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UNDERSTANDING THE EFFECT OF INHIBITION ON THE TRAVELING 

WAVES IN A NEURONAL NETWORK

Grishma Palkar, M.S.

University of Pittsburgh, 2020

We study the effect of inhibition on the traveling waves arising in neuronal network. A 

neuronal firing rate model of sensory cortex has two population types, excitatory and 

inhibitory. We are interested in the case when we have three fixed points: (1) a stable down 

state; (2) a saddle point with stable manifold that acts as a threshold for firing; (3) an up state. 

We will look at the case when the upstate is unstable, which gives rise to pulse (a transient 

increase in firing that returns to the down state). We will first study the effects of inhibition on 

the spiking neuronal model. Then we will reduce the spiking neuronal model to a Wilson-

Cowan like equations and try to mimic the results that we obtained in the original spiking 

model. In the Wilson-Cowan equations, we first look at the model with smooth firing rate 

function and later with Heaviside firing rate function. In the Heaviside firing rate case, we 

investigate the existence of the traveling wave and study the stability using the Evans-

function (a complex analytic function obtained by linearizing a system about its traveling 

wave and whose zeros give the eigenvalues of the linearized operator). The Evans function 

allows us to study the stability of a given wave and identify bifurcation points (loss of 

stability) as the spatial extent of inhibition is varied. We observe an Andronov-Hopf 

bifurcation and later we explore the behavior of the traveling waves as the spatial scales of the 

inhibition population change and notice oscillatory instability.
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1.0 INTRODUCTION

Spiking neural networks (SNNs) are artificial neural networks that more closely mimic 

natural neural network . In SNNs, each neuron, it’s membrane potential and synapses are 

represented. The idea is that neurons in the SNN transmit information only when a mem-

brane potential reaches a specific value, called the threshold. When the membrane potential 

reaches the threshold, the neuron fires, and generates a signal (’spike’) that travels to other 

neurons which, in turn, increase or decrease their potentials in response to this signal. A neu-

ron model that fires at the moment of threshold crossing is also called a spiking neuron model.

The most prominent spiking neuron model is the integrate-and-fire model. In the 

integrate-and-fire model, the incoming spiking input pushes the neuron’s membrane po-

tential to a value higher or lower, until the state eventually either decays or if the firing 

threshold is reached, the neuron fires. After firing, the state variable is reset to a lower 

value. In our work we would be using the quadratic integrate and fire (QIF) model. A 

quadratic integrate and fire neuron is defined by the autonomous differential equation,

dx

dt
= x2 + I

where I is a real positive constant. A solution to this differential equation is the tangent

function, which blows up in finite time. Thus a ”spike” is said to have occurred when the

solution reaches positive infinity, and the solution is reset to negative infinity.
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(a)

(b)

Figure 1: (a) Neuron and myelinated axon, with signal flow from inputs at dendrites to out-

puts at axon terminals. (d) A neuronal action potential (”spike”). Note that the amplitude

and the exact shape of the action potential can vary according to the exact experimental

technique used for acquiring the signal.
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1.1 Spiking neuronal model

We will consider the following neuronal model:

cm
du

dt
=
gl(u− Er)(u− Eth)

Eth − Er
+ Iu − gadz(v − Ek)− geisi(u− Isyn)− geese(u− Esyn) (1.1)

cm
dv

dt
=
gl(v − Er)(v − Eth)

Eth − Er
+ Iv − giese(v − Esyn)− giisi(v − Isyn) (1.2)

dz

dt
=
−z
τz

+
δ(u− uspike)

τz
(1.3)

dse
dt

=
−se
τe

+
δ(u− uspike)

τe
(1.4)

dsi
dt

=
−si
τi

+
δ(v − vspike)

τi
(1.5)

Where u, v are firing rates of excitatory and inhibitory populations, respectively. se, si

are excitatory and inhibitory synaptic terms respectively. Equation (1.3) is the equation for

adaptation (z). The parameters gjk are coupling strengths from population k to population

j ; j, k ∈ {e, i}. The parameters τe, τi, τz represent the time scales of the excitation,

inhibition and adaptation, respectively. Eth and Er are the threshold and rest voltages,

respectively. Ek is the reversal potential for K+. Here cm is the membrane capacitance, gl

is leak conductance, gad is the strength of adaptation and Iu and Iv are the excitatory and

inhibitory input currents, respectively. Esyn and Isyn are excitatory and inhibitory synaptic

reversal potentials, respectively. When u spikes i.e. u = uspike (eq. (1.3) and (1.4)) z and se

are incremented by 1
τz

and 1
τe

, respectively. When v = vspikes (eq. 1.5), si is incremented by

1
τi

. We want to study the effects of inhibition on the spiking of the neurons.

