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Abstraction 

Deep Generative Models for Cellular Representation Learning and Drug Sensitivity 

Prediction 

 

Yifan Xue, PhD 

 

University of Pittsburgh, 2021 

 

 

 

 

The idea of precision oncology with drug sensitivity prediction was first introduced in the 

1950s. With the emergence and promotion of in vitro cytotoxicity assays and high-through cell 

profiling techniques in the past three decades, precision oncology has advanced into an active 

research topic. The introduction of quantitative and computational methods has further boosted the 

growth of this area. Some impressive achievements have been made through the advancements, 

and yet we still have a long way to go towards the goal of precision oncology. 

Most previous studies were focused on using traditional statistical models to quantize the 

correlations between a small set of genetic features and drug responses. The models were often 

limited to a specific cancer type, and could only predict responses for a small number of drugs. 

These limitations prevent deploying computational approaches into the standard clinical practice. 

To further promote precision oncology, we need to embrace the tremendous amount of genomic 

features and utilize the comprehensive information they provide about the state of cellular 

signaling systems to build versatile computational tools that can predict sensitivity for various 

cancer drugs. 

In this dissertation project, we explore machine learning techniques, with a special focus 

on deep generative models for learning cellular state representations from omics data. We 

hypothesize that such representations can be used to replace traditional clinical and genetic features 

to significantly improve drug sensitivity prediction accuracy. 
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Learning latent representations from raw input features and tuning the representations for 

downstream tasks has been successful in a number of deep learning application areas, including 

computer vision and natural language processing. Such strategies used to be impractical in systems 

biology due to the limited amount of data. With large systematic perturbation datasets like TCGA, 

LINCS, and GDSC that are now available, there is an unprecedented opportunity for introducing 

representation learning into the study of drug sensitivity prediction. We believe that the integration 

of deep learning representations presented in this dissertation will help advance the practice of pre-

clinical drug-response prediction and contribute to a new age of precision and personalized cancer 

therapy. 
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1.0 Overall introduction 

The idea of precision oncology with chemosensitivity prediction dates back to the 1950s, 

and yet little progress in that area was made until the 1990s when large-scale cytotoxicity assays 

for screening and evaluating bioactive compounds in vitro became available (Bellamy, 1992). The 

absence of these high-throughput and low-cost cellular profiling techniques limited the scope of 

early studies. Most of the work was focused on examining the relationships between genomic 

alterations and chemotherapy resistance through manipulating a single gene on animal models or 

cultured cell line samples, and then observing the chemosensitivity outcomes (Weller, 1998). The 

procedure was often time and labor-consuming, and not always effective. 

With omic-scale profiling techniques, such as expression profiling and methylation 

profiling, becoming mature in the past three decades, it has made it possible to take a group of 

genes and/or gene regulatory elements into consideration and estimate their effects on drug 

sensitivity in batches (Dry et al., 2010; Shen et al., 2007; Szakács et al., 2004). Around the same 

time, computational approaches were introduced into the field to leverage the power of statistical 

modeling to handle an increasing number of predictive features (Frieboes et al., 2009). The study 

of drug sensitivity prediction was further revolutionized in recent years as large-scale datasets of 

systematic screens of cellular responses to various drugs, including the NCI-60 (Shoemaker, 2006), 

the Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2012), and the Cancer Cell Line 

Encyclopedia (CCLE) (Barretina et al., 2012), were made available to the research community. 

With these comprehensive datasets, the current trend is to develop integrative computational 

models that estimate the correlations between the whole genomic profiles and drug responses. 

These models vary from simple gene expression methods based on weighted voting classification 
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models (Staunton et al., 2001), to more complex machine learning-based models such as random 

forest, Support Vector Machine (SVM), and Elastic net (Dong et al., 2015; Jang, Neto, Guinney, 

Friend, & Margolin, 2014; Riddick et al., 2010). A review on cytotoxicity assays and the current 

trend in drug sensitivity prediction methods with data from NCI-60, CCLE, and GDSC is provided 

by (Cortés-Ciriano, H Mervin, & Bender, 2016). 

One branch of machine learning methods, known as deep learning, has become 

increasingly popular in the academic field in recent years. These models use a layer-wise, directed, 

graph-based architecture, which are called neural networks. The intuition in designing such models 

is to mimic the human brain that functions through firing densely connected neurons. A deep 

learning model, specifically, is constructed by connecting multiple layers of artificial, abstract 

neurons that each carry out a simple computation. The fact that many layers are included in the 

neural network model is the sense in which the model is “deep.” The deep architecture provides 

the model with exceptional learning potential, and like other traditional models, a deep learning 

model can be either supervised, semi-supervised, or unsupervised. 

One special class of unsupervised deep learning models are the deep generative models 

(DGMs), which are autoencoder-based neural networks that are intended to simulate the data 

generation process given some statistical assumptions (e.g., conditional independence 

assumptions). These models are primarily used to learn reduced representations from high 

dimensional raw input data, which can be further tuned for subsequent tasks in a supervised manner. 

The-state-of-art models in a variety of computer application areas, such as Transformers in 

language processing (NLP) (Vaswani et al., 2017), are just variations of DGMs. 

DGMs are of particular interest in the domain of systems biology. If a model learns to 

accurately regenerate biological data produced under different cellular perturbations (e.g., gene 
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expression or proteomics of cells under different stresses like drugs or diseases), the model 

plausibly includes some form of representation of the cellular signaling system responding to the 

perturbation. Such representations shed light on the mechanisms of how distinct perturbations 

impact different cellular processes. Despite their great success in computer vision and NLP, 

however, representation learning methods such as DGMs, have not been widely applied for 

systems biology tasks, including drug sensitivity prediction. This situation was due in part to the 

limited amount of large-scale genomic data, which makes training deep models impractical 

because they usually require large datasets to perform well. In addition, the lack of interpretability 

of conventional DGMs also presents an obstacle to their popularization. Deep models typically 

behave like a “black-box” in that it is difficult to explicitly understand how the neurons are 

associated with the biological entities in the cellular system. With the rapid growth of high-

throughput sequencing data and drug response data, however, designing DGMs that are more 

adaptive to genomic data has become more feasible. 

In the research reported here, we describe our development and examination of different 

DGMs for learning interpretable representations of cellular signaling systems, with the goal of 

improving drug sensitivity prediction practice and realizing the promise of precision oncology. 

1.1 Hypothesis 

In this dissertation, we hypothesize that latent representations learned by deep generative 

models from genomic data capture well the state of the cellular signaling system of a cancer sample. 

Such latent representations can be used as features to significantly enhance the capability of drug 

sensitivity prediction compared to using the original gene expression data as features. We further 
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hypothesize that a combination of gene expression data with genomic alteration data can learn 

more interpretable representations of cellular systems, which will further improve the drug 

sensitivity prediction performance.  



5 

2.0 Background 

This section provides literature reviews from four aspects that lay the background for this 

dissertation project: a review of the recent progress in drug sensitivity prediction studies; an 

introduction of the datasets that are commonly used in computational genomics and drug 

sensitivity prediction; a review of the history of DGMs, where most representative models and 

their training algorithms are introduced; and an introduction of four categories of supervised 

learning algorithms that can be applied for drug sensitivity prediction. 

2.1 Recent progress in drug sensitivity prediction 

Precision oncology is defined as molecular profiling of tumors to identify prognostic 

biomarkers for predicting patients’ responses to specific cancer therapies. The area is rapidly 

developing and has entered the mainstream of clinical practice in recent years (Fojo, 2016; 

Garraway, Verweij, & Ballman, 2013; Prasad, Fojo, & Brada, 2016). The biomarkers that are 

currently used for guiding drug selection, however, are only available for a small number of drugs 

and can only benefit a small proportion of patients (Prasad, 2016; Tannock & Hickman, 2016). 

For other nonspecific drugs, no biomarker has been found and yet a difference in their effects on 

different subgroups of patients is observed (Rubio-Perez et al., 2015). In order to stratify patients 

for more specific treatments, the current trend of precision oncology is to utilize computational 

tools to analyze molecular profiling data in batches and systematically identify biomarkers for 

predicting drug response.  
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The emergence of large-scale datasets of systematic screens of cellular responses to 

bioactive compounds like NCI-60, GDSC, and CCLE has further advanced the studies of 

computational drug sensitivity prediction. For example, (Staunton et al., 2001) developed a 

weighted voting classification algorithm for classifying chemosensitivity of a cell line based on 

gene expression data from the NCI-60 dataset. They modeled the drug response prediction as a 

binary classification problem, where a cell line with log10 𝐺𝐼50 ≥ mean + 0.8std was labeled as 

resistant and log10 𝐺𝐼50 ≤ 𝑚𝑒𝑎𝑛 −  0.8𝑠𝑡𝑑 was labeled as sensitive; cell lines with an in-between 

value were labeled as intermediate and were excluded from the training and testing datasets. For 

each compound of interest, marker genes that are eligible to vote for the sensitivity class were 

selected based on the expression diversity of the gene across all training cell lines. The marker 

genes were then weighted according to the correlation between their expression level and the 

sensitivity status of the training cell lines. The performance of this weighted voting classification 

algorithm was measured as the average accuracy of classifying sensitive cell lines vs. resistant cell 

lines. The classifiers were compared to random guess predictions based on a Kolmogorov-Smirnov 

test for distribution differences. For 232 drugs, 88 received a significant classifier, with a median 

accuracy of 75%, ranged from 64% to 92%.  

Instead of selecting marker genes via a frequent-based or correlation-based approach, 

(Riddick et al., 2010) applied a random forest-based method on the NCI-60 dataset for identifying 

gene signatures for predicting cell line response to drugs. In this case, the sensitivity prediction 

task was modeled as a regression problem, where the value of IC50 was estimated directly. The 

method can be further decomposed into three steps. For a given compound, a random forest was 

first trained on all basal genes measured in untreated cells to select highly predictive genes. A 

second random forest was then trained using only these significant genes as features. Finally, a 
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third model was trained excluding the cell lines that were not associated with the giving compound 

determined from the second step. The authors evaluated their method on microarray data from 19 

breast cancer cell lines and 7 glioma cell lines. For breast cancer, two drugs were tested, where the 

19 cell lines were first divided into a sensitive group and a resistant group, and predicted IC50s 

were compared between the two groups with a t-test to see if the predictions are significantly 

different. For glioma, the proposed method was compared with a differentially expressed gene-

based model by computing the coefficient of determination (R2) between the predicted and 

observed IC50s. The highest average R2 achieved across 37 drugs was 0.71. 

The original CCLE project also preliminarily explored the power of machine learning 

techniques in revealing the correlation between genomic data and drug sensitivity (Barretina et al., 

2012). In CCLE, the efficacy and potency of a drug (the drug response) were measured as the area 

over the dose-response curve, which is denoted as the activity area. Two types of approaches were 

tried for predicting drug response: a naïve Bayes classification for discrete sensitivity calls, and an 

Elastic net regression for continuous sensitivity measurements. Top predictive gene alterations for 

each drug were identified based on the coefficients assigned to the alterations by a trained model. 

Across their models, the origin of the cell line, referred to as the “lineage of the cell” line in the 

article, was recognized as a confounding factor. For certain cancer types, classifiers built using 

cell lines of the same cancer type usually outperformed classifiers built using all cell lines across 

all cancer types. Lineage also emerged as the predominant predictive feature for some compounds, 

where some lineages were more sensitive to certain compounds, which was also supported by 

clinical observations. 

The larger size of cell line expression and drug response data also makes it possible to train 

deeper and integrative machine learning models for drug response prediction. For example, 
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Menden et al. implemented a single hidden layer perceptron model that combines both genomic 

features and chemical properties of drugs to predict the responses (logIC50) of cancer cell lines 

from the GDSC dataset (Menden et al., 2013b). The model achieved an average Pearson 

correlation (Rp), R
2, and root mean square error (RMSE) of 0.85, 0.72, and 0.83 across 111 drugs 

in the test dataset, respectively. Note that random forests could achieve comparable performances 

with Rp of 0.85, R2 of 0.72, and RMSE of 0.84. As one of the earliest attempts in using neural 

network models for drug sensitivity prediction, this study set the baseline for future explorations 

of neural networks and deep learning techniques. Other works that also incorporated 

cheminformatics into network-based models to predict drug sensitivity include (Wei, Liu, Zheng, 

& Li, 2019; N. Zhang et al., 2015). 

A systematic evaluation of 110,000 models on CCLE and GDSC data with different 

combinations of algorithms (seven algorithms tested), types of features, compounds being 

predicted, methods of summarizing compound sensitivity values, and types of target values 

(discretized or continuous response values) was carried out in 2014 and summarized in (Jang et 

al., 2014). In this evaluation, models predicting continuous drug responses were compared by Rp, 

and models predicting discrete response were compared by the area under the receiver operating 

characteristics curves (AUC). The contribution of each model factor (e.g., algorithm, types of input 

data) was measured by a multi-way ANOVA. For discrete models, AUC >70% was achieved for 

22 of 24 compounds in CCLE, and 83 of 138 in GDSC. The evaluation results suggest that a 

model’s performance is primarily explained by the type of input features being used and the choice 

of compounds being predicted, followed by the choice of algorithm. Gene expression data turned 

out to be the most informative data type, while a combination of multiple genomic data types 

usually only improved the model performance moderately. Predictions were more accurate for 
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pathway targeted compounds (e.g., MEK inhibitors). The results also suggest the use of Elastic net 

or ridge regression applied to continuous response can achieve a higher prediction accuracy while 

discretizing response measurements caused decreased model accuracies.  

The NCI-DREAM drug sensitivity prediction challenge represents another community 

effort of systematic evaluation of different drug sensitivity prediction algorithms (Costello et al., 

2014). The challenge provided DNA copy-number variation, transcript expression, mutations, 

DNA methylation, and protein abundance data for 35 breast cancer cell lines exposed to 28 

therapeutic compounds. An independent test dataset was hidden from the participants, which was 

composed of the remaining 18 cell lines. 44 algorithms were submitted with their performances 

compared in the summarizing paper (Costello et al., 2014). The model performance was quantified 

as the weighted probabilistic concordance index (wpc-index). The algorithms that modeled 

nonlinear relationships between features and incorporated pathway information usually performed 

better. The best model was the Bayesian multitask multiple kernel learning (MKL) with a wpc-

index of 0.583 and a balanced accuracy of 0.78. The second-best model leveraged the strength of 

random forests, with a wpc-index of 0.577. Consistent with the conclusions of (Jang et al., 2014) 

above, both the top 2 models are regression models rather than discrete response classification 

models. Gene expression data were also found to provide the best predictive power over other data 

types.  

Efforts have also been put into developing more advanced machine learning tools for drug 

sensitivity prediction. For example, (Dong et al., 2015) built a predictor based on SVM and a 

recursive feature selection tool to predict drug sensitivity using data from CCLE. The drug 

sensitivity prediction task was treated as a classification problem, where the CCLE cell lines were 

divided into three groups, sensitive, resistant, and intermediate, according to their drug response 
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values (activity area). A SVM-REF (Support Vector Machine Recursive Feature Elimination) was 

trained for each drug for feature selection and drug response classification. The model achieved >= 

80% accuracy for 10 drugs, and >=75% accuracy for 19 drugs. The highest accuracy was 91.75%, 

obtained for a target pathway compound, topoisomerase I inhibitor Irinotecan, followed by >85% 

for two MKE inhibitors, and 76%-87% for four EGFR inhibitors. The lowest accuracy was 69.35% 

for LBW242. The model was validated on an independent dataset from the CGP (Garnett et al., 

2012), with a satisfactory performance achieved for three drugs, AZD6244, Erlotinib, and PD-

0325901.  

Instead of treating each gene as a feature, Ding et al (M. Q. Ding, Chen, Cooper, Young, 

& Lu, 2018) utilized deep AutoEncoder (AE) for learning latent representations from gene 

expression profiles of cell lines to predict drug sensitivity. The assumption is that the information 

extracted by deep learning models and preserved in the latent representations may reflect the 

activation state of cellular signaling pathways that are informative towards drug response 

outcomes. They trained a deep AE on gene expression data from the GDSC dataset and applied it 

on both the GDSC and CCLE datasets to get cell line latent representations; then they used the 

representations as input features to train Elastic net logistic regressions and SVMs for classifying 

drug response. For each drug, cell lines were divided into a sensitive group and a resistant group 

by applying the waterfall method. Their models achieved an average sensitivity of 0.82 and 

specificity of 0.82 per-drug basis, with exceptional performances obtained for 15 drugs with both 

sensitivity and specificity exceeding 0.98. 

The use of deep neural network models for learning representations from high-dimensional 

data has become a popular trend for drug response prediction and drug repositioning in recent 

years. Chang et al. proposed a convolutional neural network (CNN) based model, called CDRscan, 



11 

for predicting cell line response to anticancer drugs (Chang et al., 2018). The CDRscan is an 

ensemble of five CNN-based models of slightly different architectures. Each model takes in the 

mutation profile of a cell line and the PaDEL fingerprint of a given drug, which is numeric 

representations of the drug’s chemical structure (Yap, 2011), and predicts the IC50 of the drug. 

The mean IC50 across the five models is reported as the final prediction. All five models share a 

similar backbone architecture. Specifically, the mutation profile and the PaDEL fingerprint, are 

first processed independently by two CNNs for generating latent representations; the outputs of 

the two CNNs are then merged and fed into an additional CNN to yield an IC50 value. When 

training and testing CDRscan, each combination of a cell line and a drug was treated as an input 

instance. In total, 152,594 instances generated from mutation profiles from the CCLP database and 

drug response data from the GDSC database were used for training and validation, which contains 

787 cell lines across 25 cancer types with IC50 measured for 244 drugs (787 × 244 > 152,594 

because not all drugs were tested for every cell line). For classification, a cell line was defined as 

sensitive against a drug if its ln(IC50) < −2. CDRscan achieved a R2 of 0.843 and an AUC of 

0.98 across all validation instances. Note that this overall AUC is affected by the composition of 

cell lines and drugs in the dataset, therefore it is not directly comparable with the drug level AUC 

reported in other studies. In addition, as also pointed out in the original article, the use of 

ln(IC50) < −2 as the sensitivity cutting threshold is more stringent than most other similar studies 

(Chang et al., 2018), which may also bias towards a higher instance AUC score for their model. 

Instead of constructing a prediction model for every drug, Chiu et al. proposed DeepDR 

that learned latent representations from mutation and expression data with two neural network 

encoders and integrated them for simultaneously IC50 prediction for 256 drugs from GDSC (Chiu 
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et al., 2019). DeepDR achieved an overall prediction performance of Mean Squared Error (MSE) 

at 1.96 for log-scale IC50 and cell line centric Rp and Spearman ρ of 0.74-0.95 and 0.70-0.92. 

Prior knowledge such as signaling pathway information has also been incorporated into 

models to boost model training and prediction. Wang et al. proposed a pathway-based prediction 

model that integrated gene expressions into pathway scores according to prior knowledge of 

signaling pathways and then used pathway scores to predict drug response (X. Wang, Sun, 

Zimmermann, Bugrim, & Kocher, 2019). Four scoring approaches for inferring pathway activity 

were tried, including two competitive scoring approaches, DiffRank (a new scoring approach 

proposed by Wang et al. in the same article), and GSVA, and two self-contained scoring 

approaches, PLAGE and Z-score. The pathway features were used to predict IC50 with an Elastic 

net regression. The model performance was measured as the MSE between the predicted IC50 and 

observed value. Overall, DiffRank produced more accurate predictions compared to other scoring 

approaches (best model for nine drugs and second-best for eight drugs). 

Li et al. implemented a high-dimensional mixed linear regression model and applied to the 

CCLE dataset (Q. Li, Shi, & Liang, 2019). A mixture model was selected in order to address the 

population heterogeneity issue among the samples, which had been mostly overlooked by previous 

studies. Specifically, when building the model, samples were clustered into different groups, and 

different sets of drug sensitivity features were selected for each subpopulation. The model 

predicted the continuous activity area for each cell line given a drug, and the Rp and RMSE were 

computed for performance comparison. The highest correlation was 0.925, obtained for Nutlin-3, 

followed by 0.924 for L-685458.  

Even though various machine learning techniques have been attempted for drug sensitivity 

prediction, most of the techniques are “shallow” in the sense that they only estimate the direct 
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correlations between genes and drug responses. The actual causal relationships, on the other hand, 

are often multi-hierarchical and buried in the intricate cellular signaling network. For previous 

works that utilized deep learning models like (M. Q. Ding et al., 2018), the focus was more on 

learning latent representations as a new set of features for improving drug sensitivity prediction, 

while the interpretability of the model architecture in respect of cellular signaling was less 

examined. The hierarchical structure of signaling network can be naturally mapped to the 

architecture of a deep learning model, which suggests deep learning models as a promising choice 

for revealing gene interactions. With the availability of large genomic and drug response datasets, 

to gain a deeper understanding of cell-drug interactions with deeper models is no longer 

impractical. Therefore, examining the utility of DGMs for learning latent representations and 

studying how they capture cellular signaling information is the focus of this project. We are 

expecting that the latent representations are more informative towards drug response compared to 

raw gene features, which can be used to significantly enhance the capability of drug sensitivity 

prediction and in turn, promote precision oncology. 

