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Abstract: Extracorporeal organ perfusion, in which organs are preserved in an isolated, ex vivo
environment over an extended time-span, is a concept that has led to the development of numerous
alternative preservation protocols designed to better maintain organ viability prior to transplantation.
These protocols offer researchers a novel opportunity to obtain extensive sampling of isolated organs,
free from systemic influences. Data-driven computational modeling is a primary means of integrating
the extensive and multivariate data obtained in this fashion. In this review, we focus on the application
of dynamic data-driven computational modeling to liver pathophysiology and transplantation based
on data obtained from ex vivo organ perfusion.
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1. Introduction

Irreversible hepatic fibrosis followed by progressive loss of hepatic function, a condition known as
cirrhosis, is the common final pathway for end-stage liver disease, regardless of initial etiology. In spite
of scattered clinical therapies involving medications, diet, and interventions such as transjugular
intrahepatic portosystemic shunting (TIPS), the only definitive treatment for cirrhosis is hepatic
replacement via transplantation. As is the case with other organs, the number of transplants that
can be performed is limited not just by the number of acceptable donor grafts, but also by the
viability of these grafts at the time of transplantation. Unfortunately, the current standard of cold and
hypoxic preservation often leads to the loss of organ viability between procurement and transplant.
Extracorporeal organ preservation with machine perfusion providing oxygenation, in which organs
are isolated in an ex vivo environment over an extended time-span, is a concept that has led to the
development of numerous alternative preservation protocols designed to better maintain viability.
An often-overlooked benefit of these perfusion methods, and the focus of this review, is the unique
opportunity they offer researchers for extensive biological sampling free from systemic influences.
Most immediately, this information can be used in the monitoring of organs undergoing preservation,
with the goal of better predicting post-transplant function. More broadly, the quality and quantity of
the data obtained in this fashion allows for potentially novel insights in the study of organ physiology
and pathology. To fully harness the power of this technique, however, a proper understanding of the
interplay among variable types is imperative, and computational modeling is the primary means of
integrating such multivariate data. In this review, we focus on the application of dynamic data-driven
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computational modeling to liver transplantation and pathophysiology. We discuss this material both
directly and in the form of case studies. It is our hope that the integration of these computational
modeling methods will lead to improved organ preservation protocols, technologies, and solutions,
as well as yielding novel and clinically actionable insights into the underlying disease processes.

2. Liver Pathophysiology: Challenges and Opportunities Related to Liver Transplantation

Though multi-omic studies and the modeling techniques discussed in this review are not specific
to any organ, much of our work has focused on the liver and will be presented as examples. A brief
background of hepatology relevant to transplantation and the projects discussed is presented here in
order to provide context for the case studies that follow, and also to illustrate the potential for deriving
insights regarding the underlying liver disease using computational tools in combination with serial
measurements from diseased organs during preservation.

2.1. Liver Metabolism/Biochemistry

Many biochemical processes key to metabolism are located exclusively or primarily in the
liver, and more specifically in the hepatocytes that comprise 80% of this organ [1]. Within
carbohydrate metabolism, for example, these processes include gluconeogenesis, glycogenesis, and
glycogenolysis [2]. In fatty acid metabolism, the liver is the site of ketone body formation and
phospholipid production [1]. Other processes exclusive to the liver are part of larger pathways that
involve multiple organs, such as the liver’s role in converting lactate produced in muscle to glucose
during the Cori cycle [2]. The liver is also the site of numerous detoxification processes. This is true
for both external substances, such as alcohol [3], along with endogenously produced substances such
as ammonia in the urea cycle [2]. Similarly, due to the liver’s connection to the gastrointestinal tract,
it is the exclusive site for numerous digestive processes, such as lipid metabolism and subsequent bile
formation [4]. The processes mentioned here, and all others occurring in the liver, are highly regulated.
The liver is able to respond to both fed and fasting states appropriately via nutrient, hormonal, and
neuronal regulation [1].

2.2. Liver Transplantation

When liver physiology is perturbed, the result is often some form of disease that can
lead to either eventual or abrupt failure of the organ. Cirrhosis and drug-induced liver injury,
respectively, are the most common causes of chronic and acute liver failure [5]. Regardless of
disease duration, transplantation is the definitive treatment for virtually all types of end-stage liver
disease. The main causes of cirrhosis are chronic hepatitis C virus (HCV) infection, alcoholic liver
disease, and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), with
relative rates differing by ethnicity [6]. While HCV infections currently account for ~30–45% of liver
transplantations in the USA and Europe, NAFLD/NASH is already the leading cause of cirrhosis in
certain minority groups [6], and it is predicted that NASH will become the most common indication
for liver transplantation by 2020 [7]. Today, indications for liver transplantation have also grown to
include (but are not limited to) primary biliary cirrhosis, sclerosing cholangitis, autoimmune hepatitis,
alcoholic cirrhosis, cryptogenic cirrhosis, hepatitis B virus (HBV), biliary atresia, metabolic liver
diseases, and hepatocellular carcinoma (HCC) [8].

Out of the 29,532 organs transplanted within the US in 2014, 6729 were livers [9]. Livers
consistently make up the second largest category of organs transplanted per year, and, as such,
are the focus of this review. Since the first attempted human liver transplant by Starzl in 1963,
the procedure has developed from being initially experimental and high-risk to being widely-accepted,
with sustainable survival rates (90% in the first year). There are several techniques for liver
transplantation involving both deceased and living donors, including split liver allografts, reduced-size
livers, transplantation across incompatible ABO blood type matches, and auxiliary liver transplants
as heterotopic implants for a short period of time [10,11]. Auxiliary liver transplantation (ALT),
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a technique which uses a partial donor lobe to support the recipient organ [10,11], can be
subdivided into three separate surgical techniques: heterotopic ALT, auxiliary partial orthotopic
liver transplantation, and whole graft ALT [12,13].

As organ transplantation becomes more ubiquitous and successful, new techniques must be
applied to increase the number and quality of transplantable organs. In the past, organs were kept in
simple cold storage containers—an effective method, but only as long as preservation periods were
relatively short. Now, the imbalance between organ supply and demand has necessitated the transport
of organs over longer distances, which increases ischemic time, and the use of previously discarded
allografts that qualify as extended criteria donors (ECD), which have experienced a variety of ischemic
insults prior to procurement despite having close to normal anatomical features. Machine perfusion,
an ex vivo system resembling extra-corporeal membrane oxygenation (ECMO) that continuously
perfuses and oxygenates organs at various temperatures [14], has emerged as a reliable technique to
extend organ shelf life and minimize ischemia-reperfusion complications inherited from ECD organs.