  To better study this effect we reduce the equations in the spiking neuronal model to a 

simpler Wilson-Cowan equations. In the later chapter we will look at the Wilson-Cowan 

equations with smooth firing rate and Heaviside firing rate functions and observe that the 

traveling wave arising in the excitatory population show similar behavior to inhibition as the 

spiking model.
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ei = 0.2

(a) gei = 0.1

(b) g

Figure 2: (a)gei = 0.1,(b)gei = 0.2. We observe as gei increases lesser number of neurons fire.
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(c) g

(d) g

ei = 0.4

= 0.8ei

Figure 3: (c)gei = 0.4,(d)gei = 0.8. We observe as gei increases lesser number of neurons fire.
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Parameters Values

gei 0.4

gee 0.1

gie 0.1

gii 0.1

gad 0.1

τe 3

τz 50

τi 4

cm 1

gl 0.1

Er -70

Eth -50

Ek -85

Esyn 0

Isyn -75

Table 1: Table of parameter values for the spiking neuronal model.
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1.2 Firing rate of the QIF model

Equation (1.1) and (1.2) for excitatory and inhibitory population respectively, can be

rearranged to obtain the following general differential equation:

df

dt
= Cf 2 +Bf + A (1.6)

For equation (1.1) f = u and we have,

A = ae(se, si, z) =
1

cm
[
glErEth

(Eth − El)
+ Iu + gadzEk + geisiIsyn + geeseEsyn]

B = be(se, si, z) =
−1

cm
[
gl(Eth + Er)

Eth − Er
+ gadz + geisi + geese]

for equation (1.2) f = v and we have,

A = ai(se, si, z) =
1

cm
[
glErEth

(Eth − El)
+ Iv + gieseEsyn + giisiIsyn]

B = bi(se, si, z) =
−1

cm
[
gl(Eth + Er)

Eth − Er
+ giisi + giese];

and

C =
gl

cm(Eth − Er)
for both the equations.

Integrating equation (1.6) from Vreset = −∞ to Vspike = +∞, we have T , the time period of

spiking as

T =
π

Cα

where α =
√

4AC−B2

4C2 .

Hence, the firing rate, f = 1
T

=
√
4AC−B2

2π
.

      In particular,the firing rate for excitatory (1.1) populations is given by

fe(se, si, z) =

√
4ae(se, si, z)C − be(se, si, z)2

2π

and the firing rate for inhibitory (1.2) populations is given by

fi(se, si, z) =

√
4ai(se, si, z)C − bi(se, si, z)2

2π

7



Thus, we can reduce the spiking model to Wilson-Cowan like model with adaptation :

τes
′
e = −se + fe(se, si, z)

τis
′
i = −si + fi(se, si, z)

τzz
′ = −z + fe(se, si, z)

(1.7)

We will now study the Wilson-Cowan equations. The Wilson-Cowan equations are set so

that it fits the above reduced spiking model i.e. we can fit the nullclines, have the same

number of fixed points and the trajectories match. Fist, we will look at the Wilson-Cowan

equations with a smooth firing rate function.

1.3 The Wilson-Cowan equations: excitatory - inhibitory model

with adaptation

Let us consider a model of interacting excitatory (u) and inhibitory (v) populations along

with adaptation (z) given by

u′ = −u+ 1
p
f(p · gee · u− q · gei · v − θe − ga · z)

v′ = (−v + 1
q
f(p · gie · u− q · gii · v − θi))/τi

z′ = (−z + f(p · aze · u− θz))/τz

(1.8)

where ′ = d
dt

, f is the firing rate function, f(x) = 1
(1+e−shp·x)

and shp is the gain parameter

that modulates the steepness of the curve. The time-scale of excitation is taken to be one, τi

is the time scale of inhibition relative to excitation, τz is the time scale of adaptation relative

to excitation, θe, θi and θz are the thresholds for u, v and z, respectively. p = 21 and q = 8

are the scaling factors chosen so that the nullclines for the systems (1.7) and (1.8) match.

The parameters gjk are coupling strengths from population k to population j ; j, k ∈ {e, i},

ga is the strength of adaptation, aze is the coupling strength between the excitation and

adaptation. Now let us look at the nullcline structure and the phase plane.
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1.3.1 The phase plane and equilibria

We study the phase plane of the excitation-inhibition system and excitation-adaptation

system in system (1.8). In our setup, we consider set of parameters so that there are three

equilibria: the stable down state; a saddle point with stable manifold that acts as a threshold

for firing; and the up state. We use the parameter values from table (2) for this model and

all the later models. In Fig(4a), we see the u− v nullclines, the excitatory-inhibitory system

with adaptation equal to zero (ga = 0) in (1.8), which satisfy

0 = −u+ 1
p
f(p · gee · u− q · gei · v − θe − ga · z)

