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Abstract 

Predicting Dynamically Evolving New-Onset Venous Thromboembolic (VTE) Event Risk 

in Hospitalized Patients 

 

Tiffany Purcell Pellathy 

 

University of Pittsburgh, 2020 

 

Word count 345/350 

 

 

Background. Hospital acquired (HA) venous thromboembolism (VTE) is the leading cause of 

preventable hospital death. VTE pathology and symptoms evolve slowly over hours to days. No 

current VTE risk assessment models incorporate the progressive accrual of dynamic patient data 

over time of hospitalization. Classification algorithms which incorporate prediction time windows 

hold promise for closing this gap. 

 

Methods. An observational, retrospective, cohort study was conducted to develop predictive 

models to classify patients (n=2370) at risk for HA-VTE during SDU admission. Binary logistic 

regression (BLR), naïve Bayes (NB), Random Forest (RF), and Gradient Boosted Decision Tree 

(GBDT) algorithms were used to train models for two prediction time windows. Performance was 

evaluated with 10-fold stratified cross-validation. Models (S+/-) were developed to differentiate 

patients suspected of HA-VTE who underwent diagnostic radiology evaluation (n=760) from those 

not suspected/not tested (n=1614). A second set of models (C+/-) were then developed to 

differentiate between confirmed positive (n-47) and negative (n-713) diagnostic test results. 

Models were built using a stage-wise process that increased data granularity with each stage: 1) 

present-on-admission data; 2) low frequency (LF) medication and laboratory data added; and 3) 

addition of high frequency (HF) vital sign data, collected at a rate of every 20 seconds. 



 v 

Performance was evaluated at each stage using metrics robust to class imbalance and prioritizing 

recall (TPR). 

 

 

Results. All models demonstrated improved precision-recall performance with progressive 

addition of dynamic clinical data. Using dynamic LF and HF data, at a prediction time 24 hours in 

advance of HA-VTE event, the S+/- NB model TPR was 76% (AUPRC .52, PPV 46%, AUROC 

.60) and RF and GBDT models identified true negatives with a specificity of 80%, and the C+/- 

NB model had a 91% TPR (AUPRC .77, PPV 53%, AUROC .68). Dynamic hematologic labs, BP, 

HR, and RR values were identified as important predictors of HA-VTE event outcomes, with 

importance varying by time prediction window.  

 

Conclusion.  Classification algorithms applied to routinely collected dynamic clinical data can 

produce models with improved HA-VTE risk prediction ability over static data models and have 

the potential to improve detection of at-risk patients. 
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1.0 Dissertation Proposal 

Section 1.0 of this document details the dissertation proposal that was presented and 

approved at the comprehensive examination and overview.  

1.1 Specific Aims 

Failure to rescue (FTR), a nurse sensitive national metric of care quality, refers to the death 

of a hospitalized patient from a treatable complication, and is potentiated by failure to recognize 

and appropriately respond to early signs and symptoms of complications. [1-5] There is a paucity of 

research examining patient features predictive of FTR complications. [6] Such information could 

shift the current paradigm of nursing surveillance to earlier recognition, prevention and treatment 

of FTR complications, thereby saving lives. Hospital acquired venous thromboembolism (HA-

VTE), a FTR complication manifesting as deep vein thrombosis (DVT) or pulmonary embolism 

(PE), is the leading cause of preventable hospital death, carrying a high mortality risk and a 

national cost burden of $7 billion annually.[7-9] Clinical signs and symptoms of evolving venous 

thromboembolism (VTE) are subtle, presenting gradually over hours to days. Current VTE risk 

assessment models, the cornerstone of prevention, have limited utility due to their complexity, lack 

of reliability, generalizability and external validation, and dependency on static data. [10, 11] 

Importantly, a critical gap in VTE risk modeling research is that while VTE risk and pathology 

evolves over the course of hospitalization, no current models incorporate the progressive accrual 

of dynamic patient data and pattern evolution over time in their modeling approaches.  
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Use of electronic health record (EHR) data could be leveraged to develop VTE risk models. 

The totality of routinely collected EHR data is massive in terms of volume, variety, and production 

at a rapid velocity in real-time. [12] Such big data could be used in machine learning (ML) analytic 

approaches to process time series clinical data to identify subtle, evolving feature patterns 

predictive of new-onset HA-VTE and address this gap. 

To address the aforementioned gaps, we propose to assemble a large scale, multi-source, 

multi-dimensional VTE dataset, and in tandem, systematically define the EHR data elements 

associated with a new-onset HA-VTE diagnosis for ground truth case ascertainment and 

annotation. We will then apply machine learning approaches to develop models identifying feature 

patterns predictive of dynamically evolving new-onset HA-VTE in adult hospitalized patients. 

Specifically, we aim to: 

1. Assemble a large scale, multi-source, multidimensional dataset from adult hospital step 

down unit (SDU) patients. Demographic and clinical baseline data will be linked to extracted 

high frequency (every 20 seconds) vital sign (VS) and lower frequency EHR data (medications, 

laboratory and diagnostic tests) from >3,000 patients from a Step-Down Unit census. These 

data will be linked, annotated and curated to comprise the data set for ML training, validation 

and testing. [13] 

2. Ground truth case ascertainment of new onset, HA-VTE. Gold standard clinical case 

definition, subtype identification, and date and time of VTE diagnostic test will be based on 

natural language processing (NLP) and expert manual review identification of ground truth 

diagnostic tests and diagnostic codes. Associated data elements, derived from standardized 

coding systems, reflective of diagnostic processes and treatment decisions associated with HA-

VTE will be identified during this process.  
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3. Develop and evaluate models to predict new-onset HA-VTE risk in hospitalized patients.  

3a. Apply ML algorithms to develop and evaluate models for new-onset HA-VTE risk over 

time. A suite of ML classification algorithms will be employed to train models to predict 

new-onset HA-VTE risk over the time course of hospitalization, at various lead times 

before diagnosis.  

3b. Compare the various models’ capability to predict dynamically evolving HA-VTE. The 

models’ predictive capability will be assessed and ranked by standard metrics (sensitivity, 

specificity, prediction values), area under the receiver operating curve (AUROC) and area 

under the precision-recall curve (AUPRC) at various fixed time windows prior to new-

onset HA-VTE diagnosis.  

This proposal aligns with the National Institute of Nursing Research’s (NINR) strategic 

vision for nurse scientists to employ new strategies for collecting and analyzing multi-dimensional 

data sets to permit better understanding of the biological underpinnings of health and improve 

ways nurses prevent and manage illness. This innovative study coupled with the candidate’s 

individualized training plan, under a strong and well-established team, represents initial steps in 

the applicant’s research trajectory. This future line of inquiry will focus on using data science 

approaches to predict FTR complications risk, and develop, implement and test dynamic risk 

assessment models (RAM) to inform targeted prevention and treatment decisions. This research 

trajectory has the potential to improve nurse sensitive patient outcomes through the discovery of 

new knowledge to guide nursing surveillance practices (needed frequency of monitoring, staff 

allocation), clinical decision making (timely and accurate recognition, diagnosis, treatment 

selection), and care delivery systems (patient triage, diagnostic testing, adverse event prevention). 
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1.2 Background, Significance, and Innovation 

1.2.1 Background 

1.2.1.1 Failure to Rescue (FTR) 

FTR represents the death of a hospitalized patient due to a treatable condition arising after 

admission and is a measure of hospital care quality incorporating institutional attributes, nursing 

surveillance and patient features. Landmark studies by Silber et al., Needleman et al., and Aiken 

et al., led to the recognition of 15 specific FTR complications and highlighted the complexity of 

identifying patients experiencing a clinically important deterioration. [1-3, 5, 14, 15] Five FTR 

complications (pneumonia, cardiac arrest/shock, upper gastrointestinal bleed, sepsis, and HA-

VTE) are established as being nurse-sensitive, meaning the intervention and rescue of patients 

experiencing these complications is directly associated with nursing surveillance practice and their 

early identification of changes in patient condition. [16-18] (see Figure 1)  

 

Figure 1. Hospital Organization, Nursing Organization and Patient Outcomes 

Reprinted from Nursing Outlook, Vol 50/5, Aiken L, Clarke S, Sloane D, Hospital staffing, organization, and quality of care: 

Cross-national findings, Pages 187-194, (2002), with permission from Elsevier, License No. 4934311399533. DOI: 

10.1067/mno.202.126696 

file:///C:/Users/tp67/Documents/PITT_Courses/OVERVIEW_DOCS/ETD%20DOCUMENT/10.1067/mno.2002.126696
file:///C:/Users/tp67/Documents/PITT_Courses/OVERVIEW_DOCS/ETD%20DOCUMENT/10.1067/mno.2002.126696
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Strategies focused on improving health care organization resources, workflow and staffing 

practices have been unsuccessful in reducing FTR rates.[19, 20]  Additionally, FTR has evolved in 

the literature from its origin as a quality outcome measure to include clinical characteristics 

identified as nurse sensitive indicators that represent the nursing processes associated with FTR 

outcomes: failure to recognize, failure to escalate, and inadequate decision-making.[15, 21] FTR 

nurse sensitive indicators formally recognize the fact that nurses spend the majority of their time 

at patients’ bedsides, and the impact that nursing’s timely recognition of, escalation of, and 

appropriate intervention based on subtle changes indicative of clinical deterioration has on patient 

safety. The first step in the process, failure to recognize, is established as a multifaceted challenge. 

There is a paucity of research examining patient features predictive of FTR complications.[6, 22-24] 

Early identification of patient features associated with FTR risk and complication evolution could 

inform targeted prevention and early intervention. (see Figure 2) 

 

Figure 2. Conceptual Model for Causes of FTR: Incorporating Medical Emegency Team Availability 
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Reprinted with permission from Springer Nature Customer Service Centre GmbH: Springer, Textbook of Rapid Response 

Systems by DeVita M., Hillman K., Bellomo R., (2011), License No. 4934290630749. DOI:10.10007/978-0-387-92853-1 

1.2.1.2 Inadequacy of General Scoring Systems in Reducing FTR Rates 

A variety of scoring systems are available to support inpatient clinician decision making. 

Outcome risk prediction (i.e., APACHE) and organ dysfunction (i.e., SOFA, MODS) severity 

scoring systems have been considered routine decision support tools in patient care for the past 

three decades. Outside of the intensive care unit (ICU), scoring systems such as the modified early 

warning score (MEWS), the national early warning score (NEWS), and the quick sequential organ 

failure assessment (qSOFA) score [25-27] are tools that assist nurses with the detection of general 

physiological changes that may be indicative of early deterioration. The development of these risk 

prediction models, the variables included, and the indications for their use are detailed in 

Dissertation Manuscript #1 (Appendix A). Often used in conjunction with activation of an outreach 

or rapid response team, these systems are clinically useful, however their impact on FTR outcomes 

has been marginal.[28-31] This may be, in part, due to the fact that pattern recognition requires 

accounting for multiple interactive relationships across time among assessment variables. Pattern 

recognition, hypothesized to be central to clinician critical thinking, and foundational to 

recognizing and interpreting subtle clinical changes, [32, 33] is not accounted for in these systems.  

1.2.1.3 Nursing Surveillance: A Prerequisite to Timely Intervention  

Nursing surveillance is a nursing intervention critical to patient and safety outcomes. 

Nurses are the hospital surveillance network for the early detection of adverse occurrences, 

complications and errors.[20] Nursing surveillance involves the purposeful and ongoing acquisition, 

interpretation and synthesis of patient data to inform clinical decision-making.[17] Surveillance 

https://link.springer.com/book/10.1007%2F978-0-387-92853-1
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requires clinician vigilance: the ability to place obtained data within the context of one’s own 

knowledge, experience and education to inform pattern recognition, and risk calculation and 

readiness to act. Vigilance and surveillance comprise the critical thinking skills prerequisite to 

informed and timely nursing action. Nursing surveillance is affected by a variety of factors: nurse 

education level, clinician experience, clinician fatigue, alarm fatigue, workplace processes, 

staffing ratios and unit skill mix. Notably, inadequate surveillance is strongly associated with 

increased FTR rates. [5, 34, 35] Identification of feature patterns predictive of FTR complications can 

objectively support clinician pattern recognition essential for quality nursing surveillance and 

timely nursing intervention.  

1.2.1.4 HA-VTE as a FTR Complication: Complexity and Persistence  

Hospital acquired VTE can present as either deep vein thrombosis (DVT) or pulmonary 

embolism (PE). While DVT is the more common manifestation of this disease, PE is a more serious 

complication, associated with a higher rate of mortality.[36, 37] The nurse sensitive FTR 

complication of HA-VTE is the leading cause of preventable hospital death carrying a high 

mortality risk and a national cost burden of $7 billion annually.[7-9] Additionally, VTE is the third 

most common cause of cardiovascular death in the US, accounting for 2 million new diagnoses 

each year.[38, 39]  Reasons cited for the persistence of this major public health problem include: 1) 

complexity of known VTE risk factors and unknown gaps in VTE risk knowledge; 2) risks and 

limitations of VTE prophylaxis and; 3) limitations of current VTE risk assessment models.[37, 40] 

1.2.1.5  VTE Pathology and Complexity of Known Risk Factors  

The pathology of HA-VTE is complex, involving interactions between clinical risk factors 

and acquired and/or inherited susceptibilities to thrombosis. Hemostasis is a normal physiologic 
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response to stop or prevent bleeding within a blood vessel. This innate response, mediated by the 

coagulation cascade, helps ensure blood vessel integrity and blood fluidity, however, hemostasis 

abnormalities can result in hemorrhage or thrombosis formation. While thrombi can form in both 

veins (VTE) and arteries (arterial thrombus), the two vascular disorders have different pathologies, 

clinical presentations, and outcomes.[41] VTE is associated with three conditions, known as 

Virchow’s Triad, that predispose venous thrombus formation: hypercoagulability, venous stasis, 

and endothelial damage (Figure 3).  

 

Figure 3. Major Risk Factors for VTE 

 

The deep veins of the lower extremities are the most common site (96%) of DVT formation, 

specifically the veins of the thigh (iliac and femoral veins), the knee joint (popliteal vein), and the 

calf.[42] Within the calf, veins can be classified by those that receive blood flow from the foot sole 

(posterior tibial, anterior tibial, and peroneal veins) and the intramuscular veins (soleal and 

gastrocnemius veins).[42] With the assistance of valves, muscle compression of these deep veins 
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helps maintain the flow of venous blood in the lower extremities, and returns volume to the heart. 

Venous endothelium, as a result of avascular venous valves and deoxygenated venous blood flow, 

is predisposed to hypoxemia. Decreased mobility and/or poor baseline skeletal muscle function is 

further worsened by venous stasis resulting in the expression of adhesion molecules that increase 

activation of the coagulation cascade via the extrinsic pathway.  

Iliac and femoral DVTs are commonly formed by iliac compression (such as a pelvic mass 

or trauma) and/or by catheter related vascular injury. As these vessels are large in diameter, 

thrombus occlusion often leads to obvious vascular insufficiency and clinical symptoms of pain, 

swelling, and erythema, and are associated with earlier clinician recognition and lower risk of 

embolizing to the lungs.[42] The veins of the calf, in contrast, have multiple branches and 

anastomoses. Thrombus formation in calf vessels are primarily due to lack of limb movement, are 

often without obvious clinical symptoms, and are more commonly associated with thrombus 

propagation and massive PE.[42] The vast majority of PE cases are secondary to an embolized DVT, 

however, case reports of de novo thrombosis of pulmonary arteries exist in trauma literature.[43-45].  

1.2.1.6 VTE Risk Factors 

Rates of VTE risk range from 1% in medical patients to as high as 40% in certain surgical 

and oncologic populations.[36, 46] Some VTE risk factors are associated with an increased overall 

lifetime risk (older age, venous insufficiency, obesity, as well as other circumstances which 

provoke acute risk (malignancy, recent surgery, indwelling vascular catheters, dehydration).[9, 47-

59] Multiple risk factors are hypothesized to synergistically increase patient risk, but the relative 

contribution of each factor to overall VTE risk is unclear. Although VTE risk factors have been 

identified, a third to half of VTE cases are classified as unprovoked, meaning they occur in the 

absence of an identifiable provoking risk factor.[60]  
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Five major factors are known to be associated with inherited thrombophilia (factor V 

Leiden, prothrombin G20210A, protein C, protein S, and antithrombin levels),[61] although levels 

are not routinely evaluated in the absence of symptoms. Over the past two decades, genome-wide 

association studies have identified an expanding number of independent genetic variants 

associated with VTE. [62, 63] These studies have underscored the importance of inflammation in the 

pathophysiology of VTE, raised questions about the influence of heritability on VTE genotyped 

variants, and has identified some causal associations between blood traits and VTE.[61] While 

testing of single nucleotide polymorphisms associated with VTE is emerging, they are not yet 

relevant for meaningful use in clinical practice. 

Symptoms of new-onset VTE in hospitalized patients often occur gradually over a period 

of hours to days and clinicians can easily fail to notice subtle feature pattern emergence until after 

a critical event occurs.[64, 65] As such, rates of HA-VTE are highly varied in studies where VTE 

diagnosis was made based on symptom assessment versus routine screening protocols.[66] 

Individual symptoms and risk factors for VTE have low predictive value (about 15%),[67] 

underscoring the need to identify dynamic composite feature pattern evolution associated with 

HA-VTE. 

1.2.1.7 VTE Prophylaxis: Risks and Limitations 

VTE prevention guidelines vary across patient populations.[68-70] Routine prophylaxis of 

VTE with low molecular weight heparin (LMWH) is a standard recommendation for hospitalized 

patients, however, it is not a panacea for prevention. Anticoagulant prophylaxis is associated with 

impaired wound healing, increased bleeding, need for blood transfusions and increased patient 

discomfort and costs, and can needlessly impose increased morbidity when applied 

indiscriminately to patients not at risk.[46, 71] 
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Conversely, underutilization of VTE prophylaxis has been linked to provider fear of these 

harms.[68-73] Identifying patient feature patterns predictive of VTE risk can inform more precise 

risk stratification and targeted prophylaxis application, helping those patients who need it most, 

but limiting needless exposure and iatrogenic complications in those who do not. (Note: The 

candidate conducted a podium presentation on this topic at the American Association of Critical 

Care Nurses National Teaching Institute, 2019)  

1.2.1.8 Limitations of Current VTE Risk Assessment Models (RAM) 

There is a lack of consensus regarding VTE clinical decision support tools.[68, 74]  Published 

VTE RAMs, such as Caprini, Padua, and Wells are limited by their complexity of factors and lack 

of generalizability to different populations.[10, 11, 74]  Some models include specialized coagulopathy 

or serum studies (i.e., lupus anticoagulant, prothrombin 20210A, homocysteine) not routinely 

ordered on all patients. After hospital admission, patients accrue conditions and undergo 

interventions which can alter baseline admission and lifetime risk predispositions to thrombosis.[37]  

All current RAMs share a common and significant limitation: they rely primarily on static, baseline 

patient features to assess risk for VTE. Hospital acquired VTE risk is associated with interactions 

between established and acutely acquired risk factors and pathology and symptoms evolve over 

the course of hospitalization. However, no current RAMs incorporate the progressive accrual of 

dynamic patient data and pattern evolution over hospitalization in their modeling approaches. 

(Note: the candidate conducted a podium presentation on this topic at the Pennsylvania Coalition 

of Nurse Practitioners Annual Conference, 2018).  
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1.2.1.9 Addressing the Gap with Machine Learning Approaches 

VTE risk changes over the time-course of hospitalization and closing this gap in risk-

knowledge and quantification requires the exploration of dynamically accruing clinical data. The 

totality of routinely collected EHR data over hospitalization duration holds potential for informing 

this gap, and data driven machine learning (ML) is the preferred method to develop and deploy 

predictive analytics for such data. Routinely used in other industries critically dependent on real-

time analytics of massive amounts of disparate data (e.g., financial and retail), ML application in 

health care is nascent. ML methods are particularly suited for forecasting outcomes that change 

over time or vary from one case to another, as is common with hospitalized patients.[75] ML 

methodology has the ability to scale up correlational analyses to highly multivariate, high-

frequency data to discern emerging complex patterns and relationships associated with disease 

evolution or clinical deterioration.[76] ML holds the potential to 1) identify complex mechanisms 

underlying disease; 2) lead to the generation of new hypotheses for research; and 3) inform 

improvements to existing explanatory models.[77, 78] ML approaches have been used to successfully 

develop highly sensitive models to predict risk of cardiorespiratory instability, cardiac ischemia 

and arrhythmia, and inform decision making to improve care delivery and patient outcomes.[75, 79-

83] ML approaches can permit better understanding of the complex mechanisms underpinning new-

onset, HA-VTE and improve current RAMs by incorporating dynamically accruing clinical data; 

improvements that will exert a sustained influence in this field of science. 

1.2.1.10 The Value of Computable Phenotype Definitions  

Research using health data originally obtained for clinical purposes requires accurate 

identification of specific health outcome cases and controls [84] from EHR or clinical database data. 

Diagnosis codes (assigned using the International Classification of Diseases, Ninth and Tenth 
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Revision, Clinical Modification [ICD-9-CM/ICD-10-CM] system) can be biased and inaccurate 

and they lack precise diagnosis times needed for rigorous approaches to predictive modeling. New-

onset, HA-VTE has been identified as a challenging condition to identify due to its insidious and 

temporally evolving nature.[85] Computable phenotypes, computerized definitions of clinical 

conditions using standard data elements commonly available in EHR systems, offer a more 

rigorous approach to identifying patient records in big data repositories.[85-87] Although computable 

phenotypes can support cost-efficient and time-efficient reproducible queries,[88, 89] developing 

these tools is a significant informatics challenge. Because of the heterogeneity and dynamic nature 

of clinical data, the process of first identifying and defining a phenotype is a labor intensive, highly 

manual process conducted by domain experts. Once identified, translating human-readable 

phenotype information into a computable format that can be used across data sets and institutions 

requires a multi-disciplinary team that includes domain experts, biostatisticians, EHR 

informaticians, NLP experts, and computer scientists working in close collaboration.[90, 91] 

Although development of a computable phenotype for HA-VTE exceeds the scope of this 

dissertation study, the manual process of ground truth case ascertainment of new onset, HA-VTE 

will identify data elements associated with this condition that will contribute valuable information 

toward defining this phenotype in clinical data.  

1.2.2 Innovation 

This study will be the first to incorporate the progressive accrual of multi-domain, multi-

granular intensively collected time series data in the development of ML models to predict 

dynamically evolving new-onset VTE risk in hospitalized patients. Identifying complex feature 

patterns predictive of new-onset HA-VTE risk will inform critical gaps in our understanding of 
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this common disease process and inform future study in which clinicians use this information to 

inform targeted prevention and treatment decisions. Finally, this study will be the first to exploit 

ML approaches to inform the critical practice of nursing surveillance for a nurse-sensitive patient 

complication.  