2.3. Liver/Transplant Immunology and Inflammation

The immune system plays a major role in all chronological stages of liver transplantation. In the
context of “omic” data, the immune system interconnects features from genomics, transcriptomics,
proteomics (i.e., interleukins, interferons, immunoglobulins), metabolomics (i.e., prostaglandins,
leukotrienes, free radical reaction products), and microbiomics. The use of reductionist approaches to
study transplant immunology has led to vast improvements in the field since its conception nearly
50 years ago. However, the complexity of the immune response and the interconnectivity of the
systems involved has left the field with the many unanswered challenges. In hopes of generating
avenues for discovery in the field of liver transplantation—and in hopes of avoiding a formidable
stalemate on improvements in its efficacy and outcomes—data-driven and mechanistic modeling
may prove particularly adventitious in better understanding the dynamic interactions of the immune
system’s multi-omic parts. Here we will discuss the role of the immune system across the perioperative
timeline of liver transplantation: preoperative, intraoperative, and postoperative.

2.3.1. Preoperative

Many liver pathologies (i.e., steatosis, scarring, and fibrosis) are associated with such acute and
chronic inflammatory diseases and are mediated by a host of immune cells and aberrant signaling
pathways. Liver cirrhosis, for example, portends decreased macrophage and neutrophil chemotaxis,
with alcoholic cirrhosis showing marked T-cell and NK-cell impairment. Others, such as HCV,
are associated with altered B-cell expansion and immunoglobulin dysfunction. Moreover, many
cases of end-stage liver disease are concomitant with decreased production of complement and acute
phase reactant proteins from the liver, as well as a “cytokine storm” of pro- and anti-inflammatory
mediators [15]. Thus, it becomes apparent that a challenge for future experimental design includes
utilizing methods diverse enough to capture such a hypervariable system.

2.3.2. Intraoperative

Issues of organ preservation and histocompatibility emerge as important immunologic
considerations as the donor organ and recipient are prepared for transplantation. In recent years,
there has been an increase in liver donations after cardiac death (DCD) accompanied by poor graft
survival and inferior clinical outcomes [16]. As compared to donation after brain death (DBD), DCD
requires the termination of life-sustaining therapies and confirmed cardiac arrest leading to a legal
death pronouncement before organ procurement may be conducted, leading to prolonged and variable
periods of warm ischemia [16]. Such insults lead to irreversible cellular damage to hepatocytes and
sinusoidal lining cells, alongside increased ischemic necrosis and neutrophilic infiltrate. Ischemic
cholangiopathy following DCD is the most challenging insult to resolve, since cholangiocytes (epithelial
cells of the bile duct) are terminal cells extremely sensitive to ischemia. Differential rates of ischemic
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cholangiopathy following DCD have been associated with choice of immunosuppression, and suggests
that manipulation of inflammation in the preservation period may be imperative in improving graft
survival [17].

2.3.3. Postoperative

Managing morbidity and mortality following liver transplantation, and more specifically the
clinical and surgical issues related to allorecognition following transplantation, provides yet another
large set of challenges for both clinicians and the field of transplant biology. While immunosuppressive
regimens are needed in the postoperative period to prevent acute and chronic liver rejections, it is likely
that such regimens can interfere with the progression of the primary diseases leading to end-stage
liver disease. This issue has been extensively studied in patients with autoimmune diseases who had
recurrence of their primary disease within the first decade after liver transplantation [18]. The challenge
of rapid disease progression in a compromised immune state was initially highlighted by the large
number of HCV transplant recipients acquiring infections postoperatively that progress to cirrhosis
within five years [7]. Immunosuppressive drugs are currently available for use to postoperatively
target antigen presentation; complement activation; and stimulate T-cell, B-cell, TNF-α, and many
additional pathways. While these therapies have become more selective and less toxic, the mechanisms
of action for many of these drugs remain poorly understood. For example, monoclonal antibodies
targeting the cell surface molecules CD25 and CD52 have been successful improving graft survival,
yet there is currently no way to monitor their function or their appropriate therapeutic levels [7].
Additionally, some patients that do in fact survive long after transplantation may develop complex
cardiovascular and metabolic disorders that play have a major impact on their long-term outcomes.
There is still much work remaining to develop continuous immune monitoring assays and individualize
immunosuppressive regimens to each recipient based on their multi-omic make-up [7].

3. Organ Perfusion: Generating Ex Vivo Data

3.1. Data Types in Perfusion Experiments

The development of perfusion solutions has been centered on providing metabolic support
for organs during the preservation phase prior to transplant [19]. However, there is an ongoing
opportunity for improving these solutions by defining how they impact organ metabolism, as well
as how they might affect related processes such as the inflammatory response that, secondary to
ischemia/reperfusion injury, drives further deterioration of the preserved organ [20]. Our group has
recognized the need to define, in granular detail, the impact of preservation on multiple biomolecules
using a systems approach [21,22].

Four primary levels of “omes” are the source of a majority of data in perfusion experiments:
the genome, transcriptome, proteome, and metabolome. These levels represent the central dogma
of biology, which states that information necessary for the functioning of life is stored, transcribed,
and translated before having its ultimate effect at the level of signaling proteins, structural proteins,
or enzyme-derived metabolites. Genomic data are obtained in the form of DNA, usually by polymerase
chain reaction (PCR) amplification followed by sequencing of genes of interest. Whole-genome
sequencing, historically used predominantly in microorganisms [23], will likely play an increased role
in human research in the future as technology improves and costs continue to decline [24]. The primary
sample type for the transcriptome is mRNA, usually sampled on array chips that can bind and measure
tens of thousands of known transcripts simultaneously [25]. Known proteins and enzymes of interest
typically represent the proteome, and while there exist many ways to derive data at this level, methods
such as mass spectrometry (MS) that can provide quantitative measurements are favored for multi-omic
experiments [26].

