30 and .49 

represent a moderate association, and coefficients above 0.50 represent a large association. For 

Talker 1, there was a significant positive correlation between subject ratings and recordings (r =

0.677, p <  .001); Talker 2, there was a significant positive correlation between subject ratings 

and recordings (r = 0.746, p <  .001); and Talker 3, there was a significant positive correlation 

between subject ratings and recordings (r = 0.901, p <  .001). The results of all the talkers 

indicate a strong relationship between subject ratings and their speech production of the 

recordings. According to results of the analysis and the boxplot (Figure 7), the recordings from 

Talker 3 were selected to serve as the stimuli in the main experiment. Acoustic differences among 

clear, lab conversational, and natural conversational speech analyzed average sentences are 

displayed in Table 6. Significant differences were found (p < .05) across the three speaking styles 

for speaking rate, speech rate, articulation rate, ratio of pause duration and total duration, and raw 
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intensity before the processing. Significant difference in Mean F1 and F2 were not observed. For 

Mean F0, the significant difference (p = .022) was revealed only between clear and lab 

conversational speech. 

 

 

Figure 7 Boxplot showing the relationship between subject ratings and speech production by talkers 

 

Table 6 Acoustic differernces among clear, lab conversational, and natural conversational speech 

 Clear Lab Conversational Natural Conversational 

 Mean S.D. Mean S.D. Mean S.D. 

Speaking Rate (wpm) 121.38 29.86 208.44 12.44 178.92 14.02 

Speech Rate (Syllable per 

Total duration) 

2.83 0.38 3.81 0.25 3.43 0.26 

Articulation Rate 

(Syllables per phonation 

time) 

3.75 0.37 4.90 0.26 4.52 0.23 

Pause/Total Duration ratio 0.35 0.11 0.18 0.96 0.23 0.10 
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Table 6 Acoustic differernces among clear, lab conversational, and natural conversational speech (continued) 

 Clear Lab Conversational Natural Conversational 

 Mean S.D. Mean S.D. Mean S.D. 

Raw Intensity before 

processing (dB SPL) 

67.81 3.95 65.64 3.34 63.44 4.12 

Mean F0 (Hz) 118.24 56.77 148.50 58.50 133.61 86.76 

Mean F1 (Hz) 467.56 121.47 506.93 225.55 507.95 111.33 

Mean F2 (Hz) 1589.48 418.44 1595.76 426.52 1574.05 249.43 

 

The stimuli used in the current study were created based on the recordings of Talker 3. 

Recordings from twelve passages in three different speaking styles were cut into sentences with a 

range of 8 to 15 words; 135 sentences for natural conversational speech and 180 sentences each 

for clear and lab conversational speech. The list of sentences for each speaking style covered all 

twelve stories. If all of the sentences were used, a listener might have been able to remember the 

sentence between conditions. To minimize the redundancy in the content for each speaking style, 

a total of 183 unique sentences were chosen as speech stimuli for the current study. No sentences 

were repeated within speaking style or among the different speaking styles to prevent learning 

effects. 

6.1.2.2 Masker 

Speech material presented in a quiet condition lacks real-world validity because the 

majority of listening situations that individuals encounter are in noise. Also, people, particularly 

individuals with hearing loss, often complain of not hearing well in background noise especially 

when around multiple talkers. 
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Instead of testing speech perception in the quiet condition only, examining speech 

perception in noise is helpful to accurately assess the hearing ability of individuals and to provide 

realistic consultation for a person with hearing loss. Different maskers affect speech perception 

performance (e.g., percent correct scores) differently. By definition, noise is an acoustic 

phenomenon that has random and aperiodic features with a continuous spectrum; psychologically 

speaking, noise is any undesirable sound or signal (Durrant & Feth, 2012). Any sounds can be 

counted as a noise depending on a listener’s perspection and listening situation. There are different 

types of maskers implemented in studies in hearing and speech perception such as white noise, 

pink noise, steady-state noise, speech-shaped noise, and speech babble noise. They are distinct in 

characteristics, advantages, disadvantages, how they interact with the speech signal, and the impact 

on speech perception (see Table 7). 

Table 7 Comparison among various maskers 

Maskers Characteristic Masking effects 

White noise Flat spectrum across all 

frequency, equal power in any 

given bandwidth 

- Greater masking effect on 

acoustic cues above 1000 Hz 

- Many acoustic cues will be 

masked such as cues for 

fricatives, F2, and F3 

Steady-state noise Modulated noise; Change in level 

less than 5 dB at any given 

frequency during a given time 

- Variability in noise level is 

reduced 

- Produce energetic masking 
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Table 7 Comparison among various maskers (continued) 

Maskers Characteristic Masking effects 

Speech shaped noise White noise that its spectrum is 

shaped as long-term spectrum of 

the speech signal  

- Greater masking effect than 

white noise on acoustic cues 

below 1000 Hz 

- Similar masking effect as  

multi-speaker speech babble 

- Less representative of 

everyday communication 

Speech babble A number of other speakers 

speaking at the same time 

- Similar masking effect as 

speech shaped noise 

- Introduce the confound of 

informational masking 

- More representative of 

everyday communication 

 

Theunissen et al (2009) reported that the two most commonly used maskers are steady-

state speech-shaped noise and multi-talker babble. Wilson, Carnell, et al (2007) also supported the 

use of multi-talker babble over steady-state speech-shaped noise due to complaint of difficulty 

understanding speech in noise. 

Besides the types of noise, the amount (level) of noise relative to the level of the speech 

signal, known as signal-to-noise ratio (SNR), also plays an important role in determining the ability 

to understand speech in noise. To obtain a straightforward percent correct score, a fixed signal to 

noise ratio (SNR) should be implemented. Wendt et al (2018) examined the effect of signal-to-
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noise ratio on listening effort by testing under different SNR conditions ranging from -20 dB to +8 

dB (in 4 dB steps) which produced speech intelligibility ranging from 0% to 100% correct for the 

Hearing in Noise Test (HINT) sentences. As a result of this experiment, they found that high 

recognition performance (100% correct) was achieved at SNR between +4 and +8 dB. The 

performance decreased with a decreasing SNR, at SNR -12 dB, the performance was around 5-7% 

correct, and the performance was impossible (0% correct) with SNR of -16 and -20 dB (Wendt, 

Koelewijn, Książek, Kramer, & Lunner, 2018). For comparable length of stimuli (i.e., passage-

level stimuli), the CST was reported to be sensitive to a small change in SNR that produces a large 

change in scores (% correct). The researchers found that the range of 9 dB SNR (from 0 to -9) 

could result in a change in speech performance from 100% intelligibility to essentially 0% 

intelligibility, so their take-home message was to select the SNR carefully when using the CST 

(Cox, Alexander, & Gilmore, 1987). 

