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Much of science consists of discovering and modeling causal relationships in nature.

Causal knowledge provides insight into the mechanisms acting currently (e.g., the side-effects

caused by a new medication) and the prediction of outcomes that will follow when actions are

taken (e.g., the chance that a disease will be cured if a particular medication is taken). In the

past 30 years, there has been tremendous progress in developing computational methods for

discovering causal knowledge from observational data. Some of the most significant progress

in causal discovery research has occurred using causal Bayesian networks (CBNs). A CBN

is a probabilistic graphical model that includes nodes and edges. Each node corresponds to

a domain variable and each edge (or arc) is interpreted as a causal relationship between a

parent node (a cause) and a child node (an effect), relative to the other nodes in the network.

In this dissertation, I focus on two problems: (1) developing efficient CBN structure

learning methods that learn CBNs in the presence of latent variables (i.e., unmeasured or

hidden variables). Handling latent variables is important in causal discovery since it can

induce dependencies that need to be distinguished from direct causation. (2) developing

instance-specific CBN structure learning algorithms to learn a CBN that is specific to an

instance (e.g., patient), both with and without latent variables. Learning instance-specific

CBNs is important in many areas of science, especially the biomedical domain; however, it

is an under-studied research problem. In this dissertation, I develop various novel instance-

specific CBN structure learning methods and evaluate them using simulated and real-world

data.
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1.0 Introduction

Almost all disciplines of science devote much of their attention to the discovery and

modeling of causal relationships [Spirtes et al., 2000, Pearl, 2009, Illari et al., 2011]. Causal

knowledge provides insight into the mechanisms acting currently (e.g., the side-effects caused

by a new medication) and the prediction of outcomes that will follow when actions are taken

(e.g., the chance that a disease will be cured if a particular medication is taken). Tradition-

ally, causal relationships were identified through interventions or experiments, which can be

very expensive, unethical, and even impossible, in many cases. Therefore, numerous compu-

tational methods have been developed to discover causal relationships from a combination of

existing background knowledge, experimental data, and observational data. In this disser-

tation, I focus on using observational data and optional background knowledge for learning

causal relationships.

Given the increasing amounts of data that are being collected in all fields of science, this

line of research has significant potential to accelerate scientific causal discovery. During the

past few decades, some of the most significant progress in causal discovery research has oc-

curred using causal Bayesian networks (CBNs) [Spirtes et al., 2000, Pearl, 2009]. A Bayesian

network (BN) is a well-studied graphical model that represents probabilistic relationships

among a set of variables that are being investigated in a domain. Under assumptions, BNs

can be interpreted as causal models and learned from observational data, which has wide

applicability [Spirtes et al., 2000, Pearl, 2009, Illari et al., 2011]. In this dissertation, for do-

main emphasis, we focus on learning CBNs, although the methods apply to BN structure

learning in general.

The remainder of this chapter discusses the two main topics to which this dissertation

research makes contributions. The first is a novel method that uses a Bayesian approach

to score constraints in learning a CBN (or an equivalence class of CBNs). The second is a

new method for learning instance-specific CBNs (or an equivalence class of them). I also

investigate a combination of these two methods.

1



1.1 A Bayesian Method for Scoring Constraints

There are two main approaches to learning CBN structures from data: (1) constraint-

based and (2) score-based (e.g., Bayesian) approaches, although other methods are also being

actively developed and investigated [Peters et al., 2012, Daly et al., 2011]. A constraint-

based approach iteratively performs many statistical independence tests on data to constrain

the structures that are consistent with the test results; it then outputs the CBN structure that

is most consistent with the test results. A constraint is an arbitrary conditional independence

of the form X ⊥⊥ Y |Z which is hypothesized to hold in the data-generating model that

produced dataset D, where X and Y are two variables of dataset D and Z is a subset of

variables of D that excludes X and Y . If such a constraint holds, then by the axioms of

probability: P (X, Y |Z) = P (X|Z) · P (Y |Z). A score-based approach, on the other hand,

typically involves a scoring function and a heuristic search strategy to investigate the space

of the possible CBN structures and output the most probable CBN it can find.

The constraint-based and score-based approaches each have significant, but different,

strengths and weaknesses. Constraint-based methods can model and discover causal models

with latent (hidden) variables relatively efficiently. These methods do not, however, provide

a meaningful summary score of the chance that a causal model is correct. In contrast, a

score-based method can generate and probabilistically score multiple models, and output the

most probable one at the end of the search. However, the Bayesian scoring of causal mod-

els that contain latent confounders is computationally very expensive and rarely performed,

particularly for large causal models. In addition, while constraint-based methods can incor-

porate domain beliefs known with certainty, score-based methods can use prior probabilities

to represent beliefs about what is likely to be true in a domain but is not certain, which is

a common situation.

The first hypothesis of this dissertation is related to developing a hybrid approach that

combines the strengths of constraint-based and score-based Bayesian methods. This hy-

brid method derives a Bayesian probability of relevant independence constraints being true.

Consider a causal model (or an equivalence class of models) that can represent latent con-

founding and entails a set of conditional independence constraints on the measured variables.
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In this hybrid approach, the probability of a model being correct is equal to the probability 

that the constraints that uniquely characterize the model (or an equivalence class of models) 

are correct. This hybrid method exhibits the computational efficiency of a constraint-based 

method combined with the ability of a Bayesian approach to quantitatively compare alter-

native causal models according to their posterior probabilities.

I introduce three methods to compute the joint probability of constraints. The first and 

simplest method assumes the constraints are independent of each other. In this case, the 

joint probability of constraints is factored into the product of probabilities of single con-

straints. However, with finite data, constraints are often dependent. Indeed, the statistical 

relationships among the constraints can be quite complicated, and to our knowledge, they 

have not been modeled previously. In this dissertation, I introduce two empirical methods to 

model the relationships among constraints. In summary, I propose a Bayesian method that 

derives the joint probability that a set of dependent constraints corresponding to a given 

CBN (or an equivalence class of CBNs) is true. This approach is called the Bayesian Scoring 

of Constraints (BSC). I hypothesize the following:

The Bayesian scoring of constraints (BSC) method will perform CBN structure learning 

better than a method that uses frequentist statistical tests in terms of discrimination.

       In order to measure discrimination, we use measures that evaluate the accuracy of 

arc adjacency, arc orientation, and overall error rates in structure learning.

1.2 Instance-Specific CBN Structure Discovery

Almost all of the existing CBN structure learning algorithms are designed to recover 

a CBN structure that models the causal relationships that are shared by the instances in 

a population; we call this a population-wide CBN model. While learning such population-

wide CBNs accurately is useful, it is important to learn CBNs that are specific to each 

instance in domains in which different instances may have varying causal structures, such 

as in human biology. For example, a breast-cancer tumor (instance) in a patient can have 

a set of causal mechanisms that are different from that of another breast-cancer tumor in
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a different patient. To determine the most effective treatment for a tumor in the current

patient, it is important to discover the particular set of causal mechanisms that are driving

that tumor to be cancerous.

In reality, a given tumor usually is a composite of cellular mechanisms that rarely all occur

together, yet each individual mechanism may appear relatively commonly in other tumors.

A population-wide CBN would at best capture the more common mechanisms operating in

breast cancer and not all of the particular mechanisms that are active in the current patient’s

breast-cancer tumor. The task, then, is to construct the joint set of mechanisms of a given

tumor from the individual mechanisms seen in previous tumors. To do so, we use the known

features (i.e., the variable-value pairs) of the current tumor to help identify and construct

the individual mechanisms that compose the set of mechanisms that are jointly driving the

current tumor. In the extreme scenario, if the individual mechanisms in every tumor are not

seen in other tumors, we have little hope of learning its mechanisms from a training set of

prior tumors. The reality is that each of the individual mechanisms that is active in a tumor

typically occurs in some other tumors, but not in all other tumors.

More generally, a given person can be viewed as a joint set of causal mechanisms, where

each mechanism is typically shared with many other people, but the joint set is almost

certainly unique to that person. In a given person, the causal learning task is to construct

the correct set of causal mechanisms for that person from the features we know about the

person and from a training set of data on many other people; we refer to such a model as

instance-specific CBN model. Moreover, this instance-specific causal learning approach is

applicable to other causal systems, beyond human biology.

The second hypothesis in this dissertation is about developing an instance-specific CBN

structure learning approach. I introduce a novel, Bayesian, instance-specific structure learn-

ing method that searches the space of instance-specific CBNs to build a model that is specific

to an instance T by guiding the search based on T ’s attributes. I hypothesize the following:

The instance-specific CBN structure learning approach will perform structure learning

better than a population-wide method, in terms of discrimination.

I will also investigate the combination of instance-specific modeling and Bayesian scoring

of constraints. I hypothesize the following:
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The combination of instance-specific modeling and Bayesian scoring of constraints will

perform CBN structure learning better than either method alone, in terms of discrimination.

1.3 Dissertation Overview

In this dissertation, I focus on developing instance-specific CBN structure learning al-

gorithms assuming that latent variables might be absent or present. First, I review the

necessary background material on CBNs and CBN structure learning in Chapter 2. Then, in

Chapter 3, I introduce a novel hybrid CBN structure learning method, called BSC, that com-

bines the strengths of the score-based and constraint-based methods, which not only allows

us to model latent variables but also provides a method to approximate the score associ-

ated with learned CBN models. In Chapter 4, I present a score-based instance-specific CBN

structure learning algorithm, called IGES, which assumes no latent variables (aka causal

sufficiency). I combine the BSC and IGES algorithms to develop an algorithm that learns

instance-specific causal models in the presence of latent variables; this method is introduced

in Chapter 5. Finally, I conclude this dissertation by summarizing the contributions and

describing possible extensions to future work in Chapter 6.
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2.0 Background

In this chapter, I provide the required background information for this dissertation. First,

I describe the notation used in the dissertation. I denote a random variable with an upper-

case letter (e.g., X) and denote its assigned value or state with a lower-case letter (e.g.,

X = x when variable X takes value x). I use a bold upper-case letter to represent a set of

random variables (e.g., Z) and a bold lower-case letter to denote the assignment of a set of

values to the variables in that set (e.g., Z = z). However, to denote that an entire set of

variables takes a single assignment, I use an unbold lower-case letter (e.g., Z = z).

First, I present an overview of graphical terminology and definitions in Section 2.1. In

Section 2.2, I provide a high-level review of previous approaches to learning population-wide

CBN structures from observational data. Finally, In Section 2.3, I discuss how to evaluate

the performance of CBN structure learning algorithms.

2.1 Graphical Concepts and Definitions

A Bayesian network (BN) is a graphical model that represents probabilistic relation-

ships among a set of variables. Under assumptions, BNs can be interpreted as causal mod-

els and learned from observational data, which has wide applicability [Spirtes et al., 2000,

Pearl, 2009, Illari et al., 2011, Peters et al., 2017]. In this dissertation, for domain emphasis,

we focus on learning causal Bayesian networks (CBNs), although the methods apply to BN

structure learning in general.

A BN model M = (G,Θ) is composed of a graphical model structure G and a set of

parameters Θ for G [Neapolitan et al., 2004]. The graphical structure is a directed acyclic

graph (DAG) that is given as a pair of G = (V ,E), where V is a set of nodes that correspond

to the variables V = {X1, X2, ..., Xn} of the domain1. A DAG G also contains a set of directed

1We use the terms nodes and variables interchangeably because random variables are being represented
by nodes in a CBN.
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edges (arcs2) E between pairs of nodes, where these edges should not form any cycles. The

presence of an edge Xi → Xj between a pair of nodes (Xi, Xj) ∈ V denotes probabilistic

dependence between the corresponding variables; also, it denotes that Xi is a direct cause

of Xj and that Xj is a direct effect of Xi. The absence of an edge between (Xi, Xj) denotes

probabilistic conditional independence between these variables; more specifically, there is a

set of variables Z, such that conditioning on Z renders X and Y independent. If Xi and Xj

are connected by an edge in either direction, we say that Xi and Xj are adjacent ; we denote

the set of nodes that are adjacent to Xi as Adj(Xi).

An undirected path (often called a path) π from Xi to Xj is a sequence of edges (without

considering edge directions) that connects Xi to Xj such that no node is visited more than

once. A directed path π from Xi to Xj is a sequence of directed edges that connects Xi

to Xj such that no node is visited more than once. A node Xk on a path π is called

a collider if its immediately preceding and succeeding nodes have directed edges into it:

Xk−1 → Xk ← Xk+1. Xk is called an unshielded collider if its immediately preceding

and succeeding nodes have directed edges into Xk but they are not adjacent to each other

(Figure 1a); we also refer to this sub-structure as a v-structure. Similarly, Xk is a shielded

collider if its immediately preceding and succeeding nodes are adjacent (Figure 1b). Finally,

a node Xk on a path π is called a non-collider if it is not a collider.

(a) Xk is an unshielded collider. (b) Xk is a shielded collider.

Figure 1: An example that shows two types of colliders.

The parents (or causes) of a node Xi are the nodes that immediately precede it (i.e., have

an incoming arc into Xi); we denote parents of Xi as Pa(Xi). The nodes that immediately

succeed Xi (i.e., have an outgoing edge from Xi) are called its children (or effects); we denote

2We use the terms directed edge and arc interchangeably because they are synonyms in CBNs.
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children of Xi as Ch(Xi). Nodes are said to be spouses of each other if they have a common

child. The ancestors of a node Xi, denoted as An(Xi), are the set of nodes that precede Xi

and contain a directed path to Xi. Similarly, the descendants of Xi, denoted as De(Xi), are

the set of nodes that succeed Xi and can be reached from Xi via a directed path. We denote

the Markov blanket of a node Xi is a set that includes the parents of Xi, the children of Xi,

and the spouses of Xi (the parents of Xi’s children).

The second component of a BN is the parameter set Θ that encodes the joint probability

distribution over the set of variables V = {X1, X2, ..., Xn}, which can be efficiently factored

based on the parent-child relationships in the corresponding DAG using the local Markov

condition [Neapolitan et al., 2004]. The local Markov condition states that each node is

independent of its non-descendants given just the values of its parents. This property results

in a compact representation of the joint probability distribution of the domain variables V .

According to the chain rule of probability, the joint probability distribution of variables V

is as follows:

P (V ) =
n∏
i=1

P (Xi|X1, ..., Xi−1). (2.1)

Applying the local Markov condition to Equation (2.1) results in the following factorization

of the joint probability distribution over variables V :

P (V ) =
n∏
i=1

P (Xi|Pa(Xi)). (2.2)

where Pa(Xi) denotes the parents of Xi, which is the empty set when Xi has no parents.

Figure 2 shows Pearl’s classic Holmes’s burglar example [Kim and Pearl, 1983]. In the

Bayesian network that corresponds to this example, the DAG consists of 5 nodes that corre-

spond to 5 binary variables: burglary (B), earthquake (E), alarm (A), John calls (JC), and

Mary calls (MC). The DAG also contains 4 edges that encode probabilistic dependencies

among the variables. The edges B → A and E → A show that either a burglar or an earth-

quake can set the alarm on or off. Similarly, the edges A→ JC and A→MC indicate that

an alarm can cause Mary or John to make a call. In this example, B and E are parents of

A (i.e., Pa(A) = {B,E}); also, JC and MC are A’s children (i.e., Ch(A) = {JC,MC}).

The parameters, which correspond to the probability distributions of each variable given its
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parents, are shown in the tables. As an example, the probability of John calling given the

alarm is on is 0.9 (i.e., P (JC = t|A = t) = 0.90) but if the alarm is off, there is 0.05 chance

of John calling (i.e., P (JC = t|A = f) = 0.05). As this example shows, the parameters of

the full joint probability distribution over these 5 binary variables reduces from 25 − 1 = 31

to 10 when using BNs (the second columns in each table is redundant).

B E

A

JC MC

B					E P(A=t|B,E)				P(A=f|B,E)
t				t 0.95												0.05
t				f 0.94												0.06
t				t 0.29											0.71
t			f 0.001									0.999

P(B=t)				P(B=f)
0.001						0.999

P(E=t)				P(E=f)
0.002						0.998

		A		 P(MC=t|A)			P(MC=f|A)
t 0.70								0.30

f 0.01								0.99

		A		 P(JC=t|A)			P(JC=f|A)
t 0.90								0.10

f 0.05								0.95

a

Figure 2: Pearl’s Holmes’s burglar example. This BN is composed of 5 nodes that correspond

to 5 binary variables V = {B,E,A, JC,MC}. It also contains 4 edges that encode the

probabilistic dependencies among those variables. The local probability distributions of

each variable given its parents are shown in the tables.

2.1.1 Directed acyclic graphs (DAGs) and their properties

A causal Bayesian network structure can be represented using a directed acyclic graph

(DAG) when the causal sufficiency assumption holds. The causal sufficiency assumption

means that the data-generating CBN does not contain a latent variable that is a common

cause of two or more measured variables3 [Spirtes et al., 2000]. This assumption, while

being unrealistic in most practical applications, is nevertheless sometimes made because

it significantly reduces the size of the search space of causal models, and it can provide

3There might be also variables that determine a specific sub-population from which the data is sampled;
such variables are called selection variables.
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some initial insights into the causal relationships among the measured variables. In this

dissertation, I develop and evaluate some algorithms that assume causal sufficiency and

others that do not.

A DAG structure implies a set of marginal and conditional independence relations that

are called the local and global Markov conditions. The local Markov condition, as described

earlier, states that each node is independent of its non-descendants given its parents. This

property provides a compact representation of the joint probability distribution that is asso-

ciated with a DAG (see Equation (2.2)). The global Markov condition explicitly characterizes

the complete set of independencies among disjoint sets of nodes in a DAG. It states that

for all non-overlapping subsets of nodes A, B, and C, if A and B are d-separated given

C (i.e., A ⊥⊥d B|C) then A and B are independent conditional on C (i.e., A ⊥⊥ B|C).

Global and local Markov conditions can be read from the DAG by applying d-separation

criterion [Pearl, 2003], which is as follows:

Definition 2.1.1. (d-separation) Let G = (V ,E) be a DAG, Xi, Xj,∈ V be two variables,

and Z ⊂ V \{Xi, Xj} be a subset of variables that excludes Xi, Xj. Then Xi and Xj are

d-separated given a disjoint set of nodes Z (Xi ⊥⊥d Xj|Z) if and only if all (undirected)

paths from Xi to Xj are blocked by Z (i.e., there is no active path between Xi and Xj). A

path π between Xi and Xj is blocked by Z if it includes either:

• A collider node Zi, and neither Zi nor its descendants are in Z. A collider node is a

node with converging arrows (e.g., D is a collider node in sub-path A → D ← C in

the example shown in Figure 3a); or,

• A non-collider node Zi, and Zi is in Z. In Figure 3a, C is a non-collider node in

sub-paths B → C → E or D ← C → E.

In the DAG shown in Figure 3a, there are two undirected paths between A and E: (1)

A → B → C → E, and (2) A → D ← C → E. As mentioned earlier, A and E are

d-separated given a set Z when both of these paths are blocked by that set. The first path

is blocked if the conditioning set includes either of the non-collider nodes B or C on this

path. To block the second path, the conditioning set should not include the collider node D

or its descendant F . Therefore, Z = {B} or Z = {C} are two sets that d-separate A and
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E; we denote these d-separations by A ⊥⊥d E|B and A ⊥⊥d E|C, respectively. Similarly, if

two nodes are not d-separated by a set, they are d-connected by it. This means that there

is at least one path that remains active. For instance, A and E are marginally d-connected

(i.e., A 6⊥⊥d E) since path A→ B → C → E is active.

B  E

A

JC MC

B     E P(A=T|B,E)    P(A=F|B,E) 
T    T 0.95            0.05
T    F 0.94            0.06
F    T 0.29           0.71
F    F 0.001         0.999

P(B=T)    P(B=F) 

0.001      0.999

P(E=T)    P(E=F) 

0.002      0.998

  A   P(MC=T|A)   P(MC=F|A) 

T 0.70        0.30

F 0.01        0.99

  A   P(JC=T|A)   P(JC=F|A) 

T 0.90        0.10

F 0.05        0.95

(a) An example DAG G. (b) The skeleton of G.

Figure 3: An example DAG G and its skeleton.

Multiple DAGs sometimes encode the same d-separation relationships over the same

set of nodes. A set of DAGs that have the same d-separation properties form a Markov

equivalence class of DAGs [Verma and Pearl, 1990]. Two DAGs are Markov equivalent if

and only if (1) they have the same skeleton and (2) they have the same unshielded colliders

(i.e., v-structures). A skeleton is composed of all edges that are included in the graph without

considering edge orientations (i.e., adjacencies). Figure 3b shows the skeleton of the DAG G

given in Figure 3a. Also, an unshielded collider refers to a collider node in which there are

at least two parents that are not adjacent to each other.

Markov equivalence class of DAGS can be represented by a graph called a completed

partially directed acyclic graph (CPDAG), also known as a pattern. A pattern is a graph

that contains both directed (→) and undirected (—) edges. If none of the DAGs in G contain

an edge between Xi and Xj, then there is no edge between Xi and Xj in the pattern. If

Xi → Xj exists in every DAG in G, then Xi → Xj appears in the pattern; otherwise, if some

DAGs in G have Xi → Xj and other DAGs have Xj → Xi, then Xi — Xj appears in the

pattern. The graph in Figure 4a shows a pattern that represents the Markov equivalence

class of DAGs, which are shown in Figure 4b.
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(a) A pattern Gp of the DAGs in G.

(b) The DAGs that belong to set G.

Figure 4: An example pattern shown in (a) that represents a Markov equivalence class of

the DAGs in G shown in (b).

2.1.2 Maximal ancestral graphs (MAGs) and their properties

In practice, some variables may not be measured or recorded; such variables are called

latent or hidden variables. Also, there might be variables that determine a specific sub-

population from which the data is sampled; such variables are called selection variables.

Although some methods have been developed to perform causal inference under selection

bias [Cooper, 1995, Spirtes et al., 1995, Richardson et al., 2002], in this dissertation, we as-

sume the samples are drawn randomly from the population and the selection bias does not

hold. Therefore, the definitions and discussions in this section are restricted to causal models

that may include latent variables but not selection variables. The research to model selection

is an area for future research.

DAGs are not closed under marginalization in the presence of latent variables. To illus-
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trate this, let the DAG G shown in Figure 5a be the ground truth Bayesian network that is

generating the data. This DAG includes 5 observed variables O = {A,B,C,D,E} and one

latent variable L = {HBC} that is an unmeasured common cause (i.e., latent confounder) of

B and C. In this DAG, the independence relations that hold among the observed variables

in O are as follows: A ⊥⊥ {C,D,E}, B ⊥⊥ D|C, B ⊥⊥ E, and D ⊥⊥ E|C. However, there is

no DAG that contains only these 5 observed variables and entails all and only these indepen-

dence relationships without entailing either additional or fewer independence constraints.

(a) The ground truth DAG G. (b) An estimated MAG M in the large sample limit.

(c) An estimated PAG P in the large sample limit.

Figure 5: An example that shows DAGs are not closed under marginalization if there are

latent variables. In this example, variables {A,B,C,D,E} are observed while HBC is a

latent confounder of B and C.

Maximal ancestral graphs (MAGs) [Richardson et al., 2002] are graphical objects that

encode independence relationships that hold among the observed variables in a DAG that

may include both observed and latent variables4. MAGs are mixed graphs that include

directed (→) and bi-directed (↔) edges5. Similar to DAGs, MAGs do not contain any

directed or almost directed cycles. A directed cycle occurs when there is Xi and Xj such that

there is a directed path from Xi to Xj and a directed path from Xj to Xi. An almost directed

4MAGs do not provide any information on the structure among latent variables; rather, they implicitly
model latent variables.

5MAGs use undirected edge (—) to model selection variables, which we do not consider in this dissertation.
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cycle occurs when there is a directed path from Xi to Xj and Xj ↔ Xi. Let V = O ∪L be

a set of variables that includes two non-overlapping sets of observed variables O and latent

variables L. In order to obtain a MAG M = (O,E′) from DAG G = (O ∪L,E), we apply

the following two steps:

1. For every pair of nodes (Xi, Xj) ∈ O, add an undirected edge Xi — Xj if and only if

there exists an inducing path (defined below) relative to L between Xi and Xj in G.

2. Orient Xi — Xj as:

• Xi → Xj if Xi ∈ An(Xj), or

• Xi ← Xj if Xj ∈ An(Xi), or

• Xi ↔ Xj if Xj /∈ An(Xi) and Xi /∈ An(Xj).

An inducing path is defined as follows [Verma and Pearl, 1990, Richardson et al., 2002]:

Definition 2.1.2. (Inducing path) A path π between Xi and Xj is called inducing relative

to L if and only if every non-collider on π (except the endpoints) is in L and every collider

on π is an ancestor of either Xi or Xj.

DAG to MAG conversion generates a marginal graph that represents the ancestral rela-

tionships that exist among the observed variables O in DAG G that contains latent variables.

The presence of an edge between two variables Xi and Xj in MAGM corresponds to a con-

ditional dependence in G since there is an inducing path between them, while the absence of

an edge corresponds to conditional independence since there is at least one subset of variables

Z\{Xi, Xj} ∈ O (which can be possibly an empty set) such that Xi ⊥⊥ Xj|Z. Figure 5b

is a MAG that represents DAG G in Figure 5a, which can be obtained by applying the two

steps mentioned above.

Conditional independence relationships among observed variables can be read off an-

cestral graphs (i.e., MAGs or their Markov equivalence class) via m-separation crite-

rion [Richardson et al., 2002], which is a generalization of d-separation and is defined as

follows:

Definition 2.1.3. (m-separation) Let M = (V ,E) be an ancestral graph, Xi, Xj ∈ V

be two nodes, and Z ⊂ V \{Xi, Xj} be a subset of nodes that excludes Xi, Xj. Xi and Xj
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are m-separated by Z if there is no m-connecting path between Xi and Xj given Z (i.e., all

paths are blocked by Z). A path π is blocked by Z if it includes either:

• A collider node Zi, and neither Zi nor its descendants are not in Z. A collider node

is a node with converging arrows (e.g., in Figure 5c, B in sub-path A ◦→B ↔ C is a

collider node); or,

• A non-collider node Zi, and Zi is in Z. In Figure 5c, C in sub-path E ◦→C → D is a

non-collider node.

Likewise, if two nodes are not m-separated by a set, they are m-connected by it, which means

that there is at least one path that remains active. In the MAG shown in Figure 5b, A and

D are marginally m-separated (i.e., A ⊥⊥m D) since the only path A → B ↔ C → D is

blocked by the collider node B. However, A and D are m-connected conditioned on B (i.e.,

A 6⊥⊥m D|B) since path A→ B ↔ C → D becomes active.

Similar to DAGs, some MAGs may entail the same m-separation properties over the same

set of nodes. Such MAGs belong to the same Markov equivalence class which is represented

by an entity called a partial ancestral graph (PAG). DAGs are to CPDAGs as MAGs are to

PAGs. Two MAGs are Markov equivalent if and only if (1) they have the same skeleton,

(2) they have the same unshielded colliders, and (3) if both MAGs include a discriminating

path π for node Z, then Z is a collider on π in one MAG if and only if it is a collider on π

in the other MAG [Ali et al., 2009], where the discriminating path is defined as follows:

Definition 2.1.4. (Discriminating path) A path π between X and Y is called discrimi-

nating for Z if X is not adjacent to Y and every node on π from X to Z is a collider and a

parent of Y .

Conditional independence relationships in PAGs are represented using an expanded set

of edge marks: directed (→), bi-directed (↔), partially directed ( ◦→ ), and non-directed

( ◦—◦ ), where a circle indicates uncertainty about whether the associated endpoint of an

edge is an arrow or not6. Figure 5c shows the PAG P that represents the Markov equivalence

class of all MAGs that encode the causal relationships among the observed variables in DAG

G (Figure 5a). In Figure 5c, the edge B ↔ C represents that B and C are both caused

6Similar to MAGs, PAGs use undirected edge (—) to model selection variables.
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by one or more latent variables (i.e., they are confounded by a latent variable). The edge

C → D represents that C is a cause of D and that there are no latent confounders of C

and D. The edge A ◦→B represents that either A causes B, A and B are confounded by a

latent variable, or both. Another edge possibility, which does not appear in the example, is

X ◦—◦Y , which is compatible with the true causal model having X as a cause of Y , Y as

a cause of X, a latent confounder of X and Y , or some acyclic combination of these three

possibilities.

2.1.3 Faithfulness and Markov conditions

There are two conditions that bind the graphs and probability distributions: the faith-

fulness and Markov conditions. These are commonly used assumptions in causal discov-

ery algorithms, which are defined as follows. Let M = (G,Θ) be a CBN model in which

Θ = P (V ) is a probability distribution over a set of variables V that is encoded by DAG G.

The distribution P (V ) is faithful to G if every independence constraint that holds in the

distribution P (V ) entails the corresponding d-separation condition in G. That is, if X and

Y are conditionally independent given Z (i.e., X ⊥⊥ Y |Z) according to distribution P (V ),

then X is d-separated from Y given Z (i.e., X ⊥⊥d Y |Z) in G.

The converse of the faithfulness condition is known as the Markov condition, which states

that every d-separation condition (e.g., X ⊥⊥d Y |Z) in G entails an independence (e.g.,

X ⊥⊥ Y |Z) in G in P (V ). If both the faithfulness and Markov conditions hold, it implies

that the d-separation relationships in G have a one-to-one correspondence to independence

constraints in P (V ). This correspondence enables us to learn G from data generated by a

CBN model M , when there is sufficient data for doing so.

2.1.4 Context-specific independence (CSI)

A standard DAG structure G encodes the conditional independence relationships that

hold among a set of variables V . Any such conditional independence relationship is repre-

sented in G if it holds for all combinations of values of the variables involved. Despite their

desirable properties, DAGs are unable to capture more refined conditional independence re-
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lationships that are true in specific contexts. The notion of context-specific independence

(CSI) in Bayesian networks was introduced in [Boutilier et al., 1996] to represent the inde-

pendence relationships that hold between a variable and some but not all combinations of

values of its parents:

Definition 2.1.5. (Context-specific independence (CSI)) [Boutilier et al., 1996]

Let X, Y , Z, and C be pairwise disjoint sets of variables, and c be a particular assignment

to C (i.e., a context). X and Y are contextually independent given Z and the context c

(X ⊥⊥c Y |{Z,C = c}) if P (X|Y ,Z, c) = P (X|Z, c) whenever P (Y ,Z, c) > 0.

Figure 6 shows an example CBN that includes two CSI structures:

• X4 ⊥⊥c {X2, X3}|X1 = 0: This means that X4 is independent of {X2, X3} when con-

ditioned on X1 = 0, which implies that X2 → X4 and X3 → X4 can be removed

when X1 = 0, since changing X2 and X3 do not affect the distribution of X4 (i.e.,

P (X4|X2, X3, X1 = 0) = P (X4|X1 = 0)).

• X4 ⊥⊥c X3|{X1 = 1, X2 = 1}: This indicates that X4 is conditionally independent

of X3 when {X1 = 1, X2 = 1}, which implies that X3 → X4 can be removed when

{X1 = 1, X2 = 1}, since changing X3 does not affect the distribution of X4 (i.e.,

P (X4|X3, X2 = 1, X1 = 1) = P (X4|X2 = 1, X1 = 1)).

a

a

Figure 6: This CBN example contains two context-specific independence (CSI) structures:

X4 ⊥⊥c {X2, X3}|X1 = 0 and X4 ⊥⊥c X3|{X1 = 1, X2 = 1}. The first CSI structure, for

example, indicates that X4 is conditionally independent of {X2, X3} when conditioned on

X1 = 0, which means that X2 → X4 and X3 → X4 do not affect the distribution of X4

when X1 = 0 (i.e., P (X4|X2, X3, X1 = 0) = P (X4|X1 = 0)). Such CSI structures are hidden

beneath the DAG structure.
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As shown in Figure 6, local CSI structures in a CBN model M = (G,Θ) can be deter-

mined by utilizing local distributions in Θ for each variable Xi given its parents Pa(Xi)

and a particular context c. Given such a CSI relationship Xi ⊥⊥c Y |{Pa(Xi),C = c},

where C ⊆ Pa(Xi), we can derive a new parent structure for Xi that encodes the CSI by

removing the edge Y → X. By repeating this procedure for all variables Xi, the instance-

specific CBN structure GIS can be derived from M = (G,Θ) that encodes the CSI parent

structures that hold for given a test instance T (i.e., the contexts are determined according

to the values of the variables in T ). Then, we can define CSI-separation as follows (adapted

from [Boutilier et al., 1996]):

Definition 2.1.6. (CSI-separation) Let M = (G,Θ) be a CBN model that includes some

CSI parent structures encoded in its distribution component Θ and T be an instance sampled

from M , which also includes CSI parent structures. Also, let GIS be an instance-specific CBN

structure for T in which the spurious edges due to CSI parent structures are removed. We

say that X is CSI-separated from Y given Z in context c in G if and only if X is d-separated

from Y given {Z,C} in GIS.

Therefore, by transforming G to GIS for a given test instance T , we can use d-separation on

GIS, as we do in standard CBNs, to define faithfulness and Markov conditions described in

Section 2.1.3.

These types of local CSI structures cannot be captured completely in the structure

of standard CBNs, wherein the CBN structure is invariant to CSI relationships. In this

dissertation, I introduce instance-specific CBN structure learning algorithms to model such

local structures in a test instance T .

2.2 CBN Structure Discovery Algorithms

Considerable CBN research has focused on score-based and constraint-based approaches,

although other approaches, such as hybrid methods, have been developed and investi-

gated [Peters et al., 2012]. A score-based method typically uses a scoring function to derive
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the score of each candidate CBN structure. The score is then incorporated into a search

algorithm, which is often a greedy heuristic, to find the highest scoring CBN structure in the

hypothesis space of the possible structures. I provide an overview of score-based methods

in Section 2.2.1. A constraint-based approach uses tests of conditional independence; causal

discovery occurs by finding patterns of conditional independence and dependence that are

likely to be present only when particular causal relationships exist. An overview of these

methods is discussed in Section 2.2.2.

2.2.1 Score-based approaches

A score-based method involves two main components: (1) a scoring metric and (2)

a search algorithm. Given a dataset D, which is a flat-file in which columns denote

domain variables V = {X1, X2, ..., Xn} and rows denote samples (cases), and possi-

bly prior knowledge or belief, a score is derived for a CBN that quantifies how well

the model describes the data. The score is then incorporated into a search algo-

rithm that seeks to find the highest scoring CBN structure in the hypothesis space of

the possible structures. However, the number of the possible structures grows super-

exponentially with respect to the number of domain variables; indeed, finding the high-

est scoring structure is an NP-hard problem [Chickering, 1996]. Nevertheless, some ex-

act search methods have been developed that are applicable to small-sized graphs. Some

examples of exact CBN structure learning methods include [De Campos et al., 2009] that

uses a branch and bound technique, [Koivisto and Sood, 2004, Singh and Moore, 2005,

Koivisto, 2012, Silander and Myllymaki, 2012] that utilize dynamic programming methods,

and [Jaakkola et al., 2010, Bartlett and Cussens, 2013, Studenỳ and Haws, 2014] that apply

integer linear programming approaches.

For larger graphs, which is the main focus of this dissertation research, the application of

exact methods is computationally intractable. Therefore, several heuristic algorithms, such

as greedy hill-climbing have been proposed. In the following sections, I review some scoring

functions and heuristic search algorithms.
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2.2.1.1 Scoring functions Different types of non-Bayesian and Bayesian scores have

been developed and investigated to measure how well a CBN structure is supported by the

data and background beliefs (priors). The simplest form of such a score is the likelihood

score. However, maximizing the likelihood score will in general result in a highly connected

CBN that overfits the data. Therefore, more sophisticated scores are designed to favor a

model that not only matches the data better, but also has a simpler structure with fewer

parameters. For example, the Bayesian information criterion (BIC) [Schwarz, 1978] is a

scoring function that includes a likelihood criterion for rewarding goodness of data fit and a

penalty term for penalizing the model’s parameter complexity. The BIC score for a CBN G

given a dataset D is defined as follows:

BIC(G, D) = logP (D|Θ̂,G)− df

2
logN, (2.3)

where logP (D|Θ̂,G) is the log-likelihood of the data given G, Θ̂ denotes the maximum-

likelihood parameters of G, df corresponds to the number of free parameters in G, and N is

the sample size of the dataset D.

Another example of such scoring functions is the minimum description length (MDL)

score [Rissanen, 1978], which is based on the MDL principle. The MDL principle selects the

model that minimizes the sum of the encoding length of the model, which here is a CBN (con-

sidering both DAG and parameters), and the encoding length of the data using that model.

In the case of CBN structure learning, the MDL is defined as follows [Daly et al., 2011]:

MDL(G, D) = − logP (D|Θ̂,G) +
df

2
logN + Cn, (2.4)

where logP (D|Θ̂,G) is the log-likelihood of the data given G, Θ̂ denotes the maximum-

likelihood parameters of G, df corresponds to the number of free parameters in G, and Cn is

defined as follows:

Cn =
n∑
i=1

(1 + |Pa(Xi)|) · log n, (2.5)

where n denotes the number of variables and |Pa(Xi)| is the number of parents of variable

Xi. The MDL score given in Equation (2.4) includes an additional term, Cn, compared to
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the BIC score given in Equation (2.3). This term becomes irrelevant as the sample size grows

and MDL and BIC will become equivalent, consequently7.

The first widely used Bayesian scoring function to score a CBN was derived

by [Cooper and Herskovits, 1992], which is called the K2 score and defined as follows:

K2(G, D) = P (G) ·
n∏
i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!, (2.6)

where the first product term is over all n variables, the second product term is over the

qi parent instantiations of variable Xi, and the third product term is over all ri values of

variable Xi. The term Nijk is the number of cases in dataset D in which variable Xi = k

and its parent Pa(Xi) = j; also, Nij =
∑ri

k=1Nijk. In Equation (2.6), P (G) is the prior

structure probability of CBN G.

A generalization of K2 score is called Bayesian Dirichlet (BD) score and defined as

follows [Cooper and Herskovits, 1992, Heckerman et al., 1995]:

BD(G, D) = P (G) ·
n∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)
·
ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (2.7)

where all terms are similar to Equation (2.6), except for the α(·) terms. αijk is a Dirichlet prior

parameter that may be interpreted as representing “pseudo-counts” and αij =
∑ri

k=1 αijk.

Note that BD and K2 are equivalent if all hyperparameters αijk are set to 1. More details

about derivation of Bayesian scores are given in Section 4.3.

Scoring criteria often have some desirable properties that make them efficient to be

used in score-based searches; these criteria include decomposability, score equivalence, and

consistency. A decomposable scoring function can be factorized into local terms that are a

function of a node and its parents according to the DAG structure as follows:

S(G, D) =
n∏
i=1

s(Xi, Pa(Xi)), (2.8)

or equivalently

logS(G, D) =
n∑
i=1

log s(Xi, Pa(Xi)). (2.9)

7When incorporated in a BN learning algorithm, the BIC score is used to maximize the score while MDL
is used to be minimized. Therefore, BIC and MDL are negative inverses of each other.
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All scoring criteria described above are decomposable at the node level. This property leads

to an efficient implementation of a score-based search algorithm, either exact or heuristic,

since only the local changes need to be re-scored when we want to compare the scores of two

DAGs while performing a search. For example, if we only add an edge into (or delete an

edge into) a node Xi in a DAG, only Xi needs to be re-scored to compute the effect of this

operation on the score of the DAG.

Another useful property of a scoring function is score equivalence. If two DAGs G1 and

G2 are Markov equivalent, then S is a score equivalent function if and only if S(G1, D) =

S(G2, D). This property results in the same score for all the graphs that are in the same

Markov equivalence class. For example, all the DAGs that are represented by a pattern will

score the same when using a score equivalent criterion. This property allows us to search

directly over the space of Markov equivalence classes.

Lastly, consistency of a scoring function is useful when we study its asymptotic properties.

A score S is a consistent in the large sample limit if:

• S ranks DAG G1 that represents the data-generating distribution P higher than DAG

G2 that does not represent P : S(G1, D) > S(G2, D).

• If two DAGs G1 and G2 both represent the data-generating distribution P and G1
contains fewer parameters, then S ranks G1 higher than G2: S(G1, D) > S(G2, D).

If a score is both decomposable and consistent, it is called a locally consistent score. BIC is

score equivalent and locally consistent [Chickering, 2002].

2.2.1.2 Heuristic score-based algorithms As mentioned earlier, learning CBN struc-

tures is, in general, an NP-hard problem [Chickering, 1996]; hence, numerous heuristic search

algorithms have been developed to explore the space of the CBN structures in computation-

ally feasible and efficient ways [Daly et al., 2011, Koski and Noble, 2012]. Such algorithms

usually involve applying local changes to the current model and replacing it with the one

that leads to the greatest score improvement in a greedy fashion. Therefore, a heuristic

search requires multiple components:

• A search space that consists of valid states of the problem, e.g., DAGs or patterns.
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• A search operator to generate the legal neighboring states from the current state. For

instance, if the states are DAGs, single edge addition, deletion, and reversal operations

could be applied to the current state to generate neighboring DAGs; however, these

operations should not induce cycles.

• A search method that identifies which neighboring state to select, e.g. greedy hill

climbing.

Although efficient, greedy searches are prone to getting stuck in local maxima, several em-

pirical solutions have been proposed to address this problem, including for instance, random

restarts, simulated annealing, and TABU lists [Blum and Roli, 2003].

K2 algorithm is one of the earliest heuristic search methods for learning a CBN structure

from data [Cooper and Herskovits, 1992]. K2 is a polynomial-time greedy search algorithm

that assumes a prior ordering of the nodes is given. For computational efficiency, we can

also assume the number of parents of each node is limited to a user-specified upper bound.

Based on a predetermined ordering, the K2 algorithm iterates over the nodes to learn a set

of parents for each of them. For each node Xi, the algorithm starts with no parent assigned

to Xi. Then, it greedily adds as a parent of Xi the node that most improves the K2 score

for Xi (from among the nodes that are located before Xi in the given ordering). The search

stops when no further improvements can be achieved or the maximum number of parents

is met. Despite being computationally efficient, providing a good ordering of nodes for K2

requires domain expertise or temporal ordering of the nodes and may not be available in

many applications. The authors suggest the possibility of using multiple random orderings

and choosing the best network found in doing so, but they do not evaluate this approach.

Another well-known heuristic algorithm is greedy equivalence search (GES) that operates

on the space of equivalence class of CBNs (i.e., CPDAGs or patterns) [Chickering, 2002].

GES is a two-stage search. During the forward phase, it adds the single edge to the current

graph that most improves the score; it stops when no further improvement can be achieved.

Similarly, during the backward phase, it removes the single edge from the current graph that

most improves the score; it stops when no further improvement can be achieved and returns

the resultant graph. Under assumptions, GES learns the data generating CBN in the large

sample limit. More details about GES are given in Section 4.2.
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2.2.2 Constraint-based approaches

A constraint-based CBN structure learning algorithm searches for a set of Bayesian

networks, all of which entail a particular set of conditional independence constraints (or

simply constraints), that are judged to hold in a dataset of samples based on the results

of tests applied to that data. It is usually not computationally or statistically feasible to

actually test each possible constraint on the measured variables for more than a few dozen

variables. Therefore, constraint-based algorithms typically use an efficient test schedule to

prune the space of possible tests, and therefore, select a sufficient subset of constraints to

test. Generally, the subset of constraint tests that are performed within a sequence of such

tests depends upon the results of previous tests.

The PC algorithm [Spirtes et al., 2000] is one of the most well-known examples of

constraint-based CBN structure learning methods, which assumes causal sufficiency (i.e.,

there are no unmeasured variables that cause two or more measured variables). PC takes as

input dataset D, which is a flat-file in which columns denote domain variables V and rows

denote observed samples (cases), and optional deterministic background knowledge, and it

outputs a pattern, which represents Markov equivalence class of DAGs (see Section 2.1.1).

PC learns the pattern in two main stages: the adjacency stage and the orientation stage.

During the adjacency stage, the PC algorithm starts with a fully connected graph (i.e., all

pairs of nodes are connected by an undirected edge). Then, for each adjacency Xi — Xj, it

removes the edge if Xi and Xj become conditionally independent given some subset of the

nodes that are adjacent to Xi (i.e., Adj(Xi)\Xj) or to Xj (i.e., Adj(Xj)\Xi). Once the

skeleton is recovered, PC applies multiple edge orientation rules to orient as many arrowheads

as possible in the output pattern [Spirtes et al., 2000].

Assuming the tests of conditional independence are correct, the pattern returned by PC

represents as much about the true causal graph as can be determined from the conditional

independence relations among the variables [Spirtes et al., 2000]. In particular, the PC al-

gorithm is guaranteed to converge to the true pattern in the large sample limit, assuming

the data-generating model is a CBN without latent confounders, the tests of conditional

independence are correct, and the Markov and faithfulness conditions hold (see Section 2.1.3
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for more detail about these conditions) [Spirtes et al., 2000].

Fast Causal Inference (FCI) [Spirtes et al., 2000] is another prominent constraint-based

causal discovery algorithm, which can model latent variables. FCI takes as input ob-

served sample data D and optional deterministic background knowledge, and it outputs

a PAG, which represent the Markov equivalence class of DAGs with latent variables (see

Section 2.1.2). Similar to PC, FCI learns the PAG by performing an adjacency search and

applying orientation rules. Under assumptions, the FCI algorithm is guaranteed to recover

the correct PAG with probability 1.0 in the large sample limit, even if there are latent con-

founders [Zhang, 2008]. As an example, Figure 7 shows in panel (b) the PAG that would be

output by the FCI search if given a large enough sample of data from the data-generating

CBN shown in panel (a), when the assumptions hold [Spirtes et al., 2000]. We discuss the

FCI algorithm in more detail in Section 3.2.

(a) The data-generating CBN. (b) The PAG that is output.

Figure 7: The PAG in (b) is learnable in the large sample limit from observational data

generated by the causal model in (a), where HBC is a latent variable and the other variables

are measured.

2.3 CBN Structure Discovery Performance

In this section, I describe the evaluation measures that are used to calculate the structural

similarity of the discovered CBN Goutput versus the gold-standard CBN Gtruth. One such

measure is structural Hamming distance (SHD) that counts the edge modifications, which

can include added, deleted, and reoriented edges, by comparing each possible edge in Goutput
and Gtruth. We define two versions of SHD for patterns in Section 4.5.1.1 and three versions
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of SHD for PAGs in Section 3.6.1.1.

Other performance criteria we use to evaluate discrimination are precision (P) and recall

(R) for adjacencies and arrowheads:

• Adjacency precision (AP): we compute the ratio of correctly predicted edges in

Goutput to all predicted edges in Goutput (without considering orientations of edges) as

follows:

AP =
#correctly predicted adjacencies

#predicted adjacencies
(2.10)

• Adjacency recall (AR): we compute the ratio of correctly predicted edges in Goutput
to all true edges in Gtruth (without considering the edges’ orientations) as follows:

AR =
#correctly predicted adjacencies

#true adjacencies
(2.11)

• Arrowhead precision (AHP): considering the pairs of variables that have an edge

between them in the predicted graph Goutput, we compute the ratio of correctly predicted

arrowheads in Goutput to all predicted arrowheads in Goutput as follows:

AHP =
#correctly predicted arrowheads

#predicted arrowheads
(2.12)

• Arrowhead recall (AHR): considering the pairs of variables that have an edge be-

tween them in the ground-truth graph Gtruth, we compute the ratio of correctly pre-

dicted arrowheads in Goutput to all true arrowheads in Gtruth as follows:

AHR =
#correctly predicted arrowheads

#true arrowheads
(2.13)

We also develop specialized subtypes of these measures when we are evaluating methods using

data that have been generated by instance-specific models; these measures are described in

Sections 4.5.1.1 and 5.3.1.1.
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3.0 CBN Structure Learning Using Bayesian Scoring of Constraints

As mentioned in Chapter 2, two main categories of algorithms to learn CBN structures

from observational data are constraint-based and score-based approaches. These two ap-

proaches each have significant, but different, strengths and weaknesses. The constraint-based

approach can model and discover causal models with latent (hidden) variables relatively effi-

ciently (depending upon what the true causal structure is, which variables are measured, and

how many and what kind of latent confounders exist). This capability is important because

oftentimes there are latent variables that cause measured variables to be statistically asso-

ciated (confounded). If such confounded relationships are not considered, erroneous causal

discoveries may occur. The constraint-based approaches do not, however, provide a mean-

ingful summary score of the chance that a causal model is correct. Rather, a single model is

derived and output, without quantification regarding how likely it is to be correct, relative

to alternative models. In addition, while constraint-based methods can incorporate domain

beliefs known with certainty (e.g., that a gene X is regulated by gene Y ), they cannot incor-

porate domain beliefs about what is likely but not certain (e.g., that there is a 0.8 chance

that gene X is regulated by gene Z).

In contrast, score-based methods can generate and probabilistically score multiple mod-

els, outputting the most probable one. By doing so, they may increase the chance of finding

a model that is causally correct. They also can quantify the probability of the top-scoring

model relative to other models that are considered in the search. The top-scoring model

might be close, or alternatively far away, from other models, which could be helpful to know.

In addition, score-based methods can incorporate as prior probabilities domain beliefs about

what is likely but not certain, which is a common situation. However, the Bayesian scor-

ing of causal models that contain latent confounders is computationally very expensive. In

particular, there are two major problems when learning a CBN with latent variables using

score-based approaches:

• Problem 1 (model search): There is an infinite space of latent-variable models, both

in terms of parameters and latent structure. Even when restrictions are assumed, the
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search space generally remains enormous in size, making it challenging to find the

highest scoring CBNs.

• Problem 2 (model scoring): Scoring a given CBN with latent variables is challenging. In

particular, marginalizing over the latent variables greatly complicates Bayesian scoring

in terms of accuracy and computational tractability.

Consequently, the practical application of score-based methods is largely relegated to CBNs

that do not contain latent variables, which significantly decreases the general applicability

of these methods for causal discovery.

This chapter describes a novel hybrid approach, called Bayesian scoring of con-

straints (BSC), that combines strengths of the constraint-based and score-based ap-

proaches to learn CBN structures from observational data in the presence of latent vari-

ables [Jabbari et al., 2017b]. BSC uses a Bayesian method to score an independence con-

straint, it then derives the probability that the set of independence constraints associated

with a given causal model are jointly correct, rather than scoring the CBNs directly. The

posterior probability of a CBN is taken to be proportional to the posterior probability that

the constraints that characterize that CBN (or class of CBNs) are jointly true, which enables

us to score multiple causal models and output the most probable one(s). The BSC approach,

therefore, attenuates both of the following problems of score-based approaches:

• Problem 1 (model search): In the BSC approach, the search space is finite, not infinite

as in the general score-based approach, because the number of possible constraints on

a given set of measured variables is finite.

• Problem 2 (model scoring): In a constraint-based approach, the constraints are as-

sessed on measured variables only, as discussed in Section 2.2.2. Thus, when BSC

uses a Bayesian approach to derive the probability of a set of constraints and thereby

score a CBN, it needs only to consider measured variables. In contrast, a traditional

score-based approach must marginalize over latent variables, which is a difficult and

computationally expensive operation.

In the remainder of this chapter, I first review the related work in Section 3.1. Then, I

discuss in more detail a widely-used constraint-based CBN learning algorithm, namely fast
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causal inference (FCI) [Spirtes et al., 2000] in Section 3.2. I introduce a Bayesian method

to compute the probability of an independence constraint, called (BSC), in Section 3.3. In

Section 3.4, I describe how to incorporate the BSC method into a constraint-based method

(e.g., FCI) to learn PAG models. Then, in Section 3.5, I introduce three approaches to

score and rank the learned PAG models by approximating the posterior probability of each

PAG as the joint probability of the constraints that characterize that PAG. Finally, I present

the results on the performance of the methods introduced in this chapter using simulated

datasets from both randomly generated CBN models and manually constructed CBN models

in Section 3.6.

3.1 Related Work

Several heuristic algorithms have been developed and investigated for scoring CBNs con-

taining latent variables. An early algorithm for this task was developed by [Friedman, 1998];

it interleaved structure search with the application of expectation-maximization (EM) to

optimize the Bayesian score within EM iterations when learning the structure. Other ap-

proaches include those based on variational EM [Beal and Zoubin, 2003] and a greedy search

that incorporates EM [Borchani et al., 2006]. These and related approaches were primarily

developed to deal with missing data, rather than latent variables for which all data are

missing for those variables.

Other Bayesian algorithms have been developed to score CBNs with latent variables,

including methods that use a Laplace approximation [Heckerman et al., 1999], an approach

that uses EM and a form of clustering [Elidan and Friedman, 2005], and a structural expec-

tation propagation method [Lazic et al., 2013]. However, these methods do not search over

the space of all CBNs that include a given set of measured variables. Rather, they require

that the user manually provides the proposed CBN models to be scored; they search a very

restricted space of models, such as bipartite graphs [Lazic et al., 2013] or trees of hidden

structure [Choi et al., 2011, Elidan and Friedman, 2005], or they score ancestral relations

between pairs of variables [Parviainen and Koivisto, 2011]. Thus, within a Bayesian frame-
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work, the automated discovery of CBNs that contain latent variables remains an important

open problem.

Researchers have also developed algorithms that combine constraint-based and score-

based approaches for learning CBNs [Claassen and Heskes, 2012, Dash and Druzdzel, 1999,

De Campos et al., 2003, Magliacane et al., 2016, Nandy et al., 2018, Ogarrio et al., 2016,

Singh and Valtorta, 1995, Triantafillou et al., 2014, Tsamardinos et al., 2006]. However,

most of these hybrid methods, do not include the possibility that the CBNs be-

ing modeled contain latent variables. Exceptions include [Claassen and Heskes, 2012,

Magliacane et al., 2016, Ogarrio et al., 2016, Triantafillou et al., 2014]], which do model la-

tent variables.

In [Claassen and Heskes, 2012], a Bayesian method is proposed to score and rank or-

der constraints; then, it uses those rank-ordered constraints as inputs to a constraint-based

causal discovery method. However, it does not derive the posterior probability of a causal

model from the probability of the constraints that characterize the model. The method

in [Ogarrio et al., 2016] models the possibility of latent confounders but it does not pro-

vide any quantification of the output graph. In [Triantafillou et al., 2014], a method is

proposed to convert p-values to posterior probabilities of adjacencies and non-adjacencies

in a graph; then, those probabilities are used to identify neighborhoods of the graph in

which all relations have probabilities above a certain threshold. This method is, in fact,

a post-processing step on the skeleton of the output network and is not applicable to

convert p-values to probabilities during the search phase of constraint-based learning. It

also does not provide a way of computing the posterior probability of the whole output

PAG. [Magliacane et al., 2016] introduces a logic-based method to reconstruct ancestral re-

lations and score their marginal probabilities; it does not provide the probability of the

output graph, however. In [Magliacane et al., 2016], authors mentioned that modeling the

relationships among the constraints may be an improvement; in this dissertation, I introduce

an empirical way of modeling such relationships.

The research reported in [Hyttinen et al., 2014] is the closest previous work of which we

are aware to that introduced in this dissertation (see Section 3.4 below). It describes how

to score constraints on graphs by treating the constraints as independent of each other. The
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method is very expensive computationally, however, and is reported as working for up to 7

measured variables only. The method we introduce was feasibly applied to a dataset contain-

ing 70 variables and plausibly is practical for considerably larger datasets (see Section 3.6

below). Also, the method in [Hyttinen et al., 2014], as described, is limited to deriving just

the most probable graph, rather than deriving a set of graphs, as we do, which can be rank

ordered, compared, and used to perform selective model averaging that derives (for example)

distributions over edge types.

In this chapter, I introduce a hybrid approach, called BSC, that combines strengths of

constraint-based and score-based methods. The BSC method derives the probability that

relevant constraints are true. Consider a CBN model (or an equivalence class of CBN mod-

els) that entails a set of conditional independence constraints over the distribution of the

measured variables. In the BSC approach, the probability of the model being correct is

equal to the probability that the constraints that uniquely characterize the CBN model (or

class of CBN models) are true. The BSC method exhibits the computational efficiency of a

constraint-based method combined with the ability of a score-based approach to quantita-

tively compare alternative causal models according to their posterior probabilities.

3.2 Overview of the FCI Algorithm

Constraint-based algorithms are often used to discover the causal structure in a causally

insufficient system. That is, there is an unknown DAG G = (V ,E) over a set of ran-

dom variables V that includes both observed O and latent L variables (i.e., V = O ∪ L).

These algorithms rely on two main assumptions: Markov and faithfulness, as described in

Section 2.1.3. If these two assumptions hold, given an oracle of conditional independence,

a constraint-based algorithm applies a selective search for the constraints among observed

variables O to recover the ancestral relationships up to its Markov equivalence class using

a partial ancestral graph (PAG). In this section, I provide an overview of the FCI algo-

rithm [Spirtes et al., 2000], which is a well-known constraint-based algorithm for discovering

the causal structure in the presence of latent variables. Given a dataset D on observed
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variables O, the FCI algorithm reconstructs a PAG P by applying tests of conditional inde-

pendence on pairs of observed variables in two stages: adjacency and orientation.

In the adjacency stage, FCI first initializes P to a fully connected graph with nondirected

edges ( ◦—◦ ). Then, for every adjacent pair of nodes Xi ◦—◦Xj, it removes the edge if Xi

and Xj are independent given some subset of nodes Z that are adjacent to them (i.e.,

Z ⊆ Adj(Xi)\Xj or Z ⊆ Adj(Xj)\Xi) and stores Z as the set that d-separates Xi and

Xj (i.e., D-Sep(Xi, Xj) = D-Sep(Xj, Xi) = Z). Algorithm 2 shows pseudo-code of this

procedure. This step will remove some but not all of the edges that should be in P (see

Section 6.7 in [Spirtes et al., 2000] for more details). To refine P , FCI orients each unshielded

triple of variables Xj ∗—◦Xk ◦—∗Xj as Xj ∗→Xk←∗Xj if and only if Xk 6∈D-Sep(Xi, Xj),

where “∗” is used as a metasymbol to denote that an endpoint can be “>”, “−”, or “◦”1.

This is called v-structure orientation and is summarized in Algorithm 3. After orienting

the colliders, graph P contains required information to identify subsets of variables that can

“possibly” d-separate two adjacent nodes Xi and Xj, which are called Possible-D-Sep(Xi)

and Possible-D-Sep(Xj). Given graph P , Possible-D-Sep(Xi) is defined as follows:

Definition 3.2.1. (Possible-D-Sep) Y is in Possible-D-Sep(Xi) if and only if there

exists a path π between Xi and Y in P such that for every subpath Xh, Xl, Xm, either Xl is

a collider on the subpath in P or Xh, Xl, Xm form a triangle in P (i.e., they are all adjacent).

For each adjacent pair of nodes Xi and Xj, FCI tests whether they are conditionally indepen-

dent given any subset Z ⊆ Possible-D-Sep(Xi)\Xj or Possible-D-Sep(Xj)\Xi. If such

a subset Z exists, FCI removes the edge between Xi and Xj and stores D-Sep(Xi, Xj) =

D-Sep(Xj, Xi) = Z; this procedure is shown in Algorithm 4.

In the orientation stage, FCI uses 10 orientation rules [Zhang, 2008] to orient the skeleton

found by the adjacency stage. The overall pseudo-code for FCI is provided in Algorithm 1.

Given a conditional independence oracle and the Markov and faithfulness assumptions, in

the large sample limit the FCI algorithm is guaranteed to recover a PAG that contains the

data-generating DAG, which may contain latent variables [Zhang, 2008].

