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Abstract 

Severe Maternal Morbidity: Screening and Long-Term Consequences 
 

Abigail Rebecca Cartus, PhD 
 

University of Pittsburgh, 2020 
 
 
 
 

Severe maternal morbidity (SMM) is an important population indicator of maternal 

health and health care quality. SMM is often used as a proxy for maternal death in epidemiologic 

and quality improvement research. This is because it is much more common than maternal death 

(which is rare in absolute numbers), but shares the same risk factors and etiologies. However, 

there are two unresolved questions in severe maternal morbidity research, which this dissertation 

addresses. First, the long-term health consequences of SMM are not well understood. I 

investigated the association between SMM during the perinatal period and risk of adverse 

cardiovascular events (heart failure, ischemic heart disease, stroke/transient ischemic attack, and 

a composite of these three outcomes plus atrial fibrillation) up to 2 years postpartum among 

deliveries covered by Pennsylvania Medicaid, 2016-2018. I found that SMM is associated with 

increased risk of adverse cardiovascular events and that elevated risk persists past the traditional 

end of the postpartum period at 42 days post-delivery. Second, available methods to quantify 

SMM at the hospital or population level have serious limitations, e.g., identifying a large number 

of false-positive cases or requiring labor-intensive medical record abstraction, that I attempted to 

address using ensemble machine learning. To this end, I examined the impact of undersampling, 

one technique for remedying outcome class imbalance (where non-events outnumber events by a 

factor of 2:1 or more), on the predictive performance of ensemble machine learning algorithms 

(SuperLearner). We found that, in a simulated setting with moderate class imbalance, 

undersampling does not markedly improve the predictive performance of either logistic 
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regression or SuperLearner. We then attempted to use SuperLearner as an alternative to existing 

screening criteria or medical record review to identify true-positive SMM from a sample of 

deliveries at Magee-Womens Hospital, 2013-2017. Our SuperLearner algorithms performed 

better than existing SMM screening criteria on some predictive performance metrics and worse 

on others, indicating that the choice of SMM screening method involves tradeoffs. This work 

contributes to improved understanding of maternal health in the United States and points to 

several future directions for SMM research. 
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1.0 Chapter 1: Proposal 

The rate of maternal deaths in the United States has been steadily increasing since the late 

1980s, such that the US now has the highest maternal mortality rate of any high-income country. 

However, because maternal deaths are rare even in settings with comparatively high mortality 

rates, health authorities including the World Health Organization (WHO) recommend research 

into severe maternal morbidity (SMM) events, 50 times more numerous than deaths, to better 

understand and ultimately prevent maternal mortality. Though it is well established that SMM 

shares similar causes, risk factors, and temporal trends with maternal mortality, important gaps in 

our knowledge of SMM must be addressed to advance maternal health research. Specifically, it is 

difficult to accurately identify SMM cases using existing methods, and it is not known whether 

surviving a SMM confers a higher risk for longer-term health impacts. While understanding and 

reducing SMM is critical to achieving reductions in maternal death and improvements in maternal 

health, research is needed to fill gaps in our current understanding. 

 

The long-term goal of this project is to improve maternal health research and practice 

by better understanding SMM. In order to do this, we propose to address two major research 

needs. First, SMM is frequently studied by identifying cases and non-cases from administrative 

data using screening criteria. However, these criteria reflect clinical judgment and historical 

practice rather than empirical evidence and as such frequently fail to accurately designate case 

status. As a consequence, existing screening methods may generate inaccurate SMM prevalence 

estimates, which may in turn lead to incorrect inferences about the population risk factors for SMM 

and the areas where resources should be applied to hospital quality improvement. Second, it is also 
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important to determine the postpartum burden of SMM. Little research to date has established the 

long-term risk of adverse outcomes after surviving a SMM; however, such knowledge is critical 

to understand the total burden of SMM. Our overall objectives are to improve screening for SMM 

in administrative data and to determine the cardiovascular sequelae of SMM events after delivery. 

To this end, our specific aims are: 

 

Specific Aim 1. To develop a screening algorithm with high sensitivity and specificity 

to identify SMM cases from administrative data. 

The American College of Obstetricians and Gynecologists recommends a “screen and 

review” approach to SMM identification, whereby deliveries that screen positive for SMM qualify 

for medical record review. Although medical record review is the most reliable way to identify 

SMM cases, deliveries are too numerous to review comprehensively. Consequently, screening is 

a critical tool for SMM research, but existing screening criteria used to identify SMM demonstrate 

variable but overall modest positive predictive value. We will use a subset of the Magee Obstetric 

Maternal and Infant (MOMI) Database (2010-2011, n = 685) to train an ensemble machine 

learning algorithm to identify SMM cases, then validate the algorithm on a temporally distinct 

subset of the same database (2013-2017, n = 498). MOMI is a rich administrative database 

containing maternal demographic, behavioral, and medical characteristics, labor and delivery 

information, and fetal/infant outcomes. We hypothesize that machine learning methods will 

perform screening for SMM better than extant criteria, which involve few variables and have not 

been extensively validated. 
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Specific Aim 2. To determine the postpartum consequences of SMM in a Medicaid 

population. 

Although the postpartum period is increasingly recognized as a critical component of 

maternal health, little is known about whether US women who suffer a SMM but do not die have 

more adverse outcomes in the postpartum period than women who do not. Using data from 

Pennsylvania Medicaid (2016-2018, N = 137,140 deliveries), we will assess the risk of several 

adverse cardiovascular outcomes (heart failure, ischemic heart disease, and stroke/transient 

ischemic attack) following deliveries with SMM compared to deliveries without SMM over the 24 

months postpartum. We hypothesize that risk of adverse cardiovascular events will be higher 

among women with an SMM at any point during pregnancy, labor, delivery, and postpartum. 

Successful completion of this work will result in an innovative method for screening for 

SMM in administrative data and estimates of the long-term impacts of SMM in a Medicaid 

population. These findings will inform intervention and management strategies to reduce the 

burden of SMM and maternal death in the US. 

1.1 Significance 

In this proposal, we will address some major gaps in our knowledge of SMM. First, 

although surveillance of SMM in the US relies heavily on screening administrative databases for 

SMM cases, a standard definition of SMM does not exist and existing screening criteria are 

imprecise. We propose to use novel machine learning methods to exploit the information available 

in hospital databases and to develop a scalable, adaptable method to more accurately screen for 

SMM. Second, we will characterize risk of adverse cardiovascular events following SMM in a US 
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population, as few published studies examine the health profiles of women who experience SMM. 

In so doing, we will contribute to the development of a more complete picture of the burden of 

SMM for both patients and society.  

 

 

Maternal mortality, an urgent public health priority, is difficult to research. The rate of 

maternal death in the United States far exceeds the maternal mortality rates of other industrialized 

countries.1-5 For the first time since 2007, the United States recently reported a national maternal 

mortality rate for the year 2018: 17.4/100,000 live births.6 This is high compared to other high-

income countries: nearly six times higher than the maternal mortality rate of Finland and three 

times higher than that of Canada.7 Despite the comparatively high rate, maternal mortality is still 

a rare outcome in the United States, with Centers for Disease Control (CDC) estimates indicating 

approximately 700 maternal deaths annually.8 National maternal mortality estimates are derived 

from the Pregnancy Mortality Surveillance System (PMSS), a supplemental data system using 

Figure 1.A. Pregnancy-related mortality in the United States, 1987-

2015 
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vital statistics (death certificates) to collect information about pregnancy-related death.9 The 

apparent increase in the US maternal mortality rate shown in Fig. 110-14 is evidently attributable to 

improved ascertainment via the “pregnancy checkbox” on the US standard death certificate.15,16 

Uptake of the death certificate containing the pregnancy checkbox has been uneven, with different 

states adopting the death certificate at different times, which has made discernment of a temporal 

trend difficult. While it is not resolved whether the pregnancy checkbox results in improved 

ascertainment or more false positives, it is likely that the maternal mortality figures reported in 

previous years were artificially low.6  

Severe maternal morbidity is a surrogate for maternal mortality. Because maternal deaths 

are so rare in absolute numbers, it is now widely recommended that SMM be monitored in addition 

to maternal mortality in order to identify areas of maternal care that require improvement. SMM 

includes: a.) specific conditions (such as eclampsia or HELLP syndrome, disseminated 

intravascular coagulation, and sepsis), b.) events (such as acute myocardial infarction and 

aneurysm), and c.) procedures (including blood transfusion, hysterectomy, and ventilation) that lie 

on the continuum from uncomplicated delivery to death and which may result in death if not for 

luck or medical intervention.17 The causes of SMM and death overlap, but cases of SMM are much 

more numerous than deaths: for every one maternal death, approximately 50-100 women 

experience an SMM.3 The emergence of SMM as an important clinical endpoint, population health 

target, and health care quality indicator reflects both the similarities between SMM and maternal 

mortality and the much higher prevalence of SMM relative to mortality.  

The epidemiology of SMM is similar to the epidemiology of maternal mortality. This 

similarity reflects the common causes of each phenomenon. Whether or not the maternal mortality 

rate has been increasing, the rate of SMM has been steadily increasing in the United States since 
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the late 1980s.5 The overall rate of SMM increased from 1013 per 100,000 live births in 2006 to 

1466 per 100,000 live births in 2015.4  Over the same period, the pregnancy mortality rate 

increased from 14.5 to 17.2 per 100,000 live births.8,13,14 Similar racial/ethnic disparities in the 

rates of maternal mortality and SMM are also evident. Black/African American women are 3.3 

times more likely to die as a result of pregnancy, labor, and delivery than white women8 and are 

more than twice as likely to experience an SMM as white women.4,5,18-20 Risk factors for SMM 

and maternal death are largely the same, and include older and younger maternal age, maternal 

obesity, mode of delivery, diabetes, and hypertension.21-25 Finally, as with maternal deaths, over 

half of severe maternal morbidities are considered preventable.8,26,27  

1.1.1 Improving methods for SMM case identification for research 

Approaches to defining and identifying SMM may be intended for quality improvement or 

research purposes, and all rely on some screening criteria to identify true SMM cases. We will 

briefly review the evolution and current state of each of two dominant approaches to SMM 

identification, the World Health Organization (WHO) maternal near miss tool and the so-called 

“CDC criteria” in the United States, and highlight some practical challenges to SMM research 

arising from the disjointed development of SMM research practices across space and time. These 

challenges include the absence of reliable indicators of severity in readily available data, the 

absence of “gold standard” screening criteria for SMM, the heterogeneity of SMM, and the 

necessity of dichotomizing a continuous spectrum of morbidities into “severe” and “not severe” 

categories.  
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1.1.1.1 Development and validation of the World Health Organization Near Miss Tool 

Low and declining rates of maternal death in industrialized countries through the latter half 

of the 20th century prompted interest in SMM audits to guide quality improvement in maternal 

care.28-32 The concept of a “near miss” for death30 laid the foundation for the development of 

subsequent research into SMM.  

A 2004 World Health Organization (WHO) systematic review synthesized 30 studies of 

near miss morbidity and classified them according to reliance on organ system dysfunction-based 

criteria, management-based criteria (emergency hysterectomy, ICU admission), or disease-

specific criteria (presence of a specific condition) to identify SMM. On the basis of the review 

findings, the investigators concluded that organ system dysfunction-based criteria for identifying 

SMM are the most flexible and accurate.33 Findings from this systematic review informed 

development of a “WHO standard” definition of near miss SMM (2009)34 (“a woman who nearly 

died but survived a complication that occurred during pregnancy, childbirth, or within 42 days of 

termination of pregnancy”) and a set of criteria for identifying near miss cases, known as the WHO 

maternal near miss tool (Table 1).34 The criteria, developed to be feasible and yield comparable 

estimates of SMM prevalence across settings, follow the categories developed in the systematic 

review and consist of disease-based (clinical), organ system dysfunction-based (laboratory), and 

management-based indicators34 (Table 1).  

 

Table 1. The WHO Maternal Near-Miss Criteria 

Clinical criteria 

Acute cyanosis Gasping 
Loss of consciousness lasting ≥12 
hours Respiratory rate >40 or <6/ min 

Loss of consciousness AND absence 
of pulse/hearbeat Shock 

Stroke Oliguria non-responsive to fluids or 
diuretics 



  22 

Uncontrollable fit/total paralysis Clotting failure 
Jaundice in the presence of 
preeclampsia 

Loss of consciousness lasting ≥12 
hours 

Laboratory-based criteria 
Oxygen saturation <90% for ≥60 
minutes pH<7.1 

PaO2/FiO2 <200 mmHg Lactate>5 
Creatinine ≥300 µmol/L or ≥3.5 
mg/dL 

Acute thrombocytopenia (<50,000 
platelets) 

Bilirubin >100  µmol/L or >6.0 
mg/dL 

Loss of consciousness AND the 
presence of glucose and ketoacids in 
urine 

Management-based criteria 

Use of continuous vasoactive drugs Intubation and ventilation for ≥60 
minutes not related to anesthesia 

Hysterectomy following infection or 
hemorrhage Dialysis for acute renal failure 

Transfusion of ≥5 units red cells Cardio-pulmonary resuscitation 

 
Results of multiple validation studies of the maternal near miss tool suggest that changes 

to the structure of the tool might be warranted. Two pilot studies of the tool confirmed that near 

miss indicators predict maternal death35 and organ failure,36 and a multicenter validation study 

found that a summary score derived from the tool accurately predicted maternal death.37,38 

However, three validation studies conducted in low-income settings37,39,40 found that the WHO 

maternal near miss tool organ system dysfunction-based criteria are too restrictive and 

underestimate the number of true cases. Another validation study conducted in a high-income 

country41 also found that the organ system dysfunction-based criteria underestimated the number 

of severe acute maternal morbidity cases.  

1.1.1.2 Development of US screening criteria for SMM 

The WHO maternal near miss tool has not gained widespread use in North America, 

possibly because the criteria use information from medical records that may not be available in the 

claims and billing databases most frequently used to study SMM in the US. In 2016, the American 

College of Obstetricians and Gynecologists (ACOG) released a consensus document 

recommending a two-step “screen and review” process for identifying SMM.42 In the absence of 
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a gold standard for identifying SMM, chart review is the most reliable way to identify cases. 

However, since cases of SMM are much more numerous and harder to identify than cases of 

maternal death, ACOG recommended screening for massive transfusion (≥ 4 units of blood) or 

ICU admission to identify potential SMM cases that merit full review.42 Although similar to the 

WHO disease- and management-based criteria, the ACOG recommendation reflects years of 

research in North America that has relied on screening for the presence of specific morbidities 

combined with indicators of severity. 

 

Table 2. Centers for Disease Control and Prevention SMM Indicators 

SMM indicators 
Acute myocardial infarction Pulmonary edema/acute heart failure 

Aneurysm Severe anesthesia complications 
Acute renal failure Sepsis 

Adult respiratory distress syndrome Shock 
Amniotic fluid embolism Sickle cell disease with crisis 

Cardiac arrest/ventricular fibrillation Air or thrombotic embolism 
Conversion of cardiac rhythm Blood products transfusion 

Disseminated intravascular coagulation Hysterectomy 
Eclampsia Temporary tracheostomy 

Heart failure/arrest during procedure or 
surgery Ventilation 

Puerperal cerebrovascular disorders  
 

Much US research into SMM has used administrative and billing data rather than hospital 

data, precluding the use of some information that is predictive of SMM such as transfusion volume. 

This lack of information indicating severity complicated early contributions to maternal morbidity 

research with claims data, which used antenatal hospitalization43,44 or any/all complications during 

the delivery hospitalization45 as proxies for maternal morbidity. All estimated very high prevalence 

of maternal morbidity as a consequence of not capturing the severity of maternal morbidity.43-45 In 

a 2005 study, Wen et al. screened Canadian hospital discharges from 1991-2001 using a list of 

ICD billing codes for diagnoses and Canadian billing codes for procedures in an explicit attempt 

to identify severe maternal morbidity.46  They reported a rate of 438 severe maternal morbidities 
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per 100,000 deliveries,46 much lower than the morbidity rates reported in studies using 

hospitalization or delivery complications as proxies for SMM.43-45  

The use of billing codes to identify instances of SMM informed the development of the 

current CDC criteria (Table 3). Following Wen (2005) and a conceptual model of SMM,17,46 CDC 

investigators (2008) devised a list of ICD codes for diagnoses and procedures indicative of severe 

morbidity (Table 3).3 They used these ICD codes supplemented with information about length of 

stay to screen National Hospital Discharge Survey data for SMM, and reported a rate of 510 severe 

morbidities per 100,000 delivery hospitalizations in the period from 1991 to 2003.3 In a subsequent 

paper, Callaghan et al. (2012) updated the list of ICD codes for SMM originally proposed in 2008, 

and, again supplementing these codes with information about length of stay in an attempt to 

identify women with true severe morbidities, reported prevalences of 1290 severe maternal 

morbidities per 100,000 delivery hospitalizations and 290 severe maternal morbidities per 100,000 

postpartum hospitalizations in 1998-1999.1 This CDC criteria were updated again in 2015 in 

anticipation of the transition to ICD-10, resulting in the list of 21 procedures and diagnoses in use 

today. These screening criteria were not validated by the investigators who developed them, nor 

in subsequent studies using them to identify SMM.2,22,23,42,47-49 

Though criteria for identifying SMM have developed differently in the United States than 

in the rest of the world, there are some important parallels. The inclusion of ICU admission in 

many screening criteria for SMM reflects the importance of management-based criteria in the 

WHO maternal near miss tool, and the CDC criteria are similarly analogous to the disease- and 

management-based criteria. Prolonged postpartum length of stay was explicitly introduced into 

US screening criteria as an indicator of severity, to augment the billing codes’ sensitivity for severe 

morbidity as a way to compensate for some of the inaccuracy of the billing codes. 
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1.1.1.3 Validation of US screening criteria for SMM 

There have been two notable validation studies of the most widely-used US screening 

criteria. Main et al. (2016) conducted a comprehensive validation study of 4 SMM identification 

criteria: the CDC list of diagnosis and procedure codes, prolonged postpartum length of stay 

defined as > 3 standard deviations above the mean length of stay for delivery hospitalization in the 

population (not stratified by mode of delivery), any maternal ICU admission, and any blood 

transfusion.50 This study first used the screening criteria to identify likely SMM cases; these 

candidate cases then underwent full chart review to determine whether they accorded with the 

SMM “gold standard” (a set of clinical criteria chosen by investigators). Due to this screening-

review study design, sensitivity and specificity of the identification criteria should not be reported 

and only their positive and negative predictive values can be properly interpreted. The 4 criteria 

exhibited a wide range of positive predictive values, alone and in combination, ranging from 0.38 

for any of the CDC list or prolonged postpartum length of stay to 0.88 for massive transfusion (≥4 

units) alone.50 Although negative predictive values were all high, in the range of 0.99-1.00 for all 

criteria, without reviewing screen-negatives it is unknown how many true cases were incorrectly 

classified as negatives. This suggests that the probability that a screen-positive SMM case is a true 

case is highly variable based on these criteria, while the probability that a screen-negative case is 

a true non-case is unknown. 

A more recent study validated three identification criteria used to screen for SMM: the 

CDC list, ICU admission, or prolonged postpartum length of stay.51 Using a similar methodology 

to Main et al. (2016),50 these authors first screened an administrative database (the Magee 

Obstetric Maternal and Infant Database, or MOMI) for cases, then conducted chart review on 

screen-positives and a randomly selected equal number of screen-negatives. Again, due to this 
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design they could only report positive and negative predictive values. They found that 166 of 349 

cases that screened positive based on presence of any of the screening criteria were true cases, 

yielding a positive predictive value of 0.48.51 They also reviewed screen-negative cases and 

identified two false-positives (2/349 screen-negative cases), yielding a negative predictive value 

of 0.99.51 Taken together, this study and the validation study performed by Main et al. (2016)50 

suggest that commonly-used criteria used to identify SMM have difficulty identifying true cases. 

Furthermore, review of screen-negative cases is important; the rarity of SMM means that even a 

low false-negative proportion could substantially affect prevalence estimates derived from 

screening.51 

1.1.1.4 Applying novel methods to SMM screening. 

Important contributions to this field have established that ICU admission and massive 

blood transfusion are associated with severity52 of maternal complications and that laboratory 

indicators of organ system dysfunction are associated with death.37 However, the empirical basis 

for determining which ICD codes, diagnoses, procedures, and other characteristics are associated 

with the severity of maternal morbidity remains sparse. Available SMM identification tools are 

based on accumulated clinical judgment, and few have undergone formal statistical analysis of 

their association with severe morbidity or death. As such, these criteria serve the critical purpose 

of guiding resource allocation for quality improvement, but most are not optimized for routine 

surveillance or research. Our proposal is responsive to these considerations; we aim to create a 

broadly applicable method that can accurately identify SMM events in a variety of different data 

settings.  

Some recent literature has applied novel machine learning methods to SMM identification. 

One group screened delivery records from a large academic hospital using the ACOG/SMFM 
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criteria, then chart-reviewed screen-positives only, assuming that all screen-negatives were true 

negatives. These authors then used cross-validated penalized regression models to attempt to 

predict true-positive and true-negative SMM based on a large number of predictors available in 

the electronic health record.53More of the recent literature on SMM involves risk prediction rather 

than accurate case identification. Another group used a targeted causal inference approach 

incorporating ensemble machine learning to quantify the adjusted risk ratios for screen-positive 

SMM for a wide range of obstetric comorbidities. Their goal was to expand an existing obstetric 

comorbidity index54 for use in administrative data to be able to identify women at high risk of 

screen-positive SMM among all deliveries in California over a two-year period.55 Another 

validation study of the original obstetric comorbidity index56 and a prospective clinical risk 

prediction model for maternal ICU admission57 have also been published recently. To our 

knowledge, our work will be the first to attempt to leverage ensemble machine learning methods 

to identify true-positive SMM.  

