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Abstract 

Computational Design of Optimal Bimetallic Nanoparticles: Bridging Stability with 

Adsorption 

 

James Robert Dean, PhD 

 

University of Pittsburgh, 2020 

 

 

 

 

In the 20th century, advancements in computational power and chemical theory 

revolutionized catalyst discovery. Now in the 21st century, machine learning techniques have 

started making their way into the toolbox of computational chemistry, accelerating material design 

and discovery. 

In this dissertation, we take a two-pronged approach to advance the current state-of-the-art 

when it comes to rational catalyst design. We begin by illuminating the fundamental physical 

properties relevant to the adsorption of small molecules to nanoparticles, arriving at a set of 

universal adsorption descriptors with the use of Density-Functional Theory calculations and 

machine learning. We then develop CE Expansion, a new open-source genetic algorithm for the 

rapid optimization of the bimetallic mixing behavior in nanoparticles of any size, shape, or 

composition, and use this to create the MetalNanoDB, a database of over 5,400 low-energy 

nanoparticles. Finally, we bring together these two approaches, and demonstrate a new workflow 

for the high-throughput screening of potential nanocatalysts for their physical properties, targeting 

CO2 adsorption as a proof-of-concept (relevant to mitigating the greenhouse effect). 

Overall, this work accelerates catalyst design by developing tools that rapidly and 

accurately model bimetallic nanocatalysts, and efficiently sieve the tremendously large 

nanomaterials space for targeted catalytic applications. 
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1.0 Introduction 

The rational design of new catalysts has fascinated scientists for the better part of the last 

century. This was motivated in part by the extremely labor-intense, oftentimes serendipitous 

process of catalyst discovery in the early 20th century1, 2, which was exemplified by the history 

surrounding the development of the Haber-Bosch process. The first steps toward the high-pressure 

catalytic synthesis of ammonia were taken by Walther Nernst3, 4 and improved catalysts were later 

developed by Fritz Haber, leading to his 1918 Nobel Prize in Chemistry5. Following this effort, 

further work was performed by Carl Bosch and Alwin Mittasch4, which focused on the refinement 

of ammonia synthesis into an industrially-viable process. In all, over 2,500 catalysts would be 

tested across 6,500 experiments6, and the innovations this work yielded in high-pressure reaction 

engineering would result in Bosch being awarded the 1931 Nobel Prize in Chemistry5. 

In the mid-20th century, advancements in theoretical chemistry, such as DFT7-9 and HF10 

coincided with the onset of a revolution in computer hardware famously described by Moore’s 

Law11. The attention of chemists immediately went to features relevant to catalysis: in 1975, one 

of the first applications of DFT was an investigation by Kohn – whose Kohn-Sham equations12 

formed the foundations of DFT and led to his 1998 Nobel Prize in Chemistry – regarding 

chemisorption to metal surfaces13. Using DFT, chemists could now investigate reactions and 

catalysts without needing experiment, and thus it found applications in a wide range of areas 

including transition-metal complexes14, 15, the rationalization of catalyst behavior16, 17, the study of 

zeolite structure and reactivity18, 19, and the prediction of reaction pathways20. As a result of these 

advancements, catalysts and reactions could be screened in-silico before resource-intensive, time-

consuming experiments were conducted. Thus, this allowed limited resources to be targeted 
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toward systems which had a high probability of working – certainly a long way from Haber’s 

characterization of over 2,500 potential catalysts by hand. 

And now, in the 21st century, machine learning has taken the stage as a young and rapidly-

growing field21. Already, this area has made a significant impact on theoretical chemistry, just as 

the 20th century’s advancements in hardware and theory accelerated experimental chemistry22. A 

major focus has been in the development of models which avoid computationally-expensive 

methods such as DFT, particularly for the identification of new catalysts. In adsorption alone, the 

last decade has brought with it a flurry of impactful work. In 2010, a new model connecting the 

BE of CO to the structure of Au NPs was developed 23, and later on the GCN model connected the 

BE of several adsorbates to the geometry of surface binding sites 4. In 2018, Roling et al advanced 

this idea, incorporating further energetic terms describing a surface site’s stability into a predictive 

model of adsorption 2. Finally in 2020, we released a new universal model of adsorption to NPs of 

any size or shape, which was much more accurate than the other linear models that had come 

before it24. 

1.1 Machine Learning Meets Computational Chemistry 

Any discussion of machine learning’s impact on computational chemistry would be remis 

without a word on the impact neural networks have had. In 1997, neural networks were first applied 

to estimate electronic correlation in atoms and diatomic systems25, in addition to representing the 

relatively simple potential energy surfaces of small systems26. Later, in 2007, a neural network 

was used to predict DFT energy as a function of atomic position in bulk Si27. The key impact of 

this work is that it also delivered so-called symmetry functions, a new representation of atomic 
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structure which now allowed neural network-based atomic potentials to be transferrable to other 

systems. It is also worth pointing out that both of these networks were trained years before AlexNet 

(a deep CNN which displayed exceptional accuracy in image classification) put the power of 

modern neural network techniques front-and-center in the public imagination in 201228. 

In 2017, ANI-1 was released. This method was a ground-breaking neural network-based 

approach to computational chemistry, delivering energetics with the accuracy of DFT at the 

computational expense of a forcefield29. As a result of this success, neural network based potentials 

have become relatively popular to describe chemical interaction – in 2019 alone, the ANN DFT 

functional was introduced30, the EANN was developed for molecular dynamics31, a CNN was 

trained to predict binding to metal surfaces 32, and a deep neural network was trained to directly 

predict a molecule’s wavefunction33. And even now, unabated by 2020’s numerous challenges, 

machine learning continues to take the world of computational chemistry by storm: the 

wavefunction predictions of Schütt et al33 have been improved and packaged as a new model called 

SchNOrb34, the EANN was successfully applied to the prediction of adsorption energetics35, and 

a new GCNN-based approach for the prediction of NMR chemical shifts was developed36. Yet 

despite this continued attention, there is still much fruitful research to be had. Key questions 

currently are feature selection, finding effective molecular representation schemes, and the 

development of large, high-quality training sets26. 

This need for large datasets has not been un-noticed, and has led to many different public 

databases including the OQMD37, 38, Materials Project39, MetalNanoDB24, Catalysis Hub40, and 

the NIST CCCBDB41. This availability of data has been a critical step in the development of 

chemistry-focused machine learning, so much that it is a major thrust of the Materials Genome 

Initiative, a US-backed effort to develop the next generation of chemical research techniques42. 
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In addition to neural networks, a wealth of other machine learning techniques has been 

applied to chemical problems. In the late 1960’s, DENDRAL, the first expert system – an 

algorithm designed to mimic a human expert’s decision-making process – to be developed for 

chemical problems successfully predicted several chemical structures from mass spectrometry 

data43. Despite their age and complexity compared to other machine learning techniques, expert 

systems still find occasional use in chemistry problems44, and one was even proposed in 2014 for 

the prediction of supramolecular structures45. 

Random forests are also quite popular in addressing the complex problems found in 

chemical modeling. Although conventionally viewed as a classification algorithm, they have 

enjoyed great success in both regression and classification roles. Random forests have been used 

to detect food adulterants based on spectroscopic data46, to predict sites in DNA which can undergo 

citrullination47, to model the chemical composition of the atmosphere48, and even to predict 

fundamental molecular properties such as solubility49. Success has particularly been found by the 

medicinal chemistry sector, who have employed random forests to aid drug discovery by 

predicting QSARs50, 51 and other key pharmaceutical properties52-55. 

1.2 Ab-Initio Structure Prediction 

The ab-initio prediction of chemical structure is a challenging and constantly-evolving 

field. In this area, much work in the latter half of the 20th century went into crystal structure 

prediction37, 38, 56-61, a longstanding goal of materials science62. One particularly effective 

algorithm in this area has been USPEX 59, which has yielded a plethora of discoveries including 

new high-pressure crystals of NaCl63 and Al2O3
64, the prediction of a high-pressure, high-
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temperature methane phase diagram to rationalize phenomena observed on Uranus and Neptune65, 

and evidence for a new crystal structure of (Mg,Fe)SiO3 within the conditions present in the Earth’s 

crust66, 67. USPEX is a GA typically parameterized by DFT calculations (but can interface with 

less-expensive methods), and optimizes a crystal structure’s cell dimensions and atomic positions.  

A significant amount of recent attention has also gone into the prediction of NP structure. 

This has resulted in a wide range of new techniques entering the computational chemistry toolbox 

in recent years, including those which globally optimize the NP structure68, 69, those which predict 

the trend in segregation behavior70-74, and those which predict chemical-ordering75 – that is, the 

distribution of the elements within a NP.  

Many of these approaches utilize GA-based techniques for their structural optimization. 

Moreover, in general GAs are powerful optimization tools which lend themselves well into the 

types of high-dimensional optimization problems found in chemistry76. This has resulted in their 

widespread adoption in a variety of chemical problems including mass spectrometry77, 

spectroscopy78, 79, computational geometry optimization80, drug design81, and in chemical 

engineering problems such as kinetics82, reactor engineering83-85, process control86, 87, and 

transport88, 89. 

Because GAs have performed so well for so many other problems, as part of this thesis we 

developed our own GA for NP chemical order optimization, CE Expansion75. This algorithm 

(which is explained in more detail in Section 4.0, Rapid Prediction of Bimetallic Mixing Behavior 

at the Nanoscale) is parameterized by the BCM of NP stability90, which is a highly accurate 

description of NP CE. Leveraging this tool, even a typical desktop computer can rapidly screen 

through millions of structures to optimize a NP’s chemical ordering. Moreover, we have even 

shown that the predicted chemical ordering is exceedingly close to the one that is expected in 
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experiments – and thus has advanced the state of the art by providing a tool for the rapid generation 

of improved model NP systems for further computational study. 

1.3  Tooling for Rational Catalyst Design 

The advancements we have outlined so far all share a common thread: abstraction. 

Specifically, abstraction to a simpler (or at least, faster to solve) problem. In the 20th century, 

theoretical chemistry abstracted lab work onto the computer, which allowed the limited resources 

of an experimental lab to be better targeted. In the 21st century, machine learning has begun to do 

the same for computational chemistry: screening chemicals in a computationally-efficient manner, 

to better utilize the limited computational resources available.  

These improved techniques have resulted in significant attention being given to the so-

called rational design of catalysts. This design paradigm stresses the importance of understanding 

the fundamental physical properties of catalysts, and their relationship with catalytic activity91. 

Given this understanding, the goal is to tune a catalyst’s physical properties such that it is driven 

to a maximum catalytic activity. 

The objective of this dissertation is to provide an improved set of tools for the rational 

design of novel catalysts. Due to its longstanding92 relevance as a known greenhouse gas, which 

has led to no shortage of research in the literature93-108, for this purpose we focus on CO2. Part of 

our justification is that CO2 conversion is a common subject of study in the field of rational catalyst 

design109-111, and thus our contributions have the potential for a wide impact. Moreover, CO2 is a 

molecule the properties of which make it very amenable to computational study. Namely, its small 

size makes it tractable to investigate via DFT, yet it is still complex-enough to bind to a potential 
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catalyst via multiple atoms. This complexity in its structure also leads to a convenient way to 

visually infer whether it has received electron density: upon receiving electron density, its bond 

angle decreases112, 113. 

 We begin by building up an understanding of properties relevant to CO2 adsorption in 

Section 2.0 (Designing Copper-Based Bimetallic Nanoparticles for CO2 Activation). Specifically, 

we identify the importance of properties enabling a transfer of charge to CO2. This leads to our 

development of the Δ𝐼𝑃 descriptor, which relates the IP of a binding site atom and its neighbors. 

Following this in Section 3.0 (Unfolding Adsorption on Metal Nanoparticles: Connecting Stability 

with Catalysis), we develop a universal model of small-molecule adsorption to NPs and surfaces 

of any size, shape, or composition. Moreover, we note a clear enhancement in performance 

compared to other contemporary predictive models of adsorption. Also in this chapter, we develop 

two key descriptors: CElocal and MADs. These descriptors, which relate to the stability of the 

binding site and its intrinsic tendency to bind with the adsorbate, are specifically what enable this 

new model to perform so well. 

Next in Section 4.0 (Rapid Prediction of Bimetallic Mixing Behavior at the Nanoscale), 

we create CE Expansion, a GA which is able to rapidly optimize any arbitrary NP chemical 

ordering. After demonstrating its efficiency at quickly identifying low-energy NP chemical 

orderings, and even making direct comparison to an experimentally synthesized Fe6569Pt16627 NP 

whose exact structure is known with atomic precision114, we use CE Expansion to optimize an 

initial set of 18 NP structures. These NPs come from all monometallic and bimetallic systems of 

Cu, Ag, Au, Pd, and Pt. To facilitate the systematic, mass screening of all possible binding sites 

on these NPs, we begin Section 5.0 (High-Throughput Screening of Bimetallic Nanoparticles for 

CO2 Adsorption) by developing AutoAdsorbatePlacement. This code consists of a hashing strategy 
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for the automated detection of unique binding sites (based on CElocal), as well as the automated 

placement of molecules in pre-adsorbed (and in the case of CO2, pre-activated) positions. Overall, 

this results in a database of over 660 unique CO2 BEs, which we intend to make public to facilitate 

further work on this subject. 

Finally, combining this dataset with the Δ𝐼𝑃, CElocal, and MADs descriptors for adsorption 

we identified in Sections 2.0 and 3.0, we train several machine learning models for the rapid 

prediction of CO2 adsorption. We then use the best model, a random forest, to screen over 46,000 

binding sites, as a proof-of-concept of the workflow developed in this study. Finally, our random 

forest is used to visualize and investigate a hypothetical chemical space defined by our three 

descriptors. 

In the course of this dissertation, we sought to accelerate materials discovery by producing 

a universal set of tools relevant to materials screening. We have accomplished this goal by I) 

identifying tabulated or easy-to-calculate universal adsorption descriptors in Sections 2.0, 3.0, and 

5.0, II) developing and releasing the open-source GA, CE Expansion, leading to the 

MetalNanoDB, a publicly-accessible database of 5,454 unique, low-energy NP structures in 

Section 4.0, III) creating AutoAdsorbatePlacement, an algorithm for the automated, systematic 

identification of potential binding sites and the placement of adsorbates in Section 5.0, and finally 

IV) tying all of the prior work together to rapidly screen over 46,000 binding sites and explore a 

hypothetical chemical space of NP catalysts in Section 5.0. In short, as a result of this dissertation’s 

many contributions to nanocatalyst modeling, we have demonstrated steps towards advancing the 

current state-of-the-art in rational catalyst design. 
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2.0 Designing Copper-Based Bimetallic Nanoparticles for CO2 Activation 

The content of this chapter is adapted from Dean, J.; Yang, Y.; Austin, N.; Veser, G.; 

Mpourmpakis, G. “Design of Copper-Based Bimetallic Nanoparticles for Carbon Dioxide 

Adsorption and Activation.” ChemSusChem 2018, 11 (7) 1169-1179. 

We begin this work by studying the activation of CO2, a well-known greenhouse gas115. 

Doped-Cu NPs for this purpose, as although monometallic Cu poorly activates CO2
116, prior work 

has shown that doping Cu NPs with heterometals can facilitate the activation of CO2
101, 108. Thus, 

in this section we investigate the effects of doping Cu NPs with a variety of d-block metals, in 

order to better-understand the fundamental materials properties relevant to CO2 adsorption and 

activation. 

2.1 Computational Methodology 

All calculations were performed via the Quickstep algorithm117 as implemented in CP2K118 

using the PBE119 functional in conjunction with the GTH120 pseudopotentials and a 500 Ry cutoff, 

and the DZVP basis sets by VandeVondele and Hutter121. In order to account for dispersion 

interactions, the DFT-D3 correction by Grimme122 was used. The geometry of the studied NPs was 

optimized in non-periodic 30×30×30 Å3 cells until forces lower than 0.02 
eV

Å
 were achieved, with 

a criterion of 10-7 for SCF convergence. Vibrational analysis calculations were performed to verify 

that optimized structures were at an energetic minimum. Charges were calculated using the Bader 

analysis123. 
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We accounted for an icosahedral Cu55 NP, where we doped a single surface site at a time 

with a hetero-metal M. Due to the NP’s symmetry, only two unique surface doping sites exist: a 

CN 6 site, and a CN 8 site (Figure 2.1). 

 

 

 

 

Figure 2.1: (a) Geometry of an icosahedral 55-atom NP with (b) unique surface atoms highlighted as orange 

for CN=6 and blue for CN=8. 

 

 

For every species Cu54M with M=Au, Mn, Mo, Ni, Pd, Rh, Ru, Sc, V, Zn, and Zr, two NPs 

were investigated: one with a dopant in the CN6 and one with the dopant in the CN8 position. The 

dopants (M) were randomly selected to span over different rows and columns of transition metals, 

in order to capture the presence (or lack) of any periodic trends in their CO2 adsorption response. 

The segregation energies of each NP were calculated using Equation 2.1. In this case, a negative 

segregation energy is indicative of a dopant preferentially occupying a surface site.  

Eseg = ECu54M (surface) − ECu54M (core) 2.1 

Additionally, we calculated the BE of CO2 on the catalysts under different adsorption 

configurations by comparing the total electronic energy of the Cu54M-CO2 complex with the 

energies of the infinitely separated Cu54M and CO2 systems using Equation 2.2. 

Ebind = ECu54M−𝐶𝑂2
− ECu54M − ECO2

 2.2 
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In order to study chemisorption, two initial configurations were chosen for study: CO2 with 

the carbon closest and the oxygens equidistant to the dopant (Figure 2.2 (a)) and CO2 parallel to 

the surface of the NP with oxygen closest to the dopant (Figure 2.2 (b)). In both cases, CO2 was 

initially located 2Å away from the NP. Physisorption was studied with two initial configurations 

of CO2: CO2 being approximately 4.5Å away from the NP, interacting with its carbon atom (Figure 

2.2 (c)) and with one of the oxygen atoms (Figure 2.2 (d)).  

 

 

 
 

Figure 2.2: Various (initial) adsorption configurations tested on the doped Cu54M NPs, where M represents the 

chosen dopant located in this case in the CN=6 position. (a) and (b) represent two chemisorption configurations, 

with CO2 2Å away from the NP, interacting with carbon and oxygen atoms, respectively, on the dopant site. (c) 

and (d) represent two physisorption configurations with CO2 being 4.5Å away from the NP and interacting 

with its carbon and oxygen atom, respectively. 

2.2 Experimental Methodology 

All experimental work in this study was performed by Yahui Yang in the lab of Prof. Veser 

as part of a collaboration with the computational lab of Prof. Mpourmpakis. 
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2.2.1 Catalyst Preparation 

Based on the computational results (see ‘Results and Discussion’ below), CuZr was chosen 

for experimental validation of the computational predictions. Synthesis of a mixed CuZr catalyst 

system proved challenging due to the tendency of this system to phase segregate, and the final 

catalyst for the present studies was synthesized by a simple wet-impregnation approach despite the 

comparatively low degree of control over the resulting material (which was hence thoroughly 

characterized before further study, see below).  

Briefly, for a typical bimetallic catalyst with 30wt% combined metal loading (equimolar 

amount of Cu and Zr), 195 mg of Cu(NO3)2·2.5H2O (> 99.99%, Sigma Aldrich) and 196 mg ZrCl4 

(> 99.5%, Alfa Aesar) were dissolved in ethanol (1 mL, 200 proof). 300 mg commercial SiC (> 

99%, Sigma Aldrich) powder as support material was added to the solution. After magnetic stirring 

at room temperature for 2 hours, the mixture was dried overnight at 363 K in a vacuum oven. The 

resulting solid cake was grinded and then calcined in air (0.2 SLM) at 773 K for 3 hours. The 

weight loading of the resulting catalyst was verified via EDS which showed 11.21 wt% Cu and 

19.65 wt% Zr. As a reference, Cu/SiC (15.45 wt% Cu) and ZrO2/SiC (17.16 wt% Zr) were also 

synthesized by the same approach. 

2.2.2 Sample Characterization 

The catalyst was characterized via XRD, XPS, HRTEM and STEM after reduction in H2 

at 523 K for 1 hour prior to any characterization. 

XRD Analysis: The sample crystal structures were characterized by Bruker D8 X-ray 

Diffraction system at 40 kV and 40 mA with Cu Kα radiation (λ = 1.5418 Å). The XRD patterns 
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were recorded from 20o to 80o (2) with a scan speed of 0.3 second/step. The phases were identified 

using the JCPDS database. 

XPS Analysis: XPS was performed using a Thermo ESCALAB 250Xi. Survey and high 

resolution spectra were collected with a pass energy of 200 eV and 50 eV, respectively. All XPS 

spectra were measured with a 650 µm X-ray spot size.  

Electron Microscopy: HRTEM and STEM characterization were performed using a JEOL 

JEM-2100F equipped with Oxford X-Max 80TLE EDS detector operating at 200 kV. The 

measurement of d-spacing from HRTEM images was done manually using ImageJ software.  

2.2.3 CO2 Temperature Programmed Desorption 

CO2 TPD experiments were performed at ambient pressure using a packed-bed quartz 

reactor connected to a mass spectrometer (Pfeiffer Vacuum Quadstar). 300 mg catalyst was used 

for each CO2 TPD experiment. Prior to the adsorption of CO2, the catalysts were reduced in H2 at 

523 K for 1 hour and then heated in a He stream at 773 K for 1 hour to clean the surface from any 

residual adsorbed gases. After cooling to room temperature, the catalyst was saturated with CO2 

(15 SCCM of 20vol% CO2 in He), and then flushed with He (25 SCCM) to remove any 

physisorbed CO2. The TPD experiment was then started with a heating ramp of 20 K/min under 

He flow (25 SCCM), and the desorbed CO2 was monitored by mass spectrometry.  
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2.3 Results and Discussion 

2.3.1 Identification of Physical Properties Affecting CO2 Binding Strength 

As we are interested in studying the effect of metal dopants in Cu NPs on CO2 adsorption, 

we primarily focus on the dopant’s preference to occupy a surface site on the NP. Therefore, 

potential bimetallic NPs were chosen on the basis of having negative segregation energy on either 

CN=6 or CN=8. The calculated segregation energies are presented in Figure 2.3. Our calculated 

dopant segregation energies are qualitatively consistent with those tabulated by Ruban et al124 on 

periodic metal surfaces, which indicated favorable segregation for Cu alloys containing Zr, Au, 

and Pd, as well as favorable antisegregation for Cu alloys containing Ni, Mn, Rh, Ru, and V. In 

the case of Mo, Ruban and coworkers indicated a moderate antisegregation behavior, which we 

indeed identify as a borderline case, with a negative segregation energy observed at a CN 6 site, 

and a positive (i.e. antisegregation) at a CN 8 site. In accordance with this (segregation energy) 

selection criterion (results in Figure 2.3), we chose Au, Mo, Pd, Sc, Zn, and Zr as potential dopants 

to investigate the CO2 adsorption. In addition, the monometallic Cu55 case was studied, to provide 

a baseline for which the CO2 adsorption on the different metal dopants of the Cu-based NP could 

be compared. 
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Figure 2.3: Segregation energies for candidate M dopants on Cu54M NPs (M = Au, Mn, Mo, Ni, Pd, Rh, Ru, Sc, 

V, Zn and Zr), calculated using Equation 2.1. The inset picture demonstrates the different surface coordination 

of a Ih 55-atom NP colored in consistency with the chart’s legend (CN=6: orange and CN=8: blue). 

 

 

After selecting the dopants with favorable surface segregation, we performed a series of 

calculations to determine whether CO2 preferentially physisorbs or chemisorbs to the adsorption 

site on the NP. The most favorable adsorption configuration is shown in Table 2.1. In the case of 

favorable physisorption, BEs ranging from -0.10 to -0.17 eV were observed. In the case of 

favorable chemisorption, BEs ranging from -1.26 to -2.00 eV were observed. In all cases of 

chemisorption, CO2 adsorbs more favorably in a bent configuration with one oxygen pointed away 

from the surface.  

Our physisorption energies are comparable to those of Ko et al125, who indicated that in the 

case of physisorption on periodic metal surfaces the interactions between any of their studied metal 

surfaces and CO2 were relatively weak, with BEs on the order of -0.3 eV regardless of the metal 

surface. The quantitative difference between Ko’s calculated energies and ours (~0.15eV) can be 

attributed to an intrinsic difference between their systems and our own: their systems were periodic 
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metal surfaces, and our systems are metal NPs. Because physisorption is dominated by relatively 

weak dispersion forces, we can therefore expect changes in the adsorption behavior based on 

differences in the CN and morphology between these two systems.  

 

 
Table 2.1: CO2 BEs for several Cu54M NPs (M=Au, Cu, Mo, Pd, Sc, Zn, or Zr), calculated using Equation 2.2. 

In the case of Cu55, the “dopant CN” refers to the CN of the monometallic binding sites as shown in Figure 2.1. 

 

Species Dopant CN BE (eV) 

Cu55 6 -0.15 

Cu54Au 6 -0.17 

Cu54Mo 6 -1.26 

Cu54Pd 6 -0.09 

Cu54Sc 6 -1.43 

Cu54Zn 6 -0.14 

Cu54Zr 6 -1.62 

Cu55 8 -0.10 

Cu54Au 8 -0.17 

Cu54Mo 8 -1.71 

Cu54Pd 8 -0.11 

Cu54Sc 8 -1.55 

Cu54Zn 8 -0.16 

Cu54Zr 8 -2.00 

 

 

 

Since charge transfer and CO2 BE are directly related126, we calculated the charge 

transferred to CO2 when adsorbed on the NPs (Figure 2.4). We observe stronger binding when 

more charge is transferred to CO2, in agreement with previous computational studies101. The results 

of Figure 2.4 show a very clear separation between the two regimes, physisorption and 

chemisorption. Physisorption is characterized by weak binding and little to no charge transfer to 

CO2, whereas, chemisorption occurs when electron density close to one electron is transferred to 

CO2. 
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Figure 2.4: BE of CO2 on Cu54M vs. charge transfer to CO2. The inset pictures demonstrate the two adsorption 

regimes: physisorption (example of Cu54Au) and chemisorption (example of Cu54Zr). 

 

 

 

Alongside the more favorable binding resulting from negative charge being transferred to 

CO2, we also observe a decrease in bond angle from 180o to approximately 120o as shown in Figure 

2.5. This change in bond angle can be explained by referring to a Walsh diagram of CO2
127, which 

plots the relative energies of CO2’s molecular orbitals versus the O-C-O bond angle. When CO2 

receives an electron, the geometry of the molecule changes to minimize the energy of the CO2
-
 

HOMO. This CO2 bending has been predicted to be at an angle of approximately 120o on the Walsh 

diagram, in agreement with our calculations.  
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Figure 2.5: Observed change in the CO2 bond angle (180o → 126o) as a result of chemisorption to Cu54M (in 

this case M=Zr), as well as illustrations of the frontier molecular orbitals of all involved species.  