1“∗” is used for notations purposes and is not an actual endpoint in a PAG.
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Algorithm 1 FCI:(D, d)

Input: a dataset D, the maximum conditioning set size d

Output: a PAG P

1: P , D-Sep ← Initial Skeleton (D, d) . Algorithm 2

2: P ← V-structure Orientation (P , D-Sep) . Algorithm 3

3: P , D-Sep ← Final Skeleton (D, d, P , D-Sep) . Algorithm 4

4: P ← V-structure Orientation (P , D-Sep) . Algorithm 3

5: Apply orientation rules R1-R10 in [Zhang, 2008] to further orient the edges in P

6: return P

Algorithm 2 Initial Skeleton(D, d)

Input: a dataset D, the maximum conditioning set size d

Output: a graph P , d-separation sets D-Sep

1: Let P be a fully connected graph with nondirected edges ( ◦—◦ )

2: n = 0

3: while n ≤ d do

4: for all (Xi, Xj) ∈ P do

5: if Xj ∈ Adj(Xi) and |Adj(Xi)\Xj| ≥ n then

6: repeat

7: Choose a subset Z ⊆ Adj(Xi)\Xj where |Z| = n

8: if Xi ⊥⊥ Xj|Z then

9: Remove Xi ◦—◦Xj from P

10: Record D-Sep(Xi, Xj) = D-Sep(Xj, Xi) = Z

11: end if

12: until Xj 6∈ Adj(Xi) or all Z ⊆ Adj(Xi)\Xj with |Z| = n have been tested

13: end if

14: end for

15: n = n+ 1

16: end while

17: return P and D-Sep
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Algorithm 3 V-structure Orientation(P , D-Sep)

Input: a graph P , d-separation set D-Sep

Output: a graph P

1: Form a list T of all unshielded triple of variables Xi ∗—◦Xk ◦—∗Xj

2: for all Xi ∗—◦Xk ◦—∗Xj ∈ T do

3: if Xk 6∈D-Sep(Xj, Xj) then

4: Orient Xi ∗—◦Xk ◦—∗Xj as Xi ∗→Xk←∗Xj

5: end if

6: end for

7: return P

Algorithm 4 Final Skeleton(D, d, P , D-Sep)

Input: a dataset D, the maximum conditioning set size d, a graph P , d-separation sets

D-Sep

Output: a graph P , d-separation sets D-Sep

1: for all Xi ∈ P do

2: for all Xj ∈ Adj(Xi) do

3: n = 0

4: repeat

5: repeat

6: Choose a subset Z ⊆ Possible-D-Sep(Xi)\Xj with |Z| = n

7: if Xi ⊥⊥ Xj|Z then

8: Remove Xi ∗—∗Xj from P

9: Record D-Sep(Xi, Xj) = D-Sep(Xj, Xi) = Z

10: end if

11: until Xj 6∈ Adj(Xi) or no Z ⊆ Possible-D-Sep(Xi)\Xj with |Z| = n

12: n = n+ 1

13: until n ≤ d and

[
Xj 6∈ Adj(Xi) or |Possible-D-Sep(Xi)\Xj| < n

]
14: end for

15: end for

16: Reorient all edges in P as ◦—◦

17: return P and D-Sep

34



3.3 Bayesian Scoring of Constraints (BSC)

This section describes how to derive the posterior probability of an independence con-

straint Ri from data. Let D be an i.i.d dataset that is generated from a distribution that is

faithful to a ground-truth CBN structure G = (V ,E), where V is a set of domain variables

with O ⊆ V observed variables and E is a set of edges that encodes independence relation-

ships among V . Let Ri = X ⊥⊥ Y |Z be an arbitrary conditional independence constraint,

which is hypothesized to hold in the data-generating model that produced dataset D, where

X, Y ∈ O and Z\{X, Y } ⊆ O. Each Ri is called a conditional independence constraint, or

constraint for short, and it has a value of either true or false.

In order to score the posterior probability of a constraint Ri given dataset D, we assume

that the only parts of data D that influence belief about Ri are the data Di (i.e., data about

X and Y ). We call this the data relevance assumption, which results in:

P (Ri|D) = P (Ri|Di). (3.1)

Applying Bayes’ rule, the posterior probability of a constraint Ri given Di is defined as:

P (Ri|Di) =
P (Ri) · P (Di|Ri)

P (Di)

=
P (Ri) · P (Di|Ri)∑

Ri={true,false}

P (Ri) · P (Di|Ri)
,

(3.2)

where P (Di|Ri) is the marginal likelihood of data, P (Ri) is the prior of constraint Ri being

true, and Ri can be true or false.
a

a

a a

(a) BNind corresponds to independence (i.e.,
Ri = (X ⊥⊥ Y |Z) = true).

a

a

a a

(b) BNdep corresponds to dependence (i.e.,
Ri = (X ⊥⊥ Y |Z) = false).

Figure 8: The independence and dependence BN structures that we use to score a constraint.
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We use the BN structure BNind (Figure 8a) to compute the marginal likelihood of data

P (Di|Ri = true) when we model the independence relationship. In BNind, Z is a set of

parents for X and Y that renders X independent of Y conditional on Z. Similarly, we use

the BN structure BNdep (Figure 8b) to compute the marginal likelihood of data P (Di|Ri =

false) when we model the dependence relationship, which means that conditioning on Z

does not render X independent of Y and there is an arc between X and Y . For CBNs that

contain discrete variables, we assume there might be specific instantiations of Z that make X

and Y dependent. Since the dependence relationship between X and Y holds even if it holds

only for one instantiation of Z, we score BNdep in a special way to allow for this possibility;

this method is defined in Section 3.3.1. In contrast, for CBNs that contain continuous and

a mixture of discrete and continuous variables2, we assume there are no specific values of

Z that makes X and Y dependent. Therefore, the dependence relationship between X and

Y must hold for all values of Z; we score BNdep using all values of Z. These methods are

introduced in Sections 3.3.2 and 3.3.3.

3.3.1 BSC for discrete variables

In this section, I describe how to compute the posterior probability of an arbitrary con-

straint Ri = (X ⊥⊥ Y |Z) given D that contains discrete random variables using Equation

(3.2). In this case, we can use the BDeu score [Heckerman et al., 1995], which provides a

closed-form solution for deriving the marginal likelihood for P (Di|Ri). More specifically,

to compute P (Di|Ri = true), we derive the BDeu score using BNind (Figure 8a). For

Ri = (X ⊥⊥ Y |Z) = true, the independence relation should hold for all possible instantia-

tions of Z, denoted as Z = k. Assuming parameter independence and parameter modular-

ity [Heckerman et al., 1995], P (Di|Ri = true) can be computed as follows:

P (Di|Ri = true) =

q∏
k=1

P (Di|Ri = true,Z = k), (3.3)

where q denotes all possible instantiations of variables in Z. Similarly, we can compute the

overall likelihood of Di per each instantiation Z = k, assuming Di is modeled either by

2We transform mixed variables to all continuous variables using the degenerate Gaussian method intro-
duced in [Andrews et al., 2019].
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BNind or BNdep (Figure 8), as follows:

P (Di) =

q∏
k=1

∑
Ri={true,false}

P (Ri|Z = k) · P (Di|Ri,Z = k)

=

q∏
k=1

[
P (Ri = true|Z = k) · P (Di|Ri = true,Z = k)

+ P (Ri = false|Z = k) · P (Di|Ri = false,Z = k)

]
,

(3.4)

where q denotes all possible instantiations of Z, P (Di|Ri = true,Z = k) denotes the

marginal likelihood of Di when Z = k and using BNind (Figure 8a), and P (Di|Ri =

false,Z = k) denotes the the marginal likelihood of Di when Z = k and using BNdep

(Figure 8b). Consider the sum of products that results from expanding the product of sums

in Equation (3.4). In that expansion, there is only one product term that corresponds to

the independence relation (i.e., P (Di|Ri = true) given in Equation (3.3)); it is the term in

which independence holds for all instantiations of Z; the rest of the product terms corre-

spond to dependence. We formulate the dependence relationship this way since X and Y

will become dependent even if the dependence holds for only one instantiation of Z. The

terms P (Ri = true|Z = k) and P (Ri = false|Z = k) are structure priors per each Z = k,

which are defined as follows:

P (Ri = true|Z = k) = q
√
P (Ri = true) and

P (Ri = false|Z = k) = 1.0− P (Ri = true|Z = k),
(3.5)

where q is the number of possible instantiations of Z. If we assume independence and

dependence are a priori equally likely, then P (Ri = true) = P (Ri = false) = 0.5.

By applying Equations (3.3)-(3.5) to Equation (3.2), the posterior probability of a con-

straint Ri = (X ⊥⊥ Y |Z) = true can be re-written as follows:

P (Ri = true|Di) =

q∏
k=1

P (Ri = true|Z = k) · P (Di|Ri = true,Z = k)

q∏
k=1

∑
Ri={true,false}

P (Ri|Z = k) · P (Di|Ri,Z = k)

. (3.6)

Finally, the posterior probability of a constraint Ri = (X ⊥⊥ Y |Z) = false is as follows:

P (Ri = false|Di) = 1.0− P (Ri = true|Di). (3.7)
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3.3.1.1 Proof of correctness for BSC-discrete In this section, I first provide a lemma

that will then be used to prove Theorem 3.3.1, which shows the correctness of BSC when using

the BD score [Heckerman et al., 1995] for discrete variable types. The proof of Theorem 3.3.1

is influenced by the proof of Theorem 6.3 in Section 6.3 of [Herskovits, 1991]. Theorem 3.3.1

generalizes that theorem from using K2 priors to using BD priors in developing the BSC

independence test.

Lemma 3.3.1. Let P be the full joint probability distribution over a set of random vari-

ables V , and X, Y ∈ V be two variables and Z \ {X, Y } ⊂ V be a set of random vari-

ables that excludes X and Y . Also, let Hj(Y |Z = j) denote the conditional entropy of Y

given Z = j, where j denotes a particular instantiation of the variables in Z. Similarly,

Hj(Y |X,Z = j) denote the conditional entropy of Y given X and Z = j, which are defined

as follows [Cover, 1999] (page 17):

Hj(Y |Z = j) = −
∑
y

P (y|Z = j) · logP (y|Z = j)

Hj(Y |X,Z = j) = −
∑
y

∑
x

P (y, x|Z = j) · logP (y|x,Z = j) ,
(3.8)

where x and y iterate over all possible instantiations of X and Y , respectively. Then,

Hj(Y |Z = j) ≥ Hj(Y |X,Z = j) and the equality holds if and only if X ⊥⊥ Y |Z = j holds.

Proof. Applying the chain rule of entropy, the conditional mutual information can be com-

puted as follows [Cover, 1999]:

I(X;Y |Z = j) = H(Y |Z = j)−H(Y |X,Z = j) . (3.9)

Given that the mutual information is nonnegative (i.e., I(X;Y |Z = j) ≥ 0) and I(X;Y |Z =

j) = 0 if and only if X ⊥⊥ Y |Z = j [Cover, 1999] (page 29), it follows that:

H(Y |Z = j)−H(Y |X,Z = j) ≥ 0

H(Y |Z = j) ≥ H(Y |X,Z = j) ,
(3.10)

where the equality holds if and only if X ⊥⊥ Y |Z = j.
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Theorem 3.3.1. Let D be a dataset that contains N cases with no missing values on a set of

discrete variables V that is sampled from distribution P , which is strictly positive asN →∞.

Let X, Y ∈ V be two variables, Z \ {X, Y } ⊂ V be a set of random variables that excludes

X and Y . Also, let (X ⊥⊥ Y |Z = j) be the independence constraint that we want to score for

a particular instantiation of Z = j. Using BNind shown in Figure 8a to score independence,

BNdep shown in Figure 8b to score dependence, and using BD score [Heckerman et al., 1995],

BSC assigns the correct constraint hypothesis a probability that approaches 1.0 in the large

sample limit:

lim
N→∞

P (DY |Z = j)

P (DY |X,Z = j)
=

∞ if and only if (X ⊥⊥ Y |Z = j) = true

0 otherwise

, (3.11)

which indicates that BSC is correct for a particular instantiation of Z using the BD score.

Proof. The BD score for P (DY |Z = j) is calculated as follows [Heckerman et al., 1995]:

P (DY |Z = j) =
Γ(αj)

Γ(αj +Nj)
·

r∏
k=1

Γ(αjk +Njk)

Γ(αjk)
, (3.12)

where j denotes instantiations of variables in Z and the product is over all r values of variable

Y . The term Njk is the number of cases in data in which variable Y = k and its parent

Z = j; also, Nj =
∑r

k=1Njk. The term αjk is a finite positive real number that is called

Dirichlet prior parameter and may be interpreted as representing “pseudo-counts”, where

αj =
∑r

k=1 αjk. BD can be re-written in log form as follows:

logP (DY |Z = j) = log Γ(αj)− log Γ(αj +Nj) +
r∑

k=1

(log Γ(αjk +Njk)− log Γ(αjk)).

(3.13)

We can re-arrange the terms in Equation (3.13) to omit the constant terms as follows:

logP (DY |Z = j) = − log Γ(αj +Nj) +
r∑

k=1

log Γ(αjk +Njk) + log Γ(αj)−
r∑

k=1

log Γ(αjk)

= − log Γ(αj +Nj) +
r∑

k=1

log Γ(αjk +Njk) + const. (3.14)
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Using the Stirling’s approximation of log Γ(n), which is defined as follows:

lim
n→∞

log Γ(n) = (n− 1

2
) log(n)− n+ const. , (3.15)

we can re-write Equation (3.14) as follows:

lim
N→∞

logP (DY |Z = j) = lim
N→∞

−(αj +Nj −
1

2
) log(αj +Nj) + (αj +Nj)

+
r∑

k=1

(
(αjk +Njk −

1

2
) log(αjk +Njk)− (αjk +Njk)

)
+ const.

= lim
N→∞

−Nj log(αj +Nj)− αj log(αj +Nj) +
1

2
log(αj +Nj) + αj +Nj

+
r∑

k=1

(
Njk log(αjk +Njk) + αjk log(αjk +Njk)−

1

2
log(αjk +Njk)− αjk −Njk

)
+ const.

= lim
N→∞

−Nj log(αj +Nj) +
r∑

k=1

Njk log(αjk +Njk)

− αj log(αj +Nj) +
r∑

k=1

αjk log(αjk +Njk)

+
1

2
log(αj +Nj)−

1

2

r∑
k=1

log(αjk +Njk)

+ αj +Nj −
r∑

k=1

(αjk +Njk) + const. (3.16)

Since
r∑

k=1

Njk = Nj and
r∑

k=1

αjk = αj, Equation (3.16) can be re-written as follows:

lim
N→∞

logP (DY |Z = j) = lim
N→∞

r∑
k=1

[
Njk log(

αjk +Njk

αj +Nj

) + αjk log(
αjk +Njk

αj +Nj

)

]

+
1

2

[
log(αj +Nj)−

r∑
k=1

log(αjk +Njk)

]
+const. ,

(3.17)

Given that

lim
N→∞

αjk +Njk

αj +Nj

=
Njk

Nj

and

lim
N→∞

r∑
k=1

αjk log(
αjk +Njk

αj +Nj

) = const.,
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in the limit, Equation (3.17) becomes:

lim
N→∞

logP (DY |Z = j) =

lim
N→∞

r∑
k=1

Njk log
Njk

Nj

+
1

2

[
log(αj +Nj)−

r∑
k=1

log(αjk +Njk)

]
+const. ,

(3.18)

or equivalently:

lim
N→∞

logP (DY |Z = j) =

lim
N→∞

N ·
r∑

k=1

Njk

N
log

Njk

Nj

+
1

2

[
log(αj +Nj)−

r∑
k=1

log(αjk +Njk)

]

= lim
N→∞

N ·
r∑

k=1

P (Y = k,Z = j) logP (Y = k|Z = j)

+
1

2

[
log(αj +Nj)−

r∑
k=1

log(αjk +Njk)

]

= lim
N→∞

−N ·Hj(Y |Z = j) +
1

2

[
log(αj +Nj)−

r∑
k=1

log(αjk +Njk)

]
.

(3.19)

To simplify the second term in this equation, we divide the log terms by N and equivalently

add logN terms as follows:

lim
N→∞

logP (DY |Z = j) = lim
N→∞

−N ·Hj(Y |Z = j)

+
1

2

[
log(

αj +Nj

N
) + logN −

r∑
k=1

[
log(

αj +Nj

N
) + logN

] ]
= lim

N→∞
−N ·Hj(Y |Z = j)

+
1

2

[
logN −

r∑
k=1

logN

]
+

1

2

[
log(

αj +Nj

N
)−

r∑
k=1

log(
αj +Nj

N
)

]

= lim
N→∞

−N ·Hj(Y |Z = j)− (r − 1)

2
logN + const. ,

(3.20)

Similarly, we can derive lim
N→∞

logP (DY |X,Z = j) as follows:

lim
N→∞

logP (DY |X,Z = j) = lim
N→∞

−N ·Hj(Y |X,Z = j)− q
′ · (r − 1)

2
logN + const. , (3.21)
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where q′ denotes all possible instantiations of X. Finally, using Equations (3.20) and (3.21),

we have:

lim
N→∞

log
P (DY |Z = j)

P (DY |X,Z = j)
= lim

N→∞
N · [Hj(Y |X,Z = j)−Hj(Y |Z = j)]

+
q′ · (r − 1)

2
logN − (r − 1)

2
logN.

(3.22)

According to Lemma 3.3.1, Hj(Y |Z = j) ≥ Hj(Y |X,Z = j). There are two possible cases:

Case 1: X ⊥⊥ Y |Z = j is true. In this case, Hj(Y |X,Z = j) = Hj(Y |Z = j) according

to Lemma 3.3.1, which results in:

lim
N→∞

log
P (DY |Z = j)

P (DY |X,Z = j)
= lim

N→∞

q′ · (r − 1)

2
logN − (r − 1)

2
logN

= lim
N→∞

(q′ − 1) · (r − 1)

2
logN,

(3.23)

or equivalently:

lim
N→∞

P (DY |Z = j)

P (DY |X,Z = j)
= lim

N→∞
N

(q′−1)·(r−1)
2 . (3.24)

Given that q′ > 1 and r > 1 , the term (q′−1)·(r−1)
2

in Equation (3.24) becomes positive;

therefore, Equation (3.24) becomes ∞ as N →∞.

Case 2: X ⊥⊥ Y |Z = j is false. In this case, we have:

lim
N→∞

log
P (DY |Z = j)

P (DY |X,Z = j)
= lim

N→∞
N · [Hj(Y |X,Z = j)−Hj(Y |Z = j)]

+
q′ · (r − 1)

2
logN − (r − 1)

2
logN,

(3.25)

where the first term is of O(N) and dominates the second and third terms, which are of

O(logN). Since Hj(Y |Z = j) > Hj(Y |X,Z = j) according to Lemma 3.3.1, the first term

(i.e., Hj(Y |X,Z = j) − Hj(Y |Z = j)) in Equation (3.25) becomes a negative number and

dominates the second and the third terms. As a result, Equation (3.25) becomes −∞, which

is implies:

lim
N→∞

P (DY |Z = j)

P (DY |X,Z = j)
= 0. (3.26)
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Proposition 3.3.1. Let D be a dataset that contains N cases with no missing values on

a set of discrete variables V that is sampled from distribution P , which is strictly positive

as N → ∞. Let X, Y ∈ V be two variables, Z \ {X, Y } ⊂ V be a set of random variables

that excludes X and Y . Also, let (X ⊥⊥ Y |Z) be the independence constraint that we want

to score. Using the BD score [Heckerman et al., 1995], the BSC method assigns the correct

constraint hypothesis a probability that approaches 1.0 in the large sample limit:

lim
N→∞

P (DY |Z)

P (DY |X,Z)
= lim

N→∞

q∏
j=1

P (DY |Z = j)[
q∏
j=1

P (DY |Z = j) + P (DY |X,Z = j)

]
−

q∏
j=1

P (DY |Z = j)

=

∞ if and only if (X ⊥⊥ Y |Z) = true

0 otherwise

,
(3.27)

which indicates that the BSC method is correct using the BD score.

Proof. If (X ⊥⊥ Y |Z) = true, then the independence relation holds for all instantiations of

Z (i.e., the product term in the numerator). Accordingly, by Theorem 3.3.1, the numerator

will dominate the terms in the denominator and the fraction approaches∞. Additionally, if

(X ⊥⊥ Y |Z) = false, then the dependence relationship holds at least for one of the terms

in the denominator, which equivalently implies that at least one of the P (DY |Z = j) terms

does not hold. Therefore, by Theorem 3.3.1, at least one of the terms in the denominator

will dominate the numerator, and the fraction becomes 0.

Corollary 3.3.1. Let D be a dataset that contains N cases with no missing values on a

set of discrete variables V that is sampled from distribution P , which is strictly positive as

N → ∞. Let X, Y ∈ V be two variables, Z \ {X, Y } ⊂ V be a set of random variables

that excludes X and Y . Also, let (X ⊥⊥ Y |Z) be the independence constraint that we want

to score. Using the K2 score [Cooper and Herskovits, 1992], the BSC method assigns the

correct constraint hypothesis a probability that approaches 1.0 in the large sample limit,

which indicates that the BSC method is correct using the K2 score.
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3.3.2 BSC for continuous variables

In this section, I explain how to formulate the posterior probability of a constraint

Ri = (X ⊥⊥ Y |Z) given a dataset D that contains random variables with Gaussian distribu-

tions. In this case, we can use the BIC score [Schwarz, 1978] for approximating the marginal

likelihood for P (Di|Ri) as follows:

P (Di|Ri = true) = `(Θ̂ind)−
dfind

2
logN

P (Di|Ri = false) = `(Θ̂dep)−
dfdep

2
logN ,

(3.28)

where N denotes the number of cases in Di, `(Θ̂ind) and `(Θ̂dep) are maximum log-likelihood

of the data using the independence and dependence BN structures shown in Figures 8a

and 8b, respectively. Note that in this case, we score BNdep using all values of Z since we

assume the dependence relationship holds over all values of the continuous variables Z. The

terms dfind and dfdep are degrees of freedom in those BN models, respectively. Since the BIC

score is decomposable at the node level for each node X given its parents Pa(X), the log-

likelihood term can be computed for each parent-child relationship using maximum likelihood

estimates of the parameters, and dfX|Pa(X) = |Pa(X)|+1 is the degrees of freedom. Finally,

we can apply Equations (3.28) to Equation (3.2) to obtain P (Ri|Di).

3.3.2.1 Proof of correctness for BSC-continuous In this section, I provide two lem-

mas that will be used to prove a theorem of asymptotic correctness (consistency) of BSC

when using the BIC score for continuous variable type.

Lemma 3.3.2. Given a set of continuous random variables V = {X1, X2, ..., Xn} that follow

a multivariate Gaussian distribution with mean µ and covariance matrix Σ, the entropy is

defined as follows [Cover, 1999] (page 249):

H(X) =
1

2
log(2πe)n|Σ| = 1

2
log |2πeΣ| (3.29)

where |Σ| denotes the determinant of Σ. Both terms are equivalent due to the fact that

|cA| = cn|A| for a n× n matrix.

Proof. See the proof of Theorem 8.4.1 in [Cover, 1999] for the derivation of this equation.

44



Lemma 3.3.3. Let f be a positive continuous joint probability density function over a set of

continuous random variables V , and X, Y ∈ V be two random variables and Z\{X, Y } ⊂ V

be a set of random variables. Also, let H(Y |Z) denote the conditional entropy of Y given

Z, and similarly, H(Y |X,Z) denote the conditional entropy of Y given X and Z, which are

defined as follows:

H(Y |Z) = −
∫
y

∫
z

f(y,z) · log f(y|z) dydz

H(Y |X,Z) = −
∫
y

∫
x

∫
z

f(y, x, z) · log f(y|x, z) dydxdz ,

(3.30)

Then, H(Y |Z) ≥ H(Y |X,Z) and the equality holds if and only if X ⊥⊥ Y |Z holds.

Proof. Applying the chain rule of entropy, the conditional mutual information can be com-

puted as follows [Cover, 1999]:

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z) . (3.31)

Given that the mutual information is nonnegative (i.e., I(X;Y |Z) ≥ 0) and the equality

holds if and only if X ⊥⊥ Y |Z [Cover, 1999] (page 253), it follows that:

H(Y |Z)−H(Y |X,Z) ≥ 0

H(Y |Z) ≥ H(Y |X,Z) ,
(3.32)

where the equality holds if and only if X ⊥⊥ Y |Z.

Theorem 3.3.2. Let D be a dataset that contains N cases with no missing values on a

set of continuous variables V that is sampled from a multivariate Gaussian distribution P .

Let X, Y ∈ V be two variables, Z \ {X, Y } ⊂ V be a set of random variables, and also

(X ⊥⊥ Y |Z) be the independence constraint that we want to score. Using BNind shown

in Figure 8a to score independence, BNdep shown in Figure 8b to score dependence, and

using the BIC score [Schwarz, 1978], then the correct constraint hypothesis is assigned a

probability that approaches 1.0 in the large sample limit:

lim
N→∞

P (DY |Z)

P (DY |X,Z)
=

∞ if and only if (X ⊥⊥ Y |Z) = true

0 otherwise

, (3.33)

which indicates that the Bayesian scoring of independence constraint (BSC) using the BIC

score is correct.
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Proof. The BIC score for a Bayesian network G given dataset D is decomposable at the

node level for each node Xi ∈ V given its parents Pa(Xi):

S(G, D) =
n∑
i=1

s(Xi,Pa(Xi)) , (3.34)

where s(Xi,Pa(Xi)) is defined as follows, according to the BIC score:

s(Xi,Pa(Xi)) = `(Xi|Pa(Xi); Θ̂)− 1

2
dfXi|Pa(Xi) · logN, (3.35)

where `(Xi|Pa(Xi); Θ̂) denotes the conditional log-likelihood of data for the given parent-

child relationship using maximum likelihood estimate of the parameters and dfXi|Pa(Xi) =

|Pa(Xi)|+ 1 is the degrees of freedom. Given that the conditional likelihood of variable Xi

given its parents Pa(Xi) is defined as follows:

P (Xi|Pa(Xi)) =
P (Xi,Pa(Xi))

P (Pa(Xi))
, (3.36)

the conditional log-likelihood `(Xi|Pa(Xi); Θ̂) becomes:

`(Xi|Pa(Xi); Θ̂) = `(Xi,Pa(Xi); Θ̂)− `(Pa(Xi); Θ̂). (3.37)

Assuming a multivariate Gaussian distribution, the likelihood for variables V is defined as

follows [Bishop, 2006] (page 78):

L(V ; Θ) = (2π)−
N·n
2 |Σ|−

N
2 exp

(
−1

2

N∑
i=1

(vi − µ)TΣ−1(vi − µ)

)
, (3.38)

where N denotes the number of observations in dataset D, n is the number of variables in

V , vi denotes the values of ith observation in D, µ is the vector valued mean, and Σ is the

covariance matrix with |Σ| and Σ−1 denoting its determinant and inverse, respectively. We

then take the log of Equation (3.38) to obtain the Gaussian log-likelihood as follows:

`(V ; Θ) = −N · n
2

log 2π − N

2
log |Σ| − 1

2

N∑
i=1

(vi − µ)TΣ−1(vi − µ) · log e. (3.39)
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Given the maximum likelihood estimates of µ and Σ [Bishop, 2006] (pages 93 and 94):

µ̂ =
1

N

N∑
i=1

vi

Σ̂ =
1

N

N∑
i=1

(vi − µ̂)(vi − µ̂)T ,

the log-likelihood in Equation (3.39) simplifies to:

`(V ; Θ̂) = −N · n
2

log 2π − N

2
log |Σ̂| − 1

2

N∑
i=1

(vi − µ̂)T Σ̂
−1

(vi − µ̂) · log e. (3.40)

Since ATBA = tr(ATBA), where tr denotes the trace of a square matrix and is defined as

the sum of the diagonal elements of the matrix, Equation (3.40) can be re-written as follows:

`(V ; Θ̂) = −N · n
2

log 2π − N

2
log |Σ̂| − 1

2

N∑
i=1

tr((vi − µ̂)T Σ̂
−1

(vi − µ̂)) · log e. (3.41)

Also, since trace is a linear operation that is invariant under cyclic permutations of matrix

products (i.e., tr(ATBA) = tr(AATB) = tr(BAAT )), Equation (3.41) becomes:

`(V ; Θ̂) = −N · n
2

log 2π − N

2
log |Σ̂| − 1

2
tr(

N∑
i=1

(vi − µ̂)(vi − µ̂)T Σ̂
−1

) · log e

= −N · n
2

log 2π − N

2
log |Σ̂| − N

2
tr(Σ̂

−1
Σ̂) · log e

= −N · n
2

log 2π − N

2
log |Σ̂| − N

2
tr(I) · log e

= −N · n
2

log 2π − N

2
log |Σ̂| − N · n

2
· log e

= −N · n
2

(log 2π + log e)− N

2
log |Σ̂|

= −N · n
2

(log 2πe)− N

2
log |Σ̂|

= −N
2

(
log(2πe)n + log |Σ̂|

)
= −N

2

(
log(2πe)n|Σ̂|

)
= −N

2
log |2πeΣ̂|,

(3.42)
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where I in the third line is the identity matrix with n dimensions and tr(I) = n. The last

two lines are equivalent due to the fact that |cA| = cn|A| for a n × n matrix. We can use

Equation (3.42) to compute the marginal log-likelihood for any subset of variables U ⊆ V

by using the sub-matrix Σ̂U of the covariance matrix that is restricted to the variables in

U [Bishop, 2006] (page 89). For example, if U = {X1, X2}, then we can use the following

covariance matrix to compute the marginal log-likelihood:

Σ̂U =

Σ̂X1X1 Σ̂X1X2

Σ̂X2X1 Σ̂X2X2


Therefore, we can apply Equation (3.42) to obtain:

lim
N→∞

log
P (DY |Z)

P (DY |X,Z)
=

lim
N→∞

− N

2
log |2πeΣ̂Y,Z |+

N

2
log |2πeΣ̂Z | −

1

2
(|Z|+ 1) · logN

+
N

2
log |2πeΣ̂Y,X,Z | −

N

2
log |2πeΣ̂X,Z |+

1

2
(|X|+ |Z|+ 1) · logN.

(3.43)

Given that the conditional entropy of a variable A given another variable B is calculated as

H(A|B) = H(A,B)−H(B), and according to Lemma (3.3.2) we have:

H(Y |Z) =
1

2
log |2πeΣ̂Y,Z | −

1

2
log |2πeΣ̂Z |

H(Y |X,Z) =
1

2
log |2πeΣ̂Y,X,Z | −

1

2
log |2πeΣ̂X,Z |.

(3.44)

Therefore, Equation (3.43) becomes:

lim
N→∞

log
P (DY |Z)

P (DY |X,Z)
= lim

N→∞
N · [H(Y |X,Z)−H(Y |Z)]

− 1

2
(|Z|+ 1) · logN +

1

2
(|X|+ |Z|+ 1) · logN.

(3.45)

According to Lemma 3.3.3, H(Y |X,Z) ≤ H(Y |Z). There are two possible cases here:

Case 1: X ⊥⊥ Y |Z is true. In this case, according to Lemma 3.3.3 H(Y |X,Z) = H(Y |Z);

therefore, Equation (3.45) becomes:

lim
N→∞

log
P (DY |Z)

P (DY |X,Z)
= lim

N→∞
−1

2
(|Z|+ 1) · logN +

1

2
(|X|+ |Z|+ 1) · logN, (3.46)
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or equivalently

lim
N→∞

P (DY |Z)

P (DY |X,Z)
= lim

N→∞
const.

N (|X|+|Z|+1)

N (|Z|+1)
= lim

N→∞
const.N |X| =∞. (3.47)

Case 2: X ⊥⊥ Y |Z is false. In this case, according to Equation (3.45) we have:

lim
N→∞

log
P (DY |Z)

P (DY |X,Z)
= lim

N→∞
N · [H(Y |X,Z)−H(Y |Z)]

− 1

2
(|Z|+ 1) · logN +

1

2
(|X|+ |Z|+ 1) · logN.

where the first term is of O(N) and the second and third terms are of O(logN). Therefore,

the first term dominates this equation as follows:

lim
N→∞

log
P (DY |Z)

P (DY |X,Z)
= lim

N→∞
N · [H(Y |X,Z)−H(Y |Z)] . (3.48)

Since H(Y |Z) > H(Y |X,Z) according to Lemma 3.3.3, the term [H(Y |X,Z)−H(Y |Z)]

becomes a negative number. Consequently, Equation (3.48) becomes−∞, which is equivalent

to:

lim
N→∞

P (DY |Z)

P (DY |X,Z)
= 0. (3.49)

3.3.3 BSC for mixed variables

This section describes a method to compute the posterior probability of a constraint

Ri = (X ⊥⊥ Y |Z) given a dataset D on a set of random variables that includes a mixture

of continuous and discrete variable types. In this case, we use the degenerate Gaussian

(DG) score introduced in [Andrews et al., 2019]. The key idea in the DG method is to

transform discrete variables into a continuous space by using their one-hot vector represen-

tation, which results in all continuous variables. The encoding of each variable Xi ∈ V is as

follows [Andrews et al., 2019]:

X ′i =

Xi if Xi is continuous

[11(Xi), ...1k−1(Xi)] if Xi is discrete with k values

, (3.50)
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where the indicator function 1k = 1 if Xi = k. After applying this transformation to all

variables in V , DG uses the BIC score [Schwarz, 1978] to derive marginal likelihoods of the

data as follows [Andrews et al., 2019]:

P (Di|Ri = true) = `(Θ̂ind)−
dfind

2
logN

P (Di|Ri = false) = `(Θ̂dep)−
dfdep

2
logN ,

(3.51)

where N denotes the number of cases in Di, `(Θ̂ind) and `(Θ̂dep) are maximum log-likelihood

of the data using the independence and dependence BN structures shown in Figures 8a

and 8b, respectively. Note that in this case, since the variables are transformed to continuous,

we score BNdep using all values of Z because we assume the dependence relationship holds

for all values of the continuous variables Z. The terms dfind and dfdep are degrees of freedom

in those BN models, respectively. These equations can then be applied to Equation (3.2) to

obtain P (Ri|Di).

3.4 Combine the FCI Algorithm with BSC

In this section, I describe a hybrid CBN structure learning algorithm that incorporates

the BSC test to derive a Bayesian probability that an independence constraint holds (de-

scribed in Section 3.3) into a constraint-based search (e.g., FCI [Spirtes et al., 2000] or

RFCI [Colombo et al., 2012]) to discover the causal structure of the data-generating pro-

cess in the presence of latent variables. Using this hybrid method, we can then derive a

Bayesian probability that the set of independence tests associated with a given causal model

are jointly correct, which then can be used to score multiple causal models and output the

most probable one(s). In this section, I describe how to combine BSC with a constraint-based

method to learn a PAG.

This method adapts a constraint-based CBN structure learning algorithm (e.g., FCI3)

that applies the BSC method to compute the probability that an independence constraint

3Although we use the FCI algorithm throughout this chapter, any other constraint-based method, such
as RFCI [Colombo et al., 2012], can be applied in general.

50



holds instead of using a statistical independence test; we call this algorithm FCI-BSC. During

the first stage of the search, when FCI requests that an independence constraint to be tested,

FCI-BSC uses BSC to determine the probability p that an independence constraint holds.

It then samples with probability p whether independence constraint holds and returns that

result to the search algorithm. To do so, FCI-BSC generates a random number U from

Uniform[0, 1]; if U ≤ p then it returns true, and otherwise, it returns false. Ultimately,

FCI-BSC will complete the adjacency search in this manner; it then applies the orientation

stage (using the BSC test when required), and finally, it returns the learned PAG.

FCI-BSC then repeats the procedure in the previous paragraph s times to generate up

to s unique PAG models. Let each repetition be called a round. Since the set of constraints

generated in each round is determined stochastically (i.e., sampling with probability p),

these rounds will produce many different sets of constraints, and consequently, different

PAGs. It then outputs a set of at most s PAGs and for each PAG, an associated set of

constraints that were queried during the FCI search. Algorithm 5 shows pseudo-code of the

FCI-BSC method that inputs dataset D and the number of rounds s. Note that FCI? in

this procedure denotes the FCI search that uses BSC to evaluate each constraint, rather

than using frequentist significant testing. The computational complexity of FCI-BSC is

O(n) times that of FCI, since it calls the FCI algorithm s times. In the following sections, I

introduce three methods to score each generated PAG model Pj using BSC.

Algorithm 5 FCI-BSC(D, s)

Input: a dataset D, the number of rounds s

Output: a set P containing PAG members Pj, a set R of constraints

1: Let P and R be empty sets

2: for j = 1 to n do

3: Pj,Rj ← FCI?(D) . FCI? uses BSC to evaluate independence constraints

4: P ← P ∪ Pj
5: R← R ∪Rj

6: end for

7: return P and R
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3.5 Scoring a PAG Using BSC

LetR be the union of all the independence conditions tested by FCI-BSC over all rounds,

which we will use to score each generated PAG model Pj. Based on the axioms of probability,

we have the following equation:

P (Pj|D) =
∑
R

P (Pj|R, D) · P (R|D), (3.52)

where the sum is over all possible value assignments to the constraints in set R. Although

Equation (3.52) is valid, it does not provide a useful method for calculating P (Pj|D). In

this section, I introduce a method to derive a way of computing P (Pj|D) effectively.

Assume that data D only influence belief about a causal model via belief about the

conditional independence constraints given by R (i.e., P (Pj|R, D) = P (Pj|R)), which is

a standard assumption of constraint-based methods. Therefore, we can rewrite Equation

(3.52) as follows:

P (Pj|D) =
∑
R

P (Pj|R) · P (R|D). (3.53)

Although Equation (3.53) is less general than the full Bayesian approach in Equation (3.52),

it is nonetheless more expressive than existing constraint-based methods that in essence

assume that P (R|D) = 1 for a set of constraints R that are derived using frequentist

statistical tests.

Let r′ denote the values of all the constraints in R (i.e., R = r′), according to the inde-

pendencies implied by graph Pj. Assuming a constraint-based method finds a set of sufficient

independence conditions that distinguishes Pj from all other PAGs, so that P (Pj|R = r′) = 1

and P (Pj|R 6= r′) = 0, Equation (3.53) becomes:

P (Pj|D) =
∑
R

P (Pj|R) · P (R|D) = P (r′|D). (3.54)

Section 3.3 describes a method to compute the probability of one constraint given data,

namely, P (Ri|Di). Now, we need to extend it for a set of constraints P (r′|D) in Equation

(3.54). Applying the chain rule of probability, we obtain:
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P (r′|D) = P (r′1, r
′
2, ..., r

′
m|D) =

m∏
i=1

P (r′i|r′1, r′2, ..., r′i−1, D)

=
m∏
i=1

P (r′i|r′1, r′2, ..., r′i−1, Di) (assuming data relevance),

(3.55)

where r′i denotes the value of constraint Ri according its value given in r′. Using Equation

(3.55), FCI-BSC determines the most probable generated PAG and its posterior probability.

For each pair of measured nodes, we can also use model averaging to estimate the prob-

ability distribution over each PAG edge type as follows: Since PAGs are being sampled

(generated) according to their posterior distribution (under the assumption that the con-

straints are independent of each other), the probability of edge E existing between nodes

Xi and Xj is estimated as the fraction of the sampled PAGs that contain edge E between

Xi and Xj. In the following subsections, I describe three methods to approximate the joint

posterior probability of constraints.

3.5.1 BSC with independence assumption (BSC-I)

In the first method, we assume that constraints in setR = {R1, R2, ..., Rm}, which is a set

of all independence constraints obtained by running the FCI-BSC algorithm, are independent

of each other. We call this approach BSC-I. Given this assumption and Equation (3.55),

BSC-I scores an output graph as follows:

P (Pj|D) = P (r′|D) =
m∏
i=1

P (r′i|Di), (3.56)

where r′ denotes the values of the constraints in R and P (r′i|Di) can be computed as de-

scribed in Section 3.3.

3.5.2 BSC with dependence assumption (BSC-D)

In this scoring approach, we model the possibility that the constraints are dependent,

which often happens. The relationships among the constraints can be complicated, and to

our knowledge, they have not been modeled previously. In the remainder of this section, we

introduce an empirical method to model the relationships among conditional constraints.
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Similar to BSC-I, consider R as a set of all the independence constraints queried by the

FCI-BSC method. As we mentioned earlier, each constraint Ri ∈ R has the form X ⊥⊥ Y |Z,

where X and Y are variables of dataset D, and Z is a subset of variables not containing X

or Y . Each Ri can take two values, true (1) or false (0); therefore, it can be considered as a

binary random variable.

We build a dataset, DR, of these binary random variables using bootstrap sam-

pling [Efron and Tibshirani, 1994] and the BSC method. To do so, we first bootstrap (re-

sample with replacement) the data D; let sampleb denote a resulting dataset. Then, for each

constraint Ri ∈ R, we compute the BSC score using sampleb and set its value to 1 if its

BSC score is greater than or equal to 0.5, and 0 otherwise. We repeat this entire procedure

bs times to fill in bs rows of empirical data for the constraints. Algorithm 6 provides pseudo-

code of this procedure. It takes as input the original dataset D, the number of bootstraps

bs, and a set of constraints R. It outputs an empirical dataset DR with bs rows and m = |R|

columns. The Bootstrap(D) function in this procedure creates a bootstrap sample from D,

and BSC(Ri, sampleb) computes the BSC score of constraint Ri using sampleb.

The empirical data DR can then be used to learn the relations among the constraints R.

In particular, we learn a Bayesian network because doing so can be done efficiently with thou-

sands of variables, such networks are expressive in representing the joint relationships among

the variables, and inference of the joint state of the variables (the constraints in this applica-

tion) can be derived efficiently. We use an optimized implementation of the Greedy Equiva-

lence Search (GES) [Chickering, 2002], which is called Fast GES (FGES) [Ramsey, 2015] to

learn a Bayesian network structure, GR, that encodes the dependency relationships among

the constraints R. We then apply a maximum a posteriori estimation method to learn the

parameters of GR given DR, which we denote as Θ̂R. Finally, we use GR and Θ̂R to factorize

P (r′|D) and score the output PAG as follows:

P (Pj|D) = P (r′|D) =
m∏
i=1

P (r′i|r′Pa(Ri)
, D), (3.57)

where r′i and r′Pa(Ri)
denote the values of Ri and its parents Pa(Ri) in r′, respectively.

Algorithm 7 provides pseudo-code of BSC-D method.
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Algorithm 6 ConstraintDataGeneration(D, bs, R)

Input: a dataset D, the number of bootstraps bs, and a set of constraints R =

{R1, R2, . . . , Rm}

Output: an empirical dataset DR with bs rows and m = |R| columns

1: Let DR[bs,m] be an empty 2-d array with bs rows and m columns

2: for b = 1 to bs do

3: sampleb ← Bootstrap(D)

4: for Ri ∈ R do

5: p← BSC(Ri, sampleb)

6: if p ≥ 0.5 then

7: DR[b, i]← 1

8: else

9: DR[b, i]← 0

10: end if

11: end for

12: end for

13: return DR[bs,m]

Algorithm 7 BSC-D(DR, R = r′)

Input: an empirical dataset DR (generated using Algorithm 6), a set of constraints R = r′

Output: compute P (r′|D) in Equation (3.57) using DR

1: GR ← GES (DR)

2: Θ̂R ← arg max
ΘR

P (ΘR|GR, DR) . Θ̂R is the maximum likelihood estimates of the

probabilities in GR.

3: p = 1

4: for Ri = r′i ∈ R = r′ do

5: p = p ∗ Θ̂R(r′i|r′Pa(Ri)
) . r′Pa(Ri)

denotes the values of the parents of Ri in GR
6: end for

7: return p
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3.5.3 BSC with a local dependence assumption (BSC-LD)

In this section, similar to Section 3.5.2, we introduce a method to approximate the

joint posterior probabilities of constraints R assuming that the constraints are dependent.

This section describes a more efficient way of locally modeling the relationships among the

constraints by grouping them based on distinct pairs of variables (Xi, Xj) that exist in R.

For each pair of variables (Xi, Xj), we collect all the independence constraints that are about

Xi and Xj, regardless of the conditioning set of variables; let RXiXj
denote this set. Then,

we learn a BN structure GXiXj
and its parameters Θ̂XiXj

to model the relationships among

constraints in RXiXj
using the parts of DR that correspond to the constraints in RXiXj

(i.e., DRXiXj
). Doing this for all distinct pairs of variables in R will result in multiple BNs.

Finally, we aggregate these BNs and their parameters as one BN model denoted as (GR, Θ̂R).

Note that aggregating these BNs will not produce any cycles because the variables in each

BN, which is a set of constraints associated with pairs of variables, are mutually exclusive.

Finally, we use (GR, Θ̂R) to factorize the joint probability of the constraints P (r|D) to score

Pj. Algorithm 8 provides pseudo-code of the BSC-LD method.

The BSC-D and BSC-LD methods do not consider how those relationships might be in-

fluenced (via structure priors) by the restrictions imposed by the underlying data-generating

CBN models, which is an area for future research.

3.6 Experimental Results

This section describes the experimental methods and results that we used to investigate

the performance of the FCI-BSC method, which uses BSC test, versus the FCI method,

which uses a frequentist statistical test. For FCI-BSC, we also report the results using

each of the BSC-I, BSC-D, and BSC-LD scoring techniques. To do so, we simulated data

from both randomly generated BN models and manually constructed BN models, which are

described in Sections 3.6.1 and 3.6.2, respectively.
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Algorithm 8 BSC-LD(DR, R = r′)

Input: an empirical dataset DR (generated using Algorithm 6), a set of constraints R = r′

Output: compute P (r′|D) in Equation (3.57) using DR

1: for (Xi, Xj) ∈ R do

2: Let RXiXj
be the set of constraints that are about Xi and Xj

3: Let DRXiXj
be the part of the dataset DR that corresponds to RXiXj

4: {GXiXj
} ← GES (DRXiXj

)

5: {Θ̂XiXj
} ← arg max

ΘXiXj

P (ΘXiXj
|GXiXj

, DRXiXj
) . {Θ̂XiXj

} is the maximum

likelihood estimates of the probabilities in GXiXj
.

6: end for

7: Let GR be the aggregate of all BN structures in {GXiXj
}

8: Let Θ̂R be the aggregate of all BN parameters in {Θ̂XiXj
}

9: p = 1

10: for Ri = r′i ∈ R = r′ do

11: p = p ∗ Θ̂R(r′i|r′Pa(Ri)
) . r′Pa(Ri)

denotes the values of the parents of Ri in GR
12: end for

13: return p

3.6.1 Simulated data from randomly generated BN models

In order to evaluate the performance of FCI-BSC versus FCI, we conducted simulation

studies to randomly generate BNs that are used to simulate data as follows.

1. For each Bayesian network M = (G,Θ), we first created a DAG G = (V ,E) with

|V | = {10, 20, 50} random variables and |E| = {2|V |, 4|V |, 6|V |} edges. To generate a

DAG G, we first create an arbitrary ordering of variables4. Then, we uniformly randomly

added edges to G in a forward direction until obtaining the specified number of edges.

The DAGs generated in this way have a power-law-type distribution over the number of

parents, with some variables having many more than the average number of parents.

2. We then parametrized the distribution of each random variable X ∈ V given its parents

4This ordering is only used to generate the BNs; we do not use it when applying FCI-BSC or FCI.
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Pa(X) according to DAG G. Given different types of variables in V , we used different

settings as follows:

• All variables are discrete: In this case, each variable X may have 2, 3, or 4

categories, which is chosen randomly. Given the number of categories of X and

its parents Pa(X), we randomly initialized the conditional probability table for

P (X|Pa(X)) under the constraints that follow from the axioms of probability

theory.

• All variables are continuous: In this case, we parametrized P (X|Pa(X)) as a

structural equation model (SEM):

X =
∑

Y ∈Pa(X)

βY · Y + εX ,

where εX is a zero-mean Gaussian noise term and βY is a linear coefficient. In our

experiments, similar to [Ramsey, 2015, Silva et al., 2006], the variance of noise term

εX is uniformly randomly chosen from the interval [1.0, 3.0] and βY is uniformly

randomly drawn from the interval [−0.7,−0.2]∪ [0.2, 0.7]. This choice of parameter

values for the simulations implies that the variance of the variables is largely due

to the error term, which makes structure learning more difficult.

• The variables are a mixture of discrete and continuous: In this case, we

randomly assigned each variable X to be either continuous or discrete with prob-

ability 0.5. Then, we parametrized P (X|Pa(X)) using the conditional Gaussian

model introduced in [Andrews et al., 2018], using similar parameters as described

for discrete and continuous variable types.

3. We randomly set L = 20% of variables to be latent (i.e., hidden). These variables were

chosen at random from a list of all variables that are common causes of two or more of

the measured variables. If there are fewer common causes than L = 20% of variables,

we selected from a list of all variables that are common effects of two or more of the

measured variables.

4. We used each BN model M = (G,Θ) to generate a training dataset D with N =

{200, 1000, 5000} training samples.
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5. We used the training dataset D generated in step 4 to learn a PAG structure PF using

the FCI algorithm (Section 3.2). For the independence testing used in FCI, we applied

a chi-squared test of independence when the data includes discrete variables, Fisher’s

Z test when the data includes continuous variables, and a likelihood ratio test using

the degenerate Gaussian (DG) score introduced by [Andrews et al., 2019] when the data

includes a mixture of discrete and continuous variables. The DG method first transforms

mixed variables to continuous variables using Equation (3.50); then, it uses the BIC score

to perform a log-likelihood ratio test. We used α = 0.05 for these statistical tests, which

is a common alpha value used with FCI.

6. We also used the training dataset D generated in step 4 to learn a set of PAG structures

using the FCI-BSC algorithm. In applying FCI-BSC, we used appropriate versions of

BSC test described in Sections 3.3.1, 3.3.2, 3.3.3, which are developed for discrete, con-

tinuous, and mixed data types, respectively. We sampled 100 PAG models P according

to the FCI-BSC method (i.e., s = 100 in Algorithm 5). We computed the posterior prob-

ability of each PAG Pi ∈ P using the BSC-I, BSC-D, and BSC-LD methods to obtain

the most probable PAG by each scoring method; we denote the highest scoring PAGs

obtained by these methods as PI , PD, PLD, respectively. For the BSC-D and BSC-LD

scoring methods, we bootstrapped the data 500 times (i.e., bs = 500 in Algorithm 6) to

create the empirical data.

7. Finally, we computed evaluation measures (described below) to compare the structure

recovery performance of FCI-BSC versus FCI. To do so, we compared PI , PD, PLD (which

are learned by FCI-BSC), and PF (which is learned by FCI) to the ground-truth PAG

that is consistent with the data-generating DAG (with latent variables). We obtained

the ground-truth PAG structure Ptruth by using an independence oracle that has access

to the data-generating model described in lines 1-3 above.

For each simulation setting mentioned above, steps 1 through 7 were repeated for 10 ran-

domly generated BNs and the performance results were averaged. The evaluation measures

we used include structural Hamming distance (SHD), and precision (P) and recall (R) for

edge adjacency and arrowhead orientation, which are described in the following section.
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3.6.1.1 PAG structure discovery performance measures In this section, I describe

the evaluation measures that are used to calculate the structural similarity of the discovered

PAG Poutput, which can be PI , PD, PLD when using FCI-BSC and PF when using FCI,

versus the ground-truth PAG Ptruth.

We used structural Hamming distance (SHD) that counts the edge modifications that

include added, deleted, and reoriented edges, by comparing each possible edge in Poutput and

Ptruth. We define three versions of SHD for PAGs as follows:

• Strict SHD (S-SHD): This version counts any edge modifications, which are added,

deleted, and reoriented edges. The S-SHD would be 0 if for a given pair of measured

variables the edge in Poutput is exactly the same as the edge in PAG Ptruth; otherwise,

it is 1. Any extra or missing edge would also count as 1 in terms of S-SHD. Table 1a

shows how to compute S-SHD for PAGs.

• Lenient SHD (L-SHD): This version allows general edges that include circle end-

points to be compatible with their specializations. For example, the L-SHD between

A ◦→B and A→ B is 0 because these edges are compatible. However, the L-SHD be-

tween A→ B and B → A is 1 because they are not compatible. L-SHD is symmetric

regarding the output and the truth edges, as shown in Table 1b.

• Adjacency SHD (A-SHD): In this version, we compute SHD on the skeleton-level

by comparing the adjacencies of two graphs, which disregards the edge orientations

and only counts the edge modifications of the adjacency graph that includes added

and deleted edges. For example, if one graph includes A ◦—◦B but there is no edge

between A and B in the other one, then A-SHD would be 1.

Other performance criteria we used to evaluate discrimination are precision (P) and recall

(R) for adjacencies and arrowheads:

• Adjacency precision (AP): we compute the ratio of correctly predicted edges in

Poutput to all predicted edges in Poutput (without considering orientations of edges) as

follows:

AP =
#correctly predicted adjacencies

#predicted adjacencies
(3.58)
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Table 1: Two types of SHD for PAGs. The rows and columns correspond to the edge types

output by the algorithm and the data-generating edge types, respectively.

(a) Strict SHD (S-SHD) for PAGs.

Output Edge/ Truth Edge A→ B A↔ B A ◦→B A ◦—◦B A B

A→ B(B → A) 0 (1) 1 1 1 1

A↔ B 1 0 1 1 1

A ◦→B(B ◦→A) 1 1 0 (1) 1 1

A ◦—◦B 1 1 1 0 1

A B 1 1 1 1 0

(b) Lenient SHD (L-SHD) for PAGs.

Output Edge/ Truth Edge A→ B A↔ B A ◦→B A ◦—◦B A B

A→ B(B → A) 0 (1) 1 0 0 1

A↔ B 1 0 0 0 1

A ◦→B(B ◦→A) 0 (1) 0 0 0 1

A ◦—◦B 0 0 0 0 1

A B 1 1 1 1 0

• Adjacency recall (AR): we compute the ratio of correctly predicted edges in Poutput
to all true edges in Ptruth (without considering the edges’ orientations) as follows:

AR =
#correctly predicted adjacencies

#true adjacencies
(3.59)

• Arrowhead precision (AHP): considering the pairs of measured variables that have

an edge between them in the predicted graph Poutput, we compute the ratio of correctly

predicted arrowheads in Poutput to all predicted arrowheads in Poutput as follows:

AHP =
#correctly predicted arrowheads

#predicted arrowheads
(3.60)

• Arrowhead recall (AHR): considering the pairs of measured variables that have an

edge between them in the ground-truth PAG Ptruth, we compute the ratio of correctly
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predicted arrowheads in Poutput to all true arrowheads in Ptruth as follows:

AHR =
#correctly predicted arrowheads

#true arrowheads
(3.61)

Note that an arrowhead in a PAG indicates causation due to either a measured or a latent

variable (see Section 2.1.2 and the example given in Figure 5).

3.6.1.2 Simulation results for discrete variable type Tables 2, 3, and 4 show the

average adjacency P (AP) and R (AR), and arrowhead P (AHP) and R (AHR) results of

the FCI-BSC (with BSC-I scoring method)5 and the FCI (with chi-squared test) algorithms

over 10 randomly generated CBNs described in Section 3.6.1, using N = {200, 1000, 5000}

training instances, respectively6. For N = 200, both FCI-BSC and FCI almost always

perform similarly (Table 2). When the number of training instances increases to N =

{1000, 5000}, the FCI method performs significantly better than FCI-BSC in terms of AR

and AHR measures based on Wilcoxon signed rank test at 5% significance level, while FCI-

BSC has a slightly better AP and AHP performance as shown in the summary statistics

(Tables 3 and Tables 4).

Tables 5, 6, and 7 show the SHD results of the FCI-BSC (with BSC-I scoring method)

and the FCI (with chi-squared test) algorithms over 10 randomly generated CBNs described

in Section 3.6.1, using N = {200, 1000, 5000} training instances, respectively. For all these

cases, both FCI-BSC and FCI almost always perform similarly in terms of added edges S-

SHD, while FCI-BSC has fewer orientation errors. Also, FCI has fewer number of deleted

edges and performs better in terms of L-SHD and A-SHD measures.

5Results using BSC-D and BSC-LD scoring methods are similar to using BSC-I; therefore, we only report
the results for BCS-I, which is a simpler and more efficient method.

