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Some experiments with adaptive penalty methods in the numerical solution of

the incompressible Navier-Stokes equations

Astrid Berge, M.S.

University of Pittsburgh, 2020

This paper presents and tests an adaptive scheme for the penalty method. First, the

penalty method is introduced as an optimization method and then applied to the Navier-

Stokes equations. The energy equation, proof of stability and consistency error of the penalty

method is given. Some computational tests of the penalty method in FEniCS are presented,

showing the first-order convergence, with plots of the error. A sample code to recreate the

results is included. Next, the idea of an adaptive method is discussed and presented in the

case of the penalty method, adapted from a recent paper [6]. The energy equation and

inequality are given, showing stability. Numerical experiments in FEniCS are presented for

a fixed timestep and varying ε, as well as a test of the doubly adaptive scheme.
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1.0 Introduction

The incompressible Navier-Stokes equations are a set of nonlinear partial differential

equations in fluid mechanics, describing the evolution of a velocity field of a fluid as a

function of space and time. For a region Ω ⊂ R3, where x ∈ Ω and 0 < t ≤ T , with given

fluid viscosity ν, velocity u(x, t), pressure p(x, t) and body force f(x, t), the Navier-Stokes

equations read

ut + u · ∇u− ν∆u+∇p = f(x, t)

∇ · u = 0

with the following no-slip boundary condition,

u = 0 on ∂Ω,

∫
Ω

pdx = 0 for 0 < t ≤ T

The first equation (1) of the Navier-Stokes equations is called the momentum equa-

tion while the second equation (2) gives the incompressibility constraint. The momentum

equation describes conservation of linear momentum and the second equation describes the

conservation of mass.

1.1 Computational setup

The semi-discretized NSE suppresses the spatial discretization and replaces the time

derivative with a backward Euler approximation:

un+1 − un

∆t
+ un · ∇un+1 − ν∆un+1 −∇pn+1 = fn+1 (1)

∇ · un+1 = 0 (2)

Now, solving the NSE is equivalent to solving a sequence of n linear systems. In order

to use the Finite Element Method in FEniCS [1] to solve the NSE, it is necessary to derive
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the variational formulation.

Define

X = H1
0 (Ω) = {u ∈ L2 : ∇u ∈ L2, u|∂Ω = 0}

Q = L2
0(Ω) = {p ∈ L2 :

∫
Ω

pdx = 0}

Let (v, q) ∈ (X,Q) be arbitrary. We take an inner product of (1) with v and multiply (2) by

q and integrate over Ω, applying integration by parts to terms with second-order derivatives:∫
Ω

ut · vdx+

∫
Ω

(u · ∇u) · vdx+ ν

∫
Ω

∇u : ∇vdx−
∫

Ω

p(∇ · v)dx =

∫
Ω

f · vdx∫
Ω

(∇ · u)qdx = 0

Then we seek u, p such that the above equations hold for all v ∈ X, q ∈ Q. Applied to

the semi-discrete problem,∫
Ω

un+1 − un

∆t
· vdx+

∫
Ω

(
un+1 · ∇un+1

)
· vdx+ ν

∫
Ω

∇un+1 : ∇vdx

−
∫

Ω

pn+1(∇ · v)dx =

∫
Ω

fn+1 · vdx, for all v ∈ X∫
Ω

(
∇ · un+1

)
· q = 0, for all q ∈ Q

1.1.1 Necessary bounds and inequalities

For u, v, w,∈ X, define the trilinear form b∗(u, v, w) := 1
2
(u · ∇v, w)− 1

2
(u · ∇w, v). This

trilinear form is skew-symmetric, so that

b∗(u, v, w) = −b∗(u,w, v)

The following lemma is from [2].

Lemma 1. For any u, v, w ∈ X,

b∗(u, v, w) =

∫
Ω

u · ∇v · wdx+
1

2

∫
Ω

(∇ · u)v · wdx

For any u, v ∈ X, b∗(u, v, v) = 0. For M = supu,v,w∈X
(u·∇v,w)

||∇u||||∇v||||∇w|| , we have b∗(u, v, w) ≤

M ‖∇u‖ ‖∇v‖ ‖∇w‖.
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The following two items are from [5].

Theorem 1 (Young’s inequality). For any a, b ≥ 0 and p, q > 1 such that 1
p

+ 1
q

= 1 then

ab ≤ ap

p
+
bq

q

In particular for p = q = 2,

ab ≤ a2

2
+
b2

2

Definition 1 (dual norm). The dual space of X, X∗ = H−1(Ω), is the closure of L2(Ω) in

‖·‖−1 where

‖f‖−1 := sup
v∈X

(f, v)

‖∇v‖

3



2.0 Penalty methods for the NSE

2.1 Definition and formulation

A penalty method is a method for solving a constrained optimization problem

minimize f(x)

subject to x ∈ S

for some f(x) continuous, where S is a constraint set [8]. A penalty method converts this

problem to an unconstrained problem by adding a penalty term cP (x) for a given c > 0:

minimize f(x) + cP (x)

where P (x) is continuous, nonnegative, and P (x) = 0 exactly when x ∈ S [8]. The penalty

method penalizes solutions that violate the constraint, so that an optimal solution x will be

in a region where P (x) is small.

