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Abstract 

CACNB4 Overexpression and Dendritic Spine Loss in Schizophrenia 

 

Emily Meredith Parker, Ph.D. 

 

University of Pittsburgh, 2020 

 

 

 

 

Reduced density of dendritic spines is an intermediate anatomical phenotype for 

schizophrenia (Sz). This dissertation is a collection of descriptive studies about dendritic spines 

and the voltage-gated calcium channel protein β4, a study of a Sz-related β4 manipulation, and the 

impacts of this manipulation on dendritic spine density and morphology. Chapter 2 is a descriptive 

study of sex differences in dendritic spines in murine sensory cortex over adolescent 

neurodevelopment. Chapter 3 is an in-depth assessment of the impacts of CACNB4 overexpression 

(β4OE) on dendritic spines of male and female adult mice. Chapter 4 is a final descriptive study 

of sex differences in the β4 interactome of adult mice. Sex differences were deliberately assessed 

at baseline and in the study of the impacts of β4OE on dendritic spines given the importance of 

sex as a biological factor and known sex differences in the clinical presentation and expression of 

Sz. In Chapter 2, we identified sex differences in spine density, and in Chapter 3 evidence for 

volume- as well as sex-specific β4OE-mediated spine loss; small spines were reduced in female 

β4OE mice only. These findings provide a model for the intermediate phenotype of small spine 

loss in primary auditory cortex in Sz and support both our group’s previous suggestion to rethink 

the Feinberg hypothesis, but also the possibility that small mature spines are eliminated 

excessively in Sz during adolescence, as Feinberg predicted. In Chapter 4 we found that β1b is 

significantly enriched in the β4 interactome of male mice only, the presence of which may confer 

protection for males from the effects of β4OE. Moreover, we detail three pathways through which 

β4OE could reduce small spine density in female mice. These proposed pathways nominate 
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kinases and MAPs in β4-related spine alterations. Overall, the findings described herein 

underscore the importance of evaluating the biological sex at baseline, over normal 

neurodevelopment and following a disease-related manipulation, particularly neurodevelopmental 

disorders, including Sz. 
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1.0 Introduction 

1.1 Schizophrenia Overview 

Schizophrenia (Sz) is a serious mental illness that besets approximately 1% of the global 

population (A. Wong & H. Van Tol, 2003). Sz diagnosis is determined primarily based on 

symptom presentation, guided by information regarding family history and illness course gathered 

in standardized structural interviews (Andreasen, 1995). Two or more of the following symptoms 

must be present for diagnosis: 1) delusions, 2) hallucinations, 3) disorganized speech, 4) grossly 

disorganized or catatonic behavior, 5) negative symptoms. One of these must be a  

positive/psychotic symptom (delusions, hallucinations or disorganized speech). Along with core 

Sz symptoms, several notable associated features support diagnosis: cognitive deficits, sensory 

processing deficits and socio-cognitive impairment (American Psychiatric Association, 2013). 

Lifetime prevalence rates of Sz are fairly consistent, however variation has been reported 

based on race/ethnicity, across countries and by geographic origin for immigrants and their 

children (American Psychiatric Association, 2013; A. Wong & H. Van Tol, 2003). Sz is a 

neurodevelopmental disorder with onset typically occurring during late adolescence or early 

adulthood (Ziermans, Schothorst, Sprong, & van Engeland, 2011). Presence of cognitive deficits 

often precedes onset. The typical course begins with attenuated nonspecific or negative symptoms 

and progresses to the development of subthreshold or brief positive symptoms in prodromal Sz. 

Attenuated positive symptoms usually intensify or become more frequent before individuals 

transition to full-blown psychosis, the latter of which marks illness onset as a general rule (Larson, 

Walker, & Compton, 2010). Positive symptoms tend to lessen as individuals age, whereas negative 
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and cognitive symptoms often are not mitigated over illness course (Lieberman et al., 2001; 

Lieberman et al., 2005; Ojeda et al., 2007; Schultz et al., 1997). Atypical antipsychotic drugs are 

often prescribed for mitigating positive/psychotic symptoms in Sz. Discontinuation is extremely 

common. Atypical antipsychotics are often not well-tolerated, with severe side effects, and are 

largely ineffective for treating negative symptoms and cognitive deficits (Lally & MacCabe, 

2015).  

Sz is a polygenic disorder for which liability is conferred by common and rare risk alleles, 

with single alleles contributing very little to the population variance. Many of the alleles identified 

that confer susceptibility for Sz fall into two broad categories: genes associated with synaptic 

signaling and genes that encode proteins involved in Ca2+ signaling (Purcell et al., 2014; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), both of which are 

of high interest in the current discussion. Epigenetic and environmental factors converge on 

multiple genetic variants to result in Sz expression (MacDonald et al., 2017). Prenatal maternal 

infection, stress or malnutrition in utero may confer considerable susceptibility for Sz. In 

particular, maternal influenza increases the risk for Sz by 3-8 times (Goff, 2013). Twin and 

adoption studies are demonstrative of the presence of gene by environment interactions in Sz. In 

dizygotic twin pairs, an unaffected sibling has a 17% incidence of Sz, whereas among monozygotic 

twins incidence for the unaffected twin is close to 50% (Gottesman, 1991). Adoption studies have 

revealed that Sz risk is associated with presence of the disorder in biological but not adoptive 

parents (Lewis & Lieberman, 2000).  

Sex differences are observed in the clinical presentation, incidence, and illness course in 

Sz (Abel, Drake, & Goldstein, 2010; Aleman, Kahn, & Selten, 2003). Males tend to present with 

more negative symptoms, disorganization, and social cognition impairment whereas women 
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typically display more mood-related and psychotic symptoms. Additionally, males have poorer 

premorbid adjustment, lower educational achievement and more prominent negative symptoms 

and cognitive deficits. Lifetime prevalence of Sz is approximately equal in men and women, 

although general incidence tends to be higher in males. Sz onset typically occurs during late 

adolescence/early adulthood, with mean age of onset in males earlier than in females. The peak 

age of onset for first episode psychosis in males is in the early to mid-twenties, whereas the first 

psychotic episode typically occurs in females in the late-twenties. There is an additional risk period 

for Sz onset in females after age forty years (American Psychiatric Association, 2013). 

1.2 Auditory Sensory Processing Deficits in Sz 

Individuals with Sz experience auditory sensory processing deficits that can manifest, for 

instance, in impaired ability to distinguish between auditory tones (Kantrowitz et al., 2011; 

O’Donnell, Vohs, Hetrick, Carroll, & Shekhar, 2004; Pekkonen et al., 2002; Petkova et al., 2014). 

Auditory sensory processing deficits in turn contribute to socio-cognitive dysfunction (Javitt & 

Sweet, 2015; Kantrowitz et al., 2016; Kantrowitz et al., 2015; Leitman et al., 2005; Leitman et al., 

2007; Leitman et al., 2008; Leitman et al., 2010). Unlike the positive symptoms of Sz, socio-

cognitive dysfunction is not targeted by available pharmacological interventions. Among 

individuals with Sz, those with prominent socio-cognitive dysfunction have the poorest functional 

outcomes (Fett, Viechtbauer, Penn, van Os, & Krabbendam, 2011; Green, Horan, & Lee, 2015; 

Green, Kern, & Heaton, 2004; Green & Leitman, 2008; Javitt & Sweet, 2015; Kantrowitz et al., 

2016). 
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Auditory sensory processing deficits typically emerge in Sz around the time of the first 

psychotic episode and persist over the course of the illness (Gold et al., 2012; Javitt, Strous, 

Grochowski, Ritter, & Cowan, 1997; Kantrowitz et al., 2011; Leitman et al., 2005; Leitman et al., 

2010; McCarley, Faux, Shenton, Nestor, & Adams, 1991; Wexler, Stevens, Bowers, Sernyak, & 

Goldman-Rakic, 1998). Electroencephalography studies reveal that individuals with Sz exhibit 

reduced auditory mismatch negativity (MMN) responses (Javitt, 1993; K. Kasai et al., 2003; 

Michie et al., 2000; Shelley et al., 1991). MMN is an event-related potential recorded immediately 

following a stimulus that differs in characteristic from preceding stimuli (for example a tone of a 

deviant pitch among a series of tones of the same pitch) and, in the auditory system, reflects pre-

attentive auditory sensory processes. In Sz, reduced auditory MMN is correlated with impaired 

auditory tone discrimination (Javitt, Shelley, & Ritter, 2000; Javitt, Steinschneider, Schroeder, & 

Arezzo, 1996; Javitt, Steinschneider, Schroeder, Vaughan, & Arezzo, 1994; Leitman et al., 2010). 

Electroencephalography methods likewise indicate that individuals with Sz exhibit impaired 

auditory steady-state response entrainment, predominantly in the gamma frequency range (Brenner 

et al., 2009; Hamm et al., 2015; Hamm, Gilmore, Picchetti, Sponheim, & Clementz, 2011). Altered 

fast GABAergic inhibition in auditory circuits is presumed to underlie impaired aSSR entrainment 

in Sz (Krishnan et al., 2009; Kwon et al., 1999; Light et al., 2006). 

1.3 Neuronal Pathology in Auditory Cortex in Sz 

Cortical gray matter loss is a hallmark anatomical feature of Sz (Shenton, Dickey, Frumin, 

& McCarley, 2001). The most pronounced gray matter loss is observed in frontal and temporal 

regions (A. Wong & H. Van Tol, 2003), most notably in the superior temporal gyrus (STG) 
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(Honea, Crow, Passingham, & Mackay, 2005; McCarley et al., 1999; Shenton et al., 2001). Gray 

matter volume reduction in the STG ranks among the most consistent findings from studies 

reporting gray matter loss in Sz (McCarley et al., 1999). Gray matter loss is apparent around the 

time of Sz onset and in the years following first episode psychosis (Hirayasu et al., 2000; Hirayasu 

et al., 1998; Kasai, Matsuzaki, Noguchi, Yasumatsu, & Nakahara, 2003; K. Kasai et al., 2003; 

Kubicki et al., 2002; Vita, De Peri, Deste, & Sacchetti, 2012). Gray matter reductions occur within 

the STG in Heschl’s gyrus and the planum temporale (Barta et al., 1997; Hirayasu et al., 2000; 

Kwon et al., 1999), where the primary auditory cortex (A1) and auditory association cortex (A2) 

are located, respectively. 

Functional MRI studies reveal that auditory MMN reductions in Sz subjects are correlated 

with gray matter loss in Heschl’s gyrus (Salisbury, Kuroki, Kasai, Shenton, & McCarley, 2007). 

Similarly, auditory MMN and tone discrimination are thought to depend on the integrity of cells 

in supragranular layers (L1–L3) of A1 (Javitt et al., 1994). Thus, we have hypothesized that 

neurons within supragranular layers of A1 are altered in Sz (Javitt & Sweet, 2015). 

Electroencephalography and in vivo imaging approaches do not have the resolution to test this 

prediction directly, requiring human postmortem studies to assess gray matter alterations at the 

neuronal level. In theory, a wide array of neuronal aberrations could lead to reduced gray matter 

volumes in Sz, as gray matter has multiple constituents, including, neurons, glia and endothelial 

cells, the cell bodies of these cells and their neuropil, which is made up of the unmyelinated 

portions of axons, dendrites and the processes of glia. Therefore, it is conceivable that auditory 

cortical neurons could be altered in Sz due to: 1) fewer total cells, 2) reduced neuron somal size, 

3) reduced number of axon boutons, 4) reduced number of dendritic spines, or 5) a combination 

of any two or more of these possibilities. 
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The following subsections review findings from human postmortem studies conducted by 

our lab that reveal neuronal abnormalities in auditory cortex in Sz (Figure 1.1). These studies 

provide direct evidence that morphological features of neurons in the human auditory cortex are 

implicated in the pathology of this illness. Likewise, these findings provide potential neural 

correlates for auditory sensory processing deficits and cortical gray matter loss in primary and 

secondary auditory regions in Sz. 

1.3.1  Pyramidal Cell Number 

A1 layer III (L3) pyramidal cell density was increased in Sz, relative to unaffected 

comparison cases. In contrast, pyramidal cell number did not differ significantly across diagnostic 

groups, in agreement with previous reports that found no change in neuron number in cerebral 

cortex, PFC nor anterior cingulate in Sz (Pakkenberg, 1993; Stark, Uylings, Sanz-Arigita, & 

Pakkenberg, 2004; Thune, Uylings, & Pakkenberg, 2001). Neither L3 A1 volume, nor total A1 

volume were found to be significantly reduced in Sz. Increased pyramidal cell density, with no 

change in pyramidal cell number, was interpreted to mean that STG gray matter loss in Sz is due 

to the loss of neuropil components such as dendritic spines, rather than to the loss of the number 

of pyramidal cells (Dorph-Petersen et al., 2009). 

1.3.2  Pyramidal Cell Somal Volume 

Mean somal volume of deep layer 3 (L3) pyramidal cells was reduced in Sz by 13.1% in 

A2 (Sweet, Pierri, Auh, Sampson, & Lewis, 2003). Similarly, mean pyramidal cell somal volume 

was decreased in Sz by 10.4% in deep L3 of A1, with no change in the somal volume of Layer 5 
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pyramidal cells in A2 (Sweet et al., 2004). These data implicated feedforward but not feedback 

auditory circuits in Sz and provided evidence for neuronal morphological abnormalities consistent 

with gray matter loss in auditory cortex in Sz. 

1.3.3  Axon Boutons 

L3 axon bouton density was significantly reduced in A1 in Sz based on synaptophysin-

immunoreactivity (SYP-IR) (Sweet et al., 2007). Synaptophysin is found in approximately 95% 

of cortical boutons and does not distinguish between excitatory and inhibitory boutons (Navone et 

al., 1986). Excitatory bouton density did not appear to be altered in A1 in Sz based on assessments 

of vesicular glutamate transporter 1-immunoreactivity (VGluT1)- and VGluT2-IR in two 

independent cohorts of cases (Moyer et al., 2013). Glutamic Acid Decarboxylase-

immunoreactivity (GAD65-IR) bouton density was also not altered in two independent cohorts, 

but GAD65-IR fluorescent intensity was significantly reduced, suggesting that within-bouton 

GAD65 enzyme levels are reduced in A1 in Sz (Moyer et al., 2012). 

1.3.4  Dendritic Spines 

In the first study of dendritic spines, density of spinophilin-immunoreactive (SP-IR) puncta 

was reduced by 27.2% in deep L3 of A1 and reduced by 22.2% in deep L3 of A2 in Sz. These 

findings were consistent with previous reports of reduced dendritic spine density (DSD) in regions 

of neocortex and of hippocampal formation in Sz (Moyer, Shelton, & Sweet, 2015). Reduced DSD 

was interpreted to reflect a reduction in spine number, despite the fact that A1 volume was not 

estimated in the subjects in this initial study. 
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Both DSD and spine number were significantly reduced in deep L3 in A1 in Sz in a follow-

up study, which reported 19.2% reduction in mean spine density (Shelton et al., 2015). The second 

study utilized co-labeling of SP-IR and phalloidin (mushroom toxin that binds f-actin (Capani, 

Ellisman, & Martone, 2001)) to identify and measure spines. Off-target labeling of the anti-

spinophilin antibody could explain the discrepancy in the magnitude of spine density reductions 

observed across the initial versus follow-up studies. Importantly, the finding of reduced DSD in 

deep L3 in A1 in Sz was then replicated in independent assessments using separate cohorts of Sz 

and non-psychiatric control cases in two additional follow-up studies. These studies demonstrated 

decreased DSD in deep L3 in A1 in Sz is selective for and driven by loss of the smallest dendritic 

spines (MacDonald et al., 2017; McKinney et al., 2019). 

Reduced DSD is proposed to function as an intermediate, anatomical phenotype for Sz, a 

key component that could link genetics to functional outcomes. Many Sz risk genes encode 

synaptic proteins and those involved in excitatory Ca2+ signaling in dendrites (Heyes et al., 2015; 

Purcell et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014). Thus, one promising future direction for assessment of A1 neuronal pathology in Sz is 

investigation of potential mechanisms associated with known genetic risk for Sz that could lead to 

reduced small DSD, as is observed in A1 in Sz. Our group recently showed that levels of a peptide 

shared among voltage-gated calcium channel (VGCC) β subunits was inversely correlated with 

the density of spines with the smallest volumes.  Overexpressing CACNB4, the gene that encodes 

the β4 VGCC subunit, which is present in the temporal cortex, and is a critical regulator of VGCC 

activity (Dolphin, 2012, 2016), in primary neuronal culture resulted in reduced density of small 

volume, but not large volume, dendritic spines (MacDonald et al., 2017).  
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Functional outcomes of individuals with Sz have remained largely unchanged since the 

introduction of antipsychotics, likely due in part to the fact that we do not fully understand the 

pathophysiology of this illness (Insel, 2010). Probing relationships between β4 and dendritic spine 

morphology has the potential to elucidate an important, anatomical phenotype of Sz, which may 

be a final common pathway for auditory impairment in Sz. Finally, examining such relationships 

could lead to the identification of drug targets or provide other critical information for the 

development of superior strategies to treat or prevent auditory sensory processing deficits in Sz. 
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Figure 1.1: Pyramidal cell morphological alterations in auditory cortex in Sz 

Morphometric alterations in auditory cortex in Sz superimposed on feedforward and feedback auditory circuits. 

Thalamic projections from the medial geniculate nucleus (MGN) synapse onto pyramidal cells (PCs, blue) and 

interneurons (INs, red). Layer III (L3) pyramidal cells in A1 send local intralaminar projections to other L3 pyramidal 

cells in this region and longer-range feedforward projections to pyramidal cells in L3 of A2. L5 pyramidal cells in A2 

in turn send excitatory feedback projections to neurons in L1 in A1. Mean somal volume of pyramidal cells in deep 

L3 in A1 and A2 in Sz were significantly reduced. GAD65 levels were reduced in deep L3 boutons in A1 in Sz, 

although the specific interneuron cell types affected are not currently known DSD was reduced in deep L3 of A1 and 

A2, reflecting reduced number of dendritic spines in deep L3 of A1 in Sz. Recently, decreased DSD in deep L3 in A1 

in Sz was demonstrated to be selective for and driven by loss of the smallest dendritic spines. Note: this figure is 

Figure 6A in (Parker & Sweet, 2018). 
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1.4 Dendritic Spines and the Feinberg Hypothesis of Sz Pathogenesis 

Santiago Ramón y Cajal discovered dendritic spines 1890 proposing they may be dynamic 

three years later (Ramón y Cajal, 1888, 1890, 1893). For over a hundred years these small 

structures have been the source of much curiosity among many scientists. The canonical dendritic 

spine is a mushroom-shaped protrusion attached to the shaft of a dendrite with a narrow neck and 

large, bulbous head, supported by a dynamic actin-cytoskeleton. Dendritic spines are the major 

postsynaptic recipient sites for excitatory synaptic transmission in the brain (Gray, 1959). 

Excitatory inputs to pyramidal cells almost exclusively synapse onto dendritic spines, whereas 

interneurons primarily synapse onto the dendritic shaft of pyramidal cells and less frequently onto 

spines (Arellano, Benavides-Piccione, DeFelipe, & Yuste, 2007; J. L. Chen et al., 2012; Javier 

DeFelipe, Hendry, & Jones, 1989; Somogyi & Cowey, 1981; Spacek & Harris, 1998; Yuste, 2011). 

Spine number and morphology are mediated by activity-dependent actin remodeling as a 

consequence of synaptic plasticity and synapse remodeling that occurs during neurodevelopment. 

These short- and long-term processes generate substantial diversity in spine number and 

morphology, and implicate many upstream mediators and signaling pathways (Arellano et al., 

2007; Javier  DeFelipe, 2015; Gray, 1959; Spacek & Harris, 1998). 

Spines are rapidly motile structures that undergo activity-dependent morphological 

alterations (Dunaevsky, Tashiro, Majewska, Mason, & Yuste, 1999; Fischer, Kaech, Knutti, & 

Matus, 1998). During the lifetime of a single spine, it will undergo spine dynamics: addition and 

subtraction/elimination (primarily referred to as “elimination” in spine dynamics studies and 

referred to in this dissertation as such). The term “elimination” implies active removal but in the 

context of spine dynamics studies, the word elimination is a synonym for simple subtraction. 

Addition and elimination are normally balanced in adulthood (Holtmaat et al., 2005). Spine 
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lifetimes are categorized as transient or persistent. After a transient spine is initially formed, it is 

subsequently removed within ~48h to four days, whereas once a persistent spine is added it can 

remain for years. If a spine disappears and gone forever it is additionally considered a persistent 

spine (Holtmaat et al., 2005).  

Spines are divided into two categories based on synapse maturity: immature spines, which 

lack the scaffolding protein post-synaptic density protein 95 (PSD-95) and mature spines defined 

by the presence of PSD-95. PSD-95 enters a new spine within 24h of its initial formation, is 

required for activity-dependent excitatory synapse stabilization, and PSD-95 levels positively 

correlate with spine density (De Roo, Klauser, Mendez, Poglia, & Muller, 2008; Ehrlich, Klein, 

Rumpel, & Malinow, 2007; Lambert, Hill, Park, Culp, & Zito, 2017; Taft & Turrigiano, 2014). 

Thus, discussions included in this dissertation focus on immature versus mature, rather than 

transient versus persistent status of dendritic spines. Although immature spines account for the 

majority of spine dynamics (i.e. adding and eliminating/subtracting), the remodeling of these 

spines is not likely to engender long-term effects on network structure, at least not in the context 

of normal neurodevelopment (Berry & Nedivi, 2017).  

Spines are separately classified based on morphological shape. Morphologies include 

mushroom, stubby, thin, branched and atypical, the latter of which is a catch-all category of spines 

that do not conform to any of the previously mentioned types (see Appendix A Figure 1A and 

Appendix B Figure 2B for examples). Dendritic spine form and function are linked. However, the 

role of dendritic spines in shaping neuronal system function has been extensively debated (Yuste, 

2011). One view holds that on the population level spine synaptic molecular profiles and 

morphologies are tuned to regulate the gain of pyramidal cell input/output properties toward the 

reorganization of neural networks. 
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Finally, dendritic spine number is altered over the neurodevelpmental lifecourse and in 

psychiatric disorders. Decreased DSD is not pathognomonic to Sz. Spine loss is also observed in 

Alzheimer’s disease. In contrast, spines are generally reported to be pathologically increased in 

Autism Spectrum Disorder (ASD). ASD and Sz are both classified as neurodevelopmental 

disorders with onset in childhood or adolescence/early adulthood, respectively (Xiao et al., 2014; 

Ziermans et al., 2011). Against the background of synapse remodeling and concurrent spine 

number fluctuations that occur during normal neurodevelopment, in Sz spine numbers are 

proposed to increase during the perinatal period and childhood and begin to decrease at the end of 

childhood. A substantial drop in spine number is proposed to occur in Sz around disease onset in 

late adolescence/early adulthood, significantly deviating from normal by magnitude of loss during 

this period (Penzes, Cahill, Jones, VanLeeuwen, & Woolfrey, 2011). These changes are predicted 

to account for significantly reduced DSD in adult Sz, particularly in deep L3 of A1 (Figure 1.2). 

In 1982 Irwin Feinberg proposed a theory of Sz pathogenesis to account for Sz onset during 

adolescence following highly heterogeneous childhoods, in some cases characterized by 

premorbid behavioral abnormalities and in other cases characterized by ostensibly normal 

childhood neurodevelopment (Feinberg, 1983; Keshavan, Anderson, & Pettergrew, 1994). This 

hypothesis is now widely referred to as the “overpruning” hypothesis of Sz. According to 

Feinberg’s theory, Sz results from excessive elimination of mature synapses during adolescence 

in brain areas involved in cognitive neurodevelopment (Feinberg, 1983; Keshavan et al., 1994). 

Others later added to this model, for example proposing axon collaterals are hyper-pruned in 

prefrontal cortex in Sz (Keshavan et al., 1994). In the 1990s and 2000s, a number of MRI and 

postmortem studies demonstrated cortical gray matter volume loss and significantly reduced DSD 

in frontal and temporal cortices in Sz (Moyer, Shelton, et al., 2015; Vita et al., 2012). In vivo 
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imaging methods utilized in human studies lack the spatial resolution needed to observe the 

synaptic plasticity and spine dynamics that ultimately result in reduced DSD in adult Sz. For many 

years Feinberg’s theory has been used in conjunction with the studies reporting gray matter and 

synapse reductions in Sz to explain Sz pathogenesis. 

 

 
Figure 1.2: Model for dendritic spine number in human neurodevelopment 

Proposed trajectory of dendritic spine number in normal human neurodevelopment (black line) and Sz (red line). 

Prodromal period of Sz (dashed horizontal line) and emergence of symptoms (solid horizontal line) are indicated in 

red at the top. Note: this figure is modeled after portions of Figure 1 in (Penzes et al., 2011). 