6Omitted rows in the tables represent the settings that failed to return a result in under 72 hours.
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Table 2: Discrete variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with chi-squared test) when using N = 200 training cases. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 1.00 ± 0.00 0.12 ± 0.09 0.10 ± 0.30 0.01 ± 0.04

FCI 0.97 ± 0.07 0.25 ± 0.09 0.20 ± 0.21 0.06 ± 0.07

40

BSC-I 0.40 ± 0.49 0.03 ± 0.04 0.40 ± 0.49 0.40 ± 0.49

FCI 1.00 ± 0.00 0.12 ± 0.04 0.27 ± 0.40 0.22 ± 0.39

60

BSC-I 0.90 ± 0.30 0.05 ± 0.03 0.60 ± 0.49 0.60 ± 0.49

FCI 1.00 ± 0.00 0.14 ± 0.06 0.12 ± 0.30 0.11 ± 0.30

20

40

BSC-I 0.98 ± 0.06 0.07 ± 0.03 0.20 ± 0.33 0.01 ± 0.02

FCI 0.88 ± 0.15 0.15 ± 0.05 0.33 ± 0.18 0.05 ± 0.04

80

BSC-I 1.00 ± 0.00 0.03 ± 0.01 0.15 ± 0.32 0.01 ± 0.01

FCI 0.95 ± 0.08 0.08 ± 0.02 0.37 ± 0.17 0.03 ± 0.02

120

BSC-I 0.80 ± 0.40 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

FCI 0.95 ± 0.10 0.05 ± 0.02 0.06 ± 0.13 0.01 ± 0.02

50 100

BSC-I 0.97 ± 0.06 0.04 ± 0.01 0.30 ± 0.46 0.00 ± 0.00

FCI 0.75 ± 0.09 0.11 ± 0.03 0.33 ± 0.07 0.04 ± 0.01

Summary statistics
BSC-I 0.86 ± 0.20 0.05 ± 0.03 0.25 ± 0.19 0.15 ± 0.23

FCI 0.93 ± 0.08 0.13 ± 0.06 0.24 ± 0.11 0.07 ± 0.06
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Table 3: Discrete variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with chi-squared test) when using N = 1000 training cases. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 1.00 ± 0.00 0.26 ± 0.07 0.08 ± 0.16 0.02 ± 0.04

FCI 0.99 ± 0.03 0.43 ± 0.12 0.17 ± 0.12 0.15 ± 0.11

40

BSC-I 1.00 ± 0.00 0.11 ± 0.04 0.20 ± 0.33 0.12 ± 0.30

FCI 1.00 ± 0.00 0.28 ± 0.09 0.16 ± 0.22 0.13 ± 0.19

60

BSC-I 1.00 ± 0.00 0.16 ± 0.06 0.24 ± 0.39 0.23 ± 0.39

FCI 1.00 ± 0.00 0.34 ± 0.09 0.06 ± 0.13 0.08 ± 0.17

20

40

BSC-I 1.00 ± 0.00 0.14 ± 0.07 0.42 ± 0.31 0.04 ± 0.03

FCI 0.97 ± 0.04 0.27 ± 0.09 0.43 ± 0.12 0.17 ± 0.08

80

BSC-I 1.00 ± 0.00 0.07 ± 0.02 0.44 ± 0.32 0.03 ± 0.02

FCI 0.99 ± 0.03 0.15 ± 0.04 0.38 ± 0.14 0.09 ± 0.05

120

BSC-I 1.00 ± 0.00 0.04 ± 0.01 0.08 ± 0.19 0.01 ± 0.01

FCI 1.00 ± 0.00 0.09 ± 0.02 0.31 ± 0.19 0.05 ± 0.03

50 100

BSC-I 1.00 ± 0.00 0.11 ± 0.02 0.43 ± 0.14 0.03 ± 0.01

FCI 0.97 ± 0.02 0.22 ± 0.04 0.47 ± 0.06 0.13 ± 0.04

Summary statistics
BSC-I 1.00 ± 0.00 0.13 ± 0.06 0.27 ± 0.15 0.07 ± 0.07

FCI 0.99 ± 0.01 0.26 ± 0.10 0.28 ± 0.14 0.11 ± 0.04
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Table 4: Discrete variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with chi-squared test) when using N = 5000 training cases. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 1.00 ± 0.00 0.39 ± 0.11 0.45 ± 0.28 0.17 ± 0.08

FCI 1.00 ± 0.00 0.66 ± 0.09 0.36 ± 0.13 0.44 ± 0.16

40

BSC-I 1.00 ± 0.00 0.22 ± 0.08 0.14 ± 0.18 0.07 ± 0.09

FCI 1.00 ± 0.00 0.48 ± 0.09 0.17 ± 0.17 0.21 ± 0.22

60

BSC-I 1.00 ± 0.00 0.27 ± 0.09 0.13 ± 0.30 0.12 ± 0.30

FCI 1.00 ± 0.00 0.60 ± 0.15 0.07 ± 0.13 0.09 ± 0.18

20

40

BSC-I 1.00 ± 0.00 0.27 ± 0.08 0.47 ± 0.09 0.16 ± 0.08

FCI 1.00 ± 0.00 0.45 ± 0.12 0.45 ± 0.06 0.33 ± 0.12

80

BSC-I 1.00 ± 0.00 0.13 ± 0.04 0.39 ± 0.13 0.08 ± 0.03

FCI 0.99 ± 0.02 0.26 ± 0.06 0.42 ± 0.09 0.21 ± 0.06

120

BSC-I 1.00 ± 0.00 0.06 ± 0.01 0.42 ± 0.26 0.03 ± 0.02

FCI 0.99 ± 0.02 0.15 ± 0.02 0.34 ± 0.14 0.11 ± 0.05

50 100

BSC-I 1.00 ± 0.01 0.19 ± 0.04 0.50 ± 0.06 0.10 ± 0.03

FCI 0.98 ± 0.02 0.33 ± 0.07 0.50 ± 0.06 0.24 ± 0.06

Summary statistics
BSC-I 1.00 ± 0.00 0.22 ± 0.10 0.36 ± 0.15 0.11 ± 0.05

FCI 1.00 ± 0.01 0.42 ± 0.17 0.33 ± 0.14 0.23 ± 0.11
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Table 5: Discrete variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency

SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with chi-squared

test) when using N = 200 training cases. Boldface indicates that the results are statistically

significantly better, based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0 16.7 1.30 18 16.9 16.7

FCI 0.1 14.40 2.7 17.2 14.90 14.50

40

BSC-I 0 26.3 0.20 26.5 26.3 26.3

FCI 0 23.90 1.9 25.8 24.00 23.90

60

BSC-I 0 26.5 0.70 27.2 26.5 26.5

FCI 0 23.90 3.3 27.2 24.00 23.90

20

40

BSC-I 0.1 48.6 1.90 50.6 49.1 48.7

FCI 1 44.40 5.8 51.2 47.40 45.40

80

BSC-I 0 88.3 1.70 90 88.7 88.3

FCI 0.4 83.40 6 89.8 86.00 83.80

120

BSC-I 0 112.9 0.90 113.8 112.9 112.9

FCI 0.2 108.80 3.8 112.80 109.80 109.00

50 100

BSC-I 0.20 143.8 3.70 147.70 144.2 144

FCI 5.1 134.10 12.8 152 144.4 139.20

Summary statistics
BSC-I 0.04 66.16 1.49 67.69 66.37 66.2

FCI 0.97 61.84 5.19 68 64.36 62.81
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Table 6: Discrete variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency

SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with chi-squared

test) when using N = 1000 training cases. Boldface indicates that the results are statistically

significantly better, based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0 14.2 3.90 18.1 14.9 14.2

FCI 0.1 11.00 7.3 18.4 12.80 11.10

40

BSC-I 0 24.1 2.00 26.1 24.3 24.1

FCI 0 19.40 6.2 25.6 19.90 19.40

60

BSC-I 0 23.3 3.60 26.9 23.5 23.3

FCI 0 18.40 8.1 26.5 18.40 18.40

20

40

BSC-I 0 45 4.40 49.4 46.2 45

FCI 0.4 38.30 10.8 49.5 42.90 38.70

80

BSC-I 0 85 3.80 88.8 86.4 85

FCI 0.2 77.10 11.8 89.1 82.40 77.30

120

BSC-I 0 108.8 3.80 112.6 109.4 108.8

FCI 0 102.70 9 111.7 104.40 102.70

50 100

BSC-I 0.00 134.4 12.20 146.6 137.9 134.4

FCI 1.1 117.70 26.4 145.2 130.40 118.80

Summary statistics
BSC-I 0 62.11 4.81 66.93 63.23 62.11

FCI 0.26 54.94 11.37 66.57 58.74 55.2
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Table 7: Discrete variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency

SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with chi-squared

test) when using N = 5000 training cases. Boldface indicates that the results are statistically

significantly better, based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0 11.7 4.90 16.6 12.6 11.7

FCI 0 6.50 10.2 16.7 8.40 6.50

40

BSC-I 0 21.1 5.00 26.1 21.4 21.1

FCI 0 14.00 12 26 14.70 14.00

60

BSC-I 0 20.4 6.50 26.9 20.8 20.4

FCI 0 11.20 15 26.2 11.70 11.20

20

40

BSC-I 0 38.8 10.10 48.9 42 38.8

FCI 0 29.90 19.3 49.2 36.10 29.90

80

BSC-I 0 79.4 9.50 88.9 82.8 79.4

FCI 0.3 68.20 20.3 88.8 74.90 68.50

120

BSC-I 0 105.9 5.60 111.5 106.9 105.9

FCI 0.1 96.00 15.1 111.2 100.00 96.10

50 100

BSC-I 0.10 122.4 20.50 143 131.1 122.5

FCI 0.9 101.40 40.4 142.7 118.10 102.30

Summary statistics
BSC-I 0.01 57.1 8.87 65.99 59.66 57.11

FCI 0.19 46.74 18.9 65.83 51.99 46.93
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3.6.1.3 Simulation results for continuous variable type Tables 8, 9, and 10 show

the average adjacency P (AP) and R (AR), and arrowhead P (AHP) and R (AHR) results of

the FCI-BSC (with BSC-I scoring method)7 and the FCI (with Fisher’s Z test) algorithms

over 10 randomly generated CBNs described in Section 3.6.1, using N = {200, 1000, 5000}

training instances, respectively. For N = 200, both methods have similar performance for

smaller BNs (e.g., 10 variables), but for the larger BNs (e.g., 50 variables), FCI-BSC shows

better AP and AHP performance and FCI shows better AR and AHR performance (Table 8).

As the sample size increases to N = 5000, the FCI-BSC method performs better in terms of

AP and AHP measures, while it has a slightly lower AR and AHR performance as shown in

the summary statistics of Table 10.

Tables 11, 12, and 13 show the SHD results of the FCI-BSC (with BSC-I scoring method)

and the FCI (with Fisher’s Z test) algorithms over 10 randomly generated CBNs described

in Section 3.6.1, using N = {200, 1000, 5000} training instances, respectively. For N =

{200, 1000}, FCI-BSC almost always performs similar to FCI for the smaller CBNs (e.g.,

10 variables) in terms of all SHD measures, but as the CBN gets larger (e.g., 50 variables)

FCI-BSC performs significantly better in terms of the number of added and reoriented edges,

and S-SHD measures, while FCI often has fewer deleted edges (Tables 11 and 12). When

the number of training instances increases to N = 5000, all SHD measures notably improved

for both methods, while FCI-BSC almost always has lower S-SHD, L-SHD, and A-SHD

(Table 13), which is mainly due to a fewer number of added and reoriented edges.

7Results using BSC-D and BSC-LD scoring methods are similar to using BSC-I; therefore, we only report
the results for BCS-I, which is a simpler and more efficient method.
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Table 8: Continuous variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with Fisher’s Z test) when using N = 200 training cases. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 0.86 ± 0.14 0.64 ± 0.16 0.55 ± 0.33 0.56 ± 0.37

FCI 0.85 ± 0.15 0.64 ± 0.16 0.55 ± 0.33 0.55 ± 0.37

40

BSC-I 0.97 ± 0.04 0.57 ± 0.09 0.46 ± 0.13 0.47 ± 0.14

FCI 0.96 ± 0.05 0.58 ± 0.10 0.43 ± 0.12 0.48 ± 0.15

60

BSC-I 0.99 ± 0.02 0.40 ± 0.04 0.45 ± 0.12 0.31 ± 0.05

FCI 0.99 ± 0.02 0.41 ± 0.05 0.47 ± 0.14 0.34 ± 0.05

20

40

BSC-I 0.86 ± 0.06 0.61 ± 0.16 0.44 ± 0.19 0.40 ± 0.20

FCI 0.79 ± 0.07 0.61 ± 0.13 0.38 ± 0.16 0.43 ± 0.20

80

BSC-I 0.97 ± 0.03 0.57 ± 0.06 0.51 ± 0.06 0.47 ± 0.08

FCI 0.94 ± 0.04 0.59 ± 0.06 0.49 ± 0.06 0.51 ± 0.07

120

BSC-I 1.00 ± 0.00 0.35 ± 0.07 0.51 ± 0.04 0.27 ± 0.07

FCI 0.99 ± 0.01 0.37 ± 0.07 0.51 ± 0.04 0.30 ± 0.06

50

100

BSC-I 0.72 ± 0.04 0.56 ± 0.08 0.33 ± 0.06 0.35 ± 0.08

FCI 0.57 ± 0.05 0.59 ± 0.08 0.23 ± 0.03 0.41 ± 0.08

200

BSC-I 0.94 ± 0.03 0.48 ± 0.07 0.51 ± 0.05 0.36 ± 0.07

FCI 0.88 ± 0.03 0.52 ± 0.07 0.44 ± 0.03 0.42 ± 0.08

300

BSC-I 0.98 ± 0.02 0.32 ± 0.04 0.53 ± 0.03 0.26 ± 0.04

FCI 0.95 ± 0.03 0.35 ± 0.05 0.50 ± 0.02 0.29 ± 0.05

Summary statistics
BSC-I 0.92 ± 0.09 0.50 ± 0.11 0.48 ± 0.06 0.38 ± 0.09

FCI 0.88 ± 0.13 0.52 ± 0.11 0.44 ± 0.09 0.41 ± 0.08
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Table 9: Continuous variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with Fisher’s Z test) when using N = 1000 training cases. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 0.97 ± 0.05 0.80 ± 0.09 0.74 ± 0.23 0.63 ± 0.20

FCI 0.93 ± 0.06 0.84 ± 0.09 0.67 ± 0.19 0.70 ± 0.18

40

BSC-I 0.96 ± 0.05 0.59 ± 0.14 0.42 ± 0.11 0.52 ± 0.22

FCI 0.94 ± 0.05 0.62 ± 0.15 0.42 ± 0.07 0.58 ± 0.21

60

BSC-I 0.99 ± 0.02 0.54 ± 0.07 0.42 ± 0.10 0.44 ± 0.07

FCI 0.99 ± 0.02 0.55 ± 0.06 0.43 ± 0.10 0.49 ± 0.06

20

40

BSC-I 0.95 ± 0.03 0.74 ± 0.13 0.61 ± 0.16 0.63 ± 0.23

FCI 0.81 ± 0.08 0.78 ± 0.12 0.43 ± 0.15 0.68 ± 0.22

80

BSC-I 0.99 ± 0.02 0.67 ± 0.12 0.57 ± 0.04 0.58 ± 0.15

FCI 0.97 ± 0.03 0.70 ± 0.11 0.56 ± 0.05 0.61 ± 0.14

120

BSC-I 0.98 ± 0.02 0.42 ± 0.11 0.54 ± 0.05 0.37 ± 0.11

FCI 0.97 ± 0.03 0.46 ± 0.12 0.51 ± 0.04 0.40 ± 0.11

50

100

BSC-I 0.92 ± 0.04 0.72 ± 0.11 0.55 ± 0.06 0.58 ± 0.14

FCI 0.63 ± 0.04 0.77 ± 0.11 0.30 ± 0.04 0.67 ± 0.15

200

BSC-I 0.98 ± 0.01 0.66 ± 0.09 0.58 ± 0.05 0.56 ± 0.11

FCI 0.92 ± 0.03 0.70 ± 0.09 0.52 ± 0.05 0.61 ± 0.11

300

BSC-I 1.00 ± 0.01 0.45 ± 0.06 0.57 ± 0.03 0.38 ± 0.06

FCI 0.98 ± 0.01 0.49 ± 0.07 0.55 ± 0.02 0.42 ± 0.07

Summary statistics
BSC-I 0.97 ± 0.02 0.62 ± 0.12 0.56 ± 0.09 0.52 ± 0.10

FCI 0.90 ± 0.11 0.65 ± 0.13 0.49 ± 0.10 0.57 ± 0.11
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Table 10: Continuous variable type: Adjacency precision (AP) and recall (AR), and arrow-

head precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method)

and FCI (with Fisher’s Z test) when using N = 5000 training cases. The numbers after

‘±’ are standard deviations. Boldface indicates that the results are statistically significantly

better, based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 1.00 ± 0.00 0.95 ± 0.06 0.76 ± 0.24 0.92 ± 0.11

FCI 0.94 ± 0.07 0.96 ± 0.05 0.74 ± 0.21 0.93 ± 0.09

40

BSC-I 0.99 ± 0.03 0.72 ± 0.14 0.59 ± 0.19 0.64 ± 0.15

FCI 0.98 ± 0.04 0.73 ± 0.14 0.58 ± 0.19 0.65 ± 0.15

60

BSC-I 0.97 ± 0.05 0.57 ± 0.08 0.45 ± 0.08 0.52 ± 0.11

FCI 0.96 ± 0.04 0.62 ± 0.09 0.41 ± 0.09 0.57 ± 0.15

20

40

BSC-I 0.98 ± 0.03 0.87 ± 0.09 0.73 ± 0.22 0.83 ± 0.11

FCI 0.85 ± 0.07 0.92 ± 0.06 0.50 ± 0.13 0.88 ± 0.07

80

BSC-I 1.00 ± 0.00 0.79 ± 0.08 0.64 ± 0.05 0.73 ± 0.12

FCI 0.97 ± 0.03 0.81 ± 0.08 0.59 ± 0.07 0.76 ± 0.12

120

BSC-I 0.99 ± 0.02 0.55 ± 0.08 0.52 ± 0.04 0.49 ± 0.08

FCI 0.98 ± 0.02 0.56 ± 0.08 0.51 ± 0.04 0.50 ± 0.08

50

100

BSC-I 0.96 ± 0.03 0.87 ± 0.10 0.72 ± 0.11 0.83 ± 0.14

FCI 0.66 ± 0.05 0.91 ± 0.10 0.35 ± 0.07 0.89 ± 0.11

200

BSC-I 1.00 ± 0.01 0.77 ± 0.08 0.67 ± 0.06 0.70 ± 0.10

FCI 0.93 ± 0.03 0.81 ± 0.07 0.60 ± 0.05 0.75 ± 0.09

300

BSC-I 1.00 ± 0.01 0.52 ± 0.08 0.59 ± 0.04 0.45 ± 0.09

FCI 0.98 ± 0.01 0.54 ± 0.08 0.57 ± 0.04 0.47 ± 0.09

Summary statistics
BSC-I 0.99 ± 0.01 0.73 ± 0.15 0.63 ± 0.10 0.68 ± 0.16

FCI 0.92 ± 0.10 0.76 ± 0.15 0.54 ± 0.11 0.71 ± 0.16
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Table 11: Continuous variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and ad-

jacency SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with

Fisher’s Z test) when using N = 200 training cases. Boldface indicates that the results are

statistically significantly better, based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0.9 3 2.4 6.3 4.3 3.9

FCI 1 3 2.4 6.4 4.4 4

40

BSC-I 0.3 8.4 9.6 18.3 11 8.7

FCI 0.5 8.3 9.8 18.6 11 8.8

60

BSC-I 0.1 19.7 11.1 30.9 23 19.8

FCI 0.1 19.5 11 30.6 22.6 19.6

20

40

BSC-I 1.70 7.9 6.6 16.20 10.30 9.6

FCI 3 7.7 7.5 18.2 11.7 10.7

80

BSC-I 0.9 18.5 19.50 38.9 26.3 19.4

FCI 1.5 17.50 21.3 40.3 27.1 19

120

BSC-I 0 58 24.00 82 66 58

FCI 0.2 56.30 26 82.5 66.6 56.50

50

100

BSC-I 10.40 21.5 17.50 49.40 33.90 31.90

FCI 21.4 20.10 21.4 62.9 44.1 41.5

200

BSC-I 3.20 61.4 41.10 105.70 78.20 64.6

FCI 8.5 57.10 48.1 113.7 81.7 65.6

300

BSC-I 1.80 163.5 62.70 228.00 192.7 165.3

FCI 4.1 157.30 70.1 231.5 192.6 161.40

Summary statistics
BSC-I 2.14 40.21 21.61 63.97 49.52 42.36

FCI 4.48 38.53 24.18 67.19 51.31 43.01
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Table 12: Continuous variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and ad-

jacency SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with

Fisher’s Z test) when using N = 1000 training cases. Boldface indicates that the results are

statistically significantly better, based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0.2 1.9 2.2 4.3 2.5 2.1

FCI 0.6 1.6 2.3 4.5 2.6 2.2

40

BSC-I 0.5 10.1 10.7 21.3 13.9 10.6

FCI 0.9 9.5 11.3 21.7 14.2 10.4

60

BSC-I 0.1 15.2 14.6 29.9 18.3 15.3

FCI 0.2 14.8 14.9 29.9 18 15

20

40

BSC-I 0.70 5.4 6.00 12.10 6.60 6.1

FCI 3.5 4.6 8.4 16.5 8.8 8.1

80

BSC-I 0.3 15.7 21.5 37.5 21.3 16

FCI 0.8 14.30 22.4 37.5 20.8 15.1

120

BSC-I 0.7 52.7 28.00 81.4 60.6 53.4

FCI 1 49.80 30.8 81.6 59.10 50.80

50

100

BSC-I 3.50 15.1 17.50 36.10 20.40 18.60

FCI 23.6 12.50 27.8 63.9 38.1 36.1

200

BSC-I 1.40 41.7 52.90 96.00 56.8 43.1

FCI 7.1 36.50 60.8 104.4 59.1 43.6

300

BSC-I 0.40 133.9 83.20 217.50 167.3 134.3

FCI 2.6 125.20 93.6 221.4 165.5 127.80

Summary statistics
BSC-I 0.87 32.41 26.29 59.57 40.86 33.28

FCI 4.48 29.87 30.26 64.6 42.91 34.34
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Table 13: Continuous variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and ad-

jacency SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with

Fisher’s Z test) when using N = 5000 training cases. Boldface indicates that the results are

statistically significantly better, based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0.00 0.5 2.9 3.4 0.9 0.5

FCI 0.6 0.4 2.8 3.8 1.3 1

40

BSC-I 0.2 6.5 10 16.7 8 6.7

FCI 0.4 6.4 10.1 16.9 8.1 6.8

60

BSC-I 0.5 13.6 16.00 30.1 16.9 14.1

FCI 0.8 12.30 17.8 30.9 16.5 13.1

20

40

BSC-I 0.30 2.8 5.00 8.10 3.20 3.10

FCI 3.3 1.70 10.1 15.1 5.4 5

80

BSC-I 0.00 9.1 20.80 29.9 12.1 9.1

FCI 1.2 8.00 22.8 32 12.4 9.2

120

BSC-I 0.6 37.4 35.9 73.9 52 38

FCI 1 36.30 37.2 74.5 52.1 37.3

50

100

BSC-I 1.90 7.5 12.20 21.60 10.00 9.40

FCI 24.4 5.20 26.7 56.3 30.9 29.6

200

BSC-I 0.50 28.3 53.00 81.80 40.5 28.8

FCI 6.8 23.60 58 88.4 44.2 30.4

300

BSC-I 0.40 118.3 94.60 213.3 151.4 118.7

FCI 2.4 112.80 102.8 218 153.1 115.20

Summary statistics
BSC-I 0.49 24.89 27.82 53.2 32.78 25.38

FCI 4.54 22.97 32.03 59.54 36 27.51
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3.6.1.4 Simulation results for mixed variable type Tables 14, 15, and 16 show

the average adjacency P (AP) and R (AR), and arrowhead P (AHP) and R (AHR) results

of the FCI-BSC (with BSC-I scoring method)8 and the FCI (with log-likelihood ratio test

that uses the degenerate Gaussian score [Andrews et al., 2019]) algorithms over 10 randomly

generated CBNs described in Section 3.6.1, using N = {200, 1000, 5000} training instances,

respectively. For N = 200, FCI-BSC performs better in terms of AP in most of the cases,

but AR and AHR are better when using FCI (Table 14). Both methods often have similar

performance in terms of AHP. As the sample size increases to N = {1000, 5000} training

instances, both methods perform better in terms of all these measures, where FCI-BSC

almost always performs significantly better in terms of AP and AHP, while FCI always

performs significantly better in terms of AR and AHR, while FCI performs better in terms

of AR and AHR based on Wilcoxon signed rank test at 5% significance level (Tables 15 and

16).

Tables 17, 18, and 19 show the SHD results of the FCI-BSC (with BSC-I scoring

method) and the FCI (with log-likelihood ratio test that uses the degenerate Gaussian

score [Andrews et al., 2019]) algorithms over 10 randomly generated CBNs described in

Section 3.6.1, using N = {200, 1000, 5000} training instances, respectively. As these ta-

bles demonstrate, FCI-BSC almost always performs significantly better compared to FCI in

terms of the number of added and reoriented edges, while FCI often has significantly fewer

deleted edges based on Wilcoxon signed rank test at 5% significance level. Overall, FCI-BSC

almost always performs significantly better in terms of S-SHD, L-SHD, and A-SHD measures

based on Wilcoxon signed rank test at 5% significance level.

8Results using BSC-D and BSC-LD scoring methods are similar to using BSC-I; therefore, we only report
the results for BCS-I, which is a simpler and more efficient method.
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Table 14: Mixed variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with log-likelihood ratio test using degenerate Gaussian score) when using N = 200

training cases. The numbers after ‘±’ are standard deviations. Boldface indicates that

the results are statistically significantly better, based on Wilcoxon signed rank test at 5%

significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 0.65 ± 0.40 0.24 ± 0.17 0.12 ± 0.30 0.05 ± 0.12

FCI 0.50 ± 0.20 0.44 ± 0.11 0.13 ± 0.14 0.23 ± 0.24

40

BSC-I 0.85 ± 0.30 0.25 ± 0.13 0.27 ± 0.29 0.11 ± 0.12

FCI 0.71 ± 0.14 0.45 ± 0.13 0.29 ± 0.11 0.33 ± 0.17

60

BSC-I 0.84 ± 0.29 0.17 ± 0.08 0.33 ± 0.30 0.17 ± 0.28

FCI 0.78 ± 0.07 0.36 ± 0.08 0.25 ± 0.11 0.21 ± 0.09

20

40

BSC-I 0.67 ± 0.13 0.28 ± 0.10 0.16 ± 0.18 0.10 ± 0.09

FCI 0.26 ± 0.07 0.45 ± 0.16 0.08 ± 0.04 0.34 ± 0.18

80

BSC-I 0.85 ± 0.15 0.17 ± 0.07 0.40 ± 0.27 0.07 ± 0.07

FCI 0.48 ± 0.05 0.37 ± 0.07 0.21 ± 0.04 0.31 ± 0.07

120

BSC-I 0.88 ± 0.08 0.12 ± 0.02 0.40 ± 0.13 0.07 ± 0.03

FCI 0.63 ± 0.11 0.28 ± 0.06 0.30 ± 0.06 0.25 ± 0.06

50

100

BSC-I 0.58 ± 0.08 0.24 ± 0.06 0.17 ± 0.12 0.07 ± 0.07

FCI 0.16 ± 0.02 0.40 ± 0.05 0.05 ± 0.01 0.28 ± 0.06

200

BSC-I 0.72 ± 0.08 0.15 ± 0.04 0.27 ± 0.13 0.06 ± 0.03

FCI 0.26 ± 0.03 0.29 ± 0.05 0.11 ± 0.02 0.23 ± 0.05

300

BSC-I 0.76 ± 0.05 0.09 ± 0.02 0.34 ± 0.10 0.03 ± 0.01

FCI 0.38 ± 0.04 0.22 ± 0.03 0.18 ± 0.02 0.19 ± 0.03

Summary statistics
BSC-I 0.76 ± 0.10 0.19 ± 0.06 0.27 ± 0.10 0.08 ± 0.04

FCI 0.46 ± 0.20 0.36 ± 0.08 0.18 ± 0.09 0.26 ± 0.05
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Table 15: Mixed variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with log-likelihood ratio test using degenerate Gaussian score) when using N = 1000

training cases. The numbers after ‘±’ are standard deviations. Boldface indicates that

the results are statistically significantly better, based on Wilcoxon signed rank test at 5%

significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 0.97 ± 0.07 0.52 ± 0.16 0.07 ± 0.14 0.12 ± 0.25

FCI 0.58 ± 0.14 0.72 ± 0.15 0.17 ± 0.14 0.44 ± 0.33

40

BSC-I 0.99 ± 0.04 0.34 ± 0.09 0.31 ± 0.17 0.16 ± 0.09

FCI 0.80 ± 0.10 0.56 ± 0.09 0.35 ± 0.08 0.47 ± 0.11

60

BSC-I 0.99 ± 0.03 0.28 ± 0.06 0.31 ± 0.16 0.18 ± 0.09

FCI 0.87 ± 0.06 0.50 ± 0.06 0.32 ± 0.08 0.42 ± 0.10

20

40

BSC-I 0.89 ± 0.08 0.43 ± 0.12 0.41 ± 0.24 0.20 ± 0.12

FCI 0.31 ± 0.04 0.66 ± 0.11 0.13 ± 0.03 0.56 ± 0.11

80

BSC-I 0.98 ± 0.04 0.32 ± 0.11 0.44 ± 0.10 0.19 ± 0.10

FCI 0.56 ± 0.06 0.54 ± 0.12 0.26 ± 0.05 0.47 ± 0.13

120

BSC-I 0.97 ± 0.04 0.19 ± 0.05 0.41 ± 0.07 0.12 ± 0.05

FCI 0.71 ± 0.09 0.42 ± 0.06 0.34 ± 0.04 0.37 ± 0.07

50

100

BSC-I 0.87 ± 0.05 0.41 ± 0.06 0.37 ± 0.12 0.22 ± 0.09

FCI 0.17 ± 0.01 0.63 ± 0.08 0.06 ± 0.01 0.55 ± 0.11

200

BSC-I 0.93 ± 0.03 0.23 ± 0.07 0.40 ± 0.05 0.12 ± 0.05

FCI 0.31 ± 0.04 0.40 ± 0.08 0.14 ± 0.02 0.34 ± 0.07

300

BSC-I 0.93 ± 0.04 0.15 ± 0.03 0.44 ± 0.06 0.09 ± 0.03

FCI 0.43 ± 0.03 0.34 ± 0.04 0.21 ± 0.02 0.29 ± 0.04

Summary statistics
BSC-I 0.95 ± 0.04 0.32 ± 0.11 0.35 ± 0.11 0.16 ± 0.04

FCI 0.53 ± 0.23 0.53 ± 0.12 0.22 ± 0.10 0.43 ± 0.08
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Table 16: Mixed variable type: Adjacency precision (AP) and recall (AR), and arrowhead

precision (AHP) and recall (AHR) results for FCI-BSC (with BSC-I scoring method) and

FCI (with log-likelihood ratio test using degenerate Gaussian score) when using N = 5000

training cases. The numbers after ‘±’ are standard deviations. Boldface indicates that

the results are statistically significantly better, based on Wilcoxon signed rank test at 5%

significance level.

# Variables # Edges Method AP AR AHP AHR

10

20

BSC-I 1.00 ± 0.00 0.55 ± 0.11 0.69 ± 0.40 0.32 ± 0.18

FCI 0.49 ± 0.11 0.67 ± 0.06 0.21 ± 0.14 0.50 ± 0.16

40

BSC-I 0.99 ± 0.02 0.52 ± 0.15 0.48 ± 0.15 0.43 ± 0.20

FCI 0.75 ± 0.05 0.74 ± 0.13 0.34 ± 0.06 0.68 ± 0.16

60

BSC-I 0.98 ± 0.04 0.39 ± 0.09 0.39 ± 0.08 0.28 ± 0.06

FCI 0.88 ± 0.04 0.65 ± 0.06 0.38 ± 0.05 0.56 ± 0.11

20

40

BSC-I 0.96 ± 0.05 0.45 ± 0.10 0.62 ± 0.18 0.23 ± 0.13

FCI 0.33 ± 0.06 0.67 ± 0.11 0.13 ± 0.05 0.56 ± 0.18

80

BSC-I 0.98 ± 0.02 0.41 ± 0.10 0.48 ± 0.08 0.30 ± 0.09

FCI 0.63 ± 0.09 0.60 ± 0.11 0.31 ± 0.04 0.55 ± 0.10

120

BSC-I 0.99 ± 0.02 0.28 ± 0.07 0.45 ± 0.05 0.21 ± 0.06

FCI 0.73 ± 0.09 0.54 ± 0.07 0.33 ± 0.06 0.47 ± 0.07

50

100

BSC-I 0.92 ± 0.03 0.43 ± 0.08 0.44 ± 0.08 0.25 ± 0.10

FCI 0.16 ± 0.02 0.67 ± 0.09 0.06 ± 0.01 0.57 ± 0.11

200

BSC-I 0.98 ± 0.02 0.40 ± 0.08 0.49 ± 0.05 0.28 ± 0.08

FCI 0.34 ± 0.02 0.58 ± 0.11 0.16 ± 0.02 0.51 ± 0.11

300

BSC-I 0.96 ± 0.02 0.26 ± 0.05 0.48 ± 0.03 0.18 ± 0.05

FCI 0.50 ± 0.05 0.44 ± 0.06 0.25 ± 0.03 0.40 ± 0.06

Summary statistics
BSC-I 0.97 ± 0.02 0.41 ± 0.09 0.50 ± 0.09 0.28 ± 0.07

FCI 0.53 ± 0.22 0.62 ± 0.08 0.24 ± 0.10 0.53 ± 0.07
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Table 17: Mixed variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and adja-

cency SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with log-

likelihood ratio test using degenerate Gaussian score) when using N = 200 training cases.

Boldface indicates that the results are statistically significantly better, based on Wilcoxon

signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0.60 7.3 1.50 9.40 8.10 7.9

FCI 4.7 5.30 3.6 13.6 10.9 10

40

BSC-I 0.20 13.6 3.10 16.90 15.3 13.8

FCI 3.4 10.10 7.1 20.6 16 13.5

60

BSC-I 0.40 23.1 3.70 27.20 25.1 23.5

FCI 2.8 17.90 8.7 29.4 23.4 20.70

20

40

BSC-I 2.50 13.7 3.00 19.20 16.40 16.20

FCI 23 10.60 7.7 41.3 33.8 33.6

80

BSC-I 1.40 39.2 5.50 46.10 42.40 40.60

FCI 17.9 29.80 15.4 63.1 52.4 47.7

120

BSC-I 1.30 70.5 7.90 79.70 74.7 71.8

FCI 13.1 57.90 20.7 91.7 79.3 71

50

100

BSC-I 8.10 38.4 7.70 54.20 47.90 46.50

FCI 105.3 30.00 18.7 154 136.5 135.3

200

BSC-I 7.00 101.7 14.30 123.00 114.40 108.70

FCI 96.4 85.80 32.4 214.6 192.3 182.2

300

BSC-I 6.00 208.7 15.50 230.20 220.30 214.70

FCI 80.4 178.80 44.1 303.3 277.6 259.2

Summary statistics
BSC-I 3.06 57.36 6.91 67.32 62.73 60.41

FCI 38.56 47.36 17.6 103.51 91.36 85.91
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Table 18: Mixed variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and adja-

cency SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with log-

likelihood ratio test using degenerate Gaussian score) when using N = 1000 training cases.

Boldface indicates that the results are statistically significantly better, based on Wilcoxon

signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0.20 4.3 3.50 8.00 4.60 4.50

FCI 5.2 2.50 5.5 13.2 8.2 7.7

40

BSC-I 0.10 13.9 6.20 20.20 16.4 14

FCI 3 9.10 10.1 22.2 14.7 12.10

60

BSC-I 0.10 22 7.70 29.80 24.1 22.1

FCI 2.2 15.10 14.4 31.7 21.60 17.30

20

40

BSC-I 1.00 10.6 4.30 15.90 12.60 11.60

FCI 26.7 6.40 10.4 43.5 34.3 33.1

80

BSC-I 0.30 30.9 10.20 41.40 35.90 31.20

FCI 17.9 21.40 20.6 59.9 46.4 39.3

120

BSC-I 0.50 65.6 12.80 78.90 72.2 66.1

FCI 13.3 47.80 30.6 91.7 73 61.1

50

100

BSC-I 3.00 28.1 11.90 43.00 33.20 31.10

FCI 147.1 17.60 27.6 192.3 166.6 164.7

200

BSC-I 2.30 107.4 26.00 135.70 117.60 109.70

FCI 121.3 84.40 48.8 254.5 220 205.7

300

BSC-I 2.70 202.6 31.10 236.40 218.10 205.30

FCI 105.5 159.20 74.1 338.8 295.2 264.7

Summary statistics
BSC-I 1.13 53.93 12.63 67.7 59.41 55.07

FCI 49.13 40.39 26.9 116.42 97.78 89.52
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Table 19: Mixed variable type: Strict SHD (S-SHD), lenient SHD (L-SHD), and adja-

cency SHD (A-SHD) results for FCI-BSC (with BSC-I scoring method) and FCI (with log-

likelihood ratio test using degenerate Gaussian score) when using N = 5000 training cases.

Boldface indicates that the results are statistically significantly better, based on Wilcoxon

signed rank test at 5% significance level.

# Variables # Edges Method Added Deleted Reoriented S-SHD L-SHD A-SHD

10

20

BSC-I 0.00 4.2 2.30 6.50 4.50 4.20

FCI 6.7 3.10 4.8 14.6 10.3 9.8

40

BSC-I 0.10 9.3 7.60 17.00 11.8 9.4

FCI 4.6 5.20 12.5 22.3 13.5 9.8

60

BSC-I 0.30 19.6 11.60 31.5 23.4 19.9

FCI 2.9 11.20 18.8 32.9 18.60 14.10

20

40

BSC-I 0.40 11.6 3.30 15.30 12.60 12.00

FCI 29.1 7.00 11.5 47.6 36.9 36.1

80

BSC-I 0.50 32 16.90 49.40 38.50 32.50

FCI 18.3 21.70 28 68 48.4 40

120

BSC-I 0.30 58.9 18.90 78.10 65.5 59.2

FCI 15.6 38.30 39.7 93.6 67 53.9

50

100

BSC-I 1.80 28.7 11.90 42.40 32.40 30.50

FCI 174.8 16.70 31.1 222.6 193 191.5

200

BSC-I 0.80 77.2 38.70 116.70 89.90 78.00

FCI 139.4 55.10 64.9 259.4 213.5 194.5

300

BSC-I 2.30 178.9 51.40 232.60 204.60 181.20

FCI 105.6 134.00 96.5 336.1 280.6 239.6

Summary statistics
BSC-I 0.72 46.71 18.07 65.5 53.69 47.43

FCI 55.22 32.48 34.2 121.9 97.98 87.7
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3.6.2 Simulated data from manually constructed BN models

To further compare FCI-BSC versus FCI, we also simulated data from manually con-

structed, previously published CBNs, with some variables designated as being latent in order

to perform an evaluation on the FCI-BSC method versus the FCI method. In particular,

we simulated data from the Alarm [Beinlich et al., 1989], Hailfinder [Abramson et al., 1996],

and Hepar II [Onisko, 2003] CBNs, which we obtained from [Scutari, 2010]. Table 20 shows

some key characteristics of each CBN. Using these benchmarks is beneficial in several ways.

First, they are more likely to represent real-world distributions. Also, we can evaluate the

results using the true underlying causal model, which we know by construction; otherwise,

it is rare to find known causal models on more than a few variables and associated real,

observational data.

Table 20: Information about the Alarm, Hailfinder, and Hepar II CBNs.

CBN Name Alarm Hailfinder Hepar II

Domain Medicine Weather Medicine

Number of nodes 37 56 70

Number of edges 46 66 123

Average indegree 1.24 1.18 1.76

Average degree 2.49 2.36 3.51

Number of parameters 509 2656 1453

To simulate data from each of these CBNs, we randomly designated L = 20% of the

confounder variables to be latent, which means data about those variables were not provided

to the discovery algorithms. Then, we performed the following steps:

1. We used each CBN model to simulate a training dataset D with N = {200, 1000, 5000}

training samples.

2. We used the training dataset D generated in step 1 to learn a PAG structure PF using

the FCI algorithm with a chi-squared test of independence, which is a standard test and

approach. We used α = 0.05, which is a common alpha value used with FCI.

3. We also used the training dataset D generated in step 1 to learn a set of PAG structures P
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using the FCI-BSC algorithm with the BSC test of independence for discrete variables.

In applying the FCI-BSC algorithm, we sampled 100 PAG models, according to the

method described in Section 3.4 (i.e., s = 100 in Algorithm 5). We scored the PAGs

using the three PAG scoring methods BSC-I, BSC-D, and BSC-LD, to obtain the PAG

with the highest posterior probability by each scoring method, which we denote as PI ,

PD, and PLD, respectively. For the BSC-D and BSC-LD methods, we bootstrapped the

data 500 times (i.e., bs = 500 in Algorithm 6) to create the empirical data.

4. Finally, we computed the evaluation measures described in Section 3.6.1.1 to compare

the structure recovery performance of FCI-BSC versus FCI. To do so, we compared PI ,

PD, and PLD (which are the most probable PAGs found by the BSC-I, BSC-D, and

BSC-LD methods) and PF (which is found by FCI) to the PAG Ptruth that is consistent

with the data-generating CBN. To obtain Ptruth, we used an independence oracle that

has access to the data-generating model and latent variables. Ptruth represents all the

causal relationships that can be learned about a CBN in the large sample limit when

assuming Markov, faithfulness, and using correct independence tests that are applied to

(infinite) observational data on the measured variables in a CBN.

For each CBN, the analyses in steps 1 to 4 were repeated 10 times, each time randomly

sampling a different dataset, and the performance measures were averaged.

3.6.2.1 Simulation results Table 21 shows the experimental results on Alarm, Hail-

finder, Hepar II CBNs with L = 20% latent variables and N = {200, 1000, 5000} training

cases. This table shows that all scoring methods (BSC-I, BSC-D, and BSC-LD) resulted

in a similar performance of the FCI-BSC algorithm. Table 21a shows that FCI-BSC al-

ways improves adjacency precision (AP) measure, and also has fewer number of added edges

for Alarm network than does FCI, while both methods almost always perform similarly in

terms of other measures. For the Hailfinder network, we observed that FCI-BSC has signif-

icant improvements in AP and AHP, as well as all SHD measures when the sample size is

N = {1000, 5000} based on Wilcoxon signed rank test at 5% significance level (Table 21b).

However, FCI performs better in terms of AR and AHR for Hailfinder with N = 200 samples;

both methods perform closely in terms of other measures. Similar results were obtained on
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Table 21: Experimental results for FCI-BSC (with BSC-I, BSC-D, and BSC-LD scoring

methods) and FCI (with a chi-squared test). AP, AR, AHP, AHR, S-SHD, L-SHD, and

A-SHD denote adjacency P and R, arrowhead P and R, strict, lenient, and adjacency SHD.

Boldface indicates that the results are statistically significantly better, based on Wilcoxon

signed rank test at 5% significance level.

(a) Experimental results on Alarm network.

# Cases Method AP AR AHP AHR Added Deleted Reoriented S-SHD L-SHD A-SHD

200

BSC-I 0.96 ± 0.03 0.47 ± 0.04 0.66 ± 0.13 0.26 ± 0.11 0.9 22.2 11.3 34.4 25.2 23.1

BSC-D 0.95 ± 0.03 0.47 ± 0.04 0.66 ± 0.14 0.26 ± 0.11 1.0 22.4 11.1 34.5 25.5 23.4

BSC-LD 0.96 ± 0.03 0.47 ± 0.04 0.66 ± 0.13 0.26 ± 0.11 0.9 22.2 11.3 34.4 25.2 23.1

FCI 0.91 ± 0.04 0.46 ± 0.03 0.76 ± 0.18 0.29 ± 0.08 2 22.5 9.7 34.2 25.7 24.5

1000

BSC-I 0.99 ± 0.02 0.66 ± 0.03 0.64 ± 0.06 0.42 ± 0.08 0.4 14.4 15.5 30.3 17.4 14.8

BSC-D 0.99 ± 0.02 0.66 ± 0.03 0.64 ± 0.06 0.42 ± 0.08 0.4 14.4 15.5 30.3 17.4 14.8

BSC-LD 0.99 ± 0.02 0.66 ± 0.03 0.64 ± 0.06 0.42 ± 0.08 0.4 14.4 15.5 30.3 17.4 14.8

FCI 0.95 ± 0.04 0.65 ± 0.02 0.72 ± 0.15 0.43 ± 0.05 1.6 14.9 13.7 30.2 18.3 16.5

5000

BSC-I 1.00 ± 0.01 0.78 ± 0.02 0.76 ± 0.08 0.55 ± 0.07 0.1 9.4 12.2 21.7 12.3 9.5

BSC-D 1.00 ± 0.01 0.78 ± 0.02 0.76 ± 0.08 0.55 ± 0.07 0.1 9.4 12.2 21.7 12.3 9.5

BSC-LD 1.00 ± 0.01 0.78 ± 0.02 0.76 ± 0.08 0.55 ± 0.07 0.1 9.4 12.2 21.7 12.3 9.5

FCI 0.96 ± 0.03 0.79 ± 0.02 0.77 ± 0.08 0.61 ± 0.08 1.3 8.7 11.3 21.3 11.8 10

(b) Experimental results on Hailfinder network.

# Cases Method AP AR AHP AHR Added Deleted Reoriented S-SHD L-SHD A-SHD

200

BSC-I 0.82 ± 0.11 0.18 ± 0.02 0.66 ± 0.16 0.12 ± 0.04 2.7 53.2 7.0 62.9 58.4 55.9

BSC-D 0.82 ± 0.11 0.18 ± 0.02 0.66 ± 0.16 0.12 ± 0.04 2.7 53.2 7.0 62.9 58.4 55.9

BSC-LD 0.82 ± 0.11 0.18 ± 0.02 0.66 ± 0.16 0.12 ± 0.04 2.7 53.2 7.0 62.9 58.4 55.9

FCI 0.69 ± 0.04 0.27 ± 0.02 0.56 ± 0.05 0.29 ± 0.04 7.9 47.4 7.3 62.6 57.7 55.3

1000

BSC-I 0.82 ± 0.05 0.31 ± 0.01 0.88 ± 0.10 0.33 ± 0.01 4.4 45.2 5.9 55.5 51.2 49.6

BSC-D 0.82 ± 0.05 0.31 ± 0.01 0.88 ± 0.10 0.33 ± 0.01 4.4 45.2 5.9 55.5 51.2 49.6

BSC-LD 0.82 ± 0.05 0.31 ± 0.01 0.88 ± 0.10 0.33 ± 0.01 4.4 45.2 5.9 55.5 51.2 49.6

FCI 0.48 ± 0.04 0.31 ± 0.01 0.34 ± 0.05 0.34 ± 0.02 21.3 45 7.9 74.2 67.5 66.3

5000

BSC-I 0.69 ± 0.07 0.30 ± 0.01 0.69 ± 0.14 0.33 ± 0.01 8.8 45.5 6.3 60.6 55.1 54.3

BSC-D 0.69 ± 0.07 0.30 ± 0.01 0.66 ± 0.15 0.33 ± 0.01 9.2 45.5 6.2 60.9 55.5 54.7

BSC-LD 0.69 ± 0.07 0.30 ± 0.01 0.66 ± 0.15 0.33 ± 0.01 9.2 45.5 6.2 60.9 55.5 54.7

FCI 0.31 ± 0.01 0.34 ± 0.01 0.20 ± 0.01 0.40 ± 0.02 48.2 43.2 7.1 98.5 92.3 91.4

(c) Experimental results on Hepar II network.

# Cases Method AP AR AHP AHR Added Deleted Reoriented S-SHD L-SHD A-SHD

200

BSC-I 0.69 ± 0.11 0.03 ± 0.01 0.32 ± 0.29 0.01 ± 0.00 3.9 260.4 6.7 271.0 266.0 264.3

BSC-D 0.70 ± 0.12 0.03 ± 0.01 0.45 ± 0.33 0.01 ± 0.00 3.7 260.4 6.5 270.6 265.4 264.1

BSC-LD 0.69 ± 0.11 0.03 ± 0.01 0.36 ± 0.28 0.01 ± 0.00 3.9 260.5 6.6 271.0 266.0 264.4

FCI 0.49 ± 0.05 0.06 ± 0.01 0.21 ± 0.04 0.03 ± 0.01 16.4 252.9 12.8 282.1 275.0 269.3

1000

BSC-I 0.90 ± 0.06 0.06 ± 0.00 0.37 ± 0.15 0.01 ± 0.00 1.8 253.7 11.2 266.7 260.8 255.5

BSC-D 0.90 ± 0.06 0.06 ± 0.00 0.37 ± 0.15 0.01 ± 0.00 1.8 253.7 11.2 266.7 260.8 255.5

BSC-LD 0.90 ± 0.06 0.06 ± 0.00 0.37 ± 0.15 0.01 ± 0.00 1.8 253.7 11.2 266.7 260.8 255.5

FCI 0.70 ± 0.04 0.10 ± 0.01 0.27 ± 0.04 0.05 ± 0.01 12.2 241.1 23.4 276.7 263.9 253.3

5000

BSC-I 0.98 ± 0.02 0.10 ± 0.00 0.37 ± 0.05 0.04 ± 0.01 0.6 241.6 20.9 263.1 251.0 242.2

BSC-D 0.98 ± 0.02 0.10 ± 0.00 0.37 ± 0.05 0.04 ± 0.01 0.6 241.6 20.9 263.1 251.0 242.2

BSC-LD 0.98 ± 0.02 0.10 ± 0.00 0.37 ± 0.05 0.04 ± 0.01 0.6 241.6 20.9 263.1 251.0 242.2

FCI 0.83 ± 0.04 0.15 ± 0.01 0.33 ± 0.06 0.08 ± 0.02 8.4 227.7 33.8 269.9 249.5 236.1
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Hepar II network: FCI-BSC performs significantly better in terms of AP, AHP, and S-SHD,

while FCI’s performance in terms of AR and AHR is significantly better based on Wilcoxon

signed rank test at 5% significance level (Table 21c). We also observed that both methods

have low recall for the networks with more parameters and denser structures (i.e., Hailfinder

and Hepar II).

We observed that using BSC-I, BSC-D, and BSC-LD scoring methods often result in

different scores for the sampled PAGs; however, the ordering of the PAGs according to

their scores is almost always the same. For example, for a BN with 20 discrete variables

and 80 edges, when using N = 200 training samples, the scores for the top-ranked PAGs

using BSC-I, BSC-D, and BSC-LD are −2278.45, −2243.56, and −2252.70 (in log scale),

respectively. We conjecture that the performance of BSC-I is analogous to a naive Bayes

classifier, which often performs classification well, even though it can be highly miscalibrated

due to its universal assumption of conditional independence.

3.7 Summary and Discussion

In this chapter, we introduced a general approach for Bayesian scoring of constraints

(BSC) that was then applied to a constraint-based method (e.g., FCI) to learn PAG struc-

tures; we call this method FCI-BSC. This method can generate multiple PAGs and quantifies

the PAGs by their posterior probabilities. In contrast, a constraint-based method that uses a

frequentist statistical test (e.g., FCI with a chi-squared test) outputs a single PAG structure

and does not provide a score of the output PAG structure. We implemented and exper-

imentally evaluated three methods for scoring PAGs called BSC-I, BSC-D, and BSC-LD.

Using simulated data from randomly generated BNs and from manually constructed BNs,

we compared these methods to a method that applies the FCI algorithm using frequentist

tests of independence.

The empirical results we obtained on simulated data from randomly generated CBNs

indicate that for CBNs that contain discrete variables, FCI-BSC performs similar to FCI,

especially for smaller sample sizes (i.e., N = 200). For the CBNs that contain continuous
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and mixed variables, FCI-BSC almost always performs better in terms of adjacency and

arrowhead P (AP and AHP), while FCI performs better in terms of adjacency and arrowhead

R (AR, AHR). In terms of SHD, we found that FCI-BSC performs better in terms of added

and reoriented edges, and overall SHD measures, while FCI has fewer deleted edges. We also

observed similar performance results on simulated data from manually constructed CBNs.

Overall, the results indicate that the FCI-BSC method tends to be more accurate than FCI

in predicting and orienting edges; these results partially support our first hypothesis that is

given in Section 1.1, which states that the BSC method will perform CBN structure learning

better than a method that uses frequentist statistical tests in terms of discrimination.
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4.0 Instance-specific CBN Structure Learning Assuming Causal Sufficiency

Almost all CBN structure learning algorithms that have been developed to date learn a

DAG (or equivalence class of DAGs) that encodes the causal relationships that are shared by

a population of instances; we call such a model a population-wide CBN model. A contrasting

paradigm is to learn a CBN that is specific to a particular instance (e.g., a patient); we call

such a model an instance-specific CBN model. Instance-specific CBN learning is appropriate

in domains where the instances may have varying causal structures. For example, a cancerous

tumor (or any other complex biological process) in a current patient can be considered as a

composite of causal mechanisms. Each of these individual causal mechanisms may appear

relatively commonly in other patient tumors, but the particular combination of mechanisms

in the tumor of the current patient is unique. Therefore, it is problematic to try to learn the

unique set of causal mechanisms for each possible patient by learning a single, population-

wide CBN; such a CBN would at best recover the more common mechanisms operating in a

population of tumors, but not the unique (or at least rare) combination of causal mechanisms

in each tumor. As an alternative approach, we explore learning the joint set of mechanisms

for the current patient from the features of that patient and from a training set of data on

many other patients. We use the features of the current patient to help find the composite

set of mechanisms that are scattered among the patients in the training set. In this chapter, I

introduce an instance-specific CBN structure learning method by using CBNs that represent

context-specific independence (CSI) (see Section 2.1.4) in order to include instance-specific

information in the CBN models.

In the remainder of this chapter, I first review the existing instance-specific modeling

methods in Sections 4.1. Then in Sections 4.2 and 4.3, I explain a state-of-the-art score-

based CBN structure learning method, called greedy equivalence search (GES), and how to

derive a score for a CBN using a score-based method. I introduce an instance-specific score-

based CBN structure learning algorithm, called IGES [Jabbari et al., 2018], in Section 4.4.

In Section 4.5, I give a quantitative assessment of the IGES method using simulated and

real-world biomedical datasets. Finally, Section 4.6 concludes this chapter.
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4.1 Related Work

In this section, I review relevant literature to instance-specific modeling in two parts.

The first part is related to instance-specific CBN structure learning, which is discussed in

Section 4.1.1. The second part is related to instance-specific predictive modeling in machine

learning, which is discussed in Section 4.1.2.

4.1.1 Instance-specific causal Bayesian network structure learning

As mentioned earlier in Section 2.1.4, the notion of context-specific independence (CSI)

was introduced by [Boutilier et al., 1996] to capture independence relationships that hold

between the parents and a child node in a CBN in certain contexts (i.e., when the parent

variables take on particular values). In general, these types of independencies cannot be cap-

tured completely in the structure of standard CBNs, wherein the CBN structure is invariant

to CSI relationships. In this dissertation, I use CBNs that include CSI structures in order

to generate instance-specific information in CBN models.

Several greedy search algorithms have been developed to learn CSI structures in Bayesian

networks. A number of these methods use structured representations of conditional proba-

bility tables (CPTs) to capture CSI relationships, rather than representing them explicitly in

the graph structure. [Friedman and Goldszmidt, 1998] introduced a method that uses tree-

structured CPTs to partition the outcome space of the parents of a variable to learn the

regularities in the CPTs, which correspond to local CSI structures. Then, they incorpo-

rated the tree-structured CPTs into a CBN structure search algorithm using a minimum

description length (MDL) score. Similarly, [Chickering et al., 1997] proposed using decision-

graph CPTs that can represent a richer set of independence relationships, compared to

tree-structured CPTs. [Chickering et al., 1997] also developed a Bayesian score to evaluate

the posterior probability of Bayesian networks that contain decision-graph CPTs. This score

is applied along with a greedy search algorithm to learn a global CBN structure over all vari-

ables in which the relationship between each node and its parents is represented using a

decision graph. Recently, [Zou et al., 2017] proposed an ordering-based algorithm to learn
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local structures using Lasso regression [Tibshirani, 1996] on linear combinations of Boolean

functions, where linear combinations of Boolean functions define the interactions among

parents of each variable.

There are other methods that explicitly represent CSI relationships in the graph

structure using, for example, Bayesian multinets [Geiger and Heckerman, 1996]. Re-

cently, [Pensar et al., 2015] introduced a method to label the edges of a DAG to encode

CSI structures; such graphs are called labeled directed acyclic graphs (LDAGs). In LDAGs,

the edges of a Bayesian network are labeled to encode local CSI structures, where an

edge can be removed from the DAG if a CSI relationship exists. [Pensar et al., 2015] also

proposed an LDAG-based Bayesian score and MCMC search to learn an LDAG struc-

ture. [Hyttinen et al., 2018] introduced a constraint-based algorithm and an exact score-

based method for learning LDAGs. Also, [Corander et al., 2019] developed a variant of

conditional independence logic to formalize CSI statements in LDAGs using first-order

logic. [Oates et al., 2016] proposed a method that uses integer linear programming to learn

multiple DAGs from multiple units of data, where each unit contains a set of data cases.

Recently, [Huang et al., 2019] developed an algorithm, called the specific and shared causal

model (SSCM), that utilizes the differences and similarities in heterogeneous (and non-

stationary) data to learn a causal model that is shared across the population and also a

specific causal model for each individual assuming that multiple samples are observed for

each individual.

The methods mentioned above try to capture all possible local structures in a single

model, which has several downsides. First, doing so adds to the computational complexity

of the CBN structure learning task, which is already an NP-hard problem [Chickering, 1996].

For example in the case of LDAGs, searching over the space of possible labels for edges results

in a substantially larger search space than the already superexponential space of possible

DAGs. Second, none of the methods learns a model that is specialized to a given test instance

(e.g., a given patient), which is one of the main goals and novel contributions of the current

dissertation. Doing so has two advantages. First and foremost, the learned causal model is

specific to the current instance. Such a tailored model is likely to be more comprehensible to

the user, because it includes only the parents of each node that are found to be relevant to
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the current instance. We dynamically search to define the clusters of cases associated with

the test instance T . Importantly, this search occurs at the node level, not at the DAG level.

Second, given that we seek an instance-specific model, searching for it directly is generally

much more efficient than is searching for all (or at least many) possible instance-specific

models and then choosing the one that matches the current test instance.

[Liu et al., 2016] introduced a method to learn instance-specific networks. It first uses a

dataset to build a reference network using Pearson correlation coefficients. Then, it learns

a perturbed network by adding a single test sample to the original data. Finally, it obtains

the differential network between the reference and perturbed networks to characterize the

specific features of the test sample. This method does not learn a causal model, rather, it

constructs a correlation model. Additionally, this method is only effective for very small

sample sizes since the removal of a single sample may not result in changes in the reference

network versus the perturbed networks. In other related work, [Cai et al., 2019] developed

a method to learn tumor-specific causal models from data; this is the closest work to the

IGES method. However, that method is limited to searching over bipartite causal graphs on

binary variables in which one partition contains causes and the other contains effects. Also,

the method assumes there is one and only one cause for each effect. Both assumptions are

reasonable for that application, but restrict generality. The IGES method is able to learn

unrestricted, instance-specific CBNs.

In this chapter, I describe a general, fully Bayesian approach for learning unrestricted

instance-specific CBNs on discrete variables. This method searches the space of CBNs to

build a model that is specific to an instance T by guiding the search based on T ’s attributes.

We hypothesize that such an instance-specific learning approach will model the causal rela-

tionships for T better than does a population-wide one, in terms of discrimination measures.

4.1.2 Instance-specific methods in machine learning

Most machine learning methods for predicting outcomes construct a single model M from

training data. M is then applied to predict outcomes in future instances. We refer to such

a model as a population-wide model because it predicts outcomes for a future population
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of instances. It may be difficult for population-wide models to perform well in domains in

which instances are highly heterogeneous. In such domains, a reasonable approach is to

learn a model that is tailored to a particular instance (e.g., a patient), which we refer to

as an instance-specific model. An instance-specific approach builds a model MT for a given

instance T from the features that we know about T (e.g., clinical and molecular features)

and from a training set of data on many other instances. It then uses MT to predict the

outcome for T . This procedure repeats for each instance that is to be predicted in the

population. In this section, I review a representative set of prior work on instance-specific

(also known as instance-based) machine learning methods. In these methods, a specific

model or parameterization is learned for a given instance (e.g., a data sample) based on the

features of the given instance (i.e., variable-value pairs).

The k-nearest neighbor (kNN) method is a canonical instance-specific method. This

approach uses a similarity metric (e.g., Euclidean distance) to identify the k most similar

training cases to a given test case; it then predicts the target variable of the test case by

computing some function (e.g., the average or a majority vote) of the k selected nearest

neighbors. One variation of kNN is the weighted kNN algorithm, in which the k most

similar cases are weighted according to their similarity to the test case (i.e., assigning greater

weights to closer cases) [Dasarathy, 1991]. Another extension of kNN is locally weighted

regression [Cleveland, 1979, Cleveland and Devlin, 1988]. This method selects the nearby

training cases to the test case; it then fits a surface to those cases using a distance-weighted

regression model.

[Zheng and Webb, 2000] introduced a lazy Bayesian rule learning (LBR) method to learn

a model that is specific to a test case. In particular, given a test instance, an LBR rule consists

of two components: (1) an antecedent that is a conjunction of the variable-value pairs that

are present in the test instance; (2) a consequent that is a local näıve Bayes classifier in which

the target variable is the parent of the variables that do not appear in the antecedent. The

model parameters are estimated in a greedy step-forward search. At each step, the variable

that reduces the error rate the most is removed from the local naive Bayes classifier and

added it to the antecedent; the search stops when the error rate is not improved anymore.

The model is then applied to the test case to predict the target value.
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[Visweswaran and Cooper, 2010] developed a two-stage instance-specific Markov Blanket

(ISMB) algorithm that searches over the space of Markov blankets (MB) of the target variable

by utilizing the features of a given test instance. ISMB finds MBs that are optimized to

improve the prediction for each specific test instance. In particular, for a given test instance,

the ISMB algorithm first uses a greedy hill-climbing search to find a set of MBs that best

fit the training data. Then, it greedily adds single edges to the MB structures from the

previous step, if doing so improves the prediction of a given test instance. This algorithm

uses a selective Bayesian model averaging method to predict the target variable over a set

of MB structures.

[Ferreira et al., 2013] developed two patient-specific decision path (PSDP) algorithms

using two variable selection criteria: balanced accuracy and information gain. A PSDP al-

gorithm learns a decision path tailored to the features available for a specific test instance.

