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Random forests, since being proposed by Breiman [2001a], have become popular super-

vised regression and classification techniques. Their popularity stems from being easy to

implement - the default hyper-parameter settings are often not far from optimal and are

often competitive with more involved supervised models [Fernández-Delgado et al., 2014a].

While random forests are complex, they are not completely impenetrable to theoretical anal-

ysis. In this thesis, we present several contributions to random forest methodology. First, we

provide a motivating application of random forests to ornithological data, where we develop

a novel hypothesis test for testing equality of distribution of random forest curves [Coleman

et al., 2017]. Then, we refine an observation made during that application into a means of

testing hypotheses about the validation error of random forests, allowing for computationally

efficient tests that are analogous to the F-test for linear regression. Finally, we propose a

means of accounting for a discrepancy in test and training distributions, motivated by the

problem of forecasting power outages from hurricanes.
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1.0 Introduction

Random forests are a computationally efficient, easily implemented method of supervised

learning, and are able to model complex nonlinear interactions. As such, they are a natural

tool to use in regression/classification problems in the environmental sciences, where large

observational datasets of complex phenomena are commonplace. Drawing statistically valid

conclusions in these settings remains challenging, and developing tools that accomplish this

is the main goal of this thesis. For clarity, in the introduction, we first include some defini-

tions of random forests and existing tools for analyzing their outputs. These definitions are

repeated and refined in the subsequent chapters, but we believe that including the context

of this dissertation is to the benefit of the reader. Relevant literature for each chapter is

presented in the introduction of the chapter. We then present a structural overview of the

rest of the thesis.

1.1 Some Definitions

Random forests, broadly speaking, are ensemble learners, that aggregate the predictions

of many ”weaker” learners (trees) to generate an overall prediction (the forest). Random

forests are used when one has data of the structure, Dn = {Z1, Z2, ..., Zn}, with Zi = (Xi, Yi)

consisting of observations on covariates X = (X1, ..., Xp) ∈ X and a response Y ∈ Y . In

the regression context, Y is often an uncountable subset of the real line, whereas in the

classification context Y is some finite set. In this paper, the overwhelming focus is on the

regression context, because often classification problems can be formulated as regressions

of probabilities. For regression problems, we assume that Y = m(X) + ε where m(X) =

E(Y |X = X) and ε is an independent noise process, typically with E(ε) = 0 and Var(ε) <∞.

The goal of the random forest procedure is to accurately estimate m(X). Each tree in a

random forest is constructed by drawing resamples of size kn ≤ n, from Dn, drawing a

randomization parameter ξ from some distribution Ξ, and constructing a randomized decision

1



tree. The algorithm for generating the random tree is left up to the user, but popular methods

include the CART algorithm [Breiman et al., 1984] or the conditional inference tree algorithm

[Hothorn et al., 2006]. This process is repeated B times and the random forest prediction

at some point X ∈ X is given by

RFB(X) =
1

B

B∑

j=1

Tj(X; ξj;Dn).

To evaluate the RF prediction accuracy at a test location X with true response value y, we

can measure the mean squared error

MSERF (X; y,Dn) =

((
1

B

B∑

j=1

Tj(X)

)
− y
)2

.

Similarly, we can write the MSE of a forest at a collection ofNt test points T asMSERF (T ) =

1
Nt

∑Nt
`=1MSERF (X`;Y`,Dn).

MSERF can be adapted into a variable importance metric via the out-of-bag technique,

which notes that each data point in Dn is excluded from some proportion of the trees in

the forest. Specifically, consider that each of the B resamples generates a data matrix, D∗j ,
j = 1, ..., B. Then, let Bi =

∑B
j=1 I(Xi /∈ D∗j ), i.e. the number of resamples that do not

contain (Xi, Yi), so that we can write the out-of-bag (oob) error as

OOBB =
1

n

n∑

i=1

(
1

Bi

B∑

k=1

T (Xi; ξk)I(Xi /∈ D∗k)− Yi
)2

.

OOB metrics can be used to estimate the importance of a variable j ∈ {1, ..., p} by setting

Impj = OOB
πj
m,B − OOBm,B, where πj refers to the permuting (or random shuffling) of

variable j in the out of bag sample. These metrics are often quick to calculate and are

implemented in many popular statistical packages for fitting random forests, and thus are

used quite regularly. However, they have several statistically undesirable properties, which

are discussed throughout this thesis.

2



1.2 Structure of the Thesis

We begin with a motivating application from the ornithological community, using meth-

ods developed in Mentch and Hooker [2016a] and data from the eBird project [Sullivan et al.,

2009a] to test for the importance of maximum temperature in north american tree swallow

migrations. We additionally develop a functional permutation test for evaluating the hy-

potheses that 2008 and 2009 were especially anomalous years in tree swallow occurrence.

One of the key observations of this work is that permuting the base learners of an ensemble

may also lead to a valid statistical procedure. This work is under revision as Coleman et al.

[2017].

From this intuition, we next develop a test for feature importance that is analogous to

an F-test in simple linear regression. In particular, if a feature is unimportant, an ensemble

trained with the feature should be as accurate as one without the feature. As such, we

propose a test that permutes the individual trees, creating pseudo-forests, and then recording

the difference in mean squared error. We prove that the base learners in a bagged model

are exchangeable, and then appeal to theorems about exchangeability to prove that the

permutation distribution and the sampling distribution are asymptotically equivalent. This

avoids the challenging variance estimation problem of Mentch and Hooker [2016a], Wager and

Athey [2018], and enjoys provable statistical validity, in contrast to some of the innovations

on the out-of-bag metrics proposed in works like Janitza et al. [2016], Altmann et al. [2010],

Ishwaran and Lu [2019]. Simulations showing the power and type I error control of the

procedure are provided. Further, applications to the eBird data and a wildfire dataset

[Cortez and Morais, 2007] are provided. Additionally, we demonstrate an application of the

procedure outside of the ecological domain, to data from a cohort of patients diagnosed with

irritable bowel syndromes (IBDs).

Finally, we present another methodological modification to random forests that is moti-

vated by an environmental science application. Standard supervised learning procedures are

validated against a test set that is assumed to have come from the same distribution as the

training data. However, in the context of climate change, hurricane intensity has (and will

continue to be) amplified beyond what is captured in the historical record, leading to record

3



damages from hurricane such as Irma, Sandy, and Harvey. Forecasting the power outages

from these storms is especially challenging, given their severity with respect to the historical

record. The extreme nature of the most devastating hurricanes means that typical valida-

tion set ups will provide severe underestimates of validation error. Our method provides a

data-driven means of adapting a machine learning method to deal with extreme events. We

consider the case of having many labeled (with continuous, numeric outcomes) observations

from one distribution, P1, and training a model to make predictions at unlabeled points

that come from P2, where P1 and P2 are absolutely continuous with respect to each other.

We combine the high predictive accuracy of random forests with an importance sampling

scheme, where the splits and predictions of the base-trees account for the weight assigned to

each training observations. These weights correspond to a non-parametric likelihood ratio

estimate, which is also estimated via a random forest, avoiding a costly high-dimensional

density estimation problem. We also provide methods for imputing missing data in a way

that respects the assumptions of the procedure, and for consistent tuning using a weighted

out-of-bag error metric.

In the proposal of this thesis, the basic groundwork of each topic had been developed.

Since then, much of the dissertation work has been on filling in the details for this work.

Examples include the theoretical justification of the asymptotic validity of the permutation

test. The approach presented in the proposal seemed promising, but turned out to be

unfruitful, with the associated theorems only holding true on a set of measure 0. The

updated theory, which uses a delta method argument, has been included in this final thesis.

We have elected to include the full written manuscripts for each work, as those manuscripts

provide all the relevant details to the proposed methods. Moreover, the relevant literature

is presented in the introductory section of each chapter. The materials in Chapter 2 are

available as Coleman et al. [2017], while the materials of Chapters 3 and 4 are on the arXiv

as Coleman et al. [2019b] and Coleman et al. [2019a], respectively. Each of chapters 2-4 is

self-contained, with relevant literature and definitions presented in their introductions. The

supplementary material for each chapter is listed in the appendix, including more detailed

simulation results and technical proofs.
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2.0 Detecting Tree Swallow Population Anomalies Using Random Forests

2.1 Introduction

Tree Swallows (Tachycineta bicolor) are migratory aerial insectivores. In a recent breed-

ing season study, Winkler et al. [2013] suggested that maximum daily temperature during

the breeding season had a significant effect on the abundance of the flying insects that are

the primary food source of Tree Swallows. This local-scale study conducted in upstate New

York established how cold snaps, defined as two or more consecutive days when the maxi-

mum temperatures did not exceed 18.5◦C, can result in a diminished food supply, thereby

suggesting an indirect link between lower temperatures and lower fledgling success. Other

work supports the hypothesis that migratory birds, like Tree Swallows, have breeding pat-

terns that are affected by climate change, [Dunn and Winkler, 1999, Hussell, 2003]. While

these papers focus heavily on breeding success and food availability, in this work, we inves-

tigate the associations of temperature on regional and local patterns of species occurrence

during the autumn migration.

Most ornithological studies rely on controlled, local or regional level studies during a

single season of the year, limiting the spatial and temporal scope of the analysis. The eBird

project [Sullivan et al., 2009b, 2014b] hosted by the Cornell University Lab of Ornithology is

a global bird monitoring project that allows for analysis on a much larger scale. This citizen

science project compiles crowd-sourced observations of bird sightings, opening the door for a

more data-driven approach to formally investigate scientific questions of interest. The eBird

project harnesses the efforts of the bird-watching community by encouraging bird-watchers

(birders) to record checklists of the species they encountered on each outing. These data

have been used in a range of applications such as describing bird distribution across broad

spatiotemporal extents [Fink et al., 2010, 2018], prioritizing priority habitat to conservation

[Johnston et al., 2015], and identifying continental-scale constraints on migratory routes

[La Sorte et al., 2016].

We study Tree Swallow populations during the autumn migration. During this time,
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the species are believed to be facultative migrants. Facultative migration is an opportunistic

migration strategy where individuals migrate in response to local conditions, such as the

prevailing food supplies or weather conditions. Specifically, we study the low elevation New

England / Mid-Atlantic Coast stretching north from the Chesapeake Bay to Boston, known

as Bird Conservation Region 30 (BCR30) [Sauer et al., 2003] that forms the northern extent

of the Tree Swallow winter range in Eastern North America.

Anecdotal accounts from bird watchers in this region suggest that Tree Swallows inhabit

this region for prolonged autumn periods only during relatively warm winters. Though never

formally documented or proven, in the years 2008 and 2009 it was widely believed in the

ornithological community that the species did not linger in the region as late into the autumn

as usual. Alternatively, mortality in the northern parts of the range in those years may have

been higher. Thus, our primary objectives in this work are twofold: (1) to formally test

whether the temporal pattern of Tree Swallow occurrence during the autumn migrations of

2008 and 2009 were substantially different than what would be expected during a typical

autumn migration and (2) if there are differences, to investigate the association between

local-scale patterns of occurrence and daily maximum temperature across broad geographic

extents.

2.1.1 Challenges in Modelling Tree Swallows

While the ecological questions in the previous section are relatively straightforward to

pose, providing accurate answers and provably valid statistical inference is challenging. In

general, we expect that as daily temperatures decrease, the occurrence rate of Tree Swallows

should also decrease as the species gravitates towards regions with more plentiful food or

suffers higher mortality where food availability has been driven down by cold maximum tem-

peratures. However, there are many strong sources of variation affecting the observed local-

scale spatiotemporal patterns of species occurrence during the migration that can modify and

mask the local-scale predictive utility of temperature. Ecological patterns of local-scale oc-

currence are affected by elevation, land cover types (e.g. open fields vs forests), and weather.

Because of the difficulty finding and identifying birds in the field, variation in detection rates
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further complicates modeling and inference about the underlying ecological processes. Based

on previous work (see, for example, Zuckerberg et al. [2016]), we expect such associations to

appear as complex, high-order interactions among the available covariates and that many of

these associations and interactions will vary throughout the autumn migration.

Thus, one of the main analytical challenges is to develop models that can exploit rich

covariate information to account for varied and complex sources of variation while facili-

tating statistical inference about potentially complex, local-scale associations. The large

amount of available data, together with the presence of both nonlinear and high-order in-

teractions, complicates the use of most traditional parametric and semiparametric models

for this task. Thus, we rely on the more flexible alternative offered by random forests

[Breiman, 2001b]. Random forests have a well-documented history of empirical success and

are considered to be among the best “off-the-shelf” supervised learning methods available

[Fernández-Delgado et al., 2014b]. This strong track record of predictive accuracy makes

them an ideal “black-box” model for complex natural processes. Furthermore, tree-based

methods have also proven very successful in other eBird projects [Robinson et al., 2018, Fink

et al., 2018].

Though black-box model are not easily amenable to statistical inference, recent asymp-

totic results from Mentch and Hooker [2016b], Peng et al. [2019] and Wager and Athey [2018]

on the distribution and variance estimation of predictions resulting from RF models provide

a formal statistical framework for addressing our primary questions of interest. Moreover, as

we demonstrate, traditional non-parametric inferential procedures can also be used to help

draw inferences from these complex models.

In this paper, we begin with a brief overview of the data and available covariate infor-

mation in Section 2.2. In Section 2.3, we provide further evidence for use of random forests

to answer the questions posed earlier. We then construct preliminary RF models to assess

the influence of temperature and produce maps of prediction differences between models to

understand the spatial patterns in the association with maximum daily temperature. In

Section 2.4, we develop a permutation-style test to investigate how unusual the 2008 and

2009 migration patterns appear to be by treating the RF predictions over time as func-

tional data. Finally, In Section 2.4.3, we make use of recent asymptotic results to test the
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significance of maximum daily temperature at a variety of local test locations throughout

the region of interest, BCR30. Throughout this work, the predictive associations uncovered

should not be interpreted as causal effects. Indeed, due to the structure of the tree swal-

low data, it is more likely that the causal relationship between maximum daily temperature

and occurrence is indirect, as maximum daily temperature affects food availability or other

local resources upon which Tree Swallows depend.. However, we recognize the important

work done in extending random forests to estimation of causal effects, and as such, a section

implementing the causal forests of Wager and Athey [2018], Athey et al. [2019] is provided

in the supplementary material.

2.2 Data Overview

The eBird data is accumulated on a per-birder outing basis. During each outing, the

birder records the species of birds observed. Each species observed is recorded as a presence

observation while unobserved species are marked absent. The outing is then referenced

with environmental, spatial, temporal, and user information. This last set of predictors is

included in order to account for variation in detection rates, a potential confounder when

making inference about species distributions. Our outcome of interest is the probability

that at least one Tree Swallow is observed given the spatial, temporal, and detection process

information. We refer to this probability as occurrence, that is

O = P (Tree Swallow is Observed | X = x)

where X denotes the covariate information. Because we are interested in the eastern autumn

migration, we restrict our attention to eBird observations located in the BCR30 region that

were recorded on or after the 200th day of the year between the years 2008-2013. In total, the

full dataset contains 173002 observations on 30 variables, with occurrences of tree swallows

in 10.8% of the observations.

Spatial information is captured by land cover and elevation data. To account for habitat-

selectivity each eBird location has been linked to the remotely-sensed MODIS global land
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cover product (MCD12Q1) [Friedl et al., 2010]. Here we use the 2011 MODIS land cover

data as a static snapshot of the landcover. These landcover predictors were associated with

eBird observations collected from 2004 to 2012. Finally, we use the University of Maryland

(UMD) classification scheme [Hansen et al., 2000] to classify each 500m × 500m pixel (25

hectare) as one of 14 classes, including classes such as water, evergreen needleleaf forest, and

grasslands. We summarized the land cover data as the proportion of each land cover class

within a 3.0km × 3.0km (900 hectare) pixel centered at each location using FRAGSTATS

[McGarigal et al., 2012].

Temporal information is included at three resolutions. At the finest temporal resolu-

tion, the time of the day at which the observation was made is used to model variation in

availability for detection; e.g., diurnal variation in behavior [Diefenbach et al., 2007] may

make species more or less conspicuous. For our purposes, we restrict our attention to the

day of year (DoY) and the year itself, corresponding to our interest in anomalies in the fall

migration.

Temperature data was collected from the DayMet project, hosted by Oak Ridge National

Lab [Thormton et al., 2017]. The data includes daily maximum (max temp), minimum, and

mean temperature for each day in the training period. We also estimated an expected

daily maximum temperature for each day by taking the mean daily maximum temperature

for each eBird location from 1980-2007. The anomaly relative to this expected maximum

(max temp anomaly, defined as max temp minus the 1980-2007 normal max temp) is of par-

ticular interest since max temp alone is strongly correlated with DoY. Each eBird location is

further associated with the 30m gridded elevation from the ASTER Global Digital Elevation

Model Version 2.

Finally, there are three user effort variables included in the model to account for variation

in detection rates: the hours spent searching for species (eff hours), the length of transects

traveled during the search (eff dist), and the number of people in the search party (n obs).

In addition, an indicator of observations made under the “traveling count” protocol was

included to allow the model to capture systematic differences in species detection between

the the counts recorded by traveling and stationary birders.
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2.3 Preliminary Models

In this section, we provide further evidence for the use of random forests to model Tree

Swallow migration. As noted earlier, random forests are typically used in datasets with many

observations on many predictors, whose effect on the response may be a complex, nonlinear

function of the predictors. As demonstrated in Fernández-Delgado et al. [2014b], though

random forests do not universally dominate other methods, they are often exceptionally

accurate and robust supervised learners.

Fundamentally, however, our interest in this work is in scientific understanding and

statistical inference and certainly there are numerous alternative statistical models that

provide a more direct means of accomplishing this. However, to trust such inference, we

must trust that the model selected is able to accurately capture the complex underlying

mechanisms. This suggests the question: are there notable gains in accuracy by using random

forests, or would a more straightforward statistical model suffice? To answer this using the

eBird data, we use cross validation (CV) to measure the predictive accuracy of a variety of

popular modeling techniques for binary outcomes. In particular, we train a random forest

with mtry = 5 (not chosen by cross validation) and 500 trees, a k-nearest-neighbors (KNN)

regression model with k chosen from {5, 7, .., 21, 23}, a 3-layer artificial neural network (ANN)

with the number of neurons chosen from {15, 30, 100} at each layer [Bergmeir and Beńıtez,

2012], Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and a

Generalized Additive Model (GAM) with degrees of freedom chosen from {1, 6, 11, ..., 21, 26}
[Hastie, 2017]. Finally, we train an elastic-net penalized logistic regression (GLMNet) model

[Friedman et al., 2010], with weights α ∈ {0, 1}, (0 corresponds to the Lasso, 1 corresponds

to Ridge Regression), with cost parameter λ ∈ {0, .01, ..., .15}. This model fits coefficients

to all covariates and also every two-way interaction, to parsimoniously select the strongest

interaction models. These models are trained using the caret package [Kuhn, 2017] in R,

and, with the exception of random forests, the parameters chosen reflect those which lead

to the smallest CV estimate of Root Mean Squared Error (RMSE). We also report the CV

estimate of the Mean Absolute Error (MAE).

The results of this analysis are displayed in Figure 2.3.1. Even without tuning, the
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Random Forest 0.22280 0.10863
ANN (100, 30, 15) 0.25300 0.11465
KNN (k = 11) 0.25558 0.12195
GLMNet (λ = 0) 0.27260 0.16163
GAM (df = 26) 0.27380 0.17412
LDA 0.35350 0.19400
QDA 0.44427 0.24541

Figure 2.3.1: 3-fold CV estimates of RMSE and MAE for various predictive models, plotted

in descending RMSE order, and tabulated with optimal hyper-parameters.

off-the-shelf random forest model attains the lowest RMSE and MAE scores with the other

flexible models, such as KNN and the ANN, not far behind. We see that the GAM and

GLMNet models are similar in performance, with LDA and QDA lagging severely behind.

Notably, the GLMNet model selected a tuning parameter that maximized model complexity,

i.e. λ = α = 0, even with all two-way interactions considered. This further suggests that

a parametric model is unreasonable due to the complex interactions and functions of the

covariates that go into predicting occurrence. The strong predictive performance of random

forests, combined with the recent advancements in inference for random forests, make them

an ideal model for drawing conclusions about tree swallow migrations. As a first step analysis,

we make use of traditional means for drawing inferences from black-box methodology of RFs

with tools such as partial effect plots and conclude with a spatial analysis of the effect of

max temp. These analyses provide heuristic and provisional answers to the study questions,

and motivate the more formal testing procedures developed and executed in later sections.

2.3.1 Inspecting Annual Migration Differences

Recall that the initial motivation for this study was a widely perceived difference in Tree

Swallow autumn distribution patterns in the years 2008 and 2009. In particular, it was

believed that Tree Swallows had remained in the northern regions for a shorter period in

the fall during 2008-2009, but the ornithological community was unsure of the mechanism(s)
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behind this earlier departure/decline. Accordingly, we begin by partitioning the BCR30 Tree

Swallow data into two training samples: one containing observations from 2008-2009 and the

other containing the observations from 2010-2013. Formally, denote the entire training set as

D so that we can write our partitioned training datasets as D08−09 and D10−13, respectively,

with D = D08−09 ∪ D10−13. For each day of the year beginning with DoY 200, 100 points

were selected at random from D to serve as a validation set. These 16600 points were then

removed from the corresponding training set.

We first construct a RF on each of these temporally divided training sets. It is impor-

tant to note however, that the eBird project has grown substantially in popularity since its

inception in 2002 and thus later years contain many more observations than earlier years. In

particular, D08−09 contains a total of 21,907 observations, while D10−13 contains 151,095. Be-

cause a RF trained on a larger dataset may be more stable, any differences observed between

predictions generated by the two datasets may be partially explained by the difference in

data sizes. To account for this, we also selected (uniformly at random, without replacement)

a subsample of size 21,907 from the D10−13 training data and with it, constructed a third

RF. Predictions were made at all points in the validation set, and averaged by day. The

results are shown in Figure 2.3.2.
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Figure 2.3.2: Predicted occurrence by random forests trained on D08−09, D10−13, and a

subsample of D10−13. Predictions shown are kernel smoothed estimates of the prediction

surface using a Gaussian kernel with a bandwidth of 5.
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From Figure 2.3.2, we see that the RF trained on D08−09 predicts the largest occurrence

until approximately DoY 285, after which the 2010-2013 forests are higher until approximately

DoY 320, from which point the differences appear negligible. This seems to support the

hypothesis that during the years 2008 and 2009, Tree Swallows remained in northern regions

longer before departing more quickly. Importantly, the predictions from the RF trained on

the reduced dataset from 2010-2013 forest differs only very slightly from those generated

by the RF trained on the full D10−13 data, suggesting that the more substantial departures

observed between predictions generated by RFs trained on D08−09 and D10−13 have little to

do with the differing training sample sizes.

An additional focus of our work is to investigate the significance and impact of maximum

temperature (max temp) in predicting occurrence. Using the entire training dataset, we

estimated a partial effect function of max temp with DoY removed as a covariate (Figure

2.3.3), to account for any confounding effects between DoY and max temp. These functions are

estimated by discretizing max temp in the training data, D, into a grid. For each grid point,

predictions are made at each observation whose discretized max temp corresponds to the grid

value. The partial effect value at the grid point is then the average of all the predictions at

that grid point. As expected, we see a steady increase in occurrence with max temp starting

around 7◦C which appears to begin leveling off around 32◦C. As an interesting side note, the

sharpest increase appears to occur around 15◦C, which corresponds to a period of heightened

insect activity suggested in Winkler et al. [2013].

Finally, recall that out-of-bag (oob) variable importance measures are a popular ad hoc

measure that usually accompanies random forest predictions. Breiman [2001b] introduced

these oob measures as a means of quickly assessing variable importance by calculating the

decline in prediction accuracy observed when the values of a particular variable are per-

muted amongst the oob samples. According to this metric, max temp was determined to be

the most important covariate, though we note this with caution as the oob measures are

often unreliable. A substantial amount of previous work — see Strobl et al. [2007b], Nicode-

mus et al. [2010], Toloşi and Lengauer [2011b], Hooker [2007] for popular examples — has

demonstrated serious flaws with such measures, most notably that they tend to inflate the

importance of groups of correlated covariates. This is especially problematic in our context,
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Figure 2.3.3: Partial effects plot for max temp for a RF trained on the entire dataset.

Shaded region corresponds to range of temperatures where potentially flying insects shift

from inactive to flying [Winkler et al., 2013].

where daily maximum temperature is one of several highly correlated spatial covariates of

varying importance to predicting occurrence.

2.3.2 Visualizing the Spatial Effects of Maximum Temperature

Here, we examine the spatiotemporal effect of max temp on occurrence throughout the

Northeast. We construct two RFs, one with the original data and one with max temp per-

muted, and compare the predictions generated by these two models. To remove variation

associated with the detection process, a nuisance when investigating the effect of maximum

temperature, we set the observer characteristics (n obs, eff hours, and eff dist) to 1

which coincides with typical levels for many ebird observers. The test set consists of the

points in the 3km grid within the [−78◦,−68◦]× [37◦, 44◦] longitude/latitude region, where

landcover characteristics (UMD classes, elevation) are concatenated with max temp. The val-

ues assigned to max temp in the test set were imputed from the 2014 DayMet observations,

providing temperature information that was collected independently of the max temp values

in D.

We then make predictions using both forests and calculate the difference in predictions.
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Formally, for a test point in the grid Xij, define the difference in predictions between the

original and permuted forest as

d̂ij := R(D;Xij)−R(Dπ;Xij) = R(Xij)−Rπ(Xij)

where D denotes the original training data, Dπ denotes the training data with max temp

permuted, and R and Rπ denote the RFs trained on such data, respectively. In order to

examine the temporal dynamics, we create 9 test grids, each 20 days apart, throughout the

fall.

The resulting heat maps of prediction differences demonstrating the effects of max temp

are shown in Figure 2.3.4. Red indicates the predictions of the original RF being higher than

the permuted RF; blue indicates that the permuted forest made larger predictions. We see

that earlier in the fall R > Rπ followed by roughly equal predictions onward from day 101

of the fall. Under the assumption that max temp is unrelated to the response and therefore

simply noise, we might expect that the differences in predictions between the original and

permuted RFs across space are also simply random, uncorrelated noise. A Moran’s I test, (see

Appendix A), provides strong evidence that the differences plotted in Figure 2.3.4 exhibit

spatial autocorrelation. The purpose of this test is to search for local effects of max temp

in RF predictions; if max temp is meaningful in predicting occurrence, we would expect the

differences in predictions between two points near each other to be more strongly correlated

than two points further away. This provides statistical backing to what is clear from Figure

2.3.4: there is certainly a “clumping” among the differences between the random forests,

suggesting that max temp’s effect has local homogeneity.