1.5 Voltage-Gated Calcium Channel β4 Subunits 

Voltage-gated calcium channels (VGCCs) are comprised of an α1 (ion permeable channel) 

subunit (Figure 1.3) and three auxiliary subunits, β, α2δ and γ, which combine in a 1:1:1:1 

reversible stoichiometry (Buraei & Yang, 2010, 2013; Dolphin, 2016). β is the best understood 

auxiliarly VGCC subunit. There are four β protein subfamilies (β1-4) (Castellano & Perez-Reyes, 
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1994). Each β subtype is encoded by a separate gene with multiple splice variants, all of which are 

highly expressed in mouse brain, except β1a, β1d, β2d, and β2e (Buraei & Yang, 2010; Schlick, 

Flucher, & Obermair, 2010). β4a expression is limited to the cerebellum (Buraei & Yang, 2010). 

Particular β subunits predominate in neuronal subcellular compartments depending on the α1 

subunits they preferentially bind to and modulate (Buraei & Yang, 2010). β subunits are “highly 

promiscusous” meaning each can bind to any high-voltage activated (HVA) α1 VGCC subunit. 

The binding affinity of β to α1 is high, ranging from 2–54nM. α1-β reshuffling may occur via 

competitive replacement or to compensate for β subunit loss (Buraei & Yang, 2013; Burgess et al., 

1999; Burgess, Jones, Meisler, & Noebels, 1997; Dolphin, 2016; Yeon, Park, Hille, & Suh, 2018). 

β subunits are required for forward trafficking of the α1 subunit of HVA VGCCs to the 

plasma membrane, potentially acting as chaperones, and inserting the α1 subunit into the plasma 

membrane (Gonzalez-Gutierrez, Miranda-Laferte, Naranjo, Hidalgo, & Neely, 2008; Jones, Wei, 

& Yue, 1998; Josephson & Varadi, 1996; Maltez, Nunziato, Kim, & Pitt, 2005). More recent work 

has indicated that β could be essential for proper folding of the I-II linker of α1 VGCC subunits. β 

subunits strongly regulate VGCC channel gating kinetics (Buraei & Yang, 2010). β subunits 

generally hyperpolarize the voltage-dependent threshold of channel activation and promote closed 

state of voltage-dependent inactivation (Buraei & Yang, 2010; Patil, Brody, & Yue, 1998; T. 

Yasuda, Lewis, & Adams, 2004). β subunits are required for RGK- and G protein βγ subunit-

mediated inhibition of HVA VGCCs (Meir, Bell, Stephens, Page, & Dolphin, 2000; Yun Zhang et 

al., 2008). 

CACNB4 encodes β4 VGCC subunits and has five known splice variants (Etemad et al., 

2014). β4 isoforms vary in size, ranging from 37-58 kilodaltons. Generally, β4 is expressed highly 

in brain, where transcript and protein levels have been demonstrated to fluctuate in several brain 
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regions as a function of age (Buraei & Yang, 2010; Ferrándiz‐Huertas, Gil‐Mínguez, & Luján, 

2012; Ludwig, Flockerzi, & Hofmann, 1997). β4 preferentially binds the presynaptic CaV2.1 

VGCC (Tanaka, Sakagami, & Kondo, 1995; Wittemann, Mark, Rettig, & Herlitze, 2000) and has 

also been demonstrated to bind to ~40% of CaV1 VGCCS, as well as CaV2.2 and CaV2.3 (Buraei 

& Yang, 2010; McEnery, Vance, et al., 1998; Scott et al., 1996). Neuronal subcellular distribution 

of β4 appears diffuse. β4 is detected at the plasma membrane, intracellularly, in axons and 

dendrites and dendritic spines of pyramidal cells. Electron Microcopsy assessment revealed mouse 

cerebellar and hippocampal β4 levels are significantly higher in neurons in intracellular space than 

in specific subcellular compartments (Ferrándiz‐Huertas et al., 2012). β4 and VGluT1 colocalize 

in presynaptic terminals of glutamatergic neurons, and β4 has been identified in synaptosome 

preparations in mass spectrometry experiments (Etemad et al., 2014; Klemmer, Smit, & Li, 2009). 

Unique among β4 subunits, β4b has been shown to exhibit nuclear targeting potentially implicating 

it in transcription regulation (Subramanyam et al., 2009). 

β subunits have been demonstrated to compensate for one another, in cases of scientific 

manipulation, injury or disease (Berggren et al., 2004; Buraei & Yang, 2013; Heyes et al., 2015; 

Namkung et al., 1998; Neef et al., 2009). “Lethargic” β4-knockout mice result from a naturally 

occurring null mutation in CACNB4 and are characterized by α1-β reshuffling (Burgess et al., 

1999; Burgess et al., 1997). Increased pairing of CaV2.1 and CaV2.2 with β1-3 are observed in 

lethargic mice, with increased pairing of CaV2.2 and β1b particularly prevalent (Burgess et al., 

1999). Despite the apparent α1-β reshuffling that occurs in lethargic mice, compensation appears 

partial, as α1-β reshuffling does not fully rescue loss of β4 or reverse the epilepsy-like phenotype 

of these mice (Buraei & Yang, 2010, 2013; Burgess et al., 1999; Burgess et al., 1997). Lethargic 

mice exhibit upregulated thalamic LVA current density, reduced excitatory neurotransmission in 
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thalamus and lower forebrain and cerebellar CaV2.2 expression (Caddick et al., 1999; McEnery, 

Copeland, & Vance, 1998; Yi Zhang, Mori, Burgess, & Noebels, 2002). Clear evidence of partial 

compensation, despite α1-β reshuffling in lethargic mice highlights the fact that β4 performs 

distinct functions among the β subtypes, mediated potentially via interactions involving the NH2 

and COOH termini of β4 with α1 VGCCs (Brice & Dolphin, 1999; De Waard, Witcher, Pragnell, 

Liu, & Campbell, 1995; Stotz et al., 2004; Walker, Bichet, Campbell, & De Waard, 1998; Walker 

et al., 1999; Wittemann et al., 2000). 

 

 
Figure 1.3: α1 VGCC subtype nomenclature 

α1 VGCC subtypes, including ten members partitioned into two classes, high voltage-activated (HVA) VGCCs (CaV1 

and CaV2) and low voltage-activated VGCCs (CaV3). Ca2+ current type nomenclature provided far right. Note: this 

figure is included as a tool for reading studies described in this dissertation given the history and complexity of α1 

VGCC subunit nomenclature. 
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1.6 Purpose of Studies 

In this dissertation, we first characterized dendritic spines and VGCC β subunits over 

murine adolescent brain development of male and female mice to provide a background for our 

Sz-related manipulation of dendritic spines. We then dissected the impact of overexpressing 

CACNB4 during brain development on the spines of adult male and female mice. Finally, we 

reported sex differences in the β4 interactome of adult mice. Chapter 2 includes a descriptive study 

of sex differences in dendritic spine density and morphology in murine sensory cortex over 

adolescent neurodevelopment. Chapter 3 revealed that overexpressing CACNB4 during brain 

development significantly decreased small spine density of female but not male mice. Chapter 4 

characterized sex differences in the adult murine β4 interactome. A model for how β4 

overexpression might lead to small spine loss in female but not male mice is outlined in the overall 

discussion. Taken together, these findings provide descriptive information about  dendritic spines 

and β4 levels, reveal the volume- and sex-specific impact of a VGCC-focused Sz-related 

manipulation on dendritic spines in murine sensory cortex and identify sex differences in the 

murine β4 interactome in mice with relevance to theories of Sz spine pathophysiology and 

potential implications for development of treatment for treating auditory sensory processing 

deficits and improving socio-cognitive functioning in Sz. 
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2.0 Sex Differences in Dendritic Spine Density and Morphology in Auditory and Visual 

Cortices in Adolescence and Adulthood 

2.1 Introduction 

Dendritic spines are the predominant postsynaptic sites of excitatory input onto pyramidal 

cells in the cerebral cortex. Neuroscience pioneer Santiago Ramón y Cajal discovered dendritic 

spines in 1890 (Ramón y Cajal, 1888, 1890). In the 85 years between Ramón y Cajal’s death and 

the present day, we have learned a great deal about these micron-sized dendritic protrusions. The 

canonical dendritic spine is a mushroom-shaped structure protruding from the shaft of a dendrite, 

supported by a dynamic actin cytoskeleton, with a narrow neck and large, bulbous head. This spine 

contacts a single pre-synaptic axon terminal and contains the constitutive molecular machinery, 

receptors, channels and signaling molecules, required for transmitting incoming glutamatergic 

signals to the dendritic shaft. The number of dendritic spines on a neuron and the morphology of 

single spines are altered via actin remodeling as a consequence of synaptic plasticity and circuit 

refinement that occurs during neurodevelopment or as a result of sensory experience. Such 

plasticity and structural remodeling generate substantial diversity in spine number and morphology 

through a myriad of context- and activity-dependent mediators (Arellano et al., 2007; Javier  

DeFelipe, 2015; Gray, 1959; Spacek & Harris, 1998). 

A growing body-of-work has established that dendritic spine density (DSD), significantly 

differs based on sex. Sex is an important biological variable that has recently become an important 

priority in biomedical research (McCarthy, Arnold, Ball, Blaustein, & De Vries, 2012). Sex 

differences in DSD in adult animals have so far been reported in subcortical brain regions and 
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medial prefrontal cortex. DSD is significantly increased in female rats in the posterodorsal medial 

amygdala, nucleus accumbens, CA1 hippocampus (during proestrus), arcuate nucleus of the 

hypothalamus and medial prefrontal cortex. DSD is significantly lower in female rats in two 

regions of the hypothalamus, the preoptic area and the ventromedial nucleus (Brusco et al., 2014; 

Calizo & Flanagan-Cato, 2000; de Castilhos, Forti, Achaval, & Rasia-Filho, 2008; Delevich et al., 

2019; Forlano & Woolley, 2010; Frankfurt, Gould, Woolley, & McEwen, 1990; Koss, Belden, 

Hristov, & Juraska, 2014; Markham & Juraska, 2002; Mong, Roberts, Kelly, & McCarthy, 2001; 

Schwarz, Liang, Thompson, & McCarthy, 2008; Shors, Chua, & Falduto, 2001; Todd, Schwartz, 

Mong, & McCarthy, 2007; Weinhard et al., 2018; Wissman, May, & Woolley, 2012; Wright, 

Burks, & McCarthy, 2008; Wright, Schwarz, Dean, & McCarthy, 2010). DSD was recently 

reported to be increased on apical dendrites in medial prefrontal cortex in female mice (Delevich 

et al., 2019). To our knowledge, there is yet no existing published data providing evidence for sex 

differences in morphology or DSD in mouse auditory and visual sensory regions. 

Spine formation and morphology are altered as a result of sensory experience. Sensory 

cortex adapts as diverse sensory stimuli shape perception and motor planning (Nimchinsky, 

Sabatini, & Svoboda, 2002). In vivo calcium imaging experiments reveal that visual and auditory 

cues evoke Ca2+ signaling cascades in individual dendritic spines in first-order sensory areas 

including primary visual and primary auditory cortices (X. Chen, Leischner, Rochefort, Nelken, 

& Konnerth, 2011; Jia, Rochefort, Chen, & Konnerth, 2010). Ca2+ signaling in activated spines 

leads to activity-dependent actin remodeling and altered spine morphology (Majewska & Sur, 

2006). Long-term potentiation has been shown to precipitate spine head enlargement (Lang et al., 

2004; Matsuzaki, Honkura, Ellis-Davies, & Kasai, 2004; Okamoto, Nagai, Miyawaki, & Hayashi, 

2004), whereas long-term depression precipitates spine shrinkage (Okamoto et al., 2004; Zhou, 
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Homma, & Poo, 2004). Sensory deprivation experiments demonstrate that sensory cues are 

required for normal patterning of dendritic spines over neurodevelopment, including reduction in 

dendritic spine number observed over the adolescent period (Majewska & Sur, 2006). A caveat of 

many of these studies is that they included male animals only. It remains unclear if interplays 

between sensory experience and alterations to spine density and morphology take place over 

adolescent brain development in sensory regions in female animals, as they have been shown to in 

males. 

The goal for the current study was to characterize dendritic spines in male and female mice 

at the start of adolescence (P28) and in early adulthood (P84) to identify potential sex differences 

in spine complement and synaptic remodeling that take place during adolescence. We focus on 

sensory regions of the posterior cortex, first-order sensory areas: primary auditory cortex (A1), 

primary visual cortex (V1), plus secondary auditory cortex (A2), secondary visual cortex (V2), 

and temporal association cortex (TeA). Our data reveal evidence for lower DSD in auditory and 

visual regions of female compared to male mice for the very first time, with this effect appearing 

to be driven, at least in part, by fewer short stubby, long stubby and short mushroom spines in 

female mice. Although age did not significantly affect mean DSD in our primary statistical model, 

as it has been shown to in male mice, we found a significant age by layer interaction. When 

examining DSD from P28 to P84 in different cortical layers separately, we found that mean DSD 

was significantly decreased in L4, with a trend for a reduction in L5/6 from P28 to P84. There was 

also a trend level reduction in long mushroom spine density from P28 to P84, providing additional 

evidence of synaptic remodeling over the adolescent period. 
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2.2 Methods 

2.2.1  Experimental Animals 

E16 pregnant C57BL/6J dams were acquired from The Jackson Laboratory (Bar Harbor, 

ME) and singly housed in BSL-2 biocontainment in standard microisolator cages (Allentown 

Caging Equipment, Allentown, NJ) on a 12h light/dark cycle with food and water provided ad 

libitum. The adeno-associated virus (AAV) AAV2-CaMKII-eGFP-WPRE (titer = 

1.088e13gc/ml), which is designed to selectively express the fluorescent protein eGFP in 

glutamatergic neurons (pyramidal cells), was obtained from Penn Vector Core. AAV injectate was 

prepared by diluting AAV in sterile filtered 1x PBS at 1:10 (Gholizadeh, Tharmalingam, 

MacAldaz, & Hampson, 2013; Stoica, Ahmed, Gao, & Esteves, 2013). Diluted AAV was used in 

order to achieve sparse AAV transduction in A1, A2, V1, V2 and TeA. P0-P2 C57BL/6J mouse 

pups were exposed to AAV injectate using the bulk regional AAV injection (BReVI) procedure 

(Cheetham, Grier, & Belluscio, 2015). Briefly, neonates were cryoanesthesized (Phifer & Terry, 

1986) to induce brief hypothermia until response to toe pinch was absent. 1L AAV solution was 

injected intracranially 1mm rostral to the left earbud and 1mm lateral from the midline using a 

custom injector: a 1mL Luer-lock syringe connected to a pulled glass micropipette with a sharp 

tip. Toe amputation was performed for group identification. Pups were returned to the home cage 

with the dam following thrombus at site of toe amputation and 10-12m rewarming on a heating 

pad. Experimental mice were housed with littermates following the BReVI procedure until 3-

weeks following birth (P21), at which point mice were weaned and housed with same-sex 

littermates until P28 or P84. Each cage of weaned animals was provided environmental enrichment 

(a hut and exercise wheel) at P21, in accordance with a new policy set by the Institutional Animal 
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Care and Use Committee (IACUC) at the University of Pittsburgh. These experiments were 

approved by the IACUC at the University of Pittsburgh in accordance with the guidelines outlines 

in the USPHS Guide for Care and Use of Laboratory Animals. 

2.2.2  Perfusion and Tissue Processing 

Mice were euthanized at either P28 (4 males and 3 females) or P84 (4 males and 3 females). 

Mice were weighed, deeply anesthetized with Nembutal (150mg/kg) and transcardially perfused 

with ice-cold 1x PBS followed by 4% PFA. Brains were rapidly extracted and post-fixed in 4% 

PFA for 24h and then moved to 18% sucrose for 24h and stored at -30C in 30% ethylene glycol 

and 30% glycerol in phosphate buffer (cryoprotectant) until sectioning. 60m-thick coronal tissue 

sections were cut on a cryostat directly into 12-well plates containing cryoprotectant and then 

placed in -30C for long-term storage. 

2.2.3  Immunohistochemistry 

Free-floating sections corresponding to plates 55 and 59 in Franklin and Paxinos’s The 

Mouse Brain In Stereotaxic Coordinates (Franklin & Paxinos, 2004) were selected for 

immunohistochemistry. Plates 55 and 59 correspond to -2.92mm and -3.4mm from bregma, 

respectively. A1, A2, V1, V2 and TeA are each found at both of these stereotaxic coordinates. 

Free-floating sections were washed in 0.1M PB to remove Tissue-Tek O.C.T. compound (Sakura 

Finetek Europe, Alphen aan den Rijn, Netherlands), then incubated for 30m in 1% NaBH4 to 

reduce autofluorescence. After thorough rinsing, sections were blocked for 3h in a solution of 1% 

normal goat serum, 3% Triton X-100, 1% bovine serum albumin, 0.1% lysine and 0.1% glycine. 
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Sections were then incubated in the primary antibodies guinea pig anti-NeuN (Millipore ABN90 

lot:2834791, 1:2000) and chicken anti-GFP (ThermoFisher A10262 lot: 1972783, 1:1000) for 24h 

and 96h respectively. Anti-NeuN was utilized to label neurons and Anti-GFP to amplify the eGFP 

signal. Pilot experiments demonstrated that amplifying the eGFP signal with a 568 secondary 

antibody rather than a 488 secondary antibody produced dendrites with superior signal-to-noise 

characteristics (Figure 2.1A). Therefore, following primary antibody incubation, sections were 

washed and incubated in the secondary antibodies goat anti-guinea pig 405 (Abcam Ab175678 

lot:1972783, 1:500) and goat anti-chicken, Alexa Fluor 568 (ThermoFisher A11041 lot:1963088, 

1:500). After a 24h incubation in secondary antibodies, sections were washed and mounted on 

TruBond 380 micro slide glass (Matsunami, Osaka, Japan) using ProLong Gold antifade mountant 

(Invitrogen, ThermoFisher Scientific, Waltham, MA). 

2.2.4  Sampling and Confocal Imaging 

Images were captured using an Olympus BX51 WI upright microscope (Center Valley, 

PA) with an Olympus spinning disk confocal, Hamamatsu ORCA R2 CCD camera (Bridgewater, 

NJ), BioPrecision2 XYZ motorized stage with linear XYZ encoders (Ludl Electronic Products 

Ltd., Hawthorne, NY), Lumen 220 light source (Prior Scientific, Cambridge, United Kingdom), 

excitation and emission filterwheels (Ludl Electronic Products Ltd.) and a Sedat Quad 89000 filter 

set (Chroma Technology Corp., Bellows Falls, VT). 1.25x 2-D images of each tissue section were 

acquired in SlideBook 6 software (Intelligent Imaging Innovations, Denver, CO) using 405 nm 

and 568 nm excitation. Franklin and Paxinos’s The Mouse Brain In Stereotaxic Coordinates 

(Franklin & Paxinos, 2004) was used to establish the region of interest (ROI) and estimate the 

regional location (A1, A2, V1, V2 or TeA) of the cell body of each pyramidal cell imaged (Figure 
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2.1B). The region we define as A2 here includes both Franklin and Paxinos regions: secondary 

auditory cortex, dorsal region (2ary auditory cx, dorsal) and secondary auditory cortex, ventral 

region (2ary auditory cx, ventral). V1 refers to primary visual cortex, monocular region (primary 

visual cx, monocular) and primary visual cortex, binocular region (primary visual cx, binocular). 

Our definition of V2 includes all 3 subregions of secondary visual cortex (2ary visual cx, lat area, 

2ary visual cx, mediolat and 2ary visual cx, mediomed). Collectively, the regions we assayed are 

primary and secondary auditory and visual cortices in ascending sensory pathways, with the 

exception of TeA, which is thought to be a multisensory region that processes complex auditory 

stimuli downstream from A1 (Tasaka et al., 2019). Fluorescent pyramidal cells transduced with 

AAV were identified at 1.25x magnification in both hemispheres and systematically numbered in 

the aforementioned 1.25x 2-D image captures (Figure 2.1B). Numbered cells were then randomly 

sampled and captured in 3-D image stacks using an Olympus PlanApo N 60x/1.40 N.A. oil 

immersion super-corrected objective on. Each capture site comprised of the cell body of one 

randomly selected (numbered) pyramidal cell, plus all basal dendrites visible within the capture 

window (Figure 2.1C). Neutral density (ND) filter and exposure time for the 568 nm channel were 

optimized for one randomly selected minor basal dendritic segment at each site. Minor basal 

dendritic segment is defined here as any dendritic segment branching directly off of a major or 

primary basal dendrite. Total tissue thickness was estimated at each site by measuring anti-NeuN 

labeling in the z-dimension. 1024x1024 pixel 3-D image stacks were acquired through the entire 

thickness of the tissue (mean tissue thickness=40.36m, standard deviation tissue 

thickness=3.53m; 0.25m between each z-plane) in SlideBook 6 software. 
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2.2.5  Image Processing and Analysis 

SlideBook 6 and Stereo Investigator (MicroBrightField, Inc., Natick, MA) software were 

used for image processing and analysis. 1024x1024 image stacks were first transformed using a 

no-neighbors smoothing algorithm in SlideBook 6. All minor basal dendritic segments >10m 

away from the cell body and >3m from a dendrite branch point were identified in 1024x1024 

image stacks (Figure 2.1C) and cropped into individual image stacks containing one minor basal 

dendritic segment each. Minor basal dendritic segments were proximately located, with mean 

distance from soma 19.34m. Mean distance from soma was not significantly different across age 

or sex (data not shown). Signal-to-noise ratio (SNR) was calculated for each individual dendritic 

segment to compute fluorescent intensity of the dendritic segment (signal) relative to the 

background (noise) (Figure 2.1D). The threshold for reliably distinguishing spines from 

fluorescent non-spine objects was set at SNR=2. Segments that either failed to meet this SNR=2 

threshold or otherwise did not allow for reliable distinction between spines and non-spines were 

excluded. The length of each dendritic segment was measured in SlideBook 6 using the line tool. 

Individual dendritic segments were exported as TIFF series from SlideBook 6 and opened in Stereo 

Investigator for spine counting and categorization. Examination of anti-NeuN labeling was used 

to estimate laminar location, post-hoc (Bopp, Holler-Rickauer, Martin, & Schuhknecht, 2017; Li 

et al., 2003; W. Zhang, Peterson, Beyer, Frankel, & Zhang, 2014) (Figure 2.1E). Spine density for 

each neuron was calculated using Equation 1. 

 
𝐷𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐 𝑠𝑝𝑖𝑛𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐷𝑆𝐷) =  

total # dendritic spines

Σ 𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 
 

Equation 1 
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In 1970 Peters and Kaiserman-Abramof introduced what is currently accepted as the 

traditional classification of morphological types: stubby, thin and mushroom dendritic spines 

(Peters & Kaiserman‐Abramof, 1970). We included these types in our analysis of dendritic 

protrusion morphology along with branched dendritic spines (Basu et al., 2018), filopodia, and 

atypical dendritic spines (Arellano et al., 2007), a catch-all category which includes protrusions 

that do not conform to any of the aforementioned morphological types. Dendritic protrusions were 

manually counted and classified into one of eight types (short stubby, long stubby, short 

mushroom, long mushroom, thin, branched or atypical dendritic spine or filopodia) based on 

morphological characteristics described by other groups at length (Arellano et al., 2007; Risher, 

Ustunkaya, Alvarado, & Eroglu, 2014) (Appendix A Figure 1A). Short dendritic spines had 

maximal width greater than length, and long spines had maximal length greater than width. 

Mushroom spines had >0.4m head diameter with a clear distinction between spine head and neck. 

Stubby spines were dendritic protrusions with no significant distinction between head and neck. 

Thin spines had 0.3m head diameter and <2m total length. Branched spines had 2 spine heads 

attached to 1 spine neck. Atypical spines were <2m long and did not fall into any of the 

abovementioned types (Arellano et al., 2007; Risher et al., 2014). Filopodia were defined as >2m 

long dendritic protrusions with no distinction between spine head and neck (Risher et al., 2014). 

Filopodia were not included in the total count of dendritic spines and thus not built into DSD for 

each neuron (MacDonald et al., 2017). Long mushroom spines made up the highest proportion of 

dendritic protrusions counted in our study (66.03%). Long stubby spines accounted for 14.66%. 

The remaining dendritic protrusion types collectively accounted for less than 10% of the total 

spines counted, with filopodia accounting for 1.33%, thin spines 1.52%, and branched and atypical 

spines collectively making up <1% (Appendix A Figure 1B). 
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Figure 2.1: Immunohistochemical, sampling and image processing methods 

(A) Fluorescent signal amplification using an AlexaFluor 568 secondary antibody (bottom panel) achieved superior 

SNR characteristics compared to amplification with AlexaFluor 488 (top panel) after no neighbors smoothing. 

