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This dissertation consists of three studies.

Hidden city ticketing occurs when an indirect flight from city A to city C through con-

nection node city B is cheaper than the direct flight from city A to city B. In this paper, I

build a structural model, collect empirical data, apply global optimization algorithms, and

conduct counterfactual analysis to shed light on policy implications. I find that hidden city

opportunity occurs only when airlines are applying a hub-and-spoke network structure. In

the short run, hidden city ticketing does not necessarily decrease airlines’ expected profits.

Consumer welfare and total surplus always increase. In the long run, for some routes airlines

have the incentive to switch from hub-and-spoke network to a fully-connected one when there

are more passengers informed of hidden city ticketing. Firms always result in lower expected

profits, consumers and the whole society are not necessarily better off.

Global optimization without access to gradient information is a central task to many

econometric applications as the tool to obtain maximum likelihood estimators for very com-

plicated likelihood functions. In this work, we study the problem of coordination between the

multiple “threads” of estimating gradient descent in order to pause or terminate unpromising

threads early. We test our proposed methodology on both synthetic data and real airline

pricing data, and compare with competitive methods including the genetic algorithm and

pattern search. The numerical results show the effectiveness and efficiency of our proposed

approach.

In my third work, I exploit large changes in the H-1B visa program and examines the

effect of changes in H-1B admission levels on the likelihood that US natives major in STEM

fields. I find some evidence that H-1B population adversely affect natives’ choices in STEM

fields when they enter the college and graduate from it. Female, Male and White subgroups

have been negatively affected, and the native Asian subgroup suffer from the most dramatic

crowd-out effect. Given that the H-1B population share had been more than doubled during
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1992 to 2017, the probability of native Asian graduates majoring in STEM fields would be

2.56 percentage points larger.
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1.0 Paying More for a Shorter Flight? - Hidden City Ticketing

Hidden city ticketing occurs when an indirect flight from city A to city C through con-

nection node city B is cheaper than the direct flight from city A to city B. Then passengers

traveling from A to B have an incentive to purchase the ticket from A to C but get off

the plane at B. In this paper, I build a structural model to explain the cause and impact

of hidden city ticketing. I collect empirical data from the Skiplagged webpage and apply

global optimization algorithms to estimate the parameters of my model. I also conduct

counterfactual analysis to shed some light on policy implications. I find that hidden city op-

portunity occurs only when airlines are applying a hub-and-spoke network structure, under

which they intend to lower their flying costs compared to a fully connected network. I find

that in the short run, hidden city ticketing does not necessarily decrease airlines’ expected

profits. Consumer welfare and total surplus always increase. In the long run, the welfare

outcomes become more complicated. For some routes airlines have the incentive to switch

from hub-and-spoke network to a fully connected one when there are more and more pas-

sengers informed of hidden city ticketing. During this process, firms always result in lower

expected profits, while consumers and the whole society are not necessarily better off.

1.1 Introduction

Hidden city ticketing is an interesting pricing phenomenon occurring after the deregula-

tion of the airline industry in 1978 ([84]). It is an airline booking strategy passengers use

to reduce their flying costs. Hidden city ticketing occurs when an indirect flight from city

A to city C, using city B as the connection node, turns out to be cheaper than the direct

flight from city A to city B. In which case passengers who wish to fly from A to B have an

incentive to purchase the indirect flight ticket, pretend to fly to city C, while disembark at

the connection node B, and discard the remaining segment B to C. When this happens, city

B is called the “hidden city”, and this behavior is then called “hidden city ticketing”.
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Figure 1: An example of hidden city ticketing.

The following real world example (Figure 1) illustrates hidden city ticketing. On Novem-

ber 19, 2018, a direct flight operated by Delta Air Lines flying from Pittsburgh to New York

city cost $218. On the same day, for the same departure and landing time, another indirect

flight also operated by Delta Air Lines flying from Pittsburgh to Boston, with one stop at

New York city, cost only $67.

These two flights share exactly the same first segment: they are operated by the same

airline company, they departure at the same date, same airports and same time. However,

the price of the indirect flight accounted for only 30% of that of the direct one. That is, you

are able to fly more than 200 miles further but pay $151 less! The New York city is then

called a “hidden city” in this case. It is “hidden” because literally, if we use Google Flights,

Orbitz, Priceline, Kayak, or any other “normal” travel search tools to look for a flight from

Pittsburgh to NYC, we will not be able to see the indirect flight above showing up in our

search results.

Although technically legal, hidden city ticketing actually violates the airfare rules of most

airline companies in United States. For example, according to the Contract of Carriage of

United Airlines (revised by December 31, 2015):

“Fares apply for travel only between the points for which they are published. Tickets may

not be purchased and used at fare(s) from an initial departure point on the Ticket which is

before the Passenger’s actual point of origin of travel, or to a more distant point(s) than the
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Passenger’s actual destination being traveled even when the purchase and use of such Tickets

would produce a lower fare. This practice is known as “Hidden Cities Ticketing” or “Point

Beyond Ticketing” and is prohibited by UA.”

Similarly, American Airlines also claim that conducting hidden city ticketing is “uneth-

ical” and doing so “is tantamount to switching price tags to obtain a lower price on goods

sold at department stores”. Passengers might be penalized when conducting hidden city

ticketing. Airlines are able to “confiscate any unused Flight Coupons”, “delete miles in the

passenger’s frequent flyer account”, “assess the passenger for the actual value of the ticket”,

or even “take legal action with respect to the passenger”.

Meanwhile, members of Congress have proposed several bills, including “H.R. 700, H.R.

2200, H.R. 5347 and S. 2891, H.R. 332, H.R. 384, H.R. 907 and H.R. 1074”, trying to prohibit

airlines from penalizing passengers for conducting hidden city ticketing ([38]). Furthermore,

the European Union has passed a passenger bill of rights since around 2005, in which the

European Commission has specifically ruled that “airlines must honor any part of an airline

ticket” and hidden city ticketing then becomes perfectly legal. After the ruling EU find that

“fares have become more fair, hidden city bargains are difficult to find, and the airlines have

not suffered drastic losses due to this”.

Therefore, whether hidden city ticketing should be legally prohibited or not, and what

policy does the best for consumers, airline companies, and social welfare, still remain to be

open questions. The fact is, although being “threatened” by airline companies, there have

been more and more consumers coming to realize the existence of hidden city opportunities,

and may try to exploit them to lower their flying costs. In December 2014, United Airlines

and Orbitz (an airline booking platform) sued the founder of Skiplagged (a travel search

tool) for his website of “helping travelers find cheap tickets through hidden city ticketing”.

According to CNNMoney, Orbitz eventually settled out of court one year later, and a Chicago

judge threw out United’s lawsuit using the excuse that the founder “did not live or do business

in that city”. In contrast to the willingness of United, this lawsuit brought the search of key

words “hidden city ticketing” to a peak (Figure 2).

Corresponding to this higher demand, nowadays there are more travel search tools specif-

ically designed to achieve this task (Skiplagged, Tripdelta, Fly Shortcut, AirFareIQ, ITA

3



Figure 2: Average monthly web search data of hidden city ticketing. Data source for the

relative value is Google Trends. Numbers represent search interest relative to the highest

point on the chart for the given region and time. A value of 100 is the peak popularity for

the term. Data source for the absolute value is Google AdWords, unit is number of times.
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Matrix, etc). And finding hidden city opportunies and exploiting them become much easier

today.

This paper aims at providing some plausible explanations for the cause of hidden city

ticketing, and estimating its possible impact on welfare outcomes for airlines, consumers, and

society as a whole. I build a structural model in which airlines can choose both prices and

network structures as their strategic variables following [74], and derive several propositions

based on that. Then I collect daily flights information by scraping the Skiplagged website

to build my own empirical dataset. I apply global optimization algorithms to estimate the

parameters of my model, and then conduct counterfactual analysis to evaluate the possible

impact of hidden city ticketing on airlines’ expected profits, consumers’ welfare, and total

surplus, based on which I could help shed some light on policy implications.

In this paper, I find that 1) hidden city ticketing only occurs when airline companies

are applying a hub-and-spoke network structure; 2) under some conditions, hub-and-spoke

network is more cost-saving compared to fully connected network; 3) in the short run, hidden

city ticketing does not necessarily decrease airlines’ expected profits, while consumers’ surplus

and total welfare always increase; 4) in the long run, i.e., when airlines can change their

choices of prices and networks freely, the impact of hidden city ticketing differs for different

routes. For some routes airlines have the incentive to switch from hub-and-spoke network

to a fully connected one when there are more and more passengers informed of hidden

city ticketing, during which process firms always result in lower expected revenue, while

consumers and the whole society are not necessarily better off. Therefore, whether hidden

city ticketing should be permitted or forbidden depends on the characteristics of different

routes, and this problem cannot be solved by one simple policy.

The remainder of this paper is organized as follows: Related works are summarized in

Section 3.2. The structural model is introduced in Section 1.3, together with the propositions

of short run impacts derived from it. Section 1.4 describes the data in details. Section 1.5

shows the estimation strategy and the MLE results. In Section 1.6 I conduct counterfactual

analysis to shed some light on long run impacts and policy implications. The limitation and

future questions of this paper are discussed in Section 1.7 and Section 1.8 concludes.
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1.2 Literature Review

To the best of my knowledge, this is the first paper to quantitatively study the cause and

impact of hidden city ticketing on welfare outcomes using real empirical data. In fact, there

are only a few papers paying attention to this phenomenon. One government report from the

Government Accountability Office ([38]) conducted some correlation analysis based on their

selected data, and found that the possibility of hidden city ticketing is significantly affected

by the size of the markets and the degree of competition in the hub markets and the spoke

markets. Another report from Hopper Research ([79]) also provides some summary statistics

of this phenomenon. Based on four weeks of airfare search data from Hopper, the analyst

found that 26% of domestic routes could be substituted by some cheaper options through

hidden city ticketing, and the price discount could be nearly 60%. The most quantitative

study is [84], which applied a network revenue management model to look at the cause and

impact of hidden city ticketing. They base all their findings on simulated data rather than

real world data. Therefore, their model is quite different from an economic model. They

find that hidden city opportunity may arise when the price elasticity of demand on different

routes differ a lot. In order to eliminate any hidden city opportunities, airlines will rise the

prices of certain itineraries and hurt consumers. But even airlines optimally react, they will

still suffer from a loss in revenue.

There has been a large literature focusing on the airline industry ever since its deregula-

tion in 1978. A bunch of them have confirmed significant difference of price elasticity lying

between tourists and business travelers. For example, [12] has estimated a price elasticity

of demand for tourists as −6.55, while that for business travelers is only −0.63. [71] find

a large difference between price elasticity of demand for business travelers (−0.9 to −0.3)

and that for leisure travelers (about −1.5). And [39] also confirm that the demand for busi-

ness travelers is less price elastic than that of tourists, and through applying certain ticket

restrictions, airline companies are able to distinguish between these two types. Based on

these findings, researchers have further found that airlines are exploiting these differences

and engaging in second-degree price discrimination through many different methods, such

as advanced-purchase discounts ([34]), ticket restrictions such as Saturday-night stayover

6



requirements ([78]; [41]), refundable and non-refundable tickets ([36]), intertemporal price

discrimination ([54, 52]), and even the day-of-the-week that a ticket is purchased ([67]). This

paper follows previous findings and assumes that airline companies are price discriminating

between leisure travelers and business travelers, with the latter being less price sensitive and

valuing time more. My model also follows [74] book about economics of network industries,

assuming that airlines can choose both airfares and network structures. Finally, I find that

while informed passengers could possibly enjoy some benefits of hidden city ticketing, unin-

formed passengers are always bearing the costs, if any. This is similar to the finding of [83]

where the author shows some “detrimental externalities” that uninformed consumers suffer

from due to the behavior of informed consumers.

1.3 The Model

Following [74], I assume that airlines are choosing from two different network struc-

tures: fully-connected network or hub-and-spoke network (Figure 3). Under fully-connected

network, passengers fly nonstop from one city to the other. While under hub-and-spoke

network, everyone who wishes to fly from city A to city C needs to stop at the hub city

B. To simplify my analysis below, I will apply an one-way traveling pattern instead of the

two-way traveling pattern showed in Figure 3. After the 1978 Airline Deregulation Act, the

absence of price and entry controls led to increased use of the hub-and-spoke structure ([74]).

Responding to the increased competition and to reduce flying costs, airlines started to cut

the number of direct flights and reroute the passengers through a hub city. While in recent

years, especially since late 1990s, with the expansion of low-cost carriers (LCCs), passengers

started to show a higher aversion toward connecting flights, and fully-connected structure

becomes more popular again ([12]).

Assume that there is only one airline serving the three cities, thus the firm charges

monopoly airfares. Aircrafts are further assumed to have an unlimited capacity, thus there

is only one flight on each route. C2 denote the airline’s cost per mile on any route j. This

simplified cost pattern is referred as ACM cost (AirCraft Movement cost) in [74], and it is

7



Figure 3: Left: fully-connected (FC) network. Right: hub-and-spoke (HS) network.

widely used in airline related literature. Cost pattern can be simplified because in airline

industry, large percentage of costs are fixed before flights taking off, such as capital costs

(renting gates for departure and arrival, landing fees), labor costs (hiring local staff), etc.

([38]) The costs of fuel account for approximately 15% of the total operation costs ([12]),

while the marginal cost of airline seats is nearly negligible ([68]).

Assume that direct flight has a quality of qh per mile and indirect flight has a quality of

ql per mile, with 0 < ql < qh < 1. Each individual i has a time preference parameter of λi,

obtaining utility

ui = C1 · eλiqd− p

from consuming a good of quality q. Under the assumption of free disposal, he/she will get 0

utility if chooses not to fly. Utility decreases when price increases. And if a passenger values

time more (i.e., with a larger λ), he/she will acquire a larger utility increase when switching

from an indirect flight (with quality ql) to a direct flight (with quality qh). Furthermore, for

a longer itinerary (larger d), the utility improvement from indirect flight to direct flight is

also larger. C1 is a scaling parameter to make the utility comparable to dollar value p.

On each route j, the distribution of consumers’ time preferences satisfies λij ∼ N(θj, σ
2
1).

For passengers flying from A to B, the fraction of passengers being aware of hidden city

opportunities is δ, and the fraction of uninformed passengers is 1 − δ. When hidden city

opportunities exist (i.e., pAB > pABC), informed passengers will pay pABC instead, while

uninformed passengers will still pay pAB. The amount of passengers on each route j are

normalized to 1. pj denote the airfare on route j, and dj denote the distance of route j.
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Airline

ΠFC(pFC)

pFC = (pAB, pBC , pAC)

Fully-Connected

ΠHS(pHS)

pHS = (pAB, pBC , pABC)

Hub-and-Spoke

Figure 4: Airline chooses network structures and prices to maximize expected profits.

An airline chooses both network structures (fully-connected or hub-and-spoke) and prices

(pAB, pBC , pAC , pABC) to maximize expected profits, as shown in Figure 4.

I will show later in this section that there exists an optimal choice set for the airline,

and the choice set is unique. According to the assumptions above, on each route j, for each

individual i,

uij = C1 · eλijqd− p, λij ∼ N(θj, σ
2
1).

Therefore, on each route j, the proportion of consumers choosing to fly is equal to:

Pr [uij ≥ 0] = Pr
[
C1 · eλijqd ≥ p

]
= Pr

[
λij ≥ ln

(
p

C1 · qd

)]
= 1− Φθj ,σ2

1

(
ln

(
p

C1 · qd

))
.
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1.3.1 Fully-Connected Network

Under fully-connected network, airline’s expected profits (producer surplus) are equal to

the revenue it collects minus the costs:

ΠFC = ΠAB + ΠBC + ΠAC

= pAB ·
[
1− ΦθAB ,σ

2
1

(
ln

(
pAB

C1 · qhdAB

))]
− C2 · dAB

+ pBC ·
[
1− ΦθBC ,σ

2
1

(
ln

(
pBC

C1 · qhdBC

))]
− C2 · dBC

+ pAC ·
[
1− ΦθAC ,σ

2
1

(
ln

(
pAC

C1 · qhdAC

))]
− C2 · dAC .

Under fully-connected network structure, the only way to fly “indirectly” from A to C is

to take the two direct flights A to B and B to C together. Obviously, with pAB < pAB +pBC ,

we can easily derive the following proposition:

Proposition 1. Hidden city opportunity does not exist under fully-connected network struc-

ture.

Consumer surplus is the difference between our willingness to pay and the price we

actually being charged, which equals:

CSFC = CSAB + CSBC + CSAC

=

∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB − pAB
)
dF (λi)

+

∫ ∞
ln

( pBC
C1 · qhdBC

) (C1 · eλiqhdBC − pBC
)
dF (λi)

+

∫ ∞
ln

( pAC
C1 · qhdAC

) (C1 · eλiqhdAC − pAC
)
dF (λi).

10



Adding them together, our total surplus under fully-connected network is:

TSFC = PSFC + CSFC

=

∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB
)
dF (λi)− C2 · dAB

+

∫ ∞
ln

( pBC
C1 · qhdBC

) (C1 · eλiqhdBC
)
dF (λi)− C2 · dBC

+

∫ ∞
ln

( pAC
C1 · qhdAC

) (C1 · eλiqhdAC
)
dF (λi)− C2 · dAC .

No transaction fee is assumed under the setting, thus the prices we pay are equal to the

prices airline receives, and both cancel out.

1.3.2 Hub-and-Spoke Network (without Hidden City Ticketing)

Given hub-and-spoke network structure, first consider the simple case when hidden city

opportunities do not exist (i.e., pAB ≤ pABC). Under this circumstances, airline’s expected

profits are equal to:

ΠHS = ΠAB + ΠBC + ΠABC

= pAB ·
[
1− ΦθAB ,σ

2
1

(
ln

(
pAB

C1 · qhdAB

))]
− C2 · dAB

+ pBC ·
[
1− ΦθBC ,σ

2
1

(
ln

(
pBC

C1 · qhdBC

))]
− C2 · dBC

+ pABC ·
[
1− ΦθABC ,σ

2
1

(
ln

(
pABC

C1 · qldABC

))]
.

Proposition 2. If the cost associated with maintaining route AC is sufficiently large, then

the hub-and-spoke network is more profitable to operate than the fully-connected network for

the monopoly airline.

11



Proof. Proof of Proposition 2. Compare airline’s expected profits under these two different

networks:

ΠHS − ΠFC = pABC ·
[
1− ΦθABC ,σ

2
1

(
ln

(
pABC

C1 · qldABC

))]
− pAC ·

[
1− ΦθAC ,σ

2
1

(
ln

(
pAC

C1 · qhdAC

))]
+ C2 · dAC .

Therefore, if the last term (C2 · dAC , refers to the cost associated with maintaining route

AC) is sufficiently large, hub-and-spoke network is more profitable.

This is in accordance with the findings of previous literatures. [30], [23], [24], and [11]

all confirm the cost economies of hubbing. Under a different framework, [74] also find that

hub-and-spoke network is cost-saving if the fixed cost is large enough.

Similarly, consumer surplus equals:

CSHS = CSAB + CSBC + CSABC

=

∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB − pAB
)
dF (λi)

+

∫ ∞
ln

( pBC
C1 · qhdBC

) (C1 · eλiqhdBC − pBC
)
dF (λi)

+

∫ ∞
ln

( pABC
C1 · qldABC

) (C1 · eλiqldABC − pABC
)
dF (λi).

Adding them together, total surplus is equal to:

TSHS = PSHS + CSHS

=

∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB
)
dF (λi)− C2 · dAB

+

∫ ∞
ln

( pBC
C1 · qhdBC

) (C1 · eλiqhdBC
)
dF (λi)− C2 · dBC

+

∫ ∞
ln

( pABC
C1 · qldABC

) (C1 · eλiqldABC
)
dF (λi).
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1.3.3 Hub-and-Spoke Network (with Hidden City Ticketing)

Now consider the scenario when hidden city opportunities exist (i.e., pAB > pABC).

Firstly, is there a possibility that pAB > pABC , in other words, are we paying more for a

shorter flight sometimes? The answer is yes. To see why this might occur, recall that

pAB = argmax
p

p ·
[
1− ΦθAB ,σ

2
1

(
ln(

p

C1qhdAB
)

)]
,

pABC = argmax
p

p ·
[
1− ΦθABC ,σ

2
1

(
ln(

p

C1qldABC
)

)]
,

where qh > ql and dAB < dABC . For simplification, let qhdAB = qldABC and σ1 = 1, rewrite

the problem as

p = argmax
p

p ·
[
1− Φθ

(
ln(

p

C
)
)]

= argmax
p

p ·
[
1− Φ

(
ln(

p

C
)− θ

)]
,

where C is a constant.

Let f(p, θ) = p ·
[
1− Φ

(
ln(

p

C
)− θ

)]
, to find out the maximizer p∗, take derivative of

f(p, θ) with respect to p and make it equal 0:

fp(p, θ) = 1− Φ
(

ln(
p

C
)− θ

)
− φ

(
ln(

p

C
)− θ

)
= 0.

Let g(p, θ) = 1 − Φ
(

ln(
p

C
)− θ

)
− φ

(
ln(

p

C
)− θ

)
, and take derivative of g(p, θ) with

respect to θ, we get

gθ(p, θ) = φ
(

ln(
p

C
)− θ

)
+ φθ

(
ln(

p

C
)− θ

)
= φ

(
ln(

p

C
)− θ

)(
1− ln(

p

C
) + θ

)
.

