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Abstract 

Experimental and Computational Investigations of Catalytic C1 Upgrading Reactions 

 

Gizem Ozbuyukkaya, PhD 

 

University of Pittsburgh, 2021 

 

 

 

 

Technological advances in horizontal drilling and fracking enabled a steep increase in 

recoverable natural gas reserves. The abundance of natural gas creates a strong incentive to utilize 

methane beyond combustion by converting it to higher-value chemicals. However, C1 upgrading 

reactions are often challenging due to poor activity/selectivity and feasibility. This work aims to 

improve our understanding of such reactions via (i) increasing fundamental insights into the 

reaction mechanism for the rational design of catalytic processes, and (ii) improving the accuracy 

of the kinetic description of complex reaction systems. Herein, we studied oxidative coupling of 

methane (OCM) to ethylene, and synthesis of methanethiol from methanol and hydrogen sulfide. 

Initially, we experimentally investigated the unsteady-state kinetics of OCM over MnxOy-Na2WO4 

based catalysts to elucidate the role of metal oxide centers. By exploring the transient behavior of 

the catalyst under reducing conditions, we correlated lattice oxygen consumption and phase 

changes of each metal oxide to the formation of different carbon species. We found that while the 

presence of Mn-oxide is critical for methane activity, the gas phase dehydrogenation of ethane is 

the key step to form ethylene. Selective hydrogen removal on tungstate is found to promote higher 

C2 yields, which could provide a new direction for rational catalyst design. Next, a statistical 

regression methodology is applied towards estimating kinetic parameters for methanol thiolation 

on a commercial alumina-based catalyst, yielding good agreement with experimental data and a 

considerable improvement over parameters predicted via conventional regression. The 

computational framework for modeling and optimization of reactors for a large-volume process is 



 v 

developed and used towards determining operating conditions and reactor design to achieve >90% 

methanethiol yields with negligible pressure drop. The general applicability of the implemented 

parameter estimation method for derivation of robust kinetics is further evaluated using synthetic 

data for a simple model reaction. The method is found to have similar or better accuracy in 

predicting true kinetics from limited and/or noisy data than advanced optimization routines with 

considerably less computation cost. Overall, this dissertation aims to provide both experimental 

and computational tools and insights to improve our understanding of reaction kinetics involving 

C1 chemistry. 
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1.0 Introduction 

Global recoverable natural gas reserves have been rapidly increasing in recent decades due 

to the technological advances in horizontal drilling and hydraulic fracking, which is a trend that is 

projected to stay well into the 21st century1,2. Nowadays, natural gas, consisting primarily of 

methane, is typically used as a source of energy for heating and electricity generation. However, 

the increased abundance of natural gas combined with low prices creates a strong incentive to 

utilize methane by converting it to industrially relevant, higher-value chemicals3. One such 

example is ethylene, which is the largest petrochemical produced in the world by volume, since it 

is the building block for a vast array of chemicals from adhesives to solvents, paints, and plastics4,5. 

Ethylene is commercially predominantly produced via steam cracking of naphtha, a petroleum-

based feedstock3,6. This process is considerably energy intensive as it involves thermal cracking 

of longer carbon chains at high temperatures. In addition, since the feedstock is a by-product of 

the petroleum industry, crude oil availability and price is anticipated to affect the feasibility of the 

process in near future. 

 

Figure 1 History and projections of U.S. natural gas production1 

 

1 Annual Energy Outlook 2020, U.S. Energy Information Administration (EIA) 
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Figure 2 Simplified schematics of methane upgrading routes 

 

An alternative route to producing ethylene is the “oxidative coupling of methane” (OCM), 

in which methane is directly converted to ethylene in a single, exothermic step at temperatures 

above 700C6-8. Although this reaction has been studied for many decades, it is lacking an efficient 

catalyst that can procedure high ethylene yields, which makes the industrial-scale realization of 

OCM challenging9. Current economic estimations state that for the OCM reaction to be an 

economically feasible alternative to steam cracking, at least 30% per-pass ethylene yield should 

be achieved at the end of the reactor10,11. A large number of active materials have been tested such 

as Li/MgO, La2O3, and Mn/Na2WO4
10. Amongst the catalyst tested, Na2WO4/Mn/SiO2 has been 

shown to have good performance and stability by several publications, although different 

assessments are reported regarding the nature of the active site12. Therefore, we set out to 

experimentally investigate the OCM reaction over the Mn-Na2WO4 catalyst system to identify 

methane activation and conversion pathways leading to high C2 selectivity. Earlier work on OCM 

proposed that the metal oxide catalyst provides its lattice oxygen via a Mars-Van Krevelen 

mechanism to activate methane by breakage of the C-H bond at 700-900C, and the consumed 

lattice oxygen is replenished by gas phase oxygen in the consequent step13,14. Hence in this work, 

fixed-bed continuous flow experiments are carried out by feeding separate pulses of air and 

methane to the reactor, instead of co-feeding them, where metal oxides act as oxygen reservoirs or 
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“oxygen carriers”. Experiments conducted in the absence of molecular oxygen in the feed enables 

us to focus on surface-initiated reactions and observe reaction pathways that are not readily 

discernible otherwise. By exploring the transient behavior of the catalyst under reactive conditions, 

we can correlate lattice oxygen consumption and phase changes of the metal oxide center with the 

formation of different C2 and COX species. Single component MnO2/MgO and Na2WO4/MgO 

catalysts are also studied via thermogravimetric and fixed-bed reactor studies to determine their 

baseline methane activity and C2 selectivity. Finally, the synergistic effect and lattice oxygen 

sharing mechanism between MnO2 and Na2WO4 is examined by physically mixing individually 

synthesized samples of these two metal oxides and comparing their catalytic performance to the 

conventional Mn-Na2WO4 mixed-oxide catalyst. The results and outcomes of this work aim to 

enhance our understanding of the OCM reaction over the Mn-Na2WO4 catalyst system and suggest 

new directions for rational catalyst design to further improve C2 yields towards the economical 

window. 

In the next part, another value-added chemical formed through methane upgrading is 

studied. Methanethiol, an aliphatic thiol with the formula CH3SH (Figure 2), is most commonly 

used as a raw material in the synthesis of the organo-sulfur compound methionine, which is an 

essential proteinogenic amino acid used as a feed additive for livestock15. Typical livestock diet 

consisting of plant sources lack the essential amino acid methionine, which is often overcome by 

the use of hormones16,17. Hormone use is undesirable due to adverse health effects, and co-feeding 

methionine can drastically reduce the use of hormones in livestock agriculture. Due to the 
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projected increase in global food demand and organic production practices, the global market for 

methionine is expected to increase with an annual growth rate of 4.1% between 2020-20272. 

Methanethiol is predominantly produced by the reaction of methanol with hydrogen sulfide 

at 160 to 500 °C and 1 to 35 bar18. At typical reaction conditions, dimethyl sulfide (DMS) is 

produced as a byproduct through dimerization reaction, which can be separated from the reactor 

effluent and cleaved with hydrogen sulfide (H2S) to recover MeSH in a secondary reactor. From a 

thermodynamic view, the formation of the byproduct DMS is favored for stoichiometric hydrogen 

sulfide-to-methanol ratios19. To minimize the consecutive reaction of MeSH to DMS, a large 

excess of hydrogen sulfide is required to limit the conversion of MeSH to DMS20,21. Although 

methanethiol selectivities up to 90% could be achieved in a two-reactor system, the process is 

noticeably energy-intensive, since large excess of hydrogen sulfide needs to be circulated to 

suppress dimethyl sulfide formation18-20,22. This highlights the importance of reactor optimization 

to improve feed conversion and overall product yield. However, this requires determination of an 

accurate kinetic description of the reaction system. 

Kinetic parameters derived based on limited experimental measurements, as typical for 

most industrial cases, often fail to predict kinetic behavior outside the known operating range and 

thus limit optimization of reactor and process development. To circumvent this issue and to 

improve the overall predictive ability of the kinetic model, a statistical parameter estimation 

strategy is adopted, which involves cross-validation (CV) implementation to non-linear least 

squares. CV is commonly used to solve classification problems in machine learning for accuracy 

reporting, which is based on the splitting of the experimental data into a “training set” to predict 

 

2 Methionine - Global Market Trajectory & Analytics, July 2020, Global Industry Analysts, Inc. 
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the model, and a “validation set” to assess the quality of the model. To examine the potential 

benefit of this implementation towards parametric regression, a model case study is performed by 

comparing cross-validation least squares (LS-CV) estimation to regular non-linear least-squares 

(LS) approximation. As a final result of the kinetic modeling, a fully parameterized model to 

describe each reaction step of the methanol thiolation reaction network on a commercial catalyst 

is obtained and used subsequently towards modeling and optimization of reactors for a large scale 

methanethiol production. 

Finally, the general applicability of the implemented method for derivation of robust 

kinetic parameters is investigated based on a simple model reaction. This case study suggests that 

CV implementation in the parameter estimation improves the predictive ability of the kinetic 

model on unknown datasets. However, the level of improvement can be expected to depend on a 

number of conditions, such as the number of data points, quality of measured data (noise and 

outliers), number of parameters, and model complexity. In this work, we evaluate the general 

applicability of the implemented method for derivation of robust kinetic parameters from limited 

and noisy data, which is typical for the industry. Water-gas shift reaction (CO + H2O ⇌ CO2 + H2) 

on a common Cu/ZnO/Al2O3 catalyst with previously determined lumped kinetics is used as a 

model reaction23. Synthetic data is generated over a range of reaction temperatures, inlet feed ratios 

and gas hourly space velocities, representing a broad range of conversions to avoid highly localized 

kinetic models. By applying controlled levels of randomized noise and outliers on synthetic data, 

we identify the critical dataset properties in which the implemented method would yield significant 

improvements in terms of accuracy and computational cost over more complex optimization 

routines such as Markov chain Monte Carlo24 and genetic algorithm25.  
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Overall, this dissertation aims to provide both experimental and computational insights to 

improve our understanding of heterogeneous reaction kinetics involving C1 chemistry. 
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2.0 Kinetic Investigations on the Role of Sodium Tungstate Promoter in MnxOy - Na2WO4 

Catalyzed Oxidative Methane Coupling Reaction 

2.1 Introduction 

The combined technological advances in horizontal drilling and hydraulic fracking enabled 

a steep increase in global recoverable natural gas reserves1,2. This abundant natural gas, consisting 

primarily of methane, creates a strong incentive to utilize methane beyond combustion by 

converting it to higher hydrocarbons, such as ethylene, as intermediates for the production of 

value-added chemicals and fuels. Ethylene is the most important organic chemical in the world by 

volume, since it is the building block for a vast array of chemicals from adhesives to solvents, 

paints, and plastics4,5. Ethylene is commercially produced via steam cracking of ethane or naphtha, 

a petroleum-based feedstock3,6. An alternative route to producing ethylene is the “oxidative 

coupling of methane” (OCM), in which methane is directly converted to ethane and ethylene in a 

single reactor at temperatures above 700C6-8. 

OCM follows a complex reaction mechanism which involves coupled heterogeneous 

(catalytic) and homogeneous (non-catalytic) reaction steps26: In OCM, a metal oxide catalyst 

provides its lattice oxygen via a Mars-Van Krevelen mechanism to activate methane by breakage 

of the C-H bond at 700-900C, forming methyl radicals13,14. After desorption of methyl radicals 

from the catalyst surface, the carbon-carbon coupling reaction occurs homogeneously in the gas 

phase27-30. The ethane formed in this step then homogeneously dehydrogenates to yield ethylene 

in a subsequent step13. Finally, the hydrogen formed both in the latter step and the initial 

dissociative methane activation step is catalytically oxidized to form H2O, yielding a net 
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exothermic reaction: 2 CH4 + O2 → C2H4 +2 H2O, ΔH°R= -281.4 kJ/mol. However, the presence 

of gaseous O2 in the feed mixture – needed both to replenish the lattice oxygen in the Mars-Van 

Krevelen activation step and the hydrogen combustion, results in unselective side reactions where 

both CH4, intermediates, and C2 products are totally oxidized to CO and CO2, severely limiting 

the overall selectivity of the reaction12,31. This challenge is further exacerbated by the fact that total 

oxidation reactions are thermodynamically favored at high reaction temperatures32.  

Since the early work of Keller and Bhasin33, numerous investigations have focused on 

OCM in pursuit of suitable catalysts for economically viable reaction yields, which are estimated 

to be ≥30% C2 yield10,32,34. However, despite these intense efforts, no such catalyst has been 

identified to-date and OCM remains as one of the “holy grails” in catalysis35. One of the best 

performing catalysts identified in terms of activity and C2 selectivity are Na2WO4 promoted Mn-

oxides (most typically supported on silica, i.e. Mn–Na2WO4/SiO2), first reported by Li et al.36,37. 

This catalyst has been studied across various reactor configurations, temperatures, catalyst 

compositions, oxidant species, and CH4-to-oxidant feed ratios, and typically reported to yield CH4 

conversions of 15-30% at combined C2 selectivity between 60-80%12,38-44. Pure Mn/SiO2 has been 

shown to be unselective since both Mn-oxide and the amorphous SiO2 support acts as a total 

oxidation catalyst45,46. Na2WO4 addition to Mn/SiO2 was found to transform amorphous SiO2 into 

-cristobalite phase, which renders the support inert12. Na is believed to play a role in the phase 

transition of amorphous SiO2, whereas the tungstate group (WO4) is generally claimed to be a part 

of the catalytically active center28,46-48. Based on the mechanism first reported by Li et al.36, O2 is 

activated on Mn+3 sites whereas (selective) CH4 activation occurs on the W6+ sites. The increased 

selectivity upon Na2WO4 addition is hence due to the presence of W-O-Si sites, and oxygen 

spillover from Mn2O3 to Na2WO4 is responsible for the enhanced activity of the catalyst37,49. 
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Transient experiments further confirm that the catalyst provides its lattice oxygen for activation 

and has stable redox properties50. COx formation was detected in the absence of gaseous O2. In 

contrast to Li et al., Lunsford and coworkers reported that the catalytic performance was inferior 

without Mn13,14. They reported a similar catalytic performance of Mn–Na2WO4/SiO2, Mn–

Na2WO4/MgO, and NaMnO4/MgO, suggesting that tungsten or tungstate centers might not be part 

of the active site. Accordingly, Na-O-Mn was proposed as the active site since it was common in 

all three identical performing catalysts. Despite the extensive research on sodium tungstate doped 

manganese oxide catalysts for OCM, there is a lack of consensus on the nature of the active site 

for methane activation and the role of Na2WO4, although the prevalent view in the literature 

remains that an oxygen spillover mechanism between the manganese and the tungstate phases is 

key for the OCM activity of this catalyst16.  

The present work therefore revisits the reaction kinetics and mechanism over the Mn-

Na2WO4 catalyst system to identify methane activation and reaction pathways leading to high C2 

selectivity. Supported Mn oxide-based catalysts were synthesized, characterized, and evaluated in 

kinetic studies to gain insights into metal oxide phases and their correlation with activity and 

selectivity. In particular, the synergistic effect between MnO2 and Na2WO4 is examined by 

physically mixing individually synthesized samples of these two metal oxides and comparing their 

performance to a conventional mixed oxide catalyst. From these rather straightforward syntheses, 

characterizations, and reactive tests, a new view of the reaction mechanism emerges that does not 

require any shared lattice oxygen – nor even the immediate vicinity of Mn- and WO4-centers – 

and instead suggests a concerted mechanism between two disjunct catalytic sites.  

Overall, this work aims to provide both experimental and computational tools and insights 

to improve our understanding of reaction kinetics involving C1 chemistry. 
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2.2 Experimental  

2.2.1 Catalyst Preparation 

Conventional Mn-Na2WO4 mixed oxide catalyst was prepared via simple wet impregnation 

method using magnesium oxide as support. Manganese (II) nitrate (Sigma Aldrich, 97.0%) and 

sodium tungstate dehydrate (Sigma Aldrich, ACS reagent, ≥99%) were dissolved in an aqueous 

solvent and added to magnesium oxide (Sigma Aldrich, ≥99% trace metals basis, -325 mesh) under 

continuous mixing to achieve 40wt% metal loading (Mn: Na2WO4 ratio was kept at 1:1). The slurry 

was mixed at 80C for 3 h followed by overnight drying at 100C. Dried catalyst was ground into 

a fine powder using mortar and pestle. The powder was calcined under air flow at 900C for 10 h.  

For the Mn-Na2WO4 physical mixture catalyst, the same procedure was applied for 

synthesizing pure metal oxides of Na2WO4/MgO and MnO2/MgO, separately. After calcination, 

aliquots of supported MnO2 and Na2WO4 catalysts are carefully mixed in a vial to prepare the 

physical mixture catalyst. The total weight loading and the Mn: Na2WO4 ratio of the physical 

mixture were kept identical to the mixed oxide. For clarity, we will refer to this catalyst as 

“physical mixture catalyst”, PMC, in contrast to the “mixed oxide catalyst” Mn-Na2WO4/MgO, 

MOC). 

2.2.2 Catalyst Characterization 

Surface area. The specific surface area was determined via nitrogen sorption in a 

Micromeritics ASAP 2020 gas adsorption analyzer using the BET method at 77 K. Prior to the 
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measurement, the samples were degassed for 2 h at 200C under high vacuum. Low surface areas 

(<4 m2/g) were observed for all materials tested due to high temperature treatment.  

X-ray diffraction (XRD) characterization. The measurements were performed with a 

powder X-ray diffractometer (Bruker D8) in line focus mode employing Cu K radiation (k = 

1.5418 Å) with typical 2h scans between 15 and 90. The catalysts were characterized at different 

stages of the experiments, i.e. after synthesis and fixed-bed reactor tests. Crystal phases were 

identified based on the JCPDS database.  

Electron microscopy. A JEOL JEM-2100F high-resolution transmission electron 

microscope (HR-TEM) was used to obtain images of the samples to evaluate the size and 

uniformity of the particles (Appendix Figure 1). 

2.2.3 Reactive Testing 

Thermogravimetric analysis (TGA). Thermal stability and the oxidation state of the 

catalysts were evaluated in a thermogravimetric analyzer (TA Instruments STD Q600). The 

catalyst (7-15mg) in an alumina pan was placed in the TGA cradle and heated under Argon flow 

(grade 5.0, 20sccm) to 900C at 100C/min ramp rate and kept isothermal throughout the 

experiment. CH4 (grade 2.0, 10sccm) or H2 (grade 2.0, 20sccm) was flown over the heated sample 

to simulate the fixed bed reaction until all lattice oxygen was consumed, monitored by the total 

weight loss. The reduced samples were oxidized with air in a consecutive step. The TGA cradle 

was purged with Argon in between reducing and oxidizing gas flow. N2 (grade 5.0, 20sccm) was 

used as the carrier gas during all TGA runs. Weight loss between oxidized and reduced samples at 

reaction temperature was used to calculate the oxide phases associated with each state. The 

stability of the catalysts as reflected in repeatable redox cycles with identical maximum and 
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minimum weights (i.e. identical oxidation states) was also studied over the runs with extended 

cycles. 