Scalebar = 1m. (B) Numbering strategy for fluorescent pyramidal cells in ROI of a representative 60m thick tissue 

section corresponding to plate 59 in Franklin and Paxinos’s The Mouse Brain In Stereotaxic Coordinates (Franklin 

& Paxinos, 2004). ROI comprises the following regions, clockwise from top left: mediomedial and mediolateral 

secondary visual cortex (V2), monocular and binocular primary visual cortex (V1), lateral secondary visual cortex 

(V2), dorsal secondary auditory cortex (A2), primary auditory cortex (A1), ventral secondary auditory cortex (A2) 

and temporal association cortex (TeA). Numbered neurons were imaged in random order. Scalebar = 500m. (C) 

Illustration of pyramidal cell with all secondary minor basal dendritic segments outlined in red meeting criteria for 

segment inclusion (>10m from soma and >=3m from dendrite branch point or termination). Scalebar = 10m. (D) 

Quantitative strategy used to exclude dim dendritic segments. 10m sampling area of each dendritic segment assayed 
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was masked in SlideBook 6. Top panel shows manually generated mask using thresholding and the brush tool for 

“signal” of the dendritic segment. Middle panel shows the mask covering 100% of the pixels in the capture window. 

Bottom panel shows the mask created using the masks in the 2 panels on the left and Boolean math. This mask 

represents the “noise.” SNR was calculated as mean intensity of the signal divided by mean intensity of the noise. 

SNR for the segment in this example = 3.205. Segments with SNR>2 were included in data analysis. Scalebar = 1m. 

(E) Assessment of NeuN labeling in 10x images were used to estimate region and determine laminar location of cell 

bodies of red fluorescent pyramidal cells. This example from region A2. Scalebar = 50m. 

 

2.2.6  Statistics 

Statistical tests were performed in SPSS software (IBM, Armonk, NY). The Shapiro-Wilk 

test was used to confirm normality. Breusch-Pagan test was used to confirm that variances were 

equal regardless of age or sex. Tissue thickness, layer and region were built into ANCOVA models 

as covariates, and the effects of age, sex, region, layer and age by layer interaction, and significance 

were tested using a univariate general linear model. Total number of fluorescent cells in ROI, mean 

distance from soma, ND filter and 568 exposure time were identified as measures that did not 

significantly affect mean DSD and thus were not built into statistical models. Since layer was 

highly significant in the primary model, indicating layer strongly predicted mean DSD, this 

variable was included as a main effect in a secondary ANCOVA along with age and sex (with 

covariates: tissue thickness and region). Main effect of layer and age by layer, sex by layer and 

age by sex by layer interactions were Bonferroni corrected (p=0.05) in the secondary model. 

Fitting the data to a mixed effects model with mouse as the random effect revealed that the within 

mouse correlation is not significant (p=0.1125), ruling out the possibility that mean DSD of 

individual mice drove the group findings. Thus, DSD is reported throughout the paper at the level 
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of individual neurons. In addition, mean DSD was calculated for each animal, and the descriptive 

statistics are provided in Figure 2.2C. Group mean DSD was tested using an ANCOVA (covariate: 

mean tissue thickness) with main effects of age and sex and age by sex interaction. Levene’s Test 

was used to test the possibility that the variance among female mean DSD was significantly 

different than the variance among male mean DSD. The latter was used as a proxy to determine if 

estrous stage could underlie variability in female mouse mean DSD.  

MANCOVA (α=0.05) with Bonferroni correction was used to detect significant differences 

in mean densities among dendritic protrusion types. Main effects of age and sex, and age by sex 

interaction were tested. Tissue thickness, layer and region were built into a multivariate analysis 

of variance as covariates with eight dependent variables: short stubby, long stubby, thin, short 

mushroom, long mushroom, branched, atypical and filopodia densities and age and sex fixed 

factors. 

2.3 Results 

2.3.1  DSD Did Not Differ by Region 

Dendritic spines in five adjacent regions: A1, A2, V1, V2 and TeA were assessed in the 

current study, and regional identity of each pyramidal cell was estimated using anatomical 

landmarks and Franklin and Paxinos demarcations (Franklin & Paxinos, 2004). Region did not 

significantly impact DSD (F=1.829, DF=4, p=0.131) after Bonferroni adjustment. There were no 

significant region by sex nor region by age interactions (Appendix A Figure 2A). 
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2.3.2  DSD Differed Based on Cortical Layer 

Our survey included dendritic spines on pyramidal cells with cell bodies located in 

supragranular (layer 2/3 (L2/3)), granular (layer 4 (L4)) and infragranular (layer 5/6 (L5/6)) 

cortical layers of five adjacent auditory and visual cortical regions in a secondary statistical model 

with layer included as a fixed factor. Layer significantly impacted DSD after Bonferroni 

adjustment, and the laminar pattern of DSD: L2/3 > 4=5/6 was preserved across ages and sexes 

(L2/3 and 4 p=0.001; L2/3 and 5/6 p<0.001; L4 and 5/6 p=0.100), without a significant sex by 

layer interaction (Appendix A Figure 2B). 

2.3.3  DSD Lower in Females 

We reasoned that there would be no difference in DSD in auditory and visual brain regions 

in male versus female mice. In contrast to this prediction, ANCOVA (α=0.05) revealed a highly 

significant decrease in DSD of neurons from female, compared to male mice (F=14.838, DF=3, 

p<0.001) in A1, A2, V1, V2 and TeA. There were no significant sex by age, sex by region nor sex 

by layer interactions (Figure 2.2A). In a confirmatory analysis, mean DSD was calculated for each 

animal (i.e. collapsing across regions and layers), and yielded complementary evidence of lower 

mean DSD of female mice (Figure 2.2C). 

Stage of estrous has been shown to modulate DSD in the ventromedial nucleus of the 

hypothalamus (Frankfurt et al., 1990) and hippocampal regions (J.-R. Chen et al., 2009; McCarthy 

& Konkle, 2005; Smith, Vedder, & McMahon, 2009) but not in the anterior cingulate of female 

rats (Markham & Juraska, 2002). Although we did not specifically record and evaluate DSD in 

female mice in different stages of the estrous cycle, we did calculate coefficient of variation (CV) 
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to evaluate variation of DSD measurements in male versus female mice and test for homogeneity 

of variances using Levene’s Test (Bowman et al., 2018). If DSD significantly differed in females 

based on the stage of estrous cycle, one would reasonably predict that variation of DSD measured 

in female mice would be higher than in males. Although we did find that CV was higher in P84 

females (CV=21.49) than in males (CV=19.29), Levene’s Test revealed that the variances were 

not significantly different (F(1,44)=0.010, p=0.919). 

2.3.4  Stubby Spine and Short Mushroom Spine Densities Lower in Females 

Short stubby (F=12.408, DF=1, p=0.001), long stubby (F=10.338, DF=1, p=0.002) and 

short mushroom (F=5.834, DF=1, p=0.018) spine densities were significantly reduced in female 

compared to male mice, with no significant age by sex interactions (Figure 2.2B). Short stubby, 

long stubby and short mushroom spines collectively make up 30.83% of the total dendritic 

protrusions counted in our study (Appendix A Figure 1B). Sex did not appear to influence density 

of any of the other spine types, nor filopodia. 

2.3.5  DSD Differed Across Adolescence in Layer-Specific Manner 

We hypothesized that DSD would be significantly reduced during adolescent development, 

from P28 to P84, consistent with our previously published findings of reduced spine number in 

layers 2-4 of male mouse A1 across adolescent neurodevelopment (Moyer, Erickson, et al., 2015). 

In contrast to this hypothesis, we found no significant change in DSD over adolescent development 

(F=0.001, DF=1, p=0.971) in auditory and visual brain regions in male and female mice in our 

primary statistical model (Figure 2.3A). The age by sex interaction was also not significant. 
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However, the age by layer interaction was significant (F=0.777, DF=2, p=0.043). Mean DSD was 

significantly lower at P84 in L4 (n=19 neurons)(F=5.880, DF=1, p=0.026), with no change in mean 

DSD in L2/3 (n=31 neurons)(F=1.516, DF=1, p=0.229) nor in mean DSD in L5/6 (n=47 neurons) 

(F=3.082, DF=1, p=0.086) (Figure 2.3B). The age by sex by layer interaction was not significant 

(Figure 2.3C). 

2.3.6  Long Mushroom Spine Density Across Adolescent Development 

Long mushroom spine density was lower at P84 in male and female mice. This observation 

was a trend that approached statistical significance (F=3.615, DF=1, p=0.060) (Fig. 2-3D). Long 

mushroom spines made up 66.91% of the total dendritic protrusions counted in our study 

(Appendix A Figure 1B). Densities of the other spine types and of filopodia were not significantly 

different comparing P28 to P84. 
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Figure 2.2: Sex differences in dendritic spine density (DSD) and mean density dendritic protrusions 

(A) DSD is significantly reduced in female, compared to male mice (F=14.838, DF=3, p<0.001). There were no 

significant sex by age, sex by region nor sex by layer interactions. Data points are DSD from individual neurons. Mean 

DSD and SD represented by red lines. (B) Short stubby (F=12.408, DF=1, p=0.001), long stubby (F=10.338, DF=1, 

p=0.002) and short mushroom (F=5.834, DF=1, p=0.018) densities are significantly reduced in female mice with no 

significant age by sex interactions. Error bars = SEM. (C) Mean DSD for each animal. There is a trend level reduction 

in mean DSD in female, compared to male mice (F=4.846, DF=1, p=0.055). Mean DSD is not significantly different 

from P28 to P84 (F=0.005, DF=1, p=0.943). The age by sex interaction was not significant. 
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Figure 2.3: DSD and mean density dendritic protrusion findings over adolescent brain development 

(A) DSD is not significantly changed in male and female mice from P28 to P84 (F=0.001, DF=1, p=0.971). Data 

points are DSD from individual neurons. Mean DSD and SD represented by red lines. (B) There is a significant age 

by layer interaction (F=0.777, DF=2, p=0.043). Mean DSD is unchanged from P28 from P84 in L2/3 (F=1.516, DF=1, 

p=0.229), significantly decreased in L4 (F=5.880, DF=1, p=0.026) and unchanged in L5/6 (F=3.082, DF=1, p=0.086) 

over this period. Error bars = SEM. (C) Table demonstrating mean DSD of males and females at P28 and P84 show 

same laminar patterns of mean DSD shown in Fig.2B; the age by sex by layer interaction was not significant. (D) 

Long mushroom mean density is nearly significantly reduced over adolescent neurodevelopment (F=3.615, DF=1, 

p=0.060) with no significant age by sex interactions. Error bars = SEM. 
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2.4 Discussion 

In the current study, we set out to assess DSD and dendritic spine morphology in auditory 

and visual brain regions of male and female mice at P28 and P84 to determine if sex differences 

in dendritic spines are present at these ages and to acquire a more comprehensive understanding 

of synaptic remodeling across adolescence. We reasoned that sex would not significantly impact 

DSD in the regions we surveyed given that auditory and visual cortices do not fundamentally drive 

sex behaviors and that there are no established links between sex hormones and spine dynamics in 

these regions in mice. In contrast, we show for the first time that DSD on minor basal dendritic 

segments of pyramidal cells in A1, A2, V1, V2 and TeA is significantly lower in female mice. 

Lower DSD in female mice was robust; this effect was present even after calculating mean DSD 

for each animal, which included DSD from neurons located in different cortical layers. 

Existing published reports of lower DSD in females are limited to two brain regions: 

preoptic area and ventromedial nucleus of rat hypothalamus (Calizo & Flanagan-Cato, 2000; 

Frankfurt et al., 1990; Schwarz et al., 2008; Wright et al., 2008). Preoptic area and ventromedial 

nucleus are hypothalamic regions that undergo sex differentiation in the juvenile period of 

postnatal rat development and support the emergence of sex characteristics and sexual behavior. 

The hormone 17 β-estradiol (E2) plays a formative role in developmental patterning in each of 

these areas and this patterning leads to sex differences in DSD. In the medial preoptic area, E2 in 

male rats promotes prostaglandin synthesis to facilitate masculinization, which results in dendritic 

spine formation. In the ventromedial nucleus of male rats, E2 promotes glutamate release to 

facilitate defeminization, resulting in increased dendrite branching and spine formation (Wright et 

al., 2010). It seems plausible that the sex differences in DSD we observed in our study occur as a 

consequence of sex differentiation during early developmental patterning of auditory and visual 
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regions given that DSD was detectably lower in female mice at P28, an age at which activational 

effects of gonadal steroids would be limited. Whether the patterning in mouse auditory and visual 

brain regions is mediated by E2 through mechanisms similar to those that occur in rat 

hypothalamus remains to be determined. 

Coefficient of variation calculations confirmed that variation in mean DSD is greater in 

female than in male mice, consistent the possibility that stage of estrous could mediate mean DSD 

in female mice. However, Levene’s Test demonstrated that the variances among males and females 

are not significantly different, indicating that estrous stage is unlikely to mediate mean DSD in 

females in our study. It should also be noted that our data do not reflect plastic changes that are 

associated with motherhood, including altered neuron firing properties in primary and association 

sensory regions (Cohen, Rothschild, & Mizrahi, 2011; Galindo-Leon, Lin, & Liu, 2009; Liu, 

Linden, & Schreiner, 2006; Liu & Schreiner, 2007; Marlin, Mitre, D’amour, Chao, & Froemke, 

2015; Shepard, Chong, & Liu, 2016; Tasaka et al., 2019; Tasaka et al., 2018); males and females 

were housed separately after weaning at P21 and none of the female mice in our study produced 

offspring. 

Short stubby, long stubby and short mushroom spine densities were significantly reduced 

in female mice. Dendritic spine morphology is widely variable (Arellano et al., 2007; Gray, 1959; 

Spacek & Harris, 1998). Despite this, all dendritic spines share two features: a spine head harboring 

synaptic machinery and a neck region connecting the spine head to the dendritic shaft. Spine head 

volume and spine neck diameter are thought to be regulated independently (Benavides-Piccione, 

Ballesteros-Yáñez, DeFelipe, & Yuste, 2002). The spine neck region acts as a biochemical and 

electrical bottleneck. The narrower the neck region, the higher the resistance for molecules moving 

toward or away from the synapse. Stubby spines were defined in our study as dendritic protrusions 
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lacking a clear distinction between the head and neck. These spines would, in theory, lack the neck 

resistance that other spines (like mushroom spines) can provide, and since single spines are 

hypothesized to play active roles in dendritic integration through linear and non-linear mechanisms 

(Grienberger, Chen, & Konnerth, 2015), lower density of stubby spines in female mice could 

impact integration dynamics of synaptic inputs in single pyramidal cells (Palmer, 2014). Future 

studies are required to determine if there are sex-based differences in dendritic integration or gain 

in cortical pyramidal cells at sites where spine morphology profiles differ in male and female mice. 

We previously observed lower dendritic spine number at P84, compared to P28, in L2-4 of 

A1 in male mice (Moyer, Erickson, et al., 2015). In contrast to our previous reported findings, our 

current data reveal that age does not significantly impact DSD. We reason for the discrepancy in 

our findings could be due to one or more of the following factors: spine labeling method, sampling, 

and measurement. Labeling method is unlikely to account for the lack of agreement across the two 

studies since the co-labeling strategy employed in the previous study to identify spine objects 

clearly labeled GFP-positive dendritic protrusions in tissue from the current study (Appendix A 

Figure 1C). In terms of sampling, we previously sampled from L2-4, counting all spine objects, 

whereas in the current study we sampled from L2/3, L4 and L5/6, only counting spines on proximal 

(minor) basal dendrites on a subset of systematically randomly sampled pyramidal cells. We 

observed stark differences in DSD on proximal (minor) basal dendrites of pyramidal cells located 

in different cortical layers (Appendix A Figure 2B). Although spines from basilar dendrites of L5/6 

neurons were included in the current but not prior study, differences in laminar sampling alone is 

unlikely to explain the discrepancy in the findings from the two studies since the directionality of 

change in mean DSD with age in L2/3 differs between the two studies. Differences in measurement 

seem most likely to account for the discordant results observed. In our prior study we used an 
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immunohistochemical strategy that labelled all putative spine objects in L2-4 regardless of cell 

body location and location on dendritic tree. We then computed spine number which is dependent 

on both density of spines in tissue and tissue volume of the region of interest. Tissue volume is 

known to be affected by normal developmental patterning of structures other than spines 

themselves, including dendrite, axon, myelin and glial volumes. It seems likely that such 

differences in spine number/density measurement could account for the lack of agreement in 

results in the two studies, although it would be necessary to use both measurement methods to 

count spines in the same mouse subjects to confirm whether or not this is true. 

Mouse strain and environmental enrichment are two additional factors that cannot be ruled 

out as potential contributors to discordant results. C57BL/6NJ mice were used in the prior study 

whereas C57BL/6J mice were used in the current. C57BL/6J is distinguished from C57BL/6NJ by 

five SNP differences and a deletion in the Nnt gene. Such subtle genetic differences could have 

accounted for the divergence in the results. Environmental enrichment (complex housing) (Bayne, 

2018) has been shown to increase DSD in male rat occipital cortex (Alvarez, 2007; Hickmott & 

Ethell, 2006; Kolb, Gibb, & Gorny, 2003), supporting the possibility that environmental 

enrichment could have mediated DSD on basal dendrites in homologous regions in murine cortex 

in our study. Animals in our current study were exposed to environmental enrichment starting at 

P21. Interestingly, one study demonstrated that environmental enrichment increased the total 

length of basilar dendrites in visual cortex of male but not female rats (Juraska, 1984). If exposure 

to environmental enrichment increased DSD in addition to total dendrite length only in male (Kolb 

et al., 2003) but not female mice in our study, this may be able to explain why we found DSD was 

lower in females exposed to environmental enrichment and DSD was not significantly lower at 

P84 in males (compared with our prior report of reduced spine number from P28 to P84 in standard 
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housed male mice (Moyer, Erickson, et al., 2015)). However, although we can confirm that, unlike 

in our previously published study of DSD in A1, mice in the current study had access to 

environmental enrichment, we cannot confirm the frequency by which these mice specifically 

utilized this environmental enrichment nor if this enrichment had any direct impact on basal 

dendritic DSD. 

Despite the fact that we did not find a significant lower DSD at P84 in our current study, 

our data did reveal important evidence of synapse remodeling across adolescence. Given the 

impact of layer on DSD (Appendix A Figure 2B), we built a secondary statistical model to further 

probe the impact of layer and age on DSD. This assessment revealed a significant age by layer 

interaction and that mean DSD is unchanged across adolescence in L2/3 (n=31 neurons) (F=1.516, 

DF=1, p=0.229), significantly lower at P84 in L4 (n=19 neurons) (F=5.880, DF=1, p=0.026) and 

lower at P84 in L5/6, although the difference was not statistically significant (n=47 neurons) 

(F=3.082, DF=1, p=0.086). Lower mean DSD at P84, compared to P28, in L4 is consistent with 

our previous finding of reduced spine number in layers 2-4 across adolescent development. 

Overall, these data provide evidence that different layers in auditory and visual sensory regions 

undergo divergent neurodevelopmental trajectories of DSD during adolescent brain development.  

Region did not significantly impact DSD (Appendix A Figure 2A) consistent with a 

growing body-of-work demonstrating that regional differences in DSD do not exist across adjacent 

or similar cortical mouse brain regions (Arellano et al., 2007; Benavides-Piccione et al., 2002; 

Hsu, Luebke, & Medalla, 2017; Luebke, 2017). Despite the fact that pyramidal cells in mice and 

higher mammals share the same subcellular compartments and many of the same features (Harris 

& Shepherd, 2015), the finding that DSD does not significantly differ across adjacent cortical 

regions in mice does not translate to non-human primates and humans, as dendrite arbor size and 
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DSD have been shown to differ extensively based on regional location within cortex in these higher 

mammals (Amatrudo et al., 2012; Clemo & Meredith, 2012; Gilman, Medalla, & Luebke, 2016; 

Jacobs et al., 2001).  

We assessed DSD on proximal basal dendrites of pyramidal cells located in different 

cortical layers. DSD in L2/3 was significantly higher than DSD in both L4 and L5/6, but no 

difference was found in DSD in L4 versus in L5/6 (Appendix A Figure 2B). These data agree with 

the well-documented diversity of cortical pyramidal cell morphology, connectivity and functional 

properties based on the laminar location of pyramidal cell somata (Feldmeyer, 2012; Harris & 

Shepherd, 2015; Larkman, 1990; Petersen & Crochet, 2013; Rojo et al., 2016; Tija, Yu, Jammu, 

Lu, & Zuo, 2017). Heterogeneous morphology of pyramidal cells across cortical layers is thought 

to support the diversity of roles characteristic of dendritic spines (Tija et al., 2017). The laminar 

pattern of DSD we observed was preserved across ages and sexes, supporting the notion that 

pyramidal cells in different layers perform specific roles in information processing within cortical 

circuits. One implication of these findings is a cautionary note. DSD appears to depend on the 

layer in which a pyramidal cell is located, consistent with previous reports (Feldmeyer, 2012; 

Harris & Shepherd, 2015; Larkman, 1990; Petersen & Crochet, 2013; Rojo et al., 2016; Tija et al., 

2017), and definitive evidence for synaptic remodeling across adolescence was not found until a 

secondary analysis was performed, which analyzed DSD in the layers separately. Future studies 

that assess DSD in more than one cortical layer should specifically analyze DSD in the layers 

separately. For studies that use immunohistochemical methods and fluorescence microscopy, a 

marker is needed to reliably distinguish adjacent layers from one another. This can easily be 

achieved by counterstaining for NeuN as others have done in previous studies (Bopp et al., 2017; 

W. Zhang et al., 2014), and we have done here. 
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Collectively, these results provide important evidence of sex differences and layer-specific 

refinement of DSD over adolescent brain development in sensory brain regions located in posterior 

cortex. We demonstrate for the first time that DSD is lower in female mice in cortical brain regions 

that have not yet been discussed in the sex differences literature and are not thought to directly 

drive sex behavior. One may speculate that sex differences in DSD in auditory and visual cortices 

generate behavioral consequences. Links between divergent developmental patterning of DSD in 

male and female mice and behavior should be explored in future studies. Potential roles for gonadal 

steroids in the modification of DSD in auditory and visual brain regions in male and female, 

defined by gonadal anatomy, should also be examined. 

Finally, although it is known that the organization of auditory and visual cortices are largely 

conserved across primates (Hackett, 2008; Homman-Ludiye & Bourne, 2014), it remains unclear 

if the sex differences we observed in mouse DSD translate to higher mammals, and future studies 

are required to confirm this prediction. If the sex differences finding does translate to human, this 

work could inform our understanding of sex differences in normative and in abnormal adolescent 

neurodevelopmental trajectories. First, as discussed above, lower DSD in auditory and visual 

regions in females could have consequences for behavior during normative neurodevelopment. 

Again, this possibility must be specifically tested. Potentially more interestingly, if this finding 

translates to humans, this could have implications for studying the prodromal period and/or 

emergence of neurodevelopment disorders, for instance Sz. Postmortem studies have revealed that 

DSD is significantly lower adults with Sz including in A1, however the relative reduction of DSD 

in Sz did not differ by sex (McKinney et al., 2019). Many believe that individuals that develop Sz 

experience accelerated spine loss during adolescent synaptic remodeling, over and beyond the 

normal spine reduction that occurs during this period; this accelerated reduction in DSD across 
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adolescence may underlie, in part, the significantly lower number of spines observed in Sz in 

adulthood (MacDonald et al., 2017; McKinney et al., 2019; Shelton et al., 2015; Sweet, Henteleff, 

Zhang, Sampson, & Lewis, 2009). Despite no apparent sex difference in DSD in Sz in A1 in adult 

postmortem tissue, sex differences are well described in Sz including mean age of onset and 

clinical presentation of symptoms (American Psychiatric Association, 2013; Leung & Chue, 

2000). The data in our current study suggest that sex differentiation in DSD occurs prior to the 

start of adolescence (P28) in auditory and visual brain regions in mouse, presumably prior to Sz 

onset in humans. Further experimental work is necessary to determine if sex differentiation 

processes are or are not intact in auditory and visual brain regions of human individuals at-risk for 

developing, or those who go on to develop, Sz and whether and how such differences are associated 

with age of onset or symptom presentation of Sz. 
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3.0 CACNB4 Overexpression Decreased Dendritic Spines of Female Mice 

3.1 Introduction 

Schizophrenia (Sz) is a severe and complex neurodevelopmental disorder (Insel, 2010; 

Lewis & Levitt, 2002) that besets approximately 1% of the global population (A. H. C. Wong & 

H. H. Van Tol, 2003).  Sz onset typically occurs during adolescence and early adulthood, with a 

peak onset age of 18-25 years-old (Insel, 2010; Ziermans et al., 2011). Though onset usually occurs 

earlier in males than in females and general incidences tend to be higher in males, SZ’s lifetime 

prevalence is approximately equal in men and women (Abel et al., 2010). Males also tend to have 

more negative symptoms and disorganization, whereas females typically display more mood-

related and psychotic symptoms while better preserving their social functioning (American 

Psychiatric Association, 2013). 