Since φ
(

ln(
p

C
)− θ

)
> 0, if θ > ln(

p

C
)− 1, we would have gθ(p, θ) > 0, hence as long as

θAB > θABC , the optimal prices would be pAB > pABC . Therefore, under some conditions,

there is a possibility that pAB > pABC , in other words, we are paying more for a shorter flight

sometimes and hidden city opportunities exist. The underlying explanation is that airlines

are pricing based on demand, rather than costs.
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Comparing to Section 3.2 where there is no hidden city ticketing, the difference lies in

the informed passengers who wish to fly directly from A to B. Under this circumstances,

airline’s expected profits are equal to:

ΠHCT = ΠAB + ΠBC + ΠABC

= (1− δ) · pAB ·
[
1− ΦθAB ,σ

2
1

(
ln

(
pAB

C1 · qhdAB

))]
− C2 · dAB

+ pBC ·
[
1− ΦθBC ,σ

2
1

(
ln

(
pBC

C1 · qhdBC

))]
− C2 · dBC

+ pABC ·
[
1− ΦθABC ,σ

2
1

(
ln

(
pABC

C1 · qldABC

))]
+ δ · pABC ·

[
1− ΦθAB ,σ

2
1

(
ln

(
pABC

C1 · qhdAB

))]
.

Proposition 3. When airlines do not alter their choices of prices and network structures,

hidden city ticketing does not necessarily decrease airline’s expected profits.

Proof. Proof of Proposition 3. Compare airline’s expected profits with and without hidden

city ticketing respectively, and compute the difference:

ΠHCT − ΠHS = δ ·
{
pABC ·

[
1− ΦθAB ,σ

2
1

(
ln

(
pABC

C1 · qhdAB

))]
− pAB ·

[
1− ΦθAB ,σ

2
1

(
ln

(
pAB

C1 · qhdAB

))]}
.

Note that pABC < pAB while [1 − ΦθAB ,σ
2
1
(ln(

pABC
C1 · qhdAB

))] > [1 − ΦθAB ,σ
2
1
(ln(

pAB
C1 · qhdAB

))].

We find that although airline suffers from a loss when informed passengers are paying a lower

price, it also obtains some gain when this lower price attracts more consumers to take the

flight. How hidden city ticketing will affect airline’s expected profits actually depends on the

relative dominance of these two inequalities, and this conduct does not necessarily decrease

airline’s expected revenue.
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Consumer surplus equals:

CSHCT = CSAB + CSBC + CSABC

= (1− δ)
∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB − pAB
)
dF (λi)

+

∫ ∞
ln

( pBC
C1 · qhdBC

) (C1 · eλiqhdBC − pBC
)
dF (λi)

+

∫ ∞
ln

( pABC
C1 · qldABC

) (C1 · eλiqldABC − pABC
)
dF (λi).

+ δ

∫ ∞
ln

( pABC
C1 · qhdAB

) (C1 · eλiqhdAB − pABC
)
dF (λi).

Proposition 4. When airlines do not alter their choices of prices and network structures,

consumers are always better off when hidden city ticketing is allowed.

Proof. Proof of Proposition 4. Compute the difference of consumer surplus with and without

hidden city ticketing, we have

CSHCT − CSHS = δ

∫ ∞
ln

( pABC
C1 · qhdAB

) (C1 · eλiqhdAB − pABC
)
dF (λi)

− δ

∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB − pAB
)
dF (λi)

= δ

∫ ln

( pAB
C1 · qhdAB

)

ln

( pABC
C1 · qhdAB

) (
C1 · eλiqhdAB − pABC

)
dF (λi)

+ δ

∫ ∞
ln

( pAB
C1 · qhdAB

) (pAB − pABC) dF (λi) > 0.

The increase in consumer surplus is composed of two different parts. Firstly, the existing

informed passengers are now paying a lower price, which provides them extra utility gain.

Secondly, some travelers who will not fly with the original price pAB are now participating

in this market activity, because they are informed of the lower price pABC . These new

passengers also obtain utility gain, increasing the total consumer surplus.
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Adding the producer surplus and consumer surplus together, we have the total surplus

under the scenario of hub-and-spoke network structure with hidden city ticketing being equal

to:

TSHCT = (1− δ)
∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB
)
dF (λi)− C2 · dAB

+

∫ ∞
ln

( pBC
C1 · qhdBC

) (C1 · eλiqhdBC
)
dF (λi)− C2 · dBC

+

∫ ∞
ln

( pABC
C1 · qldABC

) (C1 · eλiqldABC
)
dF (λi)

+ δ

∫ ∞
ln

( pABC
C1 · qhdAB

) (C1 · eλiqhdAB
)
dF (λi).

Proposition 5. When airlines do not alter their choices of prices and network structures,

total social welfare always increase when hidden city ticketing is allowed.

Proof. Proof of Proposition 5. Compute the difference of total surplus with and without

hidden city ticketing, we have

TSHCT − TSHS = δ

∫ ∞
ln

( pABC
C1 · qhdAB

) (C1 · eλiqhdAB
)
dF (λi)

− δ

∫ ∞
ln

( pAB
C1 · qhdAB

) (C1 · eλiqhdAB
)
dF (λi)

= δ

∫ ln

( pAB
C1 · qhdAB

)

ln

( pABC
C1 · qhdAB

) (
C1 · eλiqhdAB

)
dF (λi) > 0.

Total surplus increase because compared to the original price pAB, there are more trav-

elers choosing to take the flight with the lower price pABC . Extra passengers obtain extra

utility gain. Since I have assumed unlimited capacity for the aircrafts, the whole society

benefit from this change.

With a full analysis of airline’s expected profits under fully-connected network and hub-

and-spoke network, with and without hidden city ticketing, we can now show that there
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exists an optimal choice set for the airline to maximize its producer surplus, and the solution

is unique.

Proposition 6. Under the assumptions listed at the beginning of this section, there exists

an optimal choice set (network, pAB, pBC , pAC , pABC) for the airline to maximize its expected

profits, and the solution is unique.

Proof. Proof of Proposition 6. According to our previous analysis,

ΠFC = pAB ·
[
1− ΦθAB ,σ

2
1

(
ln

(
pAB

C1 · qhdAB

))]
− C2 · dAB

+ pBC ·
[
1− ΦθBC ,σ

2
1

(
ln

(
pBC

C1 · qhdBC

))]
− C2 · dBC

+ pAC ·
[
1− ΦθAC ,σ

2
1

(
ln

(
pAC

C1 · qhdAC

))]
− C2 · dAC .

ΠHS = pAB ·
[
1− ΦθAB ,σ

2
1

(
ln

(
pAB

C1 · qhdAB

))]
− C2 · dAB

+ pBC ·
[
1− ΦθBC ,σ

2
1

(
ln

(
pBC

C1 · qhdBC

))]
− C2 · dBC

+ pABC ·
[
1− ΦθABC ,σ

2
1

(
ln

(
pABC

C1 · qldABC

))]
if pAB ≤ pABC , and

ΠHS = (1− δ) · pAB ·
[
1− ΦθAB ,σ

2
1

(
ln

(
pAB

C1 · qhdAB

))]
− C2 · dAB

+ pBC ·
[
1− ΦθBC ,σ

2
1

(
ln

(
pBC

C1 · qhdBC

))]
− C2 · dBC

+ pABC ·
[
1− ΦθABC ,σ

2
1

(
ln

(
pABC

C1 · qldABC

))]
+ δ · pABC ·

[
1− ΦθAB ,σ

2
1

(
ln

(
pABC

C1 · qhdAB

))]
if pAB > pABC .

Note that solving for the optimal choice set (network, pAB, pBC , pAC , pABC) is equivalent

to firstly solving for the optimal price bundles (pAB, pBC , pAC , pABC) under fully-connected

network and hub-and-spoke network respectively, and further compare ΠFC(pAB, pBC , pAC)
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and ΠHS(pAB, pBC , pABC) to determine which joint choices of network structure and prices

are optimal.

Solving for the optimal price bundle (pAB, pBC , pAC , pABC) to maximize expected profits

ΠFC and ΠHS, when there is no hidden city ticketing, is equivalent to solving the following

problem:

max
p

p ·
[
1− Φθ,σ2

(
ln(

p

C
)
)]

where C is a constant.

Take derivative of the objective function and make it equal 0:

1− Φθ,σ2

(
ln(

p

C
)
)

+ p ·
[
−φθ,σ2

(
ln(

p

C
)
)
· C
p
· 1

C

]
= 0

1− Φθ,σ2

(
ln(

p

C
)
)
− φθ,σ2

(
ln(

p

C
)
)

= 0.

Let x = ln(
p

C
), y = Φθ,σ2(x), the equation above becomes a typical ODE:

1− y =
dy

dx

dx =
dy

1− y
x = −ln(1− y) + C1

ln(
p

C
) = −ln(1− y) + C1

p

C
= e−ln(1−y) · eC1

=
eC1

1− y

p =
C · eC1

1− y

p− p · 1

2

1 + erf

 ln(
p

C
)− θ

σ
√

2

 = C · eC1

where

erf(z) =
1√
π

∫ z

−z
e−t

2

dt

=
2√
π

(
z − z3

3
+
z5

10
− z7

42
+

z9

216
− · · ·

)
by Taylor expansion.
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Figure 5: Illustration of function f(p) with parameters

θ = 0.5, σ = 0.3, C = 10, q = 0.8, d = 30.

Therefore, the optimal price bundle is solvable. To further confirm that function f(p) =

p ·
[
1− Φθ,σ2

(
ln

(
p

C · q · d

))]
is unimodal, I depict function f(p) with parameters θ =

0.5, σ = 0.3, C = 10, q = 0.8, d = 30, as shown in Figure 5 below.

When there is hidden city ticketing, the difference lies in the optimal value of pABC .

Instead of looking for a pABC that maximizes pABC ·
[
1− ΦθABC ,σ

2
1

(
ln

(
pABC

C1 · qldABC

))]
, we

are now solving the following problem instead:

max
p

p ·
[
1− Φθ1,σ2

(
ln(

p

C1

)

)]
+ δ · p ·

[
1− Φθ2,σ2

(
ln(

p

C2

)

)]
where C1 and C2 are constants.

Take derivative of the objective function and make it equal 0:

1− Φθ1,σ2

(
ln(

p

C1

)

)
− φθ1,σ2

(
ln(

p

C1

)

)
+ δ

[
1− Φθ2,σ2

(
ln(

p

C2

)

)
− φθ2,σ2

(
ln(

p

C2

)

)]
= 0.

Left-hand side is a function of p, f(p) with p ∈ [0,+∞). It is continuous because it is

a linear combination of probability density function and cumulative distribution function of

normal distribution, which are all continuous functions.
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When p → 0, Φθ,σ2

(
ln(

p

C
)
)
→ 0, φθ,σ2

(
ln(

p

C
)
)
∈ (0, 1). Therefore, f(p) > 0. When

p → +∞, Φθ,σ2

(
ln(

p

C
)
)
→ 1, φθ,σ2

(
ln(

p

C
)
)
∈ (0, 1). Therefore, f(p) < 0. According

to Mean Value Theorem, there exists at least one p that makes f(p) = 0. Therefore, the

solution of the model still exists.

Note that Propositions 3, 4 and 5 are derived under the assumption that airlines are not

aware of hidden city ticketing, thus they do not alter their choices of prices and network

structures in reaction to this booking strategy. This might be valid in the short run, while

during a longer period, airlines should be able to realize the conduct of hidden city ticketing

and adjust their optimal choices of prices and networks in response to the behavior. In such

a scenario, obtaining a closed-form solution is challenging, and to reveal what would be the

airline’s optimal choice set with a changing proportion of informed passengers (changing δ) is

even more difficult. Therefore, in the rest of the paper I will use numerical approach instead

to solve for the optimal choices of airline with changing δ, and estimate the possible impacts

of hidden city ticketing on welfare outcomes in the counterfactual analysis below.

1.4 Data

I have collected daily flights data by scraping the tickets information on Skiplagged

webpage on February 6, 2016 with all quotes of April 6, 2016. This date was chosen because

it was neither a weekend nor a holiday, and it was 60 days before the departure date, which

should not be severely affected by seat sales. Information being collected include the origin,

connecting (if any) and destination airports, time of departure, connection and landing,

operation airlines and airfares.

According to the Passenger Boardings at Commercial Service Airports of Year 2014

released in September 2015 by Federal Aviation Administration (FAA), there are more than

500 commercial service airports around United States. To reduce the computational burden

of collecting data, I have restricted my sample to the 133 busy commercial service airports

identified by FAA. Only focusing on those 133 airports is reasonable because those airports
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Figure 6: Distribution of busy commercial service airports around United States.
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actually accounted for 96.34% of total passenger enplanements in 2014. The distribution

of the busy commercial service airports around United States is shown in Figure 6. From

the graph we can see that my data has covered airports in Alaska, Hawaii and Puerto Rico,

while no airport in Wyoming has been identified as busy commercial service airport in my

analysis.

Overall, my sample has 16,142 routes (airport A to airport B) and 2,822,086 itineraries

(flight from A to B with specific information of time, connection node, operation airline(s)

and airfare(s)). Flights are operated by 45 different airline companies, among which 11

companies show some hidden city opportunities lying in the itineraries they operate.

To the best of my knowledge, there is no official definition of hidden city opportunity in

existing literatures. [38] define that “a hidden-city ticketing opportunity exists for business

travelers if the difference in airfares between the hub market and the spoke airport was $100

or more, and for leisure passengers if the difference in airfares was $50 or more”. In this

paper, I have constructed two intuitive definitions of hidden city opportunity myself and

listed below.

Definition 1. Hidden city opportunity exists if the cheapest non-stop ticket of that itinerary

is still more expensive than some indirect flight ticket with the direct destination as a con-

nection node.

Definition 2. Hidden city opportunity exists if the non-stop ticket is more expensive than

some indirect flight ticket which shares exactly the same first segment of that itinerary.

The example being illustrated at the beginning of this paper belongs to the second

scenario. And the second definition is also the one being defined in [84].

According to the daily flights data I have collected, these two definitions show similar

magnitude with respect to hidden city opportunities. For example, among all the itineraries,

the first definition indicates a total of 366,754 (13.00%) flights and 1,095 (6.78%) routes

that exhibit possible hidden city opportunities. Those amounts of Definition 2 are 394,544

(13.98%) flights and 1,316 (8.15%) routes respectively. This magnitude is slightly smaller

compared to the findings in [38], in which the authors find that among the selected markets

for six major U.S. passenger airlines in their data, 17% provided such opportunities. Table 1
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Table 1: Top 10 origin-destination pairs with most hidden city itineraries.

Popularity Origin Destination # of Itineraries % under Def.1 % under Def.2

1 ISP PHL 11105 3.03% 2.81%
2 SRQ CLT 8590 2.34% 2.18%
3 CAK CLT 5948 1.62% 1.51%
4 GRR ORD 5733 1.56% 1.45%
5 MSN ORD 5640 1.54% 1.43%
6 XNA ORD 5529 1.51% 1.40%
7 COS DEN 4000 1.09% 1.01%
8 FSD ORD 3665 1.00% 0.93%
9 CAE CLT 3659 1.00% 0.93%
10 ORF CLT 3540 0.97% 0.90%

shows the top 10 origin-destination pairs with most hidden city opportunities, which are the

same under both definitions.

Furthermore, the maximum payment reduction would be as large as 89.57% if hidden

city ticketing is allowed. Table 2 shows the top 10 origin-destination pairs with the largest

price differences, which are slightly different under both definitions. These statistics help

reveal the fact that hidden city ticketing might no longer be negligible nowadays and related

research becomes necessary and valuable.

Recall that my primary data contains flights operated by 45 different airline companies,

among which 11 companies shown some hidden city opportunities lying in the itineraries

they operated. Table 3 exhibits the amounts of hidden city itineraries of these airlines unber

both definitions. We can see that the three largest airlines: American Airlines, Delta Air

Lines and United Airlines operated more than 99% of those itineraries. This is similar to

the findings of [79], in which he found that 96% of those hidden city discounts came from

American Airlines, Delta Air Lines, United Airlines and Alaska Airlines. All of them are

major hub-and-spoke carriers and apply a hub-and-spoke network business model.

A notable exception is Southwest Airlines, where no hidden city opportunity is found

in the itineraries operated by it, and whose fare rules actually do not specifically prohibit

the practice of hidden city ticketing. Since Southwest Airlines is a typical operator of fully-
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Table 2: Top 10 origin-destination pairs with largest price differences.

Definition 1 Definition 2

Origin Destination % Saving Origin Destination % Saving
LGA IAH 89.57% LGA IAH 89.57%
CLE IAH 88.49% CLE IAH 88.49%
PHL DTW 87.54% PHL DTW 87.54%
IAH EWR 86.61% MKE MSP 86.65%
IAH IAD 86.36% IAH EWR 86.61%

DTW PHL 86.20% IAH IAD 86.36%
KOA SFO 85.87% DTW PHL 86.20%
SNA SLC 85.46% KOA SFO 85.87%
ICT MSP 85.38% SNA SLC 85.46%
CLE EWR 85.03% ICT MSP 85.38%

Table 3: Number of hidden city itineraries of different airlines.

Airline IATA Code Def.1: # of Itineraries (%) Def.2: # of Itineraries (%)

American Airlines AA 203096 (55.38%) 210287 (53.30%)
Delta Air Lines DL 93062 (25.38%) 106867 (27.09%)
United Airlines UA 69587 (18.98%) 76175 (19.31%)
Alaska Airlines AS 598 (0.16%) 666 (0.17%)
Hawaiian Airlines HA 221 (0.06%) 221 (0.06%)
Frontier Airlines F9 56 (0.02%) 157 (0.04%)
JetBlue Airways B6 48 (0.01%) 106 (0.03%)
Virgin America VX 29 (0.01%) 36 (0.01%)
Silver Airways 3M 11 (0.00%) 11 (0.00%)
Spirit Airlines NK 8 (0.00%) 11 (0.00%)
Sun Country Airlines SY 7 (0.00%) 7 (0.00%)
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connected network, this finding in the real data is in accordance with my previous proposition

that hidden city opportunity does not exist under fully-connected network structure.

1.5 Estimation

To estimate the parameters of my model, firstly I retrieve all the ordered triplets (A-B-C)

from my primary dataset. Then, with all the observed information of prices, distances and

consumers’ preferences, I choose the parameters of my model to maximize the likelihood of

observed airlines’ choices of network structures. In order to deal with this implicit maximum

likelihood function, I have applied global optimization algorithms, more specifically, Pattern

Search to solve the MLE and estimate the parameters.

1.5.1 Sample Construction

To build my own sample, the first step is to retrieve ordered triplets (A-B-C) from the

133 busy commercial service airports of my primary dataset. The triplet needs to satisfy the

following three conditions: 1) it must include direct flight from A to B; 2) it must include

direct flight from B to C; 3) it must include either direct or one-stop indirect flight from A

to C using B as the connection node.

In total, I have obtained 114,635 ordered triplets from my dataset that satisfy the condi-

tions listed above. Based on the differences in condition 3), I divide them into three different

types. Type I includes only direct flight from A to C with a subsample size of 26,198. To

estimate pABC of Type I, I add observed pAB and pBC up manually. Type II includes only

indirect flight from A to C through B with a subsample size of 61,092. To estimate pAC

of Type II, I use the observed pAB and assume flights from A to B and A to C share the

same price per mile: pAC =
pAB
dAB

· dAC . Type III includes both direct flight from A to C

and indirect flight from A to C through B, with a subsample size of 27,345. d represents

geodesic distance computed based on the longitude and latitude of the pair-airports provided

by Google Maps.
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On each route j, assume that θj ∼ N(µj, σ
2
2). Recall that each individual i has a time

preference parameter of λi and on each route j, the distribution of consumers’ time prefer-

ences satisfies λij ∼ N(θj, σ
2
1). Therefore, µj measures the dependency of the destination

city on business travelers. Previous literature have constructed several indexes to capture

this characteristic. For example, [17] and [20] built a tourism index at the MSA level based

on the ratio of hotel income to total personal income. [23] and [78] assumed that the dif-

ference in January temperature between origin and destination cities could serve as a proxy

for tourism. [39] segmented their data into “leisure routes” and “big-city routes” based on

the ratio of accommodation earnings to total nonfarm earnings.

In this paper, I have constructed my own index based on [19] and data provided by

TripAdvisor. [19] provides an index of the share of commercial airline travel to and from

cities that is for business purposes, which is based on the 1995 American Travel Survey.

This index was also used as one of the measures in [67] to distinguish between “leisure” and

“mixed” routes. The shortage for this index is that it only includes data for each state and

metropolitan statistical area, while city level data might be a better fit corresponding to the

location of an airport. To solve this problem, I have also collected data from TripAdvisor

(the largest travel site in the world) for each city, and compute the average number of the

reviews of hotels/lodging, vocation rentals, things to do, restaurants, and posts of forum,

standardized by the city population from 2010 census. The underlying assumption is that

a larger number of reviews on TripAdvisor might be an indicator of being more popular

among leisure travelers, and this city-level data together with the indices constructed by

[19] should be able to provide more complete information of the city’s characteristics. After

taking exponential of the opposite of the average number from TripAdvisor’s review data,

I compute the mean of that and the indices from [19] (both state-level and MSA-level) and

get µ.

From Figure 7 we can see that the largest µ = 0.7450 belongs to Dallas Fort Worth

International Airport (DFW) in Texas, while Ellison Onizuka Kona International Airport

(KOA) on the Island of Hawaii has the smallest µ = 0.0773. In general, places that are

more popular among tourists, such as Orlando, Puerto Rico and Hawaii, get the smaller

µ(s). While places such as Dallas, Austin and Chicago that are more attractive to business
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travelers have larger µ(s).

1.5.2 Maximum Likelihood Estimation

Overall, I have a set of 7 parameters: ζ = (δ, C1, C2, σ1, σ2, qh, ql), with δ ∈ [0, 1] as

my parameter of interest, and the others are nuisance parameters. Observed attributes

in my dataset include the prices, distances, and time preference indices on each route:

xi = (pAB,BC,AC,ABC , dAB,BC,AC,ABC , µAB,BC,AC,ABC). And observed decision variable is the

airline’s network choices: yi ∈ {FC,HS}.