0 = (−v + 1
q
f(p · gie · u− q · gii · v − θi))/τi

(1.9)

and in Fig(4b), we see the u − z nullclines for system (1.8) with inhibition equal to zero

(gei = 0), which satisfy

0 = (−v + 1
q
f(p · gie · u− q · gii · v − θi))/τi

0 = (−z + f(p · aze · u− θz))/τz
(1.10)

In fig(4a) and fig(4b) the down state is denoted by a blue circle, the saddle point is denoted

by a yellow star and the up state is denoted by a green square. We observe that the choice of

parameters we made guarantees that the up state is unstable and hence we obtain homoclinic

orbits. If the spiking input is large enough to make the neuron’s membrane potential cross

the threshold, the neuron fires. After which the inhibition comes into play and it brings the

neuron back to rest. For fig(4c) we see that when gei = 0 i.e. inhibition is off, u stays on

for a very long time compared to when adaptation (ga) is off. In the next chapter we will

extend the model (1.8) to include spatially-dependent connections.

9
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Figure 4: (a) u-v phase plane with ga = 0, (b) u-z phase plane with gei = 0, (c) u, v, z

versus t.
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Parameters Values

gei 15

gee 15

gie 25

gii 8

ga 15

aze 10

θe 2

θi 8.5

θz 6

τz 25

τi 2.5

p 21

q 8

Table 2: Table of parameter values for system (1.8).
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2.0 SPATIALLY DISTRIBUTED NETWORK OF WILSON-COWAN

EQUATIONS

Large networks of synaptically connected neurons are often modeled by so-called firing

rate or neural field equations, typically with two types of populations: excitatory (u) and

inhibitory (v). Wilson-Cowan equations are one such type of neuronal field equations.The

model was developed by Hugh R. Wilson and Jack D. Cowan. Key parameters in the

model are the strength of connectivity between each sub-type of population (excitatory and

inhibitory). Varying these parameters we generate diverse dynamical behaviors that are rep-

resent the observed activity in the brain, like multi-stability, oscillations, traveling waves and

spatial patterns. We extend this model of cortex to include spatially-dependent connections.

∂u

∂t
(x, t) = −u(x, t) +

1

p
F (p · de · gee ·Ke(x) ∗ u(x, t) (2.1)

− q · di · gei ·Ki(x) ∗ v(x, t)− ga · z − θe)

τi
∂v

∂t
(x, t) = −v(x, t) +

1

q
F (p · de · gie ·Ke(x) ∗ u(x, t) (2.2)

− q · di · gii ·Ki(x) ∗ v(x, t)− θi)

τz
∂z

∂t
(x, t) = −z(x, t) + F (p · aze · u(x, t)− θz) (2.3)

where u, v are the firing rates of the excitatory and inhibitory populations, respectively and

z is the adaptation equation. Kj(x), j ∈ {e, i} are spatial interaction Gaussian functions

which are convolved with the activities. Here, k(x)∗m(x) :=
∫
D
k(x−y)m(y)dy, where D is

the spatial domain of the network. The parameters τj, j ∈ {e, i, z} represent synaptic time

constants; the parameters gjk are the coupling strengths from population k to population j

and θj are thresholds. F (I) is a nonlinear function representing the firing rate as a function

of the spatially distributed inputs. Since we can re-scale time, without loss of generality, we

set τe = 1, so that τi is the relative time constant of inhibition to excitation. The parameters

p and q are the scaling factors and are chosen to be 21 and 8 respectively to match the

se-si nullclines in system (1.7). Parameters de and di measure the strength of excitation and

12



inhibition, respectively.The parameters σj, j ∈ {e, i} are the spatial scales of the excitatory

and inhibitory connections. We set σe = 1 and σi is the ratio of the spatial scale of inhibition

relative to excitation.

Ke(x) =
exp (−( x

σe
)2)

√
πσe

, Ki(x) =
exp (−( x

σi
)2)

√
πσi

normalized so that
∫
R
Ke(x)dx =

∫
R
Ki(x)dx = 1. (Fig5a)

2.1 The Wilson-Cowan model with smooth firing rate function

In this section we consider the smooth firing rate function F (I) = 1
(1+e−4I)

. We are

interested in understanding the effect of inhibition on the traveling wave. We analyse the

traveling wave arising in the excitatory population as we changed gei. Fig(7) depicts that

as we increase inhibition (gei), the amount of time for which a neuron fires decreases. This

agrees with the observation from the spiking model.

Next, we study how velocity of the traveling wave depends on the parameters such as

gei, σi, τi, ga, de, di. We take velocity = 50/max(1, t150 − t100), where t100 is the time at

which u100 crosses the u threshold (uth = 0.01) from below and t150 is the time at which u150

crosses the u threshold from below. The plots for velocity versus gei, σi, τi, ga, de, di are

computed using the data obtained from xppaut by integrating and ranging over the desired

parameter.