Psychotic symptoms are core Sz symptoms (American Psychiatric Association, 2013), and 

the most widely recognized among these are auditory hallucinations. Individuals with this disorder 

present with lesser-known sensory processing deficits in both visual and auditory domains (Javitt, 

2009; Javitt & Freedman, 2015). Sensory processing deficits impair socio-cognitive functioning 

(Javitt & Sweet, 2015; Kantrowitz et al., 2016), which is not targetable by current treatments and, 

when prominent, is associated with the poorest functional outcomes among individuals living with 

Sz (Fett et al., 2011; Green et al., 2015; Green et al., 2004; Green & Leitman, 2008; Javitt & Sweet, 

2015; Kantrowitz et al., 2016). Grey matter loss and dendritic spine loss in primary auditory cortex 

(A1) in Sz are both presumed to contribute to the impaired ability to discriminate between auditory 

inputs (Javitt & Sweet, 2015; Parker & Sweet, 2018). Two decades of postmortem studies 
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assessing the cellular architecture of individuals with Sz have revealed that synaptic pathology is 

a key feature of Sz pathology (Moyer, Shelton, et al., 2015). Substantial evidence indicates that 

dendritic spine density (DSD) is significantly reduced in Sz in key cortical areas in the frontal-

temporal network linked with Sz symptoms and associated features, including in A1 (MacDonald 

et al., 2017; McKinney et al., 2019; Shelton et al., 2015; Sweet et al., 2009). 

In multiple independent comparisons of spines in postmortem Sz relative to non-

psychiatric control subjects, our group has demonstrated that DSD is significantly reduced in deep 

layer III of A1 in Sz (MacDonald et al., 2017; McKinney et al., 2019; Shelton et al., 2015; Sweet 

et al., 2009). We use a dual label immunohistochemical approach to detect putative spines in 

postmortem brain tissue. Specifically, spine objects are identified based on colocalization of 

phalloidin, a mushroom toxin that binds f-actin, and spinophilin, which is highly enriched in spine 

heads (Allen, Ouimet, & Greengard, 1997; Muly, Smith, Allen, & Greengard, 2004; Shelton et al., 

2015). Using this approach, our group recently demonstrated that loss of spines in A1 appears to 

be selective for and driven by the loss of the smallest dendritic spines (MacDonald et al., 2017; 

McKinney et al., 2019). 

In normal neurodevelopment, dendritic spines begin to emerge during the third trimester 

of pregnancy in humans, with spine number peaking during the juvenile period. Circuits are 

refined, and a substantial number of spines are decreased during adolescent pruning, a process that 

leads to a net loss in the number of spines in adulthood (Penzes, Buonanno, Passafaro, Sala, & 

Sweet, 2013; Penzes et al., 2011). Spines are largely maintained in adulthood, with rates of addition 

and elimination being approximately equal, with modest reductions in spine number in mid- to 

late-adulthood (Penzes et al., 2013; Penzes et al., 2011). In the early 1980s, Feinberg famously 

hypothesized that synapses could be “excessively pruned” during adolescent neurodevelopment in 
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Sz (Feinberg, 1983; Keshavan et al., 1994). Currently, the consensus is that an overall net reduction 

in spine number in Sz, whether it be due to insufficient spinogenesis, stability or excessive 

elimination during adolescence, or some combination of these, results in symptom onset in 

adolescence and reduced DSD observed in adulthood. 

Ca2+ signaling is critical for the structural and functional plasticity of dendritic spines 

(Higley & Sabatini, 2012; H. Kasai et al., 2003; Yuste, Majewska, & Holthoff, 2000). Ca2+ is 

critically important for several important biological processes including neurotransmitter release, 

excitation-transcription coupling and the structural remodeling of dendritic spines. Voltage-gated 

calcium channels (VGCCs) provide regulated Ca2+ influx into neurons and localize within the 

plasma membrane of dendritic spines (Higley & Sabatini, 2012; Sabatini & Svoboda, 2000; R. 

Yasuda, Sabatini, & Svoboda, 2003). These channels comprise the α1 subunit, which is the ion-

permeable pore, plus regulatory, auxiliary subunits: β, γ, and α2δ. Each subunit protein has multiple 

associated isoforms (Buraei & Yang, 2010). VGCCs contribute to Ca2+ signaling in dendrites, and 

genes that regulate VGCC function confer risk for Sz (Heyes et al., 2015; Purcell et al., 2014; 

Ripke et al., 2013; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 

Consistent with this, our lab recently performed an exploratory mass spectrometry study 

focusing on postmortem human tissue from Sz and non-psychiatric control subjects to nominate 

candidate proteins for small spine loss in Sz. DSD of small but not large spine objects was 

negatively correlated with levels of the tryptic peptide ALFDFLK, which is found in the β4 subunit 

of VGCCs, encoded by the gene CACNB4 (MacDonald et al., 2017). The primary function of β 

subunits is to regulate the activity of 1 VGCC subunits: β subunits are required for cell surface 

expression of high voltage activated 1 subunits, regulation of channel gating, and facilitation of 

G-, RGK-, phospho- and lipid-mediated inhibition of 1 subunits (Buraei & Yang, 2010; 
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Dolphin, 2012). After identifying increased β4 as a candidate driver for small spine loss in Sz, our 

group demonstrated that CACNB4 overexpression (β4OE) significantly reduced small spines in 

primary cortical neuronal culture (MacDonald et al., 2017). 

The current study’s goal was to characterize dendritic spines in male and female mice at 

the adult timepoint of postnatal day 84 (P84) following β4OE in the developing brain. We 

hypothesized that β4OE during neurodevelopment decreases DSD of small spines in adult mice, 

mirroring the reduction observed in A1 in postmortem Sz. Interestingly, β4OE significantly 

reduced DSD in layer 5 (L5) of sensory cortex of female but not male P84 mice, and loss of the 

smallest spines drove this reduction. This manipulation largely did not discriminate between spine 

type; in nearly all dendrite protrusion categories asssessed, density of spines was reduced in β4OE 

females. DSD appears to be significantly reduced in A1 of female and male postmortem Sz 

subjects, relative to non-psychiatric controls (McKinney et al., 2019). So, although our β4 calcium 

channel manipulation recapitulated cellular pathology reminiscent of spine loss observed in Sz, it 

did not do so in both sexes in mice. 

3.2 Methods 

3.2.1  Experimental Animals 

E16 pregnant C57BL/6J dams were acquired from The Jackson Laboratory (Bar Harbor, 

ME) and singly housed in BSL-2 biocontainment in standard microisolator cages (Allentown 

Caging Equipment, Allentown, NJ) on a 12h light/dark cycle with food and water provided ad 

libitum. The Synapsin-driven mCherry fluorescent adeno-associated virus (AAV) AAV2-hSyn-
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mCherry (Titer≥5x1012vg/ml), which confers long-term transgene expression of mCherry 

expression in neurons, was obtained from AddGene (#114472-AAV2). Two other AAVs were 

acquired, both from Penn Vector Core. AAV2-CaMKII-CACNB4-P2A-eGFP-WPRE (Titer = 

4.94e13gc/ml) was designed to selectively express non-native β4 protein and eGFP in 

glutamatergic neurons (pyramidal cells). AAV2-CaMKII-eGFP-WPRE (Titer = 1.088e13gc/ml) 

is a control virus that expresses eGFP in pyramidal neurons. 

A schematic of the summary study design and execution is found in Figure 3.1. Two 

versions of AAV injectate were prepared by adding 1L AAV2-hSyn-mCherry to either 1L 

AAV2-CaMKII-CACNB4-P2A-eGFP-WPRE or 1L AAV2-CaMKII-eGFP-WPRE virus diluted 

in sterile filtered 1x PBS at 1:10 (Gholizadeh et al., 2013; Stoica et al., 2013). Diluted AAV was 

used to achieve sparse AAV transduction. β4 overexpression (β4OE) experimental mice were 

produced by exposure to injectate containing 1L AAV2-CaMKII-CACNB4-P2A-eGFP-WPRE. 

Control (CN) mice were produced by exposure to injectate containing 1L control GFP virus. Co-

injection of AAV2-hSyn-mCherry was used to avoid biasing DSD measurement due to differences 

in GFP fluorescence produced by AAV2-CaMKII-CACNB4-P2A-eGFP-WPRE and the control 

virus, AAV2-CaMKII-eGFP-WPRE. AAV solutions were coded randomly “A” and “B” before 

exposure so that the investigator was blind to group during the exposure procedure. Approximately 

50% of each litter was exposed to A and 50% to B. Twenty four P0-P2 C57BL/6J mouse pups 

were exposed to AAV injectate using the bulk regional AAV injection (BReVI) procedure 

(Cheetham et al., 2015). Neonates were first cryoanesthetized (Phifer & Terry, 1986) to induce 

brief hypothermia until response to toe pinch was absent. 1L AAV injectate was injected 

intracranially 1mm rostral to the left earbud and 1mm lateral from the midline using a 1mL Luer-

lock syringe connected to a pulled glass micropipette with a sharp tip. Toe amputation was 
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performed while pups were anesthetized for group identification. Mouse pups were returned to 

home cage with the dam following thrombus at site of toe amputation and 10-12m rewarming on 

a heating pad. Experimental mice were housed with littermates following the BReVI procedure 

until 3-weeks following birth (P21), at which point mice were weaned and housed with same-sex 

littermates until P84. Each cage of weaned animals was provided environmental enrichment (a hut 

and exercise wheel) starting at P21, in accordance with policies of the Institutional Animal Care 

and Use Committee (IACUC) at the University of Pittsburgh. These experiments were approved 

by the IACUC at the University of Pittsburgh in accordance with the guidelines outlines in the 

USPHS Guide for Care and Use of Laboratory Animals. β4 overexpression following injection 

with AAV2-CaMKII-CACNB4-P2A-eGFP-WPRE versus AAV2-CaMKII-eGFP-WPRE or 

saline was confirmed in mice using western blot (Appendix B.1 Methods and Appendix B Figure 

1A). 

3.2.2  Estrous Stage Assessment 

Stage of estrous cycle was determined by evaluating vaginal cytology of P84 mice on day 

of sacrifice. Vaginal lavage was performed on each female mouse just prior to anesthesia. Briefly, 

the rear end of each mouse was elevated, gently grasped by the tail and 20L ddH2O was dispensed 

onto the opening of the vaginal canal. The fluid was drawn back up into the tip of a pipette and 

transferred to a dry glass slide. After air drying, the slide was examined at 20x on a light 

microscope. Estrous stage (proestrus, estrus or metestrus/diestrus) was estimated based on ratio of 

cornified squamous epithelial cells, leukocytes and/or nucleated epithelial cells in samples (Byers, 

Wiles, Dunn, & Taft, 2012; McLean, Valenzuela, Fai, & Bennett, 2012). 
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3.2.3  Immunohistochemistry 

Free-floating sections corresponding to plates 55, 57, 59 and 61 in Franklin and Paxinos’s 

The Mouse Brain In Stereotaxic Coordinates (Franklin & Paxinos, 2004) (-2.92mm, -3.16mm, 

-3.4mm and -3.88mm from bregma, respectively) were selected for immunohistochemistry. The 

region of interest (ROI) is referred to here as sensory cortex and comprises the following regions: 

primary and secondary auditory (A1, A2) and visual (V1, V2) cortices plus temporal association 

cortex (TeA). Four free-floating sections per mouse were washed in 0.1M PB, then incubated for 

30m in 1% NaBH4 to reduce autofluorescence. After thorough rinsing, sections were blocked for 

3h in a solution of 1% normal goat serum, 3% Triton X-100, 1% bovine serum albumin, 0.1% 

lysine and 0.1% glycine. Sections were incubated in the primary antibodies guinea pig anti-NeuN 

(Millipore #ABN90 lot:2834791, 1:2000) and rabbit anti-RFP (Rockland #600-401-376 lot: 

39670, 1:1000), for 24h and 96h respectively. Following primary antibody incubation, sections 

were washed and incubated in the secondary antibodies goat anti-guinea pig 405 (Abcam 

#Ab175678 lot:1972783, 1:500) and goat anti-rabbit Alexa Fluor 568 (ThermoFisher #A11036 

lot:997761, 1:500). After a 24h incubation in secondary antibodies, sections were washed and 

mounted on TruBond 380 micro slide glass (Matsunami, Osaka, Japan) using ProLong Gold 

antifade mountant (Invitrogen, Carlsbad, CA, USA).  

3.2.4  Sampling and Confocal Imaging 

Images were captured using an Olympus BX51 WI upright microscope (Center Valley, 

PA) with an Olympus spinning disk confocal, Hamamatsu ORCA R2 CCD camera (Bridgewater, 

NJ), BioPrecision2 XYZ motorized stage with linear XYZ encoders (Ludl Electronic Products 



 51 

 

Ltd., Hawthorne, NY), Lumen 220 light source (Prior Scientific, Cambridge, United Kingdom), 

excitation and emission filterwheels (Ludl Electronic Products Ltd.) and a Sedat Quad 89000 filter 

set (Chroma Technology Corp., Bellows Falls, VT), controlled by SlideBook 6 software 

(Intelligent Imaging Innovations). 2-D images of each tissue section were acquired using an 

Olympus PlanAPO 1.25x/0.04 N.A. objective and epifluorescent 405nm and 568nm excitation. 

Franklin and Paxinos’s The Mouse Brain In Stereotaxic Coordinates (Franklin & Paxinos, 

2004) and examination of NeuN and mCherry fluorescence in the 2-D images were used to 

estimate the laminar and regional location (A1, A2, V1, V2 or TeA) of the cell body of each layer 

5 (L5) pyramidal cell imaged (Bopp et al., 2017; Li et al., 2003; W. Zhang et al., 2014).  Regions 

are defined as in (Parker, Kindja, Cheetham, & Sweet, 2020) (also see Appendix B Figure 1B). L5 

mCherry+ pyramidal cells with somal GFP fluorescence (GFP+mCherry+ cells) were identified 

using an Olympus UPlanSApo 10x/0.40 N.A. objective and captured in 2-D at fixed exposure 

times (405nm=100ms, 488nm=1500ms and 568nm=150ms at 1.5% Neutral Density)(Appendix B 

Figure 1C). GFP+mCherry+ L5 pyramidal cells (n=170) were subsequently captured in a 3-D 

image stack using an Olympus PlanApo N 60x/1.40 N.A. oil immersion super-corrected objective 

with spinning disk unit engaged. Appendix B Figure 1D shows a single 2-D plane of a 60x stack. 

GFP-mCherry+ L5 pyramidal cells (n=86) in tissue sections from β4OE mice were also captured 

in 3-D image stacks and serve as the within mouse control for neurons in the β4OE group. Each 

3-D stack is a capture site comprised of the cell body of one L5 pyramidal cell and all of its 

corresponding basal dendrites visible within the 1024x1024 pixel capture window (Figure 1C in 

(Parker et al., 2020)). ND filter and exposure time for the 568nm channel were optimized for one 

randomly selected minor basal dendritic segment at each site for each 3-D stack captured. Minor 

basal dendritic segments were defined as any dendritic segment branching directly off a major or 
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primary basal dendrite. Total tissue thickness was estimated by measuring anti-NeuN labeling in 

the z-dimension. 3-D image stacks were acquired through the entire thickness of the tissue (0.25m 

between each z-plane). 

3.2.5  Image Processing and Analysis 

Slidebook 6 and Stereo Investigator (MBF Bioscience) softwares were used for image 

processing and analysis. 1024x1024 image stacks were first transformed using a no-neighbors 

smoothing algorithm in Slidebook 6. mCherry fluorescence was used to determine dendrite 

segment lengths and assess spines in CN and β4OE mice. Minor basal dendritic segments >50m 

in length and arising >10m away from the cell body and >3m from a dendrite branch point were 

identified in 1024x1024 image stacks and cropped into individual image stacks containing one 

minor basal dendritic segment each. Mean (SD) distance from the soma of dendritic segments 

captured on GFP+mCherry+ cells were 15.85(4.48)m indicative of proximal branches. Mean 

distance from soma did not significantly differ by genotype or sex (data not shown). 

For determination of dendritic spine density dendritic segment lengths were measured in 

Slidebook 6 using the line tool. Individual dendritic segments were exported as TIFF series from 

Slidebook 6 and viewed in Stereo Investigator for spine counting and categorization. Spine objects 

were manually counted in Stereo Investigator and spine density for each neuron was calculated 

using Equation 1. 

Two neurons per mouse were selected for further assessment to determine if the significant 

main effect of genotype on mean DSD could be driven by a significant difference in density of 

spines of a particular volume. Each neuron selected had DSD within 2 standard deviations of the 
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group mean. Spine objects included in the neuron DSD calculation were marked, files coded to 

blind investigator to neuron, and group, and each spine (n=1543 objects) manually masked using 

the brush tool in Slidebook 6 (Appendix B Figure 2A). Object volume (m3) statistics were 

extracted for each mask in Slidebook 6 using mask statistics. Spine objects were organized into 

objects of 10 size bins based on volume as in (MacDonald et al., 2017). The bin with the smallest 

putative spines comprises objects of volumes < 0.1m3, the next bin of spines volumes from 0.1-

0.2m3 and so on. The bin with the largest putative spines comprises objects measuring > 0.9m3. 

Dendritic protrusions were classified into one of eight types in Stereo Investigator. Types included 

short stubby, long stubby, short mushroom, long mushroom, thin, branched or atypical dendritic 

spine or filopodia. Category was determined based on morphological characteristics described 

previously (Arellano et al., 2007; Parker et al., 2020; Risher et al., 2014) (Appendix B Figure 2B). 
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Figure 3.1: Study design and execution 

(A) Two versions of AAV injectate were prepared by adding AAV-mCherry to either AAV-CACNB4 (to generate β4 

overexpression [β4OE] mice) or AAV-control virus (to generate control [CN] mice). AAV solutions were randomly 

coded “A” and “B” before exposure to blind experimenter to group. Twenty-four P0-P2 C57BL/6J mouse pups were 

exposed to AAV injectate (50% to injectate A) using the bulk regional AAV injection (BReVI) procedure. Two males 

and two females perished prior to P84, due to either dame neglect (n=3) or hydrocephaly (n=1). (B) Stage of estrous 

cycle was estimated by evaluating vaginal cytology of P84 mice on day of sacrifice. Twenty mice were euthanized at 

P84: 4 male CN, 6 male β4OE, 4 female CN, and 6 female β4OE mice. Mice were anesthetized and transcardially 

perfused with ice-cold 1x PBS followed by 4% PFA. Brains were extracted, post-fixed in 4% PFA, moved to 18% 

sucrose and stored at -30C in cryoprotectant until sectioning. (C) Layer 5 red (mCherry) fluorescent pyramidal cells 

with green (GFP) somal labeling were selected for imaging. We aimed for and used a sparse labeling approach for 

this study because it allowed us to visualize and evaluate spines without over-sampling. The major tradeoff for 

employing this sparse labeling approach is that we had to exclude 4 mice (1 male CN, 2 male β4OE and 1 female CN) 

before image analysis, due to fact that these mice lacked GFP+mCherry+ cells. Image stacks from P84 mice were 

assessed: 3 male CN (n=42 total cells), 6 male β4OE(n=25 cells), 3 female CN (n=30 cells), and 6 female β4OE mice 

(n=70 cells). 
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3.2.6  Statistics 

Statistical tests were performed at two levels: 1) mouse level where n=16 mice and 2) 

neuron level where n=170 neurons in SPSS software (IBM, Armonk, NY). Shapiro-Wilk test was 

used to confirm normality. For statistical assessment at mouse level, an ANOVA (α=0.05) was 

used to test the main effects of genotype, sex, and the genotype by sex interaction on mean DSD.  

These data were further examined at the neuron level in a separate statistical test. First, 

potential effects of mean distance of dendritic branch from soma, mean number of GFP+mCherry+ 

cells in ROI and region were evaluated for any association with DSD. None were significantly 

associated with DSD and were thus not included in the final model. An ANOVA (α=0.05) was 

used to test the main effects of genotype, sex, and the genotype by sex interaction on DSD.  

An ANOVA (α=0.05) was used to test the main effects of genotype, sex, and the genotype 

by sex interaction on DSD of each individual spine mask size bin. 

MANOVA (α=0.05) with Bonferroni correction was used to detect significant differences 

in mean densities among dendritic protrusion types. Main effects of genotype, sex, and the 

genotype by sex interaction were tested. The eight dependent variables were: mean short stubby, 

long stubby, thin, short mushroom, long mushroom, branched, atypical and filopodia densities. 
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3.3 Results 

3.3.1  β4OE Reduced DSD of L5 Pyramidal Cells in Sensory Cortex 

At the mouse level, β4OE significantly reduced mean DSD on minor basal branches of L5 

pyramidal cells in five regions (V1, V2, A1, A2, and TeA) of sensory cortex (F=9.249, DF=3, 

p=0.01, Figure 3.2A). Sex did not significantly impact DSD. Similarly, there was a non-significant 

genotype by sex interaction. At the neuron level, β4OE significantly reduced DSD (F=30.922, 

DF=3, p<0.001, Figure 3.2B). Although main effect of sex on DSD was not significant, there was 

a significant genotype by sex interaction (F=16.372, DF=3, p<0.001). In a secondary analysis 

focusing on neurons from the two sexes separately, β4OE significantly reduced DSD in female 

(F=61.899, DF=1, p<0.001) but not male mice (Figure 3.2C-D). 

3.3.2  β4OE-Mediated Spine loss in Females was Independent of Estrous Stage 

Female CN and β4OE mice assessed in this study were in the following estrus stages: 

proestrus, estrus and metestrus/diestrus. Neuron DSD of female mice is displayed broken down by 

estrous stage in Figure 3.3A. Metestrus/Diestrus was the only stage with neurons from both CN 

and β4OE mice. DSD was significantly reduced in female β4OE mice in Metestrus/Diestrus alone 

(F=6.190, DF=1, p=0.017, Figure 3.3B). We performed a within mouse internal control assessment 

to determine if estrous stage significantly impacted neuron DSD within individual female β4OE 

mice. DSD of GFP+mCherry+ neurons was significantly decreased compared to DSD of GFP-

mCherry+ internal control neurons in three β4OE mice: Ms10-87, Ms5-10 and Ms16-169. β4OE 

significantly reduced DSD within each mouse, regardless of estrous stage; Ms10-87 was in Estrus 
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(F=67.688, DF=1, p<0.001), and Ms5-10 (F=9.502, DF=1, p=0.004) and Ms16-169 (F=126.518, 

DF=1, p<0.001) were in Metestrus/Diestrus (Figure 3.3C). DSD of GFP-mCherry+ internal 

control neurons in the three β4OE mice assessed in Figure 3.3C did not significantly differ based 

on estrous stage (F=2.108, DF=1, p=0.154)(Figure 3.3D). 

3.3.3  β4OE Selectively Reduced Density of Spines with Small Volumes in Females 

Because spine density reductions due to β4OE were limited to females, we focused 

subsequent analyses on females (corresponding analyses in males available in Appendix B 

Supplemental Methods). Mean DSD of small < 0.1μm3 spines were significantly decreased in 

neurons from female β4OE mice, relative to female CN (F=5.276, DF=1, p=0.035). Mean DSD of 

larger spine objects > 0.1μm3 did not significantly differ based on genotype in female mice (Figure 

3.4A). β4OE significantly decreased mean DSD of small spines 0.1μm3 - 0.2μm3 in volume 

(F=6.748, DF=1, p=0.032) in female β4OE mice in Metestrus/Diestrus alone (Figure 3.4B). The 

effect of reduced small spine objects was observed in female but not male mice (Appendix B 

Figure 3A). 

3.3.4  β4OE Decreased Density of Four Morphologic Types of Spines in Females 

β4OE significantly decreased mean density of four dendritic spine morphologic categories: 

short stubby, long stubby, short mushroom and long mushroom in female mice (Figure 3.4C). 

These four categories comprised the majority (95.19%) of all dendritic spines observed in females 

at P84. Focusing exclusively on females in Metestrus/Diestrus, β4OE significantly decreased mean 

density of short mushroom spines (F=20.160, DF=1, p<0.001) (Figure 3.4D). In contrast to effects 
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observed in females, alterations to the spine morphologic categories of males were slight. β4OE 

significantly increased mean density of long stubby spines in male mice (F=4.202, DF=1, 

p=0.044). There was a trend level increase in mean density of short mushroom (F=3.332, DF=1, 

p=0.072) and a trend level decrease in mean density of long mushroom (F=3.215, DF=1, p=0.077) 

spines in male β4OE mice (Appendix B Figure 3B).   
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Figure 3.2: β4 overexpression (β4OE) significantly reduced dendritic spine density (DSD) on minor basal 

branches of layer 5 (L5) pyramidal cells in sensory cortex 

(A) β4OE significantly reduced mean DSD at mouse level (F=9.249, DF=3, p=0.01). Main effect of sex on mean DSD 

was not significant (F=0.612, DF=3, p=0.449). Genotype by sex interaction was also not significant (F=1.129, DF=3, 

p=0.309). Data points are mean DSD values from individual mice. Error bars = SD. (B) DSD was significantly reduced 

in β4OE, compared to control (CN) mice at the neuron level (F=30.922, DF=3, p<0.001) (n=42 from CN males, n=28 

from β4OE males, n=30 from CN females and n=70 from β4OE females). Main effect of sex on DSD was not 

significant (F=1.812, DF=3, p=0.180). There was a significant genotype by sex interaction (F=16.372, DF=3, 

p<0.001). Data points are DSD from individual neurons. Error bars = SD. (C) β4OE significantly reduced DSD in 

neurons from female mice (F=61.899, DF=1, p<0.001) (D) In contrast, β4OE did not significantly impact DSD in 

neurons from male mice (F=0.838, DF=1, p=0.363). Data points in C and D are DSD from individual neurons. Error 

bars = SD. 
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Figure 3.3: β4OE significantly reduced DSD in female mice regardless of estrous stage 

(A) Estrous stage breakdown of DSD of neurons from female CN and β4OE mice. Data points are from individual 

neurons. Error bars = SD. (B) β4OE significantly reduced DSD in female mice in Metestrus/Diestrus (F=6.190, DF=1, 

p=0.017). Data points are from individual neurons. Error bars = SD. (C) Within mouse internal control comparison. 