 

 

 

As CO2 gains charge in the case of favorable chemisorption, it is therefore relevant to 

examine the charges localized on the NP, with a focus specifically on the binding (dopant) site. It 

was found that only binding sites possessing a positive charge on the bare NP (absence of CO2) 

were able to chemisorb CO2 (Figure 2.6 (a)). As the IP, electronegativity, and EA of an atom are 

all related to one another128, 129, the net charge of the dopant prior to interaction with an adsorbate 

can be qualitatively estimated by comparing the atomic IPs130 of copper and the dopant atom, via 

Equation 2.3: 

ΔIP = IPDopant − IPCu 2.3 

This ΔIP parameter has been plotted against the most favorable BE in Figure 2.6 (b). One 

can easily notice that only dopants with IPs lower than that of Cu were able to chemisorb CO2. 

This is consistent with the presence of a positive charge on dopants binding CO2 the most strongly 

(Figure 2.6 (a)). The charge transfer on the dopant and the ΔIP parameter are related as shown in 

Figure 2.6 (c) (solid points). In addition, Figure 2.6 (c) demonstrates that due to the higher 

electronegativity and IP relative to its dopant, the Cu atoms pull electron density following removal 
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of charge by CO2, resulting in the development of an even more positive charge on the dopant 

atom (opened symbols).  
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Figure 2.6: (a) BE of CO2 on Cu54M vs. the charge of M. (b) BE of CO2 on Cu54M vs. ΔIP of Cu and M, calculated 

by Equation 2.3. (c) Charge of M versus ΔIP of Cu and M before (solid) and after CO2 adsorption (opened 

symbols). In all cases, M = Au, Cu, Mo, Pd, Sc, Zn, or Zr. 
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Although Figure 2.6 (c) shows that Zn exhibits a positive charge, it cannot activate CO2. 

In order to explain this apparent discrepancy, we examine the local dc of the dopant atoms, since 

it is known that the local dc of a catalyst can directly affect species adsorption131-133. Figure 2.7 

presents the local dc of various dopant atoms as well as the LUMO of neutral CO2, and the HOMO 

of the CO2
- anion. The two regimes, chemisorption and physisorption, readily differentiate 

themselves on this graph: all species which favorably chemisorb CO2 possess a local dc higher in 

energy than that of the CO2 LUMO. Species which have a local dc higher in energy than CO2 are 

able to facilitate the transfer of electrons to CO2 because the higher-energy electrons of the local 

dc are able to “fall” into the lower-energy CO2 LUMO (Figure 2.5). As the local dc of Zn is 

significantly lower than the CO2 LUMO, the electron transfer cannot occur and CO2 cannot be 

activated. 
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Figure 2.7: BE of CO2 on Cu54M vs. M local dc. The vertical lines indicate the respective energies of the LUMO 

of CO2 and the HOMO of a CO2
- anion, where the molecules are in the gas phase and without any NPs. M = 

Au, Cu, Mo, Pd, Sc, Zn, or Zr. 

 

 

Taking all these observations together, in order for CO2 chemisorption to occur, the 

adsorption site on the NP must have a local dc higher in energy than that of the CO2 LUMO. This 

allows for electron transfer to occur to CO2. In addition, the dopant atom should possess a positive 

charge which becomes more positive upon CO2 chemisorption. In other words, the dopant should 

have the tendency to give electrons and become positively charged. This positive charge can be 

qualitatively estimated by comparing the IPs of Cu and the dopant atom. This charge transfer also 

serves to enhance the binding with CO2, as the partially-negative oxygen atoms gain a stronger 

attraction to the partially-positive dopant atom. 
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2.3.2 Further Investigations into Doping Cu Nanoparticles with Zr 

Of the studied dopant structures, Cu54Zr exhibited the strongest CO2 BE, which is 

consistent with the descriptors we have outlined: it has a local dc higher in energy than CO LUMO, 

develops the highest charge (~0.8 electrons) on CO2 and has the second-highest most positive 

charge and negative ΔIP value. This observation of the relatively good ability of Zr to activate 

CO2 on Cu NPs is consistent with the findings of Fischer et al94, who observed that the presence 

of ZrO2 promotes the rate and selectivity of methanol production on Cu/SiO2 catalysts. In 

addition, Fischer, Hong and Liu134 suggested that the function of ZrO2 sites in the methanol 

synthesis reaction is to dissociatively chemisorb CO2. It should be noticed that previous 

computational findings by Austin et al101 regarding CO2 adsorption on Zr-decorated Cu NPs 

showed a favorable dissociative chemisorption of CO2 on the Zr site. In Table B.1 of Appendix 

B.2 we present calculations of CO2 adsorption on Zr-doped Cu NPs of different sizes and we 

observe strong CO2 chemisorption on each of the NPs. This further supports that it is the presence 

of the Zr dopant that results to strong CO2 adsorption and activation and not a NP size effect. 

Taking into account the ability of Zr to strongly chemisorb and activate CO2 when used as 

a dopant on Cu55 NPs (Figure 2.4 – Figure 2.7), and the aforementioned body of experimental and 

theoretical work supporting a potential oxidation of this site, we decided to address the CO2 

adsorption behavior on Cu54Zr NPs, where the dopant site has been oxidized from the CO2 

environment. To this end, we constructed Cu54ZrO2 and Cu54ZrO4 NPs with the Zr atom on either 

a CN=6 or a CN=8 site prior to oxidation. The lowest-energy oxidation configurations (shown 

below in Figure 2.8) were selected for further CO2 adsorption calculations.  
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Figure 2.8: Surface oxidation configurations for studied Cu54Zr NPs, with Zr atom being oxidized with either 

2 or 4 oxygen atoms: (a) Cu54ZrO2,with Zr on a CN=6 site prior to oxidation. One oxygen bridges a Zr-Cu 

bond, and the other is on a hollow-site position between Cu and Zr. (b) Cu54ZrO4, with Zr on a CN=6 site prior 

to oxidation. All four oxygen atoms occupy hollow-site positions between Cu and Zr. (c) Cu54ZrO2, with Zr on 

a CN=8 site prior to oxidation. Both oxygens are on hollow-sites between Cu and Zr. (d) Cu54ZrO4, with Zr on 

a CN=8 site prior to oxidation. All four oxygen atoms are on hollow sites between Cu and Zr. 

 

 

Upon constructing oxidized Zr surface-sites on the Cu NPs, we investigated the adsorption 

of CO2 onto these sites. The adsorption configurations shown in Figure 2.9 were found to be the 

lowest in energy, and the adsorption energy values are listed in Table 2.2. 
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Figure 2.9: Lowest-energy adsorption configurations of CO2 onto Cu54ZrO2 with Zr occupying a CN=6 (a) and 

CN=8 (b) adsorption site prior to oxidation and Cu54ZrO4, with Zr occupying a CN=6 (c) and CN=8 (d), prior 

to oxidation. 

 

 

Notably, we observe favorable chemisorption on all oxidized Cu54Zr systems studied. The 

BE is decreased upon the addition of two oxygen atoms (Figure 2.9 (a-b)), whereupon CO2 adsorbs 

on the oxidized surface Zr (and metallic Cu), and not the surface oxygen atoms. Interesting enough 

is the observation that in the case of four oxygen atoms (a highly oxidized Zr site, Figure 2.9 (c-

d)), CO2 binds very strongly, reacting with a surface O2- anion to form carbonate. A similar 

adsorption configuration of CO2 on the Cu54ZrO2 system forming carbonate was investigated, but 

was found to be higher in energy than the adsorption configurations shown in Figure 2.9 (a-b). In 

all four cases in Figure 2.9, NEB calculations using physisorbed CO2 as a starting point and the 

respective adsorbed configuration as an ending point reveal a barrierless chemisorption of CO2.  
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Table 2.2: Lowest-energy adsorption configurations of CO2 onto Cu54ZrO2 with Zr occupying a CN=6 (a) and 

CN=8 (b) adsorption site prior to oxidation and Cu54ZrO4, with Zr occupying a CN=6 (c) and CN=8 (d), prior 

to oxidation. 

 

Species CO2 BE (eV) Zr Local dc (eV) Zr Charge (e-) 

Cu54Zr (Zr on CN=6) -1.62 0.4 1.1 

Cu54ZrO2 (Figure 2.9 a) -1.18 0.9 1.9 

Cu54ZrO4 (Figure 2.9 c) -1.67 1.1 2.3 

Cu54Zr (Zr on CN=8) -2.00 0.4 1.3 

Cu54ZrO2 (Figure 2.9 b) -0.94 0.8 1.8 

Cu54ZrO4 (Figure 2.9 d) -1.37 1.2 2.3 

 

 

 

The reason CO2 can still bind the Zr atoms despite their higher degree of oxidation is the 

local dC of Zr in the NPs: The local dc of the Zr in Cu54ZrOX (X=0, 2, 4) generally increases (Table 

2.2) as the Zr is further oxidized. As a result, these values are still close and higher in energy than 

the CO2 LUMO (Figure 2.7), which makes the adsorption and activation of CO2 continually 

favorable. Overall, our results demonstrate that although Zr is a very oxophilic metal and binds 

CO2 strongly, oxidation of this site does not dramatically alter its ability to adsorb and activate 

CO2. This is an important observation since it shows that surface Zr sites on doped Cu NPs can 

adsorb and activate CO2 no matter their degree of oxidation.  

2.3.3 CuZr/SiC Synthesis and Characterization 

To qualitatively verify the computational observations that the presence of surface Zr on 

Cu NPs results in strong adsorption of CO2, we synthesized CuZr bimetallic catalysts and 

evaluated CO2 adsorption via TPD experiments. The catalysts were prepared using a simple wet 

impregnation approach, and were thoroughly characterized first to confirm the presence of a mixed 
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CuZr phase and Zr sites on the surface. After evaluation of various support materials (used to 

minimize sintering of NPs during experimentation), SiC was chosen as support structure due to 

the fact that it shows no ability to adsorb CO2 (unlike common catalyst supports, such as SiO2 and 

Al2O3 , see Figure B.1), and hence allows unambiguous attribution of any observed CO2 adsorption 

to the supported CuZr NPs. 

STEM-EDS was used to obtain localized elemental information. Figure 2.10 shows a 

typical TEM image (left) and STEM-EDS spectra of select spots of CuZr/SiC (right). Two 

different particle morphologies are observed: A small number of larger chunky particles with 

diameters between 50-100 nm (dark), and agglomerates of smaller NPs with diameters of ~10 nm. 

The large particles were identified as pure Cu in EDS, while the smaller particles are composed of 

both Cu and Zr. EDS mapping shows a fairly homogeneous distribution of Cu and Zr in the 

selected region, indicating the presence of small, bimetallic NPs. The difficulty in forming a 

uniform catalyst phase likely reflects the computationally observed high segregation energies of 

Cu and Zr (Figure 2.3). 
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Figure 2.10: STEM-EDS mapping of selected region and STEM-EDS spectra of selected spots of CuZr/SiC. 

Insert tables list the elemental composition of the selected spots. 

 

 

To further identify the structure of the CuZr phase, high resolution TEM was used. The 

presence of clear lattice fringes indicates good crystallinity of the NPs (Figure 2.11) and 

measurement of the lattice parameter allows identification of the NPs as pure ZrO2 (0.296 nm and 

0.297 nm for monoclinic and tetragonal ZrO2 (111)135, 136; see Figure 2.11(a) and Figure 2.11 (b), 

respectively) and as CuZrO3 mixed oxide particles (0.314 nm, for CuZrO3 (211)137; Figure 2.11 

(a)).  
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Figure 2.11: HRTEM images of CuZr/SiC with measured lattice spacing, confirming the presence of CuZrO3, 

m-ZrO2 and t-ZrO2 nanocrystallites. 

 

 

The presence of both pure Cu and ZrO2 phases as well as a mixed CuZr oxide phase is 

further confirmed via XRD (see Figure 2.12 ). For comparison, the XRD pattern of ZrO2/SiC is 

also shown in this figure, in which monoclinic ZrO2 (m-ZrO2, 2θ = 28.14o, 31.47 o, 49.26o, 50.08o, 

JCPDS number ICSD 00-037-1484) is detected as the dominant phase. A noticeable shift in the 

ZrO2 peak at ~28o from 28.14o for pure ZrO2/SiC to 28.21o indicates the presence of a CuZrO3 

phase in the CuZr/SiC sample (JCPDS number ICSD 00-043-0953).  

(

a) 

(

b) 
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Figure 2.12: XRD Patterns of CuZr/SiC and ZrO2/SiC. The zoom region shows peak shift from 28.14o to 28.21o, 

indicating the presence of CuZrO3 phase. 

 

 

The catalyst characterization hence shows presence of both phase-separated pure Cu and 

ZrO2 particles, as expected from the tendency of Cu and Zr to phase segregate, and also confirms 

the presence of a bimetallic CuZrO3 phase. It is furthermore noteworthy that Cu in the mixed oxide 

NPs apparently cannot be reduced to its metallic form at the experimental conditions. 
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Figure 2.13: High-resolution Zr 3d XPS spectra of (a) CuZr/SiC and (b) ZrO2/SiC. Two sets of BE peaks were 

observed, confirming the presence of Zr4+ and Zr(4-x)+ species on sample surface. High-resolution Cu 2p XPS 

spectra of (c) CuZr/SiC, (d) Cu/SiC. The emergence of Cu2+ peaks indicates the presence of CuZrO3 species. 

 

 

Next, the oxidation states of Cu and Zr in the CuZr/SiC samples were analyzed via XPS 

after pre-reduction in H2 at 523K. As shown in Figure 2.13 (a), the high resolution Zr 3d XPS 

spectrum of CuZr/SiC shows two peaks at 181.8 eV and 184.2 eV, corresponding to 3d5/2 and 3d3/2 

of Zr4+, respectively, in close agreement with the Zr 3d peaks of the pure ZrO2/SiC sample (Figure 

2.13 (b)). Peak deconvolution reveals another set of peaks in the Zr 3d XPS spectrum of CuZr/SiC 

at slightly lower energies (181.1 eV and 183.4 eV, respectively), indicating the presence of 

partially reduced Zr(4−x)+ species 138. However, no metallic Zr (~178 eV) was detected, confirming 

that all available Zr sites on the sample surface are present in an oxidized state. This is consistent 

with our computational results (see Table 2.2), which indicate that Zr exists in an oxidized state in 
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the bimetallic NPs due to its high oxophilicity, with Zr being positively charged (see Zr charge 

range of +1.1 to +2.3 in Table 2.2). 

As to the Cu oxidation state, the Cu 3p spectrum (Figure 2.13 (c)) shows two peaks at 932.6 

eV and 952.5 eV which agree closely with the Cu 3p the peaks in the pure Cu/SiC sample (Figure 

2.13 (d)), confirming the presence of metallic Cu0. However, a second set of peaks at 934.0 eV 

and 954.0 eV indicate the simultaneous presence of some Cu2+, which is consistent with the 

observation of CuZrO3 nanocrystallites in XRD and HRTEM.  

 

 

 

 

Figure 2.14: CO2 TPD profiles of CuZr/SiC, Cu/SiC and ZrO2/SiC. 

 

 

Finally, we performed CO2 TPD experiments to analyze the CO2 BE on the CuZr/SiC 

catalysts.  

Figure 2.14 shows CO2 desorption profiles obtained from CuZr/SiC along with the two 

reference materials Cu/SiC and ZrO2/SiC. The absence of any CO2 desorption from the pure Cu 
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sample implies little to no CO2 adsorption on this sample, i.e. very weak interactions between CO2 

and Cu. This has been well studied in the past and our finding is furthermore consistent with the 

computational observation that CO2 can only physisorb on metallic Cu 139, 140. In contrast, both the 

bimetallic CuZr and the pure ZrO2 samples show desorption peaks. Comparing these two samples, 

we observe a significant increase in CO2 adsorption capacity for the bimetallic, reflecting the 

smaller particle size in this sample (14.7 nm for the bimetallic CuZr sample vs 23.9 nm for the 

ZrO2 sample, as determined from XRD).  

Deconvolution of the CO2 TPD spectra (Figure 2.15) allows further analysis of adsorption 

sites and quantification of the respective BEs (using a standard Redhead analysis141). The results 

are summarized in Table 2.3. In addition to two desorption peaks contributed by pure ZrO2 at 

343.59 K and 398.72 K (which is present in both samples), additional nearby peaks at 356.63 K 

and 424.93 K for the CuZr/SiC sample indicate the presence of stronger CO2 binding sites on the 

mixed oxide phase. Previous CO2 TPD studies on ZrO2 materials have shown the formation of 

bicarbonate and carbonate species upon CO2 adsorption due to the interaction of CO2 with surface 

hydroxyl groups and with Zr4+-O2- pairs, respectively.142-144 Bell and coworkers 143 investigated 

CO2 TPD by infrared spectroscopy and found that bicarbonate species decompose more readily at 

lower desorption temperature followed by carbonate species decomposition at higher temperature. 

In both cases, CO2 is the only product formed. We hence assign site 1 and 2 to the decomposition 

of bicarbonate species, while site 3 and 4 to the decomposition of carbonate species. To further 

support this assignment, we performed CO2 adsorption calculations on a ZrO2 (1̅11) surface in the 

presence and absence of surface hydroxyls (see Figure B.2 – Figure B.3). Our calculations suggest 

a barrierless adsorption of CO2 as bicarbonate species (on surface hydroxyls present from 

dissociated water on the ZrO2 surface) with a desorption energy of 0.57 eV (Figure B.4) and a CO2 
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adsorption to carbonate with an energetic barrier of 0.13 eV (from physisorbed to chemisorbed) 

and an overall desorption barrier of 0.81 eV, respectively (Figure B.5). TPD experiments on 

ZrO2/SiC sample suggest that CO2 desorption energy on site 1 and site 3 are 0.99 eV and 1.15 eV, 

respectively, which is qualitatively consistent with the computational observations, i.e. with CO2 

being desorbed from bicarbonate species at significantly lower energies than from carbonate.  

 

 

 
 

Figure 2.15. Deconvoluted CO2 TPD spectra over CuZr/SiC and ZrO2/SiC. The light green lines are the 

cumulative fit curves for deconvoluted peaks.  
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Table 2.3. Summary of CO2 adsorption sites on CuZr/SiC and ZrO2/SiC, including desorption temperature 

(Tdes, K) and the corresponding desorption energy (Edes, eV) calculated using Redhead equation. 

 

Sample 
Site 1 Site 2 Site 3 Site 4 

Tdes (K) Edes(eV) Tdes (K) Edes(eV) Tdes (K) Edes(eV) Tdes (K) Edes(eV) 

ZrO2/SiC 343.59 0.99 / / 398.72 1.15 / / 

CuZr/SiC 343.59 0.99 356.63 1.03 398.72 1.15 424.93 1.23 

 

 

 

Finally, comparing the calculated CO2 desorption energy from the carbonate species 

formed on ZrO2 (0.81eV) with the ones formed on the surface of the Cu54ZrOx with x=2, 4 (1.67 

and 1.37 eV in Figure 2.9 (c) and (d) and Table 2.2), we observe that CO2 binds stronger on the 

mixed CuZr oxide than on ZrO2. This is again in qualitative agreement with the TPD desorption 

energies which show a shift towards higher energies (stronger adsorption) on the mixed oxide (Site 

4 in Table 2.3) compared to pure ZrO2 (Site 3 in Table 2.3) We acknowledge that although the 

CO2 adsorption trends between our calculations and the TPD experiments are in qualitative 

agreement, there is not a quantitative agreement on the adsorption strength. This is likely due to 

the differences between the (highly heterogeneous) actual sites on the synthesized catalyst surface 

compared to the simulated ones in the computational framework. Nevertheless, our experiments 

qualitatively confirm all major computational results, i.e.: i) Cu NPs do not adsorb CO2, ii) Cu and 

Zr metals have a strong tendency to segregate, iii) Zr has high propensity to oxidize, and iv) even 

when the Zr sites are oxidized (forming a mixed CuZr oxide), they are still able to effectively 

adsorb CO2 with an adsorption energy that exceeds that of pure zirconia. 
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2.4 Conclusions  

A DFT study was carried out on various singly-doped bimetallic icosahedral Cu54M (M= 

Au, Cu, Mn, Mo, Ni, Pd, Rh, Ru, Sc, V, Zn, or Zr) NPs in order to identify potential Cu-based 

bimetallic catalysts that adsorb and activate CO2 and unravel the underlying physical properties 

governing CO2 activation. Dopants were initially screened based upon their preference to occupy 

surface sites on the NP. We identified Au, Cu, Mo, Pd, Sc, Zn, and Zr as dopants that prefer to 

reside on the surface of Cu NPs and we further calculated the CO2 adsorption on these surface 

sites. Based on the adsorption calculations, we have developed a set of criteria which are necessary 

for the favorable chemisorption of CO2 onto Cu54M NPs: (i) the local dc of the dopant must be 

higher and close in energy relative to the LUMO of CO2, and (ii) the dopant atom at the binding 

site must have an IP and electronegativity lower than that of Cu.  

Based on these criteria, we identified Cu54Zr as a catalyst that binds strongly and activates 

the CO2 molecule. Due to the highly exothermic adsorption of CO2 on Zr-doped Cu NPs relative 

to the other dopants and the oxophilicity of Zr, we further investigated the CO2 adsorption on 

Cu54ZrOX (x = 2, 4) NPs, where the surface Zr has been oxidized. Chemisorption of CO2 onto 

these oxidized sites was observed in every case, with a slight decrease in the CO2 BE compared to 

Cu54Zr, which was attributed to the shift in the local dC of the oxidized metal.  

These computational observations were qualitatively confirmed through experiments using 

a mixed CuZr catalyst. The catalysts showed the presence of both pure (i.e. phase segregated) Cu 

and ZrO2 phases (in agreement with the computational prediction that Cu and Zr have a high 

segregation energy) as well as a mixed CuZrO3 phase. While pure Cu was not able to adsorb any 

CO2, the mixed CuZr oxide phase showed strong CO2 adsorption, exceeding that of the pure ZrO2 

phase. 
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Overall, our computational and experimental results suggest that Zr-doped Cu NPs can 

strongly adsorb and activate CO2, even if the surface Zr sites become oxidized. The resulting 

bimetallic system could hence be a promising material for CO2 utilization via hydrogenation. 

Further studies to confirm this prediction are currently on-going. 
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3.0 Unfolding Adsorption on Metal Nanoparticles: Connecting Stability with Catalysis 

The content of this chapter is adapted from Dean, J.; Taylor, M. G.; Mpourmpakis, G. 

“Unfolding Adsorption on Metal Nanoparticles: Connecting Stability with Catalysis.” Science 

Advances 2019, 5 (9) eaax5101. 

To supplement our work in identifying materials properties relevant to CO2 adsorption, we 

now proceed into the development of more generalizable models of adsorption. In this section, we 

develop a set of universal adsorption descriptors (CElocal, MADs, and IPEA), and demonstrate their 

effectiveness by creating linear models of adsorption capable of describing the adsorption of CH3, 

CO, and OH to a variety of metal systems, including both nanoparticles and slabs of Cu, Ag, and 

Au, slabs of Ni, Pd, Pt, Rh, and Ir, and even a bimetallic AgCu NP. 

3.1 Computational Methods 

3.1.1 Nanoparticle Adsorption Calculations 

All adsorbate-NP BEs were calculated with DFT, using Quickstep 117 as implemented in 

CP2K 118. Exchange-correlation was accounted using the PBE functional. The DZVP basis set 121 

was used with the GTH pseudopotentials 145 at a 500 Ry cutoff. SCF cycles were performed with 

a convergence criterion of 10-7 Ha. Geometry relaxations were converged to forces below 

0.02 eV/Å. Visual depictions of the NPs with labeled CNs can be found in the Appendix C.6, 

Figure C.4 (A-E), and depictions of the top adsorption configurations studied can be found in 
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Figure C.4 (F-I). DFT-calculated BEs for each NP-adsorbate pair we investigated can be found in 

Table C.6. 

3.1.2 Single-Metal Adsorption Calculations 

To calculate MADs we used the molecular structures of the complexes between a single 

metal and the adsorbate as illustrated in Figure 3.2. The energy for these complexes were evaluated 

using the PBE functional with the def2-SV(P) basis set 146 and the RI/MARIJ approximations as 

implemented in the Turbomole package 147, 148. Each structure was relaxed using a quasi-Newton-

Raphson method for all multiplicities at or lower than septet (to account for spin state of each 

complex) and the lowest-energy multiplicity was used to calculate the MADs in Equation 3.1 as: 

MADS = Ebind,M−Ads = EM−Ads Complex − EM − EAds 3.1 

Where EX represents the electronic energy of species X, M is a metal, and Ads is the 

adsorbate. Visual depictions of the gas-phase metal-adsorbate binding description can be found in 

Figure C.4 (J-M). Calculated values for MADs can be found in Table C.6. 

3.2 Results and Discussion 

3.2.1 Feature Identification 

We expect several factors to contribute to the adsorption interaction between a site on a 

monometallic NP and an adsorbate, based upon prior literature 23, 149. We hypothesize that the most 

important factors are 1) the stability of the adsorbate in the gas phase 150, 2) the tendency of the 
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metal and adsorbate to interact and form chemical bonds, 3) the stability of the bare NP 149, and 4) 

the stability of the binding site 23. We use stability here to express the thermodynamic strength of 

the bonds that are on NPs of different sizes/shapes/composition, or of adsorbates at different metals 

and sites on the NPs. As a result, we refer to energy differences (thermodynamics) arising from 

different bond formations (e.g. metal-metal, metal-adsorbate). The rationale behind our hypothesis 

can be found in the energetic terms used in the calculation of a BE in DFT, which is the difference 

between the electronic energy of the adsorbate-metal complex (EAds-M) and that of the adsorbate 

(EAds) and the metal NP or surface (EM). For instance, EAds is related to the stability of the 

adsorbate, ENP to the stability of the NP, and EAds-M to the strength of adsorbate metal interactions 

and the local energy landscape of the adsorption site, i.e. the stability of the site. Using these 

physical descriptors, we represent the BE generally as:  

Ebinding,true = f̂( StabAds, StabNP, IntAds−M, StabSite) + ϵ 3.2 

Where Ebinding, true refers to the true BE of the adsorbate to a specific site on a NP. In this 

work, we take the true binding interaction to be the DFT BE (Equation 3.1). StabAds, StabNP, and 

Stabsite refer to the stability descriptors for the adsorbate, NP, and adsorption site respectively.  