In the case of the NSE, we seek to minimize a related energy functional subject to the

incompressibility constraint [9]. The penalty method for solving the Navier-Stokes equa-

tions belongs to the broader class of artificial compressibility methods, along with other

methods such as the artificial compression method and the projection method [10]. The

incompressibility constraint

∇ · u = 0

creates a coupling of the pressure and velocity terms, which makes the system more com-

plicated to solve numerically. The penalty method alters the incompressibility constraint,

adding an εp term for some given, typically small, ε:

ut + u · ∇u− ν∆u+∇p = fn+1 (3)

εp+∇ · u = 0 (4)

4



The variational formulation for the penalty problem is given as follows: Find (u, p) ∈

(X,Q) such that for any (v, q) ∈ (X,Q), the equations∫
Ω

ut · vdx+

∫
Ω

(u · ∇u) · vdx+ ν

∫
Ω

∇u : ∇vdx−
∫

Ω

p(∇ · v)dx =

∫
Ω

f · vdx

ε

∫
Ω

pqdx+

∫
Ω

(∇ · u)qdx = 0

hold.

The variational formulation may be equivalently derived in another way. Using the

second equation (4), we now have the pressure p in terms of the velocity u:

p = −1

ε
∇ · u

Now, we can substitute p = −1
ε
∇·u into (3) and then find the variational formulation by

integrating over Ω and applying integration by parts to terms with second-order derivatives.

The following definition is from [9]. Define

H1
ε (Ω) := {u : u ∈ H1

0 (Ω), ||u||1,ε = ||u||1 +
1

ε

∫
Ω

(∇ · u)(∇ · u)dx}

where || · ||1 is the norm in X = H1(Ω). Now we seek u ∈ H1
ε (Ω) such that:∫

Ω

ut · vdx+

∫
Ω

(u · ∇u) · vdx+ ν

∫
Ω

∇u : ∇vdx+
1

ε

∫
Ω

(∇ · u)(∇ · v)dx =

∫
Ω

f · vdx (5)

holds for all v ∈ H1
ε (Ω), q ∈ Q. When we solve the NSE using the penalty method in

the numerical experiments to follow, rather than simultaneously seeking the velocity u and

pressure p in their respective spaces, we first solve for u in (5) above and then proceed to

update the pressure p at each step. Using a backward Euler time discretization, the problem

becomes

Find un+1 ∈ H1
ε (Ω):∫
Ω

un+1 − un

∆t
· vdx+

∫
Ω

(un · ∇un+1) · vdx+ ν

∫
Ω

∇un+1 : ∇vdx

+
1

ε

∫
Ω

(∇ · un+1)(∇ · v)dx =

∫
Ω

fn+1 · vdx

Update pn+1: ∫
Ω

pn+1qdx = −1

ε

∫
Ω

∇ · un+1qdx

5



2.2 Stability and consistency error for the penalty method

2.2.1 Energy equality for the penalty method

Consider the penalty method applied to the semi-discretized NSE.

un+1 − un

∆t
+ un · ∇un+1 +

1

2
(∇ · un)un+1 − ν∆un+1 −∇pn+1 = fn+1 (6)

εpn+1 +∇ · un+1 = 0 (7)

First, for any solution u to the incompressible NSE, we have that 1
2
(∇ · u) = 0, so the

1
2
(∇ · un)un+1 term is added to the momentum equation in order to formulate the explic-

itly skew-symmetrized trilinear form of the nonlinear term. We will now derive the energy

equality for the method. The energy equality describes the energy in the system at the final

time.

First, we take the dot product of the first equation with un+1, the dot product of the second

equation with pn+1, and integrate over the spatial domain Ω:∫
Ω

(
un+1 − un

∆t

)
· un+1 + (un · ∇un+1) · un+1 +

(1

2
(∇ · un)

)
· un+1 − ν∆un+1 · un+1

−∇p · un+1dx =

∫
Ω

fn+1 · un+1dx∫
Ω

εpn+1 · pn+1 + (∇ · un+1) · pn+1dx = 0

We now investigate and simplify each term, making sure to multiply through by ∆t.