Therefore, in addition to presenting the stimuli in a quiet condition, the stimuli were mixed 

with a four-talker speech babble noise to create another 4 listening conditions that represented 

more real-world listening environments because people, particularly individuals with hearing 

impairment, often complain of not hearing well in background noise consisting of multiple talkers. 

Therefore, the multi-talker babble was embedded with the speech stimuli at 3-dB SNR increments 

creating signal-to-noise ratios at +3, 0, -3, and -6 dB SNR. 

6.1.3 Instrumentation 

For in-person testing, the experiment was done in a double-wall sound-treated booth. The 

speech stimuli were presented through the MADSEN Astera2 audiometer using ER-1 insert 

earphones which deliver the same frequency response to the average eardrum (i.e., normal ear 
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canal resonance) of the open ear listening condition (see Appendix A). Stimuli were presented 

bilaterally at 65 dB SPL. The order of stimuli was randomized to prevent order effects. Prior to 

each participant listening, the sound level was verified by measurement of the calibration noise. 

The same microphone that was used in stimuli recording was used to record participant responses 

for later transcription and scoring. Participant responses were captured by using Adobe Audition 

CS 5.5 software. The stimuli presentation was completed via SuperLab 5 software allowing 

participants to control the experiment at their own pace with an option for breaks. 

For remote testing, the experiment was done at the participant’s residence in a relatively 

quiet room environment. Participants were required to measure the sound pressure level of their 

test surrounding (i.e., ambient noise level) to ensure that they were in an appropriate test setting. 

The ambient noise level was measured using a smart phone application and was less than 40 dBA. 

The stimuli presentation including control of listening level and response recording was performed 

on the participants’ computer or laptop through an online experiment hosted and administered via 

https://gorilla.sc. Sennheiser HD 280 Pro headphones were shipped to participants and were used 

for stimulus presentation to control for variability from using different models of headphones. 

Frequency response of these headphones can be found in Appendix A. Attached microphone on 

participants’ computer or laptop was used to record their responses. Prior to the experiment, 

participants were asked to download a sound level meter application (SoundMeter X or NIOSH 

SLM) onto their phone. They were required to measure sound level of their test surroundings to 

ensure that they were in an appropriate test setting. They also were asked to measure the calibration 

noise at their headphones on the right side by placing the microphone of their phone against the 

inner aspect of the headphone cup. Then they adjusted their computer’s volume as necessary until 

the sound level meter application read 65 dB (Z). They were asked to wear the headphones and 

https://gorilla.sc/
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listen to the stimuli at this specific volume setting throughout the experiment. Participant response 

recording was captured by the recording function through Pitt Zoom meeting and the host server. 

Participants were asked to speak as clearly as possible when responding and were able to complete 

the experiment at their own pace in one sitting with an option for breaks. 

6.1.4 Procedure 

6.1.4.1 Experiment 1 

To investigate Specific Aim 1 (i.e., to determine if there is any significant difference among 

speech intelligibility of clear, laboratory conversational speech, and natural conversational 

speech), a repeated measure design was used meaning a participant listened to all three speaking 

styles in all listening conditions (i.e., quiet, +3 dB SNR, 0 dB SNR, -3 dB SNR, and -6 dB SNR). 

The dependent variables (DVs) are percent correct of identified keyword (i.e., speech 

intelligibility). 
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6.1.4.1.1 Procedure for in-person testing 

Participants took part in a consent process as approved by the Institutional Review Boards 

of The University of Pittsburgh. All of the procedures were completed in the HEAR Core in Forbes 

Tower, School of Health and Rehabilitation Sciences. Pure-tone audiometry and word recognition 

testing were completed in a double-wall sound booth, completed using ER-3 earphones. Other 

screening tasks included the case history questionnaire, otoscopic examination, tympanometry, 

and MoCA test and were completed outside of the sound booth in the HEAR Core. Participants 

who qualified for participating in the study were then seated in the sound booth in front of the 

computer screen and instructed that they would carefully listen to sentences from a male talker in 

both quiet and noise conditions and to repeat exactly what they heard. They also were encouraged 

to guess if they were not sure what they heard. Each participant completed a practice trial in the 

quiet condition and in the noise condition at the most favorable SNR (+3 dB) to ensure that the 

participant understood the instructions and the task for the main experiment. Feedback was 

provided after the practice trial. 

After the completion of the practice trial, participants continued to listen to the stimuli in 

the experimental trials containing 183 sentences in a random order of speaking styles and listening 

conditions. Feedback was not provided during the experimental trials. The entire experimental task 

took approximately 60 to 90 minutes to complete. Participant responses were recorded. After the 

session, the participant responses were reviewed and transcribed by one of two native English 

speakers. For 5 participants, computer software was used for transcription. Scoring of keywords 

was completed based on the transcriptions.  Because transcription was completed by two different 

individuals, the interrater reliability between the two transcribers was calculated based on a 
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random sampling of 5% of the data. The interrater reliability result showed 97.67% agreement 

between the two transcribers. In addition, the automatic software transcription used for 5 

participants was evaluated by comparing the software transcription of a set of test stimuli (i.e., 

audiofiles) in the quiet condition to the actual stimuli which resulted in 95% accuracy. Finally, a 

set of participant responses transcribed by the software was compared to human transcription and 

resulted in 93.82% agreement.  

 



 58 

6.1.4.1.2 Procedures for Remote Protocols 

Due to the COVID-19 pandemic, some of the in-person protocols were adjusted so that the 

data collection could be done remotely. Participants were asked to complete the experiment in an 

optimal test environment that was quiet, free of distractions, with no other activity while doing the 

experiment. Details of the remote protocols are described below. 

 

 

Figure 8 Diagram showing process for remote protocols 

 

1. A Pre-screening questionnaire via Qualtrics was sent to prospective participants before 

enrolling them in the study. The questionnaire included demographic, medical, audiologic 

questions, and uploading a screenshot of his/her hearing test result from one of the specified 

hearing test mobile applications depending on the participant’s phone operating system 

(i.e., uHear or Hearing Test). 

2. Upon review of the answers to the questionnaire: if the answers are consistent with the 

study’s criteria, the participant received an electronic consent form via DocuSign along 
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with the explanation of the research study including nature of the study, a list of research 

activities, and risks and benefits of participation. 

3. When they decided to participate, they electronically signed their name and date to the 

consent via DocuSign. 

4. Upon receiving the signed consent, the PI scheduled a Virtual Screening Appointment via 

Pitt’s Zoom to perform the screening procedures which included the Word Recognition 

Test and MoCA Test (version 8.1 via Audio-Visual Conference). 

a. If met all criteria: they were invited into the study. 

b. If not: they were excluded from the study. 