A decision path is a conjunction of features that are present in a given test instance and a

leaf node that contains the probability distribution of the target variable. The PSDP algo-

rithms include (1) PSDP-BA that uses balanced accuracy (BA) to decide which variable is

selected for the decision path, and (2) PSDP-IG that uses information gain (IG) to select

path variables. Compared to a population-wide decision tree, a PSDP is a simpler model as

it consists of only a single path; also, since a PSDP model is tailored to the patient at hand,

it has the potential to be more accurate for that specific patient. The results showed that

these patient-specific methods outperform the population-wide model on AUROC but have

similar performance on balanced accuracy.

Recently, [Lengerich et al., 2018] introduced an instance-specific regression model that

learns a specific set of parameters for each test instance, with no a priori knowledge of re-

lationships between data samples. Instead, they used an exogenous set of covariates (e.g.,

clinical variables can be used as covariates when modeling genomic data), in addition to

the variables they use in the regression model; the idea is that the similarity between

instance-specific parameters is related to the similarity between the covariates. Accord-

ingly, they developed a distance-matching regularizer to regularize instance-specific param-

eters by assuming that similarity in parameters corresponds to the similarity in covari-

ates [Lengerich et al., 2018]). Later, [Lengerich et al., 2019] developed an extension of the
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instance-specific regression model by using a low-rank latent representation of the regression

parameters.

Several studies have developed patient-specific models from patient time-series

data. [Qu and Gotman, 1997, Shoeb et al., 2004] proposed methods that use each patient’s

time series data separately to develop patient-specific models, while ignoring the data from

the rest of the population. Other studies have proposed methods that take into account

the population data in addition to the time-series data about the patient at hand. For ex-

ample, [Sheiner et al., 1979] take advantage of population data to estimate patient-specific

parameters at the initial time when no measurements are available for the patient yet; then,

they are updated with patient data, as they become available, to make the model more

patient-specific. Another example is the use of hierarchical models with multiple levels of

parameters including population and individual level parameters [Schulam and Saria, 2015,

Schulam et al., 2015, Schulam and Saria, 2016]. [Schulam and Saria, 2015] proposed a hier-

archical probabilistic graphical model, called Latent Trajectory Model (LTM), to predict

patient-specific disease trajectories for patients with complex and chronic diseases. This

model contains three levels: population, sub-population, and individual. At the individual

level, patient-specific models are learned while sharing statistical power among individuals

through higher-level parameters. The individual-level parameters are updated dynamically

at the prediction time using Bayesian inference. We investigate atemporal causal models in

this dissertation.

The instance-specific models reviewed above are different from the instance-specific CBN

learning methods that are introduced in this dissertation in several ways. First, our meth-

ods model causal relationships among variables while the above-mentioned methods only

perform predictive modeling. Second, we cluster the training data at the variable-level to

learn the causes (i.e., parents) of each variable in a given test case; therefore, we dynamically

perform clustering during the CBN search. However, some of the previous methods consider

the complete set of variables to find cases that are similar to a given test case.
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4.2 Overview of Greedy Equivalence Search (GES)

Greedy Equivalence Search (GES) [Chickering, 2002] is a state-of-the-art method for

learning a CBN structure from observational data. GES identifies a CBN structure by

searching over Markov equivalence classes of DAGs. As described in Section 2.1.1, the

Markov equivalence class of DAGs represents a set of DAGs that have the same d-separation

properties and are statistically indistinguishable. A completed partially directed acyclic graph

(CPDAG), also known as pattern, represents the Markov equivalence class of DAGs. A

pattern is a mixed graph that contains both directed and undirected edges. This sec-

tion provides an overview of GES and the Bayesian Dirichlet equivalent uniform (BDeu)

score [Heckerman, 1998], which we can use together with GES to learn a CBN structure

from data.

The GES algorithm is a two-phase score-based method that includes a forward

equivalence search (FES) and backward equivalence search (BES) as follows. Let G be

the current pattern during the search. Also, let P+(G) represent the set of patterns

that are generated by adding a single edge to G for each legal edge addition during the

FES [Chickering, 2002, Chickering, 1995], and P−(G) be the set of patterns that are

obtained by deleting each single edge from G during the BES. The forward phase of GES

starts with an empty graph (i.e., G = ∅) and replaces the current state with the pattern in

P+(G) that has the highest score. It continues this phase until no further score increase can

be achieved. The backward phase starts from the local maximum achieved by the forward

phase and performs a backward search by replacing G with the highest scoring pattern

in P−(G). It stops when it reaches a local maximum. Algorithm 9 provides high-level

pseudo-code for GES. Assuming i.i.d sampling, causal sufficiency, the Markov condition,

the faithfulness condition, and a locally consistent score, it has been proven that in the

large sample limit the GES algorithm learns a pattern that represents the data-generating

CBN [Chickering, 2002, Chickering and Meek, 2015, Chickering, 2020]. In this dissertation,

we use an efficient implementation of GES called Fast GES (FGES) [Ramsey et al., 2017].
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Algorithm 9 GES(D)

Input: a dataset D

Output: a population-wide model GPW

1: GPW = FES(D)

2: GPW = BES(D, GPW)

3: return GPW

Since each step in GES (either during the FES or BES) involves a single edge modi-

fication (i.e., addition or deletion), GES requires a node-wise decomposable scoring func-

tion to locally re-score the effect of the edge modification applied to a single node given

its parents. The Bayesian information criterion (BIC) score [Schwarz, 1978] is often used

to learn a CBN structure when variables follow a Gaussian distribution and the BDeu

score [Heckerman, 1998] is often used for discrete variables, although other scores are possi-

ble. In the following section, I review the BDeu score since we concentrate on using discrete

variables in this chapter.

4.3 Scoring Bayesian Networks

A Bayesian approach for learning a CBN structure involves searching for a structure with

a high posterior probability on a given dataset. Let D be a dataset containing n discrete

variables V = {X1, X2, ..., Xn}, where each variable Xi can take ri values and its parents

Pa(Xi) can take qi distinct instantiations. Also, let G be the structure we wish to score.

According to Bayes’ theorem, the posterior probability of graph G given data D is as follows:

P (G|D) =
P (G) · P (D|G)

P (D)
, (4.1)

where P (G) is the structure prior, P (D|G) is the marginal likelihood of the data, and P (D)

is the probability of the data. Since P (D) is a normalization constant and independent of

the model, we define the score of model G as follows:

Score(G, D) = P (G) · P (D|G) , (4.2)

96



where we can compute P (D|G) by integrating over all unknown parameters θ as follows:

P (D|G) =

∫
θ

P (D|G, θ) · P (θ|G) dθ . (4.3)

The marginal likelihood of the data has a closed-form solution called the Bayesian Dirich-

let (BD) score under the following assumptions: (1) the data are discrete, (2) the data are

complete (i.e., there are no missing values in D), (3) the parameters are mutually indepen-

dent, (5) the parameters are modular (i.e., the distributions for parameters of a variable Xi

depend only on the local structure of Xi in the Bayesian network, namely, Xi and its parents

Pa(Xi)), and (5) the parameter priors follow Dirichlet distributions. The BD score is as

follows [Cooper and Herskovits, 1992, Heckerman et al., 1995]:

P (D|G) =
n∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij +Nij)
·
ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (4.4)

where the first product is over all n variables, the second product is over the qi parent in-

stantiations of variable i, and the third product is over all ri values of variable Xi. The

term Nijk is the number of cases in D in which variable Xi = k and its parent Pa(Xi) = j;

also, Nij =
∑ri

k=1Nijk. The term αijk is a Dirichlet prior parameter that may be inter-

preted as representing “pseudo-counts” and αij =
∑ri

k=1 αijk. The pseudo-counts associated

with an event e (or a conditional event) being modeled express prior belief in terms of the

number of pseudo counts that the event would have needed to have occurred in the past

to yield the strength of current prior belief about e. We may define the pseudo-counts

to be uniformly distributed, in which every state of the joint space is equally likely. By

incorporating the uniform parameter priors, Equation (4.4) represents the so-called BDeu

score [Heckerman, 1998]. The uniform parameter priors are formulated as follows:

αijk =
α

ri · qi
, (4.5)

where α is a positive constant called the prior equivalent sample size (PESS). The BDeu

score described here is a modular score that is decomposable at node level and is also score

equivalent, as required by the GES algorithm.
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4.4 Instance-Specific GES (IGES)

In this section, I describe a novel algorithm called instance-specific GES (IGES) that

takes as input a set D of training instances and an instance T = {X1 = x1, X2 = x2, ..., Xn =

xn} that may not be in D, and it returns as output a CBN structure GIS for instance T

and a (often different) CBN structure GPW for the remaining instances in D. The goal of

IGES is to find causal structures GIS and GPW that maximize P (GIS,GPW|D,T ) by deriving

P (D|T,GIS,GPW) and P (GIS,GPW). Since finding a global optimum for P (GIS,GPW|D,T ) is

generally not computationally tractable, IGES performs GES-style greedy search.

IGES operates in two phases. The first phase uses GES (as described in Section 4.2)

with the BDeu score to find GPW given D. GES uses heuristic search that seeks to find the

GPW that optimizes P (GPW|D). The second phase uses GES with a novel, instance-specific

Bayesian score called the IS-Score (see below) to find the instance-specific structure GIS
given D, T , and GPW; we use the name GES2 to denote this application of GES. GES2 uses

heuristic search that seeks to find GIS that optimizes P (GIS|D,T,GPW). Algorithm 10 shows

the high-level procedure of the IGES method. The order of the computational complexity

of IGES is the same as that of GES, since it runs the GES algorithm 2 times.

Algorithm 10 IGES(D, T )

Input: a dataset D, a test instance T

Output: an instance-specific model GIS and a population-wide model GPW

1: GPW = GES(D)

2: GIS = GES2(D, T , GPW)

3: return GIS and GPW

GES2 is a modification of GES that uses a node-wise decomposable score, called IS-Score

(defined below), to score a node Xi given its instance-specific parents PaIS(Xi) in GIS and

its population-wide parents PaPW(Xi) in GPW. Let PaIS(Xi) = j denote that the variables

in vector PaIS(Xi) have the values denoted by vector j in instance T . The basic idea behind

the IS-Score is to find those instances (samples) in D in which PaIS(Xi) = j and use them

to score PaIS(Xi) → Xi in GIS. In essence, those instances in D form a cluster that are
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similar to instance T in the context of scoring PaIS(Xi) → Xi. Since those instances are

being used to score GIS, in order to avoid duplicate scoring they can no longer be used to

also score GPW; thus, the score for GPW must be adjusted accordingly. More specifically, let

DPaIS(Xi)=j denote the instances in D in which PaIS(Xi) = j; let DPaIS(Xi) 6=j denote the

remaining instances in D.

Using data DPaIS(Xi)=j, the marginal likelihood of data given PaIS(Xi)→ Xi in instance-

specific model GIS is as follows:

P (DPaIS(Xi)=j|PaIS(Xi)→ Xi) =
Γ(αij)

Γ(αij +Nij)
·
ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)
, (4.6)

where ri denotes all the possible instantiations of Xi, Nijk is the number of instances in

DPaIS(Xi)=j in which Xi has the value k, and Nij =
∑ri

k=1Nijk; the terms αijk and αij =∑ri
k=1 αijk are the corresponding Dirichlet priors.

Let PaPW(Xi) denote the parents of Xi in the population-wide model GPW, which in

general may be different than the parents of Xi in GIS, as given by PaIS(Xi). The marginal

likelihood of data DPaIS(Xi)6=j given PaPW(Xi) → Xi in population-wide model GPW is as

follows:

P (DPaIS(Xi) 6=j|PaPW(Xi)→ Xi) =

qi∏
l=1

Γ(αil)

Γ(αil +Nil)
·
ri∏
k=1

Γ(αilk +Nilk)

Γ(αilk)
, (4.7)

where ri and qi are the number of possible instantiations of Xi and PaPW(Xi), respectively.

Nilk is the number of instances in DPaIS(Xi)6=j for which Xi takes the value k and its parents

PaPW(Xi) take value l, and Nil =
∑ri

k=1Nilk. The terms αilk and αil =
∑ri

k=1 αilk are the

corresponding Dirichlet priors.

We calculate the parameter priors in Equations (4.6) and (4.7) as follows. First, we

combine the instance-specific and population-wide parents of variable Xi (i.e., Pa(Xi) =

PaPW(Xi) ∪ PaIS(Xi)); let |Pa(Xi)| = q′i be all possible instantiations of Pa(Xi). Then,

the uniform priors for the combined parent set Pa(Xi) is formulated as follows:

α′ijk =
α

ri · q′i
, (4.8)

where ri denotes all possible instantiations of Xi and α is the prior equivalent sample size.

Then, to compute the instance-specific parameter priors for Equation (4.6), we aggregate the
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prior terms of the combined parent set in Equation (4.8) that correspond to the instance-

specific parents PaIS(Xi) as follows:

αijk = α ·



q
′′
i∑

j=1

1

ri · q′i
if |PaPW(Xi)\PaIS(Xi)| > 0

1

ri · q′i
otherwise

, (4.9)

where \ denotes set difference and q
′′
i is all possible instantiations of the variables that are

in PaPW(Xi) but not in PaIS(Xi), which is formulated as follows:

q
′′

i =
∏

Xj∈{PaPW(Xi)\PaIS(Xi)}

|Xj|. (4.10)

Similarly, to compute the population-wide parameter priors for Equation (4.7), we aggre-

gate the prior terms of the combined parent set in Equation (4.8) that correspond to the

population-wide parents PaPW(Xi), which are calculated as follows:

αilk = α ·



q
′′
i∑

j=1

1

ri · q′i
if |PaIS(Xi)\PaPW(Xi)| > 0

1

ri · q′i
otherwise

, (4.11)

where q
′′
i denotes all possible instantiations of the variables that are in PaIS(Xi) but not in

PaPW(Xi), which is defined as follows when the variables in PaIS(Xi)∩PaPW(Xi) are not

instantiated to the same values as of those variables in PaIS(Xi)

q
′′

i =
∏

Xj∈{PaIS(Xi)\PaPW(Xi)}

|Xj|. (4.12)

However, when the values of the variables in PaIS(Xi) ∩ PaPW(Xi) are the same as the

values of those variables in PaIS(Xi), we need to subtract 1 form Equation (4.12) to account

for the setting that corresponds to the instance-specific model:

q
′′

i =

 ∏
Xj∈{PaIS(Xi)\PaPW(Xi)}

|Xj|

− 1 (4.13)
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Figure 9: Examples of how to compute parameter priors for variable X3 given various sets

of instance-specific parents PaIS(X3) and population-wide parents PaPW(X3).
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Figure 9 shows some examples of parameter prior calculations for variable X3 with different

sets of instance-specific and population-wide parents.

Assuming parameter independence and parameter modularity [Heckerman et al., 1995],

as is commonly done, the overall marginal likelihood of data given the the instance-specific

and the population-wide parents of node Xi is calculated as follows:

P (D|PaIS(Xi)→ Xi,PaPW(Xi)→ Xi) =

P (DPaIS(Xi)=j|PaIS(Xi)→ Xi) · P (DPaIS(Xi)6=j|PaPW(Xi)→ Xi)) .
(4.14)

This score represents the marginal likelihood ofXi given the instance-specific and population-

wide parents of Xi. Algorithm 11 shows pseudo-code for the IS-Score procedure that derives

this marginal likelihood as the overall score for Xi. It is this procedure that GES2 calls when

scoring a node given its parents during the forward and backward greedy search (line 2 in

Algorithm 10).

Algorithm 11 IS-Score(D, T , Xi, PaIS(Xi), PaPW(Xi))

Input: a dataset D, a test instance T , variable Xi that is being scored, Xi’s instance-specific

parent set PaIS(Xi), and Xi’s population-wide parent set PaPW(Xi)

Output: the overall score for Xi

1: Derive DPaIS(Xi)=j and DPaIS(Xi)6=j from D and the values j of PaIS(Xi) in T

2: sIS ← P (DPaIS(Xi)=j|PaIS(Xi)→ Xi) . Equation (4.6)

3: sPW ← P (DPaIS(Xi)6=j|PaPW(Xi)→ Xi) . Equation (4.7)

4: soverall ← sIS · sPW . Equation (4.14)

5: return soverall

Figure 10 shows an example of the IGES procedure. Let Figure 10a represent the data-

generating CBN structure and parameters for variable X3. In the large sample limit, by

applying GES with the BDeu score we expect to learn GPW (Figure 10b), which is the same

as the data-generating structure. However, GPW does not capture the independence of X2

and X3 when X1 = 0 (i.e., X2 ⊥⊥c X3|X1 = 0) in the given instance T = {X1 = 0, X2 =

1, X3 = 0}. Figure 10c shows the instance-specific CBN structure GIS and the population-

wide structure GPW that would be learned by the IGES algorithm, in the large sample limit.
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(a) The conditional probability table on the left represents P (X3|X1, X2) and the graph on the
right shows the data-generating CBN structure.
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(b) The result of applying GES to the example in the large sample limit.
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(c) The results of applying IGES to the example in the large sample limit.

Figure 10: This example illustrates a situation in which the population-wide CBN structure

learning is not capable of capturing context-specific independence in the CBN structure while

the instance-specific approach is.
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As mentioned, the IS-Score derives the marginal likelihood of the data on Xi, relative to

the instance-specific and population-wide parents of Xi. Assuming parameter independence

and parameter modularity, the marginal likelihood of all the data given T , GIS, and GPW is

as follows:

P (D|T,GIS,GPW) =
n∏
i=1

IS-Score(D,T,Xi,PaIS(Xi),PaPW(Xi)) , (4.15)

where i iterates over the set of all nodes being modeled. This equation will be used later in

Equation (4.19) to derive an overall CBN structure score.

We can also define modular structure priors that are decomposable at the node level to be

applied when scoring the parent-child relationship for each node. We use the following struc-

ture priors when applying GES to learn the population-wide model [Ramsey et al., 2017]:

P (GPW) =
n∏
i=1

(
e

n− 1

)|PaPW(Xi)|

·
(

1− e

n− 1

)n−1−|PaPW(Xi)|

, (4.16)

where i iterates over the set of all n nodes in GPW, |PaPW(Xi)| is the number of parents of

node Xi in GPW, and e is a prior weight, which we set to be e = 1 in this dissertation. In this

structure prior, each node being a parent of another node is modeled as a Bernoulli trial.

To compute the prior probabilities of the instance-specific CBN structure GIS, we modify

the modular structure prior introduced in [Heckerman et al., 1995] by considering GPW as

the prior network:

P (GIS) = c
n∏
i=1

κδi , (4.17)

where c is a normalization constant, i iterates over the set of all nodes, δi is the absolute edge

difference between instance-specific parents of Xi in GIS (i.e., PaIS(Xi)) and its population-

wide parents in GPW (i.e., PaPW(Xi)), which is calculated as follows:

δi = |{PaIS(Xi) ∪ PaPW(Xi)} − {PaIS(Xi) ∩ PaPW(Xi)}|. (4.18)

Finally, κ (0 < κ ≤ 1) is a penalty factor for the instance-specific parents differing from

the population-wide parents. We combine Equations (4.15), (4.16), and (4.17) to derive a

probability that is proportional to the posterior probability of GIS and GPW:

P (GIS,GPW|D,T ) ∝ P (D|T,GIS,GPW) · P (GIS) · P (GPW) . (4.19)
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Theorem 4.4.1. Given the Markov, faithfulness, and causal sufficiency assumptions, i.i.d.

sampling, a node ordering1, a locally consistent score, and a test instance T , in the large

sample limit the IGES algorithm learns a CBN that represents the instance-specific data-

generating CBN of T .

Proof. In the first stage, IGES applies the GES algorithm with the BDeu score, which is

locally consistent [Chickering, 2002], and recovers the data-generating CBNs in the large

sample limit, given the stated assumptions [Chickering, 2002]. In the second stage, IGES

applies the same GES algorithm using the IS-Score. In Theorem 4.4.2 (Section 4.4.1) we

prove that doing so leads to finding the data-generating parents of each node, given a node

ordering. Therefore, assuming the stated assumptions, IGES outputs the instance-specific

data-generating CBN for instance T .

4.4.1 IS-Score consistency

In this section, I provide a proof that IS-Score is consistent when we assume an ordering

of variables. Before that, I describe the possible situations that may occur while running the

IGES method to learn an instance-specific CBN for a given test instance T (Section 4.4).

To do so, I use the example in Figure 11 that shows the data-generating model of a single

variable Xi ∈ V , which can be extended to all domain variables in V . In this example,

W = {Xj, ..., Xm} denotes the data-generating parents of Xi, where all the variables in W

precede Xi. Also, UT = {Xk = a,Xk+1 = b,Xk+2 = c} denotes the CSI parent structure

that represents the distribution of Xi for T , where UT ⊆W based on the ordering.

As described in Algorithm 10, in the first stage of IGES, we apply the GES method to

learn the population-wide model. Under assumptions, GES will discover the correct parents

of Xi in the large sample limit (i.e., PaPW(Xi) = W that is shown in the third column of

Figure 12), as proven in [Chickering, 2002]. However, PaPW(Xi) does not explicitly represent

the particular CSI parent structure of Xi for T . In the second stage of IGES, we apply GES2

1A node ordering can be used in GES and IGES algorithms in the form of tiered background knowledge
T = {T1, T2, ..., Tn}, where T1 includes the first node in the ordering, T2 includes the second node in the
ordering, and so forth. By using T as the background knowledge, BN structures can only have edges from
the variable in Ti to the variable in Tj if 1 ≤ i < j ≤ n.
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using IS-Score to learn the instance-specific parents that encode the CSI structure of Xi for

T . During the GES2 search, three possible situations may occur when we score the marginal

likelihood given an arbitrary instance-specific hypothesis parent set, which we denote as

Pa′IS(Xi), and the population-wide data-generating parents PaPW(Xi) = W :

Case 1: Pa′IS(Xi) = UT (Figure 12 row 1). In this case, the instance-specific hypothesis

parent set that is being scored is the proper subset of the population-wide data-generating

parents that encodes the CSI parent structure of Xi for T .

Case 2: Pa′IS(Xi) 6= UT and Pa′IS(Xi) ∩UT = UT . In this case, the instance-specific

hypothesis parent set that is being scored includes all CSI parent structure UT for T in

addition to some variables outside of UT . Two examples of this case are shown in the

second row of Figure 12.

Case 3: Pa′IS(Xi) 6= UT and Pa′IS(Xi) ∩UT 6= UT . In this case, the instance-specific

hypothesis parent set that is being scored may include a subset of the instance-specific

data-generating parents UT and/or some additional variables outside of UT . Two examples

of this case are shown in Figure 12 row 3.

... ...

Figure 11: This example shows the data-generating model of variable Xi in which W =

{Xj, ..., Xm} are parents Xi, where all variables inW precede Xi since we assume an ordering

on variables. In this data-generating model, a subset UT = {Xk = a,Xk+1 = b,Xk+2 = c} ⊆

W denotes the context-specific independence (CSI) parent structure that represents the

distribution of Xi for T . In the large sample limit, the population-wide GES method learns

W , which does not explicitly represent the particular CSI structure UT .
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Case	1:

... ... ...

Case	2:

	

	

Case	3:

	

	

... ... ...

... ... ...

... ... ...

... ... ...

Figure 12: This example illustrates the key situations that may occur while applying IGES

with IS-Score to learn an instance-specific model for given a test instance T based on the data-

generating model in Figure 11, where UT = {Xk = a,Xk+1 = b,Xk+2 = c} denotes the CSI

parent structure that represents the distribution of Xi for T . As described in Algorithm 10,

we first apply GES to learn the population-wide parents, which we assume has discovered the

data-generating parents PaPW(Xi) = W in the large sample limit (column 3). Then, when

we apply GES2 with IS-Score, three possible cases may occur while scoring an arbitrary

instance-specific hypothesis parent set Pa′IS(Xi); examples are given in rows 1-3.

Theorem 4.4.2. Let D be a complete dataset on a set of discrete variables V =

{X1, X2, ..., Xn} that contains N samples from distribution P , which is strictly positive,

and T be a single additional sample from P . Also, let GPW be the data-generating CBN

on V that is Markov and faithful to P , and GIS be the instance-specific data-generating

CBN on V that is that is Markov and faithful to P according to CSI parent structures in

T (see Section 2.1.4 for more details), where both GPW and GIS have the same ordering on

the variables. IS-Score is consistent given a node ordering that is consistent with the node

ordering of the data-generating CBN GPW.
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Proof. To facilitate the proof of this theorem, we first derive how the IS-Score and the BD

score are calculated. Since both scores are decomposable at the node level, we prove this

theorem for a single variable Xi, which is straightforward to extend to all variables of the

BN. Finally, we prove the consistency of the IS-Score in considering different instance-specific

hypothesis parents structures for Xi.

As described in Section 4.4, the IS-Score is composed of two components: (1) the instance-

specific structure that includes Xi’s parents in the hypothesis CBN G ′ that take value j

according to T (i.e., Pa′IS(Xi) = j) and (2) the population-wide structure that includes Xi’s

parents in the data-generating BN GPW (i.e., PaPW(Xi)):

P (DPa′IS(Xi)=j|Pa
′
IS(Xi)→ Xi) =

Γ(αij)

Γ(αij +Nij)
·
ri∏
k=1

Γ(αijk +Nijk)

Γ(αijk)

P (DPa′IS(Xi)6=j|PaPW(Xi)→ Xi) =

qi∏
l=1

Γ(αil)

Γ(αil +Nil)
·
ri∏
k=1

Γ(αilk +Nilk)

Γ(αilk)
,

(4.20)

where ri denotes all values of Xi. Nijk is the number of instances in DPa′IS(Xi)=j in which

Xi = k (Nij =
∑ri

k=1Nijk) and the terms αijk (αij =
∑ri

k=1 αijk) are the corresponding

Dirichlet priors. In the second equation, qi is the number of possible values of PaPW(Xi),

which excludes the instantiations that overlap with Pa′IS(Xi) = j. Nilk is the number

of instances in DPa′IS(Xi) 6=j in which Xi = k and PaPW(Xi) = l (Nil =
∑ri

k=1Nilk), and

the terms αilk (αil =
∑ri

k=1 αilk) are the corresponding Dirichlet priors. We can combine

Equations (4.20) as follows:

P (DXi
|Pa∗(Xi)) =

q∗i∏
d=1

Γ(αid)

Γ(αid +Nid)
·
ri∏
k=1

Γ(αidk +Nidk)

Γ(αidk)
, (4.21)

where Pa∗(Xi) denotes the combined parent set of Xi (i.e., the union of Pa′IS(Xi) and

PaPW(Xi)) that has q∗i distinguishable instantiations by grouping the parents that have

equivalent effect on Xi based on the CSI parent structure that exists in T . Also, Nidk denotes

the number of cases in which Xi = k and its distinguishable parent instantiation takes value

d (Nid =
∑ri

k=1Nidk), and αidk denotes the corresponding pseudo-counts (αid =
∑ri

k=1 αidk).

We use DXi
in Equation (4.21) since we only score the data about Xi here. Equation (4.21)

can be re-written in log form as follows:
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logP (DXi
|Pa∗(Xi)) =

q∗i∑
d=1

[
log Γ(αid)− log Γ(αid +Nid) +

ri∑
k=1

[log Γ(αidk +Nidk)− log Γ(αidk)]

]
.

(4.22)

We can re-arrange the terms in Equation (4.22) to gather the constant terms as follows:

logP (DXi
|Pa∗(Xi)) =

q∗i∑
d=1

[
−log Γ(αid +Nid) +

ri∑
k=1

log Γ(αidk +Nidk)

]
+

q∗i∑
d=1

[
log Γ(αid)−

ri∑
k=1

log Γ(αidk)

]

=

q∗i∑
d=1

[
−log Γ(αid +Nid) +

ri∑
k=1

log Γ(αidk +Nidk)

]
+ const. (4.23)

Using the Stirling’s approximation of limn→∞ log Γ(n) = (n− 1
2
) log(n)− n+ const., we can

re-write Equation (4.23) as follows:

lim
N→∞

logP (DXi
|Pa∗(Xi)) = lim

N→∞

q∗i∑
d=1

[
−(αid +Nid −

1

2
) log(αid +Nid) + (αid +Nid)

+

ri∑
k=1

(
(αidk +Nidk −

1

2
) log(αidk +Nidk)− (αidk +Nidk)

)]
+const.

= lim
N→∞

q∗i∑
d=1

[
−αid log(αid +Nid)−Nid log(αid +Nid) +

1

2
log(αid +Nid) + αid +Nid +

ri∑
k=1(

αidk log(αidk +Nidk) +Nidk log(αidk +Nidk)−
1

2
log(αidk +Nidk)− αidk −Nidk

)]
+const.

= lim
N→∞

q∗i∑
d=1

[
−Nid log(αid +Nid) +

ri∑
k=1

Nidk log(αidk +Nidk)

]

+

q∗i∑
d=1

[
−αid log(αid +Nid) +

ri∑
k=1

αidk log(αidk +Nidk)

]

+
1

2

q∗i∑
d=1

[
log(αid +Nid)−

ri∑
k=1

log(αidk +Nidk) + αid +Nid −
ri∑
k=1

(αidk +Nidk)

]
+const.

= lim
N→∞

q∗i∑
d=1

[
−Nid log(αid +Nid) +

ri∑
k=1

Nidk log(αidk +Nidk)

]

+

q∗i∑
d=1

[
−αid log(αid +Nid) +

ri∑
k=1

αidk log(αidk +Nidk)

]

+
1

2

q∗i∑
d=1

[
log(αid +Nid)−

ri∑
k=1

log(αidk +Nidk)

]
+const. (4.24)

109



In the last step of Equation (4.24), we used the facts that

ri∑
k=1

Nidk = Nid and

ri∑
k=1

αidk = αid,

and we can apply these identities again to that equation to obtain the following:

lim
N→∞

logP (DXi
|Pa∗(Xi)) =

lim
N→∞

q∗i∑
d=1

ri∑
k=1

[
Nidk log(

αidk +Nidk

αid +Nid

) + αidk log(
αidk +Nidk

αid +Nid

)

]

+
1

2

q∗i∑
d=1

[
log(αid +Nid)−

ri∑
k=1

log(αidk +Nidk)

]
+const.

(4.25)

Given that

lim
N→∞

αidk +Nidk

αid +Nid

=
Nidk

Nid

and

lim
N→∞

q∗i∑
d=1

ri∑
k=1

αidk log(
αidk +Nidk

αid +Nid

) = const.,

in the limit, Equation (4.25) becomes:

lim
N→∞

logP (DXi
|Pa∗(Xi)) =

lim
N→∞

q∗i∑
d=1

ri∑
k=1

Nidk log
Nidk

Nid

+
1

2

q∗i∑
d=1

[
log(αid +Nid)−

ri∑
k=1

log(αidk +Nidk)

]
+const.,

(4.26)

or equivalently:

lim
N→∞

logP (DXi
|Pa∗(Xi)) =

lim
N→∞

N ·
q∗i∑
d=1

ri∑
k=1

Nidk

N
log

Nidk

Nid

+
1

2

q∗i∑
d=1

[
log(αid +Nid)−

ri∑
k=1

log(αidk +Nidk)

]
+const.

= lim
N→∞

−N ·HXi|Pa∗(Xi) +
1

2

q∗i∑
d=1

[
log(αid +Nid)−

ri∑
k=1

log(αidk +Nidk)

]
+const.

(4.27)
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To simplify the second term in Equation (4.27), we divide the log terms byN and equivalently

add logN terms as follows:

1

2

q∗i∑
d=1

[
log(αid +Nid)−

ri∑
k=1

log(αidk +Nidk)

]
=

1

2

q∗i∑
d=1

[
log(

αid +Nid

N
) + logN −

ri∑
k=1

log(
αidk +Nidk

N
) + logN

]

=
1

2

q∗i∑
d=1

(
logN −

ri∑
k=1

logN

)
+

1

2

q∗i∑
d=1

[
log(

αid +Nid

N
)−

ri∑
k=1

log(
αidk +Nidk

N
)

]

= −q
∗
i (ri − 1)

2
logN + const.

(4.28)

Combining Equations (4.27) and (4.28), we obtain:

lim
N→∞

logP (DXi
|Pa∗(Xi)) = lim

N→∞
−N ·HXi|Pa∗(Xi) −

q∗i · (ri − 1)

2
logN + const. (4.29)

Similarly, we can derive lim
N→∞

logP (DXi
|PaPW(Xi)) using the BD score (Equation (4.4)) as

follows:

lim
N→∞

logP (DXi
|PaPW(Xi)) = lim

N→∞
−N ·HXi|PaPW(Xi) −

qi · (ri − 1)

2
logN + const., (4.30)

where qi is the number of possible parent instantiations of Xi in the data-generating model

GPW, without considering the CSI structure.

Suppose UT ⊆ PaPW(Xi) denotes the data-degenerating instance-specific parents of Xi

in GIS for instance T ; as described in the example shown in Figure 12, there are three possible

cases.

Case 1: Pa′IS(Xi) = UT , which indicates that the instance-specific hypothesis parent set

Pa′IS(Xi) is the same as the instance-specific data-generating parents of Xi for T . There are

two possible situations:

Case 1a: UT = PaPW (Xi), which indicates that Xi does not include any CSI parent

structure for T . To compare the scores of the instance-specific hypothesis structure to the

data-generating structure, we combine Equations (4.29) and (4.30) as follows:

lim
N→∞

log
P (DXi

|Pa∗,1a(Xi))

P (DXi
|PaPW(Xi))

=

lim
N→∞

N · [−HXi|Pa∗,1a(Xi) +HXi|PaPW(Xi)] +
(ri − 1)(qi − q∗,1ai )

2
logN,

(4.31)
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where Pa∗,1a(Xi) denotes the combined parent set given in case 1a and q∗,1ai denotes the

number of its instantiations. In Equation (4.31), Pa∗,1a(Xi) contains exactly the same

information as PaPW(Xi), and as a result, the entropy of Xi remains the same given either

Pa∗,1a(Xi) or PaPW(Xi). Also, the number of parameters will remain exactly the same.

Therefore, Equation (4.31) goes to 1.0 in the limit as N →∞.

Case 1b: UT ⊂ PaPW (Xi), which indicates that Xi include a CSI parent structure

that holds in T . Similar to case 1a, we compare the scores of the instance-specific hypothesis

structure to the data-generating structure as follows:

lim
N→∞

log
P (DXi

|Pa∗,1b(Xi))

P (DXi
|PaPW(Xi))

=

lim
N→∞

N · [−HXi|Pa∗,1b(Xi)
+HXi|PaPW(Xi)] +

(ri − 1)(qi − q∗,1bi )

2
logN.

(4.32)

The combined parent set Pa∗,1b(Xi) does not change the distribution; rather, it compacts

the parameters that are the same due to the CSI structure in UT . Therefore, Pa∗,1b(Xi)

contains exactly the same information as the data-degenerating population-wide parents

PaPW(Xi), and as a result, the entropy of Xi remains the same given either Pa∗,1b(Xi) or

PaPW(Xi). Consequently, the first term in Equation (4.32) cancels and we obtain:

lim
N→∞

log
P (DXi

|Pa∗,1(Xi))

P (DXi
|PaPW(Xi))

= lim
N→∞

(ri − 1)(qi − q∗,1i )

2
logN. (4.33)

Given that qi > q∗,1bi , the term (qi − q∗,1bi ) becomes a positive constant; also, the term (ri−1)
2

is a positive constant. Therefore, Equation (4.33) goes to infinity in the limit as N →∞.

Case 2: Pa′IS(Xi) 6= UT and Pa′IS(Xi) ∩ UT = UT , which indicates that the instance-

specific hypothesis parent set Pa′IS(Xi) includes all variables in UT and may include other

variables outside of UT . We need to compare case 1 2 versus case 2 as follows:

lim
N→∞

log
P (DXi

|Pa∗,1(Xi))

P (DXi
|Pa∗,2(Xi))

=

lim
N→∞

N · [−HXi|Pa∗,1(Xi) +HXi|Pa∗,2(Xi)] +
(ri − 1)(q∗,2i − q

∗,1
i )

2
logN,

(4.34)

2The result holds for both case 1a and case 1b, and thus, we do not make a distinction in our discussion
here.
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where Pa∗,1(Xi) and Pa∗,2(Xi) denote the combined parent set in case 1 and case 2, and

q∗,1i and q∗,2i denote the number of instantiations of these parent sets, respectively. The

additional variables in the combined parent set Pa∗,2(Xi) do not affect the distribution of

Xi, and consequently, the entropy of Xi remains the same given Pa∗,2(Xi). Therefore, the

first term in Equation (4.34) cancels and we obtain:

lim
N→∞

log
P (DXi

|Pa∗,1(Xi))

P (DXi
|Pa∗,2(Xi))

= lim
N→∞

(ri − 1)(q∗,2i − q
∗,1
i )

2
logN. (4.35)

Since q∗,2i > q∗,1i , the term (q∗,2i − q
∗,1
i ) becomes a positive constant; also, the term (ri−1)

2
is

a positive constant. Thus, Equation (4.35) approaches to ∞ as N → ∞. This result holds

regardless of whether UT does include CSI structure (case 1a) or not (case 1b).

Case 3: Pa′IS(Xi) 6= UT and Pa′IS(Xi)∩UT 6= UT , which indicates that the instance-

specific hypothesis parent set Pa′IS(Xi) does not include all of the variables in UT may

include variables outside of UT . Comparing case 1 3 versus case 3 we have:

lim
N→∞

log
P (DXi

|Pa∗,1(Xi))

P (DXi
|Pa∗,3(Xi))

=

lim
N→∞

N · [−HXi|Pa∗,1(Xi) +HXi|Pa∗,3(Xi)] +
(ri − 1)(q∗,3i − q

∗,1
i )

2
logN,

(4.36)

where the first term is of O(N) and dominates the second and third terms, which are of

O(logN). Therefore, we get:

lim
N→∞

log
P (DXi

|Pa∗,1(Xi))

P (DXi
|Pa∗,3(Xi))

= lim
N→∞

N · [−HXi|Pa∗,1(Xi) +HXi|Pa∗,3(Xi)]. (4.37)

Using the combined parent set Pa∗,3(Xi) implies that the probability distribution for all

instantiations of the variables in Y i = Pa∗,3(Xi)\Pa′IS(Xi) are the same according to the

CSI structure encoded in Pa′IS(Xi); however, they are not all the same according to the

data-generating model. Therefore, the entropy of Xi given the combined parent set in

case 3 (i.e., HXi|Pa∗,3(Xi)) will increase compared to Xi’s entropy given the data-generating

combined parents in case 1 (i.e., HXi|Pa∗,1(Xi)) due to information loss. As a result, the term

−HXi|Pa∗,1(Xi) +HXi|Pa∗,3(Xi) in Equation (4.37) becomes a positive number; thus, Equation

3The result holds for both case 1a and case 1b, and thus, we do not make a distinction in our discussion
here.

113



(4.37) becomes ∞ as N →∞. This result holds regardless of whether UT does include CSI

structure (case 1a) or not (case 1b).

4.5 Experimental Results

In this section, we evaluate the performance of the instance-specific structure discovery

algorithm, IGES, versus a state-of-the-art population-wide method, GES. We applied these

two algorithms on both simulated and real-world datasets.

4.5.1 Simulated data

To generate simulated data, we randomly generated Bayesian networks that are used to

simulate data by applying the following steps:

1. For each Bayesian network M = (G,Θ), we first created a DAG G = (V ,E) with

|V | = {10, 20, 50} discrete random variables and |E| = {2|V |, 4|V |, 6|V |} expected

edge densities. In order to generate G, we created an arbitrary ordering of variables 4.

Then, we uniformly randomly added edges to G in a forward direction until obtaining

the specified number of edges. The DAGs generated in this way have a power-law-type

distribution over the number of parents, with some variables having many more than the

average number of parents.

2. We then parametrized the distribution of each random variable X ∈ V given its parents

Pa(X) according to DAG G. Each discrete variable X may have 2, 3, or 4 categories,

which is chosen randomly. Given the number of categories of X and its parents Pa(X),

we randomly initialized the conditional probability table for P (X|Pa(X)) under the

constraints that follow from the axioms of probability theory. We also included context-

specific independencies (CSIs) in the CPTs so that each node that has more than one

parent includes at least one CSI relationship. CSI parents generated this way are a

4This ordering is only used to generate the BNs; we do not use it when applying GES or IGES.
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proper subset of the population-wide parents in the data-generating model. In the CBNs

with the edge density of 2|V |, 4|V |, and 6|V | about 28%, 38%, and 48% of the variables

(on average) exhibit CSI in each simulated test case T , respectively.

3. Given the randomly generated CBN M = (G,Θ), we simulated a training dataset D

with N = {200, 1000, 5000} training samples.

4. We also generated M = 500 test instances from the randomly generated CBN M =

(G,Θ); we refer to each test instance as T .

5. We used the training set D generated in step 3 along with each of the 500 test instances

generated in step 4 to learn 500 instance-specific CBN structures for each test instance

T using IGES (Algorithm 10); we denote this CBN structure by GIS5. We also used D to

learn a single population-wide CBN structure for all test instances using the GES method

(Algorithm 9); we refer to this CBN structure as GPW. We used a prior equivalence sample

size of PESS = 1.0 for both IGES and GES methods.

6. Finally, we computed evaluation measures (described below) to compare the structure

recovery performance of IGES versus GES. To do so, we obtained the ground-truth

pattern for each test instance T considering the existing CSIs associated with T (steps 1

and 2); we refer to this graph as Gtruth. We compared GPW and GIS versus Gtruth for each

test case and reported the average of measures over the M = 500 test cases.

We repeated the above steps 10 times and computed the average of the evaluation mea-

sures (defined below) over those runs.

4.5.1.1 Pattern structure discovery performance measures In this section, I de-

scribe the evaluation measures that are used to calculate the structural similarity of a dis-

covered pattern Goutput, which is GPW when using GES and GIS when using IGES, versus the

ground-truth pattern Gtruth, which is derived for a given test instance T . One such measure

is structural Hamming distance (SHD) that counts the edge modifications, which can include

added, deleted, and reoriented edges, by comparing each possible edge in Goutput and Gtruth.

We define two versions of SHD as follows:

5IGES outputs both GIS and GPW for completeness, but GIS is what it actually learns as the instance-
specific CBN structure for a given instance T .
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• Strict SHD (S-SHD): This version counts any edge modifications, which are added,

deleted, and reoriented edges. The S-SHD would be 0 if two edges are exactly the

same; otherwise, it is 1. Any extra or missing edge would also count as 1 in terms of

S-SHD. Table 22 shows how to compute S-SHD for patterns.

• Adjacency SHD (A-SHD): In this version, we compute SHD on the skeleton-level

by comparing the adjacencies of two graphs, which disregards the edge orientations

and only counts the edge modifications of the adjacency graph that includes added

and deleted edges. For example, if one graph includes A → B but there is no edge

between A and B in the other one, then A-SHD would be 1.

Table 22: Strict SHD (S-SHD) for patterns. The rows and columns correspond to the edge

types output by the algorithm and the data-generating edge types, respectively.

Output Edge/ Truth Edge A→ B A — B A B

A→ B(B → A) 0 (1) 1 1

A — B 1 0 1

A B 1 1 0

Other performance criteria we used to evaluate discrimination are precision (P) and recall

(R) for adjacencies and arrowheads as follows:

• Adjacency precision (AP): we compute the ratio of correctly predicted edges in

Goutput to all predicted edges in Goutput (without considering orientations of edges) as

follows:

AP =
#correctly predicted adjacencies

#predicted adjacencies
(4.38)

• Adjacency recall (AR): we compute the ratio of correctly predicted edges in Goutput
to all true edges in Gtruth (without considering the edges’ orientations) as follows:

AR =
#correctly predicted adjacencies

#true adjacencies
(4.39)
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• Arrowhead precision (AHP): considering the pairs of variables that have an edge

between them in the predicted graph Goutput, we compute the ratio of correctly predicted

arrowheads in Goutput to all predicted arrowheads in Goutput as follows:

AHP =
#correctly predicted arrowheads

#predicted arrowheads
(4.40)

• Arrowhead recall (AHR): considering the pairs of variables that have an edge be-

tween them in the ground-truth graph Gtruth, we compute the ratio of correctly pre-

dicted arrowheads in Goutput to all true arrowheads in Gtruth as follows:

AHR =
#correctly predicted arrowheads

#true arrowheads
(4.41)

Since we are evaluating methods using data that have been generated by instance-specific

models, the ground-truth CBN Gtruth is derived based on the given test instance T . There

are two possibilities: nodes that include context-specific independence (CSI), for which we

derive precision (PIS) and recall statistics(RIS), and nodes that do not include CSI, for which

we derive separate precision (Pother) and recall (Rother) statistics. We also combine these two

types of nodes to derive overall precision (P) and recall (R) statistics. Consider the CBN

example in Figure 13. Given a test instance T = {X1 = 0, X2 = 0, X3 = 0, X4 = 0}, in

which the CSI relationship X4 ⊥⊥c {X2, X3}|X1 = 0 holds, X4 is considered in the PIS and

RIS calculations. However, in another test instance T = {X1 = 1, X2 = 0, X3 = 0, X4 = 0},

which does not encode any CSI relationship, X4 will be considered in the Pother and Rother

calculations. Both test instances are used in deriving P and R. As this example demonstrates,

the ground-truth for each node is therefore either an instance-specific structure if it includes

CSI (which can vary with the instance) or a population-wide structure if it does not include

CSI (which does not vary). The predicted parent set for Xi is the population-wide parents

of Xi in GPW when using the GES algorithm, and it is the instance-specific parents of Xi in

GIS when using IGES.
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a

Figure 13: This CBN example contains two context-specific independence (CSI) structures:

X4 ⊥⊥c {X2, X3}|X1 = 0 and X4 ⊥⊥c X3|{X1 = 1, X2 = 1}.

4.5.1.2 Simulation results Tables 23, 24, and 25 show the average adjacency preci-

sion and recall of the instance-specific CBNs found by IGES (κ = 0.1)6 and population-

wide CBN found by GES over the randomly generated CBNs described above, using

N = {200, 1000, 5000} training instances, respectively. As shown in these tables, when

N = 200, both IGES and GES methods perform similarly in terms of adjacency precision,

while IGES has a slightly lower adjacency recall. As the sample size increases to N = 1000,

both methods perform better in terms of adjacency recall. However, the adjacency pre-

cision performance of GES often decreases, while the adjacency precision performance of

IGES (κ = 0.1) slightly increased or remained the same. Increasing the training set size to

N = 5000 results in even better adjacency recall for both methods; however, GES often loses

more adjacency precision compared to IGES, especially for the CBNs with more variables

and edges. For example, in CBNs with 50 variables and 300 edges, GES adjacency precision

decreases from 0.93 (N = 200 cases) to 0.77 (N = 5000 cases). However, IGES (κ = 0.1) ad-

jacency precision decreases from 0.93 (N = 200 cases) to 0.90 (N = 5000 cases), while IGES

and GES perform similarly in terms of adjacency recall (∼ 0.50). In most cases, κ = 0.1

gives the best results for the IGES method.

Tables 26, 27, and 28 show the average arrowhead precision and recall of the instance-

specific CBNs and population-wide CBN over 10 randomly generated CBNs described above,

using N = {200, 1000, 5000} training instances, respectively. As these tables demonstrate,

6Results using different values of κ = {0.001, 0.1, 0.5, 0.9} values are reported in Appendix A.
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when using N = 200 training instances, both IGES (κ = 0.1) and GES methods perform

similarly in terms of arrowhead precision and recall for CBNs with 10 variables but IGES per-

forms better, especially in terms of arrowhead precision, for CBNs with 20 and 50 variables.

As the sample size increases to N = 1000 and N = 5000 cases, both methods perform better

in terms of arrowhead precision and recall, but IGES outperforms GES in terms of arrowhead

precision, without hurting the arrowhead recall. For example, when using N = 5000 cases

for CBNs with 50 variables and 200 edges, arrowhead precision of IGES (κ = 0.1) increased

to 0.74 (compared to 0.61 with N = 200 training instances) and arrowhead precision of

GES became 0.61 (compared to 0.58 with N = 200 training instances), while both methods

perform similar in terms of arrowhead recall ∼ 0.50 (compared to ∼ 0.10 with N = 200).

We also computed the structural Hamming distance (SHD) to compare the performance

of the search procedures on each given instance T . As described in Section 4.5.1.1, the SHD

between two graphs (patterns in the case of IGES and GES algorithms) is composed of three

edge modifications: added, deleted, and reversed edges, which we refer to as strict SHD

(S-SHD). We also computed the adjacency SHD (A-SHD) that only counts the number of

added and deleted edges on the skeletons of the graphs. Tables 29, 30, and 31 show the

average results on the IGES and GES methods when using N = {200, 1000, 5000} training

samples, respectively. In these experiments, when using N = 200 training instances, the

average S-SHD is similar using both IGES and GES methods. By increasing the training

samples to N = 1000 and N = 5000, both methods perform better in terms of A-SHD and

S-SHD; however, IGES performs notably better, especially in CBNs with more variables and

edges. This improvement is mainly due to fewer number of added edges, especially in the

nodes with CSI structure (denoted by IS in tables). Based on these simulations, the IGES

algorithm often results in less erroneously added and reversed edges but more deleted edges

when compared to the GES method.
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Table 23: Adjacency precision (P) and recall (R) results for N = 200 training instances. For

the IGES method, a penalty factor κ = 0.1 is used to penalize the structural difference be-

tween the population-wide and instance-specific CBNs. The numbers after ‘±’ are standard

deviations. Boldface indicates that the results are statistically significantly better, based on

Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES 0.73 ± 0.14 0.94 ± 0.10 0.88 ± 0.09 0.43 ± 0.14 0.42 ± 0.12 0.42 ± 0.10

GES 0.75 ± 0.16 0.97 ± 0.05 0.89 ± 0.07 0.60 ± 0.18 0.50 ± 0.11 0.54 ± 0.08

40

IGES 0.79 ± 0.10 0.89 ± 0.10 0.87 ± 0.06 0.29 ± 0.07 0.26 ± 0.08 0.27 ± 0.07

GES 0.76 ± 0.13 0.90 ± 0.12 0.84 ± 0.11 0.35 ± 0.06 0.32 ± 0.07 0.33 ± 0.05

60

IGES 0.85 ± 0.08 0.92 ± 0.13 0.94 ± 0.05 0.38 ± 0.11 0.23 ± 0.08 0.30 ± 0.09

GES 0.85 ± 0.09 0.99 ± 0.02 0.92 ± 0.07 0.43 ± 0.09 0.29 ± 0.07 0.34 ± 0.06

20

40

IGES 0.83 ± 0.10 0.95 ± 0.07 0.89 ± 0.07 0.44 ± 0.14 0.37 ± 0.06 0.39 ± 0.08

GES 0.81 ± 0.10 0.97 ± 0.05 0.89 ± 0.08 0.54 ± 0.10 0.48 ± 0.10 0.49 ± 0.08

80

IGES 0.87 ± 0.07 0.92 ± 0.12 0.90 ± 0.05 0.35 ± 0.07 0.24 ± 0.08 0.29 ± 0.07

GES 0.85 ± 0.07 0.96 ± 0.09 0.91 ± 0.05 0.40 ± 0.06 0.26 ± 0.07 0.34 ± 0.04

120

IGES 0.89 ± 0.09 0.96 ± 0.04 0.93 ± 0.06 0.28 ± 0.07 0.19 ± 0.07 0.23 ± 0.07

GES 0.88 ± 0.10 0.99 ± 0.02 0.92 ± 0.07 0.33 ± 0.05 0.23 ± 0.05 0.28 ± 0.05

50

100

IGES 0.85 ± 0.04 0.92 ± 0.05 0.88 ± 0.04 0.43 ± 0.07 0.35 ± 0.05 0.38 ± 0.05

GES 0.86 ± 0.04 0.98 ± 0.03 0.92 ± 0.03 0.47 ± 0.06 0.41 ± 0.06 0.44 ± 0.04

200

IGES 0.86 ± 0.05 0.93 ± 0.03 0.89 ± 0.04 0.31 ± 0.04 0.20 ± 0.03 0.24 ± 0.03

GES 0.88 ± 0.03 0.98 ± 0.03 0.92 ± 0.03 0.35 ± 0.02 0.21 ± 0.01 0.27 ± 0.01

300

IGES 0.89 ± 0.04 0.97 ± 0.03 0.92 ± 0.03 0.25 ± 0.07 0.15 ± 0.03 0.19 ± 0.05

GES 0.92 ± 0.02 0.99 ± 0.02 0.95 ± 0.02 0.30 ± 0.05 0.19 ± 0.04 0.24 ± 0.04

Summary statistics
IGES 0.84 ± 0.05 0.93 ± 0.02 0.90 ± 0.02 0.35 ± 0.07 0.27 ± 0.09 0.30 ± 0.07

GES 0.84 ± 0.05 0.97 ± 0.03 0.91 ± 0.03 0.42 ± 0.10 0.32 ± 0.11 0.36 ± 0.10
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Table 24: Adjacency precision (P) and recall (R) results for N = 1000 training instances.

For the IGES method, a penalty factor κ = 0.1 is used to penalize the structural differ-

ence between the population-wide and instance-specific CBNs. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES 0.82 ± 0.10 0.93 ± 0.06 0.89 ± 0.06 0.72 ± 0.13 0.63 ± 0.12 0.65 ± 0.11

GES 0.72 ± 0.11 0.93 ± 0.06 0.83 ± 0.07 0.83 ± 0.11 0.70 ± 0.14 0.73 ± 0.12

40

IGES 0.83 ± 0.07 0.97 ± 0.04 0.88 ± 0.05 0.53 ± 0.12 0.40 ± 0.06 0.46 ± 0.09

GES 0.77 ± 0.08 0.98 ± 0.03 0.85 ± 0.05 0.60 ± 0.07 0.47 ± 0.10 0.53 ± 0.07

60

IGES 0.78 ± 0.10 0.96 ± 0.08 0.87 ± 0.07 0.43 ± 0.10 0.36 ± 0.09 0.38 ± 0.09

GES 0.72 ± 0.12 0.96 ± 0.08 0.84 ± 0.09 0.48 ± 0.10 0.43 ± 0.11 0.45 ± 0.09

20

40

IGES 0.88 ± 0.09 0.93 ± 0.06 0.91 ± 0.07 0.69 ± 0.08 0.58 ± 0.07 0.61 ± 0.06

GES 0.77 ± 0.09 0.96 ± 0.05 0.87 ± 0.05 0.76 ± 0.11 0.61 ± 0.04 0.66 ± 0.05

80

IGES 0.88 ± 0.06 0.96 ± 0.05 0.91 ± 0.05 0.50 ± 0.05 0.40 ± 0.07 0.45 ± 0.05

GES 0.73 ± 0.09 0.98 ± 0.05 0.82 ± 0.07 0.53 ± 0.06 0.42 ± 0.07 0.48 ± 0.06

120

IGES 0.85 ± 0.06 0.92 ± 0.06 0.88 ± 0.06 0.46 ± 0.05 0.32 ± 0.06 0.39 ± 0.06

GES 0.79 ± 0.07 0.94 ± 0.06 0.85 ± 0.06 0.49 ± 0.05 0.33 ± 0.04 0.42 ± 0.04

50

100

IGES 0.88 ± 0.05 0.96 ± 0.01 0.93 ± 0.02 0.68 ± 0.05 0.61 ± 0.07 0.64 ± 0.05

GES 0.74 ± 0.05 0.99 ± 0.01 0.87 ± 0.03 0.73 ± 0.05 0.63 ± 0.07 0.67 ± 0.04

200

IGES 0.88 ± 0.03 0.93 ± 0.04 0.91 ± 0.03 0.52 ± 0.06 0.38 ± 0.06 0.44 ± 0.06

GES 0.79 ± 0.03 0.95 ± 0.04 0.86 ± 0.03 0.52 ± 0.05 0.36 ± 0.06 0.43 ± 0.05

300

IGES 0.88 ± 0.03 0.95 ± 0.02 0.91 ± 0.02 0.46 ± 0.04 0.31 ± 0.05 0.37 ± 0.04

GES 0.78 ± 0.03 0.98 ± 0.03 0.86 ± 0.03 0.47 ± 0.03 0.32 ± 0.05 0.38 ± 0.04

Summary statistics
IGES 0.85 ± 0.03 0.95 ± 0.02 0.90 ± 0.02 0.55 ± 0.10 0.44 ± 0.12 0.49 ± 0.11

GES 0.76 ± 0.03 0.96 ± 0.02 0.85 ± 0.02 0.60 ± 0.13 0.47 ± 0.13 0.53 ± 0.12

121



Table 25: Adjacency precision (P) and recall (R) results for N = 5000 training instances.