2.2 Datasets for computational genomics and drug sensitivity prediction 

In this section, we introduce the datasets we used in this thesis project and also briefly 

describe other datasets that are commonly used for computational genomics and drug sensitivity 

prediction studies. These include the L1000 dataset from the LINCS project that provides 

expression data for perturbed cell lines, the Cancer Genome Atlas (TCGA) dataset that provides 

omics data of real tumor samples, and the NCI-60, CCLE, and GDSC datasets that provide cell 

line drug response screen data. 
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2.2.1  The LINCS project and L1000 data 

The LINCS project is an NIH Common Fund program that aims to create a network-based 

understanding of human biology by cataloging how human cells globally respond to chemical, 

genetic, and disease perturbations (Keenan et al., 2018). The goal is achieved by measuring cells’ 

responses to various genetic and environmental stressors from different aspects of cellular 

phenotypes. The systematic experiments produced a dozen of types of data, including kinase-small 

molecule binding assay data, fluorescence images, cell growth assay data, protein secretion 

profiling data, mRNA profiling data, etc. Most of the data were made publicly available for 

research use.  

The mRNA profiling data in LINCS were generated through a new gene-expression 

profiling method developed in the LINCS project, known as the L1000 assay (Subramanian et al., 

2017). The L1000 assay, where the “L1000” indicates the 978 (~1000) landmark genes that are 

used to infer the entire transcriptome (>10,000 genes), was developed to obtain high-throughput 

expression profiles in a faster and less costly way. The landmark genes were selected following a 

data-driven procedure. First, a large, diverse dataset of 12,063 gene expression samples profiled 

on Affymetrix microarrays from the Gene Expression Omnibus (GEO) was assembled. Principal 

Component Analysis (PCA) was then applied to this dataset to reduce the dimension of samples 

and minimize batch effects that emerged through the mixture of samples from different tissue types 

with different physiologic conditions. In the resulted eigenspace of 386 components (90% variance 

was retained), consensus k-means clustering was performed in an iterative peel-off way to identify 

stable clusters of co-regulated genes. The centroid of the cluster obtained in each iteration was 

selected as a landmark gene. In total, 978 clusters were identified, and hence 978 landmark genes. 

These landmark genes were not found to be significantly enriched in any Gene Ontology (GO) 
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class except some generic categories like enzyme binding, protein kinase binding, catalytic activity, 

and ATP binding.  

Meanwhile, 80 control genes, as empirically their expressions are invariant across samples, 

were also selected from this GEO dataset. These genes were used to normalized the expression 

level of the landmark genes, in order to reduce artifact produced during the assay. In concrete, the 

80 genes were divided into 10 invariant levels, and the median expression of the 8 genes in each 

level form a calibration curve for each sample, which was then used as a reference to rescale the 

entire transcriptome using a power-law function. 

The expressions of the 978 landmark genes were measured using a technique involving 

ligation-mediated amplification (LMA) followed by capturing the amplification products on 

fluorescently addressed microspheres. Each microsphere or bead was analyzed both for its color 

(denoting the landmark gene identity) and fluorescence intensity (denoting the gene expression 

abundance). Since only 500 fluorescent colors are commercially available, each color is used to 

measure two transcripts to avoid potential batch effects resulted from measuring all the 978 

landmark genes in two runs. This was achieved by first coupling two genes to two beads of the 

same color, then mixing the two beads in a ratio of 2:1. This new bead was then hybridized with 

the sample templates and analyzed by the Luminex scanner, where two values were returned, one 

indicating the color and one indicating the intensity. The expression levels of the two genes were 

de-convolved from this intensity signal by plotting out the histogram of the intensity values where 

two peaks can be observed, one for each bead. The k-means clustering algorithm was used to 

identify the two clusters from the distribution, and the median expression value of each cluster is 

assigned as the expression level of the corresponding gene. Which pair of genes should be coupled 
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with the same color was optimized in advance to maximize the difference in their average 

expression level across the GEO dataset. 

The expression levels of the 978 landmark genes were used to infer the expression levels 

of all the remaining, unmeasured genes. This was achieved by assuming that the expression level 

of an unmeasured gene x can be computed from the measured landmark genes l via a linear 

regression function:  

𝑥 = 𝑤0 + ∑ 𝑤𝑖𝑙𝑖
978
i−1                                                            (2.1) 

The weights ws were estimated from the GEO dataset.  

Except for the absolute expression level, a relative expression, in the form of a modified z-

score, was also computed for each gene to reflect its differential expression level compared to 

unaffected genes under a specific stress condition (e.g. perturbagen). The L1000 assay was carried 

out on plates with 284 wells, where each well can incubate a sample with its perturbagen. Let X 

denote the vector of expression of gene x across all wells on the plate and MAD denote the median 

absolute deviations of X, then the differential expression of x in the ith sample can be computed as 

𝑧𝑖 =
𝑥𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)

1.4826×𝑀𝐴𝐷(𝑋)
                                                        (2.2) 

where 1.4826 is to make the denominator a consistent estimator of scale for normally distributed 

data. 

In order to obtain robust expression data, each L1000 experiment (each combination of a 

cell line, perturbagen, dosage, exposure time, etc.) was typically repeated 3 times. A moderated z-

score (MODZ) was computed for each experiment condition as a consensus signature. This was 

done by first computing a pairwise Spearman correlation matrix between the replicates in the space 

of landmark genes. The weights of each replicate were then computed as the sum of its correlations 
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to the other replicates. The weights were further normalized to have a sum of 1. The consensus 

signature is obtained as the weighted sum of replicate signatures. 

The LINCS project currently provides five levels of L1000 gene expression data, inspired 

by the data format protocol of the TCGA database. These data levels reflect the different steps in 

the L1000 assay procedure (Figure 2.1). The five levels include: 

1. Raw bead count and fluorescence intensity. 

2. Deconvolved expression levels of 978 landmark genes. 

3.  

a. Normalized expression levels of 978 landmark genes. Expression levels were 

normalized according to the 80 control genes. 

b. Expression levels of the entire transcriptome (12,328 genes) inferred from the 

landmark genes. 

4. Differential expression levels of all genes. 

5. Consensus signatures of the collapse of replicate experiments. 

 

 

Figure 2.1. LINCS L1000 five data levels.  

Figure 2c from (Subramanian et al., 2017). 
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The use of the L1000 assay dramatically increased the amount of gene expression data, 

which makes it possible to construct a 1000-fold larger connectivity map (CMap) than the previous 

one built with microarray data (Lamb et al., 2006; Subramanian et al., 2017). Such a CMap 

connects genes, drugs, and disease states through common gene-expression signatures, which can 

be used to discover mechanisms-of-action of drugs, reveal functional connections between 

diseases, genetic variants, and drugs, and propose new therapeutic targets. By 2017, phase II of 

LINCS CMap project has completed, and the L1000 datasets are publicly available from GEO. 

The datasets now contain over a million expression profiles with more than 10,000 different 

perturbagens.  

Even though the datasets are still quite new, some attempts have been made to improve 

and extend the L1000 dataset and the CMap. For example, Duan et al. proposed using the 

characteristic direction method instead of the MODZ to compute L1000 signatures (Duan et al., 

2016). The characteristic direction method was first proposed by Clark et al. as a geometric, 

multivariate approach to identify differentially expressed genes (DEGs) (Clark et al., 2014). The 

basic idea is that a multi-dimensional space is constructed for normal samples (or samples from 

the same class) with each dimension represent the expression of a gene. When a new sample comes, 

it is projected to the same gene space, and a hyperplane separating this sample and all the other 

samples is obtained, usually via Linear Discriminant Analysis (LDA). The direction of the normal 

vector of this hyperplane is just the characteristic direction of the new sample. The DEGs of this 

sample are determined by quantizing the contribution of the expression of each gene to the 

characteristic direction. This method was found to be more sensitive for identifying DEGs than 

univariate methods like fold change and Welch’s t-test. Duan et al. showed that the characteristic 
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direction method significantly improved the signal-to-noise ratio compared with the MODS 

method. They developed a web-based search engine called L1000CDS2, which can be used to 

predict drug targets by computing the cosine similarity between small-molecule signatures and 

single-gene perturbation signatures (Duan et al., 2016). 

L1000 data and CMap have also been used in other applications, especially in guiding drug 

development. For example, Siavelis et al. used L1000 data and CMap as a drug repurposing tool 

to identify potential drugs for Alzheimer’s disease (Siavelis, Bourdakou, Athanasiadis, Spyrou, & 

Nikita, 2015). Wang et al. proposed a machine learning classifier to predict adverse drug reactions 

(ADRs) by combining chemical structures and L1000 gene expression features (Z. Wang, Clark, 

& Ma’ayan, 2016). Iwata et al. used the L1000 data and CMap to elucidate the mode-of-action of 

bioactive compounds in a cell-specific way and predict therapeutic indications for 461 diseases 

(Iwata, Sawada, Iwata, Kotera, & Yamanishi, 2017). The approach they used consists of three 

steps: (1) identification of active pathways of a sample perturbed by a compound via enrichment 

analysis, (2) prediction of potential target proteins by comparing the expression signatures with 

those of other known perturbagens (disease or drug), and (3) prediction of new therapeutic 

indications by establishing connections between the compound in question and other diseases or 

drugs. 

Even though some efforts have been made, the L1000 datasets are far from being fully 

explored. Particularly, less work has been done in examining the internal correlations among 

L1000 data or modeling the causal relationships between perturbagens and the resulted expression 

profiles. We aim to examine these aspects in this project. 
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2.2.2  TCGA 

TCGA is a project supervised by the National Cancer Institute (NCI)’s Center for Cancer 

Genomics (CCG) and the National Human Genome Research Institute (NHGRI), which aims at 

molecularly characterizing primary tumors and matched normal samples to deepen our 

understanding of the genetic basis of cancer (program). The project began in 2006 with an initial 

focus on glioblastoma multiforme, lung cancer, and ovarian cancer. Phase II began in 2009 and 

expanded the genomic screen to 33 cancer types. By now, the TCGA project has generated 

genomic, epigenomic, transcriptomic, and proteomic data for over 20,000 samples (> 11,000 tumor 

samples), and has become one of the most popular data resources for the cancer research 

community. 

The concluding project of the TCGA program, the Pan-Cancer Atlas (PANCAN) project, 

utilized the complete TCGA dataset to carry out comprehensive cross-cancer analyses. 27 papers 

have been published from this project, which further help gain insights into three themes of cancer, 

including the cell-of-origin patterns, oncogenic processes, and signaling pathways. In this thesis 

project, the PANCAN gene expression data were used to pre-train deep generative models to 

capture the general characteristics of real tumor samples. 

2.2.3  NCI-60 

The NCI-60 human tumor cell lines screen, starting from the late 1980s, represents the first 

effort in performing a systematic screen of drug response across cancer cell lines (Shoemaker, 

2006). In NCI-60, 60 cancer cell lines, representing leukemia, melanoma, lung, colon, brain, ovary, 

breast prostate, and kidney cancers, were measured by NCI for their sensitivities towards 
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thousands of drugs. The similarities between response profiles of drugs across cell lines, quantified 

as the Pearson correlation coefficient, are often aligned with the similarities in the drug 

mechanism-of-actions (MOAs). The MOA of a new test compound can therefore be inferred by 

measuring its response profile and comparing it to known drugs. This is known as the COMPARE 

analysis. 

2.2.4  GDSC 

The GDSC project is an expansion of the Cancer Genome Project (CGP), sponsored by the 

Wellcome Trust Sanger Institute in The United Kingdom, which aims to improve cancer diagnosis, 

treatment, and prevention through molecularly characterizing cancer cell lines (Yang et al., 2012). 

The GDSC dataset provides comprehensive genomic profiling data for over 1,000 cell lines, with 

drug response data available for 453 compounds across most cell lines; these numbers are still fast-

growing. A multivariate analysis of variance (MANOVA) was used in the original project to reveal 

correlations between drug sensitivity and genomic alterations in cancer. In our project, the GDSC 

data were used for training drug sensitivity prediction models. 

2.2.5  CCLE 

The CCLE dataset is another comprehensive open-access dataset of gene expression, 

genotype, and drug sensitivity data for human cancer cell lines. The data were generated through 

a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research, and 

the Genomics Institute of the Novartis Research Foundation. By 2019, the CCLE project has 

generated sequencing data for 1,457 cell lines with 24 anticancer drugs profiled across nearly 479 
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cell lines (Barretina et al., 2012). This dataset was primarily used in our project for testing drug 

sensitivity prediction models. 

2.3 Deep generative models 

Statistical models can be generally divided into two major types, generative models (GMs) 

and discriminative models (DMs). The two model types differ in the objective distributions they 

learn from the input data. Given an observable variable 𝑋 and a target variable 𝑌, a GM is to learn 

the joint distribution 𝑃(𝑋, 𝑌) under some assumptions about the prior distribution 𝑃(𝑌) and the 

generative relationships between 𝑋 and 𝑌, while a DM is to learn the conditional distribution 

𝑃(𝑌|𝑋 = 𝑥) or the posterior distribution. Analogously, a classifier based on a GM is referred to as 

a generative classifier, and a classifier based on a discriminative model is referred to as a 

discriminative classifier. Example generative classifiers include naïve Bayes classifier and linear 

discriminant analysis; example discriminative classifiers include logistic regression and SVM 

(SVM is sometimes considered as a classifier based on no specific model). 

The GMs can be further divided into two groups based on the nature of the input data, the 

continuous GMs and the discrete GMs. In this project, we implemented five GMs, including 

AutoEncoder (AE), Variational AutoEncoder (VAE), and Vector-Quantized Variational 

AutoEncoder (VQ-VAE) for dealing with continuous input data, and Restricted Boltzmann 

Machine (RBM) and Deep Belief Network (DBN) for dealing with discrete input data. All these 

models are unsupervised GMs that learn the input data distribution 𝑃(𝑋⃑) by reconstructing the 

data. The following sections give brief introductions of these models as well as other classic GMs.  
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2.3.1  AutoEncoder 

AE is the foundation of most encoder-decoder-based GMs (Hinton & Salakhutdinov, 2006). 

An AE is a statistical model in the form of an artificial neural network (ANN), which is often used 

as a dimension reduction tool to learn reduced representations from the input data. In an ordinary 

ANN, the input layer corresponds to the observable variable 𝑋, and the output layer corresponds 

to the target variable 𝑌. An ANN is typically trained using the gradient descent approach, where 

the derivatives of the classification or regression error between the output variable and the targets 

are backpropagated through the network to update the parameters iteratively. In order to learn a 

reduced representation of the input data 𝑋 in an unsupervised manner, an AE uses 𝑋 itself as the 

target and computes a reconstruction error for backpropagation. If the training converges, the 

resulted model learns to reconstruct the distribution of the input data accurately, and the hidden 

layer(s) are used to generate reduced representations of the input data. 

An AE with a single hidden layer, as shown in Figure 2.2, can be further decomposed into 

two components: the input and hidden layers form the encoder of the AE, and the hidden and the 

output layer form the decoder of the AE. Traditionally, the weight matrix of the decoder is set as 

the transpose of the weight matrix of the encoder during training, known as the “tied-weights”. 

This constraint has been released in recent implementations, where the encoder and decoder have 

independent weights that are tuned separately.  
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Figure 2.2. An auto-encoder with a single hidden layer. 

 

An ANN with multiple hidden layers is called a deep neural network (DNN). Analogously, 

the deep version of an AE is known as the deep auto-encoder (DAE). Training a DNN is more 

challenging, as it is harder to initialize the parameters of a model in a way that will neither lead to 

a vanishing gradient nor converging to a poor local minimum. The first efficient algorithm for 

training a DAE was proposed by Hinton in 2006 (Hinton & Salakhutdinov, 2006). They solved 

the problem of training multiple layers by first modeling each pair of layers as an RBM and pre-

training the model in a layer-wise manner; the RBMs are then unrolled to form the entire DAE 

(Figure 2.3) and a final fine-tune step is added to adjust all weights simultaneously. 

A DAE can be interpreted in a hierarchical manner, where each hidden layer learns features 

of a different scale. For example, when using images as input data, the different layers are often 

found to represent basic shapes of different levels of complexity that compose an image. Typically, 

the hidden/higher the layer, the more elementary the shapes the layer represents (e.g., from parts 

of an object to straight lines of different orientations). Consequently, training a DAE will not only 

give us a reduced representation of the input data but also de-convolve the intractable data 

distribution into multiple sets of more interpretable hidden features. 
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Figure 2.3. Three steps to train a DAE.  

Figure 1 from (Hinton & Salakhutdinov, 2006). 

 

The capability of AE in learning informative latent features can be further utilized by 

applying AE/DAE as a pre-training step for training supervised ANN/DNN models. Specifically, 

an AE/DAE is first trained with the input data 𝑋 in an unsupervised manner for learning intrinsic 

characteristics from the data. Then a classification or regression layer, depending on the task, is 

added to the trained encoder of AE/DAE; this newly constructed model is fine-tuned using the 

labels of data 𝑌. Including such a pre-training step often improves the performance of the model 

and makes the model more interpretable. This largely resolves the issue of traditional ANN/DNN 
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models behaving as black-boxes, which can achieve excellent task-oriented performance but with 

little interpretability. 

2.3.2  VAE 

The classic AE is very effective for dimension reduction and learning internal structures 

from the observed data. One shortcoming of AE is that, after training, the posterior distribution of 

the hidden variables is often intractable. This posterior distribution is to be used as the prior 

distribution to sample the hidden variables for generating new data, and its intractability makes 

AE less successful as a “generative” model. One way to resolve this problem is to estimate the 

posterior distribution of the latent variables with some empirical approaches like the kernel density 

estimation method. The problem remains, however, when we train two AEs independently with 

two subsets of data from the same distribution. In such cases, the resulted two models may have 

distinct distributions of hidden variables, even though they are expected to represent the same 

global distribution. 

In 2014, Kingma and Welling exploited the idea of variational inference (also known as 

the variational Bayes approach) to approximate the posterior distribution of the latent variables 

and proposed VAE (Kingma & Welling, 2014) (a very similar idea was proposed in the same year 

by (Rezende, Mohamed, & Wierstra, 2014) ). In VAE, the posterior distribution of the latent 

variable 𝑍 , 𝑄(𝑍|𝑋) , is approximated with a variational distribution 𝑃(𝑍) , which is typically 

restricted to a tractable family of distribution, like the Gaussian distribution. The Kullback-Leibler 

(KL) distance between 𝑄(𝑍|𝑋) and 𝑃(𝑍) is computed as a loss term to be minimized, which forces 

the posterior distribution to get close to the variational distribution through training. In the old 

expectation maximization (EM) training algorithm for variational inference, the KL distance is 
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reduced iteratively using the mean-field approach. The requirement of an analytical solution of 

expectation w.r.t the approximate posterior makes this approach intractable in general cases 

(Kingma & Welling, 2014). Stochastic gradient descent is another alternative, but it is not directly 

applicable to VAE as the sampling step of the latent variable is not derivable. This was resolved 

by Kingma and Welling by setting 𝑃 as a normal distribution with diagonal covariance. This 

allows for the Gaussian re-parameterization trick to be used, where instead of sampling 𝑍 direction 

from 𝑃 with 𝑍 ~ 𝑁(𝜇, 𝜎2) (𝜇 and σ are estimated from the observed data), 𝑍 is sampled with 𝑍 =

𝜇 + 𝜎𝜖, 𝜖~𝑁(0, 1). The re-parameterization trick gives a simple differentiable unbiased estimator 

of the latent variables, with which the stochastic gradient descent method can be applied. This 

whole training algorithm for VAE is called the stochastic gradient variational Bayesian approach 

(Kingma & Welling, 2014). Since the posterior distribution of the latent variables is pre-defined 

in VAE, generating new data becomes straightforward: sample a latent vector from 𝑃(𝑍), and pass 

it through the decoder of VAE to obtain a new data instance.  

In practice, the major difference between implementing an AE and a VAE is at the target 

function for training the model. In AE, the target function is just the reconstruction error between 

the output (the decoding of the encoded data 𝑑(𝑧𝑒(𝑥))) and the input data (Equation 2.3). MSE is 

often used as the reconstruction error for continuous input data. In VAE, the KL distance between 

𝑄(𝑍|𝑋) and 𝑃(𝑍) is added to the target function for updating the posterior distribution. (Equation 

2.4). 

𝐿 = 𝑙𝑟(𝑥, 𝑑(𝑧𝑒(𝑥)))                                                          (2.3) 

𝐿 =  𝑙𝑟(𝑥, 𝑑(𝑧𝑒(𝑥))) + 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧))                                        (2.4) 
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2.3.3  AAE 

The adversarial autoencoder (AAE) is another AE extension that performs variational 

inference to approximate the posterior distribution of the latent variables (Makhzani, Shlens, Jaitly, 

Goodfellow, & Frey, 2015). The difference between VAE and AAE is that while VAE minimizes 

the KL distance between the posterior distribution of the latent variables 𝑄(𝑍|𝑋) and the target 

variational distribution 𝑃(𝑍) (Equation 2.4), AAE incorporates a discriminative network 𝐷𝑁 to 

compute an adversarial loss 𝑙𝑎𝑑 for distinguishing between 𝑄(𝑍|𝑋) and 𝑃(𝑍), inspired by the idea 

of the generative adversarial network (GAN) model (Goodfellow et al., 2014) (Equation 2.5, 

Figure 2.4 left).  

𝐿 =  𝑙𝑟(𝑥, 𝑑(𝑧𝑒(𝑥)))  +  𝑙𝑎𝑑(𝐷𝑁(𝑞(𝑧|𝑥)), 𝐷𝑁(𝑝(𝑧)))                            (2.5) 

 

 

Figure 2.4. AAE architectures. 

 Figures 1, 3 and 6 from (Makhzani et al., 2015). The left panel shows the standard AAE. The middle panel shows 

how supervised information is incorporated into AAE by adding the one-hot representation of the data label to the 

input of the discriminative network. The right panel shows another way of incorporating the supervised information 

by adding the label to the decoder of the model. 