The last of these primary “omes”, the metabolome, which is particularly relevant to translational
research since it is quite closely connected to phenotype and function. Metabolomic sample types
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include carbohydrates, nucleotides, amino acids, lipids, and more, representing both key points in
common biochemical pathways as well as less focused upon intermediates. The two primary methods
at this level are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the latter of
which is usually combined with liquid chromatography (LC) or another form of separation [27]. Issues
of expense and reliability have historically caused researchers to avoid this type of data, but with
modern technology mitigating these concerns, a lack of precedent is now the primary factor hindering
the inclusion of metabolomic data in more types of biomedical research [28].

We have lumped multiple biological end-products under the umbrella of “metabolomics”, though
it should be noted that others have sub-divided this category into distinct “omes”, such as the lipidome
or phosphoproteome. Other “omes” related to the multitude of microorganisms living commensally
in the human body (e.g., the microbiome [29,30], the virome [31]) have been implicated in regulating
numerous physiological and pathological processes. Additionally, other categories of biomolecules,
such as inflammatory mediators and micro-RNAs, may be considered “omes” despite not having the
specific nomenclature. Essentially, the classification and study of “omes” is a systems biology approach
to characterize groups of relevant biological variables. The tools presented in this review can be
applied to any “ome” or other large set or sets of data, not just those included in the example scenarios.

3.2. Data Analysis in Perfusion Experiments

Data analysis represents the next major challenge in conducting organ perfusion research once
multi-omic data have been obtained. The inherent differences in the structure and dimensionality
of data obtained using a variety of methods and sample types, along with the large size of datasets
resulting from many of the methods discussed above, makes any single-level analysis or attempt at
multi-level integration a complex scenario [32]. The ultimate goal of multi-omic experiments is to be
able to examine many data types simultaneously, gaining a better understanding of mechanisms that
underlie both pathology and treatment, and then to correlate these mechanisms to the observed clinical
features and outcome. Given these broad goals and complex data, the use of quantitative methods and
systems biology approaches such as mathematical modeling is an appropriate first strategy [33]. Then,
the results and implications of these analyses can help researchers focus on more specific targets for
future studies using laboratorial or more traditional statistical methods. These approaches are being
applied with increasing frequency to fields throughout science and medicine [28], and are particularly
helpful in studies of complex networks and multiscale systems. Below, we focus on the key approaches
to analyzing these types of ex vivo-generated data, with examples from liver preservation as well as
insights into liver pathophysiology.

4. Computational Modeling: A Systems Biology Tool for Gaining Insights into Liver Disease
and Transplantation

4.1. Data Types in the Context of Liver Disease and Transplantation

“Omic” data represent an excellent example of variety, and have the potential to yield important
insights into the biology of liver disease and the impact of organ perfusion for liver transplantation.
As both computing power and the sampling methods discussed earlier in this review advance,
we expect to see exponential increases in the number of measurements in these datasets, and
resultant issues of veracity as well. If these types of measurements are integrated into future clinical
decision-making, issues of speed of acquisition could also easily arise. Finally, the methods discussed
in this review and used in the case studies containing experimental data are all able to handle
high-volume datasets.

4.2. What Is a Model?

A model is a simplified representation of some real-world entity [34]. In this general sense, the use
of models is already widespread in the fields of science and medicine. Animal and cell-line models
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provide a standardized vehicle with which to isolate and study complex conditions and systems.
More abstractly, the diagrams found throughout scientific literature, uncluttered visual depictions of
often-intangible phenomena, also meet this definition of a model. Common statistical procedures,
such as correlations and regressions, which reduce experimentally obtained data into explanatory
numbers and shapes, are models as well.

The computational models used in systems biology attempt to accomplish no more or less than the
aforementioned, more common, examples. Like all other models, they capture the essence of a process
under experimentation, but instead of using living organisms, pictures, or familiar statistical terms
to communicate their findings, computational models use the language of mathematics or computer
programming. Though proficiency in these languages is necessary to fully understand and implement
the modeling techniques presented herein, the purpose of this review is to introduce the reader to the
existence of, rationale for, and potential benefits of these models. Thus, discussions will incorporate
only the minimum degree of mathematics necessary to present concepts effectively.

4.3. Goals of Computational Modeling

By now, the rationale for using computational approaches, such as modeling, for ex vivo data
analysis in organ perfusion experiments should be apparent. Simply put, these investigations yield
results that conventional methods have trouble describing, and computational biology offers a
promising new set of tools with which key, and often non-intuitive, insights may be derived. Before
proceeding to present these methods in detail, it is prudent that their general benefits and limitations
be appreciated first.

A crucial concept is that computational tools (and the systems biologists who employ them)
do not minimize the significance or necessity of traditional reductionist methods. Computational
modeling/systems biology approaches are complementary, not alternative approaches for carrying
out biomedical research. Ideally, each approach should inspire further advances in the other in an
iterative fashion. For example, computational results may identify targets for further investigations of
specific molecular targets or pathways in the laboratory. Conversely, computational analyses may help
in the testing of potential therapies derived from simplified in vitro or in vivo laboratory experiments.

In either order, the scientific benefits of computational modeling methods are supplemented by
the increases in efficiency they provide. Computational methods are among the most cost-effective in
any field in terms of time, resources, and manpower (i.e., “electrons are cheap”).

4.4. Modeling Approaches: Data-Driven vs. Mechanistic Modeling

In any investigation, the course of discovery follows the scientific method. The analysis step
of this process, however, where data are translated into new knowledge, is far less straightforward
in multi-omic experimentation than other fields, largely due to the previously described problems
posed by the scope and scale of the data [35]. Two general approaches that can be used to help here
are data-driven and mechanistic modeling. Data-driven modeling uses primarily association-based
mathematical methods able to analyze within and among “omes” [36]. These models are statistical
and phenomenological in nature, meaning they describe what is occurring but do not attempt to
explain how or why. Data-driven modeling techniques are often better able to accept the size and
dimensionality of multi-omic datasets compared to traditional statistical techniques constrained by
parametric requirements, and the results obtained can often be combined with the scientific knowledge
of the investigator to hint at underlying mechanisms [33].

Though not discussed here, mechanistic modeling can be undertaken when the investigator feels
there is a sufficient understanding of how and why a system works (i.e., a sufficient understanding
to create an abstraction of the system being studied, while not knowing everything about how this
system works so that modeling can be used to gain novel insights). Mechanistic models are based on
mathematical abstractions of the underlying mechanisms of a system in question, often using equations
or decision rules, and may be deterministic (i.e., a simulation yields the same results when run under
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the same conditions) or stochastic (i.e., random, in which each simulation is different in some way
from others run under the same conditions) [36]. These models can be tested and refined by comparing
the predictions they generate—especially predictions regarding so-called “emergent behaviors” of the
system as a whole (i.e., “the whole is greater than the sum of the parts”)—to real-world data. Once
validated, mechanistic models have a wide range of uses, from gaining further mechanistic knowledge
at the basic science level to making clinical predictions.