DSD of GFP+mCherry+ (abbreviated GFP+) neurons was significantly decreased relative to DSD of GFP-mCherry+ 

(abbreviated GFP-) internal control neurons in three β4OE mice. Mice were in different estrous stages (L-R): Ms10-

87 was in Estrus (E) (F=67.688, DF=1, p<0.001), and Ms5-10 (F=9.502, DF=1, p=0.004) and Ms16-169 (F=126.518, 

DF=1, p<0.001) were in Metestrus/Diestrus (M/D) on day of sacrifice. Data points are from individual neurons. Error 

bars = SD. (D) DSD of GFP- internal control neurons in the three β4OE mice (in C) did not significantly differ based 

on estrous stage (F=2.108, DF=1, p=0.154). Data points are from individual neurons. Error bars = SD. 
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Figure 3.4: β4OE selectively reduced mean density of small volume spines and of distinct morphologic types 

in females mice 

(A) Mean DSD of small objects of < 0.1m3 volume was significantly reduced in neurons from female β4OE mice, 

relative to CN (F=5.276, DF=1, p=0.035). Mean DSD of larger objects with volumes > 0.1m3 did not significantly 

differ based on genotype in female mice. Error bars = SEM. (B) Focusing exclusively on female mice in 

Metestrus/Diestrus, β4OE significantly decreased mean DSD of small objects of 0.1m3 - 0.2m3 volume (F=6.748, 

DF=1, p=0.032). Error bars = SEM. (C) β4OE significantly reduced mean density of short stubby (F=33.939, DF=1, 

p<0.001), long stubby (F=7.043, DF=1, p=0.009), short mushroom (F=4.342, DF=1, p=0.040) and long mushroom 

(F=30.354, DF=1, p<0.001) spines in female mice (all estrous stages represented) after Bonferroni correction. 

Collectively, spines in these four categories made up 95.19% of all protrusions observed in female mice. Error bars = 
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SEM. (D) Focusing exclusively on female mice in Metestrus/Diestrus, β4OE significantly decreased mean density of 

short mushroom spines (F=20.160, DF=1, p<0.001). Error bars = SEM. 

3.4 Discussion 

In the current study, we tested the hypothesis that overexpressing CACNB4 in the 

developing brain decreases DSD in adult mice, mirroring the spine loss intermediate anatomical 

phenotype observed in A1 in postmortem Sz (MacDonald et al., 2017; McKinney et al., 2019; 

Shelton et al., 2015; Sweet et al., 2009). β4OE significantly reduced DSD in primary cortical 

neuronal culture (MacDonald et al., 2017) and DSD was significantly reduced in A1 in postmortem 

Sz subjects (McKinney et al., 2019). With this evidence, we reasoned that β4OE would 

significantly decrease DSD of male and female mice. In contrast, β4OE significantly reduced DSD 

in L5 of sensory cortex of female but not male mice. We evaluated estrous stage of female mice 

on day of sacrifice, reported DSD of CN and β4OE females during all estrous stages and during 

Metestrus/Diestrus alone, and carefully compared DSD of GFP+ to DSD of GFP- (internal control) 

pyramidal cells in female β4OE mice. The results from these assessments provide complementary 

evidence that the spine loss we observed in β4OE female mice was not an artifact of estrous stage 

differences between genotypes. Spine volume assessment revealed β4OE-driven spine loss in 

female mice is selective for loss of the smallest spines, mirroring the recent finding of small spine 

loss in A1 in postmortem Sz (MacDonald et al., 2017; McKinney et al., 2019; Shelton et al., 2015; 

Sweet et al., 2009). Furthermore, β4OE-driven spine loss appeared relatively undiscriminating in 

terms of morphological type of spines lost in female mice, but notably included short and long 



 63 

 

mushroom spines, which are characterized by large spine head volume and presumed to 

accommodate a mature postsynaptic density (Arellano et al., 2007). 

Two methodological limitations encountered in this study warrant discussion. First, we 

intentionally employed a sparse labeling approach to assess dendritic spines on pyramidal cells to 

clearly visualize spines (with optimal signal-to-noise characteristics) and avoid over-sampling 

spine objects in our tissue. A minor downside of sparse labeling in the current study was that this 

necessitated expanding the ROI from A1, the region that is specified in our scientific premise, to 

sensory cortex (V1, V2, A1, A2, and TeA). In other words, the ROI we focused on herein was not 

perfectly aligned to the tightly focused A1 studies in our scientific premise (MacDonald et al., 

2017; McKinney et al., 2019; Shelton et al., 2015; Sweet et al., 2009). Importantly, we and others 

have shown that unlike in higher mammals (Amatrudo et al., 2012; Clemo & Meredith, 2012; 

Gilman et al., 2016; Jacobs et al., 2001), there are little to no differences in cortical spine density 

based on region in mice (Arellano et al., 2007; Benavides-Piccione et al., 2002; Harris & Shepherd, 

2015; Hsu et al., 2017; Luebke, 2017). Therefore, ROI does not diminish the translatability of our 

findings to human A1. Sparse labeling led to an uneven number of mice and neurons per group, 

which is a significant downside to the approach. Further reducing the size of the groups before 

image processing to equalize the numbers was not sensible, so we did everything in our power to 

carefully analyze the data by reporting DSD at both mouse and neuron levels, including as many 

controls as possible, probing potential confounds and performing rigorous statistics. The second 

methodological limitation concerns the β4OE AAV we employed. The P2A element included in 

the β4OE AAV was not 100% efficient, resulting in the expression of a β4-GFP fusion protein in 

addition to non-native β4 and GFP (Appendix B Figure 2A). One concern is that the heavier fusion 

protein may not translocate to and behave like native β4. We can be fairly confident that β4-GFP 
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translocates to dendrites, where it has the potential to alter DSD, given that a similar fusion protein, 

GFP-β4, co-localized with the dendritic protein Map2 in cultured hippocampal neurons 

(Wittemann et al., 2000). Regardless, it is unlikely the effect of β4OE on DSD was due to the 

fusion protein as β4OE did not significantly reduce DSD in male mice. 

Several highly influential light and electron microscopy studies have demonstrated that 

circulating hormone levels across the estrous cycle shape spine dynamics in hippocampus of 

female rats (Alexander et al., 2018) with high levels of 17β-estradiol (E2) during proestrus 

corresponding with higher DSD (A. Kato et al., 2013; Woolley, Gould, Frankfurt, & McEwen, 

1990; Woolley & McEwen, 1992). Results from similar studies performed in rat cortex are mixed. 

Two out of three studies found no difference in DSD in proestrus compared to other stages (J.-R. 

Chen et al., 2009; Markham & Juraska, 2002; Prange-Kiel et al., 2008). Taking into account these 

findings, we explored the possibility that our finding of β4OE-mediated spine loss in female mice 

could be driven by estrous stage. Vaginal cytology of each female mouse was evaluated, stage of 

estrous estimated and recorded on P84, day of sacrifice for all (females and males) mice in our 

study. All animals in the study were sacrificed on P84 by design, since DSD is known to fluctuate 

over the course of neurodevelopment as a function of age, specifically in A1 and sensory cortex 

of mice (Moyer, Erickson, et al., 2015; Parker et al., 2020). Each estrous stage was not equally 

represented on P84 across genotypes by chance, therefore we additionally specifically compared 

DSD of female CN versus β4OE mice in metestrus/diestrus, the only estrous stage represented in 

both genotypes of mice. Narrowing our focus to metestrus/diestrus again revealed DSD was 

significantly reduced in female β4OE relative to CN mice. Importantly, DSD of GFP+ (readout of 

β4OE) neurons was significantly decreased compared to DSD of GFP- internal control neurons in 

a β4OE mouse in estrus. The same finding was repeated in two β4OE mice in metestrus/diestrus 
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and DSD of internal control neurons did not significantly differ based on estrous stage in β4OE 

mice. So, although proestrus, estrus and metestrus/diestrus were not equally represented among 

the genotypes in the current study, our data collectively indicate that β4OE-mediated DSD 

reduction in female mice was not an artifact of estrous stage, consistent with two studies focusing 

on DSD in rat cortex (Markham & Juraska, 2002; Prange-Kiel et al., 2008) and two mouse studies, 

the first which found no change in spine density of L5 pyramidal cells across estrous in 

somatosensory cortex (Alexander et al., 2018), and the second which demonstrated no change in 

spine density of L5 pyramidal cells in frontal cortex of P27 pre-pubertal hormone-treated or 

ovariectomized female mice (Boivin, Piekarski, Thomas, & Wilbrecht, 2018). Within the broader 

context, studies of DSD in rodent hippocampus demonstrate estrous stage modulates DSD 

(Alexander et al., 2018; A. Kato et al., 2013; Woolley et al., 1990; Woolley & McEwen, 1992), 

whereas in rodent cortex estrous stage regulation has been primarily demonstrated to be 

independent from DSD (Alexander et al., 2018; Markham & Juraska, 2002; Prange-Kiel et al., 

2008). Moreover, our internal control assessment findings suggest that β4OE does not likely exert 

a network effect on spines of non-β4OE neurons. However, follow up studies are necessary to 

reject the possibility that β4OE significantly reduces DSD on cells in the broader network and to 

substantiate the prediction that β4OE’s impact is cell-autonomous. 

Among mouse studies reporting decreased DSD due to a Sz-related manipulation, our 

results are noteworthy due to the volume- and sex-specificity of the observed spine loss. We report 

here β4OE significantly reduced density of spines of small volumes, in particular, spines with 

volume equal to or smaller than 0.1m3. Our group recently become interested in the possibility 

that spine loss in A1 in Sz could be specific for loss of spines of a particular size/volume. Volume 

assessment of spines in deep layer 3 of A1 in Sz revealed small spine loss drives the overall 
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reduction in spines observed in A1 in Sz (MacDonald et al., 2017). The reason for loss of small 

spines was proposed to imply roles for impaired new spine formation or stability since genetic 

studies implicate multiple pathways important for spine formation and stabilization in Sz risk 

(Purcell et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014). Moreover, reduced small spine density was provided as evidence an alternative the classic 

explanation of Sz pathogenesis first proposed by Irwin Feinberg in 1982, which states that mature 

spines are excessively eliminated in Sz during adolescence (Feinberg, 1983; Keshavan et al., 

1994). A major assumption employed in the argument for this alternative possibility was that new 

or transient spines are small and mature spines large (Holtmaat et al., 2005; Knott & Holtmaat, 

2008). 

Spines of small volume (<0.3m3) made up the majority (68.96%) of all spines observed 

in P84 mice in the spine volume assessment of neurons in CN and β4OE in mice the current study. 

Studies of PSD-95 and longitudinal imaging of spine dynamics in vivo demonstrate that spines are 

divided into two categories based on synapse maturity, “immature spines” which are new and lack 

PSD-95 protein and “mature” spines with established excitatory synapses and PSD-95. In adult 

animals, 20% of all spines are highly dynamic, rarely stabilized and immature, whereas 70-80% 

are mature and PSD-95 containing (Berry & Nedivi, 2017; Cane, Maco, Knott, & Holtmaat, 2014; 

Holtmaat et al., 2005; Trachtenberg et al., 2002; Villa et al., 2016). Immature spines tend to be 

small, however, spines of all sizes can be categorized as immature or mature (Holtmaat et al., 

2005). If we assume that all or nearly all immature spines in our study are small, this leaves a pool 

of up to 48.96% spines in our study that are small mature spines (predicted to contain PSD-95) 

(Figure 3.5A).Thus, we propose β4OE decreases density of small spines, including both 

new/immature spines as well as mature PSD-95 containing dendritic spines. 
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If immature small spines fail to form or stabilize in β4OE mice, like was suggested to occur 

in Sz in our previous study (MacDonald et al., 2017), impaired spine formation or stabilization 

could drive loss of a portion of, but not 100% of the small spines decreased in the current study. 

The remaining small spines decreased in our study are likely mature and could be lost to due to 

destabilization of the actin cytoskeleton through a cell-autonomous process. Spine head volume 

positively correlates with postsynaptic density size and number of receptors (Arellano et al., 2007). 

Mushroom spines are characterized by large head volumes and thin neck diameter. β4OE-mediated 

spine loss included short mushroom and long mushroom types in females, providing additional 

evidence for mature spines among the small spines lost due to the β4OE manipulation. Finally, 

without specifically performing in vivo imaging of spine dynamics, we cannot rule out the 

possibility that a portion of small mature spines are eliminated in β4OE mice during adolescence 

as Feinberg predicted (Feinberg, 1983; Keshavan et al., 1994). Reexamination of data reported in 

one of our previous studies (Moyer, Erickson, et al., 2015) revealed that spine loss in L2-4 of A1 

in normative mouse adolescence (P28-P84) was selective for spines of the smallest volumes 

(unpublished finding). If small spines are lost during adolescence synaptic remodeling in wildtype 

mice and in β4OE mice via a shared mechanism, loss of small spines observed in P84 β4OE mice 

could be characterized by reduced mature small spine number, due to elimination during circuit 

remodeling in adolescence in addition to immature small spines loss due presumably to failed spine 

formation or stability (Figure 3.5B). 

In concert, our findings of β4OE-mediated small spine loss support our group’s previous 

prediction that new spine formation and stability could be impaired in Sz and also support the 

notion that mature spines could be eliminated during adolescence. We specifically highlight the 

possibility that many of the spines lost due to our Sz-related manipulation, β4OE, are likely small 
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mature spines. Follow-up studies should stain for PSD-95 in CN and β4OE female mice to confirm. 

Moreover, proportion of spines added, and eliminated should be longitudinally tracked and 

evaluated using in vivo imaging of spine dynamics in CN and β4OE neurons. Additionally, spine 

lifetimes could be tracked in spine dynamics experiments to characterize transience/persistence of 

small spines in future studies. 

β4 protein is not thought to directly modulate the actin cytoskeleton or play direct roles in 

mediating spine dynamics or morphology. CaV3 α1 VGCC subunits on the other hand were 

recently implicated in new synapse assembly (Zhao et al., 2017). Therefore, β4-mediated CaV3 

Ca2+ signaling may represent a potential mechanism whereby β4OE mediates small spine loss. 

However, whether β subunits can directly regulate CaV3 VGCCs remains controversial. β4 is 

known to significantly impact Ca2+ signaling via regulation of the α1 subunit of high voltage-

activated VGCCs and Ca2+ signaling, in turn, is critical for the structural and functional plasticity 

of dendritic spines (Higley & Sabatini, 2012; H. Kasai et al., 2003; Yuste et al., 2000). Post-

synaptic β4-mediated VGCC Ca2+ entry is therefore predicted to initiate signaling cascades that 

implicate downstream proteins that control actin organization and dynamics in spines. 

Investigating such proteins, including Rho family GTPases, which have established roles in 

regulating the actin cytoskeleton (Ethell & Pasquale, 2005), and dendritic microtubule-associated 

proteins (MAPs), which are of high interest to our group, and have been shown to bundle f-actin 

(Roger, Al-Bassam, Dehmelt, Milligan, & Halpain, 2004; Selden & Pollard, 1983) could provide 

key insights into potential mechanisms by which β4OE reduces density of small dendritic spines 

in a cell-autonomous manner. Our group recently demonstrated that MAP2-immunoreactivity is 

significantly reduced in A1 and positively correlated with small spine loss in this region in Sz 

(DeGiosio et al., 2019; Grubisha et al., 2019; McKinney et al., 2019). 
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Finally, after completing the experiments described in the current study, two major 

unanswered questions remained and warranted the follow-up study performed in Chapter 4. The 

first question was: why are female mice more vulnerable to the β4OE manipulation? The second 

question was: how might β4OE reduce DSD on a mechanistic level? β4 subunits traffick α1 VGCC 

subunits to the plasma membrane, strongly regulate channel gating, on one hand increasing the 

voltage-dependent threshold of channel activation and increasing macroscopic Ca2+ current 

density, and on the other hand promoting closed state voltage-dependent inactivation. 

Additionally, β4 subunits promote channel inhibition by accelerating Gβγ dissociation following 

Gβγ-mediated inhibition of VGCCs and β4 has also recently been implicated in modulation of 

transcription machinery in the nuclear compartment (Buraei & Yang, 2010; Dolphin, 2016). Given 

the diversity of roles played by β4 and lack of literature on β4 sex differences, we designed and 

performed an exploratory experiment to nominate mechanisms that could mediate the volume- and 

sex-specific β4OE-mediated spine loss observed in the current study. Co-immunoprecipitation 

combined with mass spectrometry was utilized to identify sex differences in the “β4 interactome” 

of P84 mouse cortex (Chapter 4). Importantly, we propose a model in the overall discussion 

(Chapter 5) of this document to explain volume- and sex-specific β4OE-mediated spine loss 

observed in P84 mouse sensory cortex. 
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Figure 3.5: β4OE decreased density of small spines, including potentially both new/immature spines and 

mature PSD-95 containing dendritic spines 

(A) Proposed breakdown of immature (non-PSD-95 containing) and mature (PSD-95 positive) dendritic spines in P84 

mice. (B) Proposed timeline of small spines loss in β4OE mice. Small and mature spine loss occurs during adolescent 

synaptic remodeling (red line)(Zuo, Lin, Chang, & Gan, 2005). Small and immature spines fail to form or stabilize 

during early adulthood (green dashed line). 
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4.0 Sex Differences in the β4 Interactome 

4.1 Introduction 

β is the most extensively studied auxiliary subunit of voltage-gated calcium channels 

(VGCCs) (Zamponi, 2005). β along with two other auxiliarly VGCC subunits, α2δ and γ, bind to 

the α1 (ion permeable channel) VGCC subunit with a 1:1:1:1 reversible stoichiometry (Buraei & 

Yang, 2010, 2013; Dolphin, 2016). There are four β protein subfamilies, β1-4 (Castellano & Perez-

Reyes, 1994). Each β protein subtype is encoded by a separate gene with multiple splice variants, 

all of which are highly expressed at transcript and protein levels in mouse brain tissue with the 

exception of β1a, β1d, β2d, and β2e (Buraei & Yang, 2010; Schlick et al., 2010). Evidence of β4a 

is limited to the cerebellum (Buraei & Yang, 2010). Of the β proteins found in brain, particular 

subunits predominate in neuronal subcellular compartments depending on the α1 subunits they 

preferentially bind to and modulate (Buraei & Yang, 2010). β subunits can bind to any high-voltage 

activated (HVA) α1 VGCC subunit and pair with α1 subunits with a 1:1 stoichiometry. Although 

the binding affinity of β to α1 is high, ranging from 2–54nM, α1 to β pairing is reversible and α1-

β reshuffling may occur either to compensate for loss of β or through competitive replacement 

(Buraei & Yang, 2013; Burgess et al., 1999; Burgess et al., 1997; Dolphin, 2016; Yeon et al., 

2018). 

β4 is the focus of the current study and has now five known splice variants (Etemad et al., 

2014). β4 variants are generally expressed highly in brain, including in rodents, where transcript 

and protein levels are altered in several brain regions as a function of age (Buraei & Yang, 2010; 

Ferrándiz‐Huertas et al., 2012; Ludwig et al., 1997). As a general rule, β4 preferentially binds the 
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presynaptic α1 CaV2.1 (P/Q-type) VGCC (Tanaka et al., 1995; Wittemann et al., 2000). β4 also 

has been shown to bind to approximately 40% of α1 CaV1 (L-type) VGCCS, in addition to other 

high-voltage activated (HVA) calcium channels, CaV2.2 (N-type) and CaV2.3 (R-type) (Buraei & 

Yang, 2010; McEnery, Vance, et al., 1998; Scott et al., 1996). Neuronal subcellular distribution of 

β4 appears diffuse. There is evidence for β4 at the plasma membrane, in intracellular space, in 

dendrites and dendritic spines and in axons. Electron Microscopy revealed murine cerebellar and 

hippocampal β4 levels are significantly higher in intracellular space than other compartments 

(Ferrándiz‐Huertas et al., 2012). β4 co-localizes with VGLUT1 in presynaptic terminals of 

glutamatergic neurons, and is present in synapse preparations for mass spectrometry (Etemad et 

al., 2014; Klemmer et al., 2009). β4b is the only isoform specifically demonstrated to exibit nuclear 

targeting (Subramanyam et al., 2009). 

β proteins (β1-4) perform similar, but non-identical functions (Buraei & Yang, 2010). It 

has been argued that β is the most critical auxiliary subunit; Presence of β has long been presumed 

to be required for trafficking the α1 subunit of HVA VGCCs to the plasma membrane (Giovanni 

Gonzalez-Gutierrez et al., 2008; Jones et al., 1998; Josephson & Varadi, 1996; Maltez et al., 2005). 

More recent work has indicated that β is essential for proper function of the α1 channel in a couple 

of important ways; briefly, β subunits are responsible for α1 channel gating kinetics as well as play 

critical roles in RGK- and G protein inhibition of VGCC channels (Buraei & Yang, 2010). The β 

subunit strongly regulates channel gating; relative to native currents, β isoforms generally increase 

channel activation and enhance the closed state of voltage-dependent inactivation 

(β3>β1b=β4>>β2a). β2a is the exception to this rule because it inhibits voltage-dependent 

inactivation (Buraei & Yang, 2010; Patil et al., 1998; T. Yasuda et al., 2004). The RGK subfamily, 

which include Rad, Rem, Rem2 and Gem/Kir, are GTP-binding proteins with two known 
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functions, to modulate cytoskeletal dynamics and inhibit HVA VGCCs. Several mechanisms by 

which RGKs inhibit VGCC have been reported. In all cases β VGCCs subunits are required for 

this inhibition. Finally, β is required for voltage-dependent current inhibition of CaV2 channels by 

G protein βγ subunits in hormone and neurotransmitter negative feedback of VGCCs (Meir et al., 

2000; Yun Zhang et al., 2008). 

Given that β subunits are known to be promiscuous, meaning each β1-4 has the capacity to 

bind to any HVA α1 VGCC subunit, and do so reversibly, it is no surpise that β subunits have been 

repeatedly demonstrated to stand in for one another, in cases of scientific manipulation, injury or 

disease (Berggren et al., 2004; Buraei & Yang, 2013; Heyes et al., 2015; Namkung et al., 1998; 

Neef et al., 2009). A classic and well-known example of this in the VGCC literature is α1-β 

reshuffling in lethargic (β4-knockout) mice (Burgess et al., 1999; Burgess et al., 1997). These mice 

result from a naturally occurring null mutation in CACNB4, the gene that encodes β4 (Burgess et 

al., 1997). Increased pairing of CaV2.1 and CaV2.2 with β subunits other than β4, are observed in 

lethargic mice, particluarly increased pairing of CaV2.2 and β1b (Burgess et al., 1999). Although 

α1-β reshuffling occurs in these mice, this reshuffling does not fully compensate for the loss of β4 

or reverse the epilepsy-like phenotype of these mice (Buraei & Yang, 2010, 2013; Burgess et al., 

1999; Burgess et al., 1997). Lethargic mice display a ~50% upregulation in thalamic CaV3 VGCCs, 

reduced excitatory neurotransmission in thalamus and lower CaV2.2 VGCC expression in 

forebrain and cerebellum (Caddick et al., 1999; McEnery, Copeland, et al., 1998; Yi Zhang et al., 

2002). This partial compensation, despite β reshuffling in lethargic mice highlights the distinct 

roles played by β4 among the β subunits, potentially due in part to the unique-to-β4 interactions 

of the NH2 and COOH termini of β4 with α1 VGCCs (Brice & Dolphin, 1999; De Waard et al., 

1995; Stotz et al., 2004; Walker et al., 1998; Walker et al., 1999; Wittemann et al., 2000). 
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The purpose of the current study was to identify potential sex differences in the β4 

interactome in P84 mouse brain. The ultimate goal of the study was to inform our previous finding 

that overexpressing β4 in the developing brain significantly reduces dendritic spine density in 

female but not male mice (see Chapter 3). We used co-immunoprecipitation combined with mass 

spectrometry (CoIP-MS) to examine protein-protein interactions (Collins et al., 2006). To our 

knowledge this is the first study to specifically compare the β4 interactome of male to that of 

female mice. Remarkably, the β1b VGCC subunit was contained within the β4 interactome of male 

but not female mouse brain. Finally, four peptides included in three neuronal microtubule-

associated proteins (MAPs) are differentially distributed among the β4 interactome of male mice 

and the β4 interactome of female mice. 