5. Proceed to the Virtual Experiment Session via Pitt’s Zoom the same day if the participant’s 

headphones were the same model (i.e., Sennheiser HD 280 Pro) that we were supplying to 

subjects. Otherwise, the Virtual Experiment Session was scheduled for another date and 

time when the participant received the study-provided headphones. 

a. Participants were asked to download a sound level meter application (SoundMeter 

X or NIOSH SLM) onto their phone to measure their room ambient noise and 

stimulus level. 

6. A link for the main experiment task (Experiment 1) was sent to the participants so they 

could control their own pace while completing the task. The experimenter also audio-

recorded the participant’s response (similar to the task done in laboratory) via Pitt’s Zoom 

meeting for later transcription. 

a. Prior to the experimental task, the participant was required to measure the sound 

pressure level of their test surrounding to ensure that they were in an appropriate 

test setting. 
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b. They also were asked to measure the calibration noise at their headphones on the 

right side by placing the microphone of their phone against the inner aspect of the 

headphone cup. Then they adjusted their computer’s volume as necessary until the 

sound level meter application read 65 dB (Z). 

c. Following the completion of sound measurement and adjustment, they were 

presented with the practice trial to ensure that they understood the instructions and 

how to do the task. Then they proceeded to the experimental trials listening to the 

stimuli in a random order. 

6.1.4.2 Experiment 2 

To investigate Specific Aim 2 (i.e., to evaluate the ability of the spectro-temporal 

modulation index (STMI) model in capturing speech intelligibility of speaking styles at different 

listening conditions), predicted speech intelligibility was derived via MATLAB script using the 

STMI (Elhilali, Chi, & Shamma, 2003) constructed based on the auditory model as described by 

Chi et al. (1999). The clean speech (i.e., speech in quiet condition) was used as a reference, while 

speech in noise were used to derive the predicted speech intelligibility. Therefore, each speaking 

style would have four predicted speech intelligibility results (i.e., at +3, 0, -3, and -6 dB SNR) for 

each participant. Both the predicted speech intelligibility and the measured speech intelligibility 

obtained from Experiment 1 were used as variables in the correlation analysis. 

Experiment 2 was conducted offline (without the need of participants). The spectrogram 

of the speech signal (input spectrogram) was analyzed by a bank of spectro-temporal modulation 

selective filters creating the spectro-temporal response field (STRF). Each STRF output from each 

filter was computed and convolved with the input spectrogram to generate a new spectrogram with 

a 3-D template in terms of scale, rate, and frequency. The clean speech signal and the noisy speech 
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signals at different SNR levels were analyzed separately to obtain the 3-D output of clean speech 

{𝑇𝑇} and the 3-D output of noisy speech signals {𝑁𝑁}. Then, the STMI was computed using the 

simple Euclidian distance as in the following equation: 

𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 =
1 − ‖𝑇𝑇 − 𝑁𝑁‖2

‖𝑇𝑇‖2
 

where the Euclidian distance ‖𝑇𝑇 − 𝑁𝑁‖2 is the shortest distance between the noisy and clean 

outputs. 
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7.0 Results 

7.1 Experiment 1 

Experiment 1 was designed to investigate Specific Aim 1: To determine if there is any 

significant difference among speech intelligibility of clear speech, laboratory conversational 

speech, and natural conversational speech. A participant listened to all speaking styles (3 levels: 

clear, lab conversational, and natural conversational speech) in all listening conditions (5 levels: 

quiet, SNR +3, SNR +0, SNR -3, and SNR -6). The dependent variable (DV) was proportion 

correct of identified keywords (i.e., speech intelligibility). 

Prior to statistical analysis, proportion correct speech intelligibility scores were converted 

to Rationalized Arcsine Units (RAU) to normalize variance across conditions. The data from the 

participants who were seen in person and the individuals who completed the study remotely were 

compared across listening conditions and speaking styles, thus the overall speech intelligibility 

across all conditions was calculated for each participant. The assumption of normality for in-

person testing was met, but the assumption was violated for remote testing. Thus, three outliers 

(poor performers) in the remote testing group were removed allowing the assumption of normality 

to be met for this group. The researchers felt this was an appropriate action given that they had 

concern that for some individuals at home, a number of distractions during testing for specific 

subjects likely impacted their performance. The assumption of homogeneity was met. The 

independent sample t-test was performed for the mean overall speech intelligibility between the 

two testing conditions: in-person (n=10) and remote (n=23). Please see Appendix D.1 for a table 

of all of the results from the statistical analysis. The result indicated that there was no significant 
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difference of mean overall speech intelligibility between in-person and remote testing conditions, 

𝑡𝑡(31) = 2.064,𝑝𝑝 = 0.05, suggesting speech intelligibility performance was not impacted 

significantly for this set of subjects by the testing conditions whether the participants were seen 

in-person or completed the experiment remotely. Table 8 shows the mean overall speech 

intelligibility between in-person and remote testing conditions. Therefore, these data were 

analyzed as one group of participants. 

Table 8 Mean Speech Intelligibility between Testing Conditions 

Testing Condition 
Mean 

Overall Speech Intelligibility (RAU) 
S.D. 

In-Person 64.93 6.86 

Remote 59.61 6.78 

 

A two-way repeated measure analysis of variance (ANOVA) was used to evaluate changes 

in speech intelligibility as a function of speaking styles and listening conditions. Mauchly’s Test 

indicated that the assumption of sphericity was not met; therefore, the Greenhouse-Geisser 

correction was used. Please see Appendix D.2 for a table of all of the results from the statistical 

analysis. The main effect of speaking style was statistically significant, F(1.594, 51.022) =

114.810, p < .001,ŋ𝑝𝑝2 = .782, indicating that proportion correct speech intelligibility was 

significantly different across speaking styles. Post hoc comparisons using Bonferroni correction 

were conducted to evaluate the pattern of significant differences while controlling for Type I error. 

The speech intelligibility of clear speech was significantly higher than that of lab conversational 

speech and natural conversational speech, with mean differences of 5.47 RAU and 8.72 RAU, 

respectively. The speech intelligibility of lab conversational speech also was higher than that of 
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natural conversational speech, with mean difference of 3.25 RAU. The mean speech intelligibility 

as a function of speaking styles are shown in Table 9. 

Table 9 Mean Speech Intelligibility as a Function of Speaking Styles 

Speaking Styles Mean Speech Intelligibility (RAU) S.E. 