The results of the Moran’s I test should be interpreted with some caution; the predictions

from the forests R and Rπ are functions of the test set max temp which itself has strong spatial

correlation. Thus, the predictions and their differences may exhibit correlation regardless of

the true association between occurrence and maximum temperature. A more direct approach

to assessing the local-scale importance of maximum daily temperature is provided in Section

2.4.3.
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Figure 2.3.4: Predicted occurrence differences (d̂) between original and permuted RFs

calculated at 9 time points throughout the fall. Red indicates larger predictions from the

original RF; grey indicates roughly equal predictions
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2.4 Testing for Regional Differences in Occurrence

We now devise and implement a permutation test to explicitly assess whether the predic-

tion curves in Figure 2.3.2 exhibit differences that could plausibly be due to chance. Here we

consider regional hypotheses, meaning that we investigate differences in species occurrence

throughout the entire BCR30 region as opposed to at a specific location or set of locations

within that region.

2.4.1 Testing Procedure and Data

Our strategy here is to use a permutation test to investigate hypotheses about the dis-

tribution of occurrence in the 2008-2009 and 2010-2013 groupings. Permutation tests, in

addition to maintaining exact control of the Type I error rate for distributional hypotheses,

have the advantage of being completely distribution free, regardless of the test statistic used.

If we let D08−09(X, Y ) denote the joint distribution of the covariates and occurrence for the

2008-2009 data, and similarly define D10−13(X, Y ), we then want to test

H0 : D08−09(X, Y ) = D10−13(X, Y )

H1 : D08−09(X, Y ) 6= D10−13(X, Y ).
(2.4.1)

To account for differing training set sizes and also in the interest of both computational effi-

ciency and being conservative in our testing procedures, we now construct a reduced training

set from the D10−13 data containing the same number of observations as D08−09. We con-

struct this reduced set by taking each observation in D08−09 and drawing a radius around it in

both space (0.2 decimal degrees in both latitude and longitude, an area of approximately 352

km2) and time (2 days). We then locate all observations from D10−13 within this radius and

select from these an observation uniformly at random, without replacement. This produces

a “nearest neighbor” training set, DNN10−13, with roughly the same spatiotemporal distribution

of observations, allowing us to more closely examine the influence of the other covariates on

the functional observations. By enforcing spatio-temporal uniformity between the datasets,

we are controlling for differences in eBird user behavior between the two groups. As such,

any difference observed is more attributable to year to year changes in ecological variables
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(such as land cover characteristics) or occurrence itself. The first stage of calculating our test

statistic is to train a random forest on both D08−09 and DNN10−13. We then use these forests to

make predictions at fixed test points, from which several summary statistics are calculated.

Our test set consists of 166×1000 points, with 1000 points taken for each day in the fall.

We construct this test set by sampling 1000 locations from a 3km×3km grid covering the east

coast, referenced with their land cover and elevation characteristics, as well as max temp for

that day. The maximum temperature information included is the expected daily maximum

temperature, estimated from the 1980-2007 temperature information provided by DayMet.

The variables associated with the eBird user (e.g. eff dist, eff hours, and n obs) are set

to 1 uniformly, to again represent typical eBird user levels.

Let R08−09(·) denote the prediction function of the RF trained on D08−09. Then f08−09 is

defined as

f08−09(t) :=
1

1000

1000∑

k=1

R08−09(Xk,t), t ∈ {200, ..., 365}

where Xk,t is a point in the test set corresponding to time t. Thus, since the test points

are stratified by time, f08−09(t) denotes the average over predictions made at all 1000 test

points on each day and therefore represents a time-averaged version of the raw RF prediction

function. The function f10−13(t) is defined in exactly the same fashion for a RF trained on

DNN10−13.

Recall that the original hypothesis was that Tree Swallows remained in BCR30 longer in

2008-2009 than in 2010-2013, followed by a sharp decline in numbers. Preliminary analysis

in Figure 2.3.2 supports this hypothesis, so we now evaluate the statistical significance of

the evidence. Formally, in early fall (DoY 200-264), it appears that f08−09 > f10−13. Later in

the fall (DoY 265-310), it appears that f08−09 < f10−13 and finally as winter sets in (DoY 311-

365), we see f08−09 ≈ f10−13. We therefore partition our time frame into three disjoint time

periods, T1 = {200, ..., 264}, T2 = {265, ..., 310}, and T3 = {311, ..., 365}, and let ITi(t) be an

indicator function for each period. We then consider the restricted functional observations

f
(i)
08−09(t) := f08−09(t)ITi(t) for i = 1, 2, 3

which are defined in the same fashion for f
(i)
10−13(t). Each of these restricted functional

observations is then incorporated into test statistics to evaluate following sets of hypotheses
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H0,i : D
(i)
08−09(X, Y ) = D

(i)
10−13(X, Y )

H1,i : D
(i)
08−09(X, Y ) 6= D

(i)
10−13(X, Y ).

(2.4.2)

To evaluate these hypotheses, we begin by calculating the prediction functions over time

using the original datasets and then, for each of many iterations, we permute the year

covariate, re-partition the data into the two groups consisting of data from 2008-2009 and

2010-2013, and construct the new RF prediction functions.

Permutation tests for hypotheses of this form reject H0 if the test statistic, T0, calculated

on the original data, falls in the extreme (upper or lower α/2) quantile of the permutation

distribution of test statistics. Formally, given two sets of data {Xi}ni=1 and {Yi}mi=1, let G
be the group of all permutations of the indices 1, ...,m + n. Then, consider a statistic of

the form T = T (Z1, ...Zm+n), and let T0 be the statistic calculated on the original data. A

p-value for the hypothesis the null hypothesis H0 : D(X) = D(Y ) is given by

p =
1

|G|
∑

π∈G

I(|T0| > |T (Zπ(1), ..., Zπ(m+n))|).

Note that |G| =
(
m+n
n

)
which is quite large, so we instead sample 1000 draws from the

permutation distribution uniformly at random, which maintains the size of the test at α

[Lehmann and Romano, 2006]. Permutation tests offer flexibility in the choice of test statistic,

and different test statistics offer different levels of power. As such, we consider the following

two measures of functional distance

KS = sup
t∈T1∪T2∪T3

|f08−09(t)− f10−13(t)|

∆i =
1

|Ti|
∑

t∈Ti

(f
(i)
08−09(t)− f (i)

10−13(t)), i = 1, 2, 3.
(2.4.3)

The first measure in Equation 2.4.3 refers to the Kolmorgorov-Smirnov statistic, traditionally

used to test hypotheses about distribution functions. The use of this statistic for two sample

functional testing procedures was studied by Hall and Van Keilegom [2007]. KS is calculated

across the full time period, and then used for testing for an overall difference in the underlying

distributions. In contrast, our raw distance measures ∆1,∆2, and ∆3 are designed to test

for equality of the underlying distributions only in time periods T1, T2, and T3, respectively.
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Based on the visual evidence in Figure 2.3.23, we may expect to see a difference during the

first two time periods, but likely not during the third time period.

2.4.1.1 A Computationally Efficient Alternative Testing Procedure

The procedure described above maintains many of the desirable statistical properties

of permutation tests, such as exactness under any distribution. As such, we refer to it as

the canonical permutation test. However, permutation tests were developed for situations

where test statistics are easily calculated. Because our test statistic involves training of two

random forests, there is substantial computational burden incurred in conducting each test.

Indeed, running the full test requires constructing 2×NPerm ×B decision trees, where B is

the size of each forest. As such, we now propose a computationally efficient alternative.

Random forest predictions can be written as a function of the training data, the test

point, and a collection of randomization parameters, ξ = {ξ1, ..., ξB}, which dictate the

feature subsetting and resampling used in each tree. For a given test point X, the random

forest prediction R(X;D, ξ) can be written as

R(X;D, ξ) =
1

B

B∑

k=1

T (X;D, ξk)

where T (·;D, ξ) is a standard CART decision tree trained on D using randomization ξ. In

a random forest, the randomization parameters are drawn in an iid fashion, so that for any

point X and any number of trees B, {T (X;D, ξk)}Bk=1 is an iid sequence conditional on D.

Now, we can appeal to the classical De Finetti’s Theorem [De Finetti, 1937] for infinitely ex-

changeable random variables, which states that a sequence of infinitely exchangeable random

variables is exchangeable if and only if it is iid conditional on some other random variable.

The sequence of trees used in a random forest are iid, conditional on the data, and therefore

are infinitely exchangeable. Moreover, suppose we partition a collection of B trees into k

subgroups, each consisting of B/k trees, and form k random forests from these trees. Then,

the same argument gives that R1(X;D), ..., Rk(X;D) is infinitely exchangeable, and further

that the functional observations (like those used in the test statistics in Equation 2.4.3) are

realizations of an infinitely exchangeable sequence of functions. As such, if we train B trees,
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and then randomly stratify the trees into k forests of equal size, we have an exchangeable

sequence of functions.

Exchangeability is fundamental to the exactness of permutation tests. In fact, a permu-

tation test is fundamentally a test of exchangeability - for two groups of data Xi
iid∼ P and

independently, Yi
iid∼ Q, the data are exchangeable if and only if P ≡ Q. To see this, note

that under an exchangeability assumption:

D0 := D(X1, ..., Xn, Y1, ..., Ym) = D(Zπ(1), ..., Zπ(m+n)) := DZπ ∀π (2.4.4)

where Zπ is any permutation of the Xi and Yi. Thus, for any given test statistic (i.e.

a function of the m + n observations), the quantile of the observed test statistic across

all possible permutations should approximately follow a uniform distribution [Pesarin and

Salmaso, 2010]. For iid observations, Equation 2.4.4 factors as

D(X1, ..., Xn, Y1, ..., Ym) =
n∏

i=1

P (Xi)×
m∏

i=1

Q(Yi)
exchangeable≡

n+m∏

i=1

P (Zπ(i)).

Thus for iid data, the finite sample permutation test provides an exact test for hypotheses

about equality of distribution. Indeed, as a result of Equation 2.4.4, for any statistic T (·),
T (Z)

d
= T (Zπ). A more rigorous argument for the validity of the tests is presented in

Lehmann and Romano [2006].

In the set up described, we sample 20 exchangeable functions, {fk,(08−09)}20
k=1 and

{fk,(10−13)}20
k=1 each using 50 identically trained decision trees. Treating the observed func-

tions f08−09 and f10−13 as observations from functional distributions F08−09 and F10−13, our

goal is to determine whether these distributions that generated our observed prediction func-

tions are, in fact, the same. More explicitly, we consider hypotheses of the form

Hf
0 : F08−09 = F10−13

Hf
1 : F08−09 6= F10−13.

(2.4.5)

where the Hf notation is to distinguish these hypotheses from those in Equation 2.4.1.

It should be noted that even under Hf
0 , the forests are not exactly exchangeable between

groups since the conditioning random variable (the datasets, D08−09,DNN10−13) are different.

As such, there will be stronger dependence within the groups of trees. To ameliorate this,
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we impose an additional condition on the construction of the random forests. In particular,

instead of bootstrapping, we now subsample observations, i.e. each tree is trained on k < n

observations, without replacement. We use a dynamic subsampling rate, with kn = np for

some p ∈ (0, 0.5), so that limn→∞ kn/n = 0. This ensures that the decision trees used are

asymptotically independent, which means that the dependence between tree predictions dies

off as n → ∞. Thus, the within group and between group dependences approach each

other as n→∞. We note that this is a standard requirement imposed upon random forest

construction in the random forest theory, such as in Mentch and Hooker [2016a], Wager

and Athey [2018], Scornet et al. [2015b]. The choice of mini-ensembles of size 50 is done to

balance predictive accuracy and the higher within sample dependence.

While Hf
0 does not imply H0, rejecting Hf

0 supports the notion that migration patterns in

the years 2008 and 2009 differed significantly from those observed from 2010-2013. Note that

because a random forest is simply an average of decision trees, we can reformulate each of the

statistics in Equation 2.4.3 by substituting in f(08−09)(t) = 1
20

∑20
k=1 fk,(08−09)(t) and likewise

for f(10−13)(t). Then we shuffle the functional observations between the 2008-2009 group and

the 2010-2013 group many times, at each stage calculating the statistics in Equation 2.4.3.

That is, to form a permuted random forest, we permute groups of decision trees rather than

the data itself, so that we now only have to train 2B trees. Similarly, for the temporally

segmented test, each restricted functional observation is from some distribution F (i)
08−09 or

F (i)
10−13, leading naturally to hypotheses of the form

Hf
0,i : F (i)

08−09 = F (i)
10−13

Hf
1,i : F (i)

08−09 6= F (i)
10−13.

(2.4.6)

We take advantage of the bagging structure inherent to random forests, but the same frame-

work, which we refer to as the functional permutation test, could be applied to any bagged

learner.

2.4.2 Global Test Results

To implement the canonical permutation test, we utilize the randomForest package in

R to calculate the RF predictions [Liaw and Wiener, 2002]. As in Section 2.3.1, the RFs
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(b) f08−09, f10−13, functional data permuted

Figure 2.4.1: Prediction curves generated by RFs which use all covariates, including

max temp and DoY. These are used in the functional permutation test. Lighter lines show

the collection of functional data, darker lines show average that forms the full RF function.

are trained on the entire set of predictors, including both DoY and max temp. To account

for the correlation between max temp and DoY, we conduct two additional followup versions

of the original permutation tests: one with DoY included and max temp removed and one

with max temp included and DoY removed. The functional permutation test is conducted

using 20 functional observations in each group, using a subsampling rate of an = n0.55 and

setting mtry = 7. These constraints on the tree construction worsens the predictions of the

individual models, but further weakens the dependence between the functional data.

The p-values obtained from the canonical permutation test are shown in the second row

of Table 2.4.2. Based on these results alone, there does not appear to be strong evidence of

a difference in the underlying functional distributions, even early in the migration period.

However, a more compelling story appears in the results of functional permutation test. The

associated functions, {fk(08,09)}20
k=1 and {fk,(10−13)}20

k=1, along with their averages, are shown

in Figure 2.4.1, along with an example of a permutation of the functional data. Based on

a visual inspection, it appears that for RFs trained on the original 2008-2009 data (D08−09)

and the reduced nearest neighbor 2010-2013 data (DNN10−13), f08−09 > f10−13 until around DoY

280, with negligible differences thereafter. The p-values from the functional permutation

test are presented in Table 2.4.2, and provide strong evidence for a difference in migration

patterns. In particular, we are able to reject Hf
0 , for the full feature and max temp models

at any reasonable level α.
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(c) Original data, DoY removed
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(d) Permuted data, DoY removed

Figure 2.4.2: Prediction curves generated by RFs with DoY included and max temp removed

(top row, (a) and (b)) and with max temp included and DoY removed (bottom row, (c) and

(d)). Lighter lines show collection of functional data, darker lines show average that forms

the full RF function.

The RF prediction functions corresponding to the max temp only and DoY only models,

with both the original and (randomly selected) permuted datasets, are shown in Figure 2.4.2.

Here we begin to see evidence for the importance of max temp: when only DoY is used as

a predictor, the prediction functions trained on the original datasets closely resemble those

trained on the permuted data. However, when max temp is included and DoY is removed,

we see a clear difference in predicted occurrence until midway into the migration season,

a story which closely matches the anecdotal accounts from the ornithological community.

Moreover, the raw statistic values in Table 2.4.1 show that the greatest differences (however

those differences are measured) are consistently observed in the max temp model.
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Test Statistic KS ∆1 ∆2 ∆3

DoY & max temp included 0.05112 0.02419 -0.00741 -0.00816

DoY included; max temp removed 0.02718 0.01530 0.00037 0.00096

max temp included; DoY removed 0.05329 0.03651 -0.00170 -0.00533

Table 2.4.1: Observed values for each of the test statistics in Equation 2.4.3. Bolded values

are the largest magnitude differences for each test.

Test Statistic KS ∆1 ∆2 ∆3 KS ∆1 ∆2 ∆3

Null Hypothesis Tested H0 H0,1 H0,2 H0,3 Hf
0 Hf

0,1 Hf
0,2 Hf

0,3

DoY & max temp included 0.196 0.075 0.768 0.829 0.002 0.007 0.103 0.954

DoY included; max temp removed 0.122 0.034 0.544 0.163 0.565 0.182 0.676 0.677

max temp included; DoY removed 0.001 0.000 0.299 0.775 0.070 0.055 0.020 0.711

Table 2.4.2: P-values for the canonical permutation test (left) and functional test (right);

Tests are done with all covariates included in the datasets (row three), DoY included and

max temp removed (row four), and max temp included and DoY removed (row five).

The p-values resulting from the followup tests appear to tell a similar story, in both the

functional and canonical permutation test. From Table 2.4.2 we see that when max temp

is removed, the smallest p-value is only 0.182 corresponding to the test for raw differences

in time period one as measured with ∆1. However, when max temp is included and DoY

removed, the largest p-value among the first four tests is only 0.07. The p-value from the

final test for raw differences in the third time period (measured by ∆3) is large at 0.711, but

recall that this is what was expected as the prediction curves appear very similar in all cases

late in the season. A similar pattern appears in the p-values in Table 2.4.2.

Before continuing with the localized tests the in the following section, we acknowledge

that the p-values from the canonical permutation tests, though reasonably small and sub-

stantially lower than in the other tests, fail to surpass the commonly accepted α = 0.05

threshold in all but one instance and too large to conclude that migration patterns differed

significantly in the two sets of years. However, note that these tests are conservative in

two ways. First and most obviously, permutation tests themselves suffer lower power than
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their parametric counterparts. More subtly, the RF prediction curves generated by the data

from 2010-2013 were not trained on the full available dataset, but were trained on a care-

fully selected subset DNN10−13 designed to spatiotemporally mimic the observations collected

in 2008-2009. Given this, it is reasonable to interpret the results of the canonical test as

providing at least moderate evidence for a difference in migration patterns that is influenced

by max temp. The same patterns appear in the functional test results, in greater magnitude,

providing stronger evidence of a yearly difference in occurrence patterns. The localized tests

in the following section allow for a more direct means of measuring the precise questions of

interest and provide more decisive evidence.

2.4.3 Random Forests as U-Statistics

Our localized tests rely on the work of Mentch and Hooker [2016a] from which we now

briefly review some key results. Suppose we have a training sample D = {Z1, ..., Zn} con-

sisting of n iid observations from some distribution FZ with which we construct a (possibly

randomized) ensemble consisting of m base learners, each built with a subsample of size k,

and use this ensemble to predict at some location X. Denote each base learner by h so

that we can write the expected prediction as θk = θk(X) = Eh(X;Z1, ..., Zk) and the (em-

pirical) ensemble prediction as θ̂k = θ̂k(X) = 1
m

∑n
i=1 h(X;Z∗1 , ..., Z

∗
k) where each collection

(Z∗1 , ..., Z
∗
k) represents a subsample of size k from D. Then, under some regularity conditions

introduced in Mentch and Hooker [2016a] later weakened in Peng et al. [2019],

√
m(θ̂k − θk)√
k2

α
ζ1 + ζk

d→ N (0, 1) (2.4.7)

where α = limn→∞ n/m and the other variance parameters are of the form

ζc = cov(h(Z1, ..., Zc, Zc+1, ..., Zk), h(Z1, ..., Zc, Z
′

c+1, ..., Z
′

k)) (2.4.8)

for 1 ≤ c ≤ k and where Z
′
c+1, ..., Z

′

k denote additional iid observations from FZ .

Importantly, this result can be utilized to construct formal hypothesis tests of variable

importance. Suppose we have p covariates X1, ..., Xp and we want to test the predictive
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importance (significance) ofX1. Let d̂i = R(Xi)−Rπ1(Xi) denote the difference in predictions

between a forest trained on D and another trained on Dπ1 in which X1 is permuted.

Consider N such prediction points with differences denoted by d̂ = (d̂1, ..., d̂N)T . Mentch

and Hooker [2016a] show that when the same subsamples are used to construct the trees

in each random forest, the differences are infinite-order U-statistics and thus follow the

asymptotic distribution in Equation 2.4.7. Let Σ̂d be the estimated covariance matrix of the

d̂i. Then, given our vector of pointwise differences, d̂T Σ̂−1
d d̂ ∼ χ2

N and we can use this as a

test statistic to formally evaluate the hypotheses

H0 : ER(xi) = ERπ1(xi) for all i ∈ {1, ..., N}

H1 : ER(X) 6= ERπ1(X) for some i ∈ {1, ..., N}
(2.4.9)

where the expectation is taken with respect to the training data and randomization. This

procedure naturally extends to the more general case where any subset of the features is

tested for significance by simply permuting that entire subset of features. Furthermore,

this procedure remains valid whenever those features are simply removed from the alterna-

tive random forest instead of being permuted, though the permutation-based approach is

generally considered more robust and reliable [Mentch and Hooker, 2016a].

2.4.4 Local Influence of Maximum Temperature

We return now to the question of determining whether maximum daily temperature

can partially explain the different Tree Swallow patterns of occurrence observed in 2008-

2009. The global tests in the previous section suggested that max temp may provide in-

formation about the interannual variation in occurrence beyond what is provided by sea-

sonal effects alone captured by DoY. We therefore want to distill the predictive influence of

max temp from that of DoY. In this section, we consider testing for the variable importance

of max temp anomaly.

To fit this into the hypothesis testing framework described above, we calculate one

subsampled random forest with the original data and another with a permuted version

of max temp anomaly. Note that because the hypotheses in Equation 2.4.9 are evaluated at

only fixed test points, careful selection of these points is important. Since we are interested in
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evaluating the hypotheses across a variety of locations and times, we stratify our test points

by location and conduct 6 different tests. The training and test set used here are selected

from points inside wildlife refuge areas. Wildlife refuges are of particular interest because

they include areas that are resistant to local environmental changes due to the environmen-

tal protections in place, helping to isolate the predictive influence of regional temperature

fluctuations on Tree Swallow occurrence. In total, we select 6 groups of 25 test points each,

which are subsequently removed from the training set. These 6 groups and points are shown

in Figure 2.4.3. Spatial centers for each of these regions were selected based on a high den-

sity of observations and the test points were selected uniformly at random from within a 0.3

decimal degree radius. The final training set consists of 25727 observations. We apply the

above hypothesis testing procedure at each of our 6 regional test locations, building separate

ensembles for each location. As in Section 2.4, we make all features available for splitting at

each node in each tree so that our random forest procedure reduces to subsampled bagging

(subbagging). These tests are implemented using the rpart package in R to construct the

regression trees [Therneau et al., 2017]. Keeping with the recommendations of Mentch and

Hooker [2016a], we take our subsample size to be k = 160 ≈
√

25727; in general, larger

subsamples can be used if base learners are constructed in an alternative fashion to comply

with honesty and regularity conditions [Wager and Athey, 2018]. We build 1.25× 107 trees

for each ensemble, to attain high precision in the estimation of the covariance matrix, Σ̂d.

Table 2.4.3 summarizes the test statistics and p-values obtained from the tests in each

region. These local tests for the significance of max temp anomaly suggest that the anomaly

is predictive of occurrence in testing locations 2-5, with less significance in location 1 and

no significance in location 6. These suggest a transition zone within BCR30 between testing

locations 1 & 6 where max temp anomaly is important in predicting occurrence. North of

this zone, temperatures may be too cold to allow insect activity in the fall and south of this

zone, temperatures may be warm enough to allow insect activity year round.
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Testing Location Test Statistic p-value

1 38.07 0.04553

2 58.12 1.889E-04

3 58.21 1.835E-04

4 62.14 5.275E-05

5 59.93 1.068E-04

6 28.44 0.2880

Table 2.4.3: Test statistics and p-values

for the hypotheses in Equation 2.4.9 at

the points show in Figure 2.4.3.

2.5 Discussion

2.5.1 Ornithological Implications

Our goal in this work was to thoroughly examine Tree Swallow migration patterns from

recent years and to examine the role temperature changes may have had in explaining differ-

ences among years. The global hypothesis tests evaluated over the entire BCR30 region in

Section 2.4 provided evidence for the hypothesis that the seasonal patterns of distributions

indeed differed in the years 2008 and 2009. The fact that this difference no longer seemed

apparent whenever max temp was excluded as a predictor supports the hypothesis that tem-

perature plays an important role explaining year-to-year variation in occurrence. While

these conclusions examine only the average region-wide effect, the corresponding localized

hypothesis tests carried out at specific locations along the Tree Swallow migration route

in Section 2.4.4 provide formal justification for the importance of maximum temperature

beyond being merely a correlate of some other seasonally varying effect. These results are
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especially important in the context of climate change, providing the first statistically sound

evidence from eBird data that variation in ambient temperatures is related to the mortality

and/or migration of a wild bird, supporting conclusions of other ecological work La Sorte

et al. [2016].

2.5.2 Methodological Discussion

Finally, it is important to note that the procedures we implemented in addressing our

hypotheses of interest are very general. Exactly the same approach could be taken to in-

vestigate distribution dynamics for any species as well as for far more general problems

completely outside of an ecological context. Fundamentally, our problem involved assessing

and characterizing the significance of a subset of available predictor variables in which the

underlying regression function was believed to consist of nonlinear and complex interaction

terms which, localized in predictor space, precluded the a priori specification of a suitable

parametric model for which traditional inference methods may have been available. We

present two forms of black box inference: development of non-parametric permutation-style

tests that are agnostic to the underlying procedure, and asymptotic results about the pre-

dictions of ensemble learners. The recent asymptotic results for infinite-order U-statistics

allowed us to model the data through a series of flexible but complex black-box models – in

our case, regression trees – while retaining the ability to formally characterize results. We

also present a classical statistical argument for the validity of the functional permutation

test. To our knowledge, this is the first time the connection between bagged models and

exchangeability has been noted, and used to form a framework for valid hypothesis testing.

This procedure maintains asymptotic validity (in terms of controlling Type I error), and

requires training substantially fewer trees than the canonical permutation test. We also note

that this procedure, despite being non-parametric, requires far fewer trees than even the

theoretical results of Mentch and Hooker [2016a] and Wager and Athey [2018], making it

a much more practical tool for our case study. In the next chapter, we discuss an exten-

sion of this procedure to testing other hypotheses, which marks the main methodological

contribution of this thesis.

30



3.0 Permutation Tests For Ensemble Methods

3.1 Introduction

Advances in computing power and big data collection have produced numerous situations

in which complex supervised learning methods can drastically outperform more rigid classical

statistical models in terms of predictive accuracy. Despite these advances, many such models

and algorithms are largely impenetrable to traditional statistical analysis. The random

forests algorithm [Breiman, 2001a] is among the relatively few supervised procedures for

which formal statistical properties have recently been developed, paving the way for inference

procedures. As detailed below, however, methods proposed to this point for assessing variable

importance have either been ad hoc and susceptible to producing misleading and inconsistent

results even in simple settings or have come with severe restrictions on the testing framework

while incurring extreme computational overhead. The primary goal of this paper is to develop

a formal, statistically valid hypothesis test approach that maintains high power with orders

of magnitude fewer required computations that scales naturally and efficiently to large data

settings where supervised learning tools like random forests are most likely to be employed

in practice.