Fixed bed experiments. Reactive test experiments are performed in a fixed bed reactor to 

evaluate the feed conversion and product selectivity. 50 mg of synthesized catalysts were packed 

inside the quartz-glass tubular reactor (1/4” ID), which was horizontally inserted into an electric 

oven (Thermo Electron Corporation – Lindberg/Blue M) set to 900C. Quartz wool was placed on 

both sides of the catalyst bed for support. Reducing gases (CH4, C2H6 and C2H4) and O2 were 

flown to the reactor periodically at 3650 h-1 GHSV. All gases used in this study are high purity 

(>99.5%). The catalyst bed was purged with He between oxidation and reduction to avoid 

hydrocarbon – molecular oxygen mixtures and assure well-defined gas phase compositions. An 

ice-trap was placed at the reactor exit to condensate moisture before monitoring the effluent gases 

continuously using a mass spectrometer (Pfeiffer Omnistar QMS 200) and Micro GC 300 

(Agilent). Product compositions were calculated by converting ion current signals from mass 

spectrometry to molar flowrates (ni) using calibration factors of each gas species. The accuracy of 

data collection was assessed via a carbon balance, which closed to better than ±3.5% error for all 

experiments reported. CH4 conversion, product selectivity, and yield were calculated using the 

equations shown below. Calculated selectivity and yield values of ethylene and ethane are 

cumulated and are denoted as C2 throughout the manuscript. 

Methane conversion [%],  𝑋𝐶𝐻4=
moles of CH4 converted

moles of CH4 in feed
x100        (2-1) 

Product selectivity, species i [%],  𝑆𝑖=
moles of species i formed

moles of total products
x100 (2-2) 

Product yield, species i [%],  𝑌𝑖 = 𝑋𝐶𝐻4 ∗ 𝑆𝑖   (2-3) 
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2.3 Results and Discussion 

2.3.1 Evaluation of Catalytic Performance  

As a baseline comparison, single component MnO2/MgO and Na2WO4/MgO catalysts 

were studied individually via thermogravimetric and fixed-bed reactor studies prior to evaluating 

the catalytic performance of the Mn-Na2WO4/MgO MOC. 

The reducibility of the metal oxides was initially evaluated by TGA at 900C starting with 

fully oxidized catalysts. Figure 3A and Figure 3B show the weight change during oxidation and 

reduction steps for MnO2/MgO and Na2WO4/MgO, respectively. Reduction by CH4 is 

accompanied by weight loss whereas oxidation results in weight increase. A simple mass balance 

calculation enables the calculation of the maximum and minimum weight of the MnO2/MgO 

catalyst with fully oxidized MnO2 (i.e. Mn4+) and reduced MnO (Mn2+) oxidation states, 

respectively.  

A close agreement between calculated and measured sample weights is observed, 

confirming conversion between these two oxidation states. After the reduction of the catalyst to 

MnO, a small weight increase was observed due to the thermal cracking of CH4, which results in 

coke deposition.  
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Figure 3 Thermogravimetric analysis of MnO2/MgO a) and Na2WO4/MgO MOC b) at temperature=900C. 

The oxidation and reduction cycles (grey shaded areas) were carried out consecutively with He purge in 

between. 

Similarly, during the purge phase between the oxidation and reduction steps, a weight loss 

was observed for the fully oxidized MnO2 sample (Figure 3A). This is due to the thermal 
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decomposition of MnO2 at high temperatures, which results in oxygen loss to the gas phase and 

consequent weight loss51,52. The rate of oxygen loss during the purge phase is quantified in separate 

TGA experiments and taken into consideration for material balances (Appendix Figure 2). In order 

to minimize the impact of this oxygen loss, the purge period was kept at exactly 10 minutes in all 

experiments. On the other hand, TGA experiments did not show any weight change of 

Na2WO4/MgO under CH4 or oxygen flow (Figure 3B), indicating that this carrier shows no 

reactivity with methane and hence no lattice oxygen loss. 

After establishing this baseline activity, the catalytic performances of Mn-Na2WO4/MgO 

MOC, MnO2/MgO, and Na2WO4/MgO were evaluated in a fixed bed reactor at 900C by flowing 

CH4 (20vol% in He, total flowrate: 13.5 sccm) over a 50 mg pre-oxidized catalyst. After pre-

oxidation at the reaction temperature, the catalyst bed was purged with He and CH4 was 

continuously fed into the reactor until no C2 signal was detected in the mass spectrometry. Since 

the reaction is performed at transient conditions, product formation rates and product distribution 

change continuously as the lattice oxygen is being consumed throughout the reaction progress. 

This mode of evaluation was chosen in order to avoid masking the true catalytic reaction rate by 

accompanying homogeneous oxidation steps in the presence of gaseous oxygen in the feed. 

While unpromoted MnO2/MgO shows significant coupling activity (Figure 4A), the lattice 

oxygen is quickly consumed due to the predominant formation of CO2 (note that CO2 and H2O are 

shown on the secondary y-axis, i.e. their respective concentrations are more than an order of 

magnitude larger than those of the other products). MnO2/MgO hence is not selective towards C2 

products despite the absence of gas phase O2 (Figure 4D), which indicates that COx formation is 

easily initiated in contact with the surface oxygen. The source of CO2 could either be direct deep 

oxidation of surface bound CH3 (i.e. before desorption) or subsequent re-adsorption and oxidation 
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of C2 products, since these are known to be more reactive than CH4 at reaction conditions32. After 

reduction of the oxide to MnO (i.e. after t ≈ 2 min), the onset of strong H2 formation indicates 

coking of the catalyst due to methane cracking. 

Addition of Na2WO4 to this catalyst to form a Mn-Na2WO4/MgO MOC catalyst results in 

a reduction of cumulative CO2 production by ~30% and a >10-fold increase in C2H4 formation 

despite identical amounts of manganese oxide used in these experiments (Figure 4B). As a result, 

a strong increase in C2 selectivity is observed (Figure 4E). The product spectrum for the Mn-

Na2WO4 MOC (Figure 4B) shows furthermore that the highest C2 concentrations occur at the onset 

of the reduction during the phase transition from Mn+4 transition to Mn2O3 (Figure 4E), with a 

maximum C2 yield of 13% (19% conversion and 69% selectivity). The rapid onset of hydrogen 

formation at t ≈ 13.5 min again indicates methane cracking due to the reduction of the catalyst to 

(essentially non-reducible) MnO. Due to the much-improved selectivity of the reaction, which 

results in a much lower oxygen consumption per mole of methane, this point is much delayed in 

comparison to the pure Mn-MgO catalyst (from t ≈ 2 min to ~13.5 min).  

Fixed bed experiments with pure Na2WO4/MgO did not yield any C2 products nor any 

significant CH4 consumption, consistent with the TGA results (Figure 3B) and hence are not shown 

here. 
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Figure 4 Product spectrum of a) of MnO2/MgO b) Mn-Na2WO4/MgO MOC and c) Mn-Na2WO4/MgO PMC, 

temperature=900C, GHSV=3650h-1. CH4 (20% concentration in He, total flowrate:13.5 sccm) was flown 

over a 50 mg pre-oxidized catalyst. Products of total oxidation reaction, CO2 and H2O are shown on the 

secondary y-axis in panels a-b. Respective selectivity and conversion are shown in d-f. 

 

Overall, the catalytic performances of the individual metal oxides hence were found to be 

much inferior to the Mn-Na2WO4 MOC. The results suggest that the Mn phase is required for 

methane activation and the addition of Na2WO4 renders the catalyst selective for C2H4 formation.  

Although similar synergistic effects between manganese oxide and sodium tungstate have 

been reported previously, the reaction mechanism for OCM is very complex and significant 

disagreement exists over the nature of the active site. The majority of the mechanistic studies on 
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OCM has been performed with inert SiO2 support due to its known stability over extended 

periods12. However, the mechanistic discussion of these studies is relevant and significant for MgO 

supported catalysts as well since MgO also constitutes as an inert support for OCM under the 

reaction conditions (as also confirmed here by the absence of any noticeable activity for 

Na2WO4/MgO). 

In agreement with our results, Mn/SiO2 was previously reported as an unselective OCM 

catalyst. However, the poor C2 selectivity was attributed to the amorphous SiO2 phase, which acts 

as a total oxidation catalyst45,46. Differentiation between the contributions of MnO2 and SiO2 was 

not possible in those studies. Na2WO4 addition to Mn/SiO2 was found to transform amorphous 

SiO2 into the -cristobalite phase, which is inert12. Na was believed to essential for phase transition 

of SiO2, whereas -WO4 is generally claimed to be a part of the active center28. A widely accepted 

mechanism based on an oxygen spillover between metals for methane activation was proposed by 

Li et al. 49 and supported with studies from other research groups12,36,37. According to this 

mechanism, methane activation takes place on the W6+ sites, while activation of gas-phase oxygen 

occurs on the Mn3+ sites. The oxygen spillover from Mn2O3 to Na2WO4 then enhances the catalytic 

activity and C2 selectivity of oxidative coupling of methane to ethylene49. The increased selectivity 

is attributed to the W=O and W-O-Si centers that are more selective towards methyl radical 

formation. This reaction mechanism seems to be inconsistent with our results since no CH4 

activation is observed over Na2WO4 without the presence of Mn. 

In contrast to Li et al.49, Lunsford and coworkers13,14 tested Mn/Na2WO4/MgO, 

Mn/Na2WO4/SiO2, and NaMnO4/MgO catalysts for OCM in co-feed and pulse reactor studies. 

Due to the similar catalytic performances of these catalysts, the authors suggested that W might 

not be necessary, and Na-O-Mn is the most likely active site. In line with our findings, Mn was 
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claimed to be the active center for methane activation center since its absence generally resulted 

in poor CH4 conversion. Very similar selectivity and activity were reported for MgO and SiO2 

supported Mn-Na2WO4 catalysts, supporting our claim that the reaction mechanism is similar 

across different (inert) supports. In a follow-up study, though, the MgO supported catalyst was 

found to gradually deactivate in co-feed mode whereas the SiO2 supported catalyst was stable up 

to 97 hours on stream53.  

To further test the previously claimed synergistic effect between MnO2 and Na2WO4 via a 

spillover mechanism, we used Mn-Na2WO4/MgO PMC (which was prepared by mixing aliquots of 

separately prepared MnO2/MgO and Na2WO4/MgO powders). The Na2WO4: Mn ratio and total 

catalyst weight loadings in the PMC were kept identical to the MOC for direct comparison. 

Clearly, a spillover mechanism requires that the performance of this PMC will perform essentially 

identical to the pure MnO2/MgO catalyst (since the Na2WO4/MgO catalyst is completely inactive). 

The negligible interface between these oxides (limited to the negligible contact area between 

random adjacent catalyst particles) renders any spillover highly unlikely and very inefficient, i.e. 

the physical mixture allows neither molecular nor electron transfer between the two metal oxides. 

However, remarkably, we find that catalytic performance and product spectrum of the PMC 

(Figure 4F) and the MOC (Figure 4C) are essentially indistinguishable. This suggests that the 

prevalent mechanism for synergy between the two catalyst phases may be incomplete. Instead, the 

synergy between the two catalysts most likely result from gas-phase mediated interactions. Since 

our results above have shown that methane can only be activated on the surface of MnOx, this 

suggests that interactions must be based on secondary reactions of primary reaction products 

formed on MnOx with the added Na2WO4 catalyst.  
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2.3.2 Activation Mechanism and the Role of Na2WO4.  

Based on the observations and discussion above, we hence propose a new pathway for the 

synergistic improvement between MnO2 and Na2WO4 catalysts, which couples the two catalysts 

solely through gas phase interactions. The proposed mechanism is shown schematically in Figure 

5, comparing the reaction mechanism over MnO2 (Figure 5A) with that over Mn-Na2WO4 (Figure 

5B), respectively.  

On manganese oxide, methyl radicals are generated on the catalyst surface. These radicals 

desorb into the gas phase and “couple” to form C2H6, which then dehydrogenates to C2H4 in a non-

catalytic gas phase reaction. However, due to the high reactivity of MnOx, both products then get 

oxidized further to COx, resulting in only low C2H4 yields at the reactor exit (Figure 5A).  

 

Figure 5 Proposed reaction mechanism on a) Manganese oxide b) Manganese-tungsten mixed oxide. Solid 

arrows represent surface reactions whereas dashed arrows indicate homogeneous gas phase reactions. 
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If we further hypothesize that Na2WO4 shows little to no activity for methane activation 

but can readily react with H2 then, upon Na2WO4 addition, H2 generated from homogeneous C2H6 

dehydrogenation in the gas phase is oxidized in contact with tungstate lattice oxygen (Figure 5B). 

This selective H2 removal pulls the ethane dehydrogenation reaction to the product side and hence 

decreases the rate of the competing parallel total oxidation of ethane on the manganese oxide 

surface. 

Since manganese and tungsten oxides catalyze separate, independent reaction steps explain 

the fact that physical mixtures of monometallic oxides perform identically to a mixed oxide (Mn-

Na2WO4) catalyst. This mechanism is also consistent with the observation that Na2WO4 is inactive 

towards OCM since it requires MnOx to activate methane, i.e. form methyl radicals and hence 

enable the gas phase dehydrogenation reaction. In fact, Na2WO4/SiO2 has been reported before to 

be a selective ODH catalyst39,54.  

However, the proposed mechanism is based on two key assumptions, which require 

validation: (1) According to the mechanism, C2H6 must show the fastest oxidation kinetics on Mn-

based catalysts, so that the acceleration of the dehydrogenation (via removal of the H2) and hence 

enhanced ethylene formation indeed “shelters” the C2 products from rapid deep oxidation; and (2) 

tungstate lattice oxygen must selectively remove H2, i.e., it must show negligible reactivity towards 

all hydrocarbons in the system. In the following, we will validate these assumptions. 

2.3.3 Validation of Hypothesis  

A key observation upon tungstate addition to the reaction system is the strong reduction in 

CO2 formation. While one could speculate in the case of a mixed oxide catalyst that the addition 

of the second phase moderates the oxidation activity of the first phase and hence reduces its 
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tendency towards total oxidation, this is clearly not a possible explanation for a purely physical 

mixture due to the complete absence of any direct interactions, i.e. electronic or structural 

modification of the catalyst phases. Hence, if the addition of the tungstate removes hydrogen and 

hence results in an enhanced dehydrogenation rate, as proposed here, this increased ethylene 

formation will only result in reduced COx formation if ethylene shows lower reactivity with MnOx 

than ethane. 

We hence tested the relative reactivity of methane, ethane, and ethylene over MnO2/MgO 

catalysts in separate fixed bed experiments by flowing CH4, C2H4, and C2H6, respectively, over a 

pre-oxidized MnO2/MgO catalyst at 900C. CO2 formation rates for all three hydrocarbons were 

determined and are shown in Figure 6. The results confirm that C2H6 shows indeed the highest 

CO2 formation rate among these hydrocarbons, with a maximum reduction rate that is ~1.5 times 

faster than that of C2H4 and ~3 times faster than that of CH4. Similar experiments with a pure 

Na2WO4/MgO catalyst under identical experimental conditions furthermore confirmed that this 

catalyst indeed shows negligible reactivity with all three hydrocarbons, further supporting our 

mechanistic hypothesis (see inset in Figure 6). Peak reaction rates are reduced by more than an 

order of magnitude compared to MnO2, and only 2% of the available lattice oxygen in the tungstate 

is consumed with C2H4 and less than 0.5% for C2H6 and CH4 over the course of ~10 minutes 

required for total oxygen consumption by hydrogen.  
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Figure 6 COx formation rate from CH4, C2H4, and C2H6 on MnO2/MgO and Na2WO4/MgO (inset). CH4 

(10vol% in He, total flowrate:13.5 sccm) was flown over a 50 mg pre-oxidized catalyst at T=900C. 

 

We furthermore carefully tested the possibility that a partial reduction of the tungstate by 

hydrogen could alter the activity of this phase. We quantified the oxygen loss via elemental balance 

and post-run characterization. For this purpose, total oxygen consumption was calculated based on 

the amount of CO2 and H2O formed during the reaction on the Mn-Na2WO4 catalyst (no other 

oxygenates were detectable at experimental conditions). Based on the initial oxygen content of the 

catalyst and the calculated cumulative oxygen consumption throughout the reduction of the 

catalyst, tungsten oxide is calculated to account for ~20wt% of total mass loss (Appendix Figure 

3, which corresponds to a partial reduction of Na2WO4 from +6 to ~ +4. The oxygen loss is further 

confirmed by post-reaction analysis via XRD on the used sample, which shows the reduction of 

MnO2 to MnO and reduction of tungstate to tungsten bronze during the reaction (Figure 7). 
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Figure 7 XRD data obtained from fresh and spent Mn-Na2WO4/MgO MOC under CH4 flow over the pre-

oxidized catalyst at 900°C. The labels indicate the following crystal phases: ▲, MnO2; ■, Na2WO4; ‡, MnO; ♦, 

NaWO3. 

 

The observed partial reduction of the tungstate by hydrogen opens the possibility that, 

unlike the fully oxidized phase, this partially reduced phase could show reactivity with methane 

and hence open a new reaction pathway. To exclude this possibility, another set of experiments 

was performed by exposing a pure tungstate catalyst to a hydrogen/methane mixture with various 

H2:CH4 ratios. Figure 8 shows the results, confirming only minimal methane conversion at all three 

conditions. No coupling activity was observed in any case, confirming that hydrogen removal on 

tungstate is selective throughout the reaction. Overall, these tests hence support our proposed 

mechanism. 
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Figure 8 Product spectrums of a) pure CH4 b) 8:1 CH4 to H2 ratio c) 4:1 CH4 to H2 ratio on Na2WO4/MgO, 

temperature=900C, CH4 (10% concentration in He, total flowrate: 13.5 sccm) was flown over a 50 mg pre-

oxidized catalyst. Dashed lines represent the reference feed flowrate for each gas.  
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2.3.4 Mn-phase Activity-Selectivity Relationship and Optimal Na2WO4:Mn Ratio 

 The transient reactive tests so far enabled us to identify phase changes and the catalytic 

activity associated with the tungstate phase. To further identify the role of the various Mn oxide 

phases, we further investigated the relative rates of CO2 vs C2H4 formation over unpromoted 

MnO2/MgO and the mixed Mn-Na2WO4/MgO catalysts.  