Clear speech 65.78 1.39 

Lab conversational speech 60.31 1.39 

Natural conversational speech 57.06 1.19 

 

The main effect of listening condition was statistically significant, F(1.708, 54.651) =

152.705, p < .001,ŋ𝑝𝑝2 = .827. Post hoc comparisons using Bonferroni correction indicated that 

the highest speech intelligibility was observed in the quiet listening condition and speech 

intelligibility was significantly degraded in subsequent noisy listening conditions with a calculated 

minimum mean difference of 3.69 RAU. However, there was no significant difference in speech 

intelligibility between the listening conditions at +3 and 0 dB SNR. The mean speech intelligibility 

as a function of listening conditions are reported in Table 10. 

Table 10 Mean Speech Intelligibility as a Function of Listening Conditions 

Listening Conditions Mean Speech Intelligibility (RAU) S.E. 

Quiet 68.42 1.43 

+3 dB SNR 64.73 1.18 

0 dB SNR 63.63 1.28 

-3 dB SNR 58.79 1.36 

-6 dB SNR 49.68 1.63 
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Moreover, the two-way interaction between speaking styles and listening conditions was 

statistically significant, F(5.275, 168.788) = 17.582, p < .001,ŋ𝑝𝑝2 = .355, suggesting that the 

pattern of decreased speech intelligibility for listening conditions was statistically significant 

across speaking styles. Post hoc analysis using Bonferroni correction was performed to evaluate 

the difference in speech intelligibility among the speaking styles and listening conditions; the 

calculated minimum mean significant difference of 3.79 was observed. However, significant 

differences in speech intelligibility were not observed: (1) in quiet listening condition between 

clear and lab conversational speech and (2) at -3 and -6 dB SNR listening condition between 

natural and lab conversational speech. In general, for the same listening condition, the speech 

intelligibility decreases greatest for natural conversational speech stimuli compared to clear and 

lab conversational speech stimuli. Figure 9 shows the speech intelligibility as a function of 

listening conditions across speaking styles. 

For comparison purposes, the analysis was performed with the original data without 

deleting the outliers (n=36) in order to check whether the results would differ. The results obtained 

from the original data also showed significant main effect of speaking styles, main effect of 

listening conditions, and the interaction between speaking styles and listening conditions. The 

results of 36 participants were generally identical to the results of 33 participants. 
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Figure 9 Line graph displayed speech intelligibility as a function of listening conditions across speaking styles 

7.2 Experiment 2  

Experiment 2 was designed to investigate Specific Aim 2: To determine if the STMI model 

can accurately predict speech intelligibility of speaking styles (i.e., clear speech, natural 

conversational speech, and conversational speech in lab setting). The predicted speech 

intelligibility scores were derived using the STMI model for listening conditions for speaking 

styles. The STMI values ranged from 0 to 1 (unintelligible to fully intelligible). A sample of 

derived STMI values can be found in Appendix E. 

A Pearson product-moment correlation was conducted to examine the overall relationships 

between the measured speech intelligibility and the derived STMI values. There was a small 
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correlation between the measured speech intelligibility and the derived STMI values, 𝑟𝑟 =

.346,𝑝𝑝 < .001. A scatterplot of the measured speech intelligibility and the derived STMI values 

is shown in Figure 10. 

 

Figure 10 Scatterplot of the measured speech intelligibility and the derived STMI values 

  

Simple linear regression analysis was conducted to predict measured speech intelligibility 

based on the derived STMI values. All assumptions of the linear regression were met. A significant 

regression equation was found,  𝐹𝐹(1, 394) = 53.572, 𝑝𝑝 < .001 with 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑟𝑟2 of .117. The 
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prediction score (percent correct) of overall measured speech intelligibility is equal to 26.964 +

(76.050 ∗ 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝑎𝑎). The prediction score increased 7.605 percent correct for each one-tenth 

of STMI value. Only 11.7% of the variance in prediction score can be explained by the model. 

Further, the data were analyzed by speaking styles. A Pearson product-moment 

correlation revealed significant correlation between measured speech intelligibility and derived 

STMI values for clear, lab conversational, and natural conversational speech with 𝑟𝑟 = .347,𝑝𝑝 <

.001, 𝑟𝑟 = .500, 𝑝𝑝 < .001, and 𝑟𝑟 = .283,𝑝𝑝 = .001, respectively. Simple linear regression of each 

speaking style was performed. All assumptions of the linear regression were met.  

A significant regression equation for clear speech was found,  𝐹𝐹(1, 130) = 17.799,𝑝𝑝 <

.001 with 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑟𝑟2 of .114. The prediction score (percent correct) for clear speech 

intelligibility is equal to 36.100 + (74.496 ∗ 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝑎𝑎). The prediction score increased 7.45 

percent correct for each one-tenth of STMI value. Only 11.40% of the variance in prediction 

score can be explained by the model. 

A significant regression equation for lab conversational speech was found,  𝐹𝐹(1, 130) =

43.404, 𝑝𝑝 < .001 with 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑟𝑟2 of .245. The prediction score (percent correct) for lab 

conversational speech intelligibility is equal to −2.303 + (120.528 ∗ 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝑎𝑎). The 

prediction score increased 12.05 percent correct for each one-tenth of STMI value. Only 24.50% 

of the variance in prediction score can be explained by the model. 

A significant regression equation for natural conversational speech was found,  

𝐹𝐹(1, 130) = 11.342,𝑝𝑝 = .001 with 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑟𝑟2 of .073. The prediction score (percent correct) 

for natural conversational speech intelligibility is equal to 37.415 + (48.610 ∗ 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆 𝑣𝑣𝑎𝑎𝑣𝑣𝑎𝑎𝑎𝑎). 

The prediction score increased 4.861 percent correct for each one-tenth of STMI value. Only 

7.30% of the variance in prediction score can be explained by the model. 
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8.0 Discussion 

The purpose of the current study was to evaluate the impact of speaking style on the 

proportion scores of speech intelligibility in different listening conditions and to evaluate if the 

STMI values (i.e., the predicted speech intelligibility derived from the STMI model that is sensitive 

to detecting the spectro-temporal modulations present in speech) can be used to predict the 

measured speech intelligibility. Overall, speech intelligibility was significantly different among 

speaking styles (clear, natural conversational, and lab conversational speech). The listening 

performance when presenting clear speech stimuli was significantly better than when the lab 

conversational speech and natural conversational speech were presented. The listening 

performance with lab conversational speech stimuli was significantly higher than when natural 

conversational speech was presented. This finding indicates that the conversational speech 

produced in a laboratory setting does not impact listening performance to the same extent as 

conversational speech spoken naturally. Therefore, using conversational speech produced in a 

laboratory setting does not represent natural conversational speech in terms of performance. The 

differences in characteristics of these two speaking styles result in differences in speech 

intelligibility (e.g., degree of coarticulation, vowel space, formants). 