Although different resource levels, different case mixes, different case-fatality rates for 

SMM conditions, and different types of data collected all make establishment of a standard SMM 

identification procedure difficult,58 it may be possible to exploit the diversity of information 

available to accurately identify SMM and expand the number of variables that are used in SMM 

identification. Traditional regression-based methods have important limitations relevant to this 

task: they are parametric, imposing functional forms on the relationship between predictors and 

outcome, and they place constraints on the number of variables that can be effectively evaluated 

in a single model. A regression-based approach to SMM identification would necessitate 

specifying a causal structure and model adapted to the specific case mix and other characteristics 

of each setting.  By contrast, machine learning methods offer a promising opportunity to more 
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easily and accurately identify SMM cases in a variety of settings. These flexible, data-adaptive 

methods can be applied to any dataset where a number of true case designations are available to 

“train” a screening algorithm. By incorporating a wider range of potentially predictive information, 

these methods can fill the need for a scalable, accurate approach to SMM screening. Better 

identification of SMM cases can, in turn, lead to more accurate SMM prevalence estimates. 

1.1.2 The long-term impacts of SMM are not fully understood. 

SMM and maternal mortality research has historically focused on the experiences of 

women who survive a SMM, including the natural history and progression of the morbid condition, 

the sequence of events leading to the morbidity, the hospital and care procedures involved, and the 

preventability of the morbidity, and the sequence of events leading to the morbidity.2,5,21,23,25,42,48,59-

63 However, it is also possible that SMM may have longer-term effects or consequences following 

delivery. A greater burden of complications and a greater need for health care services postpartum 

are not only critical components of maternal health, but may also confer a greater risk of maternal 

death following delivery. The postpartum period, including “late” SMM and maternal death, has 

been the subject of increased focus in maternal health research in recent years, with a consensus 

bundle42 developed specifically to improve postpartum care and health outcomes. Our proposal 

will integrate knowledge of the postpartum consequences of SMM with established knowledge of 

the antepartum and intrapartum consequences of SMM to better understand the total burden of 

SMM in the United States. 
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1.1.2.1 Literature on postpartum health impacts of SMM from low- and middle-income 

countries. 

Many studies of the impacts of maternal morbidity on postnatal health involve less severe 

or “indirect” complications and morbidities, such as perineal injury, depressive symptoms, and 

incontinence. 84 of 136 studies included in a 2017 scoping review of the effects of maternal 

morbidity on postnatal health involved such indirect morbidities.64 Most of the remaining studies 

in this review examining “direct” severe or near miss maternal morbidity were conducted in low- 

or middle-income countries.64 Storeng et al. (2012) evaluated the mortality rate among women 

with near miss mortality as compared to women with uncomplicated delivery in Burkina Faso and 

found that among 337 women with near miss morbidity (out of 1014 total participants), 5.3% died 

within four years postpartum as compared to 0.9% of the women without a near miss morbidity.65 

In a study of 176 women in Morocco, prevalences of both physical and psychological symptoms, 

especially depression, were higher at 8 months postpartum among women who experienced near 

miss morbidity (n = 76) than among women who did not (n = 100).66 In a series of studies published 

in a Malaysian cohort of 145 women with SMM and 187 without, Norhayati et al. reported that 

SMM was associated with lower self-reported general health67 and greater functional 

impairment,68 but not impaired sexual function69 or depressive symptoms,70 at 1 and 6 months 

postpartum. In a larger Brazilian cohort (n = 368), Silveira et al. (2016) described increased 

functional impairment (e.g. difficulty with mobility or household tasks) between 1 and 5 years 

postpartum among women who experienced a SMM as compared to women who experienced an 

uncomplicated delivery.71 Finally, as part of the Cohort of Severe Maternal Morbidity – 

Multidimensional Evaluation of Long Term Repercussions of SMM (COMMAG) study, Ferreira 

et al. (2020) identified women who experienced SMM according to the WHO near miss criteria 



  30 

and a random sample of women who did not experience SMM from a tertiary public hospital in 

Campinas, Brazil. These women were contacted – some up to 5 years after delivery – by telephone 

to complete the SF-36 questionnaire as well as a questionnaire assessing symptoms of post-

traumatic stress disorder (PTSD). The women who experienced SMM had worse self-rated health 

at the time of assessment than women without.  

While the studies briefly reviewed here employed cohort designs with comparison groups, 

sample sizes are small. Other studies in this field take a detailed approach to examining the 

consequences of near miss morbidities for women, sometimes incorporating in-depth ethnographic 

interviews, but do not employ comparison groups and sample sizes are frequently small.72-74 

Consequently, while these studies contribute to a holistic understanding of SMM in its proper 

social context, they can be difficult to evaluate as epidemiologic literature. A majority of the 

studies in this area, regardless of design, tend to focus on quality of life and self-reported health as 

postpartum outcomes; an issue affecting all such studies is the use of questionnaires and other tools 

to measure these outcomes that are not validated for pregnant or postpartum populations.64  

1.1.2.2 Studies on postpartum morbidity following SMM in high-income countries. 

Few studies have assessed the impact of SMM on postnatal health in high-income settings. 

In a UK cohort of 1670 women (331 with severe morbidity—hemorrhage, preeclampsia, sepsis, 

or uterine rupture—and 1339 without) Waterstone et al. (2003) reported that, compared to 

controls, SMM cases scored worse on the Short Form 36 (SF-36) questionnaire assessing general 

health and reported more sexual difficulties at 6 months postpartum.75 As is common with studies 

of the health consequences of SMM, at time of writing the SF-36 was not validated for a general 

obstetric or postpartum population.76 Furuta et al. (2014) reported an association between SMM 

and symptoms of post-traumatic stress disorder (PTSD) in a UK cohort.77 Using disease-based 
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(e.g. hemorrhage, preeclampsia) and management-based (e.g. ICU admission) criteria to identify 

SMM cases, these authors surveyed 1823 women at 6-8 weeks postpartum and found that women 

with SMM were more likely than women with uncomplicated delivery to report two symptoms of 

PTSD, intrusion (aOR [95% CI] = 2.11 [1.17, 3.78]) and avoidance (aOR [95% CI] = 3.28 [2.01-

5.36]). Finally, Lewkowkitz et al. (2019) used the CDC SMM identification criteria in a cohort of 

Florida deliveries and concluded that SMM was associated with increased risk of severe 

psychiatric morbidity (a composite) and increased risk of substance used disorder after delivery 

within one year of hospital discharge, particularly in the 4 months following delivery.78 The studies 

conducted in high-income countries reviewed here all use different definitions of SMM, and none 

account for timing of SMM relative to delivery. 

1.1.2.3 Cardiovascular sequelae of SMM may be particularly important. 

SMM is a heterogeneous group, but hypertensive and cardiovascular SMM complications 

are emerging as important drivers of SMM and maternal death over the past 10-15 years. A recent 

Report from Nine Maternal Mortality Review Commissions estimated that 50% of maternal deaths 

are caused by hemorrhage, infection, cardiovascular conditions, and cardiomyopathy.79 

Hypertensive disorders of pregnancy are major contributors to SMM. One retrospective study 

found that, compared to no hypertension in pregnancy, preeclampsia with severe features is 

strongly associated with SMM at delivery (aOR (95% CI) 5.4 (3.9-7.3)).62 Another study reported 

that eclampsia, compared to no hypertension, was strongly associated with risk of SMM (aOR 

(95% CI) 13 (7.7-20)).80 A French team developed risk prediction models for cardiovascular SMM 

specifically; preeclampsia, chronic hypertension, and gestational hypertension were among the 

most important predictive factors for SMM.81 The CDC further estimates that approximately one-

third of maternal deaths are attributable to cardiovascular conditions and records a 25% increase 
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in the number of women beginning pregnancy with cardiovascular disease from 2003-2012.8 

Similarly, an analysis of discharge data from the National Inpatient Sample from 2004-2011 found 

an increase in peripartum cardiomyopathy over this period.82 

While the full picture of SMM timing is not well understood, evidence is emerging that 

cardiovascular complications are a particular concern postpartum. For example, in a cohort study 

of California births from 2008-2012, 17% of women with SMM at their postpartum hospital 

readmission had pulmonary edema or acute heart failure.83 It is also clear that some hypertensive 

and cardiovascular pregnancy complications increase cardiovascular risk later in life. Compared 

to normotensive women, women with a hypertensive disorder of pregnancy have twice the risk of 

cardiovascular disease later in life.84 In a Danish registry-based cohort study of still or live births 

from 1995-2012, rates of hypertension were 3-10 times higher among women with hypertensive 

disorders of pregnancy compared to normotensive women over the first 10 years postpartum, and 

approximately twice as high 20 or more years postpartum.85 Similarly, an earlier Danish registry-

based cohort study (1978-2007) found that, compared to normotensive women, women with severe 

preeclampsia had substantially elevated risk of thromboembolism up to 30 years postpartum: aHR 

(95% CI): 1.91 (1.35, 2.70).86 

Although the contributions of specific SMM conditions to morbidity, mortality, and 

additional health consequences or complications postpartum remain to be elucidated, there is a 

large and diverse body of evidence suggesting that cardiovascular complications postpartum 

warrant special attention. 

1.1.2.4 Methodological inconsistencies in studies of SMM impact on postnatal health. 

Most studies directly assessing the health impacts of SMM were conducted in low- and 

middle-income settings, which limits the generalizability of their findings to a high-income 
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country context. The dearth of relevant studies conducted in high-income countries like the US 

may be at least partially attributable to the increasing focus on postpartum and “late” severe 

maternal morbidities in these countries; instead of conceptualizing symptoms or issues arising after 

42 days postpartum as postnatal morbidity, some work in the US has extended the concept of SMM 

to accommodate these morbidities.1,4 Regardless, studies conducted in low- and middle-income 

countries still inform US research in critical ways. Many identify lack of social support and 

financial stress as major contributors to persistent postpartum health effects of SMM.65,66 Such a 

conclusion might be applicable to the United States, where women experience high rates of 

“churn” in insurance coverage around labor and delivery87 and where there is no national paid 

family leave policy.88 Many studies, especially those with an ethnographic or anthropological 

focus, also identify poor communication between patients and clinicians as a critical contributor 

to SMM and mortality, which is applicable in the United States as well.89  

However, there are significant limitations to this literature, which complicate any effort to 

use existing literature to make inferences about the likely postpartum health consequences of SMM 

in the United States. Our proposal will address this gap by comprehensively characterizing the 

postpartum health consequences of SMM in a Medicaid population, which in the United States 

covers about half of all deliveries.90 

1.2 Innovation 

Our proposal is innovative in both its methods and scope of research. Currently, screening 

using the CDC criteria is the standard method for identifying SMM. This screening is rarely 

followed by chart review to ascertain true case status. Our proposal applies an innovative method 
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to SMM case identification; this novel methodological approach addresses long-standing issues 

with SMM screening by leveraging more data that may be predictive of severe maternal morbidity 

and establishing the empirical basis of SMM case identification more firmly. In terms of scope, 

SMM is currently understood as a proxy for maternal death. As a consequence, most research into 

the risk and burden of SMM concerns the delivery hospitalization encounter and only occasionally 

postpartum readmission encounters following delivery. Our work broadens the scope of inquiry 

by capturing SMM events throughout pregnancy, delivery, and the postpartum period and by 

extending the period of risk relevant to SMM for two year after delivery, thus bringing the long-

term consequences of SMM into the purview of SMM research.  

1.3 Approach 

1.3.1 Overview of project plan 

We have the unique opportunity to use existing data to fill important gaps in knowledge 

about SMM case identification and postpartum consequences of SMM. We will improve screening 

for SMM by developing an ensemble machine learning algorithm to identify SMM in 

administrative data (the Magee Obstetric Maternal and Infant Database, or MOMI). This 

represents an important step towards the development of a more robust empirical basis for SMM 

screening. We will also build on established knowledge of SMM by comprehensively 

characterizing a number of postpartum sequelae. In order to determine the long-term consequences 

of SMM, we will use data from Pennsylvania Medicaid to assess risk of adverse cardiovascular 

events over the first two years postpartum among who had an SMM during delivery as compared 
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to women who did not. Overall, this project will develop a new method to screen for SMM and 

determine the impact of SMM on health outcomes postpartum.  

1.3.2 Data sources and populations 

1.3.2.1 Pennsylvania Medicaid 

Pennsylvania Medicaid data include inpatient, outpatient, pharmacy, and health care 

provider data for all enrolled individuals. We will create an analytic dataset covering deliveries in 

2016-2018 (inclusive) (Fig. 1, left). The study period covers 280 days prior to the delivery date 

and up to 2 years of follow-up for each delivery. Women with a delivery on or after July 7, 2016 

will be included along with information from 280 days prior to delivery (corresponding to the first 

date of ICD-10 code use in 2015). Women with a delivery prior to July 7, 2016 will be excluded 

to avoid introducing bias from left truncation.  

 

 

Exclusion criteria are dual (Medicare and Medicaid) eligibility, male gender, and absence 

of a delivery during the study period. After excluding records with male gender and dual eligibility, 

Figure 1.B. Construction of dataset containing deliveries in PA 

Medicaid, 2015-2018 
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we will identify pregnancies/deliveries using ICD-10 diagnosis codes from inpatient, outpatient, 

or professional files and PROC_CODES from inpatient, outpatient, and professional files. Next, 

we will exclude women without deliveries based on ICD codes for, e.g., elective abortion. We will 

then identify live births and stillbirths, with associated delivery dates, using ICD codes. Cesarean 

deliveries will also be identified from inpatient files using ICD codes. Figure 1 shows this process 

with a flow chart. Maternal demographic variables will be identified from enrollment files, and 

information needed to determine SMM status, health conditions, and health care utilization 

variables will be obtained from inpatient files. 

Table 3 shows some characteristics of the women in the analytic sample (2016-2018). In 

the full sample, the majority of deliveries were to women who are ages 20-34, non-Hispanic white, 

eligible for Medicaid based on income, and who delivered vaginally. Compared to women without 

SMM, women with SMM were more likely to be 35 years old or older, non-Hispanic Black, 

eligible for Medicaid based on delivery status, to deliver via c-section, and to have gestational 

diabetes and preeclampsia.  

 

Table 3. Weighted characteristics of the study sample, Pennsylvania Medicaid, 2016-2018, N = 139,531 

deliveries 

 Full sample 
N = 139,531 

Severe maternal 
morbidity 
N = 5832 

No severe 
maternal 
morbidity 

N = 133,699 
 % or mean (SD) 

Maternal age category    
          < 20 6.9 7.1 6.9 
          20-34 81 77 81 
          ≥ 35 12 16 12 

Maternal race/ethnicity    
         Non-Hispanic White 46 43 47 
         Non-Hispanic Black 24 31 24 



  37 

         Hispanic 20 18 20 
         Other 9 8 9 
Eligibility category    
         Disability 4.3 7.6 4.1 
         Expansion/income 40 41 40 
         Pregnancy 56 52 56 
Gestational diabetes 7.7 11 7.5 
Preeclampsia 2.1 7.5 1.9 
Mode of delivery    
         Vaginal delivery 71 52 72 
         Cesarean delivery 29 48 28 

 

1.3.2.2 The Magee Obstetric Maternal and Infant (MOMI) Database 

The Magee Obstetric Maternal and Infant (MOMI) Database contains detailed information 

on all deliveries at Magee-Womens Hospital of UPMC in Pittsburgh, Pennsylvania. This hospital 

has approximately 10,000 deliveries per year and serves a 4-million-person catchment area. The 

MOMI database contains >300 variables related to deliveries at Magee-Womens Hospital, 

including information from admissions records, medical record abstraction, the birth record, 

ultrasound, and other ancillary systems. All deliveries of singleton infants born in any of the study 

years will be eligible for inclusion. 

Table 4 shows characteristics of both the training cohort (MOMI 2010-2011, N = 19,266) 

and the test cohort (MOMI 2013-2017, N = 47,067). Distributions of maternal characteristics are 

similar between the training and test cohorts; only prevalence of preexisting diabetes or 

hypertension is slightly higher in the test cohort (5.3%) than in the training cohort (3.7%).  

 

Table 4. Characteristics of liveborn singleton deliveries at Magee-Womens Hospital, 2010-2011 and 2013-

2017 

 Eligible training 
cohort, 

Eligible test cohort, 
2013-2017 
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2010-2011 
(N =19,266) 

(N = 47,067) 

Maternal race, %   
NH White 75 70 
NH Black 20 21 

Other, declined, or unspecified 5.4 8.9 
Maternal age, mean (sd) 29 (5.9) 29 (5.5) 
Maternal age ≥ 35, % 16 17 
Married, % 56 55 
Maternal education, %   

Less than high school 8.3 6.8 
High school graduate 22 22 

Some college 15 13 
4-year college graduate 56 59 

Type of insurance, %   
Private 63 62 

Public nor none 37 38 
Nulliparous, % 48 44 
Smoked during pregnancy, % 14 12 
Preexisting diabetes or hypertension, % 3.7 5.3 
Gestational age, weeks, mean (sd) 39 (2.4) 39 (2.4) 

Preterm birth < 37 weeks, % 10 10 
Mode of delivery, %   

Vaginal 72 71 
Cesarean 28 29 

Birthweight, grams, mean (sd) 3277 (615) 3253 (622) 
 

1.3.3 SMM definitions and measurement 

1.3.3.1 Pennsylvania Medicaid 

In Pennsylvania Medicaid, we will use the same three screening criteria to identify SMM.  

Following other published literature on SMM using Pennsylvania Medicaid,91 we will use the CDC 

list of ICD codes corresponding to SMM to identify cases. Since ICU admission is ascertained 

using revenue codes and is not reliable unless supplemented by postpartum length of stay 

information, any delivery with 1.) any of the ICD codes indicating SMM or 2.) prolonged 
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postpartum length of stay (>3 standard deviations from the mean by delivery type) and ICU 

admission will be designated a SMM case.  

Just over 4% of deliveries in Pennsylvania Medicaid had a SMM event each year per the 

CDC criteria alone. This is considerably higher than national estimates of SMM prevalence 

derived from the National Inpatient Sample (approximately 1.3%). The higher prevalence of SMM 

events observed in this dataset is likely the result of the data structure. The National Inpatient 

Sample only records information from the delivery hospitalization, whereas the Medicaid data 

contain claims for events occurring at any time during an individual’s period of enrollment – 

including before pregnancy, during pregnancy, during delivery, and postpartum. We calculated the 

prevalence of SMM conditions in the 2016 National Inpatient Sample (1.7%) and compared this 

to the prevalence of SMM only during the delivery date and the 1 day preceding and following 

delivery in Pennsylvania Medicaid in 2016 (1.5%). The comparability of these estimates indicates 

that the Pennsylvania Medicaid data do not systematically over- or under-estimate SMM 

prevalence compared to other national databases.  

Our ability to access information not only during the immediate time interval around 

delivery but through pregnancy and up to one year postpartum is a strength of our approach. 

However, there are also limitations inherent in using this data set to study SMM. Though the 

prevalence of SMM during delivery is comparable to that of other data sources, this approach still 

relies on screening to determine prevalence estimates and is thus vulnerable to issues arising from 

using billing codes to determine severe maternal morbidity. Since information on transfusion 

volume is not available in claims data, we will assess robustness of our estimates to this substantial 

misclassification of cases by conducting sensitivity analyses excluding cases whose only SMM 

indicator is blood transfusion (unknown quantity). 
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1.3.3.2 The Magee Obstetric Maternal and Infant (MOMI) Database 

Both the MOMI training set (2010-2011) and the MOMI test set (2013-2017) were 

constructed using screening followed by chart review. Each of these datasets contains records from 

individuals whose medical charts were abstracted to determine true SMM status. To identify 

records for chart review, we screened the MOMI cohorts (2010-2011 and 2013-2017) using: 1) 

any of the CDC list of diagnosis and procedure codes, 2) ICU admission, or 3) prolonged 

postpartum length of stay (>3 standard deviations above the mean length of stay for delivery type). 

Any delivery with any of these criteria was considered a screen-positive case eligible for chart 

review, while any delivery not meeting these criteria was considered a screen-negative case. 

To construct the MOMI training set (2010-2011), the full MOMI cohort (2010-2011, n = 

19,266) was screened with the above criteria. All 336 screen-positive cases as well as a random 

sample of 349 screen-negative cases then underwent chart review, yielding 171 true positive and 

506 true negative records (Table 5). To construct the MOMI test set (2013-2017), the full MOMI 

cohort (2013-2017, n = 47,067) was screened with the same criteria, yielding 1500 screen-positive 

cases. Across each year, 250 screen-positives (50 per year) and 258 screen-negatives were sampled 

at random to undergo chart review, yielding 160 true-positive cases and 337 true-negative cases in 

the test set.  

A true gold standard definition for SMM case identification has neither been developed 

nor uniformly adopted in the US. However, the records in both the training and test sets were 

reviewed using the Gold Standard Severe Maternal Morbidity Case Review Guidelines outlined 

in the 2016 American College of Obstetricians and Gynecologists/Society for Maternal-Fetal 

Medicine Obstetric Care Consensus document.42,51 These guidelines propose a process for 

reviewing SMM events involving chart abstraction to identify the documented type of SMM event, 
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detailed case synopsis, sequence of morbidity, analysis of patient, provider, and system factors 

contributing to the morbidity as well as the preventability of the SMM outcome. 

The prevalence of SMM in MOMI (2010-2011) is 0.094/100,000 deliveries based on the 

screening definition and 0.045/100,000 deliveries based on the “gold standard” chart review 

definition. This discrepancy may be due to the inaccuracy of some billing codes. Specifically, the 

billing codes for blood transfusion are known to yield a large number of false positives. Blood 

transfusion alone (without any other SMM indicator) is the primary driver of the increase of SMM 

in the United States, growing from 789/100,000 delivery hospitalizations in 2006 to 1211/100,000 

delivery hospitalizations in 2015. (Fig. 2).4 However, billing codes for blood transfusion do not 

include volume of blood transfused, and evidence indicates that the inclusion of blood transfusion 

codes in the definition of SMM results in a large number of false positives.50 

 

 

Figure 1.C. Rates of SMM with and without blood 

transfusion, 2006-2015 
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The MOMI database contains only variables measured during the delivery hospitalization. 