1.3 Study Design and Methodology 

1.3.1.1 Study Overview 

The study design is an expanded and augmented secondary analysis of data originally 

obtained by Drs. Marilyn Hravnak and Michael Pinsky and their team of co-investigators Dr. 

Gilles Clermont, Dr. Artur Dubrawski and Ms. Melissa Saul: Predicting Patient Instability Non-

invasively for Nursing Care (PPINNC). The IRB approved parent study, PPINNC (R01 NR01391), 

utilized machine learning analytics to develop models predictive of cardiorespiratory instability 

events in stepdown unit (SDU) patients. PPINNC data includes high frequency vital sign (VS) data 

which is rare outside of the intensive care unit and needed for complexity model building. The 

proposed research is sufficiently distinct from the parent project in that it will use the PPINNC 

data to answer a different research question and to achieve a different set of aims. Extraction of 

additional EHR data elements to augment the sample, annotation specific to VTE, and curation of 

a new-onset HA-VTE data set to serve as the machine learning platform, will be required to 

achieve these aims.  
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1.3.1.2 Construction of the Source Population 

Time stamped VS data containing heart rate (HR), respiratory rate (RR), peripheral 

capillary oxygen saturation (SpO2) and blood pressure (BP) data collected at 20 second intervals 

from Philips bedside monitors were originally collected for the parent study (total of 172,000 

monitoring hours). Artifact detection algorithms were developed in the parent study to accurately 

identify artifactual vs. normal VS exceedances (excursion beyond a normal range),[13] providing a 

high degree of confidence that risk models are developed from artifact-free VS. Additional data 

were extracted to the study server from the UPMC Medical Archival Retrieval System (MARS).[92] 

These data include clinical data (time-stamped lab results, medications, microbiology culture 

results) and demographic and administrative data (age, gender, race, ICD-9-CM diagnosis and 

procedure codes, charge transactions) associated with each patient visit. All data were de-identified 

for the parent study.  

1.3.2 Preliminary Work  

It was recognized early on in the development of this research proposal that the cleaning, 

annotation and organization of data required to achieve Aim 1 rendered it the most challenging 

and time intensive aim and that the completion of Aims 2 and 3 relied on its achievement. Machine 

learning models that provide robust and actionable insights are predicated on data veracity and an 

established predictive relationship between some variables of interest.[77, 78, 93] Thus, exploring 

variable relationships as well as establishing prevalence of HA-VTE in the sample data set was 

essential information to determine feasibility. Preliminary work completed to establish these 

fundamental premises was completed to support the successful submission of an F31 NINR 
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training grant proposal and the findings from these preliminary studies also contribute to the 

completion and results of the first two aims.   

1.3.2.1 Preliminary Study 1: Identification of a Study Population for New-Onset, HA-VTE 

Including Case Ascertainment1 

A retrospective analysis of EHR data from 3680 SDU patients ages ≥ 22 years, was 

conducted to identify HA-VTE (either DVT or PE) cases. Although administrative coding, such 

as ICD-9-CM/ICD-10) is often used to identify disease conditions for billing purposes, its use in 

accurately identifying VTE cases and controls in clinical data, is unreliable.[94, 95] We therefore 

determined to identify new-onset, HA-VTE ground truth cases and controls using a multi-pronged 

manual review process of not only administrative coding[96] (Table 1), but also radiologic reports, 

and discharge summary reports. Admission and discharge diagnosis codes were reviewed for VTE 

identification. Unstructured (free text) radiologic reports for gold standard VTE diagnostic tests,[97] 

lower extremity Doppler ultrasound (LEDUS), computed tomographic angiography (CTA), 

ventilation-perfusion scan (VQ) and/or magnetic resonance angiography (MRA) performed at any 

point during the participants’ hospital stay (n=4544 reports) were extracted from the MARS data 

repository. These reports were reviewed to determine ground truth new-onset HA-VTE cases. Our 

review protocol included preliminary screening of the diagnostic test reports by a bioinformatics 

 

1 Portions of this preliminary study have been previously published as Pellathy, T., Saul, M., Clermont, G., 

Nagpal, C., Dubrawski, A., Pinsky, M., & Hravnak, M. (2018). 205: Accuracy of Identifying Venous 

Thromboembolism by Administrative Coding Compared to Manual Review. Critical Care Medicine, 46(1), 85. DOI: 

10.1097/01.ccm.0000528224.97123.e0 

https://journals.lww.com/ccmjournal/fulltext/2018/01001/205__ACCURACY_OF_IDENTIFYING_VENOUS.171.aspx
https://journals.lww.com/ccmjournal/fulltext/2018/01001/205__ACCURACY_OF_IDENTIFYING_VENOUS.171.aspx
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expert using terminology extraction followed by manual expert review to identify positive new- 

onset VTE diagnostic test results and negative VTE test results occurring during the SDU LOS. 

Participants with chronic VTE or new-onset VTE occurring prior to SDU admission were 

identified and excluded. For indeterminate cases, we also extracted daily progress notes from  

MARS and reviewed them manually for language which could clarify the result. This rigorous and 

reproducible review process established ground truth outcome cases and quantified the prevalence 

of new-onset VTE in the overall sample (1.6%), and among patients with VTE diagnostic tests 

(10%).[98] Such prevalence is adequate for ML modeling.  

 

Table 1. ICD-9 Codes Associated with Venous Thromboembolism (VTE) 
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This work was presented nationally in poster format at the Society for Critical Care 

Medicine (SCCM) Annual Congress 2018, the abstract published, and a data-based manuscript 

(Appendix B: Dissertation Manuscript 2) containing data from this preliminary study, as well as 

the final results from study Aim 2 is currently under review. 

1.3.2.2 Preliminary Study 2: New-Onset, HA-VTE Model Development 2 

Gold standard test confirmed positive and negative new-onset VTE cases were linked with 

demographic and mean VS data (HR, RR, BP, SpO2) 48 hours preceding diagnosis, producing a 

final sample of 552 unique patients. A logistic regression was fit to evaluate the relationship of 

mean VS data 48 hours preceding VTE diagnostic testing to the likelihood of new-onset VTE 

diagnosis. The predictive model was statistically significant (χ2(6) = 5.875,p = .003), with an area 

under the receiver operating curve (AUC) .594, 95% CI (.511-.696) demonstrating increasing 

mean HR is significantly associated with an increased likelihood of a new-onset, HA-VTE 

diagnosis (Table 2).[98] These preliminary analyses, conducted with a small quantity (48 hours) of 

mean VS data identified that even coarse features (summary statistics of longitudinal data) were 

predictive of new-onset, HA-VTE, and demonstrated beginning skill in ML approaches. Based on 

initial proof that even mean VS data can predict the VTE outcome, the proposed study will further  

predictive model development on multidimensional, intensively collected time series data with a 

greater degree of granularity and using a variety of ML approaches. 

 

 

2 Portions of this preliminary study have been previously published as Pellathy, T., Chen, L., Dubrawski, A., 

Clermont, G., Pinsky, M., & Hravnak, M. (2018, March). Prevalence of Venous Thromboembolism (VTE) in an 

Adult Step-Down Unit Population: A Proof-of-Concept Feasibility Study for Machine Learning Predictive Model 

Development. Nursing Research (Vol. 67, No. 2, pp. E130-E130). Two Commerce Sq, 2001 Market St, 

Philadelphia, Pa 19103 USA: Lippincott Williams & Wilkins.  
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Table 2. The Predictive Relationship Between Patient Vital Signs and VTE Risk in Step Down Unit Patients 

 B SE Wald df p Odds 

Ratio 

95% CI for Odds Ratio 

       Lower Upper 

Respiratory rate    .061 .044 1.943 1 .160  1.064 .976 1.160 

Heart rate    .024 .010 5.808 1 .016* 1.025 1.005 1.045 

SpO2   -.034 .071 .227 1 .634 .967 .842 1.111 

Systolic BP    .005 .012 .200 1 .655 1.005 .983 1.028 

Diastolic BP    .005 .019 .059 1 .808 1.005 .968 1.043 

Constant -4.86 .945 26.48 1 .000 .008   

*Significant at p < 0.05 

This work was presented in poster format at the Eastern Nursing Research Society Annual 

Meeting, 2018, and the abstract published.  

1.3.2.3 Preliminary Study 3: Identifying Time-Interval Features Predictive of HA-VTE3 

We know ML approaches can identify patterns predictive of disease in time series 

multidimensional clinical data that cannot be elicited with traditional statistical approaches. As 

HA-VTE risk factors and disease pathology are dynamic over time course of hospitalization, we 

sought to develop a preliminary model incorporating the progressive accrual of patient data over 

the time course of hospitalization in the modeling approach. We conducted a retrospective analysis 

of 3680 adult SDU patients to identify confirmed VTE positive (n=53) and negative (n-592) cases. 

These cases were linked with medication and laboratory counts (MEDLAB) preceding diagnosis 

(positive/negative). Medication data was based on drug category and number of doses and lab data 

was based on frequency of lab test and normal/abnormal results of those tests. MEDLAB data for  

 

3 Portions of this preliminary study have been previously published as Pellathy, T., Chen, L., Clermont, G., 

Dubrawski, A., Pinsky, M., & Hravnak, M. (2019). 58: Identifying Time Interval Features Predictive of Hospital-

Acquired Venous Thromboembolism. Critical Care Medicine, 47(1), 29. DOI: 10.1097/01.ccm.0000550850.41971.6a 

https://journals.lww.com/ccmjournal/Fulltext/2019/01001/58__IDENTIFYING_TIME_INTERVAL_FEATURES_PREDICTIVE.61.aspx
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48 hours preceding HA-VTE positive or negative diagnoses were used in all models.  

These data were then combined with featurized VS data time windows of 12, 24, 48, and 

72 hours and binary logistic regression was employed to evaluate the ability of MEDLAB and VS 

data at different time intervals to predict new onset, HA-VTE.[99] 

The models using data 72 hours and 12 hours preceding new-onset, HA-VTE diagnosis 

were not significant, possibly due to the bluntness of the featurized variables and data sparsity. 

The model developed with data 48 hours (Figure 3, blue data) preceding new-onset, HA-VTE 

diagnosis had a sensitivity of 63% and specificity of 93%. Variables in the model that were 

significant (p < 0.05) included the VS variables of HR, RR, and systolic BP. Also significant were 

patients receiving selective serotonin reuptake inhibitors, antipsychotics and erythropoiesis-

stimulating agent medications. Pro-thrombin time and pro-time counts, meaning how frequently 

these lab tests were ordered and resulted, were also significant in this model.  

The model with vital sign data 24 hours preceding new-onset, HA-VTE diagnosis (Figure 

4, red data) was slightly improved with regard to sensitivity. Sensitivity increased from 63% in the 

48-hour model to 73%. Specificity remained the same as the 48-hour model (93%). Notably, 

variables in the 24-hour model that were significant (p < 0.05) varied slightly from the 48 model. 

Respiratory rate and blood pressure remained significant; however, heart rate was not a significant 

predictor 24 hours preceding VTE diagnosis. The medication and lab variables significant in the 

48- hour model, were also significant in the 24-hour model. Also significant were steroid 

medications and laboratory band count. 

These findings demonstrate patient features that significantly predicted new-onset, HA-

VTE can change over a time. Furthermore, these findings demonstrate a significant relationship 
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between variables that supports the value of continued work utilizing machine learning algorithms 

for predictive modeling of new-onset, HA-VTE.  

Blue data indicates 48-hour model and red data indicates 24-hour model data. 

 

Figure 4. Results of MEDLAB + 48-hour and 24-hour Vital Sign Windows. 

This work was presented as a podium presentation at the Society of Critical Care Medicine 

Annual Congress 2019, received a STAR research award, and the abstract published. 

1.4 Setting and Sample 

1.4.1 Sample Entry/Exclusion Criteria 

Entry criteria for the parent study were patient need for a monitored bed in the SDU of the 

University of Pittsburgh Medical Center (UPMC) and age >21 years between 11/06 and 09/08. 

Under Institutional Review Board (IRB) approval for waiver for informed consent, every patient 

admitted to the 22-bed medical-surgical-trauma SDU during the study timeframe contributed to 

the data without exclusion (except age <21). No special classes of patients were excluded. These 
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practices yielded a convenience sample of 3680 patients. Patients remained in the study until 

discharge to another unit or from the hospital. Data collection for each patient spanned the entire 

duration of the patient’s SDU length of stay (LOS), for the total unit census across the study time 

frame. Patients discharged or transferred to a non-study unit were discontinued from the study, but 

their data prior to that time retained. The proposed study population is obtained from this source 

population.  

The proposed study aims to develop models predictive of new-onset, HA-VTE, defined as 

VTE verified by a gold-standard diagnostic test between the time of SDU admission and time of 

SDU discharge. Patients with a diagnosis of chronic VTE, determined either by admission 

diagnosis or radiology report findings, will be excluded. Patients with new-onset, HA-VTE 

identified during the hospitalization but before SDU admission or >24 after SDU discharge will 

also be excluded, as the continuous VS data streams necessary for the modeling are not available 

for those patients.  

During the study time frame, some participants were admitted to the SDU more than once 

during separate hospital admissions and/or during the same hospital LOS. For this analysis, each 

SDU admission LOS (and all clinical and VS data streams during that admission) is considered a 

case. This means some study participants will have contributed to more than one case used in 

analysis. As we are looking at clinical patient features over time of SDU admission that are 

predictive of new-onset, HA-VTE, this approach is consistent with our research question and aims 

and does not result in any overlapping data use.  
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1.4.2 Characteristics of the Study Sample 

The overall patient sample is consistent with the characteristics of adult patients admitted 

to the study unit during the study period (75% white, 71% male, mean age 58.0 years). Further 

sample demographics are detailed in the analysis and results sections that follow.   

1.4.3 Sample Size Justification 

1.4.3.1 ML Sample Size 

ML methods do not require a justification of sample size. Of greatest importance is the 

prevalence of the outcome variable of interest in the sample. Validity and prevalence of the 

outcome variable (new-onset VTE) has been determined in preliminary work (1.3.2.1), are 

consistent with VTE prevalence rates reported in the literature,[7] and are adequate for ML 

accuracy. [100, 101] 

1.4.3.2 Binary Logistic Regression Sample Size 

Prior to applying ML algorithms, binary logistic regression (BLR) will be used to explore 

underlying assumptions between patient factors and VTE diagnosis. Odds ratios for VTE risk in 

the literature vary from 1.34 in extremely low risk patients (ambulatory, community dwelling) to 

as high as 9.06 in very high-risk patients (septic, orthopedic, oncology)[102, 103]. To be conservative, 

an odds ratio of 2.00, which translates to a medium effect size, was chosen for sample size 

determination. 

Given this is a retrospective study and sample sizes are established based on data 

availability, a post-hoc power analysis was conducted for analysis that employs logistic regression 
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of a binary dependent variable for model building. For a two-tailed test with alpha set at 0.05, 

power analysis was conducted to assess power based on a medium and small effect size for our 

sample sizes of 630 and 2110 that will be detailed in a subsequent section (1.5.3). Power exceeds 

80% for both samples and effect sizes.[104] 

1.4.4 Variables 

1.4.4.1 Dependent Variable (DV) 

The DV in modeling is new-onset, HA-VTE diagnosis and its onset time, defined as the 

time the new-onset VTE diagnostic confirmatory test was conducted. (Table 3) 

1.4.4.2 Independent Variables (IV) 

The IV’s are patient data associated with new-onset, HA-VTE signs, symptoms or risk 

factors identified in the literature, that can be further categorized as dynamic or static. Dynamic 

variables are patient data marked by activity or change during the hospital admission up to the 

time of VTE diagnosis will include: continuous VS of HR, RR, BP and SpO2 measured in 20 

second intervals, laboratory values, medication categories, blood and blood product transfusions, 

procedures, and radiology and ultrasound tests (all time-stamped). Static variables are those data 

determined upon hospital admission and include: ICD-9-CM admission diagnosis, age, gender, 

race, height and weight. A listing of all variables and their proposed featurization can be found in 

Table 4. A breakdown of the individual medications in each drug category can be found in 

Appendix C. These variables are informed by existing VTE RAMs and published research on 

factors associated with VTE risk. Clinical and demographic variables available in this sample were 
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mapped to currently used RAMs and details can be found in Appendix D. The continuous VS data 

were collected in the parent study, using Philips bedside monitor (Andover, MA).   

 
Table 3. Dependent Variables 

Variable Level of 

Measurement 

Data Source Measures Descriptive Statistics 

New-onset VTE nominal MARS  Tested, confirmed 

positive; Tested, 

confirmed negative; 

Never tested 

Frequencies, percentage, 

mode 

Time of VTE diagnosis ratio MARS Time from SDU 

admission to 

confirmatory 

diagnostic test, in 

minutes 

Mean, standard deviation 

(SD), range, minimum 

(Min), maximum (Max), 

skewness, kurtosis 

 

Table 4. Independent Variables 

Variable Level of 

Measurement 

Data Source Measures Descriptive Statistics 

 

Demographics 

Age ratio MARS Calculated from 

patient date of birth 

to admission 

Mean, standard deviation 

(SD), range, minimum 

(Min), maximum (Max), 

skewness, kurtosis 

Gender nominal MARS Registration data Frequencies, percentile, 

mode 

Race nominal MARS Registration data Frequencies, percentile, 

mode 

Charlson Comorbidity 

Index Deyo Method  

(CCI-D) 

interval MARS Score calculated 

from ICD-9-CM 

hospital discharge 

diagnoses 

Mean, SD, range, Min, Max, 

skewness, kurtosis 



 40 

Step-Down Unit length of 

stay (LOS) 

ratio MARS Minutes (converted 

to days and hours as 

appropriate) 

Mean, SD, range, Min, Max, 

skewness, kurtosis 

Inpatient LOS ratio MARS Days Mean, SD, range, Min, Max, 

skewness, kurtosis 

Vital Signs 

Heart rate (HR) ratio Philips bedside 

monitor 

Beats/minute Mean, SD, range, Min, Max 

slope, skewness, kurtosis 

Respiratory rate (RR) ratio Philips bedside 

monitor 

Breaths/minute Mean, SD, range, Min, Max 

slope, skewness, kurtosis 

Systolic Blood Pressure 

(SBP) 

ratio Philips bedside 

monitor 

Millimeters of 

mercury (mmHg) 

Mean, SD, range, Min, Max 

slope, skewness, kurtosis 

Diastolic Blood Pressure 

(DBP) 

ratio Philips bedside 

monitor 

mmHg Mean, SD, range, Min, Max 

slope, skewness, kurtosis 

Mean Arterial Pressure 

(MAP) 

ratio Philips bedside 

monitor 

mmHg  Mean, SD, range, Min, Max 

slope, skewness, kurtosis 

Pulse Oximetry (SpO2) ratio Philips bedside 

monitor 

Percent oxygen 

saturation 

Mean, SD, range, Min, Max 

slope, skewness, kurtosis 

Diagnoses 

Myocardial Infarction (MI) nominal MARS ICD-9-CM code Frequency, percentile, mode 

Congestive Heart Failure 

(CHF) 

nominal MARS ICD-9-CM code Frequency, percentile, mode 

Stroke nominal MARS ICD-9-CM code Frequency, percentile, mode 

Malignancy nominal MARS ICD-9-CM code Frequency, percentile, mode 

Lower Extremity Fracture nominal MARS ICD-9-CM code Frequency, percentile, mode 

Diabetes Mellitus nominal MARS ICD-9-CM code Frequency, percentile, mode 

Obesity nominal MARS ICD-9-CM code Frequency, percentile, mode 

Hypertension (HTN) nominal MARS ICD-9-CM code Frequency, percentile, mode 

Chronic obstructive 

pulmonary disease (COPD) 

nominal MARS ICD-9-CM code Frequency, percentile, mode 

Malignancy nominal MARS ICD-9-CM code Frequency, percentile, mode 

Thrombophilia  nominal MARS ICD-9-CM code Frequency, percentile, mode 

Septicemia nominal MARS ICD-9-CM code Frequency, percentile, mode 

Chronic Venous 

Insufficiency  

nominal MARS ICD-9-CM code Frequency, percentile, mode 

Dehydration nominal MARS ICD-9-CM code Frequency, percentile, mode 
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Chronic kidney disease nominal MARS ICD-9-CM code Frequency, percentile, mode 

Medication Classes     

Anti-coagulant ratio MARS  Charge count/24 

hrs* 

Mean, SD, range, Min, Max 

Anti-infective ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Anti-platelet ratio MARS Charge count/24 hrs Mean, SD, range, Min, Max 

Anti-psychotic ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Benzodiazepine ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Cardiac ratio MARS Charge count/24 hrs Mean, SD, range, Min, Max 

Erythro-stimulant ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Gastrointestinal ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Hormone ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Hyperglycemic ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Immunosuppressant ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Naloxone ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Narcotic ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Neuro ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Non-steroidal Anti-

inflammatory (NSAID) 

ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Sedative ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Selective Serotonin 

Reuptake Inhibitors (SSRI) 

ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Steroids ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Thrombolytic ratio MARS  Charge count/24 hrs Mean, SD, range, Min, Max 

Laboratory Values     

Pro-thrombin (APT) time, 

mean 

ratio MARS  Seconds Mean, SD, range, Min, Max 

APT normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count** Mean, SD, range, Min, Max 

Partial thromboplastin 

time (PTT), mean 

 

ratio MARS  Seconds Mean, SD, range, Min, Max 

PTT normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Bands, mean ratio MARS   x 103 /mm3 Mean, SD, range, Min, Max 
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Bands normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Brain natriuretic 

peptide (BNP), mean 

ratio MARS  picograms per 

milliliter (pg/ml) 

Mean, SD, range, Min, Max 

BNP normal/ abnormal 

high/ abnormal low count  

ratio MARS  Test count Mean, SD, range, Min, Max 

Cancer antigen 125 (CA-

125), mean 

ratio MARS  units/mL Mean, SD, range, Min, Max 

CA-125 normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Carcinoembryonic antigen 

(CEA), mean 

 

ratio MARS  ng/ml Mean, SD, range, Min, Max 

CEA normal/ abnormal 

high/ abnormal low count  

ratio MARS  Test count Mean, SD, range, Min, Max 

Serum Carbon Dioxide 

(CO2), mean 

ratio MARS  mmol/L Mean, SD, range, Min, Max 

CO2   normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Creatinine, mean ratio MARS  mg/dL Mean, SD, range, Min, Max 

Creatinine normal/ 

abnormal high/ abnormal 

low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

C-reactive Protein (CRP), 

mean 

ratio MARS  mg/L Mean, SD, range, Min, Max 

CRP normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Direct Bilirubin (DBILI), 

mean 

ratio MARS  mg/dL Mean, SD, range, Min, Max 

DBILI normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Sedimentation Rate (ESR) ratio MARS  mm/h Mean, SD, range, Min, Max 