On the pure MnO2/MgO catalysts, maximum CO2 formation occurs in the presence of 

partially reduced Mn oxide (~Mn3+), while C2H4 formation occurs (at much lower rates) with a 

significant delay during the transition from Mn3O4 to MnO (Figure 9A main figure and inset, solid 

lines). In contrast, in the presence of Na2WO4, the maxima for both CO2 and C2 formation are 

shifted strongly towards higher Mn-oxide phases, i.e. towards Mn4+ (Figure 9B main figure and 

inset, solid lines). Most significantly, both the total oxidation product and the coupling product 

occur at identical times (t≈ 1 min), i.e. over the same Mn oxidation states. This suggests that the 

intrinsic activity for C2 and CO2 formation may be directly coupled, i.e. CO2 formation may occur 

via a rapid, sequential pathway from C2. For both catalysts (pure MnO2/MgO and the mixed oxide), 

methane activation occurs solely on the Mn oxide phase, resulting in the formation of methyl 

radicals which desorb into the gas phase and couple to C2H6. C2H6 can subsequently either 

(homogeneously) dehydrogenate to C2H4 or (catalytically) oxidize to CO2 (see also Figure 5). Over 

pure MnO2/MgO, the high reactivity of ethane results in rapid oxidation to CO2 and hence rapid 

reduction of the Mn oxide phase. The concomitant slowing of the oxidation reaction eventually 

reduces the rates sufficiently to allow a small fraction of C2H4 to survive (while essentially all 

C2H6 is being oxidized due to the higher reactivity). Upon addition of the tungstate phase, the 

removal of hydrogen from the dehydrogenation reaction via catalytic oxidation of H2 with WO4 
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enhances C2H4 formation. Since C2H4 has significantly lower reactivity with Mn oxide (see Figure 

6), this results simultaneously in an increase in C2H4 selectivity and much reduced CO2 formation.  

 

Figure 9 CO2 and C2H4 spectra of a) MnO2/MgO and b) Mn-Na2WO4/MgO MOC. GHSV=3650h-1, 

temperature=900C, CH4 (20% concentration in He, total flowrate: 13.5 sccm) was flown over a 50 mg pre-

oxidized catalyst. Solid curves represent 10 min purge whereas dotted curves represent 4 min purge. 

 

The impact of the Mn oxidation state was further studied by altering the initial Mn 

oxidation state by manipulating the purge period. It is well established that Mn oxide loses 
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(“uncouples”) lattice oxygen at temperatures above 500oC55,56, which allows the use of various 

purge durations to adjust the initial oxidation state. The typical purge period of 10 minutes (used 

to avoid the formation of potentially explosive mixtures between methane and air) was hence 

lowered to 4 minutes to increase the available amount of lattice oxygen (i.e. increase the initial 

oxidation state of Mn). The results are shown in the dotted lines in Figure 9. One can see that for 

the pure manganese oxide catalyst the increase in oxidation state results in a small increase in 

maximum CO2 formation and decrease in C2H4 formation, while for the mixed oxide a significant 

increase in cumulative C2H4 production (by ~20% over the 4 min duration of the experimental 

window) was observed (Figure 9B). This further confirms that the reactivity of the sample, but not 

the selectivity of the reaction, is directly correlated with the oxidation state of the Mn content. 

Finally, if the presence of Na2WO4 affects the selectivity of the reaction via the removal of 

hydrogen, the relative amount of tungstate to Mn oxide in the catalyst bed is expected to affect the 

selectivity. Broadly, one should expect that selectivity will initially increase proportionally with 

increasing tungstate content (since hydrogen removal will be proportional to the available 

tungstate surface area), and then saturate once the rate of hydrogen removal balances the rate of 

the dehydrogenation reaction (i.e. hydrogen production).  

This hypothesis was tested by changing the ratio of Na2WO4-Mn in a physical mixture, 

keeping the amount of MnO2/MgO (and hence the activation of methane) fixed while increasing 

the Na2WO4 content. The Na2WO4:Mn mass ratio was varied via physically mixing the respective 

oxides at ratios of 1:6, 1:4, 1:2, 1:1 (default), and 2:1. (Note that the mass ratio is based on metallic 

Mn, so that a ratio of 1.0 corresponds to a Na2WO4:MnO2 mass ratio of 0.63. Furthermore, BET 

surface areas of both catalysts are similar with 3.0 and 3.4 m2/g for Na2WO4/MgO and MnO2/MgO, 
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respectively). Figure 10 shows the results in terms of methane conversion (diamonds) and C2 

selectivity (squares) vs Na2WO4: Mn ratio taken at maximum methane conversion. 

 

Figure 10 Conversion and selectivity at maximum CH4 conversion while varying the Na2WO4 to Mn mass 

ratio in PMC. Fixed bed experiments are performed at 900C, GHSV=3650h-1, CH4 (20% concentration in 

He, total flowrate: 13.5 sccm) was flown over pre-oxidized catalysts. 

 

One can see that the maximum instantaneous methane conversion (i.e. highest methane 

conversion at any moment in time during reduction) decreases with increasing Na2WO4 to Mn ratio 

due to suppression of rapid CO2 formation at the onset of the reaction. In parallel, C2 selectivity 

increases from 2.5% to 69%. As predicted, the initial increase is near-linear with increasing 

tungstate content (the small initial deviation from linearity is likely due to the concomitant change 

in conversion), and then saturates at high tungstate content (above 1.0). This suggests that at 

Na2WO4 to Mn mass ratio of 1:1, H2 removal on Na2WO4 balances H2 formation via homogeneous 

dehydrogenation of C2H6 at the reaction conditions and thus adds further support to the suggestion 

that tungstate indeed acts as a co-catalyst for hydrogen removal. 
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2.4 Conclusion  

Oxidative coupling of methane remains one of the most promising – and one of the most 

elusive – pathways for methane upgrading to value-added chemicals. The present work revisits 

OCM on Mn-Na2WO4/MgO – one of the most effective catalysts for this reaction to-date – to gain 

further insights into the role of the two metal oxide phases in this catalyst system. A series of 

comparative fixed bed reactive tests, thermogravimetric analyses, and materials characterizations 

were conducted on both mixed oxide and single metal oxide catalysts in order to elucidate methane 

activation and the role of Na2WO4. Experiments were conducted in the absence of molecular 

oxygen in the reactor feed which enabled us to focus on surface-initiated reactions and observe 

reaction pathways that are not readily visible otherwise.  

In agreement with prior studies, both individual metal oxides show poor OCM performance 

at 900°C: Na2WO4 is completely inactive towards methane activation, while manganese oxides 

favor unselective total oxidation followed by rapid deactivation via coking. The combination of 

the two oxides in a mixed Mn-Na2WO4 catalyst decreases the cumulative CO2 production by 30% 

and yields a 10-fold increase in C2 production, resulting in a steep increase in C2 selectivity to 69% 

at 900C. In order to test the widely accepted attribution of this synergistic effect of Mn and 

Na2WO4 to oxygen spillover between the metal centers, separately prepared aliquots of single-

metal oxides were carefully mixed, and the catalytic performance of this simple physical mixture 

was evaluated and compared to that of the (chemically) mixed oxide. Remarkably, identical 

performance in terms of both activity and selectivity was obtained.  

Further analysis and experimental verification lead us to propose a new mechanism for this 

catalyst, which is based on a concerted reaction over two independent catalysts (the MnO2 and the 

Na2WO4 based catalysts), mediated through the gas phase: MnO2 is responsible for CH4 activation 
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and desorption of methyl radicals into the gas phase, where they combine to form C2H6 and then 

dehydrogenate to C2H4. In the absence of a co-catalyst, the high, but unselective activity of the 

manganese oxide catalyst then results in rapid oxidation of these primary C2 products to CO2 and 

hence very low coupling selectivity. In the presence of a Na2WO4 catalyst, which we showed to 

be highly active for H2 oxidation but essentially inactive for any hydrocarbon conversion, H2 is 

rapidly oxidized, promoting the dehydrogenation of C2H6 to (much less reactive) C2H4 and thus 

resulting in strongly reduced CO2 and enhanced C2H4 formation. The proposed mechanism relies 

on the coordination of two essentially independent catalysts, one for the generation of CH3 radicals 

and the other for reactive H2 removal, and thus suggests that novel, more effective catalysts could 

be found by searching for catalyst systems that are optimized for these two reaction steps – a much 

simpler and more well-defined task than the elusive search for a catalyst that promotes the highly 

complex OCM reaction. 

However, in recent years, an in-situ characterization study of the catalyst surface revealed 

that sodium salt is molten at the typical OCM reaction temperatures (>800°C)57,58. In an attempt 

to capture the change in Na2WO4 crystal structure, in situ XRD was performed by Takanabe et 

al.58 at high temperatures under air flow. XRD patterns of Na2WO4/TiO2 at 500-800°C revealed 

that XRD peaks associated with Na2WO4 at room temperature disappear above 700°C (no clear 

signal), suggesting the formation of a molten state. The original phase recovers with a cool down 

to room temperature, which is consistent with our ex-situ XRD measurements on the spent sample 

that shows clear sodium tungsten peaks (Figure 7). This new evidence brings out the possibility 

that Na2WO4, due to its high mobility in the molten state at the reaction temperature, can wet 

adjacent Mn oxide particles, removing or reducing the “physical separation” introduced into the 

system, and hence allow oxygen or cation exchange to proceed easily. In addition, the liquid phase 



 32 

can block the surface of MnO2 particles, possibly hindering interactions with gaseous species and 

partially inhibiting complete oxidation reactions59. However, no study to-date explored the direct 

effect of surface wetting and increased mobility on metal oxide interactions. Therefore, to 

investigate the physical behavior of the catalyst at high temperatures, a series of in-situ 

environmental TEM (E-TEM) experiments with elemental mapping on physical mixture catalyst 

is planned as a follow-up study. Details of the suggested experiments are provided in Section 5.1.1 

of this thesis. Proposed in situ characterizations, along with the kinetic experiments presented and 

discussed here, would enable us to gain an even deeper understanding of the synergistic interaction 

between Na2WO4 and MnOx at reaction conditions. 
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3.0 Kinetic Modeling, Reactor Design and Optimization of Catalytic Reaction Systems: 

Application to Methanethiol Production 

3.1 Introduction 

Similar to ethylene, another value-added chemical that can be synthesized through methane 

upgrading is methyl mercaptan or methanethiol, which is an aliphatic thiol with the formula 

CH3SH. Methanethiol is a chemical feedstock for the production of agricultural products, plastics, 

jet fuel, and more prominently for the synthesis of methionine60-62. 

Methionine is an essential proteinogenic amino acid, which is mainly used as a feed 

additive in livestock production, predominantly poultry63. Food and Agriculture Organization of 

the United Nations predict that poultry is expected to have the largest growth and share of global 

meat demand by 205064 (Figure 11). It has been reported that their typical diet consisting of plant 

sources lack essential amino acid methionine, which is critical for their metabolic activity and egg 

laying61. Typically, the complications of methionine deficiency are overcome by hormone use16,17, 

which may result in other adverse health effects. Therefore, feeding synthetic methionine to 

livestock is a more sustainable approach, and the National Organic Program (NOP) permits certain 

levels of synthetic methionine to be used in organic production65. Due to the projected increase in 

global food demand and organic production practices, the global market for methionine, which is 
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estimated at US$3.6 Billion in the year 2020, is expected to reach a size of US$4.8 Billion by 

2027, with an annual growth rate of 4.1% between 2020-20273. 

 

Figure 11 Population and global meat demand growth by 205064,66 

 

The catalytic methanethiol formation is first reported in 1910 by Sabatier22, who observed 

the formation of thiols when passing alcohols and H2S over thorium dioxide at elevated 

temperatures. Today, on an industrial scale, methanethiol (methyl mercaptan, MeSH) can be 

produced through the reaction of methanol (MeOH) with hydrogen sulfide (H2S) over metal 

modified alumina catalysts20,67,68. The reaction (CH3OH + H2S → CH3SH) is usually carried out 

at temperatures between 160 and 500 °C and pressures of 1 to 35 bar18. Significant yields of 

dimethyl ether (DME) and dimethyl sulfide (DMS) are also formed along with MeSH at typical 
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reaction conditions69. In a non-recycle reactor system, these byproducts are separated from MeSH 

and disposed, resulting in a loss of carbon and sulfur70. Alternatively, DMS can be cleaved with 

hydrogen sulfide (H2S) to recover MeSH via the following reaction in a secondary reactor: (CH3)2S 

+ H2S  CH3SH. This recovery will translate to higher overall methanethiol yield or decreased 

methanol and hydrogen sulfide raw material cost per yield. Although methanethiol selectivity 

values up to 90% could be achieved in a two-reactor system, the process is noticeably energy-

intensive, since large excess of hydrogen sulfide needs to be circulated to suppress dimethyl sulfide 

formation18-20,22. This highlights the importance of reactors optimization to improve feed 

conversion and overall product yield, which initially requires obtaining an accurate kinetic 

description of the reaction system.  

Kinetic modeling of catalytic reactions briefly consists of: i) conducting laboratory 

experiments, ii) model development, which includes the law of conservation equations and rate 

definitions, and iii) applying regression to determine kinetic parameters using all available 

experimental data. Since the ultimate aim of kinetic modeling is to improve the process by 

increasing throughput or reducing energy consumption, it is important to be able to predict kinetic 

behavior outside the current operating range with the estimated kinetic parameters71,72. If the model 

gets trained with data points including noisy and/or inaccurate entries, it may not categorize the 

data correctly, resulting in an over-fit and hence potentially spurious predictions. Ideally, to 

prevent this issue, a reasonable portion of the experimental measurements should be held out from 

model training, and the derived kinetic parameters should be tested on the unknown or hidden 

portion of the experimental dataset73-75. However, due to the limited number of experimental data 

available in this study, as typical for most industrial cases, holding out a portion of data to test 

derived kinetic parameters would result in significant information loss during kinetic model 
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training. Instead in this work, cross-validation (CV) methodology, which is typically used in 

classification problems in machine learning76-78, is implemented to estimate kinetic parameters 

with nonlinear least-squares robustly. CV is based on the splitting of the experimental data into 

two sets: “training set”, to build and predict the model, and “validation set”, to assess the model. 

The efficiency of this method stems from the fact that the fitting is repeated multiple times so that 

each data point is tested at least once to yield the final kinetic parameter set73,79,80. In this work, 

10-fold CV is implemented, where splitting is repeated ten times with random subsets in each run. 

Within each iteration, a different fold of the data is left out for validation while the remaining nine 

folds are used for training the model78,81. Each run is weighted based on their sum of square errors 

on the respective test set to determine overall fit parameters. This methodology is adopted and 

tested towards obtaining the kinetic parameters of the methanol thiolation reaction network on 

CoMo/Al2O3 catalyst.  

Subsequently, the construction of two-dimensional reactor models and reactor optimization 

is carried out. Although lab-scale experiments could be performed under isothermal conditions, 

temperature changes in both axial and radial direction are often observed in industrial-scale 

reactors due to increased throughput, and the lack of heavy inert dilution. Therefore, in this chapter, 

two-dimensional pseudo-homogeneous reactor models are built to accurately simulate the large-

scale production of methanethiol. Conservation of mass, energy, and momentum equations 

describing the behavior of the system are derived, including modules for physical and 

thermodynamic property estimations. These mathematical models are further used to determine 

the operating conditions and reactor design to achieve optimum methanethiol yields. 
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3.2 Computational Methods 

In this work, we aim to perform precise model-based development of optimal catalytic 

reactors for methanethiol production. The experimental data used here is provided by our industrial 

collaborators, which consist of steady state concentrations of species at different temperatures, 

inlet feed ratios, and residence time values. The scope of the computational work consists of kinetic 

modeling, reactor model development, and optimization. Computational tools developed in this 

thesis can be found at github.com/gio-veserlab. 

 

Figure 12 Workflow of the computational work 

3.2.1 Kinetic Modeling 

The kinetic model of the methanethiol (methyl mercaptan, MeSH) formation from 

methanol and hydrogen sulfide on CoMo/Al2O3 catalyst is adopted based on the reaction network 

proposed by Mashkina82. According to the literature research, the methanol thiolation is operated 

with a gas phase at high pressures (1-35 bar) and temperatures (160-500°C)18. For thermo-physical 

property estimation, Aspen Property Method Selection Assistant83 is utilized. Peng-Robinson 
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equation of state (EOS) model is selected, which is suitable for gases and liquids at high 

temperature and pressure values, and can describe non-ideal gas phase behavior even close to the 

critical point84,85. The relevant properties (molecular weight, density, and enthalpy) of all 

components are collected from the DETHERM86 database in Aspen Properties software.  

In the experiments, due to dilution of feed flow with inert, the temperature profile across 

the reactor is constant. Therefore, energy balance is not included in the kinetic model. The detailed 

derivation of model equations along with all relevant assumptions is given in Appendix B. The 

fixed-bed reactor is modeled as pseudo-homogeneous, in which only concentration gradients of 

the fluid transport are considered. Homogeneity assumptions are validated using Mears87 criterion 

for external diffusion limitation and Weisz-Prater88 criterion for internal diffusion limitation 

(Appendix C). The rate constants (ki) are modeled in Arrhenius form including adsorption terms. 

The concentrations along the catalyst bed and at the reactor outlet are calculated with the reaction 

rate equations and the component balances. Accordingly, the kinetic model is constructed based 

on the following equations of conservation.  

Component balance: 

𝜕𝐶

𝜕𝑡
= 0 = −

1

𝐴𝐶𝑆
·
𝜕�̇�𝑗
𝜕𝑧

+
𝑚𝐶𝑎𝑡

𝑉𝑅
·∑𝜈𝑖𝑗 · 𝑟𝑖

𝑖

 

at z = 0: cj = 𝑐𝑗,𝑖𝑛𝑙𝑒𝑡 , at z = L:  
𝜕𝑐𝑗

𝜕𝑧
= 0 

(3-1) 

 

where C is the concentration of each component (mol/m3), ACS is the cross-sectional area of the 

tube (m2), ṅ is the molar flowrate of each component (mol/s), mcat is the catalyst weight (kg), VR 

is the volume of the reactor (m3), ν is the stoichiometric coefficient of each component and r is the 

rate of each reaction (mol/kgcat/s). 
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Rate equations: 

𝑟𝑖 = 𝑘𝑖 ·∏𝐶
𝑗

𝑒𝑗    (3-2) 

𝑘𝑖 = 𝑘𝑖,0 ·
exp (−

𝐸𝐴,𝑖
𝑅 · 𝑇)

(1 + ∑ 𝑘𝑎,𝑗 · 𝑐𝑗𝑗 )
2    ,   𝑘𝑎,𝑗 = 𝑘𝑎,𝑗,0 · exp (

𝐸𝐴,𝑎,𝑗
𝑅 · 𝑇

) (3-3) 

 

where k is the rate constant, k0 is the pre-exponential factor and Ea (J/mol) is the activation energy 

of each reaction, ka is the adsorption rate constant, ka,0 is the adsorption pre-exponential factor and 

EA,a (J/mol) is the adsorption activation energy of each component. Conversion and selectivity 

values are calculated with the following equations: 

Conversion, species i  𝑋𝑖=
moles of i converted

moles of i in feed
        (3-4) 

Product selectivity, species j  𝑆𝑗=
moles of species j formed

moles of total products
 (3-5) 

Product yield, species j  𝑌𝑗 = 𝑋𝑖 × 𝑆𝑗  (3-6) 

3.2.1.1 Parameter Estimation  

Ordinary differential equations mentioned above are solved with a sparse system adaptive 

ODE solver “ode15s”, using Mathworks Inc. MATLAB® R2017a. For nonlinear data-fitting, 

“lsqnonlin” function is used through the Levenberg-Marquardt89 approach with default tolerance 

values. The following objective function is used for the parameter estimation of pre-exponential 

factors (ki,0), activation energies (Ea,i) and reaction orders: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑∑(𝐶𝑖,𝑗
𝐸𝑥𝑝 − 𝐶𝑖,𝑗

𝑀𝑜𝑑𝑒𝑙)
2

𝑛

𝑗=1

𝑚

𝑖=1

 (3-7) 
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where C refers to the concentrations, i refers to the components (e.g. methanol or MeOH, hydrogen 

sulfide or H2S, methanethiol or MeSH, dimethyl sulfide or DMS, dimethyl ether or DME, and 

dimethyl disulfide or DMDS), and j is the experiment index. 