Looking at the first term,∫
Ω

(
un+1 − un

)
· un+1dx =

∫
Ω

un+1 · un+1 − un · un+1dx

Using the polarization identity (x, y) = 1
2
(‖y‖2 + ‖x‖2 − ‖x− y‖2), we then have

=
1

2
(
∥∥un+1

∥∥2 − ‖un‖2 +
∥∥un+1 − un

∥∥2
)

Using integration by parts and the divergence theorem,

−
∫

Ω

ν∆un+1 · un+1dx = ν
∥∥∇un+1

∥∥2
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∫
Ω

∇pn+1 · un+1dx = −
∫

Ω

pn+1 · (∇ · un+1)dx

Also note that by definition,
∫

Ω
pn+1 · pn+1dx = ‖pn+1‖2

. Now, to simplify the nonlinear

term, we use skew-symmetry as given by Lemma 1:∫
Ω

1

2
((∇ · un)un+1, un+1) + (un · ∇un+1, un+1)dx = 0

Now, rewriting the equations using these simplifications, we have

1

2
(
∥∥un+1

∥∥2 − ‖un‖2 +
∥∥un+1 − un

∥∥) + ∆tν
∥∥∇un+1

∥∥2

−∆t

∫
Ω

pn+1 · ∇ · un+1dx = ∆t

∫
Ω

fn+1 · un+1dx

∆t

(∥∥pn+1
∥∥2

+

∫
Ω

(∇ · un+1) · pn+1dx

)
= 0

Adding the above equations, we then have

∆tε
∥∥pn+1

∥∥2
+

1

2
(
∥∥un+1

∥∥2 − ‖un‖2 +
∥∥un+1 − un

∥∥) + ∆tν
∥∥∇un+1

∥∥2
= ∆t

∫
Ω

fn+1 · un+1dx

Now summing from 0 to N , the term
∑N

n=0
1
2
(‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖) is tele-

scoping and hence

N∑
n=0

1

2
(
∥∥un+1

∥∥2 − ‖un‖2 +
∥∥un+1 − un

∥∥) =
1

2
(
∥∥uN+1

∥∥2 −
∥∥u0
∥∥2

+
N∑
n=0

∥∥un+1 − un
∥∥2

)

We then have the energy equality for the semi-discretized NSE with a penalty term:

1

2
(
∥∥uN+1

∥∥2
+

N∑
n=0

∥∥un+1 − un
∥∥2

) + ∆tν
N∑
n=0

∥∥∇un+1
∥∥2

+ ∆tε
N∑
n=0

∥∥pn+1
∥∥2

=
1

2

∥∥u0
∥∥2

+ ∆t
N∑
n=0

∫
Ω

fn+1 · un+1dx

7



2.2.2 Energy inequality and stability of the method

To derive the energy inequality, we look at the right hand side of the energy equality:

1

2

∥∥u0
∥∥2

+ ∆t
N∑
n=0

∫
Ω

fn+1 · un+1dx

For each n, ∫
Ω

fn+1 · un+1dx =

∫
Ω
fn+1 · un+1dx ‖∇u‖

‖∇u‖
By the definition of the dual norm ‖·‖−1, it follows that∫

Ω
fn+1 · un+1dx ‖∇u‖

‖∇u‖
≤ sup

u∈X

(f, u)

‖∇u‖
= ‖f‖−1 ‖u‖

and by Young’s inequality,

≤ ν

2
‖∇u‖2 +

1

2ν
‖f‖2

−1

Hence, it follows that

∆t
N∑
n=0

∫
Ω

f · un+1dx ≤ ∆ν

2

N∑
n=0

∥∥∇un+1
∥∥2

+
∆t

2ν

N∑
n=0

∥∥fn+1
∥∥2

−1

Applying this to the right hand side of the energy equality, we find the energy inequality:

1

2

∥∥un+1
∥∥2

+
1

2

N∑
n=0

∥∥un+1 − un
∥∥2

+
∆tν

2

N∑
n=0

∥∥∇un+1
∥∥2

+ ε∆t
N∑
n=0

∥∥pn+1
∥∥2

≤ 1

2

∥∥u0
∥∥2

+
∆t

2ν

N∑
n=0

∥∥fn+1
∥∥2

−1

On the left hand side, we have the numerical dissipation term from the backward Euler time

discretization, 1
2

∑N
n=0 ‖un+1 − un‖2

as well the viscous dissipation ∆tν
2

∑N
n=0 ‖∇un+1‖2

and

the energy 1
2
‖un+1‖2

+ ε∆t
∑N

n=0 ‖pn+1‖2
. This shows the stability of the method, since we

have for each 0 ≤ n ≤ N

1

2

∥∥un+1
∥∥2

+ ε∆t
N∑
n=0

∥∥pn+1
∥∥2 ≤ C

for a constant C, so the solutions u and p are bounded.