ESR normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Iron (Fe), mean ratio MARS  mcg/dL Mean, SD, range, Min, Max 
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Fe, normal/ abnormal high/ 

abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Ferritin, mean ratio MARS  ng/mL Mean, SD, range, Min, Max 

Ferritin normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Glycosylated Hemoglobin 

(HgA1c) 

ratio MARS  % Mean, SD, range, Min, Max 

HgA1c normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Hematocrit (HCT), mean ratio MARS  % Mean, SD, range, Min, Max 

HCT normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Hemoglobin (Hgb), mean ratio MARS  g/dL Mean, SD, range, Min, Max 

Hgb normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Potassium (K), mean ratio MARS  Mmol/L Mean, SD, range, Min, Max 

K, normal/ abnormal high/ 

abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Lactate, mean ratio MARS  IU/L Mean, SD, range, Min, Max 

Lactate, normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Lipase, mean ratio MARS  U/L Mean, SD, range, Min, Max 

Lipase, normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Magnesium (Mg), mean ratio MARS  mmol/L Mean, SD, range, Min, Max 

Mg normal/ abnormal high/ 

abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

PaCO2 ratio MARS  mm/Hg Mean, SD, range, Min, Max 

PaCO2 normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Platelet (PLT) count, mean ratio MARS  cells/uL Mean, SD, range, Min, Max 

PLT normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

PaO2 ratio MARS  mm/Hg Mean, SD, range, Min, Max 

normal/ abnormal high/ 

abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 
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Total Thyroxine (T4) ratio MARS  mcg/dL Mean, SD, range, Min, Max 

T4 normal/ abnormal high/ 

abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Triglyceride (TRG), mean ratio MARS  mg/dL Mean, SD, range, Min, Max 

TRG normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Troponin, mean ratio MARS  ng/mL Mean, SD, range, Min, Max 

Troponin, normal/ 

abnormal high/ abnormal 

low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Thyroid Stimulating 

hormone (TSH), mean 

ratio MARS  mU/L Mean, SD, range, Min, Max 

TSH, normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Total triiodothyronine (T3), 

mean 

Ratio MARS  ng/dL Mean, SD, range, Min, Max 

T3, normal/ abnormal high/ 

abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

White Blood Cell (WBC), 

count 

ratio MARS  x 109/L 

 

Mean, SD, range, Min, Max 

WBC normal/ abnormal 

high/ abnormal low count 

ratio MARS  Test count Mean, SD, range, Min, Max 

Procedures 

Central Venous Catheter nominal MARS Inserted yes/no Frequencies, percentage, 

mode 

Surgical status nominal MARS Non, major, minor Frequencies, percentage, 

mode 

Type of Surgery nominal MARS GI, CABG, 

Vascular, 

Orthopedic, 

Trauma, Neuro, 

Thoracic, 

Gynecologic 

malignancy, Other 

Frequencies, percentage, 

mode 

MARS Medical Archival System, PaCO2 partial pressure of arterial carbon dioxide, PaO2  partial pressure of arterial 

oxygen, CABG coronary artery bypass graft 

*Charge count = Count of medication charge transaction doses ordered/patient/24 hours 

**Test count = Count of tests with normal/ abnormal low/ abnormal high results 
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1.5 Methods 

Preliminary and proof-of-concept work (Section 1.3.2) identified a gold-standard study 

population for new-onset, HA-VTE cases and established scientific merit and feasibility for the 

now proposed study described below. Developing models to identify complex patterns of patient 

features that can inform evolving VTE risk requires transformation of a great quantity of disparate, 

intensely longitudinal EHR data into a data platform suitable for ML analysis and model building. 

This will be achieved through the following aims (Figure 5): 

 

 

Figure 5. Study Model 
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1.5.1 Specific Aim 1: Assemble a Large Scale, Multi-Source, Multidimensional Dataset 

from an Adult Hospital Step Down Unit (SDU) Sample. 

A large scale, multi-source, multidimensional dataset will be constructed to serve as the 

new-onset, HA-VTE ML platform. Beyond available data from the parent study, the applicant will 

extract additional structured and unstructured EHR data (radiology, ultrasound and transfusion 

data) and annotate previously extracted structured data (medications, laboratory data, procedure 

data), to augment the static and dynamic patient data points from the parent study (1.3.1.2). For 

each participant, we will then link the static and time-stamped dynamic patient data from the 

sources outlined, producing an intensive longitudinal dataset affording the ability to examine 

variables at different time windows prior to new-onset, HA-VTE occurrence (VTE positive 

diagnostic test time stamp). 

1.5.1.1 Data Annotation and Curation.  

EHR data streams must undergo preparation for computational model building. In this step, 

extracted data will be transformed into an annotated clinical research data set. To ensure study 

rigor and optimize reproducibility, data elements described will be cleaned, annotated and reported 

in accordance with the REporting of studies Conducted using Observational Routinely-collected 

Data (RECORD) international guidelines for studies conducted using routinely-collected health 

data [105, 106]. As indicated, standard annotation vocabularies will be used: Systematized 

Nomenclature of MEDicine - Clinical Terms (SNOMED CT) for free text radiology and clinical 

notes, RxNORM for medications, Logical Observation Identifiers Names and Codes (LOINC) for 

laboratory and radiology tests and Centers for Medicare and Medicaid Services (CMS) ICD-9-CM 

codes for procedures and clinical diagnoses.[107-109] 

http://loinc.org/
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1.5.2 Specific Aim 2: Ground Truth Case Ascertainment 

Identification of cases and controls will be an iterative process informed by ground truth 

identification of the condition of interest followed by identification and annotation of EHR data 

elements associated with the condition. The first step, ground truth new-onset, HA-VTE 

identification by gold standard review was completed in pilot work (Section 1.3.2.1).  

1.5.2.1 Radiologic Data Annotation and Time Stamping for Cases  

Following the identification and exclusion of patients with chronic VTE or new-onset VTE 

occurring prior to SDU admission, all remaining SDU cases were annotated for one of three 

possible outcome events: 1) new-onset VTE positive, 2) tested for new-onset VTE and found to 

be negative by gold standard diagnostic test, and 3) not tested for new-onset VTE during SDU 

stay. (Figure 6)  

1.5.2.2 Annotation of New-Onset, HA-VTE Positive Cases 

Data was annotated for new-onset, HA-VTE time of occurrence and subtype (DVT or PE) 

to allow for maximal insight into the data during analysis. A new-onset DVT case is defined as an 

acute venous thrombosis in at least one of the following deep veins on LEDUS: internal jugular, 

superior vena cava, inferior vena cava, iliac, femoral, popliteal and profunda femoris veins. 

Chronic thromboembolic disease and thrombi in the following vessels are excluded from the 

definition of new-onset DVT: Portal circulation veins, superficial veins, man-made venous 

conduits and arteries. New-onset PE is defined as presence of an acute occlusive or sub-occlusive 

clot in a main, lobar, segmental and/or sub-segmental pulmonary artery on CTA or MRA. CTA 

and MRA results indicating a filling defect in the aforementioned vessels and V/Q results scans 
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with intermediate or greater probability findings will require further review of medical notes to 

confirm/exclude new-onset, HA-VTE diagnosis. Time stamp for the occurrence of a new onset, 

HA-VTE outcome event is annotated as time zero (T0), the date and time the confirmatory 

diagnostic test was conducted. Indeterminate radiology test results subsequently confirmed as a 

new-onset VTE event, based on review of additional medical notes, were time stamped at the time 

of the indeterminate test.  

1.5.2.3 Annotation of VTE Negative by Confirmatory Test Cases 

SDU patients with a gold standard radiology test negative for the presence of 

embolus/emboli in specified vasculature were annotated as confirmed VTE negative cases 

(1.3.1.2). Time stamp for the occurrence of a confirmed VTE negative outcome event T0 is the 

date and time the diagnostic test that ruled-out HA-VTE diagnosis was conducted. Indeterminate 

radiology test results subsequently confirmed as negative for VTE, based on review of additional 

medical notes, were annotated for T0 at the time of the indeterminate test.  

1.5.2.4  Annotation of Not Tested Cases 

SDU patients who did not undergo a VTE diagnostic test during their SDU stay or during 

the 24-hours immediately after SDU discharge, are annotated as a not tested case. As this is a 

cohort of untested patients, a hypothetical outcome event time T0 must be defined for these cases. 

The T0 for not tested patients will be defined by the following two-step process:  

1. The distribution of time from SDU admission to gold standard VTE diagnostic test 

time (time-to-test) for all tested patients (1.5.2.1 and 1.5.2.2) will be determined. 

2. Not tested cases will be matched to the mean time-to-test distribution for all tested 

patients and then a random sample from that distribution will be obtained. This 
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enables evaluation of both groups at similar time points in the SDU stay. The 

rationale for defining and annotating two different types of control groups is 

outlined in detail in Section 1.5.3 below.   

 

Figure 6. Each Case is Annotated for One of Three Outcome Events 

 

1.5.3 Specific Aim 3: Develop and Evaluate Models to Predict New-Onset, HA-VTE Risk in 

Hospitalized Patients  

Our approach to model building stems from the traditional ML processes of model training, 

validation and testing. In detail, we aim to capture all potentially informative patient variables and 

quantify their utility in predicting new-onset, HA-VTE diagnosis. Our approach has four stages: 

1) Feature engineering, 2) Feature selection and model development, 3) Model performance 

evaluation, and 4) Model interpretation. Ground truth annotation and a discrete outcome allows us 

to formulate this as a supervised machine learning classification problem.  

Aims 1(1.5.1) and 2 (1.5.2) comprise the stages of data processing required to produce a 

record of all such detected outcome events, annotated with time stamp of new-onset, HA-VTE 
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diagnosis, confirmatory VTE negative study, or absence of a VTE diagnostic test, event type 

descriptors (VTE subtype), time-stamped dynamic patient features (VS data and lower frequency 

clinical data) and static patient features (present on hospital admission data) throughout the entire 

SDU length of stay up to event occurrence, forming a transactional dataset.  

1.5.3.1 Problem Formulation 

Our problem formulation for ML model building uses the three case-cohorts defined in 

section 1.5.2 and illustrated in Figure 6 above, and is guided by the following clinical rationales:  

1. Among all SDU patients, can we predict cases for which clinicians suspect new-onset HA-

VTE pathology (and test) versus those they do not suspect (and not test)? This question 

aims to inform the challenge clinicians face regarding risk stratification of patients. Sample 

n = 2110, tested cases rate 30%, Figure 7.  

 

Figure 7. Case-Cohorts for Clinical Rationale #1 

 

2. Among SDU patients who clinicians suspect new-onset, HA-VTE pathology, can we 

predict confirmed positive diagnosis from those whose diagnostic work up is confirmed to 

be negative? The ability to discern differences between 2 groups of hospitalized patients 
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who both carry high clinical suspicion for new-onset HA-VTE is an important clinical 

challenge. Sample n= 630, VTE (+) rate 8%, Figure 8. 

 

Figure 8. Case-Cohorts for Clinical Rationale #2 

 

We hypothesize our models will be able to discriminate between positive and negative HA-VTE 

diagnosis and tested and untested patients in advance of T0. Additionally, we hypothesize that the 

progressive addition of more granular time series data will both improve predictive ability as well 

as inform the relative importance of the features in the models.  

1.5.3.2 Problem Formulation Constraints 

Our approach to problem formulation and extraction of our time series features requires 

consideration of the following constraints:     

New-onset VTE disease pathology. The exact time frame for hospital acquired VTE 

development is not precise. Hemostasis abnormalities leading to thrombus formation can occur 

gradually, with symptoms evolving over hours to days and the exact time frame for VTE 

development varies greatly by individual. [110] 

Absence of published models forecasting HA-VTE risk. There is little published 

evidence to guide the optimal time intervals for forecasting HA-VTE risk. In the outpatient 
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setting, Posch et. al., recently explored the “dynamic” prognostic ability [111] of quantitative 

changes in D-dimer lab values to inform a patient’s risk of cancer associated VTE and found 

monthly serum levels increased over a six-month time period in cancer patients who developed 

VTE and remained stable in cancer patients who did not develop VTE. In hospitalized patients, 

to the best of our knowledge, this is the first study to employ dynamic time series data gathered 

during hospitalization to predict risk of HA-VTE.  

Absence of VTE risk assessment surveillance guidelines specific to the SDU 

population. There are no published time interval recommendations for new-onset VTE 

surveillance in the SDU population. Recommendations for the highest risk populations (neuro and 

multi-trauma ICU patients), include initial screening patients for the development of VTE within 

48 hours of ICU admission followed by bi-weekly surveillance.[66, 112]  

Data availability. Data to be employed in modeling is available in varying levels of 

granularity, which informs problem formulation. Static, present on admission data that is collected 

and available to clinicians at time of hospital admission includes demographic information and 

diagnosis information known at time of admission. Medication and procedure data, obtained from 

the charge data, are available with a time granularity of a calendar day. Laboratory data are 

available with a granularity of day and time resulted. Lastly, our dynamic VS data (HR, RR, SPO2) 

are available every 20 seconds and BP every 2-4 hours. The p4 phase has significant missing VS 

data due to a storage issue during data collection and this impacts data availability for this set of 

features for a number of patients in this study sample.  

1.5.3.3 Problem Formulation Workflow 

To test the hypothesis that the progressive addition of more granular time series data will 

improve model prediction performance, we will build our models in stages (Figure 9). In the first 
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stage, we propose to build a model with static, present on admission data only. In the second 

stage, we will add low frequency data and in the third and final stage, dynamic, higher 

frequency, VS data will be added.  

 

Figure 9. Model Building Stages 

1.5.3.4 Machine Learning Process 

As shown in Figure 10, our machine learning process design will involve periods of 

observation during SDU stay (during which potentially predictive VS and clinical events are 

extracted) and prediction (specified time windows preceding occurrence of HA-VTE). The 

models will incorporate dynamic and static data at various lead times (24 and 48-hours) before 

 

Figure 10. Machine Learning Process 
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the outcome VTE event. Starting with static data and adding increasingly dynamic time series data 

(Figure 9), one goal of our learning experiments will be to build the best attainable model for 

predicting the VTE outcome event at two times points: 1) time of diagnosis (T0) and 2) 24-hours 

preceding diagnosis (T-24). (Figure 11) These models will likely rely on different subsets of input 

features.    

 

 

Figure 11. Machine Learning Process in Detail 

  



 55 

Using the 3-stage approach outlined in Figures 9 and 11, for each clinical rationale and prediction 

time point (T0 and T-24), we will develop three sets of models.  

Prediction time point T0 

1. T0 Static Models: Static (present on admission) data 

2. T0 Low Frequency Models: Static + low frequency data 

3. T0 High Frequency Models: Static + low frequency + high frequency data   

Prediction time point T-24 

1. T-24 Static Models: Static (present on admission) data 

2. T-24 Low Frequency Models: Static + low frequency data 

3. T-24 High Frequency Models: Static + low frequency + high frequency data   

The proposed data features, candidate models, and feature selection approaches for model building 

are detailed in sections 1.5.4 and 1.5.5 below. 

1.5.4 Specific Aim 3a: Apply ML Algorithms to Develop and Evaluate Models for New-Onset 

HA-VTE risk Over Time.  

1.5.4.1 Feature Engineering 

To maximize its potential, a ML model needs an information rich set of features. Domain 

knowledge and extensive review of the literature will inform feature engineering. Every effort will 

be made to ensure only variables available at the time of prediction are included and that these 

data are ones readily available in clinical practice. Furthermore, every effort will be made to limit 

the use of environmentally influenced variables. This data set will serve as the input to the second 

stage of processing: feature selection and model development. Proposed features for model 

building are detailed in Appendix E.  
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1.5.4.2 Candidate Model Selection 

Candidate model selection is based on data characteristics and constraints (data 

missingness, level of measurement, class imbalance) and a desire to model interpretability. The 

bias-variance trade-offs of different models were also considered. The proposed candidate models 

and feature selection methods include:  

• Binary logistic regression (BLR) is a simple classifier that can provide a good 

baseline model for comparison. Interpretability of BLR is an advantage, however 

this approach is likely to produce a model with higher bias (overfitting). LASSO 

(least absolute shrinkage and selection operator) will be used for feature selection.  

• Naïve Bayes (NB) is another highly interpretable classifier that has been shown to 

perform well on small amounts of training data and to be relatively robust to 

missing data. Similar to BLR, NB tends to build models with higher bias, but low 

variance. As NB is a classifier that assumes all features are unrelated to each other 

(conditionally independent), we proposed to fit this model using all predictor 

variables without using feature selection for this modeling approach.  

• Random Forest (RF) is an ensemble method that uses bagging (bootstrap 

aggregating) to combine many decision trees in parallel enabling its ability to 

produce models with low bias and moderate variance. A powerful classifier that is 

fairly robust to outliers and missing data, RF also handles categorical and 

continuous data well. While interpretable, it is less so than BLR and NB.  

• Gradient Boosted Decision Trees (GBDT) is another ensemble method that uses 

boosting-- combining a series of sequentially connected decision trees, each 

learning from the errors of the previous one—to produce a highly efficient and 
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accurate model. The strengths and weaknesses of GBDT are similar to RF; both 

include a feature importance estimate capability for built in feature selection.  

1.5.4.3 Performance Evaluation 

Using leave one case out cross validation, we will empirically assess and compare the 

predictive capabilities of the models. Leave one case out cross validation predicts each instance, 

training on all other (n-1) instances. An advantage of this approach is its ability to cover all data 

points and learn everything, reducing risk of model bias. However, this approach could be 

computationally expensive. 

If computational burden becomes an issue, k-fold cross-validation, with k=20, will be 

considered. This evaluation method, while less computationally intensive, still covers a high 

number of data points, however risk of bias will be higher due to the potential of leaving out a 

positive case during an iteration. If we encounter model performance issues due to class imbalance, 

then we can consider using a stratified cross-validation approach.  

1.5.5 Specific Aim 3b: Compare Model Capability to Predict Dynamically Evolving New-

Onset HA-VTE.  

Models will be assessed and ranked by performance metrics immune to unbalanced data: 

sensitivity (recall), specificity (TN rate), and precision (PPV). Area under the receiver operating 

characteristic (AUROC) curve will be used to quantify the tradeoff between sensitivity and 

specificity and will be compared with the area under the precision recall (AURPR) curve. 

Furthermore, consideration of clinical benefits and costs of the various models and at various 
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thresholds will be included in model performance evaluation. Models with the best combination 

of predictive ability and parsimony will be identified. 

We have made the a priori decision to identify the best performing model in stage 1 (BLR, 

NB, RF, GBDT) based on the metrics outlined above.  

1.6 Data Analysis Plan 

Data analysis will be conducted using IBM SPSS software, version 26, R, and customized 

machine learning algorithms developed by Carnegie Mellon University (CMU) Auton Lab. 

Additional data review and visualization will be supported by NOBLE Coder [113] NLP software 

and Tableau.  

1.6.1 Data Quality Diagnostics 

Data quality will be examined prior to and as part of Aim 1 specific analyses to examine 

data distributions, identify invalid data, identify patterns of missing data and to evaluate 

relationships between different variables.  

1.6.2 Descriptive Statistics 

Detailed descriptive and exploratory analyses of each variable will be performed, to yield 

standard descriptive summaries (see Tables 3 and 4). For continuous variables, appropriate 

descriptive statistics, including graphical representation, will be computed to describe sample 
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characteristics and determine variable distributions. For categorical variables, frequency 

distributions and percentages will be computed and examined.   

As all categorical variables (new onset VTE, gender, ethnicity and admission diagnosis) 

are nominal level of measurement, central tendency calculations will include only the mode and 

measures of dispersion (variability) are not indicated. For the continuous variables listed in Tables 

3 and 4, central tendency will be described by the mean and dispersion as standard deviations for 

normally distributed data and medians and interquartile ranges (IQR) for non-normal data 

distributions.   

1.6.3  Data screening procedures 

Prior to performing planned analyses, statistical assumptions will be evaluated 

descriptively (skewness and kurtosis values) and graphically (frequency histograms, normal 

probability plots, and bivariate scatter plots) to check for violations in normality, linearity, and 

homoscedasticity of variables. (Table 5) 

 

Table 5. Data Screening Process 

1. Inspect univariate descriptive statistics for input accuracy 

 Out of range values 

 Plausible means and standard deviations 

 Univariate outliers 

2. Evaluate missing data for quantity and pattern 

 Address problems found 

3. Evaluate pairwise plots for linearity and homoscedasticity 

4. Identify non-normal variables and univariate outliers and address accordingly 

 Evaluate skewness and kurtosis 
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 Transform variables, if indicated/desired 

 Check results of transformation 

5. Identify and address multivariate (MV) outliers 

 Variables causing MV outliers 

 Description of MV outliers 

6. Evaluate variables for multicollinearity  

Adapted from Tabachnick, B. G., & Fidell, L. S. (2014). Using multivariate statistics. Harlow. [114] 

1.6.3.1 Missing Data 

As this research study employs data originally collected for clinical use, missing data is 

anticipated. Although we anticipate missing data will be missing completely at random (MCAR), 

patterns of missingness will be carefully and systematically evaluated. Deletion of cases or 

variable categories with missing values will be considered, as will imputation methods, as 

indicated by the missing data patterns found. However, many machine learning algorithms are 

robust to missing data and since EHR clinical data is often missing due to a variety of causes 

(sensor artifact, off-unit for tests), modeling approaches that can perform well in the setting of 

missing data are desirable for translation to clinical practice.  

1.6.3.2 Outliers  

Categorical variable frequency (maximums, minimums, and percentiles) will be examined 

for unbalanced distributions (i.e., categories < 10%) to determine outliers. Among continuous 

variables, univariate outliers will be screened using graphical methods (histograms, box plots, 

normality probability plots) and z-scores. Mahalanobis distance scores will be computed and 

screened to identify multivariate outliers. Discovery of outliers will be followed by a 

reexamination of data to assess for spurious values.  
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1.6.3.3 Data Transformations 

If a normal distribution is not present, skewness direction will guide data transformation 

strategies. Winsorization of outliers by variable transformation (square root, logarithm, or inverse) 

and/or score alteration will be considered and implemented as needed. Outliers will be described, 

and all alterations and transformations will be reported. If transformations are indicated, all 

assumptions will be re-evaluated post-transformation.  

1.6.3.4 Multicollinearity and Singularity 

Variance inflation factors (VIF), tolerance, and Belsley, Kuh, and Welch diagnostics 

(condition indices) [115] will be used to assess for multicollinearity. VIF measures greater than 10 

indicate serious multicollinearity and warrant close examination. Tolerance (1-R2) values less than 

0.3 will be investigated for large standard errors. Multicollinearity will be further assessed during 

regression analyses (5.2.3).  