In the cross-validation90 least squares (LS-CV) method, the experimental data is divided 

into two segments: One segment is used to train the model, while the other segment is then used 

for model validation. The typical form of cross-validation is a so-called “k-fold”. In this approach, 

the data set is first divided into k equally sized folds. Within each iteration, a different fold of the 

data is left out for testing (or validation) while the remaining folds are used for training the model 

using non-linear least-squares. Random partition of the experimental data is carried out using the 

“crossvalind” function in MATLAB. k=10 is used for this work, i.e. the data is broken down into 

ten segments (Figure 13).  

 

Figure 13 Schematic representation of 10-fold cross-validation91 

 

Nine segments are used for model training via non-linear least-squares and the remaining 

segment is used for validation with the fitted parameters. All ten permutations of ten sets are used 

for full cross-validation. The final kinetic parameters are calculated by averaging each run 

weighted by their respective validation set error. Final values are obtained by the following: 
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𝛩 =∑𝜔𝑖𝜃𝑖

10

𝑖=1

, 𝜔𝑖 =
𝑓𝑖,𝑡𝑒𝑠𝑡

∑ 𝑓𝑖,𝑡𝑒𝑠𝑡
10
𝑖=1

, 𝑓𝑖,𝑡𝑒𝑠𝑡 =
1

𝐸𝑖,𝑡𝑒𝑠𝑡
2  (3-8) 

 

where  is the fitted parameters of each run,  is validation error weight of each run and E is the 

validation set error of each run. 

3.2.1.2 Sensitivity Analysis 

Following the determination of kinetic parameters, local sensitivity analysis is performed 

to establish the significance of the reaction steps. Sensitivity analysis steps are as followed: 

I. One parameter is varied at a time, keeping other parameters constant. The range of parameters 

span one order of magnitude from the original value.  

II. Model output distribution (conversion, selectivity) is calculated.  

III. Box and whisker plots are generated, which graphically show the distribution and variability 

of the model outputs (Figure 14). The boxes denote the interquartile range between 25% and 

75%, which spans 50% of the outputs. The height of the box is proportional to the relative 

change of outputs, which shows the degree of sensitivity of the output to the specific parameter. 

 

Figure 14 Schematic representation of a boxplot 
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3.2.2 Reactor Modeling 

Following kinetic parameter determination, two-dimensional pseudo-homogeneous reactor 

models are built-in MATLAB environment to gain full autonomy for optimization. Conservation 

of mass, energy, and momentum equations describing the behavior of the system are derived. A 

brief description of 2D model equations is provided below. The detailed derivation of model 

equations, relevant assumptions, and numerical methods are given in Appendix B, Appendix C 

and Appendix D, respectively. Modules for physical and thermodynamic property estimations 

including mixing effects for Peng-Robinson equation of state are also scripted (see Section 3.2.3 

and Appendix E). These modules are capable of accurately calculating relevant properties at 

elevated temperature and pressure values without requiring a connection to a database or an 

external software such as Aspen Properties. 

Mass balance: 

• Component (mass) balance equations: 

𝜕𝐶

𝜕𝑡
= 0 = −

1

𝐴𝐶𝑆
·
𝜕�̇�𝑗
𝜕𝑧

+
𝑚𝐶𝑎𝑡

𝑉𝑅
·∑𝜈𝑖𝑗 · 𝑟𝑖

𝑖

 

at z = 0: cj = 𝑐𝑗,𝑖𝑛𝑙𝑒𝑡 , at z = L:  
𝜕𝑐𝑗

𝜕𝑧
= 0 

(3-9) 

 

where C is the concentration of each component (mol/m3), ACS is the cross-sectional area of the 

tube (m2), ṅ is the molar flowrate of each component (mol/s), mcat is the catalyst weight (kg), VR 

is the volume of the reactor (m3), ν is the stoichiometric coefficient of each component and r is the 

rate of each reaction (mol/kgcat/s). 

• Rate equations: 
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𝑟𝑖 = 𝑘𝑖 ·∏𝐶𝑗
𝑒𝑗

 (3-10) 

𝑘𝑖 = 𝑘𝑖,0 ·
exp (−

𝐸𝐴,𝑖
𝑅 · 𝑇)

(1 + ∑ 𝑘𝑎,𝑗 · 𝑐𝑗𝑗 )
2    ,   𝑘𝑎,𝑗 = 𝑘𝑎,𝑗,0 · exp (

𝐸𝐴,𝑎,𝑗
𝑅 · 𝑇

) (3-11) 

 

where k is the rate constant, k0 is the pre-exponential factor and Ea (J/mol) is the activation energy 

of each reaction, ka is the adsorption rate constant, ka,0 is the adsorption pre-exponential factor and 

EA,a (J/mol) is the adsorption activation energy of each component. 

2D energy balance (final form): 

𝜆𝑒
𝑟
(
𝜕 (𝑟

𝜕𝑇
𝜕𝑟
)

𝜕𝑟
)+ 𝜆𝑒

𝜕2𝑇

𝜕𝑧2
+ ∆𝐻𝑅𝑥𝑟𝑖𝜌𝑐 − (𝑈∑𝐶𝑖𝐶𝑃𝑖)

𝜕𝑇

𝜕𝑧
= 0 (3-12) 

 

where e is the bed thermal conductivity (W/mK), T is the fluid temperature (K), ΔH is the heat of 

reaction (J/mol), r is the rate of each reaction (mol/kg/s), ρc is the catalyst density (kg/m3) and Cp 

is the fluid heat capacity (J/molK).  

• Boundary conditions: 

at r = 0:  
𝜕𝑇

𝜕𝑟
= 0 (symmetry condition) 

at z = 0: 𝑇 = 𝑇𝑖𝑛𝑙𝑒𝑡,   at z = L:  
𝜕𝑇

𝜕𝑧
= 0 (inlet and finite condition at the exit) 

at r = Rt: −𝜆𝑒 ·
𝜕𝑇

𝜕𝑟
= 𝛼𝑊 × (𝑇 − 𝑇𝑊) for polytropic case (coolant) 

at r = Rt: −𝜆𝑒 ·
𝜕𝑇

𝜕𝑟
= 0 for adiabatic case 

(3-13) 

 

where Rt is the radius of a tube (m), Tw is the coolant temperature (K), and w is the coolant heat 

transfer coefficient (W/m2 K). 

• Bed thermal conductivity (Bauer and Schlünder, 197892): 



 44 

𝜆𝑒
𝜆𝑓
= (1 − √1 − 𝜀) +

2√1− 𝜀

1 − 𝐵𝜅−1
𝐵(1 − 𝜅−1)

(1 − 𝐵𝜅−1)2
𝑙𝑛 (

𝜅

𝐵
) −

𝐵 − 1

1 − 𝐵𝜅−1
−
𝐵 + 1

2
 (3-14) 

𝐵 = 1.25
1 − 𝜀

𝜀

1.11

 (3-15) 

 

where e and f are the bed thermal conductivity and the fluid thermal conductivity (W/mK), 

respectively,  is the void fraction,  is the ratio of fluid thermal conductivity to bed material 

thermal conductivity without any geometric specification.  

Momentum Balance (Ergun93 equation): 

𝑑𝑝

𝑑𝑧
= −𝑓1𝑢0 −−𝑓2𝑢0

2 (3-16) 

𝑓1 = 150
(1 − 𝜀)2

𝜀3
 
𝜂𝑓

(𝑑𝑝
𝑣)
2            𝑓2 = 1.75

1 − 𝜀

𝜀3
 
𝜌𝑓
𝑑𝑝
𝑣 (3-17) 

 

where u0 is the linear flow velocity (m/s),  is the void fraction, f is the flow viscosity (Pa-s),  f 

is the flow density (kg/m3) and dv
p is the particle diameter (m). 

The reactor model equations are solved using ode15s function in MATLAB. Relative and 

absolute tolerances are selected as 1E-6 and 1E-9, respectively. Explanation of numerical methods 

for solving energy balance PDEs is given in Appendix D. 

3.2.3 Physical Property Estimation 

In contrast to kinetic measurements taken under isothermal conditions, developed reactor 

models include energy balance equations to account for axial and radial temperature changes 

across the reactor. Therefore, temperature dependent thermophysical and transport properties of 

the gaseous species in the reactor should be estimated. Due to typical elevated operating pressure 
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and temperature values of the reaction system, cubic equations of state (EOS) are used in addition 

to the ideal gas law. Based on the property method selection assistant of Aspen Properties, Peng-

Robinson EOS94 is selected, which is suitable for high-pressure real nonpolar gases. Correlations 

for transport properties are listed in Table 1 and the relevant equations are given in Appendix E. 

Table 1 Property correlations 

Property Correlation Ref. 

Density Peng-Robinson EOS 
94 

Heat Capacity (enthalpy) Peng-Robinson EOS 

Viscosity 

Pure: DIPPR Equation # 102  95 

Mixture: Chapman-Enskog 

Brokaw with Wilke mixing rule 

96 

 

Pressure correction: Stiel-Thodos 

Thermal conductivity 

Pure: DIPPR Equation # 102 

 
95 

Mixture: Wassiljewa-Mason-

Saxena 
96,97 

3.2.4 Reactor Optimization 

Prior to optimization, constructed reactor models are used for parameter sensitivity analysis 

to determine reasonable upper and lower bounds for each free parameter. Sensitivity analysis is 

performed on base operating conditions (temperature, pressure, WHSV) and reactor geometry 

(number of tubes, tube diameter, tube length, catalyst weight) for both rectors, which is determined 

by published patents on methyl mercaptan production20,98,99 and company operations. 

Reactor optimizations are carried out with nonlinear constraint minimization of an 

objective function using MATLAB’s GlobalSearch algorithm (fmincon). This algorithm uses a 
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scatter-search mechanism to generate multiple start points within given parameter bounds to 

achieve a global minimum. The objective function for the optimization is determined as -

methanethiol productivity (outlet MeSH rate per gram of catalyst, kg/h-1g), or -methanethiol yield 

(YMeSH). Optimal process conditions and reactor specifications for adiabatic and polytropic 

operation are determined based on 1) base geometry and 2) new reactor design. Tube length to 

tube diameter ratio is not allowed to be below 20 to avoid axial dispersion. For all optimizations, 

the only fixed parameter is the inlet MeOH flowrate of 6250 kg/h, which is the pre-determined 

target throughput. 

3.3 Results and Discussion 

This section has been removed from the public version of this dissertation due to 

confidential data. 

3.4 Conclusion 

This section has been removed from the public version of this dissertation due to 

confidential data. 
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4.0 Determining Robust Reaction Kinetics from Limited Data 

4.1 Introduction 

Precise knowledge of kinetic parameters of a chemical reaction system is fundamental not 

only for improving our understanding of underlying chemical processes, but also for the accurate 

design, optimization, and robust operation of reactors100-102. Kinetic models of reactive systems 

allow rapid exploration of the reaction outcome over a wide range of operating conditions103, the 

design of new experiments, and are even used for safety training104,105.  

In practice, a kinetic model is typically derived from of the fundamental material, energy 

and momentum balances, equilibrium or reaction rates106-108. Training of the kinetic model 

parameters then requires a set of laboratory experiments or availability of data from an operating 

plant, where the acquisition of data is often expensive or challenging109-111. While much focus is 

currently on high-throughput screening and “big data” approaches, in industrial practice, 

availability of data is typically limited and often a relatively small number of data points have to 

suffice to identify kinetic parameters of a chemical reaction112,113. Regular nonlinear least-squares 

fitting is most commonly used in kinetic fitting of the experimental data114-116. However, the 

method is well-known to be sensitive to noise and, due to the deterministic nature of the method, 

least-squares estimation can get stuck at local minima117,118. To circumvent this issue, more 

sophisticated optimization methods such as Markov chain Monte Carlo (MCMC), or genetic 

algorithm (GA) are used to explore parameter spaces more efficiently103,119,120. MCMC performs 

a random walk in parameter space and may accept “bad” moves probabilistically (movements in 

the direction of increasing objective function) to escape local minima24,121. GA, on the other hand, 



 48 

is a population-based algorithm that performs parameter estimation based on the “survival of the 

fittest” in real life evolution25,122. However, both of these methods require expert knowledge and 

higher computation cost, although all implementations of GA and some implementations of 

MCMC are parallelizable123. 

In recent decades, significant advancements have been made towards building supervised 

learning models from big data for fault detection, process modeling and control of chemical 

reactions124-127. However, statistical validation of model-based reaction kinetics from limited data, 

which is still typical in industrial practices, is often overlooked. Regardless of the choice of 

algorithm, the accuracy of the kinetic prediction is often assessed by the error value of the 

regression which shows how well the model parameters match the experimental data71,128. 

However, assessing the accuracy of the model based on the very same data that it was trained on 

may result in significant overfit, in which the model “memorizes” the specific set of data, rather 

than “learning” the underlying trends126,129,130. This severely limits the capability of the model to 

truly predict system behavior. Moreover, complex algorithms are more likely to overfit when data 

is limited71. To prevent overfitting, models need to be validated on data they have not seen 

yet131,132. For this purpose, a portion of the experimental data, the “hold-out” (ideally 10-30% of 

the available data), is set aside to be used for validating after the model is trained133,134. However, 

it can be challenging to hold out or exclude a fraction of the available data from model training in 

particular if availability of data is already limited. Besides, the selection of data for hold-out may 

not be straightforward. For example, if the noise level or the number of outliers present in the 

validation data is significantly higher than in the training data, model assessment can become 

highly inaccurate132. 
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 As a solution to this problem, a cross-validation (CV) methodology can be applied to the 

kinetic parameter regression135. This method is commonly used in classification problems in 

machine learning for accuracy reporting, in which the prediction output belongs to a discrete set 

of categories or classes136-138. CV, similar to the “hold-out” method described above, is based on 

the splitting of the experimental data into two sets: a “training set” to build and predict the model 

parameters, and a “validation set” to assess the quality of the model. For this purpose, the 

experimental dataset is partitioned into k nearly equal-sized subsets or “folds”. The model is 

trained using (k-1) folds, and the accuracy of the model is then validated on the fold that was left 

out (i.e. the kth fold). This step is repeated k times for each possible permutation of folds with a 

different subset left out each time as the validation fold. Upon completion, kinetic parameters from 

all runs are then averaged based on the error of their respective validation subset135.  

In contrast to classification problems and machine learning, application of CV to nonlinear 

regression problems is rarely used for kinetic parameter estimation to-date127,139-141. Yet, it can be 

implemented in a straightforward extension of the conventional nonlinear least-squares fitting 

procedure and can be expected to yield significant benefits towards obtaining robust kinetics. This 

is particularly true for cases with limited data availability, since CV ensures that the model is 

ultimately trained with each data point, and, similarly, each data point has a chance of being 

validated against the model parameters. In addition, due to the statistical averaging of the 

successive runs, the possibility of an overfit is minimized, improving the model’s true predictive 

ability.  

In the present work, a straightforward proof-of-concept study is employed to compare 

different algorithms for robust kinetic parameter estimation with limited data availability. 

Specifically, cross-validation is applied to nonlinear least-squares fitting, and compared to regular 
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non-linear least-squares142, MCMC24, and GA25 algorithms for kinetic parameter estimation. The 

analyses are performed on synthetic data for the purpose of probing dataset properties such as size 

(number of experimental points), noise level, and number of outliers. The water-gas shift reaction 

(WGS: CO + H2O ⇌ CO2 + H2) with simple, well-established lumped kinetics is used as the basis 

for a simple one-step model reaction23. Synthetic data is generated by simulating the kinetic model 

over a series of operating conditions and adding controlled levels of Gaussian white noise and 

outliers to the generated data points. Method performance measured in both accuracy (prediction 

accuracy of the true reaction kinetics) and numerical efficiency (number of function evaluations) 

are critically compared. The overall aim of the study is to yield guidelines for the practitioner 

towards improved, robust kinetic data fitting without requiring advanced training in mathematical 

methods.  

4.2 Computational Methods 

4.2.1 Model Construction 

A simple isothermal steady-state kinetic plug-flow reactor model is constructed using 

conservation of mass equations and typical Arrhenius-type reaction kinetics:  

 𝜕𝐶𝑗

𝜕𝑡
= 0 = −

1

𝐴𝐶𝑆
·
𝜕�̇�𝑗
𝜕𝑧

+
𝑚𝐶𝑎𝑡

𝑉𝑅
·∑𝜈𝑖𝑗 · 𝑟𝑖

𝑖

 (4-1) 

 at z = 0: cj = 𝑐𝑗,𝑖𝑛𝑙𝑒𝑡,    at z = L: 
𝜕𝑐𝑗

𝜕𝑧
= 0 (4-2) 
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where C is the concentration of each component (mol/m3), ACS is the cross-sectional area of the 

tubular reactor (m2), ṅ is the molar flowrate of each component (mol/s), mcat is the catalyst weight 

(kg), VR is the volume of the reactor (m3), ri is the rate of each reaction (mol/kgcat/s) and ν is the 

stoichiometric coefficient of each component. Rate equations are described by typical power law 

kinetics: 

 
𝑟𝑖 = 𝑘𝑖,0 · exp (−

𝐸𝐴,𝑖
𝑅 · 𝑇

) ·∏𝐶𝑗
𝑒𝑗    (4-3) 

 

where ri is the rate of each reaction (mol/kgcat/s), i,0 is the pre-exponential factor of ith reaction, Ea 

(J/mol) is the activation energy of each reaction. Conversion values are calculated with the 

following equation: 

 
Conversion, species 𝑖  𝑋𝑖 =

𝐶𝑖,0 − 𝐶𝑖
𝐶𝑖,0

    (4-4) 

 

In this work, water-gas shift (WGS) is chosen as a simple, industrially relevant model 

reaction as a starting point with well-known kinetics23. However, an initial model evaluation 

revealed that one of the existing parameters, k0,bwd, is not identifiable (explained further below in 

this section) due to the relatively low backward reaction rate, which may result in wrong 

interpretation of the analyses. The value of k0,bwd is hence increased by an order of magnitude for 

generating synthetic data to ensure that all parameters are identifiable. Therefore, the model 

reaction is presented as a generic reaction throughout the paper (𝐴 +  𝐵 ⇌  𝐶 +  𝐷) with 

parameters given in Table 2. Synthetic data is generated by using kinetic parameters and reactor 

geometry for the model reaction and solving the material balance equations to determine 

concentration of each species at the reactor exit. 
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Table 2 Kinetic parameters and reactor specifications of the model reaction  

Parameters Specifications 

k0,fwd 

3.0E05  molgcat−1 

h−1atm−2 

tube dia. 0.5  inch 

k0,bwd 

2.5E08  molgcat−1 

h−1atm−2 

tube length 1 ft 

Ea,fwd 5.0E04 J/mol catalyst wt. 1  kg 

 

Experimental data (inlet and outlet concentration values) is generated over the following 

parameter ranges: temperature (150-250℃), molar inlet A to B ratio (0.25-4), and gas hourly space 

velocity (GHSV) (0.25-2.5h-1). After synthetic data is generated, varying levels of gaussian white 

noise are added to concentration values. If the added noise generates a concentration that is out of 

physical range (e.g. negative values), the procedure is repeated.  