8



2.2.3 Consistency error of the penalty method

Fix a solution to the NSE (u, p) ∈ (X,Q). Now, by Taylor’s theorem:

un = un+1 −∆tun+1
t +

∆t2

2
un+1
tt +O(∆t3)

We have the penalty method applied to the semi-discretized NSE with the explicitly

skew-symmetrized nonlinear term

un+1 − un

∆t
+ un · ∇un+1 +

1

2

(
∇ · un

)
un+1 − ν∆un+1 +∇pn+1 = fn+1

εpn+1 +∇ · un+1 = 0

as well as the incompressible NSE evaluated at t = tn+1

un+1
t + un+1 · ∇un+1 − ν∆un+1 +∇pn+1 = fn+1

∇ · un+1 = 0

To obtain the consistency error, we subtract the incompressible NSE from the model

(noting that, as above, for a solution u to the NSE, 1
2
(∇ · un)un+1 = 0 ):

τ(u) :=
un+1 − un

∆t
− un+1

t + (un − un+1) · ∇un+1

τ(p) := εpn+1

Using the Taylor expansion of u, we then have that

un+1 − un

∆t
− un+1

t = −∆t

2
utt +O(∆t2) = O(∆t)

and by Cauchy-Schwarz,

(un − un+1) · ∇un+1 ≤
∥∥un+1 − un

∥∥∥∥∇un+1
∥∥

Since u ∈ X, it follows that ‖∇un+1‖ ≤ C1 for some constant C1, and

∥∥un − un+1
∥∥ =

∥∥∆tun+1
t

∥∥− ∆t2

2
un+1
tt +O(∆t3) ≤ C2

∥∥∆tun+1
t

∥∥

9



so that for C = C1C2

∇un+1 ≤
∥∥un+1 − un

∥∥∥∥∇un+1
∥∥ ≤ C

∥∥∆tun+1
t

∥∥ ≤ C∆t = O(∆t)

So the consistency error τ(u) = O(∆t). Looking at the consistency error for the pressure:

∥∥εpn+1
∥∥ ≤ Cε = O(ε)

since p ∈ Q, hence has a bounded norm.

Choosing the penalty parameter ε = O(∆t), we then have

τ(p) = O(ε) = O(∆t)

Now, this suggests that the method is first order. Under more stringent regularity con-

ditions, the following result from [10] holds for approximations u(tn) of the velocity u at the

nth time-step produced by the penalty method:

Theorem 2. For all n ≤ N + 1,

√
tn ‖u(tn)− un‖+ tn ‖u(tn)− un‖1 ≤ C(∆t+ ε)

A similar result from [10] holds for the pressure.
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2.3 Convergence test of the penalty method with Taylor-Green test problem

Consider the unit square Ω = (0, 1)× (0, 1) ⊂ R2 and 0 ≤ t ≤ 1.0, where Ω is discretized

by a mesh with N = 100 nodes on each edge, and the viscosity ν = 1/100. We have the

Taylor-Green solution:

u = (− cos(πx) sin(πy)e−2π2νt, sin(πx) cos(πy)e−2π2νt)

p =
−1

4
(cos(2πx) + cos(2πy))e−4π2νt

We apply the fully discretized penalty method to this problem, using the Finite Element

Method (FEM) for the spatial discretization in FEniCS [1]. The solution space is the Taylor-

Hood element space P2/P1: piecewise quadratic polynomial solutions for the velocity and

piecewise linear solutions for the pressure. To examine convergence, we pick timesteps ∆t ∈

[2−4, 2−5, 2−6, 2−7, 2−8] and plot for each timestep the error e(∆t) against the timestep ∆t

on a log-log plot. The error is calculated as follows:

Velocity error: max
n
‖un − uexact‖2 (`∞L2)

Pressure error:
∑
n

‖pn − pexact‖2 (`1L2)

11



Figure 1: Log-log plot of the velocity error for the Taylor-Green problem, with the timestep

∆t on the x-axis and the error on the y-axis.

This demonstrates the first-order convergence of the velocity in the penalty method,

since there is a line of slope 1 on the log-log plot.
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Figure 2: Log-log plot of the pressure error for the Taylor-Green problem, with the timestep

∆t on the x-axis and the error on the y-axis.

2.3.1 Convergence test and error plots of the penalty method for a different

test problem

Consider as above the unit square (0, 1)×(0, 1) ⊂ R2, discretized by a mesh with N = 100

nodes on each edge, and 0 ≤ t ≤ 1. Let ν = 1. Consider the following test problem, due to

[3]

u = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy)

p = cos t cos πx sin πy

13



We apply the fully discretized penalty method to this problem, using the Finite El-

ement Method (FEM) for the spatial discretization. The solution space is the Taylor-

Hood element space P2/P1. As above, to examine convergence, we pick timesteps ∆t ∈

[2−6, 2−7, 2−8, 2−9, 2−10]. The log-log plots of convergence follow.