1.6.4 Data Analytic Procedures 

1.6.4.1 Aim 1: Assemble a large scale, multi-source, multidimensional dataset from adult 

hospital step down unit (SDU) patients 

Once static and time-stamped dynamic patient data have been linked to produce an 

intensive longitudinal dataset, descriptive analyses (1.6.2) and data screening (1.6.3) will be 

conducted as outlined above.  
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1.6.4.2 Aim 2: Ground truth case ascertainment of new onset, HA-VTE 

The procedures for ground truth ascertainment of new-onset, HA-VTE and the annotation 

of VTE outcome events is detailed in section 1.3.2.1, section 1.5.2, and in Dissertation Manuscript 

#2 (Appendix B).  

1.6.4.3 Aim 3: Develop and Evaluate Models to Predict New-Onset, HA-VTE Risk in 

Hospitalized Patients 

An established predictive relationship between variables of interest is a prerequisite for ML 

models that provide robust and actionable insights [98] and that has been established in preliminary 

work (1.3.2.2 and 1.3.2.3). BLR will be the first classifier employed for the achievement of Aim 

3 and it will serve as the base model for comparison. The relationship between static and dynamic 

variables and the binary dependent variables of interest will be examined. Assumptions specific to 

BLR that will be explored include:  

1. Independence of observation. Identification of any duplications of subject information will 

be met in the achievement of Aim 1 (1.5.1) ensuring this assumption will be met.  

2. Categories of the dependent variable and all nominal independent variables should be 

mutually exclusive and exhaustive.  

3. Adequate sample size. This has been previously established in Section 1.4.3. 

4. A linear relationship between the continuous independent variables and the logit 

transformation of the dependent variable. Linearity will be assessed vie the Box-Tidwell 

procedure. Residual plots of studentized residuals versus predicted values will be used to 

evaluate linearity. If a nonlinear relationship is discovered, transformations may be 

completed to enhance linearity, and appropriate regression analyses will then be performed.  
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5. Absence of significant multicollinearity. Multicollinearity will be assessed through an 

inspection of correlation coefficients and Tolerance/VIF values. If present, evidence-based 

relevance of patient factors will inform variable elimination.  

6. No significant outliers, high leverage points or highly influential points. Outliers will be 

identified and addressed as outlined in 1.6.3.2 and 1.6.3.3 above.  

 

Naïve Bayes, RF, and GBDT classifier algorithms do not require specific assumptions to 

be met and the selection rationale for the proposed algorithms has been previously summarized in 

section 1.5.4.2. Our outcome variable of interest is the minority class in our sample and this class 

imbalance has already been considered with our algorithm selection choices. However, if model 

performance is poor, additional considerations to address class imbalance in model building 

include:  

1) Under sampling of the majority cases. This approach can prevent the signal of the 

majority class from dominating the learning algorithm. The disadvantage with under 

sampling is that it discards potentially useful data.  

2) Over sampling of the minority cases. The disadvantage of oversampling is that by 

making exact copies of existing data, the risk of overfitting is increased.  

3) Synthetic Minority Oversampling Technique (SMOTE).[116] This approach under 

samples the majority class and creates synthetic samples from the minor class, creating 

less risk of overfitting.  

 

Application of ML algorithms and the process for comparing and evaluating performance 

of the subsequent models has been previously outlined in detail in Section 1.5.4 above.  
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1.7 Limitations 

We expect Aim 1 to be the most challenging and time intensive aim and recognize Aims 2 

and 3 rely on its achievement. Aim 1 builds on the applicant’s pilot work and emerging skills with 

data annotation and curation and the ongoing guidance and assistance of bioinformatics expert 

consultant, Melissa Saul, ensures completion of this aim.  

The parent sample is from a prior timeframe. Little has changed in diagnostic testing for 

VTE, or VS data accrued from bedside monitors and we do not anticipate this temporal gap to 

impact results. Every effort will be made to map clinical data from this sample to current data 

standards (such as mapping ICD-9 codes to ICD-10 codes) to maximize contemporary 

understanding and application.  

We recognize the possibility that some of the “Never tested cases” may contain HA-VTE 

that is unrecognized by clinicians and that these unrecognized positive cases may not be diagnosed 

until after this hospital admission. We acknowledge this is a limitation and that exploring this 

limitation is beyond the scope of this current study. However, using the classifier trained for 

clinical rationale #2, we will explore its ability to predict VTE (+) cases from never tested cases 

and report class distributions, setting the foundation for future inquiry.   

As this is the first study to develop prediction models for new onset HA-VTE using data 

accrued during hospitalization, we recognize that the time windows proposed may not be the most 

optimal time frames for predicting this dynamic disease pathology. They are, however, a starting 

point that will inform the aims of this dissertation study while also laying the groundwork for 

future lines of inquiry that will explore additional time windows in advance of diagnosis. 

Furthermore, our BLR model will allow us to compute confidence intervals that can inform future 

work exploring the cost-benefit-risk trade off to earlier detection times 



 65 

Generalizability of findings will be limited due to the fact that the sample population is 

restricted to a single SDU over a specific time interval, and that sample ethnicity is primarily 

White. However, sample size allows for diversity of diagnoses, variables, and adequate VTE 

prevalence to support machine learning (1.4.3.1). This dissertation study is focused only on 

training and testing models using cross-validation methods. We recognize that HA-VTE models 

will need to be further tested and externally validated and while those steps exceed the scope of 

the dissertation research and the training plan time-line, they will be a focus of post-doctoral work. 

1.8 Future Directions 

The development of a new-onset, HA-VTE prediction models, will provide a valuable and 

novel contribution to the field of precision medicine science. Completion of this study will equip 

the applicant with experience and skills needed to conduct research as an independent nurse data 

scientist. Study results will serve as the foundation for the applicant’s future research as a post-

doctoral fellow which aims to 1) further assess model performance and generalizability on larger 

datasets from different geographic locations, health system sizes, and patient populations, 2) 

identify features discriminating between VTE subtypes (DVT versus PE), and 3) translate research 

findings to inform the design, implementation and testing of a dynamic VTE RAM to inform 

clinical practices for VTE prophylaxis and treatment. 
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1.9 Human Subjects Research Risks and Protections 

1.9.1 Responsible Conduct of Research Training 

Collaborative Institutional Training Institute (CITI) online training courses have been 

completed and include: Good Clinical Practice Course for Clinical Trials, CITI Conflicts of 

Interest, Biomedical Human Subjects Research, International research and Responsible Conduct 

of Research (RCR). Through completion of these modules, the candidate has become familiar with 

the general professional norms, accepted practices and ethical principles in the performance of all 

activities related to scientific research.  

Additionally, completed School of Nursing (SON) coursework includes RCR topics 

including conflict of interest, plagiarism, data acquisition, scientific misconduct, authorship, 

presentation of data, informed consent, justification for randomized clinical trials, utilization of 

human and animal subjects. 

A full list of RCR coursework can be found in Appendix H. 

1.9.2 Risks to Human Subjects 

This is not a clinical trial, but is a descriptive study using data from a retrospective time 

period. All patients in the retrospective study interval (11/06-9/08, total n=3864) are discharged 

from the hospital. De-identified vital sign, clinical, and demographic data (outlined in section 3.1) 

previously gathered through the parent study (R01NR014221) reside on a pre-existing secure study 

server. Only data that was de-identified using De-ID TM software, are recorded in the study files, 

and study ID and visit ID are used for participant identification. The extraction of additional data 
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not previously collected but needed to support the proposed study that will augment the parent 

study data is limited to the parent project time interval. These de-identified data (radiology, 

ultrasound, and progress note data) will be obtained through Melissa Saul, MS, assigned a visit ID 

linking these additional data to the same patients’ previously collected data, and will reside on the 

same secure server.  

1.9.3 Human Subjects Involvement, Characteristics and Design  

The patient population in the study is consistent with the characteristics of patients admitted 

to monitored beds on Unit 9G, University of Pittsburgh Medical Center (UPMC), Presbyterian 

Hospital over the study period 11/06-9/08. The racial, gender, and age characteristics of the subject 

population reflects the monitored patient population of the unit during the above study periods.  

1. Inclusion criteria: Entry criteria were patient need for a monitored bed on Unit 9G (age > 

21 years). Patients were admitted to the study unit according to the usual standard of care 

for monitored bed admission and utilization, and there were no special efforts to direct 

patient admission to Unit 9G, yielding a convenience sample of patients admitted to this 

unit and these monitored beds. Patients remained on Unit 9G, and a part of the study until 

their discharge from Unit 9G (discharge to another unit, discharge from the hospital). 

2. Exclusion criteria: Patients with a preexisting diagnosis of VTE will be excluded, since 

the study purpose centers on new-onset VTE acquired during hospitalization as a FTR 

complication.  

3. Inclusion of special classes: No special classes of patient on Unit 9G in the retrospective 

study interval, (women of childbearing age, pregnant women, prisoners and 

institutionalized individual) were excluded. Children were not included as participants in 
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the parent study and the entry criterion was set at > 21 years of age. UPMC Presbyterian is 

an adult care facility, with pediatric patients admitted to UPMC Children’s Hospital. Any 

patients age < 21 years who were admitted to the study unit cohort spanning patient 

admissions between 11/06 and 9/08 were noted and their data eliminated from the analyses.  

1.9.4 Protection Against Risk  

Recruitment and informed consent. The VS, clinical and demographic data for all 

patents in the parent project interval were obtained and continue to be evaluated under active IRB 

approval. Use of these data for an expanded research agenda, using the previously collected data, 

augmented by unstructured clinical data, in a slightly different manner to answer a different 

research question, will now be supported under a separate IRB-approved protocol. Informed 

consent was waived for all data collection in the parent study, because:  

• No identifiers were recorded by the study term.  

• It would not have been possible to collect data on the full patient census and meet the aims 

of the study without the waiver. 

• Patients were discharged from the hospital between 4-5 years prior to the data collection. 

Only de-identified study data are stored on a password protected server that resides within 

the University of Pittsburgh School of Nursing’s firewall. The only potential risk could be breach 

of confidentiality based on access to the study code linkage files. This risk is low as these are saved 

in the De-ID encrypted file. 
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1.9.5 Data Safety and Monitoring  

The applicant and the Sponsor and Co-Sponsor (Hravnak & Pinsky) will be responsible 

for the ongoing evaluation of the progress of the research study. They will ensure that no patient 

Personal Health Information has entered the study database. During bi-monthly meetings, Drs. 

Hravnak and Pinsky will review progression of the study, data integrity, and preliminary results 

when available. Any breaches in data safety will be investigated and reported to the IRB. This 

study is a clinical study, but not a clinical trial, therefore, a separately uploaded data safety and 

monitoring plan is not required. 

To summarize and reiterate: There is no risk of physical harm to the patient by being in 

the study. The only risk to the patient would be a remote breach of confidentiality. However, we 

have minimized the opportunity for that to occur by collecting only one identifier--the MRN--for 

linkage code purposes only, and even that is available only to the data extractor of the parent 

study. Once the clinical data elements were collected, they are maintained in a research file 

identified only by study ID.  

1.9.6 Potential Benefits of the Proposed Research 

This is a survey study, and there are no direct benefits to the patients.  

1.9.7 Importance of the Knowledge to be Gained.  

The leading cause of unplanned hospital death, the FTR complication of VTE, is 

associated with significant increases in health care costs, hospital lengths of stay and overall 
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mortality. The proposed study addresses a critical gap in current VTE risk knowledge and 

assessment approaches and has the potential to identify patterns of cumulative and complex 

patient factors predictive of VTE leading to a better understanding of the biological 

underpinnings of this common clinical complication. Knowledge generated from this project will 

inform more personalized feature patterns contributing to new-onset VTE in hospitalized patients 

translating to more accurate patient risk stratification, earlier identification of complications and 

guiding interventions to inform nurse-driven clinical decision support at the bedside, and 

improve nurse-sensitive patient outcomes.  

1.9.8 Institutional Review Board (IRB) Approval 

This study was approved by the University of Pittsburgh IRB on June 14, 2018 and 

approval of continuing review was granted on June 17, 2019. IRB approval documentation can 

be found in Appendix H.  
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2.0 Summary of Study 

2.1 Study Overview 

The purpose of this dissertation study was to develop and evaluate models predictive of the 

failure to rescue (FTR) complication of dynamically evolving hospital acquired venous 

thromboembolism (HA-VTE) event risk in hospitalized patients, using progressively granular, 

intensively collected time series data. This dissertation topic and study grew from complexities, 

questions, and challenges surrounding FTR patient complications that the candidate encountered 

in her clinical practice as a nurse and nurse practitioner. 

Dissertation Manuscript #1, “ICU Scoring Systems,” has been accepted for publication in 

Critical Care Nurse. This manuscript was developed through review of the literature exploring 

tools available to clinicians at the bedside to enable clinical prognostication and risk assessment 

of complex patients and the abstract is included in Appendix A. This literature review provided 

the candidate with deep foundational knowledge of the strengths and limitations of clinical risk 

prediction scoring systems and how these systems are developed, validated, and utilized in clinical 

settings. Additionally, the need for routine reassessment and revision to stay current with clinical 

practices and specific populations was highlighted. 

Three preliminary/pilot studies were conducted (detailed in Section 1.3.2) that established 

ground truth prevalence of HA-VTE cases in the study sample and a significant relationship 

between the predictor variables and HA-VTE outcome, supporting the premise of this proposal. 

These preliminary analyses have been disseminated in two oral conference presentations and three 

published abstracts [95, 98, 99] and contributed to the completion of  Aims 1 and 2. 
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An overview of study methods is provided in Figure 12. The results for Aim 2 comprise 

Dissertation Manuscript #2, “Accuracy of Identifying Venous Thromboembolism by 

Administrative Coding: Implications for Big Data and Machine Learning Research,” which has 

been accepted for publication in the Journal of Clinical Monitoring and Computing. The abstract 

of this manuscript is included in Appendix B.  

The results of dissertation Aim 3 are presented in the databased manuscript, “Predicting 

Dynamically Evolving New-Onset Venous Thromboembolic (VTE) Event Risk in Hospitalized 

Patients,” and included in section 3.0 of this document. This will constitute Dissertation 

Manuscript #3 to be submitted to the American Journal of Critical Care.   

 

Figure 12. Overview of Study Methods 
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2.2 Strengths and Limitations 

This hypothesis driven study is the first to formally incorporate the progressive accrual of 

multi-domain, granular, intensively collected time series data during hospitalization in the 

development of models to predict risk of the dynamic complication of new onset, HA-VTE. 

Additionally, it is the first study to endeavor to predict risk within specific time windows in 

advance of HA-VTE diagnostic test/diagnostic test results. Our foundational models not only 

demonstrate the addition of dynamic clinical data improves HA-VTE risk prediction, but they also 

provide emerging insights on how clinical features associated with evolving disease pathology 

change over time.  

Quality machine learning (ML) methods are predicated on data veracity. The quality of 

data used, and the rigor of data screening and ground truth annotation are significant strengths of 

this study. Collecting continuous VS data in patients outside of the ICU or operating room is a 

challenge and having data of this level of granularity for medical-surgical hospital patients is rare. 

Many prior VTE risk studies are limited in that they report lack of confidence that their control 

cohorts are free of unidentified VTE cases and the rigorous and reproducible process of HA-VTE 

positive and confirmed negative case identification (Aim 2) by radiologic diagnostic test review is 

another strength of this work.  

The ability to develop models that can be translated to clinical practice necessitates 

constructing models based on data sets that reflect real world population incidence of VTE disease, 

which varies from 1-16% in medical patients to as high as 40% in certain surgical and oncologic 

populations. The low prevalence of HA-VTE used in our modeling approaches is a strength as it 

reflects prevalence of HA-VTE in the population.  
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Despite the strengths of this study, there are important limitations that should be 

acknowledged. While our sample size allows for diversity of diagnoses, variables, and adequate 

VTE prevalence to support machine learning, we recognize that generalizability of findings will 

be limited due to the fact that the sample population is restricted to a single SDU over a specific 

time interval, and that sample ethnicity is primarily White.  

The high frequency VS data used in model development was only available during the time 

that patients in this sample were in the SDU and thus our ability to explore HA-VTE risk using 

these dynamic data for modeling, was limited to this time frame. An extensive list of clinical 

prediction variables was proposed, based on literature review and mapping to published and 

commonly used VTE risk assessment tools. While most of those variables were technically 

represented in the data, the prevalence of those clinical feature variables in our sample population 

and during SDU stay was low. As a result, many variable categories were excluded due to absence 

of information that would only add noise and bias to model development. This reality has provided 

valuable insights that will guide data collection strategies and rationales in future work.  

Venous thromboembolism is a disease process that evolves slowly, varies by individual 

and pin-pointing the exact time VTE pathology begins is as difficult in retrospective data as it is 

in the clinical setting. When clinicians suspect VTE pathology, diagnostic tests are ordered and 

conducted quickly so that appropriate interventions are initiated without delay. We determined the 

time that the VTE gold standard diagnostic radiology test was conducted to be the best proxy for 

HA-VTE event outcome determination in this study. A limitation of this approach is that some of 

our positive cases may have had VTE pathology present for hours to days in advance of diagnosis. 

Ideas for future work include developing models with annotated outcome event defined as the time 

the gold standard radiologic diagnostic test for HA-VTE is ordered by providers, to better 
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approximate clinician suspicion of disease presence. Additionally, we recognize the possibility 

that some of the “not tested cases” may contain HA-VTE unrecognized by clinicians and that these 

positive cases may go unrecognized without testing, or not be diagnosed until after this hospital 

admission. Exploring this limitation is beyond the scope of this current study, however, exploring 

this constraint is a consideration for future work.  

As this is the first study to develop prediction models for new onset HA-VTE using data 

accrued during hospitalization, the time windows proposed may not be the most optimal time 

frames for predicting this dynamic disease pathology. Predicting HA-VTE at time of diagnosis, 

while not meaningful for applying preemptive clinical intervention to avoid the complication, is a 

requisite first step in temporal risk modeling research that aims to identify patient features 

associated with the evolution of complication development and risk. The chosen prediction times 

represent an initial starting point that informed the aims of this dissertation study while also 

establishing the groundwork for future lines of inquiry that will explore additional time windows 

in advance of diagnosis. 

Finally, this dissertation study took a survey approach to model development. A variety of 

classification algorithms were employed, to explore model development with a variety of sample 

cohorts, prediction time windows, and temporal clinical data. However, we focused only on 

training and testing models using cross-validation methods. Future work should include 1) 

determining the optimal set points of individual models, 2) hyperparameter tuning to enhance 

model performance at chosen set points, and 3) evaluating model performance with an external 

data set. While those steps exceed the scope of the retrospective dataset attributes available for 

analysis, dissertation research and the training plan timeline, they will be an ongoing priority in 
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the candidate’s post-doctoral work and foundational to her research trajectory which is focused on 

predicting FTR complication risk to inform targeted prevention and treatment decisions.  

2.3 Future Studies and Implications for Nursing 

This study provided important doctoral research and methodologic training and produced 

findings that establish a foundation for future lines of inquiry. Using the classifier trained for 

clinical rationale #2, we will explore its ability to predict HA-VTE (+) cases from never tested 

cases and report class distributions. Future work will also include fine tuning model parameters to 

improve model performance, evaluation using “never-before-seen” data, and replication of this 

study with an expanded data set that includes greater diversity and higher prevalence of the 

predictor variables of interest as well as the HA-VTE outcome. Important future directions of this 

study include exploration of different time windows in advance of event outcome then comparison 

of model performance with existing VTE risk assessment models.  

Surveillance is a nursing intervention critical to patient and safety outcomes that involves 

the purposeful and ongoing acquisition, interpretation and synthesis of patient data to inform 

clinical decision-making. A prerequisite to timely intervention, nursing surveillance can be 

affected by a variety of factors: nurse education level, clinician experience, clinician fatigue, alarm 

fatigue, workplace processes, staffing ratios and unit skill mix. Notably, inadequate surveillance 

is strongly associated with increased FTR rates. This dissertation study is the first to exploit ML 

approaches using high frequency VS data, to inform the critical practice of nursing surveillance 

for a nurse-sensitive patient complication and it has strong potential for future clinical translation.  
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Machine learning models can provide robust and actionable insights that can better inform 

nursing surveillance practices (needed frequency of monitoring, staff allocation), clinical decision 

making (timely and accurate recognition, treatment selection), and care delivery systems (patient 

triage, diagnostic testing, adverse event prevention). Our initial findings have allowed us to 

demonstrate the value of incorporating progressively accruing, routinely available, continuously 

acquired clinical data in the prediction of risk for complications that evolve slowly over the course 

of hospitalization. This is especially true for the preventable complication of VTE, for which 

current risk assessment guidelines focus on static clinical variables and can include expensive and 

specialized serum studies and/or extensive compilation of medical history variables, which is not 

always possible given the constraints of patient acuity or competing demands for clinician time.  

This study aligns with NINR’s strategic vision for nurse scientists to employ new strategies 

for collecting and analyzing multi-dimensional data sets to permit better understanding of the 

biological underpinnings of health and improve ways nurses prevent and manage illness. During 

the conduct of this dissertation work, significant insight was gained into the importance of training 

nurses in clinical data extraction, storage, and annotation, in basic and more advanced statistical 

programming languages, bioinformatics, and in building interdisciplinary working relationships 

with nurses and computer scientist experts during doctoral training. Developing high quality 

predictive models that can meaningfully impact clinical practice and patient outcomes requires 

close and constant cooperation between clinicians and computer scientists. It is recommended that 

nursing PhD students interested in data science methodologies should receive, at a minimum, 

hands-on introductory training in statistical programming and machine learning methodologies, as 

well as interdisciplinary coursework and practicum training that is specifically designed to include 

a mix of nursing, medical, computer science, biomedical engineering, and biomedical informatics 
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students. A strong understanding of the technical language used by different domains and of how 

the collaborative intersection of expertise of different disciplines is integral to data science focused 

on health care outcomes, should be a foundational component of nursing PhD training.  

Nurses are uniquely positioned on the frontlines of care. No other healthcare worker spends 

as much time at the bedside during the course of routine clinical care, collecting and recording 

physiologic data, tracking symptoms, interfacing with patients, families, and other members of the 

health care team, and providing advocacy and health promotion education. Thus, the lens of 

nursing expertise is very much needed in data science and predictive analytics research to provide 

important insights into clinical workflow practices that are critical to the development of research 

design, data annotation, and data interpretation. The value to nursing research and practice, of 

concretely promoting interdisciplinary training and data science skills in nursing science doctoral 

education is important and cannot be overstated. 
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3.0 Data Based Manuscript: Differentiating Dynamically Evolving New-Onset Venous 

Thromboembolic (VTE) Event Risk in Hospitalized Patients with Machine Learning 

3.1 Abstract 

Background. Hospital acquired (HA) venous thromboembolism (VTE) is the leading cause of 

preventable hospital death. VTE pathology and symptoms evolve slowly over hours to days and 

prophylaxis with anticoagulant medications carries risk of bleeding. No current HA-VTE risk 

assessment models incorporate the progressive accrual of dynamic patient data over time of 

hospitalization. Classification algorithms which incorporate prediction time windows hold 

promise for closing this gap. 