4.2 Methods 

4.2.1  Experimental Animals 

Co-immunoprecipitation (CoIP) was combined with mass spectrometry (CoIP-MS) as our 

group has done previously to characterize the β4 interactome in mouse brain (Grubisha et al., 

2019). Four male P84 and four female P84 C57BL/6J mice were sacrificed by lethal CO2 followed 

by rapid decapitation. Brains were extracted, rapidly frozen and stored at -80°C until β4 

immunoprecipitation. These experiments were approved by the IACUC at the University of 

Pittsburgh in accordance with the guidelines outlines in the USPHS Guide for Care and Use of 

Laboratory Animals.  



 75 

 

4.2.2  Tissue Preparation and Co-Immunoprecipitation 

Tissue samples were prepared and CoIP run in block design (Figure 4.1A-B). Bilateral 

cerebral cortex and underlying structures from each brain were separated from the olfactory bulb 

at the optic chiasm, and from tissue posterior to the cerebral cortex-midbrain junction (the 

cerebellum and majority of the brainstem). Brain tissue samples were homogenized in ice-cold 

Triton x-100 lysis buffer (Klemmer et al., 2009) (1% Triton x-100, 5M NaCl, 25mM HEPES [ph 

8]),1mM EDTA [ph 8] in double distilled H2O) using a pre-chilled micro-pestle and passing 

homogenate through a 1mL syringe with a 23G needle ten times. Brain lysate was then incubated 

on ice for 10m to solubilize proteins and centrifuged for 20m at 14,000g at 4°C to remove the 

insoluble fraction. Supernatant was then transferred to a new tube and centrifuged for 10m at 

12,000g at 4°C. Supernatant was RNAse treated on ice for 30m. Protein concentration was 

estimated using a Micro BCA Protein Assay Kit (ThermoFisher Scientific #23235)(R2 values > 

0.99 for each sample). 50L input samples were generated prior to supernatant combination with 

antibody coupled beads. Antibody coupled beads were prepared by incubating 10g mouse anti-

CaVβ4 (Neuromab #75-054) per mg Dynabeads (Thermo Fisher Scientific) overnight. This 

antibody has been used previously to immunoprecipitate β4 from synaptosome preparations using 

a CoIP-MS method similar to the one described in the current study (Klemmer et al., 2009). 

Additionally, we demonstrate this antibody can be used to immunoprecipitate β4 using with 

western blot detection with a goat anti-CACNB4 antibody (Everest Biotech #EB06591, 1:1000) 

and donkey anti-goat 800 secondary antibody (LiCor #926-32214, 1:10,000) (Appendix C Figure 

1A-B). Supernatant was precleared in 1.5mg 1xPBS pre-washed Dynabeads (Thermo Fisher 

Scientific) on a rotator for 1h at 4°C. Precleared supernatant was then incubated with antibody 
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coupled beads (one “β4-IP” sample per mouse), or pre-washed Dynabeads beads not coupled to 

antibody (one “CN” per mouse)(total=16 samples overall) on rotator overnight at 4°C. β4-IP and 

CN samples were washed three times in ice-cold 1xPBS buffer and boiled at 95°C for 5min in 

25L 1 x SDS and 10% mercaptoethanol in 4x protein sample loading buffer (LiCoR #928-40004) 

to elute protein from beads. 

4.2.3  Sample Preparation and Liquid Chromatography Mass Spectrometry (LC-MS/MS) 

1L (1667fmol) 13C6 15N4-L-Arginine 13C6 15N2-L-Lysine Stable Isotope Labeled (SIL) β4 

protein Standard (Origene #PH310440) was added to each sample (total=16 samples overall). 

Samples were prepared in a randomized block design (Figure 4.1C). Samples were digested with 

trypsin on S-Trap™ Micro Spin columns (Protifi #C02-micro-80) following manufacture protocol 

and prepared for Liquid Chromatography Mass Spectrometry using 0.6L C18 resin ZipTips 

(Millipore Sigma #ZTC18S096). A pooled instrument control (PC) was made by combining 1L 

from each sample. 2L (~1g) each sample plus three 2L aliquots of the PC were resolved on an 

EASY C18 column (1.7µm, 2.1x50cm) at 300 nL/min with an UltiMate™ 3000 RSLCnano HPLC 

system over a 90-min gradient and analyzed on an Orbitrap Eclipse™ Tribrid™ MS (Thermo 

Fisher Scientific) operated in MS/MS (Figure 4.1D). Peptide/protein identification, quantification 

and initial peptide peak area normalization were performed in Skyline Software (MacLean et al., 

2010). 
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Figure 4.1: Co-Immunoprecipitation Mass spectrometry (CoIP-MS) methods 

(A) For each brain, bilateral cerebral cortex and underlying structures were separated from the olfactory bulb at the 

optic chiasm, and tissue posterior to the cerebral cortex, midbrain junction.  Mouse brain tissue was homogenized 

using Triton x-100 lysis buffer, treated with RNAse and total protein amount determined using BCA. (B) Sample 

name abbreviations were created e.g. Female mouse # 3 β4-IP (F3β), Male #1 CN (M3C), and immunoprecipitation 

(IP) run in two blocks with sample pairs in random order. 1L stable isotope labeled (SIL) β4 protein was added to 

each sample (samples=16). (C) Samples were reordered, and S-TRAP performed. A pooled instrument control (PC) 

was created from all samples and each sample digested with trypsin. (D) Samples were reordered a final time and 

loaded onto the LC-MS for analysis. 

4.2.4  Statistical Analysis 

β4 interactome data was analyzed similarly to previously described (Grubisha et al., 2019). 

Briefly, within each sample peptide peak areas were exported from Skyline Software. β4 peptide 

levels were first normalized to SIL β4 peptide levels to control for differences in efficiency of the 

IP. Next, within each CoIP, peptide peak areas were divided by the normalized β4 peptide levels 

to generate normalized peak area ratios. Mean overall (includes samples from male and female 

mice) β4-IP peak area and mean overall CN peak area ratios were calculated. Log2 fold change 
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values were calculated using the overall means to detect shifts in distributions of β4-IP enriched 

protein levels, relative to CN. Peptides with CV<0.3 were compared using paired Student’s t-tests 

of log2-transformed peak ratios. The most significantly enriched peptides in the β4 interactome 

(males and females combined) are listed in Appendix C Figure 2 and Appendix C Table 1. 

Sex differences in the β4 interactome, the group of 13023 peptides with ratio of 

abundance in β4-IP/Negative CN>1, were the focus of this study. Mean peak area ratio for each 

sex and log2 fold change (Log2(M)-Log2(F) were calculated and the sexes compared using 

paired Student’s t-test. Significantly altered peptides were defined as those with p value less than 

0.05  and log2 fold change>1 (peptides enriched >100% in males) or log2 fold change<-1 

(peptides enriched >100% in females). 

4.3 Results 

To confirm the validity of our CoIP LC-MS approach as a prerequisite to the sex 

differences assessment, we first identified the 13023 peptides that comprise the β4 interactome in 

P84 mouse brain homogenate, including a number of expected peptide/proteins consistent with 

previous reports of proteins associated or predicted to be associated with the β subunit or β4 

specifically (guided primarily by this excellent review (Buraei & Yang, 2010)). Included in this 

list were the VGCC subunits CaV2.1, CaV2.2, CaV2.3 and α2δ1, most notably. Furthermore, 

ryanodine receptors 1 and 2 were identified as were dynamin 1-3, phosphoinositide 3-kinase 

(PI3K), calcium/calmodulin-dependent kinase II (CaMKII, protein ID label KCC2), members of 

the synaptic protein family synaptotagmin, zinc transporter 1 (plus zinc transporter 3, 9 and 10), 

members of the Mitogen-activated protein kinase (MAPK) and MAPK kinase families (protein ID 
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labels MK and MP2K), members of the Protein Kinase C family of proteins and the relatively 

recently discovered and described protein VGCC β-anchoring and -regulatory protein (BARP) 

(Abiria & Colbran, 2010; Béguin et al., 2014; Beharier et al., 2007; Buraei & Yang, 2010; Cheng, 

Altafaj, Ronjat, & Coronado, 2005; Fitzgerald, 2002; Gonzalez-Gutierrez, Miranda-Laferte, 

Neely, & Hidalgo, 2007; Grueter, Abiria, Wu, Anderson, & Colbran, 2008; Levy et al., 2009; 

Nakao et al., 2015; Ohana et al., 2006; Segal et al., 2004; Sheng, Westenbroek, & Catterall, 1998) 

(Table 4.1).  

Among the 13023 peptides in the β4 interactome (Figure 4.2), eighteen were significantly 

enriched in males mice with log2 fold change greater than 1 and p value less than 0.05. Twenty-

four peptides in the β4 interactome were significantly enriched in females with log2 fold change 

less than -1 and p value less than 0.05 (Table 4.2). Zero peptide/protein ids were shared among the 

two enrichment lists. Of particular interest was the peptide 

TMATAALAASPAPVSNLQGPYLASGDQPLDR, which was significantly enriched in the β4 

interactome of male relative to female P84 mice (log2 fold change=3.9357, p=0.0201). This 

peptide is contained in the auxiliary VGCC subunit β1. Amino acid sequence alignment of this 

peptide alongside the amino acid sequences of each of the four β1 isoforms revealed this peptide 

is exclusively found in the “neuronal” β1 isoform β1b. 

MAPs were represented in both significantly enriched in male and enriched in female lists 

(Table 4.2). The MAP6 (also known as stable tubule-only polypeptide [STOP protein]) peptide 

GPMQLSADARDPEGAGGAGVLAAGK was significantly enriched in males (log2 fold 

change=1.1276, p=0.0254). Two MAP2 (known as MTAP2 in mice) peptides were significantly 

enriched in females, QDSFPISLEQAVTDAAMTSK  (log2 fold change=-1.3215, p=0.01828) and 

DWFIEMPTESK (log2 fold change=-1.5552, p=0.0355). Furthermore, the MAP1A peptide 
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AELEEMEEVHPSDEEEEETKAESFYQK was also significantly enriched in females (log2 fold 

change=-1.2969, p=0.0459). 
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Table 4.1: Previously reported β-interacting proteins 

VGCCs and other previously reported β-interacting proteins identified within the β4 interactome of male and female 

P84 mice, including CaMKII (KCC2; gray boxes) and MAPKs (MK, MP2K; gray boxes). In nearly all cases, 

multiple peptides per Protein ID were identified. Peptide with the lowest significant p value per Protein ID is 

reported in the table. 

Peptide 

Protein 

ID 

β4-IP 

Mean 

Negative 

CN 

Mean 

Log2(β4-

IP)-

Log2(CN)  p value 

ILLDAGFTNELVQNYWSK CA2D1 4679428.52 430883.648 3.44096209 0.0020032 

HLNVQIAASEK CACB1 1972810.91 575075.819 1.7784286 0.000678 

EGGDIAFIPSPQR CACB3 12280054.2 1034063.14 3.56992075 0.00132655 

TSLAPIIVHVK CACB4 220800749 4296093.28 5.68357594 6.6278E-06 

GSSAGFLTLHNAFPK CCG8 26893944.7 2476365.74 3.44098507 2.2347E-05 

GPDGEPQPGLESQGR CAC1B 3660770.58 984309.532 1.89496339 0.07737068 

SKTDLLNPEEAEDQLADIASVGSPFAR CAC1A 7684689.21 1429661.12 2.42631369 0.00037217 

SLFIFGEDNIVR CAC1E 15626148.1 1367039.48 3.51483538 4.2502E-05 

HASLDGASPYFK CBARP 7077283.81 386774.592 4.19363085 0.00011575 

LADFGLAIEVEGEQQAWFGFAGTPGYLSPEVLR KCC2A 16655492.9 4292426.25 1.9561328 0.00029843 

NSLVSPAQEPAPLQTAMEPQTTVVHNATDGIK KCC2G 11039219.1 3554233.61 1.6350277 0.00211111 

WQNVHFHCSGAPVAPLQ KCC2B 48924331.4 8320871.35 2.55574562 0.00031296 

VTEQLIEAINNGDFEAYTK KCC2D 170897637 51071238.1 1.74254951 9.0052E-05 

HIFALFNTEQR DYN1 1337059441 248763365 2.42621766 5.726E-05 

NLVDSYVAIINK DYN2 26011838.4 4424921.46 2.55544462 0.00036523 

DFINSELLAQLYSSEDQNTLMEESAEQAQR DYN3 4692986.01 844595.315 2.47417401 3.1317E-06 

GPGPLQER MATR3 9081529.79 1012921.79 3.16441255 0.00030925 

ELIFEETAR MK01 19980737 5684580.29 1.81348406 0.00049902 

YAGLTFPK MK10 47936716.2 11171215.2 2.10134495 0.0006719 

EIQILLR MK03 26591656.5 5242495.99 2.34264789 0.00012184 

NIIGLLNVFTPQK MK08 18472179 3011726.26 2.61669151 6.4344E-05 

KLIHLEIKPAIR MP2K1 7366876.12 699448.954 3.3967623 0.00061777 

LQGTHYSVQSDIWSMGLSLVELAIGR MP2K2 9130170.09 595500.023 3.93846827 4.9442E-05 

SDVWSLGITLYELATGR MP2K4 14163070.2 1889143.79 2.90632961 5.4254E-05 

ILANGQMNEQDIR MP2K5 1688528.28 158518.721 3.4130412 0.02430607 

EAFEQPQTSSTPPR MP2K6 12080013.4 1895764.2 2.67177063 0.00155127 

DVKPSNILLDER MP2K7 21391015.4 4721868.32 2.17957525 0.0001709 

SLLAAQQTFVDR PK3C3 14133065.9 2561537.4 2.4639926 0.0003328 

TLVTGGATPELEALIAEENALR KCMA1 15441800 4596895.79 1.74810907 0.00029363 
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Table 4.1 continued 

KGTEELYAIK KPCA 17227148.3 3350753.57 2.36212641 3.603E-05 

DIKEHAFFR KPCB 125821888 30482936.7 2.04530912 0.00024614 

SEEEAKFPTMNR KPCD 3634260.09 746119.948 2.28418219 0.00059478 

LAAGAESPQPASGNSPSEDDRSK KPCE 25555749.4 3750681.52 2.76842323 8.7931E-06 

LVLASIDQADFQGFTYVNPDFVHPDAR KPCG 119358003 34747156.5 1.78032847 8.6122E-05 

DVVLMDDDVECTMVEK KPCT 33955244.7 3786334.84 3.16476053 0.02319497 

YFAQEALTVLSLA 2AAA 60900968.3 17238564.7 1.82082551 7.5425E-05 

FFEEPEDPSSR 2ABD 13957147.7 3499596.63 1.99574359 0.00284384 

INLWHLAITDR 2ABG 7969074.15 1967713.85 2.01789169 7.9454E-05 

EAPVPRPTPQVAASGGQS 2A5B 5852125.35 1087748.13 2.42761614 0.00019822 

ELFEGAVR REM2 30209737.4 13006994.4 1.21572601 0.00392079 

YVDEAHQYILEFDGGSR RYR2 11191113.9 2322597.47 2.26854259 7.9859E-05 

EINDLAESGAR RYR3 161878090 1147912.95 7.13975068 8.677E-05 

ESALILLQTVPK ZNT1 4402207.23 1475242.63 1.5772748 0.01102076 

SLFTEPSEPLPEEPK ZNT3 33314252.1 4630270.12 2.84697124 8.3469E-05 

LTELLESDPSVR ZNT9 4013997.57 744806.691 2.43010181 0.06512629 

LLTNLGLGEIK S39AA 8379085.3 1143707.33 2.87307485 0.00157128 

NTLNPYYNESFSFEVPFEQIQK SYT1 126552581 15797161.5 3.00199967 8.6181E-05 

VPMNTVDLGQPIEEWR SYT2 16821234.5 2471263.78 2.76696267 0.00022299 

YDYESETLIVR SYT6 12489316.5 2271135.4 2.4592089 4.5682E-05 

IYLLPDKK SYT7 5776414.96 764432.873 2.91771266 2.751E-05 

GELQVSLSYQPVAQR SYT11 5802165.07 1491297.49 1.96002326 0.003395 

VSLLPDEQIVGISR SYT12 45324978.2 7494428.56 2.59641594 2.6405E-05 

TGSVEAQTALK SYT13 17223089.9 3194783.8 2.43055378 0.00041057 

QLLQTDVSQGSDPFVK SYT17 7371700.44 2053695.22 1.84377535 0.00040559 
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Figure 4.2: Sex differences in the β4 interactome of male relative to female P84 mice 

Volcano plot showing 13023 β4-IP enriched peptides that make up the β4 interactome. Significantly enriched peptides 

with p<0.05 are represented either in green (enriched in females) or red (enriched in males). Grey vertical lines (L-R) 

located at log2fold change = -1, 1. 
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Table 4.2: Top significantly enriched peptides in males and in females 

Top 18 significantly enriched peptides in males (with log2 fold change>1) and top 24 significantly enriched peptides 

in females (with log2 fold change<-1). TMATAALAASPAPVSNLQGPYLASGDQPLDR (bolded, italicized) is the 

primary peptide of interest in these results; this peptide is significantly enriched in the β4 interactome of male relative 

to female P84 wildtype mice and is contained in the b isoform of the β1b subunit of voltage-gated calcium channels. 

MAPs (MAP, MTAP; gray boxes) were found among significantly enriched peptides in both male and female lists. 

Note: murine MAP2 is known as MTAP2. 

Peptide 

Protein 

ID 

Males 

Mean 

Females 

Mean 

Log2(M)-

Log2(F) p value 

FELDTSER RPN2 17401939.44 349755.8101 5.636756269 0.006358425 

TGQPMINLYTDRETGK FUS 13520868.06 559677.5072 4.594448199 0.002652508 

VHLLNAHGLDEAGIDGGGIFR UBE3C  282880322.8 18484610.09 3.935795309 0.02015541 

TMATAALAASPAPVSNLQGPYLASGDQ

PLDR CACNB1  4884346.69 355368.8162 3.780776611 0.019350387 

ILYIVASDPYSR HECD1  20640603.37 2693062.309 2.93816563 0.042811489 

NGALVNAATAGAQETPLHLVALYSPK ANFY1  7234761.889 2096272.145 1.787119511 0.039509179 

QGLYDRLPPLPVTPGMEGAGVVVAVGE

GVGDR VAT1  1062620.533 315923.6389 1.7499787 0.0178449 

VINEPGETEVFMTPQDFVR MICU1  3799856.889 1361356.38 1.480900295 0.045872859 

TPVVQNAASIVQPSPAHVGQQGLSK P66B  5652815.158 2084359.292 1.439365539 0.036511712 

GASSPGILVLTTGLSKPFMR ARHG7  2969081.438 1241885.049 1.257485023 0.008477129 

DYENDEDVNKQLDR TPPC3  5551099.769 2449276.983 1.180417689 0.041564587 

FLSHWDHITR ECHM  21489877.88 9563472.165 1.168050874 0.027862187 

LACGVIGIAQ SODC  4510940.556 2018943.97 1.159827402 0.042460054 

EATTLANGVLASLNLPAAIEDVSGDTVP

QSILTK PDC6I  4808749.769 2192425.326 1.13313415 0.048283119 

GPMQLSADARDPEGAGGAGVLAAGK MAP6  18363830.98 8404465.714 1.127639046 0.025420789 

LQEAQVYKEEGNQR TTC9C  4911194.58 2331085.791 1.075071882 0.041599862 

SIIKEPESAAEAVK CLPX  70453242.07 33510104.26 1.072069922 0.041860253 

VPFIHVGNQVVSELGPIVQFVK MTX2  14428766.34 6950099.022 1.053842517 0.042402935 

            

LEMIAMENPADLKK UBE3A 3354021.769 10282195.99 -1.61618446 0.000523819 

LEDLSYLDGQR TANC1 1910563.607 3974743.218 -1.05686337 0.002215196 

DELHIVEAEAMNYEGSPIK NPM 4533402.707 9259790.565 -1.03038524 0.003422214 

RLATLLGLQAPPTR EIF3A 8121564.811 16655515.96 -1.03617042 0.003928781 

TNADTDGMVK DLDH 2429127.93 8237318.07 -1.76173623 0.004218089 

LHLVESLLNR ECM29 1562611.761 4307106.636 -1.46275966 0.006566793 

HAYSFHQSSEEAGDFLAHADLQR BTBDH 5824908.639 17973288.27 -1.62554705 0.007873933 

TNLIVNYLPQNMTQEELK ELAV2 1566101.661 4246855.861 -1.43921728 0.013501626 
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Table 4.2 continued 

QDSFPISLEQAVTDAAMTSK MTAP2 2779823.82 6947918.478 -1.32158738 0.018285735 

HNELTGDNVGPLILK CISD2 13911646.83 34711770.64 -1.31913175 0.020294739 

GIPILVGLLDHPK CTND1 2073947.694 5517484.399 -1.41163114 0.022381052 

EAAPDTGAEPSPEDSDPTYSSK CCAR2 579773.3555 2453604.538 -2.0813418 0.027507595 

GSPFPEVAESVQQELESYR SCFD1 1358195.251 3000238.788 -1.14338644 0.02794903 

LQDSSDPDTGSEEEVSSR ARHG2 615075.9061 1412983.668 -1.19990842 0.027977123 

EIMAEDDQVFLMK DC1L1 5251474.805 10942854.08 -1.05919452 0.029420905 

SQQQDDIEELETK WNK1 1924512.332 4119010.216 -1.09780479 0.03544252 

DWFIEMPTESK MTAP2 939118.3796 2759898.79 -1.55523643 0.035565857 

VTNIPQGMVTDQFGMIGLLTFIR CNOT2 2671970.354 5816826.989 -1.12232839 0.037926659 

DYFEQYGK ROA1 6628176.335 17791406.45 -1.42449667 0.038063991 

SIPQEAVQTLSSVR TTC27 1394579.898 3677389.437 -1.39885138 0.039147056 

QPGTSLVDADTFHHQVR EMD 4233512.137 9560070.331 -1.17516621 0.044448088 

RGFASMFSNR ACO11 592793.6206 1949827.01 -1.71774431 0.045279178 

AELEEMEEVHPSDEEEEETKAESFYQK MAP1A 6847245.177 16824421.08 -1.29696129 0.045925857 

DLDELSRYPEDK MATR3 3679785.205 7465310.481 -1.02058071 0.048815324 

 

4.4 Discussion 

We set out to identify potential sex differences in the β4 interactome of mouse brain using 

CoIP-MS and a pan-β4 antibody previously used for β4 CoIP-MS with triton x-100 in mouse 

cortex (Klemmer et al., 2009). Our study is the first to date to specifically compare the β4 

interactome of male to that of female mice. We were primarily interested in sex differences in β4 

interactome constituents, as well as the possibility that our data could provide insight about sex 

differences in subcellular localization, α1 binding, and β4 involvement in Ca2+ signaling pathways. 

The overarching goal of this study was for the data revealed herein to inform our previous finding 

that overexpressing β4 in the developing brain significantly reduces dendritic spine density in 

female but not male mice (Chapter 3). Curiously, the β1b VGCC subunit was contained within the 
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β4 interactome of male but not female mouse brain homogenate. Moreover, MAPs were 

represented both in the list of peptides most enriched in the β4 interactome of male mice and in 

the β4 interactome of female mice, differentially distributed in a sex-specific manner. MAPs are 

known to play critical roles in cytoskeletal remodeling, and the formation and morphology of 

dendrites and dendritic spines (Kapitein et al., 2011; Matus, 1990; McKinney et al., 2019; Peris et 

al., 2018; Shelton et al., 2015). 

Peptides in the overall β4 interactome included expected VGCC subunits CaV2.1, CaV2.2, 

CaV2.3, and α2δ1, plus non-VGCC peptide/proteins previously predicted or reported to interact 

with the β subunit of VGCCs (Buraei & Yang, 2010; McEnery, Vance, et al., 1998; Scott et al., 

1996). The auxiliarly γ VGCC subunit was not identified in the β4 interactome and this was not 

surprising since there is little evidence that neuronal γ subtypes (γ2-γ7) modulate VGCCs. Aptly 

known as transmembrane AMPA receptor regulatory subunits (TARPs), γ subtypes have instead 

been shown to regulate AMPA receptors (A. S. Kato et al., 2007; Klugbauer et al., 2000). We also 

did not identify CaV3 (T-type) low voltage-activated (LVA) α1 VGCC subunits in the β4 

interactome, consistent with many previous reports revealing that β subunits are not required for 

proper function of LVA VGCCs (Perez-Reyes, 2003, 2006). The β4 interactome was characterized 

explicitly in an earlier study using similar methods described herein: proteomics to analyze β4 

immunoprecipitates. This study identified seven peptide/proteins in the synaptic β4 interactome: 

CaV2.3, the α2δ VGCC subunit, Matrin-3, Tubulin β4, Tubulin α6, Actin α, and β4 itself. We 

similarly identified CaV2.3, the α2δ VGCC subunit, and β4 in our study, consistent with separate 

previous reports (Buraei & Yang, 2010, 2013) as well as Matrin-3 (Klemmer et al., 2009). 