 

AAE can be extended to semi-supervised and supervised learning by incorporating a one-

hot representation of the data label to the input of the discriminative network to associate the label 
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of the data with a mode of the prior distribution (Figure 2.4 middle), or by concatenating the data 

label to the input of the decoder while using the discriminative network to learn the variance of 

data across all data classes. (Figure 2.4 right) (Makhzani et al., 2015). 

2.3.4  VQ-VAE 

In VAE and AAE, a continuous representation is learned for each input data instance. 

However, for many modalities in nature, for example, the words in a sentence, and the limited 

number of aberrant signaling pathways in a cancer sample, a discrete representation is usually 

more rational. To develop a model for learning discrete representations, one needs to address two 

problems: first, find a method to discretize the latent variable space; and second, find a method to 

sample a latent vector from the discretized latent variable space. The second problem was solved 

first, by representing the discrete latent variable distribution as an autoregressive distribution, and 

sampling the value of a latent variable depending on the other latent variables via ancestral 

sampling (Aäron Van Den Oord et al., 2016; Aaron Van Den Oord & Vinyals, 2017). For the first 

problem, Oord et al., inspired by the vector quantization (VQ) technique, proposed the VQ-VAE 

model in 2017, in which the latent variables are quantized by mapping to an embedding space 

composed of a limited number of codes (Aaron Van Den Oord & Vinyals, 2017). Specifically, 

during the forward computation, the input data is first passed through an ordinary encoder network 

to get its latent representation vector (or matrix if the latent representation has multiple channels). 

Each latent vector is then replaced by its nearest neighbor code in the embedding space and passed 

through the decoder to reconstruct the input data (Figure 2.5). In this way, each input instance is 

transformed into a (set of) discrete embedding code(s) rather than a continuous latent vector as in 

VAE. In summary, VQ-VAE differs from VAE in two ways: the encoder network outputs discrete, 
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rather than continuous representations; and the posterior distribution of the latent variables is 

learned rather than static.  

 

 

Figure 2.5. The VQ-VAE model.  

Figure 1 from (Aaron Van Den Oord & Vinyals, 2017). The input image is first passed through the encoder 𝒛𝒆(𝒙) to 

get its encoding matrix. The encoding matrix is then mapped to the embedding space by looking up the nearest 

neighbor code for each row vector. The nearest neighbor codes are used as a surrogate of the encoding matrix to be 

sent to the decoder 𝒛𝒒(𝒙) to generate the reconstructed image. Both the encoder and decoder are ordinary CNNs. 

 

To train a VQ-VAE, two additional terms are added to the objective function of AE to 

update the encoder, decoder, and the embedding space simultaneously. The objective function of 

VQ-VAE is 

𝐿 = 𝑙𝑟(𝑥, 𝑑(𝑒𝑘)) + ‖𝑠𝑔[𝑧𝑒(𝑥)] − 𝑒𝑘‖2
2 + 𝛽‖𝑧𝑒(𝑥) − 𝑠𝑔[𝑒𝑘]‖2

2                     (2.6) 

𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗‖𝑧𝑒(𝑥) − 𝑒𝑗‖                                                    (2.7) 

Here 𝑠𝑔  is the stopgradient operator, which is defined as identity at the forward 

computation time and has zero partial derivatives when backpropagate. This is to constrain its 

operand to be a non-updated constant. The first term of the objective function is the reconstruction 

error as the models above, which helps the model learn the distribution of the input data. The 
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second term, called the VQ objective uses the L2 error to move the nearest code(s) 𝑒𝑘 towards the 

latent representation 𝑧𝑒(𝑥). The third term, called the commitment loss, is to constrain the volume 

of the embedding space, making sure that the latent representation commits to a (set of) embedding 

code(s) rather than growing arbitrarily. The VQ objective and the commitment loss together update 

𝑧𝑒(𝑥) and 𝑒𝑘 in a bidirectional manner through training. 

The mapping of a latent vector to the embedding space with a limited number of codes can 

be seen as a clustering step, where the codes are the centroid of each cluster, and latent vectors are 

assigned to clusters using the nearest neighbor strategy. As a result, the training of VQ-VAE can 

be boosted with exponential moving averages (EMA) of cluster assignment counts (Kaiser et al., 

2018). Other improvements of the training algorithm (essentially an EM algorithm) and extension 

of the model have also been proposed. These include switching from a hard EM algorithm to a soft 

EM algorithm, which allows one encoding to be assigned to multiple clusters with different 

weights (Roy, Vaswani, Neelakantan, & Parmar, 2018), and solving the problem of index collapse, 

where only a small fraction of all the codes are updated and used, with the decomposed vector 

quantization technique (Kaiser et al., 2018). Currently, VQ-VAE is still under active research. 

2.3.5  SAE 

All the models above, including the standard AAE, are unsupervised autoencoder-based 

GMs. The supervised extensions of AAE that incorporate the data label information into the input 

of its discriminative network or decoder are still primarily used for data reconstruction and 

generation rather than used as multi-task models. One of the first models that jointly considers 

unsupervised data reconstruction and supervised regression/classification is the supervised 

autoencoder (SAE) (Le, Patterson, & White, 2018). The two learning tasks are solved at the same 



32 

time by adding a supervised loss 𝑙𝑠  to the objective function of a standard autoencoder. The 

supervised loss is computed by predicting the target 𝑦  of the input data 𝑥  with an additional 

subnetwork using the latent representation generated by the encoder (Equation 2.8, Figure 2.6). 

The incorporation of two learning components in SAE improves the performance of each single 

learning task by exploiting the commonalities shared by related tasks. With this property, SAEs 

have been used to improve the supervised learning accuracy, learn meaningful representations for 

individual data, and improve the generalization performance of neural networks (Le et al., 2018; 

Ranzato & Szummer, 2008; Yuting Zhang, Lee, & Lee, 2016).  

𝐿 =  𝑙𝑟 (𝑥, 𝑑(𝑧𝑒(𝑥))) +  𝑙𝑠(𝑦, 𝑠(𝑧𝑒(𝑥)))                                              (2.8) 

 

 

Figure 2.6. The structure of SAE and deep SAE. 

The Figure 1 from (Le et al., 2018). 



33 

2.3.6  RBM 

The models have been introduced so far are all specific cases of directed acyclic graphs 

(DAGs). These models belong to a more general model class known as the probabilistic directed 

acyclic graphical model (this is sometimes considered as an equivalent term to Bayesian network, 

though the latter term emphasizes more on the conditional dependencies between variables). 

Another major category of graphical models is the undirected graphical model, also known as the 

Markov random field. One well-studied undirected graphical model is the Boltzmann machine 

(BM), which represents undirected dependencies between stochastic binary variables. In a BM we 

also have the observed or visible units, 𝑣, and hidden or latent units, ℎ, just as in the directed 

graphical models (Figure 2.7). Connections are allowed between any units, including visible-to-

visible connections, hidden-to-hidden connections, and visible-to-hidden connections. BM is one 

of the first GMs that are capable of learning internal representations, but its training is in general 

intractable. 

 

 

Figure 2.7. The structure of a general BM and a RBM.  

Figure 1 of (Salakhutdinov & Hinton, 2009). 
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To reduce the complexity of training a general BM, restrictions are put on the structure of 

BM to only allow visible-to-hidden connections in the model. The resulting model is known as 

RBM (Smolensky, 1986) (Figure 2.7). Even though the idea of RBM can date back to 1986, an 

efficient training algorithm was not available until 2002, when Hinton proposed the contrastive 

divergence k algorithm (CD-k) (Hinton, 2002). The objective for training an RBM is to maximize 

the log-likelihood of the input data, or equivalently, minimize the average negative log-likelihood 

– log 𝑝(𝑥). The partial derivative of the objective for the 𝑡th data to the parameter vector of the 

model 𝜃 is: 

𝜕−log𝑝(𝑥(𝑡))

𝜕𝜃
= 𝐸ℎ [

𝜕𝐸(𝑥(𝑡),ℎ)

𝜕𝜃
|𝑥(𝑡)] − 𝐸𝑥,ℎ [

𝜕𝐸(𝑥,ℎ)

𝜕𝜃
]                                     (2.9) 

The first term on the right-hand side, also called the positive phase, is data-dependent, 

where the expectation is taken w.r.t 𝑃(ℎ|𝑥). The second term, the negative phase, is model-

dependent, where the expectation is taken w.r.t 𝑃(𝑥, ℎ). The second term is generally hard to 

compute, due to the exponential number of configurations of 𝑥  and ℎ . The key idea behind 

contrastive divergence is to replace the expectation in the second term with a point estimate at 𝑥̃, 

which is obtained by performing a Gibbs sampling starting with 𝑥(𝑡). The 𝑘 in CD-k is the number 

of iteration of the Gibbs sampling. Usually, 𝑘 = 1 works well enough. 

A single iteration in CD-1 takes the following steps: 

1. Take an observed data 𝑣, compute the probabilities of the hidden variables and sample a 

hidden vector ℎ from the Bernoulli distribution defined by the probabilities. 

2. Take the outer product of 𝑣 and ℎ, and set it as the positive gradient. 

3. With ℎ, sample a reconstructed data 𝑣′. 

4. With 𝑣′, resample a hidden vector ℎ′ as in step 1. 
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5. Take the outer product of 𝑣′ and ℎ′, and set it as the negative gradient. 

6. Update weights, 𝑊, with the difference between the positive gradient and the negative 

gradient. 

7. Update biases, 𝑐 and 𝑏, with the difference between 𝑣 and 𝑣′, and difference between ℎ 

and ℎ′, respectively. 

The iterative update continues until the parameters converge or a stop criterion is met. 

Though the ordinary RBM and its training algorithm are primarily for binary input data, 

RBM can be applied to real-valued data by using the Gaussian rectified transformation (Welling, 

Rosen-Zvi, & Hinton, 2005). In this case, the update rule for the hidden units remains the same as 

in the CD-k algorithm, while the update rule for a visible unit is sampling from a Gaussian 

distribution with a unit variance (identity covariance matrix) and a mean of c + WTh. Learning an 

RBM with Gaussian units can be slow, and it is usually impractical to train a deep model with 

multiple real-valued RBMs. Instead, people train a Gaussian-to-binary RBM first to learn a binary 

representation from the continuous input data, then use the binary representation as input for 

training other deep models, like the DBM introduced below (Salakhutdinov & Hinton, 2009). 

Meanwhile, as mentioned in the AE section, RBM can be used to pre-train other deep models in a 

layer-wise manner, which facilitates learning features that preserve hierarchical information. 

Actually, a DAE can be seen as composed of two, symmetrical DBNs. This in turn makes the deep 

model more interpretable.  

2.3.7  DBN 

It may sound tempting to stack several RBMs together to obtain a deep model with stronger 

learning potential. The resulting model, however, is not a deep Boltzmann machine (DBM) as one 
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may have expected, but a DBN. Figure 2.8 shows the difference between DBM and DBN. In a 

DBN, all the edges between layers are directed except the ones between the two top layers. The 

top two layers form an ordinary RBM, while the lower layers form a sigmoid belief network. A 

DBN is often trained by first performing a greedy, layer-wise pre-training step with RBMs, using 

the hidden units of one RBM as the input data for training a higher-level RBM; then running a 

fine-tuning to optimize the parameters altogether. This final fine-tuning step is completed with a 

revised version of the CD-k algorithm, where the positive gradient and negative gradient are 

backpropagated for updating multiple hidden layers. 

 

 

Figure 2.8. The structure of a general DBN and a DBM.  

Figure 2 of (Salakhutdinov & Hinton, 2009). 

 

On the other hand, a DBM, with its fewer constraints on the dependency direction between 

hidden units, is a more flexible and powerful model than a DBN. Its training procedure, however, 

is also more complex (Salakhutdinov & Hinton, 2009), thus is rarely used in general applications. 
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2.3.8  Adding regularizations 

For all the models introduced in this section, regularization terms like sparsity or weights 

regularization can be added to the corresponding loss or objective function to create overfitting-

resistant extensions. This results in the regularized AE (adding a L2 norm to the weights), the 

sparse AE (adding a KL distance between the Bernoulli distribution defined by the values of 

hidden nodes and the Bernoulli distribution defined by the desired hidden nodes activation 

proportion), and sparse RBM (Lee, Ekanadham, & Ng, 2008; Nair & Hinton, 2009). Some of these 

techniques were explored in this project. 

2.4 Supervised learning algorithms for drug sensitivity prediction 

Previous systematic evaluations of drug sensitivity prediction algorithms have shown that 

best-performed predictors were generally from three classes of models, that is, the Elastic net 

regression, random forest, and SVM. In this project, all three models were explored for predicting 

drug response or class based on the cell line representations learned by DGMs. The basic theories 

behind these three classes of models are introduced in this section. 

2.4.1   Elastic net 

An Elastic net is a regularized regression method, usually incorporated with linear 

regression or logistic regression models, which linearly combines the Lasso regularization (L1 

penalty) and ridge regularization (L2 penalty). When using the Lasso regularization alone, the L1 
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term can be too strict for selecting variables, especially for high dimensional data and highly 

correlated feature variables. The inclusion of the L2 term helps overcome some of the limitations. 

The objective function for training an Elastic net is given in Equation 2.10, where βs are the 

coefficients/weights of variables to be estimated, and λs are the pre-defined coefficients for 

adjusting the strength of regularization. It has been further shown that the Elastic net can be 

reduced to the linear SVM, where the solution β defines the hyperplane obtained from a SVM for 

a binary classification problem transformed from the original regression task (Zhou et al., 2015). 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽(‖𝑦 − 𝑋𝛽‖2 + 𝜆2‖𝛽‖2 + 𝜆1‖𝛽‖1)                                 (2.10) 

In this project, we modeled the drug sensitivity prediction task as a binary classification 

problem and trained an Elastic net logistic regression model for each drug of interest to predict the 

probability of sensitivity of cell lines. 

2.4.2  Random forest 

The random forest is an ensemble learning method that fits a set of decision trees for both 

classification and regression tasks. The use of a set of trees helps reduce prediction variance and 

avoid the overfitting problem that is often observed when using a single decision tree (Ho, 1995). 

A random forest is typically trained using the bootstrap aggregation technique, where the trees are 

trained on different random samples drawn from the input data with replacement (also known as 

the bagging method). When doing classification, the mode of the classes of individual trees is 

returned; when doing regression, the mean prediction of the individual trees is returned. In this 

project, we used the random forest for predicting classes of drugs given drug perturbed cell line 

genomics data. 
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2.4.3  SVM 

A SVM is a discriminative model that is primarily used for classification by constructing 

separation hyperplanes that maximize the margin between each pair of classes (Cortes & Vapnik, 

1995). The data points that define the margins are called the “support vectors”. A SVM is only 

dependent on the support vectors as the other data points would not affect the separation 

hyperplane when they are away from the margins. Suppose for a binary classification task with 

class labels 1 and -1, and the separation hyperplane is defined with 𝜔 ∗ 𝑥 − 𝑏 = 0, then the margin 

of class 1 is 𝜔 ∗ 𝑥 − 𝑏 = 1, and the margin of class -1 is 𝜔 ∗ 𝑥 − 𝑏 = −1. It can be derived that 

the distance between the margins is 
2

‖𝜔‖
, and the distance is to be maximized. 

If the training data are linearly separable, solving a SVM can be written as an optimization 

problem as  

minimize ‖𝜔⃗⃗ ‖  

subject to 𝑦𝑖(𝜔⃗⃗ 𝑥𝑖⃗⃗  ⃗ − 𝑏) ≥ 1 for 𝑖 = 1,…𝑛.  

This is also known as the hard-margin SVM (“hard-margin” means no data point is allowed to lie 

on the wrong side of the margin). When the data are not linearly separable, the hinge loss function 

𝑚𝑎𝑥(0, 1 − 𝑦𝑖(𝜔⃗⃗ 𝑥𝑖⃗⃗  ⃗ − 𝑏)) is introduced into the optimization problem and results in the soft-

margin SVM as 

minimize [
1

𝑛
∑ 𝑚𝑎𝑥(0,1 − 𝑦𝑖(𝜔⃗⃗ 𝑥𝑖⃗⃗  ⃗ − 𝑏))𝑛

𝑖=1 ] + 𝜆‖𝜔⃗⃗ ‖2. 

In this case, misclassified data points can be, to some extent, tolerated. The above objective 

function can be rewritten as a constrained optimization problem with a differentiable objective 

function as  

minimize 
1

𝑛
∑ 𝜁𝑖 + 𝜆‖𝜔‖2𝑛

𝑖=1   
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subject to 𝑦𝑖(𝜔 ∙ 𝑥𝑖 − 𝑏) ≥ 1 − 𝜁𝑖 and 𝜁𝑖 ≥ 0 for all i. 

This is known as the primal problem. Its Lagrangian dual is 

maximize 𝑓(𝑐1 …𝑐𝑛) = ∑ 𝑐𝑖
𝑛
𝑖=1 −

1

2
∑ ∑ 𝑦𝑖𝑐𝑖(𝑥𝑖 ∙ 𝑥𝑗)𝑦𝑗𝑐𝑗

𝑛
𝑗=1

𝑛
𝑖=1  

subject to ∑ 𝑐𝑖𝑦𝑖
𝑛
𝑖=1 = 0 and 0 ≤ 𝑐𝑖 ≤

1

2𝑛𝜆
. 

The dot product between each pair of data in the dual problem allows the kernel trick to be played 

(replacing (𝑥𝑖 ∙ 𝑥𝑗) in the above objective with 𝑘(𝑥𝑖 ∙ 𝑥𝑗)), with which non-linear hyperplanes can 

be learned for classifying the data. 

The SVM can also be extended for regression tasks by solving the following optimization 

problem 

minimize 
1

2
‖𝜔‖2 

subject to 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜖 and 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖. 

In this project, we also used SVM for predicting classes of drugs given drug perturbed cell 

line genomics data. 
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3.0 Chapter 1: learning cellular signaling component representations with network-based 

models 

3.1 Introduction 

Cancer is a complex genetic disease, mainly caused by somatic genome alterations (SGAs) 

that affect oncogenic processes (Croce, 2008). Such alterations include mutations, copy number 

alterations, DNA structure variants, epigenetic alterations, and other genomic variations 

(Vogelstein et al., 2013). Among the alterations, some are more causally related to the disease, 

known as the driver SGAs that activate the oncogenic process by perturbing genes in cellular 

signaling pathways that regulate homeostasis (Vogelstein et al., 2013). 

Cancers are heterogeneous in that tumors originating from the same tissue often exhibit 

significantly different molecular and clinical phenotypes, leading to differences in responses to 

treatments and patient survival. This inter-tumor heterogeneity is due to distinct disease 

mechanisms that underlies the development of an individual tumor, which usually results from 

different compositions of pathway aberrations. Understanding disease mechanisms of an 

individual tumor and further identifying common patterns of disease mechanisms among a cohort 

will not only provide insights into cancer biology but can also promote personalized therapy. 

So far, it remains a challenge to discover disease mechanisms of cancers solely based on 

SGA data for the following reasons: First, a tumor usually hosts from hundreds to over a thousand 

SGA events (Ciriello et al., 2013), among which the majority has a relatively low-occurrence 

frequency in a tumor cohort. As a result. it is difficult to find statistically significant patterns in 

SGA events. Second, among all the SGAs observed in a tumor, driver SGAs only take up a small 
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amount, whereas the majority of others is non-consequential regarding oncogenesis (passengers) 

(Carter et al., 2009; Ciriello et al., 2013; Dees et al., 2012; Mermel et al., 2011; Reva, Antipin, & 

Sander, 2011; Tamborero, Lopez-Bigas, & Gonzalez-Perez, 2013; Vogelstein et al., 2013; 

Weinstein et al., 2013; Zack et al., 2013). Identifying driver SGAs of an individual tumor is at best 

challenging, which in turn makes it even more difficult to find co-occurrence patterns among driver 

SGAs. Third, an oncogenic pathway can be perturbed by different SGAs affecting distinct 

members of the pathway (Weinstein et al., 2013). For example, the phosphoinositide 3-kinase 

(PI3K) pathway can be aberrantly activated by mutation/amplification of PIK3CA, 

mutation/deletion of PTEN, or mutation of AKT1 (Lin et al., 2014; Vivanco & Sawyers, 2002), 

and so on. There is no simple way to determine whether two distinct SGA events observed in two 

different tumors are affecting a common pathway. Consequently, it is hard to use SGA data to 

determine which pathways are aberrant in a tumor and to further identify combination patterns of 

pathway aberrations. 

On the other hand, gene expression profiles have been widely applied to identify molecular 

subtypes of cancers originating from a common tissue through clustering analysis. In many cases, 

such transcriptome-based subtypes present different outcomes and different responses to therapies 

(C. G. A. Network, 2012; C. G. A. R. Network, 2011; Verhaak et al., 2010). While it is relatively 

straightforward to identify differentially expressed genes in these cancer subtypes, it is unclear 

which pathways drive their differential expression. Furthermore, the subtyping results can be 

heavily influenced by cell-type-specific expressions, leading to subtypes that are divided based on 

the origins of cells rather than disease mechanisms. For example, some breast cancer subtypes are 

based on the cell of origin, such as basal vs. luminal cells. In general, it would be ideal to identify 

modules of genes whose expressions are regulated by a common oncogenic pathway and use the 
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modules to discover combination patterns of pathway aberrations and classify tumors according 

to disease mechanisms rather than the tissue of origin. 