Our work builds directly on the foundation of permutation tests, which have their roots in

the work of Fisher [1937] using contingency tables. Classical work on permutation tests from

Hoeffding [1952] and Lehmann et al. [1949] demonstrates the convergence of the permutation

distribution to the sampling distribution for a wide variety of test statistics. Much of the

modern work has focused on extending permutation tests to situations where the data may

not be iid or even exchangeable (e.g. Romano [1990]). Studentization is typically proposed as

a means of forcing the sampling distribution of a statistic to converge to a normal distribution

to which it is then shown that the permutation distribution also converges. This idea has

underpinned results in Neuhaus [1993] and Janssen [2005], who provide various sufficient

conditions for the convergence to the unconditional distribution.

Permutation tests are exact tests for hypotheses of equal distribution under the assump-
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tion of iid sequences, but are not necessarily valid for more general hypotheses. Convergence

to the unconditional distribution ensures that the permutation distribution can be used for

a finite sample exact test of equality of distribution and an asymptotically valid test for

more general hypotheses. In this work, we prove results regarding the asymptotic validity of

our procedure for more general hypotheses. The individual models (base learners) in super-

vised ensembles, such as decision trees in a random forest, naturally lend themselves to the

permutation framework by being exchangeable in many practical cases.

3.1.1 Related Work on Random Forests

Decision trees recursively partition the covariate space and generate predictions by fitting

some simple model – often an average or majority vote – within each resulting region. Of

particular interest are the classical Classification And Regression Trees [Breiman et al.,

1984]. CART procedures often have low bias, but can overfit the data without careful

pruning. Bagging stabilizes the variance by training many individual learners on bootstrap

samples. Random forests [Breiman, 2001a] augment the bagging procedure by introducing

auxiliary randomness in the construction of each individual learner, leading to trees with a

lower degree of dependence but higher individual variances. Since their introduction, random

forests have sustained a long track-record of empirical success in terms of predictive accuracy;

see Fernández-Delgado et al. [2014a] for a recent large-scale comparison in which random

forests outperform nearly all competitors.

Recent years have seen something of a surge in the development of formal statistical

analyses of random forests. Wager et al. [2014b] applied the infinitesimal jackknife variance

estimate developed in Efron [2014] to produce closed form variance estimates for random

forest predictions. Scornet et al. [2015a] provided the first consistency results for Breiman’s

original random forest procedure for additive regression functions. Mentch and Hooker

[2016a] derived the closed form asymptotic distribution for random forest predictions under

restrictions on subsample size. Wager and Athey [2018] proved both consistency and asymp-

totic normality for subsampled random forests whenever trees are restricted to being built

according to honesty and regularity conditions and large numbers of trees are constructed.
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The original random forest formulation has also been extended to various setups includ-

ing quantile regression [Meinshausen, 2006], survival analysis [Ishwaran and Lu, 2008, Cui

et al., 2017], reinforcement learning [Zhu et al., 2015], and a generalized framework allowing

random forests weights to be used for general local parameter estimation [Athey et al., 2016].

In addition to their robust history of empirical success and these newly-developed statis-

tical properties, the availability of ad hoc tools for evaluating variable importance has also

been a major contributing factor to their continued widespread practical use. Among these,

thanks in large part to their computational feasibility, the out-of-bag (oob) measures pro-

posed by Breiman [2001a] remain the most popular with versions of this measure available in

nearly every major statistical software. Unfortunately, in the decades since their introduc-

tion, a substantial amount of literature has repeatedly demonstrated their inadequacy and

inconsistency; see Strobl et al. [2007a] and Toloşi and Lengauer [2011a] as popular, represen-

tative examples. Among the issues with oob measures are a tendency to inflate the relative

importance of categorical covariates with many levels as well as those with high correlation

to others. The latter issue is particularly problematic as variables deemed most important

may have relatively little impact on the response but be highly dependent only on each other.

Recent work by Hooker and Mentch [2019] gives an explanation for this behavior based on

extrapolation.

In light of these issues, recent work has sought to cast the issue of variable importance

more formally in a classical hypothesis testing framework. Notably, Mentch and Hooker

[2016a] showed an equivalence between subsampled random forests and infinite-order U-

statistics, allowing for asymptotic normality to be established and a hypothesis testing pro-

cedure for evaluating variable importance to be proposed. This test, though valid, is quite

computationally prohibitive. The hypotheses are presumed to be evaluated at predefined

test locations in some test set T and whenever |T | = Nt > 1, calculating the test statistic

involves estimating an Nt × Nt covariance matrix. Accurate estimation of the covariance

necessitates constructing a very large number of trees – exponentially more than would be

required for the construction of the random forests themselves – and thus becomes compu-

tationally infeasible for more than a few dozen test points, even when the original dataset

is relatively small. Mentch and Hooker [2017] extend the procedure to tests for additivity
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and provide an alternative approximate test involving random projections that allows the

procedure to scale up slightly but with additional computational overhead. Even employing

the potentially more efficient infinitesimal jackknife variance estimate utilized in Wager et al.

[2014b] and Wager and Athey [2018] requires the number of trees constructed be at least on

the order of n to be valid. Thus, while these kinds of procedures can be shown to success-

fully alleviate the troublesome issues with the classical oob measures, their computational

complexity precludes their use in the vast majority of practical settings.

In contrast with these previous approaches, this work develops a formal testing framework

for variable importance that is both computationally efficient and statistically valid. In

particular, our procedure is almost entirely computationally agnostic to the number of test

points utilized. The permutation scheme we employ avoids the need for an explicit covariance

estimation and thus does not require a larger number of trees for larger datasets. Instead,

our hypothesis tests provide valid p-values for the predictive importance of any given subset

of covariates while maintaining the same order of computational complexity as the original

random forest procedure. Put simply, if the size and structure of the available data allows for

a random forest model to be constructed, our testing procedure can be readily employed. We

note also that while our focus here is on random forests, only a small portion of the theory

we provide is tree-specific and thus ensembles consisting of other kinds of base learners easily

fit within this testing framework as well.

The remainder of this paper is laid out as follows. In Section 4.3, we give an overview

of the testing procedure, and further highlight its benefits over existing methods. In Section

3.3, we present results regarding the statistical properties of the proposed test, namely that

it attains validity for the desired hypotheses. In Section 3.4, we present simulation studies of

the testing procedure for a variety of underlying regression functions, as well as a comparison

with two different knockoff statistics. In Section 3.6, we apply our procedure to multiple

ecological datasets where random forests have been successfully employed in recent applied

work. In addition to the main text, all technical proofs are provided in Appendix B.1, and

additional simulations demonstrating the robustness of the proposed procedure are presented

in Appendix B.2.

34



3.2 Overview of the Testing Procedure

Consider a sample Dn = {Z1, Z2, ..., Zn}, with Zi = (Xi, Yi) consisting of observations

on covariates X = (X1, ..., Xp) ∈ X and a response Y ∈ Y . In this work, it is assumed that

Zk
iid∼ F where F is some distribution with support on X × Y . In the regression context,

we assume that Y = m(X) + ε where m(X) = E(Y |X = X) and ε is an independent

noise process, typically with E(ε) = 0 and Var(ε) < ∞. The goal of the random forest

procedure is to accurately estimate m(X). Each tree in a random forest is constructed by

drawing subsamples of size kn < n, from Dn, drawing a randomization parameter ξ from

some distribution Ξ, and constructing a randomized decision tree. This process is repeated

B times and the random forest prediction at some point X ∈ X is given by

RFB,kn(X) =
1

B

B∑

j=1

Tkn,j(X; ξj;Dn). (3.2.1)

To evaluate the RF prediction accuracy at a test location X with true response value y, we

can measure the mean squared error

MSERF (X; y,Dn) =

((
1

B

B∑

j=1

Tkn,j(X)

)
− y
)2

where we have suppresed some notation for convenience. Similarly, we can write the MSE

of a forest at a collection of Nt test points T as MSERF (T ) = 1
Nt

∑Nt
`=1MSERF (X`;Y`,Dn).

Let RF π be defined similarly to Equation 3.2.1, but with Dn replaced by Dπn, where Dπn
replaces some subset of features with an alternate copy drawn independent of Y given the

rest of the covariates. To make this concrete, suppose that this subset consists of just a

single feature Xj. We can then evaluate whether Xj is important by conducting a test of

the following hypotheses

Hj
0 : E(MSERF (T )) = E(MSERFπ(T ))

Hj
1 : E(MSERF (T )) < E(MSERFπ(T ))

(3.2.2)

where the expectation is taken over the training data and auxiliary randomness. Though

conditional on T , we stress that the computationally complexity of the testing procedure we
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employ is almost entirely immune to the size of this test set, effectively allowing practitioners

to evaluate the hypothesis at as many locations as are desired. We call Xj important if we are

able to reject Hj
0 , and correspondingly measure its importance as the difference in MSEs,

MSERFπ(T ) − MSERF (T ). This definition of importance is model based and therefore

different than alternative definitions such as that utilized in the recent knockoff literature

[Barber et al., 2015, Candes et al., 2016], where a variable Xj is deemed unimportant if

(Y |= Xj) | X−j.

The standard knockoff procedure controls the False Discovery Rate (FDR) for hypotheses

about each of the covariates for arbitrary distributions over (X, Y ). It should be noted that

conditional independence of Xj and Y is neither necessary nor sufficient for Hj
0 . However,

in practice, the test statistic utilized in the knockoff procedure is generally taken as the

difference in importance measures between original and knockoff variables and thus the

outcome of the procedure itself remains highly model dependent. We also note that our

procedure, while it could use knockoff variables as the alternate random copies in Dπn, does

not require knowledge of the distribution of the covariates to maintain validity.

3.2.1 Testing Procedure

Intuitively, if two randomized ensemble methods produce predictions that are similarly

accurate, then the permutation distribution of discrepancies in accuracy should be centered

around 0. In our particular setting for testing feature significance, we compare the accuracy

of two ensembles built on different data. For a given (original) dataset Dn, we first construct

Dπn in such a way so as to remove any dependence of response on these features. However,

rather than permuting the data and retraining entire random forests, we first train trees on

both Dn and Dπn separately, record predictions at the test locations, and then permute the

predictions (trees) between the forests. The new forests formed at each iteration thus consist

of some trees built on the original data and some built with the permuted counterpart. In this

light, the testing procedure can be seen as directly analogous to a classic permutation test

to evaluate equality in distribution across two groups. Importantly, this procedure requires

only 2B trees, regardless of the size of the test set.

36



Pseudo-code for the permutation test is provided in Algorithm 1. We use ⊕ to denote

concatenation of data matrices by column, ] to denote concatenation by row, and 	 to

denote the removal of columns from a dataset. In order to prevent p-values exactly equal

to 0, we add 1 to the numerator and denominator, ensuring that under H0 the p-values

are stochastically larger than uniform random variables. This suffices to make the testing

procedure slightly more conservative, but more amenable to potential p-value transforming

procedure, like an FDR filter; see, for example, Phipson and Smyth [2010] for a more thor-

ough discussion. Crucially, note that this procedure requires no explicit variance estimation

of the Nt predictions made by individual forests and thus requires only 2B trees regardless of

the size of the test set. This provides a very dramatic computational speed-up over existing

parametric approaches [Mentch and Hooker, 2016a, 2017] that require the estimation of a

Nt × Nt covariance matrix, which, in turn, requires the construction of exponentially more

trees beyond what is needed to construct the original forests.

Algorithm 1: Permutation test pseudocode for variable importance
Data: Training data Dn test sample (T = [(X1, y1), ..., (XNt

, yNt
)]), specified feature(s) of

interest, XS , N0 number of permutations to evaluate
Result: p-value, p̃ for importance of XS at points in Tn
set number of permutations nperm, subsample size kn, and ntree = B ;
define Xπ

S by permuting the rows of Dn and selecting the columns corresponding to XS ;
define Dπn = Dn 	XS ⊕Xπ

S ;
for i in {1, ..., B} do

sample kn rows from Dn: D∗i = {Z∗i,1, ..., Z∗i,kn};
sample kn rows from Dπn: D∗πi = {Z∗πi,1 , ..., Z∗πi,kn};
train trees Ti(·) on D∗i,kn and Tπi (·) on D∗πi,kn ;
predict at Tn using Ti, T

π
i , generating Ti = [Ti(X1), ..., Ti(XNt)] and

T πi = [Tπi (X1), ..., Tπi (XNt)]
end

calculate MSE0 = 1
Nt

∣∣∣∣ 1
B

∑B
i=1 Ti − y

∣∣∣∣2
2

and MSEπ0 = 1
Nt

∣∣∣∣ 1
B

∑B
i=1 T

π
i − y

∣∣∣∣2
2
;

for j in {1, ..., N0} do
sample T ∗j,1, ...,T

∗
j,B from {T1, ...TB ,T

π
1 , ...,T

π
B} without replacement, call the B remaining

trees T ∗πj,1 , ...,T
∗π
j,B ;

calculate MSE∗j = 1
Nt

∣∣∣∣ 1
B

∑B
l=1 T

∗
j,l − y

∣∣∣∣2
2

and MSE∗πj = 1
Nt

∣∣∣∣ 1
B

∑B
l=1 T

∗π
j,l − y

∣∣∣∣2
2

end

calculate p̃ = 1
N0+1

[
1 +

∑N0

j=1 I
(
(MSEπ0 −MSE0) ≤ (MSE∗πj −MSE∗j )

)]
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3.3 Establishing Statistical Validity

We now develop the theoretical backing for the hypothesis testing procedure outlined

above. We note upfront that while the idea behind the procedure – shuffling trees between

forests to carry a test analogous to a two-group permutation test – is relatively straightfor-

ward, a substantial amount of technical derivation is required to establish its validity and thus

we now provide something of a roadmap for the following subsections. In Subsection 3.3.1,

we make explicit the connection between bagged models and exchangeable random variables

and build upon this in Subsection 3.3.2 to establish asymptotic normality for subsampled

random forest predictions. Asymptotic normality of individual predictions is then used to

establish a central limit theorem in Subsection 3.3.3 for the difference in MSEs between two

forests. In theory, knowledge of this sampling distribution is sufficient to formally evaluate

hypotheses of the form in Equation 3.2.2. However, as already alluded to, estimating the

variance of that distribution would require the construction of enormous numbers of addi-

tional trees, becoming computationally infeasible even for relatively small test sets. Thus, in

Subsection 3.3.4, we show that our proposed permutation test is asymptotically equivalent

to this parametric alternative, thereby allowing for formal hypothesis tests for feature im-

portance to be carried out while maintaining the same order of computational magnitude as

the construction of a typical random forest. For readability, technical discussions and proofs

are reserved for Appendix B.1.

3.3.1 Exchangeable Random Variables & Permutation Tests

Recall that a sequence of random variables X1, X2, ... is exchangeable if

(Xi1 , Xi2 , ...., Xik)
d
= (Xπ(1), Xπ(2), ..., Xπ(k)) for every finite sub-collection indexed by i1, ..., ik

and every permutation of the indices π(·). Permutation tests naturally lend themselves to

exchangeable data by providing a means of evaluating the hypothesis that the joint distri-

bution of a collection of random variables is invariant under permutations. They maintain

exactness for the null hypothesis whenever Xi
iid∼ P and independently Yj

iid∼ Q because the
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joint measure of the data factorizes as

µ(X1, ..., Xn, Y1, ..., Ym) =
n∏

i=1

P (Xi)
m∏

j=1

Q(Yj)

which is invariant to permutations of observations if and only if P = Q.

Modern work for permutation tests has focused largely on modifications needed to ac-

count for violations of the exchangeability assumption. Chung and Romano [2013] propose

a studentization of the permutation test statistic when conducting inference on a func-

tional of two distributions. Consider, for example, a two sample problem, with X1, ..., Xn
iid∼

PX = N (0, 5) and independently let Y1, ..., Ym
iid∼ PY = N (0, 1). Clearly, median(PX) =

median(PY ), but the data are no longer exchangeable and so an unstudentized permutation

test of H0 : median(PX) = median(PY ) is no longer valid at a pre-specified level. How-

ever, note that exchangeability is violated only because the data are no longer identically

distributed; permutation tests can remain valid for data that are correlated but identically

distributed so long as the pairwise dependence is constant. The upshot of this is that ran-

dom forest ensembles possess this property, and thus can be shown to be exchangeable as

formalized in Theorem 1.

Theorem 1. Denote a sequence of (potentially randomized) subsampled trees as {Tk(·)}∞1 .

Under the conditions outlined above, the residuals at Z∗ = (X∗, Y ∗) ∼ F given by

rk = Tk(X
∗)− Y ∗

form an infinitely exchangeable sequence of random variables.

In the case of a single random forest, exchangeability is readily apparent as the order

in which trees are trained has no bearing on their structure. Indeed, Theorem 1 can be

extended to any bagged learning method.

Given a dataset Dn with n×p design matrix X, let S ⊂ {1, ..., p} and define XS = {Xj :

j ∈ S} and X−S = {Xj : j /∈ S} where XS consists of the covariates that we seek to test

for importance. We then create a randomized version of XS independent of Y , denoted by

Xπ
S . Note in particular that when the entire joint density P (X) of the covariates is known,

Algorithm 1 of Candes et al. [2016] can be used to generate the knockoffs that make up
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Xπ
S which then ensures that [X−S , XS ]

d
= [X−S , X

π
S ]. By construction, Xπ

S is independent

of Y |X−S and consequently, if we replace XS with Xπ
S in the design matrix to form a new

training dataset Dπn, then the trees trained on Dπn inherit the conditional independence so

that T (X;Dπn) is independent of Y | X−S , allowing for the testing of a null hypothesis of

conditional independence.

3.3.2 Asymptotic Behavior of Trees

Within-forest exchangeability is not sufficient to justify the proposed testing procedure

at the nominal level. Instead, we need to establish sufficient conditions to justify exchanging

trees between forests. An important step in this direction is to establish the existence of a

limiting sequence of subsampled trees that behave like an iid sequence.

Condition 1. There exists a random function T∞ such that limn→∞ Tkn
d
= T∞

Later, we provide sufficient conditions for this to hold. We note that this condition is

similar in spirit to Assumption 15.7.1 in Lehmann and Romano [2006], which is fundamental

to the validity of subsampling based intervals for model parameters.

In practice, we would like to establish results for random forests trained on growing

subsamples. If we insist that the subsample size kn grow slower than
√
n, we obtain the

following intuitive result.

Lemma 1. Consider a collection of Bn trees {Tj,kn}Bnj=1 built from a training set of size n on

subsamples of size kn satisfying Condition 1. Then, as long as kn/
√
n→ 0 and

(
Bn

2

)
log

[(n−kn
kn

)
(
n
kn

)
]
→ 0

the infinite sample sequence of trees {T1,∞,k∞ , ..., TB,∞,k∞ , ...} is an infinite sequence of pair-

wise independent random functions.

The condition on the number of trees Bn is likely not of much practical importance.

For finite Bn, the probability sequence has the form of aKn , so because an → 1, aKn also

converges to 1. However, if we let Bn grow with n, the number of trees may overwhelm the
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independence induced by subsampling. Thus, we must let the log probability of an individual

pair being independent go to 0 faster than
(
Bn
2

)
≈ B2

n/2 goes to infinity.

Lemma 1 establishes asymptotic pairwise independence, but not that the limiting se-

quence is iid. For this, we turn to a result from Aldous [1985].

Lemma 2. [Aldous, 1985] Let Z1, Z2, ... be an infinitely exchangeable sequence. If Zi |= Zj, i 6=
j, then Z1, Z2, ... is a sequence of iid random variables.

An immediate consequence of the preceding lemmas is the following corollary.

Corollary 1. Let {Tj,kn}Bnj=1 be a collection of Bn trees trained on subsamples from Dn, sat-

isfying the conditions of Lemma 1. Then, {Tj,∞}∞j=1 := limn→∞{Tj,kn}Bnj=1 is an iid sequence

of functions.

The infinite sequence of subsampled trees enjoys many properties that the finite sequence

does not. In particular, we can obtain the following pointwise central limit theorem.

Corollary 2. Let {Tj,kn}Bnj=1 be a sequence of trees on subsamples from Dn, satisfying Con-

dition 1 and the conditions of Lemma 1. Further, assume X ∈ X is such that 0 <

Var(T∞(X)) = σ2(X) <∞. Then as n→∞

√
Bn

[
1

Bn

Bn∑

i=1

Ti,kn(X)− E
(

1

Bn

Bn∑

i=1

Ti,kn(X)

)]
d→ N (0, σ2(X)). (3.3.1)

Corollary 2 follows directly from applying the Central Limit Theorem to the sequence of

univariate random variables {Tj,∞(X)}∞j=1, which are iid by Corollary 1.

Remark. For a collection of test points, X1, ..., XNt , we can also consider the sequence of

vectors Ti,kn = [Ti,kn(X1), ..., Ti,kn(XNt)]
T , which are iid by Corollary 1. If we assume that

Σ = E
[
(Ti,kn − E(Ti,kn))(Ti,kn − E(Ti,kn))T

]
has finite entries, the multivariate central limit

theorem gives that as n→∞

√
Bn

[
1

Bn

Bn∑

i=1

Ti,kn − E
(

1

Bn

Bn∑

i=1

Ti,kn

)]
d→ N (0,Σ).
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Remark. We can generalize the independence results to a collection of two sets of trees. In

particular, suppose that we now train Bn/2 trees on Dn = {Zi}ni=1 and Dπn = {Zπ
i }ni=1, where

Zπ
i = ([XS , X

π
−S ]i, Yi). Note that Zπ

i |= Zj,∀ i 6= j, so there is the same independence

structure between the datasets as within. Thus, the probability that a pair of trees trained

on subsamples of size kn, one from Dn and one from Dπn, are independent is the same as the

probability that a pair of trees within forest are independent. As such, {Ti,kn(X)}Bni=1 and

{T πi,kn(X)}Bni=1, where Bn, kn satisfy the conditions of Lemma 1, behave like two independently

iid samples.

We intentionally leave σ(X) as an abstraction in Corollary 2 since estimation of σ(X)

is not straightforward. Instead, this result will be used as the basis for asymptotic validity

of our permutation test which, uncharacteristically, is far more computationally efficient.

Going forward, we consider the asymptotic case, so that the sequence of tree predictions

behaves like an iid sequence. Further, in the infinite sample case, the number of trees can

be made arbitrarily large, and so we allow B to go to infinity with the understanding that it

does so in such a way that respects the requirements of Lemma 1. This is largely a matter

of notational convenience; we could explicitly include the dependence on n in each of the

following statements and stress that the limiting distributions only hold as n→∞.

3.3.3 Asymptotic Distribution of MSEs

The previous subsection established asymptotic normality of subsampled random forest

predictions. Here we build upon those results to establish asymptotic normality for MSEs of

random forest predictions as well as the difference in MSEs between two random forests. We

conclude the subsection by providing conditions under which trees conform to the conditions

necessary to obtain that asymptotic normality. In the following we provide a high-level

discussion in addition to the key results. A more technical discussion is reserved for the

appendix.

To begin, consider a single test point (X, y). We can write the MSE as

MSERF (X; y) = g

(
1

B

B∑

i=1

Ti(X), y

)
(3.3.2)
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where g(a, b) = (a−b)2. The asymptotic distribution of the MSE can be derived via the delta

method. Appeals to the mean value theorem and the law of large numbers gives that the

MSE is asymptotically a linear function of the random forest prediction. These derivations,

discussed in more detail in Appendix B.1, yield the following result, given in terms of a

general function g.

Lemma 3. Assume the conditions needed from Corollary 2. Additionally, assume that g has

at least k derivatives for some k ≥ 3 , and that g(k)(x) <∞ for all x. Further, assume that

E|Ti(X)|k <∞. Then,

√
B [Eg(RFB(X))− g(ERFB(X))] =

g′′(ERFB(X))σ2

2
√
B

+ o(B−3/2) = o(1).

Since the MSE function defined as g(RFB(X)) = (RFB(X)− y)2 satisfies the conditions

posited by Lemma 3, we can conclude that

√
B [g (RFB(X))− Eg (RFB(X))]

d→ N
(
0, g′(ERFB(X))2σ2

)
.

Remark. Corollary 2 is not a necessary prerequisite for obtaining the asymptotic normality

of the MSE. In fact, a similar argument could be used to justify the asymptotic normality

of the MSE for any random forest who satisfies a central limit theorem and a law of large

numbers (with respect to its own expectation), such as the results in Mentch and Hooker

[2016a] and Wager and Athey [2018].

We can extend this result to the two forest case, where we compare the MSE of RFB(X)

against that of RF π
B(X). In particular, if EMSERF (X; y) = EMSERFπ(X; y), we see that

√
B [MSERF (X; y)−MSERFπ(X; y)]

d→ N
(
0, g′(ERFB(X))2σ2 + g′(ERF π

B(X))2σ2
π

)

(3.3.3)

where σ2
π = Var(T π(X)). For a test set T with Nt points, we can calculate the pointwise

squared errors as MSERF (T ) = [(RFB(Xi)− yi)2]
Nt
i=1.

Finally, to connect back to our procedure, we now derive the asymptotic distribution

of the differences in MSE between two forests. As above, let MSERF (T ) be the MSE of a

random forest evaluated on a test set T and let MSERFπ(T ) denote the MSE of a forest
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trained on the partially randomized data. By the results above, under the null hypothesis

that EMSERF (T ) = EMSERFπ(T ), we have that as B →∞,

√
B1/NT

t (MSERF (T )−MSERFπ(T ))
d→ N (0, τ 2)

for some τ 2 > 0. Appendix B.1 provides a technical derivation of the precise form of τ . We

reiterate however that our permutation test approach, by design, avoids the need to compute

this complex variance and so we do not discuss it further here.

Until now, our discussion has remained largely agnostic to the type of base-learners em-

ployed, subject to the regularity conditions needed for asymptotic normality. We turn now

to establishing that the trees typically grown in a random forest satisfy such conditions. The

following result follows a similar strategy as Lemma 2 in Meinshausen [2006] with regularity

conditions similar to those imposed in Wager and Athey [2018].

Proposition 1. Assume that Y = m(X) + ε, where m(·) is continuous on the unit cube.

Let X = [0, 1]p, and assume that Xi,j
iid∼ Unif(0, 1) for i = 1, ..., n and j = 1, ..., p. Then,

let Tn(X) be a tree trained on iid pairs (X1, Y1), ..., (Xn, Yn) such that each leaf of the tree

contains a single observation. Further, assume the trees satisfy the following two conditions:

(i) ∃ γ > 0 such that P (variable j is split on) > γ for j ∈ {1, ..., p}
(ii) Each split leaves at least γn observations in each node.

