
Defending Pressurized Water Reactors Against

Stealthy Cyber Attacks

by

Jacob Aaron Katz Farber

B.S. in Mechanical Engineering

University of Rochester, 2011

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Jacob Aaron Katz Farber

It was defended on

December 8, 2020

and approved by

Daniel G. Cole, Ph.D., Associate Professor

Department of Mechanical Engineering and Materials Science

William W. Clark, Ph.D., Professor

Department of Mechanical Engineering and Materials Science

Jeffrey S. Vipperman, Ph.D., Professor

Department of Mechanical Engineering and Materials Science

Department of Bioengineering

Daniel Mossé, Ph.D., Professor

Department of Computer Science

Shannon Eggers, Ph.D., Nuclear Cyber Security Specialist

Idaho National Laboratory

Dissertation Director: Daniel G. Cole, Ph.D., Associate Professor

Department of Mechanical Engineering and Materials Science

ii

Copyright © by Jacob Aaron Katz Farber

2021

iii

Defending Pressurized Water Reactors Against Stealthy Cyber Attacks

Jacob Aaron Katz Farber, PhD

University of Pittsburgh, 2021

The goal of this research is to improve cyber security for nuclear power plants (NPPs)

by addressing the following questions: How might an attacker attack NPPs? And how can

automated defenses defend against those attacks?

To answer these questions, this research takes a system theoretic approach. This means

that we use dynamic system models to describe the physical aspects of both system behavior

and any attacker influences on the system. The primary advantage to this approach is that it

can make use of extensive system theory to understand the interactions between the system

and potential attackers.

For the first question, this work focuses on extending zero-dynamics attacks to nonlinear

systems. If a system has zero dynamics, it means there exists some non-zero control input

that can cause a non-zero state, but results in zero measurable output by virtue of the sys-

tem’s characteristics. Zero-dynamics attacks take advantage of these zero dynamics. These

attacks require an attacker to have knowledge of the system dynamics, but are consequently

harder to detect than other strategies. As a result, it’s important to know about system

vulnerabilities that result from possible zero-dynamics attacks.

For the second question, this work focuses on using state-estimation techniques. But

unlike previous works that assume the attack can be detected, this work cannot make that

assumption because zero-dynamics attacks require that the system go through some type of

transient. This work develops methods for calculating an optimal transient that balances

safety with accuracy, and develops decision rules to detect attacks in the presence of noise.

iv

Table of Contents

Preface . xvii

1.0 Introduction . 1

1.1 Research Objectives . 1

1.2 Research Approach . 3

1.3 Applications to the Nuclear Power Industry 6

1.4 Contributions . 7

1.5 Dissertation Overview . 8

2.0 State of the Art and Limits of Current Practice 9

2.1 Stealthy Attacks . 9

2.1.1 Replay Attacks . 10

2.1.2 Linear Zero-Dynamics Attacks . 13

2.1.3 Conclusion . 15

2.2 Detection and Diagnostics . 18

2.2.1 Classification Methods . 18

2.2.2 State-Estimation Methods . 20

2.2.3 Other Methods . 24

2.2.4 Conclusion . 26

2.3 Chapter Summary . 26

3.0 System Modeling . 27

3.1 Physics-Based Pressurizer Model . 31

3.2 Data-Driven Pressurizer Model . 34

3.3 System Identification . 36

3.3.1 Physics-Based Model . 38

3.3.2 Data-Driven Model . 38

3.4 Results . 40

3.4.1 Results for Physics-Based Model 40

v

3.4.2 Results for Data-Driven Model . 43

3.4.3 Comparing Physics-Based and Data-Driven Models 43

3.5 Controller Models . 47

4.0 Characterizing Nonlinear Zero-Dynamics Attacks 50

4.1 State-Space Model Under Attack . 51

4.2 An Algorithm for Calculating Zero Dynamics 52

4.2.1 Maximal Output-Zeroing Submanifold 56

4.2.2 Output-Zeroing Input . 59

4.2.3 Zero Dynamics . 59

4.2.4 Example Problem . 59

4.3 Attacks Targeting the Pressurizer . 61

4.3.1 Stability . 63

4.3.2 Damage Time . 66

4.4 Local Stability of Output-Zeroing Submanifold 69

4.4.1 Challenges of Implementing Nonlinear Lyapunov Methods 69

4.4.2 Linearized Output Stability . 70

4.5 Chapter Summary . 81

5.0 Detecting Zero-Dynamics Attacks Targeting Nonlinear Systems 83

5.1 Problem Setup . 84

5.1.1 Exact and Approximate Problems 84

5.1.2 Observability of the Approximate Problem 86

5.2 Solving for the Input . 89

5.3 Estimating the State . 90

5.3.1 Unscented Kalman Filter . 90

5.3.2 Random-Walk Dynamics . 93

5.3.3 Maximum Likelihood Estimation 93

5.4 Detecting an Attack . 94

5.5 Additional Assumptions for the Pressurizer Model 98

5.6 Results . 99

5.7 Validating Using Simulator Data . 106

vi

5.7.1 Estimating the State . 106

5.7.2 Necessary Output Accuracy . 107

5.7.3 Results . 111

5.8 Detecting Zero-Dynamics Attacks Offline 119

5.9 Detecting Other Stealthy Attack Strategies 119

5.10 Economic and Safety Impacts of the Perturbation 120

5.11 Chapter Summary . 121

6.0 Conclusions and Future Work . 122

6.1 Summary of Contributions . 123

6.2 Implementation on Other Systems . 123

6.3 Limitations . 124

6.4 Future Work . 125

Appendix A. Description of Appendices . 127

Appendix B. Using Model-Based Fault Detection to Differentiate Tran-

sients and Loss of Coolant Accidents . 128

B.1 Introduction . 128

B.2 Process Data . 130

B.3 Pressurizer Model . 131

B.3.1 Model Structure . 134

B.3.2 System Identification . 136

B.4 Multiple-Model Adaptive Estimation . 137

B.4.1 Kalman Filters . 137

B.4.2 Bayesian Hypothesis Testing . 140

B.5 Results . 141

B.6 Conclusion . 145

Appendix C. Using Kernel Density Estimation to Detect Loss of Coolant

Accidents in a Pressurized Water Reactor 147

C.1 Introduction . 147

C.2 Process Data . 149

C.3 Selecting Variable Sets . 152

vii

C.3.1 Variable Set for Detecting Onset 152

C.3.2 Variable Set for Identifying Location 154

C.4 Methods . 156

C.4.1 Kernel Density Estimation . 156

C.4.2 Bayesian Hypothesis Testing . 157

C.4.3 Maximum Likelihood Estimation 159

C.5 Results . 159

C.6 Conclusion . 163

Appendix D. Detecting Loss-of-Coolant Accidents Without Accident-Specific

Data . 166

D.1 Introduction . 166

D.2 System Modeling . 167

D.2.1 Model Input and Output Variables 168

D.2.2 Process Data . 170

D.2.3 System Model . 171

D.3 State Estimation . 177

D.3.1 Particle Filters . 177

D.3.2 Leak Model . 181

D.4 Results . 183

D.5 Conclusion . 186

Bibliography . 189

viii

List of Tables

1 State, input, and output variable conventions. 32

2 Summary of the zero-dynamics attacks targeting the pressure. 62

3 Summary of the zero-dynamics attacks targeting the level. 62

4 Condition numbers for several input possibilities. 99

5 Listed accuracies of some commercial sensors for different sensor types. 131

6 Least-squares estimates of the unknown parameters. 137

7 Variable states used to generate multiple LOCA scenarios. 149

8 Listed accuracies of some commercial sensors for different sensor types. 151

9 Percentage of correctly identified leak locations as a function of the leak mag-

nitude. 163

10 List of the noise standard deviations, σ, for the input and output sensors. . . 173

11 Summary of the results of the methods implemented on LOCA scenarios. The

pressure and level drops were calculated at the detection time. 188

ix

List of Figures

1 Block diagram of the cyber-physical system, including the attacker. This figure

shows the attacker is able to inject input and output attacks between the cyber

and physical components. 4

2 Image of a spring-mass-damper system. This example is used throughout this

chapter. 10

3 Results of the replay attack implemented on the SMD system. The figure shows

the state, the measured output, and the expected output, and is segmented

into thirds. In the first segment, the attacker only records measurement data.

In the second segment, the attacker both replays the recorded measurements

and adds a force onto the mass. In the third segment, the defender tries to

detect the attack by adding a random force onto the spring, expecting it to

respond accordingly if not under attack. 12

4 Sketch of a linearization approximation. Within the dashed circle, a linear

system could give good results. However, outside of the region, the linear

system could be highly inaccurate. 16

5 Results of the zero-dynamics attack implemented on the SMD system. The fig-

ure shows the state, the measured output, and the expected output, and is seg-

mented into halves. In the first segment, the attacker, assumed to have knowl-

edge of the system dynamics, implements the zero-dynamics attack, which

causes the state to increase and the measurement to remain nominal. In the

second segment, the defender again tries to detect the attack by adding a

random force onto the spring, but cannot detect it because the output and

expected output match. 17

x

6 Simple example of an SVM classifier to detect rotating machinery faults. The

two variables are summary statistics of vibration data in two dimensions, and

the blue and red data points are normal and faulted data, respectively. The

line is the decision boundary, where data on a given side of the line is classified

accordingly. 21

7 Results of the state estimator on the SMD system. The figure shows the state,

the measured output, and the state estimate. For this example, the attacker

has access to the position sensor but not the actuator. They attack the system

by slowly injecting a ramp input into the sensor and the controller compensates

by trying to return the mass back to the nominal position. But, the state

estimator accurately estimates the state, meaning the attack is detected. . . . 25

8 Schematic of the primary loop including sensor types and locations. This work

focuses on the pressurizer subsystem. 28

9 Detailed schematic of the pressurizer system. The pressure is controlled by the

heater and spray flow. The level is controlled by the surge line flow. 29

10 Data used to estimate parameters for the physics-based model. The top two

plots are output variables, and the bottom two plots are input variables. . . . 41

11 Comparison of the pressure and level data between the commercial simulator

and physics-based model. The simulator data includes noise, but the model

data does not because it is the optimal model output that fits the noisy data. 42

12 A sample of the data used to estimate parameters for the data-driven model.

The top two plots are output variables, and the bottom two plots are input

variables. In the four plots, the colors each correspond to a different dataset,

meaning three datasets are shown here. 44

13 Comparison of the pressure and level data between the commercial simulator

and data-driven model. This plot shows just one of the datasets for reference.

The simulator data includes noise, but the model data does not because it is

the optimal model output that fits the noisy data. 45

xi

14 Comparison of the pressure and level data between the physics-based and data-

driven models. This plot shows the simulator data and the estimates from

both the physics-based and data-driven models. From the plot, the data-

driven model is an excellent match for the simulator data. By contrast, the

physics-based model captures the phenomena, but does not perform as well. . 46

15 Comparison of the heater output data and the PI model. The top plot shows

the error signal between the true pressure and setpoint, and the bottom plot

shows both the simulator data and the model estimates. 48

16 Comparison of the surge flow data and the PI model. The top plot shows the

error signal between the true level and setpoint, and the bottom plot shows

both the simulator data and the model estimates. 49

17 Diagram of an invariant orbit. The planet is in the center and the moon orbits

around it along the dashed curve. The orbital path represents an invariant

set because its dynamics, described by f(x), are always tangent to the path,

ensuring that the moon stays on the orbital path. 54

18 Diagram of a controlled invariant orbit. The planet is in the center and the

satellite orbits around it along the dashed curve. The orbital path represents

a controlled invariant set because its dynamics, described by f(x) +g(x)u, can

always be made tangent to the path by control actions u, ensuring that the

satellite stays on the orbital path. 55

19 Simulation results of the asymptotically stable attack on the pressure. The top

plot shows both the measured and true pressure. The measured pressure re-

mains at the nominal value, while the true pressure returns from some nonzero

initial condition to the the nominal value. The bottom two plots show the

required attacker signals to achieve zero output. 64

xii

20 Simulation results of the stable attack on the level that is made unstable when

the zero-output constraint is relaxed slightly. The top plot shows both the

measured and true level. The measured level remains at the nominal value,

while the true level increases uncontrolled. The middle plot shows the attacker

signal to achieve zero measured level. The bottom plot shows the nonzero

inputs that are required to maintain zero output, but are kept to less than 1 %

on a normalized scale. 65

21 Simulation results of the unstable attack on the pressure. The top plot shows

both the measured and true pressure. The measured pressure remains at the

nominal value, while the true pressure decreases uncontrolled. The bottom

two plots show the required attacker signals to achieve zero output. 67

22 The discretization approach used for the stability analysis. The blue exes are

the nominal points, and the red dots are the perturbed points. These are used

in conjunction with the Gershgorin Circle Theorem. 75

23 Plot of the real and imaginary portions of the eigenvalues at the nominal points.

All these eigenvalues are in the LHP. 77

24 Plot of the real and imaginary portions of the Gershgorin circles at the per-

turbed points, but hides some larger circles. All of these circles are in the

LHP. 78

25 Plot of the real and imaginary portions of the Gershgorin circles at the per-

turbed points, including the larger circles. Some of the circles cross into the

RHP. 79

26 Plot of the real and imaginary portions of the eigenvalues at the nominal points

evaluated at a finer discretization near the troublesome points. None of the

points show evidence of crossing into the RHP. 80

27 Example of a decision boundary in two-dimensional space. Any value that falls

into the normal region is declared normal, and any value that falls outside the

normal region is declared an attack. 95

xiii

28 Example of a Gaussian decision boundary in two-dimensional space. Under

nominal conditions, the probabilities of correctly declaring normal and falsely

declaring attack are 1− α and α, respectively. 97

29 Results of the state estimation process on an attack targeting the level. This

simulation does not include noise. The top plots refer to the pressure, and the

bottom plots refer to the level. The right plots show the estimation error, both

of which are small. 101

30 Plots of the two approaches to accounting for the null dynamics of the equilib-

rium state. The first, labeled RWD, is for the random-walk dynamics, and the

second, labeled MLE, is for the maximum likelihood estimation. Both methods

are able to estimate the state, but the MLE has advantages. 102

31 Plots of the standard deviation of the estimation error and the transient mag-

nitude versus the input duration. As the input duration increases, the error

decreases, but the transient magnitude increases. 104

32 Plot of the decision region and the data from the simulations for the physics-

based model. The black dots are each estimates for a different noise simulation,

and the boundary is the decision region. Note these are in units of percentage

of alarm values. 105

33 Plot of the simulated output error. The blue lines are the true signals, and the

red lines show how output error is introduced for the analysis. 110

34 Plot of the initial conditions for the training, testing, and validation datasets.

In addition, the dashed box shows the range of data included in the training

set, and there are a few points outside of it. 112

35 Plot of output accuracy versus state estimation accuracy for the training, test-

ing, and validation sets. The blue line represents the estimated cutoff, and we

expect points to lay at or below the blue line. This curve is missing two data

points that are outside our training window, and are used to see how well the

model generalizes far from data. 113

xiv

36 Plot of output accuracy versus state estimation accuracy for the training, test-

ing, and validation sets. The blue line represents the estimated cutoff, and we

expect points to lay at or below the blue line. This curve includes two data

points that are outside our training window, and are used to see how well the

model generalizes far from data. Even at these higher errors, the data does

not stray far from our estimated cutoff values. 114

37 Plot of output accuracy versus state estimation accuracy for the training, test-

ing, and validation sets. Compared to the previous plot, this breaks out pres-

sure and level separately, instead of using a norm. This curve is missing two

data points that are outside our training window, and are used to see how well

the model generalizes far from data. 116

38 Plot of output accuracy versus state estimation accuracy for the training, test-

ing, and validation sets. Compared to the previous plot, this breaks out pres-

sure and level separately, instead of using a norm. This curve includes two

data points that are outside our training window, and are used to see how well

the model generalizes far from data. 117

39 Plot of the decision region and the data from the simulations for the data-driven

mode. The black dots are each estimates for a different noise simulation, and

the boundary is the decision region. Note these are in units of percentage of

alarm values. 118

40 Simulator data and system identification estimates from the normal operating

conditions. 138

41 Level measurements from the simulator for the steady-state case. The top plot

shows the entire accident scenario, and the bottom plot shows up until the

accident was detected. 142

42 Comparison between the actual leak magnitudes and the estimated leak mag-

nitudes for the steady-state case. 142

43 Level measurements from the simulator for the transient case. The top plot

shows the entire accident scenario, and the bottom plot shows up until the

accident was detected. 144

xv

44 Comparison between the actual leak magnitudes and the estimated leak mag-

nitudes for the transient case. 144

45 Schematic of the different leak locations considered in the three-loop pressur-

ized water reactor. 150

46 A plot of the number of false alarms and average detection delay as a function

of the decision threshold used with BHT. 160

47 A plot of the average, minimum, and maximum detection delays compared to

times for the reactor to trip as a function of fault magnitude. 162

48 A plot of the maximum log-likelihood values for each scenario as a function of

the leak magnitude. 164

49 Schematic of the inputs to the pressurizer system. These inputs are all the

variables that affect the pressurizer mass and energy, so are used in the model. 169

50 An example of the pressure and level measurements for one dataset, including

Gaussian white noise. The fluctuations result from two phenomena: (i) the

signals diverge from their nominal values due to the altered reference signals

being sent to the controllers, and (ii) they return to their nominal values once

the nominal reference signals are resumed to the controllers. 172

51 Plot of the test set performance as a function of the number of neurons. The

performance converges as the regularization process prevents the ANN from

overfitting the data. 176

52 Results for the 5.4 gpm LOCA scenario. Figure 52a shows the pressure, level,

and particle filter estimates. Figure 52b shows the auto-correlation coefficient

and leak magnitude. 184

53 Results for the 10.8 gpm LOCA scenario. Figure 53a shows the pressure, level,

and particle filter estimates. Figure 53b shows the auto-correlation coefficient

and leak magnitude. 185

54 Results for the 21.6 gpm LOCA scenario. Figure 54a shows the pressure, level,

and particle filter estimates. Figure 54b shows the auto-correlation coefficient

and leak magnitude. 187

xvi

Preface

I would like to thank my wife, Courtney, for her constant support throughout this process.

I would also like to acknowledge our son, Benjamin, who was an excellent distraction from

the stress of finishing a dissertation.

Finally, I would like to thank the Department of Energy and Idaho National Labora-

tory for their financial support. This work is supported under (i) an Integrated University

Program Graduate Fellowship and the U.S. Department of Energy Light Water Reactor

Sustainability program, and (ii) the U.S. Department of Energy award number 226706, De-

fending Against Stealthy Cyber Attacks.

xvii

1.0 Introduction

The goal of this research is to improve cyber security for nuclear power plants (NPPs) by

addressing the following questions: How might an attacker attack NPPs? And how can auto-

mated defenses defend against those attacks? Answering both of these questions can improve

security and add to our understanding of how to safeguard these critical infrastructure.

Historically, cyber security has focused on information technology methods that act as

a perimeter defense. These methods, including encryption, authentication, firewalls, and air

gaps, aim to prevent unauthorized access and protect information. For applications that

are less safety critical, these methods may suffice; however, these methods can be breached,

suggesting additional defenses are required.

If the information technology methods are bypassed, attackers could target instrumen-

tation and control (I&C) systems in nuclear power plants. These systems monitor process

parameters and control components throughout the plant to ensure those parameters stay

within safe limits. By targeting the I&C systems, an attacker could alter sensor measure-

ments or activate components without the operator’s knowledge. This could cause process

parameters to exceed those safe limits, increasing the probability of reactor core damage.

In order to defend I&C systems from cyber attacks, we must move beyond information

technology methods to consider the cyber-physical system as a whole. This is what our

research addresses. In order to answer our primary research questions, we need to better un-

derstand how an attacker could physically damage critical systems, and how we can prevent

that damage.

1.1 Research Objectives

The work carried out in this dissertation enables us to do the following:

1. characterize stealthy cyber vulnerabilities targeting nuclear power plants;

2. detect attacks by monitoring physical measurements; and

3. provide diagnostic information to enhance plant response.

1

Objective 1: Characterize stealthy cyber vulnerabilities targeting nuclear power

plants. In a nuclear power plant, there are many possible cyber attack strategies. This

work focuses on a particularly dangerous set of attacks called stealthy attacks, which aim

to cause damage to critical systems with minimal observable changes. These attacks are

dangerous because attackers could alter critical process parameters, and plant operators

would be unable to distinguish the attack from nominal operating conditions. If the attack

continues undetected, this could ultimately result in core damage. This first objective aims

to understand what components an attacker could compromise that would result in a stealthy

attack. By characterizing stealthy cyber vulnerabilities, we improve our knowledge of what

theoretical attacks exist that target NPPs.

Objective 2: Detect attacks by monitoring physical measurements. As mentioned

above, stealthy attacks are dangerous because if the defender does not know the attack is

occurring, they cannot defend against it. Therefore, it is critical that we can detect attacks

to prevent them from damaging the plant. This can be done because these attacks result in

physical changes that either mask sensor measurements or inject dangerous control actions.

This makes monitoring physical measurements a powerful secondary defense against cyber

attacks. This research provides a defense-in-depth layer to detect cyber-physical attacks

after they have been initiated by an attacker.

Objective 3: Provide diagnostic information to enhance plant response. After an

attack has been detected, there needs to be a response to ensure plant safety. This could be

a response from operators or automated decision algorithms. Responses can include driving

critical process parameters to safe values or shutting down the plant. Regardless of who

the decision maker is, they will require knowledge of the state of the plant, which could be

unavailable during a successful stealthy attack. Without the correct knowledge, their actions

could make the plant condition even worse. This research provides diagnostic estimates of

the process parameters that can be used to safely respond to a cyber attack.

These objectives can be split into two primary tasks: (i) characterize stealthy attack

vulnerabilities (Objective 1), (ii) and develop defenses against them (Objectives 2 and 3).

2

These tasks provide important answers to our main research questions of how attackers might

attack NPPs and how automated defenses could defend against these attacks.

1.2 Research Approach

This research takes a system theoretic approach to the cyber-physical security problem.

This means that we use dynamic system models to describe the physical aspects of both

system behavior and any attacker influences on the system. The primary advantage to this

approach is that it can make use of extensive system theory to understand the interactions

between the system and potential attackers.

From a system theoretic viewpoint, we can expand on cyber-physical systems, which

contain both cyber and physical components; see Figure 1 for a block diagram. The physical

side contains: the plant, which is the dynamic system of interest; actuators, which influence

the plant output; and sensors, which measure the plant output. The cyber side contains

the controller, which uses the measured output to calculate a desired control signal, and the

monitor, which includes any process monitoring that may exist.

During a cyber-physical attack, an attacker can inject signals in between the cyber and

physical to cause damage. Similar to other works [1, 2, 3, 4, 5, 6], we assume the attacker

can implement both input and output attacks. For input attacks, the attacker modifies

the control signal so the physical input does not match the assumed value, and for output

attacks, the attacker modifies the sensor output so the measured output does not accurately

reflect the physical output. In practice, it may be unrealistic to assume that an attacker can

gain that much access; however, this assumption represents a conservative viewpoint that

can be used to find worst-case vulnerabilities.

It is important to introduce several additional concepts from system theory. A system

can be defined by a mathematical model that includes states, inputs, and outputs: states

represent the set of variables that completely describe the state of the system at a point in

time; inputs are signals that enter the system and can modify it; and outputs are signals

that leave the system and can either be measured or represent desired behaviors. The inputs

3

plant

actuator

sensor

monitor

+

controller

+
physical
output

measured
output

input
attack

output
attack

cyber physical

attacker

control
signal

physical
input

Figure 1: Block diagram of the cyber-physical system, including the attacker. This figure

shows the attacker is able to inject input and output attacks between the cyber and physical

components.

4

discussed in this work are the control signals and both attacker inputs, and the outputs

discussed are the measured outputs, which include the attacker modifications in the signal.

Finally, system theory includes state-estimation techniques, where the goal is to estimate

the state using the available information.

For the first task of characterizing stealthy attack vulnerabilities, a system theoretic

approach assumes attackers can modify control signals and sensor measurements. This means

it can be used to analyze when combinations of attacked actuators and sensors could result in

particularly dangerous conditions. With this approach, researchers have developed multiple

strategies for how attackers might attack systems.

After studying these attack strategies, this work focuses on a specific strategy called the

zero-dynamics attack. If a system has zero dynamics, it means there exists some non-zero

control input that results in zero measurable output by virtue of the system’s characteristics.

Zero-dynamics attacks take advantage of these zero dynamics. These attacks require an

attacker to have knowledge of the system dynamics, but are consequently harder to detect

than other strategies. As a result, it’s important to know about system vulnerabilities that

result from possible zero-dynamics attacks.

Looking at previous works on zero-dynamics attacks, the primary limitation is that their

approaches cannot be applied to nonlinear systems. This matters because most real systems,

including within NPPs, are nonlinear and can only be approximated as linear within some

small operating region. However, a successful attack will likely drive the system away from

any fixed operating point, making linear methods potentially inaccurate. Therefore, our

approach extends these attacks to nonlinear system dynamics using an iterative approach to

solving for zero dynamics.

Using this iterative approach, we characterize vulnerabilities in the pressurizer system,

which is a critical nuclear power plant subsystem. This is accomplished by analyzing all

combinations of attacked actuators and sensors for unique zero-dynamics attacks that can

result in system damage. These attacks are then compared using metrics that can aid

designers in understanding which attacks are the most critical to defend.

For the second task of defending against attacks, a system theoretic approach uses the

dynamic system models to detect attacks. The general idea is to use a model to estimate

5

sensor measurements and then compare the estimated values with the true values. This

approach can be used to estimate the true state of the plant even if the measurements

have been altered, which enables both detecting attacks and providing important diagnostic

information.

Previous approaches to detecting attacks have assumed the attack can be detected based

on the recorded measurement data; however, this is not the case for zero-dynamics attacks.

Rather, to detect a zero-dynamics attack, the system must go through some type of transient.

This work develops methods for calculating an optimal transient that balances safety with

accuracy, and develops decision rules to detect attacks in the presence of noise.

These detection methods are then implemented on the pressurizer system to detect at-

tacks and determine our estimation accuracy in the presence of noise. This is done using

two different models: one physics-based and one data-driven. The physics-based model is

used to both generate data and detect attacks, enabling us to demonstrate the theoretical

applicability of the detection algorithm. The data-driven model is used to to detect attacks

using data generated by a commercial simulator, enabling us to validate the techniques with

a more accurate simulation.

1.3 Applications to the Nuclear Power Industry

This research has several important applications that help both the future fleet of ad-

vanced reactors and existing plants that require modernization:

• Advanced Reactors and Small Modular Reactors: The approaches developed for charac-

terizing zero-dynamics attacks can be applied to new reactor concepts during the design

phase to “design in” security. Using this work, its tools can be used to identify vulner-

abilities that arise from design choices, so that plant designers can either remove them

from the design or increase defenses. This means cyber security can be considered from

the beginning, resulting in a more resilient and secure system.

• Plant Modernization: The detection methods are critical tools for the modernization of

existing plants. Modernization can improve safety, increase availability, and reduce costs,

6

but it also makes plants more vulnerable to cyber attacks. And unlike new designs where

security can be considered during the design phase, existing systems cannot be easily

altered to remove vulnerabilities. To improve cyber resilience during modernization,

automated detection methods should be employed.

1.4 Contributions

This research develops tools to improve cyber security for both nuclear power plants

and other cyber-physical systems. These tools focus on two critical tasks: (i) characterizing

stealthy cyber vulnerabilities targeting nuclear power plants, and (ii) developing defenses

against these attacks.

Our main contributions to the fields of nonlinear controls and nuclear cyber security are

that we:

1. extend zero-dynamics attacks to nonlinear systems through the development of an at-

tacked system model and an algorithm;

2. develop metrics for zero-dynamics attacks to compare different attack strategies;

3. characterize zero-dynamics attacks targeting the pressurizer subsystem of pressurized

water reactors;

4. develop tools to determine whether zero-dynamics attacks targeting a specific nonlinear

system are detectable;

5. develop detection methods for detectable systems under zero-dynamics attacks;

6. quantify required model accuracy to be able to accurately detect attacks; and

7. implement the detection methods on the pressurizer subsystem using both a theoretical

first-principles model and a data-driven model.

This work develops important analytical tools that can be implemented on a larger scale

to other critical subsystems of nuclear power plants, as well as other cyber-physical systems.

7

1.5 Dissertation Overview

This dissertation is structured as follows. Chapter 2 describes the state of the art and

limits of current practice. This sets the stage for the limitations that are extended in this

work. Chapter 3 describes the system models used for the pressurizer subsystem, including

both physics-based and data-driven models. The models developed in this chapter are used

in both Chapters 4 and 5. Chapter 4 describes the extension of zero-dynamics attacks to

nonlinear systems and the implementation on the pressurizer subsystem. Chapter 5 describes

the detection methods and the implementation on the pressurizer subsystem. Finally, Chap-

ter 6 concludes the dissertation with a recap of contributions and discussions of limitations

and future work.

8

2.0 State of the Art and Limits of Current Practice

Having stated our research objectives, we can now discuss how other researchers have

approached similar problems to the one we address. These are focused on stealthy attack

strategies and attack detection methods. In addition, we address limitations of these works

that must be overcome to solve our specific problem; these limitations are the foundations

that justify this work.

To help illustrate the concepts in this chapter, we present some examples. Several of

these examples use a simple linear spring-mass-damper (SMD) system; see Figure 2. In

this system, the control input u(t) is a force from an actuator, the sensor output y(t) is the

measured position of the spring, the attacker inputs au(t) and ay(t) are the input and output

attacks, respectively, and the states are the true position of the mass and its velocity. It is

worth noting that this selection for the states is not unique, but this is a convenient choice

because they represent physical quantities.

This chapter is broken into two major sections, one each on stealthy attacks and detecting

attacks. For each section and each technique discussed, we present the relevant works, their

limitations, and examples.

2.1 Stealthy Attacks

The first objective of this research is focused on identifying worst-case attack strategies.

Based on this, limitations in existing stealthy attack strategies arise because they either

cannot be applied to all systems or have known weaknesses that make them less damaging

than intended. While these limitations are beneficial for defending against those strategies,

more powerful strategies may exist that need to be considered.

Looking at previous works, there have been two main stealthy attack strategies that have

been studied: replay attacks and zero-dynamics attacks. Replay attacks can be implemented

with little knowledge of the system dynamics, making them both easier for an attacker to

9

mass

spring

damper

y(t)+ay(t)

u(t)+au(t)

Figure 2: Image of a spring-mass-damper system. This example is used throughout this

chapter.

implement and defender to detect. By contrast, zero-dynamics attacks require knowledge of

the system dynamics, making them both harder for an attacker to implement and defender

to detect.

2.1.1 Replay Attacks

One of the most well known stealthy attacks on a system was the Stuxnet cyber attack on

the Iranian centrifuges [7, 8]. This attack was a computer worm that targeted specific types

of Siemens industrial controllers. It collected real process data and then replayed that data

to the controller while altering control signals to the centrifuge pumps. By implementing a

stealthy attack strategy on the control systems, the worm damaged up to 1,000 centrifuges

at the plant.

The Stuxnet attack strategy is called a replay attack strategy [1], which is a type of

stealthy attack. For this strategy, an attacker replays recorded measurements and injects

control inputs into the system. The replayed measurements mask the effects of the inputs, so

the inputs can move the system into unsafe operating conditions unnoticed. These attacks

can be particularly powerful against systems that run at or near steady-state operation,

10

including nuclear power plants, because operators do not expect to see any changes in the

measurements.

The replay attack has been extended to identify the smallest set of sensors that still

creates a stealthy attack using replayed measurements [2]. These attacks target system

observability, which is a system property that determines whether the system state can

be recreated using the available measurements. The analysis of these attacks looks at all

combinations of sensors to determine when masking sensors impacts observability. This

attack strategy has two advantages over generic replay attacks: first, it is simpler than

a replay attack that targets all sensors because attackers may be limited to accessing a

subset of sensors; and second, it ensures that an attacker masks enough to make the system

unobservable.

Limitation From an attacker’s perspective, the primary limitation to replay attacks is that

they hide all effects, yet they do not account for the system’s dynamics. Replay attacks can

be detected by inserting an arbitrary signal, unknown to the attacker, into the control inputs

in order to create expected transients [1, 5, 6]. Because the signal is arbitrary and unknown,

the attacker cannot predict the response. As such, there will be a mismatch between the

expected output and the replayed signals.

For this detection approach, the arbitrary signal has been proposed as a continuous zero

mean random Gaussian control input [1, 5]. In general, the signal can be relatively small,

such that an attack would be detected by statistical testing techniques. The advantage to this

continuous approach is that it is easy to implement and should detect attacks fairly quickly;

however, it means that the control input used to control the process is always sub-optimal.

An alternative candidate for the arbitrary signal is a periodic control input [6]. This

signal has many of the same benefits of the original continuous approach, but only requires

a sub-optimal control input during the periodic detection times. However, it may not detect

an attack as quickly if the period does not align with then the attack starts.

Example The replay attack strategy and detection approach are demonstrated on the

SMD system; see Figure 3 for the results. For simplicity, the simulation is at steady-state

conditions with noise. The figure shows the state, the measured output, and the expected

11

0 20 40 60 80 100

Time

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

P
o
s
it
io

n

record replay detect

state

output

expected output

Figure 3: Results of the replay attack implemented on the SMD system. The figure shows

the state, the measured output, and the expected output, and is segmented into thirds. In

the first segment, the attacker only records measurement data. In the second segment, the

attacker both replays the recorded measurements and adds a force onto the mass. In the

third segment, the defender tries to detect the attack by adding a random force onto the

spring, expecting it to respond accordingly if not under attack.

12

output, and is segmented into thirds. In the first segment, the attacker only records mea-

surement data. As such, both the true position and measured position remain at the nominal

condition, and the expected output is not shown because the defender is not trying to detect

an attack. In the second segment, the attacker both replays the recorded measurements and

adds a force onto the mass. The force causes the true position to increase even though the

measured values remain nominal, resulting in a successful attack. In the third segment, the

defender tries to detect the attack by adding a random force onto the spring, expecting it

to respond accordingly. The true output continues to replay the recorded values, resulting

in a mismatch between the output and expected output. In this way, the defender detects

that the replay attack is occurring. Note that the random input shown here is comparatively

large for visual purposes, but could be smaller when combined with statistical testing.

2.1.2 Linear Zero-Dynamics Attacks

The replay attack’s limitation would suggest that attackers would look for other stealthy

strategies to excite the system, but that result in minimal or no measured response. If such

an attack is possible, the need for replay is not necessary, and the attack can remain hidden

by virtue of the system’s characteristics. Such attacks are called zero-dynamics attacks [3, 4].