Consequently, we will not be able to observe SMM events that occur before delivery (during 

pregnancy) or after delivery in the postpartum period. This is likely to result in an underestimate 

of the prevalence of SMM in this setting. Limitation to the delivery hospitalization may also 

introduce bias if women included as non-cases in the training or test datasets had an SMM event 

or condition prior to or following delivery. 

1.3.4 Consequences of SMM 

1.3.4.1 Adverse cardiovascular events 

The health outcomes following delivery that we will examine are: atrial fibrillation, heart 

failure, ischemic heart disease, and stroke/transient ischemic attack (Table 6). These outcomes 

were chosen in consultation with an obstetrician and identified from Pennsylvania Medicaid 

patient and enrollment files using ICD-10 diagnosis and procedure codes provided by the Centers 

for Medicare and Medicaid Services Chronic Conditions Warehouse.  

Any new diagnosis of any of these conditions recorded after delivery will be considered a 

relevant outcome for the purposes of this analysis. New diagnoses of these adverse cardiovascular 

events will be indexed to the date of delivery for both cases and controls. Any condition with a 

diagnosis date preceding delivery will not be considered a new diagnosis regardless of recurrence 

of the same diagnosis at a date post-delivery.  

This approach to defining the outcome is subject to several limitations. First, some 

diagnoses may be incorrectly classified as new because it is not possible to ascertain whether these 

diagnoses existed prior to Medicaid enrollment or the beginning of the study period. We will be 

unable to assess any diagnoses that are not recorded in Medicaid or in our analytic data, which 
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may introduce outcome misclassification. This misclassification could be differential if women 

with SMM and women without SMM have different profiles of contact with the health care system 

before or after delivery. Non-differential misclassification of the outcome may be introduced if, 

regardless of SMM status, women are more likely to receive a diagnosis of a preexisting condition 

for the first time after delivery due to increased contact with health care providers during 

pregnancy, delivery, and the postpartum period. Since the adverse cardiovascular events we will 

study are generally acute episodes requiring hospitalization, we hope to minimize the impact of 

this bias.  

1.3.5 Statistical analyses 

1.3.5.1 Specific Aim 1: Determining the long-term consequences of SMM 

To assess adverse cardiovascular events following SMM, we will first construct inverse 

probability of censoring weights to account for non-random loss to follow-up in our Medicaid 

cohort. We will then construct a pooled logistic regression model, weighted by inverse probability 

of censoring, for each of the adverse cardiovascular event outcomes. We will use the parametric 

g-formula in a time-fixed setting (marginal standardization) to estimate, based on the parameters 

from the pooled logistic regression models, risk of each adverse cardiovascular event under 

counterfactual hypothetical scenarios in which every woman in the sample had SMM and no 

woman in the sample had SMM.  

Because of the potential for differential misclassification of the outcome if women with 

SMM events have more medical encounters and therefore receive new diagnoses at a higher rate, 

we will assess rates of new diagnosis of three genetic conditions (cystic fibrosis, hereditary 

hemorrhagic telangiectasia, and ornithine transcarbamoylase deficiency) before and after delivery 
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for women with and without SMM at any time during the study period. If rates are substantially 

different before and after delivery and/or between women with SMM and women without, we will 

conduct a quantitative bias analysis to determine the degree to which this misclassification affects 

the new diagnosis risk estimates.  

For all models, we will also conduct sensitivity analyses. Since cases involving blood 

transfusion comprise the plurality of SMM cases and since blood transfusion is not an accurate 

indicator of SMM, we will repeat all analyses excluding any individuals whose only SMM 

indicator is an ICD-10 code for blood transfusion. We will determine how robust the estimates 

derived from all models described previously are to the exclusion of these individuals.  

Our approach has important limitations. One limitation is the possibility for exposure and 

outcome misclassification. Use of a screening definition for SMM will result in exposure 

misclassification via creation of a large number of false positives. We will conduct sensitivity 

analyses excluding SMM cases whose only SMM indicator is blood transfusion to assess the 

robustness of our results to this misclassification. The outcome may also be misclassified if women 

received a diagnosis of any adverse cardiovascular event prior to enrollment in Medicaid, or if 

women both with and without SMM (or women with SMM in particular) had more contact with 

health care providers during the puerperium. We will not adjust for multiple deliveries to the same 

person and instead will treat the unit of analysis as deliveries, which may introduce bias if many 

women in the dataset have multiple deliveries over the study period. Finally, the data we will use 

are administrative data designed for billing, not research purposes.  

1.3.5.2 Specific Aim 2: Developing a screening algorithm for SMM 

To develop a screening algorithm for SMM, we will use the ensemble machine learning 

algorithm SuperLearner. Briefly, SuperLearner combines predictions from a library of user-
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specified machine learning algorithms, then weights the predictions from each algorithm to create 

a final, weighted “ensemble” prediction algorithm. To implement SuperLearner, a library of 

candidate algorithms must be specified and supplied to the program. The data must then be split 

into training and test sets,92 and each algorithm in the library is fit on the training set. We will use 

a temporal data split, wherein the training set is the 2010-2011 MOMI subset and the test set is the 

2013-2017 MOMI subset. The estimated fits developed on the training set are used to generate 

predictions in the test data set,92,93 and predictions from each algorithm are then “stacked”93 and 

regressed against the true outcome. This regression determines the combination of weights that 

minimizes prediction error according to a user-specified function.93 The result is a final 

SuperLearner algorithm, which will (theoretically) perform at least as well as the “best” candidate 

algorithm included in the library.94 

We will perform a simulation study to evaluate sample size and class imbalance 

considerations. Two features of the MOMI training and test data sets (Table 5) that may impact 

SuperLearner performance are sample size and class imbalance (ratio of controls to cases). The 

machine learning literature is unclear on whether these issues categorically impact prediction 

algorithm performance; while some algorithms are thought to be more sensitive to imbalance and 

others less sensitive, most evidence suggests that the impact of sample size and degree of 

imbalance on machine learning algorithm performance is context-specific and depends on the 

structure of the training and test data.95  

 

Table 5. Algorithms included in SuperLearner library for simulation. 

Algorithm Tuning parameters 

K-nearest-neighbors • k = 5 
• Weights = null (kernel KNN), 

Epanechnikov 
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Extreme gradient boosting (xgboost) • Number of trees = 200, 500, 
1000 

• Maximum depth = 4, 5, 6 
• Shrinkage parameter = 0.01, 

0.001, 0.0001 
Random forests • 2500 trees 

Support vector machines • Default 

Penalized regression (glmnet) • Default 

 

To investigate these issues, we will conduct a simulation study with completely synthetic 

data. We will perform 2000 Monte Carlo simulations, each time generating a dataset from a logit 

model with N = 1000, 20 covariates (10 categorical and 10 continuous), and outcome prevalence 

ranging from 15%-50%. For half of the simulated datasets, we will perform simple downsampling 

to balance the number of cases and controls: randomly sampling a number of non-cases equal to 

the number of cases to create a perfectly balanced dataset. We will leave the other 1000 simulated 

datasets unbalanced. For all datasets (downsampled and unbalanced), we will use SuperLearner 

(Table 8 lists algorithms and tuning parameters to be included) and logistic regression with data 

splitting, separately, to predict the outcome and examine predictive performance (sensitivity, 

specificity, positive and negative predictive value, overall accuracy, and area under the receiver 

operating curve).  

We will train a SuperLearner algorithm to screen for SMM in a hospital data set (MOMI). 

First, we will determine which variables in the MOMI data set to include in the training and test 

data sets according to availability in all years (2010-2011 and 2013-2017) and known or suspected 

association with true SMM status. 

In the training set, we will train a SuperLearner algorithm with a rich library of base 

learners. In the absence of practical guidance about optimal algorithm selection generally and in 

small sample settings specifically, this choice is intended to include as many diverse algorithms as 
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possible since the true data-generating mechanism is unknown to us and to maximize the 

likelihood of obtaining the “oracle property” in SuperLearner.96 We will include the screening 

criteria used to identify screen-positive and screen-negative cases (the CDC list, ICU admission, 

or prolonged postpartum length of stay) as one of the algorithms in the SuperLearner library, and 

evaluate characteristics of the SuperLearner including the discrete SuperLearner (the single 

candidate algorithm that performs the best) and the weight coefficients of the component 

algorithms. We will then apply the algorithm to the test data set (2013-2017) to generate 

predictions, which will be used to generate metrics of predictive performance (area under the 

receiver operating curve, positive and negative predictive values, overall accuracy). 

This approach has important limitations. As already mentioned, SuperLearner performance 

in small samples is not well-characterized, nor are guidelines for power or sample size calculations 

for ensemble learning well-developed.97 Although our simulation was performed in completely 

synthetic data that may not approximate the characteristics of the MOMI subset, our preliminary 

simulation data indicated that an N of 400 yields acceptable performance, and that the 

SuperLearner tolerates moderate class imbalance relatively well. Furthermore, the objective of our 

analysis is limited to prediction (not inference), and as such appropriate power to construct 

derivatives of the standard error for inferential purposes is not a critical consideration. Another 

limitation is that guidance is lacking on optimal algorithm selection for prediction generally and 

in small-sample settings more specifically, which we have attempted to address by including a 

diverse SuperLearner algorithm library. Finally, our result may be difficult to interpret and not 

transportable to other data sets, a common critique of machine learning applications in clinical 

science.98 We will attempt to increase the transparency and generalizability of our result by 

specifying all algorithms and tuning parameters a priori, reporting their weights in the final 
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SuperLearner ensemble, and by choosing variables for inclusion in the training set that are widely 

available.  

1.3.6 Overall impact 

The overall impact of this work is to improve understanding of SMM in the United States. 

The proposed work leverages rich data sources and innovative analytic approaches to better 

characterize the burden of SMM, improve SMM surveillance and research, and inform strategies 

to reduce the overall burden of SMM. First, screening for SMM case identification forms the core 

of SMM research in the US. Our proposal will address well-known issues with existing screening 

criteria and test a novel method to perform SMM case identification. This will result in more 

accurate prevalence estimates of severe maternal morbidity and consequently more accurate 

inferences about the burden, population risk factors, and quality improvement implications of 

SMM. Second, postnatal morbidity and other consequences of SMM have not been extensively 

investigated. Postnatal morbidity is not only important an endpoint in its own right, but may also 

be related to risk of indirect or late maternal mortality. Thus, our proposal responds to the critical 

need to add extensive understanding of the postpartum consequences of SMM to the already well-

developed knowledge base about the pre-delivery risk factors for SMM and maternal death.  
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2.0 Chapter 2: Adverse cardiovascular events following severe maternal morbidity 

2.1 Introduction 

The maternal mortality rate, defined as the number of deaths related to pregnancy or 

delivery per 100,000 live births, is higher in the United States (17.4 per 100,000)99 than any other 

comparably wealthy country.79 However, maternal mortality signals only the “tip of the iceberg” 

of a much larger burden of poor maternal health in the US.42 This burden of poor maternal health 

is partially reflected in the high annual incidence of severe and potentially life-threatening 

complications of pregnancy, labor, and delivery collectively referred to as severe maternal 

morbidity (SMM).42,100 The incidence of SMM during delivery hospitalizations increased 45% 

from 1010/100,000 in 2006 to 1470/100,000 in 2015.4  

Over the past 30 years, cardiovascular conditions (e.g. cardiomyopathy, hypertensive 

disorders) have eclipsed hemorrhage and sepsis as the leading causes of maternal mortality and 

SMM.5,19 Cardiovascular conditions may be exacerbated by the “stress test” of pregnancy,101,102 

and some pregnancy complications (such as preeclampsia) have been associated with 

cardiovascular disease later in life.103 While this suggests that SMM may have long-term effects 

after delivery, little is currently known about the health consequences of SMM in the postpartum 

period and beyond.  

Currently, national organizations such as the American College of Obstetricians and 

Gynecologists (ACOG) are focused on optimizing postpartum care as part of the continuum of 

maternal health.42 Because severe complications or sequelae may occur after delivery even as 

many US women lose access to peripartum medical care,87 the postpartum period may be a 
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particularly high-risk time for women who had a SMM. One US study concluded that women who 

experienced a SMM during delivery are more likely to be readmitted over the first year 

postpartum.104 Some evidence from primarily small cohorts in low- and middle-income countries 

have also documented increased risk of functional impairment and poor quality of life following 

SMM.64 However, no prior studies have estimated the association between SMM and 

cardiovascular outcomes after delivery. Therefore, the objective of this study was to determine the 

extent to which severe maternal morbidity in pregnancy or postpartum is associated with increased 

risk of adverse cardiovascular events in the two years after delivery. 

2.2 Methods 

We conducted a retrospective longitudinal cohort study using Pennsylvania Medicaid 

administrative claims and encounters data for all enrolled individuals from 10/01/2015 to 

12/31/2018. The study was approved by the University of Pittsburgh Institutional Review Board 

(IRB) #STUDY19100253. Women were eligible for inclusion in this study if they were enrolled 

in Pennsylvania Medicaid from 2015 to 2018 and delivered at 20 to 42 weeks’ gestation. We 

identified 138,564 eligible deliveries that occurred from 07/07/2016 to 12/31/2018 (Figure 1) using 

an algorithm previously developed by our group to identify deliveries from Medicaid files.105-107 

There were 18,022 women with more than one delivery in this time period. Of their 27,461 

repeated deliveries, we excluded 1085 deliveries (4%) with <28 days to the next pregnancy, which 

we considered implausible. Finally, 495 deliveries (<1% of total) had an outcome event (acute 

myocardial infarction, heart failure, and stroke/transient ischemic attack) from conception through 

≤ 42 days postpartum, but no documentation of any of the SMM diagnoses included in the Centers 
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for Disease Control (CDC) definition. To adhere as closely as possible to the CDC definition of 

severe maternal morbidity 4,100 and attempt to capture incident outcomes after 42 days postpartum, 

we excluded these records. The final analytic sample consisted of 137,140 deliveries to 128,686 

women.  

We linked maternal delivery records to child records using a family identification number 

included in the Medicaid enrollment data (97% linkage). Child records include a variable 

indicating the gestational age (an integer from 20 to 36 weeks) for infants who are born preterm. 

Infants born at term (≥37 weeks) have a missing value for this variable. For term deliveries (91%) 

and deliveries that we could not link to a child record (3%), we assumed a 40-week (280-day) 

gestation. We varied the length of gestation from 38 to 40 weeks for term deliveries to evaluate 

the sensitivity of our results to this assumption. 

The exposure of interest was the presence of any severe maternal morbidity. We defined 

severe maternal morbidity as either: any of the diagnosis or procedure codes for 21 SMM 

indicators as outlined by the CDC (Table 9)3,100 or intensive care unit (ICU) admission occurring 

from conception to 42 days after delivery (Table 9).108  

We studied five cardiovascular outcomes occurring during the first 2 postpartum years (43 

days to 773 days): atrial fibrillation, heart failure, ischemic heart disease (including acute 

myocardial infarction), stroke/transient ischemic attack, and a composite outcome of any of these 

events. These outcomes were identified using ICD-10 code algorithms provided by the Centers for 

Medicare and Medicaid Services Chronic Conditions Warehouse (Table 9).  

Maternal age, race/ethnicity (non-Hispanic white, non-Hispanic Black, Hispanic, and other 

race/ethnicity), and the six Medicaid eligibility categories109 were obtained from enrollment files. 

We categorized eligibility category due to disability status, low household income, or pregnancy-
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related eligibility. The hierarchy for assigning eligibility for records with multiple eligibility 

indicators was disability, income/expansion, and then pregnancy. Mode of delivery (vaginal or 

cesarean) was ascertained from inpatient files using diagnosis codes for infants (Table 11). We 

used ICD-10 code algorithms developed from inpatient, outpatient, and professional files105-107 to 

identify parity, preexisting conditions (HIV infection, hepatitis C infection, asthma, and obesity), 

pregnancy complications (gestational diabetes, preeclampsia, and thyroid disease in pregnancy), 

tobacco use, and non-tobacco substance use disorders (including alcohol, cannabis, cocaine, 

hallucinogens, opioids, and sedatives).  

The unit of analysis for this study was a delivery. Follow-up time was counted from 43 

days postpartum until the woman experienced a cardiovascular events, was lost to follow-up, or 

until the end of the study on 12/31/2018. Follow-up time for a given delivery was considered 

administratively right-censored if it occurred on or after 1/1/2018 (resulting in less than a full year 

of follow-up). Women were considered lost to follow-up if they were not right-censored but 

disenrolled from Medicaid before either 12/31/2018 or 365 days after delivery (23% of deliveries) 

to ensure at least one year of follow-up. For women with more than one delivery in the study 

period, censoring occurred at the start of the next pregnancy.  

Statistical analysis 

To minimize potential bias from non-random loss to follow-up during the postpartum period, 

we constructed stabilized inverse probability of censoring weights110 that we applied to all 

analyses. We used logistic regression to predict  loss to follow-up using (Medicaid eligibility 

category,111 maternal preexisting conditions, preeclampsia, gestational diabetes, parity, tobacco 

use, race/ethnicity, and other substance use disorder. The mean stabilized weight was 1.0 (standard 

deviation: 0.14; range: 0.79 to 1.6; Figure 2.C) All analyses were weighted.  
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We generated adjusted risk curves for each cardiovascular outcome and to calculate effect 

measures throughout follow-up.112 Atrial fibrillation is exceedingly rare in this sample, so our 

analysis of this outcome was descriptive. We used g-computation, which in the case of a time-

fixed exposure such as SMM, is equivalent to marginal standardization to the entire study 

population.113 G-computation requires specification of exposure regimens usually corresponding 

to an intervention on the exposure of interest, even if such an intervention is hypothetical. We 

estimated the average treatment effect, which compares the risk of cardiovascular events in the 

hypothetical scenario where every delivery in the data set had a SMM (henceforth “SMM” or 

“under SMM” to refer to risks calculated under this hypothetical exposure scenario) to the effect 

in the hypothetical scenario where no deliveries had a SMM (henceforth “no SMM” or “under no 

SMM”). This average treatment effect quantifies the effect of the largest alterations of the exposure 

possible in this population. 

We obtained population-average risks of each outcome by adapting an algorithm114-116  to 

implement the parametric g-formula. Our adaptation of this algorithm consisted of four steps. First, 

we fit separate binomial pooled logistic models117 for each outcome to the original data. Time was 

modeled using a quadratic term to allow for flexible, non-linear relations. These models were 

adjusted for confounders chosen via causal diagrams.118 Selected confounders were maternal 

race/ethnicity, age, Medicaid eligibility category, tobacco use, substance use disorder (including 

alcohol), asthma, HIV infection, hepatitis C infection, obesity, preeclampsia, gestational diabetes, 

thyroid disease in pregnancy, mode of delivery, and parity.  

Second, we constructed two simulated data sets under each intervention (SMM and no SMM). 

We created two copies of the original data set, setting the exposure to correspond to the desired 

hypothetical intervention in each: all deliveries with SMM or all deliveries with no SMM.   
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Third, we used the parameters from each pooled logistic model fit to the original data in Step 

1 to predict, in each simulated data set, the survival probabilities for each individual under each 

intervention, given their observed covariate values.  

Fourth, under each intervention, we used the complement of the survival probabilities from 

Step 3 to calculate the risks of each outcome at each month of follow-up. We calculated risk 

differences and generated 95% confidence intervals using nonparametric bootstrapping with 200 

resamples.  

We also performed three sensitivity analyses. We repeated our analyses after excluding 

deliveries whose sole SMM indicator was blood transfusion because its associated ICD-10 code is 

frequently misclassified.2,51,119 We also repeated analyses varying gestational length of all term 

deliveries to 38 weeks (266 days) or 42 weeks (294 days).  

2.3 Results 

More than half (56%) of the sample qualified for Medicaid based on pregnancy eligibility. 

Mean maternal age in the sample was 27 (SD: 5.7) years. Nearly half of the deliveries were to non-

Hispanic white mothers, and over half of the deliveries were to primiparous women.  Maternal 

asthma, obesity, tobacco use disorder, and drug use in pregnancy were common. Gestational 

diabetes affected 7.7% of deliveries. Preeclampsia was present in 2.1% of deliveries. Nearly one-

third of the births in the sample were delivered via cesarean section (Table 6).   

The cumulative incidence of SMM was 4.2%. Most deliveries with SMM (85%) had only one 

SMM indicator; 10% had two indicators, and 5% had three or more. The most common indicators 

among deliveries with any SMM event were blood transfusion (21%), eclampsia (17%), and sepsis 
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(14%) (Table 12). Cardiovascular complications accounted for nearly 50% of SMM events. SMM 

events were evenly split according to timing: during pregnancy (33%), at labor and delivery (35%), 

or in the first 42 days postpartum (32%).  

Deliveries with SMM occurred more frequently to non-Hispanic Black mothers and women 

covered by disability eligibility for Medicaid compared with deliveries lacking an SMM event. 

Prevalence of maternal asthma, obesity, tobacco use, drug use in pregnancy, preeclampsia, and 

gestational diabetes was higher than among deliveries without SMM than among deliveries 

without SMM. Maternal age and parity did not vary by SMM (Table 6).  

Cumulative incidences of adverse cardiovascular events at the end of the follow-up period 

were highest for stroke or transient ischemic attack and ischemic heart disease, followed by heart 

failure and atrial fibrillation (Table 7). Approximately 25/1000 deliveries had any one of these 

cardiovascular events. At the end of follow-up, each adverse cardiovascular outcome occurred 3 

to 10 times as frequently among deliveries with SMM than among deliveries without. 