The maximum likelihood estimation needs to be processed in 2 steps. Firstly, I sam-

ple θAB,BC,AC,ABC from the normal distribution N|xi,σ2 . Then airline makes a decision to

maximize expected profits:

yi = arg max
y∈{FC,HS}

Π(xi, y, ζ).

The maximum likelihood estimation problem is therefore:

ζ̂ = arg max
ζ

1

n

n∑
i=1

log p(yi|xi; ζ),

with the probabilistic model as

Pr[yi = y|xi, ζ] = Pr
θ∼N |xi,σ2

[Π(xi, y, ζ, θ) ≥ Π(xi,¬y, ζ, θ)] .

1.5.3 Pattern Search

This maximum likelihood estimation is challenging because the likelihood is implicit with

a random sampling in the first step, and the gradient is also difficult to evaluate with respect

to ζ. Here I apply global optimization algorithms to solve this MLE problem. That is, for

each ζt, obtain an estimation of likelihood function:

log p(yi|xi; ζt) = log Pr
θ∼N|xi,σ2

[Π(xi, yi, ζt, θ) ≥ Π(xi,¬yi, ζt, θ)]

≈ log

{
1

M

M∑
m=1

1 [Π(xi, yi, ζt, θm) ≥ Π(xi,¬yi, ζt, θm)]

}
.
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I have tried several global optimization techniques including Pattern Search, Genetic

Algorithm, Simulated Annealing, etc., to get the optimal ζ = (δ, C1, C2, σ1, σ2, qh, ql) that

maximizes my log likelihood function. It turns out that Pattern Search works best in this

case. It costs the shortest time; It achieves the maximum log likelihood; And it obtains quite

similar and robust results when I change the starting point from δ = 0.1, 0.5 to 0.9.

Pattern Search algorithm fits this problem quite well because firstly, it does not require

the calculation of gradients of the objective function, which are quite difficult to compute in

this case. Secondly, it lends itself to constraints and boundaries. For example, it could deal

with the constraint that 0 < ql < qh < 1 quite well in this case.

How does the Pattern Search algorithm operate? Pattern search applies polling method

([60]) to find out the minimum of the objective function. Starting from an initial point,

it firstly generates a pattern of points, typically plus and minus the coordinate directions,

times a mesh size, and center this pattern on the current point. Then, for each point in this

pattern, evaluate the objective function and compare to the evaluation of the current point.

If the minimum objective in the pattern is smaller than the value at the current point, the

poll is successful, and the minimum point found becomes the current point. The mesh size

is then doubled in order to escape from a local minimum. If the poll is not successful, the

current point is retained, and the mesh size is then halved until it falls below a threshold

when the iterations stop. Multiple starting points could be used to insure that a robust

minimum point has been reached regardless of the choice of the initial point.

This algorithm is simple but powerful, provides a robust and straightforward method for

global optimization. It works well for the maximum likelihood function in this paper, which

is derivative-free with constraints and boundaries.

1.5.4 Estimation Results

The estimation results from Pattern Search are shown in Table 4 below.

According to the estimation results, the informed passengers account for around 3.73%

of the whole population. This proportion appeals to be trivial at first glance, but it is not

surprising because those are the travelers who are not only informed of hidden city ticketing,
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Figure 7: Business travel index for each airport as the destination city.

Table 4: Results of MLE.

log likelihood -0.3023

δ 0.0373

C1 10.0935

C2 0.3125

σ1 0.2094

σ2 0.7406

qh 0.7010

ql 0.1125
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Figure 8: Up: Plot of log likelihood when δ varies from 0 to 1. Below: Plot of log likelihood

when δ varies from 0 to 0.1 (zoom in).

but also exploiting those opportunities, and whose behavior in fact result in affecting the

choices made by airlines. And in the counterfactual analysis section below, I will further

show that even a small fraction of informed passengers will affect airline’s choices of network

structures and prices significantly.

The confidence interval for δ was constructed using the bootstrap method. I run the MLE

for 1,000 times, and for each run, sample the entire data with replacement and construct a

data set of equal size. The sample mean of the 1,000 estimates of the MLE is 0.0296, and the

standard error is the sample standard deviation as 0.0093. We can see that δ is significantly

different from zero at 99% confidence interval.

In Figure 8, I have plotted the log likelihood as a function of δ with all other parameters

being constant at their optimal values. From the figure it is clear that δ = 3.73% is the

global maximizer.

Recall that in my theoretical model, I have assumed that there is only one airline serving

the three cities, thus the firm charges monopoly airfares. [54] also made similar monopoly

assumption in the paper, and corresponding to this assumption, the author refined the data

and only paid attention to the routes with a single carrier operating one or two flights per

day. Following this idea, I also define route AB, BC, AC, or ABC as monopoly if there

30



is only one single carrier providing services on that route. Refining my sample of ordered

triplets according to this condition results in a subsample size of 36,645, comparing to the

total sample size of 114,635 before. Applying the same estimation algorithm, I have solved

the MLE problem again based on the monopoly subsample, and get an estimation of δ being

equal to 0.0303. The result is not significantly different from the 0.0373 we obtain above

from the whole sample.

1.6 Counterfactual Analysis

Based on our previous analysis, given a longer horizon, airlines should be able to adjust

their prices and networks in response to hidden city ticketing, in order to maximize their

expected profits. To reveal what would be the airline’s optimal joint choices of prices and

network structures when δ changes, and further estimate the possible impacts of hidden

city ticketing on welfare outcomes, I have conducted several counterfactual analysis using

numerical approach below. Will airline companies always suffer from revenue loss with

hidden city ticketing? Will hidden city ticketing always benifit consumers and social welfare?

Should government enact regulations to clearly prohibit or permit this booking ploy? My

counterfactual experiments will help shed some light on those important policy implications.

Assume that the proportion of informed passengers (δ) increases from 0 to 100%, and air-

line companies always choose optimal prices under different network structures to maximize

their expected profits when δ changes. After obtaining the optimal price bundle p∗ under

different networks, I compute the surplus of producer, consumer, and society according to

our previous analysis in Section 1.3. Then I plot producer surplus (blue), consumer surplus

(red) and total surplus (black) under fully-connected network (dotted line) and hub-and-

spoke network (solid line) respectively, when δ varies.
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1.6.1 Fully-Connected Network Outperforms Hub-and-Spoke Network

Findings 1 Among all the 114,635 data points (i.e., ordered triplets A-B-C), 75,995

(66.29%) have expected profits under fully-connected network being always higher than that

under hub-and-spoke network, regardless of the value of δ.

My first finding is that under major cases, fully-connected network creates higher ex-

pected profits for airlines comparing to hub-and-spoke network, regardless of the propor-

tion of informed passengers. One example would be the ordered triplets MIA→SEA→COS

(Miami International Airport to Seattle-Tacoma International Airport to Colorado Springs

Airport). Figure 9 shows the surplus of producer, consumer, and society with different δ(s).

The dotted lines are always horizonal because according to my model, hidden city ticketing

will not affect the welfare outcomes under fully-connected network structure. It is clear that

in this example, the dotted blue line is always above the solid blue one, regardless of the value

of δ, which means that for airlines operating from Miami International Airport to Colorado

Springs Airport, a direct flight always outperforms an indirect one through Seattle-Tacoma

International Airport. This is not surprising because flying from Miami to Colorado through

Seattle is counter intuitive.

When we plot the surplus in Figure 9, there is a pattern of kink, which is not uncommon

and also found in other examples. Digging deep I find what happens at the kink is that

airlines keep raising the price pABC in response to the increasing proportion of informed

passengers, δ. Consumers benefit at first because more and more informed travelers are able

to exploit the hidden city opportunities, pay lower prices and obtain extra utility. However,

when the kink point is reached, pABC hits the magnitude of pAB and hidden city opportunities

disappear. The informed passengers can no longer obtain extra utility, while since the new

pABC turns out to be higher than the original price without hidden city ticketing, those

passengers flying from A to C through B also get hurt. This is similar to what is called

“detrimental externalities” in [83], in which the author also found that sometimes more

informed consumers would cause the price paid by uninformed consumers to increase. This

finding also helps confirm the concern mentioned in [38] that allowing hidden city ticketing

might lead to unintended consequences, including higher prices.
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Figure 9: Surplus for MIA to SEA to COS (top left), CID to DTW to MSN (top right),

AUS to JFK to RDU (bottom) when δ changes.
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1.6.2 Hub-and-Spoke Network Outperforms Fully-Connected Network

Findings 2 22,551 (19.67%) data points have expected profits under hub-and-spoke net-

work being always higher than that under fully-connected network, regardless of the value of

δ.

Contradict to the previous finding, sometimes the hub-and-spoke network structure al-

ways does a better job achieving higher revenue compared to fully-connected network. One

example would be the ordered triplets CID→DTW→MSN (The Eastern Iowa Airport to De-

troit Metropolitan Airport to Dane County Regional Airport in Madison). Figure 9 shows

the surplus of producer, consumer, and society in this case when δ varies.

We can see that the solid blue line is always above the dotted blue one, regardless of

the value of δ, which means that for airlines flying from The Eastern Iowa Airport to Dane

County Regional Airport in Madison, an indirect flight through Detroit Metropolitan Airport

always outperforms a direct flight. This usually happens when both airports A and C are

small, which is exactly what occurs when you are flying from CID to MSN. In this case, it

might be costly for airlines to provide a direct flight service, especially when compared to

the relatively low demand.

1.6.3 Switch from Hub-and-Spoke Network to Fully-Connected Network

Findings 3 16,089 (14.03%) data points have crossings, which means that airline’s

expected profits are higher under hub-and-spoke network when there are less informed pas-

sengers, while fully-connected network becomes more profitable when δ gets large.

A more interesting story lies in the cases remained: hub-and-spoke network structure

is more profitable when δ is small, but becomes gradually outperformed by fully-connected

network when there are more and more informed passengers. In other words, for some specific

routes, airlines have the incentive to switch from one network structure to another, and δ

will affect companies’ network choices. This finding could be supported by what we called

“dehubbing” phenomenon in recent years ([11]). For example, Delta closed its Dallas-Fort

Worth International Airport (DFW) hub in year 2005 and reduced the number of flights at

its Cincinnati hub by 26% in the same year. And Pittsburgh was also downgraded from a
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hub to a “focus city” by US Airways in 2004.

One example would be the ordered triplets AUS→JFK→RDU (Austin–Bergstrom In-

ternational Airport to JFK to Raleigh–Durham International Airport). Figure 9 shows the

surplus of producer, consumer, and society in this case when δ varies.

We can see that the solid blue line crosses the dotted blue one at the point when δ is

around 6%, which means that when δ is smaller than the threshhold, airline would pursue

hub-and-spoke network structure. While when there are more and more informed passengers

and δ crosses the threshhold, airline has the incentive to switch from the hub-and-spoke

network to fully-connected network, and this decision will also affect both consumer surplus

and total surplus dramatically. In this example, after the airline company making the change,

both consumer surplus and total surplus increase a lot, which refer to the increase from the

solid red, black lines to the dotted red, black lines respectively. But this is not always the

case, and we will see more details later in this paper.

The crossing point varies for different ordered triplets. This is because different routes

have different characteristics and attract different types of travelers. Some routes would be

quite “sensitive” to hidden city ticketing and airlines operating on those routes would switch

from hub-and-spoke network to fully-connected network when δ is relatively small. Some

routes would have operating airlines changing their network choices only when the amount of

informed passengers are large enough. And we have already known that sometimes airlines

will never change to the fully-connected network (Findings 2), while in other cases they will

stick to the fully-connected network from the very beginning (Findings 1). To have a more

complete idea about the impact of different δ(s) on airlines’ network choices, I can always

depict the graph of surplus for every ordered triplet in my data. However, it is impossible

to display all those figures here (recall that I have as many as 114,635 data points in total).

Therefore, in Figure 10 I have plotted the distribution of all the crossing points when δ

changes.

We can see that even a small δ matters. Airlines’ choices can be affected significantly

even with a quite small proportion of informed passengers. For example, airlines would

switch from hub-and-spoke network to fully-connected network on nearly 1,000 routes with

only 1% of informed passengers, and further change their choices on another 900 routes if
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Figure 10: Distribution of crossings when δ changes (pmf).

the proportion increases to 2%. Recall that we have obtained an estimation of δ = 3.73% in

Section 1.5, which appeals to be trivial at first glance, but in fact, 3% of informed passengers

could affect airlines’ choices of network structures on approximately 2,700 routes (out of

16,089 in my whole sample), and this amount of routes being affected would increase to

around 3,600 when the proportion of informed passengers increase to 4%. To make this

illustration clearer, I have also drawn the cumulative distribution function of the crossing

points when δ varies from 0 to 1, and obtain my next finding from the following Figure 11.

Findings 4 Airlines have the incentive to switch from hub-and-spoke network to fully-

connected network for half of the routes when there are approximately 10% of informed pas-

sengers, and for 75% of the routes when δ is only around 19%.

Recall that after airlines changing their choices of network structures, consumers and

the whole society are not always better off. After comparing the consumer surplus and total

surplus before and after the change for all those 16,089 routes, I am able to further conclude

that:

Findings 5 If airlines switch from hub-and-spoke network to fully-connected network, un-
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Figure 11: Distribution of crossings when δ changes (cdf).

der 11,458 cases (71.22%) consumer surplus is going to increase, and under 11,128 (69.17%)

cases total surplus is going to increase.

In other words, unlike what could be derived from the theoretical model when airlines

do not alter their choices of network structures and airfares in the short run, during a

longer horizon, firms would actively react to the conduct of hidden city ticketing and change

their optimal choices. This will result in different welfare outcomes for producer, consumer,

and whole society compared to the propositions in Section 1.3. What I have found in my

counterfactual analysis is that, during this process, firms always result in lower expected

profits, while consumers and the whole society are not necessarily better off. One possible

explanation would be that the conduct of hidden city ticketing weakens the airlines’ ability

of price discrimination. Therefore, enacting a simple regulation for prohibiting or permitting

the conduct of hidden city ticketing would be difficult.
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1.7 Discussion

There are some limitations and future questions remained in this paper. Firstly, I have

made a critical assumption in my model that there is only one airline serving the three

cities, thus the firm charges monopoly airfares. The monopoly assumption is not uncommon

in airline related literatures, but some researchers believe that after the deregulation, the

US airline industry should be characterized as being hightly oligopolistic ([74]). And in

[38], the authors also find that “hidden city opportunities may arise when a greater amount

of competition exists for travel between spoke communities than on routes to and from

hub communities, and where airfares in those markets reflect such competition”. In other

words, besides the factors I have raised in my propositions, competition might be another

possible cause of hidden city ticketing, which does not enter my model under the monopoly

assumption. And given competition, besides the cost-saving effect, another advantage of

hub-and-spoke network compared to fully-connected network would be that airlines could

have stronger market power in the hub, which helps them increase the entry barrier and drive

up the prices for the origin-hub passengers. Since there are business travelers who favor the

origin-hub route and appeal to be price-inelastic, this market power of raising prices could

result in higher profits for the hubbing airlines. ([17], [18])

Another interesting question raised by [83] is that does it pay to be informed? If this is

true, a better way to take this into consideration might be assuming that it is possible to

become fully informed by paying a fixed cost C. Conducting hidden city tickeing is definitely

costly. Passengers are “threatened” by the airline companies and need to “bear some risk”

to conduct this behavior. As I have quoted from the contract of carriage in Section 3.1,

consumers will be penalized if being caught. And hidden city ticketing might be treated

as “unethical” and a breach of the contract between passengers and the airlines. There are

also possible negative externalities such as causing delays of the other passengers because of

waiting and double checking baggages. Furthermore, the condition of conducting hidden city

ticketing is also highly restrictive. For example, if you have luggage that is not carry-on, you

are not able to leave the flight earlier without picking up your bag. Normally, your checked

baggage will be delivered to your final destination directly rather than to your connection
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city. Also, you cannot conduct hidden city ticketing for the first segment of your round-trip.

Your second trip will be cancelled if you missed the connection of the first one. Besides, you

might need to bear the risk that you are switched to another flight because of initial flight

being cancelled or overbooked, with the same origin and destination airports, but bypass the

connection city. Therefore, cost incurred to be informed might be a reasonable assumption

when studying hidden city ticketing in the future, while measuring this cost would still be

challenging.

Furthermore, airlines claim in the news that in reaction to the booking ploy of hidden

city ticketing, they might choose to charge more on flights, stop offering some flights, and re-

calibrate their no show algorithms. My analysis successfully predicts the increase in airfares

of some flights. But since I have assumed that airline companies are choosing between

fully-connected network and hub-and-spoke network, I do not provide an outside option for

airlines to stop offering the flights for certain routes. Instead of raising the prices of flights to

eliminate hidden city ticketing, another possibility is that the airlines could stop serving those

defective routes. This is also another major concern in [38] that allowing hidden city ticketing

might result in unintended decreasing service. Including this outside option could help make

the analysis more complete, although the magnitude might be difficult to evaluate without

a good measure of the costs. Another concern raised by purchasing hidden city tickets is

related to logistics and public-safety. When hidden city ticketing becomes more popular,

airlines might need to re-calibrate their no show algorithms. They might have the incentive

to oversell more, which is an act that could turn problematic and expensive if the estimates

are wrong. Unfortunately, I did not find the dataset of airlines’ oversales. Related statistics

provided by United States Department of Transportation are numbers of passengers boarded

and denied boarding by the U.S. Air Carriers. Figure 12 shows the percentage of passengers

being denied boarding by the U.S. Air Carriers because of oversales, both voluntarily and

involuntarily, from year 1990 to 2019.

From Figure 12 we can see a declining trend of percentage of passengers being denied

boarding because of oversales in recent years, which indicates that the concern of possible

oversales raised by hidden city ticketing might be subtle.
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Figure 12: Percentage of passengers denied boarding by the U.S. air carriers, 1990 to 2019.
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1.8 Conclusion

To conclude, this paper aims at analyzing the possible cause and impact of hidden city

ticketing. To achieve this goal, I have constructed a structural model, collected innovative

data, applied global optimization algorithm to solve the MLE, and conducted counterfactual

analysis. I find that hidden city ticketing occurs only when airline companies are applying

a hub-and-spoke network structure. And airlines apply hub-and-spoke network rather than

fully-connected network in order to reduce their operation costs. When airlines are not aware

of hidden city ticketing, hence do not alter their choices of prices and network structures in

the short run, we can derive from the theoretical model that, 1) hidden city ticketing does

not necessarily decrease airline’s expected profits, since the lower price also attracts more

passengers to take the flight; 2) consumers are always better off when hidden city ticketing

is allowed; 3) total social welfare always increase when hidden city ticketing is allowed.

During a longer horizon, firms would actively react to the conduct of hidden city tick-

eting and freely change their optimal choices of network structures and airfares. Under this

circumstances, based on the counterfactual analysis I have conducted, I find that 1) to maxi-

mize expected profits, fully-connected network is always better than hub-and-spoke network

for some routes (66.29%), while hub-and-spoke network outperforms fully-connected network

for some other routes (19.67%), regardless of the proportion of informed passengers; 2) for

the rest (14.03%) of the cases, airlines’ expected profits are larger under hub-and-spoke net-

work when there are less informed passengers, while fully-connected network becomes more

profitable when more and more passengers starting to exploit hidden city opportunities; 3)

airlines have the incentive to switch from hub-and-spoke network to fully-connected network

for half of the routes when there are approximately 10% of informed passengers, and for 75%

of the routes when informed passengers increase to around 19%; 4) if airlines change their

network choices because of hidden city ticketing, firms are suffering from revenue loss, while

consumers are not always better off (28.78% of the cases consumer surplus will decrease),

and total social welfare is not always larger neither (30.83% of the cases total surplus will

decrease). Therefore, enacting a simple regulation for prohibiting or permitting the conduct

of hidden city ticketing would be difficult, because welfare outcome varies route by route.
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2.0 Maximum Likelihood Optimization via Parallel Estimating Gradient

Ascent

Global optimization without access to gradient information is a central task to many

econometric applications as the tool to obtain maximum likelihood estimators for very com-

plicated likelihood functions. The estimating gradient descent framework is particularly

popular, which uses local functional evaluation to build gradient estimates and perform gra-

dient descent from multiple initial points. In this work, we study the problem of coordination

between the multiple ”threads” of estimating gradient descent in order to pause or terminate

unpromising threads early. The high-level idea is to make predictions, either conservative

or aggressive, on the potential progress of each estimating gradient descent threads and to

compare them with the progress on other threads. We also test our proposed methodology

on both synthetic data and real airline pricing data, and compare with competitive methods

including the genetic algorithm and the pattern search algorithm. The numerical results

show the effectiveness and efficiency of our proposed approach.

2.1 Introduction

Maximum-likelihood (ML) estimation is the workhorse for a wide range of inferring tasks

of econometric modeling. Mathematically, given model p(x; θ) with unknown parameter of

interest θ ∈ Θ ⊆ Rd and collected data sample {xi}Ni=1, the ML estimation problem can be

formulated as

max
θ∈Θ

1

N

N∑
i=1

log p(xi; θ). (1)

In the rest of this paper, we also abbreviate Fi(θ) := log p(xi; θ) and F (θ) := 1
N

∑N
i=1 Fi(θ).

The optimization question of Eq. (1) is then equivalent to maxθ∈Θ F (θ).