However, we did not identify Tubulin β4, Tubulin α6, or Actin α in the β4 interactome of male 

and female mouse homogenate. Although our study and the previous study employed very similar 



 87 

 

methods (including the use of Triton x-100, the same pan-β4 antibody, and proteomics to analyze 

β4 immunoprecipitate), our methods were not identical. The previous assessment characterized 

the β4 interactome of synaptosome samples from mouse cortex (presumably from 1 male mouse), 

whereas we describe the β4 interactome in male and female mouse brain homogenates. The 

previous study’s authors discussed the possibility that Tubulin β4 and Tubulin α6 were 

contaminants in their data (Klemmer et al., 2009). 

Eighteen peptides in the β4 interactome were significantly enriched in male mice, and 

twenty-four peptides in the β4 interactome were significantly enriched in female mice. The most 

intriguing peptide in these two lists was TMATAALAASPAPVSNLQGPYLASGDQPLDR, 

which was significantly enriched in the β4 interactome of male relative to female mice and is 

contained in the β1b isoform of the auxiliary VGCC subunit β1. β1b is considered the neuronal β1 

isoform. β4 and β1b are both widely distributed β auxiliary VGCC subunits found in many 

different tissues, including the cerebral cortex in particular (Buraei & Yang, 2010; McEnery, 

Vance, et al., 1998; Pichler et al., 1997). Based on transcript level findings, overall β1b protein 

levels are not likely different in male versus female mice (Takahashi, Mitsuhiro, & Nagasu, 2004). 

The presence of β1b in the β4 interactome of male but not female mice strongly implies that β4 

and β1b are proximally located within single subcellular compartments in male mice. The dual 

presence of these two β subunits in close proximity, but not in direct contact, implies 1) potential 

competition among β4 and β1b to bind and regulate specific α1 VGCC subunits (and/or non-

VGCC proteins) and 2) possible simultaneous regulation by β4 and β1b of separate proteins, both 

which are unique to males and could both have functional implications for calcium signaling at 

the level of single subcellular compartments. Dual presence of β4 and β1b is predicted to exclude 

axons because unlike β4, β1 has limited targeting to axons, at least in hippocampal cultured 
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neurons (Obermair et al., 2010), implying additionally that β1 probably also does not couple with 

CaV2.1 α1 VGCC subunits as β4 does as a general rule (Tanaka et al., 1995; Wittemann et al., 

2000)(although see (Bogdanov et al., 2000)). 

β subunits increase calcium currents of HVA VGCCs via four mechanisms: 1) trafficking 

α1 VGCC subunits to the plasma membrane, 2) facilitating their proper folding, 3) hyperpolarizing 

the voltage-dependence of activation of α1 VGCC subunits and 4) by increasing the maximum 

opening probability of α1 VGCC subunits (Dolphin, 2012). β4 and β1b likely perform redundant 

roles in these four processes. β subunits also promote voltage-dependent inactivation (VDI) which 

decreases Ca2+ influx after depolarization and reduces the number of channels available for 

activation during subsequent depolarizations (Buraei & Yang, 2010). Competitive replacement of 

β4 by β1b at CaV2.2 would result in no change in the rate of “closed-state” VDI (Buraei & Yang, 

2010; Patil et al., 1998; T. Yasuda et al., 2004). β subunits are required for voltage-dependent Gβγ 

inhibition of CaV2 channels. This has been studied in great detail in CaV2.2 channels. Following 

Gβγ inhibition of CaV2.2, depolarization relieves the channel from inhibition and β1b would 

accelerate voltage-dependent dissociation of Gβγ from CaV2.2. However, β1b acceleration of Gβγ 

dissociation is not as effective as β4 acceleration of Gβγ dissociation (Feng, Arnot, Doering, & 

Zamponi, 2001). Thus, since β1b promotes voltage-dependent Gβγ inhibition less effectively than 

β4 at CaV2.2 (Buraei & Yang, 2010; Giovanni  Gonzalez-Gutierrez et al., 2008) overall, β1b 

replacement could conceivably lead to decreased Ca2+ influx through β1b paired CaV2.2 VGCCs 

undergoing voltage-dependent Gβγ inhibition over time. If a modest decrease in VGCC Ca2+ influx 

is sufficient to impact activity-dependent cytoskeletal remodeling, β1b displacement of β4 bound 

to CaV2.2 could remove the breaks enough on Gβγ inhibition to mitigate spine loss. Neither β4 nor 
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β1b has been shown to significantly impact calcium-dependent facilitation of HVA VGCCs 

(Chaudhuri, Alseikhan, Chang, Soong, & Yue, 2005; Lee, Scheuer, & Catterall, 2000). 

If β4 is not competitively replaced by β1b, the latter could in theory bind to a nearby α1 

VGCC subunit, where it would provide largely redundant regulation of the second VGCC channel 

(Buraei & Yang, 2010). One can imagine various complex combinations of β4 and β1b at VGCCs, 

carrying out various, potentially opposing roles within a shared microdomain. The addition of β1b 

as a regulator of a second VGCC could have a substantial impact on Ca2+ signaling if the 

predominant direction of regulation replicates the major direction of regulation provided by β4, 

for example if both β4 and β1b shift the voltage-dependence of channel activation to 

hyperpolarized voltages the net effect would be increased macroscopic Ca2+ current density. Ca2+ 

signaling in spines alter spine dynamics and morphology (Higley & Sabatini, 2012; H. Kasai et 

al., 2003; Yuste et al., 2000). Increased postsynaptic Ca2+ initiates Ca2+ signaling cascades in 

dendritic spines and is required for new synapse formation and dendritic spine assembly (Lohmann 

& Bonhoeffer, 2008; Lohmann, Myhr, & Wong, 2002; Yuste et al., 2000). On the other hand, if 

the actions of β1b bound to a nearby VGCC opposes the predominant direction of β4 mediated 

regulation, presence of β1b may counteract (although unlikely “cancel out”) β4-mediated 

regulation of VGCC gating. This latter possibility is not likely to elicit a substantial impact on Ca2+ 

signaling overall. 

Given that β4 and β1b appear to interact with largely the same non-VGCC proteins (Buraei 

& Yang, 2010), β1b the β4 interactome of male mice may potentially be primarily redundant in 

terms of interaction with non-VGCC proteins. So far, CaMKII appears to be the exception to this 

observation. CaMKII was recently shown to both coimmunoprecipitate and associate with β1b but 

not β4 (Abiria & Colbran, 2010; Grueter et al., 2008). Despite the fact that the physiological 
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consequence of CaMKII phosphorylation of β subunits has not been identified (Buraei & Yang, 

2010), it is reasonable to predict that phosphorylated β1b acting within the β4 interactome of male 

mice could have significant consequences for signal transduction in neuronal subcompartments, 

including in dendrites (Ding, Kennedy, & Weinberg, 2013; Lisman, Schulman, & Cline, 2002; 

Schulman, 2004). Finally, although the presence of β1b in the β4 interactome does not specifically 

guarantee that the two proteins are directly interacting, we cannot rule out this possibility. 

Heterodimers comprising β3 and other β subunits, including β1b, have been previously reported 

(Lao, Kobrinsky, Liu, & Soldatov, 2010). Although β4 and β1b have not been shown to 

heterodimerize, this has not been specifically tested. If β4 and β1b do directly interact, the 

association is likely to take place at residues in the guanylate kinase subdomain of the membrane-

associated guanylate kinase-like (MAGUK) domain of the β proteins (Lao et al., 2010). β 

homodimerization was recently implicated in the regulation of dynamin-mediated channel 

internalization (Gonzalez-Gutierrez et al., 2007; Miranda-Laferte et al., 2011). Potential functional 

consequences of β heterodimerization remain to be discovered. 

Three neuronal MAPs were represented among the peptides significantly enriched in the 

β4 interactome of males and those significantly enriched in female mice. MAP6 was significantly 

enriched in males, and MAP2 and MAP1A were significantly enriched in females. The fact that 

MAPs are represented in both sexes seems to imply the existence of MAP signaling in close 

proximity to or potentially downstream from activity-dependent β4 regulation of VGCCs. β4 and 

all three MAPs localize to dendrites (Ferrándiz‐Huertas et al., 2012; Matus, 1990). MAP6, MAP2, 

and MAP1A are each implicated in the development and morphology of dendrites and dendritic 

spines (Gu & Zheng, 2009; Kapitein et al., 2011; Matus, 1990; McKinney et al., 2019; Peris et al., 

2018; Shelton et al., 2015; Szebenyi et al., 2005). β4 to MAP signaling may be mediated by two 
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kinases, CaMKII and MAPK, each of wich were previously demonstrated to associate with β4 and 

identified in the β4 interactome in the current study (Abiria & Colbran, 2010; Fitzgerald, 2000, 

2002; Grueter et al., 2008). Finally, MAPK may significantly alter Ca2+ signaling leading to altered 

spine morphology through a MAP-independent mechanism, regulation of α1 VGCC subunit Ca2+ 

influx, which requires β  subunits (Fitzgerald, 2002). MAPK/ERK signaling has been previously 

implicated in synapse formation and short-term homeostatic plasticity mechanisms (although, note 

this was via synapsin phosphorylation not direct regulation of α1 VGCC subunit Ca2+ influx) 

(Giachello et al., 2010). An overall model for how β4 overexpression might lead to loss of small 

spines in female but not male mice is outlined in and discussed in detail in the Chapter 5 of this 

dissertation. 
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5.0 General Discussion 

5.1 Summary of Findings 

This dissertation is a collection of three major studies: 1) a descriptive study of sex 

differences in dendritic spines in murine sensory cortex over adolescent neurodevelopment 

(Chapter 2), 2) an assessment of the impact of β4OE on dendritic spines of male and female P84 

mice (Sz-related manipulation) (Chapter 3) and 3) a descriptive study of sex differences in the β4 

interactome of P84 mouse brain homogenates (Chapter 4). We assessed sex differences in all three 

studies, at baseline and in the context of our Sz-related manipulation, since sex is an important 

biological factor and the clinical presentation and expression of psychiatric illnesses, including Sz, 

differs based on sex (Abel et al., 2010; McCarthy et al., 2012). 

In Chapter 2 we characterized the dendritic spines of male and female wildtype mouse in 

sensory cortex (A1, A2, V1, V2, and TeA) over adolescent neurodevelopment. We assessed 

dendritic spine density and morphology of GFP positive pyramidal cells in layers 2-6. This study 

revealed distinctions in DSD based on laminar location of pyramidal cell soma, evidence of 

synaptic remodeling over adolescence, but no differences based on region within sensory cortex. 

Importantly, these results established a sex difference in DSD in male versus female mouse sensory 

cortex (Parker et al., 2020). 

In Chapter 3 we assessed the impacts of overexpressing β4 on dendritic spines on L5 

pyramidal cells in sensory cortex of male and female mice. β4OE significantly decreased DSD of 

female but not male mice. Estrous stage shapes dendritic spine dynamics in hippocampus of rat 

(A. Kato et al., 2013; Woolley et al., 1990; Woolley & McEwen, 1992). We therefore assessed the 
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impact of estrous stage on DSD of females in our study and concluded that estrous stage did not 

significantly mediate β4OE-mediated reduced small spines in L5 of sensory cortex consistent with 

two previous studies investigating spines in mouse cortex (Alexander et al., 2018; Boivin et al., 

2018). Reduced DSD in female mice was driven by loss of the smallest spines, like observed in 

A1 in Sz (MacDonald et al., 2017; McKinney et al., 2019). 

The experiments in Chapter 4 were performed in order to aid interpretation of the sex 

difference revealed in Chapter 3. We performed CoIP-MS to identify potential differences in the 

β4 interactome of male versus female wildtype mice. We detected both redundant proteins as well 

as unique proteins significantly enriched in the β4 interactomes of male versus female mice. 

Surprisingly, β1b was significantly enriched in the β4 interactome of male mice. In this discussion 

(see below), we propose that enrichment of  β1b in the β4 interactome of male mice protects males 

from β4OE-mediated dendritic spines loss. We discuss potential roles for kinase activity of 

CaMKII and MAPK on MAPs and small spine loss in female β4OE mice. We additionally discuss 

a potential role for a MAPK in Ca2+ signaling independent from MAP phosphorylation, that could 

lead to the reduced formation of small spine density observed in female β4OE mice. Finally, we 

present an overall model to speculate how β4OE may significantly decrease small spine density in 

female but not male mice in the subsection below. 

5.2 Overall Model for Volume- and Sex-Specific β4OE-Mediated Spine Loss 

The two major unanswered questions after completing the experiments described in 

Chapter 3 were: why are spines in male mice resistant to the β4OE manipulation and what 

mechanism(s) could account for the volume- and sex-specific loss of spines in β4OE mice? We 
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thus assessed sex differences in the β4 interactome to generate hypotheses for these unanswered 

questions. 

In Chapter 4 we demonstrated that β1b is significantly enriched in the β4 interactome of 

male mice and MAPs are distributed among the significantly enriched peptides in the β4 

interactome of male and of female mice. Since β1b largely does not target to axons (Obermair et 

al., 2010) and we did not identify CaV1 α1 VGCC subunits in our study, we discussed the dual 

presence of β4 and β1b in somal and dendritic microdomains of neurons bound to CaV2 VGCCs 

(Tanaka et al., 1995; Wittemann et al., 2000). We considered four possible outcomes for presence 

of β1b in the β4 interactome of male mice, predicting that two of these could potentially lead to 

substantial changes in Ca2+ signaling: 1) competitive replacement of β1b of β4 bound at an α1 

VGCC subunit and 2) complementary regulation of β4 and β1b, both bound to separate but nearby 

CaV2 VGCCs. Ca2+ signaling in dendritic spines alters spine dynamics and morphology (Higley & 

Sabatini, 2012; H. Kasai et al., 2003; Yuste et al., 2000). In particular, transient increased 

postsynaptic Ca2+ has been shown to initiate Ca2+ signaling cascades in dendritic spines and is 

required for new synapse formation and dendritic spine assembly (Lohmann & Bonhoeffer, 2008; 

Lohmann et al., 2002; Yuste et al., 2000). We also discussed the possibility that β1b and β4 

heterodimerize (Lao et al., 2010). Since β binding of α1 VGCC subunits is preferential and the 

affinity of β subunits for α1 VGCC subunits is high, β4-β1b heterodimerization does not actually 

seem likely in wildtype mice (Dolphin, 2012, 2016). 

In addition to identifying β1b in the β4 interactome of male mice, we observed four MAP 

peptides (3 MAPs) among those significantly enriched in the male and female β4 interactomes. 

MAP6 was significantly enriched in the β4 interactome of male mice whereas MAP2 and MAP1A 

were significantly enriched in females. Presence of MAPs in the β4 interactome of both sexes of 
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mice, in combination with reports implicating neuronal MAPs in cytoskeletal remodeling, and the 

formation and morphology of dendrites and dendritic spines (Gu & Zheng, 2009; Kapitein et al., 

2011; Matus, 1990; McKinney et al., 2019; Peris et al., 2018; Shelton et al., 2015; Szebenyi et al., 

2005), plus our finding in that β4OE significantly reduced spine density in female mice (Chapter 

3) suggest β4 signaling may occur upstream from MAP-mediated cytoskeletal remodeling in mice. 

Recent evidence for proposed roles for MAPs in dendrite and dendritic spine remodeling implicate 

two potential pathways connecting β4-mediated VGCC Ca2+ signaling to MAP regulation of 

cytoskeletal dynamics of spines. 

In our proposed Pathway 1 MAP6 mediates stability of mature dendritic spines following 

CaMKII phosphorylation of MAP6 (Baratier et al., 2006). MAP6 was recently shown to mediate 

activity-dependent stabilization of f-actin in PSD-95 containing spines (Peris et al., 2018). 

Moreover, density and maintenance of mature spines was significantly impaired following siRNA 

MAP6 depletion and in cortical neurons of MAP6 knockout mice (Peris et al., 2018). Interestingly, 

MAP6 knockout mice have been previously used to model cognitive and synaptic deficits in Sz 

(Andrieux et al., 2002; Delotterie et al., 2010). In our proposed Pathway 2, MAP2 signals to impact 

dendritic spine morphology. MAP2 regulates dendritic development and plasticity in an activity-

dependent manner (Fontaine-Lenoir et al., 2006; Poplawski et al., 2012) and has been shown to 

bundle f-actin (Roger et al., 2004; Selden & Pollard, 1983). Our lab has shown in previous studies 

that MAP2 immunoreactivity (MAP2-IR) is significantly reduced in Sz in various brain regions, 

including in A1, where spine loss is driven by loss of the smallest spines (DeGiosio et al., 2019; 

McKinney et al., 2019). MAP2-IR positively correlated with DSD in A1 in Sz, suggesting a role 

for MAP2 in formation or maintenance of small spines, at least in the context of pathology 

(Grubisha et al., 2019). MAP2-IR but not MAP2 protein levels is significantly reduced in Sz, 
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raising the possibility that reduced small spine density in Sz could represent a downstream effect 

of altered phosphorylation status of MAP2 (DeGiosio et al., 2019; Grubisha et al., 2019; 

McKinney et al., 2019). In our proposed Pathway 3, Ca2+ current is upregulated via β subunit-

requisite MAPK-dependent channel modulation. Altered Ca2+ current signals down to intracellular 

pathways that alter spine morphology. 

We established in Chapter 3 that small-volume spines (<0.3m3) made up the majority 

(68.96%) of all spines observed in adult CN and β4OE mice. In vivo imaging of spine dynamics 

demonstrate spines are partitioned in two categories based on synapse maturity: 1) “immature” 

spines that lack PSD-95 and are highly dynamic and rarely stabilized and 2) “mature” spines with 

established excitatory synapses and PSD-95. Among all spines in adult animals, 20% are immature 

and 70-80% mature (Berry & Nedivi, 2017; Cane et al., 2014; Holtmaat et al., 2005; Trachtenberg 

et al., 2002; Villa et al., 2016). Assuming that all immature spines in experiments described in 

Chapter 3 are small, up to 48.96% of the small spines we observed are presumed to be small and 

mature. Thus, we proposed that β4OE decreases density of small spines, including both new 

immature spines and mature small spines (Figure 3.5A). 

Here we propose in an overall model whereby in male and female C57Bl/6J mice, post-

synaptic β4 VGCC-mediated Ca2+ entry leads to the stability of mature spines (some of which are 

small) via MAP6 signaling in spines (Pathway 1). Post-synaptic β4 VGCC-mediated Ca2+ entry 

also leads to remodeling of small, including presumably immature spines through MAP2 

regulation of postsynaptic cytoskeletal dynamics in male and female wildtype mice (Pathway 2). 

Finally, normal β4 protein levels facilitate MAPK-modulation of Ca2+ currents, which may be 

associated with spine formation (Pathway 3) (Figure 5.1A). In female β4OE mice, overexpressed 

β4 disrupts Ca2+ signaling, reducing DSD of spines of small volumes, mirroring small spine loss 
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observed in A1 in Sz (MacDonald et al., 2017; McKinney et al., 2019). How this is achieved in 

unclear. One possibility is that β4OE-mediated Ca2+ signaling may fail to give rise to CaMKII 

phosphorylation of MAP6, leading to destabilization and potential collapse of mature small spines 

(Pathway 1). CaMKII was previously demonstrated to interact with β4 (Grueter et al., 2008) 

(although see (Abiria & Colbran, 2010)) and was specifically identified in the β4 interactome of 

male and female mice in our study. In addition, soluble β4 may recruit proteins in the pathway of 

the serine/threonine-specific protein kinase MAPK, a known interactor of β4 (Fitzgerald, 2000, 

2002), which was identified in the β4 interactome of male and female mice in our study. MAP2 is 

a substrate of and has been previously shown to be phosphorylated by MAPK, which resulted in 

impairment in the ability of MAP2 to polymerize tubulin (Hoshi et al., 1992). MAP2 has been 

shown to bundle f-actin (Roger et al., 2004; Selden & Pollard, 1983). MAPK phosphorylation of 

MAP2 is predicted to similarly impair MAP2-mediated regulation of actin and or microtubule 

cytoskeletal dynamics in dendrites and lead to spine loss, including small spines, mirroring MAP2-

mediated spine loss in A1 in Sz (Pathway 2) (Grubisha et al., 2019; McKinney et al., 2019). 

Finally, β4OE could dysregulate MAPK-mediated upregulation of Ca2+ current density and fail to 

form new spines (Pathway 3) (Figure 5.1B). 

In male β4OE mice, animals that are protected from β4OE-mediated small spine loss, 

β4OE inhibition of Pathway 1 and/or disruption of Pathway 2 and/or Pathway 3 is blocked by β1b, 

which is poised in the β4 interactome of male mice to mediate the effects of or compensate for 

dysregulation of β subunits. Either β1b binds directly to soluble β4, sequestering it (simplest 

explanation) and therefore protecting male spines from the β4OE manipulation, or β1b counteracts 

the effects of β4OE by providing a compensatory effect on Ca2+ signaling coupled to spine 

remodeling without directly associating with overexpressed β4, potentially as a result of α1-β 
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reshuffling. Presence of β1b in the β4 interactome does not guarantee that the two proteins directly 

interact. However, β subunits have been previously reported to heterodimerize, including β1b 

specifically (Lao et al., 2010). Although β4 and β1b have not yet been shown to heterodimerize, 

and oligomerization of these β subunits is unlikely in the presence of an α1 VGCC subunit, 

heterodimerization of soluble β4 to unbound β1b is within the realm of possibility in the context 

of β4OE due to higher-than-normal β4 levels. If soluble β4 and β1b form heterodimers in males, 

the two β subunits are likely to associate at residues in the guanylate kinase subdomain of the 

membrane-associated guanylate kinase-like (MAGUK) domain of the β proteins (Lao et al., 

2010)(Figure 5.1C). 
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Figure 5.1: Proposed overall model to account for volume- and sex-specific loss of spines in β4OE mice 

(A) In male and female wildtype mice, β4-mediated activity-dependent VGCC Ca2+ signaling increases intracellular 

Ca2+ and leads to dendritic spine formation and stability of existing spines via three proposed cell-autonomous MAP 

and/or MAPK pathways. In Pathway 1, mature spines, some of which are presumably small, are stabilized as a result 

of activity-dependent MAP6 signaling in spines. In Pathway 2, small spines, including those that are immature, are 

formed or stabilized as a result of activity-dependent MAP2 signaling. In Pathway 3, new spines are formed due to 

MAPK-dependent upregulation of channel current. (B) In β4OE female mice, β4OE disrupts postsynaptic Ca2+ 

signaling and leads to small spine loss potentially via β4OE inhibition of CaMKII phosphorylation of MAP6 (Pathway 

1) and/or β4OE activation of the MAPK phosphorylation of MAP2 (Pathway 2) and/or β4OE-mediated dysregulation 

of MAPK-dependent Ca2+ current upregulation, reducing spine formation (Pathway 3). (C) In β4OE male mice, β1b 

is proposed to heterodimerize with soluble β4 and sequester it, preventing MAPK activation and inhibition of CaMKII 

signaling, or recover MAPK-mediated Ca2+ influx, potentially via β subunit reshuffling, resulting in protection from 

β4OE-mediated small spine loss downstream. 
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5.3 Relevance to Feinberg Hypothesis of Sz Pathogenesis 

Sz onset typically occurs during late adolescence/early adulthood, concomitant with a 

period of substantial circuit rewiring and synapse remodeling in neurodevelopment (A. Wong & 

H. Van Tol, 2003). In 1982 Irwin Feinberg proposed a theory for Sz pathogenesis in order to 

account for Sz emerging during adolescence in some cases following a childhood characterized by 

premorbid neurodevelopmental abnormalities (e.g. impaired cognitive functioning) and in other 

cases following seemingly intact childhood neurodevelopment (Feinberg, 1983; Keshavan et al., 

1994). This theory has now been come to be known as the “overpruning” hypothesis of Sz. 

According to this hypothesis, Sz results from increased elimination of mature synapses during 

adolescence in brain regions involved in cognitive development (Feinberg, 1983; Keshavan et al., 

1994). Others later suggested refinements to this model, proposing for example that  axon 

collaterals are hyper-pruned in prefrontal cortex of individuals with Sz (Keshavan et al., 1994). In 

the 1990s and 2000s, a number of influential magnetic resonance imaging and postmortem studies 

demonstrated progressive cortical gray matter reductions and significantly reduced DSD in frontal 

and temporal cortices of Sz subjects (Moyer, Shelton, et al., 2015; Vita et al., 2012). For some 

time, Feinberg’s theory was used in conjunction with the studies reporting gray matter and synapse 

reductions reported in Sz adults to explain Sz pathogenesis. 

Our group recently demonstrated that reduced DSD in deep layer 3 of A1 in Sz is selective 

for and driven by loss of the spines with the smallest volumes (MacDonald et al., 2017; McKinney 

et al., 2019). Since spines of the smallest volumes were significantly lost, our group suggested a 

rethinking of the Feinberg hypothesis on the grounds that genetic studies implicate spine formation 

and stabilization in Sz risk and new or transient dendritic spines are small and mature or stable 

spines large (Holtmaat et al., 2005; Knott & Holtmaat, 2008; Purcell et al., 2014; Schizophrenia 
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Working Group of the Psychiatric Genomics Consortium, 2014). DSD of small but not large spine 

objects was negatively correlated with levels of the tryptic peptide ALFDFLK, which is found in 

the β subunit of VGCCs (MacDonald et al., 2017). β4 was then nominated as a protein that could 

potentially drive small spine loss and β4OE demonstrated to significantly reduce small spines in 

primary cortical neuronal culture (MacDonald et al., 2017). 