Finally, IntAds-M refers to a descriptor for the strength of adsorbate-metal interactions. Since it is 

unreasonable to expect a simple linear model to capture all the physics of adsorption, we 

acknowledge this limitation with an irreducible error term, ϵ. In this work, we consider our chosen 

physical descriptors (Stabads, StabNP, IntAds-M, and Stabsite) to all be in units of energy, thus forming 

a first-order polynomial relation with the BE (Ebinding, true). As a consequence, we do not investigate 

cross-terms between these descriptors. 
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3.2.1.1 Defining a Local Cohesive Energy 

Intimately related to the stability of the metal and the strength of metal-metal bonds is the 

CE of the bulk metal, which is defined as the amount of energy required for the atoms in the system 

to achieve infinite separation. CE is captured in NPs by the BCM of Yan et al 151, which asserts 

CE as the sum of every metal-metal bond energy in the NP. In this work, we apply the same 

concept to describe the stability of binding sites, with the justification that chemically unsaturated 

sites (i.e. less stable due to having fewer metal-metal bonds) tend to bind adsorbates stronger. To 

this end, we introduce the local CE descriptor, CElocal, defined by applying the BCM only to the 

metal atom participating directly in the binding interaction. In other words, we take the summation 

of BC-model-approximated bond energies connecting with the metal atom in the binding site, 

which is defined as: 

Stabsite ≈ CElocal = ∑ Ebond A−Bi

CN

i=1

= ∑ (
γACEbulk,A

CNA
√

CNA

CNbulk,A
+

γBi
CEbulk,Bi

CNBi

√
CNBi

CNbulk,Bi

)

CN

i=1

 

3.3 

In Equation 3.3, A-Bi refer to the atoms in the neighborhood of the binding site. Atom A 

refers to the metal atom directly participating in the top-site adsorption. Atom Bi is one of the metal 

atoms directly bound to atom A. The summation index i refers to the bonds between atom A and 

atoms Bi, and ranges between 1 and the CN of atom A. As an example, an adsorbate bonding to a 

site with CN 6 would have 6 bonds, meaning the summation would have 6 terms (bonds A-B1, 

A-B2, …, A-B6). Each bond energy Ebond can be approximated with the BCM, which we directly 

substitute inside the summation parentheses in Equation 3.3. The other terms in the equation can 

be described as follows: CEbulk X is the bulk CE of atom X, CNX is the CN of atom X, CNbulk X  is 
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the bulk CN of atom X, and γX is the BCM gamma coefficient of atom X 151. This definition of 

Stabsite (Equation 3.3) allows us to capture not only the CN and metal identity of the atom directly 

bound to the adsorbate, but also the electronic effects that come from the geometry of the local 

site, such as stronger bonds resulting from under-coordinated atoms adjacent to the binding atom. 

This formulation of CElocal additionally differentiates between atoms of the same CN as well as 

different metal types. 

Using this description of the local geometry, we can focus on its ability to describe the 

binding of a single adsorbate-metal pair. In Figure 3.1 A, we plot the DFT-calculated top-site BE 

of CO to a 172-atom Au cube, and a 147-atom Au cuboctahedron/icosahedron. We note a strongly 

inverse relationship between CElocal and BE. In addition, we visualize both the BE (Figure 3.1 A – 

Figure 3.1 D) and CElocal (Figure 3.1 E – Figure 3.1 G) that the different surface sites on the NPs 

exhibit. Overall, Figure 3.1 demonstrates that the strongest adsorption sites are the ones exhibiting 

the weakest local cohesion. 
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Figure 3.1: The BE of CO on various sites of Au NPs as a function of CElocal: 172-atom cube (rectangles), 147-

atom icosahedron (hexagons) and 147-atom cuboctahedron (rhombs). Heat map of different sites on the NPs 

with respect to their BE of CO (B)-(D) and to their CElocal (E)-(G) . The color scheme follows the range: 

strongest CO binding / weakest CElocal are colored in violet, and the weakest binding / strongest CElocal are 

colored in red. 

3.2.1.2 Additional Adsorption Descriptors 

Other descriptors chosen for the NP binding were i) the CE of the entire NP, ii) the metal 

atom binding to the adsorbate and iii) a term involving the IP and EA of the adsorbate. The total 

NP CE was chosen because we expect the stability (or lack thereof) of a given NP to play 

cumulatively a role in its ability to bind a molecule 152. The gas phase BE between a single metal 

atom and the adsorbate was chosen because we expect to provide a good (and fast to calculate) 

descriptor of the tendency of the adsorbate to bind a specific metal. Finally, the negative average 

of the IP and EA, which we call “IPEA” was specifically chosen since it has been shown to be a 

first-order finite difference approximation of the adsorbate’s chemical potential within HSAB 

theory 153. In addition to this, it is also the negative of Mulliken’s definition of electronegativity 
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153. The values of each of these descriptors can be found in Table C.1 – Table C.3, along with more 

detailed justifications. It is worth noting that the adsorbate-metal atom BE is the only DFT 

calculation required to parameterize the model (once it is trained), which is computationally 

inexpensive to perform. Furthermore, all other quantities (CElocal, CENP, and IPEA) can be rapidly 

determined through a combination of simple algebra and tabulated physical properties. 

3.2.2 A Universal Model of Adsorption 

Following our choice of chemical descriptors, we conducted linear regression utilizing the 

Caret package 154 as implemented in R 155, performing OLS regression in conjunction with 10-fold 

CV for Equation 3.4 (which is the first-order polynomial equation we define in our discussion of 

Equation 3.2). 

Ebind,model = a + b ∗ CElocal + c ∗ CENP + d ∗ IPEA + e ∗ MADs 3.4 

 

Where Ebind, model is the model’s predicted BE, and a/b/c/d/e are constants. CElocal is the 

local site’s cohesion. CENP is the CE of the whole NP. IPEA is the negative average of the IP and 

EA. MADs is the Metal-ADsorbate BE. 

Utilizing this model, we perform an OLS regression using as a training set the top-site 

adsorption of three different adsorbates (i.e. methyl radical (CH3), carbon monoxide (CO), and 

hydroxyl radical (OH)), onto three different metals (Cu, Ag, and Au) with five different NP 

morphologies (172-atom cube, 55/147-atom icosahedron, 55/147-atom cuboctahedron) as shown 

in Figure 3.2 A. Although we only focus on adsorption on top sites (Figure C.4 F-I), we note that 

previous work 156 has shown that the top site BE of various adsorbates (including methyl/hydroxyl 
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radicals) correlates with other surface site BEs (e.g. bridge and hollow sites) over different metals 

(including Cu/Ag/Au). Regression statistics can be found on Table 3.1 (case (i)). 
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Table 3.1: OLS regression information for (i)  4-descriptor model that includes CElocal, IPEA, MADS and 

CENP, (ii) 3-descriptor model that excludes CENP, and (iii) equivalent 3-descriptor model utilizing the slab 

dataset found in the literature. 157. All cases are trained using datasets where CH3, CO, or OH adsorb to Cu, 

Ag, or Au. 

 

 

  

(i) Trained on NPs, 4-Descriptor Model 

RMSE: 0.179 eV, MAE: 0.145 eV, R2: 0.936, 

Maximum Error: 0.619 eV, Remaining DOF: 157 

 Coefficient Estimate Standard Error p-Value 

Intercept 1.51477 0.15876 <2*10-16 

CElocal -0.1450 0.01663 3.85*10-15 

IPEA 0.33171 0.01280 <2*10-16 

MADS 0.67858 0.01522 <2*10-16 

CENP -0.0002 0.05388 0.998 

(ii) Trained on NPs, 3- Descriptor Model 

RMSE: 0.179 eV, MAE: 0.144 eV, R2: 0.933, 

Maximum Error: 0.619 eV, Remaining DOF: 158 

 Coefficient Estimate Standard Error p-Value 

Intercept 1.51509 0.12148 <2*10-16 

CElocal -0.14502 0.01410 <2*10-16 

IPEA 0.33171 0.01274 <2*10-16 

MADS 0.67857 0.01501 <2*10-16 

(iii) Trained on Slab dataset, 3-Descriptor Model 

RMSE: 0.122 eV, MAE 0.102 eV, R2: 0.979, 

Maximum Error: 0.259 eV, Remaining DOF: 113 

 Coefficient Estimate Standard Error p-Value 

Intercept 1.67677 0.09220 <2*10-16 

CElocal -0.14590 0.01079 <2*10-16 

IPEA 0.28743 0.01005 <2*10-16 

MADS 0.79516 0.01187 <2*10-16 
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In the final functional form of the model, the coefficients regressed make excellent physical 

sense (Table 3.1). A negative sign on the CElocal coefficient suggests that as the cohesion of the 

local site increases (becomes more negative) its binding affinity to the adsorbates decreases. 

Similarly, a positive sign on IPEA, which is related to the adsorbate’s chemical potential, denotes 

that a less stable adsorbate (higher chemical potential) will have a higher tendency to bind to a 

metal. Finally, the direct correlation with MADS, the BE between the adsorbate and a single metal 

atom in the gas phase, is also very intuitive as it describes the intrinsic tendency of the metal to 

bind the adsorbate with a more negative MADS indicating a stronger binding interaction. 

For this model (case (i) of Table 3.1) we observed a CV R2 of 0.936 and a CV RMSE of 

0.179 eV. Of note here is the high p-value and error associated with the CE of the NP. As a result, 

we conducted a second regression where we did not include CENP, but instead we only included 

the remaining three regressors and an intercept. This model is plotted in Figure 3.2 B, and its 

regression information can be found in the middle panel of Table 3.1. We see that the model (case 

(ii) of Table 3.1) fits nearly as well, with an overall model R2 of 0.933 and a CV RMSE of 0.179 

eV. If we additionally plot the BE as a function of NP cohesion (Figure C.1), we can see that, at 

least in the case of our chosen adsorbate-NP combinations, it does not provide an adequate 

descriptor for the binding interaction. Because the inclusion of the NP CE offers no improvement 

over a less-complex model, we decide to ignore this term and use the form outlined in Equation 

3.5 for the remainder of our investigation: 

Ebind,model = a + b ∗ CElocal + c ∗ IPEA + d ∗ MADs 3.5 

The p-value, CV RMSE, and CV R2 all indicate that our model is generalizable to other 

metal-adsorbate systems. Additionally, the remaining DOF, calculated as the dimensionality of the 

dataset minus the dimensionality of the regression equation, for every model in Table 3.1 are large, 



 48 

indicating overfitting is unlikely. Overall, this shows that our model’s predictions correlate well 

with the DFT-calculated values. This is important, because we ultimately wish to provide a 

computationally-efficient framework for predicting DFT adsorption energies. The error metrics, 

RMSE, MAE, and R2 offer a picture of how likely the model is to fail/succeed compared to DFT. 

The CV RMSE and MAE have values of 0.179 and 0.144 eV respectively, which indicates that, 

on average, the model can be expected to be within 0.144-0.179 eV of the true DFT-calculated 

value. Finally, the good R2 values of 0.933 and 0.936 indicate that our model is strongly correlated 

with the actual DFT predictions. 

We tested our model’s generalizability by splitting our data into training/test sets based 

upon adsorbate, metal identity, and morphology. In these series of “leave-one-in” tests, we restrict 

the training set to only a single morphology, adsorbate, or metal, and then test the developed model 

on the data that was left out. The results of these tests can be found in Table C.4 and Figure C.2. 

Overall, they provide strong evidence that our model is capturing the underlying physics of the 

binding interaction: when we train on a single metal or morphology, we still capture the other 

metals or morphologies with good accuracy. In the case of training on a single adsorbate, we see 

that although the model fits are worse, they still capture the trends of the binding interactions (e.g. 

the adsorbates that were not tested are off parity by a constant amount). This is because the model 

has only a single possible value in the case of the IPEA term. Therefore, it reduces to a model 

which has only three terms, which are the intercept, CElocal, and MADs. However, this indicates 

that our model is highly robust. Even when the adsorbate descriptor is missing, the model captures 

trends in the binding interactions. Therefore, our CElocal and MADs descriptors may be applicable 

to a wide array of adsorbates and NPs. 
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Figure 3.2: Parity plot of the model-predicted BE of adsorbates (OH, CO, and CH3) on various metal systems 

versus the DFT BE (eV). (A) The model both trained and tested on PBE DFT data for NPs (Au/Ag/Cu, 55-172 

atoms) which includes the CENP term. This model corresponds to case (i) of Table 3.1 (B) The model both 

trained and tested on PBE DFT data for NPs (Au/Ag/Cu, 55-172 atoms) which does not include the CENP term. 

This model corresponds to case (ii) of Table 3.1. (C) The model trained on PBE DFT data for NPs (Au/Ag/Cu, 

55-172 atoms) and tested against RPBE DFT data for top-site adsorptions on metal surfaces (Au/Ag/Cu) from 

the literature slab dataset. 157 This model corresponds to case (ii) of Table 3.1. (D) The model both trained and 

tested with RPBE DFT data for top-site adsorptions on metal surfaces (Au/Ag/Cu) from the slab dataset. This 

model corresponds to case (iii) of Table 3.1. In all cases, error bars are determined from the 10CV RMSE on 

the training set. Our DFT calculated BE of the different adsorbates on the various sites of the metal NPs are 

shown in Table C.6.  
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In addition to nonperiodic NP systems, we also investigated periodic (slab) systems. Recently, 

Roling et al 157 developed several scaling relations for adsorption on metal slabs, and alongside 

these relations reported a large body of DFT calculations describing adsorption of CH3, CO, and 

OH on the surface of several metal slabs of Ag, Au, Cu, Ir, Ni, Pd, Pt, and Rh. Using the scaling 

relations, they derive a model which describes metal-adsorbate BEs to a high degree of accuracy, 

but is parameterized by several DFT calculations. In their model, the metal-adsorbate BE is 

asserted as a function of the DFT-calculated BE of the metal atom to the surface, and of the gas-

phase BE of an adsorbate to a metal atom (which we call MADs in this work). Although the gas-

phase metal-adsorbate BE needs only to be parameterized once per metal-adsorbate system, 

calculating the metal’s BE to its surface needs to be done once for every potential binding site, 

which requires a DFT optimization for the slab both with and without the metal atom. In scenarios 

where adsorption energies across many different sites are to be investigated, the metal-surface BE 

term becomes a limiting step, and may prove impossible for larger NPs (or slabs) that are infeasible 

to be calculated with DFT. Hence our model, which does not need to be re-parameterized for every 

binding site, allows for significantly higher throughput. 

Here, we utilize the RPBE-calculated top-site adsorption energies on slabs reported by Roling 

et al 157, and focus on the Cu, Ag, and Au slabs adsorbing CH3, CO, and OH. We choose this 

particular dataset because it is a recent study encompassing a variety of FCC metal slabs from the 

d-block (including those we investigate from our own NP calculations), using the same adsorbates 

present in our calculations. It is also a large dataset, which allows us to have a more accurate 

assessment of our model’s generalizability to these systems. We take our model which has been 

fit to only our PBE DFT NP data, and use their data as a test set. In Figure 3.2 C, we plot the DFT-

calculated BEs of the slabs and compare them with the predictions of our model. We see that 
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although there is some deviation from parity we still capture the overall trends of the binding 

interaction. This deviation is most-likely because our training set uses the PBE functional with a 

Gaussian plane wave basis set and was trained entirely on NPs (no slabs were included in the 

training set). The slab dataset was produced from calculations with the RPBE functional, and a 

planewave basis set. This results to the important observation that even though the adsorption data 

are with different functional, basis set, and adsorption environment (a slab, not an NP), we are still 

able to predict the DFT BE to a high degree of accuracy, based on our developed model. This is 

further evidence that our model is capturing the underlying physical trends of the systems. We 

note, however, that RPBE tends to produce more accurate CO adsorption energies than PBE, which 

over-binds CO relative to experiments 158. We observe this over-binding behavior in Figure 3.2 C, 

where the PBE-trained model predicts CO adsorption energies to be more negative relative to the 

RPBE DFT data. Finally, to prove that our introduced descriptors and developed model is universal 

and applicable to periodic systems, we plot in Figure 3.2 D the model’s behavior when it is both 

trained and tested on the slab dataset. In Figure 3.2 D we immediately note that the discrepancy 

with CO moves back to parity. As expected, this indicates that when the model is parameterized 

using the same functional used to calculate benchmark BEs the results are more accurate. As it can 

be seen, all the data impressively fall on the parity line. Overall, this result combined with our 

leave-one-in tests (Table C.4 and Figure C.2) shows that our model only needs to be fed a small 

subset of the possible morphologies that a NP or slab may take on, and can then predict binding to 

other morphologies. The implication is that computationally-inexpensive systems can be used to 

parameterize the model via DFT, and then it can extend to significantly-larger systems which 

would otherwise be computationally intractable to investigate. 
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3.2.2.1 Extension to Bimetallics 

So far, our analysis has been entirely based on monometallic systems. Although 

monometallic systems are important to understand, a much larger and challenging chemical space 

can be found in the realm of bimetallics. For example, although there are 40 d-block metals 

(including La and Ac), there are 
402−40

2
= 780 possible unique bimetallic alloys, without 

considering the additional materials space dimensions of NP size, shape, chemical ordering, etc. 

If we additionally consider chemical ordering in a bimetallic 55-atom NP (a computationally 

tractable metal NP size with DFT) of a single arbitrary morphology, there are a maximum of 255 

different ways both elements could be arranged in the NP. This number is already very large, and 

further grows when different morphologies are considered. Therefore, fast and accurate 

descriptions of bimetallic alloys are a necessity if we are to explore even a fraction of these 

systems. 

All evidence so far indicates that our model is physically sound, and therefore we 

hypothesize that it should be extendable to bimetallic systems. Moreover, because CElocal is a direct 

extension of the BCM as we describe in Equation 3.3 and takes into account the atomic identity of 

both the metal atom involved directly in the adsorption and every metal atom that has formed 

bonds with (first neighbors), this descriptor extends naturally to bimetallic systems. Additionally, 

IPEA has no dependence on binding site and MADs is only dependent on the atom directly bound 

to the adsorbate and does not require modification to capture top-site binding in bimetallic systems. 

Therefore, we continue using the identical physics-based descriptors for bimetallic NPs and slabs 

(as were used with monometallic systems), investigating top-site adsorption energetics. In Figure 

3.3, we plot the BE of the CH3, CO, and the OH as predicted by our model when trained only on 
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monometallic NPs against the DFT-calculated binding on several sites of the icosahedral 55-atom 

NPs (Cu31Ag24 and Cu22Ag33).  
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Figure 3.3: Parity plot between our developed model and DFT calculations on icosahedral bimetallic (Cu55-xAgx 

x=24,33) NPs. The model is trained on CH3, CO, and OH adsorbing on monometallic Ag, Cu, and Au NPs and 

is able to capture adsorption on bimetallic NPs. Images of the two NPs are shown as inset, with copper and 

silver atoms colored brown and grey, respectively. 
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We can immediately see the model captures trends in adsorption on the bimetallic Cu/Ag 

NPs very accurately. This further points towards the physical basis of our model, since the model 

is only trained on monometallic systems and can still accurately capture the binding of the 

adsorbates on bimetallic NPs (which the model has never seen before). Furthermore, this 

demonstrates that our model is generalizable and applicable to both monometallic and bimetallic 

NPs. Additionally, this is also indicative of the good performance of the CElocal descriptor. Other 

descriptors such as the CN, and GCN 159 either do not have obvious extensions to systems of 

different metals or require extensive modification to capture multimetallic environments 160. The 

BCM 151 from which we derive CElocal, however, is deliberately formulated to describe bond 

strength between different metals, and has been shown to perform very well on bimetallic alloys. 

We note, however, that Cu and Ag have similar electronegativities 161. Therefore, the tested Cu55-

xAgx NPs do not show strong charge transfer since our calculations indicate point charges of less 

than ± 0.1  |e-|. Bimetallic systems that potentially develop significant charge transfer could impact 

the BE of adsorbates (and affect for example electrocatalytic behavior 162) and may require an 

additional descriptors (such as binding site electronegativity) to capture such effects 163. 

3.2.2.2 Extension to d7 and d8 Metal Slabs 

Having shown that we are able to train on just one d9 metal and capture the adsorption 

trends of the other d9 metals (Figure C.2), we believe that we should be able to extend our model 

to other systems. We again utilized the slab dataset 157, in which several d9 (Cu, Ag, and Au), d8 

(Ni, Pd, and Pt), and d7 (Rh and Ir) metals were investigated. In Figure 3.4 A we only trained the 

model on the Roling dataset of CH3, CO, and OH adsorbed to Cu, Ag, and Au NPs, and show that 
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it is able to capture the general adsorption trends for the other columns of the periodic tables, 

although deviations occur on a per-adsorbate and per-metal basis. 

 

 

 

 

Figure 3.4: Our 3-descriptor model extended to slab dataset 157. (A) The model trained on the slab dataset 157 

on Cu, Ag, and Au surfaces and tested against the Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au surfaces from the slab 

dataset. (B) The equivalent model when trained separately for each column of the d-block, still using the slab 

dataset. Error bars in every case are the 10-fold cross validated RMSE of the training set. 

 

 

We then expanded our training set to include every periodic system in the slab dataset 

(CH3, CO, and OH adsorbed to Rh, Ir, Ni, Pd, Pt, Cu, Ag, or Au slabs), and attempted to fit our 3-

descriptor model to it. This resulted in a poor fit: although it captures to some degree of accuracy 

the different metal-adsorbate pairs, it is unable to capture differences in the binding site of each 

slab (Figure C.3 A). This suggests that our model is missing some physical descriptor that can 

accurately differentiate between different columns of the periodic table. Searching for such a 

descriptor, we then investigated a variety of additional physical descriptors: The CN of the local 

site, the same first-order approximation of the chemical potential (of the metal), the hardness of 
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the metal, the d-count of the metal, the covalent radius of the metal, the resistivity of the metal 

(related to the electronic structure), and the melting point of the metal (related to the strength of 

bonds). Even allowing the model to overfit by including all 10 of the potential physical descriptors 

we investigate, we do not see a significant improvement over our original model. We present the 

summary of our search for an effective descriptor via OLS in Table C.5 and Figure C.3. 

We attempted to leverage more complex machine-learning techniques in order to provide 

additional avenues to improve the adsorption model. Utilizing LASSO (see Appendix C.4), we 

find the best descriptors to be the CN, the chemical potential of the metal (calculated to the same 

way as IPEA), the covalent radius of the metal, CElocal, IPEA, and MADs. Of these, the covalent 

radius of the metal and the chemical potential of the metal exhibit low coefficients. Higher 

importance is given to the other descriptors, which, in the absence of CN (which can be justified 

by how CElocal is a demonstrably better descriptor), reduces to the model we have developed with 

slightly different coefficients (which is to be expected, considering LASSO is not the same as 

OLS). 

We additionally utilize symbolic regression (see Appendix C.5), which is a highly flexible 

(but also interpretable) machine-learning technique. Despite this enhanced flexibility, we again 

converge to the same three descriptors: CElocal, IPEA, and MADs. This is a further evidence that 

our model has a physically-sound basis: the symbolic regression was given free rein to combine 

any of the investigated set of descriptors using addition, subtraction, multiplication, division, or 

any combination thereof, yet still quickly predicted the form of our model, albeit with different 

coefficients (which is again expected, as the coefficients were generated via GA and not formal 

OLS regression). 
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Although this provides excellent support for our physics-based chosen descriptors, it also 

indicates that no one of the descriptors we have investigated so far are able to capture the difference 

in elements from column-to-column. In the absence of a good tabulated physical descriptor for this 

– if one even exists – we instead perform fits on a per-column basis (Figure 3.4 B). We observe a 

general agreement with parity on the d8 and d7 metals, and excellent agreement for the d9 metals. 

3.2.2.3 Extension to Rh Nanoparticles and NH3 

We also tested our model to an entirely different adsorbate-metal pair: NH3 and Rh. We 

see that, when we train on only Ag/Cu/Au with the three adsorbates (OH, CH3 and CO) the Rh 

and NH3 systems are off by a consistent amount as shown in Figure 3.5 A. Thus, although there is 

a deviation from parity, this deviation appears to be consistent and the binding trend is still 

captured. 

Applying a constant correction to Rh and NH3 to minimize the RMSE (and applying both 

corrections simultaneously to the Rh-NH3 systems), results to bringing the data into parity (Figure 

3.5 B). We again see that, although we cannot find a physical descriptor able to capture the 

differences between columns of the periodic table (we trained on d9 metals with CH3/CO/OH and 

tested on the completely different system Rh with NH3), we still capture the overall binding trend, 

albeit with an offset from parity. 

Finally, we parameterized the model on Rh using all three adsorbates (Figure 3.5 C), and 

show that although the model has difficulties finding differences in the BEs of each site, it is still 

able to capture well the trend between different adsorbates. We observe general trends in the 

different systems when we train on Ag/Au/Cu, but offsets appear by some constant amount from 

the graph by metal and adsorbate. Further, when attempting to fit a model to all data simultaneously 
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(Figure C.3), we see a stratification by adsorbate-metal pair, where roughly similar energies are 

being predicted for the same pairs with little difference in CN (and thus the CElocal). 
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Figure 3.5: Extension of our model to Rh and NH3. (A) The model parameterized on our Ag, Cu, and Au NPs 

adsorbing CH3, CO, and OH, and tested against Rh and NH3. (B) The equivalent model, with empirical 

(constant) corrections for Rh and NH3. In the case of NH3 bound to Rh, both corrections are simultaneously 

applied and indicated by two-colored dots. (C) The model trained on CH3, CO, OH, and NH3 adsorbing on 

icosahedral/cuboctahedral Rh55. 
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3.2.3 Impact of this Model 

In this work we develop a simple, yet powerful physics-based model for capturing trends 

in the strength of binding interactions between different adsorbates and metal NPs using machine 

learning techniques. The model introduces three simple descriptors the CElocal, IPEA, and MADS 

that is able to capture adsorption on any site of metal NPs including monometallic and bimetallic 

systems.  

Regarding the generalizability of the model, we are able to train the model on DFT-

calculated adsorption results on NPs and capture the adsorption behavior on periodic surfaces. 

Further, we utilize both LASSO and Symbolic Regression to search a larger space of potential 

descriptors that may differentiate between columns in the d-block, as well as to validate our model 

formulation. Both techniques demonstrated the importance of these three descriptors in adsorption. 

These simple descriptors can effectively model a wide range of binding interactions, including 

variations on the type of metals and composition, adsorption sites and adsorbates.  

Beyond the functional form of this model, we present a new descriptor for the chemistry 

of the local site, CElocal. This descriptor, which represents the stability of the adsorption site, is a  

localization of the BCM for NP CE151, where only the bonds between the binding-site metal atom 

and its neighbors are taken into account. The CElocal descriptor allows to describe the stability of 

the local binding site by taking into account not only the CN of its atoms, but also the coordination 

of its neighbors in addition to the chemical identity of the metal and its neighbors.  

Our CElocal descriptor addresses shortcomings of other similar descriptors for local site 

reactivity. CN and GCN models 159 only contain geometric information, neglecting elemental 

composition of the site. Additionally, these descriptors do not have an obvious extension to 

multimetallic systems, whereas CElocal requires no modification to describe adsorption on 
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multimetallic binding sites. It is able to describe accurately adsorption on bimetallic NPs even 

when the model is parameterized exclusively on monometallic systems. Other descriptors, such as 

the orbitalwise-CN 164 are difficult to calculate and require knowledge or approximations of the 

electronic structure of the material of interest. 

For high-throughput screening, where many different metals need to be investigated, 

computationally inexpensive and readily accessible descriptors are essential. We highlighted that 

using data tabulated for most experimental-relevant adsorbates and metals and parameterizing our 

model with only a single DFT calculation per metal atom-adsorbate pair we allow for rapid high-

throughput screening of the adsorbate-NP and adsorbate-surface search space.  Impressively, the 

model captures adsorption trends on bimetallic systems.  Although we have not tested ternary 

systems here, we have no reason to believe that these physical properties will not remain relevant 

to accurately modeling multi-metallic systems. Further, we note that CElocal is constructed to 

account for practically any combination of metals on the local site. Future work will address if this 

model is directly extendable to ternary systems. 