The risk of cardiovascular events increased with each month of follow-up (Figure 2). Under 

the hypothetical exposure scenario where we set all deliveries to have a SMM, the risk of each 

outcome increased more quickly than under the hypothetical intervention where we “prevented” 

SMM (set every delivery to have no SMM). (Table 13). For instance, from 1 month to 26 months 

of follow-up, the risk of ischemic heart disease per 1000 deliveries in the SMM scenario increased 

from 0.80 to 13, while risk of ischemic heart disease in the no SMM scenario increased from 0.30 

to 5.0. 

Comparing the SMM scenario with the no SMM scenario, there was an excess risk of heart 

failure, ischemic heart disease, and stroke/transient ischemic attack associated with SMM that 

increased throughout most of the follow-up period. From the first month of follow-up to the last 
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month of follow-up, the risk differences per 1000 deliveries comparing SMM to no SMM 

increased from 0.5 to 6.4 for ischemic heart disease, 1.0 to 8.2 for stroke/transient ischemic attack, 

1.2 to 12 for heart failure, and 2.7 to 28 for any cardiovascular event (Table 8). As follow-up 

progressed, the risk differences comparing SMM to no SMM increased to a greater magnitude for 

heart failure than for ischemic heart disease or stroke/transient ischemic attack (Figure 2.D).  

Sensitivity analysis excluding blood transfusion from the definition of SMM yielded risk 

differences that were not meaningfully different from the primary analysis (Table 14). Our results 

were also similar after varying the gestational age assumed for term pregnancies to 38 weeks 

(Table 15) or 42 weeks (Table 16). 

2.4 Discussion 

In this large cohort of Pennsylvania Medicaid deliveries, we found that women who had a 

pregnancy with SMM were at substantially increased risk of heart failure, ischemic heart disease, 

and stroke ortransient ischemic attack up to 2 years postpartum. SMM was most strongly 

associated with risk of heart failure, with the risk difference comparing SMM to no SMM rising 

steadily over follow-up. Ischemic heart disease and stroke ortransient ischemic attack were also 

associated with SMM, but the increase in risk began to flatten around 20 months of follow-up. 

While these cardiovascular events are rare in reproductive-age women, the average treatment 

effect of SMM on risk of each cardiovascular event is pronounced.  

We are unaware of research relating SMM to postpartum cardiovascular events. Our results 

are consistent with previous work on the non-cardiovascular postpartum health consequences of 

SMM5,21,22,25,42,48,61 A UK cohort study found SMM to be associated with 2-3 times the odds of 
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post-traumatic stress disorder at 6-8 weeks postpartum.77 A recent Brazilian study reported that 

women with SMM had more reproductive and general self-rated health after delivery than women 

without.120 and one US study, notable for using the CDC screening definition of SMM, reported 

that SMM was associated with more than double the risk of readmission for an inpatient stay at 6 

and 12 months postpartum.104 Conclusions from most studies on the postpartum consequences of 

SMM may not be generalizable to US populations: most were conducted in low- and middle-

income countries, the definition of SMM commonly used to identify cases in the US is not widely 

used outside North America,121 and many are limited by study design issues (small sample sizes 

and and lack of a control group being common issues).64 Most importantly, none of these studies 

examine cardiovascular disease risk after SMM, although this is important for US reproductive-

aged women, whose leading modifiable cause of death is cardiovascular disease.122,123  

Our findings also broadly agree with work connecting pregnancy complications to elevated 

cardiovascular risk from delivery through mid-life.84,85,124-129 Because hypertensive disorders of 

pregnancy are major contributors to SMM,62 and cardiovascular conditions (including 

cerebrovascular disorders, pulmonary edema, and acute heart failure) accounted for over 50% of 

the SMM events in our sample, it is possible that cardiovascular conditions and eclampsia may be 

primarily responsible for our findings. However, we did not have adequate sample size to evaluate 

individual SMM events or groups of SMM events in relation to the outcome, and so are unable to 

make inferences about specific disease processes or biological mechanisms. Although our results 

cannot determine whether pregnancy complications initiate pathophysiological processes 

generating cardiovascular risk or whether they primarily exacerbate preexisting cardiovascular 

risk,84,130 they support the idea that development of SMM may identify women who would benefit 

from individualized follow-up care after delivery to manage cardiovascular risk.129,131  
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Our results should be considered in the context of several important limitations. First, we 

used the CDC screening definition of SMM, which has a high negative predictive value and a low 

positive predictive value (44-48%).51,132  The gold standard  definition42 requires medical record 

review to evaluate specific clinical criteria. Lack of access to medical records prevented us from 

using the gold standard definition or conducting an internal validation study. However, our 

sensitivity analysis showed no meaningful differences when we excluded blood transfusion (a 

commonly misclassified indicator) from our definition. Our reliance on ICD-10 codes to define 

the outcomes and covariates has the potential to introduce misclassification bias. While  ICD-10 

codes for adverse cardiovascular events have reasonably high positive predictive values (> 

90%),133-135 it is likely that confounders including obesity are subject to measurement error.136,137 

In the absence of comprehensive validation studies  of the ICD-10 codes we used, we cannot rule 

out the potential for misclassification bias..  

Selection bias may be a problem because we could not capture information about women 

when they are not enrolled in Medicaid. We used inverse probability of censoring weighting to 

address potential selection bias resulting from nonrandom loss to follow-up, but this technique 

does not address potential confounding by, e.g., maternal health history before the start of the study 

or enrollment in Medicaid. Finally, some of the outcomes were not truly incident since SMM 

diagnoses and outcome diagnoses can be identical in some cases (in the case of, e.g., some types 

of ischemic heart disease). Caution should thus be exercised in interpreting these results.  

Our results could be interpreted causally only if the causal identifiability assumptions of 

conditional exchangeability, positivity, and consistency hold.138 The consistency assumption poses 

an intractable problem to the causal interpretation of our results139 because SMM is a 

heterogeneous construct with no unifying biological or physiological feature; any two SMM cases 
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can have different diagnoses, clinical courses, and prognoses. Although severe maternal morbidity 

has clinical utility as a concept, we cannot interpret our findings causally. However, this study 

provides important evidence about the long-term risks of SMM and opens the door to future causal 

work in this area.  

The present work has important implications for maternal care after delivery. It is well-

known that the transition from postpartum care to well-woman care represents a discontinuity in 

maternal health care provision.140 Our results demonstrate that women with an SMM are at high 

risk for adverse postpartum cardiovascular events, which suggests that both women’s delivery 

history and multidisciplinary clinical expertise can be leveraged to craft optimal policies to guide 

this care transition for women with obstetric morbidities. Women who suffer a SMM constitute a 

high-risk group that would likely benefit from proposed policy changes141 to streamline and 

individualize postpartum and well-woman care, both with regard to adverse cardiovascular events 

but likely other possible sequelae as well. Although the absolute number of women experiencing 

adverse cardiovascular events after delivery is small, SMM is an important risk factor for adverse 

cardiovascular events beyond the traditional 42-day postpartum period and is associated with 

substantially increased risk of these events which are serious, costly, and potentially impact long-

term health. 
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2.5 Tables and figures 

 

Figure 2.A. Study sample selection flow chart, Pennsylvania Medicaid, 2016-2018 
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Figure 2.B. Adjusted cumulative distribution functions for cardiovascular events for SMM and no SMM 

hypothetical intervention scenarios, Pennsylvania Medicaid, 2016-2018, N = 139,531 deliveries. 
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Table 6. Weighted characteristics of the study sample, Pennsylvania Medicaid, 2016-2018, N = 139,531 

deliveries. 

 Full sample 
N = 139,531 

Severe maternal 
morbidity 
N = 5832 

No severe 
maternal 
morbidity 

N = 133,699 
 % or mean (SD) 

Maternal age 27 (5.7) 28 (6.1) 27 (5.7) 
Maternal age category    
     < 20 6.9 7.1 6.9 
     20-34 81 77 81 
     ≥ 35 12 16 12 
Maternal race/ethnicity    
     Non-Hispanic White 46 43 47 
     Non-Hispanic Black 24 31 24 
     Hispanic 20 18 20 
     Other 9 8 9 
Eligibility category    
     Disability 4.3 7.6 4.1 
     Expansion/income 40 41 40 
     Pregnancy 56 52 56 
Parity    
     1 57 56 57 
     2 30 29 30 
     3 or more 13 15 13 
Preexisting asthma 11 17 10 
Preexisting hepatitis C infection 1.9 3.5 1.9 
Preexisting HIV infection 0.23 0.42 0.22 
Preexisting obesity 20 29 20 
Preexisting thyroid condition 4.8 9.3 4.6 
Substance use disorder: tobacco 36 42 35 
Other substance use disorder 3.5 4.5 3.4 
Gestational diabetes 7.7 11 7.5 
Preeclampsia 2.1 7.5 1.9 
Gestational age at delivery 
(days) 

277 (12) 271 (21) 277 (12) 

Mode of delivery    
     Vaginal delivery 71 52 72 
     Cesarean delivery 29 48 28 
Birth status    
     Stillbirth 0.95 2.6 0.88 
     Live birth 99 97 99 
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Table 7. Unadjusted cumulative incidence of adverse cardiovascular events per 1,000 deliveries following 

deliveries with severe maternal morbidity vs. deliveries without severe maternal morbidity, Pennsylvania 

Medicaid, 2016-2018, N = 104,888 deliveries not lost to follow-up. 

 

Severe maternal 
morbidity 

Population at risk, 
N 

Cardiovascular events 
at the end of follow-

up, 
 N 

Cumulative 
incidence of 

cardiovascular 
event per 1,000 

deliveries 
Heart failure 

 Severe maternal 
morbidity 4596 46 10 

 No severe maternal 
morbidity 100,292 102 1.0 

 Total 104,888 148 1.4 
Ischemic heart disease 

 Severe maternal 
morbidity 4596 30 6.5 

 No severe maternal 
morbidity 100,292 195 1.9 

 Total 104,888 225 2.1 
Stroke or transient ischemic attack 

 Severe maternal 
morbidity 4596 35 7.6 

 No severe maternal 
morbidity 100,292 184 1.8 

 Total 104,888 219 2.1 
Any cardiovascular event 

 Severe maternal 
morbidity 4596 116 25 

 No severe maternal 
morbidity 100,292 527 5.3 

 Total 104,888 643 6.1 
Atrial fibrillation 

 Severe maternal 
morbidity 4596 <101 1.5 

 No severe maternal 
morbidity 100,292 43 0.43 

 Total 104,888 50 0.48 
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Table 8. Excess risk of cardiovascular events per 1,000 live births for severe maternal morbidity vs. no severe 

maternal morbidity, Pennsylvania Medicaid, 2016-2018. 

 Risk difference (95% CI) per 1,000 live births at each month of follow-up1 
 1 month 6 months 12 months 18 months 26 months 

Heart failure 
Severe maternal 
morbidity 1.2 (0.50, 1.9) 3.4 (2.0, 5.1) 5.8 (3.4, 8.2) 8.0 (4.7, 11) 12 (6.2, 18) 

No severe maternal 
morbidity Ref Ref Ref Ref Ref 

Ischemic heart disease 
Severe maternal 
morbidity 0.5 (0.06, 1.0) 2.0 (0.7, 3.2) 3.8 (1.5, 6.0) 5.3 (2.2, 8.3) 6.4 (1.7, 11) 

No severe maternal 
morbidity Ref Ref Ref Ref Ref 

Stroke/transient ischemic attack 
Severe maternal 
morbidity 1.0 (0.3, 1.7) 3.5 (1.8, 5.3) 6.2 (3.5, 8.8) 7.8 (4.4, 11) 8.2 (3.2, 13) 

No severe maternal 
morbidity Ref Ref Ref Ref Ref 

Any cardiovascular event 
Severe maternal 
morbidity 2.7 (1.6, 3.8) 9.3 (6.5, 12) 17 (12, 21) 23 (17, 28) 28 (19, 37) 

No severe maternal 
morbidity Ref Ref Ref Ref Ref 

 

The figure below is inserted so that there is an item in the sample List of Figures. 
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2.6 Supplementary tables and figures 

 

Figure 2.C. Histogram of stabilized inverse probability of censoring weights. 
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Figure 2.D. Adjusted risk differences per 1,000 live births for cardiovascular events under SMM and no 

SMM (referent), Pennsylvania Medicaid, 2016-2018, N = 139,531 deliveries. 

 

Table 9. ICD-10 CM codes for SMM diagnoses and procedures. 

Indicator Diagnosis or procedure code 
Acute myocardial infarction I21.xx, I22.x 
Aneurysm I71.xx*, I79.0* 
Acute renal failure N17.x, O90.4 
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Adult respiratory distress 
syndrome 

J80, J95.1, J95.2, J95.3, J95.82x, J96.0x, J96.2x R09.2 

Amniotic fluid embolism O88.1x 
Cardiac arrest/ventricular 
fibrillation 

I46.x, I49.0x 

Conversion of cardiac rhythm 5A2204Z, 5A12012 
Disseminated intravascular 
coagulation 

D65, D68.8, D68.9, O72.3 

Eclampsia O15.X, O14.22  
Heart failure/arrest during 
procedure/surgery 

I97.12x, I97.13x, I97.710, I97.711 

Puerperal cerebrovascular 
disorders 

I60.xx- I68.xx, O22.51, O22.52, O22.53, I97.81x, I97.82x, O87.3 
I62.9 – included but should not be captured if this is not a valid code. 

Pulmonary edema/acute heart 
failure 

J81.0, I50.1, I50.20, I50.21, I50.23, I50.30, I50.31, I50.33, I50.40, 
I50.41, I50.43, I50.9 

Severe anesthesia complications O74.0 , O74.1 , O74.2, O74.3, O89.0x, O89.1, O89.2 
Sepsis O85, O86.04, T80.211A, T81.4XXA, T81.44xx; or R65.20; or A40.x, 

A41.x, A32.7 
Shock O75.1, R57.x, R65.21, T78.2XXA, T88.2 XXA, T88.6 XXA, 

T81.10XA , T81.11XA, T81.19XA 
Sickle cell disease with crisis D57.0x, D57.21x, D57.41x, D57.81x 
Air and thrombotic embolism I26.x, O88.0x, O88.2x, O88.3x, O88.8x 
Blood products transfusion 30233H1, 30233L1, 30233K1, 30233M1, 30233N1, 30233P1, 

30233R1, 30233T1,30233H0, 30233L0, 30233K0, 30233M0, 
30233N0, 30233P0, 30233R0, 30233T0,30230H1, 30230L1, 
30230K1, 30230M1, 30230N1, 30230P1, 30230R1, 
30230T1,30230H0, 30230L0, 30230K0, 30230M0, 30230N0, 
30230P0, 30230R0, 30230T0, 30240H1, 30240L1, 30240K1, 
30240M1, 30240N1, 30240P1, 30240R1, 30240T1,30240H0, 
30240L0, 30240K0, 30240M0, 30240N0, 30240P0, 30240R0, 
30240T0, 30243H1, 30243L1, 30243K1, 30243M1, 30243N1, 
30243P1, 30243R1, 30243T1, 30243H0, 30243L0, 30243K0, 
30243M0, 30243N0, 30243P0, 30243R0, 30243T0, 30250H1, 
30250L1, 30250K1, 30250M1, 30250N1, 30250P1, 30250R1, 
30250T1, 30250H0, 30250L0, 30250K0, 30250M0, 30250N0, 
30250P0, 30250R0, 30250T0, 30253H1, 30253L1, 30253K1, 
30253M1, 30253N1, 30253P1, 30253R1, 30253T1, 30253H0, 
30253L0, 30253K0, 30253M0, 30253N0, 30253P0, 30253R0, 
30253T0, 30260H1, 30260L1, 30260K1, 30260M1, 30260N1, 
30260P1, 30260R1, 30260T1, 30260H0, 30260L0, 30260K0, 
30260M0, 30260N0, 30260P0, 30260R0, 30260T0, 30263H1, 
30263L1, 30263K1, 30263M1, 30263N1, 30263P1, 30263R1, 
30263T1, 30263H0, 30263L0, 30263K0, 30263M0, 30263N0, 
30263P0, 30263R0, 30263T0’ 

Hysterectomy 0UT90ZZ, 0UT94ZZ, 0UT97ZZ, 0UT98ZZ, 0UT9FZZ 
Temporary tracheostomy 0B110Z, 0B110F, 0B113, 0B114 
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Ventilation 5A1935Z, 5A1945Z, 5A1955Z 
 

Table 10. ICD-10 CM codes for adverse cardiovascular outcomes. 

Outcome event ICD-10 codes 
Atrial fibrillation I48.0, I48.1, I48.2, I48.91 (ONLY first or second DX on the 

claim) 
Heart failure I09.81, I11.0, I13.0, I13.2, I50.1, I50.20, I50.21, I50.22, 

I50.23, I50.30, I50.31, I50.32, I50.33, I50.40, I50.41, I50.42, 
I50.43, I50.810, I50.811, I50.812, I50.813, I50.814, I50.82, 
I50.83, I50.84, I50.89, I50.9 (any DX on the claim) 

 Ischemic heart disease I20.0, I20.1, I20.8, I20.9, I21.01, I21.02, I21.09, I21.11, 
I21.19, I21.21, I21.29, I21.3, I21.4, I21.A1, I21.A9, I22.0, 
I22.1, I22.2, I22.8, I22.9, I23.0, I23.1, I23.2, I23.3, I23.4, 
I23.5, I23.6, I23.7, I23.8, I24.0, I24.1, I24.8, I24.9, I25.10, 
I25.110, I25.111, I25.118, I25.119, I25.2, I25.3, I25.41, 
I25.42, I25.5, I25.6, I25.700, I25.701, I25.708, I25.709, 
I25.710, I25.711, I25.718, I25.719, I25.720, I25.721, 
I25.728, I25.729, I25.730, I25.731, I25.738, I25.739, 
I25.750, I25.751, I25.758, I25.759, I25.760, I25.761, 
I25.768, I25.769, I25.790, I25.791, I25.798, I25.799, 
I25.810, I25.811, I25.812, I25.82, I25.83, I25.84, I25.89, 
I25.9 (any DX on the claim) 

Stroke/transient ischemic attack G45.0, G45.1, G45.2, G45.8, G45.9, G46.0, G46.1, G46.2, 
G46.3, G46.4, G46.5, G46.6, G46.7, G46.8, G97.31, 
G97.32, I60.00, I60.01, I60.02, I60.10, I60.11, I60.12, 
I60.20, I60.21, I60.22, I60.30, I60.31, I60.32, I60.4, I60.50, 
I60.51, I60.52, I60.6, I60.7, I60.8, I60.9, I61.0, I61.1, I61.2, 
I61.3, I61.4, I61.5, I61.6, I61.8, I61.9, I63.00, I63.02, 
I63.011, I63.012, I63.013, I63.019, I63.02, I63.031, I63.032, 
I63.039, I63.09, I63.10, I63.111, I63.112, I63.119, I63.12, 
I63.131, I63.132, I63.139, I63.19, I63.20, I63.211, I63.212, 
I63.213, I63.219, I63.22, I63.231, I63.232, I63.233, I63.239, 
I63.29, I63.30, I63.311, I63.312, I63.313, I63.319, I63.321, 
I63.322, I63.323, I63.329, I63.331, I63.332, I63.333, 
I63.339, I63.341, I63.342, I63.343, I63.349, I63.39, I63.40, 
I63.411, I63.412, I63.413, I63.419, I63.421, I63.422, 
I63.423, I63.429, I63.431, I63.432, I63.433, I63.439, 
I63.441, I63.442, I63.443, I63.449, I63.49, I63.50, I63.511, 
I63.512, I63.513, I63.519, I63.521, I63.522, I63.523, 
I63.529, I63.531, I63.532, I63.533, I63.539, I63.541, 
I63.542, I63.543, I63.549, I63.59, I63.6, I63.8, I63.9, I66.01, 
I66.02, I66.03, I66.09, I66.11, I66.12, I66.13, I66.19, I66.21, 
I66.22, I66.23, I66.29, I66.3, I66.8, I66.9, I67.841, I67.848, 
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I67.89, I97.810, I97.811, I97.820, I97.821 (any DX on the 
claim) 

 

Table 11. Identification of cesarean deliveries. 

Step Type of code Codes 
1.Identify cesarean 
delivery 

DRG 0370, 0371, 0540 

2.For any missing, 
identify cesarean 
delivery from infant 
codes 

ICD-10 Z3801, Z3831, Z3862, Z3864, 
Z3869 

3.Set mode of delivery 
to “vaginal” for any 
remaining missing 

  

 

 

 

Table 12. Frequency of Centers for Disease Control severe maternal morbidity indicators among deliveries 

with severe maternal morbidity, Pennsylvania Medicaid, 2016-2018. 

Severe maternal morbidity indicator N (%) 
Acute myocardial infarction 96 (1.6) 
Acute renal failure 456 (7.8) 
Acute respiratory distress syndrome 479 (8.2) 
Air or thrombotic embolism 489 (8.4) 
Amniotic fluid embolism 56 (1.0) 
Aneurysm 29 (0.50) 
Blood transfusion 1229 (21) 
Cardiac arrest/ventricular fibrillation 78 (1.3) 
Conversion of cardiac rhythm 17 (0.29) 
Disseminated Intravascular Coagulation 509 (8.7) 
Eclampsia 1016 (17) 
Heart failure or arrest during procedure or surgery <10 (0.17)1 
Hysterectomy 109 (1.9) 
Intensive care unit (ICU) admission 1188 (20) 
Puerperal cerebrovascular disease 434 (7,4) 
Pulmonary edema/acute heart failure 508 (8.7) 
Sepsis 811 (14) 
Severe anesthesia complications 22 (0.38) 
Shock 226 (3.9) 
Sickle cell with crisis 41 (0.70) 
Temporary tracheostomy <10 (0.17)1 
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Ventilation 137 (2.3) 
Total2 5832 (100) 
 

 

Table 13. Risk per 1000 deliveries of adverse cardiovascular events across follow-up for severe maternal 

morbidity vs. no severe maternal morbidity, Pennsylvania Medicaid, 2016-2018. 