Figure 3: Log-log plot of the velocity error for the Guermond-Shen-Minev problem, with the

timesteps ∆t on the x-axis and the error on the y-axis. This demonstrates the first-order

convergence of the velocity in the penalty method, since there is a line of slope 1 on the

log-log plot.
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Figure 4: Log-log plot of the pressure error for the Guermond-Shen-Minev problem, with

the timesteps ∆t on the x-axis and the error on the y-axis. This demonstrates the first-order

convergence of the pressure in the penalty method, since there is a line of slope 1 on the

log-log plot.
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Figure 5: For the Guermond-Shen-Minev problem, a plot of ‖∇ · un+1‖ over time t, with

0 ≤ t ≤ 1. The error for different timesteps ∆t is marked on the legend.
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Figure 6: For the Guermond-Shen-Minev problem, a plot of the pressure error over time t,

with 0 ≤ t ≤ 1. The error for different timesteps ∆t is marked on the legend.
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Figure 7: For the Guermond-Shen-Minev problem, a plot of the velocity error over time t,

with 0 ≤ t ≤ 1. The error for different timesteps ∆t is marked on the legend.

2.3.2 A sample code in FEniCS

The following code in FEniCS implements the penalty method, with the Taylor-Green

test problem, on the unit square (0, 1)× (0, 1) and 0 ≤ t ≤ 1.

from dolfin import *

import numpy as np

import sympy as sp

N = 100 # Mesh width
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Re = 100.0 # Reynolds number

nu = 1./Re # Viscosity

Pi = np.pi

T_0 = 0.0 # Starting time

T_N = 1.0 # Final time

t = T_0

DT = 0.01 # Timestep size

eps = DT # Choosing eps = O(DT)

TOL = 1.0e-10

# Creating the mesh in FEniCS

mesh = UnitSquareMesh(N,N)

# P2/P1 Taylor-Hood element space

X = VectorFunctionSpace(mesh,’Lagrange’,2)

Q = FunctionSpace(mesh,’Lagrange’,1)

# Test and Trial functions

u = TrialFunction(X)

p = TrialFunction(Q)

v = TestFunction(X)

q = TestFunction(Q)

unPlus1 = Function(X)

pnPlus1 = Function(Q)

un = Function(X)

pn = Function(Q)
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# Viscous term

def a(u,v):

return inner(nabla_grad(u),nabla_grad(v))

# Nonlinear term

def b(u,v,w):

return 0.5 * ( inner ( dot(u, nabla_grad(v)), w) \

- inner( dot(u, nabla_grad(w) ), v) )

x,y,s = sp.symbols(’x[0] x[1] s’) # where s is a variable for time

# exact solution u = (u1, u2)

u1_exact = -sp.cos(Pi * x) * sp.sin(Pi * y) \

* sp.exp(-2.0 * (Pi**2) * nu * s)

u2_exact = sp.sin(Pi * x) * sp.cos(Pi * y) \

* sp.exp(-2.0 * (Pi**2) * nu * s)

# exact solution p

p_exact = (-1./4)*(sp.cos(2*Pi*x)+sp.cos(2*Pi*y))*sp.exp(-4.0*(Pi**2)*nu*s)

# Generating forcing functions f1, f2

f1 = u1_exact.diff(s, 1) + u1_exact * u1_exact.diff(x, 1) + \

u2_exact * u1_exact.diff(y, 1) - \

nu * sum( u1_exact.diff(xi, 2) for xi in (x,y) ) + p_exact.diff(x, 1)
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f2 = u2_exact.diff(s, 1) + u1_exact * u2_exact.diff(x, 1) + \

u2_exact * u2_exact.diff(y, 1) - \

nu*sum( u2_exact.diff(xi,2) for xi in (x,y) ) + p_exact.diff(y, 1)

# making these functions FEniCS-friendly

u_exact = Expression((sp.printing.ccode(u1_exact), \

sp.printing.ccode(u2_exact)), degree = 2, s = t)

p_exact = Expression(sp.printing.ccode(p_exact), degree = 1, s = t)

f = Expression((sp.printing.ccode(f1), sp.printing.ccode(f2)), \

degree = 2, s = t)

# Initial conditions

un.assign(interpolate(u_exact, X))

pn.assign(interpolate(p_exact, Q))

# Boundary conditions

def boundary(x,on_boundary):

return on_boundary

bc_u = DirichletBC(X, u_exact, boundary)

# Main solve
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while t <= T_N + TOL:

print(’Numerical time level t =’, t)

u_exact.s = t # setting the value for s to the current time

p_exact.s = t

f.s = t

# Solving for velocity u

a_u = (1./DT) * inner(u,v) * dx + b(un,u,v) * dx + \

nu * a(u,v) * dx + (1./eps) * div(u) * div(v) * dx

# Solving for pressure p

a_p = eps * inner(p,q) * dx

# Right hand side, A_u * u = f

b_u = (1./DT) * inner(un,v) * dx + inner(f,v) * dx

#Right hand side, A_p * p = f

b_p = -div(unPlus1)*q*dx

A_u = assemble(a_u)

B_u = assemble(b_u)

# Applying boundary conditions

bc_u.apply(A_u, B_u)

solve(A_u, unPlus1.vector(), B_u)

A_p = assemble(a_p)