3.2.4 Comparison to Other Models in the Literature 

Beyond the work of Roling et al. 157,  highlighted earlier in extending our model to periodic 

systems, recent work has also focused on developing adsorption models using statistical 

techniques. The automated screening and modeling approach of Tran and Ulissi (31) describes 

binding-sites in terms of their atomic number, Pauling electronegativity, CN, and median of 

adsorption energies between the adsorbate and pure metal. This approach yields accurate 

adsorption energies showing good agreement with DFT, but uses statistical models with enhanced 

complexity such as k-nearest-neighbors and variations on the random forest. Enhanced model 
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complexity typically requires larger datasets to prevent overfitting; this highlights the advantage 

of using a simpler linear model (see discussion on the “Leave-One-In” tests in Figure C.2). 

The work of Andersen et al. 163 similarly utilizes a variety of DFT (e.g. d-band and densities 

of states) and experimentally-derived descriptors (e.g. IP, EA, and CN), showing that DFT-

calculated descriptors tend to provide better adsorption predictions than tabulated experimental 

descriptors such as the IP and EA. Using SISSO, they present several models, including models 

which take the form of first-order polynomials (form similar to Equation 3.4). Comparing with the 

first-order polynomial models (named Φ0 in their work), they show training-set RMSE ranging 

from approximately 0.38 eV to 0.16 eV as the number of terms increases, which is similar to what 

we observe in our multi-d-column linear regressions. Although the DFT-based approach can 

provide better predictions (due to comparing DFT adsorption energies with DFT-derived 

properties), we note that in this work we utilize tabulated data for more rapid screening, 

parameterizing our model with minimal DFT calculations. 

Overall, our model generally exhibits CV RMSE of about 0.12 to 0.18 eV. This error is 

comparable to other models in literature 157, 160, 163 and relatively small compared to the simplicity 

and applicability of our model. However, we suggest that our model should be primarily used for 

screening potential catalytic/adsorption materials to retrieve qualitative materials performance 

trends. For a quantitative property estimation, especially for properties that are very sensitive to 

error propagation as turnover frequencies in catalysis, these should be calculated by higher-fidelity 

methods once candidate materials are identified by our model (screening).  

Our choice of descriptors has a strong physical basis. The IPEA can be viewed as the 

tendency of an adsorbate to react with other species, the CElocal is the equivalent tendency of the 

adsorption site to form bonds with adsorbates and the MAD is a tuning of interaction between a 
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metal and an adsorbate. Our model can accurately capture adsorption on both NPs and periodic 

surfaces, despite not having a descriptor for the stability of the whole surface or NP (i.e. CENP). 

This indicates that long-range interactions on a metal surface/NP play a minor role in determining 

the BE of the adsorbates. It is the stability of the local site on a surface or NP (CElocal) that 

contributes the most to adsorption on this site. We should acknowledge, however, that the 

adsorbates we investigate in this work are all relatively small, and most of their atoms are either 

directly participating in the metal-adsorbate bond or are nearest-neighbors to the bonding 

interaction. We hypothesize that for larger adsorbates, this IPEA descriptor may need to be 

replaced by a new descriptor characterizing the electronics of only the portion of the adsorbate 

directly involved in the bonding interaction. This can be justified via well-known effects such as 

induction and hyperconjugation, which (in the case of σ-bonds) tend to be limited to the range of 

only one or two bonds. Fortunately, there is a large body of metal-catalyzed reactions such as the 

Haber-Bosch165, 166, Fischer-Tropsch 167, Water-Gas Shift Reaction 168, etc. where small-molecules 

similar to the ones we have investigated comprise most of the reactants and intermediates.  

3.3 Conclusions 

In summary, we introduce a novel adsorption model that is able to accurately describe the 

BE of molecules on any site of metal NPs, including alloys. Our model is simple in its form and 

utilizes data that can be readily accessible (or calculated on-the-fly). With surface adsorption being 

a critical step in catalysis, we anticipate to be highly applicable as a screening tool for the high-

throughput search of potential catalysts. With the rise of large databases and recent advancements 

in machine learning, such high-throughput searches tend to require cheap, but physically-relevant 
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descriptors for reactivity of metals. In addition, our model can advance the discovery of 

nanosensors since it allows for screening of adsorbates and metals at the same time with regards 

to their interaction strength. Importantly, to the best of our knowledge, this is the first 

demonstration connecting adsorption properties of metal NPs (including bimetallics of random 

composition and chemical ordering) with the stability of the adsorption site. As a result, our model 

can also significantly impact materials optimization, by designing nanostructures that exhibit the 

desired adsorption response within a stability cutoff.   
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4.0 Rapid Prediction of Bimetallic Mixing Behavior at the Nanoscale 

The content of this chapter is adapted from Dean, J.; Cowan, M. J.; Estes, J.; Ramadan, M.; 

Mpourmpakis, G. “Rapid Prediction of Bimetallic Mixing Behavior at the Nanoscale.” ACS Nano 

2020. 14 (7) 8171-8180. 

Having identified several key descriptors of adsorption, we now turn our attention to the 

problem of NP stability. Specifically, we investigate the determination of which chemical 

orderings (how the elements are distributed within a NP irrespective of size, shape, or composition) 

maximize a NP’s stability with respect to CE. The search space this presents is one which can 

potentially hold a great many permutations, and in the worst case becomes intractable to screen 

via brute force alone. To address this challenging optimization problem, in this section we develop 

CE Expansion, an open-source GA which is able to rapidly – and efficiently – optimize the 

chemical ordering of NPs of any size, shape, or composition. 

4.1 Computational Methods 

4.1.1 Density-Functional Theory 

DFT calculations were performed using CP2K169 implementing Quickstep.117 The PBE 

functional119 was used (Unrestricted Kohn-Sham approach) in conjunction with a DZVP basis 

set,170 GTH pseudopotentials120 with a 500 Ry cutoff and an SCF convergence within 10-8 Ha. A 

box size of 30x30x30 Å was applied for all systems. In addition, we utilized Fermi-Dirac smearing 
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with an electronic temperature of 300 K. For vibrational frequency calculations, the Hessian was 

constructed via CP2K’s built-in finite difference method with displacements of 0.02 Bohr. 

Geometries were optimized until forces were below 4.5x10-4 Ha/Bohr. In the case of 13- and 55-

atom NPs, the energetic minimum was confirmed via the lack of imaginary modes in the 

vibrational analysis. In cases where imaginary vibrational frequencies were observed, a tighter 

force-convergence criterion of 10-4 Ha/Bohr was used in conjunction with an SCF convergence 

criterion of 10-9 Ha. If imaginary frequencies remained despite the enhanced convergence criteria, 

the structure was not considered for further analysis. In all cases, vibrational analysis was 

performed with an SCF cutoff of 10-9 Ha, and 0.02 Bohr displacements for the central differencing 

scheme. 

4.1.2 Thermodynamic Properties 

CE is conceptually the average bond energy holding a NP or crystal together. 

Thermodynamically, this can be represented as the energy gained or lost in the separation of all 

the atoms in a NP to an infinite distance. This is described in Equation 4.1 as the difference in 

energy of the cluster (with formula AxBy) and each separate atom (with single atoms denoted as 

A1 and B1). 

CEAxBy
= EAxBy

− (xEA1
+ yEB1

) 4.1 

EE can be calculated from CE, and provides a measure for-which we can quantify the 

tendency of two metals to mix in a NP: the more-negative the EE, the more favorable the mixing. 

EE = CEAxBy
− (

x

x + y
CEAx+y

+
y

x + y
CEBx+y

) 4.2 
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Entropy of mixing (ΔSmix AxBy
) is calculated per Equation 4.3.171 We denote fractional 

composition via capital chi; for example ΧA = 0.5 indicates 50% of the atoms in the cluster are of 

type A. kB is Boltzmann’s constant. 

ΔSmix AxBy
= (ΧA log ΧA + ΧB log ΧB)kB 4.3 

In Appendix D.1 (Connecting Excess Energy with Enthalpy of Mixing) we show an 

approximation relating the EE with the enthalpy of mixing (ΔHmix). This approximation allows us 

to determine the free energy of mixing (ΔGmix) for any of the AxBy systems presented in this work 

(Equation 4.5). 

ΔGmix = ΔHmix − TΔSmix ≈ EE − TΔSmix 4.4 

Utilizing the free energy of mixing, we calculate the Boltzmann distribution probabilities172 

(pi) for the presence of the three different shapes studied at a given size, composition, and 

temperature T (Equation 4.5) 

pi =
e

ΔGmixi
kBT

∑ (e

ΔGmixj

kBT )3
j=1

 
4.5 

Finally, bond fractions are calculated for a given structure as the percentage of that type of 

bond relative to all bonds in the system (e.g. CA-A represents the count of A-A bonds). The bond 

fraction F is calculated via Equation 4.6. 
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FA-A =
CA-A

CA-A + CB-B + CA-B
 4.6 

4.1.3 Genetic Algorithm 

To determine the optimal chemical ordering of a bimetallic NP at a given size, shape, and 

composition, we implemented a GA using Python and C. The GA begins by creating an initial 

population (generation 0) of 50 bimetallic NPs with random chemical ordering. Each bimetallic 

NP is represented as a binary array, where zeros correspond to the first atom type in the 

alphabetized chemical formula (e.g. AgCu would represent Ag as 0, and Cu as 1). As a 

consequence of these constraints, all arrays have the same length and sum to the same value. To 

propagate to the next generation, the population is first evaluated for stability using the BCM,90 

given in Equation 4.7. 

 

CENP =
1

n
Σ1

m (γi

CEbulk,i

√CNi CNbulk,i

 + γj

CEbulk,j

√CNj CNbulk,j

) 4.7 

The BCM calculates the CE of a NP with n atoms by summing contributions from all bonds 

m in the system. Half bond contributions between atoms i and j are calculated by their respective 

CN, bulk CN (CNbulk), bulk CE (CEbulk), and a weight factor based on gas phase bond dissociation 

energies (γ). The model was implemented in C, enabling rapid screening of stability for virtually 

any size bimetallic NP. 

Once CE values were calculated for each NP k, fitness scores f were developed using 

Equation 4.8, where |CENP|min is the minimum absolute value of CE within the population. 
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fk = |CENP,k| − |CENP|min 4.8 

This scales the fitness scores such that the least stable NP in the population has a fitness of 

0. We next used the roulette wheel selection algorithm173 to determine NP as parents for mating. 

The probability of NP k (pk) being selected for mating was based on its fitness score relative to 

the population, as given in Equation 4.9. 

pk =
fk

∑ fi
n
i=1

 4.9 

To ensure that concentration was constrained, we developed a pairwise crossover 

algorithm) to mate two parents into two NP children (Figure 4.1). 

 

 

 

 

Figure 4.1: Example of the pairwise crossover algorithm implemented in the GA. Identical positions are in 

black while positions with different atom types are in blue. The selected pair within the parents is highlighted 

in yellow while the swapped atom types are in red. 

 

 

The approach first finds all positions that do not match between the parents (blue numbers 

in the parents of Figure 4.1). Next, a pair of these positions are repeatedly chosen at random until 

each parent has one of each atom type (0 and 1) selected within the pair (highlighted boxes in 

Figure 4.1). The atom types over the selected pair are then swapped between parents. The pair 
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selection and swapping continue until half of the different positions are exchanged. The process 

results in two new children NPs that exhibit chemical ordering traits from both parents. After using 

the pairwise crossover algorithm to create 49 children (leaving one position in the population to 

pass on the current most stable NP), 80% of the new NPs are mutated. Mutations are achieved by 

randomly swapping 1s and 0s within a NP. The number of swaps is calculated using Equation 

4.10, where N0 and N1 are the number of atom type 0 and 1, respectively. 

nmutation swaps = 0.02 × min(N0, N1) 4.10 

Employing Equation 4.10 provides a mutation scheme that maintains genetic diversity 

within the NP population at any size and concentration. After mutation, the fittest NP from the 

previous population is added to the 49 NPs resulting in a new population – thus propelling the GA 

to the next generation. The overall algorithm continues until the most fit NP remains the same over 

2000 generations. At this point, we apply a Metropolis-Hastings algorithm on the most stable NP 

for 5000 steps in an effort to find a potentially more stable structure with a similar chemical 

ordering. The resulting minimum CE structure is returned as our GA-optimized NP. Code which 

implements the GA is available on GitHub ( https://github.com/mpourmpakis/ce_expansion ). The 

linked repository includes all required functions for GA simulations as well as functions to 

visualize and analyze the results. Also included is a python package to build and interface with a 

SQL database of GA results. 

https://github.com/mpourmpakis/ce_expansion
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4.2 Results and Discussion 

4.2.1 Benchmarking the Performance of CE Expansion 

We began by benchmarking our GA to assess how rapidly it would find low-energy states. 

We selected AgCu as a model system since it is known to favor a Cu-core Ag-shell 

configuration.174 Utilizing our GA, we benchmarked an icosahedral Ag1234Cu1635 NP to see if it 

would capture the expected core-shell behavior, despite being presented with an extremely large 

search space (≈10849 possibilities excluding symmetry). Figure 4.2 reveals that the GA converges 

to the experimentally-expected core-shell NP. Furthermore, the GA was able to screen the 1.45 

million NPs used for this benchmark at a rate of 70,000 NPs/min on a single core of a typical 

desktop computer. Random search, having less overhead compared to the GA, screens NPs at a 

faster rate (≈400,000 NPs/min). However, the speed advantage of random search is undermined 

by the absence of an optimization scheme, and the approach does not efficiently sample the vast 

configuration space. This results in a failure to i) converge to the core-shell mixing behavior 

expected by experiment, and ii) find chemical orderings as low in energy as those found by the 

GA (Figure 4.2). 

Consequently, there are clear differences in the surface makeup of the GA-optimized NP 

and the best NP from random search. Furthermore, although the GA converges to a structure with 

some Cu atoms on the surface, this does not stem from difficulties in finding the minimum. Rather, 

this stems from the composition we chose: the subsurface and core atoms are completely filled by 

Cu, and there is nowhere else to place remaining Cu atoms but on the surface.  
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Figure 4.2: Benchmark of GA performance. We compare GA optimization (blue) against random search (red) 

on an icosahedral Ag1234Cu1635 NP. Darker solid lines and lighter shaded regions represent the mean and STD 

of a generation, respectively. Dotted lines indicate the minimum CE found at a given generation. The minimum 

CE structures are inlaid. 

 

 

To further gauge the accuracy and scalability of our optimization framework, we next apply 

our GA to an Fe6569Pt16627 NP for-which the structure has been experimentally determined.175 

Through the elemental radial distribution functions shown in Figure 4.3, we reveal that the GA-

optimized NP (Figure 4.3 a) captures the Fe-rich surface and Pt-rich core exhibited in the 

experimental NP (Figure 4.3 b). It is worth noting that using percent-composition exaggerates the 

composition differences in shells with fewer atoms: for example, in the first shell (Radius = 0-2.5 

Å) there are 5 atoms. Because one atom in this shell is different, this is reflected by a 20% 
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difference between this shell’s percentage composition and experiment. The differences are less 

exaggerated in shells with larger number of atoms. For example, in a shell containing 500 atoms, 

a difference of one atom would be reflected by just 0.2% in composition.  

Additionally, we note that the BCM only considers thermodynamic effects. Therefore, 

slight differences between the GA-optimized and experimental NPs could be attributed to kinetic 

effects within the large experimental system (e.g. cluster growth, atomic diffusion, mass transfer, 

etc). More important than the radial distribution is, arguably, the distribution of atoms at the 

surface, where interfacial phenomena (e.g. adsorption and catalysis) occur. Hence, it is important 

that the methodology accurately captures the surface composition. We observe that the GA 

produces an excellent prediction of the true experimental surface. The results are in stark contrast 

to a random search approach (Figure 4.3 c) where we generated many random chemical orderings 

(sampling the same number of NPs as the GA) and report the most favorable based on their CE. 

The random NP search completely fails to capture both the radial distribution as well as the surface 

composition of the experimental NP. Overall, the results demonstrate the success of the GA to 

effectively sample a massive configurational space of experimental bimetallic NPs. Importantly, 

we show that our methodology allows for the fast and accurate screening of NPs which are far 

beyond the reach of DFT. 
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Figure 4.3: Comparison of different methodologies for identifying optimal chemical ordering. Shown are the 

structures of a) the GA-derived Fe6569Pt16627 NP to b) the experimental structure reported by Yang et al.175 and 

c) the lowest-energy NP identified via random search. Core-centered radial distributions of Fe-Pt composition 

are represented as bar plots. The NP structures are inlaid. 

4.2.2 Comparison between the Bond-Centric Model and Effective Medium Theory 

The screening of bimetallic NPs for their chemical ordering is an emerging field. For 

example, in 2018 Larsen et al.176 demonstrated the use of mixed integer programming coupled 

with a semi-empirical EMT177 for the direct optimization of NP chemical ordering. The authors 

investigated icosahedral 309-atom AgAu NPs, determining the global ground-state chemical 

ordering for all possible compositions. These EMT global minima provide a unique dataset to 

directly compare the BCM and assess its effectiveness in capturing optimal mixing behavior. Thus, 

we used our GA to optimize the same set of NPs. We note that although the GA-optimized NPs 

are not guaranteed to be global minima (due to the algorithm’s stochastic nature), they are expected 
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to be relatively close. We next selected a subset of NPs from both datasets and calculated the EE 

of each system using DFT. The results, shown in Figure 4.4, reveal that for every case our GA-

optimized NPs exhibit lower EE (i.e. higher thermodynamic preference to mix) than the global 

minimum structures from EMT. In addition, we observe differences in the composition predicted 

to be the minimum in energy. The GA predicts a minimum energy composition close to 50/50 

Ag/Au, which shows a strong agreement with DFT calculations. Conversely, EMT deviates from 

DFT in capturing the correct EE trend and the most favorable composition. To be more confident 

that the minimum energy composition is close to 50%, we additionally checked the optimized 

chemical orderings predicted by our GA near this composition and found that the overall EE trend 

holds (i.e. most favorable mixing near 50/50 Ag/Au). We note that the results only compare the 

capabilities of the BCM to EMT and do not make any comparison to the two optimization 

approaches. Nevertheless, our results prove that, unlike EMT, the BCM correctly captures mixing 

behavior of AgAu NPs. 



 77 

 

 

Figure 4.4: Comparison of different methodologies of optimizing chemical ordering. DFT is used to compare 

the EE of 309-atom AgAu icosahedral NPs with chemical ordering optimized using EMT (blue) and the BCM 

(red) at different compositions. X indicates the composition predicted to be of minimum energy by the 

respective method. 

4.2.3 High-Throughput Study of Bimetallic Nanoparticles 

Based on our successful results with the predicted structure of the Fe6569Pt23196 NP, and the 

comparison with a recent method of screening NPs for their chemical ordering, we investigated a 

large variety of bimetallic alloy systems. We investigated the alloys AuCu, AgAu, and AgCu, 

chosen because they have all been shown to be described well by the BCM.90 Icosahedrons, 

Cuboctahedrons, and EPBs of up to 3871 atoms (≈4 nm diameter) were investigated. For systems 
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with up to 309 atoms, all possible compositions were investigated. Above this size, compositions 

were investigated in 10 % increments as closely as the chemical formula would allow. 

We choose these particular morphologies because they generally result in clusters 

containing so-called “magic numbers” of atoms (13, 55, 147, etc). This is important in the 

identification of low-energy NP structures, as NPs with magic numbered sizes tend to be of high 

stability.178 In addition, we note the synthetic accessibility of these morphologies.179-181 The EPB 

structure is particularly relevant to the study of nanowires, which have been demonstrated in Ag 

to grow via a continued elongation of this morphology.181 Although irregular morphologies such 

as the Fe6569Pt16627 NP (Figure 4.3) are oftentimes experimentally synthesized, we have 

demonstrated that our methodology extends well to even these systems as long as a reasonable 

bond network can be estimated. Hence, our choice of these morphologies should be sufficient to 

probe the limits of our methodology, as they provide a wide range of possible coordination 

environments in experimentally-relevant nanostructures. Furthermore, their “regular” shape lends 

itself well to the programmatic generation of reasonable NP structures at any size. 

Overall, we report minimum-energy configurations for 5,454 different structures. We 

illustrate a small fraction of the range of structures in Figure 4.5, where each NP shown is the most 

stable chemical ordering and composition at the given size, shape, and metal pair. Considering the 

number of energy calculations required for the GA to converge, and the scaling behavior of DFT 

(limited to systems of ~hundreds of metal atoms), this study is computationally infeasible using 

first principles methods. In addition, because of the number of possible configurations each NP 

can assume (ignoring symmetry, 2N per cluster of N atoms), an exhaustive brute force search of 

our chosen chemical space is impossible even with the computational speedup provided by the 

BCM. It is only by combining a computationally inexpensive method (the BCM) with a tried-and-



 79 

tested optimization technique (GA) that we have the capacity to determine NPs towards global 

optimum chemical ordering within this tremendous materials space. Based on our results shown 

in Figure 4.5, we find an agreement between our algorithm’s predictions and literature reports. For 

example, AgAu NPs have been produced with both core-shell and homogeneously-mixed motifs, 

however the core-shell structure is meta-stable due to the tendency for Ag and Au to alloy. Upon 

a heating-cooling cycle, the thermodynamic-stable, homogeneous-mixed AgAu structure 

emerges,182 which is generally what our model predicts as the most stable chemical ordering for 

AgAu NPs of all shapes and sizes. In the case of AgCu, a DFT-based global optimization observed 

Cu-core / Ag-shell NPs to be the most-favorable, which was attributed to the tendency for the two 

to remain in (and undergo transformation to) an un-mixed state in the bulk.183 This core-shell 

behavior is exactly what we observe with our GA algorithm. In fact, the most-favorable chemical 

ordering and composition for every shape and size AgCu NP was found to be a perfect Ag-shell 

Cu-core structure. 
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Figure 4.5: Images of the lowest-energy composition and chemical ordering observed for a sample of the NPs 

investigated, illustrating the breadth of our study. NPs of size 13, 561, and 3871 are shown. Left 3 columns: 

AuCu. Center 3 columns: AgAu. Right 3 columns: AgCu. Top row: Icosahedrons. Middle row: 

Cuboctahedrons. Bottom row: EPBs. 

4.2.4 Bond-Composition Plots: A New Visualization of Chemical Ordering 

Chemical ordering parameters as a function of homo-atomic and hetero-atomic bond 

counts have been applied by other groups as a useful tool to uncover mixing trends within 

bimetallic systems.174, 184, 185 However, these parameters usually reduce the bond counts down to 

a single value to find correlations with structural properties of interest, like size or composition. 

Instead of distilling the counts down to a single parameter, we developed a new visualization of 

NP mixing. The plots shown in Figure 4.6 enable us to depict each bond type along with NP size. 

As an example on creating the plots for a bimetallic NP made of elements A and B, we calculate 

each bond type (A-A, B-B, and A-B) as a fraction of the total number of bonds (FA-A, FB-B, FA-B). 



 81 

Conveniently, each fraction must be between 0 and 1, and all three must add up to 1 (Equation 

4.11). 

FA-A + FB-B + FA-B = 1 4.11 

Using our calculated bond fractions, we next build a scatter plot of FA-A vs. FB-B and rotate 

the axis such that the origin is at the top of the graph. By leveraging the unity sum constraint of 

Equation 4.11, we can then draw horizontal lines of constant mixing (i.e. constant values of FA-B). 

The bottom-most line in the plot would be a completely unmixed system with no hetero-atomic 

bonds, as shown in Figure 4.6 a (labeled “FA-B = 0”). At the origin would be a system with no bonds 

between the same atom type (i.e. only hetero-atomic bonds, labeled “FA-B = 1” in Figure 4.6 a). 

As an example, the NP represented as a star in Figure 4.6 a has a hetero-atomic bond fraction of 

0.4 due to the homo-atomic bond fractions (shown with thin dashed lines) of 0.2 and 0.4. Since 

this new representation is normalized by total bond counts, we can plot bimetallic NPs of any size, 

shape, and composition on a single plot, enabling global mixing trends to emerge. 

Our GA-optimized AuCu, AgAu, and AgCu NP results are presented through bond 

composition plots in Figure 4.6 b – Figure 4.6 d. Figure 4.6 c reveals that AgAu exhibits the highest 

degree of mixing regardless of NP size, which strongly agrees with experimental observations.174 

AuCu systems yield similar results (Figure 4.6 b), although there is a slight influence by the NP 

size on the mixing behavior, as depicted by the different heights (degree of mixing) of the colored 

points (different NP sizes). Interestingly, for the AgCu system, Figure 4.6 d illustrates unfavorable 

mixing behavior, which clearly contrasts with results from the other d9 metal pairs. These 

conclusions agree with experimental observations that AgCu NPs tend to minimize the number of 

hetero-atomic bonds via obtaining a Cu/Ag core/shell morphology.183 Overall, we show that 

mixing is diminished as the AgCu NPs grow in size, which suggests that the degree of mixing can 
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be tuned by controlling NP size. These results can also be analyzed in reference to a “fully random” 

system, where the bond fractions share equal likelihood and are determined strictly from 

probability (see Appendix D.3). Using this system as a reference (the dashed line in Figure 4.6), 

the results reveal that AgAu NPs favor hetero-atomic bonds while AgCu NPs favor homo-atomic 

bonds. 

 

 

 

 

 

Figure 4.6: Bond composition plots. a) Guiding plot illustrating the theoretical mixing limits from no hetero-

atomic bonds (FA-B = 0) to no homo-atomic bonds (FA-B = 1), with a NP example having 40% hetero-atomic 

bonds (star). Light gray lines represent constant mixing (i.e. constant fraction, F, of hetero-atomic bonds). The 

black dashed line indicates a system with fully random mixing (see Appendix D.3 for its derivation). Points on 

the plots represent b) AuCu, c) AgAu, and d) AgCu NPs at all sizes and compositions studied (5,454 total 

structures), demonstrating the chemical ordering that is thermodynamically preferred. NP sizes are color-

coded by number of total metal atoms (NAtoms). 
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4.2.5 Thermodynamic Analysis and Comparison with Bulk 

We note that the trends demonstrated in Figure 4.6 only show structural trends resulting 

from the low-energy structures our GA identified within particular alloys, and only show whether 

an alloy is mixed to a lesser or greater degree than a perfectly random alloy (the dashed line in 

Figure 4.6). In other words, just because one alloy has a high degree of mixing in these plots does 

not imply that it is more energetically favorable than another alloy. Instead of rationalizing 

thermodynamics from structure, we can rationalize structure from thermodynamics. 

Thermodynamics can be leveraged to rationalize the structural tendency for these materials to 

either alloy (AgAu and AuCu) or core-shell (AgCu) NPs. In Table 4.1, we list the DFT-calculated 

enthalpies of formation for bulk crystal cells of AuCu, AgAu, and AgCu (for simplicity, in each 

case both metals exist in a 1:1 ratio) reported by the OQMD.37, 38 In cases where the OQMD reports 

multiple potential structures, we use the one with the most-favorable enthalpy of formation. In our 

case, energetics (and as a result, structure) at the nanoscale appear to reflect the energetics of the 

bulk mixing behavior: the AgAu and AuCu bulk alloys listed in Table 4.1 have favorable formation 

energies; this indicates that mixing is energetically preferred in bulk, and is also what we observe 

at the nanoscale; this energetic preference causes the GA to give rise to the structural trends (i.e. 

preference to mix) we see in Figure 4.6 b – Figure 4.6 c.  