When there is a decrease in signal-to-noise ratio (SNR) producing a more difficult listening 

environment, the listening performance of the two conversational (lab and natural) speaking styles 

were relatively similar. Therefore, to overcome listening difficulty in noise, a talker might need to 

develop a clear speaking style so that a listener can still maintain their listening performance 

compared to their original performance in the quiet condition. 
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As shown in Figure 11, decreasing performance was observed when SNR became less 

favorable (from the quiet condition to -6 dB SNR). As anticipated, clear speech exhibited the 

highest proportion correct of speech intelligibility scores for all listening conditions while the 

proportion correct of speech intelligibility scores for the laboratory conversational speech lies in 

between that of the clear speech and that of the natural conversational speech in any listening 

conditions except for (1) the quiet condition where the listening performance between clear speech 

and lab conversational speech were the same, and (2) when the SNR became negative (i.e., -3 and 

-6 dB SNR) where there is a lack of performance difference between the lab conversational and 

natural conversational speech. These findings related to performance in noise were consistent with 

previous literature (Abel, Alberti, Haythornthwaite, & Riko, 1982; Brungart et al., 2020; Kalikow, 

Stevens, & Elliott, 1977; Li et al., 2011; Wendt et al., 2018). 

 

Figure 11 Mean Speech Intelligibility across Listining Conditions and Speaking Styles 
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The results of Experiment 1 demonstrate that noise adversely effects speech intelligibility 

in normal-hearing listeners especially when speech becomes less clear (e.g., less clear 

pronunciation, increased speaking rate). Extensive research has shown that clear speech has 

benefits over conversational speech, especially in challenging listening conditions or when 

listeners have perceptual difficulty (Ferguson, 2004, 2012; Krause & Braida, 2002; Liu et al., 2004; 

Maniwa et al., 2008; Picheny et al., 1985; Schum, 1996; Uchanski et al., 1996). 

Figure 12 provides the long-term average speech spectrum (LTASS) of the speech signal 

of the three speaking styles of one sentence stimuli (normalized). These spectral cues may explain 

the lack of difference in speech intelligibility in the quiet listening condition between clear speech 

and lab conversational speech. As seen on the graph, the LTASS of clear and lab conversational 

speech are similar, while the energy of the speech spectrum of the natural conversational speech 

is decreased. 

 

Figure 12 Long-Term Average Speech Spectrum of Speech Signal 
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When listening in the noise condition, the pattern difference of the speech signal speaking 

rate and the babble might contribute to speech intelligibility differences among clear, lab 

conversational, and natural conversational speech in the current study. Babble may help listeners 

to differentiate different speaking styles. The babble consisted of four babble talkers, including 

both male and female. The speaking rate of babble was similar to a typical conversational speech 

in everyday communication and it was held constant across all speaking styles i.e., babble has the 

same acoustic characteristic across speech stimuli that varied in speaking styles. The observed 

benefit of clear speech over conversational speech may be due to the fact that there was a 

significant difference in speaking rate between babble and the clear speech. This difference may 

assist listeners in differentiating the background noise (i.e., babble) from the speech signal (i.e., 

clear speech stimuli). On the other hand, the speaking rate between babble and the lab 

conversational and natural conversational speech signal were quite similar and listeners may not 

receive the temporal cue difference while listening to conversational speech in babble. Therefore, 

the difference in temporal cues between the babble and the speech signal could contribute to speech 

intelligibility. As seen in the results, the speech intelligibility of clear speech remained higher than 

that of both lab and natural conversational speech, and as expected, the speech intelligibility 

continued to decline as listening conditions became more challenging (i.e. decreased SNR). The 

results demonstrated a significant clear speech benefit in any difficult listening conditions. 

Moreover, the pattern of fundamental frequency (F0) between the babble and the speech 

signal were different. As mentioned, the babble consisted of both male and female talkers, while 

the speech signal consisted of a male talker. The babble may have a higher fundamental frequency 

as compared to the speech signal of the three speaking styles. The pattern difference in fundamental 

frequencies also could help listeners segregate the speech signal from the babble. Acoustic 
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analyzes of the babble showed that the mean fundamental frequency was 152.55 Hz which was 

close to the mean fundamental frequency of lab and natural conversational speech at 148.50 and 

133.61 Hz, respectively, while the mean fundamental frequency of clear speech was 118.24 Hz. 

From this information, we could hypothesize that the pattern of fundamental frequency between 

babble and speech signal could contribute to speech intelligibility; the larger the difference in 

pattern, the higher the speech intelligibility. When the F0 of the speech signal was close to F0 of 

the babble, it could make the listening condition harder for listeners to differentiate between the 

speech signal and the background noise. As a result, the speech intelligibility of conversational 

speech decreased as compared to the speech intelligibility of clear speech. 

The current findings suggest that performance is not the same among clear speech, lab 

conversational speech and natural conversational speech.  Given that the typical goal of auditory 

treatment including signal processing development is targeted at individuals who are trying to 

communicate in real world (natural conversation) communication situations, these differences are 

meaningful in terms of choosing appropriate speech understanding tasks for research protocols. 

Using natural conversational speech may provide good face validity for hearing assessment and 

treatment outcome assessment.  

Additionally, accuracy of speech intelligibility prediction by the STMI model was 

investigated in this study. Although the derived STMI values were computed using the same 

method described in (Elhilali et al., 2003), the current study used 4-talker babble noise to degrade 

the signal (speech stimuli) which is different from the original authors’ noise stimulus. In the 

Elhilali et. al. (2003) study, the speech signals were degraded by additive white Gaussian noise 

and reverberation distortions, and a wide range of noise levels were incorporated. The current 

study tested speech intelligibility in limited noisy conditions (+3, 0, -3, -6 dB SNR). Unlike what 
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was anticipated, the STMI values derived in the current study cannot be observed at the low and 

high ends of the scale. However, the correlation analysis indicated that there was a linear positive 

relationship between proportion scores of measured speech intelligibility and the derived STMI 

values, indicating that the actual intelligibility performance would increase when there was an 

increase in STMI value. According to the result of the simple linear regression STMI as a predictor 

of overall speech intelligibility, an STMI value of zero (i.e., predicted unintelligible) corresponded 

to a prediction score of a measured intelligibility of approximately 27% correct. While the STMI 

value equal to one (i.e., predicted fully intelligible) corresponded with the measured speech 

intelligibility of 103.01% correct. The STMI value only accounted for 11.7% of the variance in 

actual speech intelligibility. Although there were significant correlations between (1) speech 

intelligibility across speaking styles, (2) speech intelligibility for clear speech and STMI, (3) 

speech intelligibility for lab conversational speech and STMI, and (4) speech intelligibility for 