In this chapter, we preliminarily explore the use of a graph-based machine learning 

framework for learning disease-mechanism informative representations, in the form of DEG 

modules, from genomics data. The framework we propose here transfers the information from 

genetic alterations to clinical outcomes via examining the expression modules that reflect the status 

of transcriptomic program perturbations. 

The framework takes as input the causal inferences produced by a Bayesian causal learning 

algorithm we developed and referred to as the Tumor-specific Causal Inference algorithm (TCI) 

(Cai et al., 2018). TCI estimates the causal relationships between SGAs and somatic genome 

alterations (DEGs) within an individual tumor (Figure 3.1), which enables us identify DEG 

modules that are each regulated by a common SGA and use it as a signature of the pathways 

perturbed by the SGA. Specifically, we developed a network-based framework to construct a DEG 

network in which DEGs are connected by weighted edges if they are co-regulated by a common 

set of SGAs. We then applied spectral clustering on the network to identify modules of DEGs 

where the members share driver SGAs. We used the expression status of a DEG module as a 

surrogate measure of the aberration status of the corresponding regulatory pathways and 

represented a tumor as a vector in pathway space that reflects the combination of pathway 

aberrations in the tumor. With these pathway representative feature vectors, we identified 

subgroups of tumors sharing similar aberration patterns that exhibit different survival outcomes. 
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Figure 3.1. The diagram of the TCI algorithm. 

Each plate represents a tumor sample. Based on a causal Bayesian network model, TCI infers causal relationships 

between genes that carry somatic alterations (A) and genes that are differentially expressed (E). A0 designates all the 

factors other than gene alterations (e.g., the cellular environment). Each E receives one, and only one, A as its cause, 

and each A can be the parent of multiple Es. 

 

We evaluated this computational framework on breast cancer (BRCA) and glioblastoma 

multiformes (GBM) data, and we report the results here. The same approach can be applied to 

other cancer types, with minor modifications. This pilot project represents the first step towards 

the goal of better cellular state representation learning with machine learning techniques. 
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3.2 Methods 

3.2.1  Significant TCI causal inference generation 

The machine learning framework we developed takes the tumor-specific inferences of TCI 

as input to construct DEG networks. The TCI algorithm is a Bayesian Causal Network model, 

which models the SGAs and the DEGs as a bipartite graph and adds edges between the two gene 

sets that represent causal relationships (Cai et al., 2018). In particular, for each tumor sample, the 

algorithm assigns each DEG one, and only one, SGA as its cause by ranking all candidate SGAs 

based on the BDeu score (Heckerman, Geiger, & Chickering, 1995); each SGA can be assigned to 

multiple DEGs (Figure 3.1). The biological intuition behind this setup is that the differential 

expression of a gene is mainly due to the direct interaction between this gene and a single SGA; 

all indirect interactions between the gene and other SGAs are relatively minor if the direct 

interaction is recognized. On the other hand, one SGA can affect the expression status of multiple 

genes at the same time. 

We collected omics data of 5,097 tumors across 16 cancer types (includes 891 BRCA 

tumors and 144 GBM tumors) from The Cancer Genome Atlas (TCGA) dataset (program). A gene 

is considered a somatic alteration carrier if one or more somatic mutations (SM), or somatic DNA 

copy number alterations (SCNA), were observed on it; a gene is recognized as a DEG if its 

expression level significantly deviates from the mean of its expression distribution in healthy 

tissue. We applied TCI to each of these tumors and identified tumor-specific causal relationships 

between SGAs and DEGs (Cai et al., 2018). The TCI causal inferences were further filtered 

through a series of empirical standards to obtain robust and significant results to be used as the 

input data for our framework. The filtering standards we used are: 
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• A SGA-DEG causal relationship is considered valid if its posterior probability is larger 

than the posterior probability estimated in a random permutated experiment. 

• A SGA is called a driver in a tumor if TCI assigns it to be a cause of 5 or more DEGs in 

the tumor. 

• A SGA is called a significant driver if it is called a driver in 30 or more tumors AND it is 

called driver in at least 25% of tumors where it is observed as a SGA. 

• A SGA-DEG is called a significant causal relationship if the SGA is a significant driver 

AND the DEG is caused by this SGA in at least 50 tumors OR 20% of the tumors where 

the SGA is called a driver. 

Some tumor samples had no inference left after the filtering step and were excluded from 

the following experiments. Consequently, the significant TCI inferences we used for BRCA and 

GBM analyses were from 874 BRCA tumor samples and 143 GBM tumor samples, respectively. 

For a more detailed overview of the data generation and processing procedure, please refer to the 

original TCI paper (Cai et al., 2018). 

3.2.2  DEG module identification 

3.2.2.1 DEG network construction 

The TCI significant inferences were used to construct DEG networks in the form of a 

weighted, undirected graph. When constructing the graph for a single cancer type, the 

corresponding subsets of significant inferences were extracted. Each node in this graph represents 

a DEG that was identified in more than 10% of the tumors. Edges were added between DEG pairs 

where the two DEGs were co-regulated in the same tumor by the same SGA. The edge weight is 

defined as the frequency of the co-regulation, which equals the number of tumors in which the co-
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regulation took place. The weighted, undirected graph was represented in the form of a symmetric 

affinity matrix, where the affinity in row 𝑖 column 𝑗 is the edge weight between 𝐷𝐸𝐺𝑖 and 𝐷𝐸𝐺𝑗. 

3.2.2.2 Spectral clustering 

In our framework, we use spectral clustering to identify modules from the DEG networks. 

Specifically, we implemented a new extension of spectral clustering, which was derived from the 

algorithm described by Ng, 2002 (Ng, Jordan, & Weiss, 2002). In our implementation, a DEG 

network affinity matrix is first converted to a pseudo-distance matrix by taking the inverse of each 

affinity value. The distance matrix is then transformed into an optimized affinity matrix with the 

Gaussian kernel, as shown in Equation 3.1 

𝐴𝑖𝑗 = exp(𝐷𝑖𝑗
2 /2𝜎2)                                                     (3.1) 

Here 𝐷𝑖𝑗 and 𝐴𝑖𝑗 are the pseudo-distance and optimized affinity between 𝐷𝐸𝐺𝑖 and 𝐷𝐸𝐺𝑗. 

The standard deviation 𝜎 of the Gaussian kernel is selected based on the distribution of pseudo-

distances to convert short distances to high affinities and suppress long distances (0.05 for BRCA 

and 0.1 for GBM). The remaining steps are identical to steps 2-6 in the standard spectral clustering 

algorithm (Ng et al., 2002). In brief, a Laplacian matrix is computed from the optimized affinity 

matrix, from which the 𝑘 largest eigenvectors are extracted to project the data into a 𝑘 dimensional 

feature space. The data points are then clustered via the k-means algorithm. 

With the use of k-means, the spectral clustering result partially depends on the choice of 𝑘 

and the random initialization of the k-centres of clusters. To determine the value of 𝑘 (i.e., the 

number of DEG modules), we first tried consensus spectral clustering with 𝑘 = 5, 10, 15, 20. We 

then narrowed down to the range between the two adjacent 𝑘s that gave the most stable consensus 

matrices, and tried each 𝑘 from the range. For generating the consensus matrix of each 𝑘, a spectral 
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clustering was repeated independently for 100 times with different random initializations. The 

value of 𝑘 was selected such that further increasing 𝑘 would result in modules that were unstable, 

with significant overlaps across modules on the consensus matrix. Such overlaps indicated that the 

data points that were assigned to two different modules were often clustered into the same group 

across independent runs. This suggests that the two modules should be merged and the 𝑘 being 

used was too large. The final module assignments we used were generated by running the 

clustering algorithm one more time with the selected 𝑘. 

3.2.3  Survival analysis 

3.2.3.1 Survival feature dataset construction 

When constructing the dataset for survival analyses, each DEG module identified by 

spectral clustering was treated as a single feature and was represented with the mean of the 

expression levels of all DEGs in the module. This representation can be seen as a surrogate 

measure for the aberration status of the signaling pathway that regulates genes in each module. 

Other clinical features of interest (e.g. age at diagnosis, etc.) were also added. For BRCA, the gene 

expression, clinical, and survival data used were from the Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC) project (Curtis et al., 2012), accessed through the Synapse 

repository (synapse.sagebase.org, ID syn1688369). For GBM, the microarray gene expression data 

and clinical data were downloaded from TCGA through the Firehose browser of the Broad 

Institute. The DEG modules were obtained with TCI inferences that were produced using RNA-

seq data from the TCGA database, and some DEGs were not available from the METABRIC 

expression data or the TCGA GBM microarray data. As a result, the number of DEGs used to 

compute each DEG module feature was smaller than the original number of DEGs in each module. 
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We refer to these DEGs as effective DEGs (Table 3.1 and Table 3.2). From the METABRIC 

clinical data, we extracted eight features and added these to our BRCA dataset -- the age at 

diagnosis, size of tumor, grade of disease, lymph node assessment, tumor histology type, ER status, 

PR status, and Her2 status. For tumor histology type we only considered three factor levels, 

including IDC-TUB, IDC-MUC, and IDC-MED. For GBM, patient age at diagnosis was extracted 

and added to our dataset as the only clinical feature. Since clinical features typically took different 

scales of values, all features (including DEG module features) were normalized across patients by 

subtracting the mean of values and dividing by the standard deviation. The final survival dataset 

took the form of a table in which each patient was represented with a feature vector, a survival 

time, and a binary value indicating the death status (0 for alive and 1 for dead). The BRCA survival 

feature dataset contained 1,981 patients and the GBM dataset contained 524 patients. 

3.2.3.2 Patient groups identification 

Patient groups were identified using consensus PAM clustering. We used the consensus 

clustering function from the R package ConsensusClusterPlus (Wilkerson & Hayes, 2010), version 

1.38.0. The number of patient groups was determined using the consensus matrix and the area 

under the consensus cumulative distribution function curve (AUCDFC). This was done by 

clustering with the number of groups that varies from 2 to 15 (200 resamplings for GBM, 100 

resamplings for BRCA) and selecting the point at which there was no significant overlap between 

the resulting groups on the consensus matrix and at which further increases the number of groups 

would not lead to a significant increase in the AUCDFC. 
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3.2.3.3 Patient groups survival models 

We used the R package survival (Therneau) version 2.41.3 to generate the Kaplan-Meier 

plots of patient groups, run log-rank tests, and do Cox regressions. The prediction performances 

of Cox regression models were compared by computing the C-index between the model outputs 

and the true survival times (Harrell Jr, Lee, & Mark, 1996; Pencina & D'Agostino, 2004).  

3.2.4  Code availability 

The source code for spectral clustering has been deposited to GitHub and available at 

https://github.com/evasnow1992/SpectralClustering. 

3.3 Results 

3.3.1  DEG modules 

We first applied the TCI on the target datasets (BRCA or GBM, see Methods) to obtain 

tumor-specific causal inferences between SGAs and DEGs. From these inferences, we identified 

a set of driver SGAs and their signature DEGs (Cai et al., 2018). We then constructed a network 

of the signature DEGs to represent the co-regulation relationships among the DEGs. Specifically, 

each node in the network represents a DEG, and an edge was added between two DEGs if they 

were co-assigned to the same SGA by TCI in at least one-tenth of the tumors. The edge weight is 

proportional to the number of tumors in which the pair were co-regulated by a common driver 

SGA (note that the regulator SGA for a pair of DEGs can be different in different tumors; see 

https://github.com/evasnow1992/SpectralClustering
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Methods). Our assumption is that the higher frequency that two DEGs are co-regulated by a 

common set of SGAs, the higher probability that these two DEGs are regulated by the same 

upstream signaling pathway perturbed by these SGAs. The DEG networks of BRCA and GBM 

were constructed using TCI results from 874 BRCA and 143 GBM tumors, respectively. The 

resulting networks contained 1,747 DEG nodes for BRCA and 3,576 DEG nodes for GBM.  

We next identified modules of DEGs using the spectral clustering algorithm (Ng et al., 

2002), where each module consists of a set of DEGs that are likely co-regulated by a common 

pathway. Specifically, we repeatedly performed spectral clustering with different random 

initializations of cluster centers (see Methods) and then conducted a consensus clustering analysis 

by pooling the results and identifying DEGs that were consistently assigned to a common module. 

Using this approach, we identified 7 stable DEG modules for BRCA and 15 for GBM. The module 

size varies from a few DEGs to over hundreds of DEGs  (Figure 3.2, Supplementary Table S3.1, 

and Table S3.2). In comparison, when other traditional clustering methods such as hierarchical 

clustering were used, the resulting DEG modules were inconsistent across independent runs with 

different random initializations (Figure 3.3). This supports the advantage of using spectral 

clustering for identifying stable DEG modules. 
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Figure 3.2. The consensus matrices of spectral clustering for identifying DEG modules. 

Spectral clustering was generated with 100 independent repeats of runs. The higher the frequency two DEGs were 

clustered into the same module, the darker blue the corresponding spot on the matrix. Each block sitting on the 

diagonal corresponds to a DEG module. The low overlapping across blocks indicates that spectral clustering was 

able to identify robust modules. 
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Figure 3.3. The consensus matrices of hierarchical clustering for identifying DEG modules. 

(a) and (b) hierarchical clustering using affinity matrix. (c) and (d) hierarchical clustering using expression profile 

with 1 - Pearson correlation as distance. The higher the frequency two DEGs are clustered into the same module, the 

darker blue the corresponding spot on the matrix. Each block sitting on the diagonal corresponds to a DEG module. 

The single dominant module composed of the majority of genes in (a), (b) and (d), and the overlapping across 

modules in (c) suggest that hierarchical clustering was unable to untangle the correlations between DEGs to identify 

robust modules, no matter whether the correlations were measured as the co-regulation frequency (affinity) or 

expression profile distance. 
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To understand what function module each DEG module may represent, we ran a gene set 

overlap analysis on each DEG module against all gene sets in the Molecular Signature Database 

(MSigDB) (Liberzon et al., 2011). The top 10 overlapping gene sets, ranking by the 

hypergeometric distribution p-value, are listed in Supplementary Table S3.3 and Table S3.4. All 

BRCA DEG modules are correlated with some cancer-related gene sets, and most of them 

(modules 1, 3, 4, 5, 6, and 7) significantly overlap with breast cancer subtype-specific gene sets. 

For example, module 1 contains genes down-regulated in the luminal B subtype and genes up-

regulated in the basal-like subtype. 

For GBM, half of DEG modules overlap with tissue-specific gene sets, including those of 

neuron, synapse, and brain. Among the other modules, module 3 stands out with its enrichment of 

genes in MODULE_84, GO_IMMUNE_SYSTEM_PROCESS, and GO_IMMUNE_RESPONSE 

that represent immune and inflammatory responses. We hypothesize that module 3 represents a 

functional module that interacts with the immune system, which when it becomes defective helps 

a tumor escape immune surveillance. This conjecture, however, requires additional experimental 

confirmation studies. 

3.3.2  Candidate pathways underlying DEG modules 

Each DEG module contains a group of genes that are frequently co-regulated by the same 

set of SGAs. Accordingly, we extracted the SGAs that underlie the co-regulation for each DEG 

module. We call an SGA a dominant SGA of a DEG module if it is responsible for over 10% of 

the co-regulations between DEG pairs in the module. Although for each module there can be 

hundreds of SGAs that contribute to the DEG co-regulations, usually no more than three SGAs 

turn out to be dominant. The dominant SGAs together take up about 90% or more of all the co-
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regulation instances. Furthermore, different DEG modules present distinct dominant SGAs, except 

a few members overlapped (Table 3.1 and Table 3.2). This indicates that each DEG module likely 

results from a different upstream signaling pathway that is perturbed by a few major drivers.  

 

Table 3.1. The composition of DEG modules of BRCA. 

Module Index # of DEG # of Effective DEGs Dominant SGAs (Prop. of Co-regulation) 

Module 1 288 259 CDH1 (60.2%), GATA3 (20.8%), PIK3CA (12.4%) 

Module 2 225 202 PTEN (66.1%), PIK3CA (19.6%)  

Module 3 155 138 ZFHX4 (44.7%), RYR2 (22.9%)  

Module 4 302 281 GATA3 (92.7%)  

Module 5 214 184 ERBB2 (58.0%), PIK3CA (17.4%)  

Module 6 135 124 TP53 (96.4%)  

Module 7 428 387 PIK3CA (90.5%)  

 

Table 3.2. The composition of DEG modules of GBM. 

Module Index # of DEG # of Effective DEGs Dominant SGAs (Prop. of Co-regulation) 

Module 1 413 255 TP53 (99.69%)  

Module 2 128 72 PTEN (50.0%), SEC61G (47.6%)  

Module 3 529 347 CDKN2A (98.5%)  

Module 4 170 81 MARCH9 (97.9%)  

Module 5 599 347 PTEN (98.3%)  

Module 6 425 255 SEC61G (98.8%)  

Module 7 11 7 EGFR (68.9%), TP53 (31.0%)  

Module 8 242 150 CDKN2B-AS1 (94.8%)  

Module 9 165 88 AGAP2-AS1 (58.1%), CHIC2 (41.4%)  

Module 10 71 42 CDKN2B (94.2%)  

Module 11 428 260 EGFR (97.9%)  

Module 12 85 62 CDKN2A (69.2%), PTEN (30.1%)  

Module 13 142 88 GSX2 (75.0%), RYR2 (11.4%)  

Module 14 123 74 MTAP (94.5%)  

Module 15 45 26 TTN (91.9%)  

 

For BRCA, all dominant SGAs, except ZFHX4 and RYR2, are well-known drivers of 

BRCA (Ciriello et al., 2015; Curtis et al., 2012; C. G. A. Network, 2012; Stephens et al., 2012). 

ZFHX4 was found to play a role in maintaining tumor cell state in GBM (Chudnovsky et al., 2014); 

our previous experimental study also indicates that ZFHX4 regulates the expression of certain 

target genes as predicted by the TCI algorithm (Cai et al., 2018). On the other hand, while some 

studies suggest that alterations on RYR2 are likely passenger events, TCI consistently discovered 
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that SGAs in RYR2 have impacts on certain DEGs. Therefore, we propose ZFHX2 and RYR2 to be 

novel drivers for BRCA. 

For GBM, most dominant SGAs are known drivers of this cancer type (Brennan et al., 

2013; Hou & Ma, 2014; Verhaak et al., 2010) except MARCH9, AGAP2-AS1 (AGAP2 antisense 

RNA 1), CHIC2, GSX2, RYR2, MTAP, and TTN. For these exceptions, excluding MARCH9 and 

TTN, previous works support that they are potential novel drivers of GBM. Specifically, AGAP2-

AS1 and GSX2 are known to be associated with neuron system development (Waclaw, Wang, Pei, 

Ehrman, & Campbell, 2009; Xia et al., 2003) and, therefore, alterations on these genes could be 

exclusive drivers of GBM. CHIC2 has been found to be associated with myeloid leukemia 

(Pardanani et al., 2003), and MTAP has been proposed as a tumor suppressor for BRCA 

(Christopher, Diegelman, Porter, & Kruger, 2002). For MARCH9, on the other hand, we consider 

it to be a passenger because it is on the same chromosome location 12q14.1 as AGAP2-AS1; they 

are frequently co-affected by genomic alteration events. TTN was found to be associated with 

BRCA and other cancer types (Greenman et al., 2007; Toss & Cristofanilli, 2015), but it is 

generally considered as a passenger as its long polypeptide structure may bias its mutation 

frequency (C. G. A. R. Network, 2011). 

Based on the dominant SGAs, we can infer what signaling pathway or function module 

each DEG module represents. CDH1 and GATA3 are the first two dominant SGAs of BRCA’s 

DEG module 1, and they are also two well-known drivers of BRCA (Ciriello et al., 2015; C. G. A. 

Network, 2012). 50.1% of TCGA BRCA samples (891 samples from the input data of TCI) have 

mutations in CDH1, GATA3, or PIK3CA, which suggests module 1 as the most associated function 

module with the disease mechanism of BRCA. With dominant SGAs PTEN and PIK3CA, DEG 

modules 2 and 7 represent the PI3K/Akt signaling pathway, which is known as one of the most 
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commonly activated pathways in cancer (Liu, Cheng, Roberts, & Zhao, 2009). The sharing of the 

dominant SGA PIK3CA across modules 1, 2, 5, and 7 suggests that although each module is 

considered to perform a relatively independent function, they are communicating with each other 

through interactions within a common signaling pathway. Module 3 contains two novel drivers, 

ZFHX4 and RYR2, which cover 44.7% and 22.9% edges (pairs of DEGs) respectively. This may 

represent a novel functional module that would support the development of BRCA for some 

subgroups of patients (dominant SGAs found in 18.2% samples). Module 4 has only one dominant 

SGA, GATA3, which represents the module resulting from a single driver rather than from the 

interactions between multiple drivers like module 1. Module 5, with its most dominant SGA being 

ERBB2, represents another important signaling pathway in BRCA, the ErbB/HER signaling 

pathway (Stern, 2000). Module 6, on the other hand, represents the most commonly inactivated 

pathway in cancer, the p53 pathway (Joerger & Fersht, 2016). Therefore, some of the BRCA DEG 

modules are more representative of general cancer signaling pathways, whereas the others are 

more specific to this cancer type.  

Similarly, in GBM, module 1 represents the p53 pathway. Modules 2, 5, and 12, sharing 

the dominant SGA PTEN, communicate with each other through the PI3K/Akt signaling pathway. 

Modules 3, 8, 10, and 12, with the most dominant SGA being CDKN2s (commonly deleted in 

GBM) (Brennan et al., 2013), represent function modules controlled by the cell cycle process. 