The primary focus of this paper is on the computation of approximate solutions of the

ML estimates (1) under challenging scenarios when the underlying model p(·; θ) is very
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complicated and has several undesirable properties. Some important challenges include but

are not limited to:

1. Non-concavity and non-unimodality of log-likelihood: the log-likelihood function

log p(xi; ·) might not be concave or even uni-modal with respect to the unknown parame-

ter θ, making “local search” type methods such as mountain-climbing or gradient ascent

difficult to find global optima of Eq. (1). Instead, it is very likely that these methods

would stuck in local minima or saddle points;

2. Inaccessible first-order information: many optimization methods, such as gradient

ascent or Newton’s method, requires access to first-order or even second-order derivatives

∇θ log p(xi; θ),∇2
θ log p(xi; θ). Unfortunately, for many complicated econometric models,

even if such derivatives exist, they still cannot be easily computed in closed forms. This

prevents straightforward adoptions of famous continuous optimization algorithms to solve

Eq. (1);

3. Noisy zeroth-order evaluation: in some scenarios, even the log-likelihood function

log p(xi; θ) itself cannot be evaluated or computed without error, given data xi and a

hypothetical parameter θ. For example, in econometric models involving game theoret-

ical process with unknown parameters, the computation of log p(xi; θ) requires multiple

Monte-Carlo samples and cannot achieve arbitrary levels of accuracy;

4. Curse of dimensionality for multiple parameters: while nonparametric estimation

of the log-likelihood function naturally leads to an approximate optimization algorithm

for Eq. (1), such an approach suffers from the curse of dimensionality when there are more

than one parameters (i.e., d > 1). Even when d is moderately large (e.g., d ∈ [5, 10]),

estimating the entire log-likelihood function could already lead to unacceptable level of

computations.

In this paper, we propose an algorithm framework which we call “parallel estimating

gradient ascent”. Our algorithm has the following properties:

(a) Parallelism: the algorithm runs in parallel several computing threads simultaneously,

with vastly different initial points. This partially avoids the problem of being stuck in

local optima/saddle points, as the different computing threads could well lead/converge
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to different local minima;

(b) Gradient estimation: our method estimates the first-order derivative of the log-

likelihood function only with access to noisy evaluation of log p(xi; θ), making the pro-

posed method applicable to a wide range of econometric models;

(c) Coordination of computing threads: instead of running all parallel computing

threads with the same pace, we design “selection rules” and “stopping rules” to carefully

coordinate the different computing threads, so that promising computing threads are

devoted with more computing resource and unpromising threads are terminated early

without wasting more computing time.

The rest of this paper is organized as follows: In Sec. 2.2 we give accounts to related

works. The description of our proposed algorithm, as well as its several components and

convergence guarantees, are given in Sec. 2.3.

2.2 Related Works

The idea of using iterative methods to solve stochastic optimization questions without

first-order information is a well-studied topic in the literature of mathematical optimization,

machine learning and computational statistics. Estimating gradient descent/ascent origi-

nates from the works of [49, 16], which was later studied and explored in [62, 37, 13, 1, 73].

Our proposed approach also resembles “zeroth-order trust region” algorithms, studied in the

works of [10, 15, 77, 66, 32, 31]. The majority of this line of work assumes the objective

function to be optimized is convex (or concave, for maximization problems). An exception

is the work of [40], which considered non-convex objectives and studied how fast iterative

methods converge to stationary points of the said objectives.

Apart from iterative or estimating gradient type methods, many other heuristic algo-

rithms are also well-known for such global optimization questions considered in this paper.

Examples include the genetic algorithm [51, 85], simulated annealing [82], pattern search

[80, 53], as well as modern approaches such as Bayesian optimization [76] and hierarchical

optimistic optimization [25, 26].
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The idea of running several computing threads coordinating them appropriately has also

been explored in [2] in which bandit optimization problems are solved by running multiple

candidate algorithms in parallel, and in [59] to solve multi-armed bandit problems subject

to an unknown amount of adversarial corruption.

2.3 Algorithm Description

The pseudo-code description of the proposed algorithm framework is given in Algorithm

1. The algorithm consists of three major components: ThreadCoordination, Gradi-

entEstimation and ThreadStopping, which we describe in further details below and

in subsequent sections:

- ThreadCoordination: this component aims at the selection (at iteration t) of an

active thread j ∈ At, where At is the subset of all active threads at time t (see also

the description of ThreadStopping for the interpretation and construction of active

subsets). While the uniform distribution U(At) is the most widely used (which spreads

the computing resources evenly among all remaining active threads), other distributions

could be developed that favor more “promising” threads. Further details and discussion

are given in Sec. 2.3.1.

- GradientEstimation: this component aims at the (approximate) computation of

the first-order derivative ∇θF (θ) using only noisy evaluations of F (θ + δ), where δ ∈

Rd is a small d-dimensional perturbation vector. The computation is enabled by first-

order Taylor expansions of the objective function F centered at θ. Further details and

discussion are given in Sec. 2.3.2.

- ThreadStopping: this component identifies unpromising threads which are not pos-

sible to lead to or converge to good solutions. Such unpromising threads are identified

through comparison with the results from other threads, and are subsequently removed

from consideration in future iterations. The subset At is defined as the set consisting of

all active threads at iteration t, which forms the support of the thread distribution used
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Algorithm 1 The meta-algorithm framework.

1: Let θ̂
(1)
0 , θ̂

(2)
0 , · · · , θ̂(J)

0 be the initial parameter estimates of J computing threads; initialize

also J = {1, 2, · · · , J} as the set of active threads;

2: for τ = 0, 1, 2, · · · do

3: Select jτ ∈ J using the ThreadCoordination component;

4: Compute gτ = ∇̂θF (θ̂
(jτ )
τ ) using the GradientEstimation component;

5: Perform projected ascent step for thread jτ : θ̂
(jτ )
τ+1 = PΘ(θ̂

(jτ )
τ − ητ∇̂θF (θ̂

(jτ )
τ )), where

ητ is a certain step size and PG(·) = arg minθ∈Θ ‖ · −θ‖2;

6: Eliminate threads in J using the ThreadStopping component;

7: end for

in the ThreadCoordination component. Further details and discussion are given in

Sec. 2.3.3.

2.3.1 The ThreadCoordination Component

The ThreadCoordination component, as suggested by its name, determines (poten-

tially randomly) at each time stamp t the particular computing thread j to be pursued for

the next iteration.

For clarity, we assume the algorithm is currently at time t (i.e., a total number of t

observations have already been collected), and thread j ∈ J is at parameter estimate θ̂
(j)
t .

We also use Tj,t(∆t) to denote the time stamps for the previous ∆t times thread j is selected,

up to time stamp t. We shall also assume that t is not too small. (When t is very small,

meaning that the optimization algorithm just starts, there is very little information regarding

the performance of each computing threads and hence the threads to pursue should be

selected uniformly at random from all J threads.) We use the following three aspects to

decide on which computing thread is to be pursued next:

1. Current performance: the current performance of each computing thread is of the ut-

most importance, since a thread that already performs well (i.e., attaining parameter

estimates with good objective values) is likely to further push the performance of the
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entire algorithm/system. For a particular thread j, its current performance can be esti-

mated as the average objective values over the last ∆t time stamps at which thread j is

selected, or more specifically

CP(j, t) :=
1

∆t

∑
τ∈Tj,t(∆t)

F̂ (θ̂(j)
τ );

2. Estimated progress : a thread that can progress fast (i.e., rapidly increasing the objective

value of the parameter estimates) should be pursued more frequently since they will

likely deliver fast progress for the overall algorithm/system performance as well. The

estimated progress of thread j can be obtained by comparing the its performance for the

previous ∆t and 2∆t time stamps during which thread j is selected, or more specifically

EP(j, t) :=
1

∆t

∑
τ∈Tj,t(∆t)

F̂ (θ̂(j)
τ )− 1

∆t

∑
τ∈Tj,t(2∆t)\Tj,t(∆t)

F̂ (θ̂(j)
τ );

3. Volatility : the “volatility” of a thread measures how stable/volatile of the quality of the

parameter estimates obtained by the thread. It can be estimated by the sample standard

deviation of the performance for the pervious ∆t time stamps during which thread j is

selected, or more specifically

V(j, t) :=

√√√√ 1

∆t

∑
τ∈Tj,t(∆t)

(F̂ (θ̂
(j)
τ )− CP(j, t))2.

Once the statistics CP(j, t),EP(j, t),V(j, t) are computed for each thread j, an aggregated

statistic A(j, t) is calculated as

A(j, t) = κCPCP(j, t) + κEPEP(j, t) + κVV(j, t),

where κCP, κEP, κV ≥ 0 are pre-determined weight parameters that carefully balance the

three aspects we discussed above. The larger the value of A(j, t) is, the more promising the

thread j is deemed by our algorithm at time t. The thread selection/coordination rule is

then designed as

Pr(select thread j at time t) =
exp{A(j, t)}∑

j′≤J exp{A(j′, t)}
,

which selects computing thread j at random with probability positively correlated with its

score A(j, t).
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Algorithm 2 The GradientEstimation component/procedure.

1: Input: solution point θ ∈ Rd, probing radius δ > 0, number of probing points m ∈ N;

2: Output: ∇̂θF (θ) ∈ Rd, an estimate of ∇θF (θ).

3: Sample u1, · · · , um uniformly at random from the unit sphere {u ∈ Rd : ‖u‖2 = 1};

4: For each probing vector ui, i ∈ {0, 1, · · · ,m}, collect noisy function evaluation yj, y
′
j at

θ and θ + δui, respectively such that E[yj|θ, xj] = F (θ) and E[y′j|θ, xj] = F (θ + δuj);

5: Find ∇̂θF (θ) as the least-squares estimation

∇̂θF (θ) = arg min
g∈Rd

1

m

m∑
j=1

∣∣y′j − yj
δ

− 〈uj, g〉
∣∣2.

2.3.2 The GradientEstimation Component

The Gradient Estimation component aims at the approximate computation of the

first-order derivative ∇θF (θ) = 1
N

∑N
i=1∇θ log p(xi; θ). A pseudo-code description of Gra-

dientEstimation is given in Algorithm 2.

As motivated in the introduction, such first-order derivatives ∇θF (θ) cannot be directly

computed in closed forms. Instead, given a hypothetical parameter θ′ (possibly different

from θ at which the derivative ∇θF (θ) is sought), one can compute a noisy evaluation

of F (θ′) = 1
N

∑N
i=1 log p(xi; θ

′). With many such noisy evaluations at different “probing”

positions θ′, a local linear model can be constructed via first-order Taylor expansions and

least-squares estimators are employed to find an estimator of ∇θF (θ).

The following lemma gives an upper bound on the estimation error of ∇̂θF (θ) under

the assumption that the gradients of the log-likelihood to be estimated, ∇F (·), is Lipschitz

continuous.

Lemma 1. Suppose ∇θF (·) is L-Lipschitz continuous, meaning that ‖∇θF (θ)−∇θF (θ′)‖2 ≤

L‖θ − θ′‖2 for all θ, θ′. Suppose also that Var(yj),Var(y′j) ≤ σ2 for some σ > 0, and

m ≥ 8d ln(d/δ) for some δ ∈ (0, 1/2). Then with probability at least 1 − δ, the estimation

error ∇̂θF (θ)−∇θF (θ) can be decomposed as

∇̂θF (θ)−∇θF (θ) = β + ζ,
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where ‖β‖2 ≤ Lδ almost surely and ζ ∈ Rd is a random vector satisfying E[ζ|θ] = 0 and

E[ζ>ζ|θ] ≤ 4d2/(mδ2).

Proof. Proof of Lemma 1. For notational simplicity denote yj = F (θ) + εj and y′j =

F (θ + δuj) + ε′j where E[εj|θ, uj] = E[ε′j|θ, uj] = 0 and Var[εj|θ, uj],Var[ε′j|θ, uj] ≤ σ2. By

the mean-value theorem, there exists ũj = λδuj for some λ ∈ (0, 1) such that

y′j − yj = F (θ + δuj)− F (θ) + (εj − ε′j) = 〈∇θF (θ + ũj), δuj〉+ (ε′j − εj)

= δ〈∇θF (θ), uj〉+ δ〈∇θF (θ + ũj)−∇θF (θ), uj〉+ (ε′j − εj).

Dividing both sides of the above equality by δ, we obtain

y′j − yj
δ

= 〈∇θF (θ), uj〉+ 〈∇θF (θ + ũj)−∇θF (θ), uj〉︸ ︷︷ ︸
:=bj

+ δ−1(ε′j − εj)︸ ︷︷ ︸
:=sj

. (2)

Next, define X = (u1;u2; · · · , um) ∈ Rm×d as an m × d matrix with each row corre-

sponding to a probing vector uj; z, b, s ∈ Rn as n-dimensional vectors with zj = (y′j − yj)/δ,

bj = 〈∇θF (θ + ũj)−∇θF (θ), uj〉, sj = (ε′j − εj)/δ for j = 1, 2, · · · , n. The estimate ∇̂θF (θ)

can then be written as ∇̂θF (θ) = (X>X)−1(X>z). In addition, z = X∇θF (θ)+ b+s thanks

to Eq. (2). Subsequently,

∇̂θF (θ)−∇θF (θ) = (X>X)−1X>(b+ s) = (X>X)−1X>b+ (X>X)−1X>s. (3)

Define β := (X>X)−1X>b. By Lemma 5, we know that ‖(X>X)−1‖op ≤ 2d/m with

probability 1− δ. Therefore,

‖(X>X)−1X>b‖2 ≤ ‖(X>X)−1‖op‖X‖op ×
√
m‖b‖∞ ≤

2d

m
×
√
m×

√
m× ‖b‖∞ ≤ 2d‖b‖∞,

with probability 1− δ, where ‖b‖∞ = maxj |bj|. Because ∇θF (θ) is L-Lipschitz continuous,

|bj| can be upper bounded by

|bj| =
∣∣〈∇θF (θ + ũj)−∇θF (θ), uj〉

∣∣ ≤ ‖∇θF (θ + ũj)−∇θF (θ)‖2 × ‖uj‖2

≤ L× ‖ũj‖2 × ‖uj‖2 ≤ Lδ,
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where the last inequality holds because ‖ũj‖2 = λδ‖uj‖2 ≤ δ since ‖uj‖2 = 1 and 0 < λ < 1.

Subsequently, we have with probability 1 that

‖β‖2 = ‖(X>X)−1X>b‖2 ≤ 2Ldδ. (4)

We next establish a co-variance upper bound on ζ = (X>X)−1X>s. It should be noted

that each sj = (εj − ε′j)/δ is a centered, independent random variable with variance upper

bounded by E[s2
j |θ] ≤ 2/δ2. Subsequently, we have

E[ζ>ζ|θ] = E[s>X(X>X)−2X>s|θ] =
2

δ2
tr
[
X(X>X)−2X>

]
≤ 2

δ2
× d× 2d

m
=

4d2

mδ2
. (5)

Combining Eqs. (4,5) we complete the proof of Lemma 1.

2.3.3 The ThreadStopping Component

In the ThreadStopping component, we discuss rules for stopping a computing thread

j if it is deemed to be not promising, either unable or too time-expensive to converge to a

good-quality parameter estimate. While the proposed rules are heuristics in nature, we prove

under certain local concavity assumptions that these proposed stopping rules are conservative

in the sense that, with high probability, they will not remove a promising computing thread

by mistake.

We describe the two major stopping rules considered in the ThreadStopping compo-

nent, which can be categorized at a higher level as “first-order” and “second-order” rules.

2.3.3.1 First-order stopping rule Suppose thread j is currently at a parameter es-

timate θj, with gradient estimate ∇̂F (θ
(j)
τ ) ≈ ∇F (θ

(j)
τ ). Suppose also that an estimate

F̂ (θ
(j)
τ ) ≈ F (θ

(j)
τ ) is obtained by simply averaging all observations of yj in Algorithm 2. The

thread j should be terminated, then, if there exists another thread j′ 6= j such that

Stopping rule 1: F̂ (θ(j)
τ ) +D × ‖∇̂F (θ(j)

τ )‖2 ≤ F̂ (θ(j′)
τ ).

Here, D > 0 is a tuning parameter for the stopping rule and also the optimization algorithm,

with larger D values indicating more aggressive (and hence less “safe”) stopping rule for

computing threads.
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Intuitively, the stopping rule obtains an “over-estimate” of the likelihood function F on

the solution thread j can potentially converge to, on the left-hand side of the stopping rule.

The intuition is that if F̂ (θ
(j)
τ ) is already small, it means that the function will change very

slowly in a neighborhood of θ
(j)
τ and therefore the estimating gradient ascent procedure is

unlikely to advance/improve the likelihood objective significantly in thread j.

Below we state a local concavity condition and shows that, with the condition held and

the estimates F̂ , ∇̂F being accurate, the proposed stopping rule is “safe” in the sense that it

will only remove computing threads impossible to obtain better parameter estimates. This

is further accomplished by showing that, F̂ (θ
(j)
τ ) + D × ‖∇̂F (θ

(j)
τ )‖2, under the considered

circumstances, is an upper bound on how large F (θ∗j ) could potentially be.

Condition 1 (Local concavity). For every computing thread j let θ∗j be the parameter the

thread converges to. There exists a convex neighborhood Uj containing θ∗j with diameter

supx,x′∈Uj ‖x− x
′‖2 ≤ D, such that F is concave in Uj, meaning that

F (λx+ (1− λ)x′) ≥ λF (x) + (1− λ)F (x′), ∀x, x′ ∈ Uj, λ ∈ [0, 1].

Lemma 2. Suppose F is twice differentiable, condition 1 holds and θ
(j)
τ ∈ Uj. Then F (θ∗j ) ≤

F (θ
(j)
τ ) +D‖∇F (θ

(j)
τ )‖2.

Proof. Proof of Lemma 2. Because F is twice differentiable and locally concave on Uj, we

know that ∇2F (θ) � 0 for all θ ∈ Uj. Using second-order Taylor expansion of F (θ∗j ) at θ
(j)
τ

with Lagrangian remainders, it holds that

F (θ∗j ) = F (θ(j)
τ ) + 〈∇F (θ(j)

τ ), θ∗j − θ(j)
τ 〉+

1

2
(θ∗j − θ(j)

τ )>∇2F (θ̃)(θ∗j − θ̂(j)
τ ),

where θ̃ = λθ∗j +(1−λ)θ
(j)
τ for some λ ∈ (0, 1), and θ̃ ∈ Uj since Uj is a convex domain. This

implies that ∇2F (θ̃) � 0 and therefore (θ∗j − θ
(j)
τ )>∇2F (θ̃)(θ∗j − θ̂

(j)
τ ) ≤ 0. Subsequently,

F (θ∗j ) ≤ F (θ(j)
τ ) + ‖∇F (θ(j)

τ )‖2 × ‖θ∗j − θ(j)
τ ‖2 ≤ F (θ(j)

τ ) +D‖∇F (θ(j)
τ )‖2,

where the first inequality is by the Cauchy-Schwarz inequality and the second inequality

holds because ‖θ∗j − θ
(j)
τ ‖2 ≤ D.
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2.3.3.2 Second-order stopping rule The first stopping rule we developed in the pre-

vious section could be strengthened if the likelihood objective F has finer properties locally

around θ∗j . In this section we consider a second-order stopping rule, which stops a particular

thread j if there exists another thread j′ 6= j such that

Stopping rule 2: F̂ (θ(j)
τ ) +

1

2α
× ‖∇̂F (θ(j)

τ )‖2
2 ≤ F̂ (θ(j′)

τ ).

Comparing the stopping rule 2 with stopping rule 1, the major difference is the squared

`2-norm of the estimated gradients of F at θ̂
(j)
τ . Inuitively speaking, this rule is more “aggres-

sive” than stopping rule 1, since when thread j approaches θ∗j it converges to, the gradients

would be close to zero and therefore ‖θ̂(j)
τ ‖2

2 would be much smaller than ‖θ̂(j)
τ ‖2.

Below we state a local strong-concavity condition, which is stronger than Condition 1

for stopping rule 1. We then show, in Lemma 3 below, that under the stronger condition

a “clearner” version of stopping rule 2 will not remove computing threads that are still

relevant.

Condition 2 (local strong-concavity). For every computing thread j let θ∗j be the parameter

the thread converges to. There exists a convex neighborhood Uj containing θ∗j with diameter

supx,x′∈Uj ‖x− x
′‖2 ≤ D, such that F is α-strongly concave in Uj, meaning that

∇2F (θ) � −αI, ∀θ ∈ Uj.

To see why Condition 2 is strong than Condition 1, recall that a twice-differentiable

function f is concave on U if ∇2f(x) � 0 for all x ∈ U . This is weaker than Condition 2

with some α > 0.

Lemma 3. Suppose F is twice differentiable, condition 2 holds and θ
(j)
τ ∈ Uj. Then F (θ∗j ) ≤

F (θ
(j)
τ ) + 1

2α
‖∇F (θ

(j)
τ )‖2

2.
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Proof. Proof of Lemma 3. Using second-order Taylor expansion of F (θ∗j ) at θ
(j)
τ with La-

grangian remainders, it holds that

F (θ∗j ) = F (θ(j)
τ ) + 〈∇F (θ(j)

τ ), θ∗j − θ(j)
τ 〉+

1

2
(θ∗j − θ(j)

τ )>∇2F (θ̃)(θ∗j − θ̂(j)
τ ),

where θ̃ = λθ∗j + (1 − λ)θ
(j)
τ for some λ ∈ (0, 1), and θ̃ ∈ Uj since Uj is a convex domain.

Because ∇2F (θ̃) � −αI and |∇F (θ
(j)
τ ), θ∗j − θ

(j)
τ )| ≤ ‖∇F (θ

(j)
τ )‖2×‖θ∗j − θ

(j)
τ ‖2 thanks to the

Cauchy-Schwarz inequality, we conclude that

F (θ∗j ) ≤ F (θ(j)
τ ) + ‖∇F (θ(j)

τ )‖2 × ‖θ∗j − θ(j)
τ ‖2 −

α

2
‖θ∗j − θ(j)

τ ‖2
2.

Completing the squares, we obtain

F (θ∗j )− F (θ(j)
τ ) ≤ −α

2
‖θ∗j − θ(j)

τ ‖2
2 + ‖∇F (θ(j)

τ )‖2 × ‖θ∗j − θ(j)
τ ‖2

= −α
2

(
‖θ∗j − θ(j)

τ ‖2 −
‖∇F (θ

(j)
τ )‖2

α

)2

+
‖∇F (θ

(j)
τ )‖2

2

2α

≤ ‖∇F (θ
(j)
τ )‖2

2

2α
.