• Local sensitivity 

Following model construction and data generation, sensitivity analysis is carried out to 

determine how strongly a given parameter and the model outcome are correlated143,144. The 

analysis is performed via calculating finite-difference based sensitivity coefficients by applying a 

small change to one parameter at a time for a given axial displacement (z): 

 
𝑠𝑖,𝑗(𝑧) =

𝜕𝑥𝑖
𝜕𝜃𝑗

=
𝑥𝑖(𝜃𝑗+∆𝜃𝑗 , 𝑧) − 𝑥𝑖(𝜃𝑗 , 𝑧)

∆𝜃𝑗
 (4-5) 

 

where θ is the fit parameter, x is the dependent variable (e.g. concentration). These sensitivity 

coefficients are then normalized for direct comparison: 
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𝑠𝑖𝑗̅̅ ̅(𝑧) = 𝑠𝑖,𝑗(𝑧) ×

𝜃𝑗
𝑥𝑖

 (4-6) 

 

Finally, relative sensitivity (RS) is calculated for each parameter: 

 

𝑅𝑆𝑖,𝑗 =
1

𝑄𝑍
√∑|𝑠𝑖,𝑗̅̅ ̅̅ (𝑧𝑘)|

2

𝑄𝑧

𝑘=1

 (4-7) 

 

where zk (k ∈ [1, QZ]) are discrete axial displacements where concentrations are calculated and QZ 

is the total number of calculations. 

• Profile likelihood 

Finally, profile likelihood analysis is performed to determine if model parameters are 

identifiable with the generated experimental data set. For this purpose, a log-likelihood (LL) value 

is calculated from model fitting, which is proportional to the normalized sum of square errors145:  

 
𝐿𝐿 ≅ −

1

2
∑

(𝑦𝑖 − 𝑔(𝑧, 𝜃))
2

𝜎2
𝑖

 (4-8) 

 

where y is the experimental data (e.g., concentration), g is the model-predicted output at 

independent variable z (axial displacement) calculated with fit parameter set 𝜃, 𝜎 is the standard 

deviation of the experimental data. Profile likelihood is the maximum log-likelihood, i.e., the value 

of LL when the objective function is minimized:  

 𝑃𝐿𝑗(𝑝) = max
𝜃∈(𝜃|𝜃𝑗=𝑝)

𝐿𝐿(𝑦|𝜃) (4-9) 

 

where p is the fixed parameter value, LL is the log-likelihood and 𝜃 is the parameter set. The 

profile-likelihood (PL) is calculated by optimizing fit parameters while keeping one parameter at 

a time, 𝜃𝑗, at a pre-set value p. The optimization is repeated for a discrete range of the fixed 
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parameter (𝜃𝑗∈[𝜃𝑗,𝑚𝑖𝑛, 𝜃𝑗,𝑚𝑎𝑥]) and PL values of each estimation are plotted. If the resulting PL 

landscape does have a unique minimum, and exceeds the 95% confidence threshold, the parameter 

is termed identifiable and estimable from the experimental data145. 

4.2.2 Parameter estimation 

In order to assess the predictive ability of each parameter estimation method, 20% of the 

synthetic data is held out for external testing, and the remaining 80% of the data is used towards 

model training. For the purpose of distributing the synthetic data evenly between training and test 

sets, stratified sampling is carried based on input conditions (e.g., temperature) instead of random 

sampling. After adding the same level of noise to each set, the model is trained with the generated 

data (Figure 15).  

 

Figure 15 The simplified schematic of the computational workflow 
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Agreement with true kinetics is determined by calculating the mean square error (MSE) of 

the “true test set”, which is generated from real kinetic parameters. Comparison of estimated and 

real parameters is also tabulated in Table S1-3. In addition, the MSE of the “noisy test set” is 

reported as a representative metric of a real-life scenario where the true kinetics is not known, and 

only noisy experimental data will be available for testing. The number of function evaluations is 

also used to directly compare the computational cost of all four methods. 50 repeat runs are carried 

out for each analysis to report statistical significance of the results. For the direct comparison of 

all methods where the same generated data is used for parameter estimation, t-tests are carried out. 

For statistical comparison of LS and LS-CV methods where a different dataset is generated for 

each repeat run, paired t-tests are performed. Prior to paired t-testing, Kolmogorov-Smirnov test 

is performed to ensure the generated datasets are normally distributed146,147. 

Non-linear least-squares (LS): The LS regression is performed using MATLAB’s 

lsqnonlin function based on Levenberg-Marquardt (LM) method with default tolerance values142. 

LM method optimizes the objective function by searching a new direction in the parameter 

landscape moving in the minimized-gradient direction: 

 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑∑(𝐶𝑖,𝑗

𝐸𝑥𝑝 − 𝐶𝑖,𝑗
𝑀𝑜𝑑𝑒𝑙)

2
𝑛

𝑗=1

𝑚

𝑖=1

 (4-10) 

 

where C refers to the concentrations, i refers to the components and j refers to the experimental 

(generated) data point for each component. 

Cross-validation nonlinear least-squares (LS-CV): For LS-CV, data is divided into folds 

via stratified sampling using crosvalind function in MATLAB. Stratified sampling assures that the 

distribution of the input conditions (e.g., temperature) on the overall dataset is represented 

similarly on the individual folds148. Within each run, a different fold of the data is left out for 
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validation while the remaining folds are used for training the model using nonlinear least-squares 

fitting78,81. The runs are repeated k times (the number of folds). As a result, an ensemble of 

parameters and the associated validation errors are obtained from each run, which are then 

weighted based on their respective validation errors to determine overall fit parameters: 

 
𝛩 = ∑ 𝜔𝑖𝜃𝑖

𝑘
𝑖=1 ,  𝜔𝑖 =

1/𝐸𝑖,𝑡𝑒𝑠𝑡
2

∑ 1/𝐸𝑖,𝑡𝑒𝑠𝑡
2𝑘

𝑖=1

 

 

(4-11) 

 

where  is the fitted parameters of each run,  is validation error weight, E is the validation error 

of each run, and k is the number of folds, which was chosen to be 5 for a dataset size of 25, and 

10 for all others. 

Markov chain Monte Carlo (MCMC): MCMC is performed using the Metropolis Hasting 

algorithm149. The random walks are sampled from a log-normal distribution for pre-exponential 

factors and from a normal distribution with a standard deviation of 5000 kJ/mol for activation 

energies. Each move that reduces the objective function is accepted. Moves that increase the 

objective function are accepted if the calculated Metropolis criterion is larger than a uniformly 

generated random number. The Metropolis criterion is calculated using the following formula:  

 
𝛽 = 𝑒

−(𝑆𝑆𝐸𝑛𝑒𝑤−𝑆𝑆𝐸𝑜𝑙𝑑)
2𝜎2𝑇  (4-12) 

 

where 𝛽 is the Metropolis criterion, SSE is the sum square error, 𝜎2 is the variance of the SSE 

values and T is the temperature factor which adjusts the stringency of the algorithm, which is 

selected as 3 for dataset size of 25 and 5 for others. Metropolis Hasting is implemented with a 

simulated annealing algorithm, which slowly decreases the probability of accepting worse 

solutions as the solution space is explored150,151. Based on 20 initial realizations performed using 

three different noise level and data set size combinations with 50000 iterations, the maximum 

number of iterations is selected as 20000 since no improvement after 20000th step is observed. 
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From the analysis on the same set of realizations, the runs are terminated if the best objective 

function does not change for 2000 steps. 

Genetic algorithm (GA): The GA generates a group of candidate parameters (population) 

which are generated from a given parameter space with Latin hypercube sampling152. The initial 

population size is selected as 400, and the elitism parameter is selected as 0.1, which discards the 

parameter candidates that rank below the top 10% based on the objective function. The elite 

population is used to generate a new population using a “crossover” procedure, in which the 

parameters of two randomly selected samples from the elite population are averaged with random 

weights generated from standard uniform distribution to create new offspring. This procedure is 

repeated until population size reaches 400. Lastly, 10% of candidate parameters are subjected to 

mutation, which introduces diversity into the population by allowing random walk (factored by a 

log-normal random variable) of the parameter space. The optimization is terminated if the best 

objective function does not improve for 20 generations.  

4.3 Result and Discussion 

4.3.1 Model Evaluation 

Initially, synthetic data is generated by simulating the constructed reaction model at steady 

state conditions with varying operating conditions, and by adding controlled levels of noise, as 

described in Section 4.2.1. Ranges of these operating conditions are selected to ensure that the data 

covers a wide range of conversion values to avoid a highly localized kinetic model. A 
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representative noise-added generated data along with the distribution of conversion is shown in 

Figure 16.  

Prior to parameter estimation, local sensitivity and profile likelihood analysis is performed 

on the kinetic model to ensure that the model parameters are identifiable and have a significant 

effect on the model outcome, i.e. that the problem is well posed. In practice, kinetic modeling 

studies are typically conducted under the assumption that the model parameters are identifiable 

based on the available experimental data without verifying this assumption. These pre-analysis 

tools could be useful for experimentalists and practitioners to establish confidence in fitted 

parameters, model reduction, and the design of experiments153. Accordingly, the calculated relative 

sensitivities, which are expressed as the percent change in output concentrations of all species due 

to a slight change (1%) in model parameters, are shown in Table 3. Model outputs are sensitive to 

all kinetic parameters, activation energy having the highest relative sensitivity due to exponential 

relation in the Arrhenius equation. 
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Figure 16 A) The distribution of species A conversion under varying operating conditions (inlet temperature, 

input ratios and GHSV values), and B) Representative generated concentration data of species A and species 

C (dataset size: 100, noise level:0.1) 

 

Table 3 Relative sensitivities of kinetic parameters to output variables 

Relative Sensitivity (%) CA CB CC CD 

k0,fwd 7.47 7.47 7.43 7.43 

k0,bwd 6.27 6.27 3.50 3.50 

EA,fwd 86.26 86.26 89.07 89.07 
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Similarly, likelihood profiles are generated using representative generated data, which are 

given in Figure 17. The presence of clearly defined minima in the identifiability plots for the pre-

exponential factors and the activation energy confirms that the model parameters are estimable 

within the temperature range tested here (150-250℃).  

  

Figure 17 Profile likelihood plots for the model parameters (For plotting purposes, the minimum of -2PL is 

subtracted from all -2PL values.) 

4.3.2 Accuracy and Efficiency Comparison of All Methods 

In the first stage of our comparative study, all four methods (LS, LS-CV, MCMC, and GA) 

are comparatively evaluated with regard to their accuracy and computational efficiency. This 

comparative parameter estimation study is carried out using three different pairs of dataset size (n) 

and noise levels (nl) to observe the effect of dataset properties on model performances. All 3 

operating variables can take on 5 discrete values (Figure 16A), resulting in a maximum dataset 

size of 125 datapoints. Three subset sizes (n = 25, 50, and 100) were chosen, each with a different 

noise level (decreasing from nl=0.5 for the smallest dataset to nl = 0.1 for the largest one), resulting 
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in the following combinations for the analysis: data set 1: n=25, nl=0.5; dataset 2: n=50, nl=0.2; 

dataset 3: n= 100, nl=0.1. The accuracy of the methods is determined based on their closeness to 

the true kinetics, as indicated by the MSE against the test set (Figure 18). In addition, the efficiency 

or computational cost is determined by the number of function evaluations required to derive the 

parameters (Figure 19). For stochastic methods (MCMC, GA, LS-CV), 50 repeat runs are carried 

out on the same generated dataset and training-test split for direct comparison and the statistical 

significance is reported by p-values (Table 4 and Table 5).  

Kinetic accuracy comparison of all methods with different dataset size and noise level 

combinations are shown in Figure 18. Distribution of test set MSE values for LS-CV, MCMC and 

GA methods are shown in boxplots, in which mean and median values are shown by “x” and “–”, 

respectively. The interquartile range is shown by box, whereas the outliers are denoted by the dots. 

The list of derived kinetic parameters is given in Appendix F. As apparent in the MSE distribution 

plots, LS-CV and the stochastic methods are able to predict the true kinetics with comparable 

accuracy for the cases with larger number of datapoints (n:50,100) and lower noise levels (nl:0.1, 

0.2), and all three outperform the simple nonlinear least-squares (LS) method (Figure 18A-B). 

Similar to MCMC and GA, LS-CV is able to escape local minima due to statistical averaging of 

successive runs. Slight differences in mean errors are observed for LS-CV, MCMC and GA 

methods, but they are not statistically significant for these datasets (Table 4). In contrast, for the 

runs with a smaller number of datapoints and relatively higher noise (n:25, nl:0.5), LS-CV 

significantly outperforms both MCMC and GA methods in terms of accuracy of true kinetics (see 

Figure 18C). In these runs, both MCMC and GA had the lower training errors amongst all methods, 

i.e. they appear to fit to the data much better. However, since these methods also overfitted to 

experimental noise in the data, they failed to capture underlying kinetics, hence higher MSE on 
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true test set. On the other hand, CV implementation efficiently filters out noise in the data due to 

the model validation which is based on all possible permutations of the (noisy) data. 

A 

 

B 

 

C 

 

Figure 18 Kinetic accuracy (test set MSE) comparison of all methods with different dataset size and noise 

level combinations (A: n=25, nl=0.5; B: n=50, nl=0.2; C: n= 100, nl=0.1). Mean and median values are 

denoted by “x” and “–”, respectively. Note that the magnitudes of y-axes are different. 

 

The number of function evaluations necessary to perform the parameter estimation task is 

used to compare the computational efficiency of the four different methods. As expected, LS 

requires the lowest number of function evaluations due to the deterministic nature of the 

optimization algorithm. The total number of objective function evaluations is increased 

significantly for more complex algorithms, MCMC and GA, due to their stochastic nature, smart 

random walk strategies, and implemented rules against local minima. Due to population size, GA 

requires the highest number of function evaluations, although estimations with independent 

candidate parameter sets could be run in parallel. LS-CV, although less efficient than regular LS, 

requires 3- to 10-fold lower number of function evaluations compared to MCMC and GA. 
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Similarly, an order of magnitude increase in run time from LS-CV to the probabilistic methods are 

also observed (all runs were performed on Intel(R) Core(TM) i7 3.70GHz, 6 Cores.) This increased 

efficiency of LS-CV is found consistently across the datasets, as confirmed by t-test performed on 

different data set size and noise level combinations (Table 5), and suggests that CV implementation 

to LS can provide a straightforward solution to parameter estimation problems with minimal 

complexity while obtaining comparable or better accuracy than more complex stochastic methods.  

A 

 

B 

 

C 

 

Figure 19 Computational cost (number of function evaluations) comparison of all methods with different 

dataset size and noise level combinations (A: n=25, nl=0.5; B: n=50, nl=0.2; C: n= 100, nl=0.1). Mean and 

median values are denoted by “x” and “–”, respectively. 

 

 

 



 64 

Table 4 Statistical analysis of kinetic accuracy (test set MSE) comparison of all methods with different dataset 

size and noise level combinations (p-value code: *<<0.00001) 

 n=100 nl= 0.1 n=50 nl= 0.2 n=25 nl= 0.5 

 LS-CV MCMC GA LS-CV MCMC GA LS-CV MCMC GA 

mean 0.0074 0.0071 0.0077 0.0596 0.0622 0.0690 1.0789 2.3916 2.2023 

variance 1.2E-03 1.2E-03 1.3E-03 1.4E-02 2.5E-02 1.9E-02 2.1E-01 9.2E-02 2.6E-01 

p-value  >0.05 >0.05  >0.05 >0.05  * * 

 

Table 5 Statistical analysis of computational cost (number of function evaluations) comparison of all methods 

with different dataset size and noise level combinations (p-value code: *<<0.00001) 

 n=100 nl= 0.1 n=50 nl= 0.2 n=25 nl= 0.5 

 LS-CV MCMC GA LS-CV MCMC GA LS-CV MCMC GA 

mean 4381 13657 17089 3494 11212 15973 1652 15198 18582 

variance 132 1314 5975 259 3972 5452 285 1648 6960  

p-value  * *  * *  * * 

4.3.3 Effect of Dataset Size, Noise and Outliers 

Based on the above comparison between the three advanced methods (LS-CV, MCMC, 

and GA), LS-CV is down-selected for a more detailed investigation of the effect of dataset 

properties, namely dataset size, noise, and outliers, in comparison to simple LS. Performance 

comparisons are conducted on independently generated datasets for each run to ensure that results 

are reproducible on different datasets. In other words, using the same kinetic model and noise 

level, multiple random dataset generations and training-test splits are performed. Hence, paired t-
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tests are carried out to evaluate statistical significance after conducting Kolmogorov-Smirnov Test 

of Normality146,147 to confirm data distribution can be assumed to be normal. The analyses are 

conducted with all possible combinations of three levels of dataset sizes (25,50,100) and four 

levels of noise (0.1, 0.2, 0.3, 0.5). The accuracy of the parameter estimation, similar to the previous 

study, is determined based on the MSE against the test set.  

Kinetic accuracy (test set MSE) comparison of LS and LS-CV methods with increasing 

level of noise and dataset size is illustrated in Figure 20 by a representative run whereas the 

statistical analysis of all repeat runs is shown in Table 6. The list of derived kinetic parameters is 

given in Appendix F. Accordingly, LS-CV outperforms the regular LS fitting in all cases with 

varying levels of improvement. Paired t-tests for all runs show statistical significance of the results 

(p < 0.01).  