Severe maternal 
morbidity Risk at 1 month Risk at 6 months Risk at 12 

months 
Risk at 18 

months 
Risk at 26 

months 
Heart failure 

Yes 1.5 (0.76, 2.2) 4.3 (2.7, 5.8) 6.9 (4.5, 9.3) 9.5 (6.2, 13) 14 (8.5, 20) 
No 0.26 (0.18, 0.33) 0.72 (0.56, 0.88) 1.1 (0.90, 1.4) 1.5 (1.2, 1.9) 2.4 (1.7, 3.0) 

Ischemic heart disease 
Yes 0.79 (0.35, 1.2) 3.1 (1.8, 4.3) 6.0 (3.8, 8.2) 8.7 (5.7, 12) 11 (6.6, 16) 
No 0.28 (0.21, 0.35) 1.1 (0.91, 1.3) 2.2 (1.9, 2.6) 3.5 (3.0, 4.0) 4.9 (4.1, 5.8) 

Stroke/transient ischemic attack 
Yes 1.2 (0.52, 2.0) 4.5 (2.7, 6.3) 8.2 (5.6, 11) 11 (7.6, 14) 13 (8.1, 18) 
No 0.25 (0.17, 0.32) 0.97 (0.79, 1.1) 2.0 (1.7, 2.3) 3.2 (2.7, 3.7) 4.8 (4.0, 8.2) 

Any cardiovascular event 
Yes 3.5 (2.5, 4.6) 12 (9.7, 15) 23 (18, 27) 32 (26, 37) 41 (32, 50) 
No 0.86 (0.73, 1.0) 3.1 (2.8, 3.4) 5.9 (5.4, 6.4) 8.9 (8.1, 9.7) 13 (12, 15) 

 

 

Table 14. Excess risk of cardiovascular events per 1,000 live births for severe maternal morbidity vs. no 

severe maternal morbidity, excluding deliveries whose only SMM indicator was blood transfusion, 

Pennsylvania Medicaid, 2016-2018. 

 Risk difference (95% CI) per 1,000 live births at each month of follow-up1 
Severe maternal 

morbidity 1 month 6 months 12 months 18 months 26 months 

Heart failure 
Yes 1.4 (0.62, 2.3) 4.2 (2.3, 6.0) 6.9 (4.1, 9.7) 9.4 (5.6, 13) 14 (7.4, 21) 
No Ref Ref Ref Ref Ref 

Ischemic heart disease 
Yes 0.63 (0.11, 1.1) 2.4 (0.94, 3.9) 4.7 (2.1, 7.2) 6.5 (3.0, 10) 8.0 (2.6, 13) 
No Ref Ref Ref Ref Ref 

Stroke/transient ischemic attack 
Yes 1.1 (0.30, 2.0) 4.0 (1.9, 6.1) 6.9 (3.9, 10) 8.9 (4.9, 13) 9.7 (4.0, 15) 
No Ref Ref Ref Ref Ref 

Any cardiovascular event 
Yes 3.2 (1.9, 4.5) 11 (7.7, 14) 20 (15, 25) 27 (20, 33) 34 (23, 44) 
No Ref Ref Ref Ref Ref 
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Table 15. Excess risk of cardiovascular events per 1,000 live births for severe maternal morbidity vs. no 

severe maternal morbidity, assuming term gestation of 38 weeks, Pennsylvania Medicaid, 2016-2018. 

 Risk difference (95% CI) per 1,000 live births at each month of follow-up1 
Severe 

maternal 
morbidity 

1 month 6 months 12 months 18 months 26 months 

Heart failure 
Yes 1.4 (0.57, 2.3) 4.0 (2.1, 5.6) 6.2 (3.5, 8.9) 8.4 (4.8, 12) 13 (6.3, 19) 
No Ref Ref Ref Ref Ref 

Ischemic heart disease 
Yes 0.34 (-0.18, 0.87) 1.6 (-0.002, 3.2) 3.5 (0.83, 6.2) 5.2 (1.7, 8.8) 6.4 (1.4, 11) 
No Ref Ref Ref Ref Ref 

Stroke/transient ischemic attack 
Yes 1.1 (0.33, 1.9) 4.2 (2.1, 6.2) 7.5 (4.0, 11) 9.3 (5.0, 14) 9.6 (4.0, 15) 
No Ref Ref Ref Ref Ref 

Any cardiovascular event 
Yes 2.9 (1.6, 4.3) 10 (6.7, 14) 18 (12, 23) 24 (17, 31) 29 (18, 40) 
No Ref Ref Ref Ref Ref 

 

 

Table 16. Excess risk of cardiovascular events per 1,000 live births for severe maternal morbidity vs. no 

severe maternal morbidity, assuming term gestation of 42 weeks, Pennsylvania Medicaid, 2016-2018. 

 Risk difference (95% CI) per 1,000 live births at each month of follow-up1 
Severe maternal 

morbidity 1 month 6 months 12 months 18 months 26 months 

Heart failure 
Yes 1.4 (0.58, 2.3) 4.1 (2.3, 5.8) 6.4 (3.7, 9.1) 8.7 (5.1, 12) 13 (6.3, 19) 
No Ref Ref Ref Ref Ref 

Ischemic heart disease 
Yes 0.34 (-0.11, 0.78) 1.6 (0.07, 3.1) 3.5 (0.62, 6.3) 5.1 (1.2, 9.0) 6.2 (0.79, 12) 
No Ref Ref Ref Ref Ref 

Stroke/transient ischemic attack 
Yes 1.1 (0.31, 1.9) 4.1 (2.0, 6.3)) 7.3 (3.7, 11) 9.2 (4.6, 14) 9.5 (4.0, 15) 
No Ref Ref Ref Ref Ref 

Any cardiovascular event 
Yes 2.9 (1.7, 4.2) 10 (7.0, 13) 19 (14, 24) 25 (18, 32) 29 (18, 39) 
No Ref Ref Ref Ref Ref 
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3.0 Chapter 3: The impact of undersampling on the predictive performance of logistic regression 

and machine learning algorithms: A simulation study. 

3.1 Introduction 

Machine learning techniques may improve risk prediction and disease screening. Class 

imbalance (ratio of non-cases to cases > 1) routinely occurs in epidemiologic data and may degrade 

the predictive performance of machine learning algorithms.95,142-144  Of the many techniques 

developed to address class imbalance,145,146 here we investigated simple undersampling. This 

method is straightforward and accessible, but evidence on its performance is mixed and practical 

guidance is needed. Using simulated data, we assessed the predictive performance of the ensemble 

machine learning algorithm SuperLearner and logistic regression in imbalanced and undersampled 

data to investigate whether undersampling alters predictive accuracy. 

3.2 Methods 

3.2.1 Data-generating mechanism 

We used Monte Carlo simulation with 4 groups of 1000 Monte Carlo samples each. We 

simulated each Monte Carlo sample to have a sample size of 1000, 10 independent standard normal 

covariates generated from a random uniform distribution, and 10 independent dichotomous 

covariates generated from a binomial distribution. A dichotomous outcome was simulated from a 
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logistic regression model conditional on all 20 covariates. Parameters were chosen to lie between 

-1 and 1 for the continuous variables, and the outcome prevalence was set to lie between 0.15 and 

0.50. 

3.2.2 Study design 

In 2 of the 4 groups of Monte Carlo samples, we left all samples unbalanced. In the 

remaining 2 groups, we performed undersampling to balance each sample by randomly selecting 

a number of non-cases equal to the number of cases. To avoid overfitting, we split each Monte 

Carlo sample into training (70%) and testing (30%) sets with similar outcome prevalences.147 We 

generated predicted probabilities on 1000 undersampled and 1000 unbalanced samples 

parametrically via logistic regression and nonparametrically via stacking (SuperLearner).144 

SuperLearner was implemented with 10-fold cross-validation and a library of 5 algorithms with 

default tuning parameters: extreme gradient boosting, random forests, kernel k-nearest neighbors, 

kernel support vector machines, and penalized regression (LASSO). Logistic regression was 

implemented as a generalized linear model with binomial variance and a logit link function. 

Average performance metrics (sensitivity, specificity, positive and negative predictive value, and 

overall accuracy) were evaluated across all 1000 Monte Carlo samples in each group using a 

classification threshold close to the outcome prevalence of 0.2 for unbalanced groups and 0.5 for 

undersampled groups. Areas under the receiver operating curve for each sample were generated 

using the roc() function in the “pROC” package.148 All analyses were conducted using R version 

3.6.1. 
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3.3 Results 

Figure 3.A shows the receiver operating characteristic (ROC) curves for all 1000 Monte 

Carlo samples in each group and average predictive performance metrics. Areas under the curve 

across all Monte Carlo samples were similar for all groups. Performance metrics were higher for 

logistic regression than SuperLearner regardless of data preprocessing method except sensitivity 

and positive predictive value, which were higher for SuperLearner than logistic regression. 

Undersampling did not have a substantial impact on logistic regression performance; however, 

undersampling improved SuperLearner accuracy, specificity, and positive predictive value and 

worsened SuperLearner sensitivity and negative predictive value. Repeating the analysis with a 

lower outcome prevalence (2%-10%) did not substantially affect the results.  

3.4 Discussion 

We observed generally more accurate predictive performance with logistic regression than 

with SuperLearner regardless of data preprocessing method. This is expected because we 

simulated our data from a logistic model. However, SuperLearner performed nearly as well on 

average as the true data-generating mechanism although logistic regression was intentionally 

excluded from the SuperLearner library. In our simulations, undersampling did not dramatically 

improve predictive performance, suggesting that ensemble machine learning can achieve adequate 

performance in similar settings with moderate class imbalance. These results provide some insight 

on the optimal use of machine learning for predicting imbalanced outcomes. 
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3.5 Tables and figures 

 

Figure 3.A Receiver operating characteristics (ROC) curves and predictive performance of each simulated 

data set, N = 1000. 
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Table 17. Average performance metrics of SuperLearner and logistic regression over 1000 Monte Carlo 

samples by data preprocessing method. 

 Undersampled Unbalanced 

 SuperLearner Logistic 
regression SuperLearner Logistic 

regression 
Area under the 
receiver operating 
curve 

0.62 0.63 0.63 0.65 

Sensitivity 0.59 0.20 0.69 0.17 

Specificity 0.58 0.91 0.44 0.93 
Positive predictive 
value 0.58 0.42 0.31 0.48 

Negative predictive 
value 0.59 0.77 0.84 0.76 

Accuracy 0.58 0.74 0.54 0. 74 



  77 

4.0 Chapter 4: Ensemble machine learning for severe maternal morbidity identification 

4.1 Introduction 

The United States’ maternal mortality rate is the highest of any comparably high-income 

country, but the small absolute number of deaths each year and inconsistencies in reporting pose 

serious challenges to maternal mortality research. Severe maternal morbidity (SMM) is a broad 

designation for severe adverse complications in peripartum period that do not result in death.3 

Because SMM and maternal mortality share risk factors and etiologies,19 SMM is a proxy for 

maternal mortality. Further, SMM itself is important to study because it is costly and associated 

with poor maternal health outcomes.119,149 Accurate measurement of SMM is important for 

research and for guiding maternal care quality improvement efforts. Evidence suggests that 

available tools used to classify SMM may not accurately quantify population or hospital-level 

prevalence of SMM.  

There is no global consensus on what constitutes a SMM and accordingly, its definitions 

vary.3,33,46,150 In 2016, the American College of Obstetricians and Gynecologists/Society for 

Maternal-Fetal Medicine (ACOG/SMFM) issued guidelines for severe maternal morbidity 

identification at the hospital level.42 This “screen and review” procedure involves identifying 

putative SMM cases by screening with a few simple criteria (transfusion of > 3 units of blood 

products or ICU admission), then performing medical record review on screen-positive cases 

according to a more extensive set of clinical criteria. In North America, the most commonly-used 

SMM definition for studies using administrative or claims databases is one developed by the 

Centers for Disease Control and Prevention (CDC),1-3 consisting of 21 diagnoses and procedures 
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with corresponding International Classification of Diseases (ICD) codes. This list of diagnoses and 

procedures is often combined with other nonspecific indicators of severe complications, such as 

intensive care unit (ICU) admission, prolonged postpartum length of stay (PPLOS), and/or 

transfusion of > 3 units of blood products.2 Although the validity of these SMM identification 

criteria (henceforth “screening criteria”) have not been extensively evaluated, low positive 

predictive value is a concern.51,132  

The ACOG/SMFM screen-and-review guidelines are intended to improve ascertainment 

of true SMM cases at the hospital level, unlikely to be scaled up without dedication of extensive 

resources. Machine learning methods may provide an alternative approach to identifying cases of 

SMM. Reflecting the increasing popularity of machine learning methods for predictive modeling 

in epidemiology,8,92,151 two recent papers sought to identify SMM cases from administrative and 

hospital data using these methods. One developed an expanded version of an existing obstetric 

comorbidity index54 to predict screen-positive SMM across administrative data settings using 

techniques that incorporate machine learning.55 The other aimed to identify true-positive (medical 

record-reviewed) SMM cases using cross-validated regression modeling in a machine learning 

framework with a large number of predictors derived from electronic health records.53 To our 

knowledge, researchers have not attempted to improve the identification of true SMM cases by 

leveraging ensemble machine learning techniques, which “stack” multiple machine learning 

algorithms to generate optimal predictions92 Our objective was to retrospectively identify true 

SMM cases and non-cases using the ensemble machine learning algorithm SuperLearner144 in a 

rich hospital database, and to compare the predictive performances of these algorithms and 

screening criteria. 
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4.2 Methods 

4.2.1 Data source 

Data were obtained from the Magee Obstetric Maternal and Infant (MOMI) database, a 

detailed perinatal database of deliveries at Magee-Womens Hospital, University of Pittsburgh 

Medical Center, Pittsburgh, PA. MOMI is populated using data from medical records, billing, 

outpatient encounters, admitting services, ultrasound, and other ancillary systems. This study was 

approved under expedited review by the Institutional Review Board at the University of Pittsburgh 

(IRB #STUDY19030089). 

Live, singleton deliveries occurring at Magee-Womens Hospital from 2010-2011 (N = 

19,266) and from 2013-2017 (N = 47,067) were eligible for inclusion. We constructed two 

subcohorts for training and testing our SuperLearner ensemble algorithms by sampling 685 records 

from 2010-2011 and 498 records from 2013-2017. To sample records from 2010-2011 deliveries, 

we applied the screening criteria (described below and in Table 21) to the cohort and selected all 

screen-positive deliveries (n = 336) and a random sample of screen-negative deliveries (n = 349). 

A similar process was followed to sample records from 2013-2017, but in this case random samples 

of screen-positive and screen negative deliveries were drawn for each year for a total of n = 250 

and n = 258. All sampled records underwent medical record review, as described below. A 

schematic diagram detailing the construction of each subcohort is shown in Figure 4.A.  
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4.2.2 Severe maternal morbidity 

We screened deliveries in both cohorts using the screening criteria outlined in Table 21. 

Deliveries screened positive for SMM if they had any of the CDC list of 21 diagnosis or procedure 

codes for SMM identification,1 maternal intensive care unit (ICU) admission, or PPLOS (> 3 

standard deviations above the mean length of stay by mode of delivery).51 Screen-negative 

deliveries were those with no screening or identification criteria for SMM.  

We defined true SMM status according to the ACOG/SMFM Obstetric Care Consensus 

document guidelines (Table 22). After screening and sampling, both screen-positive and screen-

negative deliveries underwent detailed medical record abstraction using these guidelines to 

adjudicate whether each delivery was a true case or non-case. The protocol for jurying each case 

has been described in detail previously;51 briefly, an experienced medical record abstractor 

performed standardized chart abstractions into a custom data entry system designed to collect all 

clinical data necessary to jury cases according to the ACOG/SMFM guidelines. A maternal-fetal 

medicine specialist (KPH) reviewed every 10th case and the false-negative cases and provided 

feedback to the research analyst to improve case ascertainment. This so-called true case 

designation is the outcome we used our SuperLearner ensemble algorithms to predict.  

4.2.3 Predictors of SMM 

Predictors were chosen in consultation with a maternal-fetal medicine specialist (KPH) 

with the goal of maximizing the predictive accuracy of our ensemble machine learning algorithm. 

First, we identified a set of variables a priori as candidates for use in prediction (Table 23). 

Because SMM is associated with adverse birth outcomes42 and because the goal of this prediction 
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algorithm is to retroactively identify true SMM cases from medical record data available after 

delivery, we included intrapartum and infant characteristics in the predictor set. These candidate 

variables fell into four broad categories: maternal demographic and behavioral variables (e.g. 

race/ethnicity, insurance type, age, education), maternal health history variables (e.g. chronic 

hypertension or diabetes, anemia, renal disease, depression), labor and delivery variables (e.g. 

mode of delivery, whether labor was induced, whether general anesthesia was administered for 

delivery), and fetal and infant characteristics (e.g. 1- and 5-minute APGAR scores, preterm 

delivery, birthweight, respiratory distress). These data were ascertained from medical record 

coding and abstraction, electronic birth records, and other ancillary data systems.  

4.2.4 Statistical analysis 

A critical tenet of predictive modeling, the “firewall principle,” is that any predictive 

algorithm be evaluated on data not used to train or develop it.152 To accomplish this separation, we 

used two temporally distinct subcohorts of the MOMI data for training our ensemble algorithms 

(2010-2011) and testing their performance (2013-2017). No data that were used to train any of our 

algorithms were included in the testing process.  

We used the recipes() package for R (version 4.0.2) to apply the same data preprocessing 

and feature engineering blueprint to both the training (n = 685) and test (n = 498) subcohorts 

according to the following steps. First, we assessed missingness of data in the subcohorts. We 

excluded 3 predictors with >20% missing (maternal prepregnancy weight, smoking, and type of 

labor onset) from the predictor set. Second, for any remaining predictors with missing data, we 

performed mode imputation of all categorical predictors and mean imputation of all continuous 

predictors. Third, we transformed, centered, and scaled all continuous predictors and created 
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indicator variables for all categorical predictors. We added 0.01 to zero values of NICU length of 

stay to enable log transformation; Box-Cox transformations were applied to all other continuous 

predictors. We also prepared a version of this dataset after converting all continuous predictors to 

cubic splines for use with generalized additive models, one of the individual base learners in our 

SuperLearner ensemble algorithms in the main analysis.  

We developed 7 SuperLearner ensemble algorithms144 on the training data in order to 

predict true SMM case status in the test data. Each ensemble algorithm used different predictor 

sets and/or incorporated different elements and specifications of the screening criteria as base 

learners in the ensembles. We used a rich library of different base learner algorithms and tuning 

parameters (Table 24) for each of the ensemble algorithms we evaluated. These ensemble 

algorithms, 5 of which are presented in the main analyses and 2 of which are presented in 

supplementary material, are described in Table 18. The screening criteria alone were not an 

ensemble algorithm, did not require base learners, and made use of only of the CDC diagnosis and 

procedure codes, ICU admission, and PPLOS. Ensemble 1 used all available predictors but only 

one base learner, a generalized linear model with the screening criteria as independent variables. 

Ensemble 1 is an adaptation of the screening criteria that can be used to assess receiver operating 

characteristic (ROC) and precision-recall performance. Ensembles 2-4 used all base learners 

presented in Table 24 with different predictor sets (MOMI predictors only, MOMI predictors plus 

CDC diagnoses/procedures, and MOMI predictors plus CDC diagnoses/procedures plus ICU 

admission and PPLOS). Ensemble 5 incorporated the screening criteria as an additional base 

learner in the ensemble algorithm. Finally, Ensembles 6 and 7 are visualized in Table 18 but 

yielded results similar to the other ensemble algorithms; consequently, results for Ensembles 6 and 

7 are shown in the Appendix. Ensemble 6 left the CDC list of diagnoses and procedures out of the 
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predictor set, and Ensemble 7 used the full predictor set with a linear model including the screening 

criteria predictors as independent variables as a base learner. 

To generate predicted probabilities of true-positive SMM, we used the SuperLearner 

ensemble algorithm with 10-fold cross validation and the rank loss function,144 which minimizes 

the complement of the area under the receiver operating characteristic (ROC) curve (1-AUC). 

For the main analysis, each of these 7 SuperLearner ensemble algorithms (referred to 

hereafter as “ensemble algorithms” or “ensembles”) was fit using a variable selection algorithm 

applied together with each of 3 base learners based on linear models: Bayesian generalized linear 

models, generalized linear models, and generalized additive models. This variable selection 

algorithm selected, for inclusion in each of these base learner models, the top 20 predictors most 

highly correlated with the outcome. We also performed sensitivity analyses, repeating all analyses 

but conducting no variable selection.   

Predictive performance of the ensemble algorithms was evaluated using receiver operating 

characteristic (ROC) curves and area under the ROC curve (AUC), precision-recall curves and 

area under the precision-recall curve (PRC), and 6 measures of predictive accuracy: overall 

accuracy (total number correctly classified/total), balanced accuracy (arithmetic mean of 

sensitivity and specificity), positive predictive value (proportion of true-positives among records 

classified as positive), negative predictive value (proportion of true-negatives among records 

classified as negative), and detection rate (total true-positives/total). Predicted probabilities ≥ 0.5 

from the ensembles were classified as 1 (SMM case) and those < 0.5 were classified as 0 (SMM 

non-case). The screening criteria, which do not yield predicted probabilities of the outcome but 

rather classify records as cases or non-cases based on the presence of any of the qualifying 

conditions, were also used to generate measures of predictive accuracy. We also evaluated 
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predictive accuracy when the classification threshold was lowered to 0.3. Finally, we used the R 

package tlverse() (function sl3())153 to generate variable importance measures using a binomial 

likelihood loss function. This function generates, for each covariate, an importance measure that 

is based on the difference in the loss when that covariate is omitted from the SuperLearner fit 

versus when the covariate is included. We obtained variable importance measures using a modified 

version of Ensemble 3 excluding k-nearest-neighbors from the set of base learners. 