Now, lets look at the figure(8) and study how the velocity (red curve) behaves as we vary

parameters. Velocity of a traveling wave is determined by excitation until inhibition gets

stronger. We observe velocity (red curve) decreases gradually with increasing gei (Fig8i), σi

(Fig8iii) and di (Fig8iv). This is because as the strength of inhibition increases it becomes

more difficult for the next neuron to fire, which leads to a decrease in the velocity of the

wave.

Velocity (red curve) increases with increasing τi (Fig8ii). As τi increases the time it

takes for the inhibition to come on increases and so there is more excitation. Hence velocity

increases steeply until inhibition comes on (which is around τi = 2.5) and after that it

13
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Figure 5: (a) Plot of Ke and Ki with σi = 0.5 and σi = 1.5 (b) F (x) = 1/(1 + e−shp·x)) with

increasing gain parameter: shp = [1, 4, 10]. For large value of shp, F (x) can be approximated

by the Heaviside function.

increases slowly. ga (Fig8iv) has no visible effect on velocity since we started we very small

value of u ( u ≈ 0.02). Only when u is large enough we will be able to see any effect. In
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Figure 6: Schematic diagram of the spatially distributed network of the Wilson-Cowan

equations.

Fig8v as the strength of excitation (de) increases, neurons start to fire faster, so velocity of

the wave increases.

Next, we will compute the width of the traveling wave and study how it is affected my

gei, σi, τi,ga, de, di. Width = to100 − t100, where to100 is the time at which u100 crosses the

threshold (uth = 0.01) from above and t100 is the time at which u100 crosses the threshold

(uth = 0.01) from below. The plots for width versus gei, σi, τi, ga, de, di are computed using

the data obtained from xppaut by integrating and ranging over the desired parameter.

Width (red curve) of the traveling wave decreases with increasing gei (Fig9i) and di

(Fig9vi). This is because as the strength of inhibition increases the wave shuts down faster

leading to decrease in the width of the wave. If there was no inhibition, the wave will have

infinite width i.e. it will never die. So we can conclude width ∝ 1
gei
, 1
di

. The width (red

curve) increases with increasing τi (Fig9ii), because longer it takes for the inhibition to come

15



(a)

(b)

Figure 7: Space-time plot of the excitatory population with the smooth firing rate function

for (a)gei = 5 and (b) gei = 15.

on, the longer it takes for the wave to shut off (or the width of the wave to decrease) i.e.

width ∝ τi. In (Fig9v) the broader the reach of inhibition, the more sooner the wave dies

off. Hence for larger values of σi, the width (red curve) goes to zero i.e. the wave shuts down
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Figure 8: Figure (i)vel/gei, (ii)vel/τi, (iii)vel/σi, (iv)vel/ga, (v)vel/de and (vi)vel/di are the

velocity plots for smooth firing rate function (red curve) and Heaviside firing rate function

(blue curve).

faster. Adaptation (ga) does not have significant effect on the width of the wave (Fig9iv).
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Figure 9: Figure (i)width/gei, (ii)width/τi, (iii)width/σi, (iv)width/ga, (v)width/de and

(vi)width/di are the width plots for smooth firing rate function (red curve) and Heaviside

firing rate function (blue curve).

     Let us look at the u-v (we take u100-v100) phase plane. In fig(10a) we study the u-v phase 

plane  as  we  increase  gei  =  [5,  10,  20,  30,  40,  50].  The  homoclinic  orbits  gets  smaller

18



UU
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U

Figure 10: Homoclinic orbits in the u-v phase plane for (a) varying gei,(b) varying σi and

(c) varying τi.

as gei increases. This is because the more we increase the strength of inhibition, the more

quickly the waves shut down (τi = 2.5 and σi = 0.5 are fixed). In Fig(10b), we observe as

σi = [0.5, 1, 1.5, 2.5, 5] is increased for fixed τi = 2.5 and gei = 15 the homoclinic orbits gets
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larger in size. We can explain this by recalling that σi affects both excitation and inhibition.

So as σi increases the excitation also increases and hence we need more inhibition to turn off

the wave. Lastly in Fig(10c), for τi = [1, 1.5, 2, 4] and fixed σi = 0.5 and gei = 15, we observe

the size of the homoclinic orbits increases with increasing τi. As τi increases (i.e. the time

it takes for the inhibition to come on increases), the excitation can stay on for a longer time

and hence the size of the homoclinic orbit increases. Next we will study the Wilson-Cowan

equations with a Heaviside firing rate function.