Re-arranging the terms we have F (θ∗j )− F (θ
(j)
τ ) ≤ ‖∇F (θ

(j)
τ )‖22

2α
, which is to be demonstrated.
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2.4 Numerical Results on Synthetic Data

In this section we report numerical results of our proposed algorithm on the optimiza-

tion task of a synthetic function. We consider the problem of maximizing a 5-dimensional

non-concave function with multiple local maxima and saddle points. To construct such a

function, we use the probability-density function of a Gaussian Mixture Model (GMM). More

specifically, we consider the following objective function

f(x) =
5∑

k=1

1√
2πσ2

k

exp

{
−‖x− µk‖

2
2

2σ2
k

}
,

with µk = ek ∈ R5 being the coordinate basis functions, σk = 1.0 for k ∈ {1, 2, 3, 4} and σk =

0.5 for k = 0.5. The construction of the objective function f ensures that it has at least five

local minima with similar values, with the local minima tilting towards the last component

k = 5 being comparably higher due to its smaller variance. More specifically, via accurate

calculation, the global maxima of f(·) appears at x∗ = [0.0511, 0.0511, 0.0511, 0.0511, 0.7957],

very close to the center of the last Gaussian component, with an objective value of f(x∗) =

1.4572. Hence, if an (estimating) gradient descent algorithm is initialized near the first

for components it will be attracted to the first four local maxima first before escaping and

turning towards the final global maxima near the last component.

In Figure 13 we report the convergence of our proposed algorithm with five threads,

initialized to solutions close to each of the component centers µk defined in the objective

function. Both algorithms are run for a total of T = 100 gradient evaluations (total number

of time periods across all 5 threads), with each gradient evaluation taking m = 20 random

samples with δ = 0.1 probing radius. In the left panel of Figure 13, both the thread

coordination and thread stopping components are disabled (meaning that each time we

select a thread uniformly at random, and no thread is terminated early); in the right panel of

Figure 13, the thread coordination (thread sampling) component is activated with parameters

κCP = κEP = κV = 1 with history window ∆t = 100, and the thread stopping component

is activated with rule F̂ (θ
(j)
τ ) + 0.5‖θ(j)

τ ‖2 ≤ F̂ (θ
(j′)
τ ). In both plots of Figure 13, we also

report in the dashed blue curve the objective function values of a hypothetical single-thread
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Figure 13: Convergence of our proposed algorithm with five threads. Details of the figures

and the algorithms being implemented are given in the main text. Note that the most

promising thread #5 converges to the optimal objective f ∗ = 1.4572 rather quickly even

with few number of function evaluations.

estimating gradient descent method, initialized at a point close to a sub-optimal component

center µk, k < 5.

From Figure 13, it is clear that our proposed algorithm with multiple threads (more

precisely 5 threads in this experiment) outperform its single-thread version significantly,

with the same number of function value/gradient evaluations (T = 100). Furthermore, the

right panel of Figure 13 shows that our thread coordination and thread stopping components

could quickly identify sub-optimal threads (those marked with red, yellow, black and magenta

curves) and stop them, while the same multi-thread optimization algorithm without thread

coordination or stopping is forced to almost evenly distribute the computation among the

five threads, wasting computation on unpromising threads and thereby slowing the overall

progress of the algorithm.

We also report the global (overall) convergence of the proposed algorithms in Figure 14.

For the single-thread curve (the dashed black curve) Figure 14 coincides with Figure 13.

For the other two curves corresponding to five threads, we report the best objective value

the algorithm attains after a total of t = 1, 2, · · · , 100 gradient/function value evaluations
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Figure 14: Global (overall) convergence of the proposed algorithm for single-thread,

five-thread without coordination/stopping and five-thread with coordination and stopping.

Further details are given in the main text.

are made. This gives the reader a more intuitive picture of the efficiency of the proposed

optimization algorithms. As we can see, the algorithm with both thread coordination and

thread stopping components activated (the solid blue curve) converges to higher objective

values much faster than the same algorithm with the same number of threads, but with

neither thread coordination nor thread stopping rules (the solid red curve). This is because

with thread coordination (sampling the more promising threads more frequently) and thread

stopping (terminating sub-optimal threads early to not waste more computation time on

these threads), the algorithm allows more samples/computation to be spent on the promising

thread so that the convergence speed of the algorithm is much faster.
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2.5 Numerical Results on Airline Pricing Data

In this section, we apply our proposed optimization method to a real-world airline pricing

dataset and compare its performance with benchmark heuristics optimization algorithms,

including the genetic algorithm and the pattern search algorithm. Our proposed algorithm

is implemented in C++, while both benchmark methods are implemented in Matlab.

2.5.1 Background: Hidden City Ticketing

Modern airlines operator primarily two types of flight networks: the hub-and-spoke net-

work, which designated a handful of airports as hubs and route most of the flights from all

airports to major hubs; and the fully-connected network, which operates direct flight in a

point-to-point manner. The hub-and-spoke network is adopted by major airlines such as the

United airlines and the Delta airlines, while the fully-connected approach is mostly used by

smaller, low-cost carriers such as Southwest and JetBlue.

In hub-and-spoke network, many flights between non-hub airports are carried out using

connecting flights. For example, the flight from Pittsburgh to Boston could be direct/non-

stop, but most likely it needs connection at a New York airport. Naturally, connecting flights

are priced (sometimes significantly) lower compared to direct flights due to the additional

connection and extended travel time. In some extreme cases, the price of the indirect flight

(e.g., Pittsburgh to Boston connecting via New York) might be even lower than the first-leg

of the flight (Pittsburgh to New York non-stop). This creates the possibility of hidden-city

ticketing, a practice that could significantly reduce the revenue/profits of the airlines.

More specifically, consider a traveller who wishes to travel from airport A to airport B.

The practice of hidden-city ticketing is defined as the same traveller purchasing a ticket from

airport A to airport C, connecting at airport B. The traveller would then proceed with only

the first leg of her purchased ticket, essentially traveling from A to B on a non-stop flight.

Clearly, such hidden-ticketing behavior is only practiced if the traveller knows about the

practice, and furthermore the price of a flight ticket from A to C connecting at B is strictly

lower than the price of a non-stop ticket directly from A to B.
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Figure 15: Illustration of fully-connected (FC) and hub-and-spoke (HS) structures among

three airports.

2.5.2 Model Formulation and Maximum Likelihood Estimation

We collected commercial flights operated among the 133 busiest commercial service air-

ports in the United States (identified by the FAA) with 96.34% of total passenger enplane-

ments, 16,142 routes and 2,822,086 itineries.

For every three distinct airport tuples (A,B,C), with flights connecting (A,B) and

(A,C), the flight network can be categorized as either fully-connected (FC), if there are

non-stop flights between (A,C), or hub-and-spoke (HS) if there are no direct flights between

A and C. Figure 15 gives a graphical illustration of the FC and/or HS network structures

among the airports A,B and C. We use dAB, dBC , dAC to denote the distances between

pairs of airports, and pAB, pBC , pAC for ticket prices of direct flights among the airports.

Additionally, we use pABC for the ticket price of the indirect flight from A to C connecting

at B.

We make the following assumptions on the supply side (the airlines):

1. There is only one airline serving the three cities, thus the firm charges monopoly airfares;

2. Aircrafts are assumed to have an unlimited capacity, thus there is one flight on each

route. C2 denote the airline’s cost per mile on any route j;

3. Direct flight has a quality of qh per mile and indirect flight has a quality of ql per mile,

with 0 < ql < qh < 1.
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Figure 16: The Stackelberg game description of the airlines’ network choices and travelers’

riding behaviors.

We also assume the following on the demand side (the travelers):

1. Each individual i has a time preference parameter of λi, obtaining utility C1e
λiqd − p

from consuming a good of quality q, and 0 if he/she does not fly;

2. On each route j, the distribution of consumers’ time preferences λij ∼ N (θj, σ
2
1);

3. For passengers flying from A to B, the fraction of passengers being aware of hidden city

opportunity is δ and the fraction of uninformed passengers is 1− δ;

4. When hidden city opportunity exists (i.e., pAB > pABC), informed passengers will pay

pABC instead, while uninformed passengers will still pay pAB;

5. Amount of passengers on each route j are normalized to 1.

Based on the above assumptions, we use a Stackelberg game to characterize the airlines’

network choices and the travelers’ riding behaviors, as shown in Figure 16.

We next formulate the maximum likelihood estimation question that we aim to solve.

The problem is centered on the parameter of interest δ, representing the portion of travelers

who are aware and would be willing to exploit the benefits of hidden city ticketing. Other

nuisance parameters also needed to be estimated include C1 (the travelers’ average utility),

C2 (the airlines’ average cost), σ1 (standard deviation of λij), σ2 (standard deviation of
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θj ∼ N (µj, σ
2
2)), qh and ql (utility multipliers for different types of travelers). Mathematically,

we use

ζ = (δ, C1, C2, σ1, σ2, qh, ql) ∈ R7

to denote a vector of parameter values.

For each airports tuple (Ai, Bi, Ci) in the collected data such that there are at least one

flights between (Ai, Bi) and (Bi, Ci), respectively, we use

yi ∈ {0, 1}

to denote the airline’s actual choice of FC or HS structures (i.e., yi = 1 if there are di-

rect flights between (Ai, Ci) and yi = 0 otherwise). The accessible data for airport tuple

(Ai, Bi, Ci) are represented as

xi = (pAB, pBC , pAC , pABC , dAB, dBC , dAC , µB, µC) ∈ R9,

where pAB, pBC , pAC , pABC are flight ticket prices, dAB, dBC , dAC are distances between air-

ports, and µB, µC are expected values of θB, θC which are obtained via analyzing the typical

flows of flights/passengers for each of the 133 airports in the data set.

With θB ∼ N (µB, σ
2
2) and θC ∼ N (µC , σ

2
2) realized, the expected profit for the airline

can be computed as follows. Let Φ(z;µ, σ2) =
∫ z

0
1√

2πσ2
exp{− (t−µ)2

2σ2 }dt be the cumulative

density function (CDF) of N (µ, σ2). First, in the case of Fully-Connected (FC) network, the

expected profit is

ΠFC = ΠAB + ΠBC + ΠAC where ΠXY = pXY

[
1− Φ

(
ln

(
pXY

C1qhdXY

)
; θY , σ

2
1

)]
− C2dXY .

In the case of Hub-and-Spoke (HS) network, there are two cases. The first case is pAB < pABC ,

in which there is no hidden-city ticketing opportunities. The airline’s profit is then expressed

as

ΠHS = ΠAB+ΠBC+Rl
ABC where Rl

ABC = pABC

[
1− Φ

(
ln

(
pABC

C1ql(dAB + dAC)

)
; θC , σ

2
1

)]
.

Note that, because the direct flight between A and C is no longer operated in a hub-and-spoke

network, and therefore Rl
ABC is a pure profiting term.
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Finally, in the case of pAB ≥ pABC , there is potential profit loss due to hidden-city

ticketing. The airline’s profit is

ΠHS = (1− δ)ΠAB + ΠBC +Rl
ABC + δRh

ABC

where Rh
ABC = pABC

[
1− Φ

(
ln

(
pABC

C1qhdAB

)
; θB, σ

2
1

)]
,

where δ ∈ (0, 1) is the parameter of interest corresponding to the portion of travelers engaged

in the hidden-city ticketing practice.

Given tuple xi and the observed airline’s network choice yi ∈ {0, 1}, the log-likelihood of

yi conditioned on xi and parameter ζ can be written as

logP (yi|xi; ζ) = yi log Pr
θBi ,θCi

[
ΠFC > ΠHS

]
+ (1− yi) log Pr

θBi ,θCi

[
ΠHS ≥ ΠFC

]
. (6)

The maximum-likelihood estimation problem is then formulated as

arg max
ζ

1

N

N∑
i=1

logP (yi|xi; θ), (7)

where N is the total number of airport tuples (A,B,C) available in the data collected.

2.5.3 Results

Before presenting the computational results, we first mention some important imple-

mentation details. First, because the distances dXY are measure in miles and could vary

drastically, we adopt a re-normalization transform dXY 7→
√
dXY to alleviate the scales of

the distances. We also note that the log-likelihood in Eq. (6) cannot be evaluated directly be-

cause the PrθBi ,θCi
[
ΠFC > ΠHS

]
terms do not admit easy closed-form expression. Instead, we

use Monte-Carlo sampling with MMC samples to approximately compute the log-likelihood.

Finally, because the collected data consist of many airport tuples (i.e., N > 105), we use a

“mini-batch” approach when evaluating the objective function in Eq. (7). More specifically,

we randomly sample MMB � N airport tuples and use the average log-likelihood on the ran-

domly sampled mini-batch data to approximate the log-likelihood of the objective function

on the entire data set.
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Table 5: Results for our proposed algorithm on the airline pricing data, with

D = 1/2α ∈ {1.0, 0.5, 0.3}. A × means that the particular thread is not active at the end

of the optimization.

D = 1/2α log. likeli. δ C1 C2 σ1 σ2 qh ql running time (s)

Thread #1 1.0 -0.69 0.01 6.33 0.76 0.69 0.82 0.53 0.10 108.9

0.5 -0.69 0.02 6.34 0.78 0.72 0.85 0.52 0.10 107.7

0.3 -0.68 0.02 6.33 0.78 0.72 0.87 0.52 0.10 108.3

Thread #2 1.0 -0.73 0.49 11.8 0.95 0.35 0.86 0.54 0.12 108.9

0.5 -0.71 0.50 11.8 0.94 0.35 0.93 0.52 0.12 107.7

0.3 × × × × × × × × ×

Thread #3 1.0 -0.71 0.06 10.3 0.74 0.37 0.96 0.49 0.10 108.9

0.5 -0.70 0.07 10.3 0.74 0.39 0.99 0.47 0.11 107.7

0.3 -0.69 0.07 10.3 0.76 0.43 1.0 0.47 0.11 108.3

Thread #4 1.0 -0.68 0.50 10.9 0.95 0.72 0.83 0.34 0.10 108.9

0.5 -0.69 0.49 10.9 0.96 0.72 0.82 0.33 0.12 107.7

0.3 -0.67 0.48 10.9 0.91 0.73 0.86 0.33 0.12 108.3

Thread #5 1.0 -0.71 0.43 12.0 0.96 0.59 0.77 0.36 0.11 108.9

0.5 × × × × × × × × ×

0.3 × × × × × × × × ×
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Table 6: Results for the genetic algorithm (ga) and the pattern search algorithm (ps).

Each algorithm terminates only when the designated time limit is reached. MMB equals to

MMC are the mini-batch sizes and the number of Monte-Carlo samples, respectively.

MMB MMC log. likeli δ C1 C2 σ1 σ2 qh ql running time (s)

Genetic algorithm 200 200 -0.73 0.30 5.03 0.68 0.61 0.86 0.85 0.27 100

200 200 -0.75 0.28 5.36 0.73 0.58 0.78 0.82 0.28 300

500 500 -0.69 0.31 3.66 0.70 0.81 0.95 0.93 0.21 600

Pattern search 200 200 -0.82 0.13 7.5 0.10 0.10 0.85 1.0 0.10 100

200 200 -1.01 0.0 8.0 0.10 0.10 0.60 1.0 0.10 300

500 500 -0.76 0.35 0.34 0.35 0.51 0.76 0.58 0.16 600

We also impose the following constraints on each of the parameters in ζ to be estimated:

δ ∈ (0, 1/2], C1 ∈ [1, 20], C2 ∈ [0.1, 1], σ1 ∈ [0.1, 1], σ2 ∈ [0.1, 1] and 0.1 ≤ ql ≤ qh ≤ 1.

These constraints are imposed to ensure the values of the unknown parameters are practically

feasible and reasonable.

We first present computational results for our proposed parallel stochastic gradient ascent

algorithm. Algorithmic parameters are set as κCP = κEP = κV = 1 for the ThreadCoor-

dination component, m = 20, δ = 0.05 for the GradientEstimation component, and

D = 1/2α ∈ {1.0, 0.5, 0.3} for the ThreadStopping component. The algorithm is run for

T = 200 iterations, 5 initial threads with random initializations, and with the log-likelihood

of the final solution of each active threads being reported in Tables ??.

As we can see from Table ??, at the end of the optimization there are 5 active threads

if D = 1/2α = 1.0, 4 active threads if D = 1/2α = 0.5 and 3 active threads if D =

1/2α = 0.3. This is intuitive because smaller D = 1/2α values indicate a more aggressive

thread elimination policy, thereby leading to fewer active threads. In the core three threads

(Threads #1, 3, 4) the log-likelihood is consistently below −0.7, indicating likely scenarios

in the real world. Our algorithm takes roughly 100 seconds to complete an optimization.

We next compare the results obtained by our proposed algorithm with two baseline

methods widely used in global optimization: the genetic algorithm and the pattern search
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algorithm. Both algorithms have been implemented in Matlab in standard packages, via the

ga and the patternsearch routine. The results for both algorithms are reported in Table

6, with their corresponding running times. Note that the running times are set prior to each

run, and the optimization algorithms simply terminate once the time budgets are reached.

Table 6 shows that, both the genetic algorithm and the pattern search algorithm take much

longer time (around or even more than 10 minutes) to converge to less optimal solutions

compared to the ones found by our proposed algorithm in 100 seconds. This demonstrates

the effectiveness and efficiency of our proposed approach.

2.6 Conclusion

In this paper, we propose a general framework of optimizing functions with noisy function

evaluations. The proposed framework is based on running multiple threads of stochastic

estimating gradient ascent algorithms in parallel, and to carefully coordinate the different

computing threads. Theoretical analysis and justifications are given for the stopping rules

used in the proposed method, and numerical results on both synthetic data and a real airline

industry data set are provided to corroborate the effectiveness and efficiency of our proposed

methods.
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3.0 Does H-1B Visa Reforms Affect Whether US Natives Major in STEM

Fields?

This chapter exploits large changes in the H-1B visa program and examines the effect of

changes in H-1B admission levels on the likelihood that US natives major in STEM fields.

Compare to effect on labor market outcomes, the possible impact of H-1B visa reforms on

natives’ college major choices indicate effect over longer horizons. I find some evidence that

H-1B population adversely affect natives’ choices in STEM fields when they enter the college

and graduate from it. Female, male and White subgroups have been negatively affected, and

the native Asian subgroup suffer from the most dramatic crowd-out effect. Given that the

H-1B population share had been more than doubled during 1992 to 2017, the probability of

native Asian graduates majoring in STEM fields would be 2.56 percentage points larger, if

the H-1B population shares had remained at their 1992 levels and all else had remained the

same. Since foreign-born Asian account for a large proportion of H-1B visa holders, there

might be an interesting “Asian crowd out Asian” story.

3.1 Introduction

The number of college students major in STEM (science, technology, engineering and

mathematics) fields is commonly viewed as critical to the long-term technology advancement

and economic growth of United States. Nowadays, there has been concern that not enough

US natives are studying in STEM fields, and one possible reason is that they might be

crowded out by foreign-born students. According to the data released by 2009-17 American

Community Survey (ACS), the proportion of US natives major in STEM fields varied within

the range of 15% to 25% during year 1960 to 2017. It was relatively stable fluctuating around

20% in 1990s and 2000s, and kept increasing after 2010. But the percentage of foreign-born

students major in STEM fields has been always higher than that of native graduates, and it

showed a nearly 15% increase during 1960 to 2017. Theoretically, large amount of foreign-
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born students studying STEM majors might be a double-edged sword for native graduates.

Foreign-born students could possibly crowd out natives of STEM majors because they are

competing for limited education resources, or there might be positive spill-over effect instead

when natives are attracted and retained in those fields.

The relationship between natives’ college major choices and H-1B visa reforms might be

trivial at first glance. But according to the data released by U.S. Citizenship and Immigration

Services (USCIS), large proportion of H-1B visa holders work in STEM related occupations.

Thus the H-1B visa program governs most admissions of foreign-born graduates with a

bachelor’s degree or above major in STEM fields for employment in United States. Therefore,

whether the large changes in this program will affect US natives’ major choices in STEM

fields or not becomes an interesting research question to explore.

Since it was created in year 1992, the controversy over H-1B visa program never stops.

Proponents emphasize that those high-skilled workers are important to the technology ad-

vancement of US economy, and if H-1B visa is contracted, “America is losing many very

skilled workers ... They are losing their dreams, and America is losing the value they bring”.

([86]). While the detractors keep worried about native US workers being displaced by foreign-

born workers, or furthermore, native US students being crowded out by foreign-born students

in especially STEM fields. Compare to the impact on natives’ labor market outcomes, pos-

sibility of affecting the major choices in STEM fields of native students might be even more

worthy of studying, because the effect could be on the US economy operation over longer

horizons.

To bring identification to the research question, following [48], I will exploit large changes

in the H-1B population over the 1992-2017 period. The H-1B population fluctuated sub-

stantially during this period because firstly, the national cap on new H-1B issuance varied

a lot from a lower bound of 65,000 new workers a year to a higher bound of 195,000. Sec-

ondly, the usage of cap and total H-1B issuance also varied a lot due to the change of policy

and economic condition. According to the summary statistics published by USCIS, large

proportion of H-1B specialty occupation workers are young (between the ages of 25 and 34),

well educated (with a bachelor’s degree or above), working in STEM-related occupations

and earn relatively high median salary.
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This study focuses on the relationship between natives’ college major choices and H-

1B visa reforms. More specifically, I am trying to measure the impact of changes in H-1B

population on the probability that US native students choose to major in STEM related fields

when they enter the college and graduate from it. I choose the undergraduate level education

because this is the key step for an individual to obtain a STEM degree and work in STEM

related occupations after graduation. The ACS is a large-scale survey conducted by the U.S.