4.3 Results 

The full cohorts from which the training and test subcohorts were drawn were comparable 

in terms of descriptive characteristics (Table 25). Medical record validation of screen-positive and 

screen-negative deliveries resulted in a negative predictive value of 0.99 in both the training and 

test datasets; positive predictive values were 0.51 in the training set and 0.64 in the test set (Tables 

26-28). The true-positive SMM cases (n=171 in the training n=160 in the test sets) and true-

negative SMM deliveries (n=506 in the training and n=337 in the test sets) were used for the 

remaining analyses. 

In both the training and test sets, SMM true-negatives were more likely than true positives 

to be non-Hispanic white, married, privately insured, normal weight, and to deliver vaginally 

(Table 19). True-negatives were less likely than true-positives to have preexisting diabetes or 

hypertension and to deliver preterm, and had higher birthweight. 

We evaluated discriminatory ability of each algorithm using ROC curves and precision-

recall plots (4.B). Areas under the ROC curve were high for all ensemble algorithms, including 

Ensemble 1 (an approximation of the screening criteria). The highest-performing models were 
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Ensembles 4 and 5 (AUC = 0.90) and the lowest-performing were Ensembles 2 and (AUC = 0.83 

and AUC = 0.84, respectively). Similarly, Ensembles 4 and 5 exhibited the highest area under the 

precision-recall curve (PRC = 0.79 and PRC = 0.80, respectively) while Ensembles 2 and 3 

exhibited the lowest (PRC = 0.69). These results suggest that addition of ICU admission and 

PPLOS to the predictor set had the most pronounced effect on improving the performance of the 

ensemble algorithms. 

We also examined predictive performance measures based on predicted classifications. 

These measures of predictive accuracy (Table 20) were generally similar among the ensemble 

algorithms; the predictive accuracy of the screening criteria, however, was meaningfully different 

from that of the ensemble algorithms. With a classification threshold of 0.5, the screening criteria 

had the highest overall accuracy (0.82), balanced accuracy (0.86), negative predictive value (0.99), 

and detection rate (0.32), but the lowest positive predictive value (0.64). Compared to the 

screening criteria, the ensemble algorithms exhibited similar performance in terms of overall 

accuracy (0.76-0.79), but markedly lower balanced accuracy (0.64-0.69), negative predictive value 

(0.75-0.78), and detection rate (0.11-0.14). The only measure of predictive performance on which 

the ensemble algorithms all outperformed the screening criteria was positive predictive value 

(0.78-0.86). The highest-performing ensemble algorithm in terms of positive predictive value was 

Ensemble 5, including the screening criteria as a base learner in the library (0.86); this ensemble 

algorithm also had high accuracy, balanced accuracy, negative predictive value, and detection rate 

compared to the other ensemble algorithms. The overall and balanced accuracy values indicate 

that ensemble algorithms and the screening criteria perform moderately well in terms of the total 

number of correct classifications made, whether positive or negative. However, the detection rates 
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suggest that the ensemble algorithms achieve higher positive predictive value relative to the 

screening criteria by classifying fewer records as positive, whether true-positive or false-positive. 

When we lowered the classification threshold to 0.30, we observed a similar pattern in the 

predictive accuracy performance of the ensemble algorithms. The screening criteria are threshold-

invariant and have the same values for each of the predictive performance metrics in Table 20 

regardless of the threshold. With a lower threshold, overall accuracy of the ensemble algorithms 

improved slightly (0.75-0.82), as did balanced accuracy (0.69-0.80). Negative predictive values 

(0.80-0.87) and detection rates (0.17-0.24) also improved. Positive predictive values of the 

ensembles were lower with a lower classification threshold, however, ranging from 0.67-0.78. 

Ensemble 5 again exhibited the highest positive predictive value (0.78). .These results indicate that 

more records were classified as both true positives and false positives when we lowered the 

classification threshold. 

The most “important” variables were ICU admission, PPLOS, CDC diagnosis codes for 

hysterectomy, severe preeclampsia or eclampsia derived from the medical record (as opposed to 

the CDC billing diagnosis code for eclampsia), and CDC procedure codes for blood transfusion 

4.C. Unsurprisingly, when comparing the most important predictors between true positives and 

true negatives in both the training and test data sets, there were striking differences in ICU 

admission (50% and 5.3%, respectively, in the training cohort), PPLOS (26% and 2.9%, 

respectively, in the training cohort), and other highly important predictors (Table 29).  

We performed sensitivity analyses to evaluate the performance of Ensembles 6 and 7. The 

performance of Ensembles 6 and 7 was similar to the performance of other ensemble algorithms. 

Both exhibited high AUC performance (0.88 and 0.89, respectively) and PRC performance (0.79 

and 0.75, respectively) (Figure 4.D). At a classification threshold of 0.5, Ensembles 6 and 7 
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exhibited high overall accuracy (0.76-0.79) and positive predictive value (0.82-0.89) relative to 

the screening criteria, but lower balanced accuracy (0.65-0.69), negative predictive value (0.75-

0.77), and detection rate (0.11-0.13) (Table 30). Similar performance to the other algorithms was 

also evident when the classification threshold was lowered to 0.3: relative to Ensembles 6 and 7 at 

the higher classification threshold, overall accuracy (0.82-0.83), balanced accuracy (0.77-0.79), 

negative predictive value (0.84-0.85), and detection rate (0.20-0.22) were higher but positive 

predictive value (0.84-0.85) was lower. 

We also conducted sensitivity analyses not performing variable selection procedures. 

When we did not perform variable selection, predictive performance of the ensembles was not 

meaningfully different from the performance of the ensembles incorporating variable selection 

(Table 31). This was true at both classification thresholds. Areas under the ROC and precision-

recall curves were also not meaningfully different from those presented in the main analysis when 

variable selection algorithms were not applied (Figures 4.E and 4.F).  

4.4 Discussion 

In two temporally distinct cohorts from the same academic maternity hospital, we 

demonstrated that our SuperLearner ensemble algorithms generally exhibited higher positive 

predictive value and lower negative predictive value for SMM identification than existing 

screening criteria. However, their true-positive detection rate was considerably lower. All of the 

ensemble algorithms exhibited similar performance; comparison of AUC, precision-recall, and 

predictive accuracy performance across Ensembles 1-5 suggests that only the inclusion of the ICU 

admission and PPLOS screening criteria markedly improved the predictive performance of the 
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ensemble algorithms. ICU admission and PPLOS were also among the variables with the highest 

variable importance rankings.  

Overall accuracy for the ensemble algorithms and the screening criteria was comparable 

and fairly high, but was achieved differently. The screening criteria achieved good overall 

accuracy by maximizing negative predictive value and misclassifying some true-negative cases as 

positive, while the ensemble algorithms achieved good overall accuracy by maximizing positive 

predictive value and misclassifying some true-positive cases as negative. Finally, ICU admission 

and PPLOS were the components of the screening criteria that most improved prediction in the 

ensemble learners, and were also the most highly ranked in terms of variable importance. Effect 

sizes (risk or odds ratios) of >50 are necessary to use variables for screening;154,155 although we 

did not quantify effect sizes, differences in prevalence of the most “important” variables in our 

predictor set between true-positives and true-negatives are striking (Table 29). While some of the 

other variables we included in our predictor set (e.g., preterm delivery, mode of delivery) appear 

to be moderately associated with SMM, the magnitude of these associations is likely not large 

enough to reliably discriminate between true-positive and true-negative SMM.  

To our knowledge, only one published paper has attempted to predict true-positive SMM 

using machine learning techniques.53 These investigators used electronic health record data from 

deliveries at a large academic medical center to screen for SMM based on ICU admission and/or 

blood transfusion >3 units and reviewed the medical records of screen-positives. They then used 

cross-validated penalized regression models to predict true-positive SMM using a large number of 

diagnosis and procedure variables available in the electronic health record. These authors found 

that their algorithms outperformed the CDC diagnosis and procedure codes alone in terms of area 

under the ROC curve, sensitivity, and positive predictive value; AUC and sensitivity were high 
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(AUC = 0.79 for the CDC diagnoses/procedures and 0.94 for the best-performing algorithm; 

sensitivity = 0.61 for the CDC diagnoses/procedures and 0.77 for the best-performing algorithm) 

but positive predictive value was low (0.22 and 0.35 for the CDC diagnoses/procedures the best-

performing algorithm, respectively). The results of this analysis broadly agree with our own 

findings, although we used a different machine learning framework (ensemble learning), reviewed 

screen-negatives in addition to screen-positives to construct our training and test sets, and 

evaluated a wider range of performance measures. Ensemble machine learning is generally more 

accurate than individual machine learning algorithms, but may require more preparation and may 

be less interpretable.80 

Our ensemble algorithms were built to improve quantification of true-positive SMM from 

hospital delivery data in a labor-efficient way, not to predict SMM risk among women during 

antenatal care. However, several recent papers have developed or assessed tools to prospectively 

predict risk of severe maternal morbidity in pregnant women. One team used a targeted causal 

inference technique to identify maternal comorbidities that were most predictive of screen-positive 

SMM among all hospitalizations for live births in California.55 While the ultimate goal of this 

paper—to expand on an existing obstetric comorbidity index to identify women at high risk of 

screen-positive SMM during the delivery hospitalization – was different from ours, the causal 

inference technique these investigators employed used ensemble machine learning to identify 

many comorbidities that are highly predictive of SMM. Among the most predictive they found 

were placenta accreta spectrum disorder, pulmonary hypertension, and chronic renal disease. In 

the MOMI data, the variable for placenta accreta spectrum disorders was not one of the most 

“important” variables, and the prevalence of this comorbidity was not as dramatically different 

between true-positives and true-negatives in either the training or test data. Other groups have 
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assessed the ability of the original version of the obstetric comorbidity index54 to identify women 

at high risk of true-positive SMM56 and developed a predictive model for risk of maternal intensive 

care unit admission using prenatal risk factors.57  

Our work has several important limitations which should inform interpretation of the 

results. First, we were not able to report sensitivity or specificity because we sampled from our 

cohort using screening criteria.156 We therefore do not have an appropriate or interpretable 

denominator for either measure (true-positive or true-negative SMM in the full cohorts) to be able 

to evaluate the ability of screening criteria to identify true-positives and true-negatives. We instead 

reported positive and negative predictive value and other accuracy measures. This means that, 

giving how our training and test subcohorts were sampled, we can estimate the probability that a 

case is a true-positive given that it screened positive with either the screening criteria or an 

ensemble algorithm, but we can’t estimate the probability that a case will screen positive given 

that it is a true-positive. Second, there is some evidence that the degree of imbalance in outcome 

events (most commonly when non-events outnumber events) can affect the predictive performance 

of machine learning algorithms, including ensemble algorithms.95,142,157 We did not take any steps 

to remedy outcome class imbalance analytically. Since true-negatives outnumbered true-positives 

in both our training and test sets, and since predicted probabilities of true-positive SMM were low, 

it is possible that our ensemble algorithms achieved high overall accuracy simply by classifying 

most records as negative. The high positive predictive values and low true-positive detection rates 

of the ensemble algorithms also suggest that these algorithms maximized accuracy by classifying 

most records as negative. Third, the generalizability and transportability of our ensemble 

algorithms to other settings are limited. Since the algorithms were trained in MOMI data, our 

conclusions may be generalizable only to other years of the MOMI data for which the same 
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predictors are available. Overfitting, a common generalizability issue, is a possibility; although we 

minimized this possibility by using distinct training and test sets and by using 10-fold cross-

validation to train our algorithms.147 Another, more insidious threat to generalizability is so-called 

contextual bias of the training data. For example, the MOMI data were derived from an academic 

maternity hospital; our algorithms may thus not be generalizable to data collected in a community 

clinic or from a claims database. This type of bias is difficult to detect and is not corrected by, e.g., 

methods to minimize overfitting.158 Finally, in the absence of clear guidance in the literature on 

sample size recommendations for classification tasks with ensemble machine learning, we relied 

on prior simulations and some partially applicable reported results159,160 to plan our sample sizes. 

However, it is possible that our sample sizes are inappropriately small given the number and 

quality of predictors we used.161  

Analytically, future directions from this work include incorporating cost-sensitive learning 

procedures into our ensemble algorithms to differentially penalize false-positive or false-negative 

classifications, and evaluating the effect of techniques to remedy class imbalance on their 

predictive performance. This work also has clinical, epidemiologic, and public health implications. 

In terms of clinical practice, our ensemble algorithms should not be used as risk prediction tools. 

In terms of epidemiologic research, our ensemble algorithms should not be used to estimate 

prevalence of true-positive SMM. However, since the positive predictive value of our ensemble 

algorithms was high, this approach might be useful to identify a sample of true-positive SMM 

cases for research in settings where medical record review may not be feasible. Finally, in terms 

of public health and policy implications, our results suggest that accurate identification of SMM 

remains a challenge, and likely will remain a challenge in the absence of a universal definition of 

SMM or national obstetric surveillance systems in the US.  
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Here, we demonstrated that ensemble machine learning for SMM identification does not 

globally improve SMM ascertainment relative to existing screening criteria. While using ensemble 

machine learning improves some performance metrics, it comes with important tradeoffs.  
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4.5 Tables and Figures 

 

Figure 4.A Study selection flow chart, Magee Obstetric Maternal and Infant Database, 2010-2017. 
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Figure 4.B. Receiver-operating characteristic (ROC) 1 and precision-recall curves for 5 ensemble algorithms, 

Magee Obstetric Maternal and Infant Database, 2013-2017, N = 498. 

 

 

Figure 4.C. Variable importance ranking of predictors for SuperLearner ensemble algorithms, Magee 

Obstetric Maternal and Infant Database, 2010-2011, N = 685. 
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Table 18. Predictors and base learners included in each ensemble algorithm designed to predict true-positive 

SMM, Magee Obstetric Maternal and Infant Database, 2013-2017, N = 498. 

 Predictors Base learners 
  Components of the 

screening criteria    

 

MOMI 
predictors 

CDC 
diagnosis 

and 
procedure 

codes 

ICU 
admission 

and 
PPLOS 

SuperLearner 
library 

Screening 
criteria 

Linear model 
with 

screening 
criteria 

variables 
Screening 
criteria  X X    
Ensemble 1      X 
Ensemble 2 X   X   
Ensemble 3 X X  X   
Ensemble 4 X X X X   
Ensemble 5 X X X X X  
Ensemble 6 X  X X   
Ensemble 7 X X X X  X 

 

Table 19. Characteristics of true-positive severe maternal morbidity cases and true-negative cases in the 

training (2010-2011) and test (2013-2017) subcohorts, Magee Obstetric Maternal and Infant Database. 

 Training subcohort, 
2010-2011 
(n = 685) 

Test subcohort, 
2013-2017 
(n = 498) 

 True 
positives  
(n = 171) 

True 
negatives  
(n = 506) 

True 
positives  
(n = 160) 

True negatives 
(n = 337) 

Maternal race, %     
          NH White 72 78 60 70 
          NH Black 25 17 30 23 
          Other 3.5 4.2 10 7.1 
Maternal age, mean (sd) 29 (6.2) 29 (6.1) 29 (5.7) 29 (5.3) 
Maternal age ≥ 35, % 21 17 19 15 
Married, % 47 55 41 54 
Maternal education, %     
          Less than high school 16 9.0 8.3 8.0 
          High school graduate 30 21 29 21 
          Some college 17 15 9.7 13 
          4-year college graduate 38 54 53 58 
Type of insurance, %     
          Private 46 62 48 60 
          Public nor none 54 38 52 40 
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Nulliparous, % 44 54 47 45 
Smoked during pregnancy, % 18 14 12 14 
Preexisting diabetes or 
hypertension, % 18 5.1 22 8.6 

Body mass index category, %     
          Underweight 3.4 6.6 4.3 3.1 
          Normal weight 42 50 30 49 
          Overweight 24 24 18 23 
          Obese 31 19 48 26 
Gestational age, weeks, mean (sd) 35 (4.0) 38 (3.0) 35 (4.6) 38 (2.5) 
Preterm birth < 37 weeks, % 56 12 48 14 
Mode of delivery, %     
          Vaginal 27 61 41 69 
          Cesarean 73 39 59 31 
Birthweight, grams, mean (sd) 2652 

(918) 3226 (674) 2526 (1013) 3185 (641) 
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Table 20. Measures of predictive accuracy for the screening criteria and each ensemble, with variable selection, under two different classification 

thresholds, Magee Obstetric Maternal and Infant Database, 2013-2017, N = 498. 

 
Classification threshold = 0.50 Classification threshold = 0.30 

 
Accuracy Balanced 

accuracy1 

Positive 
predictive 

value 

Negative 
predictive 

value 

Detection 
rate2 Accuracy Balanced 

accuracy1 

Positive 
predictive 

value 

Negative 
predictive 

value 

Detection 
rate2 

Screening 
criteria 0.82 0.86 0.64 0.99 0.32 0.82 0.86 0.64 0.99 0.32 

Ensemble 1 0.78 0.69 0.78 0.78 0.14 0.82 0.80 0.72 0.87 0.24 

Ensemble 2 0.76 0.65 0.79 0.76 0.11 0.77 0.70 0.67 0.80 0.17 

Ensemble 3 0.76 0.64 0.81 0.75 0.13 0.75 0.69 0.65 0.80 0.17 

Ensemble 4 0.78 0.68 0.85 0.77 0.12 0.82 0.77 0.78 0.84 0.20 

Ensemble 5 0.79 0.69 0.86 0.77 0.13 0.82 0.77 0.78 0.84 0.20 
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4.6 Supplemental tables and figures. 

 

 

Figure 4.D. Receiver-operating characteristic (ROC) 1 and precision-recall curves for Ensembles 6 and 7, 

with variable selection, Magee Obstetric Maternal and Infant Database, 2013-2017, N = 498. 
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Figure 4.E. Receiver-operating characteristic (ROC) 1 and precision-recall curves for 5 ensemble algorithms, 

Magee Obstetric Maternal and Infant Database, 2013-2017, N = 498. 
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Figure 4.F. Receiver-operating characteristic (ROC) 1 and precision-recall curves for Ensembles 6 and 7, 

with variable selection, Magee Obstetric Maternal and Infant Database, 2013-2017, N = 498. 

 

 

Table 21. Centers for Disease Control ICD-10 CM codes for identifying severe maternal morbidity (SMM) 

diagnoses and procedures. 

Indicator Diagnosis or procedure code 
Acute myocardial infarction I21.xx, I22.x 
Aneurysm I71.xx*, I79.0* 
Acute renal failure N17.x, O90.4 
Adult respiratory distress 
syndrome 

J80, J95.1, J95.2, J95.3, J95.82x, J96.0x, J96.2x R09.2 

Amniotic fluid embolism O88.1x 
Cardiac arrest/ventricular 
fibrillation 

I46.x, I49.0x 

Conversion of cardiac rhythm 5A2204Z, 5A12012 
Disseminated intravascular 
coagulation 

D65, D68.8, D68.9, O72.3 

Eclampsia O15.X, O14.22  
Heart failure/arrest during 
procedure/surgery 

I97.12x, I97.13x, I97.710, I97.711 

Puerperal cerebrovascular 
disorders 

I60.xx- I68.xx, O22.51, O22.52, O22.53, I97.81x, I97.82x, O87.3 
I62.9 – included but should not be captured if this is not a valid code. 
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Pulmonary edema/acute heart 
failure 

J81.0, I50.1, I50.20, I50.21, I50.23, I50.30, I50.31, I50.33, I50.40, 
I50.41, I50.43, I50.9 

Severe anesthesia complications O74.0 , O74.1 , O74.2, O74.3, O89.0x, O89.1, O89.2 
Sepsis O85, O86.04, T80.211A, T81.4XXA, T81.44xx; or R65.20; or A40.x, 

A41.x, A32.7 
Shock O75.1, R57.x, R65.21, T78.2XXA, T88.2 XXA, T88.6 XXA, 

T81.10XA , T81.11XA, T81.19XA 
Sickle cell disease with crisis D57.0x, D57.21x, D57.41x, D57.81x 
Air and thrombotic embolism I26.x, O88.0x, O88.2x, O88.3x, O88.8x 
Blood products transfusion 30233H1, 30233L1, 30233K1, 30233M1, 30233N1, 30233P1, 

30233R1, 30233T1,30233H0, 30233L0, 30233K0, 30233M0, 
30233N0, 30233P0, 30233R0, 30233T0,30230H1, 30230L1, 
30230K1, 30230M1, 30230N1, 30230P1, 30230R1, 
30230T1,30230H0, 30230L0, 30230K0, 30230M0, 30230N0, 
30230P0, 30230R0, 30230T0, 30240H1, 30240L1, 30240K1, 
30240M1, 30240N1, 30240P1, 30240R1, 30240T1,30240H0, 
30240L0, 30240K0, 30240M0, 30240N0, 30240P0, 30240R0, 
30240T0, 30243H1, 30243L1, 30243K1, 30243M1, 30243N1, 
30243P1, 30243R1, 30243T1, 30243H0, 30243L0, 30243K0, 
30243M0, 30243N0, 30243P0, 30243R0, 30243T0, 30250H1, 
30250L1, 30250K1, 30250M1, 30250N1, 30250P1, 30250R1, 
30250T1, 30250H0, 30250L0, 30250K0, 30250M0, 30250N0, 
30250P0, 30250R0, 30250T0, 30253H1, 30253L1, 30253K1, 
30253M1, 30253N1, 30253P1, 30253R1, 30253T1, 30253H0, 
30253L0, 30253K0, 30253M0, 30253N0, 30253P0, 30253R0, 
30253T0, 30260H1, 30260L1, 30260K1, 30260M1, 30260N1, 
30260P1, 30260R1, 30260T1, 30260H0, 30260L0, 30260K0, 
30260M0, 30260N0, 30260P0, 30260R0, 30260T0, 30263H1, 
30263L1, 30263K1, 30263M1, 30263N1, 30263P1, 30263R1, 
30263T1, 30263H0, 30263L0, 30263K0, 30263M0, 30263N0, 
30263P0, 30263R0, 30263T0’ 

Hysterectomy 0UT90ZZ, 0UT94ZZ, 0UT97ZZ, 0UT98ZZ, 0UT9FZZ 
Temporary tracheostomy 0B110Z, 0B110F, 0B113, 0B114 
Ventilation 5A1935Z, 5A1945Z, 5A1955Z 

 

 

Table 22. American College of Obstetricians and Gynecologists/Society for Maternal-Fetal Medicine 

guidelines for determining true-positive severe maternal morbidity status. 