If a system has zero dynamics, some input exists that results in zero measurable output

but nonzero internal dynamics. Zero-dynamics attacks take advantage of these zero dynam-

ics. By accounting for the system’s dynamics, these attacks can still show expected transients

because they add to existing signals rather than overwriting them. As such, they overcome

the limitation of the replay attack, and are a pernicious attack that, if not anticipated, can

be difficult to defend against.

Zero-dynamics attacks have been analyzed for linear systems represented as closed-loop

transfer functions [4]. These systems can be written as

Y (s) = G(s)U(s) (2.1)

where G(s) = N(s)
D(s)

is the transfer function, which is a linear mapping in the Laplace domain

between the input variable U(s) and output variable Y (s), and N(s) and D(s) are matrices

13

of polynomials in the complex variable s. For scalar transfer functions, the roots of the

polynomial N(s) are called the zeros of the system, and the roots of the polynomial D(s) are

called the poles of the system; for matrix transfer functions, this is more complicated, and a

detailed discussion can be found in [9]. Any zeros and poles that have strictly negative real

parts are called minimum-phase zeros and stable poles, respectively.

In [4], transfer function matrices are analyzed for vulnerability to zero-dynamics attacks

targeting (i) actuators and (ii) sensors. To accomplish this, the system is factored using

coprime factorization, which rewrites the system as a ratio of stable transfer functions.

Using this factorization and linear algebra, the vulnerabilities can be summarized as follows:

• an unbounded attack targeting the actuators is possible if and only if the system has

non-minimum-phase zeros; and

• an unbounded attack targeting the sensors is possible if and only if the system has

unstable poles.

In the above, an unbounded attack means that the attack variables can grow unbounded

creating unbounded internal dynamics, but the measured variables remain zero (or below

some noise threshold).

Zero-dynamics attacks have also been analyzed for linear systems described using state-

space models [3]. These systems can be written as

ẋ = Ax+B(u+ a)

y = Cx
(2.2)

where u is the control input, y is the sensor output, x is the system state, a is the attacker

input, and A, B, and C are constant system matrices.

Similar to [4], state-space systems are analyzed for vulnerability to zero-dynamics at-

tacks [3], although this work only focuses on attacks targeting actuators. This is done using

invariance principles, which are subspace techniques that look at the system geometrically.

Using the linear matrices A, B, and C, the invariance techniques are used to find the subspace

that the attacker can move the state in while remaining stealthy. It is important to note

that despite using a different system representation, this work still requires non-minimum

phase zeros to create an unbounded attack targeting the actuators.

14

Limitation The primary limitation to these works for our problem is that they focus on

linear systems. Looking at the previous approaches, transfer functions [4] in general are

limited to linear systems, and the state space methods in [3] rely on linear system theory to

identify zero-dynamics attacks. This is challenging because nuclear plant systems contain

nonlinear dynamics.

One way to overcome this limitation is to derive the nonlinear dynamics and then linearize

them. This creates an approximate system that is valid within a small region of the state

space near an equilibrium point. However, any successful attack will move the system away

from an equilibrium point, making linearizations less valid; see Figure 4. As such, these

linear approaches may prove less accurate and could result in incorrect conclusions about a

system’s zero dynamics.

Example The zero-dynamics attack strategy and detection approach for replay attacks are

demonstrated on the SMD system; see Figure 5 for the results. The simulation is similar to

the previous example, except is only segmented into halves. In the first segment, the attacker,

assumed to have knowledge of the system dynamics, implements the zero-dynamics attack,

which causes the state to increase and the measurement to remain nominal. This represents

a successful attack. In the second segment, the defender again tries to detect the attack by

adding a random force onto the spring. But unlike for the replay attack, here the output

and expected output match, meaning the defender is unable to detect the attack using this

straight-forward strategy. This attack is not detected because the attacker uses knowledge

of the system dynamics to create a stealthier attack.

2.1.3 Conclusion

Of these two attack strategies, this work focuses on zero-dynamics attacks because they

represent a more pernicious and dangerous class of attacks. This work extends previous works

and explores the use of nonlinear generalizations of zero dynamics to the NPP problem.

15

eq. point

good approximation

bad approximation

attack

Figure 4: Sketch of a linearization approximation. Within the dashed circle, a linear system

could give good results. However, outside of the region, the linear system could be highly

inaccurate.

16

0 20 40 60 80 100

Time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
o
s
it
io

n

attack detect

state

output

expected output

Figure 5: Results of the zero-dynamics attack implemented on the SMD system. The fig-

ure shows the state, the measured output, and the expected output, and is segmented into

halves. In the first segment, the attacker, assumed to have knowledge of the system dy-

namics, implements the zero-dynamics attack, which causes the state to increase and the

measurement to remain nominal. In the second segment, the defender again tries to detect

the attack by adding a random force onto the spring, but cannot detect it because the output

and expected output match.

17

2.2 Detection and Diagnostics

The second and third objectives of this research are focused on defending against the

vulnerabilities identified during the first part of the research. While this work focuses on

cyber attack detection, we also discuss some previous work on fault detection. Faults refer

to abnormal operation of sensors, actuators, and devices. The goal of fault detection is to

determine the current operating condition of the system. Fault detection and cyber attack

detection methods share many similarities because both are focused on detecting anomalies

based on monitoring time-series measurements.

We focus on two categories of methods for detection: classification methods and state-

estimation methods. Classification methods often fall under the umbrella of machine learning

techniques and tend to focus on how to use raw data for decision making. By contrast, state-

estimation methods require system models to make decisions, although those system models

could be data-driven. In addition, these methods could be combined to solve detection

problems.

2.2.1 Classification Methods

Classes are labels that differentiate objects within them from other classes. Classification

methods aim to accurately label unseen objects from a fixed set of classes. These methods are

trained using historical data to learn the differences between the classes. Then, the classifier

should identify the class of new objects by comparing them to data it has already seen. For

example in fault detection, the classes might be normal or faulted operating conditions, and

the methods would use measurement data to assess what the current operating conditions

are. Here, we focus on a handful of works that implement classification methods on time-

series data.

Within classification methods, two common algorithms are support vector machines

(SVMs) and artificial neural networks (ANNs). As a very brief primer on these algorithms,

both are implemented as described above, but they have differences in how they handle non-

linear data. Broadly speaking, SVMs are well suited for linear or mildly nonlinear problems

18

and do not require extensive training sets to generalize well. By contrast, ANNs can handle

extremely nonlinear problems, but require larger training sets to generalize well.

Both SVMs [10] and ANNs [11] have been implemented to detect faults in rotating

bearings. These works look at vibration data from accelerometer sensors at normal and

faulted conditions, where a fixed interval of data is collected periodically. For each interval,

relevant statistics are extracted that summarize the data over that interval. These include

root mean-squared (RMS) error, kurtosis, and maximum peak-to-peak amplitudes. Based

on these values, the classifiers are trained on some fraction of the datasets and then tested

using the remainder of the datasets. In these works, both methods were able to successfully

diagnose the bearing conditions using vibration data.

SVMs have also been used to diagnose loss-of-coolant accidents (LOCAs) in nuclear power

plants [12, 13]. These works collected simulation data from multiple sensors for LOCAs of

various magnitudes and leak locations. For each simulation, the sensor values were integrated

to summarize the data, and the resulting summary statistics were used to train and test the

approach. Similar to the above approaches, these methods were able to successfully detect

the faulted conditions.

In all of the above approaches, the authors use summary statistics of the intervals in

order to handle the time-series data. But, we argue this is more appropriate for the works

on rotating bearings than for the works on LOCAs. For the bearing applications, the data is

highly periodic and can generally be summarized using the proposed statistics. By contrast,

the LOCA data is non-periodic and depends on the initial conditions, disturbances to the

system, and many other factors that make it harder to summarize succinctly for use directly

with classification methods. While they were successful, their methods may have a harder

time when accounting for the all the unknowns of a real plant.

Limitation The primary limitation of classification methods for some types of time-series

data is that they require summary statistics to handle the large quantity of data. This ap-

proach may work well for periodic data or other data that is well suited to being summarized;

however as mentioned above, methods such as integration, expected value, and RMS error

may not capture differences in initial conditions, disturbances, or causality, all of which are

19

necessary to describe dynamic system responses. These statistics may ignore critical data or

relations between the data that make them less effective or less robust.

It is important to note that any fault or cyber detection scheme should eventually have

a decision rule, which has many similarities to and could be implemented with classification

methods. The important distinction is how the summary statistics are created. For com-

plicated dynamic systems, it may be important to account for the causality of inputs and

outputs, rather than more simple methods. In other words, the limitation of classification

methods for some time-series problems is that they may not be solely capable of solving the

problems, but could be combined with other methods that account for the system dynamics.

This is often accomplished using state-estimation methods, which are discussed in the next

section.

One additional limitation to purely using classification methods for our problem is that

the problem may not be solvable for all systems. Using only classification methods, it may be

difficult or even impossible to determine whether the problem can be solved without testing

classification methods on examples and hoping there are no unknown cases where it fails to

work. By contrast, our more theoretical approach enables us to test a system directly to see

whether it is solvable, adding insight to the problem.

Example A simple classification example is presented that differentiates between normal

and faulted bearing performance. This example uses randomly generated data and is imple-

mented using SVM classification; see Figure 6 for the results. The two variables are summary

statistics of vibration data in two axes, and the blue and red data points are normal and

faulted data, respectively. The line is the decision boundary, where data on a given side

of the line is classified accordingly. Note that some of the training data falls on the wrong

side of the boundary, and these points would be false alarms. This is typical in many real

decision problems, where data is not perfectly separated.

2.2.2 State-Estimation Methods

In order to account for the system dynamics, many researchers have implemented state-

estimation methods for fault and cyber detection. The system state describes its true status

20

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x-axis vibration

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
-a

x
is

 v
ib

ra
ti
o
n

Normal

Faulted

Figure 6: Simple example of an SVM classifier to detect rotating machinery faults. The two

variables are summary statistics of vibration data in two dimensions, and the blue and red

data points are normal and faulted data, respectively. The line is the decision boundary,

where data on a given side of the line is classified accordingly.

21

regardless of the attack status, so an accurate state estimate can both detect the attack

and provide diagnostic information. State-estimation techniques estimate the state in real-

time using a system model, control inputs, and sensor outputs. The system model can be

derived from first-principles or using a data-driven approach, but needs to capture the causal

relationship of the system. In order to ensure accuracy, state estimators require systems be

observable, which is why the replay attacks described above targeted observability. Each of

the works discussed below require the system to be observable.

Works that use state-estimation techniques generally focus on either linear or nonlinear

systems. Starting with linear systems, one approach uses linear observer methods [14], where

an observer is a real-time state estimator that does not explicitly account for system noise.

Observers can be written as linear systems using state-space representation

˙̂x = Ax̂+Bu+ L(ŷ − y)

ŷ = Cx̂
(2.3)

where ˆ signifies an estimate, and L is the observer gain and is a user-defined parameter.

The gain compensates for the error between the true and estimated measurement, and this

compensation process is called measurement feedback. In [14], a first observer is used to

detect the attack. The gain is selected to drive the estimation error x̂− x to zero, which is

typical for observer designs. From this observer, an attack is detected when the error crosses

some threshold. In addition, a set of observers is used to determine the attack strategy.

Through careful selection of the gains, each observer is designed so that its error will only go

to zero if the attacker is attacking using a particular strategy. Through this multiple-observer

approach, the observers can both detect attacks and identify the attacker strategy.

The above work [14] also makes an important assertion that is directly relevant to zero-

dynamics attacks. The paper discusses theoretical limitations of detecting attacks using

observers and concludes that attacks that excite zero dynamics cannot be detected for linear

systems. This claim does not apply to nonlinear systems, which is the focus of this work.

If real-time detection is not needed, another approach for linear systems that can be

used is optimization methods [15]. Similar to the observer method, this approach creates

estimates of the system state, but does not incorporate any observer gain. Instead, it solves

22

an optimization problem that searches for the smallest set of attacked components that can

explain the measurement data. The solution to this optimization problem provides both the

attack status and the most likely attacker strategy.

State-estimation approaches have also been implemented for nonlinear systems [16, 17].

These works have used nonlinear filters, including particle filters and particle swarm op-

timization filters, that estimate the state for systems with noise. Similar to the observer

method, these filters run in real-time and include measurement feedback. Both of these

works solve the problem by considering unknown inputs as unknown states. Consider a

generic nonlinear state-space system

ẋ = f(x, u, w)

y = h(x, u, w)
(2.4)

where f and h are nonlinear functions, and w is some unknown input either representing

a fault or attack. To solve this, the state is replaced by combining x and w into a single

unknown vector. Using this approach, nonlinear filters can estimate the state and the un-

known inputs simultaneously, allowing them to perform both detection and identification. In

[16], the attack detection problem was examined for attacks on the GPS system of unmanned

aerial vehicles. This was accomplished by creating a first-principles model and implementing

both particle filters and particle swarm optimization filters. In [17], the fault detection prob-

lem was examined for LOCAs in nuclear power plants. This was accomplished by creating

a data-driven model and implementing particle filters. Using these approaches, nonlinear

filters can estimate the state and unknown inputs simultaneously, allowing them to perform

both detection and identification.

Another type of state-estimation technique has been used to detect faults in nuclear

plant sensors called the multivariate state estimation technique [18, 19]. This technique uses

historical data from normal operating conditions to create a data-driven regression model of

the system dynamics. Using the model in real-time, it predicts current values for a set of

sensor measurements based on the previous measured values. At each time step, it calculates

the error between the predicted values and the measured values, which should follow a known

statistical distribution under normal operation. Finally, it analyzes the sequence of errors

23

using statistical testing techniques to determine when the system diverges from normal

operation, enabling it to detect faults.

Limitation The primary limitation to these state-estimation works is that they assume

the system under attack is observable and then detect attacks based on that assumption.

However, this is not guaranteed during zero-dynamics attacks targeting nonlinear systems.

One major difference between linear and nonlinear systems regarding observability is that

nonlinear observability can depend on the control actions inserted into the system. As we

discuss more in Chapter 4, nonlinear systems under zero-dynamics attack require a non-zero

control input to be observable. Therefore, additional work is needed to be able to detect

zero-dynamics attacks.

Example State-estimation techniques for attack detection are demonstrated on the SMD

system; see Figure 7 for the results. As mentioned above, zero-dynamics attacks are not

detectable for linear systems, so we present an attack example where the system is observable

under attack. For this example, the attacker has access to the position sensor but not the

actuator. They attack the system by slowly injecting a ramp input into the sensor and the

controller compensates by trying to return the mass back to the nominal position. This can

be seen in the top figure, where the output remains zero because of the controller, but the

true state increases as the attack magnitude increases. However from the bottom plot, this

also has a resulting increase in the actuator force that is needed to keep the mass at the new

position.

For this example, a Kalman filter, which is a stochastic state-estimator for linear systems,

is used to estimate the state under attack. From the top plot, both the state and state

estimate are shown to match, meaning the method effectively detected that the state does

not match the output and an attack could be declared.

2.2.3 Other Methods

We also want to mention other methods of defending against attacks that do not fall

into the above categories. The first method proposes modifying the system dynamics to

reduce the possibility of zero-dynamics attacks [3]. This approach can increase the number

24

0 20 40 60 80 100
-0.05

0

0.05

0.1

0.15

0.2
P

o
s
it
io

n

state

output

state estimate

0 20 40 60 80 100

Time

-0.1

0

0.1

0.2

0.3

F
o
rc

e

Figure 7: Results of the state estimator on the SMD system. The figure shows the state,

the measured output, and the state estimate. For this example, the attacker has access to

the position sensor but not the actuator. They attack the system by slowly injecting a ramp

input into the sensor and the controller compensates by trying to return the mass back to

the nominal position. But, the state estimator accurately estimates the state, meaning the

attack is detected.

25

of signals an attacker needs to compromise in order to carry out a dangerous attack, making

attacks more difficult to implement.

Limitation For new systems still in the design phase, this is an important step to design

cyber security into the system. This is why our work analyzing nonlinear systems for vulner-

ability to zero-dynamics attacks is important. However, existing systems cannot be easily

altered to remove vulnerabilities. To improve cyber resilience for these existing systems,

additional methods should be employed.

The second method proposes encrypting the input and output signals using a modulation

matrix [20]. This approach would ruin an attacker’s perfect knowledge of the system, making

it more difficult to implement zero-dynamics attacks that require such knowledge. Rather

than proposing a limitation to this approach, we believe that this is worth implementing to

help prevent attacks. However, it can be implemented alongside detection methods, because

it is unlikely any single method is attack-proof.

2.2.4 Conclusion

This work focuses on using state-estimation techniques to detect the zero-dynamics at-

tacks that are developed in the first part of this research. This can add an additional layer

of defense to protect existing systems from the consequence of stealthy attacks.

2.3 Chapter Summary

To summarize this chapter, our work first focuses on identifying zero-dynamics attacks

targeting nuclear power plants. The primary limitation that we overcome is extending exist-

ing methods to work with nonlinear system dynamics. Then, our work focuses on developing

state-estimation methods to detect the nonlinear zero-dynamics attacks. The primary limi-

tation that we overcome is focusing on observability as a function of control actions rather

than as an assumed global property.

26

3.0 System Modeling

This work focuses on pressurized water reactors (PWRs). A PWR is a type of water-

cooled nuclear power plant that operates at pressures well above atmospheric pressure, en-

suring the water remains a liquid at high temperatures. This plant contains separate, closed,

thermal-hydraulic primary and secondary loops. The primary loop generates heat and trans-

fers it to the secondary loop, and the secondary loop uses the heat to generate steam, which

is used in a Rankine cycle similar to other power plants. In general, PWRs have multiple

primary and secondary loops connected to a single reactor pressure vessel.

The main components in the primary loop are the reactor pressure vessel, one or more

steam generators, one or more reactor coolant pumps, and the pressurizer; see Figure 8 for a

diagram. The reactor pressure vessel contains fuel rods, in which fission reactions generate

heat. To remove the heat, water coolant flows through the vessel, transferring heat from the

fuel rods and out of the vessel. In addition, the vessel contains control rods, which absorb

neutrons in order to control the fission process.

After leaving the reactor pressure vessel, the coolant is pumped into the steam generators.

These contain U-tube heat exchangers that transfer heat from the primary to the secondary

loop. While the secondary loop is also pressurized, it is at a lower pressure, so water inside

the steam generators can boil and produce steam. This steam then runs through a series of

turbines to produce electricity, similar to other power plants.

The pressurizer is a saturated system that controls the pressure and coolant inventory

using pressure and level feedback controllers. The pressure controller controls pressure by

either adjusting the heater output or spraying cooler water. These actions either create or

condense steam, resulting in pressure changes. In addition, the spray system has a bypass

line that flows continuously at a low flow rate. The level controller controls liquid level

by adjusting the net flow to the primary loop from a support system called the chemical

and volume control system (CVCS). This pushes liquid up through the surge line into the

pressurizer. There is also flow through the surge line from changes in the primary side

temperature as the density changes. This research is implemented on the pressurizer system;

see Figure 9 for a more detailed diagram of the pressurizer.

27

L

T

p

T
F T

T

TF

F
T

F = FLOW METER
T = TEMPERATURE SENSOR
L = LEVEL SENSOR
p = PRESSURE SENSOR

VAPOR

LIQUID

SPRAY
LINE

PRESSURIZER

CONTROL
RODS

REACTOR

STEAM
GENERATOR

SURGE
LINE

CVCS
LINE

COLD
LEG

HOT
LEG

PUMP

FUEL
RODS

HEATER

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

N N

P P

R R

T T

24

24

23

23

22

22

21

21

20

20

19

19

18

18

17

17

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A0

WEIGHT:

PID

Figure 8: Schematic of the primary loop including sensor types and locations. This work

focuses on the pressurizer subsystem.

28

bypass

spray
line

heater

vapor

liquid

pressure
sensor

level
sensor

surge
line

Figure 9: Detailed schematic of the pressurizer system. The pressure is controlled by the

heater and spray flow. The level is controlled by the surge line flow.

29

We require dynamic models of the pressurizer system and develop both physics-based

and data-driven models. As a brief primer on these types, physics-based methods use first-

principles to develop models that describe the dynamics. They should be accurate as long

any underlying assumptions hold; however, highly accurate models could require significant

modeling effort. Data-driven methods rely on information contained in large quantities of

historical data to develop models. These methods can be more accurate with less effort than

a physics-based model; however, they may not generalize well far from the training data.

The data-driven model requires data, but both models use data in their development.

The physics-based model is derived using first-principles but has a few unknown parameters.

These values are estimated using system identification techniques, which use data. The

data-driven model also uses system identification techniques, but uses them to estimate a

fully unknown set of model parameters.

These models are used for two purposes: (i) to characterize zero-dynamics attacks, and

(ii) to detect and diagnose zero-dynamics attacks. For characterizing attacks, the physics-

based model is used because it captures the system dynamics over a large span of possible

operating conditions. For detecting and diagnosing attacks, both models are used. First,

the physics-based model is used to develop the methods and demonstrate their theoretical

effectiveness. Second, the data-driven model is used to validate the methods using data from

a commercial simulator. This model type is used because the physics-based model developed

here is unable to achieve the necessary accuracy for the detection methods.

In addition to these models, we use system identification to identify the controller dy-

namics. These would normally be accessible if we were implementing our approach on a

real plant. For this work, they are derived so the simulations have reasonable controller

parameters, but are less important than the pressurizer dynamics.

All system data is collected using a commercial PWR simulator developed by GSE Sys-

tems. The plant simulated is a 970 MWe PWR, and the simulator uses the RETACT thermal

hydraulics package, which can model non-homogeneous and non-equilibrium conditions. In

addition, it has a model accuracy that is compliant with ANS-3.5, which is the American

Nuclear Society’s standard for “Nuclear Power Plant Simulators for Use in Operator Training

and Examination” [21].

30

This chapter is structured as follows:

• the physics-based model is derived;

• the data-driven model structure is discussed;

• the system identification process for both models is described;

• the results of the system identification process for both models are shown and compared;

and

• the results of the system identification process for the controllers are shown.

.

3.1 Physics-Based Pressurizer Model

The pressurizer dynamics are derived assuming the liquid and steam are both saturated.

This means that the liquid and vapor temperatures are equal and are directly related to the

pressure. The primary advantage to this model, often called an equilibrium model, is that

it is significantly simpler than a non-equilibrium model that allows for subcooled liquid or

superheated steam.

We believe this assumption is valid to use for a few reasons:

1. The spray system has a bypass line that flows continuously at a low flow rate. As a

result, the heater has a nonzero steady-state output to compensate for the loss of energy.

This energy loss in the vapor and energy gain in the liquid push both phases towards

saturated conditions, making it harder for either to escape equilibrium conditions.

2. The primary cause of non-equilibrium conditions is a large influx of colder water into the

pressurizer from the surge line. From an attacker’s viewpoint, this research is focused on

an attacker whose goal is to remain stealthy during the attack. As the attacker inputs get

larger, they are more likely to be discovered by encountering other unknown dynamics.

This suggests an attacker may instead choose to implement slower but longer attacks.

From a defender’s viewpoint, staying saturated is also beneficial because the dynamics

are easier to model. Both of these mean that large influxes of cold water are likely to be

avoided.

31

Table 1: State, input, and output variable conventions.

Variable Description Units

x1 pressure MPa

x2 level %

u1 heater power kW

u2 surge flow kg s−1

y1 pressure sensor MPa

y2 level sensor %

3. As mentioned, there is a spray bypass line that continuously pushes mass into the pres-

surizer from a spray accumulator. To compensate for this flow in, there must be an equal

flow out of the primary loop into the accumulator. Therefore, for there to be any influx

of colder water into the pressurizer, the flow rate entering the primary loop plus any

expansion upward from changing primary loop temperatures must be greater than the

spray bypass flow rate.

Another result of the nonzero steady-state heater output is that the heater can both in-

crease and decrease the pressure. Therefore, the model can be simplified further by assuming

the spray rate is just the bypass line and the pressure is purely controlled by the heater.

Based on the assumptions above, we can define the states, inputs, and outputs of the

state-space model: the states are the pressure and liquid level; the control inputs are the

heater and the surge line mass-flow rates; and the sensor outputs are the pressure and liquid

level; see Table 1 for a summary of these variables.

The dynamics are derived using conservation of mass and volume on a single control

volume that contains both the liquid and vapor phases [22]

ṁL + ṁV = WSU +WSP (3.1)

ĖL + ĖV − V ṗ = Q̇SU + Q̇SP + Q̇H − Q̇W (3.2)

32

where m is mass, E is energy, dot notation signifies d
dt

, the L and V subscripts refer to

the liquid and vapor phases, WSU is the surge line mass-flow rate, WSP is the spray line

mass-flow rate and is equal to a constant, Q̇SU = WSUhSU , Q̇SP = WSPhSP , h is enthalpy,

Q̇H is the heater power, and Q̇W is the environmental heat loss through the wall and is equal

to a constant.

These conservation equations can be transformed into equations of the state variables

using the chain rule, conservation of volume, and water properties. First, the derivatives of

mass and energy can be written as

ṁ = ρ̇V + ρV̇ (3.3)

Ė = ρ̇V h+ ρV̇ h+ ρV ḣ (3.4)

where ρ is density, and V is volume. Second, the derivatives of density and enthalpy for

saturated phases can be written as

ρ̇ =
∂ρ

∂p
ṗ (3.5)

ḣ =
∂h

∂p
ṗ (3.6)

where p is pressure. Third, conservation of volume results in

VL + VV = VTotal (3.7)

V̇L = AL̇ = −V̇V (3.8)

where V = AH, A is the cross-sectional area, H is the height of the phase volume, and

L specifically is the height of the liquid volume. Finally, the density and enthalpy can be

approximated as linear functions of pressure

ρ(p) = c1p+ c2 (3.9)

h(p) = c3p+ c4 (3.10)

where the constants were determined using linear regression of data available from the In-

ternational Association on Properties of Water and Steam Industrial Formulation 1997 [23].

Using these substitutions, Equations 3.1 and 3.2 can be written as a control-affine state-space

33

model. The control-affine designation is important later for characterizing the nonlinear

zero-dynamics attacks.

As mentioned earlier, the surge line mass-flow rate is calculated as the sum of the net

flow from the CVCS and the change from the primary side density. The net flow from the

CVCS is directly measurable using sensor data. The flow from the primary side can be

calculated using conservation of mass and the chain rule on the primary side

WSU,PL = −ρ̇PLVPL (3.11)

where the negative is used because decreasing mass in the primary side results in increasing

mass in the pressurizer, and the volume is assumed constant. This results in a total surge

line flow WSU = WSU,PL +WSU,CV CS.

In this model, there are a few dimensional parameters that are unknown. These param-

eters are the total volume of the pressurizer and the volume of the primary loop. Given

real plant specifications, they could be approximated using schematics. In this work, they

are estimated using system identification methods, discussed later, which should result in a

more accurate model.

3.2 Data-Driven Pressurizer Model

The data-driven model captures the dynamics used for detection. The explanation of

these dynamics is discussed in Chapter 5, but briefly they correspond to a large outsurge of

liquid through the surge line with constant heater input. This transient maintains saturated

conditions in the pressurizer, so the equilibrium assumption holds for the data-driven model.

In order to describe these dynamics using a data-driven model, we select the inputs, outputs,

number of states, and model structure.

For this application, we already have a physics-based model to base some of these se-

lections on. The inputs and outputs are similar to before: the inputs are still the heater

power and surge flow, and the outputs are still the pressure and level measurements. The

only change is the surge flow is broken into two inputs. In a PWR, the total surge flow is

34

a combination of the charging flow, which is the flow entering the primary loop, and the

letdown flow, which is the flow leaving the primary loop. In the data-driven model, these

two inputs are separated, which was done because it improved model performance.

In addition to inputs and outputs, the number of states needs to be specified. Again

to match the physics-based model, two states are used for this data-driven model. For

simplicity, these states are the true pressure and level. This selection is able to sufficiently

capture the dynamics, such that additional states are not needed.

Data-driven models need some type of model structure, which is the nonlinear function

type. There are many generic model structures that can be used, and we considered poly-

nomial functions and artificial neural networks (ANNs). ANNs, previously mentioned in

Chapter 2, are able to handle highly nonlinear dynamics, but can require very large datasets

to generalize well. Polynomial functions can still handle nonlinear dynamics and require

smaller datasets to generalize well. Therefore, polynomial functions are a good place to

start; after implementing them, we did not believe the additional nonlinear capabilities of

ANNs were necessary.

A discrete-time polynomial state-space model can be written

xk+1 = Axk +Buk + Eζk

yk = Cxk +Duk + Fζk

(3.12)

where A, B, E, C, D, and F are unknown system matrices that are estimated using system

identification, and ζk is a vector of monomials made from the components of xk and uk. For

example, if using a second degree polynomial model with two states x1 and x2 and an input

u1, then ζ =
[
x2

1 x1x2 x1u1 x2
2 x2u1 u2

1

]T
, where the time subscript k is dropped for

notational convenience. For this work, the states are the pressure and level, so C = I, and

D = F = 0.

The vector of monomials must be specified to implement the model. This was done by

separating the data into training and testing sets. The training data is used to calculate the

unknown parameters for a given model and the test set is used to determine the polynomial

degrees. The optimal set of monomials is selected as the set that best generalizes to the test

set.

35

When implementing the model, the states and inputs are normalized around an equilib-

rium condition. Each state and input is redefined by subtracting off the steady-state values

for nominal conditions.

3.3 System Identification

In both the physics-based and data-driven models, there are unknown parameters. These

parameters are estimated using system identification techniques, which determine the values

that best match observation data according to some optimality criteria. For this work, the

parameters are estimated using maximum likelihood estimation, which optimizes the total

likelihood of a set of noisy observations.

These techniques compare measurement data to model estimates at discrete time steps.

Both of the models can be written using the discrete-time nonlinear representation

xk+1 = f(xk, uk, θ)

yk = Cxk + vk

(3.13)

where θ is the unknown parameter vector, and vk ∼ N (0, R) is zero-mean Gaussian measure-

ment noise with covariance equal to R. Based on this model, the estimated measurements

as a function of a given θ can be written as

x̂k+1 = f(x̂k, uk, θ)

ŷk = Cx̂k

(3.14)

whereˆsignifies an estimated value.

This estimated model is used to calculate the total likelihood of a sequence of mea-

surements. The likelihood of observing a single measurement for a given parameter vector

p(yk|Yk−1, θ) is normally distributed N (ŷk, R). The likelihood of observing a series of mea-

surements YT = {y0, . . . , yT} is

p(YT |θ) =
T∏
k=0

p(yk|Yk−1, θ) (3.15)

36

For numerical reasons, it is common to use the natural logarithm of the likelihood function.

This creates a sum of log-likelihood values instead of a product, but still has the same

maximum location. This results in

log p(YT |θ) =
T∑
k=0

log p(yk|Yk−1, θ)

=
T∑
k=0

log

(
1

(2π)k|R|
exp

(
−1

2
ỹTkR

−1ỹk

))

∝ −
T∑
k=0

ỹTkR
−1ỹk (3.16)

where the second line is the probability density function of the multivariate Gaussian dis-

tribution, and ỹk = ŷk − yk is the output estimation error. In words, the log-likelihood is

proportional to the negative of the weighted least-squares error using the inverse of the co-

variance matrix as the weight. As such, minimizing the weighted least-squares error provides

the same solution and is easier to calculate.

The optimization problem can be written

θ∗ = arg min
θ

V (θ) (3.17)

where V (θ) =
∑T

k=0 ỹ
T
kR
−1ỹk is the objective function, and θ∗ is the optimal parameter

estimate. The problem is solved using gradient descent methods, which iteratively calculate

new estimates based on the gradient of the objective function

θn+1 = θn − γ∇V (θn) (3.18)

where n is the iteration number, γ is a step size, and the gradient is defined with respect to the

unknown parameter vector ∇V (θn) = dV
dθ

∣∣
θ=θn

. This algorithm is implemented differently

for the physics-based and data-driven models.

37

3.3.1 Physics-Based Model

The gradient descent optimization for the physics-based model is implemented by numer-

ically approximating the gradient. This is done using the finite difference approach, which

estimates the gradient at a given point by evaluating the objective at nearby points. Based

on that numerical gradient, the next candidate parameter vector is calculated as outlined

above.

This numerical approach is taken for the physics-based model because it is easy to cal-

culate. The reason for this is that the objective function has already been defined, so no

additional derivations are necessary to implement it. The primary challenge with this nu-

merical approach is that it requires significantly more function evaluations, and that gets

exponentially worse as the number of variables increases. But, the physics-based model has

few unknown parameters, so the dimensionality is not a major problem. In addition, the

data does not need to describe a large range of conditions, meaning it can be a small dataset.

This makes function evaluations extremely fast, so the potential challenges of this numerical

approach are not prohibitive for the physics-based model.

3.3.2 Data-Driven Model

Compared with the physics-based model, the data-driven model has many unknowns and

a much larger dataset because the entire model structure must be estimated. This means it

is worth the extra effort to calculate the gradient directly. For the discrete-time polynomial

model, there exists a closed-form method of solving for the gradient, which is described here.

38

First, we introduce a few notational elements that are used to calculate the gradient:

ζ ′k =
∂ζk
∂xk

(3.19)

Im×nij =

j

0 . . . 0 . . . 0
...

...
...

0 . . . 1 . . . 0 i

...
...

...

0 . . . 0 . . . 0

(3.20)

where Im×nij ∈ Rm×n is a zero matrix with a one at entry (i, j).

The gradient of the objective function is calculated as

dV

dθ
= 2

T∑
k=0

(
dỹk
dθ

)T
R−1ỹk (3.21)

where
dỹk
dθ

=
dŷk
dθ

(3.22)

can be calculated as the solution to a dynamic system. For each entry (i, j) of the three

unknown system matrices A, B, and E, this is written

JXijk =
∂ŷk
∂Xij

(3.23)

with X ∈ {A,B,E}. The dynamic system that solves for this is [24]

xAijk+1 = Inx×nxij x̂k + (A+ Eζ ′k)x
Aij
k (3.24)

JAijk = CxAijk (3.25)

xBijk+1 = Inx×nuij uk + (A+ Eζ ′k)x
Bij
k (3.26)

JBijk = CxBijk (3.27)

xEijk+1 = Inx×nzij ζk + (A+ Eζ ′k)x
Eij
k (3.28)

JEijk = CxEijk (3.29)

39

where nx, nu, and nz are the cardinalities of x, u, and ζ, respectively. The solution to this

dynamic system is directly used to calculate the gradient of the objective function. For the

data-driven model, this is much faster and more efficient than numerically calculating the

gradient.