For the IGES method, a penalty factor κ = 0.1 is used to penalize the structural differ-

ence between the population-wide and instance-specific CBNs. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES 0.86 ± 0.10 0.93 ± 0.07 0.90 ± 0.07 0.83 ± 0.06 0.83 ± 0.07 0.83 ± 0.05

GES 0.56 ± 0.08 0.93 ± 0.07 0.75 ± 0.06 0.92 ± 0.08 0.90 ± 0.05 0.90 ± 0.05

40

IGES 0.81 ± 0.11 0.96 ± 0.05 0.87 ± 0.07 0.69 ± 0.08 0.59 ± 0.07 0.63 ± 0.07

GES 0.60 ± 0.10 0.96 ± 0.07 0.75 ± 0.08 0.80 ± 0.11 0.74 ± 0.10 0.76 ± 0.09

60

IGES 0.76 ± 0.11 0.97 ± 0.04 0.85 ± 0.07 0.65 ± 0.08 0.55 ± 0.07 0.59 ± 0.06

GES 0.57 ± 0.05 0.98 ± 0.05 0.75 ± 0.05 0.70 ± 0.11 0.65 ± 0.10 0.67 ± 0.10

20

40

IGES 0.84 ± 0.07 0.93 ± 0.07 0.89 ± 0.06 0.82 ± 0.08 0.79 ± 0.05 0.80 ± 0.05

GES 0.58 ± 0.07 0.92 ± 0.08 0.74 ± 0.06 0.92 ± 0.04 0.86 ± 0.04 0.88 ± 0.01

80

IGES 0.84 ± 0.06 0.92 ± 0.05 0.88 ± 0.05 0.64 ± 0.05 0.58 ± 0.07 0.62 ± 0.04

GES 0.61 ± 0.08 0.95 ± 0.05 0.73 ± 0.04 0.69 ± 0.06 0.61 ± 0.07 0.66 ± 0.04

120

IGES 0.81 ± 0.04 0.89 ± 0.05 0.85 ± 0.04 0.58 ± 0.07 0.47 ± 0.06 0.52 ± 0.06

GES 0.62 ± 0.03 0.88 ± 0.07 0.73 ± 0.03 0.62 ± 0.07 0.51 ± 0.07 0.56 ± 0.06

50

100

IGES 0.87 ± 0.06 0.94 ± 0.03 0.90 ± 0.04 0.81 ± 0.03 0.79 ± 0.05 0.80 ± 0.03

GES 0.61 ± 0.05 0.95 ± 0.04 0.78 ± 0.05 0.87 ± 0.04 0.82 ± 0.06 0.84 ± 0.04

200

IGES 0.85 ± 0.02 0.93 ± 0.02 0.89 ± 0.02 0.65 ± 0.04 0.55 ± 0.05 0.59 ± 0.05

GES 0.63 ± 0.02 0.95 ± 0.02 0.76 ± 0.02 0.67 ± 0.05 0.54 ± 0.06 0.59 ± 0.06

300

IGES 0.88 ± 0.04 0.92 ± 0.03 0.90 ± 0.03 0.59 ± 0.04 0.49 ± 0.04 0.53 ± 0.04

GES 0.66 ± 0.04 0.95 ± 0.03 0.78 ± 0.04 0.61 ± 0.05 0.47 ± 0.05 0.53 ± 0.04

Summary statistics
IGES 0.83 ± 0.04 0.93 ± 0.02 0.88 ± 0.02 0.70 ± 0.09 0.63 ± 0.13 0.66 ± 0.11

GES 0.61 ± 0.03 0.94 ± 0.03 0.75 ± 0.02 0.76 ± 0.12 0.68 ± 0.15 0.71 ± 0.13
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Table 26: Arrowhead precision (P) and recall (R) results for N = 200 training instances. For

the IGES method, a penalty factor κ = 0.1 is used to penalize the structural difference be-

tween the population-wide and instance-specific CBNs. The numbers after ‘±’ are standard

deviations. Boldface indicates that the results are statistically significantly better, based on

Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES 0.40 ± 0.16 0.30 ± 0.35 0.34 ± 0.36 0.41 ± 0.15 0.14 ± 0.14 0.14 ± 0.13

GES 0.37 ± 0.18 0.37 ± 0.37 0.33 ± 0.36 0.41 ± 0.17 0.17 ± 0.18 0.14 ± 0.14

40

IGES 0.30 ± 0.18 0.14 ± 0.14 0.23 ± 0.19 0.25 ± 0.16 0.04 ± 0.04 0.07 ± 0.06

GES 0.22 ± 0.18 0.12 ± 0.14 0.14 ± 0.17 0.18 ± 0.15 0.04 ± 0.03 0.05 ± 0.05

60

IGES 0.45 ± 0.23 0.34 ± 0.22 0.40 ± 0.33 0.38 ± 0.15 0.09 ± 0.04 0.10 ± 0.08

GES 0.40 ± 0.24 0.27 ± 0.26 0.37 ± 0.33 0.33 ± 0.18 0.07 ± 0.04 0.09 ± 0.07

20

40

IGES 0.19 ± 0.13 0.52 ± 0.35 0.49 ± 0.32 0.17 ± 0.14 0.12 ± 0.09 0.13 ± 0.08

GES 0.13 ± 0.12 0.50 ± 0.39 0.42 ± 0.33 0.13 ± 0.14 0.12 ± 0.10 0.12 ± 0.10

80

IGES 0.32 ± 0.16 0.44 ± 0.17 0.46 ± 0.18 0.22 ± 0.14 0.09 ± 0.06 0.11 ± 0.07

GES 0.26 ± 0.18 0.40 ± 0.25 0.42 ± 0.26 0.18 ± 0.17 0.07 ± 0.06 0.09 ± 0.08

120

IGES 0.38 ± 0.22 0.45 ± 0.29 0.44 ± 0.25 0.22 ± 0.15 0.08 ± 0.05 0.10 ± 0.06

GES 0.30 ± 0.23 0.39 ± 0.31 0.35 ± 0.27 0.18 ± 0.13 0.07 ± 0.05 0.09 ± 0.06

50

100

IGES 0.34 ± 0.21 0.62 ± 0.25 0.58 ± 0.23 0.14 ± 0.09 0.13 ± 0.05 0.14 ± 0.05

GES 0.27 ± 0.16 0.69 ± 0.32 0.58 ± 0.27 0.11 ± 0.08 0.11 ± 0.05 0.11 ± 0.05

200

IGES 0.53 ± 0.12 0.63 ± 0.17 0.61 ± 0.13 0.25 ± 0.09 0.08 ± 0.03 0.11 ± 0.04

GES 0.50 ± 0.12 0.67 ± 0.22 0.61 ± 0.16 0.22 ± 0.08 0.07 ± 0.03 0.09 ± 0.03

300

IGES 0.57 ± 0.14 0.59 ± 0.18 0.66 ± 0.12 0.16 ± 0.12 0.04 ± 0.03 0.06 ± 0.05

GES 0.56 ± 0.11 0.67 ± 0.22 0.72 ± 0.15 0.12 ± 0.07 0.03 ± 0.02 0.04 ± 0.03

Summary statistics
IGES 0.39 ± 0.11 0.45 ± 0.15 0.47 ± 0.13 0.24 ± 0.09 0.09 ± 0.03 0.11 ± 0.03

GES 0.33 ± 0.13 0.45 ± 0.19 0.44 ± 0.16 0.20 ± 0.10 0.08 ± 0.04 0.09 ± 0.03
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Table 27: Arrowhead precision (P) and recall (R) results for N = 1000 training instances.

For the IGES method, a penalty factor κ = 0.1 is used to penalize the structural differ-

ence between the population-wide and instance-specific CBNs. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES 0.52 ± 0.21 0.57 ± 0.21 0.55 ± 0.17 0.53 ± 0.20 0.38 ± 0.09 0.40 ± 0.10

GES 0.36 ± 0.22 0.49 ± 0.24 0.43 ± 0.13 0.42 ± 0.22 0.37 ± 0.15 0.40 ± 0.14

40

IGES 0.42 ± 0.20 0.52 ± 0.15 0.47 ± 0.16 0.47 ± 0.20 0.27 ± 0.09 0.29 ± 0.10

GES 0.38 ± 0.20 0.44 ± 0.21 0.44 ± 0.20 0.46 ± 0.18 0.21 ± 0.10 0.25 ± 0.11

60

IGES 0.31 ± 0.17 0.41 ± 0.17 0.39 ± 0.17 0.30 ± 0.18 0.17 ± 0.10 0.19 ± 0.11

GES 0.23 ± 0.12 0.36 ± 0.18 0.32 ± 0.19 0.29 ± 0.20 0.15 ± 0.10 0.16 ± 0.12

20

40

IGES 0.66 ± 0.15 0.68 ± 0.15 0.68 ± 0.14 0.59 ± 0.17 0.41 ± 0.12 0.44 ± 0.12

GES 0.42 ± 0.15 0.66 ± 0.18 0.58 ± 0.13 0.54 ± 0.22 0.40 ± 0.11 0.43 ± 0.12

80

IGES 0.53 ± 0.13 0.79 ± 0.12 0.73 ± 0.11 0.53 ± 0.17 0.27 ± 0.07 0.32 ± 0.07

GES 0.35 ± 0.08 0.82 ± 0.16 0.60 ± 0.09 0.58 ± 0.12 0.25 ± 0.08 0.30 ± 0.08

120

IGES 0.43 ± 0.10 0.66 ± 0.13 0.58 ± 0.10 0.45 ± 0.12 0.20 ± 0.05 0.24 ± 0.05

GES 0.36 ± 0.11 0.67 ± 0.18 0.54 ± 0.13 0.47 ± 0.18 0.19 ± 0.04 0.23 ± 0.05

50

100

IGES 0.60 ± 0.12 0.84 ± 0.10 0.79 ± 0.07 0.49 ± 0.14 0.43 ± 0.11 0.44 ± 0.10

GES 0.31 ± 0.08 0.86 ± 0.11 0.63 ± 0.09 0.53 ± 0.17 0.41 ± 0.11 0.43 ± 0.11

200

IGES 0.64 ± 0.16 0.77 ± 0.10 0.73 ± 0.11 0.57 ± 0.09 0.28 ± 0.04 0.33 ± 0.05

GES 0.46 ± 0.08 0.75 ± 0.13 0.62 ± 0.09 0.57 ± 0.06 0.24 ± 0.03 0.29 ± 0.04

300

IGES 0.66 ± 0.06 0.77 ± 0.08 0.73 ± 0.07 0.54 ± 0.12 0.21 ± 0.05 0.26 ± 0.06

GES 0.48 ± 0.05 0.78 ± 0.10 0.65 ± 0.07 0.51 ± 0.09 0.19 ± 0.05 0.24 ± 0.05

Summary statistics
IGES 0.53 ± 0.12 0.67 ± 0.14 0.63 ± 0.13 0.50 ± 0.08 0.29 ± 0.09 0.32 ± 0.08

GES 0.37 ± 0.07 0.65 ± 0.17 0.53 ± 0.11 0.49 ± 0.09 0.27 ± 0.09 0.30 ± 0.09
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Table 28: Arrowhead precision (P) and recall (R) results for N = 5000 training instances.

For the IGES method, a penalty factor κ = 0.1 is used to penalize the structural differ-

ence between the population-wide and instance-specific CBNs. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES 0.56 ± 0.22 0.70 ± 0.25 0.66 ± 0.21 0.59 ± 0.21 0.70 ± 0.11 0.68 ± 0.13

GES 0.23 ± 0.18 0.69 ± 0.26 0.49 ± 0.14 0.52 ± 0.30 0.74 ± 0.14 0.72 ± 0.16

40

IGES 0.53 ± 0.26 0.56 ± 0.22 0.54 ± 0.21 0.60 ± 0.28 0.41 ± 0.16 0.45 ± 0.16

GES 0.27 ± 0.16 0.54 ± 0.28 0.42 ± 0.17 0.58 ± 0.23 0.43 ± 0.22 0.49 ± 0.20

60

IGES 0.32 ± 0.16 0.44 ± 0.19 0.41 ± 0.18 0.45 ± 0.15 0.30 ± 0.07 0.32 ± 0.08

GES 0.16 ± 0.09 0.42 ± 0.23 0.34 ± 0.16 0.43 ± 0.23 0.29 ± 0.09 0.32 ± 0.09

20

40

IGES 0.59 ± 0.25 0.75 ± 0.17 0.70 ± 0.16 0.72 ± 0.17 0.66 ± 0.10 0.68 ± 0.09

GES 0.28 ± 0.09 0.72 ± 0.20 0.52 ± 0.10 0.78 ± 0.12 0.70 ± 0.08 0.73 ± 0.08

80

IGES 0.53 ± 0.14 0.75 ± 0.13 0.68 ± 0.11 0.68 ± 0.12 0.47 ± 0.06 0.50 ± 0.06

GES 0.28 ± 0.07 0.73 ± 0.16 0.51 ± 0.07 0.74 ± 0.12 0.44 ± 0.07 0.49 ± 0.07

120

IGES 0.52 ± 0.15 0.66 ± 0.13 0.61 ± 0.10 0.58 ± 0.09 0.35 ± 0.04 0.39 ± 0.05

GES 0.34 ± 0.10 0.60 ± 0.13 0.49 ± 0.06 0.65 ± 0.12 0.34 ± 0.07 0.39 ± 0.07

50

100

IGES 0.63 ± 0.16 0.81 ± 0.08 0.76 ± 0.08 0.77 ± 0.08 0.69 ± 0.07 0.71 ± 0.07

GES 0.29 ± 0.06 0.78 ± 0.09 0.58 ± 0.07 0.85 ± 0.09 0.69 ± 0.08 0.72 ± 0.08

200

IGES 0.59 ± 0.10 0.80 ± 0.06 0.74 ± 0.06 0.79 ± 0.06 0.47 ± 0.05 0.51 ± 0.05

GES 0.32 ± 0.04 0.79 ± 0.05 0.58 ± 0.05 0.80 ± 0.06 0.44 ± 0.06 0.49 ± 0.06

300

IGES 0.67 ± 0.10 0.76 ± 0.09 0.73 ± 0.09 0.76 ± 0.08 0.39 ± 0.05 0.44 ± 0.05

GES 0.39 ± 0.03 0.76 ± 0.11 0.59 ± 0.06 0.79 ± 0.07 0.36 ± 0.05 0.43 ± 0.05

Summary statistics
IGES 0.55 ± 0.09 0.69 ± 0.11 0.65 ± 0.11 0.66 ± 0.10 0.49 ± 0.15 0.52 ± 0.13

GES 0.28 ± 0.06 0.67 ± 0.12 0.50 ± 0.08 0.68 ± 0.14 0.49 ± 0.16 0.53 ± 0.15
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Table 29: Adjacency SHD (A-SHD) and strict SHD (S-SHD) for N = 200 training instances.

For the IGES method, a penalty factor κ = 0.1 is used to penalize the structural difference

between the population-wide and instance-specific CBNs. The best result for each setting

(e.g., 10 variables and 20 nodes) is shown in bold (the lower the better).

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall A-SHD S-SHD

10

20

IGES 0.76 0.15 0.91 2.87 5.56 8.43 0.95 1.44 2.40 9.34 11.73

GES 0.91 0.13 1.04 2.03 4.79 6.83 1.53 1.86 3.39 7.86 11.25

40

IGES 0.69 0.31 0.99 6.78 10.60 17.38 1.62 2.31 3.93 18.37 22.30

GES 1.16 0.43 1.59 6.12 9.85 15.97 2.32 2.95 5.27 17.55 22.82

60

IGES 0.52 0.03 0.55 6.53 12.14 18.66 1.75 1.95 3.70 19.22 22.92

GES 0.80 0.03 0.83 6.02 11.45 17.47 2.22 2.58 4.79 18.30 23.10

20

40

IGES 1.04 0.31 1.36 5.82 11.47 17.29 2.13 2.64 4.77 18.65 23.42

GES 1.52 0.27 1.79 4.83 9.50 14.33 2.94 4.10 7.04 16.12 23.16

80

IGES 1.32 0.30 1.62 15.13 18.44 33.57 3.78 2.94 6.71 35.20 41.91

GES 1.69 0.06 1.75 13.88 17.71 31.59 4.64 4.05 8.69 33.34 42.03

120

IGES 1.12 0.11 1.23 17.88 25.95 43.83 4.04 2.49 6.53 45.07 51.60

GES 1.30 0.06 1.35 16.71 24.52 41.22 5.15 3.74 8.88 42.58 51.46

50

100

IGES 2.17 1.38 3.56 14.97 27.35 42.32 4.76 6.85 11.61 45.88 57.49

GES 2.21 0.41 2.62 13.93 24.70 38.62 6.35 9.03 15.39 41.24 56.63

200

IGES 2.82 1.05 3.86 35.52 60.02 95.53 7.34 6.08 13.43 99.40 112.82

GES 2.46 0.36 2.82 33.74 58.49 92.23 9.31 8.49 17.80 95.05 112.85

300

IGES 2.04 0.47 2.51 46.35 68.70 115.05 6.91 5.98 12.89 117.56 130.45

GES 1.58 0.17 1.76 43.20 65.58 108.78 10.21 9.16 19.37 110.53 129.90

Summary statistics
IGES 1.39 0.46 1.84 16.87 26.69 43.56 3.70 3.63 7.33 45.41 52.74

GES 1.51 0.21 1.73 15.61 25.18 40.78 4.96 5.11 10.07 42.51 52.58
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Table 30: Adjacency SHD (A-SHD) and strict SHD (S-SHD) forN = 1000 training instances.

For the IGES method, a penalty factor κ = 0.1 is used to penalize the structural difference

between the population-wide and instance-specific CBNs. The best result for each setting

(e.g., 10 variables and 20 nodes) is shown in bold (the lower the better).

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall A-SHD S-SHD

10

20

IGES 0.72 0.54 1.27 1.41 3.84 5.25 1.08 2.52 3.59 6.52 10.11

GES 1.73 0.53 2.26 0.87 3.20 4.06 1.80 3.18 4.98 6.32 11.30

40

IGES 1.38 0.12 1.50 4.85 7.89 12.73 1.99 2.08 4.07 14.23 18.30

GES 2.08 0.09 2.17 4.19 7.24 11.42 2.64 2.84 5.49 13.60 19.09

60

IGES 1.31 0.08 1.38 5.88 10.57 16.45 1.79 3.10 4.89 17.84 22.73

GES 2.11 0.09 2.21 5.38 9.53 14.92 2.33 3.81 6.14 17.12 23.26

20

40

IGES 1.06 0.94 2.00 3.34 8.06 11.40 1.90 2.73 4.62 13.40 18.03

GES 2.42 0.55 2.98 2.61 7.48 10.09 2.78 3.35 6.13 13.06 19.20

80

IGES 1.90 0.43 2.33 12.32 14.62 26.95 3.55 1.84 5.39 29.27 34.67

GES 5.04 0.22 5.26 11.70 14.19 25.89 5.08 2.11 7.19 31.16 38.35

120

IGES 2.19 0.76 2.95 14.64 20.45 35.09 5.26 3.19 8.45 38.03 46.48

GES 3.59 0.52 4.11 13.68 20.07 33.76 6.01 3.27 9.28 37.87 47.15

50

100

IGES 2.54 0.97 3.51 8.31 15.65 23.96 3.60 5.12 8.72 27.47 36.19

GES 6.51 0.28 6.79 7.01 14.90 21.91 6.07 6.02 12.10 28.70 40.80

200

IGES 3.74 1.88 5.62 25.55 43.66 69.21 7.46 6.72 14.18 74.83 89.01

GES 7.74 1.23 8.97 25.20 44.99 70.19 9.76 7.70 17.46 79.15 96.61

300

IGES 3.76 1.57 5.33 32.50 59.91 92.42 7.22 6.44 13.65 97.74 111.40

GES 7.83 0.74 8.57 31.87 58.69 90.56 9.27 8.00 17.27 99.13 116.40

Summary statistics
IGES 2.06 0.81 2.87 12.09 20.52 32.61 3.76 3.75 7.51 35.48 42.99

GES 4.34 0.47 4.81 11.39 20.03 31.42 5.08 4.48 9.56 36.24 45.80
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Table 31: Adjacency SHD (A-SHD) and strict SHD (S-SHD) forN = 5000 training instances.

For the IGES method, a penalty factor κ = 0.1 is used to penalize the structural difference

between the population-wide and instance-specific CBNs. The best result for each setting

(e.g., 10 variables and 20 nodes) is shown in bold (the lower the better).

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall A-SHD S-SHD

10

20

IGES 0.88 0.67 1.55 0.81 1.63 2.44 1.18 1.92 3.09 3.99 7.08

GES 3.82 0.64 4.46 0.44 0.99 1.43 1.93 2.12 4.04 5.89 9.93

40

IGES 1.96 0.32 2.27 3.02 5.83 8.85 2.50 3.12 5.63 11.12 16.75

GES 5.41 0.40 5.80 1.90 3.86 5.76 3.68 4.09 7.77 11.56 19.33

60

IGES 2.66 0.26 2.92 3.83 7.59 11.42 3.05 5.60 8.65 14.34 22.99

GES 5.76 0.18 5.94 3.20 6.09 9.29 3.65 6.81 10.47 15.23 25.70

20

40

IGES 1.82 1.10 2.92 1.87 3.74 5.61 1.92 2.69 4.61 8.53 13.14

GES 6.96 1.35 8.32 0.84 2.41 3.25 2.99 3.28 6.26 11.57 17.84

80

IGES 3.10 1.30 4.40 8.41 10.08 18.49 4.15 2.78 6.93 22.89 29.82

GES 10.56 0.86 11.42 7.33 9.31 16.64 6.05 3.25 9.30 28.06 37.36

120

IGES 3.51 1.61 5.13 10.68 15.76 26.44 4.42 3.68 8.10 31.56 39.66

GES 9.33 1.78 11.11 9.68 14.75 24.43 5.35 4.87 10.22 35.54 45.75

50

100

IGES 3.66 2.27 5.93 5.24 8.86 14.10 3.69 4.53 8.23 20.03 28.26

GES 14.95 1.63 16.58 3.49 7.85 11.33 7.15 5.69 12.84 27.91 40.75

200

IGES 6.11 3.03 9.14 18.56 32.86 51.43 6.50 5.79 12.29 60.57 72.86

GES 21.11 1.87 22.97 17.38 33.86 51.24 10.05 7.11 17.16 74.22 91.38

300

IGES 5.27 3.28 8.55 25.02 40.92 65.95 7.06 6.96 14.02 74.50 88.52

GES 19.53 1.83 21.36 24.17 42.53 66.69 9.95 7.59 17.53 88.06 105.59

Summary statistics
IGES 3.22 1.54 4.76 8.61 14.14 22.75 3.83 4.12 7.95 27.50 35.45

GES 10.83 1.17 12.00 7.60 13.52 21.12 5.64 4.98 10.62 33.12 43.74
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4.5.2 Real-world data

The main goal of this section is to perform an empirical investigation of instance-

specific learning of CBN structures using the IGES algorithm in several real-world biomed-

ical datasets and compare its performance to population-wide CBN structure learning us-

ing GES. The data-generating CBN structures are not known for the real-world datasets

that we used in this dissertation, as is often the case with such datasets. However,

all of them contain a target variable of interest. Therefore, we use predictive per-

formance of target variables when using these models as proxy indicators of causal fi-

delity [Jabbari et al., 2019, Jabbari et al., 2020]. Although imperfect, such an investigation

is nonetheless informative about model fit.

In order to predict the target variable, we first ran the IGES (described in Section 4.4)

and GES (described in Section 4.2) methods to construct a BN structure over all variables

(i.e., the predictors and target). Then, we obtained the Markov blanket (MB) of the target

variable and used it to predict the target variable. The MB of a variable includes the

variable’s parents, children, and its children’s parents. Finally, we calculated the probability

distribution of the target variable given its MB, and output the most probable outcome as

the prediction. We report several evaluation criteria to measure the effectiveness of instance-

specific BN models learned by the IGES algorithm versus the population-wide BN model

learned by GES. In particular, as a measure of discrimination, we report the area under the

ROC curve (AUROC) when predicting the target variable. We also report the differences

between the MB of the target variable in the MB of the target variable found by the instance-

specific models compared to the population-wide model.

4.5.2.1 Pneumonia dataset Pneumonia is a type of lung infection that can be caused

by bacteria, viruses, or fungi. It is often categorized according to the site of acquisition.

Community-acquired pneumonia (CAP) refers to pneumonia acquired outside of the health-

care system, which is one of the most frequent and fatal conditions encountered in clinical

practice. Pneumonia is among the leading causes of infectious-disease-related death world-

wide. It is also among the most common causes of hospitalization of adults and children in
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the U.S. [American Thoracic Society, 2019]. Therefore, developing machine learning meth-

ods that can accurately predict the outcome in pneumonia patients is an important area of

research that can facilitate patient care and clinical decision making.

The dataset we used was collected by the Pneumonia Patient Outcomes Research

Team (PORT) from October 1991 to March 1994 at five hospitals in Pittsburgh, Boston,

and Halifax, Nova Scotia to identify low-risk patients with community-acquired pneumo-

nia [Fine et al., 1997]. This dataset includes 2287 pneumonia patients, where each patient

has 156 clinical variables, out of which we selected the top 40 variables based on univariate

feature selection using the mutual information criterion. These variables include demo-

graphic information, history information, physical examination, and laboratory and chest

X-ray findings. The target variable is called dire outcome; it is a binary variable that is set

to 1 if any of the following occurred for a patient: (1) death within 30 days of presentation, (2)

an initial intensive care unit admission for respiratory failure, respiratory or cardiac arrest,

or shock, or (3) the presence of one or more severe complications. The outcome-prediction

research reported on the Pneumonia dataset performed under the auspices of study protocol

number PRO15030462 from the University of Pittsburgh Institutional Review Board (IRB).

The pneumonia dataset was split into a training set D with N = 1601 samples and a test

set with M = 686 samples while preserving the distribution of dire outcome in the original

dataset. Given each instance T , and D, we applied the IGES search using IS-Score to learn

an instance-specific BN model for T and used it to predict the outcome for T . We also applied

the GES search using the BDeu score to learn a population-wide BN model for T given D

and used it to predict the outcome for T . We repeated this procedure for every instance in

the dataset. We used prior equivalence sample sizes of PESS = {0.1, 1.0, 10.0} for both the

IGES and GES methods. IGES also has a parameter that penalizes the structural difference

between the population-wide BN and instance-specific BN model, called κ (0.0 < κ ≤ 1.0),

where a lower value indicates more penalty for differences; see Section 4.4 for more details.

We report the results of using multiple values of κ.

Table 33 shows the AUROC results of GES and IGES on the pneumonia dataset; bold-

face indicates that the results are statistically significantly better, based on DeLong’s non-

parametric test [DeLong et al., 1988] at a 0.05 significance level. The results indicate that
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Table 32: Type, name, and description of the variables of the pneumonia dataset.

Variable Type Variable Name Variable Description

Demographics

AGE Age

PTMRSTA Marital status

PTLIVLO Living arrangements

PTEMPLO Emplyment status

Symptoms

COUGHY Cough

FEVERY Fever

SWEATSY Sweats

HEADACHEY Headache

CONFSDYY Confusion

Comorbidities

CADA Coronary artery disease

HTNA Hypertension

LIVERDIA Liver disease

CVDA Cerebrovascular disease

LUNGOTA Pneumonectomy

History

MYEL90A Myelosuppressive drugs used in the past 90

days (which impair the immune system)

CSTERDUR Steriod duration

DNR Do-not-resuscitate order status

CWTLOSS Weight-loss

Physical Exam CONFUSA Confusion noted in chart

Categorized Vitals

CPULSE Heart rate

CRESPRAT Respiratory rate

CTEMPC Temperature

RTEMP Route temperature taken

PULRALES Rales

PULRHONC Rhonchi

Categorized Laboratory Results

CWBC, White blood cell count

CHCT Hematocrit

CHGB Hemoglobin count

CGLU Glucose

CAN Sodium

CHCO3 Bicarbonate

CBUN Blood urea nitrogen

CCR Creatinine

CSGOT Serum glutamic oxaloacetic transaminase

CALB Serum albumin

Categorized ABG (Arterial blood gas)

O2SATC O2 saturation

CPH Arterial ph

CPCO2 pCO2

CPO2 pO2
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with PESS = 0.1 and κ = {0.2} the IGES search resulted in the highest AUROC but for

almost all values of κ, both methods perform similarly.

Table 33: AUROC of the GES and IGES methods on the pneumonia dataset for dire outcome.

Boldface indicates statistically significantly better results.

Method GES IGES

PESS - κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5 κ = 0.6 κ = 0.7 κ = 0.8 κ = 0.9 κ = 1.0

0.1 0.73 0.77 0.78 0.76 0.76 0.76 0.75 0.76 0.75 0.74 0.74

1.0 0.73 0.77 0.77 0.75 0.75 0.76 0.76 0.75 0.76 0.75 0.75

10.0 0.73 0.76 0.76 0.76 0.75 0.75 0.75 0.75 0.75 0.74 0.74

Table 34a shows the results of comparing the target variable’s MB in the instance-specific

models versus the population-wide models with PESS = 0.1 and κ = 0.2. It indicates that

in 2.8% of the patient cases, the MB of the target variable in instance-specific CBNs is

exactly the same as the the MB of the target variable in the population-wide BN. It also

shows that in 7.7% of the patient cases, the MB of the target variable had 20 additional

edges in instance-specific CBNs compared to the population-wide BN. Table 34b also shows

the percentage of 9 variables that occurred the most in the instance-specific MBs. Table 34

supports that instance-specific structures exist for the cases in the dataset we used.

4.5.2.2 Sepsis dataset Sepsis is the body’s severe and toxic response to an infection,

which triggers a chain of inflammations that may lead to organ dysfunction and death. Older

adults, adults with chronic medical conditions or weaker immune systems, and young children

are more susceptible to develop sepsis. Each year, more than 1.7 million patients develop

sepsis in the U.S., which costs hospitals more than 20 billion dollars [Singer et al., 2016].

Early and accurate diagnosis of sepsis is essential for reducing its morbidity and mortality;

however, it is a challenging task since sepsis presents in multiple ways due to differences

in patient genetic background, comorbidities, the microbiology of the infection, and other

factors. Therefore, utilizing instance-specific modeling could potentially provide valuable

diagnostic and prognostic information.

The sepsis dataset that we used was collected in the Genetic and Inflammatory Markers of

Sepsis (GenIMS) project from patients with community-acquired pneumonia in 30 hospitals

in southwestern Pennsylvania, Connecticut, Michigan, and Tennessee [Kellum et al., 2007].
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Table 34: Comparison of the target variable’s Markov blanket (MB) in the instance-specific

BNs vs. the population-wide BN in the pneumonia dataset with PESS = 0.1 and κ = 0.2.

(a) Structural differences of the MBs of the tar-
get variable in instance-specific BNs vs. the
population-wide BN.

# Added # Deleted # Reoriented % Patients

20 1 0 7.7

21 0 0 4.5

18 1 0 4.4

20 0 0 4.4

23 1 0 3.6

12 1 0 3.2

16 1 0 3.1

0 0 0 2.8

7 1 0 2.8

other other other 63.6

(b) Percentage of top-9 variables in the MBs
of instance-specific BNs. The MB of the
population-wide BN is denoted by ∗.

Variable Name
% Occurrence

in Patients

SWEATSY (Sweats) 80.9

CONFUSA (Confusion noted in chart) 75.7

CALB (Categorized serum albumin) 67.2

FEVERY (Fever) 63.7

CPH (Categorized arterial ph) 58.2

CPO2∗ (Categorized pO2) 57.1

CPCO2 (Categorized pCO2) 56.1

CGLU (Categorized glucose) 50

O2SATC (Categorized O2 saturation) 44.0

It consists of 1673 patients and 20 predictor variables, including demographic, clinical, in-

flammatory markers, and genetic variables. The binary target variable is death within 90

days of inclusion in the study. The Sepsis data were collected under the auspices of study pro-

tocol number PRO15030462 from the University of Pittsburgh Institutional Review Board

(IRB).

We performed leave-one-out cross-validation on the sepsis dataset as follows. For each

instance T , we used T as a test instance and all the remaining instances as the training

set D. Given T and D, we applied IGES search using IS-Score to learn an instance-specific

BN model for T to predict its outcome. We also applied the GES search using the BDeu

score to learn a population-wide BN model for T to predict its outcome. We repeated this

procedure for every instance in the sepsis dataset. We used prior equivalence sample sizes

of PESS = {0.1, 1.0, 10.0} for both IGES and GES methods. We also report the results of

using multiple values of κ(0.0 < κ ≤ 1.0) in IGES; see Section 4.4 for more details.

Table 36 shows the AUROC results on the sepsis dataset, using both GES and IGES

searches; boldface indicates that the results are statistically significantly better, based on
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Table 35: Type, name, and description of the variables of the sepsis dataset.

Variable Type Variable Name Variable Description

Demographics

Age Age

Sex Sex

Race Race

Clinical

time0 psi, day1 psi Pneumonia severity index (PSI) at time of ad-

mission and end of first day of stay. PSI uses 20

clinical variables to classify pneumonia patients

into five strata of increased risk for short-term

mortality.

Charlson Charlson score evaluates comorbidity of patients

based on the presence or absence of several med-

ical conditions at admission time.

Apache day1, Apache day2,

Apache day3

APACHE III score on the first, second, and third

day of stay. APACHE III is a scoring system

that evaluates severity of disease from a number

of physiological and clinical parameters.

Inflammatory Markers IL6-M174 Interleukin-6

IL10-M1082, IL10-M819 Interleukin-10

Genetic Markers

MIF-M173, MIF-Repeat,

TNFA-M376, TNF-M308,

rs361525, rs1799724, rs909253

Genetic polymorphisms for the macrophage mi-

gration inhibitory factor, the tumor necrosis fac-

tor A, the interleukin-6, the interleukin-10, and

the heme oxygenase genes

Table 36: AUROC of the GES and IGES methods on the sepsis dataset for death outcome.

Boldface indicates statistically significantly better results.

Method GES IGES

PESS - κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5 κ = 0.6 κ = 0.7 κ = 0.8 κ = 0.9 κ = 1.0

0.1 0.56 0.69 0.69 0.70 0.70 0.70 0.70 0.70 0.70 0.54 0.54

1.0 0.56 0.69 0.69 0.77 0.78 0.77 0.78 0.78 0.78 0.78 0.74

10.0 0.71 0.69 0.70 0.75 0.73 0.71 0.72 0.74 0.73 0.74 0.73
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DeLong’s non-parametric test [DeLong et al., 1988] at a 0.001 significance level. The re-

sults indicate that with PESS = 1.0 and κ = {0.4, 0.6, 0.7, 0.9}, the instance-specific search

resulted in the highest AUROC; also, for almost all values of κ, IGES performs better.

Table 37a shows the results of comparing the target variable’s MB in the instance-specific

models versus the population-wide models with PESS = 1.0 and κ = 0.7. It indicates that in

19.7% of the patient cases, the MB of the target variable had 4 additional and 1 reoriented

edges in instance-specific CBNs compared to the population-wide BN. Table 37b shows the

percentage of 8 variables that occurred the most in the instance-specific MBs. Table 37

supports that instance-specific structures exist when predicting the target (i.e., death within

90 days of inclusion in the study) for the cases in the sepsis dataset.

Table 37: Comparison of the target variable’s Markov blanket (MB) in the instance-specific

BNs vs. the population-wide BN in the sepsis dataset with PESS = 1.0 and κ = 0.7.

(a) Structural differences of the variables in
the MBs in instance-specific BNs vs. the
population-wide BN.

# Added # Deleted # Reoriented % Patients

4 0 1 19.7

2 1 0 18.5

1 1 0 15.8

3 0 0 12.4

3 0 1 8.3

4 0 0 4.5

1 0 1 3.9

other other other 16.8

(b) Percentage of the variables in the MBs
of instance-specific BNs. The MB of the
population-wide BN is denoted by ∗.

Variable Name % Occurrence in Patients

MIF-M173 63.4

Charlson 63.3

day1 psi∗ 60.4

Apache day2 38.0

Age 15.5

Apache day3 15.0

Apache day1 6.3

time0 psi 5.5

4.5.2.3 Lung cancer dataset Lung cancer is the most frequent cause of cancer-related

death in men worldwide and the second most common cause in women [Bray et al., 2018], de-

spite significant improvements in diagnosis and treatment during the past decade. The overall

5-year survival rate for lung cancer is 19% but it can be increased to 57% if diagnosis occurs at

a localized stage of the disease, which is not often the case [American Cancer Society, 2020].

Studies have revealed that heterogeneity exists both within individual lung cancer tumors
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and between patients [Kris et al., 2014, Network et al., 2014, Travis et al., 2011]. Therefore,

it is plausible that instance-specific approaches for outcome prediction may perform relatively

well [Jabbari et al., 2020].

The lung cancer dataset we used was a retrospective analysis of banked tumor specimens

that were collected from patients with lung cancer at the University of Pittsburgh Medical

Center (UPMC) in 2016. Baseline demographics, smoking history, staging, treatment, and

survival data were collected through the UPMC Network Cancer Registry. We replaced the

missing values of the predictor variables with a new category called “missing” and removed

the cases for which the value of the outcome variable was not known. Demographic and

clinical characteristics of the 261 patients are summarized in Table 38. DNA sequencing

was performed using the Ion AmpliSeqTM Cancer Panel (Ion Torrent, Life Technologies,

Fisher Scientific). Gene rearrangements of ALK, ROS1, and RET, and MET amplification

were detected using FISH. PD-L1 SP263 and PD-L1 22C2 assays were performed on lung

cancer samples to determine the PD-L1 tumor proportion score (TPS). Table 39 provides

information about the type, name, and description of the variables that are included in the

lung cancer dataset. The outcome-prediction research using the lung cancer dataset was

performed under the auspices of study protocol number PRO15070164 from the University

of Pittsburgh Institutional Review Board (IRB).

Table 40 shows the AUROC results on the lung cancer dataset, using both GES and

IGES searches; boldface indicates that the results are statistically significantly better, based

on DeLong’s non-parametric test [DeLong et al., 1988] at a 0.001 significance level. The

results indicate that with PESS = 1.0 and κ = 1.0, the instance-specific search resulted in

the highest AUROC; also, for almost all values of κ, IGES performs better. Table 40 also

suggests that it is important to define PESS properly when applying a Bayesian method on

a dataset with a small to moderate sample size, which is the case in here.

Table 41a shows the results of comparing the target variable’s MB in the instance-specific

models versus the population-wide models with PESS = 1.0 and κ = 1.0. It indicates

that in 16.9% of the patient cases, the MB of the target variable was exactly the same in

instance-specific and population-wide BNs. Also, in 10.7% of the cases, the MB of the target

variable had 5 additional variables in instance-specific models compared to the population-
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Table 38: One-year survival given demographic and clinical characteristics. A 95% confidence

interval is included for each sub-group of patients.

Greater than 1 year

Variable Name Variable Value # Patients (Total) % Patients (Confidence Interval)

Age

22-62 54 (84) 64.29 (54.04, 74.54)

63-72 41 (88) 46.59 (36.17, 57.01)

73-88 45 (89) 50.56 (40.17, 60.95)

Sex
Female 80 (135) 59.26 (50.97, 67.55)

Male 60 (126) 47.62 (38.9, 56.34)

Race

White 119 (224) 53.13 (46.58, 59.66)

Black 16 (31) 51.61 ((34.02, 69.2)

Other 5 (6) 83.33 (53.33, 113.33)

Tobacco History

Cigar/pipe smoker 0 (1) 0

Cigarette smoker 42 (85) 49.41 (38.78, 60.04)

Never used 22 (32) 68.75 (52.69, 84.81)

Previous tobacco use 76 (142) 53.52 (45.32, 61.72)

Snuff/chew/smokeless 0 (1) 0

Diagnosis

Adenocarcinoma 53 (89) 59.55 (49.35, 69.75)

Squamous 3 (7) 42.86 (45.3, 62.06)

Other 11 (29) 37.93 (6.20, 79.52)

NA 73 (136) 53.68 (20.27, 55.59)
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Table 39: Type, name, and description of the variables in the lung cancer dataset.

Variable Type Variable Name Variable Description

Demographics

Age Age

Sex Sex

Race Race

Tobacco history Tobacco history

Clinical

Site Location of tumor

Surgical Procedure Type of surgical resection or biopsy

Diagnosis Lung cancer type (Adenocarcinoma,

Squamous, Other, NA)

Mets at Dx-Brain, Mets at Dx-Bone, Mets

at Dx-Distant Lymph Nodes, Mets at Dx-

Lung, Mets at Dx-Liver, Mets at Dx-Other

Location of metastasis at diagnosis (Dx),

if any

Histo Behavior ICD-O-3 Histological classification

cT, cN, cM, cStage Group Clinical staging

pT, pN, pM, pStage Group, Pathologic

Stage Descriptor

Pathologic staging

Molecular

PD-L1 IHC, PD-L1 Comment PD-L1 immunohistochemistry measures

the amount of PD-L1 staining on tumor

cells

MET, KRAS, EGFR-summary, EGFR-

Exon-18, EGFR-Exon-19, EGFR-Exon-20,

EGFR-Exon-21, BRAF, PIK3CA, ALK

Mutation

Status of gene mutations

ALK IHC ALK gene immunohistochemistry

ALK Trans ALK gene translocation

ROS Trans ROS gene translocation

RET Trans RET gene translocation

cMET Ratio Measurement of cMET gene amplification
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wide model. Table 41b also shows the percentage of the 7 variables that occurred the most

in the instance-specific MBs. According to literature, EGFR-Exon-19 is one of the most

commonly found EGFR mutations in lung cancer patients while other subtypes of EGFR

mutations (e.g., Exon-18 and Exon-20) have been found to be predictive of non-response to

therapy in some patients as well [Ettinger et al., 2017]; these findings are also supported by

the IGES method as shown in Table 41b. Table 41 supports that instance-specific structures

exist for the lung cancer cases for the dataset we used.

Table 40: AUROC of the GES and IGES methods on the lung cancer dataset for one-year

survival. Boldface indicates statistically significantly better results.

Method GES IGES

PESS - κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5 κ = 0.6 κ = 0.7 κ = 0.8 κ = 0.9 κ = 1.0

0.1 0.68 0.67 0.70 0.70 0.70 0.70 0.71 0.71 0.70 0.71 0.72

1.0 0.68 0.68 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.81

10.0 0.65 0.75 0.75 0.77 0.76 0.75 0.72 0.73 0.73 0.69 0.70

Table 41: Comparison of the target variable’s Markov blanket (MB) in the instance-specific

BNs vs. the population-wide BN in the lung cancer dataset with PESS = 1.0 and κ = 1.0.

(a) Structural differences of the MBs of the tar-
get variable in instance-specific BNs vs. the
population-wide BN.

# Added # Deleted # Reoriented % Patients

0 0 0 16.9

5 0 0 10.7

4 0 0 7.7

1 0 0 6.9

3 0 2 4.2

0 0 2 4.2

6 0 0 3.8

other other other 45.6

(b) Percentage of top-7 variables in the MBs
of instance-specific BNs. The MB of the
population-wide BN includes the first two vari-
ables denoted by ∗.

Variable Name % Occurrence in Patients

EGFR-Exon-19∗ 98.1

Mets at Dx-Other∗ 92.8

Race 37.9

EGFR-Exon-18 35.6

EGFR-Exon-20 31.8

cM 26.8

cStage Group 24.5
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4.6 Summary and Discussion

This chapter introduces a Bayesian instance-specific structure learning algorithm called

IGES that outputs a Bayesian network structure that is specific to a given instance T (e.g,

a patient) by guiding the search based on T ’s attributes. Although we applied a GES-style

algorithm in the research reported here, the proposed method is quite general and can be

adapted for use with other score-based search methods. We evaluated the performance of

the IGES method on simulated and real-world biomedical datasets.

The results on simulated data indicate that IGES performs better in terms of adjacency

and arrowhead precision (especially when a node exhibits CSI) for discovering the instance-

specific CBN structure of each test instance T . However, the recall decreases for the small

sample sizes due to more edges being deleted when applying IGES. As the sample size

increases, both methods perform comparably similar in terms of recall. The structural

Hamming distance is lower on average when using IGES (the lower the better) with moderate

to large datasets. These results suggest that the CBN structures learned by IGES are more

probable and better fit the relationships among variables for each instance T .

We also evaluated the performance of the IGES structure learning method on three real-

world biomedical datasets. This is a challenging task because the true underlying causal

relationships are not all known in many biomedical domains, including the datasets we

used here; therefore, we used other criteria to evaluate performance. In particular, we

compared the predictive performance of target variables using AUROC and the structural

differences between the instance-specific and population-wide CBN models. The results

provide support that the instance-specific CBN models are often different and have better

predictive performance than the population-wide ones.

Overall, the proposed IGES method is a promising approach to discover a CBN structure

that better models the relationships among variables of a given instance T , rather than a

population-wide model, which supports the second hypothesis in Section 1.2, which states

that the instance-specific CBN structure learning approach will perform structure learning

better than a population-wide method, in terms of discrimination.
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5.0 Instance-Specific CBN Structure Learning Assuming Latent Variables

In Chapter 3, I introduced a hybrid PAG learning approach, called Bayesian scoring of

constraints (BSC). The BSC algorithm uses a Bayesian method to perform an independence

test (Section 3.3) that can be incorporated into any search that requires independence testing

(e.g., FCI), rather than using a frequentist significance testing (Section 3.4). Using BSC,

we can compute the posterior probability of a PAG as the joint posterior probability of all

the independence constraints that characterize that PAG [Jabbari et al., 2017b], which is

the major advantage of the BSC method over constraint-based methods. However, the BSC

method learns a population-wide PAG. As mentioned earlier, a population-wide model would

at best recover the more common causal structure relationships in a population of instances,

and consequently, would fail to capture the particular causal structure relationships in a

given instance (e.g., a patient).

In Chapter 4, I introduced a fully Bayesian instance-specific structure learning method,

called IGES, that searches the space of CBNs to build a model that is specific to an instance

T by guiding the search from the features we know about T and from a training set of data

on many other instances [Jabbari et al., 2018] (Section 4.4). The IGES method assumes

that there are no latent confounders (i.e., causal sufficiency). However, relying on the causal

sufficiency assumption could be a major drawback since this assumption is unrealistic in

many practical applications.

In the current chapter, I introduce a novel hybrid approach that combines both BSC

and IGES methods to construct an instance-specific PAG structure, which models latent

confounders, to learn a specialized PAG for a given instance T by leveraging the features

(i.e., the variable-value pairs) of T and a training set of data on many other instances.

We hypothesize that such an instance-specific PAG learning approach will model the causal

relationships for T better than does a population-wide one when accounting for the possibility

of latent confounders. I evaluate this method using both simulated and real-world data.

In the remainder of this chapter, I provide an overview of a well-known hybrid population-

wide PAG learning algorithm, called Greedy Fast Causal Inference [Ogarrio et al., 2016], in
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Section 5.1. I introduce an instance-specific version of GFCI, called IGFCI 1, in Section 5.2.

Finally, I report experimental results on both simulated and real-world biomedical datasets

in Section 5.3.

5.1 Overview of the GFCI Algorithm

GFCI [Ogarrio et al., 2016] is a hybrid search algorithm that combines a score-

based approach (i.e., GES [Chickering, 2002]) and a constraint-based approach (i.e.,

FCI [Spirtes et al., 1995]). It does so because GES is fast and effective at finding the vari-

ables that are directly dependent (i.e., have some type of edge between them) and FCI is

effective at determining the specific edges types in forming a PAG. The GES and FCI meth-

ods are discussed in Sections 4.2 and 3.2, respectively. The GFCI algorithm learns a PAG

structure in two steps:

1. The first step of GFCI involves an adjacency search. To find the adjacency graph, GFCI

first applies the GES algorithm using a dataset D, which discovers a pattern G (line

1 in Algorithm 12). It then removes the edge orientations of G to obtain the skeleton

graph called P (line 2 in Algorithm 12). This adjacency graph may contain extraneous

edges if the model includes latent confounders [Ogarrio et al., 2016]. To eliminate such

extraneous edges, GFCI resumes the adjacency search in a way similar to the first stage of

the FCI algorithm. As denoted in line 3 of Algorithm 12, GFCI uses P as the initial graph

in the initial skeleton search of the FCI algorithm, which is described in Algorithm 13.

It also applies the v-structure orientation (Algorithm 14) and the final skeleton search

of FCI (Algorithm 4) as shown in lines 4 and 5 of Algorithm 12.

2. In the second step, GFCI applies v-structure orientation and additional orientation rules

from [Zhang, 2008] to obtain the PAG structure (lines 6 and 7 of Algorithm 12).

The overall pseudo-code for GFCI is provided in Algorithm 12. The GFCI algorithm outputs

the correct PAG with probability 1.0 in the large sample limit, given i.i.d. sampling and the

Markov and faithfulness assumptions [Ogarrio et al., 2016].

1We introduced a variation of this algorithm in [Jabbari and Cooper, 2020].
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Algorithm 12 GFCI(D)

Input: a dataset D with n observed variables

Output: a population-wide PAG P

1: G ← GES (D) . Algorithm 9

2: P ← Remove edge orientation of G

3: P ,D-Sep← Initial Skeleton (D,n,P) . Algorithm 13

4: P ← V-structure Orientation (G,P ,D-Sep) . Algorithm 14

5: P ,D-Sep← Final Skeleton(D,n,P ,D-Sep) . Algorithm 4

6: P ← V-structure Orientation (P ,G,D-Sep) . Algorithm 14

7: Apply orientation rules R1-R10 in [Zhang, 2008] to further orient the edges in P

8: return PAG P

Algorithm 13 Initial Skeleton(D, d, P)

Input: a dataset D, the maximum conditioning set size d, an initial adjacency graph P

Output: a graph P , d-separation sets D-Sep

1: m = 0

2: while m ≤ d do

3: for all (Xi, Xj) ∈ P do

4: if Xj ∈ Adj(Xi) and |Adj(Xi)\Xj| ≥ m then

5: repeat

6: Choose a subset Z ⊆ Adj(Xi)\Xj where |Z| = m

7: if Xi ⊥⊥ Xj|Z then

8: Remove Xi ◦—◦Xj from P

9: Record D-Sep(Xi, Xj) = D-Sep(Xj, Xi) = Z

10: end if

11: until Xj 6∈ Adj(Xi) or all Z ⊆ Adj(Xi)\Xj with |Z| = m have been tested

12: end if

13: end for

14: m = m+ 1

15: end while

16: return P and D-Sep
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Algorithm 14 V-structure Orientation(G, P , D-Sep)

Input: a graph G, a graph P and d-separation sets D-Sep

Output: a graph P

1: Form a list T of all unshielded triple of variables Xi—Xk—Xj in P

2: for all Xi—Xk—Xj ∈ T do

3: if (Xk is an unshielded collider in G) or (Xk is shielded in G andXk 6∈D-Sep(Xi, Xj))

then

4: Orient it as Xi ◦→Xk←◦Xj

5: end if

6: end for

7: return P

5.2 Instance-Specific GFCI (IGFCI)

In this section, I describe a novel instance-specific PAG learning algorithm that applies

the idea of instance-specific modeling to GFCI. Instance-specific GFCI (IGFCI) takes as

input a set D of observational training instances and a test instance T , and it returns as

output an instance-specific PAG PIS. IGFCI algorithm operates in two steps:

• In the first step (line 1 in Algorithm 15), it applies the population-wide GFCI algorithm

(described in Section 5.1) using dataset D. GFCI initially learns a population-wide CBN

by performing GES search using the BDeu score (line 1 in Algorithm 12), which we denote

as GPW. Then, GFCI uses GPW as the initial adjacency graph and performs additional

conditional independence tests to further prune the adjacency structure (lines 2-5 in

Algorithm 12) using the BSC test (Section 3.3). Finally, GFCI applies the orientation

rules (lines 6 and 7 in Algorithm 12) to obtain a population-wide PAG, which we denote

as PPW.

• In the second step (line 2 in Algorithm 15), it applies an instance-specific version of

GFCI. For the score-based part, it applies the IGFCI algorithm with IS-Score (described

in Section 4.4) to learn an instance-specific CBN given D, T , and the population-wide
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CBN from the first step that produced GPW. For the constraint-based part, it applies a

novel instance-specific BSC test, called IS-BSC, to find an instance-specific PAG PIS given

D, T , and GPW; we use the name GFCI2 to denote this application of GFCI. Algorithm 15

shows the high-level procedure of IGFCI algorithm. In the following section, I explain

the IS-BSC test.

Algorithm 15 IGFCI (D, T )

Input: a dataset D and a test case T

Output: a population-wide PAG PPW and an instance-specific PAG PIS.

1: GPW, PPW ← GFCI(D)

2: GIS, PIS ← GFCI2(D, T , GPW)

3: return PPW and PIS

5.2.1 Instance-specific Bayesian scoring of constraints (IS-BSC)

This section describes how to derive the posterior probability of an instance-specific

independence constraint from data for a given test instance. Let D be an i.i.d dataset

and T be a single test instance that are generated from a distribution that is faithful to a

ground-truth CBN structure G = (V ,E), where V is a set of domain variables with O ⊆ V

observed variables and E is a set of edges that encodes independence relationships in V . Let

R = (X ⊥⊥ Y |Z = j) be an arbitrary instance-specific conditional independence constraint

that is hypothesized to hold in the test instance T , where X, Y ∈ O and Z\{X, Y } ⊆ O.

In such a constraint, the conditioning set Z takes specific values j that correspond to the

values of Z in T . The goal is to determine whether R holds in the context of Z = j using

a Bayesian scoring method. We consider the BN structures shown in Figure 14a and 14b

to model the independence and dependence relationships between X and Y given Z = j,

respectively.

The basic idea behind IS-BSC is to find those cases in D in which Z = j and use them

to score the instance-specific constraint R. In essence, those instances in D form a cluster

that are similar to instance T in the context of Z = j; we use that cluster to determine
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a

b

(a) The BN structure that corresponds to inde-
pendence (i.e., R = (X ⊥⊥ Y |Z = j) = true).

a

b

(b) The BN structure that corresponds to de-
pendence (i.e., r = (X ⊥⊥ Y |Z = j) = false).

Figure 14: Independence and dependence structures that are used to score an instance-

specific constraint.

whether the independence constraint holds between (X, Y ). More specifically, let DZ=j

denote the instances in D in which Z = j and DZ 6=j denote the remaining instances in D

(line 1 in Algorithm 16). We use DZ=j to determine whether the independence constraint

R = (X ⊥⊥ Y |Z = j) as follows (line 3 in Algorithm 16):

P (R = true|DZ=j) =
P (R = true) · P (DZ=j|R = true)

P (DZ=j)

=
P (R = true) · P (DZ=j|R = true)∑
R={true,false}

P (R) · P (DZ=j|R)
,

(5.1)

where P (DZ=j|R = true) and P (DZ=j|R = false) are calculated using BNs in Figures 14a

and 14b, respectively. We use the remaining cases of data in which Z 6= j (i.e., DZ 6=j) to

estimate the prior probability P (R = true) as follows:

P (R = true) = q−1

√
P (X ⊥⊥ Y |Z 6= j) = true|DZ 6=j) (5.2)

where X ⊥⊥ Y |Z 6= j denotes the same conditional independence constraint but for the q−1

remaining values of Z. We use the BSC test described in Section 3.3.1 (Equation (3.6)) to

compute this quantity.
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Algorithm 16 IS-BSC(D, T , R = (X ⊥⊥ Y |Z = j))

Input: a dataset D, a test case T , an instance-specific constraint R = (X ⊥⊥ Y |Z = j)

Output: the posterior probability of independence constraint R

1: Derive DZ=j and DZ 6=j from D based on the values j of Z in T

2: Compute P (R = true) using Equation (5.2)

3: Compute P (R = true|DZ=j) using P (R = true) in Equation(5.1)

4: return P (R = true|DZ=j)

5.3 Experimental Results

This section describes the experimental methods and results that we used to investigate

the performance of the instance-specific GFCI (IGFCI) versus GFCI, which is a state-of-the-

art, non-instance-specific PAG-learning algorithm. To do so, we used both simulated and

real data, which are described below in Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Simulated data

To investigate the performance of IGFCI versus GFCI, we conducted simulation studies

to generate data as follows.

1. We created random BNs with |V | = {10, 20, 50} discrete random variables where each

variable has 2, 3, or 4 categories, which is chosen randomly. The expected number of

edges are |E| = {2|V |, 4|V |, 6|V |}. To generate a BN structure G = (V ,E), we first

created an arbitrary ordering of variables2. Then, we uniformly randomly added edges

to G in a forward direction until obtaining the specified number of edges. The DAGs

generated in this way have a power-law-type distribution over the number of parents,

with some variables having many more than the average number of parents.

2This ordering is only used to generate the BNs; we do not use it when applying GFCI or IGFCI.
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2. Given a BN structure G, we then parametrized the distribution of each random variable

X ∈ V given its parents Pa(X) according to G under the constraints that follow from

the axioms of probability theory. We also included context-specific independencies (CSIs)

in the CPTs so that each variable that has more than one parent includes at least one

CSI. CSI parents generated this way are a proper subset of the population-wide parents

in the data-generating model. In the BNs with the edge density of 2|V |, 4|V |, and 6|V |,

about 28%, 38%, and 48% of the variables (on average) exhibit CSI in each simulated

test case T , respectively.

3. We randomly set L = 20% of variables to be latent (i.e., hidden). These variables were

chosen at random from a list of all variables that are common causes of two or more of

the measured variables. If there are fewer common causes than L = 20% of variables, we

randomly selected from a list of the variables that are common effects of two or more of

the measured variables.

4. We used each randomly generated BN G and its parameters to generate a training dataset

D with N = {200, 1000, 5000} training samples.

5. We also generated M = 500 test instances from each randomly generated BN G and its

parameters; we refer to each instance as T .

6. We used the training dataset D generated in step 4 to learn a population-wide PAG

structure using the GFCI algorithm (Section 5.1), which uses GES and FCI methods

in its two steps. For GES, we used the BDeu score [Heckerman, 1998] with a prior

equivalence sample size (PESS) of 1.0 to learn a population-wide pattern GPW. For the

independence testing used in FCI, we applied BSC (Section 3.3) with a 0.5 decision

threshold. This means that if P (R = (X ⊥⊥ Y |Z)|D) ≥ 0.5, then BSC returns true for

R, otherwise, it returns false. The final output of GFCI is a PAG model, which we refer

to as PPW.

7. For each test instance T generated in step 5, we used T and the training datasetD to learn

an instance-specific PAG structure using the IGFCI algorithm described in Section 5.2.

Similar to GFCI, IGFCI uses a score-based method (i.e., IGES with IS-Score) and a

constraint-based method (i.e., FCI with IS-BSC independence test) in its two steps. For

IGES, we used GPW as the population-wide model. Also, we set PESS = 1.0 and the
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structure prior penalty κ = {0.001, 0.1, 0.5, 0.9}, where κ (0 < κ ≤ 1) is a penalty factor

that is used when computing the prior probabilities of the instance-specific BN structures;

it penalizes the structural difference between the population-wide and instance-specific

BNs (see Section 4.4 for more details). For the FCI part, we used IS-BSC independence

tests (Section 5.2.1) with the decision threshold of 0.5. The final output of IGFCI is a

PAG model for the given test instance T ; we refer to this PAG as PIS.

8. Finally, we computed evaluation measures (described below) to compare the structure

recovery performance of GFCI and IGFCI versus the ground-truth PAG structure for

each test instance T (steps 1-3); which we denote as Ptruth. To obtain Ptruth, we first

derived the ground-truth CBN Gtruth for each test instance T considering the existing

CSIs associated with T . Then, we ran FCI using an independence oracle on the observed

variables in Gtruth to derive the instance-specific PAG that is consistent with tGtruth.

We compared PPW and PIS versus Ptruth for each test case and reported the average of

measures over the M = 500 test cases.

For each simulation setting mentioned above, steps 1 through 8 were repeated for 10

randomly generated BNs and the performance results were averaged using the evaluation

measures described in the following section.

5.3.1.1 PAG structure discovery performance measures In this section, I describe

the evaluation measures that are used to calculate the structural similarity of the discovered

PAG Poutput, which is PPW when using GFCI and PIS when using IGFCI, versus the ground-

truth PAG Ptruth.

We used structural Hamming distance (SHD) that counts the edge modifications that

include added, deleted, and reoriented edges, by comparing each possible edge in Poutput and

Ptruth. We define three versions of SHD for PAGs as follows:

• Strict SHD (S-SHD): This version counts any edge modifications, which are added,

deleted, and reoriented edges. The S-SHD would be 0 if for a given pair of measured

variables the edge in Poutput is exactly the same as the edge in PAG Ptruth; otherwise,

it is 1. Any extra or missing edge would also count as 1 in terms of S-SHD. Table 42a
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shows how to compute S-SHD for PAGs.

• Lenient SHD (L-SHD): This version allows general edges that include circle end-

points to be compatible with their specializations. For example, the L-SHD between

A ◦→B and A→ B is 0 because these edges are compatible. However, the L-SHD be-

tween A→ B and B → A is 1 because they are not compatible. L-SHD is symmetric

regarding the output and the truth edges, as shown in Table 42b.

• Adjacency SHD (A-SHD): In this version, we compute SHD on the skeleton-level

by comparing the adjacencies of two graphs, which disregards the edge orientations

and only counts the edge modifications of the adjacency graph that includes added

and deleted edges. For example, if one graph includes A ◦—◦B but there is no edge

between A and B in the other one, then A-SHD would be 1.

Table 42: Two types of SHD for PAGs. The rows and columns correspond to the edge types

output by the algorithm and the data-generating edge types, respectively.

(a) Strict SHD (S-SHD) for PAGs.

Output Edge/ Truth Edge A→ B A↔ B A ◦→B A ◦—◦B A B

A→ B(B → A) 0 (1) 1 1 1 1

A↔ B 1 0 1 1 1

A ◦→B(B ◦→A) 1 1 0 (1) 1 1

A ◦—◦B 1 1 1 0 1

A B 1 1 1 1 0

(b) Lenient SHD (L-SHD) for PAGs.

Output Edge/ Truth Edge A→ B A↔ B A ◦→B A ◦—◦B A B

A→ B(B → A) 0 (1) 1 0 0 1

A↔ B 1 0 0 0 1

A ◦→B(B ◦→A) 0 (1) 0 0 0 1

A ◦—◦B 0 0 0 0 1

A B 1 1 1 1 0

Other performance criteria we used to evaluate discrimination are precision (P) and recall

(R) for adjacencies and arrowheads as follows:
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• Adjacency precision (AP): we compute the ratio of correctly predicted edges in

Poutput to all predicted edges in Poutput (without considering orientations of edges) as

follows:

AP =
#correctly predicted adjacencies

#predicted adjacencies
(5.3)

• Adjacency recall (AR): we compute the ratio of correctly predicted edges in Poutput
to all true edges in Ptruth (without considering the edges’ orientations) as follows:

AR =
#correctly predicted adjacencies

#true adjacencies
(5.4)

• Arrowhead precision (AHP): considering the pairs of measured variables that have

an edge between them in the predicted graph Poutput, we compute the ratio of correctly

predicted arrowheads in Poutput to all predicted arrowheads in Poutput as follows:

AHP =
#correctly predicted arrowheads

#predicted arrowheads
(5.5)

• Arrowhead recall (AHR): considering the pairs of measured variables that have an

edge between them in the ground-truth graph Ptruth, we compute the ratio of correctly

predicted arrowheads in Poutput to all true arrowheads in Ptruth as follows:

AHR =
#correctly predicted arrowheads

#true arrowheads
(5.6)

Note that an arrowhead in a PAG indicates causation due to either a measured or a latent

variable (see Section 2.1.2 and the example given in Figure 5 for more details).