Severe maternal morbidity Not severe maternal morbidity (insufficient 
evidence if this is the only criterion) 

Hemorrhage 
Obstetric hemorrhage with ≥ 4 units of red blood 
cells transfused 

Obstetric hemorrhage with 2-3 units of red blood 
cells transfused ALONE 
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Obstetric hemorrhage with 2 units of red blood cells 
and 2 units of fresh frozen plasma transfused 
(without other procedures or complications) if not 
judged to be overexuberant transfusion 

Obstetric hemorrhage with 2 units of red blood cells 
and 2 units of fresh frozen plasma transfused AND 
judged to be “overexuberant” 

Obstetric hemorrhage with < 4 units of blood 
products transfused and evidence of pulmonary 
congestion that requires >1 dose of furosemide 

Obstetric hemorrhage with <4 units of blood 
products transfused and evidence of pulmonary 
edema requiring only 1 dose of furosemide 

Obstetric hemorrhage with return to operating 
room for any major procedure (excludes dilation 

 

Any emergency/unplanned peripartum 
hysterectomy, regardless of number of unites 
transfused (includes all placenta accretas) 

Planned peripartum hysterectomy for 
cancer/neoplasia 

Obstetric hemorrhage with uterine artery 
embolization, regardless of number of units 
transfused 

 

Obstetric hemorrhage with uterine balloon or 
uterine compression suture placed and 2-3 units of 
blood products transfused 

Obstetric hemorrhage with uterine balloon or 
uterine compression suture placed and ≤1 unit of 
blood products transfused 

Obstetric hemorrhage admitted to intensive care 
unit for invasive monitoring or treatment (either 
medication or procedure; not just observed 
overnight) 

Any obstetric hemorrhage that went to the intensive 
care unit for observation only without further 
treatment 

Hypertension/neurologic 
Eclamptic seizure(s) or epileptic seizures that were 
“status” 

 

Continuous infusion (intravenous drip) of an 
antihypertensive medication 

 

Nonresponsiveness or loss of vision, permanent or 
temporary (but not momentary), documented in 
physician’s progress notes 

 

Stroke, coma, intracranial hemorrhage  
Preeclampsia with difficult-to-control severe 
hypertension (> 160 systolic blood pressure or 
>110 diastolic blood pressure) that requires 
multiple intravenous doses, persistent ≥48 hours 
after delivery, or both 

Chronic hypertension that drifts up to severe range 
and needs postoperative medication dose 
alteration: preeclampsia blood pressure control 
with an oral medication ≥48 hours after delivery 

Liver or subcapsular hematoma or severe liver 
injury admitted to the intensive care unit (bilirubin 
>6 or liver enzymes >600) 

Abnormal liver function requiring extra prolonged 
postpartum length of stay but not in an intensive 
care unit 

Multiple coagulation abnormalities or severe 
hemolysis, elevated liver enzymes, and low platelet 
count (HELLP) syndrome 

Severe thrombocytopenia (<50,000) alone that 
does not require a transfusion or intensive care unit 
admission 

Renal 
Diagnosis of acute tubular necrosis or treatment 
with renal dialysis 

Oliguria treated with intravenous fluids (no 
intensive care unit admission) 
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Oliguria treated with multiple doses of Lasix Oliguria treated with 1 dose of intravenous fluids 
(no intensive care unit admission) 

Creatinine ≥2.0 in a woman without preexisting 
renal disease OR a doubling of the baseline 
creatinine in a woman with preexisting renal 
disease  

 

Sepsis 
Infection with hypotension with multiple liters of 
intravenous fluid or pressors used (septic shock) 

Fever >38.5°C with elevated lactate alone without 
hypotension 

Infection with pulmonary complications such as 
pulmonary edema or acute respiratory distress 
syndrome 

Fever >38.5°C with presumed 
choriometritis/endometritis with elevated pulse but 
no other cardiovascular signs and normal lactate 

 Positive blood culture without other evidence of 
significant systemic illness 

Pulmonary 
Diagnosis of acute respiratory distress syndrome, 
pulmonary edema, or postoperative pneumonia 

Administration of oxygen without a pulmonary 
diagnosis 

Use of a ventilator (with either intubation or 
noninvasive technique) 

 

Deep vein thrombosis or pulmonary embolism  
Cardiac 

Preexisting cardiac disease (congenital or acquired) 
with intensive care unit admission for treatment 

Preexisting cardiac disease (congenital or acquired) 
with intensive care unit admission for observation 
only 

Peripartum cardiomyopathy Preexisting cardiac disease (congenital or acquired) 
without intensive care unit admission for 
observation only 

Arrhythmia requiring >1 dose of intravenous 
medication but not intensive care unit admission 

Arrhythmia requiring 1 dose of intravenous 
medication but no intensive care unit admission 

Arrhythmia that requires intensive care unit with 
further treatments 

Arrhythmia that requires intensive care unit 
observation but no extra treatments 

Intensive Care Unit/Invasive Monitoring 
Any intensive care unit admission that includes 
treatment or diagnostic or therapeutic procedure 

Intensive care unit admission for observation of 
hypertension that does NOT require intravenous 
medications 

Central line or pulmonary catheter used to monitor 
a complication 

Intensive care unit admission for observation after 
general anesthesia 

Surgical, Bladder, and Bowel Complications 
Bowel or bladder injury during surgery beyond 
minor serosal tear 

 

Small-bowel obstruction, with or without surgery 
during pregnancy/postpartum period 

 

Prolonged ileus for ≥4 days Postoperative ileus that resolved without surgery in 
≤3 days 

Anesthesia Complications 
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Total spinal anesthesia Failed spinal anesthesia that requires general 
anesthesia 

Aspiration pneumonia Spinal headache treated with a blood patch 
Epidural hematoma  

 

 

Table 23. List of candidate predictors for ensemble algorithms, Magee Obstetric Maternal and Infant 

Database, 2010-2011. 

Maternal demographic 
and behavioral 

variables 

Maternal health 
variables 

Labor and delivery 
variables 

Fetal and infant 
variables 

Age 
Pregnancy-related 

hypertensive 
disorders 

Type of labor onset Fetal arrhythmia 

Education Chronic hypertension Delivery type Infant sex 

Race/ethnicity Depression Repeat cesarean NICU length of 
stay 

Marital status Adult respiratory 
distress syndrome 

Vaginal birth after 
cesarean Birthweight 

Insurance status Asthma Premature rupture of 
membranes Growth restriction 

Smoking during 
pregnancy Pneumonia Vacuum-assisted 

delivery Fetal death 

Height Diabetes Chorioamnionitis Respiratory 
distress 

Weight Anemia Uterine rupture Placental 
pathology 

 Kidney disease Preterm delivery Infant status at 
discharge 

 Postpartum 
complications 

Prolonged membrane 
rupture 

1-minute APGAR 
score 

 Maternal status at 
discharge 

Previous cesarean 
delivery 

5-minute APGAR 
score 

 Outcome of prior 
pregnancy 

General anesthesia 
administered Fetal presentation 

 Maternal arrhythmia Vaginal laceration Gestational age at 
delivery 

 History of infertility Labor induction  

 Number of abortions Type of labor 
induction  

 Parity Placenta previa  
 Gravidity   
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Table 24. Base learners and tuning parameters included in each SuperLearner ensemble algorithm. 

Learner Tuning parameters 
Bayesian generalized 
linear models 

 

Random forests • Number of trees: 500, 2500 
• Variables for splitting at each node: 2, 3, 4 
• Sampling with replacement: TRUE, FALSE 

Mean  
Generalized linear 
models 

 

Generalized additive 
models 

 

Penalized regression • Alpha: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
k-nearest-neighbors • k: 2, 3, 4, 5 

 

Table 25. Characteristics of liveborn singleton deliveries at Magee-Womens Hospital, 2010-2011 and 2013-

2017. 

 Eligible training 
cohort, 

2010-2011 
(N =19,266) 

Eligible test 
cohort, 

2013-2017 
(N = 47,067) 

Maternal race, %   
NH White 75 70 
NH Black 20 21 

Other, declined, or unspecified 5.4 8.9 
Maternal age, mean (sd) 29 (5.9) 29 (5.5) 
Maternal age ≥ 35, % 16 17 
Married, % 56 55 
Maternal education, %   

Less than high school 8.3 6.8 
High school graduate 22 22 

Some college 15 13 
4-year college graduate 56 59 

Type of insurance, %   
Private 63 62 

Public nor none 37 38 
Nulliparous, % 48 44 
Smoked during pregnancy, % 14 12 
Preexisting diabetes or 
hypertension, % 

3.7 5.3 

Body mass index category, %   
Underweight 4.8 4.0 
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Normal weight 53 48 
Overweight 22 24 

Obese 19.4 24.1 
Gestational age, weeks, mean (sd) 39 (2.4) 39 (2.4) 
Preterm birth < 37 weeks, % 10 10 
Mode of delivery, %   

Vaginal 72 71 
Cesarean 28 29 

Birthweight, grams, mean (sd) 3277 (615) 3253 (622) 
 

Table 26. Validation of screening criteria in the training subcohort, Magee Obstetric Maternal and Infant 

Database, 2010-2011, N = 685). 

 Gold-standard 
definition  

Screening 
result SMM No SMM Total 

SMM 173 163 336 
No SMM 1 348 349 

Total 174 511 685 
 

Table 27. Validation of screening criteria in the test subcohort, Magee Obstetric Maternal and Infant 

Database, 2010-2011, N = 498. 

 Gold-standard 
definition Total 

Screening 
result SMM No SMM  

SMM 160 90 250 
No SMM 1 247 248 

Total 161 337 498 
 

Table 28. Positive and negative predictive values of the screening criteria in the training and test subcohorts, 

Magee Obstetric Maternal and Infant Database. 

 Training set Test set 
Positive predictive 
value 0.51 0.64 

Negative predictive 
value 0.99 0.99 
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Table 29. Distribution of variables most highly-ranked in terms of variable importance by true-positive and 

true-negative SMM status in the training and test subcohorts, Magee Obstetric Maternal and Infant 

Database, 2010-2011 (N = 685) and 2013-2017 (N = 498). 

 Training subcohort, 
2010-2011 
(n = 685) 

Test subcohort, 
2013-2017 
(n = 498) 

 True positives  
(n = 171) 

True 
negatives (n 

= 506) 

True positives 
(n = 160) 

True 
negatives (n 

= 337) 
Birthweight, grams, mean (sd) 2652 (918) 3226 (674) 2526 (1013) 3185 (641) 
ICU admission, % 50 5.3 63 8.0 
Prolonged length of stay by delivery type, 
% 26 2.2 16 3.6 

SMM: hysterectomy, % 23 0.79 6.3 0.0 
Severe preeclampsia/Eclampsia, % 26 3.5 24 2.1 
SMM: transfusion, % 47 20 44 12 
Multimorbidity (2+), % 32 1.2 18 0.59 
SMM: sepsis, % 6.6 0.0 5.6 0.30 
SMM: DIC, % 9.0 0.0 2.5 1.5 
General anesthesia during delivery, % 38 4.0 8.8 0.64 
SMM: Eclampsia, % 7.2 0.59 1.25 0.0 
Repeat c-section, % 26 13 23 15 
Previous c-section, % 27 15 23 14 
NICU length of stay, days, mean (sd) 11 (16) 2.6 (11) 15 (25) 3.2 (11) 



  108 

 

Table 30. Measures of predictive accuracy for Ensembles 6 and 7, with variable selection, under two different classification thresholds, Magee Obstetric 

Maternal and Infant Database, 2013-2017, N = 498. 

 
Classification threshold = 0.5 Classification threshold = 0.3 

 
Accuracy Balanced 

accuracy1 

Positive 
predictive 

value 

Negative 
predictive 

value 

Detection 
rate2 Accuracy Balanced 

accuracy1 

Positive 
predictive 

value 

Negative 
predictive 

value 

Detection 
rate2 

Ensemble 6 0.79 0.69 0.89 0.77 0.13 0.83 0.79 0.77 0.85 0.22 

Ensemble 7 0.76 0.65 0.82 0.75 0.11 0.82 0.77 0.78 0.84 0.20 
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Table 31. Measures of predictive accuracy for the screening criteria and each ensemble, with no variable selection, under two different classification 

thresholds, Magee Obstetric Maternal and Infant Database, 2013-2017, N = 498. 

 
Classification threshold = 0.5 Classification threshold = 0.3 

 
Accuracy Balanced 

accuracy1 

Positive 
predictive 

value 

Negative 
predictive 

value 

Detection 
rate2 Accuracy Balanced 

accuracy1 

Positive 
predictive 

value 

Negative 
predictive 

value 

Detection 
rate2 

Ensemble 1 0.76 0.65 0.79 0.75 0.11 0.76 0.71 0.68 0.80 0.17 

Ensemble 2 0.76 0.64 0.80 0.75 0.10 0.76 0.69 0.65 0.79 0.17 

Ensemble 3 0.76 0.65 0.82 0.75 0.11 0.79 0.73 0.73 0.81 0.18 

Ensemble 4 0.76 0.65 0.80 0.75 0.11 0.79 0.73 0.73 0.81 0.18 

Ensemble 5 0.78 0.69 0.78 0.78 0.14 0.82 0.80 0.72 0.87 0.24 

Ensemble 6 0.77 0.66 0.81 0.76 0.12 0.80 0.75 0.75 0.82 0.19 

Ensemble 7 0.77 0.67 0.84 0.76 0.12 0.79 0.73 0.73 0.81 0.18 
Screening 
criteria 0.82 0.86 0.64 0.99 0.32 0.82 0.86 0.64 0.99 0.32 
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5.0 Chapter 5: Conclusion 

The broad of objective of this work was to improve both understanding and measurement 

of severe maternal morbidity (SMM). As maternal health in the US continues to be an issue of 

urgent concern, these findings can be used to inform both research strategies and public policies 

to better quantify, treat, manage, and ultimately prevent SMM. This chapter will summarize key 

findings from this work, discuss strengths and limitations of each project to better contextualize 

the major findings, consider public health implications of the work, and discuss possible future 

directions for further research. 

5.1 Summary of findings 

The first key finding from this work was that SMM is associated with increased risk of 

severe adverse cardiovascular events up to 2 years postpartum. By following women enrolled in 

Pennsylvania Medicaid through their pregnancies, deliveries, and postpartum enrollment in the 

program, we were able to calculate the average treatment effect of SMM during the peripartum 

period on risk of ischemic heart disease, stroke/transient ischemic attack, heart failure, and a 

composite of these three conditions plus atrial fibrillation up to 2 years after delivery. These 

average treatment effect estimates are large, indicating that SMM is associated with greatly 

increased risk. For example, the risk differences per 1,000 live births for SMM vs. no SMM for 

the composite outcome were 2.7 (1.6, 3.8) at 1 month postpartum, 9.3 (6.5, 12) at 6 months 

postpartum, and 17 (12, 21) at 12 months postpartum. Modeling risk at each month of follow-up, 
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we demonstrated that this high risk persists after the traditional end of the postpartum period at 42 

days post-delivery. Taken together, our results strongly suggest that women with SMM constitute 

a high-risk group for cardiovascular complications in the postpartum period. These women may 

require more individualized and extensively coordinated postpartum care. Our findings also 

illustrate the broader burden of poor maternal health surrounding SMM that extends beyond the 

postpartum period. Although most SMM research treats SMM as an outcome, the vast majority of 

people who experience an SMM survive. Our work is some of the only work conducted in a US 

population to investigate postpartum consequences of SMM. Most SMM research is also 

conducted in hospital discharge databases or other administrative databases where all data are 

collected during the hospitalization for delivery. Our results, however, shed light on aspects of the 

population burden of SMM in the US that can’t be investigated using discharge databases. Our 

findings, demonstrating that women with SMM remain at elevated risk of these severe, costly, and 

potentially life-threatening events long after delivery, support recommendations that target 

comprehensive, high-quality postpartum care for every birthing person in the United States.  

Increasing use of machine learning in the biomedical sciences, including epidemiology, 

means that epidemiologists have to consider issues specific to machine learning, such as outcome 

class imbalance. Outcome class imbalance refers to situations, common in epidemiologic data, 

where non-events outnumber events by some factor: 2:1, 5:1, 10:1, or more. The second key 

finding from this work was that moderate imbalance in outcome classes (where, for example, non-

events outnumber events 5:1) does not greatly affect SuperLearner ensemble performance in terms 

of area under the receiver operating characteristic (ROC) curve, and further that downsampling an 

imbalanced data set to achieve balance between outcome classes does not deliver meaningful 

improvements in predictive performance. Performance of an unbalanced vs. balanced (via 
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downsampling) SuperLearner algorithm was similar in terms of overall accuracy (0.54 and 0.57, 

respectively) and area under the ROC curve (0.63 and 0.62, respectively); sensitivity was reduced 

by downsampling while positive predictive value was improved. We also explored the effects of 

selecting different thresholds of predicted probability of the outcome above which a prediction is 

classified as a positive outcome case; in the absence of any data-driven method to choose optimal 

thresholds, exploring thresholds based on the distribution of predicted probabilities can help 

investigators choose the one that best suits their objective. Most epidemiology papers report only 

the area under the ROC curve, sensitivity and specificity; however, these measures are not 

sensitive to the prevalence of the outcome and can be misleading when outcome classes are 

imbalanced. Thus, guidance on how to deal with class imbalance is needed, and our findings have 

implications for epidemiologists who are interested in incorporating machine learning techniques 

into their work. 

Finally, the third major finding of this work was that ensemble machine learning 

(SuperLearner) can improve some aspects of true (adjudicated by medical record review) SMM 

case ascertainment, but that existing screening criteria for SMM also perform well by comparison. 

For example, the screening criteria had a negative predictive value of 0.99, a positive predictive 

value of 0.64, an overall accuracy of 0.82, and a detection rate of 0.32. By contrast, one of the 

best-performing SuperLearner ensemble algorithms had a negative predictive value of 0.77, a 

positive predictive value of 0.86, an overall accuracy of 0.79, and a detection rate of 0.13. This 

ensemble algorithm included all components of the screening criteria in the predictor set and 

additionally incorporated the screening criteria as a base learner. The practical utility of these 

findings will depend on context and objective of researchers who might be interested in using 

machine learning tools to identify SMM cases in their data. Our results illustrate an important 
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tradeoff between the extremely high negative predictive value achieved by the screening criteria 

and the much-improved positive predictive value achieved with ensemble machine learning. 

However, since higher positive predictive value with machine learning is achieved by classifying 

few cases as true positives overall, an ensemble machine learning approach might not be optimal 

for population-level surveillance of severe maternal morbidity. Such an approach is still less labor-

intensive than comprehensive medical record review, and could be a quick and easy way to identify 

some true-positive cases in a given data setting without relying on screening criteria, or if screening 

criteria are not available. Importantly, we found that both the screening criteria and ensemble 

machine learning algorithms have difficulty identifying true-positive SMM. This could be because 

the definition of SMM is imprecise, or because we did not have predictors in our data with strong 

enough associations with the outcome to reliably distinguish true-positives from true-negatives.155 

5.2 Strengths and limitations 

The findings outlined above each have important strengths and limitations. These should 

be used to contextualize and critically evaluate the findings from this work and their public health 

relevance. Our finding of increased cardiovascular risk postpartum following SMM should be 

evaluated in light of 6 major limitations. First, we relied on a screening definition of SMM (the 

CDC list of diagnosis and procedure codes or any ICU admission) to define the exposure, although 

evidence is emerging that the screening definition identifies many false-positive cases (ref). This 

high false-positive rate is most commonly attributed to the inclusion of blood transfusion 

procedure codes in the screening definition of SMM as a proxy for obstetric hemorrhage. We 

addressed this limitation with sensitivity analyses excluding blood transfusion; though our results 
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did not meaningfully change, the point estimates were slightly larger. This is to be expected, since 

some individuals with transfusion as their only SMM indicator are likely not SMM cases; 

excluding them from the “exposed” group thus increases the magnitude of the effect estimate. 

Nonspecificity of the blood transfusion procedure codes is widely recognized, and effect estimates 

for SMM and non-transfusion SMM are commonly reported together, as we did.  

Second, the screening criteria were based on ICD codes and intended to be used in 

administrative data sets, but administrative data were not designed for research purposes. 

Therefore, they may have a number of data quality issues such as miscoding and under-

ascertainment of important variables. We were unable to use other definitions of SMM due to the 

constraints of the Medicaid claims data that we used for this analysis; however, conducting this 

work using Medicaid claims data allowed us to count SMM over the entire peripartum period in 

our exposure definition. Similarly, we did not have information on length of gestation in this data. 

We addressed this limitation by assuming 40 weeks of gestation for all term deliveries. We used 

sensitivity analyses to assess the impact of varying the length of gestation assumed for term 

deliveries to 38 weeks and 42 weeks; doing so only slightly affected our effect estimates. Use of 

Medicaid claims data also limited the generalizability of our results. Medicaid is only one payer, 

and Medicaid populations tend to have lower socioeconomic status than the total obstetric 

population in the US. While our results may not be generalizable to the general obstetric population 

in the US, 40% of all U.S. deliveries covered by Medicaid. 