 

 
                      *     *     **    **            

    
         **    *     *     **                                    

 

 
          **    *     *     *                                    

Figure 20 Kinetic accuracy (test set MSE) comparison of LS and LS-CV methods with all dataset size and 

noise level combinations (p-value codes: *<0.0001, **<0.01) 
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Table 6 Statistical analysis of kinetic accuracy (test set MSE) comparison of LS and LS-CV methods with all 

dataset size and noise level combinations (p-value codes: *<0.0001, **<0.01) 

 nl LS LS-CV %imp. p-value 

n=25 

0.1 0.06 0.04 20.3% * 

0.2 0.28 0.18 36.1% * 

0.3 0.83 0.43 48.3% ** 

0.5 2.37 0.94 60.6% ** 

n=50 

0.1 0.017 0.016 9.32% ** 

0.2 0.09 0.06 30.31% * 

0.3 0.35 0.20 41.08% * 

0.5 1.05 0.46 56.43% ** 

n=100 

0.1 0.009 0.008 7.9% ** 

0.2 0.04 0.03 23.3% * 

0.3 0.12 0.09 30.0% * 

0.5 0.31 0.17 43.9% * 

 

For both methods, the MSE decreases as expected with increasing number of datapoints 

since more information is available to train the kinetic model. Although LS-CV is consistently 

more accurate than LS in predicting true kinetics, the relative improvement is more pronounced 

on limited and more noisy data since LS is prone to overfitting. In LS-CV, this tendency is 

countered by the fact that the training folds with higher noise will have a relatively larger validation 

error and hence will be weighted low in the final kinetic parameter value. LS-CV is therefore 

exceptionally robust against experimental noise. Further comparison of the estimated parameters 
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from these methods shows that LS-CV consistently matches the absolute values of real parameters 

better compared to LS. 

In practice, the “true kinetics” are of course not available, and the goodness of the fit hence 

needs to be tested against the experimental test data, i.e., the hold-out from the original data set. 

This data will have the same noise level as the training data (since it is part of the same 

experimental data set). To mimic this, MSE values of the same runs are also calculated against 

noisy test set as a real-life representative metric, where synthetic (non-noisy) data do not exist. 

Consistent with the above discussed findings, the relative improvement of LS-CV decreases with 

increasing dataset size for the same noise level, and larger datasets are more tolerant to noise. 

However, while LS-CV significantly improves the prediction accuracy of true kinetics, it predicts 

noisy test data only marginally better than simple LS (Table 7). Remarkably, a “naïve observer” 

would hence rate both methods (almost) equally competent in deriving accurate kinetic parameters, 

while in fact LS-CV was able to unveil the true kinetics underlying the noisy data with significantly 

improved accuracy as shown above.  

Table 7 Kinetic accuracy (noisy test MSE) comparison of LS and LS-CV methods with all dataset size and 

noise level combinations (p-value codes: *<0.005, **<0.05 ) 

Noisy test MSE n=25 n=50 n=100 

nl LS LS-CV p-val. LS LS-CV p-val. LS LS-CV p-val. 

0.1 1.75 1.74 ** 1.73 1.73 * 1.90 1.90 ** 

0.2 7.16 7.07 ** 7.93 7.87 * 7.88 7.86 * 

0.3 15.90 15.49 ** 14.19 13.97 * 13.17 13.11 ** 

0.5 44.77 41.94 * 38.96 37.48 ** 28.31 27.81 ** 
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Beyond noise, experimental data, and in particular data from industrial operations, is often 

subject to outliers, i.e. “bad” data with errors above the general experimental noise level which 

can be caused by operator error, temporary malfunctioning of sensor, or similar unpredictable 

effects. To evaluate the ability of LS-CV and LS to handle such outliers, their effect is investigated 

by progressively increasing the number of outliers in the data. In order to reliably assess the method 

performances against outliers, they are only added to the training data. For all outlier analyses, the 

same dataset is used for direct comparison (n:50, nl:0.2). Outliers are generated by either adding 

or subtracting one standard deviation of the variable value to the noise-added training data. The 

MSE against the “true kinetics” test set are tabulated in Table 8. Clearly and unsurprisingly, LS 

fitting becomes significantly worse at predicting true kinetics with increasing number of outliers. 

The accuracy of the LS-CV prediction also decreases with more outliers, although the adverse 

effect is significantly lower compared to LS. Similar to its handling of noise, LS-CV can 

effectively filter out outliers via statistical averaging. 

Table 8 Effect of outliers in training data on the kinetic accuracy (test set MSE) comparison of LS and LS-CV 

methods (p-value codes: *<0.0001, **<0.01) 

 

n=50 nl= 0.2 

no outliers - training 

n=50, noise nl = 0.2 

2 outliers - training 

 LS LS-CV %imp. p-val. LS LS-CV %imp. p-val. 

true MSE 0.091 0.064 30% * 0.115 0.066 42% * 

 

n=50 noise nl = 0.2 

5 outliers - training 

n=50, noise nl = 0.2 

10 outliers - training 

 LS LS-CV %imp. p-val. LS LS-CV %imp. p-val. 

true MSE 0.290 0.092 67% * 0.953 0.265 72% ** 
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Table 9 Effect of outliers in test data on the comparison of LS and LS-CV methods  

 

n=50 nl= 0.2 

no outlier 

n=50, nl= 0.2 

5 outliers - training 

n=50, nl= 0.2 

5 outliers - test 

 LS LS-CV %imp. LS LS-CV %imp. LS LS-CV %imp. 

noisy  

test MSE 

7.93 7.87 0.76% 8.79 8.12 8% 26.53 26.53 0.015% 

 

Note that addition of outliers to the test dataset will throw off any fitting method, unless 

data is preprocessed with existing outlier filtering tools. A separate run, in which five outliers are 

added only to the noisy test dataset, shows no significant improvement between LS and LS-CV 

methods, as shown in Table 9. In this case, the model is trained with comparatively good data and 

then its “accuracy” is tested again bad data, which is of course inherently doomed since the 

measure of accuracy is fundamentally flawed. This simple “sanity test” highlights the importance 

of sampling when using real-life experimental test dataset for model validation purposes: Great 

care should be taken to assure that any test data is as free of outliers as possible since the calculated 

accuracy of the fitting may otherwise result in wrong interpretation of the results. While here the 

“flawed” test data (i.e. test data with outliers) was kept artificially constant, CV methods will 

minimize the danger of this occurring, due to the partition of dataset into folds and repeated 

estimations based on all permutations of these folds. This assures a sampling of data in a way that 

is more resistant to the presence of outliers since only a subset of the runs will contain outliers in 

the test data (as illustrated further above). 
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4.4 Conclusion 

Precise knowledge of chemical reaction kinetics is fundamental for rapid exploration of 

the reaction outcome over a wide range of operating conditions, reactor design, and process safety. 

However, in industrial practice, the availability of data available for identification of kinetic 

parameters is often limited since acquisition of data is time-consuming, expensive, and/or 

challenging. This is further exacerbated by the fact that the quality of available data can be 

compromised by noise and the presence of outliers. Furthermore, derived kinetic parameters are 

rarely tested/validated against overfit, which may result in wrong interpretation of kinetics outside 

known operating conditions.  

In this work, a straightforward proof-of-concept study is employed to investigate robust 

kinetic parameter estimation with limited data availability. In an attempt to minimize model 

overfit, cross-validation (CV) methodology is implemented to simple, conventional nonlinear 

least-squares fitting. This method is widely used to assess the accuracy of machine learning 

classifiers, although a similar implementation of the same strategy to parametric regression 

problems could also allow robust derivation of reaction kinetics. This method was furthermore 

comparatively evaluated against two stochastic methods, Markov chain Monte Carlo and genetic 

algorithm, using synthetic data with varying level of data set size and noise levels. A simple one-

step kinetic model, loosely based on previously published reaction kinetics for the catalytic water-

gas shift reaction, is used for the investigation. Prior to parameter estimation, the model is 

evaluated to confirm that kinetic parameters are identifiable and model outcomes are sensitive to 

all parameters within the studied variable range.  

As expected, the analysis of the results shows that although LS is the fastest method, it is 

overall the least accurate method in predicting true kinetics. While GA and MCMC are found to 
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be effective for larger data set sizes, both methods tend to overfit to noise when data availability 

is limited. LS-CV, on the other hand, strongly outperforms these methods when high noise level 

is present in the training data. In addition, regardless of the dataset properties, LS-CV requires 

significantly fewer objective function evaluations compared to stochastic methods, i.e. its 

computational efficiency is significantly higher. Finally, while GA and MCMC both require 

sufficiently sophisticated operators, i.e. they require significant experience in tuning 

computational parameters to achieve robust progress in the stochastic calculations, LS-CV is a 

rather straightforward extension of the well-established nonlinear least-squares (LS) approach 

implemented in virtually all numerical software packages as well as process simulation and 

optimization tools.  

A more detailed comparison between LS-CV and LS confirms that the former is 

consistently more accurate in predicting true kinetics, more notably for limited data. Similar to 

noise, LS-CV is also found to be effective in filtering out outliers in the training data due to the 

use of repeated estimations on random partitions of the dataset which are then averaged weighted 

on their respective MSE. The randomized partition of CV also allows the data to be sampled more 

homogeneously and make use of the entire available data set, which is critical for accurate model 

validation in particular for limited data availability. In the present work, the analysis was 

performed on a simple one-step model reaction. While we expect the results to hold for systems 

with higher dimensionality, systematic extension onto more complex models is needed to validate 

this expectation. 

Overall,  our study indicates that the implementation of a cross-validation routine with 

nonlinear least-squares fitting can provide a robust, easy-to-use, and highly efficient approach to 
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parameter estimation and regression problems in the face of restricted and/or noisy data, and hence 

constitutes a valuable tool for researchers and practitioners alike.  
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5.0 Summary and Outlook 

5.1 Oxidative Coupling of Methane 

In Chapter 2.0, oxidative coupling of methane (OCM) reaction was experimentally 

investigated as a promising route for methane upgrading to value-added chemicals. To this end, 

the OCM reaction was revisited on Mn-Na2WO4/MgO – one of the most effective catalysts for this 

reaction to-date – to gain insights into methane activation and reaction pathways leading to high 

C2 selectivity. The catalytic reactivity tests were conducted in the absence of molecular oxygen in 

the feed, which enabled us to observe surface-initiated reaction pathways that are not readily 

visible otherwise. Supported single component MnO2 and Na2WO4 catalysts were also studied via 

thermogravimetric and fixed-bed reactor studies to determine their baseline methane activity and 

C2 selectivity. Both individual metal oxides showed poor OCM performance at 900°C. Na2WO4 

was completely inactive towards methane activation, while manganese oxide favored unselective 

total oxidation followed by rapid catalyst deactivation via coking. On the other hand, the use of 

Mn-Na2WO4 mixed oxide catalyst (MOC) decreased the cumulative CO2 production by 30% and 

yields a 10-fold increase in C2 production, resulting in a steep increase in C2 selectivity to 69% at 

900C. Furthermore, the synergistic effect and lattice oxygen sharing mechanism between MnO2 

and Na2WO4 was examined by physically mixing individually synthesized samples of these two 

metal oxides which, remarkably, showed the identical performance to conventional mixed oxide 

catalyst in terms of both CH4 activity and C2 selectivity. Additional unsteady state kinetic and 

XRD analyses suggested that while the presence of Mn-oxide is critical for methane activity, the 

gas phase dehydrogenation of ethane s the key step to form ethylene. Selective hydrogen removal 
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on tungstate was found to promote higher C2 yields, providing a new direction for rational catalyst 

design where metal oxide components of the catalyst could be individually optimized towards 

different functions. However, recent in situ characterization studies of the surface revealed that 

Na2WO4 promoter melts at temperatures above 700°C, which could increase its mobility at 

reaction temperatures and wet adjacent Mn oxide particles, removing or reducing the “physical 

separation” introduced by the physically mixed catalyst. To test the direct influence of surface 

wetting on the metal oxide interactions at high temperatures, a series of in-situ environmental TEM 

(E-TEM) experiments with elemental mapping on physical mixture catalyst is proposed in the next 

section. 

5.1.1 Future Work 

To investigate the physical behavior of the catalyst, the following E-TEM experiments will 

be conducted. Initially, the elemental distribution of the catalyst will be characterized via spatially 

resolved EDX or EELS scan for the “as prepared” Mn-Na2WO4 physical mixture catalyst (PMC) 

at room temperature. Following the identification of areas that show well-positioned adjacent 

MnO2 and Na2WO4 particles, the sample will be heated up to temperatures above 800°C while 

observing the catalyst structure in TEM. At the high temperature, another elemental mapping will 

be conducted to capture the melting and spreading process. Lastly, the sample will be cooled down 

to room temperature and re-mapped again to see whether de-wetting occurs during the cool-down, 

recovering a physically well separated mixture. These experiments would enable us to gain a much 

better understanding of the synergistic interaction between Na2WO4 and MnOx at reaction 

conditions, which is key for rational catalyst design. 
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5.2 Design and Optimization of Chemical Reactors 

In Chapter 3.0, another value-added chemical that can be synthesized through methane 

upgrading, methyl mercaptan or methanethiol (CH3SH, MeSH) was investigated, which is the 

building block of an essential amino acid, methionine. Towards this goal, we performed precise 

model-based development of optimal catalytic reactors for methanethiol production. The 

computational work consisted of the derivation robust kinetic parameters for the production of 

methanethiol, development of reactor models, and subsequent optimization to determine optimum 

operating conditions and reactor design for a large-scale process. Due to the limited number of 

experimental data points available, a statistical kinetic fitting methodology combining nonlinear 

least-squares fitting with cross-validation was implemented to improve the robustness of the 

derived kinetics. This approach was found to significantly increase the predictive ability of the 

model on unseen experimental datapoints. By performing model reduction based on local 

sensitivity analysis of derived parameters, a thermodynamically consistent kinetic parameter set 

was obtained to describe both MeOH reactor and DMS cleavage reactor kinetics. 

Next, two-dimensional pseudo-homogeneous reactor models were built to accurately 

simulate the large-scale production of methanethiol. Conservation of mass, energy and momentum 

equations describing the behavior of the system were derived, including modules for estimating 

temperature dependent thermophysical and transport properties of the gaseous species in the 

reactor. These mathematical models were subsequently used to determine the operating conditions 

and reactor design to maximize methanethiol yields. Optimal process conditions and reactor 

specifications for standalone reactors as well as reactor combinations were determined considering 

both adiabatic and polytropic operation. Through the optimization of both reactor geometry and 

product yield, up to~4-fold improvement in MeSH productivity and ~20% improvement in MeSH 
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selectivity from base conditions was attainable with minimal pressure drop. Suppressed formation 

of side products also allowed a steep reduction in reactor volume (by 75%) and the number of 

tubes (by an order of magnitude) through optimization of the secondary reactor. The polytropic 

operation for the MeOH reactor was also investigated, and various design strategies were 

investigated to improve cooling and reduce the peak temperatures. However, due to high flowrates, 

optimization through diameter reduction and catalyst bed dilution still resulted in a minimum of 

~35℃ temperature rise in a conventional tubular reactor. For the polytropic operation to be 

feasible, it appears that the reactor should be run at a lower capacity, and/or the number of tubes 

should be increased up to ~30000. Alternatively, process intensification strategies, such as a 

spinning disc reactor, could be explored to potentially improve cooling through dramatically 

increasing surface-area-to-volume ratio. 

Overall, in this work, a rigorous computational framework for modeling and optimization 

of chemical reactors was showcased for a large-volume industrial process. The mathematical 

models constructed here are easily adaptable towards reactor design and optimization of other 

homogeneous or pseudo-homogeneous reaction systems. Furthermore, for heterogeneous systems, 

the reactor models could be expanded to include appropriate concentration gradients to account 

for mass transfer limitations inside and/or outside catalyst particles, if needed. 

The kinetic and reactor model constructed does not consider catalyst deactivation since the 

required experimental data for long-term catalyst stability was unavailable. However, a time-

dependent term describing catalyst deactivation could be added to the models. Moreover, 

additional optimizations could be performed in which the catalyst deactivation data is used as a 

constraint to minimize or prevent reactor downtime. 
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5.3 Robust Kinetic Parameter Estimation of Chemical Reactors 

In Chapter 4.0, motivated by the results of the kinetic modeling work of Chapter 3.0., a 

straightforward proof-of-concept study was employed to compare different algorithms/methods 

for robust kinetic parameter estimation with limited data availability. Accurate determination of 

reaction kinetics is fundamental for rapid exploration of the reaction outcome over a wide range 

of operating conditions. However, in industry practice, the number of data points available for 

kinetics derivations is often very limited. Furthermore, kinetic parameters obtained are rarely 

tested and validated against a possible overfit, which may result in a wrong interpretation of 

kinetics. As a potential mitigation strategy for this problem, cross-validation methodology was 

implemented to kinetic parameter regression (LS-CV) and compared to regular non-linear least 

squares (LS), Markov chain Monte Carlo (MCMC), and genetic algorithm (GA). The analyses 

were performed on synthetic reactivity data to probe dataset size (number of experimental points), 

noise level, and number of outliers, and the performance of the different algorithms were compared 

in terms of accuracy (closeness to true reaction kinetics) and efficiency (computational cost). P-

values were also calculated to assure statistical significance of the results. Overall, the LS-CV 

method was found to be the most efficient in filtering out the noise and outliers present in limited 

data due to the statistical averaging of repeated estimations on different partitions of the dataset. 

In addition, LS-CV required a significantly smaller number of objective function evaluations 

compared to stochastic methods, MCMC, and GA. Although LS was the fastest, it was overall the 

least successful method in predicting true kinetics. On the other hand, CV implementation to LS 

appears to yield a robust approach towards kinetic parameter estimation. 

As a starting point, a simple reaction of type “A + B = C + D” was used a model reaction. 

However, the parameter estimation study employed here could be expanded to a kinetic model 
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with higher complexity, such as a multistep reaction mechanism that includes a combination of 

parallel and series reaction steps. Least-squares based methods are more prone to get stuck on local 

minima with increased model complexity, whereas stochastic methods such as MCMC and GA 

can be expected to be much more effective in predicting true kinetics. It would be of interest to 

validate whether the simple LS-CV approach would still outperform the more advanced MCMC 

and GA methods in this case. If not, a similar CV implementation strategy may be applied to these 

stochastic methods to allow model validation and minimize overfit.  

In parallel, to provide more generalized guidelines for the use of the proposed CV strategy, 

a detailed hyperparameter tuning study could be carried out, which are configuration parameters 

that are algorithm or method specific. For instance, the number of folds, weight function of the 

folds, and the number of repeated estimations may be considered as the hyperparameters of the 

LS-CV method. Effect of these hyperparameters could be investigated and fine-tuned based on the 

dataset properties such as size and experimental noise. Such investigations would further improve 

our understanding of the general applicability of the LS-CV method. 
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Appendix A Kinetic Investigations on the Role of Sodium Tungstate Promoter in MnxOy-

Na2WO4 Catalyzed Oxidative Methane Coupling Reaction 

 

Appendix Figure 1 TEM images of A) Mn-Na2WO4/MgO MOC B) Mn/MgO fresh catalysts 

 

 

Appendix Figure 2 Thermogravimetric analysis of Mn-Na2WO4/MgO MOC at 900℃. The weight loss under 

inert flow indicated by dashed lines occur due to thermal instability of MnO2 at high temperatures (>500℃). 