In this chapter, since we are evaluating methods using data that have been generated

by instance-specific models, the ground-truth PAGs are derived based on the given instance.

Therefore, similar to Chapter 4, we derived three subtypes for precision and recall evaluation

measurements: (1) the nodes that include context-specific independence (CSI), for which we

derive precision (PIS) and recall statistics(RIS), (2) the nodes that do not include CSI, for

which we derive separate precision (Pother) and recall (Rother) statistics, and (3) we also

combine these two types of nodes to derive overall precision (P) and recall (R) statistics (see

the example given in Section 4.5.1.1).
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5.3.1.2 Simulation results Tables 43, 44, and 45 show the average adjacency P and

R results of the IGFCI (κ = 0.1)3 and GFCI algorithms over 10 randomly generated CBNs

described above, using N = {200, 1000, 5000} training instances, respectively. For N = 200,

IGFCI (κ = 0.1) and GFCI perform similar in terms of adjacency P, but adjacency R is better

when using GFCI (Table 43). As the sample size increases to N = 1000 (Table 44), both

methods perform better in terms of adjacency R, but GFCI performs better in terms of this

measure. Additionally, IGFCI outperforms GFCI in terms of adjacency P, for IS subtype

and overall. When using N = 5000 training instances, IGFCI almost always performs

significantly better in terms of adjacency P for IS subtype and overall, while GFCI always

performs significantly better in terms of adjacency R based on Wilcoxon signed rank test at

5% significance level (Table 45).

Tables 46, 47, and 48 show the average arrowhead P and R results of the IGFCI (κ =

0.1) and GFCI algorithms over 10 randomly generated CBNs described above, using N =

{200, 1000, 5000} training instances, respectively. As shown in these tables, when using

N = 200 training instances, both IGFCI and GFCI methods perform similarly in terms of

arrowhead P and R (Table 46). As the sample size increases to N = 1000, both methods

perform better in terms of arrowhead P and R, while arrowhead P is almost always better

for IGFCI (Table 47). Increasing the number of training instances to N = 5000 results in

better arrowhead P and R for both methods. In this case, the arrowhead P performance of

IGFCI is almost always significantly better than GFCI, while GFCI has significantly better

arrowhead R based on Wilcoxon signed rank test at 5% significance level (Table 48).

3Results using additional values of κ = {0.001, 0.1, 0.5, 0.9} are reported in Appendix B. Also, omitted
rows in the tables represent the settings that failed to return a result in under 72 hours.
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Table 43: Adjacency precision (P) and recall (R) results for N = 200 training cases. A

penalty factor κ = 0.1 is used to penalize the structural difference between the population-

wide and instance-specific CBNs in the first stage of IGFCI. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI 0.90 ± 0.20 1.00 ± 0.01 0.95 ± 0.08 0.30 ± 0.16 0.30 ± 0.12 0.30 ± 0.12

GFCI 0.88 ± 0.20 1.00 ± 0.01 0.95 ± 0.07 0.40 ± 0.14 0.43 ± 0.14 0.42 ± 0.12

40

IGFCI 0.84 ± 0.25 1.00 ± 0.00 0.90 ± 0.16 0.22 ± 0.12 0.19 ± 0.09 0.19 ± 0.09

GFCI 0.90 ± 0.13 1.00 ± 0.00 0.93 ± 0.11 0.30 ± 0.12 0.25 ± 0.11 0.27 ± 0.10

60

IGFCI 0.95 ± 0.07 1.00 ± 0.00 0.97 ± 0.05 0.25 ± 0.12 0.16 ± 0.08 0.21 ± 0.06

GFCI 0.90 ± 0.10 1.00 ± 0.00 0.94 ± 0.06 0.34 ± 0.14 0.23 ± 0.12 0.30 ± 0.06

20

40

IGFCI 0.86 ± 0.11 1.00 ± 0.01 0.94 ± 0.04 0.27 ± 0.10 0.24 ± 0.08 0.24 ± 0.07

GFCI 0.80 ± 0.12 1.00 ± 0.00 0.92 ± 0.04 0.33 ± 0.13 0.30 ± 0.11 0.30 ± 0.09

80

IGFCI 0.92 ± 0.09 0.99 ± 0.02 0.94 ± 0.07 0.18 ± 0.07 0.12 ± 0.03 0.15 ± 0.05

GFCI 0.90 ± 0.07 0.99 ± 0.02 0.93 ± 0.04 0.23 ± 0.06 0.15 ± 0.04 0.19 ± 0.04

120

IGFCI 0.90 ± 0.06 0.97 ± 0.08 0.93 ± 0.06 0.16 ± 0.06 0.09 ± 0.04 0.12 ± 0.05

GFCI 0.89 ± 0.07 0.98 ± 0.07 0.92 ± 0.06 0.21 ± 0.07 0.13 ± 0.04 0.17 ± 0.05

50 100

IGFCI 0.87 ± 0.05 0.97 ± 0.05 0.93 ± 0.03 0.24 ± 0.08 0.22 ± 0.05 0.22 ± 0.05

GFCI 0.86 ± 0.06 0.99 ± 0.03 0.94 ± 0.03 0.29 ± 0.09 0.26 ± 0.06 0.27 ± 0.07

Summary statistics
GFCI 0.89 ± 0.03 0.99 ± 0.01 0.93 ± 0.02 0.23 ± 0.04 0.19 ± 0.07 0.21 ± 0.05

GFCI 0.88 ± 0.03 0.99 ± 0.01 0.93 ± 0.01 0.30 ± 0.06 0.25 ± 0.09 0.27 ± 0.08
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Table 44: Adjacency precision (P) and recall (R) results for N = 1000 training cases. A

penalty factor κ = 0.1 is used to penalize the structural difference between the population-

wide and instance-specific CBNs in the first stage of IGFCI. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI 0.91 ± 0.11 0.99 ± 0.02 0.96 ± 0.05 0.47 ± 0.15 0.43 ± 0.14 0.44 ± 0.12

GFCI 0.82 ± 0.14 0.97 ± 0.07 0.91 ± 0.09 0.59 ± 0.21 0.54 ± 0.18 0.55 ± 0.15

40

IGFCI 0.95 ± 0.05 1.00 ± 0.00 0.97 ± 0.03 0.38 ± 0.07 0.26 ± 0.07 0.31 ± 0.06

GFCI 0.89 ± 0.07 1.00 ± 0.00 0.93 ± 0.05 0.46 ± 0.09 0.34 ± 0.10 0.39 ± 0.08

60

IGFCI 0.90 ± 0.04 1.00 ± 0.00 0.93 ± 0.04 0.35 ± 0.14 0.26 ± 0.10 0.32 ± 0.07

GFCI 0.84 ± 0.10 1.00 ± 0.00 0.90 ± 0.07 0.44 ± 0.13 0.35 ± 0.12 0.42 ± 0.06

20

40

IGFCI 0.85 ± 0.07 0.96 ± 0.03 0.91 ± 0.04 0.39 ± 0.11 0.38 ± 0.09 0.37 ± 0.07

GFCI 0.71 ± 0.06 0.98 ± 0.03 0.85 ± 0.02 0.46 ± 0.10 0.42 ± 0.10 0.42 ± 0.08

80

IGFCI 0.89 ± 0.05 0.97 ± 0.04 0.92 ± 0.04 0.29 ± 0.10 0.20 ± 0.05 0.24 ± 0.05

GFCI 0.82 ± 0.07 0.99 ± 0.01 0.89 ± 0.06 0.35 ± 0.08 0.24 ± 0.06 0.29 ± 0.04

120

IGFCI 0.92 ± 0.04 0.97 ± 0.07 0.93 ± 0.05 0.25 ± 0.07 0.16 ± 0.04 0.20 ± 0.05

GFCI 0.85 ± 0.07 0.97 ± 0.07 0.89 ± 0.07 0.31 ± 0.07 0.20 ± 0.04 0.25 ± 0.05

50 100

IGFCI 0.84 ± 0.06 0.98 ± 0.02 0.92 ± 0.03 0.40 ± 0.09 0.38 ± 0.07 0.38 ± 0.08

GFCI 0.73 ± 0.03 0.99 ± 0.02 0.87 ± 0.03 0.45 ± 0.11 0.42 ± 0.07 0.42 ± 0.08

Summary statistics
IGFCI 0.89 ± 0.04 0.98 ± 0.01 0.94 ± 0.02 0.36 ± 0.07 0.29 ± 0.09 0.32 ± 0.08

GFCI 0.81 ± 0.06 0.99 ± 0.01 0.89 ± 0.02 0.44 ± 0.08 0.36 ± 0.11 0.39 ± 0.09
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Table 45: Adjacency precision (P) and recall (R) results for N = 5000 training cases. A

penalty factor κ = 0.1 is used to penalize the structural difference between the population-

wide and instance-specific CBNs in the first stage of IGFCI. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI 0.89 ± 0.12 0.98 ± 0.04 0.94 ± 0.06 0.59 ± 0.14 0.64 ± 0.15 0.60 ± 0.11

GFCI 0.75 ± 0.14 1.00 ± 0.00 0.86 ± 0.09 0.73 ± 0.14 0.75 ± 0.13 0.73 ± 0.11

40

IGFCI 0.91 ± 0.07 1.00 ± 0.00 0.95 ± 0.04 0.42 ± 0.09 0.31 ± 0.06 0.36 ± 0.05

GFCI 0.77 ± 0.08 1.00 ± 0.00 0.86 ± 0.05 0.62 ± 0.09 0.53 ± 0.09 0.57 ± 0.05

60

IGFCI 0.92 ± 0.07 1.00 ± 0.00 0.94 ± 0.05 0.42 ± 0.15 0.36 ± 0.10 0.40 ± 0.10

GFCI 0.78 ± 0.09 1.00 ± 0.00 0.85 ± 0.05 0.65 ± 0.13 0.51 ± 0.13 0.60 ± 0.09

20

40

IGFCI 0.86 ± 0.10 0.98 ± 0.02 0.93 ± 0.05 0.48 ± 0.11 0.51 ± 0.14 0.48 ± 0.10

GFCI 0.66 ± 0.07 0.99 ± 0.02 0.83 ± 0.04 0.53 ± 0.11 0.55 ± 0.12 0.53 ± 0.09

80

IGFCI 0.89 ± 0.04 0.97 ± 0.04 0.92 ± 0.04 0.33 ± 0.09 0.25 ± 0.06 0.28 ± 0.06

GFCI 0.76 ± 0.05 0.98 ± 0.02 0.85 ± 0.04 0.42 ± 0.08 0.30 ± 0.08 0.36 ± 0.06

120

IGFCI 0.91 ± 0.05 0.98 ± 0.03 0.93 ± 0.03 0.30 ± 0.08 0.18 ± 0.05 0.24 ± 0.05

GFCI 0.77 ± 0.04 1.00 ± 0.00 0.85 ± 0.03 0.37 ± 0.07 0.26 ± 0.05 0.31 ± 0.05

50 100

IGFCI 0.82 ± 0.06 0.97 ± 0.02 0.90 ± 0.04 0.50 ± 0.11 0.49 ± 0.08 0.49 ± 0.09

GFCI 0.66 ± 0.05 0.99 ± 0.01 0.84 ± 0.04 0.54 ± 0.10 0.51 ± 0.08 0.52 ± 0.09

Summary statistics
IGFCI 0.89 ± 0.03 0.98 ± 0.01 0.93 ± 0.01 0.44 ± 0.09 0.39 ± 0.15 0.41 ± 0.12

GFCI 0.74 ± 0.05 0.99 ± 0.01 0.85 ± 0.01 0.55 ± 0.12 0.49 ± 0.15 0.52 ± 0.13
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Table 46: Arrowhead precision (P) and recall (R) results for N = 200 training cases. A

penalty factor κ = 0.1 is used to penalize the structural difference between the population-

wide and instance-specific CBNs in the first stage of IGFCI. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI 0.38 ± 0.40 0.22 ± 0.29 0.36 ± 0.39 0.02 ± 0.05 0.02 ± 0.04 0.02 ± 0.03

GFCI 0.23 ± 0.19 0.31 ± 0.39 0.28 ± 0.32 0.02 ± 0.04 0.04 ± 0.10 0.03 ± 0.06

40

IGFCI 0.41 ± 0.36 0.37 ± 0.28 0.36 ± 0.26 0.07 ± 0.09 0.02 ± 0.02 0.03 ± 0.03

GFCI 0.34 ± 0.12 0.50 ± 0.35 0.46 ± 0.30 0.05 ± 0.08 0.02 ± 0.05 0.03 ± 0.05

60

IGFCI 0.03 ± 0.05 0.15 ± 0.21 0.06 ± 0.09 0.04 ± 0.07 0.01 ± 0.03 0.02 ± 0.03

GFCI 0.04 ± 0.06 0.36 ± 0.37 0.13 ± 0.14 0.03 ± 0.07 0.02 ± 0.04 0.02 ± 0.04

20

40

IGFCI 0.55 ± 0.32 0.73 ± 0.39 0.65 ± 0.36 0.11 ± 0.13 0.06 ± 0.07 0.06 ± 0.06

GFCI 0.49 ± 0.27 0.86 ± 0.35 0.62 ± 0.29 0.12 ± 0.13 0.06 ± 0.08 0.07 ± 0.07

80

IGFCI 0.48 ± 0.36 0.70 ± 0.29 0.61 ± 0.28 0.09 ± 0.10 0.03 ± 0.03 0.04 ± 0.03

GFCI 0.46 ± 0.27 0.74 ± 0.27 0.63 ± 0.21 0.07 ± 0.12 0.03 ± 0.03 0.03 ± 0.03

120

IGFCI 0.62 ± 0.31 0.56 ± 0.32 0.57 ± 0.30 0.07 ± 0.06 0.01 ± 0.01 0.02 ± 0.02

GFCI 0.44 ± 0.31 0.58 ± 0.37 0.50 ± 0.29 0.07 ± 0.09 0.01 ± 0.01 0.02 ± 0.03

50 100

IGFCI 0.33 ± 0.29 0.81 ± 0.16 0.76 ± 0.19 0.02 ± 0.03 0.06 ± 0.02 0.05 ± 0.02

GFCI 0.14 ± 0.18 0.91 ± 0.20 0.66 ± 0.18 0.03 ± 0.05 0.05 ± 0.03 0.05 ± 0.02

Summary statistics
IGFCI 0.40 ± 0.18 0.50 ± 0.24 0.48 ± 0.22 0.06 ± 0.03 0.03 ± 0.02 0.03 ± 0.02

GFCI 0.30 ± 0.16 0.61 ± 0.22 0.47 ± 0.18 0.06 ± 0.03 0.03 ± 0.02 0.03 ± 0.02

156



Table 47: Arrowhead precision (P) and recall (R) results for N = 1000 training cases. A

penalty factor κ = 0.1 is used to penalize the structural difference between the population-

wide and instance-specific CBNs in the first stage of IGFCI. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI 0.29 ± 0.24 0.50 ± 0.38 0.35 ± 0.30 0.07 ± 0.09 0.14 ± 0.12 0.11 ± 0.10

GFCI 0.18 ± 0.19 0.65 ± 0.37 0.37 ± 0.25 0.08 ± 0.10 0.20 ± 0.18 0.15 ± 0.12

40

IGFCI 0.14 ± 0.15 0.37 ± 0.32 0.33 ± 0.27 0.11 ± 0.19 0.07 ± 0.07 0.08 ± 0.07

GFCI 0.06 ± 0.09 0.24 ± 0.31 0.15 ± 0.18 0.17 ± 0.26 0.09 ± 0.11 0.10 ± 0.13

60

IGFCI 0.22 ± 0.26 0.27 ± 0.18 0.28 ± 0.21 0.21 ± 0.26 0.09 ± 0.07 0.12 ± 0.14

GFCI 0.19 ± 0.24 0.26 ± 0.18 0.25 ± 0.20 0.23 ± 0.26 0.13 ± 0.06 0.16 ± 0.14

20

40

IGFCI 0.68 ± 0.24 0.74 ± 0.20 0.74 ± 0.19 0.24 ± 0.17 0.19 ± 0.08 0.19 ± 0.08

GFCI 0.38 ± 0.18 0.73 ± 0.23 0.60 ± 0.11 0.34 ± 0.19 0.20 ± 0.09 0.21 ± 0.09

80

IGFCI 0.62 ± 0.21 0.75 ± 0.19 0.68 ± 0.20 0.25 ± 0.15 0.10 ± 0.05 0.12 ± 0.05

GFCI 0.46 ± 0.16 0.63 ± 0.22 0.56 ± 0.17 0.34 ± 0.17 0.13 ± 0.06 0.15 ± 0.06

120

IGFCI 0.59 ± 0.27 0.64 ± 0.22 0.62 ± 0.20 0.20 ± 0.07 0.07 ± 0.03 0.09 ± 0.03

GFCI 0.50 ± 0.28 0.50 ± 0.35 0.48 ± 0.27 0.26 ± 0.14 0.08 ± 0.05 0.11 ± 0.06

50 100

IGFCI 0.66 ± 0.20 0.82 ± 0.12 0.79 ± 0.12 0.25 ± 0.11 0.20 ± 0.07 0.20 ± 0.07

GFCI 0.36 ± 0.15 0.79 ± 0.14 0.64 ± 0.08 0.30 ± 0.16 0.21 ± 0.08 0.22 ± 0.09

Summary statistics
IGFCI 0.45 ± 0.21 0.58 ± 0.19 0.54 ± 0.20 0.19 ± 0.07 0.12 ± 0.05 0.13 ± 0.04

GFCI 0.30 ± 0.15 0.54 ± 0.20 0.43 ± 0.17 0.24 ± 0.09 0.15 ± 0.05 0.15 ± 0.04
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Table 48: Arrowhead precision (P) and recall (R) results for N = 5000 training cases. A

penalty factor κ = 0.1 is used to penalize the structural difference between the population-

wide and instance-specific CBNs in the first stage of IGFCI. The numbers after ‘±’ are

standard deviations. Boldface indicates that the results are statistically significantly better,

based on Wilcoxon signed rank test at 5% significance level.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI 0.41 ± 0.21 0.65 ± 0.30 0.60 ± 0.24 0.32 ± 0.31 0.32 ± 0.20 0.30 ± 0.14

GFCI 0.29 ± 0.28 0.64 ± 0.31 0.50 ± 0.22 0.40 ± 0.39 0.35 ± 0.21 0.35 ± 0.18

40

IGFCI 0.32 ± 0.31 0.44 ± 0.26 0.40 ± 0.22 0.27 ± 0.17 0.17 ± 0.12 0.19 ± 0.11

GFCI 0.19 ± 0.18 0.35 ± 0.16 0.26 ± 0.09 0.53 ± 0.21 0.32 ± 0.15 0.35 ± 0.13

60

IGFCI 0.16 ± 0.16 0.30 ± 0.24 0.25 ± 0.16 0.30 ± 0.23 0.18 ± 0.12 0.20 ± 0.18

GFCI 0.07 ± 0.07 0.33 ± 0.23 0.20 ± 0.12 0.46 ± 0.26 0.36 ± 0.10 0.36 ± 0.16

20

40

IGFCI 0.72 ± 0.21 0.81 ± 0.24 0.79 ± 0.22 0.39 ± 0.22 0.32 ± 0.14 0.32 ± 0.14

GFCI 0.35 ± 0.07 0.78 ± 0.21 0.62 ± 0.13 0.55 ± 0.25 0.36 ± 0.13 0.37 ± 0.12

80

IGFCI 0.65 ± 0.17 0.73 ± 0.13 0.69 ± 0.13 0.32 ± 0.16 0.15 ± 0.05 0.17 ± 0.05

GFCI 0.38 ± 0.13 0.57 ± 0.13 0.48 ± 0.12 0.50 ± 0.20 0.20 ± 0.07 0.23 ± 0.07

120

IGFCI 0.57 ± 0.20 0.67 ± 0.11 0.63 ± 0.10 0.26 ± 0.07 0.11 ± 0.05 0.13 ± 0.05

GFCI 0.34 ± 0.10 0.54 ± 0.15 0.45 ± 0.10 0.43 ± 0.10 0.15 ± 0.06 0.18 ± 0.05

50 100

IGFCI 0.59 ± 0.16 0.79 ± 0.17 0.74 ± 0.14 0.38 ± 0.14 0.29 ± 0.09 0.30 ± 0.09

GFCI 0.30 ± 0.05 0.79 ± 0.15 0.61 ± 0.08 0.44 ± 0.16 0.32 ± 0.09 0.33 ± 0.09

Summary statistics
IGFCI 0.49 ± 0.19 0.63 ± 0.18 0.59 ± 0.18 0.32 ± 0.05 0.22 ± 0.08 0.23 ± 0.07

GFCI 0.27 ± 0.10 0.57 ± 0.17 0.45 ± 0.15 0.47 ± 0.05 0.29 ± 0.08 0.31 ± 0.07

158



We also computed three types of structural Hamming distance (SHD) to compare the

performance of the PAGs learned by IGFCI and GFCI search procedures on each given

instance T : S-SHD, L-SHD, A-SHD (see Section 5.3.1.1). Tables 49, 50, and 51 show the

average results on the IGFCI and GFCI methods when using N = {200, 1000, 5000} training

samples, respectively. In these experiments, when using N = 200 training instances, IGFCI

often performs better in terms of added edges in the IS group and reoriented edges, while

GFCI has a lower number of deleted edges.

Overall, the average S-SHD is similar using both IGFCI and GFCI methods, where

GFCI performs better in terms of L-SHD and A-SHD (Table 49). By increasing the training

samples to N = 1000, both methods perform better in terms of S-SHD, L-SHD, and A-SHD;

however, IGFCI performs slightly better than GFCI in terms of S-SHD but similar in terms

of L-SHD and A-SHD. When using N = 5000 training instances, GFCI has significantly

fewer number of deleted edges, while IGFCI performs significantly better in terms added

and reoriented edges, and S-SHD, especially in data-generating CBNs with more variables

and edges (e.g., 50 variables and 100 edges). IGFCI’s improvement in S-SHD is mainly due

to fewer number of added and reoriented edges, especially in the nodes with CSI structure

(denoted by IS in tables). Based on these simulations, the IGFCI algorithm often results in

less erroneously added and reoriented edges but more deleted edges when compared to the

GFCI method.
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Table 49: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency SHD (A-SHD) for

N = 200 training cases. A penalty factor κ = 0.1 is used to penalize the structural difference

between the population-wide and instance-specific CBNs in the first stage of IGFCI. Boldface

indicates that the results are statistically significantly better, based on Wilcoxon signed rank

test at 5% significance level (the lower the better).

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall S-SHD L-SHD A-SHD

10

20

IGFCI 0.2 0.01 0.21 3.27 4.29 7.57 0.46 1.00 1.46 9.24 7.88 7.78

GFCI 0.34 0.01 0.36 2.86 3.45 6.31 0.73 1.37 2.1 8.76 6.85 6.66

40

IGFCI 0.18 0 0.18 7.6 8.51 16.12 0.61 0.52 1.13 17.43 16.44 16.3

GFCI 0.31 0 0.31 6.78 7.87 14.65 0.75 0.87 1.62 16.58 15.09 14.96

60

IGFCI 0.17 0 0.17 8.1 7.4 15.5 1.23 0.69 1.93 17.6 15.74 15.67

GFCI 0.41 0 0.41 7.22 6.72 13.94 1.58 1.05 2.64 16.99 14.42 14.35

20

40

IGFCI 0.44 0.01 0.45 8.1 14.77 22.87 1.12 1.96 3.09 26.41 23.43 23.32

GFCI 0.77 0 0.77 7.48 13.76 21.24 1.58 2.65 4.23 26.24 22.08 22.01

80

IGFCI 0.45 0.05 0.5 22.83 25.25 48.09 2.72 1.71 4.43 53.03 48.97 48.59

GFCI 0.66 0.02 0.68 21.68 24.24 45.92 3.68 2.29 5.97 52.56 46.93 46.60

120

IGFCI 0.50 0.14 0.64 25.49 28.34 53.84 2.96 1.69 4.65 59.13 54.82 54.48

GFCI 0.69 0.11 0.8 24.03 27.34 51.38 4.22 2.63 6.85 59.03 52.56 52.17

50 100

IGFCI 1.01 0.35 1.36 21.12 41.02 62.13 3.26 4.95 8.21 71.71 63.88 63.49

GFCI 1.15 0.11 1.26 19.94 38.92 58.87 4.02 6.61 10.63 70.76 60.26 60.13

Summary statistics
IGFCI 0.42 0.08 0.5 13.79 18.51 32.3 1.77 1.79 3.56 36.36 33.03 32.8

GFCI 0.62 0.04 0.65 12.86 17.47 30.33 2.37 2.49 4.86 35.84 31.17 30.98
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Table 50: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency SHD (A-SHD) for

N = 1000 training cases. A penalty factor κ = 0.1 is used to penalize the structural difference

between the population-wide and instance-specific CBNs in the first stage of IGFCI. Boldface

indicates that the results are statistically significantly better, based on Wilcoxon signed rank

test at 5% significance level (the lower the better).

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall S-SHD L-SHD A-SHD

10

20

IGFCI 0.24 0.04 0.27 2.59 3.48 6.07 1.07 1.53 2.59 8.94 6.52 6.35

GFCI 0.65 0.1 0.75 2.17 2.94 5.12 1.42 1.72 3.14 9.01 6.04 5.87

40

IGFCI 0.17 0 0.17 5.97 7.68 13.65 1.82 1.32 3.14 16.96 14.13 13.82

GFCI 0.65 0 0.65 5.18 6.88 12.06 3.01 2.02 5.03 17.74 13.26 12.71

60

IGFCI 0.43 0 0.43 7.18 6.46 13.64 1.70 1.58 3.28 17.35 14.5 14.07

GFCI 0.97 0 0.97 6.24 5.45 11.68 2.46 2.48 4.94 17.59 13.24 12.65

20

40

IGFCI 0.70 0.27 0.97 6.79 12.11 18.9 1.71 2.86 4.57 24.44 20.34 19.87

GFCI 1.83 0.19 2.02 6.08 11.46 17.54 2.71 3.3 6 25.56 20.07 19.56

80

IGFCI 0.95 0.14 1.09 20.11 22.97 43.08 4.14 2.61 6.75 50.92 44.92 44.17

GFCI 1.92 0.05 1.97 18.41 21.92 40.33 5.23 3.62 8.85 51.15 43.52 42.30

120

IGFCI 0.69 0.17 0.86 22.84 26.25 49.08 4.31 3.14 7.46 57.4 50.52 49.94

GFCI 1.59 0.22 1.81 21.25 24.95 46.20 6.01 4.61 10.62 58.63 49.05 48.01

50 100

IGFCI 2.11 0.41 2.52 16.92 33.34 50.26 4.24 7.11 11.35 64.14 53.61 52.78

GFCI 4.37 0.18 4.55 15.76 31.03 46.79 6.56 8.03 14.59 65.92 52.34 51.34

Summary statistics
IGFCI 0.75 0.15 0.9 11.77 16.04 27.81 2.71 2.88 5.59 34.31 29.22 28.71

GFCI 1.71 0.11 1.82 10.73 14.95 25.67 3.91 3.68 7.6 35.09 28.22 27.49
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Table 51: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency SHD (A-SHD) for

N = 5000 training cases. A penalty factor κ = 0.1 is used to penalize the structural difference

between the population-wide and instance-specific CBNs in the first stage of IGFCI. Boldface

indicates that the results are statistically significantly better, based on Wilcoxon signed rank

test at 5% significance level (the lower the better).

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall S-SHD L-SHD A-SHD

10

20

IGFCI 0.42 0.05 0.48 2.07 2.51 4.58 0.95 1.57 2.52 7.58 5.35 5.06

GFCI 1.26 0 1.26 1.44 1.74 3.18 1.46 2.15 3.61 8.04 4.7 4.43

40

IGFCI 0.38 0 0.38 5.62 7.09 12.71 2.13 1.88 4.01 17.10 13.5 13.1

GFCI 1.78 0 1.78 3.70 4.82 8.52 4.77 4.78 9.55 19.85 11.33 10.30

60

IGFCI 0.48 0 0.48 6.55 5.55 12.1 2.51 2.42 4.92 17.51 13.33 12.59

GFCI 2.08 0 2.08 4.17 3.95 8.11 5.58 4.09 9.67 19.86 11.00 10.19

20

40

IGFCI 0.83 0.14 0.97 5.83 10.1 15.93 1.86 2.94 4.80 21.70 17.55 16.9

GFCI 2.78 0.17 2.95 5.26 9.19 14.45 3.19 3.29 6.47 23.88 18.07 17.4

80

IGFCI 1.08 0.22 1.30 19.16 22.07 41.22 4.17 3.43 7.60 50.13 43.58 42.53

GFCI 3.33 0.09 3.42 16.69 20.29 36.98 7.07 5.58 12.65 53.05 42.63 40.40

120

IGFCI 0.85 0.13 0.99 21.57 25.86 47.43 4.53 3.23 7.76 56.18 49.53 48.42

GFCI 3.13 0.01 3.13 19.25 23.41 42.66 7.21 5.65 12.85 58.64 48.10 45.79

50 100

IGFCI 3.09 0.7 3.79 14.4 27.91 42.31 5.38 9.23 14.61 60.71 48.16 46.09

GFCI 7.39 0.17 7.56 13.37 26.52 39.90 7.71 9.56 17.27 64.74 50.18 47.46

Summary statistics
IGFCI 1.02 0.18 1.2 10.74 14.44 25.18 3.08 3.53 6.6 32.99 27.28 26.38

GFCI 3.11 0.06 3.17 9.13 12.85 21.97 5.28 5.01 10.3 35.44 26.57 25.14

162



5.3.2 Real-world data

We evaluated the performance of IGFCI on multiple real-world datasets that were in-

troduced in Section 4.5.2, which include pneumonia, sepsis, and lung cancer datasets. See

Section 4.5.2 for more information about these datasets.

The pneumonia dataset includes 2287 patients, which was split into a training set D with

N = 1601 samples and a test set with M = 686 samples while preserving the distribution

of dire outcome in the original dataset. For this dataset, given each instance T in the test

set and all the training instances in D, we applied IGFCI search using IS-Score and IS-BSC

to learn an instance-specific PAG PIS for T . We also applied the GFCI search using the

BDeu score and BSC test to learn a population-wide PAG PPW given the training set D.

We repeated this procedure for every instance in the test set of the pneumonia dataset.

For the sepsis and lung cancer datasets, we performed leave-one-out cross-validation on

each of the datasets. For a given dataset D, we selected a single instance T and used it as the

test instance; we used all the remaining instances as the training set. Given each T and D,

we learned an instance-specific PAG PIS for T using IS-GFCI. We repeated this procedure

for every instance in D. We also learned a population-wide PAG PPW for all the instances

in D using GFCI.

Since the true causal relationships are not known for these real datasets, as is often the

case with real-world datasets in general, we compared the average of structural differences of

PIS versus PPW, assuming PPW as the reference. We report results using multiple values of κ

(0.0 < κ ≤ 1.0). The results are shown in Table 52. The results indicate that for lower values

of κ (e.g., 0.001), the structural differences are lower because a lower value of κ penalizes more

the structural difference between the population-wide BN and instance-specific BN model.

The results also indicate that as the data includes fewer variables and more instances (e.g.,

sepsis dataset), the structural differences decrease between PPW and PIS. Since we do not

know the true causal structures for the real datasets, we cannot determine whether IGFCI or

GFCI is performing better in learning the causal structures. The results do show, however,

that instance-specific causal structure frequently exists when we learn PAGs from real-world

data.
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Table 52: Average strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency SHD (A-SHD)

between the instance-specific PAGs PIS found by IGFCI and the population-wide PAG PPW

found by GFCI, where PPW is considered as the reference, on the real-world datasets. κ is

a parameter that penalizes the structural difference between the population-wide BN and

instance-specific BN model in the first stage of IGFCI.

Dataset # Patients # Variables κ Added Deleted Reoriented S-SHD L-SHD A-SHD

Pneumonia

train:1601

41

0.001 6.33 13.06 6.83 26.22 19.40 19.40

0.1 13.07 15.48 11.23 39.77 28.58 28.55

test: 686 0.5 23.10 18.73 10.93 52.76 41.85 41.83

0.9 26.07 20.70 9.04 55.80 46.77 46.76

Sepsis
1673 21

0.001 0.27 5.28 0.00 5.56 5.56 5.56

0.1 1.53 4.80 0.91 7.24 6.33 6.33

0.5 2.37 5.32 1.79 9.48 7.69 7.69

0.9 3.08 5.56 1.67 10.30 8.65 8.64

Lung cancer
261 42

0.001 2.46 15.45 0.51 18.41 17.91 17.91

0.1 4.94 12.26 2.75 19.95 17.20 17.20

0.5 6.72 12.54 5.49 24.75 19.26 19.26

0.9 10.51 13.79 7.25 31.55 24.31 24.31

5.4 Summary and Discussion

The instance-specific IGES method introduced in Chapter 4 builds a causal model for a

given instance assuming causal sufficiency, but this assumption rarely holds in practice. The

current chapter introduced an instance-specific PAG-learning algorithm called IGFCI that

outputs a PAG that is specific to a given instance T (e.g, a patient) by guiding causal model

search based on the attributes of T . The approach used by IGFCI is quite general and can

be readily applied to develop an instance-specific version of other graphical causal discovery

methods.
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The empirical results we obtained on simulated data for discovering the instance-specific

PAG structure of each test instance T indicate that when fewer samples are available (i.e.,

N = 200), IGFCI performs similar to GFCI in terms of adjacency P and arrowhead P and R,

but GFCI performs slightly better in terms of adjacency R and SHD, where the differences

are due to missing edges by IGFCI. However, when the sample size is sufficiently large (i.e.,

N = 5000), IGFCI performs better in terms of adjacency and arrowhead P, erroneously

added and reoriented edges, and S-SHD. On the other hand, GFCI performs better in terms

of adjacency and arrowhead R, erroneously deleted edges, L-SHD, and A-SHD. We conjecture

that the missing edges are weak enough to make instance-specific detection difficult without

more samples.

Overall, the proposed IGFCI method is a promising approach to discover a PAG struc-

ture that better models the relationships among variables of a given instance T in terms of

adjacency and arrowhead P, and fewer edge addition and reorientation errors, rather than a

population-wide model, which partially supports the third hypothesis in Section 1.2, which

states that the combination of instance-specific modeling and Bayesian scoring of constraints

will perform CBN structure learning better than either method alone, in terms of discrimi-

nation.
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6.0 Conclusion and Future Work

This dissertation introduces and investigates three novel CBN structure learning algo-

rithms:

1. A hybrid CBN structure learning method that uses Bayesian scoring of constraints

(BSC): this contribution addresses limitations of constraint-based algorithms to recover

CBN structures that may contain latent confounders.

2. A score-based instance-specific CBN structure learning method (IGES): this contribu-

tion addresses the necessity and importance of instance-specific causal modeling and

discovery in heterogeneous domains, such as human biology. This method relies on the

causal sufficiency assumption (i.e., there are no latent confounders).

3. A hybrid instance-specific CBN structure learning method (IGFCI): similar to the sec-

ond contribution, this algorithm performs instance-specific causal discovery in heteroge-

neous domains. In contrast to IGES, this algorithm is able to model latent confounding

by combining the first and second contributions.

The experimental evaluations of these algorithms can be expanded in numerous ways.

As an example, it would be interesting to evaluate the structure discovery performance of

these algorithms on real biomedical datasets for which the causal knowledge is available. De-

veloping more informative structure and parameter prior probabilities would also be helpful.

Moreover, the evaluations can be extended by varying the hyperparameters of the introduced

methods (e.g., IGFCI) and of the previously existing methods (e.g., GFCI) and then plotting

and comparing precision-recall curves of each method. Additionally, the Bayesian methods

that we have introduced are amenable to Bayesian modeling averaging. The remainder of

this chapter provides more detailed conclusions and suggestions for future work for each of

the above three contributions.
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6.1 Bayesian Scoring of Constraints

Chapter 3 introduces a Bayesian method called BSC to compute the posterior prob-

ability of a constraint Ri = (X ⊥⊥ Y |Z). The BSC method can then be incorporated

into a constraint-based algorithm (e.g., FCI) to learn multiple PAG structures; we call this

algorithm FCI-BSC. Also, we introduced three scoring methods to compute the posterior

probability of the PAGs (using BSC) and output the highest scoring PAG. We proved theo-

rems that under assumptions show for CBNs with discrete/continuous variable types, BSC

assigns the correct constraint hypothesis in the large sample limit; therefore, FCI-BSC will

recover the data-generating PAG structure in the large sample limit. We performed ex-

periments on a wide range of simulated data from randomly generated BNs that contain

discrete, continuous, and a mixture of discrete and continuous variable types. The experi-

mental results show that the FCI-BSC method performed similarly compared to FCI (with

a chi-squared test) for discrete data. However, for continuous and mixed data, FCI-BSC

performed better in terms of adjacency and arrowhead precision, and SHD measures, but

performed worse in terms of adjacency and arrowhead recall, compared to FCI (with com-

monly used frequentist statistical tests). We also evaluated this method using simulated

data generated from manually constructed benchmark BNs that contain discrete variables.

For BNs with denser structures and more parameters, FCI-BSC performed better in terms

of adjacency and arrowhead precision, and SHD measures, but performed worse in terms of

adjacency and arrowhead recall, compared to FCI (using a chi-squared test). For almost all

simulations, all scoring methods performed similarly in terms of ranking the highest scoring

PAG. The theoretical and experimental results partially support the first hypothesis: the

BSC method will perform CBN structure learning better than a method that uses frequentist

statistical tests in terms of discrimination.

A primary use of CBN structure learning methods is to analyze observational data to

generate novel causal hypotheses that are likely to be correct when subjected to experimental

validation. Such an approach could significantly increase the efficiency of causal discovery

in science. To make informed decisions about which novel causal hypotheses to investigate

experimentally, scientists need to know how likely the hypotheses are to be confirmed. A
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causal discovery method that has a better precision performance, as BSC does, will have a

higher success rate in confirming a causal hypothesis; thus, such a method can help scientists

prioritize experiments.

The BSC method can be extended in several ways, including the following:

• Understand better the reason for the relatively lower recall of BSC and try to increase it

while retaining precision. BSC performed poorly on unconditional independence queries,

especially for discrete variables, which results in too many edge removals at the early stage

of the FCI search. One possible solution to this problem is to develop informative prior

probabilities on constraints. We currently assume that dependence and independence

are a priori equally likely; however, this assumption is not true in general.

• Develop other hybrid PAG learning algorithms by combining other constraint-based

methods (e.g., RFCI [Colombo et al., 2012])) with the BSC method.

• As described in Section 3.5, we can use model averaging to estimate the probability

distribution over the edge types of output PAGs as follows: Since PAGs are being sam-

pled (generated) according to their posterior distribution, the probability of edge E

existing between nodes Xi and Xj is estimated as the fraction of the sampled PAGs

that contain edge E between Xi and Xj. These probabilities can then be used to

study the calibration performance on the edge-type probabilities produced by FCI-

BSC by measuring the expected calibration error (ECE) and maximum calibration error

(MCE) [Naeini et al., 2015, Jabbari et al., 2017a]. We say that a method has good cal-

ibration if models that are predicted to be true with probability p, are true about p

fraction of the time. Producing well-calibrated probabilities is important when making

decisions using decision theory. As an example, a well-calibrated causal discovery algo-

rithm can help scientists prioritize which causal hypotheses to investigate experimentally

depending on how high are the calibrated probability of those hypotheses.

• In terms of theoretical work, I conjecture that the BSC method for mixed data using

the degenerate Gaussian score [Andrews et al., 2019] is correct in the large sample limit,

under assumptions made in [Andrews et al., 2019]. The outline of the proof will be

similar to the proof of correctness for BSC using the BIC score (Theorem 3.3.2).
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• I conjecture that in the large sample limit, the independence constraints asked by FCI-

BSC are independent of each other, and as a result, the BSC-I scoring method is correct.

However, in general, independence does not hold when the sample size is finite, as can

be readily shown through examples. It would be interesting to study the convergence

results for the BSC-D and BSC-LD scoring methods with finite sample size, but with

(effectively) an infinitely large number of bootstrap samples.

6.2 Instant-Specific Causal Discovery without Modeling Latent Confounding

Chapter 4 introduces a score-based instance-specific CBN learning algorithm, called

IGES, that learns a CBN for a given test instance T by utilizing the information we have

about T as well as the information on many other training instances. The order of the com-

putational time complexity of IGES is the same as that of its population-wide counterpart

(i.e., GES), while it has a substantially smaller search space compared to the algorithms

that try to model all CSI structures (e.g., using decision graphs [Chickering et al., 1997]),

rather than representing CSI structures for T only. We proved theorems that under reason-

able assumptions IGES will recover the data-generating CBN for T , which encodes the CSI

structures associated with T , in the large sample limit.

We also studied the performance of IGES on simulated and real-world biomedical

datasets. On simulated data, IGES outperformed its population-wide counterpart, GES,

in terms of adjacency and arrowhead precision (especially for the nodes with CSI struc-

tures). However, IGES performed worse in terms of recall for small sample sizes, while

both methods had comparable recalls as the sample size increased. For moderate to large

datasets, IGES had better SHD performance compared to GES. Using real-world biomedical

datasets, we compared the predictive performance of target variables using AUROC and

observed that instance-specific CBNs better predicted the target variables. The theoretical

and experimental results support the second hypothesis: the instance-specific CBN structure

learning approach will perform structure learning better than a population-wide method, in

terms of discrimination. Since IGES has a better precision performance compared to GES,
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it could help scientists prioritize experiments since such algorithms will have a higher success

rate in suggesting a causal hypothesis that will be confirmed.

There are several directions for extending the IGES method, including the following:

• Understand better the reason for the relatively lower recall of the instance-specific BN

models and try to increase it while retaining precision.

• Extend the IGES algorithm to iteratively learn an instance-specific model for each in-

stance in the training set and use an aggregate of those instance-specific models to define

the population-wide model.

• Generalize the type of instant-specific models beyond CSIs. One general framework is

using decision-graphs to represent conditional probability tables (CPTs), which was in-

troduced by [Chickering et al., 1997]. A decision-graph is a generalization of a decision

tree. It represents the distribution of a node Xi given its parents Pa(Xi) as a set of dis-

junctions of Xi’s parents instantiations. Doing so enables it to capture CSI structures, as

well as other predictive patterns. To use decision graphs, we could first run a population-

wide search (e.g., GES) to learn a population-wide CBN. Then using the decision-graph

representation of each node given its parents, apply local search in a way that is in-

fluenced by the decision path of the given test instance T to find an instance-specific

decision-graph for each node Xi given its parents Pa(Xi).

• Develop an instance-specific score to learn BN structures that contain other types of vari-

ables (e.g., continuous or a mixture of continuous and discrete variables). For continuous

variables, this extension involves developing approximate instance-matching methods

to cluster training instances while learning an instance-specific CBN, since unlike the

discrete variable type, exact instance-matching would not work in this case. For ex-

ample, [Lengerich et al., 2019] used Euclidean distance to cluster the training instances

based on how similar are their covariates (e.g., variable-value pairs) to a given test

instance. As described in Section 4.1.2, they developed a method to learn an instance-

specific regression model by using a distance-matching regularizer that regularizes regres-

sion parameters by assuming the similarity in parameters correspond to the similarity in

features of instances. A Bayesian version of this method can be adapted and integrated

into a CBN structure learning search to learn instance-specific CBN structures.
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6.3 Instant-Specific Causal Discovery with Modeling Latent Confounding

Chapter 5 introduces an instance-specific PAG-learning algorithm, called IGFCI, that

combines the BSC and IGES methods to learn an instance-specific PAG structure for a

given instance T by utilizing the attributes of T as well as the training samples. The

experimental results on simulation studies indicate that IGFCI outperformed its population-

wide counterpart (i.e., GFCI) in terms of adjacency and arrowhead precision, and S-SHD,

when the sample size was sufficiently large. On the other hand, GFCI performed relatively

better in terms of adjacency and arrowhead recall, L-SHD, and A-SHD. The experiments on

real-world biomedical datasets show that the PAG structures learned by the IGFCI algorithm

are different from the PAGs learned by the GFCI algorithm. These results partially support

the third hypothesis: the combination of instance-specific modeling and Bayesian scoring of

constraints will perform CBN structure learning better than either method alone, in terms of

discrimination.

The IGFCI method can be extended in the following ways:

• Develop other instance-specific PAG learning algorithms by combining the instance-

specific BSC with other constraint-based methods such as FCI [Spirtes et al., 2000] or

RFCI [Colombo et al., 2012].

• Develop an instance-specific method to learn PAG structures that contain other types of

variables (e.g., continuous or a mixture of continuous and discrete variables).

• In terms of theoretical work, it would be interesting to attempt to prove that IGFCI is

guaranteed to find the data-generating instance-specific PAG for a given test instance in

the large sample limit.

Despite the limitations, this dissertation provides support that the instance-specific CBN

structure learning methods are promising approaches to discover a CBN structure that better

models the relationships among variables of a given instance T , rather than a population-

wide model. The results suggest that further investigation of the approach is warranted both

in the form of extensions of the methods to improve recall while maintaining precision, and

in the form of expanding theoretical and experimental findings.
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Appendix A Additional Results from Chapter 4

In this appendix, I report the average results for the full experiments that are done in

simulations of Chapter 4.

172



Table 53: Adjacency precision (P) and recall (R) results for N = 200 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES (κ = 0.001) 0.69± 0.19 0.94± 0.09 0.90± 0.09 0.41± 0.22 0.36± 0.14 0.37± 0.08

IGES (κ = 0.1) 0.73± 0.14 0.94± 0.10 0.88± 0.09 0.43± 0.14 0.42± 0.12 0.42± 0.10

IGES (κ = 0.5) 0.70± 0.17 0.94± 0.07 0.88± 0.08 0.42± 0.16 0.43± 0.11 0.42± 0.10

IGES (κ = 0.9) 0.67± 0.20 0.92± 0.09 0.85± 0.09 0.41± 0.13 0.45± 0.13 0.42± 0.09

GES 0.75± 0.16 0.97± 0.05 0.89± 0.07 0.60± 0.18 0.50± 0.11 0.54± 0.08

40

IGES (κ = 0.001) 0.75± 0.10 0.87± 0.15 0.86± 0.08 0.26± 0.08 0.25± 0.10 0.25± 0.08

IGES (κ = 0.1) 0.79± 0.10 0.89± 0.10 0.87± 0.06 0.29± 0.07 0.26± 0.08 0.27± 0.07

IGES (κ = 0.5) 0.77± 0.12 0.91± 0.10 0.85± 0.07 0.31± 0.07 0.29± 0.08 0.29± 0.06

IGES (κ = 0.9) 0.75± 0.13 0.89± 0.10 0.83± 0.09 0.32± 0.06 0.29± 0.08 0.30± 0.06

GES 0.76± 0.13 0.90± 0.12 0.84± 0.11 0.35± 0.06 0.32± 0.07 0.33± 0.05

60

IGES (κ = 0.001) 0.80± 0.13 0.91± 0.15 0.93± 0.06 0.35± 0.11 0.23± 0.11 0.28± 0.10

IGES (κ = 0.1) 0.85± 0.08 0.92± 0.13 0.94± 0.05 0.38± 0.11 0.23± 0.08 0.30± 0.09

IGES (κ = 0.5) 0.84± 0.07 0.93± 0.13 0.92± 0.06 0.40± 0.10 0.24± 0.08 0.31± 0.09

IGES (κ = 0.9) 0.84± 0.07 0.94± 0.11 0.91± 0.04 0.41± 0.08 0.27± 0.08 0.32± 0.08

GES 0.85± 0.09 0.99± 0.02 0.92± 0.07 0.43± 0.09 0.29± 0.07 0.34± 0.06

20

40

IGES (κ = 0.001) 0.79± 0.15 0.97± 0.04 0.92± 0.06 0.38± 0.14 0.31± 0.11 0.33± 0.11

IGES (κ = 0.1) 0.83± 0.10 0.95± 0.07 0.89± 0.07 0.44± 0.14 0.37± 0.06 0.39± 0.08

IGES (κ = 0.5) 0.76± 0.10 0.86± 0.09 0.82± 0.05 0.52± 0.12 0.39± 0.08 0.44± 0.08

IGES (κ = 0.9) 0.71± 0.10 0.79± 0.08 0.75± 0.08 0.50± 0.12 0.40± 0.06 0.43± 0.06

GES 0.81± 0.08 0.95± 0.07 0.89± 0.07 0.53± 0.12 0.43± 0.11 0.47± 0.06

80

IGES (κ = 0.001) 0.84± 0.11 0.90± 0.16 0.89± 0.07 0.22± 0.08 0.18± 0.08 0.21± 0.05

IGES (κ = 0.1) 0.87± 0.07 0.92± 0.12 0.90± 0.05 0.35± 0.07 0.24± 0.08 0.29± 0.07

IGES (κ = 0.5) 0.81± 0.05 0.92± 0.05 0.85± 0.04 0.34± 0.07 0.29± 0.03 0.31± 0.04

IGES (κ = 0.9) 0.72± 0.09 0.89± 0.08 0.79± 0.08 0.36± 0.10 0.28± 0.06 0.32± 0.06

GES 0.86± 0.05 0.93± 0.15 0.90± 0.04 0.40± 0.08 0.29± 0.09 0.34± 0.06

120

IGES (κ = 0.001) 0.85± 0.08 0.90± 0.12 0.89± 0.06 0.23± 0.06 0.15± 0.07 0.19± 0.06

IGES (κ = 0.1) 0.89± 0.09 0.96± 0.04 0.93± 0.06 0.28± 0.07 0.19± 0.07 0.23± 0.07

IGES (κ = 0.5) 0.86± 0.07 0.94± 0.05 0.89± 0.06 0.30± 0.04 0.19± 0.04 0.25± 0.04

IGES (κ = 0.9) 0.70± 0.11 0.87± 0.06 0.76± 0.07 0.29± 0.04 0.19± 0.05 0.24± 0.03

GES 0.86± 0.09 0.96± 0.05 0.90± 0.06 0.30± 0.05 0.19± 0.06 0.24± 0.03

50

100

IGES (κ = 0.001) 0.90± 0.07 1.00± 0.01 0.95± 0.04 0.39± 0.10 0.30± 0.09 0.33± 0.09

IGES (κ = 0.1) 0.85± 0.04 0.92± 0.05 0.88± 0.04 0.43± 0.07 0.35± 0.05 0.38± 0.05

IGES (κ = 0.5) 0.76± 0.07 0.82± 0.04 0.79± 0.04 0.45± 0.08 0.39± 0.06 0.41± 0.06

IGES (κ = 0.9) 0.59± 0.06 0.66± 0.07 0.62± 0.05 0.50± 0.06 0.47± 0.08 0.48± 0.06

GES 0.85± 0.04 0.98± 0.03 0.92± 0.03 0.47± 0.06 0.41± 0.06 0.43± 0.05

200

IGES (κ = 0.001) 0.89± 0.05 0.98± 0.03 0.93± 0.04 0.26± 0.07 0.18± 0.05 0.21± 0.05

IGES (κ = 0.1) 0.86± 0.05 0.93± 0.03 0.89± 0.04 0.31± 0.04 0.20± 0.03 0.24± 0.03

IGES (κ = 0.5) 0.76± 0.05 0.85± 0.07 0.80± 0.05 0.31± 0.04 0.21± 0.03 0.25± 0.03

IGES (κ = 0.9) 0.62± 0.09 0.75± 0.06 0.67± 0.07 0.34± 0.06 0.23± 0.04 0.28± 0.05

GES 0.87± 0.05 0.97± 0.03 0.91± 0.04 0.33± 0.06 0.22± 0.04 0.27± 0.05

300

IGES (κ = 0.001) 0.92± 0.04 0.98± 0.03 0.94± 0.02 0.19± 0.06 0.12± 0.05 0.15± 0.05

IGES (κ = 0.1) 0.89± 0.04 0.97± 0.03 0.92± 0.03 0.25± 0.07 0.16± 0.03 0.19± 0.05

IGES (κ = 0.5) 0.75± 0.05 0.86± 0.05 0.80± 0.04 0.29± 0.05 0.19± 0.04 0.24± 0.04

IGES (κ = 0.9) 0.66± 0.06 0.80± 0.07 0.71± 0.06 0.32± 0.04 0.21± 0.04 0.26± 0.04

GES 0.89± 0.04 0.99± 0.02 0.93± 0.03 0.29± 0.06 0.22± 0.03 0.25± 0.04
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Table 54: Adjacency precision (P) and recall (R) results for N = 1000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES (κ = 0.001) 0.78± 0.13 0.93± 0.07 0.88± 0.07 0.74± 0.13 0.66± 0.14 0.68± 0.13

IGES (κ = 0.1) 0.82± 0.10 0.93± 0.06 0.89± 0.06 0.72± 0.13 0.63± 0.12 0.65± 0.11

IGES (κ = 0.5) 0.82± 0.10 0.92± 0.06 0.88± 0.06 0.72± 0.14 0.62± 0.12 0.65± 0.12

IGES (κ = 0.9) 0.80± 0.12 0.91± 0.05 0.86± 0.06 0.72± 0.13 0.62± 0.11 0.64± 0.11

GES 0.72± 0.11 0.93± 0.06 0.83± 0.07 0.83± 0.11 0.70± 0.14 0.73± 0.12

40

IGES (κ = 0.001) 0.83± 0.09 0.96± 0.05 0.88± 0.07 0.54± 0.11 0.41± 0.10 0.47± 0.11

IGES (κ = 0.1) 0.83± 0.07 0.97± 0.04 0.88± 0.05 0.53± 0.12 0.40± 0.06 0.46± 0.09

IGES (κ = 0.5) 0.84± 0.07 0.96± 0.04 0.89± 0.05 0.55± 0.11 0.43± 0.05 0.49± 0.08

IGES (κ = 0.9) 0.83± 0.08 0.96± 0.03 0.88± 0.06 0.55± 0.10 0.43± 0.04 0.49± 0.07

GES 0.77± 0.08 0.98± 0.03 0.85± 0.05 0.60± 0.07 0.47± 0.10 0.53± 0.07

60

IGES (κ = 0.001) 0.81± 0.10 0.95± 0.13 0.90± 0.07 0.41± 0.08 0.38± 0.12 0.39± 0.09

IGES (κ = 0.1) 0.78± 0.10 0.96± 0.08 0.87± 0.07 0.43± 0.10 0.36± 0.09 0.38± 0.09

IGES (κ = 0.5) 0.79± 0.10 0.96± 0.08 0.87± 0.07 0.45± 0.09 0.36± 0.09 0.39± 0.09

IGES (κ = 0.9) 0.79± 0.09 0.95± 0.07 0.87± 0.07 0.44± 0.09 0.35± 0.08 0.39± 0.08

GES 0.72± 0.12 0.96± 0.08 0.84± 0.09 0.48± 0.10 0.43± 0.11 0.45± 0.09

20

40

IGES (κ = 0.001) 0.82± 0.09 0.97± 0.04 0.90± 0.06 0.70± 0.08 0.64± 0.09 0.66± 0.07

IGES (κ = 0.1) 0.88± 0.09 0.93± 0.06 0.91± 0.07 0.69± 0.08 0.58± 0.07 0.61± 0.06

IGES (κ = 0.5) 0.85± 0.05 0.94± 0.02 0.89± 0.03 0.73± 0.09 0.65± 0.07 0.68± 0.08

IGES (κ = 0.9) 0.75± 0.09 0.87± 0.06 0.82± 0.07 0.72± 0.08 0.67± 0.05 0.69± 0.04

GES 0.70± 0.06 0.98± 0.03 0.84± 0.04 0.74± 0.06 0.67± 0.08 0.70± 0.05

80

IGES (κ = 0.001) 0.78± 0.05 0.95± 0.06 0.84± 0.04 0.51± 0.09 0.41± 0.06 0.46± 0.08

IGES (κ = 0.1) 0.88± 0.06 0.96± 0.05 0.91± 0.05 0.50± 0.05 0.40± 0.07 0.45± 0.05

IGES (κ = 0.5) 0.82± 0.04 0.91± 0.05 0.86± 0.04 0.51± 0.06 0.42± 0.04 0.46± 0.04

IGES (κ = 0.9) 0.78± 0.06 0.90± 0.04 0.83± 0.04 0.52± 0.07 0.43± 0.06 0.47± 0.06

GES 0.73± 0.05 0.98± 0.03 0.83± 0.03 0.55± 0.06 0.43± 0.03 0.48± 0.04

120

IGES (κ = 0.001) 0.83± 0.08 0.96± 0.04 0.88± 0.05 0.48± 0.08 0.37± 0.06 0.42± 0.06

IGES (κ = 0.1) 0.85± 0.06 0.92± 0.06 0.88± 0.06 0.46± 0.05 0.32± 0.06 0.39± 0.06

IGES (κ = 0.5) 0.83± 0.05 0.90± 0.05 0.86± 0.04 0.45± 0.07 0.35± 0.08 0.40± 0.07

IGES (κ = 0.9) 0.80± 0.07 0.89± 0.03 0.83± 0.05 0.49± 0.04 0.36± 0.08 0.43± 0.05

GES 0.76± 0.08 0.97± 0.04 0.83± 0.04 0.49± 0.07 0.37± 0.06 0.43± 0.05

50

100

IGES (κ = 0.001) 0.86± 0.05 0.98± 0.02 0.93± 0.03 0.66± 0.07 0.63± 0.07 0.64± 0.06

IGES (κ = 0.1) 0.88± 0.05 0.96± 0.01 0.93± 0.02 0.68± 0.05 0.61± 0.07 0.64± 0.05

IGES (κ = 0.5) 0.79± 0.06 0.89± 0.02 0.84± 0.03 0.69± 0.05 0.66± 0.06 0.67± 0.04

IGES (κ = 0.9) 0.74± 0.07 0.79± 0.06 0.77± 0.05 0.72± 0.04 0.64± 0.04 0.67± 0.02

GES 0.74± 0.06 0.99± 0.01 0.86± 0.03 0.75± 0.05 0.61± 0.07 0.66± 0.04

200

IGES (κ = 0.001) 0.86± 0.07 0.97± 0.03 0.91± 0.05 0.47± 0.07 0.34± 0.06 0.39± 0.06

IGES (κ = 0.1) 0.88± 0.03 0.93± 0.04 0.91± 0.03 0.52± 0.06 0.38± 0.06 0.44± 0.06

IGES (κ = 0.5) 0.79± 0.06 0.89± 0.04 0.84± 0.04 0.49± 0.05 0.38± 0.05 0.43± 0.05

IGES (κ = 0.9) 0.73± 0.06 0.86± 0.02 0.79± 0.03 0.52± 0.03 0.40± 0.07 0.45± 0.05

GES 0.76± 0.05 0.97± 0.03 0.86± 0.03 0.53± 0.03 0.38± 0.05 0.44± 0.04

300

IGES (κ = 0.001) 0.86± 0.03 0.96± 0.03 0.90± 0.03 0.42± 0.05 0.29± 0.04 0.35± 0.05