natural conversational speech and STMI; the results from linear regression indicated small 

adjusted R square. This suggested a poor fit of the regression models. Hence, the STMI might not 

be sensitive to predict speech intelligibility of noisy speech when the listening condition does not 

include white noise and reverberation. The STMI values derived in this study could not accurately 

predict speech intelligibility of individuals in multi-talker babble noise conditions. Because both 

signal and noise in the study were speech, there were some interactions between the speech signal 

and the babble noise when they were mixed. The mixed signal would exhibit different spectro-

temporal modulation from the original speech signal and original babble noise alone. This 

interaction is different from the interaction of speech and white noise; thus, the spectro-temporal 

modulation of the speech may be preserved when accompanied by white noise allowing for higher 

predictive ability of the model.  
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Recently, Venezia, Hickok, & Richards (2016) conducted a study where they introduced a 

new technique labelled “auditory bubbles” that is more sensitive to capturing spectro-temporal 

cues of speech. As a result of this work, a modified STMI model may capture variance in speech 

intelligibility that is not reflected in the original STMI (Elhilali et al., 2003). At this writing, the 

updated STMI model is not available for widespread use and could not be incorporated into the 

data analysis. The need for a modified STMI model is consistent with the findings in the current 

study indicating that the derived STMI values could not explain a significant portion of the 

variance in speech intelligibility in multi-talker babble. The original STMI model should be 

adjusted to be able to capture more variance in speech intelligibility and to account for multi-talker 

babble noise given that this noise type is more representative of real-world listening conditions. 

This would be helpful in providing speech intelligibility predictions for individuals in real life 

listening conditions that are often reported as difficult (e.g., the cocktail party effect).  
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9.0 Limitations and Future Work Directions 

The current study has limitations. Some limitations are related to speech stimuli. Test 

sentences were elicited from the content of the passages. Within each passage, pronouns were used 

extensively which provide a closed set of options from which to choose which might impact the 

intelligibility scores when they were key words (scored items). Also keywords within a single 

sentence may allow a listener to guess what word they would hear next. For example, when a 

listener hears “He drove to the bank to get a student loan.”, the word “loan” may be guessed 

correctly if “bank to get a student” is heard correctly. Another sentence sample would be “The 

third ticket is because you are parked in a no parking zone.”, the word “ticket” and “parking” might 

influence each other. Since keywords were embedded in a meaningful sentence, they cannot be 

considered as independent of each other. Therefore, there was the effect of sentence context on 

word intelligibility in the current study. Some sentences may be more predictable than others. 

Also, the stimuli were produced by one male talker; participants may adapt to the talker’s way of 

speaking during more a favorable listening condition (e.g., at +3 dB SNR) and be able to 

compensate for any information masked by babble at less favorable listening conditions (e.g., -6 

dB SNR) despite compromised audibility of the keywords. Therefore, talker familiarity could play 

a role in speech intelligibility. In a future study, it would be of interest to investigate the talker 

effect and develop new speech stimuli that includes multi-talkers and the use of low predictability 

sentences. 

Focusing on presenting more realistic stimuli and listening condition, the current study 

used speech babble over other types of noise making the noise choice different from the study of 

Elhilali et al. (2003). The results might be more comparable to the original study if white noise 
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was used as the degrader, The STMI model might have been better at predicting speech 

intelligibility of different speaking styles in the original noise condition, but the purpose of this 

study was to use a realistic noise type found in real-world settings.  

It is anticipated that the results of the current study might influence future research in 

speech perception by encouraging use of speech stimuli that are a true representation of naturally-

produced conversational speech. A standard for true conversational speech may be developed so 

that appropriate test materials could be administered in a clinical setting with less time 

consumption to receive information about how individuals would perform in real-world 

conditions.  In addition, these preliminary results may encourage further development of the STMI 

or other predictive models to better predict performance with natural conversational speech in 

natural noise conditions (e.g., multi-speaker babble).  
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Appendix A Frequency response of Earphones 

 

Appendix Figure 1 Frequency response of ER-1 Insert Earphones, retrived from URL 

https://www.etymotic.com/auditory-research/insert-earphones-for-research/er1.html 

 

 

 

Appendix Figure 2 Frequency response of Sennheiser HD 280 Pro, retrieved from URL https://reference-

audio-analyzer.pro/en/report/hp/sennheiser-hd-280-pro.php#gsc.tab=0 

https://www.etymotic.com/auditory-research/insert-earphones-for-research/er1.html
https://reference-audio-analyzer.pro/en/report/hp/sennheiser-hd-280-pro.php#gsc.tab=0
https://reference-audio-analyzer.pro/en/report/hp/sennheiser-hd-280-pro.php#gsc.tab=0
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Appendix B Case History Form 

• Participant Number: ________   Date: ________ 

• Sex: Male    Female 

• Age: ________    Date of birth: __________ [If younger than 18 or older than 40, 

exclude] 

• Are you a native speaker of American English?YesNo 

• Do you have hearing loss?        Yes     No 

• Are you in good general health?   Yes       No 

• If no, please explain your medical condition: _______ 

• Have you had any ear surgery?  Yes   No   [If yes, exclude] 

• Explain: ______________  

• Have you had any recent ear infections, drainage, or pain in your ears? 

• If yes, please indicate the date: ______[If within the last 3 months, exclude] 

• Have you had any eye surgery?   Yes     No [if yes, exclude] 

• Explain: ______________ 

• Have you ever had any condition that affects your brain such as: a stroke, seizure, 

hemorrhage, brain tumor, or other type of neurological condition?   Yes      No [if 

yes, exclude] 

• If yes, please explain: ______ 

• Have you ever been diagnosed with any psychological disorder such as: anxiety 

disorder, schizophrenia, severe depression?    Yes        No[if yes, exclude] 
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• If yes, please explain: __________ 

• Have you ever been diagnosed with any motor speech disorder such as: stuttering, 

apraxia of speech?    Yes        No[if yes, exclude] 

• If yes, please explain: __________ 

. 
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Appendix C Sprint Chart for 25-Word Lists (Thibodeau, 2000) 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
0 0
4 4
8 8 S

12 12 e
16 16 c
20 20 o
24 24 n
28 28 d

P 32 32
T 36 36 P
A 40 40 e

44 44 r
d 48 48 c
B 52 52 e
H 56 56 n
L 60 60 t

64 64
68 68 S
72 72 c
76 76 o
80 80 r
84 84 e
88 88
92 92
96 96

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
First Percent Correct Score

95% Confidence Limit for PBmax on NU6 25-word list.Plot score according
to PTA on left ordinate and percent correct score on the abscissa. 
If it falls in the shaded area, it is considered disproportionately low. 
(Adapted from Dubno et al.,1995)

95% Critical differences for 25-word list. Plot first and second score 
according to the abscissa and right ordinate. If it falls within the arrow, the two
scores are not significantly different (Adapted from Thornton & Raffin, 1978)  

© Linda M. Thibodeau  

The image part with relationship ID rId34 was not found in the file.