Oxygen loss rate during purge period at reaction temperature is quantified and used for accurate oxygen 

material balance calculation. 
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Appendix Figure 3 Temporal total lattice oxygen consumption of Mn-Na2WO4/MgO MOC during reduction, 

quantified by material balance calculations. Top dashed line marks the oxygen consumption when MnO2 

completely reduces to MnO. Residual lattice oxygen loss (bottom dashed line) is observed due to selective H2 

removal occurring on Na2WO4. 
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Appendix B Derivation of Model Equations 

Mass Balance 

In plug flow reactors, composition of the fluid varies along the flow path. The material 

balance for a reaction component must be made from a differential volume element. The mole 

balance equations hence are derived using the flux balance in an infinitesimal cylindrical shell.  

 

Appendix Figure 4 Cylindirical shell of thickness Δr and Δz102 

Flux terms are denoted as 𝑊𝐴 and calculated as the combination of diffusion and bulk flow 

in axial and radial directions: 

𝑊𝐴𝑧 = −𝐷𝑒
𝜕𝐶𝐴
𝜕𝑧

+ 𝑈𝑧𝐶𝐴 (B-1) 

𝑊𝐴𝑟 = −𝐷𝑒
𝜕𝐶𝐴
𝜕𝑟

+ 𝑈𝑟𝐶𝐴 (B-2) 

 

where 𝐷𝑒 denotes the diffusion coefficient and the 𝑈 is the linear velocity in either axial or radial 

direction. The total molar flowrates are estimated via the following equations:  

(
𝑀𝑜𝑙𝑒𝑠 𝐼𝑛 
𝑎𝑡 𝑟

) = 𝑊𝐴𝑟 (
𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑟𝑎𝑑𝑖𝑎𝑙 𝑓𝑙𝑢𝑥

) = 𝑊𝐴𝑟2𝜋𝑟∆ (B-3) 
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(
𝑀𝑜𝑙𝑒𝑠 𝐼𝑛 
𝑎𝑡 𝑧

) = 𝑊𝐴𝑧 (
𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑎𝑥𝑖𝑎𝑙 𝑓𝑙𝑢𝑥

) = 𝑊𝐴𝑧2𝜋𝑟∆𝑟 (B-4) 

 

where r is the radial distance from the center, and ∆𝑟 and ∆𝑧 are radial and axial thickness of the 

cylindrical shell. From these equations, the mole balance is constructed as following:  

(
𝑀𝑜𝑙𝑒𝑠 𝑖𝑛
𝑎𝑡 𝑟

) − (
𝑀𝑜𝑙𝑒𝑠 𝑜𝑢𝑡
𝑎𝑡 𝑟 + ∆𝑟

) + (
𝑀𝑜𝑙𝑒𝑠 𝑖𝑛
𝑎𝑡 𝑧

) − (
𝑀𝑜𝑙𝑒𝑠 𝑜𝑢𝑡
𝑎𝑡 𝑧 + ∆𝑧

) + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

= 0 (𝐴𝑐𝑐𝑢𝑚. ) 

(B-5) 

 

By substituting accumulation and generation terms in the mole balance equation, the following 

equation is obtained: 

∆𝑊𝐴𝑧2𝜋𝑟∆𝑧|𝑟 − ∆𝑊𝐴𝑧2𝜋𝑟∆𝑧|𝑟+∆𝑟 + ∆𝑊𝐴𝑟2𝜋𝑟∆𝑟|𝑟 − ∆𝑊𝐴𝑟2𝜋𝑟∆𝑟|𝑟+∆𝑟 

+ 𝑟𝐴2𝜋𝑟∆𝑟∆𝑧 =
𝜕𝐶𝐴(2𝜋𝑟∆𝑟∆𝑧)

𝜕𝑡
 

(B-6) 

 

Both sides or the equations are divided by the volume of the shell (2𝜋𝑟∆𝑟∆𝑧) and the mole balance 

equation is reduced to:  

−
1

𝑟

𝜕(𝑟𝑊𝐴𝑟)

𝜕𝑟
−
𝜕𝑊𝐴𝑧

𝜕𝑧
+ 𝑟𝐴 =

𝜕𝐶𝐴
𝜕𝑡

 (B-7) 

 

Substituting the flux terms and removing time derivative due to modeling at steady state, the mole 

balance equation is reduced to:  

−
1

𝑟

𝜕

𝜕𝑟
[(−𝐷𝑒

𝜕𝐶𝑖
𝜕𝑟

𝑟) + 𝑈𝑟𝐶𝑖] −
𝜕

𝜕𝑧
[−𝐷𝑒

𝜕𝐶𝑖
𝜕𝑧

+ 𝑈𝑧𝐶𝑖] + 𝑟𝑖 = 0 (B-8) 

 

Since the diffusivity of gases are relatively high, the radial concentration gradient assumed to be 

0 (
𝜕𝐶𝑖

𝜕𝑟
= 0). Velocity profile of the gas in the axial direction is also assumed constant (𝑈𝑧 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). For long enough reactors (L/d>>20), axial dispersion can be neglected, since the 
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difference in concentration approaches zero154. The majority of the gas transport occurs in the bulk 

form due to fluid flow, in which diffusion term would be significantly small155. Based on these 

assumptions, the second order concentration derivative in axial direction can be neglected (𝐷𝑒
𝜕2𝐶𝑖

𝜕𝑧2
 

= 0). Hence, the final mole balance equation becomes:  

−𝑈𝑧
𝜕𝐶𝑖
𝜕𝑧

+ 𝑟𝑖 = 0 𝑜𝑟 −
𝑑𝐶𝑖
𝑑𝑧

+
𝐴𝑐𝑠
𝜈0
𝑟𝑗 = 0 

where 𝑈𝑧 =
𝜈0

𝐴𝑐𝑠
 

(B-9) 

 

Energy Balance 

Similar to the mass balance, the energy balance is also derived on an infinitesimal 

cylindrical shell with energy fluxes denoted by e. Energy flux is composed of a conduction and a 

convection part:  

𝑒 = 𝑞 +  ∑𝑊𝑖𝐻𝑖 (B-10) 

 

The first term on right hand-side of the equation is the conduction term, q, which is calculated 

using Fourier’s law. The second term is the convection term, which is calculated from the molar 

flux (W) and the enthalpy (H). The Fourier’s law is given as:  

𝑞𝑧 = −𝜆𝑒
𝜕𝑇

𝜕𝑧
 (B-11) 

 

where e is the bed thermal conductivity (W/mK). The overall energy balance is determined by 

energy entering and leaving the shell:  

(
𝐸𝑛𝑒𝑟𝑔𝑦 𝐹𝑙𝑜𝑤

𝑖𝑛 𝑎𝑡 𝑟
) − (

𝐸𝑛𝑒𝑟𝑔𝑦 𝐹𝑙𝑜𝑤
𝑜𝑢𝑡 𝑎𝑡 𝑟 + ∆𝑟

) + (
𝐸𝑛𝑒𝑟𝑔𝑦 𝐹𝑙𝑜𝑤

𝑖𝑛 𝑎𝑡 𝑧
) − (

𝐸𝑛𝑒𝑟𝑔𝑦 𝐹𝑙𝑜𝑤
𝑜𝑢𝑡 𝑎𝑡 𝑧 + ∆𝑧

)

= 0 (𝐴𝑐𝑐𝑢𝑚. ) 

(B-12) 
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𝑒𝑟2𝜋𝑟∆𝑧|𝑟 − 𝑒𝑟2𝜋𝑟∆𝑧|𝑟+∆𝑟 + 𝑒𝑧2𝜋𝑟∆𝑟|𝑧 − 𝑒𝑧2𝜋𝑟∆𝑟|𝑧+∆𝑧 =
𝜕∑𝐻𝑖𝐶𝑖(2𝜋∆𝑟∆𝑧)

𝜕𝑡
 (B-13) 

 

The accumulation term on the right-hand side is zero since the model is built for steady state 

analysis of the system. The left-hand side of the equation is divided by the volume of the cylindrical 

shell (2𝜋∆𝑟∆𝑧), and following equation is obtained:  

−
1

𝑟

𝜕(𝑟𝑒𝑟)

𝜕𝑟
−
𝜕𝑒𝑧
𝜕𝑧

= 0 (B-14) 

 

By substituting the energy flux term with Fourier’s law and the convection terms, the energy 

balance becomes:  

−
1

𝑟

𝜕𝑟[𝑞𝑟 + ∑𝑊𝑖𝑟𝐻𝑖]

𝜕𝑟
−
𝜕[𝑞𝑧 + ∑𝑊𝑖𝑧𝐻𝑖]

𝜕𝑧
= 0 (B-15) 

 

The derivative of bulk energy flow can be defined as the following: 

𝜕 ∑𝑊𝑖𝑧𝐻𝑖
𝜕𝑧

=∑𝐻𝑖
𝜕𝑊𝑖𝑧

𝜕𝑧
+∑𝑊𝑖𝑧

𝜕𝐻𝑖
𝜕𝑧

 (B-16) 

 

By substituting the equation above into the energy balance, the overall energy balance becomes:  

−
1

𝑟

𝜕(𝑟𝑞𝑟)

𝜕𝑟
−
𝜕𝑞𝑧
𝜕𝑧

−∑𝐻𝑖 (
1

𝑟

𝜕𝑟𝑊𝑖𝑟

𝜕𝑟
+
𝜕𝑊𝑖𝑧

𝜕𝑧
) −∑𝑊𝑖𝑟

𝜕𝑟𝐻𝑖
𝑟𝜕𝑟

−∑𝑊𝑖𝑧

𝜕𝐻𝑖
𝜕𝑧

= 0 (B-17) 

 

Next mole balance equation is recalled and substituted into energy balance: 

−
1

𝑟

𝜕(𝑟𝑊𝑖𝑟)

𝜕𝑟
−
𝜕𝑊𝑖𝑧

𝜕𝑧
+ 𝑟𝑖 = 0 (B-18) 

−
1

𝑟

𝜕(𝑟𝑞𝑟)

𝜕𝑟
−
𝜕𝑞𝑧
𝜕𝑧

+∑𝐻𝑖𝑟𝑖 −∑𝑊𝑖𝑟

𝜕𝑟𝐻𝑖
𝑟𝜕𝑟

−∑𝑊𝑖𝑧

𝜕𝐻𝑖
𝜕𝑧

= 0 (B-19) 

 

The enthalpy of reaction is defined as: 
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∑𝐻𝑖𝑟𝑖 = −∑𝜈𝑖𝐻𝑖(−𝑟𝐴) = ∆𝐻𝑅𝑥𝑟𝐴 (B-20) 

 

where 𝑟𝐴 = 𝑟𝑖𝜌𝑐. The derivatives of enthalpy could be defined in terms of heat capacity using the 

following equation:  

𝜕𝐻𝑖
𝜕𝑧

= 𝐶𝑝𝑖
𝜕𝑇

𝜕𝑧
 (B-21) 

 

After substituting the enthalpy of reaction, derivatives of enthalpies and the conduction term with 

Fourier’s law, the final form of the energy balance equation becomes: 

𝜆𝑒
𝑟
(
𝜕 (𝑟

𝜕𝑇
𝜕𝑟
)

𝜕𝑟
)+ 𝜆𝑒

𝜕2𝑇

𝜕𝑧2
+ ∆𝐻𝑅𝑥𝑟𝑖𝜌𝑐 − (∑𝑊𝑖𝑟𝐶𝑃𝑖)

𝜕𝑇

𝜕𝑟
− (∑𝑊𝑖𝑧𝐶𝑃𝑖)

𝜕𝑇

𝜕𝑧
= 0 (B-22) 

 

Using the similar assumption due to the high diffusivity of gas species, the radial flux term 

neglected (𝑊𝑖𝑟 = 0). Similarly, since axial dispersion is neglected (L/d>20), the energy balance 

becomes: 

𝜆𝑒
𝑟
(
𝜕 (𝑟

𝜕𝑇
𝜕𝑟
)

𝜕𝑟
)+ 𝜆𝑒

𝜕2𝑇

𝜕𝑧2
+ ∆𝐻𝑅𝑥𝑟𝑖𝜌𝑐 − (𝑈∑𝐶𝑖𝐶𝑃𝑖)

𝜕𝑇

𝜕𝑧
= 0 (B-23) 
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Appendix C Model Assumptions and Validations 

Fixed-bed catalytic reactors could either be modeled as pseudo-homogeneous or 

heterogeneous. In pseudo-homogeneous reactor models, only concentration and temperature 

gradients of the fluid transport is considered. In heterogeneous reactor models, concentration 

gradients between the bulk fluid and the external surface of the particles and/or within the pores 

of the particles are also modeled. Homogeneity conditions should be checked prior construction 

of mass balance equations. If said gradients are significant, they reduce, or limit, the rate of 

reaction. 

 

Appendix Figure 5 Mass transfer in a reaction102 

In this thesis, the reactors are modeled as pseudo-homogeneous since mass transfer 

limitations are calculated based on the experimental data and found to be negligibly small. Two 

correlations are used to determine internal and external diffusion limitations of the model, namely 

Mears and Weisz-Prater criterion. Mears criterion determines if external mass transfer from the 

bulk gas phase to the catalyst surface can be neglected with the following equation: 

𝑀𝑅 =
−𝑟𝐴,𝑜𝑏𝑠𝜌𝑏𝑅𝑛

𝑘𝑐𝐶𝐴𝑏
 (C-1) 
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where ra,obs is the observed rate of reaction, kmol/kg-cat/s, R is the radius of the catalyst particles, 

m, ρb is the bulk catalyst density, kg/m3, n is the reaction order, kc is the mass transfer coefficient, 

m/s, CAb is the concentration of gas at the bulk, mol/dm3. If the MR is less than 0.15, the external 

mass transfer effects could be neglected. The second correlation for the internal diffusion is Weisz-

Prater criterion, which determines if mass transfer limitations inside catalysts particles exists: 

𝐶𝑊𝑃 =
−𝑟𝐴,𝑜𝑏𝑠𝑅

2𝜌𝑐
𝐷𝑒𝐶𝐴𝑠

 (C-2) 

 

where ra,obs is the observed rate of reaction, R is the radius of the catalyst particles, ρc is the catalyst 

density, De is the effective diffusivity of gas molecules, CAs is the concentration of the gas at the 

particle surface. If there is no external diffusion limitation, CAs is equal to CAb, bulk concentration. 

If calculated CWP is at least two order of magnitude smaller than the unity (<<1), the internal mass 

transfer limitations within the catalyst could be neglected. Since both of these numbers are below 

the provided thresholds for the methanol thiolation system studied here, the reactor is accurately 

designed as a pseudo-homogeneous reactor.  
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Appendix D Numerical Methods 

The energy, mass and momentum balance equations are constructed as a set of partial 

differential equations (PDEs). Although final versions of the mole momentum balance equations 

reduced to ordinary differential equations (ODEs), the energy balance equations still have both 

radial and axial component. In general, the PDE solvers are less efficient and could lead to stability 

issues during integration. Therefore in this work, PDEs are transformed into ODEs using method 

of lines (MOL) method. The MOL method converts the PDE into ODE by discretizing one of the 

independent variables using finite difference methods (Figure D1) 

 

Appendix Figure 6 Schematic description of method of lines  

Using finite difference method, the temperature variable is discretized in radial axis. Finite 

number of temperature nodes (T0, T1,..TN) which are function of z (axial length) are obtained. N 

is chosen as 6 in this study. The relationships between the temperature nodes are defined with 

forward, backward and central finite difference equations: 

𝜕2𝑇𝑖
𝜕𝑟2

=
𝑇𝑖+1 − 𝑇𝑖 + 𝑇𝑖−1

∆𝑟2
 𝑖𝑓 𝑖 = 2,3, . . , 𝑁 − 1 (D-1) 
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𝜕𝑇𝑖
𝜕𝑟

=
𝑇𝑖+1 − 𝑇𝑖−1

2∆𝑟
𝑖𝑓 𝑖 = 2,3, . . , 𝑁 − 1 (D-2) 

𝜕𝑇𝑖
𝜕𝑟

=
𝑇𝑖+1 − 𝑇𝑖
∆𝑟

𝑖𝑓 𝑖 = 𝑁 (D-3) 

𝜕𝑇𝑖
𝜕𝑟

=
𝑇𝑖 − 𝑇𝑖−1
∆𝑟

 𝑖𝑓 𝑖 = 1 (D-4) 

 

The constructed set of ODE’s are integrated using Ode15s, a built-in function in MATLAB, which 

is a variable-step and variable-order solver that utilizes numerical differential formulas up to order 

of 5.  
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Appendix E Physical Property Correlations 

The temperature changes inside the reactor requires thermophysical properties to be 

estimated within the model. For this purpose, a set of empirical correlations are used to calculate 

the density, heat capacity, viscosity and thermal conductivity values.  

The density is calculated based on the Peng-Robinson (PR)94 equation of state. Initially, 

for each species, the pure component parameters are estimated for PR using the following 

formulas96: 

𝑚𝑖 = 0.37464 +  1.54226 𝜔𝑖 −  0.26992𝜔𝑖
2 (E-1) 

𝛼𝑖 = (1+ 𝑚𝑖(1 − 𝑇𝑅
0.5))

2
 (E-2) 

𝑎𝑖 = 𝛼𝑖 0.45724 𝑅2
𝑇𝑐𝑖

2

𝑃𝑐𝑖
 (E-3) 

𝑏𝑖 = 0.07780 𝑅
𝑇𝑐𝑖
𝑃𝑐𝑖

 (E-4) 

 

where 𝜔𝑖 is acentric factor, 𝑇𝑅 is reduced temperature, 𝑇𝑐𝑖 and 𝑃𝑐𝑖 are the critical temperatures and 

pressures of species i in K and bar, respectively. Next, the PR parameters for the mixture are 

evaluated using the following equations: 

𝑎𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =∑∑𝑦𝑖𝑦𝑗√𝑎𝑖𝑎𝑗(1 − 𝑘𝑖𝑗)

𝑗𝑖

 (E-5) 

𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =∑𝑦𝑖𝑏𝑖
𝑖

 (E-6) 
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where 𝑦𝑖 is the gas phase mole fraction and the 𝑘𝑖𝑗  is the mixture parameter for PR equation of 

state. After calculating mixture PR parameters, the following equation is solved for molar volume 

�̅�.  

𝑃 =
𝑅𝑇

(�̅� − 𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒)
−

𝑎𝑚𝑖𝑥𝑡𝑢𝑟𝑒

(�̅�(�̅� + 𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒) + 𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒(�̅� − 𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒))
 (E-7) 

 

where P is the pressure in bar and T is the temperature in K. The resulting molar volume is 

converted to density using molecular weight of mixture. 