IGES (κ = 0.1) 0.88± 0.03 0.95± 0.02 0.91± 0.02 0.46± 0.04 0.31± 0.05 0.37± 0.04

IGES (κ = 0.5) 0.82± 0.03 0.92± 0.03 0.87± 0.02 0.45± 0.04 0.33± 0.03 0.39± 0.04

IGES (κ = 0.9) 0.72± 0.04 0.86± 0.03 0.78± 0.03 0.45± 0.03 0.34± 0.03 0.39± 0.03

GES 0.77± 0.02 0.96± 0.02 0.85± 0.02 0.43± 0.03 0.31± 0.03 0.36± 0.03
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Table 55: Adjacency precision (P) and recall (R) results for N = 5000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES (κ = 0.001) 0.82± 0.09 0.93± 0.06 0.89± 0.06 0.84± 0.08 0.86± 0.07 0.85± 0.03

IGES (κ = 0.1) 0.86± 0.10 0.93± 0.07 0.90± 0.07 0.83± 0.06 0.83± 0.07 0.83± 0.05

IGES (κ = 0.5) 0.86± 0.11 0.91± 0.08 0.90± 0.07 0.81± 0.07 0.81± 0.08 0.81± 0.06

IGES (κ = 0.9) 0.86± 0.11 0.90± 0.08 0.89± 0.08 0.79± 0.07 0.80± 0.10 0.80± 0.07

GES 0.56± 0.08 0.93± 0.07 0.75± 0.06 0.92± 0.08 0.90± 0.05 0.90± 0.05

40

IGES (κ = 0.001) 0.78± 0.13 0.97± 0.05 0.86± 0.09 0.72± 0.09 0.64± 0.10 0.67± 0.08

IGES (κ = 0.1) 0.81± 0.11 0.96± 0.05 0.87± 0.07 0.69± 0.08 0.59± 0.07 0.63± 0.07

IGES (κ = 0.5) 0.81± 0.10 0.96± 0.05 0.87± 0.07 0.67± 0.06 0.54± 0.06 0.59± 0.06

IGES (κ = 0.9) 0.81± 0.10 0.95± 0.04 0.86± 0.07 0.66± 0.05 0.54± 0.06 0.59± 0.06

GES 0.60± 0.10 0.96± 0.07 0.75± 0.08 0.80± 0.11 0.74± 0.10 0.76± 0.09

60

IGES (κ = 0.001) 0.72± 0.12 0.98± 0.04 0.84± 0.08 0.61± 0.08 0.57± 0.09 0.59± 0.08

IGES (κ = 0.1) 0.76± 0.11 0.97± 0.04 0.85± 0.07 0.65± 0.08 0.55± 0.07 0.59± 0.06

IGES (κ = 0.5) 0.72± 0.10 0.97± 0.04 0.84± 0.07 0.59± 0.06 0.53± 0.06 0.56± 0.04

IGES (κ = 0.9) 0.76± 0.11 0.94± 0.06 0.84± 0.07 0.60± 0.05 0.51± 0.08 0.55± 0.04

GES 0.59± 0.11 0.98± 0.05 0.74± 0.07 0.69± 0.06 0.60± 0.08 0.64± 0.04

20

40

IGES (κ = 0.001) 0.84± 0.12 0.94± 0.06 0.89± 0.08 0.86± 0.06 0.82± 0.05 0.84± 0.04

IGES (κ = 0.1) 0.84± 0.07 0.93± 0.07 0.89± 0.06 0.82± 0.08 0.79± 0.05 0.80± 0.05

IGES (κ = 0.5) 0.81± 0.08 0.89± 0.07 0.86± 0.06 0.82± 0.05 0.80± 0.04 0.80± 0.04

IGES (κ = 0.9) 0.79± 0.10 0.87± 0.07 0.83± 0.07 0.76± 0.07 0.77± 0.09 0.76± 0.07

GES 0.60± 0.06 0.93± 0.07 0.78± 0.05 0.86± 0.08 0.82± 0.12 0.84± 0.07

80

IGES (κ = 0.001) 0.76± 0.07 0.88± 0.06 0.82± 0.06 0.64± 0.07 0.59± 0.10 0.62± 0.07

IGES (κ = 0.1) 0.84± 0.06 0.92± 0.05 0.88± 0.05 0.64± 0.05 0.58± 0.07 0.62± 0.04

IGES (κ = 0.5) 0.81± 0.05 0.89± 0.06 0.84± 0.05 0.68± 0.04 0.58± 0.05 0.63± 0.05

IGES (κ = 0.9) 0.78± 0.04 0.89± 0.04 0.82± 0.03 0.66± 0.05 0.57± 0.04 0.62± 0.03

GES 0.61± 0.10 0.94± 0.06 0.73± 0.07 0.72± 0.05 0.63± 0.07 0.67± 0.04

120

IGES (κ = 0.001) 0.81± 0.07 0.93± 0.04 0.85± 0.04 0.59± 0.07 0.50± 0.09 0.55± 0.08

IGES (κ = 0.1) 0.81± 0.04 0.89± 0.05 0.85± 0.04 0.58± 0.07 0.47± 0.06 0.52± 0.06

IGES (κ = 0.5) 0.82± 0.05 0.90± 0.05 0.85± 0.05 0.60± 0.07 0.51± 0.07 0.55± 0.07

IGES (κ = 0.9) 0.77± 0.09 0.90± 0.04 0.83± 0.06 0.60± 0.07 0.51± 0.05 0.55± 0.05

GES 0.61± 0.05 0.94± 0.05 0.75± 0.05 0.62± 0.06 0.49± 0.07 0.55± 0.04

50

100

IGES (κ = 0.001) 0.86± 0.05 0.97± 0.03 0.93± 0.03 0.81± 0.06 0.80± 0.04 0.80± 0.04

IGES (κ = 0.1) 0.87± 0.06 0.94± 0.03 0.90± 0.04 0.81± 0.03 0.79± 0.05 0.80± 0.03

IGES (κ = 0.5) 0.82± 0.06 0.91± 0.04 0.88± 0.05 0.82± 0.05 0.80± 0.04 0.81± 0.04

IGES (κ = 0.9) 0.79± 0.07 0.86± 0.05 0.83± 0.06 0.82± 0.04 0.80± 0.04 0.81± 0.04

GES 0.62± 0.05 0.96± 0.05 0.79± 0.04 0.86± 0.05 0.79± 0.05 0.82± 0.04

200

IGES (κ = 0.001) 0.85± 0.03 0.95± 0.03 0.90± 0.02 0.64± 0.05 0.55± 0.05 0.59± 0.05

IGES (κ = 0.1) 0.85± 0.02 0.93± 0.02 0.89± 0.02 0.65± 0.04 0.55± 0.05 0.59± 0.05

IGES (κ = 0.5) 0.83± 0.04 0.91± 0.03 0.87± 0.03 0.65± 0.05 0.56± 0.04 0.60± 0.04

IGES (κ = 0.9) 0.79± 0.05 0.89± 0.02 0.84± 0.03 0.66± 0.04 0.56± 0.04 0.60± 0.03

GES 0.63± 0.04 0.96± 0.03 0.76± 0.04 0.66± 0.03 0.53± 0.05 0.58± 0.03

300

IGES (κ = 0.001) 0.86± 0.05 0.95± 0.03 0.90± 0.04 0.56± 0.03 0.46± 0.03 0.50± 0.03

IGES (κ = 0.1) 0.88± 0.04 0.92± 0.03 0.90± 0.03 0.59± 0.04 0.49± 0.04 0.53± 0.04

IGES (κ = 0.5) 0.82± 0.03 0.90± 0.03 0.86± 0.03 0.58± 0.04 0.48± 0.05 0.52± 0.04

IGES (κ = 0.9) 0.78± 0.03 0.87± 0.03 0.82± 0.03 0.60± 0.05 0.50± 0.04 0.54± 0.04

GES 0.66± 0.05 0.95± 0.03 0.77± 0.04 0.59± 0.04 0.47± 0.04 0.52± 0.04
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Table 56: Arrowhead precision (P) and recall (R) results for N = 200 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES (κ = 0.001) 0.36± 0.18 0.37± 0.37 0.33± 0.36 0.39± 0.18 0.17± 0.18 0.14± 0.14

IGES (κ = 0.1) 0.40± 0.16 0.30± 0.35 0.34± 0.36 0.41± 0.15 0.14± 0.14 0.14± 0.13

IGES (κ = 0.5) 0.40± 0.16 0.32± 0.34 0.34± 0.33 0.41± 0.16 0.15± 0.13 0.14± 0.12

IGES (κ = 0.9) 0.39± 0.17 0.31± 0.33 0.33± 0.32 0.39± 0.16 0.16± 0.14 0.15± 0.13

GES 0.37± 0.18 0.37± 0.37 0.33± 0.36 0.41± 0.17 0.17± 0.18 0.14± 0.14

40

IGES (κ = 0.001) 0.24± 0.16 0.12± 0.14 0.16± 0.17 0.20± 0.14 0.04± 0.04 0.05± 0.05

IGES (κ = 0.1) 0.30± 0.18 0.14± 0.14 0.23± 0.19 0.25± 0.16 0.04± 0.04 0.07± 0.06

IGES (κ = 0.5) 0.31± 0.16 0.19± 0.16 0.24± 0.19 0.26± 0.14 0.07± 0.05 0.09± 0.06

IGES (κ = 0.9) 0.28± 0.13 0.19± 0.14 0.23± 0.17 0.24± 0.11 0.07± 0.05 0.09± 0.06

GES 0.22± 0.18 0.12± 0.14 0.14± 0.17 0.18± 0.15 0.04± 0.03 0.05± 0.05

60

IGES (κ = 0.001) 0.42± 0.24 0.32± 0.24 0.39± 0.32 0.35± 0.17 0.08± 0.04 0.10± 0.07

IGES (κ = 0.1) 0.45± 0.23 0.34± 0.22 0.40± 0.33 0.38± 0.15 0.09± 0.04 0.11± 0.08

IGES (κ = 0.5) 0.42± 0.23 0.33± 0.18 0.39± 0.30 0.37± 0.14 0.10± 0.04 0.12± 0.08

IGES (κ = 0.9) 0.42± 0.21 0.33± 0.17 0.37± 0.27 0.36± 0.15 0.11± 0.04 0.12± 0.07

GES 0.40± 0.24 0.27± 0.26 0.37± 0.33 0.33± 0.18 0.07± 0.04 0.09± 0.07

20

40

IGES (κ = 0.001) 0.24± 0.23 0.40± 0.31 0.40± 0.30 0.20± 0.19 0.12± 0.10 0.12± 0.11

IGES (κ = 0.1) 0.19± 0.13 0.52± 0.35 0.49± 0.32 0.17± 0.14 0.12± 0.09 0.13± 0.08

IGES (κ = 0.5) 0.29± 0.14 0.45± 0.10 0.43± 0.09 0.29± 0.25 0.17± 0.06 0.19± 0.08

IGES (κ = 0.9) 0.30± 0.13 0.38± 0.11 0.37± 0.09 0.30± 0.14 0.16± 0.06 0.17± 0.07

GES 0.26± 0.22 0.45± 0.34 0.38± 0.30 0.23± 0.20 0.10± 0.09 0.11± 0.11

80

IGES (κ = 0.001) 0.23± 0.19 0.45± 0.31 0.42± 0.25 0.10± 0.08 0.05± 0.04 0.06± 0.05

IGES (κ = 0.1) 0.32± 0.16 0.44± 0.17 0.46± 0.18 0.22± 0.14 0.09± 0.06 0.11± 0.07

IGES (κ = 0.5) 0.43± 0.21 0.63± 0.21 0.60± 0.18 0.30± 0.16 0.14± 0.04 0.16± 0.06

IGES (κ = 0.9) 0.37± 0.19 0.44± 0.10 0.43± 0.10 0.29± 0.12 0.11± 0.05 0.14± 0.06

GES 0.37± 0.26 0.31± 0.30 0.33± 0.28 0.21± 0.15 0.08± 0.08 0.09± 0.08

120

IGES (κ = 0.001) 0.26± 0.21 0.37± 0.18 0.35± 0.15 0.16± 0.15 0.06± 0.04 0.07± 0.05

IGES (κ = 0.1) 0.38± 0.22 0.45± 0.29 0.44± 0.25 0.22± 0.15 0.08± 0.05 0.10± 0.06

IGES (κ = 0.5) 0.42± 0.22 0.52± 0.18 0.52± 0.16 0.23± 0.13 0.08± 0.04 0.11± 0.05

IGES (κ = 0.9) 0.28± 0.09 0.48± 0.14 0.41± 0.11 0.22± 0.10 0.08± 0.02 0.11± 0.04

GES 0.23± 0.16 0.41± 0.28 0.37± 0.27 0.12± 0.11 0.05± 0.04 0.06± 0.05

50

100

IGES (κ = 0.001) 0.36± 0.21 0.78± 0.25 0.72± 0.18 0.21± 0.19 0.14± 0.11 0.15± 0.11

IGES (κ = 0.1) 0.34± 0.21 0.62± 0.25 0.58± 0.23 0.14± 0.09 0.13± 0.05 0.14± 0.05

IGES (κ = 0.5) 0.33± 0.11 0.54± 0.07 0.51± 0.06 0.20± 0.12 0.17± 0.07 0.18± 0.07

IGES (κ = 0.9) 0.30± 0.09 0.36± 0.07 0.34± 0.06 0.39± 0.13 0.26± 0.09 0.28± 0.09

GES 0.41± 0.13 0.74± 0.26 0.64± 0.16 0.18± 0.10 0.13± 0.09 0.14± 0.09

200

IGES (κ = 0.001) 0.47± 0.25 0.58± 0.27 0.55± 0.24 0.17± 0.13 0.07± 0.04 0.08± 0.05

IGES (κ = 0.1) 0.53± 0.12 0.63± 0.17 0.61± 0.13 0.25± 0.09 0.08± 0.03 0.11± 0.04

IGES (κ = 0.5) 0.40± 0.14 0.54± 0.08 0.49± 0.09 0.21± 0.08 0.08± 0.02 0.10± 0.03

IGES (κ = 0.9) 0.33± 0.06 0.43± 0.05 0.39± 0.04 0.32± 0.05 0.12± 0.04 0.15± 0.04

GES 0.43± 0.13 0.69± 0.22 0.58± 0.15 0.17± 0.08 0.07± 0.03 0.09± 0.04

300

IGES (κ = 0.001) 0.52± 0.23 0.60± 0.31 0.59± 0.29 0.13± 0.09 0.04± 0.03 0.05± 0.04

IGES (κ = 0.1) 0.57± 0.14 0.59± 0.18 0.66± 0.12 0.16± 0.12 0.04± 0.03 0.06± 0.05

IGES (κ = 0.5) 0.45± 0.07 0.56± 0.08 0.51± 0.06 0.27± 0.10 0.08± 0.04 0.11± 0.05

IGES (κ = 0.9) 0.43± 0.08 0.43± 0.10 0.43± 0.08 0.36± 0.11 0.09± 0.03 0.13± 0.05

GES 0.48± 0.23 0.65± 0.28 0.57± 0.23 0.13± 0.07 0.05± 0.03 0.06± 0.03
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Table 57: Arrowhead precision (P) and recall (R) results for N = 1000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES (κ = 0.001) 0.48± 0.27 0.53± 0.26 0.50± 0.20 0.53± 0.24 0.38± 0.15 0.42± 0.15

IGES (κ = 0.1) 0.52± 0.21 0.57± 0.21 0.55± 0.17 0.53± 0.20 0.38± 0.09 0.40± 0.10

IGES (κ = 0.5) 0.54± 0.20 0.59± 0.20 0.57± 0.14 0.55± 0.19 0.38± 0.08 0.41± 0.09

IGES (κ = 0.9) 0.57± 0.18 0.56± 0.21 0.57± 0.16 0.59± 0.19 0.38± 0.07 0.42± 0.08

GES 0.36± 0.22 0.49± 0.24 0.43± 0.13 0.42± 0.22 0.37± 0.15 0.40± 0.14

40

IGES (κ = 0.001) 0.42± 0.20 0.49± 0.17 0.45± 0.15 0.49± 0.19 0.24± 0.08 0.28± 0.09

IGES (κ = 0.1) 0.42± 0.20 0.52± 0.15 0.47± 0.16 0.47± 0.20 0.27± 0.09 0.29± 0.10

IGES (κ = 0.5) 0.42± 0.16 0.54± 0.20 0.48± 0.18 0.49± 0.13 0.27± 0.10 0.30± 0.11

IGES (κ = 0.9) 0.42± 0.15 0.52± 0.20 0.47± 0.17 0.47± 0.11 0.27± 0.09 0.30± 0.09

GES 0.38± 0.20 0.44± 0.21 0.44± 0.20 0.46± 0.18 0.21± 0.10 0.25± 0.11

60

IGES (κ = 0.001) 0.27± 0.14 0.37± 0.17 0.34± 0.18 0.28± 0.17 0.17± 0.10 0.18± 0.12

IGES (κ = 0.1) 0.31± 0.17 0.41± 0.17 0.39± 0.17 0.30± 0.18 0.17± 0.10 0.19± 0.11

IGES (κ = 0.5) 0.32± 0.15 0.41± 0.15 0.39± 0.15 0.30± 0.18 0.17± 0.10 0.19± 0.10

IGES (κ = 0.9) 0.33± 0.16 0.40± 0.13 0.39± 0.15 0.30± 0.17 0.17± 0.08 0.19± 0.09

GES 0.23± 0.12 0.36± 0.18 0.32± 0.19 0.29± 0.20 0.15± 0.10 0.16± 0.12

20

40

IGES (κ = 0.001) 0.47± 0.21 0.78± 0.22 0.70± 0.19 0.58± 0.25 0.49± 0.13 0.51± 0.15

IGES (κ = 0.1) 0.66± 0.15 0.68± 0.15 0.68± 0.14 0.59± 0.17 0.41± 0.12 0.44± 0.12

IGES (κ = 0.5) 0.61± 0.20 0.79± 0.10 0.75± 0.12 0.61± 0.19 0.52± 0.12 0.53± 0.11

IGES (κ = 0.9) 0.47± 0.21 0.63± 0.13 0.58± 0.14 0.55± 0.22 0.51± 0.10 0.52± 0.09

GES 0.32± 0.12 0.71± 0.21 0.57± 0.15 0.53± 0.17 0.47± 0.11 0.48± 0.10

80

IGES (κ = 0.001) 0.48± 0.08 0.76± 0.19 0.65± 0.14 0.56± 0.12 0.28± 0.09 0.33± 0.10

IGES (κ = 0.1) 0.53± 0.13 0.79± 0.12 0.73± 0.11 0.53± 0.17 0.27± 0.07 0.32± 0.07

IGES (κ = 0.5) 0.53± 0.15 0.64± 0.11 0.60± 0.11 0.45± 0.08 0.27± 0.05 0.30± 0.05

IGES (κ = 0.9) 0.50± 0.14 0.70± 0.11 0.63± 0.11 0.56± 0.13 0.32± 0.08 0.36± 0.08

GES 0.38± 0.11 0.71± 0.15 0.55± 0.11 0.58± 0.15 0.28± 0.07 0.33± 0.08

120

IGES (κ = 0.001) 0.53± 0.15 0.71± 0.17 0.64± 0.11 0.61± 0.17 0.25± 0.05 0.30± 0.06

IGES (κ = 0.1) 0.43± 0.10 0.66± 0.13 0.58± 0.10 0.45± 0.12 0.20± 0.05 0.24± 0.05

IGES (κ = 0.5) 0.53± 0.10 0.65± 0.15 0.61± 0.11 0.52± 0.17 0.22± 0.06 0.27± 0.07

IGES (κ = 0.9) 0.56± 0.13 0.70± 0.08 0.65± 0.10 0.57± 0.12 0.27± 0.07 0.32± 0.07

GES 0.46± 0.13 0.72± 0.13 0.62± 0.09 0.55± 0.20 0.23± 0.08 0.29± 0.10

50

100

IGES (κ = 0.001) 0.51± 0.18 0.84± 0.08 0.74± 0.10 0.60± 0.10 0.50± 0.09 0.51± 0.08

IGES (κ = 0.1) 0.60± 0.12 0.84± 0.10 0.79± 0.07 0.49± 0.14 0.43± 0.11 0.44± 0.10

IGES (κ = 0.5) 0.52± 0.07 0.74± 0.07 0.69± 0.05 0.58± 0.09 0.51± 0.07 0.52± 0.06

IGES (κ = 0.9) 0.45± 0.13 0.62± 0.08 0.57± 0.07 0.64± 0.10 0.49± 0.05 0.51± 0.04

GES 0.34± 0.06 0.87± 0.10 0.65± 0.07 0.66± 0.10 0.43± 0.09 0.46± 0.08

200

IGES (κ = 0.001) 0.62± 0.16 0.81± 0.12 0.73± 0.11 0.54± 0.12 0.24± 0.06 0.29± 0.07

IGES (κ = 0.1) 0.64± 0.16 0.77± 0.10 0.73± 0.11 0.57± 0.09 0.28± 0.04 0.33± 0.05

IGES (κ = 0.5) 0.56± 0.12 0.69± 0.09 0.64± 0.09 0.53± 0.13 0.25± 0.05 0.29± 0.06

IGES (κ = 0.9) 0.51± 0.08 0.66± 0.04 0.61± 0.04 0.59± 0.09 0.28± 0.06 0.33± 0.07

GES 0.45± 0.11 0.81± 0.09 0.65± 0.08 0.51± 0.13 0.23± 0.05 0.28± 0.06

300

IGES (κ = 0.001) 0.53± 0.07 0.73± 0.09 0.66± 0.07 0.51± 0.12 0.18± 0.05 0.23± 0.06

IGES (κ = 0.1) 0.66± 0.06 0.77± 0.08 0.73± 0.07 0.54± 0.12 0.21± 0.05 0.26± 0.06

IGES (κ = 0.5) 0.61± 0.05 0.78± 0.03 0.71± 0.04 0.58± 0.06 0.22± 0.03 0.27± 0.04

IGES (κ = 0.9) 0.50± 0.08 0.64± 0.08 0.59± 0.08 0.61± 0.05 0.22± 0.04 0.28± 0.04

GES 0.46± 0.09 0.78± 0.15 0.62± 0.10 0.53± 0.09 0.17± 0.05 0.23± 0.05
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Table 58: Arrowhead precision (P) and recall (R) results for N = 5000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGES (κ = 0.001) 0.53± 0.23 0.72± 0.26 0.65± 0.21 0.61± 0.22 0.75± 0.14 0.72± 0.14

IGES (κ = 0.1) 0.56± 0.22 0.70± 0.25 0.65± 0.21 0.58± 0.21 0.71± 0.11 0.68± 0.13

IGES (κ = 0.5) 0.59± 0.23 0.69± 0.23 0.66± 0.22 0.62± 0.23 0.70± 0.11 0.67± 0.13

IGES (κ = 0.9) 0.58± 0.23 0.65± 0.27 0.64± 0.23 0.59± 0.24 0.66± 0.17 0.64± 0.18

GES 0.23± 0.18 0.69± 0.26 0.49± 0.14 0.52± 0.30 0.74± 0.14 0.72± 0.16

40

IGES (κ = 0.001) 0.50± 0.25 0.56± 0.23 0.53± 0.22 0.60± 0.27 0.44± 0.19 0.48± 0.19

IGES (κ = 0.1) 0.53± 0.26 0.56± 0.22 0.54± 0.21 0.60± 0.28 0.41± 0.16 0.45± 0.16

IGES (κ = 0.5) 0.53± 0.25 0.57± 0.20 0.55± 0.19 0.57± 0.24 0.39± 0.15 0.43± 0.15

IGES (κ = 0.9) 0.52± 0.24 0.57± 0.19 0.55± 0.19 0.56± 0.23 0.40± 0.14 0.43± 0.14

GES 0.27± 0.16 0.54± 0.28 0.42± 0.17 0.58± 0.23 0.43± 0.22 0.49± 0.20

60

IGES (κ = 0.001) 0.28± 0.19 0.43± 0.21 0.38± 0.18 0.44± 0.23 0.30± 0.10 0.35± 0.11

IGES (κ = 0.1) 0.32± 0.16 0.44± 0.19 0.41± 0.18 0.45± 0.15 0.30± 0.07 0.32± 0.08

IGES (κ = 0.5) 0.30± 0.16 0.45± 0.21 0.40± 0.19 0.42± 0.15 0.29± 0.09 0.31± 0.07

IGES (κ = 0.9) 0.29± 0.12 0.47± 0.20 0.41± 0.17 0.40± 0.11 0.30± 0.09 0.32± 0.08

GES 0.15± 0.08 0.43± 0.22 0.33± 0.15 0.40± 0.20 0.29± 0.06 0.33± 0.06

20

40

IGES (κ = 0.001) 0.60± 0.22 0.76± 0.17 0.71± 0.17 0.70± 0.18 0.70± 0.12 0.70± 0.12

IGES (κ = 0.1) 0.59± 0.25 0.75± 0.17 0.70± 0.16 0.72± 0.17 0.66± 0.10 0.68± 0.09

IGES (κ = 0.5) 0.51± 0.18 0.69± 0.12 0.66± 0.11 0.62± 0.12 0.66± 0.07 0.66± 0.06

IGES (κ = 0.9) 0.58± 0.21 0.64± 0.15 0.63± 0.16 0.63± 0.21 0.59± 0.09 0.61± 0.11

GES 0.29± 0.09 0.68± 0.17 0.52± 0.08 0.64± 0.18 0.57± 0.11 0.60± 0.11

80

IGES (κ = 0.001) 0.51± 0.18 0.68± 0.15 0.62± 0.14 0.65± 0.20 0.47± 0.08 0.50± 0.09

IGES (κ = 0.1) 0.53± 0.14 0.75± 0.13 0.68± 0.11 0.68± 0.12 0.47± 0.06 0.50± 0.06

IGES (κ = 0.5) 0.47± 0.14 0.77± 0.15 0.66± 0.13 0.74± 0.07 0.50± 0.09 0.53± 0.08

IGES (κ = 0.9) 0.43± 0.16 0.72± 0.09 0.63± 0.09 0.62± 0.16 0.47± 0.05 0.50± 0.07

GES 0.26± 0.06 0.73± 0.09 0.52± 0.05 0.74± 0.15 0.48± 0.06 0.52± 0.07

120

IGES (κ = 0.001) 0.47± 0.18 0.75± 0.13 0.64± 0.13 0.63± 0.17 0.38± 0.08 0.42± 0.08

IGES (κ = 0.1) 0.52± 0.15 0.66± 0.13 0.61± 0.10 0.58± 0.09 0.35± 0.04 0.39± 0.05

IGES (κ = 0.5) 0.58± 0.12 0.72± 0.11 0.66± 0.09 0.69± 0.11 0.39± 0.09 0.44± 0.09

IGES (κ = 0.9) 0.51± 0.17 0.72± 0.14 0.65± 0.14 0.69± 0.11 0.41± 0.07 0.45± 0.07

GES 0.32± 0.12 0.71± 0.17 0.54± 0.15 0.72± 0.15 0.37± 0.07 0.42± 0.08

50

100

IGES (κ = 0.001) 0.57± 0.11 0.84± 0.07 0.78± 0.06 0.74± 0.07 0.71± 0.08 0.71± 0.07

IGES (κ = 0.1) 0.63± 0.16 0.81± 0.08 0.76± 0.08 0.77± 0.08 0.69± 0.07 0.71± 0.07

IGES (κ = 0.5) 0.57± 0.19 0.77± 0.10 0.72± 0.12 0.72± 0.18 0.70± 0.09 0.70± 0.10

IGES (κ = 0.9) 0.53± 0.15 0.74± 0.14 0.69± 0.13 0.75± 0.13 0.72± 0.08 0.72± 0.08

GES 0.28± 0.07 0.81± 0.16 0.59± 0.10 0.79± 0.14 0.69± 0.09 0.70± 0.10

200

IGES (κ = 0.001) 0.57± 0.08 0.83± 0.05 0.75± 0.06 0.72± 0.11 0.45± 0.06 0.49± 0.06

IGES (κ = 0.1) 0.59± 0.10 0.80± 0.06 0.74± 0.06 0.79± 0.06 0.47± 0.05 0.51± 0.05

IGES (κ = 0.5) 0.60± 0.07 0.80± 0.06 0.74± 0.05 0.77± 0.09 0.47± 0.04 0.51± 0.04

IGES (κ = 0.9) 0.61± 0.08 0.78± 0.06 0.73± 0.06 0.79± 0.06 0.48± 0.04 0.53± 0.04

GES 0.35± 0.07 0.86± 0.10 0.61± 0.07 0.80± 0.06 0.43± 0.04 0.49± 0.04

300

IGES (κ = 0.001) 0.59± 0.11 0.78± 0.10 0.72± 0.11 0.76± 0.06 0.35± 0.02 0.41± 0.02

IGES (κ = 0.1) 0.67± 0.10 0.76± 0.09 0.73± 0.09 0.76± 0.08 0.39± 0.05 0.44± 0.05

IGES (κ = 0.5) 0.58± 0.09 0.76± 0.07 0.71± 0.07 0.76± 0.07 0.38± 0.05 0.44± 0.06

IGES (κ = 0.9) 0.54± 0.10 0.73± 0.06 0.67± 0.06 0.77± 0.05 0.40± 0.04 0.45± 0.04

GES 0.35± 0.05 0.78± 0.08 0.58± 0.04 0.77± 0.04 0.35± 0.04 0.42± 0.05
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Table 59: Adjacency and strict SHD (A-SHD and S-SHD) for N = 200 training cases.

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall A-SHD S-SHD

10

20

IGES (κ = 0.001) 0.68 0.01 0.69 3.08 5.95 9.03 0.95 1.25 2.20 9.72 11.92

IGES (κ = 0.1) 0.76 0.15 0.91 2.87 5.56 8.43 0.95 1.44 2.40 9.34 11.73

IGES (κ = 0.5) 0.77 0.20 0.97 2.91 5.45 8.36 1.00 1.39 2.38 9.33 11.71

IGES (κ = 0.9) 0.93 0.37 1.29 3.03 5.31 8.34 0.87 1.41 2.27 9.63 11.91

GES 0.91 0.13 1.04 2.03 4.79 6.83 1.53 1.86 3.39 7.86 11.25

40

IGES (κ = 0.001) 0.74 0.28 1.02 7.08 10.78 17.86 1.59 2.32 3.92 18.89 22.81

IGES (κ = 0.1) 0.69 0.31 0.99 6.78 10.60 17.38 1.62 2.31 3.93 18.37 22.30

IGES (κ = 0.5) 0.95 0.30 1.25 6.57 10.22 16.79 1.68 2.37 4.05 18.04 22.09

IGES (κ = 0.9) 1.15 0.39 1.54 6.44 10.23 16.66 1.78 2.42 4.20 18.21 22.41

GES 1.16 0.43 1.59 6.12 9.85 15.97 2.32 2.95 5.27 17.55 22.82

60

IGES (κ = 0.001) 0.59 0.03 0.62 6.80 12.20 19.00 1.66 2.08 3.74 19.62 23.36

IGES (κ = 0.1) 0.52 0.03 0.55 6.53 12.14 18.66 1.75 1.95 3.70 19.22 22.92

IGES (κ = 0.5) 0.67 0.04 0.71 6.33 12.00 18.33 1.77 2.02 3.79 19.04 22.84

IGES (κ = 0.9) 0.83 0.05 0.88 6.27 11.74 18.00 1.84 2.13 3.97 18.88 22.85

GES 0.80 0.03 0.83 6.02 11.45 17.47 2.22 2.58 4.79 18.30 23.10

20

40

IGES (κ = 0.001) 0.82 0.13 0.95 5.80 13.07 18.87 1.73 2.14 3.86 19.82 23.68

IGES (κ = 0.1) 1.04 0.31 1.36 5.82 11.47 17.29 2.13 2.64 4.77 18.65 23.42

IGES (κ = 0.5) 1.62 1.23 2.84 4.63 11.44 16.07 2.41 3.44 5.85 18.91 24.76

IGES (κ = 0.9) 2.36 2.09 4.45 5.34 10.77 16.11 2.30 3.24 5.54 20.56 26.10

GES 1.31 0.48 1.79 4.83 10.35 15.18 2.97 3.49 6.46 16.97 23.43

80

IGES (κ = 0.001) 1.02 0.27 1.28 17.38 21.73 39.12 2.64 2.25 4.88 40.40 45.28

IGES (κ = 0.1) 1.32 0.30 1.62 15.13 18.44 33.57 3.78 2.94 6.71 35.20 41.91

IGES (κ = 0.5) 1.93 0.64 2.56 14.87 17.15 32.02 2.65 2.39 5.04 34.58 39.61

IGES (κ = 0.9) 3.30 0.86 4.16 14.48 17.22 31.70 3.70 2.82 6.52 35.86 42.39

GES 1.46 0.18 1.64 13.80 17.01 30.81 4.52 3.74 8.26 32.45 40.72

120

IGES (κ = 0.001) 1.22 0.16 1.38 19.93 24.91 44.83 3.38 2.37 5.74 46.21 51.95

IGES (κ = 0.1) 1.12 0.11 1.23 17.88 25.95 43.83 4.04 2.49 6.53 45.07 51.60

IGES (κ = 0.5) 1.45 0.37 1.81 19.08 24.42 43.50 3.96 2.67 6.62 45.31 51.94

IGES (κ = 0.9) 3.42 0.86 4.28 18.78 23.52 42.30 4.08 2.58 6.67 46.58 53.25

GES 1.30 0.16 1.45 18.37 23.64 42.01 4.86 2.99 7.85 43.46 51.31

50

100

IGES (κ = 0.001) 1.35 0.09 1.44 15.91 31.04 46.96 4.11 4.77 8.88 48.40 57.28

IGES (κ = 0.1) 2.17 1.38 3.56 14.97 27.35 42.32 4.76 6.85 11.61 45.88 57.49

IGES (κ = 0.5) 3.89 3.96 7.85 13.99 27.80 41.79 5.31 7.03 12.34 49.64 61.98

IGES (κ = 0.9) 10.07 10.50 20.56 13.39 22.33 35.73 5.50 7.61 13.12 56.29 69.41

GES 2.26 0.49 2.75 14.21 24.51 38.72 4.64 7.71 12.34 41.47 53.81

200

IGES (κ = 0.001) 1.85 0.23 2.08 38.67 58.49 97.16 6.12 5.42 11.54 99.25 110.79

IGES (κ = 0.1) 2.82 1.05 3.86 35.52 60.02 95.53 7.34 6.08 13.43 99.40 112.82

IGES (κ = 0.5) 5.22 2.75 7.97 35.69 58.79 94.48 7.42 6.18 13.60 102.45 116.05

IGES (κ = 0.9) 11.84 5.62 17.47 35.53 54.00 89.53 7.58 6.64 14.22 107.00 121.22

GES 2.77 0.36 3.14 35.68 54.79 90.47 9.68 7.85 17.53 93.61 111.14

300

IGES (κ = 0.001) 1.07 0.17 1.24 49.28 73.60 122.87 5.39 4.24 9.63 124.11 133.75

IGES (κ = 0.1) 2.04 0.47 2.51 46.35 68.70 115.05 6.91 5.98 12.89 117.56 130.45

IGES (κ = 0.5) 6.15 2.66 8.81 44.19 66.35 110.54 8.08 5.80 13.89 119.36 133.25

IGES (κ = 0.9) 10.63 4.20 14.83 43.34 61.65 104.99 8.27 6.86 15.13 119.81 134.94

GES 2.28 0.24 2.52 44.77 61.12 105.89 10.78 7.93 18.71 108.41 127.12
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Table 60: Adjacency and strict SHD (A-SHD and S-SHD) for N = 1000 training cases.

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall A-SHD S-SHD

10

20

IGES (κ = 0.001) 0.97 0.50 1.47 1.20 3.61 4.81 1.31 2.87 4.18 6.27 10.45

IGES (κ = 0.1) 0.72 0.54 1.27 1.41 3.84 5.25 1.08 2.52 3.59 6.52 10.11

IGES (κ = 0.5) 0.78 0.61 1.40 1.40 3.93 5.32 1.01 2.37 3.37 6.72 10.09

IGES (κ = 0.9) 0.99 0.73 1.72 1.42 3.92 5.33 0.89 2.41 3.30 7.06 10.36

GES 1.73 0.53 2.26 0.87 3.20 4.06 1.80 3.18 4.98 6.32 11.30

40

IGES (κ = 0.001) 1.46 0.13 1.59 4.76 7.91 12.67 2.31 2.33 4.63 14.26 18.89

IGES (κ = 0.1) 1.38 0.12 1.50 4.85 7.89 12.73 1.99 2.08 4.07 14.23 18.30

IGES (κ = 0.5) 1.36 0.17 1.54 4.65 7.54 12.18 2.05 2.33 4.38 13.72 18.10

IGES (κ = 0.9) 1.41 0.21 1.62 4.69 7.47 12.16 2.11 2.40 4.51 13.79 18.30

GES 2.08 0.09 2.17 4.19 7.24 11.42 2.64 2.84 5.49 13.60 19.09

60

IGES (κ = 0.001) 1.07 0.03 1.10 6.08 10.38 16.46 1.84 3.33 5.17 17.56 22.73

IGES (κ = 0.1) 1.31 0.08 1.38 5.88 10.57 16.45 1.79 3.10 4.89 17.84 22.73

IGES (κ = 0.5) 1.32 0.10 1.41 5.73 10.63 16.36 1.86 3.05 4.91 17.77 22.69

IGES (κ = 0.9) 1.36 0.11 1.47 5.80 10.61 16.41 1.84 3.17 5.01 17.88 22.89

GES 2.11 0.09 2.21 5.38 9.53 14.92 2.33 3.81 6.14 17.12 23.26

20

40

IGES (κ = 0.001) 1.84 0.39 2.23 3.04 6.84 9.88 2.08 2.98 5.06 12.10 17.16

IGES (κ = 0.1) 1.06 0.94 2.00 3.34 8.06 11.40 1.90 2.73 4.62 13.40 18.03

IGES (κ = 0.5) 1.43 0.87 2.30 2.64 6.54 9.17 1.54 1.96 3.50 11.48 14.98

IGES (κ = 0.9) 2.71 1.76 4.48 2.81 5.88 8.68 2.31 2.96 5.28 13.16 18.44

GES 3.31 0.21 3.52 2.62 5.94 8.56 2.78 3.46 6.24 12.08 18.32

80

IGES (κ = 0.001) 3.49 0.58 4.07 11.09 15.42 26.51 3.55 2.48 6.03 30.58 36.61

IGES (κ = 0.1) 1.90 0.43 2.33 12.32 14.62 26.95 3.55 1.84 5.39 29.27 34.67

IGES (κ = 0.5) 2.67 1.09 3.76 11.23 14.72 25.95 3.79 3.16 6.95 29.71 36.66

IGES (κ = 0.9) 3.34 1.33 4.67 10.43 15.47 25.90 3.09 2.31 5.39 30.57 35.97

GES 4.52 0.25 4.77 9.86 15.49 25.34 4.22 3.30 7.52 30.11 37.64

120

IGES (κ = 0.001) 2.60 0.48 3.08 12.50 19.24 31.75 3.62 3.25 6.87 34.82 41.69

IGES (κ = 0.1) 2.19 0.76 2.95 14.64 20.45 35.09 5.26 3.19 8.45 38.03 46.48

IGES (κ = 0.5) 2.57 1.14 3.71 14.67 19.80 34.47 3.94 3.13 7.07 38.18 45.25

IGES (κ = 0.9) 3.48 1.23 4.71 13.71 17.99 31.71 3.59 2.67 6.25 36.42 42.67

GES 4.26 0.41 4.67 13.72 17.77 31.49 4.51 3.23 7.73 36.16 43.89

50

100

IGES (κ = 0.001) 3.04 0.54 3.58 9.03 15.78 24.81 4.65 4.83 9.47 28.40 37.87

IGES (κ = 0.1) 2.54 0.97 3.51 8.31 15.65 23.96 3.60 5.12 8.72 27.47 36.19

IGES (κ = 0.5) 5.05 3.79 8.85 7.78 15.64 23.43 3.68 5.74 9.41 32.27 41.69

IGES (κ = 0.9) 6.95 7.52 14.47 7.41 15.86 23.27 5.15 6.21 11.36 37.74 49.10

GES 6.97 0.35 7.33 6.64 16.98 23.62 7.22 5.67 12.90 30.95 43.85

200

IGES (κ = 0.001) 4.49 0.81 5.30 27.14 48.38 75.52 6.21 5.79 11.99 80.82 92.82

IGES (κ = 0.1) 3.74 1.88 5.62 25.55 43.66 69.21 7.46 6.72 14.18 74.83 89.01

IGES (κ = 0.5) 7.23 3.56 10.79 26.43 45.57 72.00 6.75 7.51 14.26 82.79 97.05

IGES (κ = 0.9) 10.01 4.78 14.79 24.21 42.13 66.34 6.94 6.64 13.58 81.13 94.71

GES 8.11 0.71 8.83 23.80 43.70 67.50 8.41 7.56 15.97 76.33 92.30

300

IGES (κ = 0.001) 4.56 0.97 5.54 36.22 58.93 95.16 9.62 6.43 16.06 100.69 116.75

IGES (κ = 0.1) 3.76 1.57 5.33 32.50 59.91 92.42 7.22 6.44 13.65 97.74 111.40

IGES (κ = 0.5) 6.16 2.27 8.43 34.26 51.96 86.22 6.64 4.99 11.63 94.64 106.27

IGES (κ = 0.9) 11.25 4.47 15.73 33.91 53.78 87.69 7.25 7.41 14.66 103.41 118.08

GES 8.15 0.95 9.11 35.19 56.03 91.21 9.11 8.00 17.11 100.32 117.43
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Table 61: Adjacency and strict SHD (A-SHD and S-SHD) for N = 5000 training cases.

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall A-SHD S-SHD

10

20

IGES (κ = 0.001) 1.09 0.64 1.73 0.74 1.37 2.11 1.29 1.94 3.23 3.84 7.07

IGES (κ = 0.1) 0.88 0.67 1.55 0.81 1.63 2.44 1.18 1.92 3.09 3.99 7.08

IGES (κ = 0.5) 0.80 0.76 1.56 0.93 1.81 2.74 1.08 1.79 2.87 4.30 7.17

IGES (κ = 0.9) 0.81 0.82 1.64 0.99 1.92 2.91 1.09 1.79 2.89 4.54 7.43

GES 3.82 0.64 4.46 0.44 0.99 1.43 1.93 2.12 4.04 5.89 9.93

40

IGES (κ = 0.001) 2.45 0.28 2.73 2.75 5.26 8.01 2.66 3.42 6.09 10.74 16.82

IGES (κ = 0.1) 1.96 0.32 2.27 3.02 5.83 8.85 2.50 3.12 5.63 11.12 16.75

IGES (κ = 0.5) 1.74 0.33 2.06 3.30 6.40 9.69 2.33 2.79 5.13 11.75 16.88

IGES (κ = 0.9) 1.82 0.36 2.18 3.35 6.48 9.84 2.32 2.75 5.08 12.01 17.09

GES 5.41 0.40 5.80 1.90 3.86 5.76 3.68 4.09 7.77 11.56 19.33

60

IGES (κ = 0.001) 3.04 0.20 3.24 4.10 7.24 11.34 2.86 5.47 8.33 14.58 22.91

IGES (κ = 0.1) 2.66 0.26 2.92 3.83 7.59 11.42 3.05 5.60 8.65 14.34 22.99

IGES (κ = 0.5) 2.64 0.30 2.94 4.34 7.79 12.12 2.80 5.04 7.84 15.06 22.91

IGES (κ = 0.9) 2.56 0.34 2.90 4.65 7.35 12.00 3.22 4.07 7.29 14.90 22.19

GES 5.72 0.18 5.90 3.70 6.08 9.78 4.12 5.22 9.35 15.68 25.03

20

40

IGES (κ = 0.001) 2.13 1.02 3.15 1.22 3.53 4.75 2.16 2.82 4.98 7.90 12.88

IGES (κ = 0.1) 1.82 1.10 2.92 1.87 3.74 5.61 1.92 2.69 4.61 8.53 13.14

IGES (κ = 0.5) 2.20 2.01 4.20 1.88 3.68 5.56 2.23 2.55 4.79 9.77 14.55

IGES (κ = 0.9) 2.23 2.29 4.51 2.47 4.20 6.67 1.61 3.40 5.01 11.18 16.19

GES 5.59 1.17 6.76 1.39 3.24 4.63 3.12 3.77 6.89 11.40 18.29

80

IGES (κ = 0.001) 4.72 2.02 6.74 7.67 11.27 18.94 3.70 3.22 6.92 25.68 32.60

IGES (κ = 0.1) 3.10 1.30 4.40 8.41 10.08 18.49 4.15 2.78 6.93 22.89 29.82

IGES (κ = 0.5) 4.12 1.68 5.79 7.90 10.46 18.36 4.17 2.04 6.21 24.15 30.36

IGES (κ = 0.9) 4.70 1.89 6.59 8.25 10.75 18.99 3.91 2.59 6.50 25.58 32.09

GES 10.80 1.16 11.96 6.77 9.58 16.35 5.67 3.19 8.86 28.31 37.17

120

IGES (κ = 0.001) 3.80 1.07 4.87 10.92 14.70 25.62 4.74 2.91 7.65 30.49 38.13

IGES (κ = 0.1) 3.51 1.61 5.13 10.68 15.76 26.44 4.42 3.68 8.10 31.56 39.66

IGES (κ = 0.5) 3.62 1.62 5.24 9.96 15.09 25.05 3.99 3.29 7.28 30.29 37.57

IGES (κ = 0.9) 4.79 2.04 6.82 10.19 16.55 26.74 3.59 3.61 7.21 33.56 40.77

GES 9.79 1.00 10.79 9.79 16.80 26.60 4.97 4.06 9.03 37.39 46.42

50

100

IGES (κ = 0.001) 3.41 1.23 4.64 4.90 8.77 13.67 3.81 4.57 8.38 18.32 26.70

IGES (κ = 0.1) 3.66 2.27 5.93 5.24 8.86 14.10 3.69 4.53 8.23 20.03 28.26

IGES (κ = 0.5) 4.81 3.42 8.24 4.60 9.10 13.70 4.06 5.11 9.16 21.94 31.10

IGES (κ = 0.9) 6.23 5.25 11.48 4.60 8.80 13.40 4.63 4.18 8.81 24.89 33.70

GES 14.23 1.26 15.49 3.68 8.96 12.65 7.78 5.13 12.91 28.13 41.05

200

IGES (κ = 0.001) 5.98 2.00 7.98 19.21 31.06 50.28 7.28 4.69 11.96 58.26 70.22

IGES (κ = 0.1) 6.11 3.03 9.14 18.56 32.86 51.43 6.50 5.79 12.29 60.57 72.86

IGES (κ = 0.5) 7.14 4.05 11.19 17.87 31.79 49.67 5.54 5.22 10.75 60.85 71.61

IGES (κ = 0.9) 9.59 4.88 14.47 17.88 31.15 49.02 5.14 4.57 9.71 63.50 73.21

GES 20.90 1.65 22.55 17.83 33.72 51.55 8.64 4.02 12.66 74.10 86.76

300

IGES (κ = 0.001) 6.39 1.93 8.31 28.75 43.33 72.08 8.18 7.23 15.41 80.39 95.80

IGES (κ = 0.1) 5.27 3.28 8.55 25.02 40.92 65.95 7.06 6.96 14.02 74.50 88.52

IGES (κ = 0.5) 7.84 4.64 12.48 25.25 44.91 70.15 7.41 6.43 13.84 82.64 96.47

IGES (κ = 0.9) 10.79 6.04 16.83 25.56 40.79 66.35 7.87 6.26 14.13 83.18 97.31

GES 20.11 1.97 22.08 25.53 43.04 68.57 10.72 7.34 18.06 90.65 108.71
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Appendix B Additional Results from Chapter 5

In this appendix, I report the average results for the full experiments that are done in

simulations of Chapter 5. Omitted rows in the tables represent the settings that failed to

return a result in under 72 hours.

182



Table 62: Adjacency precision (P) and recall (R) results for N = 200 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI (κ = 0.001) 0.93± 0.17 1.00± 0.00 0.97± 0.05 0.21± 0.10 0.25± 0.11 0.23± 0.09

IGFCI (κ = 0.1) 0.90± 0.20 1.00± 0.01 0.95± 0.08 0.30± 0.16 0.30± 0.12 0.30± 0.12

IGFCI (κ = 0.5) 0.82± 0.27 0.99± 0.01 0.90± 0.14 0.31± 0.15 0.33± 0.11 0.32± 0.10

IGFCI (κ = 0.9) 0.85± 0.20 0.91± 0.14 0.90± 0.09 0.34± 0.15 0.36± 0.12 0.35± 0.11

GFCI 0.88± 0.20 1.00± 0.01 0.95± 0.07 0.40± 0.14 0.43± 0.14 0.42± 0.12

40

IGFCI (κ = 0.001) 0.99± 0.02 1.00± 0.00 0.99± 0.02 0.15± 0.11 0.15± 0.09 0.14± 0.08

IGFCI (κ = 0.1) 0.84± 0.25 1.00± 0.00 0.90± 0.16 0.22± 0.12 0.19± 0.09 0.19± 0.09

IGFCI (κ = 0.5) 0.83± 0.18 1.00± 0.00 0.89± 0.15 0.26± 0.11 0.20± 0.08 0.22± 0.08

IGFCI (κ = 0.9) 0.83± 0.15 1.00± 0.00 0.89± 0.12 0.29± 0.11 0.21± 0.08 0.23± 0.09

GFCI 0.90± 0.13 1.00± 0.00 0.93± 0.11 0.30± 0.12 0.25± 0.11 0.27± 0.10

60

IGFCI (κ = 0.001) 0.95± 0.06 1.00± 0.00 0.97± 0.05 0.20± 0.13 0.11± 0.07 0.16± 0.08

IGFCI (κ = 0.1) 0.95± 0.07 1.00± 0.00 0.97± 0.05 0.25± 0.12 0.16± 0.08 0.21± 0.06

IGFCI (κ = 0.5) 0.92± 0.09 1.00± 0.00 0.95± 0.05 0.25± 0.12 0.18± 0.08 0.23± 0.06

IGFCI (κ = 0.9) 0.92± 0.08 1.00± 0.00 0.95± 0.04 0.27± 0.13 0.20± 0.09 0.24± 0.07

GFCI 0.90± 0.10 1.00± 0.00 0.94± 0.06 0.34± 0.14 0.23± 0.12 0.30± 0.06

20

40

IGFCI (κ = 0.001) 0.82± 0.23 1.00± 0.00 0.93± 0.06 0.22± 0.10 0.20± 0.09 0.20± 0.08

IGFCI (κ = 0.1) 0.86± 0.11 1.00± 0.01 0.94± 0.04 0.27± 0.10 0.24± 0.08 0.24± 0.07

IGFCI (κ = 0.5) 0.80± 0.08 0.92± 0.06 0.86± 0.05 0.29± 0.09 0.27± 0.09 0.26± 0.07

IGFCI (κ = 0.9) 0.78± 0.06 0.90± 0.06 0.84± 0.05 0.30± 0.09 0.27± 0.08 0.27± 0.07

GFCI 0.80± 0.12 1.00± 0.00 0.92± 0.04 0.33± 0.13 0.30± 0.11 0.30± 0.09

80

IGFCI (κ = 0.001) 0.94± 0.07 0.99± 0.02 0.96± 0.05 0.14± 0.06 0.08± 0.04 0.11± 0.04

IGFCI (κ = 0.1) 0.92± 0.09 0.99± 0.02 0.94± 0.07 0.18± 0.07 0.12± 0.03 0.15± 0.05

IGFCI (κ = 0.5) 0.88± 0.08 0.98± 0.02 0.92± 0.06 0.21± 0.06 0.14± 0.04 0.17± 0.04

IGFCI (κ = 0.9) 0.87± 0.08 0.96± 0.05 0.90± 0.06 0.22± 0.06 0.14± 0.04 0.17± 0.03

GFCI 0.90± 0.07 0.99± 0.02 0.93± 0.04 0.23± 0.06 0.15± 0.04 0.19± 0.04

120

IGFCI (κ = 0.001) 0.91± 0.10 0.98± 0.07 0.94± 0.07 0.13± 0.06 0.07± 0.04 0.10± 0.05

IGFCI (κ = 0.1) 0.90± 0.06 0.97± 0.08 0.93± 0.06 0.16± 0.06 0.09± 0.04 0.12± 0.05

IGFCI (κ = 0.5) 0.88± 0.07 0.95± 0.10 0.90± 0.07 0.18± 0.06 0.10± 0.04 0.14± 0.05

IGFCI (κ = 0.9) 0.85± 0.06 0.93± 0.09 0.87± 0.06 0.18± 0.07 0.10± 0.03 0.14± 0.05

GFCI 0.89± 0.07 0.98± 0.07 0.92± 0.06 0.21± 0.07 0.13± 0.04 0.17± 0.05

50 100

IGFCI (κ = 0.001) 0.89± 0.09 1.00± 0.00 0.95± 0.03 0.19± 0.08 0.17± 0.05 0.18± 0.05

IGFCI (κ = 0.1) 0.87± 0.05 0.97± 0.05 0.93± 0.03 0.24± 0.08 0.22± 0.05 0.22± 0.05

IGFCI (κ = 0.5) 0.76± 0.05 0.85± 0.08 0.81± 0.06 0.29± 0.08 0.26± 0.05 0.26± 0.06

IGFCI (κ = 0.9) 0.66± 0.08 0.77± 0.10 0.72± 0.08 0.28± 0.08 0.26± 0.05 0.26± 0.05

GFCI 0.86± 0.06 0.99± 0.03 0.94± 0.03 0.29± 0.09 0.26± 0.06 0.27± 0.07
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Table 63: Adjacency precision (P) and recall (R) results for N = 1000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI (κ = 0.001) 0.90± 0.12 0.99± 0.04 0.95± 0.07 0.47± 0.16 0.44± 0.16 0.45± 0.13

IGFCI (κ = 0.1) 0.91± 0.11 0.99± 0.02 0.96± 0.05 0.47± 0.15 0.43± 0.14 0.44± 0.12

IGFCI (κ = 0.5) 0.91± 0.11 0.97± 0.07 0.94± 0.06 0.48± 0.14 0.46± 0.12 0.46± 0.10

IGFCI (κ = 0.9) 0.90± 0.12 0.96± 0.10 0.93± 0.08 0.48± 0.14 0.46± 0.10 0.46± 0.08

GFCI 0.82± 0.14 0.97± 0.07 0.91± 0.09 0.59± 0.21 0.54± 0.18 0.55± 0.15

40

IGFCI (κ = 0.001) 0.96± 0.04 1.00± 0.00 0.97± 0.03 0.34± 0.07 0.25± 0.09 0.29± 0.06

IGFCI (κ = 0.1) 0.95± 0.05 1.00± 0.00 0.97± 0.03 0.38± 0.07 0.26± 0.07 0.31± 0.06

IGFCI (κ = 0.5) 0.94± 0.06 1.00± 0.00 0.96± 0.03 0.37± 0.07 0.25± 0.06 0.30± 0.06

IGFCI (κ = 0.9) 0.93± 0.06 1.00± 0.01 0.96± 0.03 0.36± 0.08 0.25± 0.06 0.30± 0.06

GFCI 0.89± 0.07 1.00± 0.00 0.93± 0.05 0.46± 0.09 0.34± 0.10 0.39± 0.08

60

IGFCI (κ = 0.001) 0.91± 0.06 1.00± 0.00 0.94± 0.04 0.33± 0.16 0.25± 0.09 0.31± 0.10

IGFCI (κ = 0.1) 0.90± 0.04 1.00± 0.00 0.93± 0.04 0.35± 0.14 0.26± 0.10 0.32± 0.07

IGFCI (κ = 0.5) 0.91± 0.05 1.00± 0.00 0.93± 0.04 0.35± 0.14 0.26± 0.10 0.31± 0.08

IGFCI (κ = 0.9) 0.89± 0.04 1.00± 0.00 0.93± 0.04 0.35± 0.14 0.25± 0.10 0.31± 0.08

GFCI 0.84± 0.10 1.00± 0.00 0.90± 0.07 0.44± 0.13 0.35± 0.12 0.42± 0.06

20

40

IGFCI (κ = 0.001) 0.82± 0.08 0.99± 0.02 0.92± 0.04 0.38± 0.11 0.37± 0.10 0.36± 0.07

IGFCI (κ = 0.1) 0.85± 0.07 0.96± 0.03 0.91± 0.04 0.39± 0.11 0.38± 0.09 0.37± 0.07

IGFCI (κ = 0.5) 0.83± 0.08 0.94± 0.03 0.89± 0.04 0.39± 0.12 0.38± 0.10 0.37± 0.07

IGFCI (κ = 0.9) 0.80± 0.09 0.93± 0.04 0.87± 0.05 0.39± 0.12 0.38± 0.09 0.37± 0.08

GFCI 0.71± 0.06 0.98± 0.03 0.85± 0.02 0.46± 0.10 0.42± 0.10 0.42± 0.08

80

IGFCI (κ = 0.001) 0.88± 0.09 0.99± 0.02 0.92± 0.06 0.31± 0.09 0.21± 0.05 0.25± 0.05

IGFCI (κ = 0.1) 0.89± 0.05 0.97± 0.04 0.92± 0.04 0.29± 0.10 0.20± 0.05 0.24± 0.05

IGFCI (κ = 0.5) 0.87± 0.04 0.97± 0.04 0.91± 0.03 0.30± 0.09 0.21± 0.05 0.25± 0.05

IGFCI (κ = 0.9) 0.86± 0.05 0.96± 0.05 0.90± 0.04 0.29± 0.09 0.21± 0.04 0.24± 0.05

GFCI 0.82± 0.07 0.99± 0.01 0.89± 0.06 0.35± 0.08 0.24± 0.06 0.29± 0.04

120

IGFCI (κ = 0.001) 0.90± 0.06 0.95± 0.09 0.92± 0.06 0.26± 0.07 0.16± 0.04 0.20± 0.05

IGFCI (κ = 0.1) 0.92± 0.04 0.97± 0.07 0.93± 0.05 0.25± 0.07 0.16± 0.04 0.20± 0.05

IGFCI (κ = 0.5) 0.90± 0.03 0.97± 0.07 0.92± 0.04 0.26± 0.08 0.16± 0.04 0.21± 0.05

IGFCI (κ = 0.9) 0.89± 0.03 0.97± 0.05 0.92± 0.03 0.27± 0.08 0.15± 0.04 0.21± 0.05

GFCI 0.85± 0.07 0.97± 0.07 0.89± 0.07 0.31± 0.07 0.20± 0.04 0.25± 0.05

50 100

IGFCI (κ = 0.001) 0.82± 0.03 0.99± 0.01 0.92± 0.02 0.39± 0.11 0.36± 0.07 0.37± 0.08

IGFCI (κ = 0.1) 0.84± 0.06 0.98± 0.02 0.92± 0.03 0.40± 0.09 0.38± 0.07 0.38± 0.08

IGFCI (κ = 0.5) 0.81± 0.04 0.93± 0.04 0.88± 0.02 0.41± 0.09 0.38± 0.06 0.39± 0.07

IGFCI (κ = 0.9) 0.76± 0.03 0.90± 0.06 0.83± 0.04 0.41± 0.09 0.38± 0.06 0.38± 0.06

GFCI 0.73± 0.03 0.99± 0.02 0.87± 0.03 0.45± 0.11 0.42± 0.07 0.42± 0.08
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Table 64: Adjacency precision (P) and recall (R) results for N = 5000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI (κ = 0.001) 0.88± 0.11 0.98± 0.05 0.93± 0.06 0.59± 0.13 0.61± 0.10 0.59± 0.07