 

Table 4.1: Bulk enthalpies of formation for AuCu, AgAu, and AgCu. Data collected from the OQMD.37, 38 

 

Alloy OQMD Entry Number Enthalpy of Formation (eV/atom) 

AuCu 31283 -0.053 

AgAu 327735 -0.041 

AgCu 307818 +0.111 
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In contrast, AgCu has an unfavorable formation energy in bulk (Table 4.1), which implies 

segregation and decomposition is energetically preferred at the bulk scale. This energetic 

preference to unmix is reflected at the nanoscale (Figure 4.6 d) in the structure of the AgCu NPs, 

which tend to minimize the formation of Ag-Cu bonds. Indeed, it is generally difficult to mix Ag 

and Cu; in the solid phase, the maximum solubility of Ag in Cu is only 4.9%, and the maximum 

solubility of Cu in Ag is 14.5%.186 Alloys which have higher levels of dissolved Ag or Cu are 

known to exist, but are metastable.186 Similarly, although AgCu NPs have been produced, they 

exhibit issues with stability, and spinodal decomposition has been generally observed to occur 

above 210-230 °C.187, 188 Despite this, the presence of AgCu NPs experimentally reveals the 

importance of assessing entropy: their formation must be entropically driven due to their positive 

enthalpy of formation. 

We apply the regular solution approximation, assessing the configurational entropy of 

mixing as defined in Equation 4.3. We assume that differences in vibrational entropy across NPs 

of a given alloy will be small enough that they can be neglected, which is supported by test 

calculations presented in  
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Table D.1 and Table D.2. These results show that at constant size, shape, and composition, 

changes in chemical ordering result in minimal changes to the vibrational entropy of a NP. 

Additionally, they show that changes in the composition of these systems results in relatively small 

changes to the vibrational entropy. Although more-accurate methods of approximating NP 

configurational entropy exist (e.g. using Monte Carlo methods189, 190), they would add additional 

computational complexity, prohibiting an analysis at the scale presented (5,454 NPs ranging from 

13 – 3,871 atoms). Moreover, we note that the regular solution approximation is well-known to 

adequately describe NP mixing behavior and phase trends.191-195 Thus, we use the regular solution 

assumption (i.e. assume ideal mixing behavior for entropic contributions) as a proof of concept to 

approximate composition and temperature effects of competing morphologies within a given alloy. 

4.2.6 A Boltzmann Population of Nanoparticles 

By combining configurational entropy and enthalpy, we can evaluate morphological 

preferences via the Gibbs free energy of mixing. From here, we can construct a Boltzmann 

population (see Computational Methods) of the three morphologies. In Figure 4.7, we visualize 

the effect of size and composition on the Boltzmann populations at 298K. Three morphologies are 

considered: icosahedral, cuboctahedral, and EPB. There are of course many other morphologies 

for these systems beyond those we consider, hence this analysis is primarily intended as a proof-

of-concept of our GA’s utility in the prediction of nanoscale phase diagrams. Nevertheless, Figure 

4.7 reveals important trends between metal pairs as well as the three morphologies. For instance, 

although the icosahedral morphology can be a significant fraction of the population, it never seems 

to be the dominant phase. Instead, whenever there is a dominant set of phases, it is typically the 

cuboctahedron and EPB in competition with each other, which is shown by the lack of red present 
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in our phase diagrams in Figure 4.7. Additionally, we observe strong size effects on morphology 

preference within our results. In all three morphologies, as size grows, a greater fraction of the 

atoms is fully coordinated in the interior of the NP, and all atoms would be fully coordinated at 

the limit of an infinitely large NP (i.e. they would converge to the bulk). Since the only difference 

in coordination between the three geometries occurs at the surface, the three shapes are at their 

most dissimilar when the ratio of surface atoms is maximized. In other words, when comparing 

similarly sized systems, differences in energy are at their greatest when the NPs are at their 

smallest. This is especially prevalent in the AuCu system (Figure 4.7 a), where there is a heavy 

energetic preference towards EPB at small sizes, gradually converging towards a mix of EPB, 

cuboctahedron, and icosahedron at larger sizes. Overall, the population-based results presented in 

Figure 4.7 provide a more nuanced view than one which only considers the lowest-energy phase 

to be the dominant one. Importantly, they show that both size and composition play a central role 

in governing the NP morphology distribution. Furthermore, we investigated the effect of 

temperature on our Boltzmann populations, and report in Appendix D.4 variations of Figure 4.7 

calculated at 77K (Figure D.1), 640K (Figure D.2), and 1073K (Figure D.3). These results reveal 

a rich distribution of structures at higher temperatures, and a stronger preference for specific 

structures at low temperatures, highlighting the importance of temperature on NP morphology 

distributions. 
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Figure 4.7: Morphology phase diagrams for the a) AuCu, b) AgAu, and c) AgCu systems at 298K. The right-

hand column plots the preferred morphological phase as a function of the number of atoms and composition 

of the system. The legend is given by the ternary diagrams on the left-hand side, which show the percentage of 

the Boltzmann population taking on cuboctahedral, icosahedral, or EPB morphology. White points, for 

example, indicate all three morphologies are equally favorable. In addition, the size of the points on the ternary 

diagrams corresponds to NP size. 
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4.3 Conclusions 

In summary, we have developed a novel methodology which blends the recently developed 

BCM90 with machine learning (GA) for the rapid prediction of stable bimetallic NPs of any size, 

shape, and metal composition. We demonstrated the speed and accuracy of our GA through a 

benchmark study optimizing the chemical ordering of a 2,869-atom icosahedral AgCu NP. The 

benchmark shows the effectiveness of the GA in capturing expected experimental trends compared 

to random guess. We further demonstrated the accuracy and applicability of our approach by 

predicting the chemical ordering of an experimentally-determined Fe6569Pt16627 NP, achieving i) a 

remarkably close radial distribution of the composition, and ii) an accurate prediction of the surface 

composition of the NP (important for surface science applications, such as catalysis). Using results 

from our model, we compared the BCM to EMT177 and demonstrated that the BCM has superior 

predictive power towards capturing mixing behavior of bimetallic NPs when compared to DFT 

calculations. Moreover, we predicted the chemical ordering of 5,454 unique bimetallic AuCu, 

AgAu, and AgCu NPs in a variety of sizes, shapes, and compositions, rationalizing experimental 

observations. The developed GA code and NP database are available free of charge on GitHub 

(http://github.com/mpourmpakis/ce_expansion), and a database of all 5,454 NPs is openly 

accessible on our newly-developed MetalNanoDB (http://metalnanodb.com; in collaboration with 

the ADMT lab in the Computer Science Department at the University of Pittsburgh). We 

introduced a visualization scheme for mixing within a NP, allowing the effective rationalization 

of mixing behavior between a variety of bimetallic nanostructures (different NP sizes and metal 

compositions). Using this visualization scheme, we connect mixing behavior to NP size and 

demonstrated that mixing in AgCu NPs decreases with NP size. In conjunction with Boltzmann 

Statistics, we developed temperature-dependent size-composition phase diagrams for each of the 

http://github.com/mpourmpakis/ce_expansion
http://metalnanodb.com/
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three alloy systems to study the distribution of three competing morphological phases. By 

investigating a variety of alloy compositions, sizes, and shapes, we demonstrate that our 

optimization scheme accurately captures low-energy NPs without needing to resort to DFT, with 

the benefit of being applicable to a broad range of NP sizes (simulating tens of thousands of atoms 

vs. several hundred with DFT). Overall, our methodology allows for the identification of stable 

bimetallic NPs with atomically precise chemical ordering, which is essential for enabling the 

simulation of realistic, experimentally relevant NPs. As a result, our work advances the elucidation 

of the bimetallic NP genome.  
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5.0 High-Throughput Screening of Bimetallic Nanoparticles for CO2 Adsorption 

This chapter is adapted from an unpublished manuscript, Dean, J.; Mpourmpakis, G. 

“High-Throughput Screening of Bimetallic Nanoparticles for CO2 Adsorption.” In Preparation. 

Having elucidated a set of adsorption descriptors and developed a technique to rapidly 

optimize NP chemical ordering in the previous sections, we now implement a workflow for the 

high-throughput screening of bimetallic NPs for CO2 adsorption. We begin by optimizing a series 

bimetallic NPs of Cu, Ag, Au, Pd, and Pt via CE Expansion, alongside a set of monometallic NPs. 

A new tool (AutoAdsorbatePlacement) is then developed to automate the identification of binding 

sites and placement of CO2, and a dataset of CO2 adsorption energies is created. A random forest 

is then trained to predict CO2 adsorption, and finally we conduct a high-throughput screening of 

NPs for the adsorption of CO2 as a proof of concept of our methodology. 

5.1 Computational Methods 

5.1.1 CE Expansion 

CE Expansion75 was used to optimize the chemical ordering of our NPs. If a NP was not 

available in the database supplied by the CE Expansion package, it was optimized via the same 

settings used in its original incarnation, namely: a population of 50 chemical orderings, keeping 

the best ordering and creating 49 children each generation, continuing until the best ordering is 
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unchanged for 2,000 generations, along with an 80% mutation rate to maintain genetic diversity 

(for a more detailed discussion, refer to Section 4.0 of this dissertation). 

For any pair of metal atoms (A and B), all possible compositions of the formula AXB55-X 

were investigated, and the one minimizing the EE (maximizing thermodynamic stability) was 

chosen. An initial optimization of this structure was then performed with ASE’s196 built-in EMT 

calculator and BFGS optimizer (set to halt at fmax = 0.05 eV). 

5.1.2 Density-Functional Theory 

5.1.2.1 Nanoparticle Adsorption Calculations 

CP2K’s197 implementation of Quickstep117 was used for spin-unrestricted DFT 

calculations. The PBE functional119 was used in conjunction Grimme’s DFT-D3198 dispersion 

correction. Additionally, the MOLOPT basis sets of VandeVondele and Hutter were used170 as 

well as the GTH pseudopotentials120. A cutoff of 500 Ry was applied. 

The SCF optimization was carried out with a convergence criterion of 10-7 Ha, and 

geometries were optimized until they converged to within 4*10-4 Ha. A computational box of size 

30*30*30 Å3 was used. Fermi smearing at an electronic temperature of 300K was also leveraged. 

In the case of adsorption states, the NP atomic positions were frozen and only CO2 was allowed to 

relax. BE is calculated using Equation 5.1: 

EBind = ECO2+NP − (ENP + ECO2
) 5.1 

5.1.2.2 Single-Metal Adsorption Calculations 

The metal-CO2 complexes used in the calculation of MADs were assessed via spin-

unrestricted DFT calculations in Gaussian 09199. The PBE functional119 was used alongside the 
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def2-SVP basis set200, and dispersion was accounted-for via Grimme’s DFT-D3198 correction. The 

complexes were constructed by placing the metal atom in a series of discrete positions around CO2, 

and optimizing via DFT. The configuration minimizing the BE (as defined in Equation 5.1) was 

taken. 

5.1.3 Random Forests 

Random forest201 regression was utilized as implemented in SciKit-Learn202. A grid search 

was used to optimize the model’s hyperparameters, such that they minimize the 10-fold CV RMSE 

of the trained model. Hyperparameters optimized included number of trees in the forest (2, 4, 8, 

16, 32, 64, 128, or 256), the maximum number of features a tree could consider at a time (1-9), the 

minimum number of samples in a node for a split to occur (2-9), and the minimum number of 

samples a leaf node could contain (1-9).  

5.1.4 Neural Networks 

Neural Networks were optimized within TensorFlow203 using the Adam optimizer204, a 

batch size of 64 samples, and MSE as the loss function. Due to their many convenient properties, 

including i) addressing the vanishing gradient problem and ii) the dying neuron problem, as well 

as iii) their self-normalizing effect, we leverage SELU activation functions for our neurons203. 

Consequently, instead of the default Xavier initialization strategy205, we apply the initialization 

strategy of LeCun206, in which the network’s initial weights are selected from a normal distribution 

with variance equal to the inverse of the number of neurons in the previous layer. As this is a 

regression problem, the output layer’s neuron employs linear activation. 
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Using SciKit-Learn’s built-in CV grid search algorithm202, we checked MLP architectures 

containing 1, 2, 3, or 4 hidden layers and 2, 4, 8, or 16 neurons per layer. In each case, 5-fold CV 

was performed, with MSE as the error metric. For the purposes of identifying an optimal 

architecture via the CV grid search, 128 training epochs were applied uniformly to all models. 

Once an optimal architecture was identified using the 5-fold CV strategy, we split the 

dataset into 10% validation and 90% training data, and perform a final optimization. Training 

continued until at least 50 epochs had elapsed without improvement in the validation set’s MSE, 

at which point the model weights which had the best validation set MSE were restored.  

5.1.5 AutoAdsorbatePlacement 

AutoAdsorbatePlacement is a new code written in Python to automate the detection of 

surface binding sites (top, bridge, or hollow, as illustrated in Figure 5.1). In addition, it also 

provides a convenient,  object-oriented interface to aid in the algorithmic placement of molecules 

to these binding sites.  
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Figure 5.1. Illustration of the three types of binding (top/bridge/hollow) investigated. Key: O = Red, C = Black, 

Generic metal atoms = grey. 

5.1.5.1 The Automated Detection of Nanoparticle Binding Sites 

To detect binding sites, we first determine the CN of each atom in the NP, and take under-

coordinated atoms (CN < 12) to be surface atoms. For each site, the following hashing strategy is 

used: 
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1. The set of first-nearest-neighbors is found, and sorted. Any sorting metric and algorithm is 

acceptable, as long as it is deterministic. In our case, we sort first-nearest-neighbors by the 

index of the atom within the molecule. 

2. For each first-nearest-neighbor in this list, we repeat this operation to find a sorted list of 

second-nearest-neighbors. In this list, atoms are represented by their atomic symbol. A 

hashing algorithm is applied to the sorted list. This hashing algorithm is arbitrary, so long 

as it is deterministic and avoids hash collisions. In our case, we use Python’s built-in 

hashing algorithm for a tuple of strings, which results in an integer. By applying this 

operation to every first-nearest-neighbor, we arrive at a list of hashes.  

3. This list of hashes is once again sorted and hashed. Again, sorting and hashing algorithm 

choice is arbitrary as long as it is deterministic and avoids hash collisions. In our case, we 

use Python’s built-in hashing algorithm for a tuple of integers. This results in a unique hash 

describing a binding site, which changes based on CN and atomic identity of the second-

nearest-neighbors. 

4. If two sites share the same hash, we consider them to be equivalent. 

This strategy is based on CElocal, which has been shown to be a descriptor of BE24. Our 

justification is that two binding sites will share the same value of CElocal if they 1) have the same 

CN, 2) their first nearest neighbors have the same CN, 3) they share the same atomic identity, and 

4) their first nearest neighbors share the same atomic identities. 

5.1.5.2 Procedural Placement of Adsorbates to Clusters 

AutoAdsorbatePlacement is structured such that there are separate classes (which extend 

ASE’s existing Atoms class) for adsorbates and adsorbants (that is, anything that an adsorbate can 

adsorb to, such as NP or surface). These classes are organized such that adsorbates and adsorbants 
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each have “hooks,” that is, stored positions which help in determining the correct geometry of a 

complex. In the case of adsorbants, this is a specific point above the binding site. In the case of 

adsorbates, this is a specific point within the molecule, chosen such that it aids in creating the 

adsorbed state geometry. 

For CO2, we set the binding site hook as the midpoint of one C-O bond. For the purposes 

of this section, we will call this bond the C-O1 bond, with C-O2 representing the bond to the other 

oxygen (O2). Our algorithm to generate a binding configuration is as follows: 

1. The hook, centered on the C-O1 bond, is placed on the binding site hook, with the rest of 

the molecule in any arbitrary orientation. 

2. Any arbitrary vector perpendicular to the normal direction of the NP surface at that binding 

site is found, and the C-O1 bond is rotated into this perpendicular vector. 

3. The C-O1 bond is then rotated about the surface normal such that the average distance 

between C and the binding site atoms is minimized. 

4. The C-O2 bond is then rotated about the vector defined by the C-O1 bond, such that its 

distance to the NP surface is maximized. 

5.2 Results and Discussion 

5.2.1 Dataset Generation 

CE Expansion was used to select and optimize NPs containing 55 atoms. All monometallic 

systems and bimetallic alloys of Cu, Ag, Au, Pd, or Pt were considered, in a variety of 

morphologies including cuboctahedra, EPBs, and icosahedra. All 18 considered NPs are illustrated 
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in Figure 5.2. These structures were then optimized using DFT, followed by application of 

AutoAdsorbatePlacement to create the CO2-NP complexes. This resulted in a total of 661 BEs.  
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Figure 5.2: NPs optimized in this study. Key: Pd = Blue, Pt = Pearl White, Au = Gold, Ag = Silver, Cu = Copper. 
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5.2.2 Feature Engineering 

A wide range of features were chosen for investigation in our dataset, selected because they 

are either tabulated, or come from rapid calculations which only need to be performed once to 

characterize a metal (as in the case of MADs). Special care was taken to extrapolate these features 

into possible multidentate binding configurations. 

In the case of CElocal, an average of the original CElocal descriptor across all atoms in the 

binding site was used. This can be intuited as the average energy binding a set of atoms within the 

NP. MADs, on the other hand was calculated as a summation, as this allows it the differentiation 

between multidentate binding sites (i.e. bridge and hollow) even when all binding atoms are of the 

same type. To understand why this is the case, consider an adsorbate which binds to N Cu atoms. 

The averaged MADs would be equal to (𝑁 ∗ 𝑀𝐴𝐷𝑠𝐶𝑢) ∗
1

𝑁
, regardless of whether it were bound 

to 1, 2, 3, or more Cu atoms. If we sum MADs instead, the value becomes equal to 𝑁 ∗ 𝑀𝐴𝐷𝑠𝐶𝑢.  

ΔIP112, which has been shown to be potentially relevant to CO2 adsorption, was also 

extended to sites with multiple atoms. This is accomplished by iterating over every atom of the 

site, and averaging the difference in IP between each atom and each of its neighbors.  
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Figure 5.3: Reference image for example of 𝚫IP. In this case, we calculate the value for an atom A bound to 

atoms B, C, D, E, and F. 

 

As an example of our extended Δ𝐼𝑃, consider Figure 5.3, where we want to calculate the 

Δ𝐼𝑃 of some atom A, which is is bound to atoms B-F. We first take the difference in IP between 

A and B, then A and C, and so on until A and F. These differences are all added together, and 

divided by the CN of A, as depicted in Equation 5.2. 

Δ𝐼𝑃 =
(𝐼𝑃𝐴 − 𝐼𝑃𝐵) + (𝐼𝑃𝐴 − 𝐼𝑃𝐶) + (𝐼𝑃𝐴 − 𝐼𝑃𝐷) + (𝐼𝑃𝐴 − 𝐼𝑃𝐸) + (𝐼𝑃𝐴 − 𝐼𝑃𝐹)

𝐶𝑁𝐴
 5.2 

Because the original version112 of Δ𝐼𝑃 was simply the difference in IP between a single 

dopant atom and the host metal (i.e. in a singly-doped Cu54M NP, the host metal is Cu), this works 

out to be back compatible, as in that case, the same IP difference is taken CNM times, then divided 

by CNM. 

All other features (number of d-207 or valence208 electrons, ionization energy207, crystal 

radius207, bulk resistivity207, bulk melting point207, bulk conductivity207, 298K crystal entropy208, 

and the 298K gas-phase entropy208 / enthalpy208 / Gibbs free energy208) were averaged over the 

atoms present in the binding site.  

A

B

C

DE

F
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5.2.3 OLS Regression 

We take our first step into this dataset using OLS regression, the results of-which are shown 

as a parity plot in Figure 5.4. In both cases, we use three terms in the regression model: CElocal, 

IPEA, and MADs. 

 Using our extended versions of CElocal and MADs (see the development in Section 5.2.2, 

Feature Engineering), we first used the original parameters of our previous adsorption model 

(Table 5.1). This leads to a relatively poor RMSE of 0.24 eV with an R2 of -3.78, which indicates 

the model in this case has worse predictive power than simply taking the mean of the dataset. 

When we re-fit using just the CO2 dataset (coefficients in Table 5.1), we see an improvement in 

RMSE to 0.11 eV, and an improvement in R2 to 0.04. Overall, although re-fitting marginally 

improves the quality of the model, it’s still not much better than just taking the mean. 

 

Table 5.1. Coefficients used in the OLS portion of this work. 

 

Feature Original Parameterization (CH3, CO, OH) Re-fit to CO2 

CElocal -0.145 -0.013 

IPEA 0.332 0.000 

MADs 0.679 0.067 

Intercept 1.515 -0.238 
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Figure 5.4: Parity plot featuring OLS methods investigated to model CO2 adsorption. 

5.2.4 Random Forest Regression 

Next, we train a random forest on all features considered in Section 5.2.2 (Feature 

Engineering). The purpose of this is to take advantage of the variable importance metric 201 

generated by this type of model, which we use for feature-selection purposes. We observe the three 

most important features (see Appendix E.1, Fitting Information for details on the random forest 

parameters chosen) to be, in order, 1) CElocal, 2) MADs, and 3) Δ𝐼𝑃. 

Using these three features to train a new random forest, we find that a random forest with 

16 estimators, 1 sample minimum per leaf, and 3 samples lends itself to a 10-fold CV RMSE of 
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0.07 eV (Figure 5.5, blue points). Overall, this is much better performance than the OLS approach, 

mostly due to the enhanced flexibility afforded by the random forest approach. 

To understand whether a less-complex model is also feasible, we additionally trained a 2-

parameter model (Figure 5.5, gold points), and observe a marginally worse 10-fold CV RMSE of 

0.08 eV. We also see more bias in the model, with a tendency to predict values closer to 

approximately -0.15 eV. This is most likely due to the large number of datapoints located in the 

region between -0.1 to -0.2 eV. To a lesser extent, we also see this present in the 3-parameter 

model, which predicts binding energies closer to -0.15 eV for weakly-adsorbing sites. 

 

 
Figure 5.5: Random forest regression results.  
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5.2.5 Neural Network Regression 

Finally, we utilized a neural network regression approach using the three descriptors 

(CElocal, MADs, and Δ𝐼𝑃) identified with our random forest importance scores. Our 5-fold CV 

hyperparameter optimization found that 4 hidden layers with 8 layers per node were optimal in 

terms of MSE, with a predicted RMSE of 0.1 eV. This architecture is illustrated in Figure 5.6. 

Using this architecture, we fit the neural network to our entire dataset of 661 adsorption 

energies (using 10% of them as a validation set for early-stopping purposes). The results of this 

regression can be found in Figure 5.7. 
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Figure 5.6: Illustration of our final neural network model architecture generated by TensorFlow. Input and 

output dimensions are shown on the right-hand portion of each layer. Data enters the neural network at the 

top, flowing in the direction of the arrows, and is output by the output layer on the bottom of the illustration. 
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Figure 5.7: Results of our neural network regresion. (A) Plot of the training and validation set learning curves. 

(B) Parity plot of the model’s prediction. The 5-fold CV's predicted RMSE for this architecture of 0.1 eV is 

shown in the legend. 
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We see in Figure 5.7 A the neural network learning curve. We observe that most of the 

learning occurs early-on, leveling out after only a few epochs. This helps justify the approach taken 

by our hyperparameter optimization, where we took 128 epochs for every architecture: even this, 

one of the more complex architectures, was adequately trained far before that point was reached. 

Unfortunately, we observe similar results to those seen in our OLS regression (Figure 5.4), 

where the model generally predicts only a few values around the dataset’s average BE. A probable 

cause of this is the sampling imbalance between weak and strong adsorption: half the BEs are 

weaker than -0.18 eV. Because so many samples have low BE, this likely results in this optimum 

based on an average appearing in both the OLS and neural network regression methods. 

5.2.6 High-Throughput Screening of Bimetallic Nanoparticles for CO2 Adsorption 

In order of increasing performance, we trained an OLS model (RMSE = 0.11 eV), neural 

network (RMSE = 0.1 eV), a 2-feature random forest (RMSE = 0.08 eV), and a 3-feature random 

forest (RMSE = 0.07 eV). Notably, we observe our random forests (Figure 5.5) vastly outperform 

both OLS (Figure 5.4) and the neural network (Figure 5.7). This case is not totally unexpected 

however, as random forests are known to occasionally outperform more flexible models such as 

neural networks 50, 209. 

As a proof of concept of our machine learning-driven high-throughput screening, we now 

use this 3-term random forest to screen over several hundred NPs whose chemical ordering were 

optimized as part of our CE Expansion publication75.  

 This specific database contains AgCu, AgAu, and AuCu NPs in icosahedral, 

cuboctahedral, and EPB morphologies. We investigate clusters with 13 and 55 atoms; in both 

cases, all possible compositions have already been optimized. This yields a total of 126 13-atom 
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NPs, and 504 55-atom NPs. We then apply AutoAdsorbatePlacement’s binding site detection 

algorithm to identify all possible top, bridge, and hollow sites on the surface of these NPs. The 13-

atom NPs collectively yield a total of 2,292 binding sites, and 44,330 chemically-unique binding 

sites are identified amongst the 55-atom NPs. A histogram of the BEs of all 46,622 binding sites 

can be found in Figure 5.8. 

 

 

 
Figure 5.8: Histogoram of 46,622 predicted BEs. In the case of every size, the frequency distribution is 

normalized such that it integrates to 100%. 

We see in this figure that most of the predicted BEs are weak, around -0.17 eV. Indeed, we 

see from our DFT calculations that alloys between Cu, Ag, and Au generally bind CO2 weakly. In 

the case of Cu, this is also consistent with our prior doping study112, which observed both Ag and 
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Au doped Cu NPs to only physisorb CO2. Although these specific NPs don’t seem to display very 

strong binding, their sheer number (over 46,000!) is still useful to demonstrate our methodology 

of using a small subset to train a model, which is then used to investigate the rest of the chemical 

space. To underscore the computational benefits of this approach: although our training set was 

calculated using DFT on a supercomputing facility over the course of hundreds of thousands of 

core-hours, this screening operation was performed single-threaded on an average desktop 

computer in just two hours.  

5.2.7 Visualizing a Hypothetical Chemical Space 

In addition to our high-throughput screening of tens of thousands of NPs, we also leveraged 

our trained random forest to visualize a hypothetical chemical space. This space is bounded by the 

minimum / maximum values of CElocal, MADs, and specific values of ΔIP. We show in Figure 5.9 

several plots, ranging across different values for ΔIP. We consider three different values for Δ𝐼𝑃, 

as in its original version112, its sign was observed to be relevant to CO2 adsorption prediction. 

Specifically, negative values were reported to facilitate strong CO2 adsorption and activation, and 

positive values were reported to result in a weak CO2 physisorption. Figure 5.9 A shows Δ𝐼𝑃=-1, 

B shows Δ𝐼𝑃=0, and C shows Δ𝐼𝑃=1. To form an intuition about this figure, which visualizes three 

different slices of the same 3D space, it may help to consider Δ𝐼𝑃 as being a direction perpendicular 

to the page. 