Modules 6, 7, and 11, with dominant SGAs being SEC61G and EGFR that were found specifically 

amplified in GBM (Hou & Ma, 2014; Kleihues & Ohgaki, 1999), represent the EGF/EGFR 

pathway. Modules 4, 9, 13, and 14, which have the most novel drivers, are potentially newly 

discovered functional modules that guide tumor development for some subgroups of GBM patients 

(dominant SGAs found in 19.7%, 28.9%, 24.6%, and 39.4% samples, respectively). 
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3.3.3  Identification of patient subgroups based on DEG module status 

Based on the hypothesis that the expression status of a DEG module reflects the state of 

the pathway that regulates this module, we partitioned the BRCA and GBM patients into subgroups, 

using the expression status of the DEG modules as features. To this end, we used the BRCA data 

from the METABRIC project (Curtis et al., 2012), which has relatively complete gene expression 

and survival data of close to 2,000 breast cancer patients. The BRCA feature dataset used for 

clustering patients consists of the constructed DEG module features and 8 clinical features that are 

correlated with survival outcomes (see Methods). For GBM, we used the gene expression and 

clinical data provided by the TCGA. The GBM feature dataset consists of the constructed DEG 

module features and age at diagnosis (the only clinical feature we considered, see Methods). 

Patient subgroups were identified using Partitioning Around Medoids (PAM, also known as k-

medoids) consensus clustering, as consensus clustering generally produces more robust and 

consistent clusters (Swift et al., 2004). PAM was selected, for it provides a center of each resulting 

group with which new data can be classified, an advantage compared to the hierarchical clustering 

and it is generally more robust to noise and outliers than k-means (RDUSSEEUN, 1987). 

When all clinical features and DEG modules were used, 5 and 6 patient groups were 

identified for BRCA and GBM, respectively (Figure 3.4a and Figure 3.5a. Supplementary Table 

S3.5 and Table S3.6). The Kaplan-Meier curves of patient groups (Figure 3.4b and Figure 3.5b) 

show that different patient groups have different survival patterns. On average, BRCA patients 

have higher survival rates than GBM patients. This is consistent with the longer mean survival 

time of BRCA (2,951 days for our dataset) than GBM (510 days for our dataset). The p-value of 

the log-rank test for survival difference is < 2x10-16 for BRCA and 8.96x10-6 for GBM, which 

suggests a significant difference between the survival distributions of the patient groups. For 



59 

BRCA, group 1 has the best survival outcome, and group 5 has the worst survival outcome (Figure 

3.4b). For GBM, groups 4 and 5 have nearly twice the survival chance at the beginning compared 

to the other four groups (Figure 3.5b). 

 

 

Figure 3.4. The consensus matrices of PAM consensus clustering for identifying patient groups for BRCA, the 

survival curves of the resulting patient groups, and the feature heatmaps. 

Patient groups were identified using all DEG modules and clinical features. DEG patient groups were identified 

using only DEG modules. For the heatmaps, the features were normalized across all patients. Values above 3 and 

below -3 are compressed into 3 and -3, respectively. The dominant SGAs of each DEG module are listed by the 

module index. The values of the clinical features of each DEG patient group are also given as a reference. 

 



60 

 

Figure 3.5. The consensus matrices of PAM consensus clustering for identifying patient groups for GBM, the 

survival curves of the resulting patient groups, and the feature heatmaps. 

Patient groups were identified using all DEG modules and clinical features. DEG patient groups were identified 

using only DEG modules. For the heatmaps, the features were normalized across all patients. Values above 3 and 

below -3 are compressed into 3 and -3, respectively. The dominant SGAs of each DEG module are listed by the 

module index. The values of the clinical features of each DEG patient group are also given as a reference. 

 

Figure 3.4 and Figure 3.5 also display the correlation between the features used in the PAM 

consensus clustering and the resulting patient groups as heatmaps. For BRCA (Figure 3.4c), groups 

1 and 2 have all clinical features alike and benign, which resulted in their significantly better 

survival outcomes compared to the other groups. The difference between their survival curves 

(Figure 3.4b) is explained by their distinct patterns in DEG modules, with group 1 having 

significantly higher values than group 2. Group 3, the patient group with the second-worst survival 

outcome (Figure 3.4b), is a typical triple-negative group, with all three gene markers, estrogen 
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receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor-2 (Her2) 

as negative. Group 4, with similarly lower DEG module values as group 2, distinguishes itself 

from group 2 with mainly PR negative patients and its high values in DEG module 2 (dominant 

SGAs PTEN and PIK3CA); its grade of disease is also higher, which resulted in its relatively lower 

survival chance. Group 5, having the worst survival outcome, contains most patients as Her2+. In 

summary, the survival of BRCA subgroups is strongly related to their clinical features such as age 

and protein-based biomarkers (ER, PR, and Her2). Given the similar clinical features, the pattern 

in DEG modules determines the survival difference. 

For GBM (Figure 3.5c), groups 1 and 2 both contain older patients, which is associated 

with poor survival outcomes. Except that group 1 has a specifically high value in module 7 

(dominant SGAs EGFR, TP53) compared to group 2. Groups 3 and 4 distinguish themselves with 

their different distributions of DEG module values, especially in their reversed pattern in DEG 

modules 1-5. Although they both contain younger patients, their different values in DEG modules 

suggests that they have different combinations of signaling pathways being defective, which 

resulted in a much higher survival fraction of group 4 than group 3 (Figure 3.5b). Group 5 contains 

most of the youngest patients, giving it the second-best survival outcome. Group 6, having the 

lowest average value in module 7, contains mostly older patients, making it indistinguishable from 

groups 1, 2, and 3 from a survival aspect. It can be seen that the age at diagnosis is the strongest 

indicator of GBM prognostic, which agrees with previous studies (Lamborn, Chang, & Prados, 

2004; Le Mercier et al., 2012; Piccolo & Frey, 2013; Roldan-Valadez et al., 2016; 

Wangaryattawanich et al., 2015; Ya Zhang, Li, Peng, & Wang, 2016). Given the similar patient 

ages, the pattern of DEG modules explains the differences between survival outcomes. 
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We next compared BRCA patient groups discovered by our approach with the PAM50 

subtypes (C. G. A. Network, 2012) to see if these two patient classification standards align with 

each other (Figure 3.6 and Table 3.3). Each one of the five patient groups has a single dominant 

PAM50 subtype (overlapping proportion > 50%). Groups 1 and 2 are mainly composed of luminal 

A patients (Figure 3.6a). Specifically, luminal A and luminal B together make up over 90% of 

group 2. Group 4 is enriched in luminal B patients, followed by luminal A (Figure 3.6a). Thus, 

groups 1, 2, and 4 together re-divide the PAM50 luminal A and luminal B subtypes into three 

groups (Figure 3.6b). The discovery of multiple subtypes in luminal/ER+ groups has been reported 

in previous studies (Curtis et al., 2012; C. G. A. Network, 2012), which supports that a refinement 

of the luminal subtypes is necessary. In addition, we also found that most ILC (invasive lobular 

carcinoma) patients and IDC (invasive ductal carcinoma) + ILC patients were clustered in patient 

groups 1, 2 and 4 (55.8%, 17.0% and 16.3%, respectively for ILC; 42.2%, 27.8%, and 17.8% for 

IDC+ILC). This agrees with previous studies that ILC patients are mostly ER+ tumors classified 

as luminal A subtype (Ciriello et al., 2015). Group 3, the triple-negative group, is dominated by 

basal-like patients (Figure 3.6a), as basal-like tumors typically have negative ER, PR, and Her2 

(C. G. A. Network, 2012). Group 5, the Her2+ group, is enriched in Her2 patients as expected 

(Figure 3.6a). It is known that BRCA survival differs by subtype, and shortest survival is generally 

observed among Her2+ and basal-like subtypes (Carey et al., 2006); this agrees with our 

observations of patient groups 3 and 5 on the Kaplan-Meier plot (Figure 3.4b). No patient group 

is mainly composed of normal-like patients. The p-value of survival difference between the 

PAM50 subtypes is < 2x10-16. Therefore, both the PAM50 subtypes and our BRCA patient groups 

can efficiently divide BRCA patients into significantly different survival groups. 
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Figure 3.6. The comparison between BRCA patient groups and DEG patient groups with the PAM50 

subtypes. 

(a) and (c) show the composition of patient groups/DEG patient groups in respect of PAM50 subtypes. (b) and (d) 

show the composition of PAM50 subtypes in respect of patient/DEG patient groups. 



64 

Table 3.3. The overlap between BRCA patient groups and PAM50 classification. 

Group index # of 

Patients 

Luminal A Luminal B Her2 Basal Normal NC 

Patient group 1 503 58.60% 7.60% 2.80% 3.80% 26.40% 0.80% 

Patient group 2 604 52.80% 40.10% 3.60% 1.30% 2.00% 0.20% 

Patient group 3 342  4.40% 1.20% 9.90% 73.70% 10.80% 0.00% 

Patient group 4 297 24.20% 56.20% 12.10% 4.40% 2.70% 0.30% 

Patient group 5 235 7.70% 16.60% 56.20% 15.30% 4.30% 0.00% 

DEG patient group 1 209 24.9% 5.3% 22.0% 20.6% 27.3% 0.0% 

DEG patient group 2 380 70.5% 14.7% 4.7% 0.5% 8.9% 0.5% 

DEG patient group 3 369 10.3% 11.1% 20.3% 55.0% 3.3% 0.0% 

DEG patient group 4 625 27.7% 54.1% 9.8% 4.5% 3.7% 0.3% 

DEG patient group 5 398 47.2% 11.1% 9.5% 13.1% 18.6% 0.5% 

 

We compared our GBM patient groups with the four GBM subtypes established by TCGA, 

2010 (Verhaak et al., 2010) (Figure 3.7and Table 3.4). Group 1 is mainly composed of Classical 

patients (Figure 3.7a). Recall that group 1 has positive values in DEG module 7 (Figure 3.5c), 

where the most dominant SGA is EGFR. EGFR was found to be highly amplified in the classical 

subtype, which supports the correlation between this subtype and patient group 1 (Verhaak et al., 

2010). Groups 2 and 3 are both enriched in mesenchymal patients (Figure 3.7a). These two groups 

consist of patients with different age ranges and DEG module distributions (Figure 3.5c), which 

suggests intrinsic subgroups exist in mesenchymal patients. Group 5 is mainly composed of 

proneural patients, and nearly half of the patients in group 6 are also proneural (Figure 3.7a). No 

patient group we identified is strongly enriched in neural patients. The neural subtype has been 

considered as normal tissue contamination, thus it is not an intrinsic subtype of GBM (Q. Wang et 

al., 2017). The p-value of the log-rank test of GBM TCGA subtypes is 0.06, significantly higher 

than that achieved by our GBM patient groups (8.96x10-6), which indicates that our GBM patient 

groups are more survival indicative compared to the TCGA subtypes. 
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Figure 3.7. The comparison between GBM patient groups and DEG patient groups with the TCGA GBM 

subtypes. 

 (a) and (c) show the composition of patient groups/DEG patient groups in respect of TCGA GBM subtypes. (b) and 

(d) show the composition of TCGA GBM subtypes in respect of patient/DEG patient groups. 
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Table 3.4. The overlap between GBM patient groups and GBM TCGA subtypes. 

Group index # of 

Patients 

Proneural Neural Mesenchymal Classical 

Patient group 1 130 10.00% 18.50% 20.80% 50.80% 

Patient group 2 79 15.20% 12.70% 65.80% 6.30% 

Patient group 3 90 3.30% 11.10% 64.40% 21.10% 

Patient group 4 76 36.80% 35.50% 6.60% 21.10% 

Patient group 5 77 61.00% 6.50% 6.50% 26.00% 

Patient group 6 72 48.60% 15.30% 12.50% 23.60% 

DEG patient group 1 105 29.5% 32.4% 9.5% 28.6% 

DEG patient group 2 99 17.2% 15.2% 56.6% 11.0% 

DEG patient group 3 89 7.9% 11.2% 64.0% 16.9% 

DEG patient group 4 68 8.8% 11.8% 26.5% 52.9% 

DEG patient group 5 78 12.8% 15.4% 23.1% 48.7% 

DEG patient group 6 85 69.4% 9.4% 5.9% 15.3% 

 

To examine the power of genetic features alone in predicting patient survival outcome, a 

second PAM consensus clustering of patients was completed using only the DEG modules as 

features. This also gave rise to a division of BRCA data into 5 patient groups, and a division of 

GBM data into 6 patient groups (Figure 3.4d and Figure 3.5d. Supplementary Table S3.7 and Table 

S3.8). For simplicity, from now on we will refer to these patient groups as the DEG patient groups. 

Although the survival curves of these DEG patient groups are relatively similar to each other and 

regress to the average survival, they are still significantly different (log-rank test p-value 8.60e-12 

and 9.75e-03 for BRCA and GBM, respectively, Figure 3.4e and Figure 3.5e). The correlations 

between all features and DEG patient groups are less obvious (Figure 3.4f and Figure 3.5f), but 

two BRCA groups (1 and 3) preserve the patterns as having most patients as ER- and PR-, even 

though ER and PR status were excluded from DEG patient group identification. DEG patient group 

3, the most comparable group to the original triple-negative group (patient group 3), is also the 

group that has the worst survival curve (Figure 3.4e). For GBM, DEG patient group 1, having a 

similar distribution in DEG modules, especially in DEG modules 1-5, as the original patient group 
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4, is also the one that has the best overall survival time (Figure 3.5f). Comparisons of the DEG 

patient groups with known subtypes (PAM50 for BRCA and TCGA subtypes for GBM) were also 

carried out and shown in Figure 3.6, Figure 3.7. Table 3.3, and Table 3.4. 

Even though the DEG patient groups were obtained without including any clinical feature 

that was involved in defining the subtypes, the correlation between DEG patient groups and 

subtypes still exists. For example, BRCA DEG patient groups 2, 3, and 4 have a single dominant 

PAM50 subtype, where group 3 is enriched in Basal subtype patients as expected (Figure 3.6 c 

and d). GBM DEG patient groups 2, 3, 4, and 6 have a single dominant TCGA subtype, where the 

mesenchymal subtype is again divided into two subgroups (Figure 3.7 c and d). All these suggest 

that DEG modules alone can identify patient subgroups of distinct genetic aberration patterns with 

significantly different survival outcomes. 

3.3.4  Cox Regression models 

In order to evaluate the contribution of each feature towards survival estimation, we trained 

a Cox regression model using all features as covariates for all patients as a whole and for each 

patient group separately (Table 3.5). To compare clinical features and DEG modules, we also 

trained a Cox regression model using only clinical features and only DEG modules for all patients 

and for each DEG patient group (Table 3.6). 

For BRCA, the all-patients model that received the highest concordance index (C-index) 

is the model trained using all covariates. Its C-index, 0.724, is higher than previously reported Cox 

regression models trained using only clinical and subtype information (0.67) (Parker et al., 2009). 

For the patient-group-specific models, each patient group has a different combination of clinical 

features as significant (Wald-test p-value <0.05). The DEG modules that are generally significant 
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across all-patient and DEG patient groups are modules 1, 2 and 5. Modules 1 and 2 are positively 

correlated with the hazard rate, and module 5 is negatively correlated with the hazard rate. These 

partially explain the survival curves we observed above. With high value in module 2, patient 

group 4 has a much lower survival fraction compared to patient group 2, even though their other 

DEG modules are comparable. The lower average value in module 2 also resulted in a better 

survival outcome of DEG patient groups 2, 5 and 1. Note that the dominant SGAs of module 2 are 

PTEN and PIK3CA; a high value in this module represents activation of the PI3K/Akt signalling 

pathway that is known to be related to ILC (Ciriello et al., 2015).  
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Table 3.5. The Cox regression models trained for BRCA and GBM for all patients and for each specific 

patient group, with different combinations of covariates. 

 BRCA  GBM  

Cox regression model 

Significant covariates 

(coefficient) C-index 

Significant covariates 

(coefficient) C-index 

All patients-all covariates ER status (-0.118) 0.724 age at diagnosis (0.486)  0.665 

 Her2 status (0.122)  module 1 (-0.496)  

 age at diagnosis (0.196)  module 4 (0.374)  

 tumour histology type (-0.226)   module 11 (0.738)  

 lymph node assessment (0.264)    

 size of tumour (0.169)     

 module 2 (0.201)    

 module 5 (-0.205)    

Patient group 1-all 

covariates tumour histology type (-0.504) 0.665 age at diagnosis (0.475) 0.684 

 lymph node assessment (0.687)   module 7 (-0.479)  

 module 2 (0.450)  module 11 (1.816)  

Patient group 2-all 

covariates Her2 status (0.335) 0.701 age at diagnosis (0.496)  0.688 

 age at diagnosis (0.473)  module 2 (0.689)  

 lymph node assessment (0.179)   module 12 (1.400)  

 size of tumour (0.455)     

 module 1 (0.408)    

 module 2 (0.270)    

 module 5 (-0.497)    

Patient group 3-all 

covariates tumour histology type (-0.605)  0.680 age at diagnosis (0.620)  0.624 

 lymph node assessment (0.354)     

Patient group 4-all 

covariates ER status (-0.508) 0.717 module 4 (1.079) 0.707 

 PR status (-0.354)  module 8 (1.796)  

 age at diagnosis (0.311)  module 9 (-1.066)  

 lymph node assessment (0.368)     

 size of tumour (0.118)     

 module 2 (0.378)    

Patient group 5-all 

covariates lymph node assessment (0.226)  0.680 age at diagnosis (0.384)  0.759 

 size of tumour (0.248)   module 1 (-1.840)  

   module 2 (-1.144)  

   module 3 (1.862)  

   module 5 (-1.609)  

   module 6 (-1.711)  

   module 11 (2.743)  

   module 12 (1.343)  

Patient group 6-all 

covariates NA  age at diagnosis (0.789)  0.720 

   module 1 (-1.196)  

   module 5 (1.355)  

   module 11 (1.666)  
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Table 3.6. The Cox regression models trained for BRCA and GBM with different combinations of covariates. 

 BRCA  GBM  

Cox regression model Significant covariates (coefficient) C-index Significant covariates (coefficient) C-index 

All patients-clinical features ER status (-0.141) 0.711 age at diagnosis (0.465)  0.646 

 Her2 status (0.124)    

 PR status (-0.110)    

 age at diagnosis (0.193)    

 grade of disease (0.122)    

 tumor histology type (-0.230)     

 lymph node assessment (0.261)     

  size of tumor (0.185)        

All patients-DEG modules module 1 (0.276) 0.635 module 1 (-0.381) 0.593 

 module 2 (0.316)  module 4 (0.339)  

 module 5 (-0.421)  module 9 (-0.401)  

   module 11 (0.566)  

      module 13 (-0.302)   

DEG patient group 1-all covariates lymph node assessment (0.420) 0.788 age at diagnosis (0.460)  0.706 

 size of tumor (0.244)  module 8 (1.440)  

      module 9 (-0.755)   

DEG patient group 2-all covariates PR status (-0.413) 0.765 age at diagnosis (0.722)  0.705 

 age at diagnosis (0.626)  module 11 (1.767)  

 lymph node assessment (0.465)  module 12 (0.197)  

  size of tumor (0.170)       

DEG patient group 3-all covariates tumor histology type (-0.654)  0.683 module 15 (-0.608) 0.608 

 lymph node assessment (0.319)     

  module 1 (0.409)       

DEG patient group 4-all covariates PR status (-0.148) 0.663 age at diagnosis (0.885)  0.736 

 age at diagnosis (0.206)  module 4 (-2.084)  

 lymph node assessment (0.181)   module 8 (2.983)  

  size of tumor (0.133)    module 11 (2.336)   
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Table 3.6 continued 

 BRCA  GBM  

Cox regression model 

Significant covariates 

(coefficient) 

C-

index 

Significant covariates 

(coefficient) 

C-

index 

DEG patient group 5-all covariates ER status (-0.494) 0.766 age at diagnosis (0.851)  0.712 

 age at diagnosis (0.281)  module 2 (-1.127)  

 lymph node assessment (0.634)   module 4 (1.429)  

 size of tumor (0.204)   module 5 (1.164)  

  module 2 (0.392)       

DEG patient group 6-all covariates NA  age at diagnosis (0.453)  0.715 

   module 1 (-0.972)  

      module 11 (2.038)   

DEG patient group 1-clinical features Her2 status (0.245) 0.762 None 0.652 

 lymph node assessment (0.414)    

  size of tumor (0.252)       

DEG patient group 2-clinical features PR status (-0.356) 0.756 age at diagnosis (0.583)  0.655 

 age at diagnosis (0.693)    

  lymph node assessment (0.430)        

DEG patient group 3-clinical features tumor histology type (-0.662)  0.688 None 0.574 

 lymph node assessment (0.310)     

  size of tumor (0.103)        

DEG patient group 4-clinical features Her2 status (0.134) 0.649 age at diagnosis (0.405)  0.635 

 PR status (-0.148)    

 age at diagnosis (0.186)    

 lymph node assessment (0.166)     

  size of tumor (0.140)        

DEG patient group 5-clinical features ER status (-0.418) 0.749 age at diagnosis (0.559)  0.676 

 age at diagnosis (0.259)    

 lymph node assessment (0.567)     

  size of tumor (0.271)       

DEG patient group 6-clinical features NA   age at diagnosis (0.410)  0.648 
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Table 3.6 continued 

 BRCA  GBM  

Cox regression model Significant covariates (coefficient) C-index Significant covariates (coefficient) C-index 

DEG patient group 1-DEG modules module 4 (-0.989) 0.660 module 8 (1.276) 0.652 

  module 5 (-0.890)   module 9 (-0.804)   

DEG patient group 2-DEG modules None 0.617 module 11 (1.390) 0.651 

DEG patient group 3-DEG modules module 1 (0.481) 0.579 module 15 (-0.575) 0.601 

DEG patient group 4-DEG modules module 2 (0.206) 0.596 module 9 (-1.454) 0.693 

  module 5(-0.336)   module 11 (1.954)   

DEG patient group 5-DEG modules module 2 (0.588) 0.640 module 5 (1.001) 0.626 

DEG patient group 6-DEG modules NA   module 11 (2.150) 0.700 

 

Unlike BRCA, where clinical features dominate survival estimation, most GBM Cox 

regression models contain several DEG modules as significant covariates. The most common 

significant DEG module across patient groups and DEG patient groups is module 11, with its 

dominant SGA EGFR. EGFR has been used as the primary marker in distinguishing between GBM 

patients and it was found to interact with multiple signaling pathways in GBM (Mischel et al., 

2003). In addition to module 11, the set of significant DEG modules are mostly mutually exclusive 

across patient groups. In other words, even though GBM patients generally share similarly 

undesirable survival outcomes, their survival rates can be explained by different combinations of 

genetic features. This suggests that each of them took a different disease mechanism in their tumor 

developments. For example, module 7, the smallest DEG module with dominant SGA EGFR and 

TP53, has a high diversity across patients. This module represents the result of the communications 

between the Glioma pathways (KEGG map05214), which are known to explain the disease 

mechanism for both primary and secondary GBM (Mao, LeBrun, Yang, Zhu, & Li, 2012).  In 

addition, the C-index of GBM Cox regression models is higher in the patient-group-specific model 
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than in the overall model, which also supports the idea that different patient groups underwent 

different disease development procedures that should not be mixed. Three patient groups, 4, 5 and 

6 (together containing 225 patients), have a C-index over 0.7, which is higher than a previously 

reported Cox regression model trained on a subset of TCGA GBM patients using clinical and 

imaging features (0.69) (Mazurowski, Desjardins, & Malof, 2013). 