Then, for each X ∈ X

Tn(X)
d→ Y |X = X as n→∞.

The tree predictions thus asymptotically behave like the conditional samples of Y and

as a result, should have finite non zero variance. Note that Breiman [2001a] recommends

building trees to full depth in which case Condition 1 is automatically satisfied.

44



3.3.4 Extension to Permutation Tests

The results in the previous subsection established that the sampling distribution of

MSE differences between forests was asymptotically normal, but with a computationally

intractable variance. Here we conclude our theoretical discourse by showing that the permu-

tation distribution converges to that sampling distribution. As a result, the permutation test

proposed in Section 3.2 is asymptotically equivalent to the standard parametric hypothesis

test for variable importance but without the additional computational overhead. We begin

by restating a classical theorem from Hoeffding.

Theorem 2. [Hoeffding, 1952] For a sequence of data {Xi}Ni=1 and a statistic S : RN → R,

define the permutation distribution function as

ĴN(t) =
1

|GN |
∑

π∈GN

I
{
S(Xπ(1), ..., Xπ(N)) ≤ t

}

where GN is the group of all permutations of {1, ..., N}. Let π, π′ be two permutations drawn

independently and uniformly over GN , and suppose that as N →∞

(
S(Xπ(1), ..., Xπ(N)), S(Xπ′(1), ..., Xπ′(N))

) d→ (S, S ′) (3.3.4)

where S, S ′ are iid with cdf R(·). Then for all t at which R(·) is continuous, ĴN(t)
p→ R(t).

Direct application of Theorem 2 is often challenging. Suppose {Xi}ni=1
iid∼ PX and inde-

pendently {Yi}mi=1
iid∼ PY , and we calculate the statistic

√
n+m [S(X1, ..., Xn)− S(Y1, ..., Ym)],

and further define p = limn→∞
n

n+m
. Theorem 2.1 of Chung and Romano [2013] states that

if there exists a function ψPZ (which may depend on the distribution of the data, PZ) such

that
√
N [S(Z1, ..., ZN)− ES(Z1, ..., ZN)] =

1√
N

N∑

i=1

ψPZ (Zi) + oPZ (1) (3.3.5)

(i.e. the statistic is asymptotically linear), then the permutation distribution of the afore-

mentioned statistic is asymptotically normal with mean 0 and variance given by

τ 2 =
1

p(1− p)Var(ψ(Z)) =
1

p(1− p) [pVar(ψ(X)) + (1− p)Var(ψ(Y ))] (3.3.6)
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where Z ∼ pPX + (1− p)PY . A key challenge is that τ 2 is often not equal to the variance of

the unconditional distribution without additional assumptions on PX and PY .

The goal here is thus to provide a general result combining the delta method with the

results of Chung and Romano [2013].

For a given test point (X, y), it can be shown that the MSE satisfies Equation 3.3.5 for

ψ(T (X)) = g′(ERFB(X)) [T (X)− ERFB(X)]

ψπ(T π(X)) = g′(ERF π
B(X)) [T π(X)− ERF π

B(X)]

and thus the conditions needed to apply Theorem 2.1 of Chung and Romano [2013] are

satisfied. The derivation of the permutation distribution variance and resulting formalization

of the validity of our testing procedure for a single test point are given in Appendix B.1.

To extend this result to the more general case with a test set T consisting of Nt points,

recall that the multipoint MSE can be broken down into a sum of iid components. In

particular, results from in Subsection 3.3.3 give that

√
B [MSERF (T )− EMSERF (T )] =

1√
B

B∑

i=1

T̄i + oP (1)

where T̄i is an iid sequence of mean 0 random variables. Thus, the scaled and centered

MSE satisfies the linearity condition in Equation 3.3.5. In particular, T̄1, ..., T̄B
iid∼ P and

T̄ π1 , ..., T̄
π
B
iid∼ P π and we are testing H0 : ET̄i = ET̄ πi . Thus, because each is calculated with

B trees, the same results hold and the test is asymptotically valid at multiple test points.

This leads naturally to the following culminating theorem.

Theorem 3. Let T1,kn , ..., TB,kn and T π1,kn , ..., T
π
B,kn

be two collections of trees satisfying the

conditions of Lemmas 1 and 3, and fix a collection of test points T . Consider a test of the

null hypothesis

H0 : E
[
MSERF (T )

∣∣ T
]

= E
[
MSERFπ(T )

∣∣ T
]

using the statistic ∆̂ = MSERF (T ) −MSERFπ(T ). Then under H0, the permutation dis-

tribution of
√
B∆̂ converges to a normal distribution with mean 0 and variance the same

as that of the unconditional distribution of
√
B∆̂, as n → ∞. Thus, the permutation test

attains the asymptotic Type I error rate.
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3.3.4.1 Beyond the iid Approximation

As a final concluding remark related to the technical details of this permutation proce-

dure, we note that the conditions of Lemma 1 are likely far stronger than needed to attain

the ultimate result in Theorem 3. The proofs of validity for the permutation tests rely on

projecting the random forest (which is a correlated sum 1
B

∑B
i=1 Ti(X)) onto a sum of iid ran-

dom variables,
∑n

i=1 ψn(Zi) for some function ψn, to which a central limit theorem can then

apply. Indeed, this is exactly the approach of the Hájek projection and H-decomposition

used respectively by Mentch and Hooker [2016a] and Wager and Athey [2018]. In these

works, roughly speaking, it is shown that under constraints on the forest construction, the

random forest prediction at a point X satisfies

1√
B

B∑

i=1

[Ti(X)− ERFB(X)] =
n∑

i=1

ψn(Zi) + oP (1).

For example, if the Hájek projection is used, ψn(Zi) =
√
BE

[
RFB(X)

∣∣ Zi
]
− ERFB(X).

Moreover, as mentioned in the remark following Lemma 3, the fact that the MSE is asymp-

totically linear is independent of the iid approximation, and thus the MSE for these forests

is also asymptotically linear.

3.4 Simulations

We now apply our testing procedure in a number of settings with varying regression

functions and covariate structures. We simulate data from four models summarized in Ta-

ble 3.4.1, with covariate structures summarized in Table 3.4.2. For each of our simulations,

we train random forests using the randomForest package in R [Liaw and Wiener, 2002] using

the default mtry parameters.
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Model # Data Generating Model Covariate Structure

1 Y = βX1 + βI(X6 = 2) + ε M1

2 Y = β sin(πI(X7 = 2)X1) + 2β(X3 − .05)2 + βX4 + βX2 + ε M1

3 P (Y = 1|X) = expit
[
β
∑5

j=2Xj

]
M2

4 Y = RFeBird(X) + ε eBird

Table 3.4.1: Distributions of Y |X for each model. expit(z) = 1
1+ez

.

Model # Covariate Structure

M1 X1, ..., X5
iid∼ Unif(0, 1), X6, ..., X10

iid∼ Multinomial(1, [1
3
, 1

3
, 1

3
]T )

M2 X1, ..., X500 ∼ AR1(0.15)

eBird Data from Coleman et al. [2017] - 12 variables + 2 proxy variables

Table 3.4.2: Distribution of X for various simulation studies.

3.4.1 Power and Error Control

Model 1 is a standard ANCOVA model, which is intended to include both an important

discrete and continuous predictor, to demonstrate the robustness of the proposed procedure

to covariate type. Here we test the importance of (X1, X6, X2, X7) where X1, X6 are im-

portant, X1, X2 are continuous, and X6, X7 are categorical. Model 2 resembles the MARS

data generating model [Friedman, 1991] commonly used in random forest studies, but with a

modification to include an important discrete covariate. In both settings, we draw n = 2000

points from the joint distribution of (X, Y ), subsample sizes of kn = n0.6 ≈ 95, and build

B = 125 trees in each forest. Predictions were made at Nt = 100 test points, each drawn

from the same joint distribution as the training data. Note that the null hypothesis, as

defined in Equation 3.2.2, is conditional on the test points used. These simulations change

the null hypothesis each time, because the validation set changes. Thus, the simulations

mimic the common practice of random splitting the data into a training and validation fold.

For Models 1 and 2, we focus on a marginal signal to noise ratio, which is controlled by

the parameters β and σ. We fix β = 10 across all simulations let σ = 10/j where j takes 9
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equally spaced values between 0.005 and 2.25 so that for small k, the signal to noise ratio

(SNR) is small. The results are shown in Figure 3.4.1. We see that the test maintains the

nominal type I error rate and attains high power for marginal SNRs near 1 for all variables

except X7 in Model 2. Note also that the type I error rate appears insensitive to the covariate

structure. In the MARS model, we see that the test has more power against X3 than X7,

because X7 is only important insofar as it interacts with X1.

Model 3 is an adaptation of the model used in Candes et al. [2016] for high-dimensional

correlated data. Here we test for the significance of X2, which is important, and also X1 and

X500, which are unimportant, but X1 is highly correlated with X2 and X500 is much more

weakly correlated. Candes et al. [2016] demonstrated that the standard logistic regression p-

values in this situation are far from uniform under H0, so that standard parametric inference

may not be valid. Random forests, on the other hand, have been shown [Biau, 2012, Scornet

et al., 2015a] to be largely insensitive to the dimension of the ambient feature space, and

instead sensitive only to the “strong” feature space. This setting helps to explore the utility

of our method in the high dimensional sparse signal case.

We limit n = 600 so that p/n is not small, though the dimension of the strong features is

still small relative to n. We let kn = n0.6 ≈ 46, B = 125, Nt = 100, and vary the β coefficient

according to 8 equally spaced values between 0.01 and 2.5 and also for 7 equally spaced values

between 5 and 20. The results are shown in the bottom panel of Figure 3.4.1. Note that

the test resolves the biased p-value issue associated with the standard glm procedure and

is still able to attain reasonable power for the effect of X2. The power is likely limited by

the fact that for large β, the change in the marginal effect of each covariate only changes

P (Y = 1|X) slightly due to the rapidly decaying first derivative of the expit(z) function.

Finally, we turn to Model 4 where the true data generating model is a random forest. We

utilize a dataset from Coleman et al. [2017] describing the occurrence of tree swallows and

to construct RFeBird, we draw 5000 points from the data, and train RFeBird, a random forest

with mtry = 9 and 1000 total trees. To simulate from this model, we draw (without replace-

ment) samples of size n from the remaining 20727 points, predict at them using RFeBird, and

add Gaussian noise. We test for the effect of two variables: eff.hours, which corresponds

to the number of hours a user expended upon a hike, and dfs, which is a fractional mea-
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surement of day of year. We further include two proxy variables (not used to train RFeBird),

defined as eff.hours.proxy = eff.hours+Z0.5√
Var(eff.hours)+0.5

and dfs.proxy = dfs+Z0.025√
Var(dfs)+0.025

where Zσ

is a standard normal random variable with variance σ2. The purpose of this construction is

that the proxy variables’ relationship with Y is solely dictated by their dependence on their

original copy. In Model 4, we let n = 2000, kn = n0.6, B = 125, Nt = 100, and let σ = e−j

for 10 values of j equally spaced between 1 and 5. The results of this simulation are show in

Figure 3.4.1. We see that again the test maintains the nominal type I error rate with modest

power for signal variables. Moreover, the procedure correctly identifies the true variables as

important over their highly correlated proxies.

3.4.2 Normality of Permutation Distributions

One of the central claims of our work is that the permutation distribution is asymptot-

ically Gaussian. To demonstrate this, we now provide a concise simulation demonstrating

that the permutation approximation of the Gaussian proposed in Theorem 3 is valid in prac-

tice. We simulate n = 2000 training observations from Model 2 (with β = 10, σ = 10),

along with Nt = 100 test observations and apply our procedure to test for the significance

of X3 (important) and X5 (unimportant). The random forests each consist of B = 200

trees trained on subsamples of size kn = n0.6, with mtry = 3. The resulting permutation

distributions are shown in Figure 3.4.2.

These plots demonstrate that the permutation distributions do approximate a Gaussian

distribution. Moreover, in the null case, the observed ∆B lies squarely in the center of the

distribution, while in the alternative case, ∆B lies far away from the center. Next, we more

formally investigate the power/validity of the testing procedure.

3.4.3 Formal Comparison with Knock-offs

In this section, we formally compare the proposed procedure with several implementa-

tions of the knockoff framework [Barber et al., 2015, Candes et al., 2016], an exciting new

method for statistically valid variable selection in a model-free way. As noted in Section 3.2,

the null hypothesis tested by knockoffs is slightly different from that in our procedure. To
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Figure 3.4.1: Simulation results for each of the models from Table 3.4.1. Black line

corresponds to α = 0.05, the nominal level
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Figure 3.4.2: Permutation distributions of ∆B in the simulation from subsection 3.4.2. Red

line indicates observed value, and histograms are overlayed by an estimated normal density.

a practitioner, however, the procedures would likely be used in a similar way, and as such

we leave this subtlety out of our subsequent discussion. In general, we conclude that our

method is largely complementary to knockoffs.

A key assumption of the knockoff framework is that the distribution of the covariates X

is known (also referred to as the model-X assumption) , which, crucially, our method does

not require. Candes et al. [2016] proposes a second order method for generating knockoffs

via a Gaussian analogue for X (i.e. a Gaussian random vector with the same covariance and

mean as X). As of now, it is unclear how well knockoffs perform, both in terms of power and

Type I Error control, when an approximation is employed. Finally, our method is designed

to be powerful in situations where the response has a complex relationship with the data.

To tackle these diverse scenarios, we use the following simulation set-up, with 4 different

pairings:

• We fix p = 25, and generate covariates according to the following data distributions, one

where the model-X assumption is satisfied, and one where it is not:

Gaussian X ∼ N (0,Σ) where Σij = ρ|i−j| and we choose ρ = 0.25.

Fish Toxicity We simulate X from the UCI fish toxicity data set provided by Cassotti

et al. [2015], which comes with n = 908 observations on 6 covariates with information

regarding chemicals that are believed to be toxic to a species of minnow. These co-
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variates are quite non-Gaussian. To fill in the remaining 19 covariates, we randomly

sample 19 columns (with replacement) from the original 6, and then sample rows of

those 19 columns from the original data, so that there is no replication between the

original 6 columns and the 19 synthetic columns. X is also scaled and centered, to

account for differing units.

• Our responses are generated according to the following two regression functions. In both

cases, ε ∼ N (0, 1/SNR).

Linear Y =
∑s

j=1 Xj + ε

Flattened Sine Y = 1√∑s
j=1X

2
j

sin
(
π
√∑s

j=1 X
2
j

)
+ ε. Note that in this set up, each

variable has little linear effect but quite a strong nonlinear joint effect.

• For the responses, we vary the parameters s and SNR, to respectively control the density

of the model (in terms of the number of important features) and the strength of the

signal present in the data.

Each set up is evaluated at 6 different values of s, spaced evenly between 2 and 25, for a very

sparse to a dense model, and 10 different signal to noise ratios, spaced evenly from 0.5 to 5,

for a total of 60 simulation pairs. We apply the knockoff filter with the both standard lasso

coefficient difference statistic and random forest out-of-bag importance statistic, to use both

a linear and nonlinear statistic. We apply our procedure and the two knockoff approaches to

100 repetitions of n = 908 observations from the 4 different model set ups listed above. For

our procedure, we build 125 trees, holdout 90 observations at random for testing, and take

subsamples of size k =
√

908 ≈ 30. All tests here are conducted with respect to evaluating

the marginal importance of X1, which is important (in the sense of conditional independence)

in each scenario. We define the power of the knockoff procedure to be 1
100

∑100
l=1 I(X1 ∈ Sl),

where Sl is the selection of variables produced by the knockoff filter.

The results are plotted in Figure 3.4.3. Several patterns are shared across the plots. First,

the proportion of important variables appears to be more important for attaining good power

than the SNR in both our method and the knockoff procedure. However, the directionality

is inverted - our procedure performs much better in sparse models, while knockoffs seem to

require a dense model to select any variables. Next, the Gaussian flattened sine presents a

challenge for both procedures, but our procedure is able to attain good power in all other
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scenarios, while knockoffs really only succeed (with either statistic) in the linear Gaussian

case. While throughout these simulations the FDR is controlled at the nominal level, a

steep price is paid in terms of power for losing the knowledge of the distribution of X. Both

knockoff statistics exhibit almost identical performance, which suggests further that the oob

importance measures are unlikely to be useful as a nonlinear test statistics.
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Figure 3.4.3: Simulation results for the knockoff comparison, showing the associated power

curves, calculated with respect to a nominal Type I error rate of α = 0.10. The knockoff

procedure is run with the FDR threshold set to α. Light shades of blue indicate more

powerful signal. fs refers to the flattened sine model. Bottom: our procedure. Top left:

Knockoffs with the lasso statistic. Top right: Knockoffs with the random forest out-of-bag

importance statistic.

We conclude that knockoffs are a powerful method when there are many covariates

suspected to be important to the response. In these cases, the knockoff procedure can

efficiently identify a dense model. However, the overwhelming dependence on s and the

model-X assumption being satisfied suggests the need for more direct alternatives like that

proposed here. Our procedure exhibits qualitatively similar behavior in 3/4 of the set ups,
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attaining good power even for signal to noise ratios below 1 in the sparse model. Knockoffs

maintain a computational edge over our method, needing only a single model fit to provide

FDR controlled variable selection, while a naive implementation of our method would require

2p model fits, followed by a FDR filter such as Benjamini-Hochberg that accepts p-values

[Benjamini and Hochberg, 1995].

3.5 Discussion

3.5.1 Validity of the Central Limit Theorem for Random Forests

The work above hinges on the conclusion of Equation 3.3.1 - that because subsampled

tree predictions behave like an iid sequence in the limit, their sample means (i.e. random

forest predictions) are approximately normally distributed. Recall that this conclusion was

the result of Lemma 1 which shows that every pair of subsampled trees is asymptotically

independent. We now present a pair of central limit theorems for exchangeable random

variables that weaken this condition.

Theorem 4. [Chow and Teicher, 2012] Let {Xn}, n ∈ N, be an infinitely exchange-

able sequence of random variables with E(Xn) = 0 and Var(Xn) = 1. If Cov(Xi, Xj) =

Cov(X2
i , X

2
j ) = 0 for all i 6= j, then 1√

B

∑B
n=1Xn

d→ Z where Z ∼ N (0, 1), as B →∞.

The implication of this theorem is that the trees need not be independent in order to

obtain asymptotic normality. Using the variance calculation in Friedman et al. [2010], this

requires a random forest with variance on the order of O(1/B) variance. Further, Chow and

Teicher [2012] prove the converse - that is, the only way for random forests, as currently

considered, to produce asymptotically normal predictions is for the correlations between

trees to die out. This suggests that a bootstrapped forest will not be asymptotically normal

as currently considered, as the correlations persist, even in the infinite sample case, and the

tree predictions are exchangeable.

The above conclusion is quite disturbing - it may seem that there is no hope for asymp-

totically normality in the bootstrapping case, as bootstrapped trees are also exchangeable by
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Theorem 1. However, we now state a second result, referenced in Klass and Teicher [1987]:

Theorem 5. Let {Xn}, n ∈ N be an infinitely exchangeable sequence with E(Xn) = 0 and

Cor(Xi, Xj) ≡ ρ > 0. Then, 1
Bρ

∑B
n=1Xn

d→ Z ∼ N (0, 1) if and only if E(
∏n

i=1Xi) exists

and is equal to E(Zn) for all n.

The main qualitative difference is the rescaling factor - for the correlated case is 1
B

,

not 1√
B

. This is corroborated by the variance calculation from Friedman et al. [2010] - the

variance of a bootstrapped forest, in our context, no longer vanishes because the variance

of individual trees does not vanish. Thus, a more punitive rescaling is necessary to attain

asymptotic stability. The condition on the moment matching can be interpreted as a more

restrictive version of the canonical condition that each random variable has variance 1. This

condition, however, is necessary for a CLT to hold, and as such could be an emphasis of

future research into the limiting distribution of bootstrapped forests.

Under the assumption that the regularity conditions of Theorem 5 are met, in finite

sample situations, we are always technically in the regime of Theorem 5, so that a central

limit theorem holds, but with a difficult to estimate variance that may not line up with the

variance estimate suggested by the permutation distribution. However, we argue that the

limiting distribution suggested by each theorem is similar, so long as the number of trees

built B is small relative to the correlation between the trees. In particular, assume that the

tree predictions at X have variance σ2, and pairwise correlation ρ. Then, recalling the result

from Friedman [2001], the variance of the random forest prediction at X is given by

Var

[
1

B

B∑

i=1

Ti(X)

]
= σ2 B

B2
+ 2

B2−B
2

B2
ρσ2 = σ2

(
1 + (B − 1)ρ

B

)

For ρ = 0 (the variance implied by Theorem 4), we see that the random forest variance

simply σ2

B
. This is the variance used in the permutation test theory above - i.e. the variance

that arises by treating the trees as iid. Thus, the difference between the true variance and

the theoretical variance is σ2
( (B−1)ρ

B

)
. Clearly, as B gets large, this term approaches ρσ2,

which is the maximum difference between the variances. However, for small B, i.e. 1/ρ� B,

we see that the difference term is very near 0, so the iid approximation is reasonable. Recall

that both ρ and B depend on n, so that a more reasonable requirement (for an iid-like CLT

56



to hold) on the number of trees may be ρn = o(1/Bn), rather than the condition laid out in

Lemma 2.

To demonstrate this effect, we conduct an auxillary simulation, similar to the simulations

from Mentch and Hooker [2016a]. We simulate 1000 datasets of varying sizes from the MARS

model (Equation 3.5.1) and make predictions at X1 = X2 = ... = X5 = 0.5.

Y = 10 sin(πX1X2) + 20(X3 − 0.05)2 + 10X4 + 5X3 + ε (3.5.1)

where X1, ..., X5
iid∼ Unif(0, 1) and ε ∼ N (0, 10). We simulate the unconditional distribution

of three different random forest predictions. We first consider the full bootstrapped forest,

then a forest with large subsamples, and a forest with small subsamples. Theorem 5 suggests

that if the tree predictions can be rescaled to have moments of a standard normal random

variable, then the limiting distribution of random forest predictions should be asymptotically

normal.

We also estimate the relevant terms in the variances associated with both central limit

theorems. We estimate the correlation between the tree predictions (and the squared tree

predictions) by training two trees on iid resamples from each simulated dataset. Then, the

correlation between the vector of tree predictions is recorded. We also record the average

MSE of each forest, the variance of the forest predictions, the variance of the tree predictions,

and the variance of the MSEs. The squared error terms are recorded with respect to a fixed

test outcome (i.e. are conditional on a particular realization of Y |X = X).

These results are presented in Table 3.5.1. As expected, the smaller the subsample

size is relative to the overall subsample size, the lower the correlation between the trees.

Somewhat surprisingly, the bootstrapped forest exhibits higher tree variance (≈ 90.2) than

the subsampled forests (≈ 82.1, 84.0), leading to a much more variable overall forest when

combined with the higher tree correlations. Interestingly, the variance of the random forest

predictions are much smaller than the average MSE, indicating that the squared bias term is

dominating the error. This may be due to the conditional nature of the squared error terms

- essentially, the bias is a function of both the underlying bias of the random forest and the

realized error.
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n kn E(MSERF ) Var(RF (X)) Var(MSERF ) Var(Tkn(X)) ρkn(X) ρ2,kn(X)

2250 2250 178.94386 5.08631 3690.87766 90.23730 0.04146 0.02635

2250 481 111.81116 2.06818 932.02915 82.07984 0.02329 0.02683

10000 1585 27.80852 1.46533 157.52904 84.03259 0.00808 0.01743

Table 3.5.1: Simulation results for the figures plotted in Figure 3.5.1. We let ρkn(X) =

Cor(Tkn(X), T ′kn(X)) and similarly ρ2,kn(X) = Cor(T 2
kn

(X), T 2′
kn(X)). All expectations are

with respect to the distribution of the training data and conditional on the test point.

The resulting distributions are plotted in Figure 3.5.1. Notably, the random forest pre-

diction densities are well approximated by a Gaussian density in each case, including the

bootstrapped forest. To our knowledge, this is the first evidence of asymptotic normality

of the bootstrapped forest presented. The MSE distributions remain somewhat skewed, but

are generally well approximated by normal densities in each case.
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Figure 3.5.1: Various distributions of random forest predictions from data from the MARS

model. Subsample size (k), sample size (n), and number of trees (B) shown in subtitle.

Results are studentized (i.e. have mean 0 and variance 1) – blue overlay shows standard

normal distribution.
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3.5.2 Variable Importance

Random forest practitioners are often interested in the marginal importance of all vari-

ables. Out-of-bag and Gini impurity measures are typically reported for all variables. In

contrast, the permutation test proposed here is only a test for marginal importance. How-

ever, due to the computational efficiency of our method, we can run a marginal test for each

covariate, with respect to the original forest. This requires building p+ 1 forests - one for a

permutation of each covariate, and one original forest. Note that simply running the test for

each covariate would result in 2p forests. Then, each covariate returns a p-value p̃1, ..., p̃p,

and our importance score could be simply to order the p-values in ascending order. However,

in practice, because of the finite number of permutations, strongly significant variables often

obtain pmin = 1/(Nperm + 1). To alleviate ties in p-values, we instead recommend a metric

that does not rely on the p-values directly:

Impj =
∆j(Dn)− Eπ(∆j(Dn))√

Varπ∆j(Dn)

where ∆j(Dn) = MSEπ
0 −MSE0 is the observed MSE differences, Eπ(∆j(Dn)) is the mean of

all MSE differences possible when permuting the 2B trees on Dn, and Varπ∆j(Dn) is similarly

defined. Intuitively, the variable importance is just the (unitless) z-score of the observed

MSE differences with respect to the permutation distribution. Because the permutation

distribution of ∆j is asymptotically Gaussian (as shown in later sections), this metric is

closely linked with the p-value. and in fact, (letting Φ(·) be the standard normal distribution

function) Impj ≈ Φ−1(p̃j)
√

Varπ∆j(Dn) + Eπ∆j(Dn), assuming that p̃j is calculated with

respect to enough permutations.

Simply applying Algorithm 1 to each variable in the model still may be unrealistic com-

putationally in high-dimensional situations - each test requires building 2B trees, and with p

tests, in all 2pB trees are needed. For large p, this may be substantially larger than just 2B.

As such, we propose a computational speedup which only requires building one (potentially

larger) forest. The goal is to obtain a collection of decision trees T1, ...,TB in which there

are some trees that have not been trained with Xj, and some trees that have been trained

using Xj.
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Recall that random forests are built using decision trees that consider only a random

subset of possible splits at each node during tree construction. Typically, these subsets are

all possible splits among m < p features, where the m features are chosen uniformly at

random. This means that inevitably (unless m � p or the trees are very shallow), most

trees will be have at least considered all features in their construction. However, consider

restricting the features available for the entire construction of the tree. That is, each tree is

trained on a resample of the rows of the design matrix and on a subsample of the columns.