20



3.0 WILSON-COWAN EQUATIONS WITH HEAVISIDE FIRING RATE

FUNCTION

Let us consider the Heaviside firing rate function, F (I) = H(I). Thus, the Wilson-Cowan

equations (2.1), (2.2) and (2.3) can be written as follows:

∂u

∂t
(x, t) = −u(x, t) +

1

p
H(p · de · gee ·Ke(x) ∗ u(x, t) (3.1)

− q · di · gei ·Ki(x) ∗ v(x, t) + ga · z − θe)

τi
∂v

∂t
(x, t) = −v(x, t) +

1

q
H(p · de · gie ·Ke(x) ∗ u(x, t) (3.2)

− q · di · gii ·Ki(x) ∗ v(x, t)− θi)

τz
∂z

∂t
(x, t) = −z(x, t) +H(p · aze · u(x, t)− θz) (3.3)

We are interested to know if we can obtain the same results we observed for smooth firing

rate function. First we analyse the traveling wave arising in the excitatory population array

as we change gei. Fig(11) shows that as we increase the inhibition (gei), the time for which

a neuron fires decreases. This is similar to the result we see in case of the smooth firing rate

function (Fig:7). In the coming sections we will look at the existence of the traveling wave

and carry out stability analysis. We will use the Evans function for the stability analysis.

3.1 Existence of the traveling wave solution

We introduce the coordinate ζ = x+ ct, so that we have a traveling wave solution, where

c > 0 is the unknown velocity of the wave. If we suppose solutions of the form u(x, t) = u(ζ),

v(x, t) = v(ζ), z(x, t) = z(ζ), ∂
∂t

= c d
dζ

(′ = d
dζ

). In the phase space, the traveling waves
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(a)

(b)

Figure 11: Space-time plot of the excitatory population with the Heaviside firing rate func-

tion for (a)gei = 5 and (b) gei = 15.

correspond to homoclinic (pulse) orbits. The system of equations 3.2,?? and 3.3 becomes:
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cu′ = −u+ 1
p
H(p · de · gee ·Ke ∗ u− q · di · gei ·Ki ∗ v − θe − ga · z)

τicv
′ = −v + 1

q
H(p · de · gie ·Ke ∗ u− q · digiiKi ∗ v − θi)

τzcz
′ = −z +H(p · aze · u− θz)

(3.4)

Denote:

Ie(ζ) = p · de · gee · ke ∗ u− q · di · gei · ki ∗ v − θe − ga · z

Ii(ζ) = p · de · gie · ke ∗ u− q · di · gii · ki ∗ v − θi
Iz(ζ) = p · aze · u− θz

a, b, d, e, f are chosen so that Ie(0), Ie(a), Ii(b), Ii(d), Iz(e), Iz(f) are all zero.(Fig(12))

Note 1:

Any equation in system 3.4 has the general form:

cτg′ = −g + (1/p)H(I(ζ)),

where I(l) = I(k) = 0, , I(ζ) > 0 for l < ζ < k and p is some scaling parameter. The

solution to such an ODE is given by:

g(ζ) =


0 for, ζ ≤ l

(1/p)(1− e
−(ζ−l)
cτ ) for, l < ζ < k

(1/p)(1− e
−(k−l)
cτ )e

−(ζ−k)
cτ for, ζ ≥ k

We can plug in the solutions to u, v, z obtained by using Note:1 into Ie, Ii, Iz to get:

Ie(ζ) = degeeF (ζ, σ, 1, c, 0, a)− digeiF (ζ, σ, τi, c, b, d)− θe
Ii(ζ) = degieF (ζ, σ, 1, c, 0, a)− digiiF (ζ, σ, τi, c, b, d)− θi
Iz(e) = aze(1− e(

−e
c
))− θz

Iz(f) = aze(1− e(
−a
c
))e(

−(f−a)
c

) − θz

(3.5)

where,

F (ζ, σ, τ, c, α, β) =
1√
πσ

∫ β

α

e(
−(ζ−η)2

σ2
)(1− e(

−(η−α)
cτ

))dη+

1√
πσ

∫ ∞
β

e(
−(ζ−η)2

σ2
)(1− e(

−(β−α)
cτ

))e(
−(η−β)
cτ

)dη
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Figure 12: u100 versus t (green), v100 versus t (red), z100 versus t (blue) plots. Scaled so that

u100 starts at zero.

Using the system of equations (3.5) we can compute c, a, b, d, e, f by solving.
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Ie(0) = 0

Ie(a) = 0

Ii(b) = 0

Ii(d) = 0

Iz(e) = 0

Iz(f) = 0

Now we use Auto to draw the bifurcation diagrams and study the behavior of velocity (c)

and width (a) of the wave with respect to inhibition parameters like gei, τi, σi, ga, di etc.

Observe in fig(8) that the plot of velocity (blue curve) for the Heaviside firing rate function

behaves very similar to the velocity plots (red curve) for the smooth firing rate function.