 82 

Appendix D Analysis Outputs from SPSS 

Appendix D.1 Outputs of the Independent Samples T-Test 
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Appendix D.2 Outputs of Experiment 1 
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Appendix D.3 Outputs of Experiment 2 

Appendix D.3.1 Overall Speech Intelligibility 
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Appendix D.3.2 Clear Speech Intelligibility 
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Appendix D.3.3 Lab Conversational Speech Intelligibility 
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Appendix D.3.4 Natural Conversational Speech Intelligibility 
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Appendix E Sample of STMI Values 

A sample of the derived STMI valued for one subject. 

Filecode Styles STMI at +3 STMI at 0 STMI -3 STMI -6 
001 Clear 0.49653 0.5731 0.45046 0.43403 
002 Clear 0.4639 0.54432 0.41508 0.39756 
003 Clear 0.687 0.73778 0.656 0.64543 
004 Clear 0.62103 0.67365 0.5908 0.58107 
005 Clear 0.35692 0.46698 0.27892 0.23723 
006 Clear 0.59706 0.65643 0.56025 0.54646 
007 Clear 0.65891 0.71031 0.62778 0.61764 
008 Clear 0.56068 0.62766 0.51802 0.50021 
009 Clear 0.58154 0.65302 0.53363 0.5126 
010 Clear 0.66068 0.71641 0.62241 0.60329 
011 Clear 0.62662 0.69143 0.58311 0.56399 
012 Clear 0.56065 0.65005 0.48439 0.42938 
013 Clear 0.52392 0.58925 0.48648 0.47478 
014 Clear 0.4917 0.57369 0.43889 0.41569 
015 Clear 0.61 0.67281 0.57034 0.55487 
016 Clear 0.44265 0.52646 0.39428 0.38068 
017 Clear 0.50468 0.57834 0.46038 0.44443 
018 Clear 0.44191 0.53401 0.38211 0.35519 
019 Clear 0.55197 0.6261 0.50118 0.47989 
020 Clear 0.47903 0.57196 0.41082 0.37522 
021 Clear 0.62281 0.67975 0.5865 0.57161 
022 Clear 0.53833 0.62328 0.47321 0.43609 
023 Clear 0.63181 0.69417 0.58828 0.56655 
024 Clear 0.62948 0.70037 0.57402 0.54274 
025 Clear 0.52476 0.59062 0.49136 0.48412 
026 Clear 0.5001 0.58469 0.44069 0.41043 
027 Clear 0.50288 0.58242 0.45616 0.43873 
028 Clear 0.48703 0.56557 0.43429 0.40851 
029 Clear 0.52866 0.59965 0.48805 0.47558 
030 Clear 0.60503 0.66513 0.56899 0.5551 
031 Clear 0.45537 0.56756 0.3626 0.30119 
032 Clear 0.61541 0.68454 0.56362 0.53424 
033 Clear 0.51655 0.61908 0.42515 0.35724 
034 Clear 0.52659 0.61273 0.46214 0.42244 
035 Clear 0.56252 0.63324 0.51993 0.50666 
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036 Clear 0.37102 0.4836 0.29239 0.25202 
037 Clear 0.62277 0.68616 0.58237 0.56546 
038 Clear 0.55107 0.61694 0.51846 0.51493 
039 Clear 0.62481 0.68031 0.59464 0.58752 
040 Clear 0.43953 0.54179 0.36477 0.32264 
041 Clear 0.59691 0.66269 0.55629 0.5402 
042 Clear 0.52214 0.61685 0.44734 0.39883 
043 Clear 0.5963 0.67857 0.53201 0.49114 
044 Clear 0.57159 0.65007 0.5158 0.48619 
045 Clear 0.67897 0.73642 0.63467 0.60625 
046 Clear 0.51661 0.60947 0.44824 0.41014 
047 Clear 0.64751 0.71684 0.58641 0.53801 
048 Clear 0.6831 0.73453 0.64924 0.63125 
049 Clear 0.33694 0.45538 0.25068 0.20169 
050 Clear 0.48374 0.58485 0.41238 0.36975 
051 Clear 0.51284 0.59952 0.45558 0.43133 
052 Clear 0.60124 0.66603 0.56303 0.54999 
053 Clear 0.52868 0.59998 0.48489 0.46815 
054 Clear 0.52845 0.60193 0.48314 0.4672 
055 Clear 0.50121 0.57251 0.45975 0.4468 
056 Clear 0.59996 0.66662 0.55272 0.52651 
057 Clear 0.46707 0.55105 0.4159 0.39503 
058 Clear 0.57564 0.63449 0.54084 0.52931 
059 Clear 0.36186 0.48179 0.27389 0.22508 
060 Clear 0.47021 0.56574 0.40188 0.36454 
061 Clear 0.51689 0.59543 0.46261 0.43442 
062 Clear 0.36478 0.48001 0.28307 0.24151 
063 Clear 0.622 0.68838 0.57127 0.541 
064 Clear 0.64881 0.71417 0.59415 0.55432 
065 Clear 0.38841 0.49799 0.30756 0.26209 
066 Clear 0.4525 0.55 0.38698 0.35696 
067 Clear 0.46888 0.56776 0.40274 0.37296 
068 Clear 0.53194 0.6007 0.49333 0.48054 
069 Clear 0.56172 0.63565 0.51017 0.48502 
070 Clear 0.62873 0.69078 0.58661 0.56465 
071 Clear 0.55665 0.6391 0.49651 0.46325 
072 Clear 0.58468 0.65984 0.53452 0.51334 
073 Clear 0.60527 0.67733 0.55555 0.52939 
074 Clear 0.55399 0.63445 0.4972 0.46804 
075 Conv 0.59912 0.67364 0.54581 0.51663 
076 Conv 0.49046 0.58009 0.42523 0.38761 
077 Conv 0.48899 0.56147 0.44993 0.44248 
078 Conv 0.59493 0.66213 0.54962 0.52785 
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079 Conv 0.53037 0.61087 0.47918 0.45688 
080 Conv 0.66748 0.72459 0.62826 0.60696 