In order to implement this system identification process, the coefficients are first calcu-

lated for the linear model using the above process. This means finding the optimal values of

A and B, with E = 0. Once these optimal values have been estimated, they can be used as

the initial condition for further optimization with E0 = 0.

3.4 Results

The system identification techniques are implemented for both the physics-based and

data-driven models. These techniques use data collected from the GSE simulator to estimate

parameters. After system identification has been completed, the models are fully defined and

can be used in later chapters.

To make the data more representative of real plant data, additive Gaussian white noise

is added to the sensor measurements. The standard deviations of these noise distributions

is 0.1 % of the full sensor range, as defined by the simulator, resulting in noise standard

deviations of 4.8× 10−3 MPa and 1.0× 10−1 % for the pressure and level sensors, respectively.

3.4.1 Results for Physics-Based Model

For the physics-based model, there are only a few parameters that need to be estimated.

This means we can use a relatively small dataset to identify these unknowns. As mentioned,

the relevant signals are the pressure, level, heater power, and surge flow; see Figure 10 for a

plot of these variables, not including noise.

Using these inputs and outputs and including noise, the optimal unknown parameters

are calculated. The optimal values should enable the estimated output to track the simulator

data; see Figure 11 for a plot of the pressure and level from the simulator compared with

40

0 20 40 60
15.38

15.4

15.42

15.44

P
re

s
s
u

re
 (

M
P

a
)

0 20 40 60
59.4

59.8

60.2

60.6

L
e

v
e

l
(%

)

0 20 40 60

Time (mins)

100

150

200

H
e

a
te

r
P

o
w

e
r

(k
W

)

0 20 40 60

Time (mins)

-0.4

-0.2

0

0.2

0.4

S
u

rg
e

 F
lo

w
 (

k
g

 s
-1

)

Figure 10: Data used to estimate parameters for the physics-based model. The top two plots

are output variables, and the bottom two plots are input variables.

41

0 10 20 30 40 50 60
15.36

15.38

15.4

15.42

15.44

15.46

P
re

s
s
u
re

 (
M

P
a
)

Simulator

Model

0 10 20 30 40 50 60

Time (mins)

59

59.5

60

60.5

61

L
e
v
e
l
(%

)

Figure 11: Comparison of the pressure and level data between the commercial simulator

and physics-based model. The simulator data includes noise, but the model data does not

because it is the optimal model output that fits the noisy data.

42

our optimal model. From this plot, the model captures the simulator data well, suggesting

that our assumptions hold for this dataset.

3.4.2 Results for Data-Driven Model

For the data-driven model, there are many unknowns that need to be estimated, but for

a very specific transient type. The data collected includes multiple runs of the detection

transient from varying initial conditions. The relevant signals are shown for multiple runs

starting from different conditions; see Figure 12.

Using these inputs and outputs and including noise, the optimal polynomial model is

calculated. This is done using the training dataset as mentioned previously. The optimal

model should enable the estimated output to track the simulator data; see Figure 13 for a

plot of the pressure and level from the simulator compared with our optimal model. Note

that this simulation comes from the test set, so was not used to directly estimate the model

parameters. From this plot, the model captures the simulator data well.

3.4.3 Comparing Physics-Based and Data-Driven Models

In order to validate the detection methods using simulator data, the model must be very

accurate. This level of accuracy is quantified in more detail in Chapter 5. Here, the accuracy

of the two models is discussed using data from the detection transients. Note that we expect

the data-driven model to be more accurate because it was designed specifically to detect this

type of transient.

For the comparison, the dataset used is the same as shown for the data-driven results.

In addition, the dataset does not include noise to more easily see the accuracy difference;

see Figure 14 for the results from the two models compared with the simulator data. As

expected, the data-driven model captures the dynamics extremely accurately. By contrast,

the physics-based model captures the general trend and is pretty accurate given that is has

never seen this transient before.

43

0 2 4
15

15.2

15.4

15.6

P
re

s
s
u
re

 (
M

P
a
)

0 2 4
54

56

58

60

62

L
e
v
e
l
(%

)

0 2 4

Time (mins)

130

140

150

160

170

H
e
a
te

r
P

o
w

e
r

(k
W

)

0 2 4

Time (mins)

-6

-4

-2

0

S
u
rg

e
 F

lo
w

 (
k
g
 s

-1
)

Figure 12: A sample of the data used to estimate parameters for the data-driven model. The

top two plots are output variables, and the bottom two plots are input variables. In the four

plots, the colors each correspond to a different dataset, meaning three datasets are shown

here.

44

0 0.5 1 1.5 2 2.5 3 3.5 4
15.3

15.4

15.5

15.6

15.7

P
re

s
s
u
re

 (
M

P
a
) Simulator

Model

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (mins)

56

58

60

62

L
e
v
e
l
(%

)

Figure 13: Comparison of the pressure and level data between the commercial simulator and

data-driven model. This plot shows just one of the datasets for reference. The simulator

data includes noise, but the model data does not because it is the optimal model output

that fits the noisy data.

45

0 0.5 1 1.5 2 2.5 3 3.5 4
14.9

15

15.1

15.2

P
re

s
s
u
re

 (
M

P
a
)

Simulator

Physics-Based

Data-Driven

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (mins)

56

57

58

59

60

L
e
v
e
l
(%

)

Figure 14: Comparison of the pressure and level data between the physics-based and data-

driven models. This plot shows the simulator data and the estimates from both the physics-

based and data-driven models. From the plot, the data-driven model is an excellent match

for the simulator data. By contrast, the physics-based model captures the phenomena, but

does not perform as well.

46

3.5 Controller Models

For later simulations, a realistic controller model is helpful. The pressurizer uses classic

proportional integral (PI) controllers. These have the transfer function

C(s) =
u(s)

e(s)
= kP +

kI
s

(3.30)

and state-space representation

ẋc = e

u = kIxc + kP e
(3.31)

where e = r − ys. For the pressure controller, the reference pressure is constant rpressure =

15.42 MPa. For the level controller, the reference level is a function of the average reactor

coolant system temperature rlevel = 25 + 1.1(TRCS − 291.7 °C).

The gains for these controllers are estimated using the commercial simulator in order to

get realistic values for an actual plant. This is done using Matlab’s built-in ssest function,

which estimates an unknown linear state-space model based on data; see Figures 15 and 16

for the results of this controller system identification.

47

0 10 20 30 40 50 60
-0.05

0

0.05

0.1

e
p
re

s
s
u
re

 (
M

P
a

)

0 10 20 30 40 50 60

Time (mins)

0

100

200

300

H
e

a
te

r
P

o
w

e
r

(k
W

)

Simulator

Model

Figure 15: Comparison of the heater output data and the PI model. The top plot shows

the error signal between the true pressure and setpoint, and the bottom plot shows both the

simulator data and the model estimates.

48

0 10 20 30 40 50 60
-3

-2

-1

0

1

e
le

v
e
l (

%
)

0 10 20 30 40 50 60

Time (mins)

-0.6

-0.4

-0.2

0

0.2

S
u

rg
e

 F
lo

w
 (

k
g

 s
-1

)

Simulator

Model

Figure 16: Comparison of the surge flow data and the PI model. The top plot shows the error

signal between the true level and setpoint, and the bottom plot shows both the simulator

data and the model estimates.

49

4.0 Characterizing Nonlinear Zero-Dynamics Attacks

The first primary task in this research is to characterize stealthy cyber-attack strategies

targeting nuclear power plants. The two main stealthy attack strategies previously researched

are replay attacks and zero-dynamics attacks [1, 2, 4]. With the goal of identifying worst-case

scenarios, this effort is focused on zero-dynamics attacks. While this has been done for linear

systems, linear approaches may prove less accurate and could result in incorrect conclusions

about a system’s zero dynamics. In order to complete this task for a plant’s nonlinear system

dynamics, this research extends zero-dynamics attacks to nonlinear systems.

Our approach works directly with the nonlinear dynamics to investigate zero-dynamics

attacks. First, the nonlinear attacked system is defined, where an attacker can modify both

control signals and measurement signals. Then, invariant subspace techniques are used to

identify the largest submanifold in which an attacker can maintain zero output. This is done

using an iterative algorithm that determines whether a nontrivial solution exists. If it exists,

then the zero dynamics can be calculated directly from the equations in the algorithm.

This approach is then implemented on the pressurizer subsystem. The algorithm is used

to evaluate all combinations of attackable signals. These are then classified by the existence

of nontrivial zero dynamics and the stability of the equilibrium condition when nontrivial

zero-dynamics exist. They are compared using a damage metric for how long it would take

for an attacker to reach an undesirable system state. Finally, the stability of the attack is

analyzed, which differs from the stability of the equilibrium condition. The distinction is

discussed later.

This chapter is structured as follows:

• the state-space model under attack is described;

• an algorithm for solving the zero-dynamics attacks targeting nonlinear dynamics is pre-

sented;

• the results of implementing the algorithm on the pressurizer system are discussed; and

• the stability analysis on the attack is presented.

50

4.1 State-Space Model Under Attack

This work considers nonlinear control-affine systems of the form

ẋs = fs(xs) + gs(xs)u

ys = hs(xs)
(4.1)

where xs ∈ U ⊂ Rn is the system state, u ∈ Rq is the system input, ys ∈ Rp is the system

output, fs(·) and gs(·) are nonlinear functions that describe the system dynamics, and hs(·)

is a nonlinear function that describes the output. In addition, ys = 0 and u = 0 define the

system’s equilibrium point, which can be accomplished by subtracting off the reference value

if needed.

In order to incorporate the attacker into the model, we assume they can modify some

combination of inputs and outputs. In the model, this means rewriting the system input

and output to include the attacker. For the input attack, this can be done simply as u ⇒

u + au, where au is the input attack signal. For the output attack, this is somewhat more

complicated. In order to use existing nonlinear zero-dynamics tools, the attacked system

model should also be in control-affine form. This means the output should be purely a

function of the state. Therefore, we define an attack state so that ys ⇒ ys + xa, with

ẋa = ay, where ay is the output attack signal. This mathematical transformation should

have no influence on the system’s zero dynamics [25]. The result is the attacked system

model

ẋs = fs(xs) + gs(xs)(u+ au)

ẋa = ay

ys = hs(xs)− xa

(4.2)

Finally, we assume the system has some closed-loop control law. For the pressurizer

system, this is a simple linear controller. However, to keep things general, a nonlinear

controller can be used

ẋc = fc(xc, ys)

u = hc(xc, ys)
(4.3)

where xc ∈ Rc is the controller state if the controller has dynamics.

51

The final result is a closed-loop system under attack. The combined state can be written

x =
[
xTs xTa xTc

]T
, and the combined output is simply the system output y = ys. More

explicity, we get the combined system dynamics

ẋ =

fs(xs) + gs(xs)hc(xc, hs(xs)− xa)

0

fc(xc, hs(xs)− xa)

+

gs(xs) 0

0 1

0 0

au
ay

 (4.4)

and the combined system output

y = hs(xs)− xa (4.5)

Together, this results in the attacked nonlinear control-affine system

ẋ = f(x) + g(x)a

y = h(x)
(4.6)

where a is the combined attacker input signal. With a slight abuse of notation, this new

attacked system has q inputs and p outputs.

4.2 An Algorithm for Calculating Zero Dynamics

Zero dynamics exist when the output can be set to and remain zero using a suitable

choice of initial state and input. If they exist, the zero dynamics refers to the nonzero

system dynamics that maintain zero output. In solving for them, there are two critical

pieces that must be accounted for. First, there is the subspace on which zero dynamics

exists, called the output-zeroing submanifold. Second, there is the corresponding input that

maintains zero output, called the output-zeroing input.

Zero dynamics can be more rigorously defined using invariance concepts:

Definition. A submanifold is locally invariant at x0 in a neighborhood U0 of x0 if all points

that belong to the submanifold remain in the submanifold after a specified transformation.

52

Definition. A submanifold is locally controlled invariant if there are control actions that

can make the submanifold locally invariant.

For the control-affine system of Equation 4.6, a submanifold M is locally controlled invariant

at x0 in a neighborhood U0 of x0 if there always exists an input a∗ such that the vector

f ∗ = f(x) + g(x)a∗ is tangent to M for all x ∈M . Using these invariance definitions:

Definition. Zero dynamics exist if there exists a submanifold M of U containing the initial

state x0 that

1. has zero output everywhere on M , and

2. is locally controlled invariant at x0 in a neighborhood U0 of x0.

If such a submanifold exists, then the zero dynamics are the dynamics f ∗.

To create a more concrete understanding of these concepts, we will use an example from

orbital dynamics. For a moon on a stable orbit around a planet, the orbital path represents

an invariant set. If the motion of the moon is described by ẋ = f(x), this means that f(x) is

always tangent to the path, ensuring that the moon stays on the orbital path; see Figure 17

for a diagram of this invariant orbit. Now, for a satellite on an imperfect orbit around a planet

with thrusters that maintain the orbit, the orbital path represents a controlled invariant set.

If the dynamics are represented by ẋ = f(x) + g(x)u, then the satellite without using the

thrusters would stray off the path. However, the satellite can remain on the orbital path

because there always exists a thruster input u∗ that keeps f(x)+g(x)u∗ tangent to the orbit;

see Figure 18 for a diagram of this controlled invariant orbit1.

The zero-dynamics problem is related to the controlled invariant set from the satellite

orbit. If we can measure the distance between the satellite and the orbit, then the orbit is

the submanifold with zero output, and the thrusters are the control inputs. For the satellite

orbit problem, zero-dynamics exist if there always exists a thruster input that keeps the

satellite on the orbit.

The definition above of zero dynamics does not necessarily result in a unique submanifold.

For example, the output at the equilibrium condition xeq is by definition zero, resulting in the

1With thanks to Made by Made, Markus, and Prettycons from the Noun Project for graphics.

53

f(x)

Figure 17: Diagram of an invariant orbit. The planet is in the center and the moon orbits

around it along the dashed curve. The orbital path represents an invariant set because its

dynamics, described by f(x), are always tangent to the path, ensuring that the moon stays

on the orbital path.

54

f(x)g(x)u

Figure 18: Diagram of a controlled invariant orbit. The planet is in the center and the

satellite orbits around it along the dashed curve. The orbital path represents a controlled

invariant set because its dynamics, described by f(x) + g(x)u, can always be made tangent

to the path by control actions u, ensuring that the satellite stays on the orbital path.

55

Algorithm 1 This algorithm finds the maximal output-zeroing submanifold.

define constraints

define candidate

while isNotTrivial and isNotInvariant do

calculate additional constraints

update constraints with additional constraints

update candidate using constraints

end while

trivial output-zeroing submanifold M = {xeq}. In solving for the submanifold, the objective

becomes to calculate the maximal output-zeroing submanifold, M∗.

From this definition, there are three pieces to solve for: (1) the maximal output-zeroing

submanifold M∗, (2) the corresponding output-zeroing input a∗, and (3) the resulting zero

dynamics f ∗.

4.2.1 Maximal Output-Zeroing Submanifold

The maximal output-zeroing submanifold is calculated using the iterative algorithm

found in [26]; refer to that for additional details and examples. Each iteration starts with

a constraint function that defines a candidate submanifold. This candidate submanifold is

then analyzed to determine whether it is either trivial or locally controlled invariant. If it is

either, the algorithm converges and the candidate submanifold is the maximal output-zeroing

submanifold. Otherwise, the constraint function is updated with an additional constraint,

defining a new candidate submanifold. This process continues until it converges. See Algo-

rithm 1 for an overview of this process.

Step 0: Define the initial constraint function A constraint function Φk(x) = 0 is used

to define a candidate submanifold Mk. The initial constraint function Φ0 = h(x) is used to

guarantee its corresponding initial candidate submanifold M0 has zero output everywhere

on M0, fulfilling the first requirement of the zero dynamics definition. In addition, all future

56

constraint functions Φk+1 contain Φk, such that Mk+1 ⊂ Mk. This ensures that all future

candidate submanifolds also fulfill this first requirement of the zero-dynamics definition.

Step 1: Define the candidate submanifold Using the current constraint function

Φk(x), the candidate submanifold is defined as

Mk = {x ∈ Uk : Φk(x) = 0} (4.7)

where Uk is a neighborhood containing x0 that ensures Mk is a smooth submanifold. If

the candidate submanifold is the trivial solution, the algorithm converges with Mk = M∗.

Otherwise, continue to Step 2.

Step 2: Test for controlled invariance Given the candidate submanifold Mk, it is

necessary to check whether it is locally controlled invariant. This can be done by calculating

whether

LfΦk(x) + LgΦk(x)a = 0 (4.8)

is solvable in a for all x ∈ Mk, where LfΦk(x) = ∂Φk
∂x
f(x) and LgΦk(x) = ∂Φk

∂x
g(x) are Lie

derivatives. If it is solvable, then Mk fulfills the second requirement of the zero dynamics

definition, and the algorithm converges with Mk = M∗. Otherwise, continue to Step 3.

Step 3: Calculate additional constraints If Equation 4.8 is not solvable in a for all

x ∈ Mk, then the constraint function needs to be updated. This is done by calculating

the set of all x ∈ Mk that the equation is solvable for. This new set can be written as an

additional constraint φk(x) = 0, with updated constraint Φk+1 =
[
ΦT
k φTk

]T
. At the end of

Step 3, increment k and return to Step 1. �

Steps 2 and 3 above may not be simple to calculate. In order to implement them, we

have divided the problem into three cases (as a reminder, q is the number of inputs, and p

is the number of outputs).

57

Case 1: q = p For this case, we assume that all rows of Equation 4.8 are linearly inde-

pendent for all x ∈Mk. If there are linearly dependent rows, then zero dynamics could exist

with fewer than q = p inputs; see Case 2.

We can test whether Equation 4.8 is solvable in a for all x ∈Mk by looking at the rank

of LgΦk(x). If this matrix is full rank on Mk, then the equation is solvable. This completes

Step 2.

In order to calculate additional constraints, there is a difference between single-input,

single-output (SISO) and multi-input, multi-output (MIMO) systems. For SISO systems,

this can be done manually without any special tricks. For MIMO systems, calculate a smooth

matrix of functions Rk(x) such that

Rk(x)LgΦk(x) = 0 (4.9)

With such a function Rk(x), Equation 4.8 is solvable in a if and only if x satisfies

Rk(x)LfΦk(x) = 0 (4.10)

This becomes our additional constraint

φk(x) = Rk(x)LfΦk(x) (4.11)

In this algorithm, φk−1 is contained in φk, so the updated constraint function is rewritten as

Φk+1 =
[
ΦT

0 φTk

]T
. Note also that Rk−1 is contained in Rk. This completes Step 3.

Case 2: q < p This is the overconstrained case where there are fewer inputs than outputs.

In order for there to be nontrivial zero dynamics, there must be rows of Equation 4.8 that are

linearly dependent for all x ∈Mk. As a result, this is the least likely case to have nontrivial

zero dynamics.

A general strategy for approaching this system configuration is to use the equations from

Case 1 to solve all combinations of inputs and outputs with equal numbers of each. This will

result in multiple maximal output-zeroing submanifolds and multiple output-zeroing inputs.

At the end, a solution exists on the intersection of the maximal output-zeroing submanifolds

if there is a common output-zeroing input that solves Equation 4.8 for all the combinations

without contradiction.

58

Case 3: q > p This is the underconstrained case where there are more inputs than outputs.

This means that there are more degrees of freedom than constraints, making this the most

likely case to have nontrivial zero dynamics.

Similar to Case 2, a general strategy for approaching this system configuration is to

use the equations from Case 1 to solve all combinations of inputs and outputs with equal

numbers of each. For these combinations, all remaining inputs can be attacker prescribed.

However in contrast to Case 2, here the attacker can choose any of the combinations.

4.2.2 Output-Zeroing Input

If the calculation of the maximal output-zeroing submanifold results in a nontrivial so-

lution, then there is a corresponding output-zeroing input. This is solved for by solving

Equation 4.8, which must have a solution because it is a requirement for the candidate sub-

manifold to be locally controlled invariant. The result is the output-zeroing input a∗ = a∗(x)

that corresponds to the maximal output-zeroing submanifold M∗.

4.2.3 Zero Dynamics

The final step is to calculate the resulting zero dynamics from the output-zeroing input.

This is easily done by calculating the state trajectory starting at x0 with dynamics calculated

by

f ∗ = f(x) + g(x)a∗(x) (4.12)

Once the zero dynamics are calculated, they can be checked for stability and other metrics.

4.2.4 Example Problem

For the pressurizer system, the dynamics are too complicated to work out on paper.

Therefore to demonstrate the algorithm for calculating zero-dynamics, we go through a single

59

iteration of the following example system with two inputs, two outputs, and five states [26]

ẋ =

f(x)︷ ︸︸ ︷

x2

x4

x1x4

x5

x3

+

g(x)︷ ︸︸ ︷

1 0

x3 x2

0 1

x5 x2

1 1

u1

u2

y =

x1

x2

︸ ︷︷ ︸
h(x)

(4.13)

Note that we are calculating the zero dynamics of the system rather than the zero-dynamics

attacks; however, the algorithm is the same.

This system follows Case 1 from the algorithm with an equal number of inputs and

outputs. Starting at Step 0, the initial constraint function is Φ0 = h(x), and at Step 1, the

candidate submanifold is

M0 = {x ∈ R5 : x1 = x2 = 0} (4.14)

Moving to Step 2, the Lie derivatives are

LfΦ0(x) =

x2

x4

 (4.15)

LgΦ0(x) =

 1 0

x3 x2

 (4.16)

which do not pass the test for controlled invariance because rank(LgΦ0(x)) = 1 for x ∈M0.

This means Step 3 is needed. An R0(x) is calculated as

R0(x) =
[
−x3 1

]
(4.17)

resulting in the additional constraint

φ0 = x4 − x2x3 (4.18)

60

that gets concatenated to the initial constraint function. Returning to Step 1, the new

candidate submanifold is

M1 = {x ∈ R5 : x1 = x2 = x4 = 0} (4.19)

This same process continues until rank(LgΦ2(x)) = 2 with the maximal output-zeroing

submanifold, output-zeroing input, and zero dynamics calculated as

M∗ = {x ∈ R5 : x1 = x2 = x4 = x5 = 0} (4.20)

u∗ =

 0

−x3

 (4.21)

f ∗ =

0

0

−x3

0

0

(4.22)

4.3 Attacks Targeting the Pressurizer

We implement the zero dynamics algorithm on the pressurizer model using all possible

attack sets. These attack sets are the permutations of the maximal attack set, Smax =

{ay1, ay2, au1, au2}. Using this combinatorial approach, there are 15 attack sets to be ana-

lyzed, not including the null set.

Some of the combinations are trivial based on the form of the pressurizer output function.

Including the attack, this is the linear function y = h(x) = x− xa. This is used to calculate

the initial candidate submanifold M0 = {x ∈ U : h(x) = 0}. Without any output attack, xa

is nonexistent, resulting in the trivial solution M0 = {0}. This means that any attack set

that does not contain at least ay1 or ay2 is guaranteed to be trivial and can be ignored.

Of the remaining attack sets, some sets have identical output-zeroing submanifolds and

inputs. These are not reported, resulting in eight attack sets with distinct zero dynamics.

61

Table 2: Summary of the zero-dynamics attacks targeting the pressure.

Target = Pressure

Set Number Attack Set Stability Damage Time (hrs)

S1 ay1, au1 stable 284

S2 ay1, au2 asymptotically stable ∞

S3 ay1, au1, au2 unstable 84

S4 ay1, ay2, au1 unstable 76

S5 ay1, ay2, au1, au2 unstable 13

Table 3: Summary of the zero-dynamics attacks targeting the level.

Target = Level

Set Number Attack Set Stability Damage Time (hrs)

S6 ay2 stable 387

S7 ay2, au1, au2 unstable 13

S8 ay1, ay2, au2 unstable 12

S5 ay1, ay2, au1, au2 unstable 11

62

These sets are discussed in terms of the system stability under attack and the time it takes to

achieve some damaging outcome. The results, further defined below, are shown in Tables 2

and 3.

4.3.1 Stability

For the eight distinct attack sets, the zero dynamics could be categorized into asymptot-

ically stable, stable, and unstable attack dynamics [27]:

1. Asymptotically stable means that the state moves from non-equilibrium points towards

the equilibrium point. For these dynamics, the attacker cannot steer the state far from

the equilibrium point.

2. Stable means that the state will always stay within some bounded region of the equilib-

rium point. For these dynamics, the attacker may be able to keep the state off of the

equilibrium point, but they cannot steer the state unbounded.

3. Unstable means that the state can go unbounded away from the equilibrium point. For

these dynamics, the attacker can move the state far from the equilibrium point.

Below, we discuss one example attack set for each of these stability types. In the re-

sulting plots, the input and input-attack magnitudes are normalized. The heater output is

normalized using the steady-state magnitude at nominal operating conditions, and the surge

flow is normalized using the spray flow magnitude. In addition, the plotted state and output

values are the true values rather than the difference between their steady-state values.

Asymptotically Stable There is one attack set targeting the pressure that results in

asymptotically stable zero dynamics. This set is S2 = {ay1, au2}, with the maximal output-

zeroing submanifold equal to M∗ = {x ∈ U : x2 = 0}. Based on this submanifold, we might

expect that the attacker can steer x1; however, this is not the case. In reality, this attack

can only start at a non-equilibrium initial condition x0 ∈M∗, and the attacker can maintain

zero output while the state slowly decays back to equilibrium conditions; see Figure 19 for

a simulation of this attack. For this attack, the attacker may not even be able to get to the

non-equilibrium initial condition, making this a poor attack strategy.

63

0 10 20 30 40 50
15.34

15.36

15.38

15.4

15.42
P

re
s
s
u
re

 (
M

P
a
)

y
1

x
1

0 10 20 30 40 50
0

2

4

6

8

P
re

s
s
u
re

 A
tt
a
c
k
 (

M
P

a
/h

r) 10
-3

a
y1

0 10 20 30 40 50

Time (hours)

-0.15

-0.1

-0.05

0

N
o
rm

a
liz

e
d
 I
n
p
u
t
A

tt
a
c
k
 (

%
)

a
u2

Figure 19: Simulation results of the asymptotically stable attack on the pressure. The top

plot shows both the measured and true pressure. The measured pressure remains at the

nominal value, while the true pressure returns from some nonzero initial condition to the

the nominal value. The bottom two plots show the required attacker signals to achieve zero

output.

64

0 10 20 30 40 50

60

61

62

63

64

65

L
e
v
e
l
(%

)

y
2

x
2

0 10 20 30 40 50
0

0.05

0.1

L
e
v
e
l
A

tt
a
c
k
 (

%
/h

r)

a
y2

0 10 20 30 40 50

Time (hours)

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 I
n
p
u
t
(%

)

u
1

u
2

Figure 20: Simulation results of the stable attack on the level that is made unstable when

the zero-output constraint is relaxed slightly. The top plot shows both the measured and

true level. The measured level remains at the nominal value, while the true level increases

uncontrolled. The middle plot shows the attacker signal to achieve zero measured level. The

bottom plot shows the nonzero inputs that are required to maintain zero output, but are

kept to less than 1 % on a normalized scale.

65

Stable There are two attack sets, one each targeting the pressure and level, that result in

stable zero dynamics. This section discusses S6 = {ay2}, with the maximal output-zeroing

submanifold equal to M∗ = {x ∈ U : x1 = 0}. Similar to the asymptotically stable case, this

attack must start at some non-equilibrium initial condition x0 ∈M∗, but here the resulting

zero dynamics are ẋ∗2 = 0. This means that the state does not decay back to the equilibrium

condition. In other words, every state with x1 = 0 is a stable zero dynamics attack, but the

attacker has no way of moving through the possible attacked states while remaining on the

output-zeroing submanifold.

This attack can become unstable if the zero dynamics constraints are relaxed. If the

attacker inserts an impulse into ay2, there will be a corresponding step change in y2. This

step will then decay to zero from the controller, which will use nonzero control signals. This

attack can be extended by inserting a step into ay2, which will, after a small transient, result

in zero y2, nonzero control signals, and unbounded x2; see Figure 20 for a simulation of this

attack.

Unstable The remaining attack sets, targeting a combination of pressure and level, all

result in unstable zero dynamics. The primary reason these are unstable is that the attacker

has access to more attack inputs than there are measurable outputs, which is the undercon-

strained case. In each of these scenarios, the attacker can steer the state within the maximal

output-zeroing submanifold. As an example, this section discusses S7 = {ay2, au1, au2} with

the maximal output-zeroing submanifold equal to M∗ = {x ∈ U : x1 = 0}. In this case, the

attacker can start at the equilibrium point and move the pressure unbounded; see Figure 21

for a simulation of this attack. With no measurable changes, the attacker can quickly steer

the pressure into dangerous territory.

4.3.2 Damage Time

In order to compare the attack sets, we calculate the time it would take to reach some

undesirable system state, called the damage time. The undesirable states have been chosen

as values that would normally result in an automatic plant shutdown. For pressure, this has

been chosen as 12.86 MPa, where nominal pressure is 15.42 MPa; this is undesirable because

66

0 10 20 30 40 50
14.5

15

15.5
P

re
s
s
u
re

 (
M

P
a
)

y
1

x
1

0 10 20 30 40 50
-0.02

-0.015

-0.01

-0.005

0

P
re

s
s
u
re

 A
tt
a
c
k
 (

M
P

a
/h

r)

a
y1

0 10 20 30 40 50

Time (hours)

-15

-10

-5

0

5

N
o
rm

a
liz

e
d
 I
n
p
u
t
A

tt
a
c
k
 (

%
)

a
u1

a
u2

Figure 21: Simulation results of the unstable attack on the pressure. The top plot shows

both the measured and true pressure. The measured pressure remains at the nominal value,

while the true pressure decreases uncontrolled. The bottom two plots show the required

attacker signals to achieve zero output.

67

low pressures could result in local boiling near the fuel source. For level, this has been

chosen as 92 %, where nominal level is 60 %; this is undesirable because if the pressurizer fills

completely with liquid, a large surge into the pressurizer could result in a pressure spike.

The damage times are calculated as constrained optimization problems. For the stable

attack sets, the constraints are that the measurable inputs have to be below 1 % using the

normalized scales. This low value has been selected because it could be mistaken for model

uncertainty or sensor drift. For the unstable attack sets, the constraints are that the attack

inputs have to be below 30 % using the normalized scales. This value has been limited because

if these inputs get too large, they could either excite other dynamics or could saturate the

inputs, both of which might be detectable.

These damage times can be used to compare each of the attacks targeting pressure and

level; see Tables 2 and 3. Starting with the attacks targeting pressure, the slowest attack is

the stable attack, which takes almost twelve days to reach the damage state. However, for a

plant that runs at steady-state conditions for months continuously, an attack could continue

undetected for that length of time. As the attacker gets more access, this time frame reduces

to three days, and finally to half a day as they get access to everything.

Looking at the results for the attacks targeting level, the slowest attack is again the stable

attack, which takes roughly sixteen days to reach the damage state. Once the attacker gets

access to three or more inputs, this time reduces to roughly half a day, regardless of which

inputs they have access to.

Based on the damage times, it is clear that the the unstable attacks are the most dan-

gerous attacks targeting the pressurizer. However, they also might be the least likely attacks

due to the increased number of signals required to implement them. By contrast, the stable

attacks, particularly S6 targeting the level, require fewer attack inputs and can still reach

the same damage states. This makes them in theory easier to implement and therefore a

potentially bigger threat to actual plants.

68

4.4 Local Stability of Output-Zeroing Submanifold

We previously discussed stability of the equilibrium point, which determines whether

the zero-dynamics attack could steer the state away from the nominal equilibrium point.

However, it is also important to determine the stability of the output-zeroing submanifold.

Stability of the output-zeroing submanifold provides information on what happens if a suc-

cessful attack is perturbed slightly off the output-zeroing submanifold. This scenario is

essentially guaranteed for systems with noise and disturbances.

Similar to the previous stability discussion, the output-zeroing submanifold can be any of

asymptotically stable, stable, or unstable. And, these types have similar meanings to those

previously defined, except that they refer to the entire output-zeroing submanifold. But

while an attacker wants the nominal equilibrium point to be unstable so they can damage

the system, they want the output-zeroing submanifold to be asymptotically stable so that

the attack returns to the output-zeroing submanifold in the presence of disturbances. If it is

just stable or unstable, the state would remain off the output-zeroing submanifold, making

it easy to detect.

This problem can be looked at directly using the nonlinear dynamics or using linearized

dynamics. We briefly discuss the approach that uses the nonlinear dynamics directly, but

also discuss why this approach is particularly difficult for this problem. Instead, we solve it

using linearization methods.

4.4.1 Challenges of Implementing Nonlinear Lyapunov Methods

For nonlinear systems of the form ẋ = f(x), the most rigorous method of proving stability

of some equilibrium point xeq = 0 is using Lyapunov methods. To show local asymptotic

stability, the user must find a positive definite Lyapunov function V (x) > 0 whose derivative

is negative definite V̇ (x) < 0. This function is often thought of as an energy function, where

the energy dissipates along all trajectories towards the equilibrium point. Other types of

stability can be shown by either adding or modifying these constraints.

69

One very common Lyapunov function form is to use the quadratic form V (x) = 1
2
xTPx,

where P is a positive definite symmetric matrix. For this form and for constant P , V̇ (x) =

f(x)TPx. The user then needs to find some positive-definite matrix P that guarantees this

is negative definite over the state space. It is worth noting that such a matrix P may not

exist.

The challenge with implementing this method for the current problem is that we have an

invariant equilibrium set rather than an equilibrium point. Specifically, we want to demon-

strate that the maximal output-zeroing submanifold is asymptotically stable, which means

demonstrating that the controlled invariant submanifold of x that maps to y = 0 is asymp-

totically stable. To do this using the above method, the Lyapunov function could be of the

form V (x) = 1
2
Φ∗(x)TPΦ∗(x), where Φ∗(x) is the final constraint function from the algorithm

above; however, showing that V̇ (x) is negative everywhere except M∗ is significantly more

challenging than showing it for a single equilibrium point.

4.4.2 Linearized Output Stability

Rather than implementing nonlinear Lyapunov methods, we instead linearize the system.

Linearization is done about an equilibrium point and enables us to look at the stability of the

output-zeroing submanifold in the vicinity of that equilibrium point. However, this approach

only allows us to look at a single equilibrium point at a time, and we want to look at a set of

equilibrium points. To get around this problem, we look at the stability around a finite set

of equilibrium points and use matrix perturbation theory to approximate the stability over

the set of points between the finite set.