Also, in fig(9) we notice that the plot for width (blue curve) versus the parameters gei, τi,

σi, ga, de and di mimics the same behavior as the width curve (red) in case of the smooth

firing rate. As the Wilson-Cowan equations with Heaviside firing rate behave similar to the

Wilson-Cowan equations with smooth firing rate, it is enough the study the Wilson-Cowan

equations with Heaviside firing rate. In the next section we will look at the stability analysis

of the traveling wave.
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3.2 Stability analysis of Wilson-Cowan equations with Heaviside firing rate

function

Let’s consider the system in the traveling wave frame with ζ = x+ ct:

∂u

∂t
+ c

∂u

∂ζ
= −u+

1

p
H(p · de · gee · ke ∗ u− q · di · gei · ki ∗ v − θe − ga · z)

τi(
∂v

∂t
+ c

∂v

∂ζ
) = −v +

1

q
H(p · de · gie · ke ∗ u− q · di · gii · ki ∗ v − θi)

τz(
∂z

∂t
+ c

∂z

∂ζ
) = −z +H(p · azeu− θz)

Linearize this system about traveling wave (uo, vo) (let u = uo + ū, v = vo + v̄) , to obtain

the following system:

∂ū

∂t
+ c

∂ū

∂ζ
= −ū+

1

p
δ(Ie(ζ))(p · de · gee · ke ∗ ū− q · di · gei · ki ∗ v̄ − ga · z̄)

τi
∂v̄

∂t
+ τic

∂v̄

∂ζ
= −v̄ +

1

q
δ(Ii(ζ))(p · de · gie · ke ∗ ū− q · di · gii · ki ∗ v̄)

τz
∂z̄

∂t
+ τzc

∂z̄

∂ζ
= −z̄ + δ(Iz(ζ))(p · aze · ū)

Let ū(ζ, t) = eβtU(ζ) , v̄(ζ, t) = eβtV (ζ), z̄(ζ, t) = eβtZ(ζ) and use < δ(g(x)), φ(x) >=∫∞
−∞ δ(g(x))φ(x)dx =

∑
i
φ(xi)
|g′(xi)| . So in the sense of distribution δ(g(x)) =

∑
i
δ(x−xi)
|g′(x)| . Here

x′is are non-repeating roots of g. So we get a simplified version:

βU + cdU
dζ

+ U = δ(ζ)Ee(ζ) + δ(ζ − a)Ee(ζ)

τiβV + cτi
dV
dζ

+ V = δ(ζ − b)Ei(ζ) + δ(ζ − d)Ei(ζ)

τzβZ + cτz
dZ
dζ

+ Z = δ(ζ − e)Ez(ζ) + δ(ζ − f)Ez(ζ)

(3.6)
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Where:

Ee(ζ) =
1

p · |Ie(ζ)′|
(p · de · gee

∫ ∞
−∞

ke(s− y)U(y)dy (3.7)

− q · di · gei
∫ ∞
−∞

ki(ζ − y)V (y)dy − ga · Z(ζ))

Ei(ζ) =
1

q · |Ii(ζ)′|
(pe · gie

∫ ∞
−∞

ke(ζ − y)U(y)dy (3.8)

− q · di · gii
∫ ∞
−∞

ki(ζ − y)V (y)dy)

Ez(ζ) =
1

|Iz(ζ)′|
(p · aze · U(ζ)) (3.9)

We obtain I ′e(ζ), I ′i(ζ) and I ′z(ζ) by differentiating system 3.5 with respect to ζ.

Note2 : Any equation in system 3.6 has general form:

α
df

dζ
+ βf = δ(ζ − l)A(ζ) + δ(ζ − k)B(ζ)

The solution of such an equation is as follows:

f(ζ) =


0 if ζ ≤ l

A(l)
α
e
−(ζ−l)β

α if l < x < k

(A(l)
α
e
−(k−l)β

α + B(k)
α

)e
−(ζ−k)β

α ifx ≥ k

(3.10)

We get a system of six linear equations in terms of Ee(0), Ee(a), Ei(b), Ei(d), Ez(e) and

Ez(f). To do this we plug in the values for U , V and Z using 3.10 in equations (3.7)

to (3.9) and use ζ = 0, a for (3.7), ζ = b, d for (3.8) and ζ = e, f for (3.9). For each

of the equations (3.7) to (3.9), we collect the terms together on one side of the equation

, so as to equate the expression to zero. Now we have six linear equations with variables

Ee(0), Ee(a), Ei(b), Ei(d), Ez(e) and Ez(f). We can rewrite them in a matrix form as follows:

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66





Ee(0)

Ee(a)

Ei(b)

Ei(d)

Ez(e)

Ez(f)