Our focus in this article is on data-driven modeling, but specifically on approaches aimed at
integrating data obtained at multiple time points rather than at a single time point from many
individuals. Moreover, multi-omic studies across all fields, and especially in the setting of organ
transplantation, are still in their infancy; therefore, the case studies presented herein will primarily
employ data-driven models.

4.5. Dynamic Data-Driven Modeling Methods

Modeling methods and similar computational tools have been reviewed in detail
elsewhere [35–41]. Here, some selections are explained in more detail. Though not comprehensive,
they have been chosen to represent the wide range of available techniques. For some methods, we have
provided examples based on data (Figure 1) that were generated artificially in order to demonstrate as
clearly as possible how different trajectories of biological analytes could be visualized and interrelated
via several key computational modeling algorithms. More specifically, these data are designed to
represent variables of varying levels (high or low) and direction (increasing, decreasing, or non-linear).
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4.5.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is an example of an entry-level quantitative tool that
researchers from a variety of fields have already added to their repertoire. This method does require
most biologists and physicians to learn some additional mathematics, but the level required is quite
attainable and the wide range of potential uses makes the investment worthwhile. PCA analyzes the
covariance matrix of all measured variables to quantify how each contributes to the overall variability
of the dataset. One major use for this information is to identify relationships between and among
variables in order to separate them effectively into groups. Another is to efficiently and objectively
reduce the dimensionality of a dataset by eliminating from further investigation variables shown to
be least important to the overall information content of a time-varying, multivariate dataset [39,42].
In this way, PCA can be used as a filter for other analyses that have constraints on the number of
variables that can be input [43]. Using the same logic of dimension-reduction, PCA results can also be
used to identify variables most important to the response being measured and serve as a substitute to
traditional statistical tests of significance when the dimensionality of data renders these tests powerless.
It should be noted that there is one important caveat to this statement: PCA relies entirely on linearity,
since it is in essence simply a rotation of the data matrix; thus, PCA is most useful when the interaction
among variables is not overly nonlinear. In organ perfusion experiments, the grouping of high variable
counts with low sample sizes, due to limited supply of experimental organs, often leads to this
very situation.

There is a fairly extensive literature on the use of PCA in the setting of liver disease. An early
study by Folkerts et al. utilized PCA as well as hierarchical clustering to define key clinical, clinical
chemical, and histological parameters obtained from a cohort of nearly 200 liver disease patients in
order to segregate patient sub-group [44]. In the liver transplantation setting, Gelson et al. examined
histopathology and immunocytochemistry data on lymphocyte and cell cycle markers, as well as
flow cytometry data on circulating and intrahepatic lymphocytes obtained from with established liver
grafts. Using PCA, they determined a set of variables (lobular inflammation, portal inflammation,
interface hepatitis, and fibrosis) as key characteristics of these patients [45]. In a metabolomic study
of NAFLD in both mice and humans, PCA was utilized to suggest a series of biomarkers associated
with disease progression (e.g., creatinine and eicosanoid metabolites [46]. PCA was one of a suite of
data-driven modeling tools used in another clinical metabolomic study of acute alcoholic hepatitis to
distinguish biomarkers in patients vs. controls [47]. In a more recent study, Zhang et al. examined
circulating microRNAs in small cohorts of chronic hepatitis B and NASH patients vs. healthy controls,
and found that PCA (but not the raw data) could distinguish patient sub-groups from healthy
controls [46]. Similarly, Zhou et al. used PCA and other data-driven modeling tools to segregate
chronic hepatitis B patients based on parameters of inflammation grade, gene expression profiles,
and clinical chemistry [48]. Finally, China et al. utilized PCA to help define the potential impact
of albumin therapy on prostaglandins and other inflammation-related lipids in patients with acute
decompensation and acute-on-chronic liver failure [48].

In our group’s approach to PCA, data are first be normalized for each variable (by dividing each
value by the maximum value for that variable) in order to convert all variable levels into the same
scale (from 0 to 1) prior to performing PCA. This eliminates any artifactual effects on variance caused
by variables having different ranges of values. Then, the covariance matrix of this normalized data is
constructed and its eigenvectors and eigenvalues are calculated. Only sufficient eigenvectors to capture
a predetermined percentage of the total variance in the data are considered for further study, these
are the principal components of the dataset. From these leading components, the coefficient (weight)
associated with each variable’s contribution to that component is multiplied by that component’s
associated eigenvalue. This product represents the contribution of a given variable to the variance
accounted for by that component. An overall score for each variable is calculated by taking the sum of
its scores in each component, and represents a measure of that variable’s contribution to the overall
variance of the system. The variables with the largest scores are the ones contributing most to the
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variance of the process being studied, and are hypothesized to therefore be most important to the
underlying process being investigated. More specifically, the overall PCA score for each variable is
calculated in the following way: Pj = ∑i

∣∣ei·Wij
∣∣, where i is the index of component and j is the index

of variable. e refers to eigenvalues and Wij is the amount that the j-th variable contributes to the
i-th component.

When performed on our artificial data set (Figure 2), PCA shows that the two low variables
exhibiting directional changes (C, B) are the primary drivers, followed closely by the two high variables
that exhibit directional change (G, F). The pair of non-linear variables (H, D) is next, followed by
the non-changing pair (A, E) ranked last. Also noteworthy is that the component distribution of the
directionally changing variables compared to the non-linear variables. Whereas the PCA scores of the
former are primarily derived from Component 1 contributions, the latter scores are much more heavily
derived from Component 2, demonstrating PCA’s ability to separate variables by category.
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drivers, followed closely by the two high variables that exhibit directional change (G, F). The pair
of non-linear variables (H, D) is next, followed by the non-changing pair (A, E) ranked last. Note
the difference in component distribution between directionally changing and non-linear variables,
demonstrating PCA’s ability to separate variables by category.