In order to linearize the system, we start with the more general attacked system dynamics

ẋ = f(x, a)

y = h(x)
(4.23)

with equilibrium point (x, a) defined by f(x, a) = 0. Near the equilibrium point, this system

70

can be approximated by a linear system of the form

ẋ = Ax+Ba

y = Cx
(4.24)

The linear matrices can be derived using Taylor’s series expansion. Starting with a

change of variables

δx = x− x (4.25)

δa = a− a (4.26)

δy = y − h(x) (4.27)

the dynamics can be rewritten

δ̇x = f(x+ δx, a+ δa)

δy = h(x+ δx)− h(x)
(4.28)

The first-order Taylor’s series approximation of these equations results in

δ̇x = f(x, a) +
∂f

∂x

∣∣∣∣
(x,a)

δx +
∂f

∂a

∣∣∣∣
(x,a)

δa

=
∂f

∂x

∣∣∣∣
(x,a)

δx +
∂f

∂a

∣∣∣∣
(x,a)

δa

δy =
∂h

∂x

∣∣∣∣
(x,a)

δx

(4.29)

With a slight abuse of notation, we continue to use x, a, and y, and the linearized matrices

are defined as

A =
∂f

∂x

∣∣∣∣
(x,a)

(4.30)

B =
∂f

∂a

∣∣∣∣
(x,a)

(4.31)

C =
∂h

∂x

∣∣∣∣
(x,a)

(4.32)

71

For this stability analysis, there are a few structural components of the matrices that we

take advantage of. First, the state matrix can be written as

Ax =

A11 A12 A13

A21 A22 A23

A31 A32 A33

xs

xa

xc

 (4.33)

with A21 = A22 = A23 = 0 because they are for the attack state ẋa = ay. Second, the output

matrix can be written as

Cx =
[
C11 C12 C13

]
xs

xa

xc

 (4.34)

with C13 = 0. In addition, to get a closed-form solution, it is helpful to limit the analysis

to systems with equal numbers of outputs and system states xs, resulting in full rank C11

matrices. This subset of systems includes the pressurizer system. This means that without

loss of generality, C11 = I. If not, a suitable linear transformation can be found that achieves

this.

Based on our assumption of a full rank C11 matrix, it is possible for this linear system to

become affine under attack. This occurs for the the underconstrained case with more inputs

than outputs. For this case, one or more of the inputs is user-prescribed. For constant

prescribed values, this results in ẋ = Ax + Ba + b, where b is a constant vector. Since this

dynamic equation is the more general case, it will be used for the remainder of the analysis.

In order to calculate the zero-dynamics for this linear system, we use the nonlinear

algorithm of Section 4.2. Using the algorithm, systems that pass the controlled invariance

test on the first iteration, which includes the pressurizer, result in an analytical solution

for the stability analysis. Based on this assumption, the controlled invariance test can be

written as

ẏ = CANx+ CBa+ Cb = 0 (4.35)

72

where Nx equals x evaluated at the solution of Cx = 0. For example, if

C =

1 0 −1

0 1 0

 (4.36)

then Nx =
[
x3 0 x3

]T
. It is important to note that for the relevant systems with C11 = I,

Nx can be written such that it is only a function of the attacker states. This makes sense

to do as the attacker is guaranteed to have access to these variables. To pass the controlled

invariance test on the first iteration, CB must be full rank. For systems with this property,

we can then calculate the output-zeroing input as

a∗ = −(CB)−1(CANx+ Cb) (4.37)

which results in the zero-dynamics

ẋ = (A−B(CB)−1CAN)x+ (I −B(CB)−1C)b (4.38)

The goal now is to analyze the local stability of the output-zeroing submanifold for the

above zero-dynamics. This is accomplished by looking at a system with state variable z

defined by

z =

 y
xc

 (4.39)

ż =

 Cẋ

A31y + A33xc

 (4.40)

=

CA(I −N)x

A31y + A33xc

 (4.41)

where ẋc is the control law and can be simplified as above for C11 = I. This can be further

simplified by noting that (I −N)x =
[
yT 0T xTc

]T
, where the 0 is a vector of appropriate

size. Using the structural components of A and C noted above, this simplifies to

CA(I −N)x =
[
A11 A13

]
z (4.42)

73

As a result, the dynamics for our system z simplify to

ż =

A11 A13

A31 A33

 z (4.43)

This system is identical to the original system without attacker states. In other words,

the stability of the output-zeroing submanifold for the attacked system is the same as the

stability of the equilibrium point for the unattacked system. Therefore, we can instead show

stability for this unattacked system.

In order to analyze the stability of the unattacked system, we look at the eigenvalues of

the matrix

Az =

A11 A13

A31 A33

 (4.44)

If all of the eigenvalues λi of the matrix Az satisfy Real(λi) < 0, then the origin is asymptot-

ically stable. This condition will also be written as the eigenvalues are in the left-half plane

(LHP).

For the set of possible attacks, the nearest equilibrium point could be anywhere in the

state space. Therefore, we want to look at the stability near all these points. In order to

help do this, we introduce a theorem from matrix perturbation theory.

Theorem (Gershgorin Circle Theorem [28]). If X−1AX = D+F where D = diag(d1, . . . , dn)

is a diagonal matrix, and F has zeros on the diagonal, then

λ(A) ⊂
n⋃
i=1

Di (4.45)

where Di = {z ∈ C : |z − di| ≤
∑n

j=1 |fij|}.

This theorem provides a way to bound the eigenvalues as a matrix is perturbed from some

nominal matrix.

74

15.3 15.35 15.4 15.45 15.5 15.55 15.6

Pressure (MPa)

55

56

57

58

59

60

61

62

63

64

65

L
e
v
e
l
(%

)

Figure 22: The discretization approach used for the stability analysis. The blue exes are the

nominal points, and the red dots are the perturbed points. These are used in conjunction

with the Gershgorin Circle Theorem.

75

In order to use this theorem, we use the following procedure:

1. Discretize the state space into a finite number of rectangles. The centers of the points are

called nominal points and the edges are called perturbed points. The perturbed points

represent the furthest the matrix can be perturbed from the nominal point within a given

rectangle. An example can be seen in Figure 22, where the blue exes are the nominal

points and the red dots are the perturbed points.

2. Calculate the eigenvalues and eigenvectors at each of the nominal points. If the nominal

eigenvalues are stable, continue.

3. Calculate bounds for the eigenvalues within the rectangle. At the nominal points, the

A matrix can be diagonalized using the transformation X−1AnomX, where X is the

eigenvector matrix. For systems with non-repeating eigenvalues, this will result in a

diagonal matrix D with the eigenvalues along the diagonal. For each of the perturbed

points, this same transformation will result in X−1AX = D + F , with D and F defined

in the Gershgorin circle theorem. The theorem is then used directly to calculate circles

that contain the perturbed eigenvalues.

4. Check that all eigenvalues in the circles are in the LHP. If so, continue to the next

nominal point. Otherwise, make the discretization finer.

Using this procedure, we can look at the eigenvalues of the nominal points and the

Gershgorin circles produced by the perturbed points. The eigenvalues of the nominal points

are shown in Figure 23. From this plot, it is clear that the nominal eigenvalues are all in

the LHP. The Gershgorin circles are shown in Figure 24 for most of the perturbed points,

all of which are in the LHP. However, for some values of the state x, there are repeated

eigenvalues, which means those A matrices are not diagonizable. The discrete points selected

get close enough to these repeated eigenvalues that they maintain large F matrices after the

eigenvector transformation. Figure 25 shows the Gershgorin circles for all points, where

some of the circles are significantly larger than others and do cross into the right-half plane

(RHP). Note that this does not mean they are unstable, but rather the method does not

work well near these points.

76

Figure 23: Plot of the real and imaginary portions of the eigenvalues at the nominal points.

All these eigenvalues are in the LHP.

77

Figure 24: Plot of the real and imaginary portions of the Gershgorin circles at the perturbed

points, but hides some larger circles. All of these circles are in the LHP.

78

Figure 25: Plot of the real and imaginary portions of the Gershgorin circles at the perturbed

points, including the larger circles. Some of the circles cross into the RHP.

79

Figure 26: Plot of the real and imaginary portions of the eigenvalues at the nominal points

evaluated at a finer discretization near the troublesome points. None of the points show

evidence of crossing into the RHP.

80

For these points near repeated eigenvalues, we can look at the eigenvalues of the nominal

points using a much finer discretization. This enables us to look for any evidence that

they move into the RHP. The eigenvalues for this finer discretization are shown in Figure 26.

Similar to the original nominal eigenvalues plot, this plot shows no signs that the eigenvalues

are entering the RHP. Therefore, we conclude that the eigenvalues are most likely in the LHP

for all equilibrium points. This concludes the stability analysis.

These results tell us that the output-zeroing submanifold is locally asymptotically stable.

The results do not guarantee that if the state gets sufficiently far from the output-zeroing

submanifold, then it will still return to the submanifold. This is due to the limitations of

using linearizations. However, we expect that this is the case due to the dynamics and

the properties of the controller designs. From the attacker’s perspective then, this locally

asymptotically stable property means that these attacks can remain stealthy in the presence

of disturbances or noise.

4.5 Chapter Summary

As a reminder, our research objective relating to this chapter is to characterize stealthy

cyber vulnerabilities targeting nuclear power plants. In this chapter, we accomplish the

following:

• the state-space model is transformed from a control-affine model into an attack-affine

model to be used for zero-dynamics analysis;

• zero-dynamics are more formally defined and the nonlinear zero-dynamics algorithm are

presented;

• the algorithm is implemented on the nonlinear pressurizer system dynamics, resulting in

eight unique attacks and seven that could result in system damage; and

• the output-zeroing submanifold is analyzed using local stability methods to show that

the attacks targeting the pressurizer can remain stealthy.

This work completes the objective because we develop theoretical methods for characterizing

81

zero-dynamics attacks, which are a particularly dangerous class of zero-dynamics attacks.

We then implement them on a critical subsystem of pressurizer water reactors to better

understand the vulnerabilities associated with the pressurizer dynamics.

This concludes the analysis from the attacker’s perspective on how an attacker could

take advantage of system dynamics to attack a system. In the next chapter, we approach

the cybersecurity problem from the defender’s perspective and discuss how to detect zero-

dynamics attacks targeting nonlinear systems.

82

5.0 Detecting Zero-Dynamics Attacks Targeting Nonlinear Systems

The second primary task in this research is to defend against the attacks developed

in the previous chapter. The primary limitation of previous works relating to this task is

that they assume the system under attack is observable and then detect attacks based on

that assumption. We do not make such an assumption in this chapter. As a reminder, if

this research were focused on linear systems, this would be impossible. However, it can be

possible for nonlinear systems.

Our approach starts with the physics-based model and first sets up both the exact prob-

lem and an approximation. The exact problem has sufficiently many unknowns that it may

be too difficult to solve. By making the approximation, the number of unknowns is reduced,

making it more easily solved.

Using this approximation, we look at observability under zero-dynamics attack. One

major difference between linear and nonlinear systems regarding observability is that non-

linear observability can depend on the control actions inserted into the system. For nonlinear

systems under zero-dynamics attack, a non-zero control input is needed for observability. In

other words, the defender must perturb the system in order to detect zero-dynamics at-

tacks. Based on this, we develop methods to calculate an optimal input that will minimize

sensitivity to noise. This is done using a quantitative measure of observability.

Once an optimal input is selected, we combine unscented Kalman filters with maximum

likelihood estimation to detect and diagnose the attack. Unscented Kalman filters are state

estimators that can be used for nonlinear stochastic systems. To accurately estimate the

state, these filters require a reasonable initial estimate of the state; however, during a zero-

dynamics attack, this is impossible. To overcome this, maximum likelihood estimation is

used to select an optimal initial condition.

We test the approach on the pressurizer subsystem of an NPP. Multiple simulations are

run with varying conditions and the error statistics are used to make decisions on the attack

status.

83

Finally, we validate the approach using data from the commercial simulator. To do this,

we combine the data-driven model with maximum likelihood estimation to estimate the state

and detect the attack. This also involves a more detailed analysis of model accuracy, and

correlates this accuracy with estimation accuracy.

This chapter is structured as follows:

• the exact and approximate problems are setup, and a test is presented to determine if

the approximate problem is solvable;

• the optimization problem is presented to solve for the optimal input;

• the approach for estimating the state is presented;

• the decision rules for declaring an attack are discussed;

• the results are shown and discussed;

• the validation results are presented; and

• some discussions on the feasibility of implementing this approach offline and discussions

on safety and economics are presented.

5.1 Problem Setup

This section introduces both the exact problem we want to solve and an approximation.

The approximation makes the problem more tractable by constraining the unknown attacker

inputs. In addition, this section discusses how to test whether the approximation is solvable

for a given system, which is framed as a nonlinear observability problem.

5.1.1 Exact and Approximate Problems

We consider nonlinear dynamic systems under attack

ẋ = f(x, u+ au)

y = h(x) + ay

(5.1)

84

where x ∈ Rn is the state, u ∈ Rq is the control input, y ∈ Rp is the measurement output,

au ∈ Rq is the attacker input that modifies the control input, ay ∈ Rp is the attacker input

that modifies the measurement output, and f(·) and h(·) are nonlinear functions.

The objective of this work is to detect zero-dynamics attacks, which can be achieved by

estimating the state. As a result, the exact problem is to estimate x using known input u

and output y in the presence of unknown attacker inputs au and ay.

In general, a defender has no knowledge of which attack inputs an attacker has access

to, requiring the conservative assumption that an attacker could access all of them during

an attack. Based on this assumption, an attacker would be able to implement any of several

zero-dynamic attacks depending on which inputs they really have access to. In addition, they

could change how the attack is implemented while trying to detect it, making the problem

even more difficult. As such, it is beneficial to look for an approximation that removes the

specific attack strategy from the problem.

The approximation selected uses the idea of an equilibrium state, defined as a state x

with a corresponding input u such that f(x, u) = 0.

Assumption. Under attack, the true state is always close to an equilibrium state and can

be approximated as being at that equilibrium state.

Based on this assumption, the approximate problem can be summarized as trying to estimate

the nearest equilibrium state to the true state.

This approximation is advantageous because it reduces the number of unknowns by

constraining the attacker inputs. Without loss of generality, we assume that u = 0 and

y = 0 when not under attack. Then at equilibrium condition (x, u), au must equal the

equilibrium input

au = u (5.2)

and ay must satisfy the constraint

0 = h(x) + ay (5.3)

These constraints can be directly substituted into (5.1).

85

The approximate system can be written as a perturbation from equilibrium conditions.

The state and its derivative can be written

x = x+ δx (5.4)

ẋ = δ̇x (5.5)

where δx is the perturbation from the equilibrium state. Similarly, the total input can be

written

u+ au = u+ δu (5.6)

where u = δu is the perturbation from the equilibrium input. With these substitutions, the

resulting system is

δ̇x = f(x+ δx, u+ δu)

y = h(x+ δx)− h(x)
(5.7)

Here, u is an implicit function of x, so is not an additional unknown. Based on this system

description, the approximate problem that we address in this work is to estimate x and δx

using known input δu and output y.

5.1.2 Observability of the Approximate Problem

In the approximate problem, we want to estimate the unknown state δx and parameter

vector x using the known input δu and output y. Before trying to accomplish this task, it

is important to know whether the information contained in δu and y is sufficient to be able

to estimate δx and x. This question can be answered using the concept of observability; if a

system is observable, it is possible to estimate the state using measurement data.

For nonlinear systems, observability can be a function of the control input. As such, we

propose the following:

Proposition. For a nonlinear system under zero-dynamics attack, a necessary condition for

observability is some non-zero control input.

86

Proof. The proof comes directly from the concept of zero dynamics. During a zero-dynamics

attack, there is zero measurable output regardless of the true state. As a result, there is no

information that can be used to distinguish between states. In order to get any measurable

output that could possibly be used to distinguish between states, there must be some input

that perturbs the system.

We can then test a specific system to determine whether a non-zero input is sufficient to

make the approximate problem solvable.

In order to apply the observability concept to our approximate problem, we recast the

unknowns as an augmented state vector with augmented dynamics. The augmented state z

is defined as the concatenation of the state and the unknown constant parameter vector

z =

δx
x

 (5.8)

The augmented dynamics ż are defined as the concatenation of the state dynamics and the

null dynamics that describe constants

ż =

δ̇x
0

 (5.9)

With a slight abuse of notation, we reuse the function names f and h, but they now refer

to the augmented system as a function of the augmented state and perturbation input

ż = f(z, δu)

y = h(z)
(5.10)

If this augmented system is observable, then the state and unknown parameter vector can

be jointly estimated [29].

We now focus on how to test for observability. We want to determine whether the

augmented system is locally observable, which can be more formally defined.

Definition. A system is locally observable around a state z0 if within a neighborhood U

of z0 it is possible to determine z0 from measurement data over a finite time. A system is

locally observable if this is true for every z0 ∈ Rn [30, 29].

87

Before introducing the test, the Lie derivative of h along f can be defined as

Lfh(z) =
∂h(z)

∂z
f(z, δu) (5.11)

and the ith order Lie derivatives as

L2
fh(z) =

∂Lfh(z)

∂z
f(z, δu)

...

Lifh(z) =
∂Lifh(z)

∂z
f(z, δu)

(5.12)

Using these derivatives, an observability matrix can be defined

O(z, δu) =

∂
∂z
h(z)

∂
∂z

(Lfh(z))

∂
∂z

(L2
fh(z))

...

∂
∂z

(Ln−1
f h(z))

(5.13)

Often, this is evaluated at some fixed value of the input δ∗u. For time-varying inputs, the

extended Lie derivative can be used [31], but is unnecessary for the system used in this work.

A sufficient condition for local observability is: The system is locally observable around z0

if rank(O(z0, δ
∗
u)) = n and is locally observable if this is true for every z0 ∈ Rn [29].

88

5.2 Solving for the Input

In order to make the system observable, the defender needs to insert a non-zero input

into the system. It is important to note that this input will overwrite the controller for its

duration. For ideal systems without noise, there are likely many small magnitude inputs

that could result in accurate state estimates. However, for real systems with noise, small or

poorly designed inputs will result in inaccurate estimates. This section discusses methods

for determining an optimal input.

The primary objective in determining the input is to minimize the state estimation

error. This can be achieved by optimizing a quantitative measure of observability rather

than just the rank test used above. One such measure is the condition number with respect

to inversion of the observability matrix [32, 33]. The condition number is a common metric

for determining if a matrix is full rank. Here, we propose also using its numeric value in an

optimization problem. Mathematically, it is defined for a generic matrix A as

κ(A) =
σ(A)

σ(A)
(5.14)

where κ(·) is the condition number, and σ and σ are the largest and smallest singular values

of A, respectively. The condition number bounds the error of a matrix inverse in the presence

of a small perturbation in the matrix [34]. For our problem, that small perturbation is noise,

so the condition number bounds the effects of noise. This makes it a good measure of

estimation error.

The observability matrix is a matrix function of both the state and the input, so its

condition number κ(O(z, δu)) is also a function of these two variables. The state is unknown

a priori, so the input design should not use specific knowledge of it. Instead, it can be

designed assuming the worst case of the state, resulting in an optimization problem to

maximize the condition number over the set of states. Then, the input can be designed to

minimize this upper bound on the condition number, resulting in a minmax optimization

problem. The solution to this problem is a single optimal input value that can be inserted

as a step input.

89

To fully define this input, the parameters that need to be solved for are the input vec-

tor and duration. The input vector is solved for using the minmax optimization problem

discussed above

arg min
δu

max
z

κ(O(z, δu)) (5.15)

The duration is selected as a function of the state estimation error and the transient

magnitude. The state estimation error statistics are determined numerically using repeated

simulations with different noise realizations. These simulations also provide the transient

magnitude. The final selection is a subjective weighting of these two parameters and is used

later to make a decision rule about the occurrence of an attack.

5.3 Estimating the State

We estimate the state using unscented Kalman filters (UKFs), which use the system

model along with sequences of input and measurement data to estimate the state for non-

linear stochastic systems. The challenge is that the equilibrium state has null dynamics

ẋ = 0, meaning the equilibrium state estimate will not change as the UKF gathers more

measurement data. To account for this, we propose two approaches: we can give the equi-

librium state random-walk dynamics, or we can use maximum likelihood estimation (MLE).

We discuss both in this section and present results on both in Section 5.6, but ultimately

focus on using MLE because it has performance advantages.

5.3.1 Unscented Kalman Filter

Our system can be rewritten as a discrete-time stochastic system with additive noise

zk+1 = f(zk, δu,k) + wk

yk = h(zk) + vk

(5.16)

where wk is process noise and vk is measurement noise. Both noise sources are assumed

to be Gaussian white processes described by E[wk] = 0, E[vk] = 0, E[wkw
T
l] = Qδkl, and

E[vkv
T
l] = Rδkl.

90

Using this system model, the goal of the UKF is to estimate a statistical distribution

for the unknown state. For additive Gaussian process and measurement noise, the UKF

calculates Gaussian state estimates described by N (ẑk, P̂k), where ẑk and P̂k are the mean

and covariance of the state distribution, respectively.

This section follows [35, 36]. The UKF algorithm can be broken into prediction and

correction steps:

Prediction The prediction step predicts the statistics of the state at the next time step.

This step uses an approximation called the sigma-point transformation, which propagates the

previous estimated distribution through the nonlinear system dynamics. The transformation

uses a deterministic set of points, called sigma points, that captures the mean and covariance

of the previous distribution. The transformation then propagates those points through the

nonlinear system dynamics and uses the propagated points to approximate the predicted

statistics.

The sigma points are defined by a set of vectors and weights. As a function of the

previous distribution, the sigma vectors are defined for i = 1, . . . , n as

X0,k−1 = ẑk−1 (5.17)

Xi,k−1 = ẑk−1 +

(√
(n+ λ)P̂k−1

)
i

(5.18)

Xi+n,k−1 = ẑk−1 −
(√

(n+ λ)P̂k−1

)
i

(5.19)

where n is the length of the state, λ = µ2(n + ν) − n is a scaling parameter, µ determines

the spread of the sigma points, ν is a secondary scaling parameter usually equal to 0, and(√
(n+ λ)P̂k−1

)
i

is the ith row of the matrix square root. The weights are defined for

i = 1, . . . , 2n as

Wm
0 =

λ

n+ λ
(5.20)

W c
0 =

λ

n+ λ
+ (1− µ2 + β) (5.21)

Wm
i = W c

i =
1

2(n+ λ)
(5.22)

91

where the m and c superscripts are used for calculating the transformed mean and covariance,

respectively, and β = 2 incorporates prior knowledge of the known Gaussian distribution.

The sigma points and system model can then be used to calculate the predicted distri-

butions. The predicted mean vectors for the state and output distributions are

X−i,k = f(Xi,k−1, δu,k−1) (5.23)

ẑ−k =
∑

Wm
i X−i,k (5.24)

Y−i,k = h(X−i,k) (5.25)

ŷ−k =
∑

Wm
i Y−i,k (5.26)

where ẑ−k is the predicted state estimate, ŷ−k is the predicted output estimate, and summa-

tions are
∑

=
∑2n

i=0. The predicted covariance matrices are

P̂−k =
∑

W c
i (X−i,k − ẑ

−
k)(X−i,k − ẑ

−
k)T +Q (5.27)

P̂−ykyk =
∑

W c
i (Y−i,k − ŷ

−
k)(Y−i,k − ŷ

−
k)T +R (5.28)

P̂−zkyk =
∑

W c
i (X−i,k − ẑ

−
k)(Y−i,k − ŷ

−
k)T (5.29)

where P̂−k is the predicted state-covariance estimate, P̂−ykyk is the predicted output-covariance

estimate, and P̂−zkyk is the predicted cross-covariance estimate.

Correction The correction step corrects the predicted statistics based on the received

measurement. The corrected state distribution is

ẑk = ẑ−k +Kk(yk − ŷ−k) (5.30)

P̂k = P̂−k −KkP̂
−
ykyk

KT
k (5.31)

Kk = P̂−zkyk(P̂
−
ykyk

)−1 (5.32)

where ẑk is the corrected state estimate, P̂k is the corrected state-covariance estimate, and

Kk is the Kalman gain and represents a weighting factor to calculate the corrected estimates.

92

5.3.2 Random-Walk Dynamics

To account for the null dynamics of the equilibrium state, a first approach is to give them

random-walk dynamics. This can be expressed as

xk+1 = xk + wk (5.33)

where wk is the process noise. The noise term allows for the state to change at a rate

that’s related to the noise standard deviation. Or said another way, the larger the noise

standard deviation, the faster the estimate can change, but also the more sensitive to other

measurement and process noise it becomes.

This was the first approach that was tried in order to estimate the state, but it had some

limitations. These limitations are discussed with the results in Section 5.6.

5.3.3 Maximum Likelihood Estimation

The second approach to account for the null dynamics of the equilibrium state is to use

an initial state estimate ẑ0 and keep the null dynamics. This creates a problem because

during a zero-dynamics attack the initial state is unknown. A poor choice of the initial

condition could result in a comparably poor estimate of the state. In order to address this,

we use maximum likelihood estimation, which selects the initial condition that maximizes

the total likelihood of the set of observations.

The UKF provides the likelihood of an individual measurement given past measure-

ments through its predicted state distribution. The likelihood given both past measure-

ments and an initial condition p(yk|Yk−1, ẑ0), with Yk = {y0, . . . , yk}, is normally distributed

as N (ŷ−k , P̂
−
ykyk
|ẑ0). Using these individual likelihood functions, the cumulative likelihood of

the series of measurements YT is

p(YT |ẑ0) =
T∏
k=0

p(yk|Yk−1, ẑ0) (5.34)

93

For numerical reasons, it is common to use the natural logarithm of the likelihood function.

This creates a sum of log-likelihood values instead of a product, but still has the same

maximum location. The resulting optimization problem is

ẑ∗0 = arg max
ẑ0

T∑
k=0

log p(yk|Yk−1, ẑ0) (5.35)

where ẑ∗0 is the optimal estimate of the initial augmented state.

Finally, we relate this augmented state in the variable space z back to the true system

state in the variable space x. As a reminder, z =
[
δTx xT

]T
and x = x + δx. Therefore,

we can calculate our optimal state estimate x̂∗0 = x∗0 + δ∗x,0, which is used for detecting and

diagnosing attacks. Moving forward, this is simply called x̂0.

5.4 Detecting an Attack

After implementing the input and running the maximum likelihood estimation procedure,

the final step is to make a decision about the presence of an attack. The challenge is that

there is little prior knowledge about the attack that can be used. To counter this, we use a

decision rule that is solely based on the state estimation statistics under nominal conditions.

This type of decision making process is often referred to as one-class classification.

The decision is made based on the state estimation error statistics, where the state

estimation error is defined as the difference between the actual and estimated initial states

x̃ = x̂0 − x0. The general idea is to determine a mapping between the error and operating

status D : x̃ → {normal, attack}. Then for the region R that maps to the normal status,

the decision function is

D(x̃) =

normal, if x̃ ∈ R

attack, otherwise

(5.36)

See Figure 27 for a generic nonlinear example. In our one-class classification problem, this

boundary is determined purely by data from nominal conditions.

In this work, the state estimation error is approximately a multivariate Gaussian random

variable. As such, we can create an analytical decision rule based on this distribution. It

94

normal

attackerror space

decision boundary

R

Figure 27: Example of a decision boundary in two-dimensional space. Any value that falls

into the normal region is declared normal, and any value that falls outside the normal region

is declared an attack.

95

makes sense to use a set of points for the boundary that are equally likely to occur; for the

Gaussian distribution, this results in a hyper-ellipsoid contour. If the error did not follow

a well-known distribution, various machine learning techniques could be used for a similar

purpose.

There are an infinite number of hyper-ellipsoid contours, and the final one can be selected

using the probability of seeing a false positive P (D = attack | true = normal). Under normal

conditions, we expect to see false positives at a rate equal to the total probability of values

outside the normal region R. Or mathematically, under normal conditions, P (x̃ ∈ R) =

1−α, and P (x̃ /∈ R) = α. As such, we can calculate the corresponding boundary by selecting

a value of α; see Figure 28 for a generic Gaussian example. The actual value of α is discussed

in Section 5.6.

The rest of this section focuses on how to calculate the hyper-ellipsoid decision boundary

as a function of α. The idea is to transform the multivariate random variable into a scalar

random variable and the hyper-ellipsoid boundary region into a scalar decision threshold.

Then, the scalar value can easily be compared to the threshold to make a decision. Additional

background can be found in [37].

First, we need to estimate the unknown multivariate Gaussian statistics of the state

estimation error. Note that this is different from the distribution calculated by the UKF.

This is the distribution of estimating the initial condition as a function of the entire sequence

of measurements. The mean is zero, but the covariance matrix is unknown. This is estimated

using m simulations of the error, and the estimated covariance Σ̂ is calculated as

Σ̂ =
1

m
ETE (5.37)

where E =
[
x̃1 x̃2 . . . x̃m

]T
is the m× n data matrix.

As mentioned, we now convert this multivariate random variable into a scalar random

variable to more easily calculate the decision boundary. The weighted norm of a multivariate

Gaussian random variable with estimated covariance is a T-squared random variable T 2
n,m

x̃T Σ̂−1x̃ ∼ T 2
n,m (5.38)

96

probability = 1 -

probability = error space

decision boundary

R

Figure 28: Example of a Gaussian decision boundary in two-dimensional space. Under nom-

inal conditions, the probabilities of correctly declaring normal and falsely declaring attack

are 1− α and α, respectively.

97

where the T 2 subscripts are distribution parameters. Using the T-squared distribution, the

region R is defined as the set of all points such that the T-squared random variable is less

than or equal to some threshold

R = {x̃ : x̃TΣ−1x̃ ≤ T ∗} (5.39)

where T ∗ is defined such that p(T 2
n,m ≤ T ∗) = 1 − α. In addition, the boundary is the set

above limited to those points that are strictly equal rather than less than or equal.

One challenge with calculating the above decision boundary is that the T-squared dis-

tribution is not often included in software libraries, so it is easier to convert the T-squared

random variable into an F random variable. These two random variables are related through

T 2
n,m =

mn

m− n+ 1
Fn,m−n+1 (5.40)

and an F ∗ can be defined similarly such that p(Fn,m−n+1 ≤ F ∗) = 1− α. This value can be

calculated using a cumulative distribution function for the F distribution, which is included

in many popular software packages. In addition, it is often tabulated for common values of

α.

This decision process can be summarized through the following steps:

• Step 1: Calculate F ∗ as the value such that p(Fn,m−n+1 ≤ F ∗) = 1− α.

• Step 2: Calculate T ∗ = mn
m−n+1

F ∗.

• Step 3: Determine if x̃ ∈ R using (5.39).

• Step 4: Make a decision according to (5.36).

5.5 Additional Assumptions for the Pressurizer Model

As previously mentioned, the pressurizer dynamics are derived assuming the system is

saturated. The primary advantage to this model, often called an equilibrium model, is that

it is significantly simpler than a non-equilibrium model that allows for subcooled liquid or

superheated steam. The primary disadvantage is that the model will prove inaccurate if the

system strays from saturated conditions.

98

Table 4: Condition numbers for several input possibilities.

u1(kW) u2(kg s−1) Max κ Min κ

−100 −5 1.30× 105 4.88× 104

0 −5 1.44× 105 5.21× 104

−100 0 1.54× 1013 8.92× 105

In order to ensure model accuracy, we constrain our inputs to those that maintain the

saturated system. The primary cause of non-equilibrium conditions is a large influx of colder

water into the pressurizer from the surge line. As mentioned, there is a spray bypass line

that continuously pushes mass into the pressurizer from a spray accumulator. To compensate

for this flow in, there must be an equal flow out of the primary loop into the accumulator.

Therefore, for there to be any influx of colder water into the pressurizer, the flow rate entering

the primary loop plus any expansion upward from changing primary loop temperatures must

be greater than the spray bypass flow rate. As a result, we can reduce the possibility of seeing

non-equilibrium conditions by constraining the flow rate to either enter the primary loop at

a rate below the spray bypass flow rate or leave the primary loop. For this work, we use

the range [−5 kg s−1, 0.4 kg s−1]. We also constrained the heater input to ±100 kW from its

nominal value.

5.6 Results

For the pressurizer system model, we calculated the optimal input, the state estimation

error statistics, and the detection rate using the decision rule.

The optimal input magnitude is the value that minimizes the maximum condition number

over the state space. As might be expected, larger magnitude inputs generally result in

lower condition numbers, making them more optimal. The input space for our problem is

99

asymmetrical, resulting in an optimal input of u =
[
−100 kW −5 kg s−1

]T
with a maximum

condition number of 1.30× 105.

The input above is optimal with respect to the condition number, but it is also worth

considering the transient produced. Looking at some other inputs, the maximum condition

number is much more sensitive to the surge flow than to the heater; see Table 4. When the

heater is removed from the input such that u =
[
0 kW −5 kg s−1

]T
, the maximum condi-

tion number only increases by 10 %, but also reduces the pressure transient. By contrast,

when the surge flow is removed from the input such that u =
[
−100 kW 0 kg s−1

]T
, the

maximum condition number increases by eight orders of magnitude. As a result, we use

u =
[
0 kW −5 kg s−1

]T
because it should achieve similar results to the optimal input, while

reducing the transient magnitude.

In addition to the maximum condition number, it is worthwhile to look at the minimum

condition number for the three inputs mentioned above; these are also shown in Table 4. For

the two inputs that include the surge flow, the minimum and maximum condition numbers

are less than one order of magnitude apart, and for the input that only includes the heater,

the two condition numbers are over seven orders of magnitude apart. This suggests that if

the heater-only input is used, it could distinguish some states but possibly not others, and

emphasizes the importance of looking for the maximum value over the state space.

Before getting into the statistics of the state estimation error, it is worth looking at the

results without any noise. This represents the nominal case and provides a look at whether

our approximation is reasonable. We provide one example with the attacker targeting the

level; see Figure 29. In this figure, the left two plots show the measured, true, and esti-

mated parameters, and the right two plots show the estimation error. From these plots, the

nominal error is extremely small, less than 0.005 MPa and 0.1 % for the pressure and level,

respectively. This accuracy is typical of other attack simulations as well. This suggests the

approximation is reasonable for this system.