β4OE similarly significantly decreased small spine density of L5 pyramidal cells in sensory 

cortex of female mice (Chapter 3). Small <0.3m3 volume spines comprised 68.96% of all spines 

observed in adult (P84) CN and β4OE mice. We propose in Chapter 3 and reiterate in this 

discussion that both immature and mature dendritic spines were lost as a consequence of the β4OE 

manipulation. Since small spines were significantly reduced in A1 in normal murine adolescent 

development (unpublished data), we developed the hypothesis that small spine loss observed in 

female P84 β4OE mice could be due to the combined loss of reduced mature small spines, due to 

excessive reduced net spine number during adolescence plus reduced immature small DSD due to 

failed spine addition or stability during adulthood. β4OE-mediated small spine loss is a model for 

the small spine loss observed in A1 in Sz. If the spine dynamics mechanisms proposed to lead to 

small spine loss in β4OE mice translate to small spine loss observed in A1 in Sz, this could mean 

that decreased number of small mature spines are eliminated, excessively, during programmed 

synapse remodeling in adolescence in addition to failure of immature small spines to form or 

stabilize in adulthood of Sz subjects. Moreover, if our findings translate to A1 in Sz, our data 

support both the important argument for the possibility for new small spines loss in A1 in Sz and 

the classic explanation of excess mature spines elimination during adolescence in Sz, as was first 

proposed by Irwin Feinberg in 1982 (Feinberg, 1983; Keshavan et al., 1994). 
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5.4 Limitations and Considerations 

All of the experiments described herein were carefully designed and executed with strong 

scientific promise. Despite this, we consider several overarching limitations of our studies that 

warrant discussion. 

First, the dendritic spine studies described in Chapter 2 and Chapter 3 of this document 

evaluated dendritic spine morphology and density in mice, postmortem. The methods employed 

to harvest and preserve mouse brain tissue were careful to avoid disrupting neuron and spine 

morphology and were largely based on those developed in and honed for many years by the of 

laboratory of collaborator David Lewis, MD, who has been evaluating dendritic spines in 

postmortem tissues for now over three decades (Glantz & Lewis, 2000; Glausier & Lewis, 2013). 

For example, mice were euthanized with Nembutal, rather than Isoflurane, which has been shown 

to impact spine density (Lemkuil et al., 2011; Platholi, Herold, Hemmings Jr, & Halpain, 2014), 

fixed with ice-cold PBS followed by 4% PFA, a preferred method for preserving neuronal 

cytoarchitecture in rodents, and carefully stored in cryoprotectant prior to cryostat sectioning. We 

should note that it is possible that the procedures we employed, although designed to preserve 

dendritic spines, could have altered spine morphology or size. Mouse brain tissue was harvested 

and preserved identically in all mice, regardless of group in each study, as carefully and swiftly as 

possible in order to mitigate risk of altered spine morphology during tissue harvesting and 

preparation. Spine morphology of new small spines in particular has been demonstrated to rapidly 

change via activity-dependent and activity-independent mechanisms (Rochefort & Konnerth, 

2012), changes that our assessments are not equipped to capture. Finally, since spines were 

assessed in mice after death, it was clearly not possible for us evaluate spine dynamics or spine 

lifetime transience/persistence in mice in our studies, therefore, our prediction that small spines in 
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β4OE mice could be due to faulty spine addition, and/or stabilization of immature spines on a 

background of excessively eliminated mature spines during adolescence (Figure 3.5B) is purely 

speculative. Longitudinal in vivo imaging of spine dynamics over the murine life course is required 

to specifically test this hypothesis. 

Moreover, the mouse model of small spine loss we developed for use in Chapter 3, and all 

other animal models of psychiatric illness are limited due to the fact that psychiatric illness is 

distinctively human. Sz is particularly difficult to model using non-human animals due to the fact 

that in most cases of Sz is proposed to result from polygenic inheritance interacting with a non-

genetic environmental insult (Insel, 2010; Purcell et al., 2014). Symptoms and associated deficits 

in Sz are still incompletely understood. Additionally, prefrontal cortical neuroanatomy and 

executive functions are unique to humans (Insel, 2010). Unlike prefrontal cortex, A1, and V1 in 

what we refer to as sensory cortex, and regions in the ascending sensory pathways do have 

comparatively similar neuroanatomy in mice and humans. With that said, the β4OE manipulation 

is specifically utilized herein to model a single anatomical phenotype of Sz, small dendritic spine 

loss in A1. It does not attempt to model Sz. β4OE is achieved via viral mediated gene delivery to 

the cortex of neonate mice. This approach provides spatial and temporal control over genetic 

change, focusing on a single anatomical phenotype, but it does not have the ability to model or 

capture the complexity of the etiology of Sz (Nestler & Hyman, 2010). 

Given dendritic spines are necessary for signal processing, spine loss could contribute to 

Sz symptoms and associated deficits, including, most notably in the case of spine loss in deep layer 

3 of A1 in Sz, impairment in auditory tone discrimination (Javitt & Sweet, 2015). It is unclear if 

β4OE mice would exhibit deficits on auditory tone discrimination or modified MMN tasks. Such 

follow-up studies are appealing however because if such deficits are detected in β4OE mice, this 
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would increase face validity of this model (Chadman, Yang, & Crawley, 2009). Substantial fine-

tuning of the degree of β4OE in A1 would need to be performed before β4OE mice are ready for 

auditory behavioral assessment. β4OE in the mice generated for the experiments in Chapter 3 is 

sparse by design. Increasing the viral load delivered neonatal mice cortex using the BREVI method 

described in Chapter 2 and Chapter 3 or developing a classic transgenic mouse are two potential 

strategies whereby β4OE mice may be made and utilized for auditory behavioral testing. 

Finally, although sex differences in the clinical presentation, incidence, and illness course 

in Sz (Abel et al., 2010; Aleman et al., 2003), small spines are significantly decreased in A1 in Sz 

in both sexes (McKinney et al., 2019). β4OE did not significantly reduce small spine density in 

male mice, which is a major limitation of the β4OE model for the intermediate phenotype of small 

spine loss in Sz. The data generated in Chapter 4 provided evidence for possible compensation for 

β4OE by β1b in male mice. Rather than focusing on the fact that β4OE does not significantly 

reduce small spines in male mice as a limitation of the model, given that male β4OE are protected 

against β4OE-mediated spine loss, these mice can be used to understand relationships between 

susceptibility and spine morphology/dynamics in the spine intermediate phenotype of Sz. Further, 

information gathered from future studies comparing spine dynamics in female and male β4OE 

mice might be used to develop pharmacological strategies that have high target validity, for 

mitigating spine loss in Sz. 

5.5 Final Conclusions 

In summation, this dissertation comprises a descriptive study of sex differences in dendritic 

spines in sensory cortex over neurodevelopment (Chapter 2),  an assessment of the impact of β4OE 
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on dendritic spines of male and female P84 mice (Sz-related manipulation) (Chapter 3) and a final 

descriptive study of sex differences in the β4 interactome in P84 mouse brain homogenates 

(Chapter 4). We deliberately assessed sex differences at baseline and in the context of our Sz-

related manipulation since sex is an important biological factor and the clinical presentation and 

expression of psychiatric illnesses, including Sz, differ based on sex (Abel et al., 2010; McCarthy 

et al., 2012). Overall our findings provide insight about dendritic spines and β4 at baseline and 

provide a model for the intermediate phenotype of small spine loss in Sz. Surprisingly, our data 

revealed that our Sz-related manipulation, β4OE, reduced spines in both volume- and sex-specific 

manners. We interpret our findings in β4OE mice to suggest spine loss includes immature small 

and mature small spines. If these data translate to Sz, our data supports both our group’s previous 

suggestion to rethink the Feinberg hypothesis, but it also cannot refute the possibility that small 

mature spines are eliminated in Sz during adolescence, as Feinberg predicted. The data we 

collected in the experiment detailed in Chapter 4, particularly the discovery of enriched β1b in the 

β4 interactome of male mice shed light on our major unanswered questions posed in the discussion 

of Chapter 3. β1b is predicted to confer protection for males from the effects of β4OE. Finally, we 

detail three pathways through which β4OE could reduce small spine density in females. These 

proposed pathways nominate MAPs, CaMKII and MAPK in β4-related spine alterations, which 

future studies should interrogate. We strongly urge other groups to follow in our footsteps and 

evaluate male and females at baseline and in Sz-related manipulation studies. Finally, we hope the 

hypotheses generated by the data collected herein may be used for future studies interrogating 

dendritic spine pathologies in psychiatric illness. 
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Appendix A  

 

Appendix A Figure 1: Dendritic Protrusions 

(A) Depictions of each dendritic protrusion type. Scalebar = 1m. (B) All dendritic protrusions (n = 6241) were 

classified into 1 of the 8 morphological types shown in A. (C) GFP filled dendrite (shown in white) from pyramidal 

cell in mouse cortex. Immunohistochemical strategy used in our previously published study (Moyer, Erickson, et al., 

2015), which utilized phalloidin and spinophilin co-localization to identify putative spine objects, identifies GFP-

filled spines in the tissue used in the current study. Scalebar = 1m. 
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Appendix A Figure 2: Regional and laminar DSD 

(A) DSD is not significantly different across primary auditory, secondary auditory, primary visual, secondary visual 

and temporal association cortices (F=1.829, DF=4, p=0.131), with no significant region by sex nor region by age 

interactions. Mean DSD and SD represented by red lines. (B) DSD is significantly increased in L2/3 compared to in 

L4 (p<0.001) and to in L5/6 (p<0.001). DSD in L4 and L5/6 are not significantly different (p=0.707). 
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Appendix B  

Appendix B.1 Methods 

Appendix B.1.1 Western Blot: β4OE verification 

Two P0 C57BL/6J mouse pups were exposed to AAV using the BREVI method (see 

Chapter 3 Methods for details). One pup was exposed to AAV2-CaMKII-B4-eGFP-WPRE and 

the second injected with control GFP virus. On P21 these two female mice plus one injection naïve 

female C57BL/6J were anesthetized with Nembutol (150mg/kg) and transcardially perfused with 

ice-cold normal saline. Brains were extracted and rapidly frozen. Bilateral cortical tissue from each 

brain was separated from the cerebellum and cortex anterior to A1. This tissue was then combined 

with ice-cold Tris-HCl (pH 7.4) and homogenized in lysing tubes in a bead mill. The samples were 

transferred to new tubes, combined with 2% SDS, probe sonicated, vortexed for 10m at RT at 

1400RPM followed by centrifugation for 10m at 14,000g. Protein concentration was estimated 

using a Micro BCA Protein Assay Kit (ThermoFisher Scientific #23235) (R2 values > 0.99 for 

each sample) and protein levels resolved by SDS-PAGE, using the method described above. The 

membrane was incubated overnight in Pierce SuperBlock Blocking Buffer (Pierce #37353) with 

0.1% Tween 20 (Sigma #P7949) and validated primary antibodies: mouse anti-CaVβ4 (Neuromab 

#75-054, 1:1000) and rabbit anti-β-tubulin (Abcam #ab6046, 1:600,000). The membrane was then 

incubated in LiCor Blocking Buffer (LiCor #927-4000) diluted 1:1 with TBS (0.1% Tween 20 and 

0.02% SDS) and LiCor IRDye secondary antibodies: goat anti-mouse 800 (#926-32210, 1:10,000) 

and goat anti-rabbit 680nm (#926-68071, 1:10,000). β4 isoforms are present at bands ~37.5-
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59kDa. Signal intensity was calculated by normalizing the optical density of β4 to β-tubulin for 

each technical replicate and then averaging the normalized optical density of the technical 

replicates. Mean optical density β4OE versus AAV Naïve was evaluated via t-test, as was mean 

optical density of β4OE versus CN. 
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Appendix B.2 Figures  

 



 111 

 

Appendix B Figure 1: Western blot confirming β4 overexpression and image processing sampling methods  

(A) (Left) Mean optical density (nm2) of β4 was significantly increased in β4OE compared to AAV Naïve (t=3.818, 

DF=2, p=0.0311) as well as to CN (t=3.016, DF=2, p=0.0473). Error bars = SEM. (Right) Western blot showing β4 

bands at ~51-55kDa as well as band at ~82kDa in β4OE tissue, which is the predicted molecular weight of a β4-GFP 

fusion protein (GFP molecular weight = 27kDa). Mean optical density of β4-GFP fusion protein band was not 

included in assessment of overall β4 overexpression. (B) 1.25x image of ROI including five regions of sensory 

cortex of male CN mouse Ms8-164. NeuN (blue) and mCherry but not GFP fluorescence visible at 1.25x. Dashed 

lines designate region boundaries and white box in V1 outlines 10x image of L5 pyramidal cells in shown C. 

Scalebar = 200 μm. (C) 10x image of L5 pyramidal cells with GFP+mCherry+ fluorescence. Two L5 pyramidal 

cells with the highest total GFP and mCherry combined fluorescent intensity outlined by white boxes. Scalebar = 50 

μm. (D) 60x 2-D image of GFP+mCherry+ pyramidal cell from Ms8-164. White box outlines the cell body of the L5 

pyramidal cell of interest. Scalebar = 10 μm. 
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Appendix B Figure 2: Spine Masking and dendrite protrusion categorization methods 

(A) Masking strategy used to calculate dendritic spine object volume. For two neurons per mouse, each spine 

included in neuron DSD was manually marked in Slidebook6. Then, each marked spine object was manually 

masked using the brush tool in Slidebook6 in the 3D planes in which it occurred. Far left panel shows a 2D image of 

an unmasked dendritic segment from Neuron18 (DSD=0.7307spines/μm) of Ms9-167 (female CN in proestrus). 

Middle panel shows the mask only for this dendritic segment. Far right panel shows the merge. White triangle in 

each panel points to a masked spine with < 0.1μm3 volume. Scalebar = 1 μm. (B) Dendrite protrusion category 

examples. Scalebar = 1 μm. 
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Appendix B Figure 3: Impact of β4OE on dendritic spines of male mice 

(A) Unlike in females, in male mice β4OE did not significantly reduce mean DSD of masked objects with small < 

0.1μm3 volume (F=0.017, DF=1, p=0.900). Genotype also did not significantly alter mean DSD of masked objects 

of 0.1μm3 - 0.2μm3 volume in male mice (F=3.620, DF=1, p=0.81). Error bars = SEM. (B) β4OE significantly 

increased mean density of long stubby spines in male mice (F=4.202, DF=1, p=0.044).There was a trend level 

increase in mean density of short mushroom (F=3.332, DF=1, p=0.072) and a trend level decrease in mean density 

of long mushroom (F=3.215, DF=1, p=0.077) spines in male β4OE mice. Error bars = SEM. 
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Appendix C Figure 1: β4 immunoprecipitation (β4-IP) proof-of-concept using western blot 

(A) β4 was immunoprecipitated from RNAse treated mouse brain lysate (n=1 adult female C57Bl/6J mouse) using 

10g mouse anti-CaVβ4 antibody (Neuromab #75-054) per 1mg beads (Input=lysate prior to antibody coupling, 

Sup=supernatant, IP=immunoprecipitant) run out on a gel. Non-antibody coupled beads were used as negative 

control (CN). β4 isoforms are present at 37.5-59kD (predominant isoforms at ~55kD). (B) β4 and β4-IP proteins 

using western blot and detection with a goat anti-CACNB4 antibody (Everest Biotech #EB06591, 1:1000) and 

donkey anti-goat 800 secondary antibody (LiCor #926-32214, 1:10,000). 
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Appendix C Figure 2: The most significantly enriched peptides in the β4 interactome 

Volcano plot showing all peptides with CV<0.3. 11315 peptides (grey line with q=0.05) were identified as 

significantly enriched using a false discovery rate of 0.05 and 63 peptides (green) were identified after Bonferroni 

correction (α=0.05). 
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Appendix C Table 1: The most significantly enriched peptides in the β4 interactome 

Table listing the peptides identified as the most significantly enriched peptides in the β4 interactome after 

Bonferroni correction. 

Peptide 

Protein 

ID 

β4-IP 

Mean 

Negative 

CN Mean 

Log2(β4-

IP)-

Log2(CN) p value q value 

HLLIGLPSGAILSLPK EMC1 6168870.582 1152938.263 2.419691118 4.72862E-08 
3.83936E-
06 

SGFLSYLLLLSR BAIP3 7162459.648 744564.6575 3.265986064 1.69086E-07 

7.67872E-

06 

SFDSLGSQSSHSR ARHG7 7693670.727 2508974.177 1.616574465 3.79996E-07 

1.15181E-

05 

GTGLQPGEEELPDIAPPLV

TPDEPK UBP5 3308799.823 639496.778 2.371299018 4.35749E-07 

1.53574E-

05 

VAPPPPAPKPFK AGAP2 54852486.2 13035987.09 2.073057185 6.11966E-07 

1.91968E-

05 

ILAGALTQHNGDAAASLT
VAEQYVSAFSK STML2 4474020.422 886882.1885 2.334757464 6.25643E-07 

2.30362E-
05 

FRPLNESEVNRGDK KINH 7056191.02 260874.0556 4.757464239 7.0358E-07 

2.68755E-

05 

IGQLQGEIIPTSFYHQGR ADA23 82497479.42 18538488.14 2.153826447 7.17335E-07 

3.07149E-

05 

ILEPTTFQEPPPKPSRPK FAK2 81436942.4 9244520.615 3.139012981 1.03755E-06 

3.45543E-

05 

LLMHETQPPSHFSVSTITR HD 13556014.65 852223.733 3.991557062 1.06713E-06 

3.83936E-

05 

QLGVPLEPVNFPSHFLLR FBX21 17075422.85 1312563.067 3.701462655 1.15379E-06 4.2233E-05 

FVDGLMIHSGDPVNYYV
DTAVR RS3 16860006.01 4062404.761 2.053199154 1.15527E-06 

4.60723E-
05 

YNEVMATYLLLGYK MARK2 13583558.76 2135736.537 2.669055908 1.29818E-06 

4.99117E-

05 

TALAEAELEYNPEHVSR SYIM 45311944.9 11561516.87 1.970560725 1.31919E-06 
5.37511E-
05 

HLSLPAGQVVPK F126B 8805235.179 1874703.201 2.231699329 1.49769E-06 

5.75904E-

05 

GIAFEDVR ACADM 25568110.41 11307895.52 1.177015084 1.63535E-06 

6.14298E-

05 

AFLVGIVVPDPEVMPSWA

QK ACSL6 3395971.655 631026.2641 2.428052459 1.65878E-06 

6.52691E-

05 

DFLAGGIAAAVSKTAVAP

IER ADT1 7397797.41 1017191.248 2.862504838 1.68738E-06 

6.91085E-

05 

EFATLIIDILSEAK GIT1 31992280.51 7888816.419 2.019843066 1.72951E-06 
7.29479E-
05 

SSSSSQESLNRPLSAK CLAP1 2728111.703 219565.4018 3.635180074 1.74195E-06 

7.67872E-

05 

SIFLNQVLAEINKEIEGVT

K EXOC4 9655917.483 749808.4295 3.686819397 1.77019E-06 

8.06266E-

05 

LLNASAYR GIT1 35380525.06 11057416.38 1.677941126 1.87027E-06 

8.44659E-

05 

KVYFHTDAAQAVGK NFS1 24715656.26 3974459.31 2.636594701 1.98312E-06 

8.83053E-

05 

HPGVTEQNEELSILYPAAI
VTIDGFSLFQSLR RBGPR 7517353.029 399263.6444 4.234811141 2.04578E-06 

9.21447E-
05 

KGEFVPGTR NOVA1 11486809.36 509698.1388 4.494191227 2.04619E-06 9.5984E-05 

IGYNPDTVAFVPISGWNG

DNMLEPSANMPWFK EF1A1 10819940.74 3534953.96 1.613929267 2.05658E-06 

9.98234E-

05 

ILGNLLQPPNERPELPSGL

YVLGLTGISGSGK COASY 22375087.58 2389676.569 3.227006055 2.0649E-06 

0.00010366

3 

GAYIYNTLMEFIR SYTC 11261568.82 933037.3671 3.593329149 2.22855E-06 

0.00010750

2 
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Appendix C Table 1 continued 

YGFTHLSTGELLR KAD5 58076023.53 12773355.01 2.184805167 2.26671E-06 

0.00011134

1 

VAEVLNDPESMEK KLC1 4960194.193 1051185.481 2.23837935 2.32913E-06 

0.00011518

1 

QAEVALSVPWDPSNQVY

LSYYNVSSLK ACO11 10099431.12 1022363.14 3.304294398 2.36529E-06 0.00011902 

LLVELNKVPAVR PREX1 6697787.446 722581.7185 3.212451933 2.39502E-06 0.00012286 

VLLDFLDQHPISFTPLIQR IPO11 6817529.238 473505.434 3.847796095 2.41302E-06 
0.00012669
9 

QVIYSVQR LMBD2 4380955.619 1232439.221 1.829729099 2.42578E-06 

0.00013053

8 

GLPGSGKSTLAR CN37 2169987.577 543462.5804 1.997434175 2.49533E-06 

0.00013437

8 

FLSDFRDLMSWINGIR SPTN1 17068167.07 2874331.156 2.570009946 2.546E-06 

0.00013821

7 

DVIEPLFLLAEVEIPNIQK RHG44 14431162.77 2516214.519 2.519860719 2.55756E-06 

0.00014205

6 

QASQLEFR SESD1 5525290.814 1856430.946 1.573518748 2.5597E-06 
0.00014589
6 

FQDNFEFIQWFK MARE3 48658650.8 7762151.518 2.648167818 2.5737E-06 

0.00014973

5 

AFGPGLQGGNAGSPAR FLNA 11150855.27 2724905.421 2.032876308 2.57708E-06 

0.00015357

4 

APTGEVATFK DIP2A 4286718.123 1060752.243 2.014785826 2.58049E-06 

0.00015741

4 

NKLPGLITSMETIGAK EXOC7 20192519.07 2822397.548 2.838827784 2.59073E-06 

0.00016125

3 

VDGTPVTQGMETTQPSK LAC1 4138507.205 37300.36571 6.793776884 2.64856E-06 
0.00016509
3 

GVQSLWGSLKPK APBB1 2975148.921 434364.5418 2.775983642 2.69374E-06 

0.00016893

2 

ESSIENEIAVLR KCC1D 30035331.85 5482401.679 2.453780665 2.73727E-06 
0.00017277
1 

ATFAFTLGSAHTPGRPPR MTMR5 28783217.39 2169810.534 3.729586887 2.74443E-06 

0.00017661

1 

VVKQASEGPLK G3P 16699250.34 7298595.734 1.194092521 2.84487E-06 0.00018045 

AVAHHTTAAFIR PRS6B 27193411.04 5085938.478 2.418671213 2.94807E-06 

0.00018428

9 

KNQMDIATSLLEYGADA

NAVTR ANK3 19463397 5802537.251 1.746007745 2.98163E-06 

0.00018812

9 

KMDETDASSAVK TADBP 4062054.784 1074228.396 1.918908934 2.98461E-06 

0.00019196

8 

DFINSELLAQLYSSEDQNT
LMEESAEQAQR DYN3 4692986.011 844595.3154 2.47417401 3.13165E-06 

0.00019580
7 

ENAPAIIFIDEIDAIATK PRS6B 22932554.66 5006194.2 2.195610917 3.15997E-06 

0.00019964

7 

SLQVKPSPVLSDGVVR GRSF1 7881400.528 1970624.267 1.999799292 3.16447E-06 

0.00020348

6 

RLEEFPAFPR SNX15 6975107.132 501986.2212 3.796495706 3.22052E-06 

0.00020732

6 

SFAQAAIEK SYIM 18589178.59 4911532.73 1.920217804 3.26683E-06 

0.00021116

5 

VNAQFLELYNEEVLDLFD
TTR KI21A 21852354.65 4481882.739 2.285611934 3.29098E-06 

0.00021500
4 

LHTTGDLTMDTDLTAAN

GK HS12A 9214281.432 2827344.505 1.70442398 3.37398E-06 

0.00021884

4 

NGDENYMEFLEVLTEQLD

R S12A5 17459060.71 1267302.857 3.784142702 3.43558E-06 

0.00022268

3 

FLESVEGNQNYPLLLLTLL

EK XPO2 22968264.59 5176083.688 2.149709007 3.45104E-06 

0.00022652

2 

VLALASGPELGQLTFLGL

VGIIDPPR AT2C1 3724649.704 546207.5375 2.769583621 3.53555E-06 

0.00023036

2 

NVIALAFDYR LRP1 7199349.195 1914637.55 1.910795187 3.56052E-06 
0.00023420
1 
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Appendix C Table 1 continued 

YTAVGQLVQDLLTQVR RIN1 7228678.76 1221889.633 2.564617999 3.60848E-06 0.00023804 

YGAVEETAWK MERB1 6333989.492 1246946.59 2.344714801 3.70613E-06 0.00024188 
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