𝜌 =
𝑚𝑤𝑚𝑖𝑥𝑡𝑢𝑟𝑒

�̅�
 

 

(E-8) 

Appendix Table 1 Physical properties for individual species  

Species MW(g/gmol) Pc(bar) Tc(K) 𝝎 

CH4 16 46.17 190.63 0.01 

CO2 44 73.76 304.15 0.23 

CS2 76 79 552 0.11 

DMDS 94 53.6 615 0.2 

DME 46 53.7 400.1 0.2 

DMS 62 55.3 503.04 0.19 

H2 2 20.47 43.6 0 

H2O 18 221.19 647.35 0.35 

H2S 34 90.07 373.55 0.1 

MeOH 32 80.96 512.58 0.56 

MeSH 48 72.3 469.95 0.16 
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Compressibility factor, which will be used for heat capacity calculation, can also be calculated 

with the same molar volume variable using the following formula: 

𝑍 =
𝑃�̅�

𝑅𝑇
 (E-9) 

 

The list of physical property values and mixing parameters that are necessary for the 

density calculation are taken from Aspen properties database and are given in Appendix Table 1 

and 2, respectively. 

 

Appendix Table 2 Mixing parameters for PR equation of state 

𝒌𝒊𝒋 CH4 CO2 CS DMDS DME DMS H2 H2O H2S MeOH MeSH 

CH4 0 0.091 0 0 0 0 0.015 0 0 0 0 

CO2 0.091 0 0 0 0 0 -0.16 0.12 0.10 0.02 0 

CS2 0 0 0 0 0 0 0 0 0 0 0 

DMDS 0 0 0 0 0 0 0 0 0 0 0 

DME 0 0 0 0 0 0 0 0 0 0 0 

DMS 0 0 0 0 0 0 0 0 0 0 0 

H2 0.015 -0.16 0 0 0 0 0 0 0 0 0 

H2O 0 0.12 0 0 0 0 0 0 0.04 -0.08 0 

H2S 0 0.10 0 0 0 0 0 0.04 0 0 0 

MeOH 0 0.02 0 0 0 0 0 -0.08 0 0 0 

MeSH 0 0 0 0 0 0 0 0 0 0 0 
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Similar to mixture density, mixture heat capacity is also calculated based on PR equation 

of state. The total heat capacity is composed of an ideal and a residual part. The ideal part is 

calculated using empirical correlation from Ali and Lee156:  

𝑐𝑝,𝑖𝑔 = 𝐴𝑖 + 𝐵𝑖

𝐶𝑖
𝑇⁄

sinh
𝐶𝑖
𝑇⁄
2 +𝐷𝑖

𝐸𝑖
𝑇⁄

cosh
𝐸𝑖
𝑇⁄
2 (E-10) 

 

where A, B, C, D and E are the empirical constants from JANAF thermochemical tables157,158, 

which are given in Appendix Table 3.  

Appendix Table 3 Ideal heat capacity empirical constants 

Species A B C D E 

CH4 33298 79933 2086.9 41602 991.96 

CO2 29370 34540 1428 26400 588 

CS2 30100 33380 896 28930 374.7 

DMDS 78430 143640 1583.6 87100 730.65 

DME 57431 94494 895.51 65065 2467.4 

DMS 60370 137470 1641 79880 743.5 

H2 27617 9560 2466 3760 567.6 

H2O 33363 26790 2610.5 8896 1169 

H2S 33288 26086 913.4 -17979 949.4 

MeOH 39252 87900 1916.5 53654 896.7 

MeSH 43697 50387 809.24 42223 2192.4 

 

The residual enthalpy is calculated using similar mixture parameters159: 
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𝐻𝑅 = 𝑅𝑇(𝑍 − 1) −

𝜕𝑎𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝜕𝑇

2√2𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑙𝑜𝑔 (

�̅� + (√2 + 1)𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒

�̅� + (−√2 + 1)𝑏𝑚𝑖𝑥𝑡𝑢𝑟𝑒
) (E-11) 

 

The residual heat capacity cp
R is calculated by taking the numerical derivative of the residual 

enthalpy HR with respect to temperature. Finally, the mixture heat capacity is calculated from 

𝑐𝑝 = 𝑐𝑝,𝑖𝑔 + 𝑐𝑝
𝑅. 

The viscosity calculation is divided into three parts. First, the pure component viscosity is 

calculated using DIPPR equation 10295,96:  

𝜇𝑝𝑢𝑟𝑒,𝑖 = 𝐴𝑖
𝑇𝐵𝑖

(1 +
𝐶𝑖
𝑇 +

𝐷𝑖
𝑇2
)

  (E-12) 

 

where A, B, C, D are the DIPPR constants for viscosity and T is the temperature in K. DIPPR 

constants for viscosity is given in Appendix Table 4. 
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Appendix Table 4 Empirical DIPPR constants for viscosity 

Species A B C D 

CH4 5.25E-07 0.59006 105.67 0 

CO2 2.15E-06 0.46 290 0 

CS2 5.82E-08 0.9262 44.581 0 

DMDS 3.23E-08 0.97742 0 0 

DME 2.68E-06 0.3975 534 0 

DMS 5.29E-07 0.6112 302.85 0 

H2 1.80E-07 0.685 -0.59 140 

H2O 1.71E-08 1.1146 0 0 

H2S 3.93E-08 1.0134 0 0 

MeOH 3.07E-07 0.69655 205 0 

MeSH 1.64E-07 0.76706 107.97 0 

 

Secondly, after determining the pure component viscosities, the mixture viscosity is 

calculated using Chapman-Enskog-Brokaw correlation with Wilke mixing rule96: 

𝜇𝑚𝑖𝑥𝑡𝑢𝑟𝑒,0 =∑
𝑦𝑖𝜇𝑝𝑢𝑟𝑒,𝑖

𝑦𝑖 + ∑ 𝑦𝑗𝜙𝑖𝑗𝑗
𝑖

 (E-13) 

𝜙𝑖𝑗 = √𝜇𝑝𝑢𝑟𝑒,𝑖𝜇𝑝𝑢𝑟𝑒,𝑗𝐴𝑖𝑗𝑆𝑖𝑗 (E-14) 

𝐴𝑖𝑗 = 𝑚𝑖𝑗

1

√𝑀𝑖𝑗

(

 
 
1 +

(𝑀𝑖𝑗 −𝑀𝑖𝑗
0.45)

2(1 + 𝑀𝑖𝑗) +
(1 + 𝑀𝑖𝑗

0.45)𝑚𝑖𝑗

1 +𝑚𝑖𝑗 )

 
 

 (E-15) 
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𝑚𝑖𝑗 = (
4

(1 +
1
𝑀𝑖𝑗

) (1 + 𝑀𝑖𝑗)
)

0.25

 (E-16) 

𝑀𝑖𝑗 =
𝑚𝑤𝑖
𝑚𝑤𝑗

 (E-17) 

𝑆𝑖𝑗 =

{
 
 

 
 1 + √𝑇𝑖

∗𝑇𝑗
∗ +

𝛿𝑖𝛿𝑗
4

√(1 + 𝑇𝑖
∗ +

𝛿𝑖
2

4 )(1 + 𝑇𝑗
∗ +

𝛿𝑗
2

4 )

, 𝛿𝑖 > 0.1, 𝛿𝑗 > 0.1

1,   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (E-18) 

𝑇𝑖
∗ =

𝑇

𝜖𝑘,𝑖
 (E-19) 

𝜖𝑘,𝑖 = 1.15(1 + 0.85𝛿𝑖
2)𝑇𝑏𝑖 (E-20) 

𝛿𝑖 =
2𝜇𝐷𝑖

2

𝑉𝑏𝑖𝑇𝑏𝑖
 (E-21) 

where 𝜇𝐷𝑖  is the dipole moment of species i in debyes, 𝑉𝑏𝑖 and 𝑇𝑏𝑖 are boiling molar volume and 

boiling temperature, respectively. Only other physical property used in viscosity calculations is the 

molecular weight. The boiling points and dipole moment are given in Appendix Table 5.  
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Appendix Table 5 Physical properties required for viscosity mixing rule 

Species 𝝁𝑫 𝑻𝒃 𝑽𝒃 

CH4 0 111.66 0.0379694 

CO2 0 194.7 0.0350189 

CS2 0 319.375 0.062295 

DMDS 1.98463 382.9 0.0980576 

DME 1.3011 248.31 0.0630445 

DMS 1.49896 310.48 0.074986 

H2 0 20.39 0.0285681 

H2O 1.84972 373.15 0.0188311 

H2S 0.968331 212.8 0.0358604 

MeOH 1.69983 337.85 0.0427452 

MeSH 1.51995 279.106 0.0542058 

 

Lastly, Stiel-Thodos96 correction for high pressure is taken into account for viscosity 

calculation: 

𝜌𝑟 =
𝑉𝑐
�̅�

 (E-22) 

𝜇𝑚𝑖𝑥 =

{
 
 
 
 
 

 
 
 
 
 𝜇0 + 1.656

𝜌𝑟
𝜉
 𝑖𝑓 𝜌𝑟 < 0.1 

𝜇𝑚𝑖𝑥𝑡𝑢𝑟𝑒,0 + 0.0607 
(9.045𝜌𝑟 + 0.63)

1.739

𝜉
 𝑖𝑓 0.1 < 𝜌𝑟 < 0.9

𝜇0 +
𝑒(4−𝑒

0.6439−0.1005𝜌𝑟)

𝜉
 𝑖𝑓 0.9 < 𝜌𝑟 < 2.2

𝜇𝑚𝑖𝑥𝑡𝑢𝑟𝑒,0 +
𝑒(4−𝑒

0.6439−0.1005𝜌𝑟−4.75 10
−4(𝜌𝑟

3−10.65)
2
)

𝜉
 𝑖𝑓 2.2 < 𝜌𝑟 < 2.6

𝜇0

 (E-23) 
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𝜉 =
𝑇𝑐
1
6⁄

𝑚𝑤
1
2⁄ 𝑃𝑐

2
3⁄
 (E-24) 

 

Thermal conductivity is calculated using a combination of DIPPR equation 10295 followed by a 

mixing rule correlation. The DIPPR equation for pure component viscosity is: 

𝑘𝑖 =
𝐴𝑖𝑇

𝐵𝑖

(1 +
𝐶𝑖
𝑇 +

𝐷𝑖
𝑇2
)
 (E-25) 

 

where A,B,C,D are the empirical thermal conductivity parameters and T is the temperature in K. 

Empirical DIPPR constants for thermal conductivity are given in Appendix Table 6.  

 
Appendix Table 6 Empirical DIPPR constants for thermal conductivity  

Species A B C D 

CH4 8.40E-06 1.4268 -49.654 0 

CO2 3.69 -0.3838 964 1860000 

CS2 0.0003467 0.7345 479 0 

DMDS 0.00022578 0.892 697 0 

DME 0.059975 0.2667 1018.6 1100000 

DMS 0.00023614 0.9204 638 0 

H2 0.002653 0.7452 12 0 

H2O 6.20E-06 1.3973 0 0 

H2S 1.38E-07 1.8379 -352.09 46041 

MeOH 5.80E-07 1.7862 0 0 

MeSH 2.65E-05 1.1631 29.996 32519 

  

 



 99 

For mixture thermal conductivity calculation, Wassiljewa-Mason-Saxena97 correlation is 

used96:  

𝑘𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =∑
𝑦𝑖𝑘𝑖

∑ 𝑦𝑗𝐴𝑖𝑗𝑗
𝑖

 (E-26) 

𝐴𝑖𝑗 =

(1 +√
𝜇𝑖
𝜇𝑗
+ √

𝑚𝑤𝑗
𝑚𝑤𝑖

4
)

2

√(1+
𝑚𝑤𝑖
𝑚𝑤𝑗

)

 (E-27) 

 

The viscosity terms in the equation above are calculated as shown previously for the viscosity 

calculation. 
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Appendix F Derived Kinetic Parameters  

Appendix Table 7 Derived kinetic parameters – all methods  

Dataset Method 
k0,fwd k0,bwd 

mean min max mean min max 

n=100 

nl=0.1 

LS 3.22E+05 - - 2.48E+08 - - 

LS-CV 3.11E+05 2.96E+05 3.63E+05 2.60E+08 2.25E+08 2.92E+08 

MCMC 2.93E+05 2.64E+05 3.16E+05 3.11E+05 2.10E+08 2.70E+08 

GA 3.26E+05 2.20E+04 3.90E+05 2.60E+08 1.60E+08 3.32E+08 

n=50 

nl=0.2 

LS 1.90E+05 - - 2.05E+08 - - 

LS-CV 2.13E+05 1.57E+05 3.07E+05 2.39E+08 1.50E+08 3.66E+08 

MCMC 2.11E+05 1.30E+05 3.90E+05 2.16E+08 1.00E+08 4.76E+08 

GA 2.25E+05 1.40E+05 3.70E+05 2.19E+08 1.12E+08 4.73E+08 

n=25 

nl=0.5 

LS 1.15E+05 - - 2.20E+08 - - 

LS-CV 1.74E+05 1.00E+05 3.89E+05 2.61E+08 2.24E+07 4.18E+08 

MCMC 1.00E+05 7.25E+04 4.18E+05 2.11E+08 1.60E+07 3.80E+08 

GA 1.07E+05 3.01E+04 1.45E+05 2.36E+08 5.58E+06 1.11E+09 

Dataset Method 
Ea,fwd    

mean min max    

n=100 

nl=0.1 

LS 5.02E+04 - -    

LS-CV 5.03E+04 4.99E+04 5.07E+04    

MCMC 5.04E+04 5.00E+04 5.09E+04    

GA 5.03E+04 4.87E+04 5.11E+04    

n=50 

nl=0.2 

LS 4.84E+04 - -    

LS-CV 4.87E+04 4.76E+04 5.01E+04    

MCMC 4.87E+04 4.63E+04 5.04E+04    

GA 4.88E+04 4.72E+04 5.12E+04    

n=25 

nl=0.5 

LS 4.52E+04 - -    

LS-CV 4.75E+04 4.02E+04 5.35E+04    

MCMC 4.55E+04 3.73E+04 5.31E+04    

GA 4.58E+04 4.08E+04 4.81E+04    
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Appendix Table 8 Derived kinetic parameters – LS and LS-CV methods  

Dataset Meth. 
k0,fwd k0,bwd 

mean min max mean min max 

n=100 

nl=0.1 
LS 2.86E+05 2.23E+05 3.24E+05 2.61E+08 2.19E+08 3.02E+08 

LS-CV 2.75E+05 2.10E+05 3.30E+05 2.42E+08 2.20E+08 3.17E+08 

nl=0.2 
LS 2.49E+05 1.72E+05 3.16E+05 2.59E+08 1.78E+08 3.35E+08 

LS-CV 2.88E+05 2.02E+05 3.38E+05 2.78E+08 1.89E+08 3.42E+08 

nl=0.3 
LS 2.37E+05 1.66E+05 3.29E+05 2.24E+08 1.37E+08 3.29E+08 

LS-CV 2.48E+05 1.73E+05 3.41E+05 2.57E+08 1.42E+08 3.61E+08 

nl=0.5 
LS 1.77E+05 1.02E+05 3.21E+05 2.31E+08 1.36E+08 3.48E+08 

LS-CV 2.14E+05 1.44E+05 3.66E+05 2.79E+08 1.53E+08 3.84E+08 

n=50 

nl=0.1 
LS 2.25E+05 1.73E+05 3.15E+05 2.10E+08 1.58E+08 2.76E+08 

LS-CV 2.39E+05 1.68E+05 3.21E+05 2.29E+08 1.62E+08 3.28E+08 

nl=0.2 
LS 1.91E+05 1.22E+05 3.00E+05 2.03E+08 1.32E+08 3.44E+08 

LS-CV 2.16E+05 1.49E+05 3.24E+05 2.20E+08 1.40E+08 3.61E+08 

nl=0.3 
LS 1.66E+05 1.09E+05 3.19E+05 2.38E+08 1.60E+08 3.46E+08 

LS-CV 2.11E+05 1.35E+05 3.50E+05 2.00E+08 1.29E+08 3.39E+08 

nl=0.5 
LS 1.40E+05 1.00E+05 2.92E+05 1.95E+08 1.48E+08 3.40E+08 

LS-CV 2.03E+05 1.26E+05 3.48E+05 2.01E+08 1.32E+08 3.67E+08 

n=25 

nl=0.1 
LS 2.20E+05 1.41E+05 3.04E+05 1.41E+08 1.02E+08 2.96E+08 

LS-CV 2.41E+05 1.50E+05 3.24E+05 2.00E+08 1.32E+08 3.18E+08 

nl=0.2 
LS 1.39E+05 1.01E+05 2.89E+05 1.92E+08 1.21E+08 3.24E+08 

LS-CV 1.84E+05 1.31E+05 3.08E+05 2.66E+08 1.50E+08 3.64E+08 

nl=0.3 
LS 1.38E+05 9.57E+04 2.91E+05 1.38E+08 9.78E+07 3.00E+08 

LS-CV 1.69E+05 1.32E+05 3.07E+05 1.75E+08 1.02E+08 3.56E+08 

nl=0.5 
LS 1.26E+05 9.29E+04 2.77E+05 2.01E+08 1.10E+08 3.76E+08 

LS-CV 1.86E+05 1.21E+05 3.44E+05 2.28E+08 1.03E+08 3.98E+08 
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Appendix Table 9 Derived kinetic parameters – LS and LS-CV methods (cont’d.) 

Dataset Meth. 
Ea,fwd 

mean min max 

n=100 

nl=0.1 
LS 4.94E+04 4.89E+04 5.11E+04 

LS-CV 4.96E+04 4.84E+04 5.27E+04 

nl=0.2 
LS 4.89E+04 4.63E+04 5.44E+04 

LS-CV 4.93E+04 4.54E+04 5.52E+04 

nl=0.3 
LS 4.80E+04 4.42E+04 5.27E+04 

LS-CV 4.89E+04 4.42E+04 5.31E+04 

nl=0.5 
LS 4.65E+04 4.31E+04 5.35E+04 

LS-CV 4.79E+04 4.36E+04 5.34E+04 

n=50 

nl=0.1 
LS 4.91E+04 4.78E+04 5.15E+04 

LS-CV 4.93E+04 4.73E+04 5.14E+04 

nl=0.2 
LS 4.84E+04 4.68E+04 5.19E+04 

LS-CV 4.88E+04 4.71E+04 5.26E+04 

nl=0.3 
LS 4.76E+04 4.63E+04 5.29E+04 

LS-CV 4.83E+04 4.62E+04 5.36E+04 

nl=0.5 
LS 4.68E+04 4.44E+04 5.35E+04 

LS-CV 4.77E+04 4.39E+04 5.33E+04 

n=25 

nl=0.1 
LS 4.82E+04 4.66E+04 5.09E+04 

LS-CV 4.83E+04 4.60E+04 5.13E+04 

nl=0.2 
LS 4.74E+04 4.53E+04 5.12E+04 

LS-CV 4.84E+04 4.53E+04 5.20E+04 

nl=0.3 
LS 4.60E+04 4.34E+04 5.18E+04 

LS-CV 4.78E+04 4.40E+04 5.20E+04 

nl=0.5 
LS 4.42E+04 4.13E+04 5.14E+04 

LS-CV 4.69E+04 4.19E+04 5.25E+04 
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