=



0

0

0

0

0

0


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where (aij)ij are the coefficients obtained from equations (3.7) to (3.9). aij has the following

values:

a11 = (
1

|I ′e(0)|cτe
)(degee

∫ a

0

ke(0− y)e
−y(τeβ+1)

cτe dy

+ degee

∫ ∞
a

Ke(0− y)e
−a(τeβ+1)

cτe e
−(y−a)(τeβ+1)

cτe dy)− 1

a12 = (
1

|I ′e(0)|cτe
)(degee

∫ ∞
a

Ke(0− y)e
−(y−a)(τeβ+1)

cτe dy)

a13 = (
−1

|I ′e(0)|cτi
)(digei

∫ d

b

ki(0− y)e
−(y−b)(τiβ+1)

cτi dy

+ digei

∫ ∞
d

Ki(0− y)(e
−(d−b)τiβ+1)

cτi e
−(y−d)(τiβ+1)

cτi dy)

a14 = (
−1

|I ′e(0)|cτi
)(digei

∫ ∞
d

Ki(0− y)e
−(y−d)(τiβ+1)

cτi dy)

a15 = 0

a16 = 0

a21 = (
1

|I ′e(a)|cτe
)(degee

∫ a

0

ke(a− y)e
−y(τeβ+1)

cτe dy

+ degee

∫ ∞
a

Ke(a− y)e
−a(τeβ+1)

cτe e
−(y−a)(τeλ+1)

cτe dy)

a22 = (
1

|I ′e(a)|cτe
)(degee

∫ ∞
a

Ke(a− y)e
−(y−a)(τeβ+1)

cτe dy)− 1

a23 = (
−1

|I ′e(a)|cτi
)(digei

∫ d

b

ki(a− y)e
−(y−b)(τiβ+1)

cτi dy

+ digei

∫ ∞
d

Ki(a− y)(e
−(d−b)τiβ+1)

cτi e
−(y−d)(τiβ+1)

cτi dy)

a24 = (
1

|I ′e(a)|cτi
)(digei

∫ ∞
d

Ki(a− y)e
−(y−d)(τiβ+1)

cτi dy)

a25 = ga(
e
−a(τeβ+1)

cτe

cτe
)

a26 = 0
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a31 = (
1

|I ′i(b)|cτe
)(degie

∫ a

0

ke(b− y)e
−y(τeβ+1)

cτe dy

+ degie

∫ ∞
a

Ke(b− y)e
−a(τeβ+1)

cτe e
−(y−a)(τeβ+1)

cτe dy)

a32 = (
1

|I ′i(b)|cτe
)(degie

∫ ∞
a

Ke(b− y)e
−(y−a)(τeβ+1)

cτe dy)

a33 = (
1

|I ′i(b)|cτi
)(digii

∫ d

b

ki(b− y)e
−(y−b)(τiβ+1)

cτi dy

+ digii

∫ ∞
d

Ki(b− y)(e
−(d−b)τiβ+1)

cτi e
−(y−d)(τiβ+1)

cτi dy)− 1

a44 = (
1

|I ′i(b)|cτi
)(digii

∫ ∞
d

Ki(b− y)e
−(y−d)(τiβ+1)

cτi dy)

a45 = 0

a46 = 0

a41 = (
1

|I ′i(d)|cτe
)(degie

∫ a

0

ke(d− y)e
−y(τeβ+1)

cτe dy

+ degie

∫ ∞
a

Ke(d− y)e
−a(τeβ+1)

cτe e
−(y−a)(τeβ+1)

cτe dy)

a42 = (
1

|I ′i(d)|cτe
)(degie

∫ ∞
a

Ke(d− y)e
−(y−a)(τeβ+1)

cτe dy)

a43 = (
1

|I ′i(d)|cτi
)(digii

∫ d

b

ki(d− y)e
−(y−b)(τiβ+1)

cτi dy

+ digii

∫ ∞
d

Ki(d− y)(e
−(d−b)τiβ+1)

cτi e
−(y−d)(τiβ+1)

cτi dy)

a44 = (
1

|I ′i(d)|cτi
)(digii

∫ ∞
d

Ki(d− y)e
−(y−d)(τiβ+1)

cτi dy)− 1

a45 = 0

a46 = 0
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a51 =
1

|I ′z(e)|cτe
)(azee

−e(β+1)
c )

a52 = 0

a53 = 0

a54 = 0

a55 = −1

a56 = 0

a61 = (
1

|I ′z(f)|cτe
)azee

−a(βτe+1)
cτe e

−(f−a)(βτe+1)
cτe

a62 = (
1

|I ′z(f)|cτe
)azee

−(f−a)(βτe+1)
cτe

a63 = 0

a64 = 0

a65 = 0

a66 = −1

Let us denote

E(β) = det



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


This system has a nontrivial solution if E(β) = 0. We interpret E(β) as the Evans Function.