 

Methods. An observational, retrospective, cohort study (n=2370) was conducted to develop 

predictive models to classify patients at risk for HA-VTE during SDU admission. Expert review 

of gold standard diagnostic radiology tests identified ground truth HA-VTE outcomes (+/-, not 

tested) and pre-existing cases were excluded. A suite of classification algorithms consisting of 

binary logistic regression (BLR), naïve Bayes (NB), Random Forest (RF), and Gradient Boosted 

Decision Tree (GBDT) were used to train models for two prediction time windows: 1) hours 48 to 

24 in advance of, and 2) hours 24 to 0 in advance of HA-VTE event time (T0), defined as time 

gold standard diagnostic radiology test was conducted. Performance was evaluated with 10-fold 

stratified cross-validation. Two model sets were selected to illustrate two relevant clinical 

scenarios. To help inform risk stratification and identify patients in need of closer surveillance, the 

first set of models (S+/-) differentiated between patients in whom clinicians suspected HA-VTE 
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and ordered diagnostic radiology evaluation (n=760) from those not suspected and not tested 

(n=1614). Among the patients identified as higher risk, and tested by clinicians, a second set of 

models (C+/-) was developed to differentiate between confirmed positive (n=47) and negative 

(n=713) diagnostic test results. Both S+/- and C+/- model sets were built using a stage-wise process 

that added data with increased granularity in 3 successive stages: Stage 1) only data present-on-

admission; Stage 2 low frequency medication and laboratory data added; and Stage 3) added high 

frequency vital sign data, collected at a rate of once every 20 seconds from bedside monitors. 

Performance was evaluated for each model set at each stage using metrics robust to class imbalance 

and prioritizing recall (TPR). 

 

Results. All models demonstrated improved precision-recall performance with progressive 

addition of dynamic clinical data. For S+/-, NB, with a TPR of 18% (Stage 1, static), 73% (Stage 

2, LF added), and 77% with HF data added in Stage 3, was the most sensitive model for classifying 

at T0 prediction time point, (AUPRC of 0.56, a PPV of 59%, AUROC of 0.66). The RF model 

with a TNR of 63% (Stage 1, static), 78% (Stage 2, LF added), 81% with HF data added in Stage 

3, was the most specific model for classifying at T0 prediction time point (AUPRC of 0.60, PPV 

of 62%, AUROC of 0.70). When using dynamic LF and HF data accrued 48 to 24 hours in advance 

of the event to classify cases at a prediction time 24 hours in advance of T0 (T-24) the NB model 

TPR was 76% (AUPRC .52, PPV 46%, AUROC .60) and the RF and GBDT models identified 

true negatives with a specificity of 80%.  

 

For the C+/- models, including only patients identified at higher risk for HA-VTE, BLR with a 

TPR of 29% (Stage 1, static), 66% (Stage 2, LF added), and 94% with HF data added in Stage 3, 

was the most sensitive model for classifying at T0 prediction time point (AUPRC of 0.81, PPV of 
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84%, AUROC of 0.90). The RF model with a TNR of 94% (Stage 1, static), 96% (Stage 2, LF 

added), 97% with HF data added in Stage 3, was the most specific model for classifying at T0 

prediction time point (AUPRC of 0.97, PPV of 96%, AUROC of 0.93). When using dynamic LF 

and HF data accrued 48 to 24 hours in advance of the event to classify cases at T-24, the NB model 

had a 91% TPR (AUPRC .77, PPV 53%, AUROC .68). 

 

Clinical features of heart rate, respiratory rate, dynamic hematologic labs, medications, and trauma 

admission were identified as most important in the Stage 3 models. 

 

Conclusion.  Classification algorithms applied to routinely collected dynamic clinical data 

improve HA-VTE risk prediction ability over static data models and have the potential to improve 

detection of at-risk patients. 

 

s.   



 82 

3.2 Introduction 

Failure to rescue (FTR) is a national metric of care quality that represents the death of a 

hospitalized patient due to a treatable complication arising after hospital admission.[1] Initially 

associated with surgical patients, FTR is now recognized as a multi-faceted phenomenon that can 

occur in any hospital setting, from a variety of both surgical and non-surgical causes. [2] 

Hospital acquired venous thromboembolism (HA-VTE), a failure to rescue (FTR) 

complication manifesting as deep vein thrombosis (DVT) or pulmonary embolism (PE), is the 

leading cause of preventable hospital death, carrying a high mortality risk and a national cost 

burden of $7 billion annually.[7-9] Clinical signs and symptoms of evolving venous 

thromboembolism (VTE) are subtle, presenting gradually over hours to days. Reasons cited for 

the persistence of this major public health problem include: 1) complexity of known VTE risk 

factors and unknown gaps in VTE risk knowledge; 2) risks and limitations of VTE prophylaxis 

and; 3) limitations of current VTE risk assessment models.[37, 40] 

3.3 Background 

The pathology of HA-VTE is complex, involving interactions between clinical risk factors 

and acquired and/or inherited susceptibilities to thrombosis. Rates of VTE risk range from 1% in 

medical patients to as high as 40% in certain surgical and oncologic populations.[9, 36] Some risk 

factors are associated with an increased overall lifetime risk (older age, venous insufficiency, 

obesity) and others with provoking acute risk (malignancy, recent surgery, indwelling vascular 

catheters). [9, 47-52] Multiple risk factors are hypothesized to synergistically increase patient risk, 
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but the relative contribution of each factor to overall VTE risk is unclear. Symptoms of new-onset 

VTE often occur gradually over a period of hours to days and clinicians can easily fail to notice 

subtle feature patterns until after a critical event occurs.[64, 65] Individual symptoms and risk factors 

for VTE have low predictive value (about 15%),[67] underscoring the need to identify dynamic 

composite feature pattern evolution associated with VTE. 

VTE prevention guidelines vary across patient populations, making consistent 

implementation a challenge for providers.[68, 69, 71] Routine prophylaxis of VTE with low molecular 

weight heparin (LMWH) is a standard recommendation for hospitalized patients; however, it is 

not a panacea for prevention. Indiscriminate anticoagulant prophylaxis in patients without 

significant risk factors is associated with impaired wound healing, increased bleeding, need for 

blood transfusions and increased patient discomfort costs.[71, 117] Conversely, underutilization of 

VTE prophylaxis has been linked to provider fear of these harms.[68-73] Nonpharmacologic 

prophylaxis methods, such as elastic and pneumatic compression stockings, are lower risk 

prevention strategies. However they can be uncomfortable for patients and are inconsistently 

implemented in hospital settings.[118]  Identifying patient feature patterns predictive of VTE risk 

can inform more precise risk stratification and prophylaxis application, helping those patients who 

need it most, but limiting iatrogenic complications in those who do not. 

Current VTE risk assessment models, the cornerstone of prevention, have limited utility 

due to their complexity, lack of reliability, generalizability and external validation, and 

dependency on static data. [10, 11] Some models include specialized coagulopathy or genetic serum 

studies not routinely ordered on all patients.  

VTE risk is associated with interactions between established and acutely acquired risk 

factors and pathology and symptoms evolve over the course of hospitalization. Recommendations 
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for optimal VTE risk assessment models, published by the Agency for Health Care Research and 

Quality, emphasize the need for tools that are 1) simple to use in routine clinical practice, with 

minimal need for specialized laboratory studies, complex calculations, or extra charting, 2) lend 

themselves to automation using information readily available in the EHR, and 3) that incorporate 

dynamically accruing data and ongoing reevaluations.[119] However, current RAMs share a 

common and significant limitation: they rely primarily on static, baseline patient features to assess 

risk for VTE. A critical gap in VTE risk modeling research is that while VTE risk and pathology 

evolves over the course of hospitalization, no current models incorporate the progressive accrual 

of dynamic patient data and pattern evolution over time in their modeling approaches.  

HA-VTE risk changes over time-course of hospitalization and exploring dynamically 

accruing clinical data holds potential for informing this gap. Machine learning (ML) 

methodologies have the ability to scale up correlational analyses and discern emerging complex 

patterns and relationships. This approach has been used to successfully develop highly sensitive 

models to predict risk of cardiorespiratory instability, cardiac ischemia and arrhythmia, [80, 81, 84, 85, 

120] and inform decision making to improve care delivery and patient outcomes. The objective of 

this study was to apply classification algorithms to dynamic clinical data (patient data marked by 

activity or change during the hospital admission) readily available to clinicians and routinely 

collected over the course of a step-down unit admission LOS, to develop and evaluate models for 

new-onset, HA-VTE risk.  

Using a three-stage approach that incorporated time series clinical data increasing in 

collection frequency with each stage, we developed two sets of classifier models informed by the 

following clinical rationales:  
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1. Clinical Rationale 1. To determine ability to identify patients who clinicians identify 

as high risk for HA-VTE, we explored the following question: Among all SDU patients, 

can we discriminate between cases clinicians suspect of HA-VTE pathology and order 

a radiologic VTE diagnostic test from those they do not suspect, and do not test? (S+/- 

model sets, prediction outcome variable is HA-VTE diagnostic test: tested for HA-VTE 

versus not tested) 

2. Clinical Rationale 2. To determine ability to identify which high risk patients will 

develop a confirmed HA-VTE diagnosis, we explored the following question: Among 

patients for whom clinicians ordered a VTE radiologic diagnostic test, can we predict 

confirmed positive diagnoses from negative diagnoses? (C+/- model sets, prediction 

outcome variable is HA-VTE diagnostic test result: positive diagnosis versus negative 

diagnosis).  

 

For each set of models, we endeavored 1) to predict HA-VTE risk at two prediction time 

windows (PTW) (between 48 to 24 hours before event [PTW48-24 or T-24 models], and between 24-0 

hours before event [PTW24-0 or T0 models]) and 2) to determine if the sequential addition of dynamic 

clinical data of increasing granularity improved model performance.  
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3.4 Methods 

3.4.1 Sample and Setting 

The study sample was obtained from data previously collected for the Predicting Patient 

Instability Non-invasively for Nursing Care (PPINNC) study (R01 NR01391). Entry criteria for 

the parent study were patient need for a monitored bed in a university medical center SDU and age 

>21 years between 11/06 and 09/08. Under Institutional Review Board (IRB) approval for waiver 

for informed consent, every patient admitted during the study timeframe to the study unit 

contributed to the data without exclusion except for age <21, and no special classes of patients 

were excluded, yielding a convenience sample of 3680 patients. Data collection for each patient 

spanned the entire duration of the patient’s SDU length of stay (LOS), for the total unit census 

across the study time frame. Patients discharged or transferred to a non-study unit were 

discontinued from the study, but their data prior to that time retained  

As this study aimed to develop models predictive of new-onset, HA-VTE, patients with a 

diagnosis of chronic VTE were excluded. Also excluded were patients with new-onset, HA-VTE 

identified during the hospitalization but before SDU admission or >24 hours after SDU discharge, 

since the continuous VS data streams collected only on the study unit and necessary for the 

modeling were not available for those patients. The rigorous, ground truth VTE outcome event 

diagnosis identification methods have been previously detailed and published in abstract form.[95] 

Based on that review of gold standard radiologic VTE diagnostic tests (lower extremity Doppler 

ultrasound [LEDUS], computed tomographic angiography [CTA], ventilation-perfusion [V/Q] 

scan and/or magnetic resonance angiography [MRA]), patient cases were identified as never tested 
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for VTE (n=1614), tested for VTE with negative findings (n=713), and tested for VTE with 

positive findings (n=47), during their SDU LOS.  

During the study time frame, some participants were admitted to the SDU more than once 

during separate hospital admissions and/or during the same hospital LOS. For this analysis, each 

SDU admission LOS (and all clinical and VS data streams during that admission) was considered 

a case thus, some study participants have contributed to more than one case used in analysis. As 

this analysis seeks to determine clinical patient features over time of SDU admission that are 

predictive of new-onset, HA-VTE, this approach is consistent with the study aims and does not 

result in any overlapping data use.  

3.4.2 Variables 

A list of all variables considered for use in this analysis and notation of how they were 

identified and extracted from the clinical data can be found in Tables 3, 4, 5, 6, and 7 of the ETD 

documents. Diagnoses not present for a patient, and laboratory results, medication doses, and/or 

procedures that were not present for a patient, in either clinical or charge data, were assumed to be 

absent (meaning normal or not indicated) rather than unknown or missing.  

3.4.2.1 Outcome Variables 

Following patient exclusions as described, all remaining cases were annotated for one of 

the following HA-VTE outcome event categories detailed in Figure 13. and defined below:  

HA-VTE outcome: Not tested. SDU patients for whom clinicians did not suspect VTE, 

and therefore did not undergo a VTE diagnostic test during their SDU stay or during the 24-hours 
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immediately after SDU discharge, were annotated as a not-tested case. Their hypothetical outcome 

event time (T0) is defined for these cases by protocol detailed in the data preparation section below. 

HA-VTE outcome: Tested. SDU patients who clinicians suspected VTE pathology risk 

and ordered a gold standard radiologic test during their SDU stay or during the 24-hours 

immediately after SDU discharge, were annotated as a tested case. This outcome category of tested 

SDU patients was further subdivided by test result outcome:  

• HA-VTE outcome: tested for VTE with positive radiology test results includes both 

new-onset DVT and PE diagnoses. New-onset DVT cases were defined as an acute venous 

thrombosis in at least one of the following deep veins on LEDUS: internal jugular, superior 

vena cava, inferior vena cava, iliac, femoral, popliteal and profunda femoris veins. Chronic 

thromboembolic disease and thrombi in the following vessels were excluded from the 

definition of new-onset DVT: Portal circulation veins, superficial veins, man-made venous 

conduits and arteries. New-onset PE was defined as the presence of an acute occlusive or 

sub-occlusive clot in a main, lobar, segmental and/or sub-segmental pulmonary artery on 

CTA or MRA. Time stamp for the occurrence of a positive HA-VTE outcome event is 

annotated as time zero (T0), representing the date and time the confirmatory diagnostic test 

was conducted. Indeterminate radiology test results subsequently confirmed as a new-onset 

VTE event, based on review of additional medical notes, were time stamped at the time of 

the indeterminate test.  

• HA-VTE outcome: tested for VTE with negative radiology test results. SDU patients 

with a gold standard radiology test negative for the presence of embolus/emboli in the 

previously specified vasculature were annotated as confirmed VTE negative cases 

(1.3.1.2). Time stamp for the occurrence of a confirmed VTE negative outcome event (T0) 



 89 

is the date and time the confirmatory negative diagnostic test was conducted. Indeterminate 

radiology test results subsequently confirmed as negative for VTE, based on review of 

additional medical notes, were annotated for T0 at the time of the indeterminate test.  

 

Figure 13. Clinical Rationale, Outcome Events and Prediction Time Windows for Each Model Set 

3.4.2.2 Predictor Variables.  

Figure 14 illustrates the three categories of independent variables were used in the stage-

wise model development: Stage 1: Static data present upon admission, Stage 2: Accruing low 

frequency data, and Stage 3: Accruing high frequency continuous vital sign monitoring data. 

Predictor variables were identified based on review of the literature, cross-mapping of available 

EHR data to existing VTE RAMs, VTE disease pathology, and their availability in routine clinical 

workflow in advance of the outcome diagnosis.  
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Figure 14. Review of Model Building Stages 

 

Stage 1: Static data present on admission. Data readily available to clinicians at the time 

of hospital admission included the demographic information of age, race (White, Black, other, and 

unknown), obesity, VTE risk factor diagnosis(es) (based on published VTE RAMs) known at 

admission and Charlson Co-Morbidity Index Deyo (CCI-D) method scores. CCI-D score, based 

on clinical data from the current admission, is the only variable not technically comprised of data 

collected in advance of the outcome event we aim to predict. However, CCI-D scores for this 

population were compared with prior scores for a subset of the sample population and were not 

found to be significantly different. Thus, the decision was made to include this variable as a 

surrogate indicator of overall patient co-morbidity burden at admission. Mean CCI-D scores for 

this sample are notably low. A total of 29 variables comprising Stage 1: Static data present on 

admission were extracted for use in model building.  

Stage 2: Dynamically Accruing Low frequency (LF) data. These data were accrued after 

SDU admission within a time granularity of hours to a day. Doses of medication by category, 

detailed in Appendix C, Table 9, (time granularity of calendar day) and laboratory test results (time 

granularity of date and time tests are resulted) are the LF variables included in model development. 

The time granularity of these data was constrained by the manner in which they were collected for 
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and available from the parent study database. Central venous catheter presence and surgical 

procedure data were identified as important variables and extracted from the MARS (Table 7, 

Appendix D) but ultimately excluded because of low prevalence within this population. A total of 

235 LF clinical data variables were extracted and featurized for use in model building.  

Stage 3: Dynamically Accruing High frequency (HF) data. Time stamped VS data 

containing heart rate (HR), respiratory rate (RR), peripheral capillary oxygen saturation (SpO2) 

data collected at 20 second intervals (1/20Hz) from Philips bedside monitors, and non-invasive 

blood pressure (BP) was available when cycled, less frequently, but at a minimum of once every 

two hours. These data were originally collected for the parent study (total of 172,000 monitoring 

hours) and stored on a secure server. A total of 122 VS features (detailed in Tables 5-7 below) 

were extracted and available for use in model building.  

 

Table 5. Static Present on Admission Data 

Feature EHR data point Data type 
Age Patient DOB Continuous 

Categorical 

Gender (male/female) Sex Nominal 

Prior VTE (yes/no) ICD-9 code Nominal 

Known clotting disorder (yes/no) ICD-9 code Nominal 

Obesity (yes/no) ICD-9 code Nominal 

Malignancy (yes/no) ICD-9 code Nominal 

Acute MI (yes/no)  ICD-9 code Nominal 

CHF (yes/no) ICD-9 code Nominal 

Stroke (yes/no) ICD-9 code Nominal 

SCI (yes/no) ICD-9 code Nominal 

LE/Fracture (yes/no) ICD-9 code Nominal 

Trauma (yes/no) ICD-9 code Nominal 

Varicose veins (yes/no) ICD-9 code Nominal 

Chronic venous insufficiency (yes/no) ICD-9 code Nominal 

Acute infection/sepsis (yes/no) ICD-9 code Nominal  

Charlson Co-Morbidity Index Deyo Method ICD-9 code Continuous 
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Table 6. Dynamic Low Frequency (LF) Data 

Feature EHR data point Data type Proposed Features 
Central venous catheter  Charge data Nominal Yes/No 

Major surgery  

(> 45-minute case) 

DRG code Nominal Yes/No 

Minor surgery  

(< 45-minute case) 

DRG/procedure codes Nominal Yes/No 

Joint replacement surgery DRG code Nominal Yes/No 

Medication data as per Table 

6, Appendix C 

Medication data Nominal 

 

Ratio 

Med ordered (Yes/No) 

 

Number of doses ordered 

 

Lab data as per Table 4, 

Section 1.4.4.2 

Lab data Ratio • Count 

• Number abnormal high 

results 

• Number abnormal low 

results 

• Max value 

• Min value 

• Mean value 

 

 

 

Table 7. Dynamic High Frequency (HF) Data 

Feature EHR data 

point 

Data type Proposed features for each 

time window 
Diastolic blood pressure (DBP) Vital sign (VS) Ratio • Maximum value 

• Minimum value 

• Mean 

• Range 

• Standard deviation 

• Number of times 

measured during the time 

window 

 

Systolic blood pressure (SBP) VS Ratio 

Mean arterial blood pressure (MAP) VS Ratio 

Heart rate (HR) VS Ratio 

Respiratory rate (RR) VS Ratio 

Pulse oximetry (SpO2) VS Ratio 
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3.4.3 Data Set Construction 

Radiology reports (n=4544 reports) for lower extremity Doppler ultrasound, computed 

tomographic angiography, ventilation-perfusion scan and/or magnetic resonance angiography 

from our SDU convenience sample (n= 3680 cases) were extracted from the UPMC medical 

archival retrieval system (MARS)[92] and reviewed by a clinical expert to identify new-onset VTE 

positive cases and VTE confirmed negative cases. For all tested patients, the time (in minutes) 

from SDU admission to the time gold standard VTE diagnostic tests were conducted, T0, was 

determined and defined as time-to-test. A hypothetical outcome event time (T0) was defined for 

non-tested cases by the following process. To account for LOS (a well-established risk factor for 

HA-VTE), not tested cases were matched with tested cases based on SDU LOS. To enable 

evaluation of both tested and not tested patients at similar time points in the SDU stay, not tested 

patients were matched to the mean time-to test distribution for all tested patients and then a random 

sample from that distribution was obtained.  

Tested (VTE confirmed positive and negative) cases and not tested cases were then linked 

with Stage 1 static data, and then with Stage 2 LF and Stage 3 HF data (Figure 12) for two 

prediction time windows (PTW) preceding the HA-VTE event, PTW48-24 (between 48 to 24 hours 

before T0 or T-24 models), and PTW24-0 (between 24-0 hours before T0 or T0 models), producing a 

final sample of 2370 cases.   

3.4.3.1 Data Screening 

Exploratory data analysis was conducted, using IBM® SPSS® software version 27 (IMB 

Corporation, Armonk, NY) and R version 4.0.2 (R Core Team, 2020)[121] to examine data 

distributions, identify invalid data, identify patterns of missing data and to evaluate relationships 
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between different variables. As this analysis employs data originally generated for clinical use, 

missing data was anticipated, and patterns of missingness were systematically evaluated and found 

to be missing completely at random (MCAR). Missingness in static and LF data was < 1.0% and 

5 cases (3 tested with HA-VTE negative results and 2 not tested) missing all demographic data, 

were excluded from analysis. HF vital sign data missingness ranged from 0.5% to 28.6 % 

depending on the variable. As there were significant differences in mean VS values between the 

HA-VTE outcome event classes, imputation using predictive mean matching (R, Mice 3.12.0),[122] 

was performed by class, to ensure those differences were not diluted. Assumptions and 

relationships were then re-evaluated.  

3.4.3.2 Procedure for Identification of Predictor Variables Used in Modeling  

Variables identified as germane to HA-VTE risk (based on theory and prior evidence) and 

available for this patient sample, were determined using criteria informed by Leisman et al.’s 

Guidelines for the Development and Reporting of Prediction Models.[123]  

Availability in clinical workflow. Variables not easily obtained in routine clinical 

workflow or in advance of the outcome diagnoses, were excluded, with the exception of the CCI-

D score, as previously mentioned. 