3.4 Discussion 

In this preliminary work, we designed and evaluated a graph-based computational 

framework, which utilizes the causal inferences between SGAs and DEGs for constructing 

expression and signaling state representations, in the form of DEG modules. The DEG modules 

reflect the major transcriptomic programs that are perturbed in a cancer type and are informative 

towards clinical outcome predictions. Indeed, we have shown that different combinations of DEG 

modules divided BRCA and GBM patients into subgroups that exhibit significantly different 

survival patterns. Since the identification of DEG modules was driven by estimates of causal 

relationships between SGA and DEG events, our approach provides underlying mechanistic 

information for each cancer subgroup, and such information can potentially be used to guide future 

targeted therapy in a pathway-oriented fashion. This differentiates our method from previous 

approaches of using gene expression data to discover cancer subtypes. 

We used the spectral clustering algorithm to identify DEG modules from the DEG 

networks. The major advantage of using spectral clustering algorithm compared to other clustering 

methods is that spectral clustering identifies modules with high data connectivity but not 

necessarily with high data compactness (Braun, Leibon, Pauls, & Rockmore, 2011; Von Luxburg, 
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2007). In our case, since the DEG networks were constructed based on co-regulations between 

DEGs, we emphasized more on identifying modules that connect sequences of DEGs (high 

connectivity) rather than modules with a high direct correlation between any pair of DEGs (high 

compactness). Sequences of DEGs may each represent a cascade of aberrant signaling resulting 

from upstream perturbed genes. Two DEGs that are indirectly connected through a subsequence 

of other genes are very likely controlled by the same regulatory network, thus are functional related. 

In addition, our DEG networks are relatively dense (766,444 edges for BRCA, 1,567,144 edges 

for GBM), where classical hierarchical clustering or k-means would fail to identify robust modules 

(Figure 3.3 visualizes the consensus matrices of hierarchical clustering). Spectral clustering, on 

the other hand, can still find stable and consistent modules across different independent random 

initializations as we have shown above. 

For general clustering or communication detection algorithms, features with the highest 

diversity across data are often given a higher priority to be used to cut between observations, which 

maximizes both the distance between observations of different resulting clusters and similarity 

between observations in the same cluster. For gene expression data, tissue-specific genes are often 

more diverse across samples than other globally expressed genes. Consequently, using solely gene 

expression data or genetic signatures like PAM50 for discovering cancer subtypes often leads to a 

division of subtypes based on cell-of-origin. The approach we adopted to identify patient groups 

with a combination of clinical features and DEG modules, however, does not suffer from this 

problem. For example, none of the BRCA patient groups or DEG patient groups is overwhelmingly 

dominated by a single PAM50 subtype that is related to a cell type. The division of ILC and 

IDC+ILC in patient groups 1, 2, and 4 also supports that our patient groups are not simply tissue-

specific divisions. Nonetheless, our patient grouping results are not simply random. Each patient 
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group presents a distinct pattern of DEG modules, where the modules reflect the status of the 

signaling pathway perturbations that drives tumorigenesis. The patient groups also present distinct 

survival outcomes. For GBM, in particular, our patient groups are even more survival correlated 

compared to the TCGA subtypes. All these suggest that our approach is robust to tissue-specific-

expressions and can identify subtypes that are disease mechanism and prognostic indicative. 

In BRCA, clinical features seem to be more informative towards survival than DEG 

modules when doing patient grouping and Cox regression. One of the reasons is that certain clinical 

features are in fact molecular features, including the ER, Her2, and PR status, which are not 

independent of the DEG modules. For example, the Her2 expression status is correlated with the 

expression status of the DEG module driven by dominant SGAs ERBB2 and TP53. As a result, the 

corresponding DEG modules became less significant in the Cox regression due to the redundant 

information they provide. The decrease in C-index when DEG modules were excluded (Table 3.6), 

and the irreplaceable role that DEG modules play in GBM survival estimation, however, support 

that these DEG module features preserved independent pathway-oriented information that clinical 

features did not capture.  

DEG modules were discovered by constructing a DEG graph from the SGA-DEG causal 

inferences and simply represented as the average expression value of all genes in the module. In 

order to learn more comprehensive and interpretable cellular state representations from genomic 

data, in the next chapter, we switch to more advanced models for representation learning, the deep 

generative models. 
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4.0 Chapter 2: learning to encode cellular responses to systematic perturbations with deep 

generative models 

4.1 Introduction 

A cellular signaling system is a network-based signal processing machine that detects 

changes in the internal or external environment, encodes these changes as cellular signals, and 

eventually transmits these signals to effectors to adjusts cellular responses. Such cellular responses 

often lead to changes in transcriptomic programs (Azeloglu & Iyengar, 2015; Radhakrishnan, 

Halász, Vlachos, & Edwards, 2010; Weng, Bhalla, & Iyengar, 1999). The transcriptomic changes 

can be utilized in turn to investigate the cellular signaling system, which is an important task in 

system biology. A common approach is to systematically perturb a cellular system with genetic or 

pharmacological perturbagens and monitor transcriptomic changes in order to reverse engineer the 

system and gain insights into how cellular signals are encoded and transmitted. This approach has 

been employed in many large-scale systems biology studies, e.g., the yeast deletion library 

(Giaever & Nislow, 2014), the Connectivity Map project (Lamb, 2007; Lamb et al., 2006), and 

most recently, the Library of Integrated Network-based Cellular Signatures (LINCS) (Keenan et 

al., 2018; Subramanian et al., 2017). 

Among these system studies, the LINCS project is arguably the most comprehensive 

systematic perturbation dataset currently available, in which multiple cell lines were treated with 

over tens of thousands of perturbagens (e.g., small molecules or single gene knockdowns), 

followed by monitoring gene expression profiles using a new technology known as the L1000 

assay (Subramanian et al., 2017). Previous studies involving LINCS mainly used the L1000 data 
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to investigate the mechanism-of-action (MOA) of drugs and to promote clinical translation of 

MOA information (Donner, Kazmierczak, & Fortney, 2018; Iwata et al., 2017; Lamb et al., 2006; 

Pabon et al., 2018; Siavelis et al., 2015; Subramanian et al., 2017; Z. Wang et al., 2016; Woo et 

al., 2019). Few studies, however, utilized the data to model the cellular signaling system as a 

network-based information processor. 

Modeling the signaling system as an information processing network would enable 

examining in detail the paths that different perturbagens take to regulate or disturb cellular 

activities. To see this, when signaling components at different levels of a signaling cascade are 

perturbed, the resulting expression data would present compositional statistical structures that can 

be hard to reverse-engineer. For instance, perturbing an upstream signaling molecule will likely 

subsume the effect of perturbing its downstream molecules. Capturing such a compositional 

statistical structure requires advanced graphical models that are capable of representing 

hierarchical relationships among signaling components (Figure 4.1), which were rarely explored 

in previous studies.  
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Figure 4.1. Modeling cellular signaling system with graphical model. 

 

In this chapter, we present the deep generative models (DGMs) we developed to understand 

how perturbagens affect the cellular signaling system and lead to changes in the gene expression 

profile. 

DGMs are a family of deep learning models that employ a set of hierarchically organized 

latent variables to learn the joint distribution of a set of observed variables. After training, DGMs 

are capable of generating simulated data that preserve the same compositional statistical structure 

as the training data. The hierarchical organization of latent variables in DGMs is naturally suitable 

for representing cellular signaling cascades and detecting compositional statistical patterns derived 

from perturbing different components of the cellular system. The capability to “generate” samples 

similar to the training data is also of particular interest in that if a model can accurately regenerate 

transcriptomic data produced under different perturbations, the model should have learned a 

comprehensive representation of the cellular signaling system. Such representations would shed 

light on the MOAs through which perturbagens impact different cellular processes.  
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In this chapter, we investigate the utility of two DGMs, the variational autoencoder (VAE) 

(Figure 4.2a) (Hinton & Salakhutdinov, 2006; Kingma & Welling, 2014; Rezende et al., 2014) and 

a new model designed by us, the supervised vector-quantized variational autoencoder (S-VQ-VAE) 

(Figure 4.2b), in modeling the cellular signaling system using the L1000 data. We show that the 

VAEs can reconstruct the distribution of the L1000 data accurately and generate new data that are 

indistinguishable from the real data. We demonstrate that by adding a supervised learning 

component to vector-quantized VAE (VQ-VAE) (Aaron Van Den Oord & Vinyals, 2017), we can 

summarize the common features of a family of drugs into a single embedding vector and use these 

vectors to reveal relationships between different families of drugs. Latent representations learned 

by VAEs for samples perturbed by different types of perturbagen can also enhance the drug-gene 

target prediction compared to using conventional supervised models. To our knowledge, this is the 

first study that systematically investigates the power of DGMs for learning how cellular signals 

are processed in response to perturbations, and our findings support the use of deep generative 

models as a powerful tool in modeling cell signaling systems. 

 



80 

 

Figure 4.2. The VAE model and S-VQ-VAE model. 

(a) The architecture of VAE. The encoder and decoder are two sub-neural networks. An input case is transformed 

into a mean vector 𝝁(𝒙) and a covariance vector 𝜮(𝒙) by the encoder, from which the encoding vector 𝒛𝒒(𝒙) is 

sampled and fed to the decoder to reconstruct the input case. The distribution of the encoding vector is trained to 

follow a prior standard normal distribution. (b) The architecture of S-VA-VAE. S-VQ-VAE is an extension of VQ-

VAE where the training of the embedding space is guided by the label of the input data. Similar to VAE, an input 

case is first transformed into an encoding vector 𝒛𝒆(𝒙) by the encoder. During training, the encoding vector is 

replaced by the embedding vector 𝒆𝒚 designated to represent the label y of data to reconstruct the input case. The 

embedding vector is updated according to the reconstruction error. During testing, the encoding vector is replaced 

by the nearest neighbor embedding vector 𝒆𝒌.  
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4.2 Methods 

4.2.1  Data 

We constructed several datasets for training our DGMs, consisting of different 

combinations of samples treated with two major types of perturbagens, the small molecule 

perturbagen (SMP) and the genetic perturbagen (GP). The SMP dataset was extracted from the 

Gene Expression Omnibus (GEO) dataset GSE70138 (Subramanian, 2015), which contains the 

level 5 L1000 expression data (moderate z-scores) of the 978 landmark genes of 85,183 samples 

from seven major cell lines treated with small molecules (Table 4.1). The GP dataset was from the 

GEO dataset GSE106127 (Subramanian, 2017), which contains the level 5 data of 116,782 

samples from nine major cell lines with gene knockdowns (Table 4.1). A cell line is considered as 

a major cell line if the cell line had over 10,000 samples. 

We performed principal component analysis (PCA) on the two datasets, and the 

distributions of samples in the first two principal components are shown in Figure 4.3. By 

comparing the scatter plot of the SMP dataset with its density contour (Figure 4.3), we can see that 

the group of samples on the right of the scatter plot is an outlier group with a high variance but 

low density. This group contains 4,649 samples treated with two proteasome inhibitors, 

bortezomib, and MG-132. Therefore, in the third dataset, the SMGP dataset that merges the SMP 

dataset with the GP dataset, these outlier samples are excluded. The removal of outliers results in 

comparable distributions between SMP samples and GP samples (Figure 4.3), which enables the 

use of the SMGP dataset for training a VAE model to reveal connections between small molecules 

and knocked down genes. 
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Table 4.1. LINCS datasets and major cell lines. 

GEO ID Dataset content # of sample # of 

perturbagen 

# of 

drug/gene 

name 

# of 

perturbagen 

class (PCL) 

# of cell 

line 

Major cell 

line name 

Major cell line 

type 

# of sample 

in cell line 

GSE70138 LINCS phase II L1000 

dataset, mainly small 

molecular perturbation 

118050 2170 1826 991 

perturbagens in 

171 classes 

41 

MCF7 

breast 

adenocarcinoma 13476 

A375 

malignant 

melanoma 12740 

PC3 

prostate 

adenocarcinoma 12719 

HT29 

colorectal 

carcinoma 12529 

HA1E normal kidney 12481 

YAPC 

pancreatic 

carcinoma 10621 

HELA 

large intestine 

adenocarcinoma 10617 

GSE106127 LINCS L1000 RNAi and 

CRISPR dataset. 

Corresponds to genetic 

perturbational signatures of 

shRNAs and CRISPR 

reagents, that exist in GEO 

series GSE70138 and 

GSE92742. 

119013 18413 4320 NA 15 

VCAP 

prostate 

carcinoma 17098 

A375 

malignant 

melanoma 13121 

PC3 

prostate 

adenocarcinoma 13061 

HA1E normal kidney 12957 

A549 

non-small cell 

lung cancer 12691 

HT29 

colorectal 

carcinoma 12305 

HCC515 lung cancer 11985 

MCF7 

breast 

adenocarcinoma 11869 

HEPG2 

hepatocellular 

carcinoma 11695 

*A major cell line is a cell line that has over 10,000 samples. 
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Figure 4.3. PCA two components scatter plots and density contour plots of three input datasets. 

(a and b) Scatter plot and density contour of the SMP dataset. The outlier group on the right of the scatter plot is 

composed of 4,649 samples treated with bortezomib and MG-132. Both these SMPs are proteasome inhibitors. (c 

and d) The scatter plot and density contour of the GP dataset. (e and f) The scatter plot and density contour of a 

combination of the SMP and GP datasets (the SMGP dataset), excluding the outlier group of proteasome inhibitors. 

 



84 

We extracted a subset from the SMP dataset, which contains 12,079 samples treated with 

204 small molecules from 75 perturbagen classes (PCLs) defined by the LINCS project 

(Subramanian et al., 2017). We call this subset the SMP with Class information (SMC) dataset. 

The PCL information was extracted from the Supplementary Table S7 of the L1000 paper 

(Subramanian et al., 2017). The SMC dataset was used to train Logistic Regression (LR) and 

Support Vector Machine (SVM) models for predicting PCLs of samples based on cellular 

representations learned from VAEs. 

We also extracted a subset from the SMC dataset to learn PCL representations with S-VQ-

VAE. We call this dataset as SMCNP dataset, where we excluded the samples treated with the 

proteasome inhibitor MG-132 (bortezomib was not given a PCL label, and thus had been excluded 

from the SMC dataset). This subset contained 9,769 samples treated with small molecules from 75 

PCLs. 

4.2.2  S-VQ-VAE Model 

S-VQ-VAE is a new DGM designed in this study for learning a vector representation 

(embedding) for each PCL. The model was extended from the standard VQ-VAE (Aaron Van Den 

Oord & Vinyals, 2017) by adding a supervised mapping step to guide the training of the embedding 

space. Like VQ-VAE, a S-VQ-VAE is composed of three parts, an encoder neural network to 

generate the encoding vector 𝑧𝑒(𝑥) given an input vector 𝑥, an embedding space to look up the 

discrete representation 𝑧𝑞(𝑥) based on 𝑧𝑒(𝑥), and a decoder neural network to reconstruct the 

input data from 𝑧𝑞(𝑥) (Figure 4.2b). Suppose that the encoder encodes the input data to a vector 

of length 𝐷 , the embedding space 𝐸  is then defined as 𝐸 ∈ 𝑅𝑌×𝐷 , where 𝑌  is the number of 

different classes of the input data. In our case, 𝑌 corresponds to the number of PCLs. Each of the 
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𝑌 embedding vectors of dimension 𝐷 is designated to learn a global representation of one of the 

classes. In forward computation, an input 𝑥 is first converted to its encoding vector 𝑧𝑒(𝑥), which 

will be used to update the embedding space. In the training phase, 𝑧𝑒(𝑥) is replaced with 𝑧𝑞(𝑥) =

𝑒𝑦 to pass to the decoder, where 𝑒𝑦 is the embedding vectors of the class 𝑦 of 𝑥. In the testing 

phase, 𝑧𝑒(𝑥) is replaced by its nearest code 𝑧𝑞(𝑥) = 𝑒𝑘 with 

𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗‖𝑧𝑒(𝑥) − 𝑒𝑗‖                                                  (4.1) 

Note that we are not assuming a uniform distribution of the embedding vectors as in the ordinary 

VQ-VAE (Aaron Van Den Oord & Vinyals, 2017). Instead, the distribution of codes is determined 

by the input data with its discrete class labeling governing by a multinomial distribution. 

In order to design a model that can learn individual representations through data 

reconstruction as well as learn a global representation for each class in a supervised manner, the 

objective function of S-VQ-VAE contains a reconstruction loss to optimize the encoder and 

decoder (first term in equation (4.2)), and a dictionary learning loss to update the embedding space 

(second term in equation (4.2)). The form of reconstruction loss can be selected based on the data 

type, and here we used the mean square error (MSE). Following the training protocol of standard 

VQ-VAE (Aaron Van Den Oord & Vinyals, 2017), we chose VQ as the dictionary learning 

algorithm, which computes the 𝑙2 error between 𝑧𝑒(𝑥) and 𝑒𝑦 thus updating the embedding vector 

towards the encoding vector of an input case of class 𝑦. To control the volume of the embedding 

space, we also added a commitment loss between 𝑧𝑒(𝑥) and 𝑒𝑦 to force the individual encoding 

vector towards the corresponding global embedding vector (third term in equation (4.2)). 

𝐿 =  𝑙𝑟 (𝑥, 𝑑(𝑒𝑦)) + ‖𝑠𝑔[𝑧𝑒(𝑥)] − 𝑒𝑦‖2

2
 + 𝛽‖𝑧𝑒(𝑥) − 𝑠𝑔[𝑒𝑦]‖2

2
 – 𝐼(𝑘 ≠ 𝑦)(‖𝑠𝑔[𝑧𝑒(𝑥)] −

𝑒𝑘‖2
2  + 𝛾‖𝑧𝑒(𝑥) − 𝑠𝑔[𝑒𝑘]‖2

2)                                                                                            (4.2) 
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In addition to making the encoding vectors and the embedding vectors converge, we added 

two additional terms to force the encoding vector of an input data to deviate from the nearest 

embedding vector 𝑒𝑘 if 𝑘 ≠ 𝑦 (i.e., to minimize misclassification with nearest neighbor). As given 

in equation (2), the fourth term is another VQ objective which updates the embedding vector of 

the mis-class. The final term, called the divergence loss, expands the volume of the embedding 

space to allow different classes to diverge from each other. 

Coefficients are applied to the commitment loss (𝛽) and divergence loss (𝛾) to control the 

strength of regularization over the embedding space volume. According to preliminary 

experiments using coefficients from [0, 1], the performance of the model is quite robust to these 

coefficients. For generating the results presented in this chapter, we used 𝛽 = 0.25, and 𝛾 = 0.1. 

Note that the mapping step with either the class label or nearest neighbor has no gradient defined 

for it. As in training VQ-VAE, we approximate the gradient in a manner similar to the straight-

through estimator (Bengio, Léonard, & Courville, 2013), by passing the gradient from the 

reconstruction loss from 𝑧𝑞(𝑥) directly to 𝑧𝑒(𝑥). 

As a generative model, S-VQ-VAE can also be used to generate new data from the 

distribution of the training data. The data generation process is composed of two steps, similar to 

the ancestral sampling method. First, sample a target class 𝑦 from the distribution of classes of the 

input data. Second, sample an encoding vector 𝑧~𝑁(𝑒𝑦, 𝜎
2), where 𝜎2 is the covariance matrix of 

hidden variables estimated from the training data of class 𝑦. A new sample of class 𝑦 can then be 

generated by passing 𝑧 to the decoder of S-VQ-VAE. The generation process reflects another 

advantage of S-VQ-VAE compared to unsupervised GMs: we can determine what type of content 

the new data should present rather than interpret it afterward. 
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In this chapter, we only utilized the global representation learning function of S-VQ-VAE. 