Census Bureau every year and it has asked respondents with at least a bachelor’s degree

to report their college majors since 2009. Although there are previous literatures looking

at the outcomes of H-1B visa program, and literatures focusing on the possible factors that

affect students’ major choices, to the best of my knowledge, this is the first paper examining

the relationship between H-1B visa reforms and US natives’ college major choices in STEM

fields directly.

More specifically, this paper measures the possible impact of changes in H-1B admission

levels on the likelihood that US natives major in STEM fields over the 1992-2017 period.

To bring identification of this problem, I exploit the variation of H-1B population shares

across areas and over time. This is not easy due to data limitation. Exploiting the variation

of H-1B population across more narrowly defined labor markets is difficult with standard

data resources. Therefore, I have applied a innovative approach exploiting the micro-level

data in the first step of H-1B visa application. Another challenge is to identify the causal

relationship, which is also difficult because of the endogeneity of immigrants’ self location

choices. Hence I have applied an instrumental variable approach constructing an IV based

on the historic settlement pattern of foreign-born STEM workers. To better interpret the

results, I also take a further look at the impacts on different gender and race subgroups. This

is a reasonable approach because different subgroups vary from one to another. According to

the data, much less female students choose STEM majors compare to male students, while

much more Asian natives choose to major in STEM fields compare to other race groups.

Existing literatures also find some heterogeneity among different gender and race subgroups.

For example, [43] shows that the persistence in STEM majors is much lower for women

and minorities. [64] also find similar results, while [69] find the opposite. Analyzing the

results for different subgroups could reveal a more complete story and help shed light on
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policy implications. For all of my preferred specifications, I have included control variables

of lagged H-1B population, personal characteristics, and labor market conditions. State

and year fixed effects and state-specific linear trends are also included to make the causal

relationship more valid.

In this paper, I have found significant negative impacts of H-1B population shares on

natives majoring in STEM fields, both when they enter the college and graduate from it.

For students beginning their college education, a 10% increase in the H-1B population share

decreases the probability of native students choosing STEM majors by 0.032%, decreases the

likelihood of a male native student majoring in STEM related fields by 0.07%, and decreases

that of a White native student by 0.025%. Given that the H-1B population share had been

more than doubled from year 1992 to 2017, the probability of native students majoring

in STEM fields when they enter the college would be 0.74 percentage points larger, if the

H-1B population shares had remained at their 1992 levels and all else had remained the

same. Similarly, the likelihood of male native students choosing STEM majors would be

1.62 percentage points larger, and that of White native students would be 0.58 percentage

points larger. For students graduating from college, results indicate that a 10% increase

in the H-1B population share decreases the probability of native graduates choosing STEM

majors by 0.021%, decreases the likelihood of a female native graduate majoring in STEM

related fields by 0.014%, decreases that of a male native graduate by 0.032%, and decrease

that of a White native graduate by 0.02%. The native Asian subgroup suffer from the most

dramatic crowd-out effect. A 10% increase in the H-1B population share would decrease the

likelihood of an Asian native graduate majoring in STEM related fields by as large as 0.111%.

Again, given that the H-1B population share had been more than doubled, the probability

of native graduates majoring in STEM fields when they graduate would be 0.49 percentage

points larger, the likelihood of female native graduates choosing STEM majors would be

0.32 percentage points larger, that of male native graduates would be 0.74 percentage points

larger, and that of White native graduates would be 0.46 percentage points larger. For

the native Asian subgroups, the probability would have been as large as 2.56 percentage

points larger if the H-1B population shares had remained at their 1992 levels and all else

had remained the same. Since foreign-born Asian account for a large proportion of H-1B
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visa holders, there might be an interesting “Asian crowd out Asian” story here.

The remainder of this chapter is organized as follows: The introduction of related works

is summarized in Section 3.2. The background information including the US college major

choices and the H-1B visa program, as well as the details of the dataset being used are ex-

plained in more details in Section 3.3 and Section 3.4 respectively. Section 3.5 describes the

empirical framework in details, including the plain Probit regression model and the instru-

mental variable approach. Section 3.6 shows the results of both approaches and Section 3.7

concludes.

3.2 Literature Review

Previous literatures mainly focus on the labor market outcomes of H-1B visa program.

[55], [57], [50], and [70] provide some general information about H-1B visa program, H-1B

population estimates and characteristics of H-1B visa holders. The evidence of impact of

H-1Bs on labor market outcomes are mixed. Some papers find that the H-1B visa holders

adversely affect native workers’ employment opportunities, wages, etc. For example, [56]

raise some concern given trends in the postdoctoral labor market and for employers in ‘job

shops’ who undercut US workers with temporary workers. [61] criticize that the industry’s

motivation for hiring H-1Bs is primarily a desire for cheap, compliant labor, and show the

adverse impacts of the H-1B program on various segments of the American computer-related

labor force. [50] find some evidence of aggressive wage-cost cutting, including paying H-1B

recipients only the legally mandated 95 percent of the prevailing US wage, among some

H-1B employers. In contrast, some other papers show positive impacts of H-1B workers on

natives’ earnings, employment rate, etc. For example, [87] find some positive relationship

between LCAs (Labor Condition Applications, the first step towards H-1B visa application)

and earnings, earnings growth, and the unemployment rate in the IT sector at the state

level. [48] show that higher H-1B admissions increase immigrant science and engineering

(SE) employment and patenting by inventors with Indian and Chinese names in cities and

firms dependent upon the program relative to their peers. [44] find that immigrants who
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entered on a temporary work visa have a large advantage over natives in wages, patenting,

and publishing, and are more likely to start companies than similar natives. [65] show that

increases in STEM workers are associated with significant wage gains for college-educated

natives, and foreign STEM increased total factor productivity growth in US cities.

Besides the mixed evidence of impacts of H-1B workers on native workers’ labor mar-

ket outcomes, there are also a few studies paying attention to the H-1B visa program on

educational outcomes. For example, [47] find that restrictive immigration policy dispro-

portionately discourages high-ability international students from pursuing education in the

United States. And [4] show that the binding cap of H-1B visa raises international students’

likelihood of employment in academia, even outside of their field of study.

With respect to students’ college major choices, existing literatures have revealed different

factors that might contribute to this decision making process - in STEM or non-STEM fields

- and whether students tend to persist or change their majors during college, using both

reduced-form and structural model approaches. For example, [22] find that the number of

foreign PhD students in sciences majors shows a positive effect on undergraduate students

also choosing sciences majors. [7] show that academic background can fully account for

average differences in switching behavior between blacks and whites. [58] find that weaker,

non-minority students typically respond to greater competition in the sciences by shifting

their major choice. [63] find some evidence that immigration adversely affects whether US-

born women who graduated from college majored in a science or engineering field. [6] show

significant sorting into majors based on academic preparation, with science majors at each

campus having on average stronger credentials than their non-science counterparts. [9] find

that students with relatively greater non-STEM ability are more likely to switch out of

STEM. [5] estimate a dynamic model of the ability sorting across majors and conclude that

virtually all ability sorting is because of preferences for particular majors in college and

the workplace. [8] estimate a model of college major choice that incorporates subjective

expectations and assessments and show that both expected earnings and students’ abilities

in the different majors are important determinants of a student’s choice of a college major.

[3] develop a dynamic model of educational decision-making and figure out the important

role for heterogeneity in tastes for fields of study and the occupations they lead to.
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To summarize, there are previous literatures looking at the outcomes of H-1B visa pro-

gram, and literatures focusing on the possible factors that affect students’ major choices,

while to the best of my knowledge, this is the first paper to exam the relationship between

H-1B visa reforms and US natives’ college major choices in STEM fields directly.

3.3 U.S. College Major Choices

My paper applied data on college majors from the 2009-17 ACS. The ACS is a large-

scale survey conducted by the U.S. Census Bureau every year. Since 2009, it started to ask

respondents with at least a bachelor’s degree to report their college major. To define STEM

majors, the Department of Homeland Security (DHS) has made a STEM Designated Degree

Program list, which is a complete list of fields of study that DHS considers to be science,

technology, engineering or mathematics (STEM) fields of study for purposes of the 24-month

STEM optional practical training extension. According to the regulation, a STEM field of

study is a field of study “included in the Department of Education’s Classification of In-

structional Programs taxonomy within the two-digit series containing engineering, biological

sciences, mathematics, and physical sciences, or a related field. In general, related fields will

include fields involving research, innovation, or development of new technologies using engi-

neering, mathematics, computer science, or natural sciences (including physical, biological,

and agricultural sciences)”. Combine the STEM Designated Degree Program list with the

field of degree information provided by ACS, I have established a list of STEM majors in

appendices Table 13. Compare to the classification in [63], which includes only majors in

biology and life sciences, physical sciences, engineering, computer and information sciences,

and mathematics and statistics as STEM majors, my classification is broader and fits the

STEM optional practical training extension well, which is highly correlated with the H-1B

visa program. This broader classification has increased the percentage of STEM majors in

my raw data from 19.74% (according to the definition of STEM majors in [63]) to 22.64%.

Assume that the traditional college age is aged 18-22. Figure 17 shows the percentage

of US native college graduates who majored in STEM fields when they were age 22, the
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modal age when they graduated, during year 1960 to 2017, as well as that of foreign-born

students. The solid line indicates that the proportion of US natives majoring in STEM

fields varied within the range of 15% to 25% during the period. It declined in the 1960s

and rose in the 1970s. The increase in the 1970s and early 1980s might reflect the emphasis

on science and math during that time ([63]). A sharp decrease occurred in mid-1980s and

the ratio went back to around 20% until 2010. It seems that the Internet boom of the late

1990s did not have a significant impact on native students’ major choices in STEM fields.

The ratio kept increasing after year 2010. Due to the data collecting process, foreign-born

students being included in the analysis are those who were living in the United States when

the ACS was conducted. The dot line shows that a much higher percentage of foreign-born

students choosing to major in STEM related fields compared to native graduates, and the

ratio revealed a nearly 15% increase during this period. After the introduction of H-1B

visa program since early 1990s, the ratio kept growing when the program expanded and

decreased when the policy contracted in early 2000s. After that it began rebounding when

the macroeconomy started to recover from the crisis, and the H-1B population also kept

growing since then.

Figure 18 shows the percentage of US native college graduates majoring in STEM fields

by gender group. In general, the proportion of male and female STEM students share similar

trends during this time period. The proportion of male students choosing STEM majors is

much higher than that of female students, whereas female students showed a more stable

increasing trend compared to that of the male students. Figure 19 shows the percentage

of US native college graduates majoring in STEM fields by race group. I have divided the

native students into four different race groups: non-Hispanic white, non-Hispanic black,

Asian and Hispanic. The non-Hispanic other race is not shown. The solid line representing

the non-Hispanic white group is smooth with largest number of observations. Dot line for

non-Hispanic black group and dash line for Hispanic group show smaller percentages of native

students majoring in STEM fields, compared to that of the non-Hispanic white group. The

Asian group, represented by the dash dot line, indicates a much higher and more volatile

proportion of STEM students compared to all the other three groups.

In my empirical analysis, I will match the state-level data of H-1B population with
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Figure 17: The proportion of college graduates majoring in STEM by nativity.

individuals’ state of birth. State of birth is the only place of residence available in the ACS

besides the current place and place one year ago, and state of birth is also highly correlated

with the state of having college education in United States, compared to the other two

places. There are also other previous literatures using the state of birth to examine state-

level variables related to college education. ([29], [35], [21], [63]) An advantage of using state

of birth is to mitigate the endogeneity selection bias that might arise if the H-1B population

affects US native college students’ location choice of college attendance. According to the

data published by National Center for Education Statistics, the average ratio of all first-

time degree/certificate-seeking undergraduates in degree-granting postsecondary institutions

entering a college within their state of birth was as high as 81.80% in year 1992 (Utah has the

highest proportion of 94% and Connecticut has the lowest of 59%, with District of Columbia

being excluded) and 78.38% in year 2016 (Utah has the highest proportion of 90.85% and

Vermont has the lowest of 50.60%, with District of Columbia being excluded). Figure 20

shows the variation of proportion of in-state students across states when they entered the

73



Figure 18: The proportion of U.S. native college graduates majoring in STEM by gender.

Figure 19: The proportion of U.S. native college graduates majoring in STEM by race.
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college in year 1992 and 2016, respectively. From the literature and the data, we should

be able to reasonably conclude that state of birth is a good indicator of the state where

US natives have their college education. Since not all of the students entering college in

their state of birth, my estimates are likely to underestimate the possible impact of H-1B

visa reform on US natives’ college major choices, and this underestimation would be slightly

different across states.

Figure 20: The variation of proportion of U.S. natives entering college within their state of

birth across states (year 1992 and 2016, District of Columbia excluded).
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3.4 H-1B Visa Program

The H-1B is a visa in the United States that allows U.S. employers to temporarily employ

foreign workers in specialty occupations. The regulations define a specialty occupation as

“requiring theoretical and practical application of a body of highly specialized knowledge in

a field of human endeavor including but not limited to biotechnology, chemistry, computing,

architecture, engineering, statistics, physical sciences, medicine and health, and requiring

the attainment of a bachelor’s degree or its equivalent as a minimum” (U.S. Code Title 8,

Chapter 12, Subchapter II, Part II, Section 1184 - Admission of nonimmigrants).

Since year 2004, USCIS started to publish the Annual Report to Congress including

Report on H-1B Petitions and Characteristics of H-1B Specialty Occupation Workers, both

of which provide some summary statistics of H-1B workers. In general, H-1B specialty

occupation workers are young (between the ages of 25 and 34) and well educated (with a

bachelor’s degree or above). More than 80% of those visa holders work in STEM related

occupations, such as occupations in computer sciences, engineering, mathematics, physical

sciences and life sciences. They also earn much higher median salary compared to the U.S.

average. For example, in year 2017, the median salary of beneficiaries of approved H-1B

petitions increased to $85,000, much higher than the nominal median income per capita of

$31,786 and the real median household income of $61,372 reported by the Census Bureau.

More details of the characteristics of H-1B workers are summarized in Table 7.

Because the H-1B visa is a necessity for a foreign-born graduate to work in United

States, any reform of it towards to or away from STEM students would reasonably affect

foreign-born students’ major choices in especially STEM fields, and therefore, might crowd

US natives out or have positive spillovers on them through attracting or retaining them in

those fields.

The H-1B visa program has been changing ever since it started. The Immigration Act of

1990 (implemented in 1992) created the H-1B visa for professional foreign nationals seeking

temporary employment in the United States. At the time of its creation, 65,000 H-1B visas

became available for new applicants each year. The cap was not reached until fiscal year

1997 and again in 1998. In October 1998, Congress enacted the American Competitiveness
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Table 7: Characteristics of H-1B specialty occupation workers.

Year % age % bachelor’s % master’s % doctorate % computer- Median

25-34 degree degree degree related salary

occupations

2004 65.5 48.7 33.9 11.2 44.5 $53,000

2005 65.6 44.8 36.8 5.3 43.0 $55,000

2006 66.1 45.0 38.6 10.6 48.4 $60,000

2007 65.7 44.0 40.4 10.1 49.8 $60,000

2008 66.1 43.0 40.6 10.9 49.6 $60,000

2009 65.9 40.9 39.9 12.6 41.6 $64,000

2010 67.7 42.5 39.2 11.7 47.5 $68,000

2011 69.7 41.4 41.7 5.2 50.8 $70,000

2012 72.1 46.3 40.8 8.4 59.5 $70,000

2013 70.9 45.0 41.1 8.8 59.8 $72,000

2014 71.7 45.0 43.1 7.8 64.5 $75,000

2015 71.0 45.0 44.0 7.0 66.5 $79,000

2016 68.9 44.2 45.4 6.9 69.1 $82,000

2017 66.2 45.2 44.5 6.8 69.8 $85,000
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and Workforce Improvement Act (ACWIA), which temporarily raised the cap to 115,000 for

fiscal years 1999 and 2000. Limit were both reached. Congress responded to the increase in

demand for H-1B visas with the American Competitiveness in the 21st Century Act (AC21).

The act had two relevant effects. First, it reduced the number of H-1B visas that counted

toward the quota by exempting employees of universities, nonprofit research organizations,

and governmental research organizations. Second, it raised the cap to 195,000 for each

of year 2001, 2002, and 2003. Those limits were never reached. In year 2004, Bachelor’s

degree cap returned to 65,000 with added 20,000 visas for applicants with U.S. postgraduate

degrees. The H-1B cap has been binding every year since then. On April 2, 2008, the U.S.

Department of Homeland Security announced a 17-month extension to the OPT for students

in qualifying STEM fields. And the 17-month extension has been replaced by a longer 24-

month extension since May 10, 2016, which allows the foreign STEM students to work up

to 36 months under their student visa, and provides them as long as three years to obtain

an H-1B visa.

Figure 21 shows the annual H-1B visa issurance cap (dash line), the H-1B visa issuance

for initial employment (dot line), and the H-1B visa population estimate (solid line) during

the fiscal year 1992 to 2017. In FY 1999 the actual issuance exceeded the national cap

because of a computer malfunction announced by Immigration and Naturalization Service

(INS). In recent years, the decoupling of the actual issuances and the numerical cap is due to

the policy change that employees working for specific institutions have been exempted from

the quota.

The solid line in Figure 21 represents an important estimation of H-1B population from

FY 1992 to 2017. In this paper, I use the population stock rather than the net issuances or

the cap as my primary explanatory variable. Because the change of H-1B population stock

reflects not only the change of H-1B inflow but also the outflow, it provides more complete

information when we want to see the possible impact of H-1B visa reforms on natives’ college

major choices. Estimating the H-1B visa population is not straightforward. Although the

initial H-1B visa issuance provides a reasonably good measurement of the inflow, the outflow

estimation needs to be modeled carefully. [55] provides one way to model the outflow of H-

1B pool using the information of transitions to permanent residency, emigration, and death.
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Figure 21: H-1B visa issuance and population estimates.

And [48] applies Lowell’s updated estimates in their 2010 paper. In this study, I will measure

the outflow in a more innovative and precise way. Following [33], I assume that the outflow

of H-1B pool results not only from people adjusting to lawful permanent resident (LPR)

status, emigration and death, but also from some measurement error because of H-1B one-

year extensions, possible duplicate petitions, and people changing for employers. Data of

adjustment to LPR status come from the yearbook of INS and DHS. Emigration estimations

come from [14] paper. I explore the CDC’s (Centers for Disease Control and Prevention)

online tool to compute an estimated H-1B mortality rate, as that of Asian and Pacific Islander

males between the ages of 25 and 34 by the year 2017. Information of changing employers

are from the USCIS yearbook. And according to [33], estimated rate of duplicate petitions

approved is around 1% and appoved H-1B one-year extensions estimated by DHS is 18.3%.

In Figure 21 we can see that the resulting change in H-1B visa population is large enough

to be economically important.

Beyond those nation-level broad statistics, research related to H-1B visa program has
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been largely restricted by the data limitation. In order to exploit the variation across more

narrowly defined labor markets, and control for the many contemporaneous national changes

occurring within the United States during the same period, I follow the methodology in [48]

and exploit the more micro trends using the data of Labor Condition Applications (LCAs)

published by U.S. Department of Labor. According to the regulation, for every H-1B petition

filed with the USCIS, a LCA must first be certified by the U.S. Department of Labor to ensure

that the wage offered to the non-immigrant worker meets or exceeds the “prevailing wage”

in the area of employment, so that U.S. workers’ wages or working conditions will not be

displaced or adversely affected by the foreign workers. A big advantage of LCA data is that

it provides much more detailed information of the potential H-1B visa holders, including

their work city, county (since 2015) and state since 2001. Although the LCA approvals do

not translate one for one into H-1B grants because of the national cap of the H-1B visa

issuances, it should be one of the (best) indicators available to shed light on the variation of

H-1B population across states.

Since the ACS data only provides state-level information of natives’ birthplace, in this

paper I will use state as the primary labor market to quantify the possible impact of changing

H-1B population on US natives’ college major choices in STEM related fields. In order to

estimate H-1Bs,t, I assume that the variation of H-1B population across states is proportional

to the portion of LCAs across states, i.e., H-1Bs,t can be estimated by the following formula,

H-1Bs,t = H-1Bt ·
LCAs,t

LCAt

.

Data of LCAs,t is available since year 2001, thus for year 1992 to 2000, I further assume that

the LCAs,t=1992−2000 is equal to the average of LCAs,t=2001−2017.

For every state, I compute the share of H-1B population with respect to state population

and rank them according to their “dependency” on H-1B population. Table 8 shows the top

10 and bottom 10 states in year 1992 and 2017 respectively. We can see that there is large

variation of H-1B population share across states, ranging from 0.01% (Montana) to 0.34%

(District of Columbia, or 0.24% of New Jersey if District of Columbia is excluded) in 1992

and 0.02% (Wyoming) to 0.57% (District of Columbia, or 0.47% of New Jersey if District

of Columbia is excluded) in 2017. The standard deviation was as high as 0.06% in 1992
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and raised to 0.13% in 2017. The change of H-1B population proportions from 1992 to 2017

reveals that for most of the states, this ratio has been increasing during the time period,

with the most dependent states being Washington, California, District of Columbia, New

Jersey, and Pennsylvania. Figure 22 also shows the variation of share of H-1B Population

across states in year 1992, 2017, and changes from 1992 to 2017 respectively, from the top

dependent state to the bottom.

Table 8: Top 10 dependent states on H-1B population in 1992 and 2017.