Selection of Final Feature Set for Modeling.  The list of variables developed from review 

of the literature (Appendix E) was then further pruned based upon availability in the data set, as 

well as relationship to HA-VTE event outcome variables. Once the data set was operationalized, 

we found low availability or presence of some variables in the Static and LF data categories. When 

clinical values were absent, and cross checking against charge data confirmed they were not 

present because they had not been ordered, we identified these data as absent. Absent values were 

present in large quantity in medication and lab data. Variable categories with data value absence 
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> 49% and those discovered to not be significantly associated with the outcome variables (defined 

in 4.3.2.1) in univariate testing were excluded from inclusion in model development. The subset 

of variables surviving these exclusions as described, were the features ultimately used in modeling 

and are listed in Table 5. These features next underwent statistical feature selection approaches as 

specified for each ML algorithm used, and the process is detailed in the following section. 
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Table 8. Features Used in Model Development 
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3.4.4 Machine Learning Plan 

Our machine learning process plan (Figure 15) involved periods of observation during 

SDU stay (during which potentially predictive LF and HF data were extracted) and prediction 

(specified time windows preceding occurrence of HA-VTE). We used the dynamic and static data 

in 24-hour windows, at various lead times (PTW48-24 and PTW24-0) before T0. The models started 

with Stage 1 static data and then progressed to Stage 2 (adding the LF data dynamically accrued 

in the time window) and the Stage 3 (adding the HF data dynamically accruing in the time 

window), as shown in Figure 14. These 3 stages of modeling were applied to each of the two 

prediction time windows before T0 (PTW48-24 and PTW24-0) and for each clinical rationale cohort 

(S +/- and C+/-). Our objective was to build the best attainable model for predicting the HA-VTE 

outcome event for each time window, and for each clinical rationale cohort.  

 

Figure 15. Review of Machine Learning Process 

3.4.4.1 Supervised ML Algorithm and Feature Selection 

Data set size and structure and important factors in ML approaches and no single algorithm 

works best for every problem. This is especially true with supervised learning and the rationale 
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behind our approach to try several different algorithms for the clinical questions proposed. 

Supervised machine learning candidate algorithm selection was based on data characteristics and 

constraints (data missingness, level of measurement, class imbalance) and a desire for model 

interpretability. In ML, bias and variance provide the tools to understand the behavior of ML 

algorithms in pursuit of predictive performance. Bias are the simplifying assumptions made by a 

model to make the target function easier to learn. Bias can aid in generalization. Variance is a type 

of error that occurs due a model’s sensitivity to small fluctuations in the training set. High variance 

can result in overfitting which impacts generalizability and performance of the model when applied 

to another population or set of data. The bias-variance trade-offs of different classification 

algorithms were carefully considered, and the ones ultimately selected for use are detailed below.  

Binary logistic regression (BLR) is a simple classifier that can provide a good baseline 

model for comparison. Interpretability of BLR is an advantage, however this approach is likely to 

produce a model with higher bias (underfitting). LASSO (least absolute shrinkage and selection 

operator) L1 regularization was used for feature selection and to minimize overfitting. Because it 

is still a linear modeling approach, a weakness of BLR is that it can underperform when there are 

non-linear decision boundaries and can fail to capture more complex data relationships.  

Naïve Bayes (NB) is another highly interpretable classifier that has been shown to perform 

well on small amounts of training data, to be relatively robust to missing data, and it has few 

tunable parameters. Similar to BLR, NB tends to build models with higher bias, but low variance. 

A potential weakness of NB is that it makes the assumption of conditional independence between 

its features. For this modeling approach, we fit the model using all predictor features without using 

any feature selection approaches. BLR and NB are higher bias, lower variance algorithms. 
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Random Forest (RF) is an ensemble method that uses bagging (bootstrap aggregating) to 

combine many decision trees in parallel enabling its ability to produce models with low bias and 

moderate variance.  

Gradient Boosted Decision Trees (GBDT) is another ensemble method that uses 

boosting, combining a series of sequentially connected decision trees, each learning from the errors 

of the previous one, to produce a highly efficient and accurate model.  

The strengths and weaknesses of these two ensemble decision tree algorithms are similar. 

Powerful classifiers fairly robust to outliers and missing data, RF and GBDT algorithms handle 

categorical and continuous data well and are interpretable, albeit less so than BLR and NB. 

Iterative modeling with new data can be more challenging for these algorithms and they require 

more hyperparameter tuning to refine model performance. Both include a feature importance 

estimate capability for built in feature selection. RF and GBDT algorithms are characterized by 

lower bias and moderate variance.  

3.4.5 Model Construction  

Machine learning application analyses were run using R-version 4.0.2 (R Core Team, 

2020) and Python (Python Software Foundation, https://www.python.org, Sklearn library) 

programming language.    

3.4.5.1 Models for Clinical Rational #1   

Dataset. The sample cohort including patients “suspected (tested for HA-VTE)” and “not 

suspected (not tested for HA-VTE)” by clinicians comprised the dataset for this set of S +/- models 

(n= 2370). Prevalence of tested cases was 32%.  

https://www.python.org/
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Stage-wise Model Construction 

Stage 1. The ML algorithms and the feature selection methods previously outlined were 

applied to the training data static (Stage 1) variables only. The performance of each trained model 

was tested via stratified 10-fold cross validation. The average model performance across the 10 

validation tests is reported for each model, BLR, NB, RF, GBDT. Stage 1 analysis resulted in 

development of a total of four models to classify overall risk of clinician suspicion at time of 

hospital admission. 

Stage 2. Next, LF variables extracted from PTW48-24 and PTW24-0were added to the static 

data, producing a data set for Stage 2 PTW48-24 models (Static data + PTW48-24 LF data) and for 

Stage 2 PTW24-0 models (Static data + PTW24-0 LF data). The same ML algorithms and feature 

selection methods used in Stage 1 were applied to these Stage 2 data and then the performance of 

each trained model was tested and reported using the same methods outlined for Stage1 above. 

Stage 2 analysis resulted in development of a total of eight models to classify risk of clinician 

suspicion using static and LF data: four models (BLR, NB, RF, GBDT) 24 hours in advance of 

HA-VTE event outcome (PTW48-24) and four at time of HA-VTE event outcome (PTW24-0).  

Stage 3. In the last stage, HF variables extracted from PTW48-24 and PTW24-0 were added 

to the Stage 2 data, producing a data set for Stage 3 PTW48-24 models (Static data + PTW48-24 LF 

data + PTW48-24 HF data) and for Stage 3 PTW-0 models (Static data + PTW24-0 LF data + PTW24-

0 HF data). The same ML algorithms and feature selection methods were applied to these Stage 3 

data and then the performance of each trained model was tested and reported using the same 

methods used in the previous two stages. Stage 3 analysis resulted in development of a total of 

eight models to classify risk of clinician suspicion using static, LF, and HF data: four models 

(BLR, NB, RF, GBDT) 24 hours in advance of test (PTW48-24) and four at time of test (PTW24-0). 
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The sample size for the PTW48-24 models was smaller than the PTW24-0 sample as it does not 

include patients admitted to the SDU <24 hours before the time of their VTE outcome event.  

3.4.5.2 Models for Clinical Rational #2  

Dataset. The sample cohort including patients with “confirmed disease (radiologic test 

results positive for HA-VTE)” and “confirmed no disease (radiologic test results negative for HA-

VTE)” comprised the dataset for this set of C+/- models (n= 754). Class imbalance was a reality 

of this dataset, with the outcome variable of interest (HA-VTE positive diagnostic test result) being 

in the minority class (6.2% prevalence). This known constraint was a consideration during study 

design that strongly influenced algorithm selection choices. Synthetic minority oversampling 

technique (SMOTE)[116] was employed to create a more balanced cohort sample for training, and 

a variety of balance ratios were explored. The balanced sample with a ratio of 49% positive test 

cases, 51% negative test cases was used for model training. The performance of each trained model 

was evaluated via 10-fold stratified cross validation using the original sample cohort.  

Stage-wise Model Construction 

Using the aforementioned training and testing sets, the C+/- models were developed using 

the same stage-wise process (Stage 1, 2, 3) as described for the S+/- models in section 3.4.5.1  

3.4.6 Model Assessment 

Model capability to predict the specified HA-VTE event outcome for each model set (S+/- 

and C+/-) was assessed by a variety of metrics. Recall (true positive rate [TPR]/sensitivity), 

specificity (true negative rate [TNR]), precision (positive predictive value [PPV]), F1 score 

(harmonic mean of the precision and recall), area under the receiver operating characteristic 
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(AUROC) curve and area under the precision recall curve (AUPRC) were reported for each 

model. This study required evaluation of the following 40 models:  

24 Models for PTW24-0 (between 24-0 hours before T0 or T0 models) 

o 12 T0 models for the S+/- cohort:  

▪ 4 models (BLR, NB, RF, GBDT) with Stage 1 static data 

▪ 4 models (BLR, NB, RF, GBDT) with Stage 2 LF data 

▪ 4 models (BLR, NB, RF, GBDT) with Stage 3 HF data 

• 12 T0 models for the C+/- cohort:  

▪ 4 models (BLR, NB, RF, GBDT) with Stage 1 static data 

▪ 4 models (BLR, NB, RF, GBDT) with Stage 2 LF data 

▪ 4 models (BLR, NB, RF, GBDT) with Stage 3 HF data 

16 Models for PTW48-24 (between 48-24 hours before T0 or T-24 models) 

• 8 T-24 models for the S+/- cohort:  

▪ 4 models (BLR, NB, RF, GBDT) with Stage 2 LF data 

▪ 4 models (BLR, NB, RF, GBDT) with Stage 3 HF data 

• 8 T-24 models for the C+/- cohort:  

▪ 4 models (BLR, NB, RF, GBDT) with Stage 2 LF data 

▪ 4 models (BLR, NB, RF, GBDT) with Stage 3 HF data 

 

3.4.6.1 A Priori Metrics 

The decision was made, a priori, to identify the best performing model classifier in each 

stage by comparing the aforementioned metrics. Model performance was evaluated through the 

lens of the clinical gap we aimed to address: HA-VTE disease pathology, a leading cause of 
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unplanned hospital death, evolves slowly over the course of hospitalization, is associated with 

symptoms common to many conditions present in hospitalized patients, and when not identified 

early, can lead to death. Identification is recognized as a clinical challenge and yet no current VTE 

risk models incorporate the progressive accrual of dynamic patient data and pattern evolution over 

time in their modeling approaches for risk prediction.  

HA-VTE is a diagnosis associated with increased morbidity, mortality, hospital length of 

stay, and health care costs, thus the cost of missing a positive diagnosis is high. Accurate model 

identification of positive cases is critically important. We are willing to tolerate some false 

positives, because we cannot allow false negatives (true cases that are not identified as cases and 

thus missed by clinicians). Cases classified as false negatives by predictive models equate to failure 

to rescue in the clinical setting.   

Prevalence of the HA-VTE outcome event in our two sample cohorts is reflective of 

population prevalence, a strength of our approach, and another factor influencing model 

performance evaluation. In each clinical rationale cohort/model set, we have imbalanced data, with 

the cases we seek to predict being in the minority class. With awareness of these issues, we 

prioritized metrics immune to class imbalance. The following metrics were prioritized in ranking 

model performance for each prediction development stage. 

The sensitivity (recall/TPR) metric indicates how well the model is able to predict cases of 

interest out of all the actual cases and the specificity (TNR) metric indicates how well the model 

is able to identify controls, out of all actual controls. Among the patients the model identifies to be 

cases, the precision metric (PPV) indicates how many are truly cases. As these two metrics exist 

in a trade-off, (increasing one parameter leads to decreasing the other), the harmonic mean of the 

two metrics, the F1 score, summarizes the models’ precision-recall performance in a single metric. 
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AUPRC was also examined. A model achieves perfect AUPRC (1.0) when able to identify all 

cases (perfect recall), without including any false positives (perfect precision). The AUPRC score 

must be evaluated in comparison to the AUPRC baseline, which is equal to the fraction of true 

cases (0.36 for the S+/- models and 0.064 for the C+/- models) in the sample. Finally, area under 

the receiver operating characteristic (AUROC) was examined for tradeoffs in model sensitivity 

and specificity.  

Model evaluation informs model optimization (a component of model development) as 

models should be optimized and parameters tuned based on the planned utility and application. 

Fine tuning and optimization of these quantity of models exceeds the scope of the study, however, 

these findings will inform future work on this issue.  

3.5 Results 

3.5.1 Descriptive Statistics 

Our total sample for model development included 2370 adult SDU patients. Among the 

three HA-VTE outcome event classes (Table 6), there were no significant differences in age, co-

morbidity burden, or overall hospital LOS. Notable differences between the groups were that tested 

patients were more likely to be admitted as a trauma, and to have higher mean heart and respiratory 

rates and lower blood pressure and oxygen saturation levels.  
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Table 9. Sample Characteristics: Total and by Hospital Acquired Venous Thromboembolism Event Outcome 
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3.5.2 Model Performance  

3.5.2.1 Clinical Rationale #1 Models  

Patients Clinicians Suspect of HA-VTE and Test vs Not Suspected (and not tested)  

We compared four ML algorithm classifiers (BLR, RF, NB, GBDT) using 65 features, 

(Table 5), building models using a stage-wise approach to enable evaluation of model performance 

based on degree of granularity of dynamic clinical data variables. Table 7 shows the average of 

10-fold cross validation performance results, reported at the 0.5 cut point, for the models developed 

based on clinical rationale #1, discriminating patients who clinicians suspected of HA-VTE and 

tested from patients they did not suspect and did not test at time of event (T0) and 24 hours in 

advance of the event (T-24).  

Comparison of Performance Evaluation Metrics 

Model performance varies by algorithm. The trend across all clinical rationale #1 (S+/-) 

models, at both prediction time points, was an improvement in sensitivity, specificity, precision, 

F1-score, AUPRC, and AUROC performance with the progressive addition of dynamic clinical 

data. 

(S+/-) Model Performance at T0, Time of HA-VTE Outcome Event 

At time of hospital admission, using only static data, sensitivity performance for all models 

was no better than random guessing. As more dynamic data was added, the ability to identify 

positive cases (those suspected of HA-VTE risk and tested) improved. Sensitivity of the NB model 

improved from 18% in Stage 1 using only static data, to 73% with the addition of dynamic LF 

data, to 77% when HF dynamic VS data is added. At the T0 prediction time point using data in the 

PTW24-0, the sensitivity of the three other models followed the same trend of improvement with 

each stage, but with less impressive TPR identification ability (BLR 65%, RF 46%, GBDT 49%). 
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With an AUPRC of 0.56, a PPV of 59%, and an AUROC of 0.66, NB using static and dynamic 

LF and HF data, was identified as the most sensitive model at this prediction time point.  

With regard to specificity, NB (75%), RF (63%) and GBDT (74%) had notable ability to 

identify patients at low risk for HA-VTE. However, as more dynamic data was added, specificity 

performance of the NB model was traded for improved sensitivity, as noted above. BLR specificity 

improved from 50% (Stage 1) to 68% with the addition of HF dynamic data in Stage 3. The RF 

and GBDT ensemble decision tree models performed the best, with specificities of 78% (RF Stage 

2), 81% (RF Stage 3) and 76% (GBDT Stage 2), 79% (GBDT Stage 3) respectively, as more 

dynamic features were added. With an AUPRC of 0.60, a PPV of 62%, and an AUROC of 0.70, 

RF using static and dynamic LF and HF data, was identified as the most specific model at this 

prediction time point.  

(S+/-) Model Performance at T-24, 24 hours in Advance of HA-VTE Outcome Event 

The NB model, with a sensitivity of 72% using static and LF data and 76% with the addition 

of HF data, (AUPRC .52, PPV 46%, AUROC .60) had the best ability to identify true positive 

cases (those suspected of HA-VTE risk and tested) 24 hours in advance of the diagnostic test being 

conducted (T24 with the PTW48-24). BLR model sensitivity was 55% using static and LF data and 

increased to 59% with the addition of HF data in stage 3. Sensitivity performance of RF and GBDT 

at this prediction time was unimpressive.  

With very similar performance metrics, the most specific S+/- models at the T-24 prediction 

time were the ensemble decision trees. RF and GBDT demonstrated 75% and 72% sensitivity, 

respectively when dynamic LF data was added. The addition of dynamic HF VS data in Stage 3 

improved ability to identify true negatives to 80% for both models. Neither NB nor BLR models 
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were able to identify true negative cases with high levels of confidence, (47% and 54%, 

respectively), 24 hours in advance of HA-VTE outcome. 

 

Table 10. Model Performance for Clinical Rationale #1: Classifying Patients Who Clinicians Suspect of 

Hospital Acquired Venous Thromboembolism (HA-VTE) and Test, from Patients They Do Not Suspect 

 

 

Model Feature Importance 
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As shown in Figure 16, at time of admission (Figure Panel 1), age and comorbidity score 

(CCI-D) were the features identified by the models most important to classification performance. 

As dynamic medication and lab data was added in Stage 2 (Figure Panel 2), age was no longer 

identified as an important feature. Antihyperglycemic and gastrointestinal prophylaxis 

medications and laboratory values, specifically thrombin and prothrombin platelets and hematocrit 

levels, were the clinical features identified to be of greatest importance in this stage. With the 

addition of HF VS data (Figure Panel 3), RR and HR features (mean, monitoring frequency, and 

variability) dominated in importance. Notably, trauma admission was a feature identified as 

important by all models in all three stages.  
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Panel 1  

Stage 1: Static Features 

Prediction time: T0 

Model: Random Forest  

Panel 2 

Stage 2: Static + Low Frequency  

Prediction time: T-24 

Model: Naïve Bayes 

Panel 3 

Stage 3: Static + Low + High Frequency  

Prediction time: T-24 

Model: Naïve Bayes 

 
Figure 16. Feature Importance Performance for Clinical Rationale #1: S+/- Models  
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3.5.2.2 Clinical Rationale #2 Models 

Confirmed Positive HA-VTE Diagnosis vs Confirmed Negative for HA-VTE (C+/-) 

Table 8 shows the average of 10-fold cross validation performance results, reported at the 

0.5 cut point, for the models developed based on clinical rationale #2, discriminating patients with 

a confirmed positive HA-VTE diagnostic test result from those with a confirmed negative result 

at time of event (T0 and PTW 48-24) and 24 hours in advance of the event (T-24 and PTW 48-24).  

Comparison of Performance Evaluation Metrics  

Model performance varies by algorithm, but the trend across all clinical rationale #2 (C+/-

) models, at both prediction time points, was an improvement in sensitivity, specificity, precision, 

F1-score, AUPRC, and AUROC performance with the progressive addition of dynamic clinical 

data. 

Model Performance at T0, Time of HA-VTE Outcome Event 

At time of hospital admission using only static data (Stage 1), the ensemble decision tree 

models, RF (sensitivity 81%) and GBDT (sensitivity 80%), performed similarly with regard to 

their ability to accurately predict true positive diagnoses at T0. As more dynamic data was added, 

these sensitivity metrics improved for RF to 86% at Stage 2 and 89% (Stage 3) and for GBDT to 

89% (Stage 2) and 93% (Stage 3). Naïve Bayes model at time of admission had a sensitivity of 

only 56% at Stage 1, but sensitivity performance improved notably with the addition of dynamic 

data to 93% at Stage 2 and 94% at Stage 3. Sensitivity of the BLR model was only 29% with only 

static data at Stage 1 and improved to 66% at Stage 2 and 94% at Stage 3 with the addition of 

dynamic data. With an AUPRC of 0.81, a PPV of 84%, and an AUROC of 0.90, BLR, using static 

and dynamic LF and HF data, was identified as the most sensitive model at this prediction time 

point.  
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Regarding specificity, RF and GBDT models performed the best with specificities of 94% 

(Stage 1 RF), 96% (Stage 2 RF), 97% (Stage 3 RF) and 95% (Stage 1 GBDT), 92% (Stage 2 

GBDT), 95% (Stage 3 GBDT). BLR specificity improved from 54% (Stage 1) to 87% with the 

addition of HF dynamic data in Stage 3. NB, specificity was 65% in Stage 1, but while the addition 

of dynamic data improved sensitivity (as noted above), specificity decreased to 39% in Stage 3. 

With an AUPRC of 0.97, a PPV of 96%, and an AUROC of 0.93, RF, was identified as the most 

specific model at this prediction time point. 

Model Performance at T-24, 24 hours in Advance of HA-VTE Outcome Event 

The NB model, with a sensitivity of 88% using static and LF data and 91% with the addition 

of HF data, had the best ability to identify true positive HA-VTE cases 24 hours in advance of the 

diagnostic test being conducted (T-24, PTW48-24). RF and GBDT demonstrated a sensitivity of 74% 

and 82% respectively at Stage 2, but performance for both dropped to 70% and 73%with the 

addition of Stage 3 HF data, raising the suspicion of overfitting. BLR model sensitivity was 44% 

using Stage 2 static and LF data and increased to 62% with the addition of HF data in stage 3. 

The most specific models at the T-24 prediction time were the ensemble decision trees. RF 

and GBDT demonstrated 94% and 95% specificity, respectively, at Stage 2, but performance for 

both dropped to 90% with the addition of HF data at Stage 3, raising the suspicion of overfitting. 

With regard to specificity, when HF Stage 3 data was employed, neither NB nor BLR performed 

well (34% and 66%, respectively). 

Model Feature Importance 

As shown in Figure 17, at time of admission (Figure Panel 1), age and comorbidity score 

(CCI-D) were the features identified by the models most important to classification performance. 

As dynamic medication and lab data was added in Stage 2 (Figure Panel 2), age was no longer 
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identified as an important feature and narcotic and anticoagulant medication counts, mean platelet, 

age, and CCI-D scores were the clinical features identified to be of greatest importance in this 

stage. With the addition of HF VS data (Figure Panel 3), RR and HR features (mean, monitoring 

frequency, and variability) dominated in importance. As with the S+/- models, trauma admission 

was a feature identified as important by all models in all three stages.  
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Table 11. Model Performance for Clinical Rationale #2: Classifying Patients with a Confirmed Positive HA-

VTE Diagnosis from Patients with a Confirmed Negative Test 
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Panel 1 

Stage 1: Static Features 

Prediction time: T0 

Model: Random Forest  

Panel 2 

Stage 2: Static + Low Frequency  

Prediction time: T-24 

Model: Naïve Bayes 

Panel 3 

Stage 3: Static + Low + High Frequency  

Prediction time: T-24 

Model: Naïve Bayes 

 

Figure 17. Feature Importance Performance for Clinical Rationale #2: C+/- Models  
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3.6 Discussion 

This hypothesis driven study is the first to our knowledge to incorporate the progressive 

addition of dynamic clinical data routinely accrued during hospitalization in the development of 

models to predict risk of new onset, HA-VTE. No published research studies have explored clinical 

data features predictive of new-onset, HA-VTE in any time frame intervals. One study by Posch 

et al., identified dynamic patterns in monthly d-dimer lab test values predictive of cancer associated 

VTE in the outpatient oncology population. [111] These findings were independent of other 

established VTE risk factors indicating the value and utility of using dynamic, longitudinal 

individual clinical data to inform risk prediction for this challenging disease pathology.  