The test phase and the new data generation function of S-VQ-VAE were not examined here. To 

see how S-VQ-VAE can be used as a general generative model, please refer to our tutorial of S-

VQ-VAE at https://github.com/evasnow1992/S-VQ-VAE, where we provide an example applying 

S-VQ-VAE on a benchmark machine learning dataset, the MNIST handwritten digits data (LeCun, 

Cortes, & Burges, 1998). 

4.2.3  Model Architecture and Training Setting 

The VAE model we implemented has three hidden layers in its encoder and three hidden 

layers in its decoder; the third hidden layer of the encoder is shared by both the encoder and 

decoder parts via a sampling step (Figure 4.4) and is also called the top hidden layer. The structure 

of the encoder is 978-1000-1000-100, where it has 978 nodes in the input layer, each corresponding 

to a landmark gene in the LINCS data, 1000 nodes in the first and second hidden layers, and 100 

nodes in the third hidden layer (Figure 4.4). The structure of the decoder is just the reverse of the 

encoder. We only included the 978 landmark genes as input data to avoid redundant information 

from the inferred expression levels of other genes. The number of hidden layers and the number 

of nodes on each layer were determined based on preliminary experiments with a wide range of 

model architectures. Specifically, we tried architectures from 978-500-15 to 978-2000-1000-200 

to select a model with as a simple structure as possible and with a low training error. Based on our 

previous experience, a three hidden layer model with 1000-1500 nodes on the first hidden layer, 

~1000 nodes on the second hidden layer, and small bottleneck on the third hidden layer usually 

performs the best (Chen, Cai, Chen, & Lu, 2016; M. Q. Ding et al., 2018). The model achieved 

the best overall performance in this study has a structure of 978-1000-1000-100. 

https://github.com/evasnow1992/S-VQ-VAE
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Figure 4.4. The architecture of VAE. 

The encoder is composed of three hidden layers, where the third hidden layer defines the distribution from which the 

encoding vector 𝑧𝑖 is sampled. The reparameterization trick is applied to generate a differentiable estimate of 𝑧𝑖, 

which allows gradient descent to be used for training the model. The decoder has a reversed architecture as the 

encoder. 

 

We use a standard normal distribution, 𝑁(0, 1), as the prior distribution of the top hidden 

layer variables 𝑝(𝑧) of VAE. The input data of our models are the L1000 level 5 gene expression 

data of range [-10, +10]. In order to preserve the sign information of the input data, where a positive 

value indicates high-expression of a gene and a negative value indicates low-expression of a gene, 
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we use the tangent function as the activation function for all hidden layers. Note that the tangent 

function will map a real number to [-1, +1], while our input data are of range [-10, +10].  To 

reconstruct the input data, the outputs of the last layer of the decoder are rescaled to [-10, +10] 

before computing the reconstruction loss (Figure 4.4). 

The loss/target function for training a general VAE is 

𝐿 =  𝑙𝑟(𝑥, 𝑑(𝑧𝑒(𝑥))) + 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧))                               (4.3) 

where the first term is the reconstruction loss and the second term is the KL-distance between the 

posterior distribution of the top hidden variables 𝑞(𝑧|𝑥)  given the input data and the prior 

variational distribution 𝑝(𝑧). We use the MSE as the reconstruction loss. 

We trained three VAE models using the SMP, GP, and SMGP datasets independently. Each 

model was trained on 9/10 (random split) of the data and validated on the other 1/10 data. All 

models were trained for 300 epochs, with batch size 512 and learning rate 1e-3 (Table 4.2). To 

generate a new sample, we first sampled from the multi-variate 𝑁(0, 1) distribution to get an 

encoding vector, then passed the vector through the decoder of the VAE to get a new data instance. 

 

Table 4.2. The data reconstruction performance of VAE models and S-VQ-VAE model on training data and 

validation data. 

Model type Train data Training loss Validation loss 

VAE SMP 1.081 1.113 

VAE GP 0.861 0.864 

VAE SMGP 0.995 1.002 

S-VQ-VAE SMCNP 1.725 1.831 

*The models were trained on 9/10 of the data and validated on the other 1/10 of the data. The reported losses are MSE 

between the reconstructed data and the input data. 

 

The S-VQ-VAE model we implemented has a single hidden layer of 1,000 nodes in its 

encoder. The decoder has the reversed architecture of the encoder. As in VAE, we also use the 
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tangent activation function for S-VQ-VAE and rescale the data from [-1, 1] to [-10, 10] before 

computing the reconstruction loss. The number of hidden layers and hidden nodes were selected 

based on preliminary experiments with architectures from one to two hidden layers and 200 to 

1500 hidden nodes in each layer. The embedding space contains 75 codes, one for each PCL. The 

model was trained on 9/10 (random split) of the SMCNP dataset for 900 epochs, with batch size 

256, and learning rate 1e-4. The model was validated on the other 1/10 data (Table 4.2). 

4.2.4  Mixing Score of Binary-categorical Data 

To quantize the mixing level of the two types of data (real expression profiles vs. generated 

expression profiles in our case), we defined a mixing score for a k-clustering result of binary-

categorical data as follows. Suppose the total number of data to be clustered is 𝑁. For a cluster 𝑖, 

the number of data in this cluster of one category is denoted as 𝑝𝑖, and the number of data of the 

other category is denoted as 𝑞𝑖. Then the mixing score for a k-clustering result is defined as  

𝑀𝑆𝑘 =
∑ max (𝑝𝑖,𝑞𝑖)

𝑘
𝑖=1

𝑁
                                                        (4.4) 

This score equals the average proportions of data from the category that dominates each cluster. 

The mixing score is of range [0.5, 1], where 0.5 indicates the two categories on average mixing 

evenly in the 𝑘 clusters, and 1 indicates the two categories are cleanly separated among the 𝑘 

clusters. The mixing score, by definition, tends to increase with the number of clusters 𝑘 used to 

stratify the data. 
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4.2.5  PCL Prediction 

Seven different types of sample representations were evaluated as predictors for predicting 

the PCL label of the small molecule that treated each SMC sample via LR, random forest, naïve 

Bayes classifier, and SVM. We only report the results of LR and SVM below as these two models 

consistently outperformed the others, where LR achieved the best validation performance while 

SVM was significantly more tolerant of overfitting. The seven representations included the raw 

expression profile, the latent representations from three encoder layers of the SMGP-trained VAE, 

the 12 signature nodes values, and the latent representations from two decoder layers of the SMGP-

trained VAE (the top hidden layer of the encoder is shared with the decoder, thus there are only 

two independent decoder layers). The latent representation of a layer of a sample was obtained by 

feeding the expression profile of the sample to a trained VAE and extracting the values of hidden 

nodes on the desired layer. 

The prediction accuracy reported in this study was obtained by doing 10-fold cross-

validation across SMC data. Specifically, the SMC data were randomly split into 10 subsets. In 

each iteration, an independent model was trained on 9 of the subsets and validated on the 10th 

subset. The reported accuracy is the average validation accuracies over the 10 models. 

4.2.6  Drug-Target Identification 

We extracted drug-target relationships from the ChEMBL database (Gaulton et al., 2011) 

referring to Table 1 of Pabon et al. (Pabon et al., 2018), which included 16 drugs tested in all the 

seven major cell lines in the SMP dataset. Here we considered different LINCS drug IDs with the 

same drug name as the same perturbagen.  
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For predicting the gene targets for each drug, we first extracted samples treated with the 

drug from the SMP dataset. Then for each sample, we computed the Pearson correlations between 

the representation of the sample and the corresponding representations of all 116,782 samples from 

the GP dataset. The genes knocked down in the GP samples were ranked according to the Pearson 

correlations, and the rank of the top known target gene was recorded. Finally, the best (lowest) top 

rank and mean top rank across all samples treated with the same drug were computed and used to 

compare different types of representations. Similar to the PCL classification task, seven types of 

sample representations were compared based on the top rank and mean rank. 

4.2.7  Program Language, Packages, and Softwares 

VAE and S-VQ-VAE models were implemented in Python2.7 using the library PyTorch 

0.4.1 (Paszke et al., 2017). Adam optimizer was used for updating the models. PCA analysis 

functions, LR models, and SVM models were from the Python library Scikit-learn 0.21.3 

(Pedregosa et al., 2011). For LR, we used a random seed 0 for shuffling data and solver “lbfgs” 

(Limited-memory BFGS) for multi-classification. For SVM we used a random seed 0 and default 

settings for the other hyper-parameters. Distance computation functions, including Euclidean 

distance and Pearson correlation, were from the Python library SciPy 1.3.1 (Virtanen et al., 2019). 

We used the Euclidean distance for revealing general associations between expression profile 

representations and we used the Pearson correlation in drug-target prediction for emphasizing the 

orientation consistency between representations. Hierarchical clustering and heatmap visualization 

were carried out with the Python library Seaborn 0.9.0 (Waskom, 2018). The code for 

preprocessing LINCS data, training VAE and S-VQ-VAE models, and carrying out model 

analyses are available at https://github.com/evasnow1992/DeepGenerativeModelLINCS. S-VQ-

https://github.com/evasnow1992/DeepGenerativeModelLINCS
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VAE PCL representation graph visualization and community detection were accomplished with 

software Gephi 0.9.2 (Bastian, Heymann, & Jacomy, 2009). The community detection algorithm 

being used was the Louvain algorithm developed by Blondel et al. (Blondel, Guillaume, 

Lambiotte, & Lefebvre, 2008) and was run with randomization (for better decomposition), using 

edge weights, and resolution 1 (for detecting smaller communities). 

4.3 Results 

4.3.1  Modeling Cellular Transcriptomic Processes with VAE 

We carried out a series of model comparison experiments and selected the architecture 

based on model complexity, reconstruction error, and other aspects of performance (see Methods). 

In the architecture we selected to generate the results shown here, the input and output layers 

contained 978 nodes, each corresponding to one of the 978 landmark genes in the L1000 

expression profile. The internal architecture was composed of three hidden layers in its encoder 

and three hidden layers in its decoder. The encoder and decoder share the top hidden layer, thus in 

total of five hidden layers. The encoder part contained 1000, 1000, and 100 hidden nodes, 

respectively (Figure 4.4); the decoder had a reverse architecture as the encoder.  

We trained three VAE models on the SMP, GP, and SMGP datasets, respectively (Table 

4.1, Table 4.2). We first examined whether the models captured the distribution of the input data 

by generating new data and comparing their distribution with that of the original input data. For 

each of the three models, we randomly generated 10,000 samples and projected them with 10,000 

randomly selected original training samples into the first two components PCA space (Figure 4.5). 
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From the scatter plots in Figure 4.5 (a, d and g), we can see that the VAE-generated data points 

take up a similar space in the PCA plot as the input data for all three datasets. The consistencies in 

the centroid, shape, and range of the density contour indicate that the VAE models are able to 

reconstruct the distribution of the input data (Figure 4.5). 
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Figure 4.5. Simulated data of VAE vs. original input data. 

(a) Scatter plot of simulated data (blue points) generated by SMP-trained VAE and the original SMP data (red 

points) in the space of the first two PCA components. (b) The density contour of the real data in (a). (c) The density 

contour of the simulated data in (a). (d) Scatter plot of simulated data (blue points) generated by GP-trained VAE 

and the original GP data (red points) in the space of the first two PCA components. (e) The density contour of the 

real data in (d). (f) The density contour of the simulated data in (d). (g) Scatter plot of simulated data (blue points) 

generated by SMGP-trained VAE and the original SMGP data (red points) in the space of the first two PCA 

components. (h) The density contour of the real data in (g). (i) The density contour of the simulated data in (g). 
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We then performed hierarchical clustering analyses to examine whether the newly 

generated data are indistinguishable from real data. Using 2,000 randomly generated samples and 

2,000 randomly selected original samples, we conducted hierarchical clustering with 1-Pearson 

correlation as the distance metric (Figure 4.6). We cut the dendrogram at 10 clusters and computed 

a mixing score (see Methods) to examine whether the generated data and original data were 

similarly distributed across clusters. For binary-categorical data, a mixing score is of range [0.5, 

1], which gives the average proportion of data from the dominant category in each cluster. A 

mixing score of 0.5 indicates an even mixture of the two categories of data within all clusters, and 

a score of 1 indicates a clear separation between the two categories across clusters. For each of the 

three VAE models, this process of sample generation, selection, and mixing score computation 

was repeated 50 times. The mean mixing score was 0.594 for SMP-trained VAE with a 95% 

confidence interval (CI) of [0.589, 0.598], 0.586 for GP-trained VAE with a 95% CI of [0.581, 

0.591], and 0.603 for SMGP-trained VAE with a 95% CI of [0.598, 0.608]. These mixing scores 

indicate that neither real data nor simulated data exhibit dominance in individual hierarchical 

clusters. Therefore, the generated data cannot be distinguished from the real data via hierarchical 

clustering. 
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Figure 4.6. Hierarchical clustering of simulated data generated by trained VAEs vs. real data from the 

corresponding training datasets. 

(a-c) The plot of 2,000 data generated with SMP-trained VAE, GP-trained VAE, and SMGP-trained VAE, 

respectively, and 2,000 real data from the corresponding training datasets. In the row color bar of the heatmap, blue 

indicates the original data and yellow indicates the simulated data. The evenly mixing of the original data and 

simulated data suggests that the simulated data are indistinguishable from the original data by doing a hierarchical 

clustering using 1-Pearson Correlation as distance. 

4.3.2  A Few Signature Nodes Encodes the Primary Characteristics of an Expression 

Profile 

To gain a better understanding of how VAEs encode the distribution of diverse input data, 

we next examined the activation patterns of hidden nodes on different layers of the SMGP-trained 

VAE model. We paid special attention to the top hidden layer of 100 nodes that serves as an 

“information bottleneck” for compressing the original data. This layer is of particular interest as it 

is also used as the starting point for the generation of new samples. 

For each sample from the SMC dataset, we computed an encoding vector by feeding the 

expression profile through the encoder of the SMGP-trained VAE to the top hidden layer (𝑧𝑞(𝑥) 

in Figure 4.2a). We found that 12 out of 100 nodes in the encoding vector had a high variance in 
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activation values across samples (Figure 4.7a). The average values of these nodes show a clear 

bimodal distribution with one mode formed by the 12 nodes and one mode formed by the others. 

For the SMC dataset, the average absolute value of these 12 nodes is 0.885 vs. 0.048 of the other 

hidden nodes, (two-sided t-test p-value < 1e-10). Across the SMGP training dataset as a whole, 

the average absolute value of the 12 nodes is 0.503 and vs. 0.044 of the other nodes (p < 1e-10). 

For an ordinary VAE model, the prior distribution of the encoding vector is a standard 

normal distribution with a mean vector 𝜇(𝑥) = 0  and a diagonal covariance matrix 𝛴(𝑥) =

𝑑𝑖𝑎𝑔(1) (Figure 4.2a). An element of the encoding vector should shrink towards 0 during training 

unless it is driven by data to deviate from 0. As a result, the significantly high absolute values 

taken by these 12 hidden nodes suggest that they encode major signals of input data. From now 

we denote these 12 hidden nodes as the signature nodes. 

 

 

Figure 4.7. Signature nodes on the top hidden layer of SMGP-trained VAE. 

(a) The heatmap of the 100 hidden nodes of the top hidden layer for 500 random selected SMGP samples. The 

pseudo-colors represent the values of elements in the encoding vectors. (b) The average of signature nodes for 

samples treated with major PCLs. 
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We investigated whether the patterns of these 12 signature nodes reflect the MOA of drugs 

by examining their association with PCLs. A PCL was considered a major perturbagen class if at 

least 150 samples were treated with perturbagens of that class. Using this definition, there are 21 

major PCLs. For each major PCL, we fed the samples treated with perturbagens of the class 

through the trained VAE encoder and took the average signature node values across samples as a 

vector representation of the PCL. As shown in Figure 4.7b, different PCLs presented different 

patterns in the signature nodes.  

We further examined whether the representations of each PCL revealed similarities 

between PCLs via hierarchical clustering analysis (Figure 4.7b). PCLs that were closely clustered 

tend to share similar MOAs (Figure 4.7b). For example, the mTOR inhibitor and PI3K inhibitor 

were grouped together according to their consistent activation directions (positive vs. negative) for 

most signature nodes, and they are both known to impact the PI3K/AKT signaling pathway 

(O'Reilly et al., 2006), where the mTOR is a downstream effector of PI3K. Other examples include 

the grouping of Src inhibitor and Raf inhibitor, where Src is known to activate Ras-c, which in 

turn activates Raf in the Raf-MEK-ERK pathway (Moon et al., 2002); the grouping of 

topoisomerase inhibitor and ribonucleotide reductase inhibitor that both impact the DNA 

replication process; and the grouping of Aurora kinase inhibitor and PKC inhibitor, where Aurora 

kinases are essential to mediate PKC-MAPK signal to NF-κB/AP-1 pathway (Noh et al., 2015). 

These observations support the idea that the 12 signature nodes preserve crucial information of the 

expression profile resulting from a small molecule perturbation of the cellular signaling system. 

To further demonstrate that the primary characteristics of an expression profile are encoded 

in the 12 signature nodes, we generated new expression profiles to simulate samples treated with 

a target PCL by manipulating values of the signature nodes according to the PCL patterns found 
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in the previous experiment. Specifically, we preset the signature nodes to values similar to the 

average values of training samples treated with the target PCL as shown in Figure 4.7b and 

randomly initialized the other hidden nodes from a standard normal distribution. In this manner, 

we randomly generated 500 new samples for eight major PCLs. We then compared the randomly 

generated samples against real samples to see whether their nearest neighbors in real samples were 

from the target PCL (Figure 4.8a). The signature node patterns used to generate samples and the 

similarities of these samples to real samples and associated PCLs are shown in Figure 4.8b-i. 
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Figure 4.8. Comparison of data generated based on the signature pattern of PCLs with real data. 

(a) Diagram illustrating the procedure for generating new data from the signature pattern of a PCL. First, an 

encoding vector is initialized where the signature nodes are set according to the signature pattern of real samples 

from the given PCL; the non-signature nodes are randomly initialized by sampling from a standard normal 
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distribution. The vector is then fed through the decoder of the SMGP-trained VAE, and a new expression profile is 

generated. The new data are compared to real data by computing the nearest neighbor based on Euclidean distance, 

to see if the new data are closely related to real data of the given PCL. (b-i) The composition of real data nearest 

neighbors of new data generated from latent representations simulating different PCLs. “R” indicates the value of 

the signature node is not specified but randomly initialized as non-signature nodes. 

 

In most cases, more than half of the generated data had their nearest neighbors from the 

target PCLs. For proteasome inhibitor and tubulin inhibitor specifically (Figure 4.8g and i), 100% 

of the generated data were nearest neighbors of real samples from the same PCL, which was 

repeatedly observed across independent runs. This agrees with the PCL clustering outcome in 

Figure 4.7b, where proteasome inhibitor and tubulin inhibitor were found as outliers from the other 

PCLs with their distinct signature node patterns. 

We also noted that the specific value of each signature node did not matter as long as the 

value correctly reflects the direction, i.e., positive or negative, of the node for a given PCL. This 

suggests that the major characteristics of a PCL can potentially be encoded into only 12 bits of 

information. The only pattern that did not have over half of the generated samples mapped to the 

target PCL was the mTOR inhibitor (Figure 4.8e). Most of the samples generated using mTOR 

signature nodes were nearest neighbors to PI3K inhibitor-treated samples. This is reasonable, as 

mTOR inhibitors act downstream on the same pathway of PI3K inhibitors. For this reason, the 

former’s effects can be in many cases replicated by the latter. This observation also supports the 

conclusion that each signature node pattern reflects a specific cellular signaling process, which, 

after decoding, generates an expression profile that reflects how the signaling is perturbed. 
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4.3.3  Learning Global Representations of PCLs with S-VQ-VAE 

The signature node representations of PCLs discussed above were obtained by averaging 

over samples treated with small-molecule perturbagens from a PCL. In order to learn a unique, 

stable global representation for each PCL, we designed another DGM, the S-VQ-VAE, which 

utilizes the PCL label of small molecules that treated the cells to partially supervise the training 

process. S-VQ-VAE was extended from VQ-VAE by utilizing the vector-quantized (VQ) 

technique to discretize the encoding vector space into multiple mutually exclusive subspaces 

represented by a limited number of embedding vectors and projecting data from each class into its 

pre-assigned subspace (Figure 4.2b, see Methods). After training, each embedding vector learns 

to summarize the global characteristics of a class of data. Here, we used S-VQ-VAE to learn an 

embedding vector with a dimension of 1000 for representing each of the 75 PCLs in the SMC 

dataset (Table 4.2).  

We utilized the embedding vectors to reveal similarity and potential functional 

relationships between PCLs by comparing each PCL to all the others to identify its nearest 

neighbor based on the Pearson correlation. The nearest neighbor relationships between PCLs are 

visualized as a directed graph (Figure 4.9), in which a directed edge indicates that the source node 

is the nearest partner to the target node. We also applied the Louvain algorithm (Blondel et al., 

2008) to detect the community (aka, clusters) among PCLs, and members of different communities 

are indicated as pseudo-colors (Figure 4.9). The modularity score of the communities is 0.875, 

which indicates significantly denser connections existing between members within communities 

compared to a randomly assigned network of the same set of PCLs. 
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Figure 4.9. Similarities between PCLs revealed with global PCL representations learned by S-VQ-VAE. 