We observe in Figure 5.9 a highly complex chemical space predicted by the random forest. 

The blocky nature of the space is likely an artifact of the decision boundaries being created by the 

trees in the forest. Additionally, the long rectangles extending outwards from some portions (this 

is especially apparent in the large ~0.0 eV BE in the upper left of A and B) are likely a result of 
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the problem random forests have in extrapolation. By their very nature as an average of individual 

decision trees, the random forest is unable to capture BEs which are higher or lower than the 

highest or lowest BE observed in the dataset.  

Despite these drawbacks, random forests are a powerful tool for interpolation210. Overall, 

they allow us to identify regions in the chemical space which are likely to have strong BEs, and 

thus which may yield good candidate catalysts to study further for CO2 conversion. 

In all three plots, our model predicts strong binding (dark blue) to occur at least in the 

region of −7 eV ≤ CElocal ≤ −5 eV. When Δ𝐼𝑃 is positive (Figure 5.9 A), this is predicted to 

occur when MADs is greater than -6 eV, and when it is close to -9 eV. When Δ𝐼𝑃 is negative 

(Figure 5.9 B), our model predicts a maximal value when MADs is close to this same value of -9 

eV, and when it is between -4 eV and -6 eV. Finally, when Δ𝐼𝑃 is positive (Figure 5.9 C), our 

model seems to restrict its strongest predicted binding to MADs greater than -6 eV. 

A clear next step in this work would be to combine this model’s predictions with the high-

throughput screening approach demonstrated in Section 5.2.6, for systems outside the dataset. 

Even restricting ourselves to FCC metals, there are still plenty of other transition metals alloys 

which could be considered: in addition to those of Cu, Ag, Au, Pd, and Pt, including bimetallic 

alloys of Ni, Rh, and Ir are also possible. By optimizing several of these bimetallic NPs using CE 

Expansion, identifying all binding sites with AutoAdsorbatePlacement, and then filtering out those 

which are not predicted by this model as exhibiting strong binding, one would arrive at a set of 

candidate catalysts. These candidates could then be further studied using DFT, and then 

incorporated back into the training set, to enable the continued, iterative improvement of its 

predictive capabilities. 
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Figure 5.9: Plot of CO2 BE as a function of CElocal, MADs, and 𝚫IP, as predicted by the random forest. 

Predictions are sampled from a 20x20 mesh of points across the CEloocal and MADs dimensions. Known 

datapoints are plot with an X. (A) 𝚫𝑰𝑷=1, and portions of the dataset with 𝚫IP < -0.2 are shown. (B) 𝚫𝑰𝑷=0, 

and portions of the dataset with -0.2 < 𝚫𝑰𝑷 < 0s.2 are shown. (C) 𝚫𝑰𝑷>0, and portions of the dataset with 

𝚫𝑰𝑷>0.2 are shown. 
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With regards to which of these alloys to screen first, we note that our DFT showed the 

strongest binding to occur in alloys containing Pd and Pt. Unfortunately, Pd and Pt are both 

expensive; they are, however in the same group on the periodic table as Ni – a much cheaper metal. 

Moreover, there is already evidence that alloying with Ni may be fruitful: past work has observed 

strong CO2 adsorption and activation on CuNi NPs in a several different chemical orderings108. 

Therefore, alloying Cu, Ag, and Au with Ni may be a promising first choice in the screening 

process. 

5.2.8 Understanding the Effect of CElocal, MADs, and 𝚫IP 

Because our random forest shows BE to be a function of the CElocal, MADs, and Δ𝐼𝑃 values, 

it is relevant to discuss the effect each of these three properties has on BE, which may be helpful 

in further tuning the binding site. We begin by discussing Δ𝐼𝑃, showing its relation to BE in Figure 

5.10.  
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Figure 5.10: CO2 BE as a function of 𝚫IP. To represent the bimetallic nature of these NPs, symbols are dual-

colored. As an example, if a symbol was orange and blue, this would represent a CuPd NP. 

 

We observe the most extreme BEs to be located in the region between -0.5 and 0.75 eV. 

Surprisingly, this is in contrast to our original development of the ΔIP parameter112, wherein we 

observed a negative ΔIP to be necessary for CO2 adsorption. In the current study, both strong and 

weak binding occurs regardless of the sign of Δ𝐼𝑃. 

In its original form, ΔIP helped rationalize the charge transfer between a single dopant atom 

and the rest of an idealized Cu54M (M = dopant) system (see Figure 2.6 and surrounding discussion 

in Section 2.3.1).  Hence, part of this deviation from our original findings may be the result of 

investigating more-complex systems with intermediate compositions instead of highly-idealized 

singly-doped systems. Additionally, CO2 can bind in a wide range of adsorption configurations, 
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and the C and O are oftentimes able to bind to different metal atoms (e.g. C may be bound to a 

metal of one type while O is simultaneously bound to a metal of another type). 

Investigating Figure 5.10 more closely, we also see that most of the deviation is in the CuPt 

system. Indeed, if this system was not present in the dataset, we would observe a highly similar 

behavior to the one we found112 in Section 2.3.1. It is easy to see this in Figure 5.10: if CuPt was 

not in the dataset, then outside of a handful of points from Pd and AgPt, nearly all of the strong 

binding would seem to be in regions of negative Δ𝐼𝑃. 

Unfortunately, this disruption of the trend also makes regression more challenging: it is 

more difficult to predict the BE when both the strongest and weakest BEs are located on the same 

value of Δ𝐼𝑃. Ultimately, this is a likely reason both OLS and our neural network failed to correctly 

identify the trend in binding. Turning our attention to the other two features in our dataset, in 

Figure 5.11, we show MADs and CElocal. In both cases, we observe generally poor linear trends as 

well. With CElocal (Figure 5.11 B), we see the most negative values of BE occurring at roughly 

CElocal = -6 eV, but this is also where some of the least-favorable values occur. To a lesser extent, 

even MADs seems to demonstrate this behavior for values below -6 eV and above -4 eV – where 

a significant portion of the strong BEs are also located. 

Overall, this is consistent with the findings in our original OLS work24 with CH3, CO, and 

OH. Part of that study included the training of an adsorption model for all three adsorbates on a 

variety of different monometallic systems – Cu, Ag, Au, Ni, Pd, Pt, Rh, and Ir (see discussion in 

Section 3.2.2.2). Specifically, even in the idealized case of monodentate, top-site adsorption to 

monometallic slabs, we found OLS to still have plenty of trouble in identifying the underlying 

trends of adsorption. Instead, in that investigation, we recommended models be fit on a per-group 

basis, as we observed enhanced performance when separate models were trained for adsorption to 
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d7, d8, or d9 metals. We conjectured at that point that further improvements would require the 

inclusion of a descriptor capable of distinguishing between the different columns of the periodic 

table – a descriptor we have yet to become aware of. We may be seeing a similar effect here, where 

some additional descriptor could be necessary to help distinguish between adsorption to different 

types of bimetallic pair. 
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Figure 5.11: CO2 BE as a function of different descriptors. (A) MADs, and (B) CElocal. To represent the 

bimetallic nature of these NPs, symbols are dual-colored. As an example, if a symbol was orange and blue, this 

would represent a CuPd NP. 

 

Overall, it is likely that the flexibility of the random forest to create decision boundaries 

within the dataset that allows the production of such a high-quality fit where both the OLS and 
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neural network failed. In general, this highlights the many challenges associated with this specific 

regression problem, where CO2 can bind to a wide range of sites in a wide range of configurations. 

Ultimately, improved models of CO2 adsorption may require new features we have not yet found, 

or the incorporation of features which are more computationally-challenging to determine (such 

as an energy predicted by some interatomic potential). 

5.3 Conclusions 

In this work, we developed a new workflow for the high-throughput screening of metal 

NPs for any generic property, investigating the adsorption of CO2 as a proof-of-concept. We begin 

by developing AutoAdsorbatePlacement, an algorithm to identify potentially unique binding sites 

in arbitrary clusters. We continue by collecting a dataset of 661 unique adsorption energies across 

18 NPs, containing all monometallic and bimetallic systems of Cu, Ag, Au, Pd, and Pt. This 

enables us to leverage random forest regression to determine the importance of several tabulated 

descriptors relevant to this problem. 

We extend two descriptors in our previous adsorption model24 and our ΔIP criterion112 to 

multi-atom binding sites, and confirm via our random forest that this extension yields a good 

RMSE. We then train a neural network using these three descriptors to predict BEs of CO2 to any 

arbitrary site. Finally, we visualize the hypothetical chemical space defined by the minimum / 

maximum of our feature space, and using the random forest reveal a highly complex hypothetical 

chemical space, underscoring the difficulties presented by this regression problem. 

As part of our high-throughput screening workflow, we 1) optimize a set of NPs via CE 

Expansion, 2) automate the calculation some relevant property (adsorption) to generate a training 
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set, 3) parameterize a machine-learned description of the property of interest (adsorption), and 4) 

conduct a screening of the chemical space to find regions where NPs with the desired property are 

likely to exist. 

Although at this formulation, our model doesn’t identify specific metals which may be of 

promise, it does show that other bimetallic combinations are likely to exist which can have strong 

binding similar to those we identified for materials doped with Pt and Pd (see the discussion 

surrounding Figure 5.9). Specifically, we identify combinations of CElocal, MADs, and Δ𝐼𝑃 which 

should be targeted to maximize the CO2 BE. 
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6.0 Future Work 

In Chapters 2.0 and 3.0, we identified physical properties relevant to adsorption to NPs, 

and developed a first-of-its-kind universal model of small molecule adsorption to NPs. In Chapter 

4.0, we developed CE Expansion, an open-source GA which optimizes the chemical ordering of 

NPs of any size, shape, or composition. Finally, in Chapter 5.0 we tied together all this work, 

generating a large dataset of BEs, and trained several machine learning models to predict CO2 

adsorption across tens of thousands of low-energy NP systems. 

Although the final developed model does not directly predict specific combinations of 

metals which are likely to result in strong CO2 adsorption, it still guides our study toward systems 

with specific values of CElocal, MADs, and ΔIP. The clear next step in this work is to generate a 

screening approach which will sieve different compositions and chemical orderings toward these 

targeted physical properties. As a further proof of concept, a simple grid search over several 

bimetallic alloys of Cu, Ag, Au, Ni, Pd, Pt, Rh, and Ir (choosing ones which were not included in 

this work) would be of interest. The chosen alloy could then be optimized via CE Expansion and 

then screened using the random forest model we trained in Section 5.2.4. Additional DFT work on 

a selection of these systems could also be used to further refine the model. In the end, this could 

lead to an iterative process where DFT is used to investigate candidates identified by the model, 

and this DFT data is in turn added to the model’s training set. The benefits would be two-fold: this 

would simultaneously target computationally-expensive DFT calculations to only systems which 

are the most promising, while simultaneously improving model’s predictions over time. 

Another natural continuation of this work would be in developing a better understanding 

of the effects ligands have on NP stability. Specifically, colloidal NPs have become popular 



 120 

subjects of research in recent years due to their experimental synthesis control, and the choice of 

ligand is known to have a great effect on NP stability211. By further refining our adsorption 

modeling to the point where ligand adsorption energies can be incorporated, we would be able to 

use the adsorption energy of the ligand as a descriptor of NP CE. Specifically, a fundamental 

assumption of the BCM is that a NP’s CE can be approximated as the sum of bond energies within 

the NP. Because ligands have been known to have a stabilizing effect on the NPs surfaces212, we 

propose including the BE between a ligand and a NP surface atom into the sum of bond energies 

considered by the BCM. This would further lower the NP CE, which may help account for the 

stabilizing effect of ligands. Additionally, this avenue of research could be further enhanced by 

incorporating the interaction of neighboring ligands – expanding upon an idea which was recently 

employed to great success by incorporating CO surface coverage to predict the stability of Rh 

NPs213. 

Overall, we propose further work which continues enhancing both major parts of this 

thesis: adsorption and stability modeling. By improving our models of NP stability, we are able to 

arrive at computational model systems which are closer to those of experiment (see Section 4.2.1), 

thus accelerating materials discovery. Additionally, by improving our modeling capabilities of 

adsorption, we provide useful tools for the high-throughput screening of NPs based on their 

physical properties, again accelerating materials discovery by focusing the expensive 

characterization techniques to only the most-promising candidate systems. Combined, both 

avenues of improvement continue honing the tools we have created in this thesis to sieve through 

the tremendously-large space of bimetallic NPs for targeted catalytic applications.  
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Appendix A List of Abbreviations 

ANAKIN-ME ...................................... Accurate NeurAl networK engINe for Molecular Energies 

ANI-1 ......................................................................................................................... ANAKIN-ME 

ASE ............................................................................................... Atomic Simulation Environment 

BCM ................................................................................................................. Bond-Centric Model 

BE ............................................................................................................................ Binding Energy 

BFGS....................................................................... Broyden-Fletcher-Goldfarb-Shanno Algorithm 

CCCBDB .................................. Computational Chemistry Comparison and Benchmark DataBase 

CCSD(T) .................................................... Coupled Cluster Single Double and Perterbative Triple 

CE .......................................................................................................................... Cohesive Energy 

CElocal ........................................................................................................... Local Cohesive Energy 

CN .................................................................................................................. Coordination Number 

CV ............................................................................................................................Cross-Validated 

ΔIP .................................................................................................... Ionization Potential Difference 

DENDRAL ....................................................................................................... Dendritic Algorithm 

DFT ........................................................................................................ Density-Functional Theory 

DOF................................................................................................................... Degrees of Freedom 

EA .......................................................................................................................... Electron Affinity 

EANN ......................................................................................... Embedded Atom Neural Network 

EDS .................................................................................... Energy Dispersive X-Ray Spectroscopy 

EE ............................................................................................................................... Excess Energy 

EMT ......................................................................................................... Effective Medium Theory 
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EPB .............................................................................................. Elongated Pentagonal Bipyramid 

FCC .................................................................................................................. Face-Centered Cubic 

GA ....................................................................................................................... Genetic Algorithm 

GCN ........................................................................................... Generalized Coordination Number 

GCNN ..................................................................................... Graph Convlutional Neural Network 

GTH ............................................................................................................ Goedecker-Teter-Hutter 

HF ................................................................................................................... Hartree-Fock method 

HOMO .................................................................................... Highest Occupied Molecular Orbital 

HRTEM.......................................................... High-Resolution Transmission Electron Microscopy 

HSAB ............................................................................................................... Hard/Soft Acid/Base 

ICSD ...................................................................................... Inorganic Crystal Structure Database 

IP ........................................................................................................................ Ionization Potential 

IPEA ..................................................................................... Negative average of the IP and the EA 

JCPDS ............................................................... Joint Committee on Powder Diffraction Standards 

LASSO ............................................................... Least Absolute Shrinkage and Selection Operator 

Local dc ............................................................................................................. Local d-band Center 

LUMO .................................................................................. Lowest Unoccupied Molecular Orbital 

MADs ......................................................................... Gas-phase Metal-Adsorbate Binding Energy 

MLP ............................................................................................................... Multilayer Perceptron 

MAE .................................................................................................................Mean Absolute Error 

MSE .................................................................................................................. Mean Squared Error 

NEB..................................................................................................................Nudged Elastic Band 

NIST ....................................................................... National Institute of Standards and Technology 
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NMR .................................................................................................. Nuclear Magnetic Resonance 

NP ................................................................................................................................. Nanoparticle 

OLS ............................................................................................................. Ordinary Least-Squares 

OQMD ...................................................................................... Open Quantum Materials Database 

PBE .......................................................................................................... Perdew-Burke-Ernzerhov 

QSAR ................................................................................ Quantitative Structure-Activity Relation 

RI/MARIJ .......................................................... Resolution of Identity / Multipole-Accelerated RI 

RMSE ....................................................................................................... Root Mean Squared Error 

RPBE............................................................................................................................ Revised PBE 

SCF .................................................................................................................. Self-Consistent Field 

SchNOrb ............................................................................................................ SchNet for Orbitals 

STD .....................................................................................................................Standard Deviation 

STEM ....................................................................... Scanning Transmission Electron Miscroscopy 

TPD ...................................................................................... Temperature-Programmed Desorption 

USPEX ................................................... Universal Structure Predictor: Evolutionary Xtallography 

XPS ........................................................................................... X-Ray Photoelectron Spectroscopy 

XRD ..................................................................................................................... X-Ray Diffraction 

ZPE ...................................................................................................................... Zero-Point Energy 
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Appendix B Supporting Information for “Designing Copper-Based Bimetallic 

Nanoparticles for CO2 Activation” 

The content of this appendix is adapted from the supporting information of Dean, J.; Yang, 

Y.; Austin, N.; Veser, G.; Mpourmpakis, G. “Design of Copper-Based Bimetallic Nanoparticles 

for Carbon Dioxide Adsorption and Activation.” ChemSusChem 2018, 11 (7) 1169-1179. 

Appendix B.1 CO2 TPD on typical support materials 

 

 

Figure B.1: CO2 TPD spectra of several common catalyst supports, among which only SiC shows no ability to 

absorb CO2. 

 

In order to investigate CO2 sorption on CuZr bimetallic NPs, CO2 TPD from several 

common catalyst support materials was first conducted in order to eliminate or minimize support 
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contributions to CO2 adsorption. As shown in Figure B.1, both silica and alumina supports can 

adsorb CO2 to a significant degree, while SiC shows no detectable CO2 sorption. Therefore, SiC 

was used as the catalyst support structure to allow for unambiguous attribution of any observable 

CO2 adsorption to the supported CuZr NPs. 

Appendix B.2 CO2 Chemisorption onto Differently-Sized CuZr Nanoparticles 

Table B.1: CO2 binding energies (in eV) on icosahedral 13/55/147-atom CuZr (Zr CN=6) NPs. 

 

Species Structure CO2 BE (eV) 

Cu12Zr 

 

-2.1 

Cu54Zr 

 

-1.6 

Cu146Zr 

 

-1.7 
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Appendix B.3 ZrO2 (𝟏̅𝟏𝟏) Slab Calculations 

Since ZrO2 NPs were experimentally observed in the synthesis of CuZr NPs (see Results 

and Discussion of the main document), we examined CO2 adsorption on ZrO2 by choosing the 

lowest-energy surface (1̅11) termination of monoclinic ZrO2 from literature214, 215. In order to 

calculate the BE of CO2 on the ZrO2 (1̅11) surface, the unit cell vectors of ZrO2 were initially 

optimized (Table B.1). 

 

Table B.2: Unit cell parameters of the monoclinic ZrO2 unit cell, in angstrom in the case of A/B/C, and in 

degrees in the case of 𝜶/𝜷/𝜸. 

 

 

 

Following the optimization of the unit cell, we next cleaved the (1̅11) surface while 

ensuring ZrO2 stoichiometry was maintained, and froze the bottom two layers of Zr and O. The 

slab was allowed to relax with a 10 Å vacuum, resulting in the surface found below in Figure B.2. 

Cell Parameter (units) Measurement 

A (Å) 5.161 

B (Å) 5.228 

C (Å) 5.362 

𝜶 (degree) 90.032 

𝜷 (degree) 90.573 

𝜸 (degree) 90.004 
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Figure B.2: Top view of the first layer of the optimized ZrO2 (𝟏̅𝟏𝟏) surface, with the unit cell overlaid in black. 

Key: Red=O, Blue=Zr. Numerals “I”, “II”, “III”, and “IV” represent the four unique Zr atoms on the surface. 

Periodic cell parameters (in Å for A/B/C and degrees for 𝜶/𝜷/𝜸 ) are as follows: A = 6.796, B = 7.346, C = 22.409 

(inclusive of a 10 Å vacuum between each slab), 𝜶 = 90, 𝜷 = 90, 𝜸 = 63.808.  

 

 

Additionally, because the ZrO2 surface atoms in our synthesized particles may exist in a 

hydroxylated form, we chose to investigate the hydration of (most acidic) sites III and IV from the 

dissociation of water. The optimized structures can be found below in Figure B.3. 
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Figure B.3: Top view of the first layer of the optimized hydroxylated ZrO2 (𝟏̅𝟏𝟏) surface, with the unit cell 

overlayed in black. Left: Hydroxylated IV-site. Right: Hydroxylated III site. Key: Red=O, Blue=Zr. Numerals 

“I”, “II”, “III”, and “IV” represent the four unique Zr atoms on the surface. Periodic cell parameters (in Å for 

A/B/C and degrees for 𝜶/𝜷/𝜸 ) are as follows: A = 6.796, B = 7.346, C = 22.409 (inclusive of a 10 Å vacuum 

between each slab), 𝜶 = 90, 𝜷 = 90, 𝜸 = 63.808. 

 

 

Following the optimization of the slabs, we investigated the adsorption of CO2 onto the 

non-hydrated surface first. CO2 was initially placed parallel to the surface approximately 1.5 Å  

away from Zr atoms I, II, III, and IV. The bottom two layers of Zr and O were again frozen, a 

vacuum of 10 Å between each slab was included, and the geometry of the system optimized). In 

all cases, physisorption was observed, with energies ranging from -0.22 eV to -0.27 eV. Following 

this set of calculations, we proceeded to place CO2 onto the surface in a bent configuration to form 

carbonate. Only two sites (III and IV) were able to bind the CO2 as carbonate; the other two sites 

(I and II) converged to a physisorbed CO2. The BE of carbonate can be found in Table B.3. 
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Table B.3: Lowest-energy CO2 BE (calculated via Equation 2.2) on the ZrO2 (𝟏̅𝟏𝟏) slab when CO2 is placed in 

an initially bent configuration. See Figure B.2 for a visual overview of the four unique Zr atoms on the surface 

of the ZrO2 slab. 

 

Species Binding Site CO2 BE (eV) Zr Charge (e-) 

ZrO2 (𝟏̅𝟏𝟏) III -0.61 2.5 

ZrO2 (𝟏̅𝟏𝟏) IV -0.81 2.4 

 

 

Of note is the fact that we observe a favorable formation of the carbonate ion on the surface 

of ZrO2 in the case of sites III and IV (See Figure B.2 for Site IV). This is in agreement with the 

results of Larmier et. al93 who observed the formation of carbonate on the ZrO2 (1̅11) surface. 

Using a physisorbed CO2 on the ZrO2 (1̅11) IV site (BECO2 = -0.23 eV) as the starting point 

for an NEB calculation and the adsorbed carbonate on the IV site (BECO2 = -0.81 eV) as the ending 

point, we calculate an energetic barrier of +0.13 eV (relative to the physisorbed state) for this 

formation of carbonate to occur. These states are shown in Figure B.4 and the reaction pathway in 

Figure B.5. An NEB calculation was also performed going from a physisorbed CO2 above the III 

site to a carbonate ion on this position, but this was observed to be barrierless.  
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Figure B.4: A focus on the IV site of ZrO2 (𝟏̅𝟏𝟏), with the physisorbed, carbonate-ion-formation, and 

bicarbonate formation states labeled below. Above each image we denote the CO2 BE. Key: Red = O, Blue = 

Zr, Grey = C. 
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Figure B.5: Reaction coordinate diagram of CO2 chemisorption onto the ZrO2 (𝟏̅𝟏𝟏) IV site. “Infinite 

separation” represents the infinite separation of the ZrO2 slab and CO2, which we set as the zero in the energy 

diagram. “T.S.” stands for transition state. The CO2 desorption energy from the carbonate to the gas phase is 

+0.81 on the site IV of ZrO2 (𝟏̅𝟏𝟏) surface. 
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Finally, utilizing the hydrated surface shown in Figure B.3, we bent the CO2 initially and 

placed it next to a Zr site in order to form bicarbonate. In the case of the III site, the existence of 

bicarbonate was not favorable, and CO2 moved away from the surface to a physisorbed state. In 

the case of IV site, the BE was calculated to be -0.57 eV (see structure of bicarbonate in Figure 

B.4). 

These results are again in agreement with those of Larmier et al93, who suggested the 

formation of bicarbonate on the hydroxylated sites of ZrO2 (1̅11). Finally, utilizing a physisorbed 

CO2 on the hydroxylated ZrO2 (1̅11) IV site as the starting point for an NEB calculation, and the 

bicarbonate on the IV site as the end point, we observe a barrierless adsorption of CO2 as 

bicarbonate to the IV site.  
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Appendix C Supporting Information for “Unfolding Adsorption on Metal Nanoparticles: 

Connecting Stability with Catalysis” 

The content of this appendix is adapted from the supporting information of Dean, J.; 

Taylor, M. G.; Mpourmpakis, G. “Unfolding Adsorption on Metal Nanoparticles: Connecting 

Stability with Catalysis.” Science Advances 2019, 5 (9) eaax5101. 

Appendix C.1 Thermodynamic Data 

In the main document, we outline a proposed model to describe the binding of an adsorbate 

to a metal (Equation 3.4). Generally, we expect to be a term StabAds describing the stability of the 

adsorbate, StabNP for the stability of the NP, IntAds-M for the tendency of the adsorbate and metal 

to interact, and finally Stabsite for the stability of the local site. We choose CElocal as our descriptor 

for the local site stability and outline our decision in the main document. However, this still leaves 

three other descriptors to account for in our model: stability of the adsorbate and NP, as well as 

the interaction between the adsorbate and a metal atom. We present a description of our choice of 

properties for these descriptors, as well as a justification for choosing them as follows. 

Appendix C.1.1 StabAds: Ionization Potential and Electron Affinity (IPEA) 

For StabAds, we relate the adsorbate stability in the gas phase to the chemical potential. It 

has been shown that within the context of HSAB theory, the negative average of the IP and EA 
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can be used as a first-order approximation to the chemical potential 153. Experimental values for 

both IP and EA for small molecules are tabulated in literature, and even in the absence of 

experimental data, they can be readily calculated 216 . The data we used to calculate this term comes 

primarily from tabulated experimental data on the NIST WebBook. In the case of ammonia, in the 

absence of an experimental EA value in the NIST WebBook, we therefore used the NIST 

CCCBDB, choosing the entry corresponding to the full CCSD(T) method with a cc-pVQZ basis 

set. The reference data we used can be found in Table C.1. 

 
Table C.1: IPs and EAs for the methyl radical, carbon monoxide, the hydroxyl radical, and ammonia. IPEA is 

calculated as the negative of the average of IP and EA. All energies are reported in electron-volts (eV). 

 

Adsorbate IP (eV) EA (eV) IPEA (eV) 

Methyl (⋅CH3) 9.843 217 0.08 218 -4.961 

Carbon Monoxide (CO) 14.0142 219 1.32608 220 -7.670 

Hydroxyl (⋅OH) 1.82767 221 13.017 222 -7.422 

Ammonia (NH3) 10.02 223 -2.338 41 -3.841 

    

Appendix C.1.2 StabNP: Cohesive Energy of the Nanoparticle (CENP) 

We use the CE of the isolated NP in the gas phase as our descriptor for its stability. CE is 

defined as the energy required to separate each atom of the NP to an infinite distance, scaled by 

the number of atoms in the NP. The CE of a monometallic NP is mathematically related to its 

electronic energy, as shown in Equation C.1. 