4.5.2. Partial Least Squares Regression (PLS)

Unlike PCA, which may be used in single or multi-omic situations, PLS (also known as “Projection
to Latent Structures”) in this setting is applicable to the comparison of two (and only two) “omes”.
More specifically, PLS maps one predictor category of variables onto an observation category in
an effort to best quantify how the former explains the latter. The directionality of this method can
be utilized in biomarker discovery to compare “omes” downstream in the central dogma, where
physiological or pathological differences are manifest, with upstream “omes” that may contain those
differences’ underlying causes. Other factors that make PLS an appropriate tool for multi-omic studies
are its preferred applicability over similar methods to situations in which the predictor category has
highly collinear variables and contains significantly more variables than the observation category.

The method starts similarly to PCA, with the extraction of components from the predictor dataset
(M). Since PLS deals with two datasets, components are extracted from the response dataset (N) as well.
The key difference between PLS and PCA is that PCA identifies components of M that best account for
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the covariance of M, whereas PLS identifies components of M that best account for the covariance of
N. The detailed mathematics of how this occurs may also be beyond the scope of many readers and
will not be described here, but is documented extensively elsewhere [49]. An important consequence
of this difference, and one that is necessary for researchers to recognize, is that unlike PCA, PLS should
not be used to with the intent of eliminating irrelevant variables from further investigation. Rather, it
should be used to select promising variables for future study. This distinction can be thought of as
akin to strategically treating PCA as a “rule out” test and PLS as a “rule in” test.

4.5.3. Dynamic Network Analysis (DyNA)

Network modeling involves visualizing dynamic interactions among variables in the form of
networks, in which variables are network nodes and the interconnections among them are edges
(lines or directed arrow). Though network modeling is now quite pervasive, it is usually performed on
a single time point based on data from multiple individuals or from repeated experiments in animals
or cells. However, we and others have demonstrated the utility of dynamic network inference, utilizing
data obtained over time. Others have typically focused on transcriptomic analysis and subsequent
network analysis in the context of liver disease. For example, Oh et al. examined the transcriptome
of mice subjected to a high-fat diet as a model of NASH [50]. Based on eight time points obtained
over 24 weeks in these mice, they identified central nodes related to inflammatory signaling (Toll-like
receptor 2 and CD14) along with cell cycle signaling (Cyclin D1), and implicated them in the processes
of steatosis and inflammation. They also inferred a common signaling pathway (ErbB/insulin) as a
potential link among the various networks induced in this animal model of liver disease [50].

While multiple network analysis methods have been developed (see our later discussion of
Dynamic Bayesian Networks), we developed Dynamic Network Analysis (DyNA) as a bridge between
traditional statistics and mathematical modeling [22,51–57]. It combines two basic statistical measures,
t-testing and correlation, with the added dimension of time and uses a traditional node-and-link output
to create networks that can be analyzed both visually and quantitatively. This blend of approaches is
generally more accessible to researchers without any specialized quantitative training, and reveals
insights that often go unnoticed when t-testing and other forms of statistical correlation are used in
their traditional fashions.

In organ perfusion experiments, where time plays a crucial role and large numbers of variables
are often better analyzed visually, DyNA can be particularly useful. This technique, unlike PCA and
PLS, considers time points discretely, rather than considering the entire experimental time course as a
whole. While this strategy offers the advantage of higher temporal resolution, network analyses carried
out on single time points (such as comparing microarray data in control vs. experiment, or placebo
vs. treatment) suffer from being difficult to interpret due to the fact that the trajectory of the system
being studied is unaccounted for and often unknown. By creating networks for sequential time points,
or groups of time points, DyNA attempts to minimize this risk while still maintaining the benefits of a
discrete investigation.

The mathematical formation of this method is straightforward. First, time intervals are chosen
for the output networks. The total number of intervals, number of time points to include in each, and
whether adjacent intervals overlap are at the discretion of the investigator. In order to be included
in a network, a given mediator must be statistically significantly different from its baseline value
by Student’s t-test. Positive edges are created between two nodes if the value of their correlation
coefficient is greater than or equal to a preselected threshold x, and negative edges are created if the
coefficient is less than or equal to −x. Network density may be calculated utilizing the following
formula (a minor revision of that reported by Assenov et al. [58]): (Total # edges × Total # nodes)÷
(Maximum possible edges among total nodes).

When applied to our sample data (Figure 3), the DyNA algorithm links variables that exhibit
both positive (black) and negative (red) correlations in a given time interval. It is also notable that
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the variables that do not exhibit change (A and E) are correctly left unlinked to the other, changing
variables by the algorithm.
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Figure 3. DyNA using example data: The DyNA algorithm was run for two different time intervals
(0–4 h, 4–24 h) and two different correlation thresholds (0.7, 0.95). In all networks, the algorithm links
variables that exhibit both positive (black) and negative (red) correlations in a given time interval.
Variables that do not exhibit change (A and E) are correctly left unlinked to the other, changing variables
by the algorithm.

4.5.4. Dynamic Bayesian Network Inference (DyBN)

Like DyNA, DyBN is highly applicable to perfusion experiments due to the fact it is a time-based
analysis. Its node-and-edge output is similar to DyNA, but with two differences in the edges:
the inability to distinguish between positive and negative association, and variations in thickness
to account for differing strengths of association. The key difference between DyNA and DyBN is
that, instead of producing individual networks for multiple intervals, DyBN yields a single resultant
network representative of the entire experimental time course. This approach treats the system in
question more holistically, revealing its dominant patterns and participants. For more mathematically
inclined readers, the complete algorithmic strategy for DyBN uses an inhomogeneous dynamic
change-point model with a Bayesian Gaussian with score equivalence (BGe) scoring criterion, and has
been well described elsewhere [59,60].

Two important points that distinguish DyBN from DyNA and PCA must be understood. First,
this algorithm is stochastic in nature, meaning that resultant networks may vary slightly for multiple
runs of the same input data. This concern is primarily theoretical in nature. In practice, differences are
uncommon due to the high number of iterations employed. When present, these differences occur
in nodes and links that are on the cusp of inclusion requirements and therefore unlikely to be crucial
to the overall results and interpretation. Second, the dimension constraints of DyBN often limit the
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number of variables that can be to be analyzed to far below the number typically present in modern
experiments. While there is no simple formula to calculate the maximum amount, as it is related to
the number of subjects and time points, in practice it is often in the tens. When dealing with data that
include hundreds or thousands of variables, this problem could be solved by using a filtering method
(such as PCA, as described previously) to select those most appropriate for inclusion.