Ho [1998] analyzed subsampling features in a decision tree ensemble, and the idea has since

been expanded upon in methodological updates such as rotation forests, introduces a step

of performing on the subsampled features [Rodriguez et al., 2006]. These methods attempt

improving predictive accuracy, but simultaneously introduce a convenient mechanism for

evaluating variable importance. In particular, for each variable Xj and each decision tree

Tk, we can introduce the variables νj,k, where:

νj,k =





1 If variable Xj was used in training tree Tk

0 otherwise

Note that each νj,k is, marginally, a Bernoulli random variable with mean m/p and νj,k |= νj,k′
for k 6= k′, so that in a collection of B trees, on average,

∑B
k=1 E(νj,k) = Bm/p will contain

variable Xj and B(p − m)/p will exclude Xj. We then see two natural partitions of the

collection of trees into forests:

RFj = {Tk : νj,k = 1}

RF−j = {Tk : νj,k = 0}

We can then apply the second loop of Algorithm 1 to the trees of RFj, RF−j for each

j ∈ {1, ..., p} and obtain importance scores and p-values without retraining entire forests

each time. This process is summarized in Algorithm 2.

Results in the previous sections demonstrate that the testing procedure provides marginal

coverage, but invariably a multiple testing procedure must be employed for high-dimensional

problems. Type I error control across all covariates results in overly conservative methods,

and instead we suggest two methods for instead controlling the False Discovery Rate (FDR)
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Algorithm 2: Holdout Importance method for calculating all importance scores at once

Data: Training data (Dn) test sample (T = [(x1, y1), ..., (xNt , yNt)])
Result: P-values and importance scores for Xj ; j ∈ {1, ..., p} at test points Tn
set nperm number of permutations, subsample size kn, and mintree in each forest ;
set Bj = 0 for j = 1, ..., p and ` = 0 ;
while any(Bj < mintree) do

sample [ν`,1, ..., ν`,p] ∈ {0, 1}p where
∑

j ν`,j = m and P (ν) ≡ 1

( pm)
;

setM` = {j : ν`,j = 1} ;
sample D∗`,kn from the rows of Dn 	X−M`

;

train T`(·) on D∗`,kn ;
update `← `+ 1 & Bj ← Bj + ν`,j , j ∈ {1, ..., p}

end
predict at Tn using T`(·), generating T` = [Ti(x1), ..., Ti(xNt)] ;
for j ∈ {1, ..., p} do

set RFj = {Tk : νj,k = 1} RF−j = {Tk : νj,k = 0} ;
if Bj 6= `−Bj then

sample mj = min{Bj , `−Bj} trees uniformly from RFj , RF−j
end

calculate MSEj =
∣∣∣∣ 1

mj

∑
T∈RFj

T − y
∣∣∣∣2 and MSE−j =

∣∣∣∣ 1
mj

∑
T∈RF−j

T − y
∣∣∣∣2 ;

for k in {1, ..., nperm} do
sample RF ∗k,j uniformly w/o replacement from RFj ∪RF−j ;
set RF ∗k,−j = {RFj ∪RF−j} \RF ∗k,j ;

calculate ∆j,k(Dn) =
∣∣∣∣ 1

mj

∑
T∈RF∗

k,−j
T − y

∣∣∣∣2 −
∣∣∣∣ 1

mj

∑
T∈RF∗

k,j
T − y

∣∣∣∣2

end

calculate p̃j = 1
N0+1

[
1 +

∑N0

k=1 I
(
MSE−j −MSEj > ∆j,k(Dn)

)]
;

calculate Impj =
∆j(Dn)−Eπ(∆j(Dn))√

Varπ∆j(Dn)

end

2
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(see Benjamini and Hochberg [1995], Hochberg and Benjamini [1990] for more details on

FDR):

1. Applying the Benjamini-Hochberg procedure to the original p-values

2. Using the knock-off procedure of Candes et al. [2016] with the Impj importance measures.

We leave a study of which method is preferrable to future work. As demonstrated in the

simulations for Model 4 in Section 3.4, the p-values generated by Algorithm 1 are valid even

in the high-dimensional case, so that the standard p-value based procedures like that in

Benjamini and Hochberg [1995] could be readily applied.

3.5.3 Null Hypothesis Considerations

Besides its feasibility, this permutation approach also offers some flexibility in the kinds

of problems open to investigation by practitioners. Consider, for example, the mediator

detection problem arising frequently in medical studies wherein a covariate X1 is a mediator

for another covariate X2 whenever the effect of X2 on the response is nullified (or substan-

tially lessened) by including X1 in the model. The same two-step process often employed

with linear models can be carried out with random forests using the tests developed here:

first determine whether X2 is significant without X1 in the model, then test whether the

significance of X2 disappears whenever X1 is included. Moreover, our procedure attains

good power in a wide variety of model set ups, and as such is likely usable off-the-shelf by

practitioners interested in the nonlinear regression inference problem.

The primary goal of this work is to identify covariates that produce statistically significant

improvements in model accuracy. To assess this, we considered building two forests, one on

the original dataset Dn and another on a second dataset Dπn wherein the covariate(s) of

interest XS are rendered independent of Y , conditional on the rest of the features. This

muting of XS can be achieved in various ways:

• Outright exclusion: XS is simply removed from the second training dataset.

• Random permutation: Each covariate in XS is randomly shuffled so that XS is replaced

by some permuted alternative Xπ
S in the second training dataset.
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• Knockoffs: Each covariate in Xi in XS is replaced by some knockoff alternative Xπ
i sam-

pled from the distribution of Xi|X−i so that XS is replaced by a randomized alternative

Xπ
S in the second training dataset. See Candes et al. [2016] for details.

The manner in which covariates are randomized or muted will subtly alter the underlying

null hypotheses in Equation 3.2.2, but crucially, the Type I error control of our procedure

holds for each of these null hypotheses. Indeed, it is possible to reject the null because

of artifacts in the covariate distribution, rather than a notion of conditional independence.

Assuming XS |= Y |X−S , we would expect predictions from trees trained on Dn to have the

same distribution as those generated from trees trained on Dπn. In this case, a rejection of the

null hypothesis of equal MSE’s suggests that XS and Y are not conditionally independent.

This is the case if the distribution of X is known (or can be estimated easily), so that a knock-

off version of XS can be employed. However, practically speaking, our method provides valid

model based inference even without any knowledge of the covariate distribution. In such

cases, formally investigating whether particular covariates significantly improve predictive

accuracy beyond permuted analogues, for example, can still provide valuable insight into

their relative value and utility.

3.6 Application to Ecological Data

We now apply the above methodology to two ecological datasets where random forests

have been shown to perform well in recent work.

1. The eBird data used to train RFeBird, also analyzed in Coleman et al. [2017]. The task

here is to predict tree swallow occurrence during the fall in Bird Conservation Region

(BCR) 30. Features include information about latitude, longitude, time of year, user

characteristics (as described in Section 3.4), and environmental characteristics, such as

temperature anomaly and land cover features. The data consists of n = 25727 observa-

tions on p = 23 features, gathered between 2008 and 2013.

2. Forest fire data from Cortez and Morais [2007], where the task is to predict log(1 + area)
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burned by several fires in northern Portugal using information about location, time of

year, and local weather characteristics. The data contains n = 537 observations on

p = 13 features.

For both applications, we first apply the hold-out procedure (Algorithm 2) to identify

marginally important variables, and then a localized MSE test to the variables found most

important by the hold-out procedure. These procedures are done by splitting the data into

85%/15% training/test splits at random, with the same splits (i.e. training and test data)

used for both procedures. The random forests were trained with the randomForest pack-

age using the default mtry parameters, and kn = n0.6, B = 250. A partial effect plot of

the rain covariate in the forest fire data is shown in Figure 3.6.1, demonstrating the non-

linear relationship between the outcome and rain - suggesting that a linear model is likely

inappropriate. Similar results are suggested for the eBird data in Coleman et al. [2017].
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Figure 3.6.1: Partial effect plot of a random forest to predict the area burned by forest
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Figure 3.6.3: Results for the procedure applied to the eBird data [Sullivan et al., 2009a,

2014a].

We see in Figure 3.6.2 that the X (which corresponds to longitude) (Impj = 3.515), rain

(Impj = 2.486), and temp (Impj = 1.431) variables are most important, and that the rain

variable is somewhat less important (p̃ = 0.206) when tested for outside of the hold-out

procedure. The story is more clear in Figure 3.6.3, where the day of year covariate (dfs)

is hugely important (Impj = 17.12), and shows up highly important in its marginal test

66



(p̃ = 0.001.)

3.7 Additional Applications

A main motivation for the permutation test was practical applications, and to this effect

we now detail some additional collaborations where the methodology has been applied. In

particular, we present a collaboration with clinicians about evaluating the predictive im-

portance of mobile health (mHealth) variables, which are gathered using fitness trackers.

The main conclusions of this work were reached using the permutation test methodology

proposed earlier. The purpose of this section is to demonstrate an interesting applica-

tion of the methodology in the spirit of the proposed method. We also note that the

permutation test procedure has been implemented as an R package, RFTest, available at

https://github.com/tim-coleman/RFtest.

The study focused on patients with Inflammatory Bowel Diseases (IBDs) who also own

fitness tracking devices, such as those produced by FitBit and Garmin. Participants report

longitudinal survey data on outcomes such as disease activity scores along with self-reported

measures such as sleep disturbance while also contributing mHealth lifestyle data from wear-

able devices and apps, covering 24 different device types from multiple wearable brands. IBD

patients have extremely heterogeneous phenotypes with symptoms that fluctuate. IBDs pa-

tients broadly can be discretized into two categories, those diagnosed with Crohn’s Disease

(CD) and Ulcerative/Indeterminate Colitis (UCIC). These diseases have their own

Several studies suggest a relationship between self reported mHealth variables and dis-

ease symptoms [Ananthakrishnan et al., 2013, Jones et al., 2015]. Our mHealth dataset

contains numerous features describing physical activity and sleep in addition to a number

of other lifestyle characteristics, allowing for a broad, large-scale analysis of the features

most associated with IBD disease activity and symptoms. In all, we studied eight outcomes,

including two disease scores and six quality of life outcomes. We study the relationship of

these eight outcomes with mHealth features that encompass thirteen different categories,

such as sleep and steps taken. In all, our data consisted of 539 observations on 127 features,
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represetning summarized data from 539 inter-survey periods in the longitudinal data.

The complex underlying relationships in the data suggest that machine learning (ML)

approaches are preferred over parametric models with more rigid structure. Using the per-

mutation test methodology developed in Section 3.2, we assessed the predictive relevance

of mHealth data in forming more accurate predictive models than could be obtained with

survey data alone, and we further analyzed which specific mHealth variables are most pre-

dictive of outcomes for patients with IBDs. We compared models which were trained using

only baseline data, which includes patient demographic information as well as prior survey

results, against those trained using the baseline data and mHealth data. For each test, a

random 15% of the data were held out as a validation set.

Because the permutation test methodology is agnostic to base learner, under the as-

sumption that the base learners are pairwise independent, we elected to apply the method

to bagged conditional inference trees (cForest) [Hothorn et al., 2006] and bagged elastic net

models, which are penalized linear models [Zou and Hastie, 2005], which were shown in an-

other analysis to be the most accurate models, as selected by cross-validation. We conducted

several hypothesis tests, testing for both the overall effect of any mHealth variables as well

as the effect of individual groups of variables. The results of the test for the overall effect of

mHealth variables are presented in Table 3.7.1. The results for the tests of the effect of the

groupings of the mHealth variables are presented in Figure 3.7.1 and Figure 3.7.2.

anxiety depression fatigue sleep social scai scdai pain

C-Forest Test 0.977 0.802 0.624 0.012 0.253 0.214 0.096 0.032

Elastic Net Test 0.899 0.008 0.426 0.666 0.069 0.089 0.288 0.030

Table 3.7.1: Permutation test p-values from applying the permutation test procedure. The

top and bottom rows show the results of the test conducted with conditional inference trees

and elastic net models, respectively.

The overall tests for significance indicate that, that in aggregate, mHealth data was

predictive of pain interference in both models, with more modest evidence for an effect on

SCDAI disease activity, social relationship, and depression scores. The tests for predictive

significance of the groups of mHealth features provide modest evidence active duration (time
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C−Forest MSE Test by Outcome and mHealth Grouping

Figure 3.7.1: Permutation test with conditional inference trees.

spent in moderate-to-vigorous activity (active duration)) was predictive of pain interference

and disease activity for patients with either CD and UC (Figure 1) in the elastic net models

(SCDAI and SCAI). The tests on the elastic net model also also suggests that distance

traveled throughout the day was predictive of disease activity for UC, sleep disturbance,

fatigue, and depression scores. While total sleep was only predictive only of for UC disease

activity for patients with UC, it was also predictive for depression and pain overall. Total

number of Steps per day were was only strongly predictive for CD disease activity in patients

with CD. Tests conducted on the cForest model detected fewer significant results, with water

consumption being the only mHealth feature consistenly shown to improve predictions across

outcomes. We note that the p-values presented here have not been adjusted for multiple

testing purposes, though the results are amenable to many multiple-testing adjustments,

which is beyond the scope of this work.

Beyond the clinical implications of these results, this analysis raises several avenues for

improvement of the original procedure. In particular, there is a fair amount of inconsistency

between the p-values reported in Figure 3.7.1 and Figure 3.7.2. In particular, The inconsis-

tency could be due to the difference in base learner, but more likely is that the discrepancy

is due to randomness in the sample splitting. Indeed, for small sample sizes, differing sam-
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Figure 3.7.2: Permutation test with elastic net base models.

ples can produce differing results, because it may be that there is considerable variability

in the test-conditional MSE, E[MSERF (T )|T ], which in turn affects the null hypotheses

tested by the permutation procedure. Lei [2019] discusses this phenomenon in the context

of cross-validation, but a similar conclusion likely applies here. For larger test sets, the

test-conditional MSE is close to the expected MSE, so that the null hypothesis presented in

Theorem 3 is more similar a test about the unconditional MSE, E[MSERF (T )].

Sample splitting has been employed to develop statistically valid procedures, such as for

developing a hypothesis test for LASSO coefficients [Wasserman and Roeder, 2009], or in

the conformal inference framework, where sample splitting is key to many of the guarantees

of that procedure [Shafer and Vovk, 2008, Lei et al., 2018]. A clear philosophical drawback

of sample splitting procedures is that different auxillary randomizations can lead to different

conclusions, independent of the randomness in the data. As such, there has been work on

aggregating p-values from multiple splits of data, as in Meinshausen et al. [2009]. Layering an

aggregation scheme on top of the permutation test procedure, and analyzing the theoretical

qualities of such a scheme, remain an interesting and promising avenue for methodological

development.
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3.8 Conclusion

We have proposed a new avenue of theoretical analysis of bagged models, by noting that

bagged models can be seen as sums of exchangeable random variables. The deep connection

between exchangeability and permutation tests further motivates usage of a permutation test

that permutes the base learners between ensemble methods. This test uses the flexibility

of random forest models to conduct inference, and as such attain good power, but also

maintain Type I error control. This procedure uses permutation distributions to avoid the

computational cost of variance estimation of a random forest.
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4.0 Forecasting the Damages of the Hundred Year Storm: Importance Forest

4.1 Introduction

In machine learning, it is often assumed, implicitly or explicitly, that data used in training

and data held out for prediction follow the same distribution. As such, models find an

approximating function f̂ that minimizes the global generalization error, which for a loss

function L(f̂(X, Y ) is defined as E(X,Y )L(f̂(X), Y ), where the expectation is taken with

respect to the distribution of both X and Y . However, it may be that

E(X,Y )∼Ptrain
L(f̂(X), Y ) 6= E(X,Y )∼PtestL(f̂(X), Y )

because Ptrain 6= Ptest. As such, minimizing the left hand side may not yield an estimator

that minimizes the second quantity. This idea of utilizing knowledge of where predictions

will be sought as part of the training process is a natural fit in areas such as personalized

medicine [Liu and Meng, 2016], for example, where physicians may often seek the most

accurate predicted outcomes for particular patients, rather than a global minimizer. Powers

et al. [2015] make use of this notion of customized training to cluster pixels from mass

spectrometric images taken from lung cancer patients in order to fit more precise individual

models to each cluster.

To formalize the above framework, consider covariates X which take values in some p

dimensional space X ⊂ Rp and a response Y which takes values in Y ⊂ R. Suppose we have

two sets of data D and D′ where D = (Xi, Yi)
n
i=1

iid∼ P1 and D′ = (X ′i, Y
′
i )
m
i=1

iid∼ P2. where

Pi is a probability measure on X × Y for i = 1, 2. Furthermore, assume that the Y ′i are

unavailable. The goal is to attain accurate point estimates and prediction intervals for Y ′i .

Now, suppose P1, P2 satisfy

P1(X, Y ) = P (Y |X)P ∗1 (X)

P2(X, Y ) = P (Y |X)P ∗2 (X)
(4.1.1)
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so that the conditional distribution of the target is the same for both datasets - the change

is in the covariate distribution. This model is commonly referred to as the covariate shift

model, and has been the source of intense research in recent decades [Shimodaira, 2000,

Sugiyama and Müller, 2005, Sugiyama et al., 2007, Reddi et al., 2015]. The issue arises

when P ∗2 and P ∗1 concentrate mass in different areas of X . In this case, standard guarantees

about the effectiveness of many regression estimates of P (Y |X = X) are invalid for X in

areas of low mass of P ∗1 , even as n→∞. This is especially problematic if the low mass areas

of P ∗1 have high mass in P ∗2 . To resolve this, we propose learning a mapping between P ∗1

and P ∗2 by estimating the likelihood ratio function `(X) =
dP ∗2 (X)

dP ∗1 (X)
. Note we have assumed

that P ∗1 and P ∗2 are absolutely continuous with respect to each other, i.e. for all measurable

A, P ∗1 (A) > 0 ⇐⇒ P ∗2 (A) > 0. In essence, we want to calculate the likelihood ratio,

Λ =
dP ∗2
dP ∗1

, without necessarily specifying the form of P ∗1 and P ∗2 . This precludes the use of

typical parametric likelihood functions. Moreover, the high dimension of many problems

means that the naive approach of estimating two densities will be quite unstable.

4.1.1 A Motivating Example: Hurricane Power Outages

One of the most damaging effects of hurricanes is the loss of power for many people in

the storm track. Forecasting these outage counts is a direct way of quantifying the damage

done by a hurricane, whereas meteorological forecasts, such as of windspeed and storm surge,

tend to focus less on the human impact of the storm. Advances in machine learning have

led to large improvements in predictive modeling of power outages that result from tropical

storms and hurricanes. These models typically take in two sets of covariate information: (1)

Information about the storm, such as windspeed expected in each study unit (2) information

about each study unit, such as the soil types and demographics of the unit.

The focus of this paper is to develop a method for accurately forecasting outages during

storms across a wide variety of geographic extents, using only inputs available on such a

geographic scale. Effectively, this means we cannot use information about the power-grid

itself due to limited coverage, resolution, and types of information reported about each local

grid. Several challenges are inherent to this problem.
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Data Availability The National Hurricane Center [Landsea and Franklin, 2013] only pro-

vides full data for storms from 1995 onwards.

Rarity of Severe Events Severe storms are, by definition, anomalous, and therefore are

potentially underrepresented in the available data. Moreover, they may be overrepre-

sented for particular areas of interest due to chance.

Interest in Severe Events Forecasting less severe outages is inherently less useful to

practitioners - often, the interest is in whether or not the forecasts for the big storms are

accurate.

Outage data is provided by the EAGLE-I system, which aggregates national information

about the power-grid. Power outages are clearly dynamic throughout the storm - in our

dataset, outages are reported every 15 minutes for each county affected for the duration of

the storm. For simplicity, we summarize the outage extent in the following way: (1) We

record a running minimum outage Mi,t = min{Oi,k : k ∈ [t, t + 8)}, where Oi,k is the time

series of power outages in county i; (2) We let Yi = log10(maxtMi,t). This quantity serves

as our response variable, and is referenced with the predictors listed in the supplemental

material and in Pasqualini et al. [2017]. Taking the logarithm of the outages helps to alleviate

the heavytailed nature of the response, and further its interpretation can help quantify the

magnitude of the expected effect [Tokdar and Kass, 2010, Willoughby et al., 2007].

In all, the data contains outage counts from 17 hurricanes and tropical storms between

2011 and 2017, for a total of 5015 observations, on 75 predictors. Given a county in a storm

with covariates X, we want to estimate the conditional distribution Y |X = X of county

level outages, with emphasis on point estimates and prediction intervals. Moreover, we are

typically interested in making forecasts for the entire affected region of a hurricane at once.

4.2 Related Work

To fit a random forest into this framework, one solution would be to implement a weighted

bootstrap in the resampling phase of the forest. Canonically, each observation has proba-

bility of being selected pi ≡ 1/n, under the weighted scheme, pi ∝ wi, where wi are some
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weights obtained a priori. This approach was considered by Xu et al. [2016], who proposed a

weighting scheme where the weights measure the importance of each training point relative

to a single test point. We note that this approach is well-suited for making predictions at

a single point, i.e. where P ∗2 is a degenerate distribution with all of its mass concentrated

at x0. However, the weights used change from test point to test point, meaning that a new

weighting scheme must be used for each point, and thus a new random forest must be trained

for each test point, leading to a total of |D′| + 1 forests needed. This may incur needless

computational cost. A speed-up could be to cluster the test points and then apply the above

scheme to the centroids of the clusters to get a weighting scheme for all points within the

cluster. This is quite similar to the approach suggested by Powers et al. [2015]. In contrast

to these procedures, we want to use distributional information about the covariates in our

weighting. Moreover, for practical purposes, we seek a method with minimal additional

computational overhead.

4.2.1 Related Hurricane Outage Work

Liu et al. [2005] used negative binomial regression to forecast outages during three

storms during the 1990’s. Guikema and Quiring [2012] found that generalized linear models

lacked sufficient flexibility to accurately forecast power outages, and instead turned to non-

parametric models, such as random forests and gradient boosting. More recently, Wanik

et al. [2015] used a combined random forest, gradient boosting, and a single decision tree

to forecast outages. He et al. [2017] used quantile regression forests [Meinshausen, 2006]

to provide prediction intervals, in addition to point estimates, for power outage forecasts.

Quantile based methods may be preferable due to the heavy-tailed nature of power out-

age distributions - the averaging used in conditional mean estimation can lead to severe

over/under estimates of power outages. Moreover, practitioners are likely more interested

in a prediction interval than a confidence interval, as a prediction interval can inform evac-

uations/preparations. As such, much of the recent work in random forest inference, such

as Wager et al. [2014a], Mentch and Hooker [2016a], Wager and Athey [2018], Coleman

et al. [2019b], Peng et al. [2019] is of less interest because of their focus on conditional mean
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estimation.

In our case, assume we train a model only on data from P1, which may be data from

several hurricanes in years prior, and then use it to make predictions about data that come

from P2, such as the outages for a yet-observed hurricane, whose characteristics may be quite

different than storms previously recorded. Table 4.2.1 shows the result of this procedure for

6 hurricanes between 2012 and 2017. In particular, each model is tuned by minimizing the

out-of-bag error for each parameter configuration, and the optimal model is then used to

make predictions for the held-out storm. For example, to forecast Hurricane Arthur, we

use data from the 16 other storms to train a random forest, which is then used to learn

f(x) = E(Y |X = x), and Qα(x) = F−1
Y (α|X = x) for α = 0.1, 0.5, 0.9. Thus, the forest

predicts the conditional mean, the conditional median, and a conditional 80 % prediction

interval. If the covariate structure was similar for each storm, we would anticipate seeing

roughly similar error metrics across storms, especially seeing as the sample size is similar

across each iteration. Rather, we see that three storms (Harvey, Nate, Matthew) have

similar error metrics, while Arthur, Irma, and Sandy are much higher. It is not surprising

that these are the storms that are most difficult to forecast - Irma and Sandy in particular

were historically damaging storms [Cangialosi et al., 2018]. Perhaps more telling is that the

prediction intervals for the higher error storms provide much poorer coverage. Meinshausen

[2006] showed that, under regularity assumptions, the conditional quantiles estimated by a

quantile regression forest are consistent - as such, we would expect prediction intervals to

maintain near the nominal coverage level. However, Harvey shows minor departures from

this coverage level and Irma, Sandy, and Arthur shows a extreme departure from this level.

To summarize performance, we also report a “score” metric, which is defined as

Score =

(
1

MAE
+

1

RMSE
+

4

IntWidth

)
Covg

1− α (4.2.1)

so that the score is penalized for higher loss (MAE, RMSE), for wider intervals, and for lower

coverage %. This is not a formal loss function, but an attempt to quantify overall predictive

performance. We note that Irma and Sandy have the lowest scores by far - again suggesting

the difficulty in forecasting the damage from these storms.
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Storm mtry nodesize MAE RMSE Covg Interval Width Score
Matthew-2016 50 5 0.6269 0.7861 0.8898 2.6946 4.3021
Nate-2017 40 5 0.6727 0.8124 0.8759 2.5094 4.1960
Harvey-2017 50 5 0.7509 0.9026 0.7632 2.4214 3.4695
Arthur-2014 45 5 0.8498 1.0322 0.6862 2.2623 2.9839
Sandy-2012 40 10 0.9817 1.2197 0.5781 2.2376 2.3293
Irma-2017 45 5 1.1846 1.4044 0.3706 2.4051 1.3258

Table 4.2.1: Tuned random forest results for 6 storms in the hurricane dataset. “Covg” and

“Interval Width” refer to 80% prediction intervals estimtaed via quantile regression forests.
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Figure 4.2.1: Fitted vs Predicted for each storm-holdout model. Blue line represents

perfect prediction, and grey bars represent 80% prediction intervals.

4.3 Methods

We begin with a brief summary of importance sampling. Importance sampling refers to

weighting observations to either reduce the variance of some point estimate or to “tilt” a

sample observed from P1 to be similar to P2. Canonically, if the goal is to estimate µ :=

E(f(X)) <∞ where X ∼ P for some function f , one would draw a sample X1, ..., Xn
iid∼ P

and use µ̂ = 1
n

∑n
i=1 f(Xi). Importance sampling instead weights each observation by how
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“useful” it is to measuring µ. The idea is that observations in regions where |f(x)| ≈ 0 are

ultimately not useful to calculating µ. A canonical example is, for X ∼ N(0, 1), calculating

E(I(X > 30)) - because P (X > 30) ∝ e−302/2, sampling uniformly at random will require a

tremendous number (practically infinite) of samples to visit the region of interest. However,

if we had samples from P2 = N(30, 1), we would sample the region of interest quite often.