Here, we also compare the two approaches to accounting for the null dynamics of the

equilibrium state. As a reminder, the two approaches are assigning random-walk dynamics to

the equilibrium state, or using maximum likelihood estimation to estimate the initial state;

see Figure 30 for the results from a simulation. This example shows two advantages to the

100

0 1 2 3
15.15

15.2

15.25

15.3

15.35

15.4

15.45

P
re

s
s
u

re
 (

M
P

a
)

Measurement

True State

Estimated State

0 1 2 3

Time (mins)

54

56

58

60

62

64

66

68

L
e
v
e
l
(%

)

Measurement

True State

Estimated State

0 1 2 3
-0.01

-0.005

0

0.005

0.01

Estimation Error

0 1 2 3

Time (mins)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Estimation Error

Figure 29: Results of the state estimation process on an attack targeting the level. This

simulation does not include noise. The top plots refer to the pressure, and the bottom plots

refer to the level. The right plots show the estimation error, both of which are small.

101

0 0.5 1 1.5 2 2.5 3
15

15.2

15.4

15.6

15.8

16

P
re

s
s
u

re
 (

M
P

a
)

Measurement

State

RWD

MLE

0 0.5 1 1.5 2 2.5 3

Time (min)

54

56

58

60

62

64

66

L
e

v
e

l
(%

)

Figure 30: Plots of the two approaches to accounting for the null dynamics of the equilibrium

state. The first, labeled RWD, is for the random-walk dynamics, and the second, labeled

MLE, is for the maximum likelihood estimation. Both methods are able to estimate the

state, but the MLE has advantages.

102

maximum likelihood approach: (i) it is generally more accurate, and (ii) it is not a function

of stopping time. For this second advantage, note that the state estimate using the random-

walk dynamics changes dramatically as a function of the time the algorithm is stopped,

whereas this is not the case for the maximum likelihood approach. These advantages are

why maximum likelihood estimation is used as the primary estimation approach.

The surge-flow input is used to estimate the statistics of the state estimation error for

varying input durations. This is done by running 100 simulations at nominal conditions and

calculating sample standard deviations; see Figure 31 for the results as a function of the

duration. In this section, the error is normalized such that 100 % is equal to the control

system alarm values of 100 psi and 10 % for pressure and level, respectively. The final selec-

tion, which is a subjective compromise between estimation error and transient magnitude,

is 120 s.

With these statistics calculated, a suitable α is required to finalize the decision rule.

For this application, we select a more conservative α that results in fewer false positives

because as the true state gets further from the nominal condition, it becomes easier to detect

the attack. Therefore, the value α predominantly determines whether we can differentiate

nominal conditions from the early stages of an attack. From our previous work detailing

zero-dynamics attacks targeting the pressurizer [17], we expect an attacker could reach the

alarm values in approximately four hours. If we then implement the detection mechanism

every two hours, we would have at least two attempts to detect the attack before reaching

the alarm values. Using a rate of once per two hours, we can correlate α to the expected

number of false alarms per year.

Finally to select α and look at overall detection performance, we test the decision rule

and detection routine frequency using simulations with varying values of α. If an attacker

can reach the alarm values in four hours, this equals a maximum normalized attack rate of

25 % h−1. In order to simulate the detection routine and assuming it is implemented every

two hours, the routine is first implemented at a random initial attack state between 0 %

to 50 %. If the decision rule detects the attack, then the simulation stops. Otherwise, the

detection routine is implemented at the equivalent of two hours later by adding 50 % to the

original initial condition. This process is continued until the attack is successfully detected,

103

45 60 75 90 105 120 135 150 165 180
0

2

4

6

8

10

12

14

16

18

20

E
rr

o
r

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

%
)

Pressure

Level

45 60 75 90 105 120 135 150 165 180

Input Duration (s)

10

15

20

25

30

35

40

45

50

55

T
ra

n
s
ie

n
t
M

a
g
n
it
u
d
e
 (

%
)

Figure 31: Plots of the standard deviation of the estimation error and the transient magni-

tude versus the input duration. As the input duration increases, the error decreases, but the

transient magnitude increases.

104

-15 -10 -5 0 5 10 15

Pressure Error (%)

-20

-15

-10

-5

0

5

10

15

20

L
e

v
e

l
E

rr
o

r
(%

)

Figure 32: Plot of the decision region and the data from the simulations for the physics-based

model. The black dots are each estimates for a different noise simulation, and the boundary

is the decision region. Note these are in units of percentage of alarm values.

105

and is done for multiple different α values. Over 100 simulations, our detection algorithm

caught 74 % on the first attempt and the remaining 26 % on the second attempt with an

α of one false alarm per month, and 70 % on the first attempt and the remaining 30 % on

the second attempt with an α anywhere from one false alarm per year to one per century.

This means we detected 100 % of the attacks before the attacker reached the alert state,

regardless of α. As such, we use a value of once per century. Our true positive detection

rate was 100 % and our theoretical false positive rate is once per 100 years. Given how rare

we expect to see false positives, it would be hard to verify using simulations, so we rely on

the theoretical number.

5.7 Validating Using Simulator Data

The previous sections of this chapter use the physics-based model for both generating

data and detecting attacks. Here, we validate the detection approach using simulator data

and the data-driven model developed in Chapter 3. In this section, we: (1) discuss a change

to the estimation algorithm that results in better estimates, (2) present an analysis that

correlates output estimation accuracy with state estimation accuracy, and (3) show the

results of the validation.

5.7.1 Estimating the State

For the theoretical work above, we both simulate the dynamics and estimate the state

using the same physics-based model. This results in a detection algorithm that has perfect

model knowledge, meaning that the UKF provides nearly optimal results. However, when

validating the approach using simulator data, our model is not perfect. This led to changes

in how we estimate the state for this validation process.

The UKF can only provide accurate estimates if the noise assumptions are reasonable

approximations. For our data-driven model, the Gaussian process noise assumption is not a

106

good approximation, and the UKF did not provide accurate estimates. Instead, we directly

implemented maximum likelihood estimation to estimate the unknown initial state.

The estimates can be calculated in a similar manner to the system identification tech-

niques. Similar to the UKF, these are calculated in the z space. The estimated measurements

are calculated as

ẑk+1 = Aẑk +Buk + Eζ̂k

ŷk = Cẑk

(5.41)

where, as a reminder, ζk is a vector of monomials made from the components of zk and uk,

and the output estimation error ỹk = ŷk(z0)− yk is a function of the unknown z0.

Similar to the system identification case, the maximum likelihood problem is proportional

to the negative of the weighted least-squares error using the inverse of the covariance matrix

as the weight. As such, we get the following optimization problem

ẑ∗0 = arg min
z0

V (z0) (5.42)

where V (z0) =
∑T

k=0 ỹ
T
kR
−1ỹk is the objective function, and z∗0 is the optimal initial condi-

tion. This problem is solved using gradient descent methods, where the gradients are solved

numerically.

Similar to before, we convert from the augmented state z back to the state x. As a

reminder, z =
[
δTx xT

]T
and x = x + δx. Therefore, we can calculate our optimal state

estimate x̂∗0 = x∗0 + δ∗x,0, which is used for detecting and diagnosing attacks. Moving forward,

this is simply called x̂0.

5.7.2 Necessary Output Accuracy

The changes in the previous section account for the mismatch in our assumptions about

the noise statistics. In addition, there is also a mismatch between the simulator dynamics

and our model dynamics. This is an expected result as all models are approximations of real

system dynamics. Here, we discuss how to quantify output accuracy and, more importantly,

how to correlate it with achieving our objectives.

Our research objectives are to be able to detect attacks and estimate the state. This

means the parameter that we really care about is the accuracy of the state estimate. As

107

a result, we want to be able to correlate the accuracy of the output with the accuracy of

the state estimate. This will help determine whether our model is accurate enough and also

provides an important sensitivity study that can determine how realistic it is for plants to

implement these methods.

For this section, we focus on nominal accuracy of the output. This means that we care

about how accurate just the model is and ignore the measurement noise. Later, measurement

noise will be incorporated to create decision rules, similar to the physics-based work described

earlier in the chapter.

The two measures that we want to correlate are output accuracy and state estimation

accuracy. The output accuracy measures the distance between the true measurements and

estimated measurements over the duration of the transient. To account for the time-series

data, the weighted root-mean-square (RMS) error between these two signals is used

ηO =

√√√√ 1

T

T∑
k=0

ỹTkWỹk (5.43)

where ηO is the output accuracy, ỹk = ŷk − yk, ỹ0 is assumed zero, and W− 1
2 is a diagonal

matrix containing the alarm values of 100 psi and 10 %, respectively, that accounts for the

different variable scales. The half power is used for the weigh matrix because the matrix is

squared inside the sum, i.e. (W
1
2 ỹk)

T (W
1
2 ỹk) = ỹTkWỹk

The state estimation accuracy measures the distance between the true state and esti-

mated state. This could be some average value similar to the above, but that is not necessary

for this application. Instead, just the difference at the initial condition is used. Similar to

the output accuracy, the state estimation accuracy uses a weighted norm, resulting in

ηE =
√
x̃T0C

TWCx̃0 (5.44)

where ηE is the state estimation accuracy and x̃0 = x̂0 − x0.

With these terms defined, we can now correlate output accuracy with state estimation

accuracy. Our goal is to norm bound these terms. Or mathematically, this can be written

find f(·) such that ηE ≤ f(ηO). This provides a quantitative measure that correlates these

two parameters. We will solve this through optimization techniques by running simulations

108

where we impose output error on the measurements, called ynew, and then use the incorrect

sequence for our state estimation algorithm. This is comparable to our model incorrectly

predicting the sequence of outputs, and can be measured using our output accuracy defined

above.

In order to simulate these scenarios, we need a standard method of approximating an

output accuracy with a certain magnitude. This is done by adding a term that is proportional

to the measurement value, but subtracting off the nonzero initial condition. This can be

written as

ynew
k = yk + A(yk − y0) (5.45)

where A is a diagonal matrix that results in some known output accuracy. See Figure 33 for

an example of a measurement dataset with simulated error.

This new dataset can then be used to estimate the state. This is done using the maximum

likelihood estimation described above, resulting in an optimal estimate of the state for that

given output error scenario.

The full problem is solved as a series of optimization problems. For some fixed scalar

output accuracy c, there is a set of A matrices as defined above that result in that output

accuracy. The optimization problem is to maximize the state estimation accuracy over the

set of A matrices. Or mathematically,

max
ηO=c

ηE (5.46)

This problem is solved for varying values of c to calculate the correlation curve.

This optimization is solved using particle swarm optimization. This is a heuristic-based

optimization method that makes few assumptions about the objective function and has

been shown to have improved performance in global optimization problems over some of the

standard gradient-descent algorithms.

It is worth noting that this approach can only ever be an approximation on the upper

bound of the accuracy. First, there are an infinite number of ways that the output error can

be simulated, and we only implement one way. Second, the data-driven model may not be

uniformly accurate. In other words, it may be more accurate at some states than others,

109

0 0.5 1 1.5 2 2.5 3
15.1

15.2

15.3

15.4

15.5

P
re

s
s
u
re

 (
M

P
a
) True

With Error

0 0.5 1 1.5 2 2.5 3

Time (mins)

54

56

58

60

L
e
v
e
l
(%

)

Figure 33: Plot of the simulated output error. The blue lines are the true signals, and the

red lines show how output error is introduced for the analysis.

110

which could cause larger estimation accuracy values under certain conditions. However, this

approach still represents a reasonable attempt to estimate this upper bound.

5.7.3 Results

Using the data-driven model, we calculate the accuracy of the state estimation techniques

on the training, testing, and validation datasets. These are compared with the estimate of

the bounded output accuracy calculated using the approach described above. Finally, the

state error statistics are used to create a decision rule and calculate a detection rate on the

validation datasets.

Before discussing the results, we first discuss in more detail the datasets contained in the

training, testing, and validation sets. The primary difference between the different datasets

is the starting initial conditions; see Figure 34 for a plot of the different initial pressure

and level values. In addition, this plot shows the largest bounding window around the

training set. Within this training window, we would expect our model to perform fairly well.

Outside of this training window, it is hard to know how well the model will generalize. We

have included three points in the validation set that are outside of the training window to

see how well our model is able to detect attacks in this region of the state space. These

points are discussed in more detail in the remainder of this section.

The first result we discuss is the correlation between output accuracy and state estimation

accuracy. From our optimization analysis, this correlation is essentially linear and equal to

ηE = 78ηO. It is later referred to as the cutoff line.

With this cutoff line calculated, we can look at the accuracy of the state-estimation

techniques using nominal data without noise. Ideally, these values should all be near or below

the estimated cutoff line. We calculate the state estimation accuracy for each dataset within

the training, testing, and validation sets. Starting with just the datasets that fall within the

training window, Figure 35 shows the state estimation accuracy against the output accuracy

for the three types of datasets. Then, the points outside the training window are included

in Figure 36, which as expected have much larger output errors. In these plots, there are

111

14.8 15 15.2 15.4 15.6 15.8 16

Pressure (MPa)

52

54

56

58

60

62

64

66

L
e

v
e

l
(%

)

Training Window
TrainingData

TestingData

ValidationData

Figure 34: Plot of the initial conditions for the training, testing, and validation datasets. In

addition, the dashed box shows the range of data included in the training set, and there are

a few points outside of it.

112

0 0.05 0.1 0.15 0.2 0.25 0.3

Output Accuracy (%)

0

5

10

15

20

25

S
ta

te
 E

s
ti
m

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Estimated Cutoff

TrainingData

TestingData

ValidationData

Figure 35: Plot of output accuracy versus state estimation accuracy for the training, testing,

and validation sets. The blue line represents the estimated cutoff, and we expect points to

lay at or below the blue line. This curve is missing two data points that are outside our

training window, and are used to see how well the model generalizes far from data.

113

0 0.5 1 1.5 2

Output Accuracy (%)

0

20

40

60

80

100

120

140

160
S

ta
te

 E
s
ti
m

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Estimated Cutoff

TrainingData

TestingData

ValidationData

Figure 36: Plot of output accuracy versus state estimation accuracy for the training, testing,

and validation sets. The blue line represents the estimated cutoff, and we expect points

to lay at or below the blue line. This curve includes two data points that are outside our

training window, and are used to see how well the model generalizes far from data. Even at

these higher errors, the data does not stray far from our estimated cutoff values.

114

a total of 40 datasets. And of these, 33 are below the norm bounds calculated using the

approach in the previous section, which suggests our cutoff line is a decent estimate.

It is also worth looking more closely at these state estimation accuracy results to better

understand where the large state estimation errors are coming from. To do this, we look

at the pressure and level errors individually; see Figures 37 and 38 for similar plots of the

state estimation accuracy against the output accuracy, but with pressure and level broken

out separately. Figures 37, which only includes those datasets within the training window,

shows that the error for the pressure is bounded near 5 %, while the error for the level is

bounded near 20 %. Even including the datasets outside the training window, the pressure

is bounded near 20 %, while the level is bounded closer to 100 %. This means our methods

work much better on the pressure than the level. We believe that understanding why this

is and what system properties result in easier or harder estimation is a good candidate for

future work and will be discussed more in Chapter 6.

Next, we look at the state error statistics at nominal operating conditions including

measurement noise. This enables us to develop a decision rule similar to the one used for the

physics-based model. Using the same approach and the same value of α, this results in the

decision region found in Figure 39, along with the error data from the simulations. For this

set of data, all error values are within the region, so would not result in any false positives.

Finally, we test the decision rule and detection routine frequency using simulations. We

do not have as much control over the initial state as in the physics-based efforts. Here, we

take the four validation sets inside the training window as our first attempt and the three

validation sets outside the training window as our second attempt. And, these simulations

include measurement noise. Over 100 simulations each for the set inside the training window

and outside the training window, our detection algorithm caught 100 % of the attacks. This

means our approach is successfully validated using simulator data. Similar to with the

physics-based case, however, attacks may not be detected in the earliest stages; the validation

sets were all detected because they are sufficiently far from nominal conditions.

115

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

P
re

s
s
u
re

 E
s
ti
m

a
ti
o

n
 A

c
c
u
ra

c
y
 (

%
)

TrainingData

TestingData

ValidationData

0 0.05 0.1 0.15 0.2 0.25 0.3

Output Accuracy (%)

0

5

10

15

20

L
e

v
e

l
E

s
ti
m

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

Figure 37: Plot of output accuracy versus state estimation accuracy for the training, testing,

and validation sets. Compared to the previous plot, this breaks out pressure and level

separately, instead of using a norm. This curve is missing two data points that are outside

our training window, and are used to see how well the model generalizes far from data.

116

0 0.5 1 1.5 2
0

5

10

15

20

25

P
re

s
s
u
re

 E
s
ti
m

a
ti
o

n
 A

c
c
u
ra

c
y
 (

%
)

TrainingData

TestingData

ValidationData

0 0.5 1 1.5 2

Output Accuracy (%)

0

20

40

60

80

100

L
e

v
e

l
E

s
ti
m

a
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

Figure 38: Plot of output accuracy versus state estimation accuracy for the training, testing,

and validation sets. Compared to the previous plot, this breaks out pressure and level

separately, instead of using a norm. This curve includes two data points that are outside

our training window, and are used to see how well the model generalizes far from data.

117

-10 -5 0 5 10

Pressure Error (%)

-15

-10

-5

0

5

10

15

20

25

30

L
e

v
e

l
E

rr
o

r
(%

)

Figure 39: Plot of the decision region and the data from the simulations for the data-driven

mode. The black dots are each estimates for a different noise simulation, and the boundary

is the decision region. Note these are in units of percentage of alarm values.

118

5.8 Detecting Zero-Dynamics Attacks Offline

One potential drawback to this approach is that the system must be perturbed from

nominal operating conditions to detect attacks. In general, this is something that plants try

to minimize. So a natural follow-up question is: can this approach be done without affecting

the plant? For example, could it be done purely computationally using a parallel offline

mode?

This type of detection scheme is sometimes called a digital twin. These are generally

digital models that capture desired behavior or dynamics of some physical object. They

use historical data to try and estimate parameters. Here, a hypothetical digital twin would

purely use the input and output data to determine whether the plant is under attack. For

reference, state estimators can be used as digital twins.

The challenge with any offline detection mode is that zero-dynamics attacks do not leave

evidence of the attack. In fact, that is precisely what makes them so dangerous. As such,

historical data would not provide any insight into whether the plant is in the middle of

a zero-dynamics attack. What this means is that in order to detect these zero-dynamics

attacks, the system must be perturbed. And, this cannot be done in any offline manner.

5.9 Detecting Other Stealthy Attack Strategies

In addition to detecting zero-dynamics attacks, the perturbation proposed here can also

be used to detect an additional stealthy attack strategy: the replay attack. These attacks

are not the focus of this work, but still represent a dangerous attack strategy that should be

considered during a cyber security risk assessment.

In Chapter 2, we discuss the replay attack, and how they can be detected by inserting

a signal, unknown to the attacker, into the system to create expected transients. To detect

replay attacks, previous researchers have proposed inserting zero-mean random control in-

puts. But, those zero-mean inputs would not detect the zero-dynamics attacks that are the

focus of this work. By contrast, our perturbation would create an expected transient, so can

be used to detect both zero-dynamics attacks and replay attacks.

119

5.10 Economic and Safety Impacts of the Perturbation

The proposed perturbation reduces both the pressurizer level and pressurizer pressure.

And, the pressure reduction cascades to the rest of the primary side, reducing pressure

throughout. It is worth discussing the economic and safety impacts of these changes, as well

as implementation of the perturbation.

Economic Impact Regarding plant economics, we discuss two possible financial implica-

tions of using the proposed detection mechanism: (i) the change in pressure could result in

a change in power output, and (ii) there could be additional operating costs.

Without going into all the technical details, a change in coolant pressure will change its

density and could result in a change in power output. However, pressurized water reactors

use liquid water, which is often approximated as incompressible because there is little change

in density over pressure changes. This means any density changes will be small compared to

other parameter changes, like temperature. As such, we expect there to be some very small

change in power. It is worth investigating this further in future work, but our expectation is

that it will be very small given the small change in pressure and the nearly incompressible

nature of liquid water.

The second point on additional operating costs depends heavily on the plant in question

and the level of automation. If there is little automation, the perturbation would need to

be implemented manually, which could generate a noticeable cost increase. However if there

is significant automation or if the perturbation could be designed into the control system

from the vendor, the detection method would run automatically without requiring operator

intervention. Therefore, further analysis on the costs associated with additional labor would

need to be done on the specific plant.

Safety Impact From a safety point of view, the perturbation was designed so that the

transient magnitude was significantly smaller than any alarm values. As such, we do not

expect the transient to pose a safety threat when not under attack.

One exception to this scenario is if the plant truly is under attack. In this scenario, our

transient could move the plant further into unsafe operating conditions, which could impact

120

safety. However, we note that in this case, the attack would eventually reach these unsafe

conditions anyway, or could reach worse conditions. Therefore, if our method successfully

detected the attack, it would still improve safety because the operators would know the plant

was under attack and could respond accordingly.

5.11 Chapter Summary

As a reminder, our research objectives relating to this chapter are to detect attacks

by monitoring physical measurements and provide diagnostic information to enhance plant

response. In this chapter, we accomplish the following:

• the exact and approximate problems are setup, and a test for whether systems are de-

tectable is proposed;

• the approach for solving for the optimal input is presented using optimization methods;

• the state-estimation techniques are discussed for how to estimate the unknown state in

an optimal manner;

• the results of the approach implemented on the pressurizer are discussed;

• an analysis on how accurate the system model needs to be is presented; and

• the results are validated using the data-driven model and data from the commercial

simulator.

This work completes the objectives because we are able to estimate the state providing both

diagnostic information and, combined with the decision rules developed, determinations of

whether the system is under attack. We then implement them on a critical subsystem of

pressurized water reactors to show that they can successfully be used to detect the attacks

outlined in the previous chapter.

This concludes the analysis from the defender’s perspective on how to defend against

zero-dynamics attacks targeting nonlinear systems.

121

6.0 Conclusions and Future Work

The goal of this research is to improve cyber security for NPPs by addressing the fol-

lowing questions: How might an attacker attack NPPs? And how can automated defenses

defend against those attacks? These concepts are expanded through the following research

objectives:

1. characterize stealthy cyber vulnerabilities targeting nuclear power plants;

2. detect attacks by monitoring physical measurements; and

3. provide diagnostic information to enhance plant response.

All of these objectives have been met through new theoretical tools and their implementation

on the pressurizer subsystem.

Our first objective is met through the work described in Chapter 4. In that chapter, we

extend previous results on zero-dynamics attacks to systems with nonlinear dynamics. To

accomplish this, we transform a control-affine nonlinear system into a system under attack.

We then discuss an iterative algorithm to calculate nonlinear zero-dynamics attacks based

on this attack model. Finally, we demonstrate the techniques on the pressurizer subsystem

by analyzing all combinations of attackable signals and characterizing the resulting zero-

dynamics attacks by stability and damage time. Ultimately, the advantage of using these

nonlinear methods is that linearization is not required, allowing us to be more exact about

the zero dynamics of the system.

Our second and third objectives are met through the work described in Chapter 5. In

that chapter, we develop an approach to detect zero-dynamics attacks targeting systems with

nonlinear dynamics. We first approximate the problem to constrain the number of unknowns

and create a more tractable problem. This approximate problem still requires a nonzero

control input, and we show how the nonlinear observability matrix can be used to optimize

this control input for detecting attacks. Using the physics-based model, we use unscented

Kalman filters and maximum likelihood estimation to estimate the true state, enabling us

to both detect the attack and provide important diagnostics. Finally, we approximate the

122

required output accuracy and use the data-driven model to validate the results using data

from the commercial simulator.

6.1 Summary of Contributions

To reiterate from the beginning of the dissertation, our main contributions to the fields

of nonlinear controls and nuclear cyber security are that we:

1. extend zero-dynamics attacks to nonlinear systems through the development of an at-

tacked system model and an algorithm;

2. develop metrics for zero-dynamics attacks to compare different attack strategies;

3. characterize zero-dynamics attacks targeting the pressurizer subsystem of pressurized

water reactors;

4. develop tools to determine whether zero-dynamics attacks targeting a specific nonlinear

system are detectable;

5. develop detection methods for detectable systems under zero-dynamics attacks;

6. quantify required model accuracy to be able to accurately detect attacks; and

7. implement the detection methods on the pressurizer subsystem using both a theoretical

first-principles model and a data-driven model.

6.2 Implementation on Other Systems

In this dissertation, the pressurizer system is used to demonstrate the approaches on

characterizing and detecting attacks. But, it is important to note that the same techniques

can be applied to many other systems, both in nuclear power plants and in other industries,

without major modifications. The reason for this is that the work uses the very general

state-space representation, which enables systems from many fields to be described using a

common form.

123

In order to implement our work on other systems, the following steps should be carried

out:

1. Derive system dynamics using state-space representation

2. Transform dynamics into model under attack (Section 4.1)

3. Implement algorithm for calculating zero-dynamics attacks (Section 4.2)

4. Analyze stability of characterized attacks (Section 4.4)

5. Transform dynamics into augmented model (Section 5.1)

6. Ensure augmented model is observable (Section 5.1)

7. Calculate optimal defender control input (Section 5.2)

8. Estimate the state under attack conditions (Section 5.3)

9. Develop a decision rule using one-class classification (Section 5.4)

By following these steps, this work can be extended to safety-critical systems across many

industries to help safeguard them.

6.3 Limitations

Before concluding this work, it is important to note any limitations that may prevent its

use or require additional research. We discuss two limitations in this section.

First, for characterizing zero-dynamics attacks, many of the attack strategies require the

attacker to have significant access to the system inputs and outputs. This access makes the

attacks particularly dangerous because they result in zero measurable response. However, it

also means the attacks may be harder to implement than other strategies that could have

some similar properties. If there are other strategies that are almost as dangerous but easier

to implement, they should be evaluated and compared to the attacks discussed here based

on a cyber security risk assessment.

Second, when applied to the pressurizer system, the detection algorithm for zero-dynamics

attacks is sensitive to output accuracy. This means that accurately estimated outputs can

result in accurate state estimates, enabling effective attack detection. But it also means that

124

inaccurate models could result in unreliable estimates. Further analysis is required to better

understand this relationship and to extend the ideas to general systems.

If these limitations can be overcome, it would further advance the field of nuclear cyber

security. Possible directions for future work that address these limitations are discussed in

the next section.

6.4 Future Work

Future work could focus on four primary goals, where the latter three aim to address the

limitations discussed above:

1. characterizing zero-dynamics attacks for other subsystems or for larger models of full

systems;

2. investigating attack strategies that have small outputs, but are not exactly zero;

3. quantifying whether a nonlinear system is a good candidate for the detection methods;

and

4. determining how design choices affect the relationship between model and estimation

accuracy.

Starting with characterizing zero-dynamics attacks for other systems, this work can be

applied to full nuclear power plant models to look for vulnerabilities outside of just the

pressurizer. This would give a more full picture of potential vulnerabilities, rather than

just those from a single subsystem. In addition, this would enable collaborations with other

fields like game theory. These collaborations could optimize defenses based on the potential

damage and attacker effort of these attacks.

The next proposed area for future work is investigating attack strategies that have small

outputs, but are not exactly zero. This is motivated by the attacks characterized in this

research that are stable as a purely zero-dynamics attack, but can become unstable, and

thus cause damage, if some measurable output is allowed. And, these attacks require less

attacker access to implement, making them theoretically easier to implement. This direction

125

for future work is a result of the strict definition of zero dynamics that requires zero output.

If this requirement is relaxed, other attacks may be discovered that are nearly as stealthy,

but require less attacker access.

Moving to the detection side of this research, another direction for future work is quan-

tifying the feasibility of implementing the detection methods on general nonlinear systems.

This can focus on understanding how hard it is to estimate different states within a system or

comparing entire systems to determine the difficulty of estimating all the states. The result

could aid in understanding what types of systems these methods would work best with.

A final direction for future work, that expands upon the previous item, is determining

how design choices affect the relationship between model and estimation accuracy. For

example looking at the pressurizer, how do dimensions and operating conditions affect this

relationship? And are there other designs for controlling and monitoring pressure that could

result in easier estimation under attack? The answers to these questions could further enable

designers to design-in security using the system dynamics.

126

Appendix A Description of Appendices

During the first half of my graduate program, we worked on several fault detection

applications focused on detecting loss-of-coolant accidents (LOCAs) in Pressurized Water

Reactors. These accidents occur when the working fluid leaks out of the system, and are

dangerous because the systems are pressurized to ensure the water remains a liquid; a leak

could cause the liquid to flash to steam and prevent critical cooling of the reactor core.

In these Appendices, we present three applications of detecting LOCAs using three dif-

ferent approaches. These works are presented here because they are related to the final

dissertation work, but do not directly solve the problems the dissertation addresses. In

addition, these works can be found published in [38, 39, 17].

127

Appendix B Using Model-Based Fault Detection to Differentiate Transients

and Loss of Coolant Accidents

B.1 Introduction

Detecting loss of coolant accidents (LOCAs) is a safety-critical task for nuclear power

plant (NPP) operators. In order to manually detect LOCAs, operators must, in addition to

their other responsibilities, constantly monitor multiple process parameters, which makes it

difficult to detect LOCAs early. Earlier detection could avoid or reduce the large transients,

like a reactor trip, that stress systems, further overload operators, and might ultimately

lead to core damage [40]. Furthermore, operators might not be able to diagnose specific

characteristics of the LOCA, such as the magnitude of the leak, which could influence the

best response to the accident. In order to alleviate operator workload and improve detection

capabilities, online monitoring tools would automatically alert operators to the onset of

LOCAs and provide additional diagnostics about the accident, including the leak magnitude.

Previous research for detecting the onset of LOCAs used artificial neural networks

(ANNs) [41]. Based on measurements at each time step, an ANN detected several faults,

including the onset of LOCAs. This method looked at LOCAs initiated while the plant was

at steady-state, but they could be initiated at anytime. It is necessary to investigate the

performance of the methods during transient operation as well.

Other research estimated leak magnitudes for LOCAs using support vector regression

(SVR) [42]. The SVR method accurately estimated the leak magnitudes in all leak scenarios

tested. However, the estimation process did not begin until the reactor had already tripped

and could only provide a single estimate, which would not work for a time-varying leak

magnitude.

These efforts implemented data-driven methods for LOCA detection, meaning they used

large quantities of dynamic training data to develop the detection tools. These types of

methods provide a powerful framework when training data exists. However, these methods

may not work when training data does not exist, or when scenarios occur that fall outside

the training envelope.

128

In this paper, we detected a LOCA using a model-based approach that does not depend

on large quantities of training data and works in all scenarios for which the models are

appropriate. Specifically, we detected the onset and estimated the leak magnitude of a LOCA

that was initiated during a transient and with a time-varying magnitude. This was done using

multiple-model adaptive estimation (MMAE), which uses multiple mathematical models to

estimate the most likely operating conditions [43]. In this work, one model represented plant

dynamics during normal operating conditions, and the remaining models represented the

dynamics during LOCA conditions with different leak magnitudes.

The models were derived using first principles and system identification. First principles

were used to derive a general form for the model equations and system identification was

used with process data to estimate the parameter values. Using this procedure, the same

approach could be easily implemented for plants with different sizes or configurations. In

addition, while this procedure required process data, it did not require process data from a

LOCA, which differentiates it from the data-driven methods described above.

Using the same measured inputs to the system, the models produced different estimates of

a particular sensor measurement, and the estimates were compared using Bayesian hypothesis

testing. This statistical testing method calculated a real-time probability for each of the

models, enabling the method to identify the most likely operating condition. This operating

condition could provide both detection of the onset and an estimate of the magnitude of the

leak.

This method has previously been used to detect a LOCA [44]. That work detected a

constant-magnitude LOCA initiated at steady-state without sensor noise. This work im-

proves upon that previous research.

This paper used process data from a pressurized water reactor simulator. This simulator

was developed by GSE Systems and models a 970 MWe, three-loop, generic pressurized

water reactor. The simulator has a model accuracy that is compliant with ANS-3.5, which

is the American Nuclear Society’s standard for “Nuclear Power Plant Simulators for Use

in Operator Training and Examination” [21]. The simulator is used to train supervisors,

operators, and engineers around the country.

129

This chapter is structured as follows. Section 2 describes the process data used for this

research. Section 3 derives the general form for the model equations and explains the system

identification methods used. Section 4 describes how the models are used in the multiple-

model adaptive estimation technique. Section 5 provides the results of the research. Finally,

Section 6 concludes the chapter.

B.2 Process Data

Process data was collected for normal and faulted operating conditions. The data from

normal operating conditions was used for system identification, and the data from faulted

operating conditions was used to test the fault detection techniques. This data included

the measurable temperatures, pressures, mass-flow rates, pump currents, reactor power, and

liquid levels throughout the primary and secondary sides. All data was collected at a sample

rate of 2 Hz.

Data for normal operating conditions was collected by varying the electricity generated

from 100 to 75% and then back to 100%. These power changes were done at a rate of 0.5% (5

MWe) per minute. This scenario was selected because it represents start-up and shutdown

conditions for a plant, so comparable process data could be collected for a real plant.

Data for faulted operating conditions was collected by running simulations of small-break

LOCAs with the same-time varying magnitude but two different conditions. Both LOCA

magnitudes increased linearly from 2 to 4% over 60 s, where 100% is equivalent to a full break

in a 4.5-inch-diameter pipe. The first LOCA was initiated at full power to show how the

method works during steady-state operating conditions, and the second LOCA was initiated

during a transient while the plant was increasing power at a rate of 0.5% per minute.

To make the data more representative of real plant data, additive Gaussian white noise

was added to each of the relevant sensor measurements. Because neither noise variance

estimates nor real process data are readily available, noise variance values for each sensor

type were estimated using datasheets for commercial components. These components are

manufactured by Emerson as an indicator of typical instrument accuracy. Using the listed ac-

130

Table 5: Listed accuracies of some commercial sensors for different sensor types.

Sensor Type Accuracy (% of maximum value)

Temperature 0.5

Pressure 0.15

Flow 0.25

Level 0.2

curacies from the datasheets, shown in Table 5, we equated the accuracies to 95% confidence

intervals for the Gaussian curve (equal to 2σ)

accuracy =
2σ

Umax

(B.1)

var = σ2 =
(accuracy× Umax)2

4
(B.2)

where Umax is the maximum sensor value. This provided a systematic estimate for the noise

magnitudes.

Adding noise to the process data made it more representative of real plant data. For use

with the online monitoring tools, that data was then filtered to remove some of the noise.

The noisy signals were filtered using first-order low-pass filters. The time constants were

chosen for each signal individually and the filtered values were used for the remainder of the

research.

B.3 Pressurizer Model

The pressurizer model was derived using conservation of volume and mass within the

primary loop. To simplify the problem, two assumptions were made. First, the piping does

not expand considerably from temperature changes, so volumes remain constant. Second,

the coolant inventory in the primary loops is always a liquid. This second assumption could

131

be violated late in an accident scenario; however, the goal of this research is to detect the

fault well before reaching that point.