Dynamic Bayesian network inference results for our artificial data (Figure 4) reveal central roles
for variables with higher levels (E, F, G, and H). One interesting point concerns variable E, which is
present at a relatively high level, but with little change over time. A typical statistical analysis (such as
one-way analysis of variance) would rule out variable E as being important to the process at hand.
However, when one considers that the steady-state levels of a given molecule reflect an underlying
process of synthesis and degradation (as well as many other processes related to modification and
transport of the biomolecule), it should become apparent why variable E is a central node in in the
DyBN: in essence, the algorithms is assuming that the other variables are affecting, and are affected by,
variable E, and hence it is central. This stands in contrast to variable A, which, like variable E, also
changes little over time; however, unlike variable E, variable A is present at very low levels, implying
that this variable is truly not playing much of a role in the process. The DyBN indicates this possibility
by placing variable A as a bottom-most output node.
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Figure 4. DyBN using example data: The DyBN algorithm was performed on the example dataset,
including data from all times, resulting in a single network representing the entire time course.
This network features variables with higher levels (E, F, G, H) in central roles.

5. Case Studies of Computational Methods in the Setting of Liver Pathology and Preservation

Now that our review of relevant hepatology is complete, and “omic” data and modeling basics
have been introduced, we will use this section to discuss real-world examples of modeling. We have
included case studies exploring both ex vivo and in vivo liver investigations. Our inclusion of in vivo
work in a perfusion text is deliberate, highlighting the fact that the ultimate purpose of ex vivo
experimentation is to improve outcomes in vivo. In the case of the liver, despite its wide-ranging
future promises (which are discussed later in this review), perfusion is currently being employed in
research dealing with graft preservation for transplant. Thus, we have selected a sample of studies
that cover not just perfusion and preservation, but conditions leading to transplant and the response
to transplant as well.
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5.1. #1: Using Networks as Biomarkers [60]

5.1.1. Background

Pediatric acute liver failure (PALF) is a devastating condition that in some cases can be treated
with liver transplantation. Transplantation itself, however, has negative impacts of its own as an
irreversible procedure that subjects the child to a lifetime of immunosuppression and the risk of graft
rejection. Transplantation, especially in the setting of PALF, can be costly to the community as well if
organ allocation is suboptimal. The ability to distinguish among patients who will survive without
transplant, die despite transplant, and survive only with transplant would lead to more efficient
treatment decisions yielding improved short- and long-term outcomes.

Though most acute liver failure (ALF) research focuses on underlying causes, recent investigations
have also explored the role of the immune system in this syndrome, suggesting a role for inflammatory
dysregulation. At the basic science level, elevation of soluble interleukin-2 receptor alpha has been
observed in PALF, indicating immune system activation [61]. Clinically, PALF patients are at increased
risk for bacterial and fungal infections [62], aplastic anemia [63,64], and impaired cell-mediated and
humoral immunity [62].

5.1.2. The Problem

In this study, we measured 216 serum samples, taken from 49 PALF patients, for levels of
26 inflammatory mediators individually known to serve as biomarkers for various phases of the
inflammatory response. Prior to any modeling, an unsupervised hierarchical clustering analysis found
that these values were unable to associate with clinical outcomes. These negative initial results are in
line with the difficulty others have had identifying biomarkers in liver disease. Potential biomarkers in
this field have suffered from low specificity and reproducibility, as well as restricted applicability to
only the most severe disease states [65–67].

5.1.3. The Solution

Because the search for biomarkers involves identifying a connection between an individual
variable and an overall state, we chose to employ PCA. In this study, we created patient-specific
PCAs instead of merging data for patients with similar outcomes, which allowed us to keep the
model unbiased and retain its predictive value. The result of the patient-specific approach is a set of
scores for each variable for each patient, which we term that patient’s “inflammation barcode”. These
barcodes were then analyzed using the same unsupervised hierarchical clustering algorithm used on
the raw data. Unlike the analysis on raw data, which was unable to effectively separate patients into
groups, the analysis on inflammation barcodes separated patients into seven distinct groups. When
cross-referenced with outcomes, these groups were found to associate to some extent with different
outcomes (Figure 5).

Because PCA hinted at inflammatory signatures for different clinical outcomes, and because
the sampled variables were known to interact in inflammatory networks, we hypothesized that
the underlying mechanism responsible for the observed signatures could be altered networks of
inflammation leading to different outcomes. Therefore, we created DyBNs for each outcome group
to discern their underlying inflammatory responses. The three resultant networks (Figure 6) suggest
major differences between the responses of survivors and non-survivors. Interestingly, the network
representing patients who went on to receive liver transplants is quite similar to that of spontaneously
surviving patients. An in depth interpretation of the networks, included in our original publication [60],
shows two distinct pathways, with one leading to negative feedback-induced resolvable inflammation
and the other to unresolvable inflammation caused by an unchecked positive feedback loop. The former
pathway is dominated by interferon-gamma-inducible protein 10 (IP-10/CXCL10), and the latter by
monokine induced by gamma-interferon (MIG). These results show the potential of DyBNs to be
used both holistically as a biomarker and specifically as an identifier of central network drivers for
pharmaceutical targeting.
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Figure 6. Pediatric acute liver failure (PALF) outcome group DyBN: When performed on each
patient group (spontaneous survivors, non-survivors, transplant recipients), DyBN reveals two
distinct pathways: one leading to negative feedback-induced resolvable inflammation, and the
other to unresolvable inflammation caused by an unchecked positive feedback loop. The network
representing patients who went on to receive liver transplants is quite similar to that of spontaneously
surviving patients.
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5.2. #2: Making Sense of Metabolomics [21]

5.2.1. Background

The current standard of liver preservation, cold static preservation (CSP), in which organs are
stored under hypothermic and anoxic conditions, results in a progressive decay of organ quality.
This decay negatively impacts graft function after transplant, affecting morbidity and mortality as well
as hospital length of stay and cost [68]. One clinical application of organ perfusion research has been
to attempt to use this technology to improve graft preservation.