081 Conv 0.55731 0.62638 0.51633 0.50192 
082 Conv 0.63116 0.69395 0.58851 0.56737 
083 Conv 0.38092 0.48543 0.30382 0.25971 
084 Conv 0.68356 0.73597 0.64667 0.62693 
085 Conv 0.71808 0.76967 0.67967 0.65694 
086 Conv 0.4773 0.57289 0.4083 0.36909 
087 Conv 0.45773 0.53851 0.41431 0.4016 
088 Conv 0.39668 0.50364 0.32449 0.28952 
089 Conv 0.56283 0.63267 0.52082 0.50551 
090 Conv 0.58147 0.64739 0.53985 0.52284 
091 Conv 0.43301 0.54006 0.35703 0.32033 
092 Conv 0.58808 0.6615 0.53394 0.50211 
093 Conv 0.44903 0.54908 0.37653 0.33553 
094 Conv 0.64382 0.69904 0.6108 0.59877 
095 Conv 0.61102 0.67561 0.57176 0.55612 
096 Conv 0.70169 0.75345 0.66615 0.64806 
097 Conv 0.64188 0.6997 0.60356 0.58559 
098 Conv 0.36071 0.47872 0.2738 0.22358 
099 Conv 0.69775 0.74666 0.66498 0.65 
100 Conv 0.60706 0.67133 0.56181 0.53776 
101 Conv 0.66833 0.7209 0.6339 0.61864 
102 Conv 0.59626 0.66704 0.54633 0.519 
103 Conv 0.70458 0.75541 0.66963 0.65172 
104 Conv 0.65243 0.71256 0.61004 0.58752 
105 Conv 0.45026 0.54644 0.38011 0.34008 
106 Conv 0.66539 0.72369 0.62399 0.60157 
107 Conv 0.68041 0.73659 0.64098 0.62108 
108 Conv 0.5699 0.64277 0.52273 0.50157 
109 Conv 0.42096 0.52456 0.34499 0.30206 
110 Conv 0.59112 0.66064 0.54623 0.52508 
111 Conv 0.66056 0.71372 0.62603 0.61012 
112 Conv 0.38941 0.49154 0.31988 0.287 
113 Conv 0.57785 0.65092 0.52839 0.504 
114 Conv 0.50964 0.59315 0.44809 0.41184 
115 Conv 0.57649 0.64547 0.53237 0.51321 
116 Conv 0.66984 0.73321 0.62712 0.60522 
117 Conv 0.53239 0.60776 0.48622 0.46712 
118 Conv 0.61849 0.68816 0.56843 0.54199 
119 Conv 0.30897 0.42615 0.22342 0.1763 
120 Conv 0.55938 0.63876 0.4989 0.46173 
121 Lab 0.67156 0.72383 0.63589 0.61807 
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122 Lab 0.54188 0.62515 0.47709 0.4374 
123 Lab 0.66925 0.72513 0.63157 0.61557 
124 Lab 0.62575 0.68427 0.58959 0.57592 
125 Lab 0.64971 0.70676 0.61417 0.60211 
126 Lab 0.64513 0.70009 0.6121 0.60041 
127 Lab 0.64285 0.69804 0.60913 0.59746 
128 Lab 0.64386 0.70653 0.59965 0.57507 
129 Lab 0.54982 0.62788 0.49647 0.46984 
130 Lab 0.58918 0.66412 0.53477 0.50645 
131 Lab 0.60296 0.67697 0.5472 0.51278 
132 Lab 0.62957 0.69115 0.58645 0.56297 
133 Lab 0.56568 0.64108 0.51206 0.48359 
134 Lab 0.37021 0.48412 0.29133 0.25219 
135 Lab 0.52595 0.60017 0.47978 0.46309 
136 Lab 0.59127 0.65175 0.5536 0.53682 
137 Lab 0.48007 0.57735 0.41254 0.37937 
138 Lab 0.51175 0.5952 0.45419 0.42419 
139 Lab 0.3895 0.49755 0.31553 0.28073 
140 Lab 0.48722 0.57416 0.43376 0.41673 
141 Lab 0.5389 0.62221 0.47882 0.44591 
142 Lab 0.65994 0.71964 0.6174 0.59446 
143 Lab 0.40666 0.5148 0.32656 0.27912 
144 Lab 0.52143 0.60185 0.46454 0.43511 
145 Lab 0.47991 0.58236 0.40539 0.3676 
146 Lab 0.48771 0.56472 0.44554 0.43418 
147 Lab 0.56433 0.63441 0.51808 0.498 
148 Lab 0.56328 0.64371 0.50292 0.46746 
149 Lab 0.636 0.70079 0.58951 0.56314 
150 Lab 0.56274 0.64828 0.49587 0.45213 
151 Lab 0.60073 0.67105 0.55429 0.53191 
152 Lab 0.49626 0.58867 0.43113 0.39749 
153 Lab 0.49466 0.57925 0.43623 0.40767 
154 Lab 0.55361 0.62664 0.50753 0.48742 
155 Lab 0.46895 0.56394 0.39597 0.35065 
156 Lab 0.60885 0.68314 0.55255 0.51751 
157 Lab 0.43782 0.54249 0.35936 0.31264 
158 Lab 0.45697 0.56061 0.3849 0.3515 
159 Lab 0.57929 0.65036 0.53237 0.51076 
160 Lab 0.48056 0.57139 0.41306 0.37569 
161 Lab 0.53539 0.61712 0.47815 0.44487 
162 Lab 0.66479 0.72828 0.6178 0.59013 
163 Lab 0.62813 0.68761 0.58894 0.572 
164 Lab 0.37671 0.49968 0.27957 0.21824 
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165 Lab 0.67399 0.73678 0.62604 0.59613 
166 Lab 0.52785 0.61907 0.45848 0.41662 
167 Lab 0.58259 0.64576 0.54335 0.52972 
168 Lab 0.58906 0.66496 0.54123 0.52274 
169 Lab 0.44481 0.54257 0.38089 0.35362 
170 Lab 0.60763 0.66953 0.57056 0.55784 
171 Lab 0.42282 0.52737 0.34624 0.30281 
172 Lab 0.54577 0.62465 0.48913 0.45766 
173 Lab 0.5617 0.64088 0.50534 0.47726 
174 Lab 0.49489 0.5827 0.43107 0.3958 
175 Lab 0.70051 0.75175 0.66665 0.65152 
176 Lab 0.59027 0.66584 0.53467 0.5021 
177 Lab 0.63263 0.70036 0.58621 0.56468 
178 Lab 0.45483 0.54796 0.39283 0.36459 
179 Lab 0.71832 0.76773 0.68374 0.66369 
180 Lab 0.67596 0.73148 0.63803 0.61905 
181 Lab 0.50664 0.58934 0.44828 0.41677 
182 Lab 0.30682 0.43424 0.21351 0.16181 
183 Lab 0.67572 0.73782 0.63144 0.60778 
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