3.2.1 Evans function

The Evans function is an important tool for determining the stability of traveling waves.

The computation of Evans-function allows us to locate any unstable eigenvalues (if they

exist) of the linear operator. This in turn allows us to study the stability of a given wave

and identify bifurcation points (loss of stability) as model parameters vary. Evans function
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is a complex analytic function obtained by linearizing a system about its traveling wave and

whose zeros give the eigenvalues of the linearized operator. It has the following properties:

1. The complex number β is an eigenvalue of the operator L ⇔ E(β) = 0.

2. The algebraic multiplicity of an eigenvalue is equal to the order of the zero of the Evans

function.

3. As E(β) is complex analytic, there are at most finitely many eigenvalues within a disc.

A natural way to finding the zeros of E(β) is to write β = a+ ib and plot the zero contours

of real(E(β)) and Img(E(β)) in the (a, b) plane, and look at the points of intersection.

In fig(13) we plot the real (red curve) and imaginary (blue curve) parts of the Evans

function for σi = 1.49 (Fig(13a)) ,σi = 1.502 (Fig(13b)) and σi = 1.52 (Fig(13c)). We observe

that as we increase σi (the spatial spread of inhibition) a pair of complex eigenvalues cross

over from left to the right-half plane through the imaginary axis, thus illustrating Andronov-

Hopf bifurcation (An Andronov-Hopf bifurcation arises when these two eigenvalues cross the

imaginary axis because of a variation of the system parameters). In fig(13d) we track a root

(in the fourth quadrant) of the Evans function as we change σi. We clearly notice that the

real part of the Evans function (red curve) goes from negative to positive values, crossing zero

at around σi = 1.49. This guarantees the existence of purely imaginary roots needed for the

Andronov-Hopf bifurcation. Thus we can say our system undergoes dynamic instability with

increasing σi. By dynamic instability we mean that a pair of complex eigenvalues crosses

into the right hand plane on the imaginary axis so that the pulse begins to oscillate.

Let’s go back to the Wilson-Cowan equations with a Heaviside firing rate and look at the

array for the excitatory population as we change σi. Figure(14) gives the space-time plot of

the excitatory population with the Heaviside firing rate for (a) σi = 0.5 (b) σi = 1.467 and

(c) σi = 1.47. We observed oscillatory pattern when σi approaches the value 1.47. Hence we

have oscillatory instability which was predicted by the stability analysis calculations above

using the Evans Function. Now let’s see if we observe similar oscillatory patterns in case of

Wilson-Cowan equations with a smooth firing rate function. Figure(15) depicts the space-

time plot of the excitatory population with the smooth firing rate function for (a) σi = 0.5,

(b) σi = 1.566 and (c) σi = 1.574. We start to observe oscillatory patterns for σi around 1.56.
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Hence the Wilson-Cowan equations with a smooth firing rate function also has oscillatory

instability. Now as we the Wilson-Cowan model with the smooth firing rate function was a

simplification of the spiking neuronal model, we can say that we must also have instability

in the spiking model.
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Figure 13: Plot of real and imaginary parts of the Evans function E(β) for the model with

(a) σi = 1.49, (b) σi = 1.502 and (c) σi = 1.52 respectively. This illustrates a possibility

of a dynamic instability with increasing σi as a pair of complex eigenvalues cross over to

the right-hand plane through the imaginary axis. Figure (d) is the plot of Real part and

Imaginary part of a root (green circle) of the Evans function vs σi. The graph of real part

of Evans function crosses zero at approximately σi = 1.5.
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Figure 14: Space-time plot of the excitatory population with the Heaviside firing rate for (a)

σi = 0.5, (b) σi = 1.467 and (c) σi = 1.47.
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(a) (b)

(c)

Figure 15: Space-time plot of the excitatory population with the smooth firing rate function

for (a) σi = 0.5, (b)σi = 1.566 and (c)σi = 1.574.
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4.0 CONCLUSIONS

• Inhibition controls the velocity and width of the traveling wave.

• When inhibition increases, the time for which a neuron fires decreases.

• When inhibition gets very small, adaptation controls the wave and we have pathologically

big traveling waves.

• The stability analysis of the Wilson-Cowan equations with Heaviside firing rate function

using Evans function showed that we have an Andronov-Hopf bifurcation at σi ≈ 1.49.

Hence, our system must undergo dynamic instability i.e. traveling waves must start to

oscillate. To verify this we looked at the spatially distributed Wilson-Cowan equations

with Heaviside and smooth firing rate function both. We observed that oscillatory pat-

terns start to arise when σi approaches 1.5. As the Wilson-Cowan equations with the

smooth firing rate function was a simplified version of the spiking neuronal model, we

can conclude that the spiking neuronal model should also undergo dynamic instability.
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