In this study, a liver machine perfusion (MP) preservation protocol was being tested against cold
static preservation as a control. Experimental porcine livers were preserved for 9 h at subnormothermic
temperature (21 ◦C) and perfused with a hemoglobin-based oxygen carrier solution (HBOC) through
both the hepatic artery and portal vein. Control livers were preserved at 4 ◦C. After preservation,
both sets of organs were transplanted into outbred animals, which were then followed until death
or for five days. The aim was to examine the effects of MP from a multidisciplinary perspective.
Along with clinical outcomes and markers, histological, transcriptomic, metabolomic, inflammatory,
and mitochondrial analyses were performed.

5.2.2. The Problem

The metabolomic analysis of perfusate samples included over 600 metabolites, of which 223 were
calculated to differ significantly between groups using traditional statistical methods. Differences
in certain metabolites, such as bile salts and products of branched-chain amino acid oxidation, were
interpreted based on known physiological pathways and processes. Many other differences, however,
were difficult to interpret due to inconsistencies, obscurity, or isolated findings. While this analysis
provided a wealth of data, it was clear that alternative means of interpretation would be needed to
fully take advantage of these results.

5.2.3. The Solution

Due to the comprehensive nature of this study, where a multitude of analyses were undertaken
in parallel to reveal general differences between treatment groups, PCA was selected to compare the
primary metabolomic drivers of the response to each preservation protocol in these organs.

The analysis was performed using data from three time points, and the top five drivers
were different for each preservation protocol (Table 1). The MP response appeared to be driven
by carbohydrate metabolism (ribulose, ribose, glycolate) and antioxidant defenses (oxidized
homo-glutathione). The CSP response appeared to be driven by lipid and protein breakdown
(ethanolamine, isoleucine, glycerol-3-phosphate, and cysteine) and oxygen starvation (lactate). These
findings, though non-specific, fit in well with the results from other analyses in this study, which
combine to show that MP livers benefit metabolically from proper oxygenation.

Table 1. Metabolomic PCA Comparing Machine Perfusion (MP) and Cold Static Preservation (CSP) *.

Rank CSP MP

1 Ethanolamine Ribulose
2 Isoleucine Ribose
3 Glycerol-3-Phosphate GSSG
4 Cysteine Glycolate (OH-acetate)
5 Lactate Xylonate

* Of hundreds of metabolites analyzed by PCA, top drivers in the MP response were representative of carbohydrate
metabolism (ribulose, ribose, glycolate) and antioxidant defenses (oxidized homo-glutathione). The CSP response
appeared to be driven by lipid and protein breakdown (ethanolamine, isoleucine, glycerol-3-phosphate, and cysteine)
and oxygen starvation (lactate).
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5.3. #3: A Second Look at Inflammation [22]

5.3.1. Background

In the same study as above, the inflammatory analysis was completed by comparing tissue values
of inflammatory mediators between treatment groups using traditional statistics. Some mediators
were found to be reduced with MP compared to CSP, some were unchanged, and none were elevated
(Table 2).

Table 2. Traditional Statistical Analyses of MP vs. CSP Inflammatory Data *.

Mediator Significant?
(p Value)

IFN-α 0.001
TNF-α 0.032
IFN-γ 0.022
IL-4 0.021

IL-1β <0.001
IL-12/IL-23 (p40) <0.001

IL-10 No
IL-6 No
IL-8 No

GM-CSF No

IL-1α No
IL-1RA No

IL-2 No
IL-18 No

* Two-way ANOVA on data derived from tissue samples. All variables measured were either not significantly
different, or lower in MP.

5.3.2. The Problem

Inflammation is more than single mediators acting at single time points; rather, it is a complex and
dynamic network of interactions. The traditional statistical analysis undertaken here still has merit in
that it can (indistinctly) suggest some sort of reduction in overall inflammation with MP, but it is unable
to gain any insight into the underlying dynamic networks. These networks may contain valuable
scientific information and potentially non-intuitive therapeutic targets, so obtaining information about
their structures is desirable to a wide range of researchers.

5.3.3. The Solution

First, DyBN was used on tissue and perfusate data from all time points to identify the dynamic
inflammatory network characterizing the entire experimental time course. Then, DyNA was utilized
in order to define the time-dependent progression of these inflammation networks in a more granular
fashion over the period of preservation, allowing for a higher resolution depiction of the inflammatory
response over time. In addition to evaluating the networks from different temporal perspectives,
the combined use of these two methods also took advantage of other key differences: DyBN, via its
ability to map self-feedback, can identify potential central nodes, and DyNA is able to differentiate
whether interactions are positive or negative.

Network analyses from both sample types suggested an NLRP3 inflammasome-regulated
response in both treatment groups. These results were consistent with prior clinical, biochemical,
and histological findings, adding further support to the strength of modeling techniques.
Inflammasomes are a subset of nucleotide-binding oligomerization domain receptors (NLRs) that,
when activated, initiate an IL-1β response via caspase-1 activation [69,70]. Recent research has linked
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inflammasomes to multiple pathologies, including in the liver [71], and therefore these compounds
have emerged as a potential therapeutic target for a variety of diseases [72].

In addition to capturing known interactions, these analyses were also able to identify a potential,
novel point in the inflammatory response where MP exerts its effects. As compared to CSP, both DyBN
and DyNA suggested a reduced role of IL-18 (whose active form is produced via the NLRP3
inflammasome) and increased role of IL-1RA (an antagonist of IL-1β, which in turn is also produced
secondary to the activation of the NLRP3 inflammasome) with MP, along with increased liver damage
with CSP. DyNA also suggested divergent progression of responses over the 9 h preservation time,
with CSP leading to a stable pattern of IL-18-induced liver damage and MP leading to a resolution of
the pro-inflammatory response.

Perhaps the most noteworthy achievement of this analysis was its ability to suggest IL-18 and
IL-1RA as key mediators in tissue networks, despite their lack of a statistically significant difference
between treatment groups using traditional statistics (Table 3). Perfusate networks also identify IL-18
as a key mediator despite its lack of a difference. These findings highlight the advantages alternative
methods can often have over traditional statistics.

Table 3. Traditional Statistical Analyses of IL-18 and IL-1RA in MP vs. CSP *.

Sample Type Cytokine Protocol Mean ± SEM, pg/mL p Value

Perfusate
IL-18

CSP 738 ± 111
0.299MP 932 ± 155

IL-1RA
CSP 230 ± 34

0.005MP 7317 ± 1953

Tissue
IL-18

CSP 1600 ± 153
0.839MP 1544 ± 243

IL-1RA
CSP 2478 ± 270

0.539MP 2733 ± 324

* Two-way analysis of variance (ANOVA) on data derived from tissue and perfusate samples. Despite the lack of
statistically significant differences in three of four traditional analyses, DyNA and DyBN were able to identify these
two variables as key determinants in the overall inflammatory response to organ preservation.