B_p = assemble(b_p)

solve(A_p,pnPlus1.vector(), B_p)
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# L2 error

verror = sqrt( assemble(inner(unPlus1 - u_exact, unPlus1 - u_exact) \

* dx) )

perror = sqrt( assemble(inner(pnPlus1 - p_exact, pnPlus1 - p_exact) \

* dx) )

print (’velocity error = ’, verror)

print (’pressure error = ’, perror)

# Updating un, pn

un.assign(unPlus1)

pn.assign(pnPlus1)

# Stepping forward in time

t += DT
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3.0 Adaptive penalty methods

3.1 Adaptive methods

Consider the error e(tn) at the nth timestep and fix a tolerance TOL. An adaptive

method seeks to optimize a scheme at each timestep by comparing the current error with

a computable estimate EST for the error. A simple halving-and-doubling scheme to adapt

the timestep has the following form:

if EST > TOL then repeat the step with:

∆t← ∆t

2

else if EST << TOL continue and on the next iteration:

∆t← 2∆t

The aim is to increase efficiency (by increasing the size of ∆t and thus reducing com-

putational complexity if the error is much too small) and accuracy (by ensuring that the

computed answer at each timestep is below a specified TOL) [7]. In the case of the penalty

method, we seek to adapt the timestep ∆t as well as the penalty parameter ε.

3.2 A doubly adaptive scheme for the penalty method

3.2.1 Error estimators for adapting ε, ∆t

In order to implement an adaptive scheme, reliable estimates of the error are required.

The following error estimators and scheme are from [6] and [4].

Consider the previous computed un, un−1 and the previous timesteps ∆tn,∆tn−1 and the

constants τ = ∆tn+1

∆tn
and α = τ(1+τ)

1+2τ
. Define, for each n, u∗ = (1 + τ)un − τun−1. To
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estimate the consistency error for the momentum equation, consider the backward Euler

approximation with p = −1
ε
∇ · un+1 and find the first-order approximation un+1

1

un+1 − un

∆tn+1

+ u∗ · ∇un+1 +
1

2

(
∇ · u∗

)
un+1 − ∆tn+1

εn+1

∇∇ · un+1 − ν∆un+1 = fn+1

Then we have this second-order approximation based on the backward Euler approxima-

tion plus a time filter [4],

un+1 = un+1
1 − α

2

(
2∆tn

∆tn + ∆tn+1

un+1
1 − 2un +

2∆tn
∆tn + ∆tn+1

un−1

)
So the error estimator EST1 to adapt the timestep ∆t is

EST1 =
∥∥un+1 − un+1

1

∥∥
To adapt ε, consider the estimator EST2

EST2 =
∥∥∇ · un+1

∥∥
where both norms are the L2 norm.
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3.2.2 Pseudocode for doubly adaptive scheme

At each step, we implement a modified halving-and-doubling scheme, from [6]. Say that

EST2 > TOL2 and the current approximation for un+1 is then unacceptable. Then, in a

typical halving-and-doubling scheme, we would take

εn+1 =
1

2
εn+1

However, in this scheme we take halving ε to be a worst-case scenario. In cases where εn+1

should be shrunk but not so sharply, i.e. if TOL1

EST1
is close to 1, we take instead

εn+1 = 0.9εn+1
TOL1

EST1

to ensure that ε does not vary too much throughout the scheme. The constant 0.9 is the

safety factor.

In the FEniCS code, the following adaptive scheme from [6] will be added before the

next update un+1, pn+1 are accepted, given a tolerance TOL1 for the error in the momentum

equation and TOL2 for the error in the continuity equation:

if EST1 > TOL1 then repeat the current step with

∆tn+1 = max{0.9∆tn

(
TOL1

EST1

)1/2

,
1

2
∆tn+1}

elseif EST2 > TOL2 then repeat the current step with

εn+1 = max{0.9εn+1
TOL2

EST2

,
1

2
εn+1}

else, accept the current approximation and on the next step

∆tn+2 = max{min{0.9∆tn+1

(
TOL1

EST1

)1/2

, 2∆tn+1},
1

2
∆tn+1}

εn+2 = max{min{0.9εn+1
TOL2

EST2

, 2εn+1},
1

2
εn+1}
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3.2.3 Energy equality for the scheme

Consider the doubly-adaptive penalty method scheme, where now un has been replaced

by the second-order extrapolation u∗ = (1 + τ)un − τun−1 and ε now varies in time:

un+1 − un

∆t
+ u∗ · ∇un+1 +

1

2

(
∇ · u∗

)
un+1 − ν∆un+1 +∇pn+1 = fn+1 (8)

εn+1pn+1 +∇ · un+1 = 0 (9)

Then, to find the energy equality, we use the same steps as in finding the energy equality

for the semi-discretized NSE with penalty method: take inner products with un+1, pn+1,

rewrite the equations using the polarization identity and integration by parts, and sum over

time. Letting ‖·‖ denote the L2 norm, we find after the aforementioned steps:

1

2∆tn+1

(∥∥un+1
∥∥2 − ‖un‖2 +

∥∥un+1 − un
∥∥2
)

+ ν
∥∥∇un+1

∥∥2 −
∫

Ω

pn+1 · (∇ · un+1)dx

=

∫
Ω

fn+1 · un+1dx

εn+1
∥∥pn+1

∥∥2
+

∫
Ω

pn+1 · (∇ · un+1)dx = 0

Adding the two equations and multiplying through by 2∆tn+1, we then have:

∥∥un+1
∥∥2 − ‖un‖2 +

∥∥un+1 − un
∥∥2

+ 2∆tn+1ε
n+1
∥∥pn+1

∥∥2
+ 2∆tn+1ν

∥∥∇un+1
∥∥2

= 2∆tn+1

∫
Ω

fn+1 · un+1dx

Now, summing from 0 to N and using the fact that the sum
∑N

n=0 ‖un+1‖2 − ‖un‖2 is

telescoping, we arrive at the energy equality:

∥∥uN+1
∥∥2

+
N∑
n=0

∥∥un+1 − un
∥∥2

+ 2
N∑
n=0

∆tn+1ε
n+1
∥∥pn+1

∥∥2
+ 2ν

N∑
n=0

∆tn+1

∥∥∇un+1
∥∥2

= 2
N∑
n=0

∆tn+1

∫
Ω

fn+1 · un+1dx+
∥∥u0
∥∥2
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3.2.4 Energy inequality and stability

To find the energy inequality, as before we apply Young’s inequality and bound the right-

hand side from above. Note that εn+1 ‖pn+1‖2
=
∥∥∥√εn+1

pn+1
∥∥∥2

. Using the definition of the

dual norm as in 2.1.2,∫
Ω

fn+1 · un+1dx =

∫
Ω
fn+1 · un+1dx ‖∇un+1‖

‖∇un+1‖
≤
∥∥fn+1

∥∥
−1

∥∥∇un+1
∥∥

Using Young’s inequality,

∥∥fn+1
∥∥
−1

∥∥∇un+1
∥∥2 ≤ ν

2

∥∥∇un+1
∥∥2

+
1

2ν

∥∥fn+1
∥∥2

−1

so we have the energy inequality

∥∥uN+1
∥∥2

+ 2
N∑
n=0

∆tn+1

∥∥∥√εn+1pn+1
∥∥∥2

+ ν
N∑
n=0

∆tn+1

∥∥∇un+1
∥∥2

+
N∑
n=0

∥∥un+1 − un
∥∥2

≤ 1

ν

N∑
n=0

∆tn+1

∥∥fn+1
∥∥2

−1
+
∥∥u0
∥∥2

3.3 Numerical tests of the adaptive scheme

3.3.1 Test with fixed timestep, variable ε

Consider, as above for the penalty method, the unit square (0, 1)×(0, 1) ⊂ R2, discretized

by a mesh with 100 nodes on each edge, with ν = 1. Let 0 ≤ t ≤ 10. We have the Guermond-

Shen-Minev test problem [3]

u = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy)

p = cos t cos πx sin πy

Fix the timestep ∆t ∈ [2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9], and the tolerance TOL = 1/100.

We also have the error estimator as above, EST1 = ‖∇ · un+1‖. Then, for each timestep ∆t,

we vary ε according to the following adaptive scheme, capping ε at 0.1:
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if EST2 > TOL then repeat the current step with

εn+1 = min{max{0.9εn+1
TOL

EST2

,
1

2
εn+1}, 0.1}

else, accept the current approximation and on the next step

εn+2 = min{max{min{0.9εn+1
TOL

EST2

, 2εn+1},
1

2
εn+1}, 0.1}

The following plots are of the pressure error, velocity error, ‖∇ · u‖ as well as the evolu-

tion of ε, all over time.

Figure 8: The evolution of ε over time for the fixed-∆t, variable ε test. Note the oscillatory

pattern of the evolution: ε caps out at 0.1 as t = k π
2
, where the exact solution is 0.

29



Figure 9: The pressure error for the fixed-∆t, variable ε test. On the y-axis is the error

‖pn − pexact‖, and on the x axis is time, 0 ≤ t ≤ 10.
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Figure 10: The velocity error for the fixed-∆t, variable ε test. On the y-axis is the error

‖un − uexact‖, and on the x axis is time, 0 ≤ t ≤ 10..
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Figure 11: The norm ||∇ · u|| for the fixed-∆t, variable ε test.On the y-axis is ‖∇ · un+1‖,

and on the x axis is time, 0 ≤ t ≤ 10.

