Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Application of Taxonomic Modeling to Microbiota Data Mining for Detection of Helminth Infection in Global Populations

Eshaghzadeh Torbati, Mahbaneh and Mitreva, Makedonka and Gopalakrishnan, Vanathi (2016) Application of Taxonomic Modeling to Microbiota Data Mining for Detection of Helminth Infection in Global Populations. Data, 1 (3). ISSN 2306-5729

Published Version

Download (604kB) | Preview


Human microbiome data from genomic sequencing technologies is fast accumulating, giving us insights into bacterial taxa that contribute to health and disease. The predictive modeling of such microbiota count data for the classification of human infection from parasitic worms, such as helminths, can help in the detection and management across global populations. Real-world datasets of microbiome experiments are typically sparse, containing hundreds of measurements for bacterial species, of which only a few are detected in the bio-specimens that are analyzed. This feature of microbiome data produces the challenge of needing more observations for accurate predictive modeling and has been dealt with previously, using different methods of feature reduction. To our knowledge, integrative methods, such as transfer learning, have not yet been explored in the microbiome domain as a way to deal with data sparsity by incorporating knowledge of different but related datasets. One way of incorporating this knowledge is by using a meaningful mapping among features of these datasets. In this paper, we claim that this mapping would exist among members of each individual cluster, grouped based on phylogenetic dependency among taxa and their association to the phenotype. We validate our claim by showing that models incorporating associations in such a grouped feature space result in no performance deterioration for the given classification task. In this paper, we test our hypothesis by using classification models that detect helminth infection in microbiota of human fecal samples obtained from Indonesia and Liberia countries. In our experiments, we first learn binary classifiers for helminth infection detection by using Naive Bayes, Support Vector Machines, Multilayer Perceptrons, and Random Forest methods. In the next step, we add taxonomic modeling by using the SMART-scan module to group the data, and learn classifiers using the same four methods, to test the validity of the achieved groupings. We observed a 6% to 23% and 7% to 26% performance improvement based on the Area Under the receiver operating characteristic (ROC) Curve (AUC) and Balanced Accuracy (Bacc) measures, respectively, over 10 runs of 10-fold cross-validation. These results show that using phylogenetic dependency for grouping our microbiota data actually results in a noticeable improvement in classification performance for helminth infection detection. These promising results from this feasibility study demonstrate that methods such as SMART-scan can be utilized in the future for knowledge transfer from different but related microbiome datasets by phylogenetically-related functional mapping, to enable novel integrative biomarker discovery


Social Networking:
Share |


Item Type: Article
Status: Published
CreatorsEmailPitt UsernameORCID
Eshaghzadeh Torbati, Mahbanehmae82@pitt.edumae82
Mitreva, Makedonka
Gopalakrishnan, Vanathivanathi@pitt.eduvanathi
Date: 13 December 2016
Date Type: Publication
Journal or Publication Title: Data
Volume: 1
Number: 3
Publisher: MDPI AG
DOI or Unique Handle: 10.3390/data1030019
Schools and Programs: Dietrich School of Arts and Sciences > Computer Science
Refereed: Yes
Uncontrolled Keywords: helminth infection; microbiota; 16S rRNA gene; taxonomic tree; classification; SMART-scan method; transfer learning
ISSN: 2306-5729
Official URL:
Funders: National Institute of General Medical Sciences of the National Institutes of Health
Article Type: Research Article
Date Deposited: 04 Feb 2021 18:10
Last Modified: 04 Feb 2021 18:10


Monthly Views for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item