6. Implications and Future Directions

6.1. Implications for Basic Science

Computational biology tools have the potential to greatly enhance our understanding of basic
science principles and relationships. The use of the data-driven approaches described above provides a
framework for the identification of novel mechanistic constructs. This, in turn, allows for more
traditionally focused experimental design, furthering the field through enhanced foundational
knowledge and the development of more robust biological models. An excellent emerging example
of this sort of data utilization and modeling is the field of epigenetic transcriptional control of
gene expression.

Epigenetic regulation encompasses a broad variety of post-translational modifications to
chromatin-associated proteins as well as distinct chemical modifications to DNA that provide heritable,
non-genetic modes of gene regulation. This occurs via a variety of different mechanisms, with multiple
contributions from distinct metabolic, cell signaling, and microenvironmental processes. The end
result of epigenetic control is an integration of these diverse inputs into an activating or silencing
event at the transcriptional level, leading to phenotypic changes [73]. This is a complex, multifactorial
process ideally suited to both top-down and bottom-up approaches in computational biology.

It is becoming increasingly apparent that perturbations in normal metabolic processes lead to
alterations in epigenetic regulation. This may happen via alterations in metabolic intermediate pools
from central metabolism as well as via the production of reactive oxygen and nitrogen species involved
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in inflammatory or cell damage pathways [74]. The expanded use of large-scale metabolomic profiling
is starting to allow researchers to interrogate metabolic responses to cellular damage mediated by
numerous disease states, including traumatic injury, malignancy, and in post-transplant scenarios.
This, coupled with advances in genome-wide mapping of epigenetic marks via techniques such as
combined chromatin immunoprecipitation and sequencing (ChIP-seq [75]), enables the development of
large datasets encompassing metabolic, epigenetic, and transcriptional events in experimental systems.
The machine perfusion studies described in this review present an ideal model for exploring these
relationships further, as they enable the straightforward harvest of biological tissue in a controlled
experimental environment.

A conceptual model demonstrating the potential basic science applications of this would be
as follows. In the routine preservation vs. machine perfused explanted liver studies, the data
collected has already included transcriptional profiling, metabolic profiling, and functional profiling
(at the organ biology level). Adding additional epigenetic profiling through large data approaches,
such as mass spectrometry of isolated histones or ChIP-seq for genome-wide epigenetic landscape
information, would enable the use of several of the systems biological approaches previously described.
A PLS/PCA-based approach could be utilized either to identify metabolic covariance contributing
to epigenetic alteration. This could then allow the specific narrowing of research efforts to focus on
individual metabolic pathways contributing most heavily to epigenetic regulatory processes. In turn,
the net effect of these epigenetic pathways on gene expression at both the transcriptional and proteomic
level could be assayed through additional data-driven approaches, for example the analyses of dynamic
networks described above, ultimately leading to novel understanding of the dynamic relationships
governing metabolism and its effects on gene expression and graft performance.

At the same time, work is being done to identify parameters that govern epigenetic transcriptional
responses that would contribute to mechanistic modeling approaches. Recent work by Bintu et al. [74]
demonstrated that individual epigenetic marks function with different kinetics, and provided a
framework for understanding epigenetic signaling as a series of graded responses that provides for
both memory and plasticity. Critically, this establishes a platform for synthesizing experimental models
of epigenetic responses that can be expanded upon as the factors governing epigenetic mechanisms
become clearer.

6.2. Implications for Translational Science

Using current and future basic science results, derived from both quantitative and traditional
methods, computational biology tools could help to bridge the gap between laboratory and clinic.
Pharmaceutical development, currently a sluggish process riddled with failures, could be particularly
impacted [76]. As pathways are better defined with the help of data-driven approaches and eventually
modeled mechanistically, improved genome-scale metabolic models (GEMs) would provide the perfect
setting for rational drug design. Moreover, this research could include in silico clinical trials to better
screen potential drugs for further investment.

More immediately, datasets obtained from perfusion experiments on organs afflicted by diseases of
interest could be analyzed quantitatively to search for novel biomarkers of those diseases. The increased
strength of quantitative tools, combined with improved data clarity from organs in isolation, would
likely lead to a higher quantity and quality of results than traditional investigations. These diseased
organs could also be used to begin to map the “omic” signatures of the different pathologies, which
would help in the creation of more accurate disease-, organ-, and patient-specific models for a variety
of future uses.

6.3. Implications for Clinical Science

At the clinical level, the most immediate application of computational biology tools for ex
vivo data analysis is, not surprisingly, in the field of transplantation. As seen in the case studies,
investigations of this type are already underway in an effort to develop improved organ preservation
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protocols, technologies, and solutions. While current research focuses on the responses of organs to
preservation itself, an attainable short-term goal would be to begin to predict transplant outcomes
based on these responses. Given the plethora of potential biomarkers available, the continued use
of quantitative tools will likely play a key role in this effort. Eventually, standardized tests could be
developed to determine whether to transplant or discard donor organs of borderline quality.

Outside the field of transplantation, leveraging advances in preservation to create stable ex vivo
environments for the study of organs in isolation could have widespread use. Investigators into a
variety of diseases would enjoy the ability to sample, image, and test interventions on organs in a
laboratory far more extensively than possible on patients in a hospital. Though availability would
certainly be limited, the very diseases of interest here are often those that preclude transplantation
currently, meaning that discarded organs could supply this work. In the long term, as preservation
continues to improve and diseases that currently require organs to be discarded are cured or mitigated,
donor grafts unfit for transplantation could be treated ex vivo until sufficiently healthy for implantation.

All of these potential approaches require significant infrastructure investments in order to be
implemented on any meaningful scale. One strategy to achieve this has been to design “Organ
Intensive Care Units”. These laboratories, already in the planning and implementation stages at certain
institutions, house numerous preservation systems, along with the necessary technology and staffing
to track organ function and perform all desired sampling and testing. We suggest that incorporating
extensive “omic” analyses with computational modeling in this Organ Intensive Care setting could be
transformative for the transplantation field, and look forward to participating in that endeavor.
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