The volume in the primary loop, consisting of the hot and cold-leg water in the reactor

coolant system, water in the pressurizer, and vapor in the pressurizer, is

VPL = VL + VV + VHL + VCL (B.3)

and its rate of change is

V̇L = −V̇V (B.4)

where V is the volume, the PL subscript refers to the primary loop, the V subscript refers to

the vapor part of the pressurizer, the L subscript refers to the liquid part of the pressurizer,

and the HL and CL subscripts refer to the hot and cold-leg sections of the reactor coolant

system, respectively.

The mass in the primary loop, consisting of the masses of the volumes listed above, is

mPL = ρLVL + ρV VV + ρHLVHL + ρCLVCL (B.5)

and its rate of change, equal to the net mass-flow rate entering and existing the system, is

ṁPL = ρ̇LVL + ρLV̇L + ρ̇V VV + ρV V̇V + ρ̇HLVHL + ρ̇CLVCL

= ṁin − ṁout − ṁleak (B.6)

where ρ is density, ṁin is the charging mass flow entering the primary loop, ṁout is the

letdown mass flow leaving the primary loop, and ṁleak is any leaking mass flow leaving the

primary loop.

Combining Equations B.4 and B.6 and solving for V̇L gives

V̇L =
1

ρV − ρL
(VLρ̇L + VV ρ̇V + VHLρ̇HL + VCLρ̇CL + ṁout − ṁin + ṁleak) (B.7)

132

This can be further simplified using the definitions for the volumes as

VL = ALL + VLC (B.8)

VV = ALV + VV C (B.9)

LV = 100− LL (B.10)

where VLC and VV C are constant liquid and vapor volumes that fall below and above the

sensor boundaries respectively. Combining all of this and converting the constants into

unknown parameters gives

L̇L =
1

ρV − ρL

(
(ρ̇L − ρ̇V)LL + c1ρ̇L + c2ρ̇V + c3ρ̇HL + c4ρ̇CL + c5(ṁout − ṁin + ṁleak)

)
(B.11)

Finally, this equation can be rewritten by grouping like terms together

L̇L = − ρ̇L − ρ̇V
ρL − ρV

LL −
c5

ρL − ρV
(ṁeff + ṁnet + ṁleak) (B.12)

where

ṁeff =
c1ρ̇L + c2ρ̇V + c3ρ̇HL + c4ρ̇CL

c5

(B.13)

ṁnet = ṁout − ṁin (B.14)

The effective mass-flow rate represents the changes in mass due to the changing density of

the coolant.

133

B.3.1 Model Structure

A small-break LOCA affects the coolant volume in the primary loop, which can be

determined from the pressurizer liquid level. The level is measured through a level sensor

that indicates the percentage of the total level that is liquid. Its value is maintained within

a desired range by controlling the letdown and charging flows in the CVCS. And because the

pressurizer has the highest elevation in the primary loop, the level indicates total coolant

volume in the primary loop.

In this work, system models were required and were described using discrete-time state-

space representations. For a linear system, these are written as

xk+1 = Akxk +Bkuk +Gkwk (B.15)

zk = Ckxk + vk, (B.16)

where xk ∈ Rn is the system state vector, uk ∈ Rp is the input vector, zk ∈ Rr is the

measurement vector, Ak is the state matrix, Bk is the input matrix, Gk is the noise input

matrix, Ck is the output matrix, wk is process noise, and vk is measurement noise. Both noise

sources are assumed to be Gaussian white processes, described by E[wk] = 0, E[vk] = 0,

E[wkw
T
l] = Qδkl, and E[vkv

T
l] = Rδkl.

When creating the model, factors that affect the pressurizer level are temperatures and

pressures throughout the primary loop, temperatures and pressures inside the pressurizer,

and charging and letdown mass flow rates. For a derivation of the model, see the appendix.

This model was parameterized with unknown constants that were determined using system

identification methods, described in the next section. The final model is

L̇L = − ρ̇L − ρ̇V
ρL − ρV

LL −
c5

ρL − ρV
(ṁeff + ṁnet + ṁleak) (B.17)

where

ṁeff =
c1ρ̇L + c2ρ̇V + c3ρ̇HL + c4ρ̇CL

c5

(B.18)

ṁnet = ṁout − ṁin (B.19)

134

and LL is the liquid level, the V subscript refers to the vapor part of the pressurizer, the

L subscript refers to the liquid part of the pressurizer, the HL and CL subscripts refer to

the hot and cold-leg sections of the reactor coolant system, respectively, ṁin is the charging

mass flow entering the primary loop, ṁout is the letdown mass flow leaving the primary loop,

and ṁleak is any leaking mass flow leaving the primary loop.

This model was then transformed into the standard format for a time-varying continuous-

time state-space representation

ẋ = A(t)x+B(t)u(i) (B.20)

z = x (B.21)

where the state and input are, respectively,

x = LL (B.22)

u(i) = ṁeff + ṁnet + ṁ
(i)
leak (B.23)

and the matrices are defined as

A(t) = − ρ̇L − ρ̇V
ρL − ρV

(B.24)

B(t) = − c5

ρL − ρV
(B.25)

Note that A(t) and B(t) are time-varying continuous-time matrices. The value that changes

between the different models is the leak mass-flow rate ṁ
(i)
leak, where i indexes the different

models. The normal-operating-condition model has a zero leak mass-flow rate, and the other

operating conditions vary over the range of possible values.

These techniques were implemented on digital control systems, so a discrete-time state-

space representation was used. Because the time constant of the system was long compared

to the sample period (h = 0.5 s), the time-varying system matrices were assumed constant

over the duration of the sample period. As such, the discrete-time matrices were calculated

by

Ak = ehA(t) = ehA(kh) (B.26)

Bk =

(∫ h

τ=0

ehA(kh)dτ

)
B(kh) (B.27)

where ehA is the matrix exponential.

135

B.3.2 System Identification

The goal of system identification is to identify an unknown model based on data [45].

Starting with the model form for the pressurizer liquid level, data was used to determine the

unknown parameters. This data is described in Section B.2.

This system identification problem was formulated as a least-squares error problem

min
v

n∑
k=1

e2
k (B.28)

where v = [c1, . . . , c5]T is the unknown parameter vector, n is the number of data points

used in the system identification, and ek = zk − ẑk is the error between the measurement

and the estimated measurement. The estimated measurements were calculated using

ẑk = Ak−1ẑk−1 +Bk−1uk−1 (B.29)

with assumed known initial condition ẑ0 = z0, calculable Ak, and Bkuk equal to a linear

function of the unknown parameters. This error function needed to be transformed in order

to use the standard solution. Moving one step forward in time gave

ẑ1 = A0z0 +B0u0 (B.30)

= z1 + φ1v (B.31)

where zk and φkv are the known and unknown portions, respectively. Next, this was gener-

alized to form the recursive equation

ẑk = Ak−1zk−1 + Ak−1φk−1v +Bk−1uk−1 (B.32)

= zk + φkv (B.33)

where

zk = Ak−1zk−1 (B.34)

φkv = Ak−1φk−1v +Bk−1uk−1 (B.35)

with z0 = z0 and φ0 = 0.

136

Table 6: Least-squares estimates of the unknown parameters.

c1 c2 c3 c4 c5

−6.94× 101 −3.50× 101 1.99× 102 4.30× 102 7.73× 10−3

This is now the standard least-squares problem with ek = (zk − zk)− φkv. This can be

solved by writing it in matrix form

Y = Φv (B.36)

where Y = [y0, . . . , yn]T , yk = zk − zk, and Φ = [φ0, . . . , φn]T . The least-squares solution to

the problem is the pseudo-inverse

v̂ = (ΦTΦ)−1ΦTY (B.37)

where v̂ is the least-squares estimate of the unknown parameter vector.

Using the normal operating data, we implemented the system identification techniques

to calculate least-squares estimates of the unknown parameters; see Table 6. Note that the

units are arbitrary based on dimensionless units. The fully defined model was then simulated

and compared with the raw data. The results are shown in Figure 40. This figure shows

that the model is a good approximation of the GPWR simulator data.

B.4 Multiple-Model Adaptive Estimation

B.4.1 Kalman Filters

The models were implemented using Kalman filters, which are model-based filters used

to filter noisy signals and for model-based fault detection. For linear systems with Gaussian

noise and ideal system models, the Kalman filter provides optimal linear estimates that

137

0 1000 2000 3000 4000 5000 6000

Time (s)

54

55

56

57

58

59

60

61

P
re

s
s
u

ri
z
e

r
L

e
v
e

l
(%

)

Simulator Measurements

Model Estimates

Figure 40: Simulator data and system identification estimates from the normal operating

conditions.

138

minimize the mean-squared error [46]. In the MMAE approach, N Kalman filters run in

parallel, where each filter represents a different operating condition.

The Kalman filter can be broken into prediction and correction steps. In the prediction

step, the previous state and state-covariance estimates are used to predict the next values

x̂
(i)
k|k−1 = Akx̂

(i)
k−1|k−1 +Bku

(i)
k (B.38)

ẑ
(i)
k|k−1 = Ckx̂

(i)
k|k−1 (B.39)

P
(i)
k|k−1 = AkP

(i)
k−1|k−1Ak

T +GkQGk
T , (B.40)

where x̂
(i)
k|k−1 is the predicted state estimate, ẑ

(i)
k|k−1 is the predicted measurement, P

(i)
k|k−1 is

the predicted state-covariance estimate, and the i superscript refers to the ith filter in the set

of filters and matches the operating conditions above. This predicted estimate is the same

formula as the estimate used for system identification.

In the corrector step, updated measurements are received and weighted to correct the

predictions

x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k z̃

(i)
k (B.41)

P
(i)
k|k = (I −K(i)

k Ck)P
(i)
k|k−1 (B.42)

K
(i)
k = P

(i)
k|k−1Ck

TΣ
(i)
k
−1 (B.43)

z̃
(i)
k = zk − ẑ(i)

k|k−1 (B.44)

Σ
(i)
k = CkP

(i)
k|k−1Ck

T +R, (B.45)

where x̂
(i)
k|k is the corrected state estimate, P

(i)
k|k is the corrected state-covariance estimate, K

(i)
k

is the Kalman gain and represents a weighting factor to calculate the corrected estimates,

z̃
(i)
k is the innovation and is the difference between the measurements and the predicted

measurements, and Σ
(i)
k is the innovation-covariance estimate.

In addition to estimating the states, the Kalman filter also predicts a statistical model for

the innovations sequence. For an ideal system model, the statistical model of the innovations

is Gaussian white noise with covariance equal to the innovation-covariance estimate defined

above [47]. This means that the model that matches the current operating conditions will

139

produce an innovations sequence that is normally distributed with zero-mean and covariance

approximated by the innovation-covariance.

Using the same normal operating data as for system identification, the parameters R and

Q were calculated. These parameters determine both the measurement-feedback gain and

the theoretical innovation covariance. The value for R, the measurement-noise covariance,

was calculated as the sample covariance estimate of the measurement during steady-state

operation. Then, the value of Q, the process-noise covariance, was calculated by running

the normal operating data through Kalman filters with varying Q values until the sam-

ple innovation covariance matched the theoretical innovation covariance. The final values

were: R = 5.4× 10−3 and Q = 1.4× 10−3, where both values are unitless because they are

associated with the normalized level.

B.4.2 Bayesian Hypothesis Testing

Bayesian hypothesis testing is a method of assigning probabilities to the set of statistical

models based on measured data. It starts with a prior probability for each model, which is

the probability that the model is the best fit before incorporating data. It then calculates

the likelihood of seeing the sampled data given each model. Finally, it calculates a posterior

probability for each model, which is the probability that the model is the best fit for the new

data. It does this by weighting the prior probabilities using the likelihoods.

The goal is to implement Bayesian hypothesis testing as a recursive update equation.

In other words, the equation should calculate new probabilities at each time step based on

the likelihoods of the current data and the probabilities at the previous time step. The

equation considers N statistical models, called hypotheses, denoted by {H(1), . . . , H(N)},

and is defined as [48]

P (H(i)|Zk) =
1

c
P (zk|Zk−1, H

(i))P (H(i)|Zk−1) (B.46)

where zk is a single measurement, Zk = {z0, . . . , zk}, P (H(i)|Zk) is a posterior probabil-

ity, P (zk|Zk−1, H
(i)) is a likelihood function, P (H(i)|Zk−1) is a prior probability, and c is a

normalizing constant to ensure the probabilities sum to unity.

140

In order to implement the above equations, likelihood values for each hypothesis need

to be calculated. Using the Gaussian model for the innovation, likelihood values can be

calculated using the Gaussian density function

P (zk|Zk−1, H
(i)) = |2πΣ

(i)
k |
− 1

2 exp

(
−1

2
z̃

(i)
k
TΣ

(i)
k
−1z̃

(i)
k

)
. (B.47)

The result of Bayesian hypothesis testing is a set of posterior probabilities for the different

operating conditions. These posterior probabilities, calculated in Equation B.46, were then

used for detecting the onset and estimating the leak magnitude of the LOCAs by calculating

the expected value of the leak rates

E {ṁleak} =
N∑
i=1

ṁ
(i)
leakP (H(i)|Zk). (B.48)

This entire procedure is shown in Algorithm 2.

A few notes on Algorithm 3. First, it was assumed that the plant was initially operating

under normal conditions, H(1), so P (H(1)|Z0) was significantly higher than the other proba-

bilities. This was selected to reduce false alarms in the beginning that occurred from noise.

This did not affect the algorithm’s ability to detect the onset of the LOCA. Second, the

threshold mentioned was a free design parameter defined as the leak size that distinguishes a

LOCA from a false alarm. This value was selected as the smallest leak magnitude associated

with any of the filters.

B.5 Results

The first LOCA tested was the baseline scenario to demonstrate how the methods both

detected the onset of the accident and estimated the leak magnitude. For this scenario, the

pressurizer level is shown for the times until the reactor tripped and until the LOCA was

detected; see Figure 41. The time to trip, equal to 176 s, corresponded to a 28% drop in the

level, and the time to detect, equal to 12.5 s, corresponded to just a 1% drop in the level.

The methods also estimated the time-varying magnitude of the leak, and the estimates

and actual leak magnitudes are shown in Figure 42. From this plot, the estimates in the

141

0 50 100 150 200 250

Time (s)

30

40

50

60

70

P
re

s
s
u
ri
z
e
r

L
e
v
e
l
(%

)

Detection Time

Steady-state

LOCA

0 10 20 30 40

Time (s)

58.5

59

59.5

60

60.5

P
re

s
s
u
ri
z
e
r

L
e
v
e
l
(%

)

Figure 41: Level measurements from the

simulator for the steady-state case. The top

plot shows the entire accident scenario, and

the bottom plot shows up until the accident

was detected.

0 50 100 150 200 250

Time (s)

0

200

400

600

800

1000

L
e
a
k
 M

a
g
n
it
u
d
e
 (

g
p
m

)

Actual Value

Estimated Value

Figure 42: Comparison between the ac-

tual leak magnitudes and the estimated leak

magnitudes for the steady-state case.

142

Algorithm 2 Method to detect LOCAs using MMAE.

assign P (H(1)|Z0) = 0.99

for each H(i) in {H(2), . . . , H(N)} do

assign P (H(i)|Z0) = 1−0.99
N−1

end for

assign status = Normal

for each time step k do

for each H(i) in {H(1), . . . , H(N)} do

calculate P (H(i)|Zk)

end for

calculate E {ṁleak}

if E {ṁleak} ≥ threshold then

status = LOCA

magnitude = E {ṁleak}

else

continue

end if

end for

middle of the scenario react more slowly than the leak magnitude increases. This results

from trying to balance accuracy with insensitivity to noise. The estimates in the beginning

and end are much closer to the true values, and show a clear increasing trend as the estimates

try to converge to the true values.

Previous research has detected LOCAs initiated when the plant started at steady-state.

However, none of these works have shown their techniques implemented during plant tran-

sients. The second LOCA tested was initiated while the plant power was increasing, causing

normal changes in the pressurizer level. For this scenario, the pressurizer level is again shown

for the time to trip and time to detect; see Figure 43. Towards the beginning of the transient,

the level drops by nearly 1%, and the methods accurately ignore this as normal operating

conditions. When the LOCA is initiated, the methods quickly detect the leak. The time to

143

0 100 200 300 400 500 600

Time (s)

10

20

30

40

50

60

P
re

s
s
u
ri
z
e
r

L
e
v
e
l
(%

)

Detection Time

Transient

Transient+LOCA

0 50 100 150 200 250 300 350

Time (s)

50

50.5

51

51.5

52

P
re

s
s
u
ri
z
e
r

L
e
v
e
l
(%

)

Figure 43: Level measurements from the

simulator for the transient case. The top

plot shows the entire accident scenario, and

the bottom plot shows up until the accident

was detected.

0 100 200 300 400 500 600

Time (s)

0

200

400

600

800

1000

L
e
a
k
 M

a
g
n
it
u
d
e
 (

g
p
m

)

Actual Value

Estimated Value

Figure 44: Comparison between the ac-

tual leak magnitudes and the estimated leak

magnitudes for the transient case.

144

trip, equal to 220 s, corresponded to a 38% drop in the level, and the time to detect, equal

to 13.5 s, corresponded to just a 1% drop in the level.

For this scenario, the estimates for the time-varying magnitude were also calculated.

These values are compared to the actual magnitudes; see Figure 44. As noted above, the

estimates remain small during the transient, and only increase when the LOCA is initi-

ated. The estimates here show a similar trend to the previous scenario, although the final

estimation error is larger compared with the steady-state case above.

B.6 Conclusion

In this chapter, we detected loss of coolant accidents in a GPWR simulator using a

model-based approach. This approach used system models of the pressurizer under various

operating conditions to identify the most likely operating conditions. The parameter values of

the models were tuned to the specific plant using system identification and normal operating

data. The models were implemented using Kalman filters for each operating condition, which

used feedback from the measurements to estimate the pressurizer level. Finally, the outputs

from the different models were used with Bayesian hypothesis testing to detect the loss of

coolant accidents and estimate the leak magnitudes.

These methods were able to quickly and accurately detect the LOCAs and differentiate

them from an operating transient. For the steady-state case, the LOCA was detected in 7%

of the time it took for the reactor to trip, and for the transient case, the LOCA was detected

in 6% of the time it took for the reactor to trip. In addition, the transient was correctly

identified as normal operating conditions, demonstrating the methods have some robustness.

These quick detection times and correct identification of a transient means that the methods

could be highly beneficial for plant operators. The detection times would give them warning

before the plant had even tripped that the fault occurred, and the identification of transients

suggests the methods could be robust to false alarms. Based on these benefits, the methods

would provide a powerful online monitoring tool to help operators.

145

One of the major advantages to this model-based approach for detecting LOCAs is that

it does not require process data from a LOCA. This is significant because very little, if any,

real process data from LOCAs exists. However, it is not difficult to capture operating data

from start-up and shutdown procedures, which is all that is necessary for this methodology.

This simplified data set makes these methods particularly powerful for detecting LOCAs

compared to other methods.

146

Appendix C Using Kernel Density Estimation to Detect Loss of Coolant

Accidents in a Pressurized Water Reactor

C.1 Introduction

Detecting loss of coolant accidents (LOCAs) is a safety-critical task for nuclear power

plant (NPP) operators. Quick and accurate detection enables them to rapidly take the nec-

essary actions to safely shut down the plant. In order to manually detect LOCAs, operators

must, in addition to their other responsibilities, constantly monitor multiple process param-

eters, which makes it difficult to detect LOCAs early. If LOCAs could be detected earlier,

it may be possible to avoid or reduce the large transients, like a reactor trip, that stress

systems, further overload operators, and may ultimately lead to core damage [40]. Further-

more, operators may be unable to diagnose specific characteristics of the LOCA, such as the

location of the leak. In order to alleviate operator workload and improve detection capabili-

ties, online monitoring tools would automatically alert operators to the onset of LOCAs and

provide additional diagnostics about the accident, including the leak location.

Previous research for detecting the onset of LOCAs used artificial neural networks

(ANNs) [41]. Based on measurements at each time step, an ANN detected several faults,

including the onset of several LOCAs. This method looked at each time step individually,

meaning it did not take advantage of accumulated information over time. In addition, the

method detected each of these faults using a common set of measurements; however, the

generality of the measurement set made it less sensitive to LOCAs. As a result of these

limitations, the LOCAs were detected well after the plant had tripped.

Other research identified leak locations for LOCAs using both ANNs and support vector

machines (SVMs) in a one-loop plant [41, 42]. Both methods were differentiating between

the hot and cold legs of the plant. While these methods were successful in identifying the

leak locations, the plant configuration used is not typical for NPPs, which generally have

multiple primary loops.

The research mentioned above, specific to LOCAs, used data-driven techniques, mean-

ing they used large quantities of dynamic training data to develop the detection tools.

147

Fault detection has also been developed using physics-based techniques. For example, state-

estimation techniques have used measurements and a system model to predict the behavior

of a system [49, 50, 51]. The predictions and measurements were then compared using statis-

tical testing to detect faults. Another technique has detected faults by analyzing qualitative

trends in conservation of mass, momentum, and energy [52, 53]. Fault decisions were made

using qualitative reasoning. The challenge with estimation and physics-based techniques is

that they can be difficult to implement in certain cases [54].

In this paper, we detected LOCAs and identified the leak locations for a three-loop pres-

surized water reactor. This was done using data-driven kernel density estimation techniques,

which estimated nonparametric probability density functions. These density functions pro-

vided likelihood values of the current measurements for the different fault status. This infor-

mation was combined over time to take advantage of temporal data and improve detection

speed.

We combined the likelihood values using two decision rules: Bayesian hypothesis testing

(BHT) and maximum likelihood estimation (MLE). Using these two decision rules, we de-

tected both the onset and location of the leaks. BHT used the likelihood values at each time

step to calculate real-time probabilities for both normal and faulted operating conditions.

These probabilities were then used to make decisions about whether a LOCA has occurred.

MLE combined data starting from LOCA detection to provide the location that is most

likely. Two different methods were used because, when identifying the leak locations, the

goal was to select optimal locations, rather than to detect them quickly.

The statistical methods used in this paper have a broad range of applications. A few

of those applications are given below. Kernel density estimation has been used for fault

detection in radar systems [55], dam safety [56], and flood modeling [57]. Bayesian hypoth-

esis testing has been used for detecting satellite faults [58], structural health monitoring of

aerospace components [59], and military target tracking applications [60]. These statistical

methods have a long history of use for fault detection and safety analysis purposes.

This paper used process data from a pressurized water reactor simulator. This simulator

was developed by GSE Systems and models a 970 MWe, three-loop, generic pressurized

water reactor. The simulator uses the RETACT thermal hydraulics package, which can

148

Table 7: Variable states used to generate multiple LOCA scenarios.

Location (6 values) Loops A, B, C; hot leg and cold leg (Figure 45)

Magnitude (20 values) 1, 2,. . . , 20 %

Initial Condition (10 values) 90, 91,. . . , 100 %

model non-homogeneous and non-equilibrium conditions. It has a model accuracy that is

compliant with ANS-3.5, which is the American Nuclear Society’s standard for “Nuclear

Power Plant Simulators for Use in Operator Training and Examination” [21]. The simulator

is used to train supervisors, operators, and engineers around the country.

This chapter is structured as follows. Section 2 describes the process data used for this

research. Section 3 derives the two sets of variables used for the data-driven techniques.

Section 4 explains kernel density estimation, Bayesian hypothesis testing, and maximum

likelihood estimation. Section 5 provides the results of the research. Finally, Section 6

concludes the chapter.

C.2 Process Data

To capture the correlations between different variables, process data was collected for

normal and faulted operating conditions. This data included the measurable temperatures,

pressures, mass-flow rates, pump currents, reactor power, and liquid levels throughout the

primary and secondary sides. All data was collected at a sample rate of 2 Hz.

Data for normal operating conditions was collected by varying the electricity generated

and the control-rod positions. The electricity generated was varied from 100 to 80% and

then back to 100%. These power changes were done at a rate of 0.5% (5 MWe) per minute.

Then, a single bank of control rods was adjusted by ±3 positions. Both scenarios were tested

because they captured different time constants for the processes.

149

Figure 45: Schematic of the different leak locations considered in the three-loop pressurized

water reactor.

150

Table 8: Listed accuracies of some commercial sensors for different sensor types.

Sensor Type Accuracy (% of maximum value)

Temperature 0.5

Pressure 0.15

Flow 0.25

Level 0.2

Data for faulted operating conditions was collected by running simulations of small-break

LOCAs and varying the LOCA location, LOCA magnitude, and the plant initial conditions.

From the simulator, the magnitude was specified by a percentage, where 100% is equivalent

to a full break in a 4.5-inch-diameter pipe. The initial condition was specified by varying

the output electrical power to a percentage of full power. The different states of these three

variables are shown in Table 7, and the possible locations are shown in Figure 45. Based on

these states, data was collected as a full factorial design. This means every combination of

the variable states was used, so the complete data set included 1200 LOCA scenarios. Each

data set began with 30 seconds of normal operation and ended when the reactor tripped.

The collected data was split into training and validation sets. The training set was used

to train the kernel density estimates, and the validation set was used to test the densities

using Bayesian hypothesis testing and maximum likelihood estimation.

One method of selecting the training and validation sets is to use orthogonal arrays [61].

Orthogonal arrays are fractional factorial designs that optimally span the entire space of the

design parameters. In this case, the design parameters were the LOCA location, the LOCA

magnitude, and the plant initial conditions. The minimum orthogonal array cuts the full

factorial design in half, creating equally sized training and validation sets.

To make the data more representative of real plant data, additive Gaussian white noise

was added to each of the relevant sensor measurements. Because neither noise variance

estimates nor real process data are readily available, noise variance values for each sensor

151

type were estimated using datasheets for commercial components. These components are

manufactured by Emerson as an indicator of typical instrument accuracy. Using the listed ac-

curacies from the datasheets, shown in Table 8, we equated the accuracies to 95% confidence

intervals for the Gaussian curve (equal to 2σ)

accuracy =
2σ

Umax

(C.1)

var = σ2 =
(accuracy× Umax)2

4
(C.2)

where Umax is the maximum sensor value. This provided a systematic estimate for the noise

magnitudes.

Adding noise to the process data made it more representative of real plant data. For use

with the online monitoring tools, that data was then filtered to remove some of the noise.

The noisy signals were filtered using first-order low-pass filters. The time constants were

chosen for each signal individually and the filtered values were used for the remainder of the

research.

C.3 Selecting Variable Sets

NPPs have a large number of measurable process variables, but they should not all be

used for fault detection. First, the high variable-dimensionality results in solutions that are

considerably more computationally expensive as the number of variables increases. Second,

additional variables may overfit the data, making the methods less robust to new cases.

Therefore, the total number of variables used should be reduced to the smallest set that can

accurately differentiate the possible conditions.

C.3.1 Variable Set for Detecting Onset

The first variable set needed to distinguish between normal and LOCA operating condi-

tions. A LOCA reduces the mass in the primary side, so one reasonable variable set correlates

the rates of change of the masses in the primary-side subsystems. These subsystems include

152

the liquid coolant in the primary loops, the mixed liquid-vapor mass in the pressurizer, and

the charging and letdown mass-flow rates.

For each of these subsystems, the rates of change of the masses were calculated based

on bulk properties. These rates were based on two assumptions. First, the piping does not

expand considerably from temperature changes, so volumes remain constant. Second, the

coolant inventory in the primary loops is always a liquid. This second assumption could be

violated late in an accident scenario; however, the goal of this research is to detect the fault

well before reaching that point.

For the primary loop, the total mass is

mP = ρPVP (C.3)

and its rate of change is

ṁP = ρ̇PVP + ρP V̇P

= ρ̇PVP (C.4)

where m is mass, ρ is density, V is volume, and the P subscript refers to the primary loops.

Because VP is constant, the first variable representing the primary loop mass-rate-of-change

is reduced to x1 = ρ̇P .

The pressurizer mass, which includes both liquid and vapor phases, is

mPZR = ρV VV + ρLVL (C.5)

and its rate of change is

ṁPZR = ρ̇V VV + ρV V̇V + ρ̇LVL + ρLV̇L (C.6)

where the PZR subscript refers to the pressurizer, the V subscript refers to the vapor phase,

and the L subscript refers to the liquid phase. The pressurizer system is a cylinder with cross-

sectional area A, height H, and measurable liquid level LL. The height can be normalized

such that H = 100 and LV = 100 − LL. Using this normalization, Equation C.6 can be

simplified to

ṁPZR = A
(
L̇L(ρL − ρV) + LL(ρ̇L − ρ̇V) + 100ρ̇V

)
(C.7)

153

Because A is constant, the second variable representing the pressurizer mass-rate-of-change

is reduced to x2 = L̇L(ρL − ρV) + LL(ρ̇L − ρ̇V) + 100ρ̇V .

The final variable is derived from the charging and letdown mass-flow rates. These values

are the mass-rates-of-change between the primary loop and the chemical and volume control

system and can be used directly. Therefore, the third variable is the net mass-flow rate,

x3 = ṁcharging − ṁletdown.

These three variables make up the final variable set for detecting whether the plant is in

a normal or faulted operating condition. The set is denoted by X1 = {x1, x2, x3}.

C.3.2 Variable Set for Identifying Location

The second variable set needed to distinguish between the six leak locations. For this

problem, mass terms could not be used because mass flow is only measured at one location

per primary loop. Instead, data correlations were used to narrow down the relevant variables

from a short list to the final variable set.

The short list of variables was identified visually based on plotting the measurable signals

for LOCAs in each of the locations. The list included fourteen variables: reactor power, (3×)

hot-leg temperatures, (3×) cold-leg temperatures, (3×) primary-loop mass-flow rates, (3×)

reactor-coolant-pump amperages, and reactor-coolant-system pressure. Each of the variables

with (3×) includes one measurement per primary loop.

The variable set was narrowed by analyzing the correlations between each pair of vari-

ables. Correlation is calculated as

rij =

∑n
k=1(xki − x̄i)(xkj − x̄j)√∑n

k=1(xki − x̄i)2
√∑n

k=1(xkj − x̄j)2
(C.8)

where rij is an individual correlation coefficient between variables i and j, k indexes time,

n is the number of time steps, and x̂i is the mean of variable xi. A correlation value close

to ±1 indicates that the variables are highly correlated. This means that the two variables

provide nearly identical information, so one of them can be removed without much loss of

information.

154

Using the training data set, the correlations were calculated for each pair. This can best

be shown in matrix form

R =

r11 . . . r1d

...
. . .

...

rd1 . . . rdd

 (C.9)

where R is a symmetric matrix showing the correlations between each pair. Positive and
negative correlations are treated the same, so the absolute value of R is shown

R =

1.00 0.91 0.90 0.91 0.26 0.24 0.26 0.33 0.25 0.34 0.53 0.51 0.56 0.47
0.91 1.00 0.99 1.00 0.13 0.15 0.13 0.31 0.27 0.32 0.45 0.39 0.45 0.60
0.90 0.99 1.00 0.99 0.14 0.18 0.14 0.30 0.31 0.30 0.43 0.34 0.42 0.57
0.91 1.00 0.99 1.00 0.13 0.15 0.13 0.31 0.27 0.32 0.45 0.39 0.45 0.60
0.26 0.13 0.14 0.13 1.00 0.98 1.00 0.28 0.21 0.29 0.25 0.30 0.33 0.15
0.24 0.15 0.18 0.15 0.98 1.00 0.98 0.29 0.12 0.29 0.26 0.37 0.34 0.12
0.26 0.13 0.14 0.13 1.00 0.98 1.00 0.29 0.21 0.28 0.25 0.30 0.34 0.15
0.33 0.31 0.30 0.31 0.28 0.29 0.29 1.00 0.68 0.81 0.21 0.39 0.40 0.68
0.25 0.27 0.31 0.27 0.21 0.12 0.21 0.68 1.00 0.68 0.19 0.00 0.24 0.49
0.34 0.32 0.30 0.32 0.29 0.29 0.28 0.81 0.68 1.00 0.32 0.39 0.27 0.68
0.53 0.45 0.43 0.45 0.25 0.26 0.25 0.21 0.19 0.32 1.00 0.54 0.50 0.47
0.51 0.39 0.34 0.39 0.30 0.37 0.30 0.39 0.00 0.39 0.54 1.00 0.55 0.55
0.56 0.45 0.42 0.45 0.33 0.34 0.34 0.40 0.24 0.27 0.50 0.55 1.00 0.54
0.47 0.60 0.57 0.60 0.15 0.12 0.15 0.68 0.49 0.68 0.47 0.55 0.54 1.00

The order in the matrix matches the order described in the beginning of this section. From

this matrix, reactor power, (2×) hot-leg temperatures, and (2×) cold-leg temperatures were

removed, leaving nine variables.

One limitation of kernel-density methods is that they can require large amounts of mem-

ory to store likelihood values for a d-dimensional space. And, the memory required increases

exponentially with each variable. We estimated that at most seven variables could be used

before running into memory problems. Therefore, we needed to remove two more variables

to determine the final variable set.

The two variables removed were the remaining hot and cold-leg temperatures. These

two variables were selected because they were correlated with the other hot and cold-leg

temperatures, respectively, which suggested that temperature variations were independent

of the leak location. In contrast, the (3×) primary-loop mass-flow rates and (3×) reactor-

coolant-pump amperages were less correlated between the loops, suggesting they provided

more leak-location dependent information.

155

After removing these two groups of variables, the second variable set, X2, was reduced

to seven variables: the (3×) primary-loop mass-flow rates, (3×) reactor-coolant-pump am-

perages, and reactor-coolant-system pressure.

This variable set can be explained by the mass-flow physics. When a leak occurs, there is

a localized pressure-change in a part of the plant. This will cause a change in the relationship

between the mass-flow rates and the reactor-coolant-pump amperages that is a function of

the total system pressure. This variable set captures those changes to be able to identify the

correct location.

C.4 Methods

C.4.1 Kernel Density Estimation

Kernel density techniques estimate nonparametric probability density functions over a

set of given variables. These nonparametric density functions are desirable when a para-

metric density is unable to describe the data set. When used for differentiating between

different operating conditions, they need to be conditional probability density functions,

P (Xi|Condition), over a specific variable set, Xi, and for a given condition. Detecting the

onset and identifying the location together required eight different density functions

P (X1|Normal), P (X1|LOCA)

P (X2|L1), . . . , P (X2|L6)

where Li is the i-th location.