CENP =
ENP − n ∗ EM

n
 Equation C.1 

In Equation C.1, n represents the number of atoms in the NP. CE therefore serves as an 

indirect measure of NP energetics/stability. To calculate CE of the NPs, we use the accelerated 

BCM, which has been shown to trend with DFT CEs over both monometallic and bimetallic NPs 
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of different sizes and shapes 151. The BCM requires no parameter tuning, is orders of magnitude 

faster than DFT, and is readily extendable to multiple NP systems. In the case of a monometallic 

NP, the BC-model CE of the NP is represented as Equation C.2. 

StabNP =  CENP =
CEbulk

n ∗ √CNbulk

∑ √CNi

n

i=1

 Equation C.2 

In Equation C.2,CENP is the CE of the NP, CEbulk is the bulk CE of the metal, CNi  is the 

CN of atom i, and CNbulk is the CN of the metal in bulk.  

 

 
Table C.2: BC-model-calculated cohesive energies of the relevant NPs we investigated. 

 

Morphology Formula CE (eV) 

Cube Cu172 -2.946 

Cuboctahedron Cu55 -2.790 

Cuboctahedron Cu147 -2.990 

Icosahedron Cu55 -2.912 

Icosahedron Cu147 -3.082 

Cube Ag172 -2.490 

Cuboctahedron Ag55 -2.359 

Cuboctahedron Ag147 -2.527 

Icosahedron Ag55 -2.466 

Icosahedron Ag147 -2.605 

Cube Au172 -3.216 

Cuboctahedron Au55 -3.046 

Cuboctahedron Au147 -3.264 

Icosahedron Au55 -3.186 

Icosahedron Au147 -3.364 
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Figure C.1: Adsorbate binding energies versus BC-model-calculated NP cohesive energies. 
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Appendix C.1.3 IntAds-M: Gas-Phase Metal-Adsorbate BE (MADs) 

For the IntAds-M descriptor we use DFT to calculate a BE in the gas phase between the 

adsorbates and a single metal atom. This calculation represents a simple but accurate method for 

screening only metal-adsorbate interactions, as no metal-metal nor adsorbate-adsorbate bonds are 

present to influence the metal-adsorbate interaction. We highlight that this is the only DFT 

calculation required to model new metal-adsorbate interactions with the functional form of 

Equation 3.4. These DFT calculations are significantly faster to calculate than full adsorbate-NP 

DFT calculations. Therefore, the IntAds-M descriptor we use is that found in Equation C.3. 

IntAds−M = Ebind,Ads−M ≡ MADs Equation C.3 

We recognize that MADs, although fast to calculate, may encounter some challenges 

within DFT. We try to be as accurate as possible in our calculations by investigating several spin 

states and using an unrestricted Kohn-Sham scheme (see Computational Information). The same 

descriptor has also been used by Roling et al 157 in the development of their adsorption model. 

Alternatively, one could use experimental affinities between a metal and adsorbate as the MADs 

descriptor. The physics (type of descriptors defining the model) should not depend on the particular 

approach used in determining the descriptors, although the regression coefficients will likely 

change. 

Appendix C.1.4 Stabsite: The local cohesive energy (CElocal) 

Beyond simple metal-adsorbate interaction strength, previous work indicates that geometry 

of the binding site has a strong effect on the binding of single adsorbate (EAds-NP in Equation 3.1). 

For example, it was observed that the BE of carbon monoxide to Au NPs depends on both the CN 
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of the metal participating in the binding interaction as well as the local curvature of the NP surface 

23. For the site stability descriptor, Stabsite, we choose to take a modified form of the BCM wherein 

we only consider bonds directly connected to the metal atom participating in the adsorption 

interaction. We report in Table C.3 calculated values for this descriptor for every binding 

interaction we investigated, including periodic slab dataset157. 

 

 
Table C.3: Calculated CElocal for relevant adsorption sites. In case of NPs where more than one site share the 

same CN (the cubes), we denote different binding sites by including a subscript and a unique identifier for the 

site. In the case of slabs where more than one site share the same coordination, we only report the CN of the 

site investigated. 

Morphology Formula Facet (Slabs Only) Site CElocal (eV) 

Cube Ag172 NA 3 -2.378 

Cube Ag172 NA 5 -3.354 

Cube Ag172 NA 8_1 -4.811 

Cube Ag172 NA 8_2 -4.596 

Cube Ag172 NA 8_3 -4.596 

Cube Ag172 NA 8_4 -5.057 

Cuboctahedron Ag55 NA 5 -3.438 

Cuboctahedron Ag55 NA 7 -4.451 

Cuboctahedron Ag55 NA 8 -4.679 

Cuboctahedron Ag147 NA 5 -3.438 

Cuboctahedron Ag147 NA 7 -4.354 

Cuboctahedron Ag147 NA 8 -4.638 

Cuboctahedron Ag147 NA 9 -5.224 

Icosahedron Ag55 NA 6 -3.837 

Icosahedron Ag55 NA 8 -4.8 

Icosahedron Ag147 NA 6 -3.837 

Icosahedron Ag147 NA 8 -4.719 

Icosahedron Ag147 NA 9 -5.099 

Cube Au172 NA 3 -3.072 



 139 

Table C.3 (continued). 

 

Cube Au172 NA 5 -4.332 

Cube Au172 NA 8_1 -6.214 

Cube Au172 NA 8_2 -5.936 

Cube Au172 NA 8_3 -5.936 

Cube Au172 NA 8_4 -6.531 

Cuboctahedron Au55 NA 5 -4.44 

Cuboctahedron Au55 NA 7 -5.749 

Cuboctahedron Au55 NA 8 -6.044 

Cuboctahedron Au147 NA 5 -4.44 

Cuboctahedron Au147 NA 7 -5.624 

Cuboctahedron Au147 NA 8 -5.99 

Cuboctahedron Au147 NA 9 -6.746 

Icosahedron Au55 NA 6 -4.956 

Icosahedron Au55 NA 8 -6.199 

Icosahedron Au147 NA 6 -4.956 

Icosahedron Au147 NA 8 -6.095 

Icosahedron Au147 NA 9 -6.585 

Cube Cu172 NA 3 -2.814 

Cube Cu172 NA 5 -3.968 

Cube Cu172 NA 8_1 -5.692 

Cube Cu172 NA 8_2 -5.438 

Cube Cu172 NA 8_3 -5.438 

Cube Cu172 NA 8_4 -5.983 

Cuboctahedron Cu55 NA 5 -4.067 

Cuboctahedron Cu55 NA 7 -5.266 

Cuboctahedron Cu55 NA 8 -5.536 

Cuboctahedron Cu147 NA 5 -4.067 

Cuboctahedron Cu147 NA 7 -5.151 

Cuboctahedron Cu147 NA 8 -5.487 

Cuboctahedron Cu147 NA 9 -6.18 

Icosahedron Cu55 NA 6 -4.54 

Icosahedron Cu55 NA 8 -5.679 

Icosahedron Cu147 NA 6 -4.54 

Icosahedron Cu147 NA 8 -5.583 
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Table C.3 (continued). 

 

Icosahedron Cu147 NA 9 -6.032 

Icosahedron Cu22Ag33 NA 6_1 -4.137 

Icosahedron Cu22Ag33 NA 6_2 -3.993 

Icosahedron Cu22Ag33 NA 8_1 -5.207 

Icosahedron Cu22Ag33 NA 8_2 -4.916 

Icosahedron Cu31Ag24 NA 6_1 -4.148 

Icosahedron Cu31Ag24 NA 6_2 -4.344 

Icosahedron Cu31Ag24 NA 8_1 -5.449 

Icosahedron Cu31Ag24 NA 8_2 -5.02 

Cuboctahedron Rh55 NA 5 -6.7 

Cuboctahedron Rh55 NA 7 -8.676 

Cuboctahedron Rh55 NA 8 -9.121 

Icosahedron Rh55 NA 6 -7.479 

Icosahedron Rh55 NA 8 -9.356 

Slab Ag 100 4 -2.839 

Slab Ag 100 4 -2.78 

Slab Ag 100 6 -3.858 

Slab Ag 100 6 -3.715 

Slab Ag 100 8 -4.826 

Slab Ag 100 8 -4.596 

Slab Ag 111 3 -2.283 

Slab Ag 111 5 -3.449 

Slab Ag 111 7 -4.3 

Slab Ag 111 9 -4.995 

Slab Ag 211 5 -3.289 

Slab Ag 211 6 -3.79 

Slab Ag 211 7 -4.226 

Slab Au 100 4 -3.666 

Slab Au 100 4 -3.591 

Slab Au 100 6 -4.983 

Slab Au 100 6 -4.798 

Slab Au 100 8 -6.233 

Slab Au 100 8 -5.936 

Slab Au 111 3 -2.948 

Slab Au 111 5 -4.454 

Slab Au 111 7 -5.553 

Slab Au 111 9 -6.452 
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Table C.3 (continued). 

 

Slab Au 211 5 -4.248 

Slab Au 211 6 -4.895 

Slab Au 211 7 -5.457 

Slab Cu 100 4 -3.358 

Slab Cu 100 4 -3.289 

Slab Cu 100 6 -4.565 

Slab Cu 100 6 -4.395 

Slab Cu 100 8 -5.71 

Slab Cu 100 8 -5.438 

Slab Cu 111 3 -2.701 

Slab Cu 111 5 -4.08 

Slab Cu 111 7 -5.087 

Slab Cu 111 9 -5.91 

Slab Cu 211 5 -3.891 

Slab Cu 211 6 -4.484 

Slab Cu 211 7 -4.999 

Slab Ir 100 4 -6.678 

Slab Ir 100 4 -6.541 

Slab Ir 100 6 -9.077 

Slab Ir 100 6 -8.74 

Slab Ir 100 8 -11.354 

Slab Ir 100 8 -10.813 

Slab Ir 111 3 -5.371 

Slab Ir 111 5 -8.113 

Slab Ir 111 7 -10.116 

Slab Ir 111 9 -11.752 

Slab Ir 211 5 -7.738 

Slab Ir 211 6 -8.917 

Slab Ir 211 7 -9.941 

Slab Ni 100 4 -4.272 

Slab Ni 100 4 -4.185 

Slab Ni 100 6 -5.807 

Slab Ni 100 6 -5.592 

Slab Ni 100 8 -7.264 

Slab Ni 100 8 -6.918 

Slab Ni 111 3 -3.436 

Slab Ni 111 5 -5.191 

Slab Ni 111 7 -6.472 

Slab Ni 111 9 -7.519 

Slab Ni 211 5 -4.951 
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Table C.3 (continued). 

 

Slab Ni 211 6 -5.705 

Slab Ni 211 7 -6.36 

Slab Pd 100 4 -3.743 

Slab Pd 100 4 -3.666 

Slab Pd 100 6 -5.088 

Slab Pd 100 6 -4.899 

Slab Pd 100 8 -6.364 

Slab Pd 100 8 -6.061 

Slab Pd 111 3 -3.01 

Slab Pd 111 5 -4.548 

Slab Pd 111 7 -5.67 

Slab Pd 111 9 -6.587 

Slab Pd 211 5 -4.337 

Slab Pd 211 6 -4.998 

Slab Pd 211 7 -5.572 

Slab Pt 100 4 -5.62 

Slab Pt 100 4 -5.504 

Slab Pt 100 6 -7.638 

Slab Pt 100 6 -7.355 

Slab Pt 100 8 -9.555 

Slab Pt 100 8 -9.099 

Slab Pt 111 3 -4.519 

Slab Pt 111 5 -6.827 

Slab Pt 111 7 -8.512 

Slab Pt 111 9 -9.889 

Slab Pt 211 5 -6.512 

Slab Pt 211 6 -7.504 

Slab Pt 211 7 -8.365 

Slab Rh 100 4 -5.533 

Slab Rh 100 4 -5.419 

Slab Rh 100 6 -7.521 

Slab Rh 100 6 -7.241 

Slab Rh 100 8 -9.407 

Slab Rh 100 8 -8.959 

Slab Rh 111 3 -4.45 

Slab Rh 111 5 -6.722 

Slab Rh 111 7 -8.381 

Slab Rh 111 9 -9.737 

Slab Rh 211 5 -6.411 

Slab Rh 211 6 -7.388 
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Table C.3 (continued). 

 

Slab Rh 211 7 -8.236 

Appendix C.2 “Leave-One-In” Tests 

In order to evaluate the generalizability of our model to additional adsorbate-NP systems, 

we divided our training set up into several categories based on NP size, shape, and chemical 

composition, as well as by adsorbate. We choose only one category to train on (e.g. if training on 

55-atom NPs, we exclude 147- and 172-atom NPs from the training set). The results of these tests 

can be found in Table C.4, and parity plots can be found in Figure C.2. 

 

 
Table C.4: Regression statistics for the various “Leave-One-In” tests we performed. The training and test-set 

RMSEs have units of eV. The intercept, CElocal, IPEA, and Ebind, M-Ads coefficient estimates are unitless. 

 

Training Set 

Description 

Training 

Set 10CV 

RMSE 

Test Set 

RMSE 
Intercept CELocal IPEA 

EBind, 

M-Ads 

Ag NPs 0.1313 0.2201 1.787 -0.117 0.338 0.766 

Cu NPs 0.1789 0.2087 2.156 -0.118 0.386 0.704 

Au NPs 0.1441 0.2037 0.733 -0.17 0.264 0.601 

Icosahedrons 0.1667 0.1813 1.498 -0.161 0.341 0.696 

Cuboctahedrons 0.1632 0.1857 1.581 -0.137 0.341 0.69 

Cubes (172-atoms) 0.1658 0.2034 1.362 -0.161 0.314 0.653 

55-atom NPs 0.1369 0.1917 1.676 -0.091 0.332 0.624 

147-atom NPs 0.1481 0.2128 1.418 -0.194 0.348 0.742 

Methyl Radical 0.1837 0.6205 -0.542 -0.126 NA 0.484 

Carbon Monoxide 0.1386 0.4742 -0.763 -0.085 NA 0.609 

Hydroxyl Radical 0.1795 0.5195 -1.261 -0.188 NA 0.65 
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Figure C.2: Parity plots for the various “Leave-One-In” tests we performed. Error bars for the training set are 

the 10-CV RMSE. Error bars for the test set are the RMSE between the test set model and the DFT prediction. 

Training sets are exclusively the adsorption interactions on (A) Ag NPs, (B), Cu NPs, (C) Au NPs, (D) 

Icosahedral NPs, (E) Cuboctahedral NPs, (F) Cube NPs (equivalent with the set of 172-atom NPs), (G) 55-atom 

NPs, (H) 147-atom NPs, as well as all adsorbate-NP pairs for (I) the methyl radical, (J) carbon monoxide, and 

(K) the hydroxyl radical. 
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The larger error bars in the case of the adsorbates can be attributed to the necessity that 

they underfit. Because only one adsorbate is investigated in S2.1 I, J, and K, it is impossible to 

sample more than one value of IPEA: two chemically-identical adsorbates must have the same 

value for this descriptor. As a result, there is not enough information in those particular splits of 

the dataset for the IPEA parameter to be tuned.  

Appendix C.3 Investigations on Slabs 

Following our initial study of the adsorption of the methyl radical, the hydroxyl radical, 

and carbon monoxide onto Au, Ag, and Cu NPs, we also investigated the adsorption of these same 

adsorbate-metal pairs onto the several metallic slabs reported in the slab data157. The binding 

energies are taken from the aforementioned reference, and the local site cohesive energies that we 

calculated can be found in Table C.3. In order to search for potential descriptors and verify the 

model descriptors we have already chosen, we utilized three techniques: OLS, LASSO, and 

Symbolic Regression.  
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Figure C.3: Characterization of all metal-adsorbate pairs in the slab dataset157 simultaneously (e.g. there is one 

training set, which includes all adsorption interactions from the dataset). (A) The model including only an 

intercept, CELocal, IPEA, and MADs. (B) The model where we have intentionally overfit, utilizing an intercept, 

the site’s CN, the negative average of the IP and EA of the metal, the negative of the average of the IP and EA 

of the adsorbate, the HSAB-based hardness of the metal, the metal’s d-electron configuration, the covalent 

radius of the metal, the resistivity of the metal, the melting point of the metal, the CE local, and MADs. Error 

bars in each case are from the 10-fold cross-validated RMSE.  

 

 

In an attempt to find meaningful descriptors for the three columns of the periodic table 

investigated in the slab dataset157, we considered additional descriptors. Values for the EA and IP 

of the metal (used in the calculation of the chemical potential and chemical hardness under HSAB 

theory 153), the covalent radius, the metal resistivity, and the metal melting point all come from the 

92nd edition of the CRC Handbook of Chemistry and Physics 161. Resistivity values used are those 

reported for 273K. 
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Table C.5: Regression statistics for intentionally-overfit model plot of Figure C.3 B, with coefficients generated 

via OLS regression. The final column indicates a coefficient estimate from LASSO at an optimal lambda value 

of 𝝀 = 𝟎. 𝟎𝟎𝟕𝟓  yielding the lowest MSE. 

 

Term Coefficient Estimate Standard Error p-Value 

LASSO 

Coefficient 

Estimate 

Intercept -0.279 1.238 0.822 1.229 

CN 0.073 0.038 0.054 0.037 

Metal Chemical Potential -0.009 0.064 0.887 -0.009 

Metal Chemical Hardness -0.219 0.14 0.119 0 

Metal d-count 0.217 0.123 0.08 0 

Metal Covalent Radius -0.756 0.374 0.044 -0.467 

Metal Resistivity 0.001 0.001 0.35 0 

Metal Melting Point 0.001 0 0.041 0 

CElocal -0.004 0.05 0.931 -0.046 

IPEA 0.132 0.015 8.3*10-16 0.124 

MADS 0.777 0.03 <2*1016 0.738 

Appendix C.4 LASSO 

We observe in an OLS model attempting to fit all possible datapoints that p-values point 

towards the IPEA and MADs being the most-probable descriptors of the binding interaction, with 

the only other statistically-significant descriptor being the melting point of the metal. Further, 

CElocal is given a much higher p-value than the CN. Because p-values are only one (often over-

relied-upon) piece of model verification 224, in order to get a better description of the importance 

of each of these variables, we utilized GLMNet 225 as implemented in R155 to perform feature 

selection via LASSO 226. Choosing a value of lambda minimizing the cross-validated mean-

squared error, LASSO gives the following parameters nonzero coefficients: An intercept, CN, the 

chemical potential of the metal, the covalent radius of the metal, CElocal, IPEA, and MADS (Table 

C.5). Of these the highest coefficients are given to an intercept, MADS, IPEA, CN, and CElocal. 
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This offers support for the functional form of our model found in Equation C.4, as although CN 

seems to have a higher coefficient than CElocal by LASSO, CElocal captures additional information 

about the local chemical environment which CN is missing. 

Appendix C.5 Symbolic Regression with Eureqa 

Because the potential exists for cross terms and higher-order terms in the model, we 

continued our investigation of these parameters using the software package Eureqa 227, which 

performs symbolic regression via a GA. Taking the slab dataset 157, we first standardized the data 

by subtracting the mean and dividing by the standard deviation, on a per-column basis. We allowed 

the search of the formula space to include the following terms: constants, integer constants, any of 

the input variables, negations of any constants or variables, and allowed the operators addition, 

subtraction, multiplication, and division. Since RMSE is not available as an error metric in Eureqa, 

we instead selected squared error as our error metric. The formula search was allowed to run for 

approximately 1 million generations, investigating 78 billion potential equations via GA. 

Upon investigating the array of potential models Eureqa generated, we observe that nearly 

all of them have some nonlinear dependence on the IPEA descriptor. The majority of these took 

the form of 𝐴 ∗ 𝐼𝑃𝐸𝐴2, 
𝐴

𝐵+𝐼𝑃𝐸𝐴
, or 

𝐴+𝐵∗𝑋

𝐵+𝐼𝑃𝐸𝐴
, where A and B are constants, and X is some arbitrary 

other descriptor from the dataset. Although at first it may appear that this indicates a nonlinear 

dependence on IPEA, in reality this is an artifact of the dataset only containing three adsorbates. 

Because there are only three points in this dimension, either a parabola or reciprocal function are 

flexible-enough to capture them. In other words, this particular set of nonlinear terms featuring 

IPEA are likely overfitting to the data. For this purpose we utilize Occam’s Razor: we focus only 
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on simple solutions which do not feature a nonlinear relation with IPEA, and ignore the other 

equations. We are then left with a series of equations all taking the form of Equation C.4. 

BE = A + B ∗ CElocal + C ∗ IPEA + D ∗ MADS Equation C.4 

In Equation C.4, A-D are constants. In some simpler equations, some of these coefficients 

are set to zero, but the best fit occurs when all coefficients are assigned values. In other words, the 

GA search for equation forms, which was not restricted in its choice of descriptors, has undergone 

convergent evolution to the equation form we utilize in the main document. 

Appendix C.6 Adsorption Configurations 

To investigate a variety of chemical environments, we focus on five unique NP 

morphologies: a 55-atom icosahedron (Figure C.4 A), a 55-atom cuboctahedron (Figure C.4 B), a 

147-atom icosahedron (Figure C.4 C), a 147-atom cuboctahedron (Figure C.4 D), and a 172-atom 

cube (Figure C.4 E).  



 150 

 

Figure C.4: Illustration of initial configurations for several DFT calculations performed. Upper: CNs on (A) 

55-atom icosahedron, (B) 55-atom cuboctahedron, (C) 147-atom icosahedron, (D) 147-atom cuboctahedron, (E) 

172-atom cube. In the case of NPs where more than one unique atoms share the same CN, we denote them with 

numbers 8-1, 8-2, 8-3, 8-4. Lower: Adsorbate-metal complexes in the case of (F) methyl radical, (G) hydroxyl 

radical, (H) carbon monoxide, (I) ammonia, (J) methyl radical bound to a gas-phase metal atom, (K) carbon 

monoxide bound to a gas-phase metal atom, (L) hydroxyl radical bound to a gas-phase metal atom, (M) 

ammonia bound to a gas-phase metal atom. 
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Due to symmetry, the 55-atom icosahedron (Figure C.4 A) has only two distinct sites, with 

CN equal to 6 or 8. The 55-atom cuboctahedron (Figure C.4 B) has three unique sites: CN 5, 7, or 

8. The 147-atom icosahedron (Figure C.4 C) contains only three distinct sites, with CN equal to 6, 

8, or 9. In the 147-atom cuboctahedron (Figure C.4 D), symmetry yields four distinct sites: CN 5, 

7, 8, or 9. For the 172-atom cube (Figure C.4 E), six sites are possible: CN 3 or 5, as well as four 

unique CN 8 sites, which we refer to as 8-1, 8-2, 8-3, and 8-4.  

For each of the morphologies shown in Figure C.4 A-E, monometallic Cu, Ag, and Au NPs 

were constructed and subsequently relaxed via DFT. After relaxation, the adsorbates of interest 

(CH3, CO, OH) were placed at a “top” adsorption configuration (see Figure C.4 F-I) above each 

distinct surface site on the NPs. The top adsorption configuration was used as it gives the least 

number of distinct sites to screen per NP, and has been shown to trend with the BE of other 

surrounding adsorption sites 156. In rare cases where the adsorbate moved away from a top 

configuration to a bridged or hollow position during optimization, the configuration was forced to 

relax on top. For all adsorption calculations, the NP structure was frozen. 

The BE of an adsorbate was calculated as the difference between the adsorbed state and 

each species at infinite separation (gas-phase) was taken, as shown in Equation C.5. 

Ebind,Ads−NP = EAds−NP − (EAds + ENP) Equation C.5 

In Equation C.5, Ebind, Ads-NP refers to the BE, EAds-NP refers to the electronic energy of the 

NP-adsorbate complex, EAds refers to the gas-phase electronic energy of the adsorbate, and ENP 

refers to the gas-phase electronic energy of the NP. 

Adsorption calculations on a metal atom for all four adsorbates can be found in Figure C.4 

J-M.  
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Table C.6: DFT-calculated binding energies for all studied adsorbate-NP pairs, ordered first by adsorbate, then 

by morphology, then by element, and finally by CN. The investigated adsorbates are the methyl radical, carbon 

dioxide molecule, hydroxyl radical, and ammonia molecule.  Investigated morphologies are 172-atom cubes, 

55-/147-atom cuboctahedrons, and 55-/147-atom icosahedrons.  Investigated metals for these morphologies are 

Ag, Au, and Cu. In the case of Rh, the 55-atom cuboctahedron and 55-atom icosahedron were investigated. In 

the case of the bimetallic CuAg alloys, 55-atom icosahedrons were investigated. For NPs where multiple binding 

sites share the same CN, an underscore followed by a number is used to arbitrarily assign a unique ID to 

differentiate these sites. We additionally report the gas-phase single-metal-atom BE to each adsorbate; these 

calculations are indicated with the word “Gas” in the Morphology column. 

 

Morphology Size Composition CN Adsorbate DFT BE (eV) 

Cube 172 Ag 3 CH3 -1.39 

Cube 172 Ag 5 CH3 -1.11 

Cube 172 Ag 8_1 CH3 -0.95 

Cube 172 Ag 8_2 CH3 -0.74 

Cube 172 Ag 8_3 CH3 -0.8 

Cube 172 Ag 8_4 CH3 -0.89 

Cube 172 Au 3 CH3 -1.68 

Cube 172 Au 5 CH3 -1.47 

Cube 172 Au 8_1 CH3 -1.18 

Cube 172 Au 8_2 CH3 -0.99 

Cube 172 Au 8_3 CH3 -1.1 

Cube 172 Au 8_4 CH3 -1.19 

Cube 172 Cu 3 CH3 -1.59 

Cube 172 Cu 5 CH3 -1.43 

Cube 172 Cu 8_1 CH3 -1.02 

Cube 172 Cu 8_2 CH3 -0.89 

Cube 172 Cu 8_3 CH3 -0.91 

Cube 172 Cu 8_4 CH3 -1.14 

Cuboctahedron 55 Ag 5 CH3 -0.97 

Cuboctahedron 55 Ag 7 CH3 -1.09 

Cuboctahedron 55 Ag 8 CH3 -0.74 

Cuboctahedron 147 Ag 5 CH3 -1.25 

Cuboctahedron 147 Ag 7 CH3 -1.18 

Cuboctahedron 147 Ag 8 CH3 -0.9 

Cuboctahedron 147 Ag 9 CH3 -1.09 

Cuboctahedron 55 Au 5 CH3 -1.31 
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Table C.6 (continued). 