As such, importance sampling seeks to weight each X by how much it resembles a sample

from P2. The idea is to replace the observations X with X∗ = Xw(X), for w(x) = P2(x)
P1(x)

.

We then let µ̃ = 1
n

∑n
i=1X

∗
i . If, P1 and P2 are known, the w(Xi) are already normalized

(in the sense that they sum to 1). In our case, we know neither distribution, and can only

calculate an un-normalized likelihood ratio between the two. As such, the self-normalized

importance sampling estimate µ̃ =
∑n
i=1 wif(Xi)∑n

j=1 wj
is of more use. The problem is to construct a

random forest using data from P1 as if the data had come from P2. We propose a two stage

procedure to solve this problem:

1. First, we train a model to learn `(x) =
dP ∗2 (x)

dP ∗1 (x)
, the ratio of the data densities at x. We

then estimate `(x1), ..., `(xn) for each point in D.

2. We construct a randomized tree using an importance weighted criterion for both the

splits and the predictions.

Tree-based models are constructed by recursively partitioning the feature space. Partitioning

takes a rectangular subspace A and partitions it into two further rectangular subspaces

AL, AR, where AL = {X ∈ A : X
(j)
i < z}, AR = A \ AL, and x(j) represents the jth

coordinate of an observation. In the context of a continuous feature space (i.e. no categorical

predictors), the quality of a split is assessed by

L(j, z) =
1

Nn(A)

n∑

i=1

(Yi − ȲA)2I(Xi ∈ A) −

1

Nn(A)

n∑

i=1

(
Yi − ȲALI(X

(j)
i < z)− ȲARI(X

(j)
i ≥ z)

)2
I(Xi ∈ A) (4.3.1)

where Nn(A) indicates the number of observations in the original sample that lie in region

A and ȲA is the sample mean of the response over all observations who lie in region A. This
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criterion is typically evaluated at all possible split points, and the split selected satisfies

(AL, AR) = argmax(j,z)L(j, z). This process is initialized with A = X , and then repeated

recursively until the trees reach a specified depth or terminal node size. The trees output a

rectangular partition, A1, ..., Am where m is the number of terminal nodes in the tree, and

where X = ∪mi=1Ai. Let A∗(x) be the partition segment containing x, so that the prediction

at x is given by

T (x;D) =
n∑

i=1

I(xi ∈ A∗(x))

Nn(A∗(x))
Yi.

The construction of the trees above can be seen as repeated calculation of different statistical

functionals. For a given probability measure P supported on a set A, consider a rectangular

partition of A into AL and AR, such that AL = {x ∈ A : x(j) < z} and AR = A \AL. Define

PL = 1
P (AL)

PI(x ∈ AL), normalizing so that PL is a valid probability measure. We can then

define the functionals

T1(P ) =

∫
ydP (y)

Tj,z(P ) =

∫
(y − T1(P ))2dP (y) −

∫ [
(y − T1(PL))2I(x ∈ AL) + (y − T1(PR))2I(x ∈ AR)

]
dP (y).

In the above, the functionals are calculated only with respect to the response coordinate - i.e.

they are scalars, not vectors. For a given node A, define P̂A = 1
Nn(A)

∑n
i=1 δ(xi,Yi)I(xi ∈ A),

where δ(xi,Yi) places mass 1 at the pair (xi, Yi). We can redefine Equation 4.3.1 in terms of

functionals of empirical distributions as

L(j, z) = Tj,z(P̂A).

The prediction stage can similarly be seen as T (x;D) = T1(P̂A∗(x)). The main innovation

we propose here is to replace P̂A, which may estimate the training data distribution well,

with another estimate P̃A that well approximates the distribution of the test data. Then,

the functionals described above are calculated over P̃A for both the structure and prediction
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stages of the tree construction. In practice, we use the following formulation of P̃A, which

depends on a weight vector w

P̃A,w =
n∑

i=1

wiI(xi ∈ A)∑n
j=1wjI(xj ∈ A)

δ(xi,Yi). (4.3.2)

We thus replace the factor 1/Nn(A) with a value proportional to wi. We use

w = {`(x1), ..., `(xn)}, so that T (P̃w) is an approximation to T (P2) rather than T (P1).

Tree construction proceeds by recursively maximizing Tj,z(P̃A,w) over each node, until the

control parameters of the tree are met. As in the unweighted case, we can restrict the set

of possible splits randomly at each node, such as only allowing mtry < p features available

for splitting, which can provide a forest variance reduction by decorrelating the trees. Then,

the weighted tree predictions are given as

Tw(x;D) = T1(P̃A∗(x),w).

Finally, a forest is created by resampling the data many times and training a randomized

tree on each data. The forest prediction, like in standard random forests (which estimate

the conditional mean fuction) is given by

mB,w(x;D) =
1

B

B∑

k=1

Tw(x;D, ξk)

where ξk are iid randomization parameters determining the resamples and available fea-

tures for splitting at each node. These procedures are summarised in the two subsequent

algorithms.
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Algorithm 1 Weighted Regression Tree

1: procedure WeightedTree(D,w, ξ,mn) . w are weights, ξ is randomization, mn is maximum
number of terminal nodes

2: Set P0 = {X} . The root node is the entire feature space
3: Set t = 1 . Counter for number of terminal nodes
4: For all 1 ≤ k ≤ nrow(D) set Pk = ∅
5: Set d = 0 . Tree depth counter
6: while t < mn do
7: if Pd = ∅ then
8: d← d+ 1
9: else

10: Set A as the first element in Pd . PA is the within-node distribution
11: Let Mξ,d ⊂ {1, .., p} be features available for splitting
12: Evaluate Tj,z(PA) ∀z and for all j ∈Mξ,d

13: Set A∗
L = {X ∈ A : X(j∗) < z∗} where z∗, j∗ = argmaxj,z(PA) and set A∗

R = A \A∗
L

14: Set Pd ← Pd \ {A}
15: Set Pd+1 ← Pd+1 ∪ {A∗

L} ∪ {A∗
R}

16: Set t← t+ 1

17: Prediction at point x is made by T1(PA(x)) where A(x) ∈ Pd is the node containing x

1Algorithm 1 Weighted Random Forest

1: procedure WeightedRF(DTRAIN,DTEST, REPLACE, kn, B)
2: For all X ∈ {DTRAIN,DTEST}, set Z = I(X ∈ DTEST)
3: Run a random forest, RF`, which estimates π = P (Z = 1|X)
4: Evaluate RF`(Xi) = π̂i for all Xi ∈ DTRAIN

5: Set ˆ̀
i =

π̂i

1−π̂i
+ 1

nrow(DTRAIN) . Second term is to prevent 0 weights

6: Let ` = {ˆ̀1, ..., ˆ̀n}
7: for k ∈ {1, ..., B} do . B is total number of trees to be trained
8: if REPLACE then
9: Draw kn observations w/ replacement, with P (Xi Selected) ∝ ˆ̀

i

10: else
11: Draw kn observations w/o replacement, with P (Xi Selected) ∝ ˆ̀

i

12: Let Dk,kn be the resampled data, and `k,kn be the resampled weights
13: Set Tk ←WeightedTree(Dk,kn , `k,kn , ξk) . ξk controls other randomization

14: return {T1, ..., TB} . Collection of trees

1

4.3.1 Weighted Quantile Regression

Recall that a major interest in the forecasting problem are prediction intervals, and

quantile regression forests [Meinshausen, 2006] provide a natural means of non-parametric

quantile regression. As such, we propose a means of using the importance forest procedure

for quantile regression. As Meinshausen [2006] notes, a random forest estimate can be

reformulated as a weighted mean of the observations, as opposed to the sample mean of the
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trees. For a prediction point x and a point in the training set Xi, a decision tree (constructed

using prior weights w) drawn with parameter ξ induces the following weights:

ti(x; ξ,w) = I(Xi ∈ A∗ξ(x))
wi∑n

j=1wjI(Xj ∈ A∗ξ(x))

Then, given B trees trained using randomization parameters ξ1, ..., ξB, we can define the

random forest weights by:

ri,B(x;w) =
1

B

B∑

k=1

ti(x; ξk,w)

Following Meinshausen [2006], we can then use these weights to get an estimate of F (y|X =

x) = P (Y ≤ y|X = x) as

F̃w(y|X = x) =
n∑

i=1

ri,B(x;w)I(Yi ≤ y).

We can similarly define a quantile function

Q̃p,w(x) = inf{y : F̃w(y|X = x) ≥ p}.

Note that F̃w(y|X = x) only takes on n + 1 values, so evaluation of Q̃p,w(x) amounts to a

grid search over these n + 1 values. For a provided quantile, p, we see that Q̃p,w(x) = Yk∗ ,

where k∗ = mink
∑k

i=1 r(i),B(x;w) ≥ p, where the notation r(i),B(x;w) indicates that the RF

weights are now ordered corresponding to response value, i.e. i > k ⇐⇒ Yi ≥ Yk.

4.3.2 Learning `

Each element of the weight vector `(Xi) is a ratio of densities of two different covariate

distributions. These densities are unknown and are over high dimensional feature space.

As such, many traditional density estimation tools are unlikely to be effective. We briefly

describe a method from Kanamori et al. [2009] below, with a more thorough discussion of

its advantages reserved for the appendix. We describe two candidate procedures for density

estimation, probabilistic classification and kernel moment matching. We argue that the

probabilistic classification approach, while simple to implement, may be unstable in high

dimensions.
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4.3.2.1 Probabilistic Classification

We can use the favorable properties of tree based density estimates in high dimensions to

learn `. The algorithm of Breiman [2001a] can be used for unsupervised learning, by returning

measures of adaptive distance between observations. Crucially, this procedure relies on the

creation of a synthetic covariate dataset, and then learning the probability that a particular

observation came from the true or synthetic dataset. The synthetic dataset is created by

drawing n observations (with replacement) uniformly and independently from each covariate,

destroying any dependencies between the observations. The idea is that if there is high-

dimensional structure, the model should easily discriminate between the two datasets. In

the covariate shift literature, this procedure is referred to as a probabilistic classification

method, as it transform the density ratio estimation problem into a classification problem

[Barber et al., 2019].

To formalize the above, we impose another assumption about the distribution of test and

training. For all Xi ∈ {D,D′}, we assume that Xi
iid∼ P (Xi) = αP ∗1 (Xi) + (1 − α)P ∗2 (Xi),

where α ∈ (0, 1). In the canonical machine learning context, α ≡ 1 (without loss of gen-

erality), which covers the situation where the test and training covariates have the same

distribution. We introduce the synthetic response Z = I(X ∼ P ∗2 ). For every observation in

Xi ∈ {D,D′}, this amounts to Zi = I(Xi ∈ D′), where I(·) is an indicator function. We then

want to learn P (Z = 1|X), i.e. the probability that an observation came from one dataset

or another. Note that this relies on the density discrepancy between P ∗1 and P ∗2 , which may

be a nonlinear function of complex interactions between each feature. Then, it follows that

P (Zi = 1|Xi) =
P (Xi|Zi = 1)P (Zi = 1)

P (Xi)
=
dP ∗2 (Xi)P (Zi = 1)

P (Xi)

and thus

P (Zi = 1|Xi)

P (Zi = 0|Xi)
=

dP ∗2 (Xi)P (Zi=1)

P (Xi)

dP ∗1 (Xi)P (Zi=0)

P (Xi)

= `(Xi)
P (Zi = 1)

P (Zi = 0)
.

We only require our importance sampling weights to be proportional to `(Xi), so that any

information placed in the marginal distribution of Zi is accounted for in the normalization.

Using the random forest estimates π̂i of πi = P (Zi = 1|Xi), we let w(Xi) := wi = π̂i
1−π̂i be

our estimate of the appropriate weighting scheme. To ameliorate dividing by 0, in practice, a
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Figure 4.3.1: Comparison of estimated density ratios between an inverted random forest

classifier and the uLSIF method of Kanamori et al. [2009]. In this example, P ∗1 (X) =

N (0, 2.52) and P ∗2 (X) = N (0.5, 0.952), and models were learned with n = 1500 examples

from each. In the above example, the RF attained RMSE of 0.355 while the uLSIF method

attained an RMSE of 0.139.

small constant δ is often added to both the numerator and denominator. We now provide an

approximate error estimate of the classifier-inverted ratio weight. We can write π̂i = πi + εi

for some error term εi which we assume has finite variance σ2
ε . Then, the ratio weights are

given by

wi =
π̂i

1− π̂i
=

πi + εi
1− πi − εi

:= gi(εi)

where gi is a differentiable function with derivative g′i(x) = (1− πi − x)−2. Then, assuming

that εi satisfies both a central limit theorem and a law of large numbers (asymptotic in N)

we see that

Var
(√

Nwi

)
≈ g′ (Eεi)2 σ2

ε =
σ2
ε

(1− πi − Eεi)4

so that if the asymptotic bias (Eεi) is small or 0, the variance of the weight estimates scales

as O ((1− πi)−4). This can lead to severe instability in the probabilistic classifier estimate, if

the underlying conditional probabilities are close to 1. The effect of this instability is shown

in Figure 4.3.1, where even in a simple univariate case, the probabilistic classifier picks up

on the general trend of the density ratios, but has high variance. As such, an alternative

method of estimating the likelihood ratio weights is needed.
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4.3.2.2 Least Squares Importance Fitting

Another method for estimating density ratios that has been explored is Least Squares

Importance Fitting, developed by Kanamori et al. [2009]. The approach essentially reduces

down to modelling the ratio as a linear output

`(x) =
b∑

k=1

αkKσ(x,Xk)

where αk ≥ 0 for all k, Xk are centroid points, σ is a bandwidth parameter, and Kσ(·, ·) is

a Gaussian kernel. The authors recommend using the points in D′ as the centroids. The

model fitting proceeds by minimizing the objective function

Lλ(α) =


 1

2n
αT

[
n∑

i=1

Kσ(Xi, Xk)Kσ(Xi, Xj)

]k,j=n

k,j=1

α−
[

1

m

m∑

k=1

Kσ(Xi, Xk)

]T

i=1,...,n

α+ λ||α||1




(4.3.3)

where λ is a tuning parameter, and the first term uses observations from the training data,

while the second term uses observations from the test data. The tuning parameters (σ, λ),

are selected by leave one out cross validation, whose analytic form is provided by Kanamori

et al. [2009]. Minimizing Equation 4.3.3 subject to α̂k ≥ 0 for all k can be computation-

ally expensive, so in practice, Kanamori et al. [2009] recommends using an unconstrained

approximation which is provably close to the constrained estimates. Then, ratio estimates

are made by calculating w(X) =
∑m

k=1 α̂kKσ(X,Xk). This approach inherits many of the

favorable properties of regularized least squares models, and is computationally efficient.

The efficacy of this model is demonstrated in the rightmost panel of Figure 4.3.1, where the

estimated weights are almost indistinguishable from the ground truth.

4.3.2.3 Weight Regularization

In practice, p is large in many problems. Thus, the weights are likely to be either quite

small or quite large, inappropriately concentrating mass on only a few points. A typical

quantifier of this effect is effective sample size, which is defined as

neff =
(
∑n

i=1w(Xi))
2

∑n
i=1w(Xi)2

.
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To understand effective sample size, it is useful to look at the two extreme scenarios: 1) If

all the weights are uniform, then neff = n and 2) if the weights are a 1-hot vector, i.e. all

weights are 0 except for a single entry, then neff = 1. Thus, the more evenly distributed the

weights, the higher neff, so that effective sample size is an estimate of the equivalent sample

size if all the data came from P2.

Under large magnitude covariate shifts, the relative influence of certain points in the

training set can grow, meaning a low effective sample size and model instability [Shimodaira,

2000]. To combat this, a common technique is to introduce a smoothing parameter γ ∈ (0, 1],

and to use weights w(x; γ) = w(x)γ, which has the effect of shrinking all the weights, but

shrinking the large weights more severely. Selecting γ via typical procedures such as cross-

validation is challenging, because such procedures suffer from the same flaws illustrated in

Section 4.1. As such, we instead suggest the following heuristic. First, fix n0 ∈ (1, n),

typically as a fraction of the overall sample size. Then, select γ such that neff = n0 when

using weights w(x)γ. This is equivalent to finding the roots of

f(λ) =
(
∑n

i=1w(Xi)
γ)

2

∑n
i=1w(Xi)2γ

− n0

which can be calculated quickly in many software packages. In works such as Sugiyama

et al. [2007], the authors recommend using importance weighted cross validation to select γ.

However, this weighted cross validation is calculated only with respect to γ = 1, so that the

cross validation estimate may inherit some of the undesirable properties of non-regularized

weights, e.g. instability and high variance. As such, we suggest a priori selection of γ, which

is then used in estimation of both the weighted random forest and the weighted model.

4.3.3 Tuning the Model

A key part of any predictive analysis is estimation of generalization error. Typically, this

is done through methods such as repeated training/test splits, cross validation, or bootstrap-

ping. These procedures repeatedly use uniform resampling to create training/test splits, and

loss is calculated by making predictions on the held out set using a model trained on the

training split. The hyper-parameters associated with the optimal score are then recorded,
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and a final model is trained with those parameters. This framework is appropriate when the

test set and training set are assumed to have come from the same distribution - a random

sample from the empirical distribution is an unbiased approximation to a random sample

from the population. The same is not true under covariate shift, but we would still like a

method of tuning a model, with the goal of minimizing the generalization error under P2, as

in Sugiyama et al. [2007].

Random forests (and other bagging methods) have an additional means of estimation of

the generalization error: the out-of-bag (oob) error. Each base learner is trained on only a

fraction of the unique instances in the training set, creating a natural training/test split. For

each split, the oob error is usually calculated as the mean squared error on the held out set,

and the overall oob error is given averaging across resamples. Friedman et al. [2001] note

that the oob error can be reformulated as the error associated with taking each observation

(Xi, Yi) and constructing a random forest using only trees in which (Xi, Yi) did not appear

in the sample, and then recording the loss when making a prediction at Xi using this forest.

Let Bi =
∑B

j=1 I(Xi /∈ D∗j ), i.e. the number of resamples that do not contain (Xi, Yi), so

that we can write the oob error as

OOBm,B =
1

n

n∑

i=1

(
1

Bi

B∑

k=1

T (Xi; ξk)I(Xi /∈ D∗k)− Yi
)2

. (4.3.4)

Because limB→∞Bi =∞, we can construct an infinite random forest for each point, so that

by the law of large numbers, limB→∞OOBm,B = 1
n

∑n
i=1 (EξT (Xi; ξ,D−i)− Yi)2. Thus, as

B → ∞, Equation 4.3.4 approaches the n-fold cross validation error, which is then used as

an estimate of the generalization error of the forest. Similarly, we define the weighted oob

error as

OOBw
m,B =

1∑n
j=1wj

n∑

i=1

wi

(
1

Bi

B∑

k=1

Tw(Xi; ξk)I(Xi /∈ D∗k)− Yi
)2

. (4.3.5)

In what follows, we let mBi(Xi) = 1
Bi

∑B
k=1 Tw(Xi; ξk)I(Xi /∈ D∗k) be the random forest

trained using only trees that did not see observation (Xi, Yi). The utility of this weighted

metric is a result of the following proposition.
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Proposition 2. Let {Zi}Ni=1
iid∼ Bernoulli(α), and let (Xi, Yi)

n+m
i=1 |Zi

iid∼ ZiP2 + (1 − Zi)P1,

where P1 and P2 satisfy Equation 4.1.1. Define m =
∑N

i=1 Zi. Assume that Yi ≥ 0 almost

surely, supX E(Y 4|X = X) < K for some constant K, and that

ρ∗n = max
k=1,2

max
i 6=j

CorPk

[
(mBi(Xi)− Yi)2, (mBj(Xj)− Yj)2

]
→ 0

as n → ∞. Further, assume that for all X ∈ X , wN(X) is consistently proportional to the

likelihood ratio, `(X) =
dP ∗2 (X)

dP ∗1 (X)
, so that wN satisfies

wN(X) = c
dP ∗2 (X)

dP ∗1 (X)
+ εN(X) ∀ X ∈ X

where c is a constant that does not depend on X, and εN(X) is a sequence of random

variables satisfying P (supX |εN(X)| < ηN) = 1, where ηN → 0 as N → ∞. Let θP2 =

EP2(limB→∞OOBm,B). Then, as B, n→∞

OOBw
m,B

p→ θP2 .

Sugiyama et al. [2007] showed that the weighted n-fold CV is almost unbiased for the true

validation error under P2, so that often θP2 = E(X,Y )∼P2(mB(X) − Y )2. The upshot of this

result is that we can use the weighted oob error as a consistent metric of the generalization

error for data from P2, and so minimizing the weighted oob error in training should produce

a good model for data from P2.
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4.3.4 Dealing with Missing Data

A challenge of using a dataset agglomerated from many diverse sources are missing

observations. Discarding missing observations is obviously unsatisfactory, but imputation

should be done in a careful manner. In particular, because the procedure above relies on

the training data all coming from one distribution, standard imputation procedures (such

as mean imputation) effectively impose a new distribution on the missing covariates. To

overcome this, we propose the following iterative procedure:

1. Let M0 ⊂ {1, ..., p} denote the column indices of covariates with missing observations,

and let XM0 = {X(j) : j ∈M0}, and similarly let X−M0 = {X(j) : j /∈M0}
2. Sample a covariate X(j) from the columns of XM0 randomly. Train a random forest with

X(j) as the response, using only data from X−M0 . This requires subsetting the dataset

to {Xi : X
(j)
i is not missing}.

3. For each {Xi : X
(j)
i is missing} sample Ui ∼ Unif(0, 1) and set X

(j)
i = Q̂Ui(Xi,−M0). Set

M1 =M0 \ {j}.
4. Repeat steps (2)-(3), at each stage sampling covariate jk from Mk to serve as the re-

sponse, where Mk =Mk−1 \ {jk} for k = 1, ..., |M0|.

This procedure is, at first glance, similar to the missForest procedured proposed by Stekhoven

and Bühlmann [2011], who use a standard regression/classification forest to impute the

missing values. These essentially use conditional mean imputation, e.g. imputation of

E(X(j)|X−j). However, a degenerate distribution at the conditional mean is not the same

as the full conditional distribution of X(j)|X−j, and thus is incompatible with the likelihood

procedure described earlier.

The process of using quantile regression for imputation is studied in Chen [2014], who

studies the properties of using parametric and semi-parametric quantile regression for re-

sponse imputation in a regression context. Now we make the following assumptions, which

are motivated by similar assumptions and results in Meinshausen [2006].

(A1) Continuous, strictly increasing CDF Let Fj(x|X−j = x(−j)) = P (X(j) ≤ x|X−j =

x(−j)) be the conditional distribution function of each covariate. Then, we assume that

x1 > x0 =⇒ Fj(x1) > Fj(x0), and that Fj(x) is continuous for every x ∈ R.

89



(A2) Access to consistent CDF estimator Assume that F̂j(x|X−j = x(−j)) satisfies

F̂j(x|X−j = x(−j))
p→ Fj(x|X−j = x(−j)) for all x ∈ R, as n→∞.

Any distribution satisfying (A1) will have a well-defined conditional quantile function,

Qp(x−j) = F
(−1)
j (p|X−j = x−j); further, the conditional quantile function will be contin-

uous. While the empirical CDF is not everywhere-continuous, we can still define F̂
(−1)
j (p) =

inf{x : F̂j(x) ≥ p}. Then, (A2) implies that Fj(F̂
(−1)
j (p))

p→ F̂j(F̂
(−1)
j (p)) = p for all

p ∈ (0, 1). Because F
(−1)
j is continuous, the continuous mapping theorem gives that

F
(−1)
j (Fj(F̂

(−1)
j (p))) = F̂

(−1)
j (p)

p→ F
(−1)
j (p) as n→∞ ∀p ∈ (0, 1). (4.3.6)

Equation 4.3.6 holds uniformly for p in the unit interval, so it will also hold for U ∼
Unif(0, 1). The probability integral transform gives that F−1

j (U) is a random variable with

CDF Fj. The quantile regression forests of Meinshausen [2006] satisfy (A2) for a wide class

of distributions, and so the upshot of this result is that the imputation scheme suggested

above provides a consistent way of generating imputations that follow P ∗1 . Thus, this impu-

tation scheme is compatible, asymptotically, with the likelihood ratio procedure described

earlier.

4.4 Simulations

We now provide a variety of simulations to demonstrate the utility of our proposed

method in various settings.
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4.4.1 An Illustrative Regression Example

We begin with a simple example of a covariate shifted model, and demonstrate that the

weighted forest can indeed pick up on local behavior. The model for the simulation is given

by Y |X ∼ N (ϕ(X), 0.5), for ϕ(X) = max
{

eX

1+eX
sin(X), e−X

1+e−X
sin(−X)

}
, where ϕ(x) has

considerable local structure.

To simulate covariate shift, we draw training data according to P1(X) = N (−4, 3.52) and

testing data according to P2(X) = N (3.5, 1.52). The training distribution is quite dispersed,

whereas the test distribution concentrates mass around a particular region of the real line.

We implement locally optimized random forests using two sources of weights: 1) Learned

weights from the method of Kanamori et al. [2009] and 2) oracle weights, corresponding to

`(X) ∝ φ(X−3.5
1.5 )

φ(X+4
3.5 )

, where φ(·) is the standard normal density function. We draw n = 500

and ntest = 250 points from the shift model as the validation set. Results are shown in

Figure 4.4.1. We see that the unweighted forest struggles to pick up on the main signal in

the test area, while the oracle weighted and learned weighted forests come much closer to

the true signal. The unweighted forest fits a constant function on the high mass regions of

P2, whereas the oracle/learned weight forests are much closer to the truth. Note that this

improvement comes at the cost of decreased performance in the region around X = 0, but

this area is does not contribute much mass to the RMSE under P2. The learned weights

are approximately correct until around X = 3, at which point the lack of data in this

region leads to a decline in weight performance. Running this simulation over 150 runs, we

see that on average the ranger model has RMSE = 0.2440, the learned weighted model

has RMSE = 0.1565 and the oracle weighted model has RMSE = 0.1133. While model

performance is more than just RMSE, we see a convincing case that the weighted forest is

able to adapt to a specified region of interest.

4.4.2 High Dimensional Simulation

We now compare our procedure against a baseline random forest. The random forest

models used are trained using the ranger package [Wright and Ziegler, 2015]. For computa-

tional efficiency, the resampling is done without replacement so that each tree is trained on
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Figure 4.4.1: Top: Fitted functions according to the three tested models, along with

an overlay of the training points. Center: The training and test densities used. Bottom:

Estimated density ratio terms and true density ratio terms.

kn < n unique observations. Since approximately 63% of the dataset is represented in a given

bootstrap resample, so we take kn = 0.6n. Implementation of the weighted forest is done

using the rpart package using the weights option [Therneau et al., 1997]. For each model,

we build B = 500 trees. As an additional point of comparison, we apply the customized

forest method of Powers et al. [2015] with 5 clusters, generating 5 random forests.