A kernel density estimator uses training data to estimate the density value at each given

point in the variable space. The result is a d-dimensional grid of likelihood values calculated

by [62]

P̂Hi(X) =
1

n

n∑
k=1

KHi(X −Xk
i) (C.10)

KHi(X) = |Hi|−
1
2K(H

− 1
2

i X) (C.11)

156

where P̂Hi(X) is the density estimate at X for variable set Xi, n is the number of time

steps, K(·) is a kernel smoothing function, and Hi is the bandwidth matrix. The kernel

smoothing function is a non-negative function that integrates to one and helps smooth the

density estimate. The bandwidth matrix defines the amount of smoothing.

The kernel smoothing function and the bandwidth matrix need to be determined. This

research used the multivariate Gaussian probability density function as the kernel function.

The bandwidth matrix was calculated using Silverman’s rule of thumb [62]

Hi =

h1

. . .

hd

 (C.12)

hj = σj

(
4

(d+ 2)n

) 1
d+4

(C.13)

where σj is the standard deviation of xj, and d is the dimensionality of X. This method of

calculating the bandwidth matrix correlates it to the dimensionality of the problem and the

standard deviations of each individual variable. Kernel density estimation was implemented

using Matlab’s mvksdensity function [63].

For each density estimate, the above equations resulted in a discretized, d-dimensional

matrix of likelihood values over the span of the variable space. In order to calculate the

values between this discretized matrix, linear interpolation was used.

C.4.2 Bayesian Hypothesis Testing

To detect the onset of a LOCA, the density functions over variable set X1 are used with

BHT. This method assigns probabilities to a set of statistical models based on measured

data. It starts with a prior probability for each model, which is the probability that the

model is the best fit before incorporating data. It then calculates the likelihood of seeing

the sampled data given each model. Finally, it calculates a posterior probability for each

model, which is the probability that the model is the best fit for the new data. It does this

by weighting the prior probabilities using the likelihoods.

157

Algorithm 3 Method to detect LOCAs using BHT.

assign P (Normal|X0:0
1) = P (LOCA|X0:0

1) = 0.5

assign status = Normal

for each time step k do

calculate P (Normal|X0:k
1), P (LOCA|X0:k

1)

if P (LOCA|X0:k
1) > threshold then

status = LOCA

else

continue

end if

end for

BHT can be formulated as a recursive update equation, meaning that it calculates new

posterior probabilities at each time step based on the likelihood values of the current data

and the probabilities of the previous time step. In this research, the equations consider the

two operating conditions and are defined as [48]

P (Normal|X0:k
1) =

1

c
P (Xk

1 |Normal)P (Normal|X0:k−1
1)

P (LOCA|X0:k
1) =

1

c
P (Xk

1 |LOCA)P (LOCA|X0:k−1
1)

(C.14)

where Xk
1 is variable set 1 at time k, X0:k

1 = {X0
1 , . . . , X

k
1 }, P (Condition|X0:k

1) is a posterior

probability, P (Xk
1 |Condition) is the kernel density estimate calculated in the previous section,

P (Condition|X0:k−1
1) is a prior probability, and c is a normalizing constant to ensure the

probabilities sum to unity. These equation also show more explicitly that the probabilities

are functions of the variable sets over multiple time steps.

The result of BHT is a set of posterior probabilities for the different operating conditions.

These posterior probabilities, calculated in Equation C.14, were then used for detecting a

LOCA. This procedure is shown in Algorithm 3.

The threshold mentioned in Algorithm 3 is a free design parameter defined as the prob-

ability that distinguishes normal from faulted operating conditions. When the posterior

158

probability for the LOCA operating condition exceeded the threshold, a LOCA was de-

clared. This meant that higher values of the threshold can reduce the possibility of false

alarms, but can also increase the detection delay during an actual LOCA. Its value was

determined experimentally, as shown in Section C.5.

C.4.3 Maximum Likelihood Estimation

To identify the leak location, the density functions over variable set X2 are used with

MLE. This method selects parameter values based on maximizing the total likelihood of a

set of observations. Here, the parameter values were the different leak locations.

To calculate the MLE, the total likelihood for each condition needed to be determined.

The total likelihood of a series of measurements is equal to the product of each individual

likelihood value. For location Li, this is defined as

n2∏
k=n1

P (Xk
2 |Li) (C.15)

where n1 and n2 are the times when the fault was detected and the reactor tripped, respec-

tively.

In implementation, it is common to use the natural logarithm of the likelihood function.

This creates a sum of log-likelihood values instead of a product, but still has the same

maximum location. Based on this, the most likely location, L∗i , was found using

L∗i = arg max
Li

n2∑
k=n1

logP (Xk
2 |Li) (C.16)

C.5 Results

The methods were implemented on each of the LOCA scenarios from the validation set.

The metrics used to analyze performance were the number of false alarms, the detection

delay, and the number of correctly identified locations.

The threshold used with BHT in Section C.4.2 was selected to balance the number of

false alarms with the detection delay. These two metrics are shown in Figure 46 for different

159

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Threshold

0

1

2

N
u

m
b

e
r

o
f

F
a

ls
e

 A
la

rm
s

12.25

12.5

12.75

13

13.25

A
v
e

ra
g

e
 D

e
te

c
ti
o

n
 D

e
la

y
 (

s
)

Figure 46: A plot of the number of false alarms and average detection delay as a function of

the decision threshold used with BHT.

160

values of the threshold. From the figure, the number of false alarms drops to zero when the

threshold value passes 0.65. Therefore, a threshold value of 0.65 was selected to give the

shortest detection delay that still reduces the number of false alarms to zero.

The scenarios were grouped by leak magnitude, and the average, minimum, and maxi-

mum delay values were calculated. These results were also compared with the time it took

for the reactor to trip; see Figure 47. This plot shows that the detection methods detect the

fault well before the plant trips for all magnitudes examined. The average detection delay

was one-seventh the time to trip, giving operators significant warning before the plant would

trip. Overall, the methods provided reliable detection in a short period of time.

It is also worth comparing these results to those found by Bartlett and Uhrig [41]. Their

research detected multiple faults, including two LOCAs in the hot and cold legs of a one-

loop plant. These accidents tripped the reactor in 4.0 and 4.5 seconds, respectively, and the

detection delays were 47.5 and 37.5 seconds, respectively. Based on the times to trip the

reactor, their LOCAs were larger in magnitude than any tested in this research. But, the

detection delays for our largest LOCAs were approximately one-tenth the delays for their

LOCAs. By using a variable set specific to loss of coolant accidents and taking advantage of

temporal data, we were able to detect the loss of coolant accidents more quickly.

Finally, the results of the location detection problem were assessed based on the selected

threshold. The results are again broken out by magnitude; see Table 9. For very small

magnitude LOCAs, the methods did a poor job of identifying the location. This is because

there is insufficient change in the loops for the methods to differentiate the fault from noise.

However, once the leak magnitude exceeds 2%, the location was nearly always detected.

The maximum log-likelihood values that were used to make the decisions about the loca-

tions are shown in Figure 48. These values give a measure of the relative evidence collected

for each location decision. This figure shows that the leaks with 1 and 2% magnitudes, which

are the smallest leak sizes looked at in this study, had significantly lower log-likelihood val-

ues than for the larger magnitudes. This occurred because the changes in signals for the

smaller leaks were so small that the detected locations were more a function of noise than a

detectable change in the physics.

161

0 2 4 6 8 10 12 14 16 18 20

Magnitude (%)

10
0

10
1

10
2

10
3

T
im

e
 (

s
)

Average Detection Delay (min/max)

Average Time to Trip

Figure 47: A plot of the average, minimum, and maximum detection delays compared to

times for the reactor to trip as a function of fault magnitude.

162

Table 9: Percentage of correctly identified leak locations as a function of the leak magnitude.

Magnitude (%) Total correct location (%)

1 3.3

2 46.7

3-20 99.8

To address this problem, we have included a cutoff value for the log-likelihood, also

shown in Figure 48. If the log-likelihood is below this cutoff, the algorithm will determine

that there is insufficient evidence to detect the location. This will reduce the number of

incorrectly identified locations.

C.6 Conclusion

To ensure safe operation, NPP operators are required to constantly monitor a large num-

ber of process variables. In addition, they need to be ready to rapidly diagnose and respond

to accidents. Having accident alerts and diagnostic information automatically provided can

help them focus on the response. This paper presented online monitoring tools for detection

of LOCAs and identification of the leak locations.

To accomplish these tasks, data-driven methods were developed using process variables.

First, the set of measurable variables in a NPP was reduced to two sets capable of de-

tecting leaks and identifying their locations. Then, these variable sets were used to train

kernel-density estimates that provided likelihood information at each time step. Finally,

these likelihood values were used with Bayesian hypothesis testing and maximum likelihood

estimation to detect the LOCAs and identify the leak locations.

Looking at the results of this research, the LOCAs were detected for all scenarios tested

with an average detection delay of one-seventh the time for the reactor to trip. In addition,

163

0 2 4 6 8 10 12 14 16 18 20

Magnitude (%)

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

M
a

x
im

u
m

 L
o

g
-L

ik
e

lih
o

o
d

Correctly Identified

Incorrectly Identified

Cutoff

Figure 48: A plot of the maximum log-likelihood values for each scenario as a function of

the leak magnitude.

164

the leak locations were correctly identified for 92.3% of the scenarios tested, with higher

success rates for larger leaks.

These detections times should be compared against some criteria. If the monitoring

tool detected a LOCA, it would trip the plant. Compared with waiting until the control

system tripped the plant, tripping the plant early would reduce the plant transient and could

prevent the plant from reaching unsafe conditions before the safety systems started working.

Therefore, the primary criteria for detection time is faster than the control system would

trip the plant, which these techniques accomplish by a factor of seven.

It is also important to consider the detection accuracy. These methods were able to accu-

rately detect the LOCAs, reducing the burden on operators. The importance of this can be

seen by examining the Three Mile Island accident, where operators essentially misdiagnosed

a LOCA. During that accident, the leak rate was estimated at 1270 kg min−1 [64], which

corresponds to a magnitude of roughly 2% in this paper. At that leak rate, these methods

could have detected the LOCA in around 30 seconds. Automated techniques would have

removed the human element and reduced the severity of that accident.

165

Appendix D Detecting Loss-of-Coolant Accidents Without Accident-Specific

Data

D.1 Introduction

Detecting loss-of-coolant accidents (LOCAs) is a safety-critical task for nuclear power

plant operators. For medium to large LOCAs, operators may be able to do this manually

without considerable effort. However, it is more challenging for very small LOCAs that result

in minimal changes to process measurements. Without a proper fault diagnosis, operators

would have difficulty implementing appropriate responses to ensure safe plant shutdown.

This is exactly what happened during the Three Mile Island accident, when an undiagnosed

small LOCA resulted in a partial reactor meltdown. In order to aid operators, this paper

develops an automated fault detection tool to detect these very small LOCAs in pressurized

water reactors.

Often, fault detection techniques are separated into data-driven and physics-based cat-

egories, where the goal of both is to differentiate between normal and faulted operating

conditions. Data-driven methods rely on information contained in large quantities of his-

torical data, whereas physics-based methods use first-principles to develop system models.

This paper will focus on data-driven techniques for fault detection.

There have been several previous works that used data-driven methods to detect LOCAs

and other leaks. The problem has been solved using kernel density estimation [39], artifi-

cial neural networks [41, 65, 66, 67, 68], and support vector machines [13]. Each of these

data-driven methods used simulator-generated data from both nominal and faulted operat-

ing conditions to achieve their goals. The challenge with the above methods is that real

operational LOCA data is difficult to obtain. Thus, the various detectors cannot be trained

using operational data. In order to implement them, the detectors would almost certainly

have to be trained using plant-specific simulator data. This would remove one of the primary

advantages of data-driven methods, which is that they estimate and make decisions based

on operational data.

166

As an alternative, this work develops data-driven methods that could be implemented

using only real operating data. It does this using a physics-inspired approach that equates

the physical effects of a LOCA to changes in known variables. This means that the methods

can be trained using nominal operating data, but are still able to detect LOCAs. In this

work, we exclusively use simulated data; however, we expect the nominal data that we use

to be consistent with real data that is available to plants, such that it could be implemented

using real data.

Our approach combines data-driven modeling and control theoretic estimation tech-

niques. The model captures the physics of relevant plant systems to be able to predict

dynamic system behavior. It is created using artificial neural network regression and is

trained using only nominal operating data. The estimation technique uses the data-driven

model to estimate the system behavior in the presence of uncertainty. This enables it to

provide real-time LOCA detection and to estimate the unknown leak magnitude. The es-

timation is implemented using particle filtering techniques, which are nonlinear estimators.

The methods are verified using LOCA data.

This chapter is structured as follows. Section 2 describes the system modeling, including

the model input and output variables, the process data, and the model structure and training.

Section 3 describes the state-estimation process and how it is used to detect LOCAs. Section

4 describes the results of the methods applied to detecting LOCA simulations. Finally,

Section 5 concludes the chapter.

D.2 System Modeling

In order to detect LOCAs, we developed a data-driven predictive model that captured

the physics of the relevant systems. This model required three things: input and output

variables, process data, and the regression model structure. Once the input and output

variables were determined, process data was collected and used to train the system model

based on the selected regression model structure.

167

D.2.1 Model Input and Output Variables

The model variables can be split into outputs and inputs, where outputs are the variables

being modeled to detect LOCAs, and inputs are the variables used to predict the time-varying

behavior of the outputs. Additional details on physics-based modeling of the pressurizer can

be found in [22].

The output variables were selected based on what physical processes should show the

largest response to LOCAs. These variables were determined to be the pressure and liquid

level in the pressurizer system, denoted p and L, respectively. They were chosen because

LOCAs result in loss of coolant inventory, which will reduce the mass in the primary loop.

The pressure and liquid level are good proxies for the mass because the pressurizer has the

highest elevation in the primary loop; therefore, changes in the primary loop mass will first

appear in the pressurizer.

The input variables were selected as the variables that affect pressurizer mass and energy;

see Figure 49 for a schematic of the pressurizer. These variables are

ṁSL = surge-line mass-flow-rate

TSL = surge-line temperature

ṁSP = spray mass-flow-rate

TSP = spray temperature

Q̇H = heater power

These variables also capture the saturated two-phase condition in the pressurizer, which

includes both liquid and vapor phases.

The problem with the above list of inputs is that the surge-line mass-flow-rate is not

directly measured. Rather, it is a combination of (i) the net mass-flow-rate to and from the

chemical and volume control system (CVCS), and (ii) the change in density of the primary

loop from changing temperature. The net mass-flow-rate from the CVCS is measured as the

difference between the charging and letdown flows, denoted ṁCV . The net mass-flow rate

from the change in primary loop density can be estimated using other properties.

168

L

T

p

T
F T

T

TF

F
T

F = FLOW METER
T = TEMPERATURE SENSOR
L = LEVEL SENSOR
p = PRESSURE SENSOR

VAPOR

LIQUID

SPRAY
LINE

PRESSURIZER

CONTROL
RODS

REACTOR

STEAM
GENERATOR

SURGE
LINE

CVCS
LINE

COLD
LEG

HOT
LEG

PUMP

FUEL
RODS

HEATER

A A

B B

C C

D D

E E

F F

G G

H H

J J

K K

L L

M M

N N

P P

R R

T T

24

24

23

23

22

22

21

21

20

20

19

19

18

18

17

17

16

16

15

15

14

14

13

13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A0

WEIGHT:

PID

Figure 49: Schematic of the inputs to the pressurizer system. These inputs are all the

variables that affect the pressurizer mass and energy, so are used in the model.

169

The change in primary loop density can be written analytically using the chain rule

ρ̇ =
∂ρ

∂p
ṗ+

∂ρ

∂T
Ṫ (D.1)

where ρ is density, p is pressure, T is temperature, and the dot notation signifies d
dt

. This

is subcooled liquid, which is often approximated as an incompressible fluid. This means the

change in density is approximately proportional to Ṫ , with additional coefficients determined

from the data. This was done for the average hot-leg and average cold-leg temperatures

separately, denoted ṪH and ṪC , because the coefficients change significantly over that amount

of temperature variation.

There is one additional input that is beneficial under certain operating conditions. Gen-

erally, the pressurizer is a saturated system, so the temperatures of both the vapor and liquid

portions are related to the pressure. However, during large in-surges, the liquid temperature

can fall below the saturated temperature due to the large influx of colder liquid entering

the pressurizer. Therefore, the pressurizer liquid temperature, denoted TL, has also been

included as an input.

The final model variables are a set of inputs used to predict outputs. The inputs are

ṁCV , ṪH , ṪC , TSU , ṁSP , TSP , Q̇H , and TL. The outputs are p and L.

As mentioned in the introduction, this selection of variables enabled us to detect LOCAs

without using LOCA data. A LOCA has a comparable effect on mass and energy to a net

mass-flow out of the primary side. This means that LOCA-similar data can be captured

when there is a net mass-flow out through the CVCS system. Then during implementation

of the model, the net mass-flow-rate can be calculated as the sum of the rate from the CVCS

and the rate from a LOCA. This can be used to predict the unknown LOCA mass-flow-rate.

D.2.2 Process Data

Simulated process data containing the relevant inputs and outputs was collected for

nominal conditions and LOCA conditions. The nominal data was used for training models

and other parameters, and the LOCA data was only used for final verification testing. Here,

we discuss how the nominal data was collected.

170

All data was generated using a commercial nuclear power plant simulator developed

by GSE Systems. The plant simulated is a 970 MWe pressurized water reactor with three

primary loops and a data collection rate of 2 Hz. The simulator uses the RETACT thermal

hydraulics package, which can model non-homogeneous and non-equilibrium conditions. In

addition, it has a model accuracy that is compliant with ANS-3.5, which is the American

Nuclear Society’s standard for “Nuclear Power Plant Simulators for Use in Operator Training

and Examination” [21].

The nominal data needed to contain unfaulted operating transients to be able to capture

system dynamics. This was achieved by varying the reference signals to the pressure, level,

and rod control systems. The pressure control system uses the heaters and spray to control

the pressure, the level control system uses the CVCS mass-flow-rate to control the level, and

the rod control system uses control-rod position to control the primary loop temperature.

This process was selected in order to artificially capture data in a shorter period of time that

might normally occur over an extended period of time.

The varying reference signals were selected using a random number generator in order

to collect multiple datasets. In total, twenty datasets were collected, each containing ten

hours of simulated data; see Figure 50 for an example of one dataset. The datasets were

split into three groups: (i) eighteen datasets were used to train the neural network model,

(ii) one dataset was used to estimate particle filter parameters, and (iii) one dataset was

used to estimate appropriate decision thresholds. This was done to reduce biases that can

occur from using the same data for multiple training purposes.

To make the data more representative of real plant data, additive Gaussian white noise

was added to the input and output values. The standard deviations of these noise distri-

butions were selected as 0.1 % of the full sensor range, as defined by the simulator. These

values are shown in Table 10.

D.2.3 System Model

The goal is to develop a model that captures the physics of the pressurizer without

requiring thermodynamic models. We do this by training an artificial neural network (ANN)

171

0 100 200 300 400 500 600

Time (mins)

2150

2200

2250

2300

P
re

s
s
u
re

 (
p
s
i)

0 100 200 300 400 500 600

Time (mins)

54

58

62

66

L
e
v
e
l
(%

)

Figure 50: An example of the pressure and level measurements for one dataset, including

Gaussian white noise. The fluctuations result from two phenomena: (i) the signals diverge

from their nominal values due to the altered reference signals being sent to the controllers,

and (ii) they return to their nominal values once the nominal reference signals are resumed

to the controllers.

172

Table 10: List of the noise standard deviations, σ, for the input and output sensors.

Sensors σ

p 0.7 psi

L 0.1 %

ṁSP 0.7 gpm

ṁCV 0.2 gpm

TH , TC 0.12 °F

TSU , TSP , TL 0.6 °F

Q̇H 0.3 kW

to model the nonlinear state update equation. Here, we discuss the model and the training

process.

Model Structure We described the pressurizer dynamics using a nonlinear state-space

model

xk+1 = f(xk, uk) + wk

yk = h(xk) + vk

(D.2)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, y ∈ Rr is the output vector,

w is process noise, v is measurement noise, and k indexes time. Advantages to this system

description are that it (i) is inherently auto-regressive, and (ii) can be directly implemented

in the particle filtering algorithms described in the next section. For additional details on

nonlinear state-space systems, refer to [27]. In a state-space model, the states are variables

that completely describe the state of the system at a point in time. To simplify the model,

the states were chosen as the pressure and level. This choice of state vector meant that the

output function was equal to the identity function, h(xk) = xk. The inputs were described

in Section D.2.1. This left the state function, f(xk, uk), to be calculated using the data.

In order to calculate the state function, we needed direct access to state data; however,

this data was corrupted by measurement noise. This was resolved by pre-filtering the data

173

and approximating the states by the filtered output data. The input data was also pre-filtered

to improve model accuracy. The filtering techniques used were zero-phase low-pass filters,

which filter the data forward and backward in order to remove any phase-delay. The filter

time constants were chosen for each signal individually based on their frequency content.

After filtering, the data was also down-sampled to 0.2 Hz because the signal-to-noise ratios

were too large.

The state function was modeled using ANN regression, which is a data-driven nonlinear

regression technique that maps inputs to outputs. An ANN contains an input layer, one

or more hidden layers, and an output layer. In the standard feedforward network, data

goes from the input layer, through each hidden layer sequentially, and then to the output

layer. The input layer contains nodes for each input, the output layer contains nodes for

each output, and the hidden layers contain a user-defined number of intermediate nodes,

called neurons, which add degrees of freedom. For additional details on ANNs beyond what

is discussed in this section, refer to [69, 70]. It has been shown that an ANN with a single

hidden layer and sufficient neurons can uniformly approximate any continuous function [71];

therefore, an ANN with just a single hidden layer was used to capture the state function.

The output of each layer after the input layer depends on a set of weights and an activa-

tion function. These intermediary outputs are calculated as the weighted sum of that layer’s

inputs and then run through an activation function. For the hidden layer, the activation

function is the hyperbolic tangent function, and for the output layer, the activation function

is simply the linear output. The final result applied to our problem is a regression model

that maps state and input vectors to state function

f(xk, uk) = Woσ

Wi

xk
uk

+ bi

+ bo (D.3)

where Wo ∈ Rn×q is the output weight matrix, bo ∈ Rn is the output bias vector, Wi ∈

Rq×(n+p) is the input weight matrix, bi ∈ Rq is the input bias vector, q is the number

of neurons, and σ is the activation function and is calculated element-wise. For training

purposes, the weights and biases together are called the weights. The weights and number

of neurons are calculated during the training process based on the collected process data.

174

Training For training, we divided the data into training and test sets. The split of training

and test data was approximately 85% and 15%, respectively. The training set was used to

find optimal weight values, and the test set was used to evaluate the performance of networks

with different numbers of neurons. In addition, we used Bayesian regularization to prevent

overfitting.

The training performance function measured both predictive accuracy and overfit, with

the measure of overfit included as part of the regularization step. Predictive accuracy was

measured as the sum of squares error, and overfit was measured as the sum of squares of the

weights. The resulting optimization problem is

min
W

α

NT−1∑
k=0

(xk+1 − f(xk, uk))
2 + β

NW∑
l=1

W2
l (D.4)

where W is a vector containing all the weights, NT is the training set size, NW is the total

number of weights, and α and β are regularization parameters for the performance function.

In its most basic form, the regularization parameters are user-defined; however, this adds

additional parameters that the user needs to determine.

Bayesian regularization automatically calculates optimal regularization parameters using

a Bayesian framework. A full discussion of this regularization technique is outside the scope

of this paper; refer to [72, 73] for details. In short, Bayesian regularization calculates the

regularization parameters that correspond to the maximum posterior probabilities given the

data and given uniform priors on the unknown regularization parameters.

This optimization problem was solved using the Levenberg Marquardt algorithm [74],

which is a steepest-descent optimization algorithm that is commonly used for training neu-

ral networks. Both the Levenberg-Marquardt algorithm and Bayesian regularization were

implemented using Matlab’s trainbr training function, which is part of their Deep Learning

Toolbox [75].

In order to select the number of neurons, we trained networks with a range of neuron

values and compared them based on their test set performance. That performance was

measured using the mean absolute scaled error (MASE). This metric is a measure of accuracy

175

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of Neurons

20

22

24

26

P
re

s
s
u

re
 M

A
S

E

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of Neurons

10

11

12

13

L
e

v
e

l
M

A
S

E

Figure 51: Plot of the test set performance as a function of the number of neurons. The

performance converges as the regularization process prevents the ANN from overfitting the

data.

176

used for time-series data that (i) is independent of the scale of the data, (ii) and is robust

to zero-value measurements or constant measurements [76]. It is calculated element-wise as

MASE =
1
N

∑N−1
k=0 |xk+1 − f(xk, uk)|

1
N

∑N−1
k=0 |xk+1 − xk|

(D.5)

where the numerator is the mean absolute estimation error, the denominator is the mean

absolute naive estimation error, the naive model is defined as xk+1 = xk, and the 1
N

terms

are shown despite cancelling to emphasize they are mean values. The results for the range

of neuron values are shown in Figure 51. This plot shows the successful regularization step

as the test set performance levels off with increasing neurons. The final network chosen

contained 28 neurons, with MASE values of 19.2 % and 10.0 % for the pressure and level,

respectively. This model proved accurate enough to be able to detect LOCAs and estimate

their magnitudes; therefore, no further improvement was needed.

The final result of the training process was a fully defined ANN regression model. This

model approximated the unknown state function in the state-space model, and the full state-

space model was then used for state estimation to detect LOCAs.

D.3 State Estimation

Using this state-space model, we detected LOCAs using state-estimation techniques.

State estimation is the process of estimating the state based on a sequence of input and

measurement data. These techniques require accurate system models to estimate the state,

which is why the previous section focused on developing the model. This section discusses

the state-estimation technique used to estimate the state and the leak model used to detect

LOCAs.

D.3.1 Particle Filters

Particle filters are nonlinear state-estimation techniques that estimate the state using

sequential Monte Carlo algorithms. This means they are implemented as a set of sample

177

states, called particles, that are propagated using the system model and sampled noise. These

particles are then weighted using collected measurement data. The resulting particles and

weights can be used to estimate a posterior distribution of the state at each point in time,

p̂(xk|Yk), where Yk = {y0, . . . , yk}. Here, we provide a high-level overview of the algorithm;

for additional details on the particle filtering algorithm used, refer to [77].

The first step in the algorithm is to propagate the set of particles using the system model

and sampled noise. The system model was determined in Section D.2.3, but the noise term

was not defined. We assumed it was Gaussian process noise, and its covariance matrix is

discussed later in this section. This step can be expressed using our state-space model

x̂
(i)
k+1 = f(x̂

(i)
k , uk) + w

(i)
k

ŷ
(i)
k = h(x̂

(i)
k)

(D.6)

where x̂k is the state estimate, w
(i)
k is a sample from the noise distribution, i indexes the

particles, and this propagation step is calculated for each of the NP particles.

The second step is to weight the particles based on the measurement data. The weights

are calculated using the probability density function of the known measurement noise dis-

tribution. These are unnormalized weights, which can then be normalized so that they sum

to unity. This step can be summarized as

φ
(i)
k = p(yk|x̂(i)

k)

= N (yk : ŷ
(i)
k , R) (D.7)

Φ
(i)
k =

φ
(i)
k∑NP

i=1 φ
(i)
k

(D.8)

where φ
(i)
k is the unnormalized weight, Φ

(i)
k is the normalized weight, and N (yk : ŷ

(i)
k , R) is

the likelihood of the sample vector yk for the Gaussian distribution with mean vector ŷ
(i)
k

and meausurement covariance matrix R.

178

Algorithm 4 Particle filtering algorithm.

for each particle i = 1, . . . , NP do

x̂
(i)
0 ⇐ p(x0)

Φ
(i)
0 = 1

NP

end for

for each time step k ≥ 1 do

for each particle i = 1, . . . , NP do

x̂
(i)
k = f(x̂

(i)
k−1, uk−1) + w

(i)
k−1

ŷ
(i)
k = h(x̂

(i)
k)

φ
(i)
k = p(yk|x̂(i)

k)

end for

Φ
(i)
k =

φ
(i)
k∑NP

i=1 φ
(i)
k

p̂(xk|Yk) ≈
∑NP

i=1 Φ
(i)
k δ(xk − x̂

(i)
k)

E[xk|Yk] =
∑NP

i=1 Φ
(i)
k x̂

(i)
k

for each particle i = 1, . . . , NP do

x̂
(i)
k ⇐ P̂ (xk|Yk)

Φ
(i)
k = 1

NP

end for

end for

Using the combination of state values and weights, the set of particles can then be used

to calculate the expected value of the state. This is the weighted sum of the individual

particle state values

E[xk|Yk] =

NP∑
i=1

Φ
(i)
k x̂

(i)
k (D.9)

This expected value is often used for any decisions that involve the state values.

The final step is to resample the particles. Resampling duplicates particles of high

weight and removes particles of low weight. Particles are resampled with a probability

that is proportional to their weight. Without resampling, the majority of the weight would

eventually be held by only a few particles, resulting in poor filter performance.

179

The particle filtering algorithm is shown in Algorithm 4. In this algorithm, ⇐ means

that the variable to the left of the arrow is a random sample from the distribution to the

right.

Finally, we calculated the process noise covariance used in the algorithm. The value was

chosen so that an empirical residual distribution would approximate its theoretical statistical

distribution. The residual is calculated element-wise using [78]

εk =
1

NP

NP∑
i=1

F (yk|x̂(i)
k) (D.10)

where εk is the residual value, and F is the cumulative distribution function (CDF). The

residual’s theoretical distribution is the standard uniform distribution. To make the theoret-

ical distribution easier to work with, we transformed the residual using the inverse standard

Gaussian CDF; this transforms the uniform distribution into the standard Gaussian distribu-

tion. The problem becomes selecting a process noise covariance that makes the transformed

residual approximate the standard Gaussian distribution.

This problem was solved using optimization techniques to minimize the error between

the empirical residual distribution and the standard Gaussian distribution. The objective

function was the Anderson-Darling test statistic [79], resulting in the optimization problem

min
Q

N

∫ ∞
−∞

(F̂ (ε|Q)− F (ε))2

F (ε)(1− F (ε))
dF (ε) (D.11)

where F̂ (ε|Q) is the empirical CDF for a given process noise covariance Q, F (ε) is the

theoretical CDF, and N is the number of samples.

The result is a fully defined particle filter that can be used for nonlinear state estimation.

However with the current model, it can only estimate the state containing pressure and level.

180

D.3.2 Leak Model

In order to detect LOCAs, we augmented the state vector to include the leak magnitude

and augmented the state-space model to include a leak model. With the model and this

additional state, the particle filter could then estimate the leak magnitude in real-time. The

challenge with determining the leak model is that without knowledge of the exact failure

mechanism, it would be nearly impossible to come up with either a physics-based or data-

driven model.

This challenge was overcome by designing a leak model that could handle arbitrary

changes in leak magnitude. This meant it needed to account for both slow and abrupt

changes in the leak magnitude. These two speeds were handled by different propagation

mechanisms.

For handling slow changes or small jumps in the leak magnitude, a Gaussian random

walk model was used [80]. This model can be expressed as

Lk+1 = Lk + wk (D.12)

where L is the leak magnitude. The added noise term perturbs the estimate, allowing it to

change over time; without it, the estimate would converge to a point estimate. The larger the

noise standard deviation, the faster the estimate can change, but also the more sensitive to

noise it becomes. This value was chosen experimentally as 0.1 gpm using nominal operating

data.

For handling larger jumps in the leak magnitude, we monitored the particle filter for

biased estimates. If the leak magnitude was far from the estimated value, the filter estimates

would become biased. When this occurred, the particle filter was re-initialized, and the leak

magnitude sample states were drawn from a uniform distribution. After a few time steps,

the filter estimates converged back to a smaller set, enabling the re-initialization process to

detect larger jumps in the magnitude.

It is important to note that this re-initialization process will occur during normal opera-

tion. This is a common challenge in any statistical testing and is often called a false alarm.

However, this case does not represent a false alarm because no LOCA decision has been

181

reached. Therefore, it is better for this to happen even when there is no leak rather than to

not happen fast enough when a leak occurs.

In order to determine if the estimates were biased, we needed to be able to measure bias.

This was approximated using the auto-correlation of a sequence of residual values. Each

sequence was two minutes, and the auto-correlation of lag one time-step was calculated

element-wise as

ρk =
1

Nρ

∑Nρ
k=1(εk − µ)(εk−1 − µ)

σ2
(D.13)

where ρ is the auto-correlation coefficient, µ = 0 is the theoretical mean of the residual,

σ2 = 1 is the theoretical variance of the residual, Nρ = 24 is the number of time-steps in

two minutes, and this calculation is done element-wise. In addition, we did the following:

to ensure only non-negative values, the squared auto-correlation was used; and to calculate

a single value, the maximum value of the residual vector was used. The final result was a

single value at each time step that approximated the amount of bias in the past sequence of

residual values.

This measure of bias was used to re-initialize the filter whenever the squared auto-

correlation coefficient exceeded a threshold. The threshold was calculated experimentally as

the upper limit of the values seen for nominal data. The threshold value was determined to

be 0.8.

These two leak model propagation methods worked together to detect LOCAs. At each

time step, the random walk model was implemented in the particle filtering algorithm. Before

moving to the next time step, the auto-correlation coefficient was calculated and compared

to the threshold. Whenever the value exceeded the threshold, the particle filter was re-

initialized, and then returned to using the random walk model. These two methods are

shown implemented in Section D.4.

The final result of this process was a state-estimation algorithm that used the data-driven

ANN model and leak model to estimate the leak magnitude. This algorithm was then used

for real-time LOCA detection.

182

D.4 Results

The methods were developed and trained using simulated nominal operating data. Here,

we show the verification results from implementing the methods on simulated LOCA sce-

narios. In particular, we show how the two leak model propagation methods detect leaks of

different magnitudes.

In order to discuss detection times, we needed to determine a threshold for detecting

a leak using the particle filter. The detection time was defined as the time between the

start of the LOCA scenario and the estimate exceeding this threshold. This was calculated

experimentally as the upper limit of the values seen for nominal data. The threshold value

was determined to be 3 gpm.

The LOCA data was collected by running simulations of small-break LOCAs of various

sizes. In the simulator, the size is specified by a percentage, where 100 % is equivalent to a

full break in a 4.5-in.-diameter pipe. The sizes simulated were 0.025 %, 0.05 %, and 0.1 %,

which corresponded to 5.4 gpm, 10.8 gpm, and 21.6 gpm, respectively.