Additionally, it is the first to endeavor to predict risk within specific time windows in 

advance of HA-VTE diagnostic test conduction and results. Our foundational models provide 

emerging evidence that the addition of dynamic clinical data improves HA-VTE risk prediction, 

that HA-VTE risk stratification can be accomplished within specific time intervals, and insights 

on clinical feature importance associated with HA-VTE outcome over time. 

HA-VTE is a disease pathology known to have low incidence rates of confirmed disease 

in hospitalized patients, yet patients who develop this complication are at risk of death, high 

recurrence rates, long term complications, and increased medical cost burden.[124] For these 

reasons, algorithms with the ability to handle different types of clinical data and capable of 

performing well on small amounts of training data were chosen. Strategies for approaching model 

building with imbalanced data (reflective of the real-world clinical scenarios) and for evaluating 

model performance based on both data constraints and the high cost of missing this complication 
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were employed. For both clinical rationales (S+/-, C+/-) and at both prediction time points (T-24 

and T0), all models demonstrated that the addition of dynamic high frequency VS data improves 

ability to improve prediction for risk of the complication of VTE during SDU admission. 

Precision-recall ability in models with dynamic (high and low frequency) clinical data was greatly 

improved results relative to models with static data only. This ability to discriminate between 

groups is especially notable in this sample of SDU patients who were fairly homogenous with 

respect to age, level of acuity and reasons for hospital admission.  

3.6.1 Comparison of Study Findings to Current VTE RAM’s 

The Caprini model, developed in 1991, and validated on general surgical, medical, and 

plastic surgery populations, is one of the most widely used VTE RAMs. When all 32-items 

required by the tool are completed, including several specialized coagulopathy and genetic serum 

laboratory tests, sensitivities as high as 88.6% have been reported in retrospective validation 

studies. [125, 126] However, the specificity of this model is reported to be only in the range of 20%. 

Recommended by the CHEST 2012 VTE prevention guidelines, [68] the Caprini RAM has been 

criticized for being cumbersome to implement clinically and for the complexity of data clinicians 

are required to collect. Despite its wide endorsement and use in clinical practice for the past three 

decades, prospective studies demonstrating reports of significant reduction in HA-VTE rates as a 

result of Caprini model use are few. [126, 127]. The best reported sensitivity of the other commonly 

use VTE RAMs are 75% for the Geneva model, 61.8%for the Padua model and 63.3% for the 

IMPROVE-DD model, but these are validated for use in medical populations only..[119, 128, 129] In 

comparison, using only data that is accrued in routine daily clinical care, and at a time point 24 

hours in advance of a HA-VTE diagnostic test being ordered by a clinician and conducted, our 
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S+/- NB model demonstrated the ability identify suspected general medical-surgical patients with 

a sensitivity of 76%. At the same time point, for general medical-surgical patients already 

identified by clinicians as being at increased risk, our C+/- NB model demonstrated the ability to 

identify patients with a confirmed positive HA-VTE diagnosis with a sensitivity of 91%. These 

findings, based on commonly collected data, predicting outcome risk 24 hours in advance of the 

event, hold promise that these models could, with further development and testing, provide 

clinicians with personalized information that could support earlier intervention and rescue.  

Other VTE RAM’s with greater specificity performance metrics, such as the IMPROVE-

DD and Kucher RAM’s, with best reported specificities of 70.7% and 85.7% respectively, can be 

useful in risk stratification for ruling out patients at low risk of HA-VTE. Identification of low-

risk patients can spare those individuals from unnecessary risks associated with anticoagulant 

prophylaxis use and can better inform the utilization of scare clinical resources such as continuous 

monitoring and acuity-based nurse staffing ratios. The Kucher model was developed to be an alert 

tool, and when integrated into the Brigham and Women Hospital’s (BWH) electronic medical 

record it was successful in decreasing their local HA-VTE rates by 41%.[129] However, in external 

validation studies, the Kucher model has failed to perform as well, raising questions about its 

generalizability to populations with lower rates of malignancy.[119] A rigorous validation study 

lead by Greene et al., using a cohort of over 60,000 medical patients from multiple institutions, 

evaluated the performance ability of the IMPROVE-DD, Kucher, Padua, and Geneva RAMs and 

found the performance ability of these models to be suboptimal, with limited ability to identify 

patients at-risk for VA-VTE.[126] Our models use a novel approach that incorporates routinely 

collected data accruing dynamically during hospitalization and follows the HA-VTE evolution 

timeline. At a time point 24 hours in advance of a HA-VTE diagnostic test being ordered by a 
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clinician and conducted, our S+/- cohort RF model (patients identified by clinicians as not 

suspected of HA-VTE and thus not tested) demonstrated the ability identify true negative cases in 

general medical-surgical patients with a specificity of 80%. At the same time point, among general 

medical-surgical patients already identified by clinicians as being at increased risk, our C+/- cohort 

RF and GBDT models demonstrated the ability to identify patients with a confirmed negative HA-

VTE diagnosis with a specificity of 90%.  

3.6.2 Identification of Features Important to Model Performance 

Mean vital signs values for HR, RR, and BP were significantly different between tested 

and not-tested patients in the time period 48-24 hours before the HA-VTE event outcome. And 

closer to the outcome, mean vital signs accrued during the 24-0 hour time period were significantly 

different between the two groups for measurements (HR, RR, SpO2, BP). This descriptive data 

different was also seen in the feature importance patterns identified by the models.  

When we added to the data used for modeling, features of the dynamic HF VS variables 

dominated with regard to importance in model performance. In classifying suspected (and tested) 

versus not suspected (and not-tested) patients, HR and RR features (variability, mean values, and 

monitoring frequency) were identified by the S+/- models as being important predictive features 

at both time prediction points (T0 and T-24). Interestingly, in both models using high frequency VS 

data, multiple HR and RR mean values of differing durations (e.g., 3, 12 and 24 h) feature 

characteristics were independently predictive, suggesting that both HR and RR alone and their 

trends over time are relevant characteristics of VTE phenotype. In models predicting HA-VTE 

diagnosis, BP features were identified as important to HA-VTE risk prediction 24 hours in advance 

of diagnostic test, but closer to the time of the actual outcome event, HR and RR features became 
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more important predictors. These findings have important implications for clinicians. Tachycardia 

and tachypnea are known to be associated with HA-VTE risk, yet they can also be common and 

non-specific findings in acutely ill, hospitalized patients. Furthermore, discerning subtle trends in 

vital sign patterns over a period of 24 to 48 hours can be challenging when there are competing 

demands for clinician attention as well as multiple hand-offs in patient care due to shift changes. 

Our findings seem to suggest that placing dynamic VS features in models which include both static 

and LF data may help clinicians to identify at risk patients better than can be accomplished with 

their own clinical evaluation of trends. These findings warrant further exploration and underscore 

recommendations from prior studies that recommend exploration of more personalized risk factors 

and of cumulative and ongoing re-evaluations of these factors over time.[119, 126, 130]  

3.6.3 Cost-Benefit Trade-off Considerations 

As illustrated by the performance capabilities of current, commonly used VTE RAM’s 

(section 3.6.1), all risk tools demonstrate sensitivity and specificity trade-offs. An awareness of 

the indications and performance strengths and weakness of a clinical tool is required by clinicians 

in order to use them appropriately. We previously discussed our best performing models when we 

focused on a single specific metric of either sensitivity or specificity, and the clinical benefits to 

each. To further explore cost benefit realities within individual models, we examined TPR/FPR 

and TNR/FNR trade-offs.  

True positive means we correctly identify patients that are confirmed to have a positive 

HA-VTE diagnosis. False positive rate is the cost we bear when we identify a patient as having 

HA-VTE diagnosis, but they are actually negative for the disease. For this FTR diagnosis, which 
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can be lethal if missed, we are more willing to accept an increase in false positives in order to 

maximize confidence of model ability to identify all cases that are truly positive.   

To further explore cost and benefit, Figure 18 shows the area under the receiver operating 

characteristic (ROC) curve for all 4 classifiers when applied to C+/- models at T0 (Panel A) and T-

24 (Panel C). Panels B and D allow us to zoom into the left side of ROC curve and replot the ROC 

diagram showing the horizontal axis in base 10 logarithm scale. This allows us to examine the 

TPR at very low FPR to further examine the trade-offs.  

When we look at TPR/FPR performance tradeoff, RF (green) has the best performance. At 

a false positive rate of 1% (dashed purple line in Panel B), the C+/- RF model can identify >80% 

of patients who will test positive for HA-VTE at T0. If we increase our tolerance of false positives 

to 10% (dashed brown line), then that rate of true positive identification increases to 95% for RF 

(green) and GBDT (red) models and to 60% for the NB model (orange). As these are patients 

already suspected by clinicians of VTE risk and more likely to be receiving more intensive 

surveillance and pharmacologic prophylaxis, our cost of missing a positive case is high and we are 

more willing to accept a higher false positive rate in order to prevent a lethal complication. Similar 

cost-benefit tradeoffs are seen in the models predicting outcome at T-24, 24 hours in advance of 

event.  

None of our individual models were equally good at both sensitivity and specificity at the 

various prediction timepoints. This work is early, but these cost-benefit trade-off evaluations can 

help to inform advancing this work toward the ultimate goal of developing a suite of models 

capable of providing the best sensitivity and the best specificity at the different timepoints for the 

different cohorts of interest.  
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Panel A Panel B 

AUROC for Stage 3 C+/- Models using static data and dynamic lab, medication, and vital sign data accrued 

during a 24-hour observation window directly preceding T0 (time of diagnostic test) 

 

 

Panel C Panel D 

AUROC for Stage 3 C+/- Models using static data and dynamic lab, medication, and vital sign data accrued 

during a 24-hour observation window directly preceding T-24 (24-hrs before diagnostic test is conducted) 

 

Figure 18. Area Under the Receiver Operating Characteristic (AUROC) Curve Diagrams  

displaying 10-fold cross validation results for discrimination between HA-VTE positive and HA-VTE 

negative (disease free) diagnosis. Sensitivity (TPR) is on the y-axis. FPR (1-Specificity) is on the horizontal 

axis, plotted at normal linear scale in Panels A and C, and base 10 logarithmic scale in Panels B and D 
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3.6.4 Comparison of Study Findings to Current Literature Exploring VTE Risk Prediction 

Through ML Approaches 

ML approaches using classification algorithms have been used to successfully develop 

highly sensitive models to predict risk of cardiorespiratory instability, cardiac ischemia and 

arrhythmia,[81-83] and inform decision making to improve care delivery and patient outcomes. 

Studies exploring VTE risk assessment using ML methods are reported in the literature, but are 

however limited, and interpretation of results must be done through a close examination of study 

methodologies. The ability to develop models that can be best translated to clinical practice 

necessitates constructing models based on data sets that reflect real-world readily available clinical 

data elements and population incidence of VTE disease, which vary from 1-16% in medical 

patients to as high as 40% in certain surgical and oncologic populations. [36, 46] 

In chemotherapy treated ambulatory cancer patients, Ferroni et. al, compared machine 

learning approaches with the Khorana model, a VTE RAM developed for outpatient populations 

with diagnosed malignancy. Ferroni’s models highlighted variables not included in the Khorana 

model, however overall ML model performance was poor, and they acknowledge this was likely 

due to the study design.[131] Sample size was small (n=40) and the training platform used for model 

development was constructed by 1:1 matching of VTE cases with controls, however, VTE 

prevalence within their testing set was only 8%. James et al , used RF algorithms to leverage EHR 

data to predict the occurrence of HA-VTE.[132] Models were developed from a training data set of 

1089 cancer patients (a population at high risk for VTE pathology) with VTE who were matched 

to 1089 control patients. Their results lacked validation by a clinical data set that conformed to 

actual incidence of VTE in hospitalized patients. Both of these studies based their evaluation of 

model performance on AUROC, a metric that works well when data is balanced, but one that does 
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not provide the most optimal insight into predictive performance for models developed to identify 

disease pathology that can be fatal when missed.  

Kawaler et el, used ML methods (RF, NB, support vector machines, k-nearest neighbor, 

and C4.5 decision tree induction) to develop models predictive of post-hospitalization VTE using 

information automatically elicited from the EHR.[133] Strengths of their approach included a large 

sample size obtained from a clinical health care system. Their data set was unique in that over 60% 

of the sample patients had 20-plus years of clinical data available within the hospital’s clinical data 

archive system and the majority of the patients in their sample had genotype data included in their 

EHR data as part of the eMERGE network, thus they were able to include 32 single nucleotide 

polymorphisms (SNP) associated with VTE in addition to demographic, diagnoses, labs, 

medications, procedures and vital signs. Similar to the approach used in this study, they evaluated 

their model performance using precision-recall metrics and the NB and RF classifiers showed the 

strongest performance in predicting HA-VTE risk post-hospital discharge. Their models’ ability 

to predict post-hospital VTE risk outperformed existing risk assessment models and underscore 

the impact that leveraging routinely collected EHR data can have for informing and improving 

VTE risk prediction. Their model building methods were rigorous, and their results impressive and 

worthy of further exploration. However, it should be noted that most health care systems do not 

currently have the resources to support the infrastructure required for maintain e data warehouses 

that make decades of clinical and comprehensive genotype data readily available for routine risk 

prediction. As well, we believe it is worthy to identify models which can predict risk of HA-VTE 

while patients are still being cared for the in the hospital setting with enough lead time to 

implement targeted prophylaxis, or supportive measures in advance of an acute in-hospital 
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mortality event. Likewise, being able to identify those not at risk could spare low-risk patients 

from exposure to unnecessary prophylaxis and side effects 

3.7 Limitations 

3.7.1 Sample Limitations 

While our sample size allows for diversity of diagnoses, variables, and adequate VTE 

prevalence to support machine learning, we recognize that generalizability of findings will be 

limited due to the fact that the sample population is restricted to a single SDU over a specific time 

interval, and that sample ethnicity is primarily White.  

The high frequency VS data used in model development was only available during the time 

that patients in this sample were in the SDU, and accessed for the parent study, and thus our ability 

to explore HA-VTE risk using these dynamic data for modeling, was limited to this time frame. 

The prevalence of some clinical feature variables in our sample population during their SDU stay 

was low. This is due in part to the manner in which these data were identified and accessed for the 

parent study. As a result, many desired variable categories needed to be excluded due to absence 

of information that would only add noise and bias to model development. This reality has provided 

valuable insights that will guide data collection strategies and rationales in future work. A benefit 

of this limitation is that we have developed models that, using dynamically accruing VS data and 

readily available clinical data, appear to out-perform models in the literature which rely primarily 

on static data. With future development and testing, our modeling approach shows preliminary 
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promise, and can be further explored with more EHR feature heavy models to determine the 

optimal trade-offs between performance and parsimony, and potential clinical utility.   

3.7.2 Ground Truth Limitations 

We selected time the gold standard radiology test was conducted as the proxy time for 

ground truth identification of HA-VTE event outcome in this study. We are aware the ground truth 

does not necessarily equal time of diagnostic testing, or even time diagnosis or of clinician 

suspicion of diagnosis. Because of the presence of underlying VTE pathology, some positive cases 

may have been positive for hours to days in advance of our annotated ground truth time. 

Furthermore, the “not tested cases” may contain HA-VTE unrecognized by clinicians, and that 

these unrecognized positive cases may not be diagnosed until after this hospital admission. 

However, we were able to build a set of models with confirmed negative cases as our controls and 

ideas for future work include developing models with annotated outcome event defined as the time 

a gold standard radiologic test for HA-VTE is ordered by clinicians, to better approximate time 

disease is suspected to be present.  

3.7.3 Model Development Limitations 

This dissertation study took a survey approach to model development. A variety of 

classification algorithms were employed. We explored model development with a variety of 

sample cohorts, prediction time windows, and temporal clinical data, and we focused on training 

and testing models using cross-validation methods. Future planned work to build upon these initial 

models includes:  
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• Determining the optimal set points of individual models for cost-benefit 

considerations  

• Hyperparameter tuning to enhance model performance at chosen set points 

• Evaluating model performance with an external data set 

 

3.7.4 Prediction Time Windows Limitations 

As this is the first study to develop prediction models for new onset HA-VTE using data 

accrued during hospitalization, we recognize that the time windows proposed may not be the most 

optimal time frames for predicting this dynamic disease pathology. Predicting HA-VTE at time of 

diagnosis, while not meaningful for changing current clinical practice, is a requisite first step in 

temporal risk modeling research that aims to identify patient features associated with the evolution 

of HA-VTE complication development and risk. There are no published time interval 

recommendations for diagnostic VTE surveillance screening in the SDU population. The chosen 

prediction times represent an initial starting point that informed the aims of this dissertation study 

while also establishing the groundwork for future lines of inquiry that will explore additional time 

windows in advance of diagnosis.  

3.7.5 Study Timeframe Limitations  

Another limitation is that this study relied on data from a parent study, with data accrual 

occurring between 11/06 and 09/08. Little has changed in diagnostic testing for VTE, or VS data 

accrued from bedside monitors, however, conducting the study in a more recent timeframe would 
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allow for more current diagnosis and procedure coding methods, as well as more contemporary 

EHR data identification, storage and extraction methods. Every effort was made to map clinical 

data from this sample to current data standards (such as mapping ICD-9 codes to ICD-10 codes) 

and to include those mappings in manuscripts associated with this work, to maximize 

contemporary understanding and application. 

3.8 Strengths 

This study has several strengths. Many prior VTE risk studies are limited in that they report 

lack of confidence that their control cohorts are free of unidentified VTE cases. A strength of our 

study is that we used a rigorous and reproducible method for identifying confirmed HA-VTE 

positive, confirmed negative HA-VTE cases, and those confirmed not tested during hospital length 

of stay. The low prevalence of HA-VTE used in our model development is another strength. We 

trained models on data that reflected real-world population rates of HA-VTE in a total hospital 

unit census, with rates of 32% in clinical rationale #1 models and 6.42% in the second set of clinical 

models. Our approach developed models that aimed to predict HA-VTE risk in time windows in 

advance of outcome that could one day support clinician ability to intervene and potentially change 

outcomes. Finally, these are the only HA-VTE models which use data accruing dynamically during 

hospitalization, and thus follow the HA-VTE evolution timeline.  
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3.9 Conclusion 

This study demonstrates that applying classification algorithms to leverage routinely 

collected, intensively collected time series clinical data has promise to predict new-onset HA-VTE 

risk in hospitalized patients at time of, and in advance of, diagnosis. The incorporation of high 

frequency dynamic patient vital sign data improves model performance compared with static data 

models. Furthermore, our results demonstrated that clinical features predictive of HA-VTE change 

in importance over time course of hospitalization. Our initial findings set the stage for further work 

and demonstrate that models which can better predict which hospitalized patients require more 

intense HA-VTE surveillance and prophylaxis, and also identify low-risk patients who can be 

spared unneeded prophylaxis are possible in future. The ultimate goal is to improve HA-VTE risk 

prediction approaches and better inform nursing surveillance and clinical decision making and at 

the bedside.  
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Appendix A. Dissertation Manuscript 1 

ICU Scoring Systems 

Abstract 

Background. Severity scoring systems are commonly used in critical care and, when applied to 

the populations for whom they were developed and validated, these tools can inform mortality 

prediction and risk stratification, resource utilization, and optimization of patient outcomes. 

 

Methods. Original articles published in the English language were identified through OVID and 

MEDLINE literature searches conducted for the years 1980 to 2020. A list of terms associated 

with critical care scoring systems were used alone or in combination for the literature search.  

 

Results. This article appraises the characteristics and applications of the scoring systems most 

frequently applied to critically ill patients: those that predict risk of in-hospital mortality at time of 

ICU admission (APACHE, SAPS, and MPM), and those that assess and characterize current 

degree of organ dysfunction (MODS, SOFA, and LODS). Variable type and collection timing, 

score calculation, patient population, and comparative performance data of these systems are 

detailed.  

 

Conclusion: Awareness of the strengths, limitations, and specific characteristics of severity 

scoring systems commonly used in ICU patients is vital for critical care nurses to effectively 

employ these tools in clinical practice and to critically appraise research findings based on their 

usage. 
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Permission to reproduce the abstract only of Pellathy T, Pinsky MR, Hravnak M. ICU Scoring 

Systems. Critical Care Nurse (in press), was granted by Michael Muscat, AACN Publishing 

Manager and is included below. The full text article can be accessed via the journal’s website, 

https://aacnjournals.org/ccnonline. 

 

https://aacnjournals.org/ccnonline
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Appendix B. Dissertation Manuscript 2 

This manuscript, Accuracy of Identifying Venous Thromboembolism by Administrative 

Coding: Implications for Big Data and Machine Learning Research, has been accepted at the 

time of ETD submission, for publication in the Journal of Clinical Monitoring and Computing.  

 

Authors: Tiffany Pellathy MS, ACNP-BC1, Melissa Saul, MS2, Gilles Clermont MD, MSC2, 

Artur W. Dubrawski PhD3, Michael R. Pinsky MD2, Marilyn Hravnak RN, PhD1  

 

Affiliations: University of Pittsburgh School of Nursing1, University of Pittsburgh School of 

Medicine2, and Carnegie Mellon University, School of Computer Science, Auton Lab3  

 

ABSTRACT 

Purpose: Big data analytics research using heterogeneous electronic health record (EHR) clinical 

data requires accurate identification of disease phenotype cases and controls. Hospital-acquired 

venous thromboembolism or pulmonary embolism (HA-VTE) is particularly challenging to 

identify due to its temporal evolution over hospitalization and variable EHR documentation. To 

establish ground truth for machine learning modeling, we compared the accuracy of HA-VTE 

diagnoses made by administrative coding to manual review of gold standard diagnostic test results. 

 

Methods: We performed retrospective analysis of EHR data on 3680 adult stepdown unit patients 

identifying HA-VTE. International Classification of Diseases, Ninth Revision (ICD-9-CM) codes 

for VTE were identified. 4455 radiology reports associated with VTE diagnostic tests were 
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screened using terminology extraction and then manually reviewed by a clinical expert to confirm 

diagnosis. Clinical notes were reviewed to clarify indeterminate results.  

 

Results: Of 415 cases with ICD-9-CM codes for VTE, 219 were identified with acute onset type 

codes. Test report review identified 132 new-onset HA-VTE cases. Only 40% of ICD-9-CM coded 

cases (n=87) were confirmed by a positive diagnostic test report, leaving the majority of 

administratively coded cases unsubstantiated by confirmatory diagnostic test. Additionally, 54% 

of HA-VTE cases confirmed by diagnostic test lacked corresponding codes. 