We draw 150 datasets of size n = 1000 with p = 31 covariates along with ntest = 200

points to be used as a validation set. The covariate distribution is given by

[X(1), ..., X(6)] ∼ Dirichlet(α)

X(7), ..., X(31) iid∼ Uniform(0, 1)

where α is a pre-specified parameter. For the training set, we use α1 = λ[1,2,3,4,5,6] and

for the test set, we use α2 = λ[6,5,4,3,2,1], where λ > 0 is a parameter that controls how

disparate the densities are (higher λ leads to higher discrepancy). In these simulations, we

use λ ∈ {1, 1.07, 1.14, 1.21, 1.29, 1.36, 1.43, 1.5} - noting that λ = 1 is the case

where P1 = P2.
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Model # Data Generating Model

1 Y = 5X(1) + ε
2 Y = 5 sin(πX(1)) + ε
3 Y = 10 sin(πX(1)X(2)) + 20(X(3) − 0.5)2 + 10X(4) + 5X(5) + ε

4 Y = 5e2
√
X(1)X(2)+X(6)

+ ε

5 Y = 5
∑5
j=1

(
X(j)

)2
+ ε

Table 4.4.1: Distributions of Y |X for each model used in the simulation. In each case, ε is

mean 0, Gaussian noise with E(ε2) = 0.25.

Note that P2 concentrates much more density on X(5) and X(6) than P1, but they still

have the same support. The inclusion of 25 predictors whose distribution does not change

is to reflect the fact that P1 and P2 may include the same marginal distribution for many

covariates. We simulate a response, Y , using several different response functions, summarized

in Table 4.4.1.

Model 1 is intended to demonstrate a situation where the marginal distribution of Y may

vary dramatically between P1 and P2. Model 2 shows a situation where the conditional mean

is a periodic function of X(1), so discrepancies in the magnitude of X(1) should affect the

response less adversely. Model 3 is the popular MARS simulation model [Friedman, 1991],

which has been used as a stand-in for a complex regression function in previous work [Mentch

and Hooker, 2016a, Xu et al., 2016]. Model 4 similarly represents a complex function with

a discontinuity. Finally, Model 5 represents a model where the marginal distribution of Y is

agnostic to changes between P1 and P2.

4.4.3 Simulation Results

We analyze simulation results over both the data generating model and over the λ param-

eter which controls the discrepancy in P1 and P2. The resulting scores (calculated according

to Equation 4.2.1), RMSEs, and coverage probabilities are shown in Figure 4.4.2. Tables

of results are ommitted from the main text for conciseness, and instead are available in the

supplemental materials.

In general, according to the score metric, the weighted forest performs better than the

unweighted forest in Models 1 and 2. Moreover, performance is stronger in models 3 and
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4 until a certain point, when the shift becomes too large. In model 5, unsurprisingly, the

weighted and unweighted forest perform near identically, because the marginal distribution of

Y is not changing drastically. Further, looking at the RMSE plots, we see that the weighted

forest is consistently able to attain a lower error rate than the unweighted forest in Models

1-4, with some breakdown at high λ. The one area where performance of the weighted model

is somewhat worse than unweighted model is in coverage percentage, where the prediction

intervals have slightly lower coverage in many of the situations. However, we note that

the weighted procedure still maintains the nominal coverage in all cases for small values of

λ. Moreover, in Models 1 and 2, the shift affects the weighted forest less severely than in

Models 3 and 4. Finally, results presented in the appendix show that the weighted forest

incurs much smaller prediction intervals than those of the unweighted procedure. Thus, the

weighted forest sacrifices some small coverage probability (and often does not drop below the

nominal level) in exchange for much narrower prediction intervals. Other than in Model 5,

the customized procedure lags well behind both the weighted and unweighted random forests

using the score metric, particularly when considering the quantile regression coverage. The

customized procedure does provide competitive RMSE’s
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Figure 4.4.2: Results for the Score (top), RMSE (center), and Coverage probabilities

(bottom) from the simulation study from subsection 4.4.2. The dashed line in the bottom

indicates the nominal coverage level, 0.80.
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4.5 Application to Hurricanes

We now turn to the problem of forecasting hurricane power outages. To begin, we apply

this procedure described in subsection 4.3.4 to impute the missing values in the training

data. In total, 26 columns had missingness and there were a total of 12244 observations that

needed imputation, a non-negligible portion of the dataset. We note that because of how

the training/test splits overlap from storm to storm, the imputation procedure covers both

the training and test sets. We fit a weighted forest and a random forest with mtry = 50

and nodesize = 5, corresponding to the parameters suggested from Table 4.2.1. For the

weighted model, we again use the method of Kanamori et al. [2009] to estimate the weights.

Moreover, we fix the minimum effective sample size at n0 = 0.75n and run the optimization

procedure from subsection 4.3.2 to estimate the weight regularization λ. The results are

presented in Table 4.5.1. We see that the performance in general is similar between the

weighted and unweighted models, but the weighted model provides slight improvements in

Harvey, Irma, and Matthew, in terms of the score metric.

Storm Model λ RMSE MAE Covg Interval Width Score
Harvey-2017 Weighted 0.1305 0.9097 0.7327 0.8014 2.5033 3.6171
Harvey-2017 Unweighted 0.1305 0.9069 0.7467 0.7679 2.4358 3.4848
Irma-2017 Weighted 0.0084 1.4021 1.1608 0.4615 2.4658 1.6394
Irma-2017 Unweighted 0.0084 1.4111 1.1786 0.3776 2.3777 1.3592

Sandy-2012 Weighted 1.0000 1.2286 1.0357 0.5391 2.1310 2.1901
Sandy-2012 Unweighted 1.0000 1.2204 0.9876 0.5521 2.2075 2.2353
Nate-2017 Weighted 0.3602 0.8355 0.7225 0.8528 2.6684 3.8660
Nate-2017 Unweighted 0.3602 0.8154 0.6746 0.8615 2.4930 4.1285

Matthew-2016 Weighted 1.0000 0.7932 0.6193 0.8898 2.5561 4.3897
Matthew-2016 Unweighted 1.0000 0.7943 0.6298 0.8924 2.6867 4.2988
Arthur-2014 Weighted 1.0000 1.0724 0.8634 0.6721 2.3111 2.8540
Arthur-2014 Unweighted 1.0000 1.0616 0.8432 0.6745 2.2994 2.8983

Table 4.5.1: Model performance by storm, with weighted and unweighted storms fitted.

Bolded values represent the better of the two by storm and loss function. λ value reported

is selected by the effective sample size calculation from subsection 4.3.2.

As a followup, we additionally implemented a study of tuning the model using the

weighted out-of-bag metric from subsection 4.3.3. To do this, we tune the mtry parame-

ter over a grid consisting of M = {27, 39, 51, 63, 75} for both an unweighted and weighted

random forest. For the weighted forest, we record OOBw
m,B and the weighted RMSE, and
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OOBm,B and the unweighted RMSE. The results are shown in Figure 4.5.1, where the out-

of-bag error for each mtry value is plotted against the RMSE of that model. For all storms

except Hurricane Nate, we see that both OOBm,B and OOBw
m,B dramatically underesti-

mate the holdout RMSE, with the weighted out-of-bag error providing a slightly less biased

estimate. However, in the context of model selection, typically the model with the lowest

out-of-bag error (and thus lowest estimated generalization error) is selected. Thus, for model

selection purposes, the generalization error estimate is less important than the ranking. We

see that the weighted oob error selects an optimal model for Hurricane Matthew, and a

near optimal model for hurricanes Irma and Sandy, while the unweighted model selects an

optimal model for Hurricane Sandy, and a near optimal model for Irma, Nate, and Matthew.

Moreover, for Hurricane Matthew, the OOB-RMSE rankings are recovered exactly, and for

Hurricane Irma the same is true with the exception of one mtry value. In the unweighted

case, there are no such clear stories.
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Figure 4.5.1: Out-of-bag error versus holdout RMSE. Top: Results for the unweighted

forest. Bottom: Results for the weighted forest.

4.6 Conclusion

We proposed a modification to the random forest algorithm to account for distributional

changes between test and training sets, which often arise in practice. We accomplish this

by imposing a covariate shift assumption, and then using existing density ratio methods

to estimate the likelihood ratio weights, `(X) ∝ dP2(X)
dP1(X)

. We moreover provided methods for

imputing missing data and tuning the model in ways that respect the statistical assumptions

associated with the problem. The simulation study clearly demonstrates the utility of the

proposed method - the importance weighted forest typically outperforms a standard random
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forest in the covariate shift case. However, importance weighting is only able to address

small changes in covariate distribution. Indeed, in Figure 4.4.2 it was shown that both the

weighted and unweighted forest perform worse as the magnitude of the shift grows.
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5.0 Summary and Additional/Future Work

Random forests are accurate, computationally efficient machine learning tools that are

widely used in practice because of their ease of implementation, particularly in applications

to medicine and environmental sciences. Despite the ease of training a random forest, inter-

preting the outputs remains challenging, with flawed, ad hoc tools remaining quite popular,

such as the out-of-bag metrics. In chapters 2 and 3, we proposed tools for random forest in-

terpretation that are statistically meaningful. The tools in chapter 2 were catered to the tree

swallow migration problem, while the tools in chapter 3 are quite general. Additionally, in

chapter 4, we presented an importance-sampling modification to the random forest algorithm

to account for covariate shift, and demonstrated the predictive utility of the modification

via simulations and the application to hurricane outage forecasting.

There are several avenues for methodological improvement, which have been presented in

the conclusions of each chapter. Future work could incorporate the methodological sugges-

tions from these sections. However, more promising are further applications to environmental

and climate science. Climate change, in particular, and its human impacts, are of great in-

terest given the current trajectory of carbon emissions. Presently, some of our work is on

applications to studying the influencing factors of permafrost thaw in the Arctic. Permafrost

thaw is of significant research interest because it presents a possible positive feedback loop

in the climate system: warming temperatures due to greenhouse gas emissions melts per-

mafrost, potentially releasing more greenhouse gasses. The magnitude and nature of this

feedback loop is the subject of intense research currently, e.g. [Lawrence and Slater, 2008,

Koven et al., 2011, Meehl et al., 2012, Lawrence et al., 2015]. Analyzing the dynamics of the

feedback loop via machine learning models, such as random forests, is especially exciting.
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Appendix A Chapter 2 Appendix

A.1 Moran’s I

We now describe the formal procedure used to evaluate the significance of spatial auto-

correlation in Figure 2.3.4, which was mentioned in section 2.3. In order to formally test the

following hypotheses

H0 : cov(dij, di′j′) = 0 for all ij 6= i′j′

H1 : cov(dij, di′j′) 6= 0 for some ij 6= i′j′

we first must define a distance matrix between points in the grid. Here we calculate pairwise

distances

δij,i′j′ :=
√

(latij − lati′j′)2 + (lonij − loni′j′)2

as the Euclidean distances between the latitude/longitude coordinates in the grid and utilize

an inverse distance weighting scheme

wij,i′j′ :=
1

δij,i′j′
.

The distance between a point and itself is 0, but we assign wij,ij = 0, as is standard practice.

For computational feasibility, we make these calculations on only a sub-grid consisting of

every sixth point in the original test grid. To evaluate the hypotheses, we use the test

statistic [Moran, 1948]

Iobs =
N
∑

ij,i′j′ wij,i′j′(dij − d̄)(di′j′ − d̄)

W
∑

ij(dij − d̄)2

as our test statistic, where W is the sum of all entries in the weight matrix and N is the

number of grid points (in our case, 5822). We then calculate the standardized statistic Z∗ =

(Iobs − E0Iobs)/σ̂(Iobs) which is asymptotically standard normal under H0. The calculated

Iobs values are reported in table A.1.1. Note that E0Iobs = −1/(N − 1) 6= 0.
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Day of Year 1 21 41 61 81 101 121 141 161

Iobs 0.1782 0.1594 0.1609 0.2150 0.3291 0.1870 0.1325 0.1119 0.1281

Z∗ 477 427 431 576 881 502 355 300 343

P-value 0 0 0 0 0 0 0 0 0

Table A.1.1: Moran’s I test for spatial autocorrelation for each of the days for which a

prediction map was generated, see Figure 2.3.4

A.2 S.3 A Causal Inference Analysis

We now implement an analysis to estimate the effect of max temp anomaly on occurrence.

We note that the quantity of interest here is distinct from that in the main text, and so we

begin with a brief overview of the potential outcomes framework and causal random forests.

For a continuous treatment W , the average treatment effect at a point x is defined as

τ(x) =
Cov(Y,W |X = x)

Var(W |X = x)

so that τ(x) measures the average linear effect of W on Y given covariates X = x. This is

an extension of the potential outcomes framework [Rubin, 2005], which defines the counter-

factual treatments, Y (w) for each w in the support of W . The fundamental goal of causal

random forests is to estimate τ(x) [Wager and Athey, 2018]. Causal trees, for continuous

treatments, proceed by recursively partitioning the feature space until some stopping crite-

rion is met and then performing local linear regression of Y on W within the terminal nodes.

Then, a prediction of τ(x) is given by the estimated treatment effect within the terminal

node containing x. The forest is generated by repeatedly creating randomized trees, and

averaging the estimated treatment effect from each tree. Wager and Athey [2018] showed

that if several regularity conditions are enforced upon training of the trees, then τ̂(x) is

asymptotically consistent to the true effect.

To interpret τ̂(x) as an estimate of a causal effect, one must place an additional assump-

tion on the distribution of the data, namely unconfoundedness, which states that

Y
(w)
i |= Wi | Xi ∀ w.
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Essentially, the response, given a particular treatment assignment w, needs to be locally (in

X) independent of the process by which treatments are assigned. The assumption can also

be viewed as stating that the covariates X are a sufficient adjustment set to infer the causal

effect of W on Y .

In our application, Y is occurrence, W is max temp anomaly, and X are the remaining

covariates such as land cover, time of year, user characteristics, etc. Thus, the unconfound-

edness assumption translates to assuming that the distribution of temperature anomalies is

independent of the distribution of potential occurrences for all possible temperatures, con-

ditional on the other covariates. We believe that the unconfoundedness assumption is likely

unrealistic in this situation. Consider that both occurrence and max temp anomaly are

both realizations of time series with high serial dependence. In Figure A.2.1, we present

two different directed acyclic graph (DAG) representations of the time series structure of the

data, fixed at a location x. In the left panel, if we assume that Wt are sequentially inde-

pendent, but perhaps day-to-day occurrences are dependent, then unconfoundedness holds.

However, in the right panel, we model the more realistic scenario, where both the treatment

and outcome are serially dependent, so that Y
(wt)
t and Wt are confounded by Wt−1. As such,

we have reason to doubt that τ(x) is identifiable from this data. Further, we do not observe

Wt−1, and so cannot include it in an adjustment set. The problem becomes more intractable

when one considers that the causal mechanism between W and Y is primarily insect activ-

ity, as described in the introduction of the main text, which acts as an unobserved variable.

Because insect activity is also serially dependent and unobserved, it can effectively make

the adjustment set require infinite history of the time series observations, making causal

inference impossible [Malinsky and Spirtes, 2018].

With these caveats in mind, we now apply the causal forest algorithm to the data used in

Section 5 of the main text. We use the same training and test points described in the main

text and apply the causal forest algorithm implemented in the grf package [Athey et al.,

2019] with the default parameters (including tree honesty) enabled. Then, predictions τ̂(x)

were recorded for each of the stratified test points.

It is hard to discern any spatial trend in |τ̂(x)| from the left panel of Figure A.2.2.

However, the time series plots tell an intuitive story - negative temperature anomalies lead
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Wt−1 Wt Wt+1

Yt−1 Yt Yt+1

Wt−1 Wt Wt+1

Yt−1 Yt Yt+1

Figure A.2.1: Two different directed acyclic graphs (DAGs) describing the relationship

between Wt and Yt. Left: A treatment scheme that would satisfy unconfoundedness. Right:

A more likely DAG, for which unconfoundedness does not hold.

to reduced occurrence earlier in the season (particularly in the the northern testing zones),

followed by a flattening of the effect later in the migration season. Notice that the flattening

occurs the earliest in Zone 1 (around DoY 270), and latest in Zone 6 (around DoY 320), which

again coincides with spatial differences in seasonality. We note that these results are in

consensus with the formal testing from Section 4 of the main text, where differences between

the regression functions died down later in the year.
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Figure A.2.2: Left: Absolute causal forest estimates |τ̂(x)| for each point in the test

set used in Section 5 of the main text. Size of the circle corresponds to magnitude of the

estimated treatment effect. Right: A plot of τ̂(x) over time in each zone.
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Appendix B Chapter 3 Appendix

B.1 Proofs of Technical Results

We now provide the technical details and proofs for theoretical discussion in Section 3.

For completeness, theorems and lemmas are restated.

Theorem 1. Under the exchangeability conditions outlined in Section 3.1, denote a se-

quence of (potentially randomized) trees trained on subsamples from Dn as {Tk(·)}∞1 . More-

over, consider an independently drawn test point, Z∗ = (X∗, Y ∗) ∼ F . Then, the residuals

rk = Tk(X
∗)− Y ∗

form an infinitely exchangeable sequence of random variables.

Proof. Let Ξ be the distribution of randomization parameters, and let Skn(Dn) be the

distribution of subsamples of size kn drawn uniformly from the original data. Then, to

construct a tree, we have the following procedure:

1. Draw D∗kn ∼ Skn(Dn)

2. Draw ξ ∼ Ξ

3. Draw Z∗ ∼ F

4. Construct a tree according to some combining function, say φ , of ξ,D∗kn , i.e. T =

φ(ξ,D∗kn).

Each draw is done independent of the other draws. Repeating (1) and (2) independently

gives iid sequences {D∗l,kn)}∞l=1 and {ξj}∞j=1. Then, the sequence

T1 = φ(ξ1,D∗1,kn), T2 = φ(ξ2,D∗2,kn), ...

is a mixture of iid sequences, where the mixture is directed (in the sense of Aldous [1985])

by Dn. So, {Tl | Dn} is exactly an iid sequence of functions. Further, {rl | Dn,Z∗} is

an iid sequence of random variables, and thus the conclusion follows from the converse of

DeFinetti’s Theorem.
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Aldous [1985] page 29 provides more details on this construction and the implications

of De Finetti’s Theorem. We turn now to Lemma 1 from Section 3.2, which establishes

asymptotic pairwise independence of subsampled decision trees.

Lemma 1. Consider a collection of Bn trees built from a training dataset of size n on

subsamples of size kn, say {Tj,kn}Bnj=1, satisfying Condition 1. Then, as long as kn/
√
n → 0

and (
Bn

2

)
log

[(
n−kn
kn

)
(
n
kn

)
]
→ 0

the infinite sample sequence of trees, {T1,∞,k∞ , ..., TB,∞,k∞ , ...} is an infinite sequence of pair-

wise independent random functions.

Proof. Condition 1 guarantees the existence of a limiting random variable. It is sufficient to

show that asymptotically, the trees are trained using independent training samples, because

we have assumed that our original data are iid. Define the indices of a subsample in the

following way:

ind(D∗kn) := {j ∈ {1, ..., n} : Zj ∈ D∗kn}.

Then, by the assumption that the Zk are independent,

D∗kn,j |= D∗kn,l ⇐⇒ |ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0

so, it is sufficient to show that

lim
n→∞

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0) = 1, ∀ j 6= l.

Note that if kn ≥ n/2, this event has probability 0, so choose n so that n > 2kn. Then

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0) =

(
n−kn
kn

)
(
n
kn

)

=
((n− kn)!)2

n!(n− 2kn)!

=
(n− kn)!

n!
× (n− kn)!

(n− 2kn)!

=
(n− kn)(n− kn − 1)...(n− 2kn + 1)

n(n− 1)...(n− kn + 1)
.
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There are kn terms in both the numerator and denominator here, so we can separate the

product in the term above as

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0) =
n− kn
n

× n− kn − 1

n− 1
× ...× n− 2kn + 1

n− kn + 1
.

≥
(
n− 2kn + 1

n

)kn

=

(
1− 2kn + 1

n

)kn

= exp

[
kn log

(
1− 2kn + 1

n

)]

≈ exp

[
kn

(
−2kn + 1

n

)
− kn

2

(
2kn + 1

n

)2
]

≈ exp

[
−2k2

n + kn
n

]

≈ 1

where an ≈ bn means that limn→∞ an/bn = 1, and we have used the Taylor expansion of

log(1− x) in the above.

This means that two pre-specified subsamples will be independent in the limit. Next, we

need to ensure that this holds for all subsamples, i.e.

P

(⋂

j 6=l

{|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0}
)
→ 1.

For Bn trees, there are
(
Bn
2

)
subsample pairings, each drawn independently. Thus

P

(⋂

j 6=l

{|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0}
)

=
∏

j 6=l

P (|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0)

=

((n−kn
kn

)
(
n
kn

)
)(Bn2 )

.

Next, by assumption,

logP

(⋂

j 6=l

{|ind(D∗kn,j) ∩ ind(D∗kn,l)| = 0}
)

=

(
Bn

2

)
log

[(n−kn
kn

)
(
n
kn

)
]
→ 0

so that the probability of this event goes to 1.
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Now, we more formally derive the asymptotic distribution of the MSE statistic, using

a delta method argument. This discussion derives the results in subsection 3.3.3. In what

follows, we suppress the dependence on y, writing just MSERF (X; y) = g (RFB(X)). We

derive the asymptotic distribution of the MSE via the delta method, which we belabor here

for its intuitive value. We can then appeal to the mean value theorem to say

g(RFB(X)) = g(ERFB(X)) + g′(R̃B(X))[RFB(X)− ERFB(X)]

where R̃B(X) is a random quantity bounded between RFB(X),ERFB(X). The law of large

numbers gives that RFB(X) = ERFB(X) + oP (1) and further R̃B(X)
p→ ERFB(X). Next,

continuity of g′ gives that g′(R̃B(X))
p→ g(ERFB). Thus,

√
B [g(RFB(X))− g(ERFB(X))] = g′(R̃B(X))

√
B [RFB(X)− ERFB(X)]

d→ N
(
0, g′(ERFB(X))2σ2

)

d
= N

(
0, 4(ERFB(X)− y)2σ2

)
for g(z) = (z − y)2.

The calculation above is more informative - we see that the MSE is asymptotically a linear

function of the random forest prediction. An issue is that the above quantity is centered

around g(ERFB(X)) rather than Eg(RFB(X)), which we now address. In particular, suppose

we begin by centering around Eg(RFB(X)) rather than g(ERFB(X)). Then,

√
B [g (RFB(X))− Eg (RFB(X))] =

√
B [g (RFB(X))− g(ERFB(X))] +

√
B [g (ERFB(X))− Eg (RFB(X))] (B.1.1)

so that if
√
B [g (ERFB(X))− Eg (RFB(X))] = o(1), then the same distributional result

holds. This is shown in Lemma 3.

After Lemma 1, we next need to prove Lemma 3, whose purpose is to show that the

observed MSE is asymptotically centered around its own expectation.

Lemma 3 Assume the conditions needed from Corollary 2. Additionally, assume that g

has at least k derivatives for some k ≥ 3 , and that g(k)(x) <∞ for all x. Further, assume

that E|Ti(X)|k <∞. Then,

√
B [Eg(RFB(X)− g(ERFB(X))] =

g′′(ERFB(X))σ2

2
√
B

+ o(B−3/2).
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Proof. We rely on a result presented in Oehlert [1992], which states that under the conditions

presented in the lemma statement,

Eg(RFB(X)) = g(ERFB(X)) +
g′′(ERFB(X))σ2

2B
+ o(B−2). (B.1.2)

Thus, the result follows from multiplying both sides of Equation B.1.2 by
√
B and rear-

ranging terms.

As a quick note about the result above, recall that application of the mean value theorem

requires that g′(ERFB(X)) 6= 0, which occurs if and only if ERFB 6= y. The expected

prediction can be written as ERFB(X) = m(X) + δ(X), where δ(X) is the pointwise bias of

the random forest. Recalling that the response is given by Y = m(X) + ε, if it holds for all

X that P (ε 6= δ(X)) = 1, then the result holds for the squared error calculated with respect

to almost all Y and thus is trivially satisfied for continuous errors. A similar result could

be applied to any continuously differentiable loss function g(·, ·), again under the condition

that g′ is almost surely non zero.

Next, we include details about the limiting distribution of the MSE at multiple points.

To calculate τ 2, for the MSE at each point in T , let gj(RFB(Xj)) = (RFB(Xj) − Yj)2, by

continuity, g′j(R̃B(Xj)) = g′j(ERFB(Xj)) + oP (1). Thus, we see that

MSERF (T ) =
1

Nt

Nt∑

j=1

MSERF (Xj, Yj)

=
1

Nt

Nt∑

j=1

g′j(ERFB(Xj)) [RFB(Xj)− ERFB(Xj)] + oP (1)

=
1

Nt

Nt∑

j=1

g′j(ERFB(Xj))

[
1

B

B∑

i=1

[Ti(Xj)− ERFB(Xj)]

]
+ oP (1)

=
1

B

B∑

i=1

1

Nt

Nt∑

j=1

g′j(ERFB(Xj)) [Ti(Xj)− ERFB(Xj)]

︸ ︷︷ ︸
T̄i

+oP (1)
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where gj(·) is used to suggest that the squared difference is calculated with respect to Yj.

T̄i is an iid sequence, so that
√
B[MSERF (T )−EMSERF (T )] is asymptotically an iid sum

with mean 0 and variance σ2
T̄

given by

σ2
T̄ =

1

Nt

Nt∑

j=1

σ2
j

(
g′j(ERFB(Xj))

)2
+

2

Nt

∑

i<j

g′j(ERFB(Xj))g
′
i(ERFB(Xi))ρij (B.1.3)

where ρij = Cov(T (Xi), T (Xj)) and σ2
j = Var(T (Xj)). We can obtain a similar variance

(σ2
T̄π

) for MSERFπ(T ), so that under the hypothesis that EMSERF (T ) = EMSERFπ(T ),

τ 2 can be seen to be

τ 2 = σ2
T̄ + σ2

T̄π .

That the T̄i and T̄ πi are two indenpendently iid sequences follows from Lemma 2. Inde-

pendence of the two samples follows from a similar argument to the second remark after

Corollary 2. Crucially, there are many complicated quantities in this Equation B.1.3, i.e.

σ2
j , σ

2
π,j, ρij, ρ

π
ij, for which there are not obvious estimators available and thus this result

alone is not clearly practical. In the following sections, we verify the validity of our proposed

permutation procedure, which avoids the necessary explicit estimation of these quantities.

Next, we move on to the proof of Proposition 1, which gives that the trees typically

trained in a random forest obey the necessary regularity conditions for Corollary 2.