3.3.2 Fixed timestep, variable ε with a different error estimator

As before, we fix ∆t ∈ [2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9] and vary ε. Let the tolerance

TOL = 0.1. Now, let the error estimator in the continuity equation EST2 = ||∇·un+1||
||un+1|| , the

relative error. Using the same adaptive scheme as in the previous section to adapt ε, the

following graphs compare the performance of using this error estimator EST2 = ||∇·un+1||
||un+1||

versus EST1 = ||∇ · un+1||.
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Figure 12: The evolution of ε over time for the fixed-∆t, variable ε test with a relative error

estimator. Note the oscillatory pattern of the evolution: ε caps out at 0.1 as t = k π
2
, where

the exact solution is 0. The plots for the old error estimator appear clustered above the plot

for the new error estimator.
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Figure 13: The pressure error for the fixed-∆t, variable ε test with a relative error estimator.

On the y-axis is the error ‖pn − pexact‖, and on the x axis is time, 0 ≤ t ≤ 10. The plots for

the old error estimator appear clustered above the plot for the new error estimator.
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Figure 14: The velocity error for the fixed-∆t, variable ε test with a relative error estimator.

On the y-axis is the error ‖un − uexact‖, and on the x axis is time, 0 ≤ t ≤ 10. The plots for

the old error estimator appear clustered above the plot for the new error estimator.

3.3.3 Test of the doubly adaptive scheme

Consider, as before, the unit square (0, 1)× (0, 1) ⊂ R2, discretized by a mesh with 100

nodes on each edge, with ν = 1. Let 0 ≤ t ≤ 2, and the test problem from [3],

u = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy)

p = cos t cos πx sin πy
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Now, ∆t and ε vary autonomously, using the adaptive scheme given in 3.2. Note that

the estimator EST2 for the error in the continuity equation is ||∇ · un+1||. The test was

run for 5 iterations from 0 ≤ t ≤ 2, where for each iteration i = 1, 2, 3, 4, 5 the tolerance

TOL1 = TOL2 = 10−0.5∗(i+1).

In the following table, the ∆t column lists the average timestep over that iteration.

Table 1: Rates of convergence for doubly adaptive test.

Iteration ∆t |||u(tn)− u|||`∞L2 Rate |||p(tn)− p|||`1L2 Rate

1 0.1 6.92e− 03 . . . 2.68e− 01 . . .

2 0.0895 5.65e− 03 1.83 2.66e− 01 6.02e− 02

3 0.0623 2.99e− 03 1.76 2.44e− 01 2.43e− 01

4 0.0364 9.688e− 04 2.10 2.37e− 01 5.71e− 02

5 0.0187 2.91e− 04 1.80 2.38e− 01 −7.65e− 03

The following plots are of the evolution of the timestep ∆t and evolution of ε, where

0 ≤ t ≤ 2, during the last iteration i = 5.
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Figure 15: For the doubly adaptive test, a plot of the evolution of the timestep on the final

iteration, with 0 ≤ t ≤ 2
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Figure 16: For the doubly adaptive test, a plot of the evolution of ε on the final iteration,

with 0 ≤ t ≤ 2

The following plots are of the velocity and pressure L2 error, where 0 ≤ t ≤ 2, during

the last iteration i = 5.
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Figure 17: For the doubly adaptive test, a plot of the velocity error in the final iteration,

with 0 ≤ t ≤ 2 and the L2 velocity error on the y-axis.
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Figure 18: For the doubly adaptive test, a plot of the pressure error in the final iteration,

with 0 ≤ t ≤ 2 and the L2 pressure error on the y-axis.

After an initial shock, the pressure error oscillates as before, with a valley in the error

graph observed around t = π/2, where the exact solution p = 0.
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4.0 Conclusions

The penalty method is a well-studied method that has been used in the numerical solu-

tion of flow problems since at least the 1970s [9]. It is a first-order, unconditionally stable

method, as shown in error analysis [10] and with the associated energy inequality derived in

Section 2.1.2. Computationally, when using the penalty method, the velocity is first solved

for using a single solve and then the pressure is updated separately. An adaptive scheme

can be added to a method with a few lines of code to change the parameters of the problem

autonomously. In the case of the penalty method, two parameters – ∆t and ε – can be

adapted, using error estimators for the error in the momentum and continuity equations.

Looking at a test problem with oscillatory behavior, when adapting the penalty param-

eter ε with a fixed timestep ∆t, the adaptation of ε appears to capture the behavior of the

true solution when looking at graphs of its evolution. When using a relative error estimator

as opposed to an absolute error estimator, looking at graphs of the associated error, the

relative error estimator appears to perform better. Next, looking at the same test problem

with a doubly adaptive scheme, the timestep ∆t and ε adapt independently. There are asso-

ciated increases in the value of ε and dips in the pressure error when the true solution p = 0

as before. The adaptive scheme is also shown to be unconditionally stable by deriving the

energy equality and inequality, although further analysis of the error is needed.

Future experiments of this scheme could include testing different error estimators EST

and different values for the tolerance TOL, as well as using different test problems with

varying properties such as a flow between offset circles problem.
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