1992 2017 change (1992-2017)

Top 10 Dependent States

1 District of Columbia 0.3358% District of Columbia 0.5732% Washington 0.3083%
2 New Jersey 0.2425% New Jersey 0.4658% California 0.2800%
3 Delaware 0.2249% Washington 0.4452% District of Columbia 0.2374%
4 Massachusetts 0.1736% California 0.4222% New Jersey 0.2233%
5 Connecticut 0.1572% Delaware 0.3668% Pennsylvania 0.1780%
6 California 0.1422% Massachusetts 0.3511% Massachusetts 0.1776%
7 Washington 0.1370% Connecticut 0.2886% Illinois 0.1682%
8 New York 0.1228% Illinois 0.2795% New York 0.1422%
9 Texas 0.1200% New York 0.2650% Delaware 0.1419%
10 Georgia 0.1142% Pennsylvania 0.2617% Rhode Island 0.1402%

Bottom 10 Dependent States

42 Hawaii 0.0269% Oklahoma 0.0459% Maine 0.0198%
43 New Mexico 0.0260% South Dakota 0.0412% Louisiana 0.0179%
44 Oklahoma 0.0246% Louisiana 0.0377% West Virginia 0.0154%
45 Alaska 0.0204% Alabama 0.0316% South Dakota 0.0125%
46 Alabama 0.0202% Montana 0.0308% Alabama 0.0114%
47 Louisiana 0.0198% Hawaii 0.0280% Mississippi 0.0041%
48 Mississippi 0.0166% West Virginia 0.0277% Wyoming 0.0026%
49 Wyoming 0.0154% Mississippi 0.0207% Hawaii 0.0011%
50 West Virginia 0.0123% Alaska 0.0196% Nevada -0.0002%
51 Montana 0.0110% Wyoming 0.0180% Alaska -0.0007%

3.5 Empirical Framework

In this paper, I use probit regression model to estimate the possible impact of H-1B

visa reforms on US natives’ college major choices in STEM related fields. The estimating
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Figure 22: Distribution of share of H-1B population across states in 1992 and 2017.
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framework is

STEMist = I(α + β · ln(H-1B Sharest) + δXist + θZst + φs + ηt + εist ≥ 0), ε ∼ (0, 1).

Assume that traditionally students enter their college in age 18 and graduate in age 22.

The dependent variable equals 1 if individual i who was born in state s majored in STEM

fields when he or she was 18 or 22 years old in year t. H-1B Shares,t is the estimated H-1B

population in state s and year t as a percentage of the state population in state s and year t.

Xist represent the characteristics of individual i, including his or her age, age square, gender,

and dummy variables for race (white, black, Hispanic, Asian or other). When these variables

are included, they are controlling for any systematic differences in the probability of majoring

in STEM fields across different sub-groups. Lagged H-1B population share are also included.

For year t when individual was 18 years old, I include lagged H-1B population share for the

past 3 years, which should traditionally cover the individual’s high school education. Under

those specifications, I am trying to measure the possible impact of H-1B visa reforms on US

natives’ college major choices when they enter the college. And for year t when individual

was 22 years old, I include lagged H-1B population share for the past 5 years, which are

supposed to cover the individual’s college education. Therefore, under those specifications, I

am trying to measure the possible impact of H-1B visa reforms on US natives’ college major

choices when they graduate from college, which is a joint choice of major when they enter

and shift during the college.

Intuitively, the condition of STEM jobs market could also affect natives’ college major

choices in STEM fields. Therefore, Zst represent some specifications controlling for the STEM

labor market conditions. I use six different measures to control for the relative attractiveness

of STEM jobs, including variables that equal the proportion of college graduates working

in STEM occupations in state s and year t, the change of that proportion during the past

decade, the ratio of total personal income of college graduates being employed in STEM

occupations to that of college graduates in non-STEM occupations in state s and year t,

the change of that ratio in the past 10 years, the ratio of wage and salary income of college

graduates being employed in STEM occupations to that of college graduates in non-STEM

occupations in state s and year t, and the change of that ratio during the past decade. STEM
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occupations are defined based on the classifications in [65] paper, data source include 1980,

1990, 2000 census, and 2001 to 2017 ACS. Since the corresponding occupation codes change

from dataset to dataset, more details are provided in the Appendices Table 14.

The regression model also includes state and year fixed effects, and state-specific linear

time trends. The state-of-birth fixed effects control for any unobservable factors that are

specific to the state but constant over time, such as climate and location. The year fixed

effects control for any unobservable factors that are specific to that year, such as the macroe-

conomy condition and policy change. The state-specific linear time trend help control for

any unobservable, smooth changes within the state that might affect the likelihood that

US natives’ college major choices in STEM fields. The standard errors εist are robust and

clustered on the state.

3.5.1 Instrumental Variable Approach

The distribution of H-1B population across states might be endogenous, suffering from

the problem of self selection. Factors that affect the possibility of H-1B visa holders to live in

one certain state might also affect US natives’ college major choices in STEM related fields.

If those factors could not be completely captured by my labor market control variables,

state and year fixed effects, and state-specific linear time trend, the plain Probit regression

estimates will have an upward or downward bias. For example, an upward bias might accur

if the H-1B visa holders are attracted by a state with educational systems putting more

emphasis on STEM education and imposing policies to generate more STEM majors. On

the other side, if there are native families who work in STEM occupations and expect their

children to also disproportionately major in STEM majors, and decide to move away from

the state with a large number of H-1B population before their children are born, this will

end up with a downward bias for the plain Probit estimates.

To deal with this potential endogeneity problem, I will apply an instrumental variable

approach besides the plain Probit regression model. The instrument is based on the foreign-

born STEM workers’ historical settlement patterns. Previous studies have found out that

immigrants tend to settle in the same areas as earlier immigrants from their country of origin.
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Existing research using instruments for the immigrant share based on historical settlement

patterns include but are not limit to [28], [27], [72], [45], [75], etc. This is also well known as

the Bartik or shift-share instrument. Two recent papers by [42] and [46] look into the details

of this instrument, and provide some econometric and economic reasons to reconsider the

conditions under which it could be used. They emphasize that the initial shares need to be

exogenous, which is reasonable here because year 1980 was more than ten years before the

H-1B visa program getting started. According to the summary statistics of the H-1B visa

program, we can see that large proportion of H-1B visa holders are working in STEM related

occupations. Therefore, the historical settlement patterns of foreign-born STEM workers

before the H-1B visa program started might be a good instrument for the distribution of

H-1B population nowadays. My instrument variable is constructed by reallocating the H-

1B population across states based on the foreign-born STEM workers’ distribution, for 17

countries or regions of origin, across states in 1980. The 17 countries or regions are Africa,

India, China, Philippines, South Korea, Japan, Rest of Asia, United Kingdom, Germany,

France, Rest of Europe, Canada, Mexico, Rest of North America, Oceania, Brazil, and Rest

of South America. These 17 groups are chosen because according to the data provided

by Department of State (since 1997) and USCIS (since 2003), each group accounted for a

significant share of H-1B visa holders, and each group also accounted for a relatively large

share of foreign-born STEM workers in 1980. Therefore, this classification could avoid having

large numbers of zeros in my constructed instrumental variables. Recall that year 1980 was

more than ten years before the H-1B visa program getting started. Specifically, I compute

the predicted H-1B population share in state s and year t according to the following formula,

Predicted H-1B Sharest =

∑n
j=1 H-1Bj

t ×% of foreign born STEM workers in sj1980

Populationst
.

where j represents country or region of origin.

The underlying assumption for this instrument variable to be valid is that the distribution

of foreign-born STEM workers by country or region of origin across states in year 1980 is

not correlated with any factor that affect US natives’ college major choices in STEM related

fields occurring more than ten years later. In other words, shocks that affect the distribution

of foreign-born STEM workers in 1980 and US natives’ college major choices do not persist

85



over time. This should be a reasonable assumption because year 1980 predates much of the

beginning of the H-1B visa program.

3.6 Results

Table 9 and Table 10 show the plain Probit regression results for the correlation between

H-1B population shares and US natives’ college major choices in STEM fields. And Table 11

and Table 12 report the instrumental variables results. For all the results tables, control

variables for personal characteristics and labor market conditions are included, as well as

state-of-birth fixed effect, year fixed effect, and state-specific linear trend. Besides the all

sample regression, I have also divided the full sample into different sub-groups according to

gender and race (White, Black, Hispanic and Asian), in order to see the possible impact of

H-1B visa reforms on college major choices of different subgroups. The totals for White,

Black, Hispanic and Asian do not sum to the full sample size because otherrace category

is not included. As explained in 3.5, lagged H-1B population shares are also included as

control variables. For Table 9 and Table 11, I am trying to measure the possible impact of

H-1B visa reforms on US natives’ major choices when they enter the college. Therefore, I am

looking at the coefficients when individuals are in their age 18, which is assumed to be the

traditional year of entering college. Lagged H-1B population shares for the past 3 years are

included, which normally cover students’ high school education. For Table 10 and Table 12,

I am trying to measure the possible impact of H-1B visa reforms on US natives’ major

choices when they graduate from college. Therefore, I am looking at the coefficients when

individuals are in their age 22, which is assumed to be the traditional year of graduation.

The major choices observed when they graduate are supposed to be a joint choice of majors

when they enter and make possible shift during the college. Lagged H-1B population shares

for the past 5 years are included, which usually cover students’ college education.

Recall that in a linear regression model, we could directly interpreting the estimated

coefficients as the marginal effects. But this is not the case for a probit regression model.

In general, we cannot interpret the coefficients from the output of a probit regression model
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in a standard way. The marginal effects of the regressors refer to how much the conditional

probability of the outcome variable changes when we change the value of a regressor, holding

all other regressors constant at some values. In particular, the marginal effects depend not

only on the regression coefficients, but also on the values of all the other regressors. Therefore,

in the probit regression model, there is an additional step of computation required to get the

marginal effects once we have computed the probit regression fit. In the result tables below,

I have listed both the outputs of the coefficients and the average marginal effects (both with

corresponding standard deviations) for the purpose of interpretation. Although these two

magnitude are different, their sign and significance level are definitely the same.

3.6.1 Plain Probit Results

From Table 9 we can see that for the full sample, there is no significant relationship

found between H-1B population shares and natives’ college major choices in STEM fields

when they enter the college at age 18. However, if I divide the full sample into different

gender and race subgroups, we can see that there are positive effects showing up for the

female and the White subgroups, and negative effect for the Hispanic subgroup. In other

words, given the choices made when they enter the college, the likelihood of female and

White native students choosing STEM majors have been positively affected by the H-1B

population shares, while the Hispanic subgroup have been adversely affected.

Further computation of the average marginal effects provide the information of interpret-

ing the magnitude of the impacts. For example, in my Probit regression model with the log

of H-1B population share as the explanatory variable, an estimated average marginal effect

of 0.0038 suggests that a 10% increase in the H-1B population share increases the proba-

bility of a female native student majoring in STEM fields when she enters the college by

0.038 percentage points. Similarly, an estimated average marginal effect of 0.0045 indicates

that a 10% increase in the H-1B population share will raise the likelihood of a White native

student choosing STEM majors when entering the college by as much as 0.045 percentage

points. And an estimated average marginal effect of -0.0212 suggests that a 10% increase in

the H-1B population share decreases the probability of a Hispanic native student majoring
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in STEM fields by 0.212%.

Table 10 shows the plain Probit regression results when students graduate from college

at age 22. We can see that no significant result has been found for the full sample or any

gender and race subgroup. Both the crowd-in and crowd-out effects found in subgroups

above when students enter the college have disappeared.

3.6.2 Instrumental Variables Results

Given the analysis in Section 3.5, we know that endogeneity of self-selection problem

might bias the plain Probit results positively or negatively. Therefore, a more preferred

specification would be the instrumental variable approach. Besides showing the regression

results of the IV approach of the probit model, both Table 11 and Table 12 also display the

F-test statistics from the first-stage of each IV regression. All the F-test statistics are well

above 10, which indicate that the instrument variable is valid and has a strong first-stage.

Table 11 reports the IV regression results when natives enter the college at their age 18.

We can see that the IV estimates are more negative compared to the plain Probit results,

which indicate that the coefficients of the plain Probit regression model might suffer from

upward bias. From the result table we can see that for the full sample, the H-1B population

shares adversely affects natives’ college major choices in STEM fields significantly at the 99%

confidence interval. A 10% increase in the H-1B population shares decreases the probability

of native students majoring in STEM fields when they enter the college by as large as 0.032

percentage points. If we take a further look at the impacts on different subgroups, we can see

that both male and the White subgroups have been negatively affected. A 10% increase in

the H-1B population share would decrease the likelihood of a male native student choosing

STEM majors by 0.07%, and decrease that of a White native student by 0.025%.

The implied marginal effects might be trivial at first glance. But recall that the H-

1B population share had increased dramatically during year 1992 to 2017, from 0.0954%

in 1992 to 0.2204% in 2017. Given that it had more than doubled during the period, the

probability of native students majoring in STEM fields when they enter the college would

be 0.74 percentage points larger - a nontrivial difference - if the H-1B population shares had
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remained at their 1992 levels and all else had remained the same. Similarly, the likelihood

of male native students choosing STEM majors would be 1.62 percentage points larger, and

that of White native students would be 0.58 percentage points larger.

The crowd-out effect remains for the whole sample as well as the male and White sub-

groups when natives graduate, and even the female and Asian subgroups are adversely

affected now. Compare to their major choices when entering the college, students might

have a better understanding of the job market they are facing and the career path they

are planning when graduation. Therefore, students might choose to change their college

majors by shifting to other fields during college education. The final decisions observed in

the data show negative estimates for both the full sample and different subgroups. From

Table 12 we can see that for the full sample, the H-1B population share adversely affects

natives’ college major choices in STEM fields significantly when they graduate. Referring

to the magnitude, a 10% increase in the H-1B population share decreases the probability of

natives choosing STEM fields when graduate by as large as 0.021 percentage points. When

we take a further look at the possible impacts on different gender and race subgroups, we

can see that more subgroups have been negatively affected. Female, male, White and Asian

subgroups have all been adversely affected by the H-1B population share. A 10% increase in

the H-1B population share could decrease the likelihood of a female native graduate major-

ing in STEM fields by 0.014%, decrease that of a male native graduate by a more significant

impact of 0.032%, and decrease that of a White native graduate by 0.02%. The native Asian

subgroup suffer from the most dramatic negative effect. The parameter estimate indicates

that a 10% increase in the H-1B population share would decrease the likelihood of an Asian

native graduate choosing STEM majors by as large as 0.111%.

Similarly, given that the H-1B population share had been more than doubled during

year 1992 to 2017, the probability of native students majoring in STEM fields when they

graduate from college would be 0.49 percentage points larger, if the H-1B population shares

had remained at their 1992 levels and all else had remained the same. The likelihood of

female native students choosing STEM majors when graduation would be 0.32 percentage

points larger, that of male native students would be 0.74 percentage points larger, and that

of White native students would be 0.46 percentage points larger. For the native Asian
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subgroups, the probability would have been as large as 2.56 percentage points larger if the

H-1B population shares had remained at their 1992 levels and all else had remained the same.

This is a dramatic difference, and since foreign-born Asian account for a large proportion of

H-1B visa holders, there might be an interesting “Asian crowd out Asian” story here.
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Table 9: Probit regression estimates for relationship between majoring in STEM and H-1B population share when entering

college.

% of H-1B population in: All Female Male White Black Hispanic Asian

Coefficients:

Age 18 0.0092 0.0171** 0.0004 0.0166** 0.0197 -0.0854** 0.0178

(0.0070) (0.0087) (0.0111) (0.0070) (0.0360) (0.0380) (0.0310)

Age 17 0.0016 0.0071 -0.0053 0.0012 0.0248 -0.0060 -0.0345

(0.0091) (0.0105) (0.0122) (0.0096) (0.0330) (0.0367) (0.0483)

Age 16 -0.0092 -0.0078 -0.0112 -0.0070 -0.0143 -0.0194 -0.0419

(0.0081) (0.0114) (0.0120) (0.0101) (0.0397) (0.0454) (0.0404)

Age 15 -0.0016 -0.0106 0.0064 -0.0021 0.0543* -0.0317 0.0224

(0.0088) (0.0098) (0.0145) (0.0093) (0.0314) (0.0375) (0.0406)

Average marginal effects:

Age 18 0.0025 0.0038** 0.0001 0.0045** 0.0050 -0.0212** 0.0064

(0.0019) (0.0019) (0.0038) (0.0019) (0.0091) (0.0094) (0.0111)

Age 17 0.0004 0.0016 -0.0018 0.0003 0.0063 -0.0015 -0.0123

(0.0025) (0.0024) (0.0041) (0.0026) (0.0083) (0.0091) (0.0173)

Age 16 -0.0025 -0.0017 -0.0038 -0.0019 -0.0036 -0.0048 -0.0150

(0.0022) (0.0025) (0.0041) (0.0027) (0.0100) (0.0112) (0.0145)

Age 15 -0.0004 -0.0024 0.0022 -0.0006 0.0137* -0.0078 0.0080

(0.0024) (0.0022) (0.0049) (0.0025) (0.0079) (0.0093) (0.0145)

# of obs 1,373,608 784,689 588,919 1,101,135 85,070 94,601 56,343
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Table 10: Probit regression for relationship between majoring in STEM and H-1B population share when graduation.

% of H-1B population in: All Female Male White Black Hispanic Asian

Coefficients:

Age 22 -0.0127 -0.0097 -0.0163 -0.0134 0.0344 -0.0290 -0.0569

(0.0097) (0.0096) (0.0129) (0.0089) (0.0265) (0.0350) (0.0469)

Age 21 -0.0093 -0.0022 -0.0163 -0.0091 -0.0538** 0.0231 0.0200

(0.0082) (0.0098) (0.0109) (0.0089) (0.0259) (0.0303) (0.0444)

Age 20 0.0056 0.0025 0.0086 0.0079 0.0320 -0.0603 -0.0131

(0.0090) (0.0104) (0.0116) (0.0100) (0.0359) (0.0376) (0.0361)

Age 19 -0.0174** -0.0157 -0.0192* -0.0187** -0.0134 0.0264 -0.0499*

(0.0087) (0.0106) (0.0106) (0.0090) (0.0397) (0.0339) (0.0292)

Age 18 0.0091 0.0176* -0.0008 0.0155** 0.0309 -0.0886*** 0.0186

(0.0066) (0.0095) (0.0109) (0.0071) (0.0332) (0.0313) (0.0355)

Average marginal effects:

Age 22 -0.0035 -0.0022 -0.0055 -0.0036 0.0087 -0.0072 -0.0203

(0.0026) (0.0021) (0.0044) (0.0024) (0.0067) (0.0086) (0.0168)

Age 21 -0.0025 -0.0005 -0.0055 -0.0025 -0.0136** 0.0057 0.0072

(0.0022) (0.0022) (0.0037) (0.0024) (0.0065) (0.0075) (0.0159)

Age 20 0.0015 0.0005 0.0029 0.0022 0.0081 -0.0149 -0.0047

(0.0025) (0.0023) (0.0039) (0.0027) (0.0091) (0.0093) (0.0129)

Age 19 -0.0047** -0.0035 -0.0065* -0.0051** -0.0034 0.0065 -0.0178*

(0.0024) (0.0024) (0.0036) (0.0024) (0.0100) (0.0084) (0.0104)

Age 18 0.0025 0.0039* -0.0003 0.0042** 0.0078 -0.0218*** 0.0067

(0.0018) (0.0021) (0.0037) (0.0019) (0.0084) (0.0077) (0.0127)

# of obs 1,627,098 925,293 701,805 1,312,411 102,196 108,507 61,990
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Table 11: IV regression for relationship between majoring in STEM and H-1B population share when entering college.

% of H-1B population in: All Female Male White Black Hispanic Asian

Coefficients:

Age 18 -0.1102*** -0.0443 -0.1917*** -0.0865* -0.1403 -0.1569 -0.2349

(0.0421) (0.0654) (0.0509) (0.0481) (0.1110) (0.1225) (0.2016)

Age 17 0.0381** 0.0260 0.0526*** 0.0309* 0.0936* 0.0222 0.0609

(0.0162) (0.0231) (0.0202) (0.0167) (0.0544) (0.0595) (0.0860)

Age 16 -0.0090 -0.0078 -0.0104 -0.0068 -0.0268 -0.0172 -0.0253

(0.0104) (0.0114) (0.0168) (0.0114) (0.0482) (0.0469) (0.0462)

Age 15 -0.0108 -0.0151 -0.0092 -0.0104 0.0525 -0.0386 -0.0042

(0.0110) (0.0108) (0.0174) (0.0114) (0.0337) (0.0398) (0.0477)

F-test 22.84 22.77 22.83 20.10 29.10 16.21 25.95

Average marginal effects:

Age 18 -0.0032*** -0.0010 -0.0070*** -0.0025* -0.0063 -0.0033 -0.0105

Age 17 0.0011** 0.0006 0.0019*** 0.0009* 0.0042* 0.0005 0.0027

Age 16 -0.0003 -0.0002 -0.0004 -0.0002 -0.0012 -0.0004 -0.0011

Age 15 -0.0003 -0.0003 -0.0003 -0.0003 0.0024 -0.0008 -0.0002

# of obs 1,373,608 784,689 588,919 1,101,135 85,070 94,601 56,343
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Table 12: IV regression for relationship between majoring in STEM and H-1B population share when graduation.