 

Cuboctahedron 55 Au 7 CH3 -1.48 

Cuboctahedron 55 Au 8 CH3 -1.12 

Cuboctahedron 147 Au 5 CH3 -1.6 

Cuboctahedron 147 Au 7 CH3 -1.42 

Cuboctahedron 147 Au 8 CH3 -1.16 

Cuboctahedron 147 Au 9 CH3 -1.28 

Cuboctahedron 55 Cu 5 CH3 -1.3 

Cuboctahedron 55 Cu 7 CH3 -1.43 

Cuboctahedron 55 Cu 8 CH3 -1.05 

Cuboctahedron 147 Cu 5 CH3 -1.6 

Cuboctahedron 147 Cu 7 CH3 -1.51 

Cuboctahedron 147 Cu 8 CH3 -1.02 

Cuboctahedron 147 Cu 9 CH3 -1.36 

Cuboctahedron 55 Rh 5 CH3 -2.02 

Cuboctahedron 55 Rh 7 CH3 -1.99 

Cuboctahedron 55 Rh 8 CH3 -1.9 

Icosahedron 55 Ag 6 CH3 -0.8 

Icosahedron 55 Ag 8 CH3 -1.03 

Icosahedron 147 Ag 6 CH3 -1.23 

Icosahedron 147 Ag 8 CH3 -1.01 

Icosahedron 147 Ag 9 CH3 -0.8 

Icosahedron 55 Au 6 CH3 -1.36 

Icosahedron 55 Au 8 CH3 -1.29 

Icosahedron 147 Au 6 CH3 -1.66 

Icosahedron 147 Au 8 CH3 -1.29 

Icosahedron 147 Au 9 CH3 -1.06 

Icosahedron 55 Cu 6 CH3 -1.17 

Icosahedron 55 Cu 8 CH3 -1.33 

Icosahedron 147 Cu 6 CH3 -1.55 

Icosahedron 147 Cu 8 CH3 -1.24 

Icosahedron 147 Cu 9 CH3 -0.98 

Icosahedron 55 Cu22Ag33 6_1 CH3 -1.22 

Icosahedron 55 Cu22Ag33 6_2 CH3 -0.84 

Icosahedron 55 Cu22Ag33 8_1 CH3 -1.25 

Icosahedron 55 Cu22Ag33 8_2 CH3 -0.86 

Icosahedron 55 Cu31Ag24 6_1 CH3 -1.08 

Icosahedron 55 Cu31Ag24 6_2 CH3 -1.14 

Icosahedron 55 Cu31Ag24 8_1 CH3 -1.21 
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Table C.6 (continued). 

 

Icosahedron 55 Cu31Ag24 8_2 CH3 -0.9 

Icosahedron 55 Rh 6 CH3 -2.08 

Icosahedron 55 Rh 8 CH3 -2.09 

Cube 172 Ag 3 CO -0.77 

Cube 172 Ag 5 CO -0.68 

Cube 172 Ag 8_1 CO -0.57 

Cube 172 Ag 8_2 CO -0.4 

Cube 172 Ag 8_3 CO -0.52 

Cube 172 Ag 8_4 CO -0.61 

Cube 172 Au 3 CO -1.07 

Cube 172 Au 5 CO -0.96 

Cube 172 Au 8_1 CO -0.57 

Cube 172 Au 8_2 CO -0.45 

Cube 172 Au 8_3 CO -0.5 

Cube 172 Au 8_4 CO -0.56 

Cube 172 Cu 3 CO -0.81 

Cube 172 Cu 5 CO -1 

Cube 172 Cu 8_1 CO -1.05 

Cube 172 Cu 8_2 CO -0.77 

Cube 172 Cu 8_3 CO -0.85 

Cube 172 Cu 8_4 CO -1 

Cuboctahedron 55 Ag 5 CO -0.73 

Cuboctahedron 55 Ag 7 CO -0.6 

Cuboctahedron 55 Ag 8 CO -0.68 

Cuboctahedron 147 Ag 5 CO -0.71 

Cuboctahedron 147 Ag 7 CO -0.67 

Cuboctahedron 147 Ag 8 CO -0.51 

Cuboctahedron 147 Ag 9 CO -0.57 

Cuboctahedron 55 Au 5 CO -0.97 

Cuboctahedron 55 Au 7 CO -0.73 

Cuboctahedron 55 Au 8 CO -0.79 

Cuboctahedron 147 Au 5 CO -0.97 

Cuboctahedron 147 Au 7 CO -0.74 

Cuboctahedron 147 Au 8 CO -0.51 

Cuboctahedron 147 Au 9 CO -0.5 

Cuboctahedron 55 Cu 5 CO -1.3 

Cuboctahedron 55 Cu 7 CO -1.14 

Cuboctahedron 55 Cu 8 CO -1.2 
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Table C.6 (continued). 

 

Cuboctahedron 147 Cu 5 CO -1.3 

Cuboctahedron 147 Cu 7 CO -1.17 

Cuboctahedron 147 Cu 8 CO -0.94 

Cuboctahedron 147 Cu 9 CO -1.04 

Cuboctahedron 55 Rh 5 CO -2.22 

Cuboctahedron 55 Rh 7 CO -2.36 

Cuboctahedron 55 Rh 8 CO -2.25 

Icosahedron 55 Ag 6 CO -0.7 

Icosahedron 55 Ag 8 CO -0.68 

Icosahedron 147 Ag 6 CO -0.57 

Icosahedron 147 Ag 8 CO -0.54 

Icosahedron 147 Ag 9 CO -0.48 

Icosahedron 55 Au 6 CO -0.97 

Icosahedron 55 Au 8 CO -0.62 

Icosahedron 147 Au 6 CO -0.92 

Icosahedron 147 Au 8 CO -0.65 

Icosahedron 147 Au 9 CO -0.47 

Icosahedron 55 Cu 6 CO -1.23 

Icosahedron 55 Cu 8 CO -1.16 

Icosahedron 147 Cu 6 CO -1.04 

Icosahedron 147 Cu 8 CO -1 

Icosahedron 147 Cu 9 CO -0.88 

Icosahedron 55 Cu22Ag33 6_1 CO -1.24 

Icosahedron 55 Cu22Ag33 6_2 CO -0.68 

Icosahedron 55 Cu22Ag33 8_1 CO -1.2 

Icosahedron 55 Cu22Ag33 8_2 CO -0.61 

Icosahedron 55 Cu31Ag24 6_1 CO -1.14 

Icosahedron 55 Cu31Ag24 6_2 CO -1.12 

Icosahedron 55 Cu31Ag24 8_1 CO -1.13 

Icosahedron 55 Cu31Ag24 8_2 CO -0.55 

Icosahedron 55 Rh 6 CO -2.2 

Icosahedron 55 Rh 8 CO -2.65 

Cube 172 Ag 3 OH -2.44 

Cube 172 Ag 5 OH -2.24 

Cube 172 Ag 8_1 OH -2.1 

Cube 172 Ag 8_2 OH -1.9 

Cube 172 Ag 8_3 OH -2.02 

Cube 172 Ag 8_4 OH -2.04 
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Table C.6 (continued). 

 

Cube 172 Au 3 OH -2.21 

Cube 172 Au 5 OH -1.99 

Cube 172 Au 8_1 OH -1.64 

Cube 172 Au 8_2 OH -1.52 

Cube 172 Au 8_3 OH -1.57 

Cube 172 Au 8_4 OH -1.63 

Cube 172 Cu 3 OH -2.88 

Cube 172 Cu 5 OH -2.8 

Cube 172 Cu 8_1 OH -2.49 

Cube 172 Cu 8_2 OH -2.29 

Cube 172 Cu 8_3 OH -2.21 

Cube 172 Cu 8_4 OH -2.32 

Cuboctahedron 55 Ag 5 OH -2.12 

Cuboctahedron 55 Ag 7 OH -2.13 

Cuboctahedron 55 Ag 8 OH -2.03 

Cuboctahedron 147 Ag 5 OH -2.47 

Cuboctahedron 147 Ag 7 OH -2.47 

Cuboctahedron 147 Ag 8 OH -2.14 

Cuboctahedron 147 Ag 9 OH -2.33 

Cuboctahedron 55 Au 5 OH -1.76 

Cuboctahedron 55 Au 7 OH -1.78 

Cuboctahedron 55 Au 8 OH -1.66 

Cuboctahedron 147 Au 5 OH -2.25 

Cuboctahedron 147 Au 7 OH -2.02 

Cuboctahedron 147 Au 8 OH -1.76 

Cuboctahedron 147 Au 9 OH -1.85 

Cuboctahedron 55 Cu 5 OH -2.76 

Cuboctahedron 55 Cu 7 OH -2.67 

Cuboctahedron 55 Cu 8 OH -2.47 

Cuboctahedron 147 Cu 5 OH -3.06 

Cuboctahedron 147 Cu 7 OH -2.87 

Cuboctahedron 147 Cu 8 OH -2.42 

Cuboctahedron 147 Cu 9 OH -2.7 

Cuboctahedron 55 Rh 5 OH -3.33 

Cuboctahedron 55 Rh 7 OH -3 

Cuboctahedron 55 Rh 8 OH -2.77 

Icosahedron 55 Ag 6 OH -2.07 

Icosahedron 55 Ag 8 OH -2.11 
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Table C.6 (continued). 

 

Icosahedron 147 Ag 6 OH -2.38 

Icosahedron 147 Ag 8 OH -2.25 

Icosahedron 147 Ag 9 OH -2.09 

Icosahedron 55 Au 6 OH -1.68 

Icosahedron 55 Au 8 OH -1.52 

Icosahedron 147 Au 6 OH -2.25 

Icosahedron 147 Au 8 OH -1.88 

Icosahedron 147 Au 9 OH -1.68 

Icosahedron 55 Cu 6 OH -2.69 

Icosahedron 55 Cu 8 OH -2.62 

Icosahedron 147 Cu 6 OH -2.95 

Icosahedron 147 Cu 8 OH -2.72 

Icosahedron 147 Cu 9 OH -2.5 

Icosahedron 55 Cu22Ag33 6_1 OH -2.64 

Icosahedron 55 Cu22Ag33 6_2 OH -2.09 

Icosahedron 55 Cu22Ag33 8_1 OH -2.56 

Icosahedron 55 Cu22Ag33 8_2 OH -1.99 

Icosahedron 55 Cu31Ag24 6_1 OH -2.6 

Icosahedron 55 Cu31Ag24 6_2 OH -2.68 

Icosahedron 55 Cu31Ag24 8_1 OH -2.53 

Icosahedron 55 Cu31Ag24 8_2 OH -2 

Icosahedron 55 Rh 6 OH -3.35 

Icosahedron 55 Rh 8 OH -3.15 

Cuboctahedron 55 Ag 5 NH3 -0.53 

Cuboctahedron 55 Ag 7 NH3 -0.39 

Cuboctahedron 55 Ag 8 NH3 -0.39 

Icosahedron 55 Ag 6 NH3 -0.51 

Icosahedron 55 Ag 8 NH3 -0.41 

Cuboctahedron 147 Ag 5 NH3 -0.52 

Cuboctahedron 147 Ag 7 NH3 -0.43 

Cuboctahedron 147 Ag 8 NH3 -0.31 

Cuboctahedron 147 Ag 9 NH3 -0.32 

Icosahedron 147 Ag 6 NH3 -0.48 

Icosahedron 147 Ag 8 NH3 -0.38 

Icosahedron 147 Ag 9 NH3 -0.3 

Cube 172 Ag 3 NH3 -0.61 

Cube 172 Ag 5 NH3 -0.52 

Cube 172 Ag 8_1 NH3 -0.36 
 



 158 

Table C.6 (continued). 

 

Cube 172 Ag 8_2 NH3 -0.28 

Cube 172 Ag 8_3 NH3 -0.33 

Cube 172 Ag 8_4 NH3 -0.34 

Cuboctahedron 147 Au 5 NH3 -0.64 

Cuboctahedron 147 Au 7 NH3 -0.51 

Cuboctahedron 147 Au 8 NH3 -0.39 

Cuboctahedron 147 Au 9 NH3 -0.4 

Cuboctahedron 55 Au 5 NH3 -0.65 

Cuboctahedron 55 Au 7 NH3 -0.48 

Cuboctahedron 55 Au 8 NH3 -0.56 

Icosahedron 55 Au 6 NH3 -0.64 

Icosahedron 55 Au 8 NH3 -0.42 

Icosahedron 147 Au 6 NH3 -0.63 

Icosahedron 147 Au 8 NH3 -0.48 

Icosahedron 147 Au 9 NH3 -0.37 

Cube 172 Au 3 NH3 -0.71 

Cube 172 Au 5 NH3 -0.65 

Cube 172 Au 8_1 NH3 -0.41 

Cube 172 Au 8_2 NH3 -0.38 

Cube 172 Au 8_3 NH3 -0.37 

Cube 172 Au 8_4 NH3 -0.38 

Cuboctahedron 55 Cu 5 NH3 -0.76 

Cuboctahedron 55 Cu 7 NH3 -0.54 

Cuboctahedron 55 Cu 8 NH3 -0.48 

Icosahedron 55 Cu 6 NH3 -0.73 

Icosahedron 55 Cu 8 NH3 -0.56 

Cuboctahedron 147 Cu 5 NH3 -0.74 

Cuboctahedron 147 Cu 7 NH3 -0.59 

Cuboctahedron 147 Cu 8 NH3 -0.29 

Cuboctahedron 147 Cu 9 NH3 -0.38 

Icosahedron 147 Cu 6 NH3 -0.69 

Icosahedron 147 Cu 8 NH3 -0.51 

Icosahedron 147 Cu 9 NH3 -0.34 

Cube 172 Cu 3 NH3 -0.76 

Cube 172 Cu 5 NH3 -0.76 

Cube 172 Cu 8_1 NH3 -0.28 

Cube 172 Cu 8_2 NH3 -0.22 

Cube 172 Cu 8_3 NH3 -0.27 
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Table C.6 (continued). 

 

Cube 172 Cu 8_4 NH3 -0.39 

Icosahedron 55 Rh 6 NH3 -1.15 

Icosahedron 55 Rh 8 NH3 -1.09 

Cuboctahedron 55 Rh 5 NH3 -1.11 

Cuboctahedron 55 Rh 7 NH3 -0.88 

Cuboctahedron 55 Rh 8 NH3 -0.82 

Icosahedron 55 Cu22Ag33 6_1 NH3 -0.73 

Icosahedron 55 Cu22Ag33 6_2 NH3 -0.51 

Icosahedron 55 Cu22Ag33 8_1 NH3 -0.52 

Icosahedron 55 Cu22Ag33 8_2 NH3 -0.34 

Icosahedron 55 Cu31Ag24 6_1 NH3 -0.63 

Icosahedron 55 Cu31Ag24 6_2 NH3 -0.66 

Icosahedron 55 Cu31Ag24 8_1 NH3 -0.44 

Icosahedron 55 Cu31Ag24 8_2 NH3 -0.32 

Gas 1 Ag N/A CH3 -2.1 

Gas 1 Au N/A CH3 -2.8 

Gas 1 Cu N/A CH3 -2.97 

Gas 1 Ir N/A CH3 -3.65 

Gas 1 Ni N/A CH3 -3.09 

Gas 1 Pd N/A CH3 -2.43 

Gas 1 Pt N/A CH3 -3.23 

Gas 1 Rh N/A CH3 -3.01 

Gas 1 Ag N/A CO -0.4 

Gas 1 Au N/A CO -0.62 

Gas 1 Cu N/A CO -1.2 

Gas 1 Ir N/A CO -4.04 

Gas 1 Ni N/A CO -2.67 

Gas 1 Pd N/A CO -2.58 

Gas 1 Pt N/A CO -3.65 

Gas 1 Rh N/A CO -3.05 

Gas 1 Ag N/A OH -2.57 

Gas 1 Au N/A OH -2.55 

Gas 1 Cu N/A OH -3.58 

Gas 1 Ir N/A OH -4.22 

Gas 1 Ni N/A OH -3.92 

Gas 1 Pd N/A OH -2.82 

Gas 1 Pt N/A OH -3.49 

Gas 1 Rh N/A OH -3.78 
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Table C.6 (continued). 

 

Gas 1 Ag N/A NH3 -0.54 

Gas 1 Au N/A NH3 -0.81 

Gas 1 Cu N/A NH3 -1.07 

Gas 1 Rh N/A NH3 -1.64 
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Appendix D Supporting Information for “Rapid Prediction of Bimetallic Mixing Behavior 

at the Nanoscale” 

The content of this appendix is adapted from the supporting information of Dean, J.; 

Cowan, M. J.; Estes, J.; Ramadan, M.; Mpourmpakis, G. “Rapid Prediction of Bimetallic Mixing 

Behavior at the Nanoscale.” ACS Nano 2020. 14 (7) 8171-8180. 

Appendix D.1 Connecting Excess Energy with Enthalpy of Mixing 

In their development of the BCM, Yan et al90 showed that for a bimetallic NP, the EE of 

an arbitrary alloy is related to the CE of that alloy and its monometallic counterparts, scaled by the 

fraction (FA and FB) of that component in the NP (Equation D.1). 

EEAxBy
= CEAxBy

− (FACEAx+y
+ FBCEBx+y

) Equation D.1 

Recalling the definition of enthalpy (Equation D.2), U is related to H via the product of 

pressure (P) and volume (V). When pressure is 0, H and U are therefore equivalent. 

H = U + PV Equation D.2 

The enthalpy of mixing for a binary system is defined as the difference between the 

enthalpy of the mixed system (Hij) and the product of the enthalpy of the pure systems (Hi and Hj) 

with their fractions (Fi and Fj) in the mixed system (Equation D.3). 

ΔHmix = Hij − (FiHi + FjHj) Equation D.3 

At 0 pressure, H=U as a consequence of Equation D.2. This allows us to find Equation D.4. 
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ΔHmix = UAB − (FAUB + FAUB) Equation D.4 

Under the framework of the BCM, the energy holding a NP together is exclusively defined 

as the sum of the bonds in the NP. We can use this to approximate the internal energy of the system 

as the product of the number of atoms in the system (N) and the CE (Equation D.5). This comes 

from the definition of CE as the average energy (on a per-atom basis) holding the system together. 

N ∗ CEAxBy
≈ UAxBy

 Equation D.5 

We can then plug the approximation found in Equation D.5 into Equation D.1 to generate 

Equation D.6. 

EEalloy ≈ (
UAxBy

N
− (

FAUAN

N
+

FBUBN

N
)) =

UAxBy
− (FAUAN

+ FB UBN
)

N
 Equation D.6 

Recalling the relationship between Δ𝐻𝑚𝑖𝑥 and U derived in Equation D.4, we can further 

simplify Equation D.6, yielding a relationship between the EE and enthalpy of mixing (Equation 

D.7). 

EEalloy ≈
ΔHmix

N
 Equation D.7 

Overall, this allows us to relate the property calculated by the BCM (CE) with the important 

thermodynamic property Δ𝐻𝑚𝑖𝑥, which allows us to then approximate the free energy of mixing 

in the main document. 
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Appendix D.2 Statistical Thermodynamics 

The ZPE was calculated via Equation D.8,228 where h represents Planck’s constant and 𝜈 

represents the vibrational frequency. It is a summation over the Nmodes vibrational modes. 

ZPE = ∑
hvi

2

Nmodes

i=1

 Equation D.8 

The constant-volume heat capacity due to vibrational motion (CV,vib) was calculated via 

Equation D.9, where T refers to temperature and kb refers to Boltzmann’s constant. Utilizing the 

energy of each vibrational mode,171 we sum over all modes to find the vibrational heat capacity. 

∫ CV,vibdT
T

0

= ∑
hνi

e
hνi
kbT − 1

Nmodes

i=1

 

 

Equation D.9 

The entropic contribution from entropy (SV) was calculated via Equation D.10.228 

SV = ∑
hνi

kbT (e
hνi
kbT − 1)

− ln [1 − e
−

hνi
kbT]

Nmodes

i=1

 Equation D.10 

Finally, Gibb’s free energy (G) can be calculated via Equation D.11. 

G = EDFT + ZPE + CVT − TSV 

 

 

Equation D.11 
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Table D.1: Thermodynamic data for several chemical orderings randomly sampled in various AgXAu55-X 

systems. 

 

System Sample DFT (eV) ZPE (eV) CV,vibT (eV), 298K TS (eV), 298K G (eV), 298K 

Ag50Au5 1 -54880 0.914 3.249 7.769 -54883.6 

Ag50Au5 2 -54879.5 0.905 3.256 7.808 -54883.1 

Ag50Au5 3 -54880 0.915 3.248 7.765 -54883.6 

Ag25Au30 1 -52310.7 0.836 3.316 8.226 -52314.7 

Ag25Au30 2 -52310.8 0.828 3.323 8.286 -52314.9 

Ag25Au30 3 -52311.1 0.838 3.315 8.232 -52315.1 

Ag20Au35 1 -51796.8 0.827 3.324 8.295 -51801 

Ag20Au35 2 -51796.3 0.819 3.331 8.344 -51800.5 

Ag20Au35 3 -51796.8 0.83 3.322 8.286 -51800.9 

Ag5Au50 1 -50250.9 0.76 3.381 8.676 -50255.4 

Ag5Au50 2 -50251.5 0.769 3.373 8.618 -50255.9 

Ag5Au50 3 -50251.5 0.774 3.37 8.727 -50256 

 

 

Table D.2: Thermodynamic data for several chemical orderings randomly sampled in various AgXAu13-x 

systems. 

 

System Sample DFT (eV) ZPE (eV) CV,vibT (eV), 298K TS (eV), 298K G (eV), 298K 

Ag11Au2 1 -12882.3 0.185 0.679 1.663 -12883.1 

Ag11Au2 2 -12881.7 0.18 0.682 1.671 -12882.5 

Ag6Au7 1 -12368.7 0.174 0.689 1.761 -12369.6 

Ag6Au7 2 -12368.6 0.177 0.686 1.735 -12369.5 

Ag6Au7 3 -12368.3 0.174 0.688 1.718 -12369.1 

Ag6Au7 4 -12369.4 0.182 0.682 1.686 -12370.2 

Ag2Au11 1 -11955.6 0.156 0.703 1.783 -11956.5 

Ag2Au11 2 -11955.6 0.156 0.703 1.786 -11956.5 

Ag2Au11 3 -11955.9 0.161 0.7 1.84 -11956.9 
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Appendix D.3 Comparing Nanoparticle Mixing Behavior to Fully Random Mixing 

For bimetallic systems, we define fully random mixing as the equal likelihood of forming 

any bond type (i.e. no energetic preference between bond types). To determine the bond fractions 

(FA-A, FB-B, and FA-B) of a bimetallic NP that exhibits fully random mixing, we can calculate the 

probability of consecutively selecting two atoms from the group in order to form a bond. First, we 

imagine a system of NAtoms atoms consisting of A and B atom types, where the composition is 

defined by xA + xB = 1. The probability of creating an A-A bond (pA-A) is the chance of randomly 

choosing an A atom followed by choosing a second A atom, as shown in Equation D.12. The same 

reasoning can be used to determine the fraction of B-B bonds (Equation D.13). 

FA-A = pA-A = xA × (
NA − 1

NAtoms − 1
)  =  xA × (

NA

NAtoms − 1
−

1

NAtoms − 1
)  Equation D.12 

 

FB-B = pB-B = xB × (
NB − 1

NAtoms − 1
) =  xB × (

NB

NAtoms − 1
−

1

NAtoms − 1
)  Equation D.13 

 

 

This same reasoning can be used to develop an expression of the total number of hetero-

atomic bonds in the system (Equation D.14 – Equation D.16).  

pA−B = xA (
NB

NAtoms − 1
) Equation D.14 

 

pB−A = xB (
NA

NAtoms − 1
) Equation D.15 
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FA-B = FA-B||B−A = pA−B + pB−A = xA (
NB

NAtoms − 1
) + xB (

NA

NAtoms − 1
) Equation D.16 

 

16 

For a sufficiently large NP (i.e. NAtoms ≫ 1), we can simplify several terms in Equation 

D.12 – Equation D.16 using Equation D.17 and Equation D.18. 

lim
NAtoms→∞

NA

NAtoms − 1
=

NA

NAtoms
= xA Equation D.17 

 

lim
NAtoms→∞

1

NAtoms − 1
= 0 Equation D.18 

Thus, for sufficiently large NPs, we can simplify Equation D.12, Equation D.13, and 

Equation D.16 to Equations 19-21. 

FA-A = xA
2  Equation D.19 

 

FB-B = xB
2  Equation D.20 

 

FA−B = xAxB + xBxA = 2xAxB Equation D.21 

This formulation is equivalent to applying a mean-field approximation with equal pairwise 

energies in a regular solution binary mixture. 

Appendix D.4  Boltzmann Statistics at Various Temperatures 

In Figure 6 of the main document, we present morphology phase diagrams at 298K for 

AuCu, AgAu, and AgCu systems with icosahedral, cuboctahedral, or EPB structures. In this 
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section, we report the same type of diagram, at 77K (Figure D.1), 640K (Figure D.2), and 1073K 

(Figure D.3). Overall, we observe that as temperature increases, the structural trend tends toward 

an even mix of all three morphologies. At low temperatures, the thermodynamically-most-

favorable structures tend to dominate the distribution. 
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Figure D.1: Morphology phase diagrams for the a) AuCu, b) AgAu, and c) AgCu systems at 77K. The right-

hand column plots the preferred morphological phase as a function of the number of atoms and composition 

of the system. The legend is given by the ternary diagrams on the left-hand side, which show the percentage of 

the Boltzmann population taking on cuboctahedral, icosahedral, or EPB. White points, for example, indicate 

all three morphologies are equally favorable. In addition, the size of the points on the ternary diagrams 

corresponds to NP size. 
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Figure D.2: Morphology phase diagrams for the a) AuCu, b) AgAu, and c) AgCu systems at 640K. The right-

hand column plots the preferred morphological phase as a function of the number of atoms and composition 

of the system. The legend is given by the ternary diagrams on the left-hand side, which show the percentage of 

the Boltzmann population taking on cuboctahedral, icosahedral, or EPB. White points, for example, indicate 

all three morphologies are equally favorable. In addition, the size of the points on the ternary diagrams 

corresponds to NP size. 
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Figure D.3: Morphology phase diagrams for the a) AuCu, b) AgAu, and c) AgCu systems at 1073K. The right-

hand column plots the preferred morphological phase as a function of the number of atoms and composition 

of the system. The legend is given by the ternary diagrams on the left-hand side, which show the percentage of 

the Boltzmann population taking on cuboctahedral, icosahedral, or EPB morphology. White points, for 

example, indicate all three morphologies are equally favorable. In addition, the size of the points on the ternary 

diagrams corresponds to NP size. 
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Appendix E Supporting Information for “High-Throughput Screening of Bimetallic 

Nanoparticles for CO2 Adsorption” 

The content of this appendix is adapted from the supporting information of the unpublished 

manuscript Dean, J.; Mpourmpakis, G. “High-Throughput Screening of Bimetallic Nanoparticles 

for CO2 Adsorption.” In Preparation. 
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Appendix E.1 Fitting Information 

 

 
Figure E.1. Parity plot for a the random forest trained on all features, with a 10-fold CV RMSE of 0.07 eV. 

Parameters are: 32 estimators, 3 samples minimum for a split to occur, 1 sample minimum per leaf, no 

maximum depth or number of leaf nodes, and 9 features considered per split. 
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Table E.1. Variable importance scores for all features considered in the random forest. 

Feature Importance 

MADs (summation) 0.29 

CElocal (average) 0.19 

Δ𝐼𝑃 0.14 

Crystal Entropy (298K) 0.06 

Resistivity (298K) 0.03 

Conductivity (298K) 0.03 

IP 0.02 

Gas-Phase Entropy (298K) 0.02 

Number of valence electrons 0.02 

Gas-phase Gibbs Free Energy (298K) 0.02 

Number of d electrons 0.00 

IPEA 0.00 
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