Proposition 1. Assume that Y = m(X) + ε, where m(·) is continuous on the unit cube.

Let X = [0, 1]p, and assume that Xi,j
iid∼ Unif(0, 1) for i = 1, ..., n and j = 1, ..., p. Then,

let Tn(X) be a tree trained on iid pairs (X1, Y1), ..., (Xn, Yn) such that each leaf of the tree

contains a single observation. Further, assume the trees satisfy the following two conditions:

(i) ∃γ > 0 such that P (variable j is split on) > γ for j ∈ {1, ..., p}
(ii) Each split leaves at least γn observations in each node.

Then, for each X ∈ X
Tn(X)

d→ Y |X = X as n→∞

Proof. Each tree divides X into a partition of rectangular subspaces, corresponding to leaves

of the tree. Following Meinshausen [2006], for each point X (with coordinates [x1, ..., xp]),

let `(X) denote the unique leaf of the tree containing X. Let R`(X) be the rectangular
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subspace of [0, 1]p corresponding to a particular leaf `(X). The rectangular nature of the

subspaces means that for each input feature, R` can be expressed as

R`(X) =

p⊗

i=1

[a(X, i), b(X, i)]

where 0 ≤ a(X, i) ≤ xi ≤ b(X, i) ≤ 1 are scalars inducing an interval in dimension i.

Then, the tree (by the existence of the requisite γ) satisfies the conditions of Lemma 2 in

Meinshausen [2006], so that maxi |a(X, i) − b(X, i)| p→ 0. Let a(X) = [a(X, 1), ..., a(X, p)]

and similarly define b(X), so that the previous sentence implies: a(X)
p→ b(X). We therefore

also see that a(X, i), b(X, i)
p→ xi for all i.

The trees are fully grown, so the tree prediction at the point X is given by

Tn(X) =
n∑

k=1

I(Xk ∈ R`(X))Yk

i.e. the response for the observation whose leaf contains X. As such, let k∗ be the index

corresponding to the observation who shares a leaf with X, so that Tn(X) = Yk∗ . We can

deconstruct the event Xk∗ ∈ R`(X) as

{Xk∗ ∈ R`(X)} =

p⋂

i=1

{a(X, i) ≤ Xi,k∗ ≤ b(X, i)}.

Thus, in the limit, a(X, i), b(X, i)
p→ Xi,k∗ , and so Xi,k∗

p→ xi for all i. Further, continuity

of m yields that m(Xk∗)
p→ m(X). Thus, we see that, in the limit

Yk∗ = m(X) + εk∗
d
= m(X) + ε

d
= Y |X = X

because εk∗ is independent of the location of X.
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Next, we provide more details about the permutation distribution derived in subsec-

tion 3.3.4. Recall that the calculation of the permutation distribution variance follows im-

mediately from Equation 3.3.6; the permutation distribution of the statistic

√
2B [MSERF (X; y)−MSERFπ(X; y)]

converges to a normal distribution with mean 0 and variance

τ 2 =
1

1/4

[
1

2
Var(g′(ERFB(X))T (X)) +

1

2
Var(g′(ERF π

B(X))T π(X))

]
.

This is double the variance of Equation 3.3.3, because the previous calculations were done

for a
√
B rescaling, and so the conditional and unconditional variances agree. Because

the ensemble sizes used in Algorithm 1 are assumed to be the same, p = 1
2
, so that the

permutation test for equivalence of forest predictions is automatically valid in the sense of

matching the permutation and unconditional distributions. This argument is formalized in

the following result.

Theorem 6. Let T1,kn , ..., TB,kn and T π1,kn , ..., T
π
B,kn

be two collections of trees satisfying the

conditions of Lemmas 1 and 3, and fix a test point with location X and response Y . Consider

a test of the null hypothesis

H0 : E
[
MSERF (X;Y )

∣∣ X, Y
]

= E
[
MSERFπ(X;Y )

∣∣ X, Y
]

using the statistic ∆̂ = MSERF (X;Y )−MSERFπ(X;Y ). Then under H0, the permutation

distribution of
√
B∆̂ converges to a normal distribution with mean 0 and variance

τ 2 = g′(ERFB(X))2σ2 + g′(ERF π
B(X))2σ2

π

which is also the variance of the unconditional distribution of
√
B∆̂, as n → ∞. Thus, the

permutation test attains the asymptotic Type I error rate.
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Proof. The only claim that remains to be verified is that the permutation test attains the

Type I error rate. Let Φ(·) be the standard normal cdf, and let ĴB(t) be the (random) cdf of

the permutation distribution, with corresponding quantile function Ĵ−1
B (q). By the argument

preceding the theorem statement, we have that supt |ĴB(t)−Φ(t/τ)| p→ 0. Then, by Lemma

11.2.1 of Lehmann and Romano [2006], for any number q ∈ (0, 1), Ĵ−1
B (q)

p→ τΦ−1(q). In

particular, for a given significance level α, the 1-sided permutation test of H0 at the level

α has a critical value Ĵ−1
B (1 − α) which converges in probability to τΦ−1(1 − α). Thus, as

B →∞,

P (
√
B∆̂ ≥ Ĵ−1

B (1− α)|H0)→ P (
√
B∆̂ ≥ τΦ−1(1− α)|H0)→ α.

B.2 Additional Simulations

We include some additional simulations here to demonstrate the following points.

1. The accuracy of the permutation distribution approximation of the Gaussian. The the-

ory outlined in Section 3.3 establishes that the difference in MSEs between forests is

asymptotically Gaussian but the difficulty in estimating the resulting variance largely

restricts its direct usage in practical settings. We go on to demonstrate that the per-

mutation distribution approaches this distribution, thereby circumventing the need for

a direct variance estimate. The simulations below present empirical evidence that this

approximation is reasonable in practical settings.

2. The instability of the variance estimation procedures laid out in Wager et al. [2014b]

and Mentch and Hooker [2016a]. Clearly variance estimation is useful for developing

confidence intervals about random forest predictions, which in the case of pointwise

consistency (as in the honest trees proposed by Wager and Athey [2018]), are also valid for

the underlying regression function. However, in the hypothesis testing framework, these

estimates are useful only insofar as they allow for calculation of a test statistic. These

variance estimates, such as the infinitesmal jackknife of Wager et al. [2014b], recommend
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building B = O(nβ) trees where β ≥ 1. We demonstrate that this recommendation

cannot be violated.

3. The robustness (and potential weaknesses) of the proposed procedure to different ran-

dom forest implementations. In particular, we want to study the effect of larger sub-

samples/more trees. The theoretical results presented in Section 3.3 rely on treating

the tree predictions as iid. Clearly, this is never true in practice, and some theoretical

justification for the effects of this being small were presented in Section 3.5.

B.2.1 Variance Estimation Instability

Here, we use the infinitesmal jackknife (IJ), as implemented in the ranger package

[Wright and Ziegler, 2015], to estimate the variance of a random forest prediction at a given

point. In particular, we simulate data from Model 2 from Table 3.4.1, train a subsampled

random forest, and record the IJ variance estimate of random forest prediction at X1 =

... = X5 = 0.5 and X6 = ... = X10 = 2. We use n = 2000, kn = n0.5 ≈ 44, and vary the

number of trees. Often times, the IJ variance estimate is negative, leading to a NaN output

from the IJ software. These instances represent a case when the IJ estimate is useless to a

practitioner, and as such, we report the percentage of times that a NaN output is returned

for each number of trees. For each number of trees, we repeat the simulation 100 times, and

results are shown in Figure B.2.1.

The IJ estimate provides overwhelmingly large variance estimates for small numbers of

trees, leading to overly conservative confidence intervals and tests with exceptionally low

power. Moreover, the ribbon remains quite wide until around B = 2000 trees, suggesting

that at least O(n) trees are necessary to attain a stable variance estimate. A similar number

of trees is necessary to ensure that a NaN is never returned. We should note that this is

the simplest possible case of variance estimation, i.e. the estimation is only at a single

point. The problem grows exponentially more complex as more test points are considered

and covariance estimates are needed. Mentch and Hooker [2016a] note that the procedure

is infeasible for more than 20-30 test points. The authors demonstrate in follow-up work

[Mentch and Hooker, 2017] that an approximate test can be produced by utilizing random
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Figure B.2.1: ranger IJ variance estimate. Blue ribbon plot indicates central 90% of vari-

ance estimates (corresponds to left axis), and red line (corresponds to right axis) represents

percentage of runs that return NaN.

projections which allows for slightly larger test sets but at the cost added computational

strain. In contrast, besides the minimal overhead required to form the additional predictions,

the testing procedure proposed here is almost entirely immune to the number of points in

the test set. Once the initial predictions are formed, the only remaining work is to shuffle

predictions (trees) and re-compute the difference in MSE between forests.

B.2.2 Test Robustness

We now present more figures similar to the power curves presented in Section 3.4. The

goal here is to present the proposed procedure’s robustness to the number of trees B and

the subsample size kn. To do so, we modify the simulation study plotted in the second panel

of Figure 3.4.1. Here, we fix the error variance at σ2(ε) = 16, and again simulate n = 2000

training observations and Nt = 100 test observations. First, we vary the number of trees

built, according to

B ∈
{

20, 50, 75, 125, 250, 375, 500, 750, 1000
}

and let kn = n0.6. The resulting simulations are plotted in Figure B.2.2.

Two clear patterns are clear in the figure - the power and type I error rate of the test
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Figure B.2.2: Model 2 power curves for 500 simulations, by number of trees. The Y-axis

represents P (p̃ ≤ α) where α = 0.05 and is shown as the horizontal line across the bottom

of the plots.

both increase as the number of trees grows. However, the rate of growth for each of them

is markedly different - the test attains high power around B ≈ 250 trees, but deviations

from the nominal level are only noticeable around B ≈ 500 trees. Even when B = 1000, the

observed level is still within nearly 5% of the baseline. Thus, while the level of the test may

be slightly inflated for large numbers of trees, the procedure remains valid for limited, but

realistic tree sizes.

Recall that the subsample size is a key limiting factor of Lemma 1 - it is required that

kn = o(
√
n) - to establish asymptotic normality. Other work [Wager and Athey, 2018]

weakens these conditions, but places explicit restrictions on the types of trees allowed in the

ensemble. We now examine the behavior of our procedure under larger sample sizes. We use

the same simulation parameters as in Figure B.2.2, but now fix B = 125 and let kn = np,

and we vary p at 10 equally spaced values between 0.1 and 0.99.

The resulting simulation is shown in Figure B.2.3. We see that for p ≤ 0.75, the Type

I error rate is maintained, but for larger subsamples, we begin to see a severe deviation.

Though severe, this is not necessarily surprising as such large subsampling rates correspond
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directly to a more severe violation of the iid approximation.
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Appendix C Chapter 4 Appendix

C.1 Proof of Proposition 3

Here, we prove Proposition 3, which is restated below followed by its proof.

Proposition 3. Let {Zi}Ni=1
iid∼ Bernoulli(α), and let (xi, Yi)

n+m
i=1 |Zi

iid∼ ZiP2 + (1 − Zi)P1,

where P1 and P2 satisfy the covariate shift assumption (Equation 1 in the main text). Define

m =
∑N

i=1 Zi. Assume that Yi ≥ 0 almost surely, supx E(Y 4|x = x) < K for some constant

K, and that

ρ∗n = max
k=1,2

max
i 6=j

CorPk

[
(mBi(xi)− Yi)2, (mBj(xj)− Yj)2

]
→ 0

as n → ∞. Further, assume that for all x ∈ X , wN(x) is consistently proportional to the

likelihood ratio, `(x) =
dP ∗2 (x)

dP ∗1 (x)
, i.e. wN satisfies

wN(x) = c
dP ∗2 (x)

dP ∗1 (x)
+ εN(x) ∀ x ∈ X

where c is a constant that does not depend on x, and εN(x) is a sequence of random

variables satisfying P (supx |εN(x)| < ηN) = 1, where ηN → 0 as N → ∞. Let θP2 =

EP2(limB→∞OOBm,B). Then, as B, n→∞

OOBw
m,B

p→ θP2 .

Proof. To show this, we use a standard trick in the importance sampling literature to rewrite

OOBw
m,B as

OOBw
m,B =

∑n
i=1wi(mBi(xi)− Yi)2

∑n
j=1wj

=
1
n

∑n
i=1 wi(mBi(xi)− Yi)2

1
n

∑n
j=1 wj

. (C.1.1)

An important point of clarification is that we use N to be the total sample size, n to be

the size of the training set, and m be the size of the test set. Because n ∼ Binomial(N,α),

limN→∞ n = ∞ (and similarly for m) almost surely. Thus, we use n → ∞, m → ∞,
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and N → ∞ interchangeably. The weak law of large numbers gives that as n → ∞, the

denominator of Equation C.1.1 obeys

1

n

n∑

j=1

wj
p→ cEx∼P ∗1

[
dP ∗2 (x)

dP ∗1 (x)

]
= c

∫

X
dP ∗2 (x) = c.

By assumption, wi = c
dP ∗2 (xi)

dP ∗1 (xi)
+ εN(xi), so that the numerator of Equation C.1.1 can be

expressed as

1

n

n∑

i=1

[
c
dP ∗2 (xi)

dP ∗1 (xi)
+ εN(xi)

](
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2

.

Now, we want to show that this converges in probability to cθP2 . We do this by analyzing

the variance of the numerator of Equation C.1.1. Note that we have

Var

[
1

n

n∑

i=1

(
c
dP ∗2 (xi)

dP ∗1 (xi)
+ εN(xi)

)(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2]

= Var

[
c

1

n

n∑

i=1

(
dP ∗2 (xi)

dP ∗1 (xi)

)(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2

︸ ︷︷ ︸
S1,n

+
1

n

n∑

i=1

εN(xi)

(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2

︸ ︷︷ ︸
S2,N

]
.

We approximate Var(S1,n + S2,N) as Var(S1,n) + Var(S2,N), because Cov(S1,n, S2,N) → 0 as

N →∞. To see this last fact, note that S2,N satisfies

|S2,N | <
ηN
n

n∑

i=1

(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2

(C.1.2)

and that the quantity on the right hand side is integrable, so that by dominated convergence,

E(S2,N) → 0. Moreover, by assumption, the squared out-of-bag residuals are bounded in

probability (because they are assumed to have finite mean/variance). Thus, the cross-term

can be controlled as

E
[
S2,N ×

c

n

n∑

i=1

(
dP ∗2 (xi)

dP ∗1 (xi)

)(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2]

< E
[
ηN
n

n∑

i=1

(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2

× c

n

n∑

i=1

(
dP ∗2 (xi)

dP ∗1 (xi)

)(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2]

which, again by dominated convergence, converges to 0.
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Now, we want to show that the variance of S2,N vanishes. Recall that by hypothesis,

P (limN→∞ S2,N = 0) = 1, and so it follows that P (limN→∞ S
2
2,N = 0) = 1. Then, again

we can appeal to dominated convergence (using the quantity in Equation C.1.2 squared as

our upper bound) to get that Var(S2,N) → 1 as N → ∞. All that remains to show is that

Var(S1,n)→ 0 as n→∞. The variance of S1,n can be expressed as

Var(S1,n) = Var

[
c

n

n∑

i=1

(
dP ∗2 (xi)

dP ∗1 (xi)

)
(mBi(xi)− Yi)2

]

=
c2

n2

n∑

i=1

Var

[(
dP ∗2 (xi)

dP ∗1 (xi)

)
(mBi(xi)− Yi)2

]

+
2c2

n2

∑

1≤i<j≤n

Cov

[(
dP ∗2 (xi)

dP ∗1 (xi)

)
(mBi(xi)− Yi)2,

(
dP ∗2 (xj)

dP ∗1 (xj)

)
(mBj(xj)− Yj)2

]
.

Because Yi is almost surely positive, and mBi(·) is an average of positive random variables,

both are positive almost surely. Also, note that the likelihood ratio term is also positive, so

that the whole quantity
(dP ∗2 (xi)

dP ∗1 (xi)

)
(mBi(xi)− Yi)2 > 0 almost surely. Then, we make use the

fact that for positive random variables W,Z,

VarW,Z∼P
[
(W − Z)2

]
≤ EW,Z∼P

[
(W − Z)4

]
= EW,Z∼Q

[
dP (W,Z)

dQ(W,Z)
(W − Z)4

]
]

≤ max
(
EP (W 4),EP (Z4)

)
.

Note that in the above, we use EP (W 4) to indicate integration over the marginal dis-

tribution of W under joint distribution P . Because mBi is a weighted sum of random

variables with bounded 4th moments, it also has a bounded 4th moment. Letting κ =

max{maxi EP1(mBi(xi)
4), K}, we see that

Var(S1,n) ≤ c2nκ

n2
+

2c2

n2

∑

1≤i<j≤n

Cov

[(
dP ∗2 (xi)

dP ∗1 (xi)

)
(mBi(xi)− Yi)2,

(
dP ∗2 (xj)

dP ∗1 (xj)

)
(mBj(xj)− Yj)2

]

≤ κc2

n
+

2c2

n2
n2κρ∗n

=
κc2

n
+ 2κc2ρ∗n.
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The above goes to 0 by hypothesis, and noting that ES1,n = cθP2 , we can apply Chebyshev’s

inequality to conclude that

1

n

n∑

i=1

wi

(
1

Bi

Bi∑

k=1

Tw(xi; ξk)− Yi
)2

p→ cθP2 as N →∞.

Finally, Slutsky’s Lemma gives that OOBw
m,B

p→ θP2 as N,B →∞.

C.2 Detailed Simulation Results

The purpose of this section of the appendix is to provide specific results for the simulation

from the high dimensional simulation from Chapter 4 in the form of tables. For each model

described in the high dimensional simulation section of the main text, we provide the full

results for each λ value. We also provide plots similar to those from the main text for the

MAE and Interval Width statistics, for completeness in Figure C.2.1.
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Figure C.2.1: Results from the high dimensional simulation for MAE (top) and Interval

Width (bottom)
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lambda Model RMSE MAE Covg Interval Width Score
1.000 Weighted 0.514 0.409 0.803 1.329 6.619
1.000 Unweighted 0.560 0.437 0.871 1.717 6.217
1.000 Custom 0.986 0.747 0.087 0.283 1.652
1.071 Weighted 0.518 0.413 0.805 1.345 6.562
1.071 Unweighted 0.576 0.451 0.864 1.710 6.058
1.071 Custom 0.910 0.709 0.126 0.386 1.826
1.143 Weighted 0.534 0.425 0.797 1.360 6.361
1.143 Unweighted 0.631 0.493 0.832 1.711 5.521
1.143 Custom 0.807 0.638 0.213 0.524 2.515
1.214 Weighted 0.564 0.448 0.783 1.384 6.026
1.214 Unweighted 0.708 0.557 0.784 1.725 4.840
1.214 Custom 0.720 0.574 0.342 0.637 3.609
1.286 Weighted 0.643 0.511 0.734 1.414 5.211
1.286 Unweighted 0.838 0.675 0.694 1.745 3.852
1.286 Custom 0.737 0.594 0.374 0.629 3.932
1.357 Weighted 0.787 0.639 0.623 1.412 3.968
1.357 Unweighted 1.004 0.852 0.561 1.717 2.818
1.357 Custom 0.897 0.766 0.210 0.507 2.344
1.429 Weighted 0.975 0.835 0.467 1.408 2.670
1.429 Unweighted 1.198 1.063 0.400 1.679 1.854
1.429 Custom 1.098 1.001 0.062 0.410 0.747
1.500 Weighted 1.214 1.087 0.283 1.360 1.489
1.500 Unweighted 1.404 1.277 0.246 1.607 1.090
1.500 Custom 1.287 1.216 0.010 0.350 0.121

Table C.2.1: Simulation results for Model 1.

lambda Model RMSE MAE Covg Interval Width Score
1.000 Weighted 0.604 0.453 0.826 1.590 5.884
1.000 Unweighted 1.520 0.867 0.896 5.430 2.547
1.000 Custom 2.087 1.701 0.094 0.500 0.947
1.071 Weighted 0.653 0.476 0.834 1.706 5.579
1.071 Unweighted 1.636 0.945 0.890 5.584 2.375
1.071 Custom 1.934 1.594 0.129 0.638 1.063
1.143 Weighted 1.077 0.626 0.831 2.123 4.181
1.143 Unweighted 1.843 1.107 0.875 5.962 2.071
1.143 Custom 1.698 1.398 0.217 0.902 1.381
1.214 Weighted 1.465 0.813 0.809 2.352 3.311
1.214 Unweighted 2.210 1.468 0.859 6.544 1.681
1.214 Custom 1.459 1.209 0.346 1.258 1.804
1.286 Weighted 1.596 1.054 0.796 3.284 2.536
1.286 Unweighted 3.533 3.053 0.708 6.864 0.946
1.286 Custom 1.416 1.222 0.367 1.441 1.751
1.357 Weighted 2.734 2.338 0.606 4.488 1.162
1.357 Unweighted 4.756 4.625 0.461 6.199 0.548
1.357 Custom 1.718 1.565 0.222 1.343 1.021
1.429 Weighted 4.319 4.129 0.337 4.523 0.511
1.429 Unweighted 5.987 5.960 0.209 4.854 0.266
1.429 Custom 2.185 2.077 0.060 1.122 0.281
1.500 Weighted 6.351 6.236 0.089 3.215 0.148
1.500 Unweighted 6.865 6.803 0.079 3.709 0.119
1.500 Custom 2.601 2.558 0.011 1.010 0.051

Table C.2.2: Simulation results for Model 2.

124



lambda Model RMSE MAE Covg Interval Width Score
1.000 Weighted 0.776 0.633 0.889 2.572 4.386
1.000 Unweighted 1.047 0.744 0.949 4.499 3.372
1.000 Custom 3.226 2.650 0.401 3.415 0.830
1.071 Weighted 0.765 0.619 0.871 2.372 4.473
1.071 Unweighted 1.026 0.735 0.940 4.202 3.442
1.071 Custom 2.989 2.456 0.390 3.111 0.881
1.143 Weighted 0.803 0.650 0.833 2.253 4.231
1.143 Unweighted 1.050 0.772 0.925 3.995 3.351
1.143 Custom 2.814 2.308 0.391 2.929 0.939
1.214 Weighted 0.934 0.751 0.754 2.177 3.570
1.214 Unweighted 1.130 0.852 0.898 3.833 3.105
1.214 Custom 2.613 2.142 0.399 2.805 1.010
1.286 Weighted 1.119 0.916 0.637 2.126 2.750
1.286 Unweighted 1.230 0.965 0.851 3.674 2.786
1.286 Custom 2.442 1.997 0.401 2.670 1.076
1.357 Weighted 1.331 1.122 0.499 2.076 1.990
1.357 Unweighted 1.351 1.105 0.785 3.529 2.437
1.357 Custom 2.285 1.868 0.394 2.484 1.133
1.429 Weighted 1.525 1.320 0.380 2.016 1.439
1.429 Unweighted 1.467 1.236 0.699 3.315 2.103
1.429 Custom 2.168 1.777 0.382 2.333 1.167
1.500 Weighted 1.719 1.519 0.268 1.952 0.982
1.500 Unweighted 1.603 1.381 0.597 3.127 1.752
1.500 Custom 2.079 1.701 0.363 2.159 1.183

Table C.2.3: Simulation results for Model 3.

lambda Model RMSE MAE Covg Interval Width Score
1.000 Weighted 0.650 0.527 0.902 2.258 5.234
1.000 Unweighted 0.829 0.630 0.927 3.199 4.180
1.000 Custom 1.799 1.467 0.571 2.885 1.671
1.071 Weighted 0.670 0.544 0.892 2.202 5.117
1.071 Unweighted 0.842 0.650 0.915 3.010 4.135
1.071 Custom 1.647 1.361 0.589 2.688 1.860
1.143 Weighted 0.740 0.598 0.867 2.254 4.644
1.143 Unweighted 0.905 0.708 0.890 2.920 3.862
1.143 Custom 1.591 1.332 0.598 2.568 1.962
1.214 Weighted 0.870 0.701 0.812 2.298 3.928
1.214 Unweighted 1.011 0.804 0.837 2.833 3.407
1.214 Custom 1.757 1.519 0.486 2.288 1.615
1.286 Weighted 1.037 0.848 0.730 2.286 3.208
1.286 Unweighted 1.126 0.924 0.771 2.746 2.957
1.286 Custom 2.028 1.836 0.285 1.874 1.004
1.357 Weighted 1.280 1.067 0.585 2.169 2.367
1.357 Unweighted 1.271 1.069 0.673 2.638 2.436
1.357 Custom 2.296 2.157 0.135 1.584 0.504
1.429 Weighted 1.485 1.286 0.459 2.075 1.768
1.429 Unweighted 1.398 1.206 0.575 2.526 2.008
1.429 Custom 2.458 2.344 0.061 1.393 0.244
1.500 Weighted 1.747 1.569 0.287 1.934 1.064
1.500 Unweighted 1.515 1.340 0.467 2.398 1.603
1.500 Custom 2.537 2.463 0.026 1.248 0.109

Table C.2.4: Simulation results for Model 4.
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lambda Model RMSE MAE Covg Interval Width Score
1.000 Weighted 0.543 0.434 0.813 1.454 6.247
1.000 Unweighted 0.547 0.437 0.838 1.555 6.241
1.000 Custom 0.668 0.523 0.493 0.990 4.096
1.071 Weighted 0.544 0.435 0.808 1.422 6.255
1.071 Unweighted 0.545 0.436 0.826 1.493 6.263
1.071 Custom 0.548 0.423 0.527 0.854 5.232
1.143 Weighted 0.550 0.441 0.797 1.394 6.173
1.143 Unweighted 0.551 0.443 0.815 1.466 6.176
1.143 Custom 0.447 0.343 0.572 0.759 6.705
1.214 Weighted 0.558 0.446 0.786 1.383 6.068
1.214 Unweighted 0.568 0.457 0.798 1.461 5.954
1.214 Custom 0.357 0.270 0.659 0.700 9.094
1.286 Weighted 0.594 0.476 0.755 1.373 5.654
1.286 Unweighted 0.607 0.492 0.776 1.478 5.527
1.286 Custom 0.291 0.223 0.727 0.615 11.804
1.357 Weighted 0.639 0.514 0.712 1.376 5.117
1.357 Unweighted 0.661 0.538 0.731 1.495 4.940
1.357 Custom 0.285 0.226 0.712 0.572 12.054
1.429 Weighted 0.720 0.587 0.632 1.354 4.287
1.429 Unweighted 0.743 0.615 0.653 1.480 4.140
1.429 Custom 0.349 0.298 0.510 0.510 8.173
1.500 Weighted 0.803 0.666 0.558 1.353 3.578
1.500 Unweighted 0.820 0.688 0.596 1.499 3.561
1.500 Custom 0.446 0.404 0.266 0.454 3.935

Table C.2.5: Simulation results for Model 5.
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