Third, in addition to the exposure definition, the outcome and confounder definitions used 

in the analysis were also based on ICD codes. Consequently, our study is potentially subject to 

information biases, the effects of which are difficult to predict. In this case, under-ascertainment 

rather than coding errors are likely responsible; ICD coding has differential accuracy depending 
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on the condition. For example, obesity is almost certainly under-ascertained in our analyses; the 

prevalence in our sample was approximately 20%, while the prevalence of obesity in reproductive-

age women in the United States is 45%.162 ICD-10 codes for obesity have high positive predictive 

value, but low sensitivity – the codes are accurate when obesity is recorded, but it is frequently not 

recorded.137 Obesity is just one example; many intrapartum diagnoses and procedures are under-

ascertained in delivery discharge records compared to the medical record.163 It is thus possible that 

there is pervasive under-ascertainment of exposure, outcome, and covariates in our analysis and 

that such under-ascertainment is differential by exposure or outcome status. It is difficult to 

estimate how these potential biases might affect our results; this is another important limitation of 

using administrative data for population health research.  

Fourth, the heterogeneity of SMM complicates interpretation of our findings. Though it is 

unlikely that all SMM conditions or procedures equally predispose individuals to adverse 

cardiovascular events postpartum, even in our large Medicaid cohort we did not have sufficient 

sample size to examine individual SMM conditions in relation to the outcomes. This heterogeneity 

also limits our ability to make causal inferences about the relationship between SMM and adverse 

cardiovascular events postpartum; the consistency assumption for causal identification is de facto 

violated because SMM is a group of many different conditions and procedures.138,139 However, the 

associational measures we calculated are informative although our results cannot be interpreted 

causally. 

Fifth, there is potential for unmeasured confounding to bias our results. In particular, 

confounding by history of adverse cardiovascular events or prior SMM is a threat to the validity 

of our findings. It is possible that some people in our study had adverse cardiovascular events or 

SMM events prior to either their enrollment in Medicaid or their inclusion in the study cohort. We 
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attempted to address this by restricting the analysis only to those individuals with incident 

outcomes after delivery (i.e. with no history of any of the outcomes prior to the start of follow-up). 

However, it is still possible that there are some prior outcome events that we could not detect 

because they occurred prior to the start of the study period or prior to an individual’s enrollment 

in Medicaid. Bias resulting from residual confounding is also a possibility; we attempted to 

minimize the impact of residual confounding by choosing covariates for adjustment carefully using 

theory-based causal diagrams.  

Sixth and finally, loss to follow-up is not random our Medicaid cohort or in Medicaid 

claims data generally. People may be covered by Medicaid under a variety of eligibility categories, 

including through the expansion of Medicaid under the Patient Protection and Affordable Care Act 

(PPACA), due to a disability, or due to pregnancy. These patterns of eligibility contribute to known 

differential patterns in loss to follow-up in Medicaid populations.111 Non-random loss to follow-

up can introduce substantial selection bias. In our case, our results would be underestimates if the 

factors that predispose women to SMM also predispose them to disenrollment from Medicaid, or 

overestimates if the women most likely to have SMM are also differentially likely to remain 

enrolled. We are confident that we addressed this issue by constructing and applying inverse 

probability of censoring weights.110  

Findings from the simulation analysis to explore class imbalance are not affected by 

unmeasured confounding, selection bias, or information biases, because the data for the analysis 

were simulated from a logistic model according to our specifications. However, these findings are 

not without important limitations. First, we optimized our ensemble algorithms for area under the 

receiver operating characteristic (ROC) curve (AUC); we could have evaluated other performance 

metrics since AUC can give a misleadingly optimistic picture of classifier performance, especially 
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if the outcome classes are imbalanced.164 Second, we only evaluated downsampling as a means to 

balance the outcome classes, though there are other ways of creating balance between outcome 

classes such as oversampling and synthetic minority class oversampling (SMOTE). 

Downsampling is somewhat controversial because it discards data that could otherwise be used 

for prediction. However, downsampling is intuitive and easy to implement and consequently is 

potentially attractive to epidemiologists without extensive machine learning or predictive 

modeling expertise. Third, we simulated moderate class imbalance (5:1) and so these findings may 

not apply to settings with extreme class imbalance such as SMM or cancer screening, where 

negative screens might outnumber positive screens by a factor of 10 or more.147,165,166 However, 

the degree of class imbalance we simulated does approximate the outcome class distribution of 

many conditions in many settings, such as diabetes in a population-based cohort.167 This work thus 

provides some practical guidance for epidemiologists. 

The strengths and limitations of our project to build an ensemble algorithm to predict SMM 

reflect its goals: accurate prediction rather than etiologic inference. First, because of the sampling 

schemes we used to construct them, our training and test data have artificially high prevalence of 

SMM that does not reflect the true rarity of SMM in population-based cohorts. Thus, outcome 

class imbalance might substantially affect the predictive performance of our algorithms should 

they be applied to “real,” un-sampled data (e.g., to the MOMI test cohorts of all deliveries in 2013-

2017). Although our simulation analyses indicated that class imbalance would not pose serious 

problems for SuperLearner, it is possible that in this real world, unsimulated scenario, class 

imbalance might have affected SuperLearner performance. Also because of the sampling scheme, 

we cannot report sensitivity and specificity; though we optimized our ensemble algorithms for area 

under the ROC curve, derivatives of sensitivity and specificity do not have an interpretation when 
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applied to data that were sampled based on a screening definition.156 We did evaluate many 

different measures of predictive performance that take prevalence of the outcome into account. 

Second, though confounding and causal structure are not relevant to our goal of optimizing 

prediction, there were some nontrivial differences between the training and test data sets. Similar 

to the class-imbalance scenario outlined above, this might cause issues with generalizability of our 

algorithms from the training data to the test data – performance on the test data might not be 

optimal. So-called “contextual biases” in the training set could further limit the generalizability of 

these ensemble algorithms. For example, these ensemble algorithms were trained using medical 

record review data from a high-resource academic obstetric hospital. It is therefore not guaranteed 

that these algorithms will exhibit acceptable performance in data gathered in a lower-resource 

setting where, for example, medical record abstractors or certain kinds of diagnostic tests are not 

available. Furthermore, if the patient population at Magee-Womens Hospital in 2010-2011 differed 

from the patient population at Magee-Womens Hospital in 2013-2017, or differ in how and 

whether their data is entered into MOMI, performance of the ensemble algorithms in the test set 

could be poor. It is well known that this type of contextual bias is difficult, if not impossible, to 

detect and that methods to improve algorithm generalizability and external validation performance 

(like cross-validation) cannot correct for it. Similarly, ensemble algorithms in particular can be 

difficult to interpret; how and why predictions are made is not clear (“black box”). This most 

severely limits the utility of risk prediction algorithms in clinical settings; however, it has 

implications for our work as well. We evaluated variable importance measures to assess which 

predictors contributed most to predictive performance of our algorithms, but variable importance 

measures do not “unbox” the algorithms, nor do they convey any contextual information about the 

relationship between a given predictor and the outcome.  
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Third, there is generally not firm guidance on sample size requirements for ensemble 

machine learning. We chose our sample size based only on the availability of medical record 

review and guidance from prior simulations. The current consensus in epidemiology is that the 

optimal sample size for a machine learning classification task is context- and data-dependent.161 

Optimal sample size also depends on how “noisy” the training and test data are, i.e., if they contain 

a large number of redundant predictors or predictors that are not associated with the outcome. It is 

possible that we did not adequately reduce the number of predictors available to our ensemble 

algorithms. The similarity between our results with variable selection algorithms versus without 

suggests that this was not a major limitation in our study, but it is possible that test set performance 

could be improved by exploring other so-called feature reduction strategies.  

5.3 Public health implications 

Severe maternal morbidity is many times more common than maternal death, with over 

60,000 women affected in the United States every year; the vast majority of women affected by 

SMM survive. Our work contends that the true population burden of SMM includes not only SMM 

events themselves, but also any sequelae following from SMM. Although SMM is heterogeneous 

and although we did not have sufficient statistical power to evaluate associations between 

individual SMM conditions and risk of adverse cardiovascular events postpartum, hypertensive 

and cardiovascular SMM (e.g., eclampsia, puerperal cerebrovascular disorders) were among the 

most common in our sample. Hypertensive and cardiovascular SMM are also some of the most 

common nationwide62 and contribute disproportionately to more severe outcomes.168 It is thus 

plausible that in our sample, hypertensive and cardiovascular SMM may have been more strongly 
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associated with increased risk of adverse cardiovascular events postpartum than other SMM events 

like sepsis or blood transfusion. Consequently, one implication of our findings for both clinical 

and public health practice is that better identification and treatment of women with hypertension 

or cardiovascular disease risk (both prior to and during pregnancy) could contribute to primary 

prevention of SMM and improvement in SMM outcomes.  

Our findings also suggest that people who survive SMM represent a high-risk group 

postpartum, at least in terms of risk of adverse cardiovascular events. Recognition of people who 

survived SMM as a high-risk group could be used to better tailor the transition from obstetric and 

postpartum care to longer-term well-woman care. This transition, when many women lose health 

insurance or change providers, is a known point of vulnerability for postpartum women and in our 

health care delivery system. Our results suggest that information from a woman’s medical history, 

including her delivery history, can be used to design individualized care coordination postpartum. 

The potential to implement such changes in care delivery is complicated by medical specialization, 

health finance, geographical access to care, and a number of other factors. 

This work has implications for public health and social policy as well as for individual-

level clinical care. Our results support expanding Medicaid eligibility nationwide and extending 

pregnancy-related Medicaid coverage for a longer period postpartum. Currently, Medicaid (which 

covers nearly half of all deliveries in the United States) extends postpartum coverage for at least 

60 days after delivery, with some states that expanded Medicaid under PPACA extending 

postpartum coverage for longer. Better and more continuous postpartum care would benefit all 

pregnant people, regardless of payer. Beyond Medicaid specifically, the policy implications of this 

work complement and support the American College of Obstetricians and Gynecologists’s 

(ACOG) recommendations for optimizing postpartum care.169 Specifically, our findings support 
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recommendations to change reimbursement policies for all payers (not just Medicaid) to support 

more comprehensive and continuous postpartum care, and to implement paid family leave policies 

at all levels of government to support pregnant and especially postpartum people. Finally, though 

the ACOG recommendations stop short of this, our findings support implementation of a federal 

single-payer health care system to replace the fragmented, inefficient, and frequently inaccessible 

patchwork of private and public insurance coverage available to pregnant and postpartum people 

today. 

There is increasing interest in predictive modeling in the biomedical sciences. Flexible, 

nonparametric techniques for predictive modeling, including machine learning, are an increasingly 

popular option; these techniques are especially appealing for use in high-dimensional data, where 

the number of available covariates or predictors may be even greater than the sample size. 

Although the data sets available to epidemiologists are increasingly high-dimensional, predictive 

modeling principles are not widely taught as part of epidemiology curricula. As epidemiologists 

seek to integrate machine learning into predictive modeling studies or into doubly-robust 

estimation procedures for causal inference, outcome class imbalance is likely to be a common 

issue. This is important from a clinical perspective: if, for example, severe class imbalance is not 

remedied, a risk-prediction algorithm to identify women at increased risk of developing SMM 

could incorrectly predict every woman to be low-risk, which could lead to errors of clinical 

judgment or practice. There are population health implications to the use of machine learning in 

health care settings as well, such as when algorithms determine allocation of social or medical 

services or are used to “adjust” for race/ethnicity in common clinical calculations like the estimated 

glomerular filtration rate (eGFR). Although machine learning is a technique and not an 

epistemological framework, the kinds of applications for which machine learning is used (and the 
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types of inquiry that machine learning facilitates) also have important implications for public 

health practice. Individual-level risk prediction is possible with machine learning, but perhaps not 

always advisable or always in line with a coherent public health goal. Technical guidance, coupled 

with conceptual guidance, can help epidemiologists use machine learning tools responsibly and 

effectively. 

Accurate identification of SMM is an ongoing challenge in public health, particularly for 

epidemiologic research and surveillance. The results of our analysis to use ensemble machine 

learning to identify true-positive SMM does not have implications at the level of clinical practice, 

but rather at the level of clinical and epidemiologic research. That is, our results should not be used 

to guide patient care or to identify pregnant women at high risk of SMM. Rather, we demonstrated 

that ensemble machine learning is a possible alternative to existing screening criteria. We did not 

demonstrate a clear benefit to using ensemble machine learning instead of existing screening 

criteria, however. For many applications, the screening criteria perform well, particularly in terms 

of negative predictive value (screen-negatives are likely to be true-negatives) and true-positive 

detection rate. The ensemble algorithms we built demonstrated higher positive predictive value 

than the screening criteria (greater likelihood that a case classified as positive by the algorithm is 

a true-positive), but a low detection rate. A researcher who is not interested in building an ensemble 

algorithm in their own data would be well-served by the screening criteria, as would researchers 

whose priority is identifying most cases of true-positive SMM even if the false-positive rate is 

high. The public health implications of this work depend somewhat on the goal of the investigator, 

but until more sophisticated algorithms can be trained our tool should not be used to quantify SMM 

for, e.g., care quality improvement initiatives.  
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These results also touch on some policy implications. First, our results highlight the 

challenges of machine learning algorithm transportability. A nationwide obstetric surveillance 

system, similar to UKOSS in the UK, would improve many aspects of perinatal public health 

research and practice. Such a system would facilitate SMM identification from the hospital level 

to the national level and ensure accuracy and consistency of national estimates of SMM 

prevalence. A national surveillance system would also permit design of a single algorithm for true-

positive SMM identification. Second, a clear and universal definition of SMM would also improve 

researchers’ ability to identify SMM. The need for such a definition is the crux of an active debate 

in the literature, with some arguing for more globally comparable definitions and some arguing in 

favor of locally-generated definitions responsive to local capacity.150 Until a resolution is reached, 

it is likely that quantifying SMM will remain imprecise; again, this is especially true in the US 

because SMM is measured and studied using several partially overlapping definitions in multiple 

data systems that capture SMM information, few if any of which are interoperable. 

5.4 Future directions 

Little research has been conducted in US populations to investigate the long-term 

consequences of SMM. This is partially because of the data sources and structures available to 

study SMM in the US. Consequently, the true burden of SMM is not well understood in its totality, 

since most studies assess SMM as an endpoint rather than an exposure and because most studies 

restrict exposure and outcome ascertainment to the delivery hospitalization. However, several 

future directions are feasible given currently existing data. Cardiovascular conditions account for 

or contribute to a large proportion of severe maternal morbidities and maternal deaths nationwide. 
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SMM, particularly cardiovascular SMM, and postpartum adverse cardiovascular events may fall 

on the same spectrum of poor cardiovascular health throughout the life course. Future research 

could address this by examining cardiovascular SMM specifically in relation to adverse 

cardiovascular events. National health registry data would facilitate this type of research, but in 

the United States such data is neither widely collected nor readily available. An ideal study could 

enroll women prior to conception, comprehensively assess history of cardiovascular morbidity at 

enrollment, and follow women prospectively through pregnancy and beyond to identify 

cardiovascular SMM and cardiovascular sequelae after delivery. Similarly, a cohort study in 

administrative data like Medicaid could use several strategies to comprehensively assess pre-

pregnancy morbidity. 

Another future direction for research in this area is identifying opportunities to shift the 

population burden of cardiovascular morbidity. The US has high levels of comorbidities among 

reproductive-age women compared to other wealthy countries. This comorbidity burden is not 

borne equally within the US, as striking racial/ethnic disparities in both pre-pregnancy 

comorbidities and SMM attest. It is plausible that a number of policy determinants shape the 

distribution of cardiovascular morbidity in the US; poor nutrition, precarious work, environmental 

pollution, lack of health insurance, and COVID-19 may all contribute to high levels of 

cardiovascular risk at young ages in the US. Observational studies, including so-called natural 

experiments, could be used to examine the impact of policies that might improve cardiovascular 

health at the population level – for example, comparing rates of cardiovascular morbidity, 

cardiovascular SMM, and/or adverse cardiovascular events postpartum before and after 

implementation of a policy to reduce air pollution in a residential area.   
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Adverse cardiovascular events are very serious rare events. Other potentially important 

sequelae of SMM might be more difficult to study. For example, psychiatric morbidity and 

substance use disorders following SMM are potentially important sources of population morbidity 

associated with SMM. Disaggregating SMM by type of morbidity might be particularly 

informative; future studies that aim to determine which SMM complications are most responsible 

for any associations between SMM and psychiatric or substance use disorders should ensure 

adequate sample size to make inferences about individual morbidities. Another challenge for work 

that seeks to determine the association between SMM and psychiatric disorders or symptoms 

postpartum is identification of incident psychiatric morbidity from observational or claims data. 

Bias may be introduced through confounding by history of the outcome, other unmeasured 

confounding, or differential ascertainment of psychiatric (e.g., depression) symptoms during 

pregnancy and potentially among women with SMM as compared to women with uncomplicated 

deliveries. Similar considerations apply to any studies of SMM and substance use disorder; an 

additional measurement challenge involves accurate identification of substance use disorders or 

associated morbidities from administrative or claims data.  

The postpartum impacts of SMM are not limited just to health conditions. SMM is 

expensive, sometimes requiring intensive medical intervention, and as such health care utilization 

outcomes are also important to understand. Claims databases can be used to study utilization 

outcomes like postpartum emergency department visits, hospital readmission, and uptake of the 

postpartum visit; a limitation of such research questions is reliance on the screening criteria to 

identify the exposed group (women with SMM).  

Different analytic approaches could extend this work as well. In our work, we generated 

the average treatment effect comparing the hypothetical counterfactual scenarios “everyone in the 
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population had SMM” and “no one in the population had SMM.” However, an estimand with a 

natural course comparison might be more informative to clinicians and policymakers. The natural 

course refers to a factual outcome summary generated from a hazard or pooled logistic regression 

model, essentially corresponding to “no intervention.” Consequently, future work might use a 

natural course comparison to quantify the effect of preventing some or all cases of SMM, relative 

to the status quo. This would be informative to public health scientists and policymakers, and also 

encourages a paradigm shift to consider primary prevention of SMM in addition to identification 

of high-risk women in a clinical setting.  

There are few general guidelines for machine learning in an imbalanced data set for 

epidemiology or other biomedical research, and a lack of consensus in the machine learning 

literature on whether class imbalance can be expected to categorically affect machine learning 

algorithm performance. Consequently, the future directions from our simulation work are almost 

limitless. In terms of analytic strategy, we could evaluate a wider range performance metrics, 

explore other mechanisms to remedy class imbalance, and construct different ensembles with 

different algorithms or tuning parameters. Future methodological research could also include 

developing and demonstrating a way to choose optimal classification thresholds for predictions 

from ensemble models. To our knowledge, there is no “data-driven” way to choose such 

thresholds. 

Lastly, a critical future direction for any kind of algorithmic or predictive modeling work 

in epidemiology is developing understanding of the epistemological and real-world consequences 

of predictive analytic techniques and use of algorithms for statistical learning, classification, and 

decision-making in the biomedical sciences. Such theoretical and conceptual understanding must 

complement simple technical guidance. 
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Our work to develop an ensemble algorithm for SMM identification was rate-limited by 

the necessity of performing chart review to identify true-positive and true-negative cases. This is 

likely to be an important obstacle to investigators aiming to build tools to efficiently identify SMM 

for research or surveillance. The generalizability of our algorithms is also limited to other years of 

the same data source that we used to build and test them. One possible future direction for this 

work could be a nationwide collaborative effort to pool chart-reviewed cases from many sources, 

or to undertake a large chart review initiative to create a large, nationally representative data set of 

true SMM cases and non-cases and associated demographic and clinical information. Such a data 

source could be used to develop an algorithm for SMM identification using predictors likely to be 

available in most data settings, that could be used nationally to estimate the prevalence of SMM. 

Such work would not be a replacement for an obstetric health surveillance registry or a universal 

definition of SMM. However, in the absence of coordinated national infrastructure to facilitate 

SMM identification, such an effort could assist researchers and promote accurate national 

estimates of SMM incidence.  

As previously mentioned, another potential extension of this work is to further externally 

validate our ensemble algorithms in other data. Because we trained our ensemble algorithms on 

MOMI data in 2010-2011, an easy next step would be to test our ensemble algorithms in other 

years of MOMI data to evaluate their performance. Our algorithms could also be evaluated in any 

other data with the same predictors that were used to train them. Alternatively, we could repeat the 

same analysis but including only predictors available across several different external validation 

sets. A limitation of this approach is the need for chart review (and the variables necessary to 

conduct chart review according to the ACOG/SMFM guidelines) to ascertain true SMM status in 

any external validation data set.  
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Although our simulations indicated that moderate class imbalance would have minimal 

impact on predictive performance, it is plausible that class imbalance might have affected the 

predictive performance of our ensemble algorithm to identify SMM. A natural next step would be 

to apply some type of class imbalance correction to our training and test data. Options include 

downsampling (randomly sampling a number of non-cases equal to the number of cases), 

oversampling (randomly selecting and duplicating a number of cases equal to the number of non-

cases), and synthetic minority oversampling technique or SMOTE (a data augmentation method 

that simulates additional cases). These techniques have various drawbacks and benefits; 

downsampling is easy to implement but discards data, simple oversampling does not discard data 

but may lead to overfitting, and SMOTE may perform better than random downsampling or 

oversampling but is more technically challenging to implement.  

Since practical guidance for machine learning in epidemiology is still limited, there are a 

number of potential future directions from this work that apply different analytic strategies and 

choices. First, performance might be improved by applying cost-sensitive learning techniques to 

the ensemble to differentially penalize false negatives or false positives. Our ensemble algorithm 

penalized both equally, but preferentially penalizing (for example) false positives might maximize 

predictive accuracy in terms of positive predictive value or detection rate. Second, investigating 

the performance of these algorithms with different feature selection techniques could be 

informative in terms of optimizing predictive performance as well as identifying appropriate 

sample size. Finally, exploring the impact of different transformations of predictor variables, 

explicitly modeling interactions between predictors, and incorporating different base learner 

algorithms into the SuperLearner ensemble could yield insights into best practices for adapting 

ensemble machine learning methods for obstetric research.  
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