IGFCI (κ = 0.1) 0.89± 0.12 0.98± 0.04 0.94± 0.06 0.59± 0.14 0.64± 0.15 0.60± 0.11

IGFCI (κ = 0.5) 0.86± 0.12 0.97± 0.07 0.93± 0.05 0.58± 0.13 0.63± 0.15 0.60± 0.11

IGFCI (κ = 0.9) 0.87± 0.13 0.97± 0.07 0.93± 0.06 0.58± 0.13 0.63± 0.15 0.60± 0.11

GFCI 0.75± 0.14 1.00± 0.00 0.86± 0.09 0.73± 0.14 0.75± 0.13 0.73± 0.11

40

IGFCI (κ = 0.001) 0.91± 0.04 1.00± 0.00 0.94± 0.03 0.42± 0.10 0.32± 0.06 0.36± 0.06

IGFCI (κ = 0.1) 0.91± 0.07 1.00± 0.00 0.95± 0.04 0.42± 0.09 0.31± 0.06 0.36± 0.05

IGFCI (κ = 0.5) 0.90± 0.05 1.00± 0.01 0.94± 0.03 0.41± 0.09 0.31± 0.08 0.36± 0.07

IGFCI (κ = 0.9) 0.90± 0.05 0.99± 0.01 0.94± 0.03 0.41± 0.08 0.31± 0.07 0.35± 0.06

GFCI 0.77± 0.08 1.00± 0.00 0.86± 0.05 0.62± 0.09 0.53± 0.09 0.57± 0.05

60

IGFCI (κ = 0.001) 0.89± 0.07 1.00± 0.00 0.93± 0.05 0.44± 0.16 0.35± 0.09 0.40± 0.08

IGFCI (κ = 0.1) 0.92± 0.07 1.00± 0.00 0.94± 0.05 0.42± 0.15 0.36± 0.10 0.40± 0.10

IGFCI (κ = 0.5) 0.90± 0.08 1.00± 0.00 0.93± 0.06 0.40± 0.15 0.33± 0.09 0.38± 0.10

IGFCI (κ = 0.9) 0.90± 0.08 1.00± 0.00 0.93± 0.06 0.40± 0.15 0.33± 0.09 0.37± 0.09

GFCI 0.78± 0.09 1.00± 0.00 0.85± 0.05 0.65± 0.13 0.51± 0.13 0.60± 0.09

20

40

IGFCI (κ = 0.001) 0.85± 0.10 0.98± 0.02 0.93± 0.05 0.48± 0.12 0.51± 0.14 0.48± 0.10

IGFCI (κ = 0.1) 0.86± 0.10 0.98± 0.02 0.93± 0.05 0.48± 0.11 0.51± 0.14 0.48± 0.10

IGFCI (κ = 0.5) 0.85± 0.10 0.98± 0.03 0.93± 0.05 0.46± 0.11 0.50± 0.14 0.47± 0.11

IGFCI (κ = 0.9) 0.84± 0.10 0.97± 0.03 0.92± 0.05 0.46± 0.11 0.49± 0.14 0.47± 0.11

GFCI 0.66± 0.07 0.99± 0.02 0.83± 0.04 0.53± 0.11 0.55± 0.12 0.53± 0.09

80

IGFCI (κ = 0.001) 0.86± 0.08 0.98± 0.03 0.91± 0.06 0.34± 0.09 0.24± 0.06 0.28± 0.07

IGFCI (κ = 0.1) 0.89± 0.04 0.97± 0.04 0.92± 0.04 0.33± 0.09 0.25± 0.06 0.28± 0.06

IGFCI (κ = 0.5) 0.89± 0.05 0.96± 0.04 0.92± 0.04 0.34± 0.10 0.25± 0.06 0.28± 0.06

IGFCI (κ = 0.9) 0.88± 0.05 0.96± 0.04 0.91± 0.04 0.33± 0.10 0.23± 0.05 0.27± 0.06

GFCI 0.76± 0.05 0.98± 0.02 0.85± 0.04 0.42± 0.08 0.30± 0.08 0.36± 0.06

120

IGFCI (κ = 0.001) 0.88± 0.04 0.98± 0.04 0.91± 0.03 0.30± 0.07 0.19± 0.06 0.24± 0.06

IGFCI (κ = 0.1) 0.91± 0.05 0.98± 0.03 0.93± 0.03 0.30± 0.08 0.18± 0.05 0.24± 0.05

IGFCI (κ = 0.5) 0.90± 0.04 0.98± 0.03 0.93± 0.03 0.30± 0.08 0.18± 0.04 0.24± 0.05

IGFCI (κ = 0.9) 0.89± 0.04 0.99± 0.01 0.93± 0.03 0.28± 0.08 0.18± 0.04 0.23± 0.05

GFCI 0.77± 0.04 1.00± 0.00 0.85± 0.03 0.37± 0.07 0.26± 0.05 0.31± 0.05

50 100

IGFCI (κ = 0.001) 0.81± 0.03 0.98± 0.02 0.91± 0.02 0.49± 0.11 0.48± 0.07 0.48± 0.08

IGFCI (κ = 0.1) 0.82± 0.06 0.97± 0.02 0.90± 0.04 0.50± 0.11 0.49± 0.08 0.49± 0.09

IGFCI (κ = 0.5) 0.81± 0.05 0.95± 0.04 0.89± 0.04 0.50± 0.10 0.48± 0.08 0.48± 0.08

IGFCI (κ = 0.9) 0.78± 0.05 0.93± 0.04 0.87± 0.04 0.50± 0.09 0.47± 0.08 0.47± 0.08

GFCI 0.66± 0.05 0.99± 0.01 0.84± 0.04 0.54± 0.10 0.51± 0.08 0.52± 0.09
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Table 65: Arrowhead precision (P) and recall (R) results for N = 200 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI (κ = 0.001) 0.34± 0.43 0.21± 0.29 0.33± 0.37 0.02± 0.05 0.02± 0.04 0.02± 0.03

IGFCI (κ = 0.1) 0.38± 0.40 0.22± 0.29 0.36± 0.39 0.02± 0.05 0.02± 0.04 0.02± 0.03

IGFCI (κ = 0.5) 0.31± 0.37 0.30± 0.37 0.26± 0.35 0.02± 0.05 0.03± 0.05 0.03± 0.04

IGFCI (κ = 0.9) 0.20± 0.35 0.24± 0.33 0.25± 0.34 0.03± 0.05 0.04± 0.04 0.03± 0.04

GFCI 0.23± 0.19 0.31± 0.39 0.28± 0.32 0.02± 0.04 0.04± 0.10 0.03± 0.06

40

IGFCI (κ = 0.001) 0.47± 0.22 0.38± 0.37 0.36± 0.31 0.06± 0.10 0.02± 0.05 0.03± 0.05

IGFCI (κ = 0.1) 0.41± 0.36 0.37± 0.28 0.36± 0.26 0.07± 0.09 0.02± 0.02 0.03± 0.03

IGFCI (κ = 0.5) 0.25± 0.34 0.34± 0.20 0.29± 0.23 0.04± 0.07 0.02± 0.02 0.03± 0.02

IGFCI (κ = 0.9) 0.24± 0.30 0.38± 0.27 0.28± 0.24 0.06± 0.08 0.03± 0.03 0.04± 0.03

GFCI 0.34± 0.12 0.50± 0.35 0.46± 0.30 0.05± 0.08 0.02± 0.05 0.03± 0.05

60

IGFCI (κ = 0.001) 0.03± 0.05 0.27± 0.28 0.11± 0.10 0.03± 0.07 0.01± 0.03 0.02± 0.03

IGFCI (κ = 0.1) 0.03± 0.05 0.15± 0.21 0.06± 0.09 0.04± 0.07 0.01± 0.03 0.02± 0.03

IGFCI (κ = 0.5) 0.04± 0.09 0.15± 0.32 0.06± 0.13 0.03± 0.06 0.01± 0.02 0.01± 0.02

IGFCI (κ = 0.9) 0.16± 0.33 0.22± 0.30 0.24± 0.32 0.11± 0.24 0.02± 0.03 0.05± 0.10

GFCI 0.04± 0.06 0.36± 0.37 0.13± 0.14 0.03± 0.07 0.02± 0.04 0.02± 0.04

20

40

IGFCI (κ = 0.001) 0.53± 0.28 0.86± 0.35 0.68± 0.32 0.11± 0.13 0.06± 0.08 0.06± 0.07

IGFCI (κ = 0.1) 0.55± 0.32 0.73± 0.39 0.65± 0.36 0.11± 0.13 0.06± 0.07 0.06± 0.06

IGFCI (κ = 0.5) 0.62± 0.21 0.55± 0.35 0.57± 0.28 0.12± 0.13 0.07± 0.07 0.08± 0.06

IGFCI (κ = 0.9) 0.52± 0.17 0.53± 0.28 0.50± 0.24 0.12± 0.13 0.07± 0.05 0.07± 0.05

GFCI 0.49± 0.27 0.86± 0.35 0.62± 0.29 0.12± 0.13 0.06± 0.08 0.07± 0.07

80

IGFCI (κ = 0.001) 0.52± 0.38 0.71± 0.32 0.67± 0.30 0.07± 0.10 0.03± 0.03 0.03± 0.03

IGFCI (κ = 0.1) 0.48± 0.36 0.70± 0.29 0.61± 0.28 0.09± 0.10 0.03± 0.03 0.04± 0.03

IGFCI (κ = 0.5) 0.42± 0.29 0.61± 0.29 0.53± 0.27 0.10± 0.08 0.04± 0.03 0.04± 0.03

IGFCI (κ = 0.9) 0.43± 0.25 0.54± 0.21 0.51± 0.23 0.10± 0.08 0.04± 0.03 0.05± 0.03

GFCI 0.46± 0.27 0.74± 0.27 0.63± 0.21 0.07± 0.12 0.03± 0.03 0.03± 0.03

120

IGFCI (κ = 0.001) 0.60± 0.33 0.61± 0.34 0.62± 0.29 0.06± 0.07 0.01± 0.01 0.02± 0.02

IGFCI (κ = 0.1) 0.62± 0.31 0.56± 0.32 0.57± 0.30 0.07± 0.06 0.01± 0.01 0.02± 0.02

IGFCI (κ = 0.5) 0.50± 0.27 0.52± 0.26 0.53± 0.25 0.08± 0.05 0.02± 0.02 0.03± 0.02

IGFCI (κ = 0.9) 0.43± 0.21 0.45± 0.25 0.45± 0.23 0.10± 0.07 0.03± 0.02 0.04± 0.02

GFCI 0.44± 0.31 0.58± 0.37 0.50± 0.29 0.07± 0.09 0.01± 0.01 0.02± 0.03

50 100

IGFCI (κ = 0.001) 0.21± 0.20 0.91± 0.20 0.71± 0.23 0.03± 0.05 0.04± 0.03 0.05± 0.03

IGFCI (κ = 0.1) 0.33± 0.29 0.81± 0.16 0.76± 0.19 0.02± 0.03 0.06± 0.02 0.05± 0.02

IGFCI (κ = 0.5) 0.23± 0.13 0.61± 0.15 0.55± 0.13 0.07± 0.06 0.08± 0.04 0.08± 0.03

IGFCI (κ = 0.9) 0.26± 0.10 0.46± 0.15 0.41± 0.12 0.09± 0.05 0.08± 0.03 0.08± 0.03

GFCI 0.14± 0.18 0.91± 0.20 0.66± 0.18 0.03± 0.05 0.05± 0.03 0.05± 0.02
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Table 66: Arrowhead precision (P) and recall (R) results for N = 1000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI (κ = 0.001) 0.30± 0.26 0.62± 0.33 0.43± 0.26 0.07± 0.09 0.18± 0.16 0.14± 0.12

IGFCI (κ = 0.1) 0.29± 0.24 0.50± 0.38 0.35± 0.30 0.07± 0.09 0.14± 0.12 0.11± 0.10

IGFCI (κ = 0.5) 0.36± 0.27 0.35± 0.35 0.36± 0.33 0.09± 0.09 0.14± 0.12 0.12± 0.10

IGFCI (κ = 0.9) 0.30± 0.29 0.39± 0.33 0.34± 0.31 0.11± 0.10 0.14± 0.12 0.12± 0.09

GFCI 0.18± 0.19 0.65± 0.37 0.37± 0.25 0.08± 0.10 0.20± 0.18 0.15± 0.12

40

IGFCI (κ = 0.001) 0.20± 0.31 0.30± 0.32 0.24± 0.26 0.13± 0.18 0.06± 0.07 0.07± 0.08

IGFCI (κ = 0.1) 0.14± 0.15 0.37± 0.32 0.33± 0.27 0.11± 0.19 0.07± 0.07 0.08± 0.07

IGFCI (κ = 0.5) 0.25± 0.21 0.35± 0.30 0.32± 0.25 0.14± 0.18 0.07± 0.06 0.09± 0.07

IGFCI (κ = 0.9) 0.26± 0.23 0.35± 0.29 0.31± 0.25 0.12± 0.17 0.07± 0.06 0.08± 0.07

GFCI 0.06± 0.09 0.24± 0.31 0.15± 0.18 0.17± 0.26 0.09± 0.11 0.10± 0.13

60

IGFCI (κ = 0.001) 0.23± 0.31 0.26± 0.19 0.27± 0.23 0.20± 0.26 0.11± 0.08 0.13± 0.16

IGFCI (κ = 0.1) 0.22± 0.26 0.27± 0.18 0.28± 0.21 0.21± 0.26 0.09± 0.07 0.12± 0.14

IGFCI (κ = 0.5) 0.21± 0.26 0.30± 0.21 0.28± 0.22 0.19± 0.26 0.11± 0.07 0.14± 0.15

IGFCI (κ = 0.9) 0.18± 0.23 0.29± 0.21 0.25± 0.20 0.18± 0.26 0.11± 0.08 0.13± 0.15

GFCI 0.19± 0.24 0.26± 0.18 0.25± 0.20 0.23± 0.26 0.13± 0.06 0.16± 0.14

20

40

IGFCI (κ = 0.001) 0.52± 0.25 0.77± 0.22 0.70± 0.21 0.24± 0.17 0.18± 0.09 0.18± 0.09

IGFCI (κ = 0.1) 0.68± 0.24 0.74± 0.20 0.74± 0.19 0.24± 0.17 0.19± 0.08 0.19± 0.08

IGFCI (κ = 0.5) 0.59± 0.15 0.72± 0.20 0.70± 0.18 0.23± 0.17 0.18± 0.08 0.19± 0.09

IGFCI (κ = 0.9) 0.55± 0.12 0.70± 0.19 0.68± 0.16 0.23± 0.17 0.18± 0.08 0.18± 0.09

GFCI 0.38± 0.18 0.73± 0.23 0.60± 0.11 0.34± 0.19 0.20± 0.09 0.21± 0.09

80

IGFCI (κ = 0.001) 0.54± 0.23 0.70± 0.18 0.63± 0.19 0.32± 0.18 0.12± 0.05 0.14± 0.06

IGFCI (κ = 0.1) 0.62± 0.21 0.75± 0.19 0.68± 0.20 0.25± 0.15 0.10± 0.05 0.12± 0.05

IGFCI (κ = 0.5) 0.58± 0.18 0.74± 0.16 0.68± 0.16 0.28± 0.15 0.11± 0.05 0.13± 0.05

IGFCI (κ = 0.9) 0.57± 0.17 0.72± 0.17 0.65± 0.16 0.27± 0.16 0.11± 0.04 0.13± 0.05

GFCI 0.46± 0.16 0.63± 0.22 0.56± 0.17 0.34± 0.17 0.13± 0.06 0.15± 0.06

120

IGFCI (κ = 0.001) 0.56± 0.28 0.52± 0.30 0.54± 0.26 0.24± 0.10 0.07± 0.04 0.09± 0.04

IGFCI (κ = 0.1) 0.59± 0.27 0.64± 0.22 0.62± 0.20 0.20± 0.07 0.07± 0.03 0.09± 0.03

IGFCI (κ = 0.5) 0.52± 0.24 0.62± 0.18 0.58± 0.16 0.20± 0.08 0.07± 0.03 0.09± 0.03

IGFCI (κ = 0.9) 0.53± 0.23 0.58± 0.16 0.57± 0.15 0.22± 0.10 0.07± 0.03 0.09± 0.03

GFCI 0.50± 0.28 0.50± 0.35 0.48± 0.27 0.26± 0.14 0.08± 0.05 0.11± 0.06

50 100

IGFCI (κ = 0.001) 0.48± 0.11 0.83± 0.13 0.74± 0.08 0.27± 0.12 0.21± 0.08 0.21± 0.08

IGFCI (κ = 0.1) 0.66± 0.20 0.82± 0.12 0.79± 0.12 0.25± 0.11 0.20± 0.07 0.20± 0.07

IGFCI (κ = 0.5) 0.60± 0.11 0.76± 0.12 0.72± 0.10 0.29± 0.11 0.20± 0.06 0.21± 0.07

IGFCI (κ = 0.9) 0.52± 0.12 0.70± 0.11 0.66± 0.09 0.29± 0.10 0.20± 0.06 0.21± 0.06

GFCI 0.36± 0.15 0.79± 0.14 0.64± 0.08 0.30± 0.16 0.21± 0.08 0.22± 0.09
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Table 67: Arrowhead precision (P) and recall (R) results for N = 5000 training cases.

# Variables # Edges Method PIS Pother P RIS Rother R

10

20

IGFCI (κ = 0.001) 0.35± 0.25 0.66± 0.28 0.54± 0.24 0.30± 0.27 0.32± 0.21 0.30± 0.14

IGFCI (κ = 0.1) 0.41± 0.21 0.65± 0.30 0.60± 0.24 0.32± 0.31 0.32± 0.20 0.30± 0.14

IGFCI (κ = 0.5) 0.47± 0.26 0.66± 0.31 0.66± 0.27 0.38± 0.31 0.32± 0.20 0.30± 0.14

IGFCI (κ = 0.9) 0.49± 0.30 0.66± 0.31 0.67± 0.28 0.36± 0.26 0.32± 0.20 0.29± 0.14

GFCI 0.29± 0.28 0.64± 0.31 0.50± 0.22 0.40± 0.39 0.35± 0.21 0.35± 0.18

40

IGFCI (κ = 0.001) 0.32± 0.31 0.42± 0.28 0.40± 0.22 0.26± 0.18 0.17± 0.14 0.19± 0.12

IGFCI (κ = 0.1) 0.32± 0.31 0.44± 0.26 0.40± 0.22 0.27± 0.17 0.17± 0.12 0.19± 0.11

IGFCI (κ = 0.5) 0.28± 0.24 0.44± 0.25 0.39± 0.21 0.27± 0.15 0.18± 0.11 0.20± 0.09

IGFCI (κ = 0.9) 0.29± 0.24 0.45± 0.26 0.40± 0.20 0.28± 0.15 0.18± 0.11 0.20± 0.10

GFCI 0.19± 0.18 0.35± 0.16 0.26± 0.09 0.53± 0.21 0.32± 0.15 0.35± 0.13

60

IGFCI (κ = 0.001) 0.16± 0.16 0.29± 0.23 0.25± 0.16 0.35± 0.24 0.19± 0.13 0.21± 0.18

IGFCI (κ = 0.1) 0.16± 0.16 0.30± 0.24 0.25± 0.16 0.30± 0.23 0.18± 0.12 0.20± 0.18

IGFCI (κ = 0.5) 0.16± 0.16 0.30± 0.24 0.25± 0.17 0.27± 0.25 0.18± 0.12 0.20± 0.18

IGFCI (κ = 0.9) 0.16± 0.16 0.30± 0.24 0.26± 0.17 0.24± 0.25 0.17± 0.12 0.20± 0.18

GFCI 0.07± 0.07 0.33± 0.23 0.20± 0.12 0.46± 0.26 0.36± 0.10 0.36± 0.16

20

40

IGFCI (κ = 0.001) 0.67± 0.25 0.80± 0.24 0.76± 0.22 0.39± 0.23 0.33± 0.15 0.32± 0.14

IGFCI (κ = 0.1) 0.72± 0.21 0.81± 0.24 0.79± 0.22 0.39± 0.22 0.32± 0.14 0.32± 0.14

IGFCI (κ = 0.5) 0.72± 0.20 0.82± 0.23 0.79± 0.21 0.37± 0.20 0.31± 0.13 0.31± 0.13

IGFCI (κ = 0.9) 0.70± 0.22 0.82± 0.22 0.78± 0.21 0.37± 0.20 0.31± 0.13 0.30± 0.12

GFCI 0.35± 0.07 0.78± 0.21 0.62± 0.13 0.55± 0.25 0.36± 0.13 0.37± 0.12

80

IGFCI (κ = 0.001) 0.58± 0.21 0.72± 0.14 0.66± 0.14 0.37± 0.20 0.15± 0.05 0.18± 0.07

IGFCI (κ = 0.1) 0.65± 0.17 0.73± 0.13 0.69± 0.13 0.32± 0.16 0.15± 0.05 0.17± 0.05

IGFCI (κ = 0.5) 0.63± 0.18 0.73± 0.12 0.69± 0.12 0.31± 0.14 0.15± 0.05 0.17± 0.05

IGFCI (κ = 0.9) 0.60± 0.16 0.72± 0.11 0.68± 0.11 0.29± 0.13 0.14± 0.04 0.16± 0.04

GFCI 0.38± 0.13 0.57± 0.13 0.48± 0.12 0.50± 0.20 0.20± 0.07 0.23± 0.07

120

IGFCI (κ = 0.001) 0.47± 0.24 0.68± 0.08 0.59± 0.13 0.25± 0.10 0.11± 0.06 0.13± 0.05

IGFCI (κ = 0.1) 0.57± 0.20 0.67± 0.11 0.63± 0.10 0.26± 0.07 0.11± 0.05 0.13± 0.05

IGFCI (κ = 0.5) 0.58± 0.20 0.69± 0.10 0.64± 0.10 0.27± 0.06 0.11± 0.04 0.13± 0.04

IGFCI (κ = 0.9) 0.57± 0.19 0.69± 0.10 0.64± 0.10 0.25± 0.07 0.11± 0.04 0.13± 0.04

GFCI 0.34± 0.10 0.54± 0.15 0.45± 0.10 0.43± 0.10 0.15± 0.06 0.18± 0.05

50 100

IGFCI (κ = 0.001) 0.52± 0.10 0.82± 0.15 0.74± 0.12 0.37± 0.15 0.30± 0.10 0.30± 0.09

IGFCI (κ = 0.1) 0.59± 0.16 0.79± 0.17 0.74± 0.14 0.38± 0.14 0.29± 0.09 0.30± 0.09

IGFCI (κ = 0.5) 0.57± 0.13 0.76± 0.17 0.71± 0.14 0.38± 0.14 0.29± 0.09 0.30± 0.09

IGFCI (κ = 0.9) 0.53± 0.12 0.75± 0.15 0.69± 0.12 0.39± 0.13 0.28± 0.09 0.29± 0.08

GFCI 0.30± 0.05 0.79± 0.15 0.61± 0.08 0.44± 0.16 0.32± 0.09 0.33± 0.09
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Table 68: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency SHD (A-SHD) and for

N = 200 training cases.

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall S-SHD L-SHD A-SHD

10

20

IGFCI (κ = 0.001) 0.09 0.00 0.09 3.66 4.61 8.27 0.35 0.77 1.11 9.48 8.46 8.37

IGFCI (κ = 0.1) 0.20 0.01 0.21 3.27 4.29 7.57 0.46 1.00 1.46 9.24 7.88 7.78

IGFCI (κ = 0.5) 0.35 0.03 0.37 3.23 4.16 7.39 0.49 1.10 1.59 9.35 7.89 7.76

IGFCI (κ = 0.9) 0.32 0.22 0.53 3.15 4.07 7.22 0.74 1.03 1.78 9.53 7.91 7.75

GFCI 0.34 0.01 0.36 2.86 3.45 6.31 0.73 1.37 2.10 8.76 6.85 6.66

40

IGFCI (κ = 0.001) 0.04 0.00 0.04 8.15 8.82 16.97 0.48 0.37 0.84 17.84 17.13 17.00

IGFCI (κ = 0.1) 0.18 0.00 0.18 7.60 8.51 16.12 0.61 0.52 1.13 17.43 16.44 16.30

IGFCI (κ = 0.5) 0.37 0.00 0.37 7.23 8.29 15.53 0.93 0.71 1.64 17.54 16.07 15.90

IGFCI (κ = 0.9) 0.40 0.00 0.40 6.99 8.26 15.25 1.14 0.76 1.90 17.54 15.89 15.65

GFCI 0.31 0.00 0.31 6.78 7.87 14.65 0.75 0.87 1.62 16.58 15.09 14.96

60

IGFCI (κ = 0.001) 0.16 0.00 0.16 8.66 7.85 16.51 0.89 0.47 1.36 18.04 16.72 16.67

IGFCI (κ = 0.1) 0.17 0.00 0.17 8.10 7.40 15.50 1.23 0.69 1.93 17.60 15.74 15.67

IGFCI (κ = 0.5) 0.23 0.00 0.23 8.09 7.25 15.35 1.27 0.75 2.02 17.60 15.67 15.58

IGFCI (κ = 0.9) 0.22 0.00 0.22 7.98 7.06 15.04 1.30 0.93 2.22 17.49 15.38 15.27

GFCI 0.41 0.00 0.41 7.22 6.72 13.94 1.58 1.05 2.64 16.99 14.42 14.35

20

40

IGFCI (κ = 0.001) 0.45 0.00 0.45 8.52 15.49 24.01 1.01 1.41 2.42 26.88 24.54 24.46

IGFCI (κ = 0.1) 0.44 0.01 0.45 8.10 14.77 22.87 1.12 1.96 3.09 26.41 23.43 23.32

IGFCI (κ = 0.5) 0.79 0.41 1.20 7.81 14.34 22.15 1.28 2.31 3.59 26.93 23.62 23.34

IGFCI (κ = 0.9) 0.92 0.55 1.47 7.76 14.22 21.98 1.40 2.53 3.94 27.39 23.78 23.46

GFCI 0.77 0.00 0.77 7.48 13.76 21.24 1.58 2.65 4.23 26.24 22.08 22.01

80

IGFCI (κ = 0.001) 0.25 0.02 0.27 23.95 26.19 50.14 1.90 1.11 3.01 53.42 50.76 50.41

IGFCI (κ = 0.1) 0.45 0.05 0.50 22.83 25.25 48.09 2.72 1.71 4.43 53.03 48.97 48.59

IGFCI (κ = 0.5) 0.74 0.08 0.83 22.03 24.67 46.70 3.40 1.97 5.37 52.90 48.00 47.53

IGFCI (κ = 0.9) 0.87 0.21 1.09 21.96 24.66 46.62 3.59 2.13 5.72 53.43 48.25 47.70

GFCI 0.66 0.02 0.68 21.68 24.24 45.92 3.68 2.29 5.97 52.56 46.93 46.60

120

IGFCI (κ = 0.001) 0.37 0.11 0.48 26.43 28.97 55.40 2.28 1.29 3.57 59.44 56.22 55.88

IGFCI (κ = 0.1) 0.50 0.14 0.64 25.49 28.34 53.84 2.96 1.69 4.65 59.13 54.82 54.48

IGFCI (κ = 0.5) 0.77 0.19 0.96 25.03 28.09 53.12 3.20 1.92 5.12 59.19 54.42 54.08

IGFCI (κ = 0.9) 1.01 0.27 1.27 24.96 27.95 52.92 3.18 2.00 5.18 59.37 54.65 54.19

GFCI 0.69 0.11 0.80 24.03 27.34 51.38 4.22 2.63 6.85 59.03 52.56 52.17

50 100

IGFCI (κ = 0.001) 0.60 0.00 0.60 22.60 43.02 65.62 2.59 3.44 6.03 72.26 66.35 66.22

IGFCI (κ = 0.1) 1.01 0.35 1.36 21.12 41.02 62.13 3.26 4.95 8.21 71.71 63.88 63.49

IGFCI (κ = 0.5) 2.60 2.22 4.82 20.16 39.17 59.33 3.91 6.27 10.17 74.32 65.03 64.15

IGFCI (κ = 0.9) 4.05 3.87 7.92 20.25 38.84 59.09 4.03 7.13 11.17 78.18 68.03 67.01

GFCI 1.15 0.11 1.26 19.94 38.92 58.87 4.02 6.61 10.63 70.76 60.26 60.13
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Table 69: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency SHD (A-SHD) and for

N = 1000 training cases.

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall S-SHD L-SHD A-SHD

10

20

IGFCI (κ = 0.001) 0.27 0.07 0.33 2.58 3.38 5.96 1.07 1.59 2.66 8.96 6.46 6.30

IGFCI (κ = 0.1) 0.24 0.04 0.27 2.59 3.48 6.07 1.07 1.53 2.59 8.94 6.52 6.35

IGFCI (κ = 0.5) 0.24 0.12 0.36 2.62 3.33 5.95 0.94 1.54 2.48 8.78 6.54 6.31

IGFCI (κ = 0.9) 0.28 0.19 0.47 2.62 3.31 5.94 0.91 1.54 2.45 8.86 6.70 6.41

GFCI 0.65 0.10 0.75 2.17 2.94 5.12 1.42 1.72 3.14 9.01 6.04 5.87

40

IGFCI (κ = 0.001) 0.19 0.00 0.19 6.29 7.75 14.04 1.68 1.34 3.02 17.25 14.52 14.23

IGFCI (κ = 0.1) 0.17 0.00 0.17 5.97 7.68 13.65 1.82 1.32 3.14 16.96 14.13 13.82

IGFCI (κ = 0.5) 0.20 0.00 0.20 6.10 7.78 13.88 1.67 1.26 2.92 17.01 14.38 14.08

IGFCI (κ = 0.9) 0.22 0.01 0.22 6.20 7.79 13.99 1.57 1.29 2.86 17.07 14.55 14.21

GFCI 0.65 0.00 0.65 5.18 6.88 12.06 3.01 2.02 5.03 17.74 13.26 12.71

60

IGFCI (κ = 0.001) 0.38 0.00 0.38 7.35 6.51 13.86 1.72 1.61 3.33 17.57 14.57 14.24

IGFCI (κ = 0.1) 0.43 0.00 0.43 7.18 6.46 13.64 1.70 1.58 3.28 17.35 14.50 14.07

IGFCI (κ = 0.5) 0.42 0.00 0.42 7.29 6.52 13.81 1.54 1.53 3.06 17.30 14.67 14.23

IGFCI (κ = 0.9) 0.48 0.00 0.48 7.31 6.57 13.88 1.61 1.44 3.05 17.42 14.83 14.37

GFCI 0.97 0.00 0.97 6.24 5.45 11.68 2.46 2.48 4.94 17.59 13.24 12.65

20

40

IGFCI (κ = 0.001) 0.84 0.06 0.90 6.86 12.44 19.30 1.86 2.73 4.60 24.79 20.59 20.20

IGFCI (κ = 0.1) 0.70 0.27 0.97 6.79 12.11 18.90 1.71 2.86 4.57 24.44 20.34 19.87

IGFCI (κ = 0.5) 0.82 0.42 1.24 6.86 12.11 18.96 1.79 2.97 4.76 24.97 20.67 20.21

IGFCI (κ = 0.9) 1.00 0.50 1.50 6.84 12.21 19.04 1.84 3.08 4.92 25.46 21.05 20.54

GFCI 1.83 0.19 2.02 6.08 11.46 17.54 2.71 3.30 6.00 25.56 20.07 19.56

80

IGFCI (κ = 0.001) 1.07 0.08 1.15 19.59 22.74 42.33 4.22 2.92 7.13 50.62 44.36 43.48

IGFCI (κ = 0.1) 0.95 0.14 1.09 20.11 22.97 43.08 4.14 2.61 6.75 50.92 44.92 44.17

IGFCI (κ = 0.5) 1.13 0.18 1.30 20.10 22.75 42.85 4.17 2.84 7.01 51.16 44.92 44.15

IGFCI (κ = 0.9) 1.29 0.25 1.53 20.16 22.81 42.97 4.16 2.93 7.08 51.58 45.26 44.50

GFCI 1.92 0.05 1.97 18.41 21.92 40.33 5.23 3.62 8.85 51.15 43.52 42.30

120

IGFCI (κ = 0.001) 0.93 0.20 1.13 22.77 26.38 49.15 4.54 3.25 7.79 58.07 51.09 50.28

IGFCI (κ = 0.1) 0.69 0.17 0.86 22.84 26.25 49.08 4.31 3.14 7.46 57.40 50.52 49.94

IGFCI (κ = 0.5) 0.89 0.18 1.07 22.56 26.24 48.80 4.43 3.08 7.51 57.37 50.52 49.87

IGFCI (κ = 0.9) 0.93 0.14 1.06 22.53 26.32 48.85 4.43 3.04 7.47 57.38 50.79 49.91

GFCI 1.59 0.22 1.81 21.25 24.95 46.20 6.01 4.61 10.62 58.63 49.05 48.01

50 100

IGFCI (κ = 0.001) 2.47 0.11 2.58 17.23 33.85 51.08 4.80 6.19 10.99 64.64 54.58 53.66

IGFCI (κ = 0.1) 2.11 0.41 2.52 16.92 33.34 50.26 4.24 7.11 11.35 64.14 53.61 52.78

IGFCI (κ = 0.5) 2.77 1.38 4.15 16.65 32.81 49.46 4.31 7.48 11.79 65.40 54.41 53.61

IGFCI (κ = 0.9) 3.65 2.12 5.77 16.75 33.05 49.80 4.66 7.85 12.51 68.09 56.61 55.57

GFCI 4.37 0.18 4.55 15.76 31.03 46.79 6.56 8.03 14.59 65.92 52.34 51.34
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Table 70: Strict SHD (S-SHD), lenient SHD (L-SHD), and adjacency SHD (A-SHD) and for

N = 5000 training cases.

Added Deleted Reoriented

# Variables # Edges Method IS Other Overall IS Other Overall IS Other Overall S-SHD L-SHD A-SHD

10

20

IGFCI (κ = 0.001) 0.40 0.04 0.45 2.04 2.57 4.61 0.95 1.75 2.70 7.76 5.35 5.06

IGFCI (κ = 0.1) 0.42 0.05 0.48 2.07 2.51 4.58 0.95 1.57 2.52 7.58 5.35 5.06

IGFCI (κ = 0.5) 0.47 0.07 0.54 2.06 2.54 4.60 0.86 1.58 2.44 7.58 5.43 5.14

IGFCI (κ = 0.9) 0.44 0.07 0.51 2.08 2.54 4.61 0.88 1.58 2.46 7.59 5.42 5.13

GFCI 1.26 0.00 1.26 1.44 1.74 3.18 1.46 2.15 3.61 8.04 4.70 4.43

40

IGFCI (κ = 0.001) 0.40 0.00 0.40 5.63 7.01 12.64 2.24 1.95 4.19 17.24 13.41 13.05

IGFCI (κ = 0.1) 0.38 0.00 0.38 5.62 7.09 12.71 2.13 1.88 4.01 17.10 13.50 13.10

IGFCI (κ = 0.5) 0.38 0.01 0.39 5.65 7.09 12.73 2.11 1.84 3.95 17.07 13.64 13.12

IGFCI (κ = 0.9) 0.38 0.02 0.40 5.69 7.12 12.82 2.05 1.79 3.83 17.05 13.68 13.22

GFCI 1.78 0.00 1.78 3.70 4.82 8.52 4.77 4.78 9.55 19.85 11.33 10.30

60

IGFCI (κ = 0.001) 0.65 0.00 0.65 6.37 5.54 11.92 2.70 2.40 5.10 17.67 13.30 12.56

IGFCI (κ = 0.1) 0.48 0.00 0.48 6.55 5.55 12.10 2.51 2.42 4.92 17.51 13.33 12.59

IGFCI (κ = 0.5) 0.51 0.00 0.51 6.71 5.80 12.52 2.33 2.18 4.52 17.54 13.74 13.03

IGFCI (κ = 0.9) 0.51 0.00 0.51 6.76 5.83 12.60 2.32 2.15 4.47 17.57 13.81 13.10

GFCI 2.08 0.00 2.08 4.17 3.95 8.11 5.58 4.09 9.67 19.86 11.00 10.19

20

40

IGFCI (κ = 0.001) 0.89 0.15 1.04 5.85 10.16 16.00 1.97 2.90 4.86 21.91 17.71 17.04

IGFCI (κ = 0.1) 0.83 0.14 0.97 5.83 10.10 15.93 1.86 2.94 4.80 21.70 17.55 16.90

IGFCI (κ = 0.5) 0.83 0.18 1.02 6.03 10.31 16.34 1.65 2.90 4.55 21.91 18.01 17.36

IGFCI (κ = 0.9) 0.88 0.24 1.12 6.07 10.37 16.44 1.65 2.86 4.52 22.08 18.21 17.56

GFCI 2.78 0.17 2.95 5.26 9.19 14.45 3.19 3.29 6.47 23.88 18.07 17.40

80

IGFCI (κ = 0.001) 1.42 0.12 1.53 18.87 22.29 41.17 4.39 3.18 7.57 50.27 43.79 42.70

IGFCI (κ = 0.1) 1.08 0.22 1.30 19.16 22.07 41.22 4.17 3.43 7.60 50.13 43.58 42.53

IGFCI (κ = 0.5) 1.12 0.24 1.36 19.02 22.08 41.10 4.34 3.42 7.76 50.22 43.54 42.46

IGFCI (κ = 0.9) 1.22 0.25 1.46 19.21 22.45 41.66 4.35 3.31 7.65 50.78 44.19 43.12

GFCI 3.33 0.09 3.42 16.69 20.29 36.98 7.07 5.58 12.65 53.05 42.63 40.40

120

IGFCI (κ = 0.001) 1.18 0.14 1.31 21.36 25.66 47.02 5.09 3.52 8.61 56.95 49.70 48.34

IGFCI (κ = 0.1) 0.85 0.13 0.99 21.57 25.86 47.43 4.53 3.23 7.76 56.18 49.53 48.42

IGFCI (κ = 0.5) 0.99 0.12 1.11 21.50 25.83 47.33 4.53 3.21 7.74 56.18 49.55 48.44

IGFCI (κ = 0.9) 0.99 0.06 1.05 21.93 25.85 47.78 4.30 3.16 7.46 56.29 49.91 48.83

GFCI 3.13 0.01 3.13 19.25 23.41 42.66 7.21 5.65 12.85 58.64 48.10 45.79

50 100

IGFCI (κ = 0.001) 3.12 0.42 3.54 14.65 28.26 42.92 5.43 8.61 14.04 60.49 48.56 46.46

IGFCI (κ = 0.1) 3.09 0.70 3.79 14.40 27.91 42.31 5.38 9.23 14.61 60.71 48.16 46.09

IGFCI (κ = 0.5) 3.41 1.18 4.58 14.44 28.19 42.63 5.33 9.17 14.49 61.71 49.28 47.21

IGFCI (κ = 0.9) 3.83 1.51 5.34 14.55 28.63 43.17 5.50 9.12 14.61 63.12 50.49 48.51

GFCI 7.39 0.17 7.56 13.37 26.52 39.90 7.71 9.56 17.27 64.74 50.18 47.46

191



Bibliography

[Abramson et al., 1996] Abramson, B., Brown, J., Edwards, W., Murphy, A., and Winkler,
R. L. (1996). Hailfinder: A Bayesian system for forecasting severe weather. Interna-
tional Journal of Forecasting, 12(1):57–71.

[Ali et al., 2009] Ali, R. A., Richardson, T. S., Spirtes, P., et al. (2009). Markov equivalence
for ancestral graphs. The Annals of Statistics, 37(5B):2808–2837.

[American Cancer Society, 2020] American Cancer Society (2020). Cancer Facts &
Figures 2020. Atlanta: American Cancer Society. https://www.cancer.

org/content/dam/cancer-org/research/cancer-facts-and-statistics/

annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.

pdf.

[American Thoracic Society, 2019] American Thoracic Society (2019). Top 20 Pneumonia
Facts — 2019. American Thoracic Society. https://www.thoracic.org/patients/
patient-resources/resources/top-pneumonia-facts.pdf.

[Andrews et al., 2018] Andrews, B., Ramsey, J., and Cooper, G. F. (2018). Scoring
Bayesian networks of mixed variables. International Journal of Data Science and
Analytics, 6(1):1–16.

[Andrews et al., 2019] Andrews, B., Ramsey, J., and Cooper, G. F. (2019). Learning high-
dimensional directed acyclic graphs with mixed data-types. Proceedings of Machine
Learning Research, 104:4–21.

[Bartlett and Cussens, 2013] Bartlett, M. and Cussens, J. (2013). Advances in Bayesian
network learning using integer programming. In Proceedings of the 29th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 182–191. AUAI Press.

[Beal and Zoubin, 2003] Beal, M. J. and Zoubin, G. (2003). The variational Bayesian EM
algorithm for incomplete data: With application to scoring graphical model structures.
Bayesian Statistics, 7:453–464.

[Beinlich et al., 1989] Beinlich, I. A., Suermondt, H. J., Chavez, R. M., and Cooper, G. F.
(1989). The ALARM monitoring system: A case study with two probabilistic inference
techniques for belief networks. In Proceedings of the 2nd European Conference on
Artificial Intelligence in Medicine (AIME), pages 247–256. Springer.

192

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf
https://www.thoracic.org/patients/patient-resources/resources/top-pneumonia-facts.pdf
https://www.thoracic.org/patients/patient-resources/resources/top-pneumonia-facts.pdf


[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

[Blum and Roli, 2003] Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial opti-
mization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–
308.

[Borchani et al., 2006] Borchani, H., Amor, N. B., and Mellouli, K. (2006). Learning
Bayesian network equivalence classes from incomplete data. In International Con-
ference on Discovery Science, pages 291–295. Springer.

[Boutilier et al., 1996] Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996).
Context-specific independence in Bayesian networks. In Proceedings of the 12th Con-
ference on Uncertainty in Artificial Intelligence (UAI), pages 115–123. Morgan Kauf-
mann Publishers.

[Bray et al., 2018] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and
Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence
and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for
Clinicians, 68(6):394–424.

[Cai et al., 2019] Cai, C., Cooper, G. F., Lu, K. N., Ma, X., Xu, S., Zhao, Z., Chen, X.,
Xue, Y., Lee, A. V., Clark, N., et al. (2019). Systematic discovery of the functional
impact of somatic genome alterations in individual tumors through tumor-specific
causal inference. PLoS Computational Biology, 15(7):e1007088.

[Chickering, 1995] Chickering, D. M. (1995). A transformational characterization of equiv-
alent Bayesian network structures. In Proceedings of the 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 87–98. Morgan Kaufmann Publishers.

[Chickering, 1996] Chickering, D. M. (1996). Learning Bayesian networks is NP-complete.
In Learning from Data, pages 121–130. Springer.

[Chickering, 2002] Chickering, D. M. (2002). Optimal structure identification with greedy
search. Journal of Machine Learning Research, 3(Nov):507–554.

[Chickering, 2020] Chickering, D. M. (2020). Statistically efficient greedy equivalence
search. In Proceedings of the 36th Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 241–249. PMLR.

193



[Chickering et al., 1997] Chickering, D. M., Heckerman, D., and Meek, C. (1997). A
Bayesian approach to learning Bayesian networks with local structure. In Proceedings
of the 13th Conference on Uncertainty in Artificial Intelligence (UAI), pages 80–89.
Morgan Kaufmann Publishers.

[Chickering and Meek, 2015] Chickering, D. M. and Meek, C. (2015). Selective greedy
equivalence search: Finding optimal Bayesian networks using a polynomial number
of score evaluations. In Proceedings of the 31st Conference Uncertainty in Artificial
Intelligence (UAI), pages 211–219. AUAI Press.

[Choi et al., 2011] Choi, M. J., Tan, V. Y., Anandkumar, A., and Willsky, A. S. (2011).
Learning latent tree graphical models. Journal of Machine Learning Research,
12(May):1771–1812.

[Claassen and Heskes, 2012] Claassen, T. and Heskes, T. (2012). A Bayesian approach to
constraint-based causal inference. In Proceedings of the 28th Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 207–216. AUAI Press.

[Cleveland, 1979] Cleveland, W. S. (1979). Robust locally weighted regression and smooth-
ing scatterplots. Journal of the American Statistical Association, 74(368):829–836.

[Cleveland and Devlin, 1988] Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted
regression: An approach to regression analysis by local fitting. Journal of the Ameri-
can Statistical Association, 83(403):596–610.

[Colombo et al., 2012] Colombo, D., Maathuis, M., Kalisch, M., and Richardson, T. (2012).
Learning high-dimensional directed acyclic graphs with latent and selection variables.
The Annals of Statistics, 40(1):294–321.

[Cooper, 1995] Cooper, G. (1995). Causal discovery from data in the presence of selection
bias. In Proceedings of the 5th International Workshop on Artificial Intelligence and
Statistics, pages 140–150.

[Cooper and Herskovits, 1992] Cooper, G. F. and Herskovits, E. (1992). A Bayesian method
for the induction of probabilistic networks from data. Machine Learning, 9(4):309–347.

[Corander et al., 2019] Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., and Väänänen,
J. (2019). A logical approach to context-specific independence. Annals of Pure and
Applied Logic, 170(9):975–992.

194



[Cover, 1999] Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.

[Daly et al., 2011] Daly, R., Shen, Q., and Aitken, S. (2011). Learning Bayesian networks:
Approaches and issues. The Knowledge Engineering Review, 26(2):99–157.

[Dasarathy, 1991] Dasarathy, B. V. (1991). Nearest neighbor (NN) norms: NN pattern
classification techniques. IEEE Computer Society Press.

[Dash and Druzdzel, 1999] Dash, D. and Druzdzel, M. J. (1999). A hybrid anytime al-
gorithm for the construction of causal models from sparse data. In Proceedings of
the 15th Conference on Uncertainty in Artificial Intelligence (UAI), pages 142–149.
Morgan Kaufmann Publishers.

[De Campos et al., 2009] De Campos, C. P., Zeng, Z., and Ji, Q. (2009). Structure learning
of Bayesian networks using constraints. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning (ICML), pages 113–120.

[De Campos et al., 2003] De Campos, L. M., Fernández-Luna, J. M., and Puerta, J. M.
(2003). An iterated local search algorithm for learning Bayesian networks with restarts
based on conditional independence tests. International Journal of Intelligent Systems,
18(2):221–235.

[DeLong et al., 1988] DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988).
Comparing the areas under two or more correlated receiver operating characteristic
curves: A nonparametric approach. Biometrics, 44(3):837–845.

[Efron and Tibshirani, 1994] Efron, B. and Tibshirani, R. J. (1994). An introduction to the
bootstrap. CRC press.

[Elidan and Friedman, 2005] Elidan, G. and Friedman, N. (2005). Learning hidden vari-
able networks: The information bottleneck approach. Journal of Machine Learning
Research, 6(Jan):81–127.

[Ettinger et al., 2017] Ettinger, D. S., Wood, D. E., Aisner, D. L., Akerley, W., Bauman, J.,
Chirieac, L. R., D’Amico, T. A., DeCamp, M. M., Dilling, T. J., Dobelbower, M., et al.
(2017). Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines
in oncology. Journal of the National Comprehensive Cancer Network, 15(4):504–535.

195



[Ferreira et al., 2013] Ferreira, A., Cooper, G. F., and Visweswaran, S. (2013). Decision
path models for patient-specific modeling of patient outcomes. In AMIA Annual
Symposium Proceedings, pages 413–421. American Medical Informatics Association.

[Fine et al., 1997] Fine, M. J. et al. (1997). A prediction rule to identify low-risk patients
with community-acquired pneumonia. New England Journal of Medicine, 336(4):243–
250.

[Friedman, 1998] Friedman, N. (1998). The Bayesian structural EM algorithm. In Pro-
ceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI), pages
129–138. Morgan Kaufmann Publishers.

[Friedman and Goldszmidt, 1998] Friedman, N. and Goldszmidt, M. (1998). Learning
Bayesian networks with local structure. In Learning in Graphical Models, pages 421–
459. Springer.

[Geiger and Heckerman, 1996] Geiger, D. and Heckerman, D. (1996). Knowledge represen-
tation and inference in similarity networks and Bayesian multinets. Artificial Intelli-
gence, 82(1-2):45–74.

[Heckerman, 1998] Heckerman, D. (1998). A tutorial on learning with Bayesian networks.
In Learning in Graphical Models, pages 301–354. Springer.

[Heckerman et al., 1995] Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learn-
ing Bayesian networks: The combination of knowledge and statistical data. Machine
Learning, 20(3):197–243.

[Heckerman et al., 1999] Heckerman, D., Meek, C., and Cooper, G. F. (1999). A Bayesian
approach to causal discovery. In Computation, Causation, and Discovery, pages 141–
165. MIT Press.

[Herskovits, 1991] Herskovits, E. (1991). Computer-based probabilistic-network construc-
tion. PhD thesis, Stanford University, USA.

[Huang et al., 2019] Huang, B., Zhang, K., Xie, P., Gong, M., Xing, E. P., and Glymour,
C. (2019). Specific and shared causal relation modeling and mechanism-based cluster-
ing. In Advances in Neural Information Processing Systems (NeurIPS), pages 13510–
13521.

196



[Hyttinen et al., 2014] Hyttinen, A., Eberhardt, F., and Järvisalo, M. (2014). Constraint-
based causal discovery: Conflict resolution with answer set programming. In Pro-
ceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI), pages
340–349. AUAI Press.

[Hyttinen et al., 2018] Hyttinen, A., Pensar, J., Kontinen, J., and Corander, J. (2018).
Structure learning for Bayesian networks over labeled DAGs. In International Con-
ference on Probabilistic Graphical Models (PGM), pages 133–144.

[Illari et al., 2011] Illari, P. M., Russo, F., and Williamson, J. (2011). Causality in the
Sciences. Oxford University Press.

[Jaakkola et al., 2010] Jaakkola, T., Sontag, D., Globerson, A., and Meila, M. (2010).
Learning Bayesian network structure using LP relaxations. In Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics (AISTATS), pages
358–365.

[Jabbari and Cooper, 2020] Jabbari, F. and Cooper, G. F. (2020). An instance-specific al-
gorithm for learning the structure of causal Bayesian networks containing latent vari-
ables. In Proceedings of the SIAM International Conference on Data Mining (SDM),
pages 433–441.

[Jabbari et al., 2017a] Jabbari, F., Naeini, M. P., and Cooper, G. F. (2017a). Obtaining
accurate probabilistic causal inference by post-processing calibration. arXiv preprint
arXiv:1712.08626.

[Jabbari et al., 2017b] Jabbari, F., Ramsey, J., Spirtes, P., and Cooper, G. (2017b). Dis-
covery of causal models that contain latent variables through Bayesian scoring of
independence constraints. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD), pages 142–157. Springer.

[Jabbari et al., 2020] Jabbari, F., Villaruz, L. C., Davis, M., and Cooper, G. F. (2020). Lung
cancer survival prediction using instance-specific Bayesian networks. In International
Conference on Artificial Intelligence in Medicine (AIME), pages 149–159. Springer.

[Jabbari et al., 2018] Jabbari, F., Visweswaran, S., and Cooper, G. F. (2018). Instance-
specific Bayesian network structure learning. Proceedings of Machine Learning Re-
search, 72:169–180.

197



[Jabbari et al., 2019] Jabbari, F., Visweswaran, S., and Cooper, G. F. (2019). An empirical
investigation of instance-specific causal Bayesian network learning. In IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM), pages 2582–2585.
IEEE.

[Kellum et al., 2007] Kellum, J. A. et al. (2007). Understanding the inflammatory cytokine
response in pneumonia and sepsis: Results of the genetic and inflammatory markers
of sepsis (GenIMS) study. Archives of Internal Medicine, 167(15):1655–1663.

[Kim and Pearl, 1983] Kim, J. and Pearl, J. (1983). A computational model for causal
and diagnostic reasoning in inference systems. In Proceedings of the 8th International
Joint Conference on Artificial Intelligence (IJCAI), pages 190–193.

[Koivisto, 2012] Koivisto, M. (2012). Advances in exact Bayesian structure discovery in
Bayesian networks. In Proceedings of the 22nd Conference on Uncertainty in Artificial
Intelligence (UAI), pages 241–248. AUAI Press.

[Koivisto and Sood, 2004] Koivisto, M. and Sood, K. (2004). Exact Bayesian structure
discovery in Bayesian networks. Journal of Machine Learning Research, 5:549–573.

[Koski and Noble, 2012] Koski, T. J. and Noble, J. (2012). A review of Bayesian networks
and structure learning. Mathematica Applicanda, 40(1):51–103.

[Kris et al., 2014] Kris, M. G., Johnson, B. E., Berry, L. D., Kwiatkowski, D. J., Iafrate,
A. J., Wistuba, I. I., Varella-Garcia, M., Franklin, W. A., Aronson, S. L., Su, P.-F.,
et al. (2014). Using multiplexed assays of oncogenic drivers in lung cancers to select
targeted drugs. Journal of American Medical Association, 311(19):1998–2006.

[Lazic et al., 2013] Lazic, N., Bishop, C., and Winn, J. (2013). Structural expectation
propagation (SEP): Bayesian structure learning for networks with latent variables. In
Proceedings of the 16th International Conference on Artificial Intelligence and Statis-
tics (AISTATS), pages 379–387.

[Lengerich et al., 2019] Lengerich, B., Aragam, B., and Xing, E. P. (2019). Learning sample-
specific models with low-rank personalized regression. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 3575–3585.

[Lengerich et al., 2018] Lengerich, B. J., Aragam, B., and Xing, E. P. (2018). Personalized
regression enables sample-specific pan-cancer analysis. Bioinformatics, 34(13):i178–
i186.

198



[Liu et al., 2016] Liu, X., Wang, Y., Ji, H., Aihara, K., and Chen, L. (2016). Personalized
characterization of diseases using sample-specific networks. Nucleic Acids Research,
44(22):e164–e164.

[Magliacane et al., 2016] Magliacane, S., Claassen, T., and Mooij, J. M. (2016). Ancestral
causal inference. In Advances in Neural Information Processing Systems (NeurIPS),
pages 4466–4474.

[Naeini et al., 2015] Naeini, M. P., Cooper, G., and Hauskrecht, M. (2015). Obtaining well
calibrated probabilities using Bayesian binning. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pages 2901–2907.

[Nandy et al., 2018] Nandy, P., Hauser, A., Maathuis, M. H., et al. (2018). High-
dimensional consistency in score-based and hybrid structure learning. The Annals
of Statistics, 46(6A):3151–3183.

[Neapolitan et al., 2004] Neapolitan, R. E. et al. (2004). Learning Bayesian networks, vol-
ume 38. Pearson Prentice Hall Upper Saddle River, NJ.

[Network et al., 2014] Network, C. G. A. R. et al. (2014). Comprehensive molecular profiling
of lung adenocarcinoma. Nature, 511(7511):543–550.

[Oates et al., 2016] Oates, C. J., Smith, J. Q., Mukherjee, S., and Cussens, J. (2016). Exact
estimation of multiple directed acyclic graphs. Statistics and Computing, 26(4):797–
811.

[Ogarrio et al., 2016] Ogarrio, J. M., Spirtes, P., and Ramsey, J. (2016). A hybrid causal
search algorithm for latent variable models. In International Conference on Proba-
bilistic Graphical Models (PGM), pages 368–379.

[Onisko, 2003] Onisko, A. (2003). Probabilistic causal models in medicine: Application to
diagnosis in liver disorders. PhD thesis, Institute of Biocybernetics and Biomedical
Engineering, Polish Academy of Science, Warsaw.

[Parviainen and Koivisto, 2011] Parviainen, P. and Koivisto, M. (2011). Ancestor relations
in the presence of unobserved variables. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 581–596.
Springer.

199



[Pearl, 2003] Pearl, J. (2003). Causality: Models, reasoning, and inference. Econometric
Theory, 19(675-685):46.

[Pearl, 2009] Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys,
3:96–146.

[Pensar et al., 2015] Pensar, J., Nyman, H., Koski, T., and Corander, J. (2015). Labeled
directed acyclic graphs: A generalization of context-specific independence in directed
graphical models. Data Mining and Knowledge Discovery, 29(2):503–533.

[Peters et al., 2017] Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal
inference. MIT Press.

[Peters et al., 2012] Peters, J., Mooij, J., Janzing, D., and Schölkopf, B. (2012). Identifiabil-
ity of causal graphs using functional models. In Proceedings of the 27th Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI), pages 589–598. AUAI Press.

[Qu and Gotman, 1997] Qu, H. and Gotman, J. (1997). A patient-specific algorithm for
the detection of seizure onset in long-term eeg monitoring: Possible use as a warning
device. IEEE Transactions on Biomedical Engineering, 44(2):115–122.

[Ramsey et al., 2017] Ramsey, J., Glymour, M., Sanchez-Romero, R., and Glymour, C.
(2017). A million variables and more: The fast greedy equivalence search algorithm for
learning high-dimensional graphical causal models, with an application to functional
magnetic resonance images. International Journal of Data Science and Analytics,
3(2):121–129.

[Ramsey, 2015] Ramsey, J. D. (2015). Scaling up greedy equivalence search for continuous
variables. arXiv preprint arXiv:1507.07749.

[Richardson et al., 2002] Richardson, T., Spirtes, P., et al. (2002). Ancestral graph Markov
models. The Annals of Statistics, 30(4):962–1030.

[Rissanen, 1978] Rissanen, J. (1978). Modeling by shortest data description. Automatica,
14(5):465–471.

[Schulam and Saria, 2015] Schulam, P. and Saria, S. (2015). A framework for individual-
izing predictions of disease trajectories by exploiting multi-resolution structure. In
Advances in Neural Information Processing Systems (NeurIPS), pages 748–756.

200



[Schulam and Saria, 2016] Schulam, P. and Saria, S. (2016). Integrative analysis using cou-
pled latent variable models for individualizing prognoses. The Journal of Machine
Learning Research, 17(1):8244–8278.

[Schulam et al., 2015] Schulam, P., Wigley, F., and Saria, S. (2015). Clustering longitudinal
clinical marker trajectories from electronic health data: Applications to phenotyping
and endotype discovery. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 2956–2964.

[Schwarz, 1978] Schwarz, G. (1978). Estimating the dimension of a model. The Annals of
Statistics, 6(2):461–464.

[Scutari, 2010] Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package.
Journal of Statistical Software, 35(3):1–22.

[Sheiner et al., 1979] Sheiner, L. B., Beal, S., Rosenberg, B., and Marathe, V. V. (1979).
Forecasting individual pharmacokinetics. Clinical Pharmacology & Therapeutics,
26(3):294–305.

[Shoeb et al., 2004] Shoeb, A., Edwards, H., Connolly, J., Bourgeois, B., Treves, S. T.,
and Guttag, J. (2004). Patient-specific seizure onset detection. Epilepsy & Behavior,
5(4):483–498.

[Silander and Myllymaki, 2012] Silander, T. and Myllymaki, P. (2012). A simple approach
for finding the globally optimal Bayesian network structure. In Proceedings of the
22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 445–
452. AUAI Press.

[Silva et al., 2006] Silva, R., Scheines, R., Glymour, C., and Spirtes, P. (2006). Learning
the structure of linear latent variable models. Journal of Machine Learning Research,
7:191–246.

[Singer et al., 2016] Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M.,
Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J.-D., Coopersmith,
C. M., et al. (2016). The third international consensus definitions for sepsis and
septic shock (Sepsis-3). Journal of American Medical Association, 315(8):801–810.

[Singh and Moore, 2005] Singh, A. P. and Moore, A. W. (2005). Finding optimal Bayesian
networks by dynamic programming. Carnegie Mellon University.

201



[Singh and Valtorta, 1995] Singh, M. and Valtorta, M. (1995). Construction of Bayesian
network structures from data: A brief survey and an efficient algorithm. International
Journal of Approximate Reasoning, 12(2):111–131.

[Spirtes et al., 2000] Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, pre-
diction, and search. MIT Press.

[Spirtes et al., 1995] Spirtes, P., Meek, C., and Richardson, T. (1995). Causal inference
in the presence of latent variables and selection bias. In Proceedings of the 11th
Conference on Uncertainty in Artificial Intelligence (UAI), pages 499–506. Morgan
Kaufmann Publishers.
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