 

Conclusions: ICD-9-CM coding missed diagnostic test-confirmed HA-VTE cases and 

inaccurately assigned cases without confirmed VTE, suggesting dependence on administrative 

coding leads to inaccurate HA-VTE phenotyping. Alternative methods to develop more sensitive 

and specific VTE phenotype solutions portable across EHR vendor data are needed to support 

case-finding in big-data analytics applied to this population. 

 

Keywords: Administrative coding, Venous Thromboembolism, big data analytics, electronic 

health record data, phenotyping, machine learning 
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Appendix C. Drug Classification Table 

A breakdown of the classification of the drug variables listed in Table 4 can be found in 

the table below.  

Table 12. Medication Categories 

Medication Drug category 

Antithrombin_III anti-coagulant 

Argatroban anti-coagulant 

Bivalirudin  anti-coagulant 

Argatroban anti-coagulant 

Dalteparin anti-coagulant 

Enoxaparin anti-coagulant 

Fondaparinux anti-coagulant 

Fragmin anti-coagulant 

Heparin anti-coagulant 

Warfarin anti-coagulant 

Amikacin anti-infective 

Amoxicillin  anti-infective 

Ampicillin  anti-infective 

Dicloxacillin  anti-infective 

Nafcillin  anti-infective 

Oxacillin  anti-infective 

Penicillin  anti-infective 

Piperacillin  anti-infective 

Piperacillin/tazobactam  anti-infective 

Ticarcillin/clavulanate  anti-infective 

Amphotericin B  anti-infective 

Atazanavir  anti-infective 

Augmentin  anti-infective 

Azithromycin anti-infective 

Aztreonam  anti-infective 

Caspofungin  anti-infective 

Cefazolin  anti-infective 

Cefdinir  anti-infective 

Cefuroxime  anti-infective 



 136 

Ceftazidime  anti-infective 

Cephalexin anti-infective 

Clindamycin anti-infective 

Cefazolin anti-infective 

Cefdinir anti-infective 

Cefepime anti-infective 

Cefotaxime anti-infective 

Cefotetan anti-infective 

Cefpodoxine anti-infective 

Ceftazidime anti-infective 

Ceftriaxone anti-infective 

Cefuroxime anti-infective 

Doxycycline  anti-infective 

Efavirenz anti-infective 

Famciclovir  anti-infective 

Itraconazole anti-infective 

Ketoconazole anti-infective 

Piperacillin/Tazobactam anti-infective 

Sulfamethoxazole/Trimethoprim anti-infective 

Valganciclovir  anti-infective 

Unasyn (ampicillin/sulbactam) anti-infective 

Gentamicin anti-infective 

Vancomycin anti-infective 

Moxifloxacin anti-infective 

Abacavir anti-infective 

Amoxicillin anti-infective 

Ampicillin anti-infective 

Dicloxacillin anti-infective 

Nafcillin anti-infective 

Oxacillin anti-infective 

Penicillin anti-infective 

Piperacillin anti-infective 

Ticarcillin anti-infective 

Aspirin anti-platelet 

Clopidogrel anti-platelet 

Eptifibatide anti-platelet 

Chlorpromazine anti-psychotic 

Dacarbazine anti-psychotic 

Fluphenazine anti-psychotic 
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Prochlorperazine anti-psychotic 

Promethazine anti-psychotic 

Ranolazine anti-psychotic 

Thioridazine anti-psychotic 

Droperidol anti-psychotic 

Aripiprazole  anti-psychotic 

Quetiapine anti-psychotic 

Olanzapine anti-psychotic 

Haloperidol anti-psychotic 

Risperidone anti-psychotic 

Perphenazine anti-psychotic 

Chlordiazepoxide anti-psychotic 

Ziprasidone anti-psychotic 

Divalproex anti-psychotic 

Lithium anti-psychotic 

Nortriptyline anti-psychotic 

Amitriptyline anti-psychotic 

Lorazepam benzodiazepine 

Diazepam benzodiazepine 

Alprazolam benzodiazepine 

Adenosine cardiac 

Amiodarone cardiac 

Amlodipine cardiac 

Atenolol  cardiac 

Atorvastatin  cardiac 

Atropine  cardiac 

Amlodipine cardiac 

Carvedilol  cardiac 

Betaxolol cardiac 

Bisoprolol cardiac 

Clonidine cardiac 

Digoxin cardiac 

Diltiazem cardiac 

Dobutamine  cardiac 

Enalapril  cardiac 

Ezetimibe/simvastatin  cardiac 

Diovan cardiac 

Dopamine cardiac 

Esmolol cardiac 
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Fluvastatin cardiac 

Fosinopril cardiac 

Hydralazine cardiac 

Hydrochlorothiazide cardiac 

Irbesartan cardiac 

Isosorbide cardiac 

Labetalol cardiac 

Lisinopril cardiac 

Milrinone cardiac 

Nadolol cardiac 

Nicardipine cardiac 

Nitroglycerin cardiac 

Nitroprusside cardiac 

Olmesartan cardiac 

Pravachol cardiac 

Pravastatin cardiac 

Quinapril cardiac 

Ramipril cardiac 

Rosuvastatin cardiac 

Sildenafil cardiac 

Spironolactone cardiac 

Verapamil cardiac 

Tenoretic (atenolol/chlorthalidone) cardiac 

Vinblastine chemo 

Vincristine chemo 

Darbepoetin erythro-stimulant 

Erythropoietin erythro-stimulant 

Famotidine GI 

Esomeprazole GI 

Lansoprazole GI 

Octreotide GI 

Omeprazole GI 

Ranitidine GI 

Sulfasalazine GI 

Vonwillebrand/ahf-factor hemostasis 

Anastrozole hormone 

Estradiol hormone 

Levothryoxine hormone 

Premarin (estrogens, conjugated) hormone 
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Prempro (estrogens, conjugated/medroxyprogesterone) hormone 

Tamoxifen hormone 

Testosterone hormone 

Glimepiride (sulfonylurea) hyperglycemic 

Glipizide (sulfonylurea) hyperglycemic 

Glucagon hyperglycemic 

Glyburide (sulfonylurea) hyperglycemic 

Humalog hyperglycemic 

Insulin hyperglycemic 

Repaglinide (meglitinide) hyperglycemic 

Rosiglitazone (thiazolidinediones, TZDs) hyperglycemic 

Sitagliptin (DPP-4 inhibitor) hyperglycemic 

Tacrolimus immuno-suppressant 

Rituximab immuno-suppressant 

Rasburicase immuno-suppressant 

Cyclosporine immuno-suppressant 

Rituximab immuno-suppressant 

Interferon immuno-suppressant 

Naloxone naloxone 

Meperidine narcotic 

Acetaminophen/codeine narcotic 

Morphine narcotic 

Oxycodone narcotic 

Oxycodone narcotic 

Percocet narcotic 

Vicodin narcotic 

Fentanyl   narcotic 

Hydromorphone narcotic 

Codeine  narcotic 

Amantadine neurologic 

Carbamazepine neurologic 

Carbidopa/levodopa neurologic 

Gabapentin neurologic 

Phenobarbital neurologic 

Phenytoin neurologic 

Sinemet neurologic 

Gabapentin neurologic 

Levetiracetam neurologic 

Etodolac  NSAID 
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Ibuprofen NSAID 

Ketorolac NSAID 

Celecoxib NSAID 

Acetaminophen pain 

Zolpidem sedative 

Clonazepam sedative 

Propofol sedative 

Sertraline SSRI 

Venlafaxine SSRI 

Citalopram SSRI 

Duloxetine SSRI 

Fluoxetine SSRI 

Paroxetine SSRI 

Escitalopram SSRI 

Dexamethasone steroids 

Hydrocortisone steroids 

Methylprednisolone steroids 

Methylpred steroids 

Prednisolone steroids 

Prednisone steroids 

Alteplase thrombolytic 

Reteplase Thrombolytic 

Dopamine vasopressor 

Epinephrine vasopressor 

Norepinephrine vasopressor 

Vasopressin vasopressor 

GI gastrointestinal, NSAID non-steroidal anti-inflammatory drugs, SSRI selective serotonin 

reuptaker inhibitor 
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Appendix D: Mapping of Study Variables to Existing Risk Assessment Models 

Table 13. Study Variables Mapped to Existing VTE Risk Assessment Models 

Risk Assessment Model 
 

IMPROVE 
(DD) 

GENEVA PADUA CAPRINI KUCHER Cook D 
et. al. 

 Inclusion of established RAM variables in this 
research study 

(S: static variable; LF: low frequency variable): 

Validated hospital population  Medical Medical Medical/ 
Surgical 

Medical/ 
Surgical 

Medical/ 
Surgical 

ICU 
Surgical 

  

Sensitivity 63.3 75 61.8 88.6 28 n/a  

Specificity  70.7 34.1 48.8 21.4 85.7 n/a  Variable name Data source Details 

        

Any prior VTE X X X X X   Prior VTE ICD-9, 
radiology 

Detailed in 
section 1.3.2.1  

           

Thrombophilia X  X     Known clotting 
disorder 

ICD-9,  
lab results 

S: 286.x; 
289.81 
(primary);  
289.82 
(secondary) 

 
LF: Individual 
lab test results 

Known hypercoagulable state  X   X   

Factor V Leiden*    X    

Prothrombin 20210A*    X    

() Serum homocysteine*    X    

(+) lupus anticoagulant*    X X   

() Anti-cardiolipin antibody*    X X   

HITT    X    

Elevated D-dimer twice the 
upper limits of normal 

X 
      

           

Active malignancy X X X  X X  Malignancy (past or 
present) 

ICD-9 S: 140.x-208.x 
and 230.x-
234.x 

Malignancy past/present     X   
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Risk Assessment Model 
 

IMPROVE 
(DD) 

GENEVA PADUA CAPRINI KUCHER Cook D 
et. al. 

 Inclusion of established RAM variables in this 
research study 

(S: static variable; LF: low frequency variable): 

Acute infection/sepsis  X X  X    Infection/sepsis ICD-9,  
lab results 

S: 00x.x-139.x, 
785.5, 790.7 

           

Age > 60 years X X   X    Age Date of birth 
(DOB) 

S: Calculated 
from DOB and 
used as a 
continuous 
variable 

Age > 70 years    X   X   

           

BMI > 25    X    Obesity ICD-9  S: 278.0 

BMI>29 or obesity dx     X   

Obesity      X  

BMI ≥ 30   X     

Central venous catheter (CVC)    X    CVC Charge data LF 

Lung disease     X    Chronic Pulmonary 
Disease 

ICD-9 S: 490.x-492.x, 
493.9, 496,  
460.x-519.x 

COPD      X  

           

Stroke within past 90 days  X      Prior Stroke ICD-9 S: 438.x 

Stroke    X  X  

Acute ischemic stroke   X     Acute stroke ICD-9 S: 434.x 

           

Myocardial infarction (MI) 
within 90 days 

 X      Prior MI ICD-9 S: 412.x, 414.x  

Acute MI   X X  X  Acute MI ICD-9 S: 410.x; 411.x 

           

Congestive heart failure (CHF)  X X X  X  CHF ICD-9 S: 428.x 

           

Diabetes mellitus (DM)    X  X  DM, no complications ICD-9 S: 250-250.3, 
250.8x, 250.9x 

 DM, with 
complications 

ICD-9 S: 250.4-7 

Chemotherapy*         Chemo Medication LF: anti-
neoplastic 



 143 

Risk Assessment Model 
 

IMPROVE 
(DD) 

GENEVA PADUA CAPRINI KUCHER Cook D 
et. al. 

 Inclusion of established RAM variables in this 
research study 

(S: static variable; LF: low frequency variable): 

           

Fracture hip/leg      X  Lower extremity (LE) 
fracture 

ICD-9 S: 820.x-823.x 

Plaster cast    X     

           

Trauma (multiple)    X    Trauma ICD-9 S: 800.x-959.x 

Trauma (any)   X     

           

Acute SCI with paralysis    X    SCI ICD-9 S: 952.x 

           
Varicose veins    X    Varicose Veins ICD-9 S: 454.x 

           

Chronic venous insufficiency  X      Chronic venous 
insufficiency 

ICD-9 S: 459.x 

           

Irritable Bowel Syndrome (IBS) 
history 

   X    IBS ICD-9 S: 564.1 

           

Hormone therapy  X X   X   Hormone therapy Medication LF: hormone 
meds 

           

Hypertension (HTN)      X  HTN ICD-9, meds S: 401.x, 402.x 
LF: Cardiac 
meds 

           

           

Major surgery (> 60 min)     X   Major surgery (> 45 
min) 

DRG LF:  

Major surgery (> 45 min)    X    Minor surgery (< 45 
min) 

  

Minor surgery (< 45 min)    X    LE elective 
arthroplasty 

  

LE elective arthroplasty    X       

Surgery type (GI, CABG, 
vascular, orthopedic, trauma, 
neurosurgery, thoracic, GYN 
malignancy) 

       Surgery type (GI, 
CABG, vascular, 
orthopedic, trauma, 
neurosurgery, 

DRG LF 
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Risk Assessment Model 
 

IMPROVE 
(DD) 

GENEVA PADUA CAPRINI KUCHER Cook D 
et. al. 

 Inclusion of established RAM variables in this 
research study 

(S: static variable; LF: low frequency variable): 

thoracic, GYN 
malignancy) 

           

           

Abnormal lab values (Plt, Hgb, 
WBC, HgbA1c, Glucose, HDL, 
LDL) 

       Lab values Lab data LF: See Table 4, 
Section 1.4.4.2 
for all lab 
values included 

           

           

 
Variables that could not be reliably represented in the study data 
 

Recent surgery        Unable to identify in this data set. 

Respiratory failure        Unable to reliably capture in this SDU patient population. 
 

Reduced mobility         LE fracture and trauma are captured in other variables. 

LE paralysis during 
hospitalization 

        Stroke/hemiparesis and LE immobilization are captured in 
other variables. 

Immobilization ≥ 7 days          Unable to identify in this data set. 

Pregnancy*        Pregnant patients were not excluded from this sample, 
but no diagnosis of pregnancy was found within this 
sample.  

Dehydration*        Unable to identify in this data set. 

Swollen legs        Unable to identify in this data set. 

Family history of thrombosis        Unable to identify in this data set. 

Recent travel > 6 hours        Unable to identify in this data set. 
Nephrotic syndrome*        No diagnoses for nephrotic syndrome in this sample 

population and no other means of identifying it reliably. 

Myeloproliferative syndrome*        Diagnosis codes checked and no codes associated with 
this diagnosis were found. 

Acute Rheumatic disease*        Diagnosis codes checked and no codes associated with 
this diagnosis were found. 

* Diagnosis/test/status not found in this sample during data screening and cleaning 
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Appendix F. Responsible Conduct of Research Activities 

Table 14. Responsible Conduct of Research Training Activities 

Date Activity Name Presenter Subject 

Matter 

Format & Duration 

January-

August 

2020 

Mentored Research 

Apprenticeship 

Marilyn 

Hravnak, PhD 

mentor/mentee 

responsibilities 

and 

relationships; 

data 

acquisition 

and laboratory 

tools; 

management, 

sharing and 

ownership, 

responsible 

authorship and 

publication 

1 hour, twice a week for 8 months 

As part of this mentored apprenticeship, the PI participates and contribute to a weekly, 1-hour, multi-

disciplinary research team meeting and also a weekly 1 hour meeting (one-on-one) with Dr. Hravnak. Multiple 

R01 funded projects are discussed, methodology outlined and critiqued, data analysis reviewed and refined and 

dissemination of findings is ongoing through collaborative writing of conference abstracts and manuscript 

preparation. Through this apprenticeship, the PI has advanced her knowledge and application of data science 

and machine learning approaches to understanding predictive patterns of disease. This past year she has 

focused on the logistics of waveform data extraction, working with computer programmers to create a user-

friendly viewer for data annotation by a team of experts and on rigorous methods for ground truth annotation of 

clinical data for machine learning predictive analytics. She has continued to refine her ability to communicate 

domain specific information and to contribute domain expertise within a multidisciplinary group and she has 

collaborated on a successful national conference abstract submission and ongoing manuscripts. 

12/1/2019 Data Science Ethics 

 

 

H.V. Jagadish, 

University of 

Michigan 

Ethics  Online-course 

 

12.5 hours 

What are the ethical considerations regarding the privacy and control of consumer information and big data, 

especially in the aftermath of recent large-scale data breaches?  

 

This course provides a framework to analyze these concerns as you examine the ethical and privacy 

implications of collecting and managing big data. Explore the broader impact of the data science field on 

modern society and the principles of fairness, accountability and transparency as you gain a deeper 

understanding of the importance of a shared set of ethical values. You will examine the need for voluntary 

disclosure when leveraging metadata to inform basic algorithms and/or complex artificial intelligence systems 

while also learning best practices for responsible data management, understanding the significance of the Fair 

Information Practices Principles Act and the laws concerning the "right to be forgotten." This course will help 

you answer questions such as who owns data, how do we value privacy, how to receive informed consent and 

what it means to be fair. 

10/3/19 An Author's 

Responsibilities: 

Publication and 

Authorship  

Robert Weyant Responsible 

authorship  

Face-to-face training session  

 

1 hour 
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The author’s role in writing, submitting, and ultimately publishing scientific research results ethically will be 

discussed. Perspectives of the first author, coauthors, journal editors, and other contributors to scientific 

publication will be addressed. 

09/20/19 Data Sharing Helenmary 

Sheridan, MLIS 

Data Services 

Librarian 

Data 

collection 

monitoring 

and reporting 

Face-to-face training session  

 

2 hours 

Many funders, publishers, and institutions require researchers to make their research data public, but practical 

challenges can act as a barrier to sharing data, especially in the health sciences. This hands-on workshop will 

guide participants through the data sharing process, from initial study design to data deposit. Exercises will 

prompt participants to think through issues of data documentation, reuse value, and promotion of their own 

research projects 

7/25/19 Introduction to 

Research Data 

Management 

Helenmary 

Sheridan, MLIS 

Data Services 

Librarian 

Data 

acquisition 

Face-to-face training session  

 

2 hours 

In this class, the fundamentals of keeping your data secure and organized are reviewed through brief 

introductions to the core areas of data management: file storage and organization, file documentation, data 

preservation, and data publication and/or data sharing. This class is intended for graduate students and 

researchers who are working on long-term research projects, or for anyone who wants to make sure their 

personal files are safe for the long-term 

5/20/19 IRB Bootcamp 

  

Tonja M 

Hartjes, RN, 

PhD 

Human 

Participants, 

Animal 

Subjects, Lab 

Safety 

Face-to-face training session  

 

2.5 hours 

This presentation is designed to provide the APRN with information to determine when Institutional Review 

Board (IRB) is required and to assist with navigating through the IRB process. Various case studies are 

presented to the participants to determine whether IRB is required, the type of study and investigators’ 

responsibilities while engaged in research. 

5/21/19 Collecting Nursing 

Research Data 24 

Hours a Day: 

Challenges, Lessons, 

and 

Recommendations 

 

Mary Lou Sole, 

PhD, RN, 

CCNS, Steven 

Talbert, PhD, 

RN, Melody 

Bennett, MN, 

RN, CCRN, 

Aurea 

Middleton, 

BSN, RN, Lara 

Deaton, BSN, 

RN, CCRN, 

and Daleen 

data 

acquisition 

Face-to-face training session; panel 

discussion  

 

1 hour 
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Penoyer, PhD, 

RN, CCRP 

Clinical studies may require testing of interventions around the clock (24/7). Best practices for implementing a 

study 24/7 are needed. This seminar will describe challenges in conducting a nursing intervention study around 

the clock (24/7), Identify strategies to facilitate conducting a study 24/7 and discuss the importance of planning, 

staffing, and continuous assessment of quality improvement opportunities when conducting a clinical trial.  

5/21/19 Enrollment 

Challenges in 

Critical Care 

Nursing Research 

Mary Lou Sole, 

PhD, RN, 

CCNS, Steven 

Talbert, PhD, 

RN, Melody 

Bennett, MN, 

RN, CCRN, 

Aurea 

Middleton, 

BSN, RN, Lara 

Deaton, BSN, 

RN, CCRN, 

and Daleen 

Penoyer, PhD, 

RN, CCRP 

data 

acquisition 

Face-to-face training session; panel 

discussion  

 

1 hour 

Enrollment of participants is a key to a study’s success. Specific strategies can be designed to address barriers 

and promote enrollment. Data from an ongoing clinical trial are used to describe success and challenges in 

enrolling patients in clinical research. Describe the importance of accurately determining enrollment projects 

for clinical studies; Discuss strategies that increase the likelihood of achieving successful enrollment of 

subjects; Describe enrollment data and challenges in an ongoing critical care clinical trial 

6/27/19 Basics of Health 

Privacy 

Reid Cushman, 

PhD 

Human 

Participants, 

Animal 

Subjects, Lab 

Safety 

On-line CITI module 

 

1 hour 

Explain the basic privacy protections for health information provided by HIPAA and other legal-regulatory 

sources; Discuss the duties imposed on persons with access to health information in order to secure those 

privacy protections; Compare HIPAA’s additional privacy protections for individually identifiable health data 

that are used for human subjects research, including authorizations, accountings of disclosures, etc.; Contrast 

situations where full HIPAA privacy protections are required, and those which can qualify for waivers, 

alterations, or exemptions with more limited requirement. 
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6/27/19 Health Privacy 

Issues for 

Researchers 

 

Reid Cushman, PhD 

Human 

Participants, 

Animal 

Subjects, Lab 

Safety 

On-line CITI 

module 

 

1 hour 

This module discusses data 

protection requirements for human 

subjects research that creates, 

obtains, uses, or discloses health 

data, principally the protections that 

derive from the 

10/1/17 It's only a Model: 

What Can and Can't 

be Learned from 

Computational 

Models  

Tim Lezon, 

PhD 

Collaborative 

Research 

Face-to-face training session  

 

1 hour 

Like any research tool, computational modeling is most effective if the user has a good feel for its inner 

workings. Communication failure between quantitative and wet bench scientists can doom transdisciplinary 

projects. This session will address the strengths and limitations of computational models, and will explore 

strategies for effectively communicating across disciplines. 

11/1/17 High Stakes 

Consenting 

 

 

Michael Green, 

MD, MPH, 

Karen Schmidt, 

PhD 

Human 

Participants, 

Animal 

Subjects, Lab 

Safety 

Face-to-face training session  

 

1 hour 

Vulnerable populations present a unique set of demands for clinical research. Using cases, we will discuss how 

to identify potentially vulnerable participants and develop strategies and techniques for designing a consent 

experience that supports a responsible and ethical research consent process. 
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