% of H-1B population in: All Female Male White Black Hispanic Asian

Coefficients:

Age 22 -0.1636** -0.1434* -0.1952*** -0.1626** 0.0869 -0.1309 -0.7518**

(0.0638) (0.0861) (0.0745) (0.0682) (0.1703) (0.2260) (0.3117)

Age 21 0.0445 0.0458 0.0468 0.0417 -0.0801 0.0649 0.3316**

(0.0272) (0.0348) (0.0306) (0.0275) (0.0859) (0.0924) (0.1587)

Age 20 0.0115 0.0073 0.0161 0.0138 0.0349 -0.0552 0.0468

(0.0110) (0.0114) (0.0144) (0.0121) (0.0407) (0.0417) (0.0434)

Age 19 -0.0248** -0.0219* -0.0289** -0.0269** -0.0152 0.0207 -0.0900

(0.0108) (0.0118) (0.0135) (0.0111) (0.0429) (0.0439) (0.0551)

Age 18 0.0039 0.0130 -0.0067 0.0100 0.0358 -0.0872*** -0.0115

(0.0088) (0.0115) (0.0124) (0.0104) (0.0358) (0.0329) (0.0395)

F-test 18.80 18.14 19.62 17.64 19.01 11.96 19.85

Average marginal effects:

Age 22 -0.0021** -0.0014* -0.0032*** -0.0020** 0.0015 -0.0017 -0.0111**

Age 21 0.0006 0.0005 0.0008 0.0005 -0.0013 0.0008 0.0049**

Age 20 0.0001 0.0001 0.0003 0.0002 0.0006 -0.0007 0.0007

Age 19 -0.0003** -0.0002* -0.0005** -0.0003** -0.0003 0.0003 -0.0013

Age 18 0.0001 0.0001 -0.0001 0.0001 0.0006 -0.0011*** -0.0002

# of obs 1,627,098 925,293 701,805 1,312,411 102,196 108,507 61,990
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3.7 Conclusion

This paper measures the possible impacts of H-1B visa reforms on US natives’ college

major choices in STEM related fields. In this study I have built a bridge between H-1B

visa program related literatures and college major choices related literatures. Given the

endogeneity problem of self-selection, I have constructed an instrumental variable of H-1B

population share based on historical settlement pattern of foreign-born STEM workers. I find

significant negative impacts of H-1B population shares on natives majoring in STEM fields,

both when they enter the college and graduate from it. For students beginning their college

education, a 10% increase in the H-1B population share decreases the probability of native

students choosing STEM majors by 0.032%. If we take a further look at different gender and

race subgroups, a 10% increase in the H-1B population share could decrease the likelihood

of a male native student majoring in STEM related fields by 0.07%, and decrease that of a

White native student by 0.025%. Given that the H-1B population share had been more than

doubled from year 1992 to 2017, the probability of native students majoring in STEM fields

when they enter the college would be 0.74 percentage points larger, if the H-1B population

shares had remained at their 1992 levels and all else had remained the same. Similarly, the

likelihood of male native students choosing STEM majors would be 1.62 percentage points

larger, and that of White native students would be 0.58 percentage points larger.

For students graduating from college, their reported majors are a joint choice of entering

and shifting during college. Results indicate that a 10% increase in the H-1B population

share decreases the probability of native graduates choosing STEM majors by 0.021%. When

we take a further look at different subgroups, a 10% increase in the H-1B population share

could decrease the likelihood of a female native graduate majoring in STEM related fields

by 0.014%, decrease that of a male native graduate by 0.032%, and decrease that of a White

native graduate by 0.02%. The native Asian subgroup suffer from the most dramatic crowd-

out effect. A 10% increase in the H-1B population share could decrease the likelihood of

an Asian native graduate majoring in STEM related fields by as large as 0.111%. Again,

given that the H-1B population share had been more than doubled, the probability of native

graduates majoring in STEM fields when they graduate would be 0.49 percentage points
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larger, if the H-1B population shares had remained at their 1992 levels and all else had

remained the same. Similarly, the likelihood of female native graduates choosing STEM

majors would be 0.32 percentage points larger, that of male native graduates would be 0.74

percentage points larger, and that of White native graduates would be 0.46 percentage points

larger. For the native Asian subgroups, the probability would have been as large as 2.56

percentage points larger if the H-1B population shares had remained at their 1992 levels and

all else had remained the same. Since foreign-born Asian account for a large proportion of

H-1B visa holders, there might be an interesting “Asian crowd out Asian” story here.
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Appendix A Additional Lemmas and Proofs for Chapter 2

The following lemma is a simplified version of Matrix Chernoff inequality, cited from [81,

Eq. (5.1.5)].

Lemma 4. Let X1, · · · , Xm be a sequence of d×d i.i.d. positive semi-definite (PSD) matrices

satisfying ‖Xk‖op ≤ L almost surely for all k. Then for any t ∈ [0, 1),

Pr

[
λmin(

∑
j

Xj) ≤ tµmin

]
≤ d exp

{
−(1− t)2µmin

2L

}
,

where λmin(·) is the smallest eigenvalue of a PSD matrix and µmin = λmin(
∑

j EXj).

The next lemma upper bounds the operator norm of an inverse covariance matrix of

random vectors uniformly distributed on a unit sphere.

Lemma 5. Let u1, u2, · · · , um be i.i.d. d-dimensional vectors uniformly distributed on the

unit sphere {x ∈ Rd : ‖x‖2 = 1}. Suppose also that m ≥ 8d ln(d/δ) for some δ ∈ (0, 1/2].

Then with probability at least 1− δ, ‖(
∑

j uju
>
j )−1‖op ≤ 2d/m.

Proof. Proof of Lemma 5. Denote Λ := E[u1u
>
1 ] ∈ Rd×d. Because the distribution of

u1 is spherical invariant, we immediately have Λjk = 0 for all j 6= k and Λjj ≡ λ for all

j = 1, 2, · · · , d. Additionally, since E[u>1 u1] = 1 we have that tr(Λ) = dλ = 1. This implies

Λ = 1
d
Id×d.

Next, invoke Lemma 4 with L = 1, µmin = m/d and t = 1/2. We then have

Pr

[
λmin(

∑
j

uju
>
j ) ≤ m

2d

]
≤ d exp

{
−m

8d

}
.

Under the condition that m ≥ 8d ln(d/δ), the right-hand side of the above inequality is upper

bounded by δ. Lemma 5 is thus proved.
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Appendix B Additional Data for Chapter 3

Table 13: STEM major classifications.

ACS Code Major Name

1103 Animal Sciences

1104 Food Science

1105 Plant Science and Agronomy

1106 Soil Science

1301 Environmental Science

2001 Communication Technologies

21XX Computer and Information Sciences

24XX Engineering

25XX Engineering Technologies

36XX Biology and Life Sciences

37XX Mathematics and Statistics

3801 Military Technologies

4002 Nutrition Sciences

4005 Mathematics and Computer Science

4006 Cognitive Science and Biopsychology

50XX Physical Sciences

5102 Nuclear, Industrial Radiology, and Biological Technologies

5206 Social Psychology

6105 Medical Technologies Technicians

6108 Pharmacy, Pharmaceutical Sciences, and Administration

6202 Actuarial Science
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Table 14: STEM occupation classifications.

Occupation Codes

Occupation 1980/90 2000 2001-2009 2010-2017
census census ACS ACS

Actuaries 66 120 1200 1200
Aerospace engineers 44 132 1320 1320
Agricultural and food scientists 77 160 1600 1600
Airplane pilots and navigators 226 903 9030 9030
Atmospheric and space scientists 74 171 1710 1710
Biological scientists 78 161 1610 1610
Biological technicians 223 191 1910 1910
Chemical engineers 48 135 1350 1350
Chemical technicians 224 192 1920 1920
Chemists 73 172 1720 1720
Civil engineers 53 136 1360 1360
Clinical laboratory technologies and technicians 203 330 3300 3300
Computer software developers 229 102 1020 1020
Computer systems analysts and computer scientists 64 100 1000 1006
Dentists 85 301 3010 3010
Dietitians and nutritionists 97 303 3030 3030
Electrical engineers 55 141 1410 1410
Geologists 75 193 1930 1930
Industrial engineers 56 143 1430 1430
Management analysts 26 71 710 710
Mathematicians and mathematical scientists 68 124 1240 1240
Mechanical engineers 57 146 1460 1460
Medical scientists 83 165 1650 1650
Metallurgical and materials engineers, variously phrased 45 145 1450 1450
Not-elsewhere-classified engineers 59 153 1530 1530
Occupational therapists 99 315 3150 3150
Optometrists 87 304 3040 3040
Other health and therapy 89 326 3260 3260
Petroleum, mining, and geological engineers 47 152 1520 1520
Pharmacists 96 305 3050 3050
Physical scientists, n.e.c. 76 176 1760 1760
Physical therapists 103 316 3160 3160
Physicians 84 306 3060 3060
Physicians’ assistants 106 311 3110 3110
Physicists and astronomers 69 170 1700 1700
Podiatrists 88 312 3120 3120
Psychologists 167 182 1820 1820
Sales engineers 258 493 4930 4930
Social scientists, n.e.c. 169 186 1860 1860
Speech therapists 104 323 3230 3230
Subject instructors (high school/college) 154 220 2200 2200
Therapists, n.e.c. 105 324 3240 3245
Veterinarians 86 325 3250 3250
Vocational and educational counselors 163 200 2000 2000
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[26] S. Bubeck, G. Stoltz, C. Szepesvári, and R. Munos. Online optimization in x-armed
bandits. In Advances in Neural Information Processing Systems, pages 201–208, 2009.

[27] D. Card. Immigrant inflows, native outflows, and the local labor market impacts of
higher immigration. Journal of Labor Economics, 19(1):22–64, 2001.

[28] D. Card and J. DiNardo. Do immigrant inflows lead to native outflows? American
Economic Review, 90(2):360–367, 2000.

[29] D. Card and A. B. Krueger. Does school quality matter? returns to education and
the characteristics of public schools in the united states. Journal of political Economy,
100(1):1–40, 1992.

[30] D. W. Caves, L. R. Christensen, and M. W. Tretheway. Economies of density versus
economies of scale: why trunk and local service airline costs differ. The RAND Journal
of Economics, pages 471–489, 1984.

[31] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-
region method and random models. Mathematical Programming, 169(2):447–487,
2018.

[32] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to derivative-free opti-
mization, volume 8. SIAM, 2009.

[33] D. Costa and J. Rosenbaum. Temporary foreign workers by the numbers: New esti-
mates by visa classification. Economic Policy Institute, March, 7, 2017.

[34] J. D. Dana, Jr. Advance-purchase discounts and price discrimination in competitive
markets. Journal of Political Economy, 106(2):395–422, 1998.

102



[35] S. Dynarski. Building the stock of college-educated labor. Journal of human resources,
43(3):576–610, 2008.

[36] D. Escobari and P. Jindapon. Price discrimination through refund contracts in airlines.
International Journal of Industrial Organization, 34:1–8, 2014.

[37] A. D. Flaxman, A. T. Kalai, A. T. Kalai, and H. B. McMahan. Online convex
optimization in the bandit setting: gradient descent without a gradient. In Proceedings
of the annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 385–394,
2005.

[38] GAO. Aviation competition: Restricting airline ticketing rules unlikely to help con-
sumers. Report to Congressional Committees, U.S.Government Accountability Office,
Washington, DC., 2001.

[39] K. S. Gerardi and A. H. Shapiro. Does competition reduce price dispersion? new
evidence from the airline industry. Journal of Political Economy, 117(1):1–37, 2009.

[40] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[41] S. Giaume and S. Guillou. Price discrimination and concentration in european airline
markets. Journal of Air Transport Management, 10(5):305–310, 2004.

[42] P. Goldsmith-Pinkham, I. Sorkin, and H. Swift. Bartik instruments: What, when,
why, and how. American Economic Review, 110(8):2586–2624, 2020.

[43] A. L. Griffith. Persistence of women and minorities in stem field majors: Is it the
school that matters? Economics of Education Review, 29(6):911–922, 2010.

[44] J. Hunt. Which immigrants are most innovative and entrepreneurial? distinctions by
entry visa. Journal of Labor Economics, 29(3):417–457, 2011.

[45] J. Hunt. The impact of immigration on the educational attainment of natives. Journal
of Human Resources, 52(4):1060–1118, 2017.

[46] D. A. Jaeger, J. Ruist, and J. Stuhler. Shift-share instruments and the impact of
immigration. Technical report, National Bureau of Economic Research, 2018.

103



[47] T. Kato and C. Sparber. Quotas and quality: The effect of h-1b visa restrictions on
the pool of prospective undergraduate students from abroad. Review of Economics
and Statistics, 95(1):109–126, 2013.

[48] W. R. Kerr and W. F. Lincoln. The supply side of innovation: H-1b visa reforms and
us ethnic invention. Journal of Labor Economics, 28(3):473–508, 2010.

[49] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.

[50] J. F. Kirkegaard. Outsourcing and skill imports: Foreign high-skilled workers on h-1b
and l-1 visas in the united states. Technical report, Working Paper, 2005.

[51] J. R. Koza. Genetic programming. 1997.

[52] J. Lazarev. The welfare effects of intertemporal price discrimination: an empirical
analysis of airline pricing in us monopoly markets. New York University, 2013.

[53] R. M. Lewis and V. Torczon. Pattern search algorithms for bound constrained mini-
mization. SIAM Journal on Optimization, 9(4):1082–1099, 1999.

[54] D. Liu. A model of optimal consumer search and price discrimination in the airline
industry, 2015.

[55] B. L. Lowell. H-1b temporary workers: Estimating the population. 2000.

[56] B. L. Lowell. Skilled temporary and permanent immigrants in the united states.
Population research and Policy review, 20(1-2):33–58, 2001.

[57] B. L. Lowell and B. Christian. The characteristics of employers of h-1bs. Institute for
the Study of International Migration Working Paper, 2000.

[58] M. Luppino and R. H. Sander. College major competitiveness and attrition from the
sciences. Available at SSRN 2167961, 2013.

[59] T. Lykouris, V. Mirrokni, and R. Paes Leme. Stochastic bandits robust to adversarial
corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 114–122. ACM, 2018.

104



[60] MathWorks. Pattern search, accessed 3-october-2018, 2018.

[61] N. Matloff. On the need for reform of the h-1b non-immigrant work visa in computer-
related occupations. U. Mich. JL Reform, 36:815, 2002.

[62] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization. SIAM, 1983.

[63] P. M. Orrenius and M. Zavodny. Does immigration affect whether us natives major
in science and engineering? Journal of Labor Economics, 33(S1):S79–S108, 2015.

[64] B. Ost. The role of peers and grades in determining major persistence in the sciences.
Economics of Education Review, 29(6):923–934, 2010.

[65] G. Peri, K. Shih, and C. Sparber. Stem workers, h-1b visas, and productivity in us
cities. Journal of Labor Economics, 33(S1):S225–S255, 2015.

[66] M. J. Powell. On trust region methods for unconstrained minimization without deriva-
tives. Mathematical Programming, 97(3):605–623, 2003.

[67] S. L. Puller and L. M. Taylor. Price discrimination by day-of-week of purchase:
Evidence from the us airline industry. Journal of Economic Behavior & Organization,
84(3):801–812, 2012.

[68] V. R. Rao. Handbook of pricing research in marketing. Edward Elgar Publishing,
2009.

[69] K. Rask. Attrition in stem fields at a liberal arts college: The importance of grades
and pre-collegiate preferences. Economics of Education Review, 29(6):892–900, 2010.

[70] M. Reksulak, W. Shughart, and G. Karahan. Vbarrier to entry: The po’litical econ-
omy of h’1b visasv. V University of Mississippi Working Paper, 2006.

[71] P. Robert S and R. Daniel L. Microeconomics, 2001.

[72] A. Saiz. Immigration and housing rents in american cities. Journal of urban Eco-
nomics, 61(2):345–371, 2007.

105



[73] O. Shamir. An optimal algorithm for bandit and zero-order convex optimization with
two-point feedback. Journal of Machine Learning Research, 18(52):1–11, 2017.

[74] O. Shy. The economics of network industries. Cambridge university press, 2001.

[75] C. L. Smith. The impact of low-skilled immigration on the youth labor market.
Journal of Labor Economics, 30(1):55–89, 2012.

[76] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

[77] J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. IEEE Transactions on Automatic Control, 37(3):332–341,
1992.

[78] J. Stavins. Price discrimination in the airline market: The effect of market concen-
tration. Review of Economics and Statistics, 83(1):200–202, 2001.

[79] P. Surry. Hidden city ticket opportunities are more common than you think. Hopper
Research., 2005.

[80] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on
Optimization, 7(1):1–25, 1997.

[81] J. A. Tropp et al. An introduction to matrix concentration inequalities. Foundations
and Trends R© in Machine Learning, 8(1-2):1–230, 2015.

[82] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated annealing:
Theory and applications, pages 7–15. Springer, 1987.

[83] H. R. Varian. A model of sales. The American economic review, 70(4):651–659, 1980.

[84] Z. Wang and Y. Ye. Hidden-city ticketing: the cause and impact. Transportation
Science, 50(1):288–305, 2016.

[85] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85, 1994.

106



[86] F. Yu. Is anyone good enough for an h-1b visa? The New York Times, 2017.

[87] M. Zavodny and H. VThe. The h-1b program and its effects on information technology
workers. Economic Review-Federal Reserve Bank of Atlanta, 88(3):33–44, 2003.

107


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Top 10 origin-destination pairs with most hidden city itineraries.
	2. Top 10 origin-destination pairs with largest price differences.
	3. Number of hidden city itineraries of different airlines.
	4. Results of MLE.
	5. Results for our proposed algorithm on the airline pricing data, with D=1/2{1.0,0.5,0.3}. A  means that the particular thread is not active at the end of the optimization.
	6. Results for the genetic algorithm (ga) and the pattern search algorithm (ps). Each algorithm terminates only when the designated time limit is reached. MMB equals to MMC are the mini-batch sizes and the number of Monte-Carlo samples, respectively.
	7. Characteristics of H-1B specialty occupation workers.
	8. Top 10 dependent states on H-1B population in 1992 and 2017.
	9. Probit regression estimates for relationship between majoring in STEM and H-1B population share when entering college.
	10. Probit regression for relationship between majoring in STEM and H-1B population share when graduation.
	11. IV regression for relationship between majoring in STEM and H-1B population share when entering college.
	12. IV regression for relationship between majoring in STEM and H-1B population share when graduation.
	13. STEM major classifications.
	14. STEM occupation classifications.

	List of Figures
	1. An example of hidden city ticketing.
	2. Average monthly web search data of hidden city ticketing. Data source for the relative value is Google Trends. Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak popularity for the term. Data source for the absolute value is Google AdWords, unit is number of times.
	3. Left: fully-connected (FC) network. Right: hub-and-spoke (HS) network.
	4. Airline chooses network structures and prices to maximize expected profits.
	5. Illustration of function f(p) with parameters =0.5, =0.3, C=10, q=0.8, d=30.
	6. Distribution of busy commercial service airports around United States.
	7. Business travel index for each airport as the destination city.
	8. Up: Plot of log likelihood when  varies from 0 to 1. Below: Plot of log likelihood when  varies from 0 to 0.1 (zoom in).
	9. Surplus for MIA to SEA to COS (top left), CID to DTW to MSN (top right), AUS to JFK to RDU (bottom) when  changes.
	10. Distribution of crossings when  changes (pmf).
	11. Distribution of crossings when  changes (cdf).
	12. Percentage of passengers denied boarding by the U.S. air carriers, 1990 to 2019.
	13. Convergence of our proposed algorithm with five threads. Details of the figures and the algorithms being implemented are given in the main text. Note that the most promising thread #5 converges to the optimal objective f*=1.4572 rather quickly even with few number of function evaluations.
	14. Global (overall) convergence of the proposed algorithm for single-thread, five-thread without coordination/stopping and five-thread with coordination and stopping. Further details are given in the main text.
	15. Illustration of fully-connected (FC) and hub-and-spoke (HS) structures among three airports.
	16. The Stackelberg game description of the airlines' network choices and travelers' riding behaviors.
	17. The proportion of college graduates majoring in STEM by nativity.
	18. The proportion of U.S. native college graduates majoring in STEM by gender.
	19. The proportion of U.S. native college graduates majoring in STEM by race.
	20. The variation of proportion of U.S. natives entering college within their state of birth across states (year 1992 and 2016, District of Columbia excluded).
	21. H-1B visa issuance and population estimates.
	22. Distribution of share of H-1B population across states in 1992 and 2017.

	Preface
	1.0 Paying More for a Shorter Flight? - Hidden City Ticketing
	1.1 Introduction
	1.2 Literature Review
	1.3 The Model
	1.3.1 Fully-Connected Network
	1.3.2 Hub-and-Spoke Network (without Hidden City Ticketing)
	1.3.3 Hub-and-Spoke Network (with Hidden City Ticketing)

	1.4 Data
	1.5 Estimation
	1.5.1 Sample Construction
	1.5.2 Maximum Likelihood Estimation
	1.5.3 Pattern Search
	1.5.4 Estimation Results

	1.6 Counterfactual Analysis
	1.6.1 Fully-Connected Network Outperforms Hub-and-Spoke Network
	1.6.2 Hub-and-Spoke Network Outperforms Fully-Connected Network
	1.6.3 Switch from Hub-and-Spoke Network to Fully-Connected Network

	1.7 Discussion
	1.8 Conclusion

	2.0 Maximum Likelihood Optimization via Parallel Estimating Gradient Ascent
	2.1 Introduction
	2.2 Related Works
	2.3 Algorithm Description
	2.3.1 The ThreadCoordination Component
	2.3.2 The GradientEstimation Component
	2.3.3 The ThreadStopping Component
	2.3.3.1 First-order stopping rule
	2.3.3.2 Second-order stopping rule


	2.4 Numerical Results on Synthetic Data
	2.5 Numerical Results on Airline Pricing Data
	2.5.1 Background: Hidden City Ticketing
	2.5.2 Model Formulation and Maximum Likelihood Estimation
	2.5.3 Results

	2.6 Conclusion

	3.0 Does H-1B Visa Reforms Affect Whether US Natives Major in STEM Fields?
	3.1 Introduction
	3.2 Literature Review
	3.3 U.S. College Major Choices
	3.4 H-1B Visa Program
	3.5 Empirical Framework
	3.5.1 Instrumental Variable Approach

	3.6 Results
	3.6.1 Plain Probit Results
	3.6.2 Instrumental Variables Results

	3.7 Conclusion

	Appendix A. Additional Lemmas and Proofs for Chapter 2
	Appendix B. Additional Data for Chapter 3
	Bibliography