For each LOCA scenario, we provide two plots of the results. The first shows the mea-

sured outputs and the state estimates for the pressure and level. These plots are all shown

with a consistent scale. The second plot shows the auto-correlation coefficient, the true

leak magnitude, and the estimated magnitude. On these plots, vertical dashed lines show

when the auto-correlation coefficient exceeded the threshold, causing the particle filter to be

re-initialized.

The methods were first implemented on a LOCA simulation with a magnitude of 5.4 gpm;

see Figure 52. For such a small LOCA, only the random walk propagation method was active

because the auto-correlation coefficient never exceeded the threshold. This resulted in a slow

increase in the estimated leak magnitude until it converged near the true value. Using the

3 gpm threshold, it took roughly 10 minutes until an operator would have been alerted.

This corresponded to a 2.4 psi and 0.4 % drop in pressure and level, respectively, giving the

operator plenty of time to react.

Next, the methods were implemented on a LOCA simulation with a magnitude of

10.8 gpm; see Figure 53. This LOCA was slightly larger than the previous scenario, which

183

0 5 10 15 20 25 30

Time (mins)

2225

2230

2235

2240

2245

P
re

s
s
u
re

 (
p
s
i)

Measurement

Estimate

0 5 10 15 20 25 30

Time (mins)

58.5

59

59.5

60

60.5

L
e
v
e
l
(%

)

Measurement

Estimate

(a)

0 5 10 15 20 25 30

Time (mins)

0

0.2

0.4

0.6

0.8

1

A
u
to

c
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

Threshold

0 5 10 15 20 25 30

Time (mins)

0

2

4

6

L
e
a
k
 m

a
g
n
it
u
d
e
 (

g
p
m

)

Threshold

Actual

Estimate

(b)

Figure 52: Results for the 5.4 gpm LOCA scenario. Figure 52a shows the pressure, level,

and particle filter estimates. Figure 52b shows the auto-correlation coefficient and leak

magnitude.

184

0 5 10 15 20 25 30

Time (mins)

2225

2230

2235

2240

2245

P
re

s
s
u
re

 (
p
s
i)

Measurement

Estimate

0 5 10 15 20 25 30

Time (mins)

58.5

59

59.5

60

60.5

L
e
v
e
l
(%

)

Measurement

Estimate

(a)

0 5 10 15 20 25 30

Time (mins)

0

0.2

0.4

0.6

0.8

1

A
u
to

c
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

Threshold

0 5 10 15 20 25 30

Time (mins)

0

5

10

15

L
e
a
k
 m

a
g
n
it
u
d
e
 (

g
p
m

)

Actual

Estimate

(b)

Figure 53: Results for the 10.8 gpm LOCA scenario. Figure 53a shows the pressure, level,

and particle filter estimates. Figure 53b shows the auto-correlation coefficient and leak

magnitude.

185

caused the auto-correlation coefficient to exceed the threshold just before 5 minutes. After

the particle filter reinitialized and a short delay, the estimate converged near the true value.

The converged value exceeded the threshold, meaning it took roughly 5 minutes until an

operator would have been alerted. This corresponded to a 4.0 psi and 0.6 % drop in pressure

and level, respectively. This simulation shows how the re-initialization process worked, and

how it was able to more quickly detect the larger LOCA.

Finally, the methods were implemented on a LOCA simulation with a magnitude of

21.6 gpm; see Figure 54. This was the largest LOCA analyzed, and the auto-correlation

coefficient quickly exceeded the threshold at 2 minutes. This meant it took roughly 3 minutes

until an operator would have been alerted, which corresponded to a 6.6 psi and 0.7 % drop

in pressure and level, respectively. These drops still would have provided an operator with

plenty of time to decide how to proceed.

In this simulation, the filter also reinitialized around 24 minutes. This was a limitation

in the collected dataset; the operating conditions reached a region in the data space that the

data-driven model did not capture. However, the estimate returned after a few minutes.

The results from these LOCA simulations show that the data-driven approach was able to

successfully detect these very small LOCAs; see Table 11 for a summary of the results. Two

leak model propagation methods were used to detect LOCAs of varying sizes, helping improve

detection time for larger LOCAs without increasing noise in the estimates. In addition, the

methods provided accurate estimates of the leak magnitude, providing operators with useful

diagnostic information.

D.5 Conclusion

In this chapter, we developed a data-driven tool to detect very small LOCAs. This

was accomplished by training an ANN regression model of the pressurizer dynamics and

combining it with particle filters that detected LOCAs in real-time. All of this was done

using only data captured from simulated nominal operating conditions, making it more

implementable using real operational data than previous methods.

186

0 5 10 15 20 25 30

Time (mins)

2225

2230

2235

2240

2245

P
re

s
s
u
re

 (
p
s
i)

Measurement

Estimate

0 5 10 15 20 25 30

Time (mins)

58.5

59

59.5

60

60.5

L
e
v
e
l
(%

)

Measurement

Estimate

(a)

0 5 10 15 20 25 30

Time (mins)

0

0.2

0.4

0.6

0.8

1

A
u
to

c
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

Threshold

0 5 10 15 20 25 30

Time (mins)

0

10

20

30

L
e
a
k
 m

a
g
n
it
u
d
e
 (

g
p
m

)

Actual

Estimate

(b)

Figure 54: Results for the 21.6 gpm LOCA scenario. Figure 54a shows the pressure, level,

and particle filter estimates. Figure 54b shows the auto-correlation coefficient and leak

magnitude.

187

Table 11: Summary of the results of the methods implemented on LOCA scenarios. The

pressure and level drops were calculated at the detection time.

Leak Magnitude (gpm) Detection Time (min) Pressure Drop (psi) Level Drop (%)

5.4 10 2.4 0.4

10.8 5 4.0 0.6

21.6 3 6.6 0.7

The methods were tested using LOCA simulations to verify their effectiveness. The

simulations had leak magnitudes of 5.4 gpm, 10.8 gpm, and 21.6 gpm, and were detected in

10 min, 5 min, and 3 min, respectively. Based on these results, the methods detected each

case well before an operator would need to react and provided accurate estimates to aid in

operator response.

The primary limitation to the methods developed here is that they rely on comparable

data from the CVCS system. Specifically, they require transient data for the mass-flow-

rate through the CVCS system, which limits the maximum LOCA size these methods could

detect. In order to detect larger LOCAs, we would either need data from those LOCA

scenarios, or would need to combine these methods with physics-based models that would

be valid for a larger range of operating conditions. However, these larger LOCAs would be

easier for operators to detect, making them less critical to be detected automatically.

As a final comment, we suggest that the use of physics-inspired variables is a powerful

way of extending the use of data-driven methods. By considering variables in terms of their

effects on mass and energy, variables can be more readily compared and used for prediction

even when exact data does not exist. This approach can result in a balance between allowing

the data to purely define the model and using expert knowledge of the physical processes.

188

Bibliography

[1] Y. Mo, R. Chabukswar, and B. Sinopoli. Detecting integrity attacks on scada systems.
IEEE Transactions on Control Systems Technology, 22(4):1396–1407, July 2014.

[2] Lee T. Maccarone, Christopher J. D’Angelo, and Daniel G. Cole. Uncovering cyber-
threats to nuclear system sensing and observability. Nuclear Engineering and Design,
331:204 – 210, 2018.

[3] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson. Revealing stealthy attacks
in control systems. In 2012 50th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1806–1813, Oct 2012.

[4] Mohammad Naghnaeian, Nabil H. Hirzallah, and Petros G. Voulgaris. Security via
multirate control in cyber-physical systems. Systems & Control Letters, 124:12 – 18,
2019.

[5] B. Satchidanandan and P. R. Kumar. Dynamic watermarking: Active defense of
networked cyber–physical systems. Proceedings of the IEEE, 105(2):219–240, 2017.

[6] Chongrong Fang, Yifei Qi, Peng Cheng, and Wei Xing Zheng. Optimal periodic water-
marking schedule for replay attack detection in cyber–physical systems. Automatica,
112:108698, 2020.

[7] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Computer and Relia-
bility Societies, pages 49–51, May 2011.

[8] D. Albright, P. Brannan, and C. Walrond. Did stuxnet take out 1,000 centrifuges at
the natanz enrichment plant? Technical report, Institute for Science and International
Security, December 2010.

[9] Sigurd Skogestad and Ian Postlethwaite. Multivariable Feedback Control: Analysis
and Design. John Wiley and Sons, Second edition, 2001.

[10] R. B. Amir, S. T. Gul, and A. Q. Khan. A comparative analysis of classical and
one class svm classifiers for machine fault detection using vibration signals. In 2016
International Conference on Emerging Technologies (ICET), pages 1–6, 2016.

189

[11] B. Samanta and K.R. Al-Balushi. Artificial neural network based fault diagnostics of
rolling element bearings using time-domain features. Mechanical Systems and Signal
Processing, 17(2):317 – 328, 2003.

[12] S. H. Lee, Y. G. No, M. G. Na, K. Ahn, and S. Park. Diagnostics of loss of coolant acci-
dents using svc and gmdh models. IEEE Transactions on Nuclear Science, 58(1):267–
276, 2011.

[13] K. H. Yoo, Y. D. Koo, J. H. Back, and M. G. Na. Identification of loca and estimation
of its break size by multiconnected support vector machines. IEEE Transactions on
Nuclear Science, 64(10):2610–2617, 2017.

[14] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identification in cyber-
physical systems. IEEE Transactions on Automatic Control, 58(11):2715–2729, Nov
2013.

[15] H. Fawzi, P. Tabuada, and S. Diggavi. Secure estimation and control for cyber-
physical systems under adversarial attacks. IEEE Transactions on Automatic Control,
59(6):1454–1467, June 2014.

[16] Mohammad Majidi, Alireza Erfanian, and Hamid Khaloozadeh. A new approach to
estimate true position of unmanned aerial vehicles in an ins/gps integration system in
gps spoofing attack conditions. International Journal of Automation and Computing,
15(6):747–760, Dec 2018.

[17] J. A. Farber and D. G. Cole. Detecting loss-of-coolant accidents without accident-
specific data. Progress in Nuclear Energy, 128(103469), 2020.

[18] R.M. Singer, K.C. Gross, J.P. Herzog, R.W. King, and S. Wegerich. Model-based
nuclear power plant monitoring and fault detection: Theoretical foundations. In
International Conference on Intelligent Systems Applications to Power Systems, 6
1997.

[19] N. Zavaljevski and K. C. Gross. Sensor fault detection in nuclear power plants us-
ing multivariate state estimation technique and support vector machines. In Third
International Conference of the Yugoslav Nuclear Society, 10 2000.

[20] A. Hoehn and P. Zhang. Detection of covert attacks and zero dynamics attacks in
cyber-physical systems. In 2016 American Control Conference (ACC), pages 302–307,
2016.

190

[21] ANSI/ANS–3.5–2009: Nuclear power plant simulators for use in operator training and
examination.

[22] Neil Todreas and Mujid Kazimi. Nuclear Systems I: Thermal Hydraulic Fundamentals.
Taylor and Francis, 1990.

[23] Revised release on the IAPWS industrial formulation 1997 for the thermodynamic
properties of water and steam. Technical report, International Association for the
Properties of Water and Steam, 2007.

[24] Johan Paduart, Lieve Lauwers, Jan Swevers, Kris Smolders, Johan Schoukens, and
Rik Pintelon. Identification of nonlinear systems using polynomial nonlinear state
space models. Automatica, 46(4):647 – 656, 2010.

[25] Giuseppe Basile and Giovanni Marro. Controlled and Conditioned Invariants in Linear
System Theory. Prentice Hall Professional Technical Reference, First edition, 1991.

[26] Alberto Isidori. Nonlinear Control Systems. Springer, Third edition, 1995.

[27] Hassan Khalil. Nonlinear Systems. Prentice Hall, Third edition, 2002.

[28] Gene Golub and Charles Van Loan. Matrix Computations. Johns Hopkins, Third
edition, 1996.

[29] Alejandro F. Villaverde, Antonio Barreiro, and Antonis Papachristodoulou. Struc-
tural identifiability analysis via extended observability and decomposition. IFAC-
PapersOnLine, 49(26):171 – 177, 2016.

[30] R. Hermann and A. Krener. Nonlinear controllability and observability. IEEE Trans-
actions on Automatic Control, 22(5):728–740, 1977.

[31] Alejandro F. Villaverde, Antonio Barreiro, and Antonis Papachristodoulou. Observ-
ability and structural identifiability of nonlinear biological systems. Complexity -
Special Issue, 2019, 2019.

[32] A. J. Krener and K. Ide. Measures of unobservability. In Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, pages 6401–6406, 2009.

191

[33] B. T. Hinson, M. K. Binder, and K. A. Morgansen. Path planning to optimize observ-
ability in a planar uniform flow field. In 2013 American Control Conference, pages
1392–1399, 2013.

[34] James Demmel. The componentwise distance to the nearest singular matrix. SIAM
Journal on Matrix Analysis and Applications, 13(1):10–19, 1992.

[35] E. A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear es-
timation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No.00EX373), pages 153–158, 2000.

[36] Eric A. Wan and Rudolph van der Merwe. The Unscented Kalman Filter, chapter 7,
pages 221–280. John Wiley & Sons, Ltd, 2002.

[37] Wolfgang Karl Hardle and Leopold Simar. Applied Multivariate Statistical Analysis.
Springer, Fourth edition, 2015.

[38] J. A. Farber and D. G. Cole. Using model-based fault detection to differentiate tran-
sients and loss of coolant accidents. In 11th Nuclear Plant Instrumentation, Control
and Human-Machine Interface Technologies Conference, Orlando, Florida, 2018.

[39] Jacob A. Farber, Daniel G. Cole, Ahmad Y. Al Rashdan, and Vaibhav Yadav. Using
kernel density estimation to detect loss-of-coolant accidents in a pressurized water
reactor. Nuclear Technology, 205(8):1043–1052, 2019.

[40] Tennessee Valley Authority. Browns ferry nuclear plant (bfn)—multi-unit probabilis-
tic risk-assessment (pra). Technical report, Apr 1995.

[41] Eric B. Bartlett and Robert E. Uhrig. Nuclear power plant status diagnostics using
an artificial neural network. Nuclear Technology, 97(3):272–281, 1992.

[42] M. G. Na, W. S. Park, and D. H. Lim. Detection and diagnostics of loss of coolant
accidents using support vector machines. IEEE Transactions on Nuclear Science,
55(1):628–636, Feb 2008.

[43] D. Magill. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans-
actions on Automatic Control, 10(4):434–439, Oct 1965.

192

[44] J. A. Farber and D. G. Cole. Using multiple-model adaptive estimation and system
identification for fault detection in nuclear power plants. In International Mechanical
Engineering Congress and Expo, Pittsburgh, PA, 2018.

[45] Karel J. Keesman. System Identification. Springer London, 2011.

[46] R. E. Kalman. A new approach to linear filtering and prediction problems. Transac-
tions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[47] R. Mehra and J. Peschon. An innovations approach to fault detection and diagnosis
in dynamic systems. Automatica, 7(5):637 – 640, 1971.

[48] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Dover Publications,
2005.

[49] E. Chow and A. Willsky. Analytical redundancy and the design of robust failure
detection systems. IEEE Transactions on Automatic Control, 29(7):603–614, Jul 1984.

[50] P.M. Frank and X. Ding. Survey of robust residual generation and evaluation methods
in observer-based fault detection systems. Journal of Process Control, 7(6):403 – 424,
1997.

[51] Rolf Isermann. Process fault detection based on modeling and estimation methods:
A survey. Automatica, 20(4):387 – 404, 1984.

[52] Young Soo Park and Richard Vilim. Implementation of new prodiag algorithm and
simulation-based acceptance test. In 11th Nuclear Power Instrumentation, Control
and Human-Machine Interface Technologies Conference, pages 884 – 893, San Fran-
cisco, CA, June 11-15, 2017, 2017.

[53] J. Reifman and T.Y.C Wei. “PRODIAG” a process-indepedent transient diagnostic
system - i: Theoretical concepts. Nuclear Science and Engineering, 131:329 – 347,
1999.

[54] Jianping Ma and Jin Jiang. Applications of fault detection and diagnosis methods in
nuclear power plants: A review. Progress in Nuclear Energy, 53(3):255 – 266, 2011.

193

[55] M. J. Desforges, P. J. Jacob, and J. E. Cooper. Applications of probability den-
sity estimation to the detection of abnormal conditions in engineering. Journal of
Mechanical Engineering Science, 212:687 – 703, 1998.

[56] Lin Cheng and Dongjian Zheng. Two online dam safety monitoring models based
on the process of extracting environmental effect. Advances in Engineering Software,
57:48 – 56, 2013.

[57] Kyung-Duk Kim and Jun-Haeng Heo. Comparative study of flood quantiles estimation
by nonparametric models. Journal of Hydrology, 260(1):176 – 193, 2002.

[58] Qianqian Zhang and Qingming Gui. A new bayesian raim for multiple faults detection
and exclusion in gnss. Journal of Navigation, 68(3):465–479, 2014.

[59] You Ling and Sankaran Mahadevan. Integration of structural health monitoring and
fatigue damage prognosis. Mechanical Systems and Signal Processing, 28:89 – 104,
2012.

[60] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. Interacting multiple model
methods in target tracking: a survey. IEEE Transactions on Aerospace and Electronic
Systems, 34(1):103–123, Jan 1998.

[61] Nist/sematech e-handbook of statistical methods. https://www.itl.nist.gov/

div898/handbook/pri/section3/pri3342.htm,. Accessed: 2018-08-08.

[62] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, 1986.

[63] Matlab statistics and machine learning toolbox release 2017b. The MathWorks, Inc.,
Natick, Massachusetts, United States.

[64] R. O. Wooton, R. S. Denning, and P. Cybulskis. Analysis of the three mile island ac-
cident and alternative sequences. Technical report, Battelle, Columbus Laboratories,
Jan 1980.

[65] Jaemin Yang and Jonghyun Kim. An accident diagnosis algorithm using long short-
term memory. Nuclear Engineering and Technology, 50(4):582 – 588, 2018. Interna-
tional Symposium on Future I&C for Nuclear Power Plants (ISOFIC2017).

194

https://www.itl.nist.gov/div898/handbook/pri/section3/pri3342.htm
https://www.itl.nist.gov/div898/handbook/pri/section3/pri3342.htm

[66] Seung Jun Lee and Poong Hyun Seong. A dynamic neural network based accident
diagnosis advisory system for nuclear power plants. Progress in Nuclear Energy,
46(3):268 – 281, 2005. Computational Intelligence in Nuclear Applications: Lessons
Learned and Recent Developments.

[67] Kun Mo, Seung Jun Lee, and Poong Hyun Seong. A dynamic neural network ag-
gregation model for transient diagnosis in nuclear power plants. Progress in Nuclear
Energy, 49(3):262 – 272, 2007.

[68] T.V. Santosh, Gopika Vinod, R.K. Saraf, A.K. Ghosh, and H.S. Kushwaha. Applica-
tion of artificial neural networks to nuclear power plant transient diagnosis. Reliability
Engineering & System Safety, 92(10):1468 – 1472, 2007.

[69] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[70] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Academic
Press, fourth edition, 2009.

[71] K. Hornik. Some new results on neural network approximation. Neural Networks,
6(8):1069 – 1072, 1993.

[72] David J. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, May
1992.

[73] F. Dan Foresee and M. T. Hagan. Gauss-newton approximation to bayesian learning.
In Proceedings of International Conference on Neural Networks (ICNN’97), volume 3,
pages 1930–1935 vol.3, June 1997.

[74] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441,
1963.

[75] Matlab deep learning toolbox release 2017b. The MathWorks, Inc., Natick, Mas-
sachusetts, United States.

[76] Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679 – 688, 2006.

195

[77] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. IEE Proceedings F - Radar and Signal Processing,
140(2):107–113, April 1993.

[78] James V. Candy. Bayesian Signal Processing. Wiley, second edition, 2016.

[79] M. A. Stephens. Edf statistics for goodness of fit and some comparisons. Journal of
the American Statistical Association, 69(347):730–737, 1974.

[80] C. Andrieu, A. Doucet, S. S. Singh, and V. B. Tadic. Particle methods for change
detection, system identification, and control. Proceedings of the IEEE, 92(3):423–438,
March 2004.

196

	Title Page
	Committee Membership Page
	ABSTRACT
	Table of Contents
	List of Tables
	1. State, input, and output variable conventions.
	2. Summary of the zero-dynamics attacks targeting the pressure.
	3. Summary of the zero-dynamics attacks targeting the level.
	4. Condition numbers for several input possibilities.
	5. Listed accuracies of some commercial sensors for different sensor types.
	6. Least-squares estimates of the unknown parameters.
	7. Variable states used to generate multiple LOCA scenarios.
	8. Listed accuracies of some commercial sensors for different sensor types.
	9. Percentage of correctly identified leak locations as a function of the leak magnitude.
	10. List of the noise standard deviations, , for the input and output sensors.
	11. Summary of the results of the methods implemented on LOCA scenarios. The pressure and level drops were calculated at the detection time.

	List of Figures
	1. Block diagram of the cyber-physical system, including the attacker. This figure shows the attacker is able to inject input and output attacks between the cyber and physical components.
	2. Image of a spring-mass-damper system. This example is used throughout this chapter.
	3. Results of the replay attack implemented on the SMD system. The figure shows the state, the measured output, and the expected output, and is segmented into thirds. In the first segment, the attacker only records measurement data. In the second segment, the attacker both replays the recorded measurements and adds a force onto the mass. In the third segment, the defender tries to detect the attack by adding a random force onto the spring, expecting it to respond accordingly if not under attack.
	4. Sketch of a linearization approximation. Within the dashed circle, a linear system could give good results. However, outside of the region, the linear system could be highly inaccurate.
	5. Results of the zero-dynamics attack implemented on the SMD system. The figure shows the state, the measured output, and the expected output, and is segmented into halves. In the first segment, the attacker, assumed to have knowledge of the system dynamics, implements the zero-dynamics attack, which causes the state to increase and the measurement to remain nominal. In the second segment, the defender again tries to detect the attack by adding a random force onto the spring, but cannot detect it because the output and expected output match.
	6. Simple example of an SVM classifier to detect rotating machinery faults. The two variables are summary statistics of vibration data in two dimensions, and the blue and red data points are normal and faulted data, respectively. The line is the decision boundary, where data on a given side of the line is classified accordingly.
	7. Results of the state estimator on the SMD system. The figure shows the state, the measured output, and the state estimate. For this example, the attacker has access to the position sensor but not the actuator. They attack the system by slowly injecting a ramp input into the sensor and the controller compensates by trying to return the mass back to the nominal position. But, the state estimator accurately estimates the state, meaning the attack is detected.
	8. Schematic of the primary loop including sensor types and locations. This work focuses on the pressurizer subsystem.
	9. Detailed schematic of the pressurizer system. The pressure is controlled by the heater and spray flow. The level is controlled by the surge line flow.
	10. Data used to estimate parameters for the physics-based model. The top two plots are output variables, and the bottom two plots are input variables.
	11. Comparison of the pressure and level data between the commercial simulator and physics-based model. The simulator data includes noise, but the model data does not because it is the optimal model output that fits the noisy data.
	12. A sample of the data used to estimate parameters for the data-driven model. The top two plots are output variables, and the bottom two plots are input variables. In the four plots, the colors each correspond to a different dataset, meaning three datasets are shown here.
	13. Comparison of the pressure and level data between the commercial simulator and data-driven model. This plot shows just one of the datasets for reference. The simulator data includes noise, but the model data does not because it is the optimal model output that fits the noisy data.
	14. Comparison of the pressure and level data between the physics-based and data-driven models. This plot shows the simulator data and the estimates from both the physics-based and data-driven models. From the plot, the data-driven model is an excellent match for the simulator data. By contrast, the physics-based model captures the phenomena, but does not perform as well.
	15. Comparison of the heater output data and the PI model. The top plot shows the error signal between the true pressure and setpoint, and the bottom plot shows both the simulator data and the model estimates.
	16. Comparison of the surge flow data and the PI model. The top plot shows the error signal between the true level and setpoint, and the bottom plot shows both the simulator data and the model estimates.
	17. Diagram of an invariant orbit. The planet is in the center and the moon orbits around it along the dashed curve. The orbital path represents an invariant set because its dynamics, described by f(x), are always tangent to the path, ensuring that the moon stays on the orbital path.
	18. Diagram of a controlled invariant orbit. The planet is in the center and the satellite orbits around it along the dashed curve. The orbital path represents a controlled invariant set because its dynamics, described by f(x)+g(x)u, can always be made tangent to the path by control actions u, ensuring that the satellite stays on the orbital path.
	19. Simulation results of the asymptotically stable attack on the pressure. The top plot shows both the measured and true pressure. The measured pressure remains at the nominal value, while the true pressure returns from some nonzero initial condition to the the nominal value. The bottom two plots show the required attacker signals to achieve zero output.
	20. Simulation results of the stable attack on the level that is made unstable when the zero-output constraint is relaxed slightly. The top plot shows both the measured and true level. The measured level remains at the nominal value, while the true level increases uncontrolled. The middle plot shows the attacker signal to achieve zero measured level. The bottom plot shows the nonzero inputs that are required to maintain zero output, but are kept to less than 1% on a normalized scale.
	21. Simulation results of the unstable attack on the pressure. The top plot shows both the measured and true pressure. The measured pressure remains at the nominal value, while the true pressure decreases uncontrolled. The bottom two plots show the required attacker signals to achieve zero output.
	22. The discretization approach used for the stability analysis. The blue exes are the nominal points, and the red dots are the perturbed points. These are used in conjunction with the Gershgorin Circle Theorem.
	23. Plot of the real and imaginary portions of the eigenvalues at the nominal points. All these eigenvalues are in the LHP.
	24. Plot of the real and imaginary portions of the Gershgorin circles at the perturbed points, but hides some larger circles. All of these circles are in the LHP.
	25. Plot of the real and imaginary portions of the Gershgorin circles at the perturbed points, including the larger circles. Some of the circles cross into the RHP.
	26. Plot of the real and imaginary portions of the eigenvalues at the nominal points evaluated at a finer discretization near the troublesome points. None of the points show evidence of crossing into the RHP.
	27. Example of a decision boundary in two-dimensional space. Any value that falls into the normal region is declared normal, and any value that falls outside the normal region is declared an attack.
	28. Example of a Gaussian decision boundary in two-dimensional space. Under nominal conditions, the probabilities of correctly declaring normal and falsely declaring attack are 1- and , respectively.
	29. Results of the state estimation process on an attack targeting the level. This simulation does not include noise. The top plots refer to the pressure, and the bottom plots refer to the level. The right plots show the estimation error, both of which are small.
	30. Plots of the two approaches to accounting for the null dynamics of the equilibrium state. The first, labeled RWD, is for the random-walk dynamics, and the second, labeled MLE, is for the maximum likelihood estimation. Both methods are able to estimate the state, but the MLE has advantages.
	31. Plots of the standard deviation of the estimation error and the transient magnitude versus the input duration. As the input duration increases, the error decreases, but the transient magnitude increases.
	32. Plot of the decision region and the data from the simulations for the physics-based model. The black dots are each estimates for a different noise simulation, and the boundary is the decision region. Note these are in units of percentage of alarm values.
	33. Plot of the simulated output error. The blue lines are the true signals, and the red lines show how output error is introduced for the analysis.
	34. Plot of the initial conditions for the training, testing, and validation datasets. In addition, the dashed box shows the range of data included in the training set, and there are a few points outside of it.
	35. Plot of output accuracy versus state estimation accuracy for the training, testing, and validation sets. The blue line represents the estimated cutoff, and we expect points to lay at or below the blue line. This curve is missing two data points that are outside our training window, and are used to see how well the model generalizes far from data.
	36. Plot of output accuracy versus state estimation accuracy for the training, testing, and validation sets. The blue line represents the estimated cutoff, and we expect points to lay at or below the blue line. This curve includes two data points that are outside our training window, and are used to see how well the model generalizes far from data. Even at these higher errors, the data does not stray far from our estimated cutoff values.
	37. Plot of output accuracy versus state estimation accuracy for the training, testing, and validation sets. Compared to the previous plot, this breaks out pressure and level separately, instead of using a norm. This curve is missing two data points that are outside our training window, and are used to see how well the model generalizes far from data.
	38. Plot of output accuracy versus state estimation accuracy for the training, testing, and validation sets. Compared to the previous plot, this breaks out pressure and level separately, instead of using a norm. This curve includes two data points that are outside our training window, and are used to see how well the model generalizes far from data.
	39. Plot of the decision region and the data from the simulations for the data-driven mode. The black dots are each estimates for a different noise simulation, and the boundary is the decision region. Note these are in units of percentage of alarm values.
	40. Simulator data and system identification estimates from the normal operating conditions.
	41. Level measurements from the simulator for the steady-state case. The top plot shows the entire accident scenario, and the bottom plot shows up until the accident was detected.
	42. Comparison between the actual leak magnitudes and the estimated leak magnitudes for the steady-state case.
	43. Level measurements from the simulator for the transient case. The top plot shows the entire accident scenario, and the bottom plot shows up until the accident was detected.
	44. Comparison between the actual leak magnitudes and the estimated leak magnitudes for the transient case.
	45. Schematic of the different leak locations considered in the three-loop pressurized water reactor.
	46. A plot of the number of false alarms and average detection delay as a function of the decision threshold used with BHT.
	47. A plot of the average, minimum, and maximum detection delays compared to times for the reactor to trip as a function of fault magnitude.
	48. A plot of the maximum log-likelihood values for each scenario as a function of the leak magnitude.
	49. Schematic of the inputs to the pressurizer system. These inputs are all the variables that affect the pressurizer mass and energy, so are used in the model.
	50. An example of the pressure and level measurements for one dataset, including Gaussian white noise. The fluctuations result from two phenomena: (i) the signals diverge from their nominal values due to the altered reference signals being sent to the controllers, and (ii) they return to their nominal values once the nominal reference signals are resumed to the controllers.
	51. Plot of the test set performance as a function of the number of neurons. The performance converges as the regularization process prevents the ANN from overfitting the data.
	52. Results for the 5.4gpm LOCA scenario. Figure 52a shows the pressure, level, and particle filter estimates. Figure 52b shows the auto-correlation coefficient and leak magnitude.
	53. Results for the 10.8gpm LOCA scenario. Figure 53a shows the pressure, level, and particle filter estimates. Figure 53b shows the auto-correlation coefficient and leak magnitude.
	54. Results for the 21.6gpm LOCA scenario. Figure 54a shows the pressure, level, and particle filter estimates. Figure 54b shows the auto-correlation coefficient and leak magnitude.

	Preface
	1.0 Introduction
	1.1 Research Objectives
	1.2 Research Approach
	1.3 Applications to the Nuclear Power Industry
	1.4 Contributions
	1.5 Dissertation Overview

	2.0 State of the Art and Limits of Current Practice
	2.1 Stealthy Attacks
	2.1.1 Replay Attacks
	2.1.2 Linear Zero-Dynamics Attacks
	2.1.3 Conclusion

	2.2 Detection and Diagnostics
	2.2.1 Classification Methods
	2.2.2 State-Estimation Methods
	2.2.3 Other Methods
	2.2.4 Conclusion

	2.3 Chapter Summary

	3.0 System Modeling
	3.1 Physics-Based Pressurizer Model
	3.2 Data-Driven Pressurizer Model
	3.3 System Identification
	3.3.1 Physics-Based Model
	3.3.2 Data-Driven Model

	3.4 Results
	3.4.1 Results for Physics-Based Model
	3.4.2 Results for Data-Driven Model
	3.4.3 Comparing Physics-Based and Data-Driven Models

	3.5 Controller Models

	4.0 Characterizing Nonlinear Zero-Dynamics Attacks
	4.1 State-Space Model Under Attack
	4.2 An Algorithm for Calculating Zero Dynamics
	4.2.1 Maximal Output-Zeroing Submanifold
	4.2.2 Output-Zeroing Input
	4.2.3 Zero Dynamics
	4.2.4 Example Problem

	4.3 Attacks Targeting the Pressurizer
	4.3.1 Stability
	4.3.2 Damage Time

	4.4 Local Stability of Output-Zeroing Submanifold
	4.4.1 Challenges of Implementing Nonlinear Lyapunov Methods
	4.4.2 Linearized Output Stability

	4.5 Chapter Summary

	5.0 Detecting Zero-Dynamics Attacks Targeting Nonlinear Systems
	5.1 Problem Setup
	5.1.1 Exact and Approximate Problems
	5.1.2 Observability of the Approximate Problem

	5.2 Solving for the Input
	5.3 Estimating the State
	5.3.1 Unscented Kalman Filter
	5.3.2 Random-Walk Dynamics
	5.3.3 Maximum Likelihood Estimation

	5.4 Detecting an Attack
	5.5 Additional Assumptions for the Pressurizer Model
	5.6 Results
	5.7 Validating Using Simulator Data
	5.7.1 Estimating the State
	5.7.2 Necessary Output Accuracy
	5.7.3 Results

	5.8 Detecting Zero-Dynamics Attacks Offline
	5.9 Detecting Other Stealthy Attack Strategies
	5.10 Economic and Safety Impacts of the Perturbation
	5.11 Chapter Summary

	6.0 Conclusions and Future Work
	6.1 Summary of Contributions
	6.2 Implementation on Other Systems
	6.3 Limitations
	6.4 Future Work

	Appendix A. Description of Appendices
	Appendix B. Using Model-Based Fault Detection to Differentiate Transients and Loss of Coolant Accidents
	 B.1 Introduction
	 B.2 Process Data
	 B.3 Pressurizer Model
	 B.3.1 Model Structure
	 B.3.2 System Identification

	 B.4 Multiple-Model Adaptive Estimation
	 B.4.1 Kalman Filters
	 B.4.2 Bayesian Hypothesis Testing

	 B.5 Results
	 B.6 Conclusion

	Appendix C. Using Kernel Density Estimation to Detect Loss of Coolant Accidents in a Pressurized Water Reactor
	 C.1 Introduction
	 C.2 Process Data
	 C.3 Selecting Variable Sets
	 C.3.1 Variable Set for Detecting Onset
	 C.3.2 Variable Set for Identifying Location

	 C.4 Methods
	 C.4.1 Kernel Density Estimation
	 C.4.2 Bayesian Hypothesis Testing
	 C.4.3 Maximum Likelihood Estimation

	 C.5 Results
	 C.6 Conclusion

	Appendix D. Detecting Loss-of-Coolant Accidents Without Accident-Specific Data
	 D.1 Introduction
	 D.2 System Modeling
	 D.2.1 Model Input and Output Variables
	 D.2.2 Process Data
	 D.2.3 System Model

	 D.3 State Estimation
	 D.3.1 Particle Filters
	 D.3.2 Leak Model

	 D.4 Results
	 D.5 Conclusion

	Bibliography