A directed edge in the graph indicates that the source node is the nearest node to the target code based on the 

Pearson correlation between the corresponding representations. The node size is proportional to the out-degree. The 

edge width is proportional to the correlation. The color of a node indicates the community the node belongs to. 

 

Some strong relationships, like bi-directional connections and thick edges, are observed in 

Figure 4.9. Many such relationships correspond to well-documented shared MOAs between the 

drugs in the connected PCLs. These include the relationships that have also been revealed with the 

signature node representations above, e.g., the functional similarity between mTOR inhibitors and 

PI3K inhibitors (O'Reilly et al., 2006), and the relationship between MEK inhibitors, Src 

inhibitors, and Raf inhibitors (Moon et al., 2002). Other strong connections were observed between 

CDK inhibitors and topoisomerase inhibitors, which may reflect coordinated response to mitosis 
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inhibition and DNA damage induction (Peyressatre, Prével, Pellerano, & Morris, 2015; Weinberg, 

2013), between Aurora kinase inhibitors and HDAC inhibitors which both impact the histone 

deacetylase pathway (Y. Li et al., 2006), and between gamma-secretase inhibitors, serotonin 

receptor antagonists, and bile acid that affect amyloid precursor protein processing and lipid 

metabolism (Pimenova, Thathiah, De Strooper, & Tesseur, 2014; Watanabe et al., 2010). 

The members of a PCL community also shed light on the high-level functional theme of 

the community. For example, the black community on the left of Figure 4.9 with Raf, Src, MEK, 

and EGFR related PCLs may represent the drug effects transmitted through the EGFR-RAS-RAF-

MEK signaling cascade. The orange community (bottom left of Figure 4.9), consisting of 

inhibitors of Aurora kinase, HDAC, CDK, topoisomerase, ribonucleotide reductase, and DNA 

synthesis, may represent the signaling transduction for regulating DNA duplication and mitosis. 

The blue community (bottom right of Figure 4.9), with estrogen, progesterone, norepinephrine, 

and angiotensin may represent the comprehensive effects of perturbing hormones. These findings 

indicate that the global representations learned with S-VQ-VAE preserve crucial information that 

reveals the functional impact of different PCLs. 

4.3.4  The VAE Latent Representations Preserve PCL-Related Information 

The latent variables at different levels of the hierarchy of a DGM may encode cellular 

signals with different degrees of complexity and abstraction (Chen et al., 2016). Therefore, we 

next investigated the information preserved in the latent variables of different hidden layers of the 

SMGP-trained VAE. To do this, we first represented the SMC samples with seven types of 

representations, including the raw expression profiles, the latent representations obtained from the 

five hidden layers of the VAE, and the 12 signature node values (see Methods). We then used these 
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representations to predict the PCL label of the small molecule used to treat each sample by training 

two multi-classification models, LR and SVM. As shown in Table 4.3, the highest test prediction 

accuracy was achieved by using the raw expression profiles as input data for both LR and SVM 

(0.5922 and 0.5273 respectively). This was followed by the latent representations of samples 

extracted from the first hidden layer of the VAE encoder (0.5096 for LR and 0.4528 for SVM). 

The lowest accuracy was obtained using the 12 signature node values as input data (0.3814 for LR 

and 0.3615 for SVM). Nonetheless, the highest test accuracy achieved with latent representation, 

0.5096, was nearly 10 times higher than guessing at random from the 75 unevenly distributed 

PCLs, 0.0543. These results indicate that although there was information loss with respect to the 

classification task as the representations become more abstract with deeper hidden layers, the latent 

representations preserved significant information from the original input data. 

 

Table 4.3. Performance of PCL classification with different sample representations as input data. 

Representation 

type 

LR test 

accuracy 

SVM test 

accuracy 

raw 0.5922 0.5273 

encoder layer 1 0.5096 0.4528 

encoder layer 2 0.4461 0.3881 

encoder layer 3 0.4098 0.4232 

signature nodes 0.3814 0.3615 

decoder layer 1 0.4002 0.4082 

decoder layer 2 0.3994 0.4085 

*The accuracies were obtained with 10-fold cross validation. LR: logistic regression; SVM: support vector machine. 

4.3.5  The VAE Latent Representations Enhance Drug-Target Identification 

Combining SMP and GP data can help establish connections between the MOAs of small 

molecules and genetic perturbations, which further help reveal the targets of small molecules 

(Lamb, 2007; Pabon et al., 2018). A simple approach is to examine whether a pair of perturbagens 
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(a small molecule and a genetic perturbation) leads to similar transcriptomic profiles, or more 

intriguingly, similar latent representations that reflect the state of the cellular system. Given a 

known pair of a drug and its target protein, we assumed that treatment with the drug and 

knockdown of the gene of the protein would result in a similar transcriptomic response reflected 

as raw data or VAE-derived latent representations. 

To test the assumption, we extracted 16 FDA-approved drugs and their gene targets from 

the ChEMBL database that are also available in LINCS data (Gaulton et al., 2011; Pabon et al., 

2018) (Table 4.4). We computed the Pearson correlations between the representations (either the 

raw expression profile or a latent representation) of each SMP sample treated by one of the drugs 

and the corresponding representations of all GP samples. The GP samples and their knockdown 

genes were then ranked according to the correlations to obtain the ranks of known target genes, in 

a manner similar to an information retrieval task (Figure 4.10a). 
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Figure 4.10. Drug-target prediction with different sample representations for 16 FDA-approved drugs. 

(a) Diagram illustrating the approach for drug-target prediction. For a given drug, samples treated with the drug are 

fed to the SMGP-trained VAE to obtain latent representations from different layers of the encoder and decoder. All 

GP samples are also fed to the VAE to obtain corresponding latent representations and compared with the SMP 

samples by computing the Pearson correlation. For a given type of representation, genes are ranked according to the 

correlations to the representation of the given drug, and the ranks of the top known target of the drug are recorded. 

(b) The representation type that achieved the best matching (lowest mean rank) of the top known target gene for 

each drug. 
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Table 4.4. The mean of rank of the top known target for 16 FDA-approved drugs from drug-target prediction with different types of representation. 

Drug Target # of SMP # of GP Raw E1 E2 T Sig. D1 D2 

pitavastatin HMGCR 42 45 376.40 962.69 1930.62 806.81 706.74 827.60 688.00 

bortezomib 

PSMB10, PSMA3, PSMA1, PSMA5, PSMB7, 

PSMB5, PSMA8, PSMB1 2339 196 20.32 48.12 45.94 65.69 96.78 49.09 19.13 

hydrocortisone NR3C1 42 36 4605.67 3759.6 2221.74 3019.07 3339.52 2122.33 2392.12 

vemurafenib BRAF 81 108 1030.01 981.65 1215.56 779.80 664.57 970.10 1060.69 

flutamide AR 42 29 5111.36 7178.43 8167.55 9172.00 11013.07 13934.31 13047.52 

clobetasol NR3C1 42 36 5221.50 5025.12 3236.19 5060.95 5628.48 3136.02 4185.90 

digoxin ATP1A3, FXYD2, ATP1B1 42 83 595.62 431.10 492.21 497.86 336.48 590.71 405.69 

mycophenolate-

mofetil IMPDH2 42 27 4594.12 6514.81 5928.67 6630.00 5091.55 8631.02 4683.26 

dasatinib LCK, YES1 204 175 942.70 743.19 694.73 681.38 641.82 649.23 658.83 

amlodipine CACNA1D 42 27 7798.79 4797.38 5290.60 5252.71 5159.55 5872.90 4295.33 

calcitriol VDR 42 27 5293.00 5859.21 6924.50 5877.14 6128.60 5263.52 5856.98 

glibenclamide KCNJ11 42 27 6074.93 9643.98 8653.05 7038.45 3969.43 7179.50 7104.81 

paclitaxel TUBB6, TUBA1A, TUBB2A, TUBB2C 42 105 464.17 548.00 781.81 640.90 412.62 421.00 831.40 

losartan AGTR1 42 24 4841.31 4767.88 4162.24 3865.98 3871.10 3656.90 4469.76 

irinotecan TOP1 42 27 5079.93 5317.57 4332.83 4459.55 4248.19 3999.52 3915.17 

raloxifene ESR2 42 36 4686.60 3236.07 1262.83 2078.57 2383.14 1595.02 1757.98 

*Data related to Figure 4.10. The value for a given drug and a type of representation is the mean rank of the drug target gene(s) among all genes when retrieved 

and ranked according to the similarity between the representation of drug and representations of samples with gene knockdowns. The lowest mean rank is bolded 

for each drug. # of SMP: the number of SMP samples treated with the drug; # of GP: the number of GP samples with target gene knocked down; E: encoder layer; 

T: top hidden layer; Sig.: signature nodes; D: decoder layer. 
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We compared different types of representations to identify which were more effective in 

assigning a higher rank to target genes. As shown in Table 4.4 and Table 4.5, for different drugs, 

different representations achieved the best target-retrieval performance as reflected by top rank 

and mean rank. This suggests that VAEs can encode the impact of different drugs within different 

layers in the hierarchy that potentially reflect the relative level of drug-target interactions in the 

cellular signaling network. Figure 4.10b summarizes the mean rank results where each drug is 

assigned to the representation layer that produced the best mean rank of its top known target. Most 

drugs have their best performance achieved with VAE-learned latent representations rather than 

the raw expression profiles, and for five drugs, the best performance was achieved with the 12-

signature-node-representation. Table 4.5 gives the best rank of the top known target for each drug, 

which is comparable to the Table 1 from Pabon et al. (Pabon et al., 2018). Even though our 

approach is essentially an unsupervised learning method based purely on expression data, 13 out 

of 16 drugs received an equal or better rank than from the previous state of the art random forest 

model trained with a combination of expression and protein-protein interaction features (Pabon et 

al., 2018)  (bolded in Table 4.5).  
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Table 4.5. The rank of the top known target for 16 FDA-approved drugs from drug-target prediction with 

different types of representations. 

Drug Target Raw  E1 E2 T Sig. D1 D2 

pitavastatin HMGCR 2 1 1 1 1 2 1 

bortezomib 

PSMB10, PSMA3, PSMA1, 

PSMA5, PSMB7, PSMB5, 

PSMA8, PSMB1 1 1 1 1 1 1 1 

hydrocortisone NR3C1 72 35 37 12 11 3 1 

vemurafenib BRAF 1 1 1 1 1 1 1 

flutamide AR 36 14 39 78 160 29 163 

clobetasol NR3C1 415 10 2 7 16 13 4 

digoxin ATP1A3, FXYD2, ATP1B1 71 2 9 30 15 23 11 

mycophenolate-

mofetil IMPDH2 12 342 31 28 21 18 44 

dasatinib LCK, YES1 25 2 5 5 7 3 2 

amlodipine CACNA1D 62 243 134 111 116 97 58 

calcitriol VDR 917 164 341 661 211 1018 335 

glibenclamide KCNJ11 275 497 336 579 307 482 536 

paclitaxel 

TUBB6, TUBA1A, 

TUBB2A, TUBB2C 14 71 49 20 18 92 98 

losartan AGTR1 238 190 370 53 115 253 57 

irinotecan TOP1 308 653 331 18 13 326 504 

raloxifene ESR2 114 115 53 139 72 105 65 

*The value for a given drug and a type of representation is the top rank of the drug target gene(s) among all genes 

when retrieved and ranked according to the similarity between the representation of drug and representations of 

samples with gene knockdowns. A lower rank is better. Drugs with the lowest rank equal to or lower than the rank 

reported by Pabon et al. (Pabon et al., 2018) are bolded. E: encoder layer; T: top hidden layer; Sig: signature nodes; 

D: decoder layer. 

4.4 Discussion 

In this chapter, we examined the utility of DGMs, specifically VAE and S-VQ-VAE, for 

learning representations of the states of cells treated with different perturbagens in the LINCS 

project. We showed that the trained VAE and S-VQ-VAE models were able to accurately 

regenerate transcriptomic profiles almost indistinguishable from the input data. These results are 
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intriguing because they suggest that the DGMs have captured signals of cellular processes 

underlying the statistical structures of the data. Such capability is highly desirable as it provides a 

means to investigate how responses to diverse environmental changes are processed by the cellular 

system as signals. 

Cellular signaling systems are essentially signal coding machines, and training a model 

capable of mimicking the behaviors of cellular signaling systems is a critical step of using 

contemporary artificial intelligence technologies to advance systems biology. A more intriguing 

future direction is to investigate whether the latent variables of DGMs can be mapped to the signals 

encoded by real biological entities like proteins or pathways as suggested by previous research in 

simpler organism systems (Chen et al., 2016). This may require designing more interpretable deep 

learning models that integrate information from multiple platforms. Particularly, additional 

information such as genetic perturbations can be utilized to facilitate establishing a mapping 

between biological entities and latent variables. 

During our development of the models, we compared VAE with other DGMs, including 

restricted Boltzmann machines (Salakhutdinov & Hinton, 2009), deep belief networks 

(Salakhutdinov & Hinton, 2009), deep autoencoders (Hinton & Salakhutdinov, 2006), and VQ-

VAEs (Aaron Van Den Oord & Vinyals, 2017). VAE outperformed all of these DGMs in capturing 

the expression data distribution. However, in its original form, VAE cannot utilize additional 

information aside from data passed via the input layer. The S-VQ-VAE model is an early attempt 

toward the goal of combining different information sources. It utilizes additional label information 

to facilitate the learning of global representations, but essentially it does not directly combine 

multiple types of data nor realize a fully interpretable multi-task learning. More directions of model 

design remain to be explored.  
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As cells are the basic unit of life, a complete model for understanding cellular signaling 

systems would represent a major breakthrough in both machine learning and systems biology, with 

profound implications for cell biology, pharmacology, drug development, and precision medicine. 

In the next chapter, we further examine the utility of DGMs for learning representations from 

genomics data for predicting drug sensitivities for both cell lines and real patients. 
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5.0 Chapter 3: drug sensitivity prediction with deep generative models and transfer 

learning 

5.1 Introduction 

Cancers are heterogeneous in that tumors originating from the same tissue are often driven 

by different disease mechanisms. This inherent heterogeneity results in differentiated drug 

responses across patients of the same cancer type. For many widely used non-specific 

chemotherapy drugs, only a small fraction of patients respond to the drugs while for the others the 

drugs do not bring any obvious benefits. As a result, increasing demand has emerged for 

computational tools that can predict patient drug response in advance to help select drugs based 

on patient-specific information. Such tools promise to significantly improve survival outcomes 

and reduce unnecessary side-effects resulted from the indiscriminate adoption of standard therapy 

protocols for all patients. 

Most traditional drug response prediction models were developed in vitro based on cell 

line data (Barretina et al., 2012; Costello et al., 2014; Dong et al., 2015; Encyclopedia, 2015; Jang 

et al., 2014; Q. Li et al., 2019; Menden et al., 2013a; Riddick et al., 2010). These models were 

typically supervised regression or classification models that predict drug sensitivity by learning 

direct correlations between genomic data and drug response outcomes. The use of only cell line 

data and the shallow architecture of these models all limited their potential to be deployed in the 

clinical environment and benefit patients. 

With genomic data growing at an unprecedented speed, deep neural network models 

(DNNs) have attracted more attention these days for solving medical problems. Among DNNs, a 
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branch known as the deep generative model (DGM) has proved very successful in solving many 

of the hardest machine learning problems. Instead of modeling the direct correlation between input 

features and outcomes, DGMs are typically used to learn a latent representation of the input 

features in an unsupervised learning manner, where the latent representations are then used to train 

a second supervised model to predict the targets. The latent representations condense the 

information from the raw features, and thus are often more informative of the outcome than are 

the raw features. 

In this chapter, we compare six types of DGMs for learning latent representations from 

expression and mutation data and predicting drug sensitivity of cell lines and real patients. The 

DGMs we examined are AutoEncoder (AE) (Hinton & Salakhutdinov, 2006), Variational 

AutoEncoder (VAE) (Kingma & Welling, 2014; Rezende et al., 2014), and four new DGMs we 

designed in this dissertation project, including Res-AutoEncoder (ResAE), Res-Variational 

AutoEncoder (ResVAE), Redundant Input AutoEncoder (RIAE), and Redundant Input Variational 

AutoEncoder (RIVAE) (Figure 5.1). AE and VAE learn latent representations by directly 

reconstructing expression profiles. ResAE, RIAE, ResVAE, and RIVAE are extensions of AE and 

VAE, respectively, which combine mutation data for learning representations from expression data. 

Concretely, ResAE and ResVAE incorporate mutation data into the model by parallelly adding 

transformed mutation data as residues to different hidden layers of AE and VAE, as inspired by 

the Residual neural Network (ResNet) (He, Zhang, Ren, & Sun, 2016). RIAE and RIVAE 

incorporate mutation into the model by redundantly concatenating the mutation data to different 

hidden layers of AE and VAE, as inspired by the Redundant Input Neural Network (RINN) (Young, 

2020).  
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Figure 5.1. Generative models used for learning latent representations from genomic data. 

 

The learned representations from different hidden layers of DGMs were used to train 

Elastic Net Logistic Regression models (ENLRs) for predicting GDSC and CCLE cell lines and 

TCGA patients as sensitive vs. resistant to various drugs. We show that for most drugs from GDSC 
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and CCLE, latent representations achieved better prediction performance, from the aspect of Area 

Under the ROC Curve (AUC) score, than using the raw expression profiles. In addition, VAE-

based models generally worked better than AE-based models in learning drug sensitivity 

informative latent representations, among which ResVAE performed the best from many aspects 

of model evaluation. The representations of mutated genes learned with ResVAE can also be used 

to reveal functional associations between genes. The ENLR selected significant hidden nodes are 

highly correlated with drug response outcomes, where some nodes can be sued as strong indicators 

for drug sensitivity. The ENLRs trained with cell line data can be transferred to make predictions 

for real patients and divide patients into different survival groups. 

Our results support DGMs as a powerful tool for modeling correlations among expression 

and mutation data and learning latent representations for solving drug response prediction problem. 

The models we developed can be deployed as clinical decision support tools for promoting 

precision oncology. 

5.2 Methods 

5.2.1  Data 

We used the GDSC and CCLE datasets for learning representations of cell lines and 

training drug sensitivity prediction models. The GDSC data were downloaded from the GDSC 

data portal of the Sanger Institute (https://www.cancerrxgene.org/). The dataset contains 

expression data and mutation data of 1018 cell lines, and drug response data of 320 drugs and 175 

drugs from GDSC1 and GDSC2, respectively. The expression data are Robust Multichip Average 

https://www.cancerrxgene.org/
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(RMA) normalized microarray data. The CCLE data were downloaded from the CCLE data portal 

of the Broad Institute (https://portals.broadinstitute.org/ccle). The dataset contains expression data, 

mutation data, and drug response data for 1019 cell lines and 24 drugs. The expression data are 

RNAseq normalized count (transcript per million (TPM)) data. We applied a log-transformation 

on the expression data before further data preprocessing. In order to leverage the power of 

transferring learning, we also tried pretraining DGMs with a large number of expression profiles 

from the TCGA database. This pretraining PANCAN dataset was composed of RNAseq 

expression data for 10,332 tumor samples across 33 cancer types downloaded from the UCSC 

Xena TCGA data portal (https://xenabrowser.net/datapages/).  

When training ResAE, ResVAE, RIAE, and RIVAE, we incorporated the mutation data 

into the model. The intuition is to enhance the ability of DGMs in learning latent representations 

from expression data by utilizing information from the causal relationships between somatic 

mutations and gene expression outcomes. The binary mutation states of 143 genes were used as 

input data for ResAE, ResVAE, RIAE, and RIVAE, where the genes were selected by overlapping 

the mutation data across TCGA, GDSC, and CCLE. For cell lines or TCGA samples with missing 

mutation information, we filled 0 (assuming no mutation) for all genes. 

In order to examine whether the cell-line trained drug sensitivity prediction models can be 

transferred to real patients, we first tested our models on lung adenocarcinoma (LUAD) and lung 

squamous cell carcinoma (LUSC) patients from TCGA. We download the drug usage data of 179 

LUAD and 144 LUSC patients from the Genomic Data Commons Data Portal (GDC, 

https://portal.gdc.cancer.gov/). The corresponding survival data were downloaded from the UCSC 

Xena data portal. To rule out other clinical confounders except for chemotherapy drugs that may 

https://portals.broadinstitute.org/ccle
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/
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affect survival outcome, we only included patients that were given drugs for adjuvant therapy. 

This resulted in a lung cancer test dataset with drug usage and survival information for 182 patients. 

We further tested our models on a larger TCGA patient set with drug usage and overall 

response outcomes. This dataset was provided by (Z. Ding, Zu, & Gu, 2016) as supplementary 

information, which contains drug usage and response information for 1,197 TCGA patients across 

28 cancer types using 152 drugs. Among the 152 drugs, 32 were available in GDSC1 for which 

we have trained ENLRs as sensitivity prediction models. We filtered out patients that have no drug 

with an ENLR or have no expression data available. This left us with 880 patients across 15 cancer 

types using 31 drugs. 

5.2.2  Drug response data binarization 

We treated drug sensitivity prediction as a binary classification task where all cell lines 

were assigned into sensitive or resistant classes based on the area under the curve (AUC) score 

(for GDSC data) or activity area (for CCLE data). The AUC score in the GDSC drug response data 

is the normalized area under the relative availability to the drug concentration curve (dose-response 

curve). The lower the AUC, the more sensitive the cell line to the drug. The activity area in the 

CCLE drug response data is the area over the drug-response curve, and the higher the activity area, 

the more sensitive the cell line to the drug. We used the waterfall approach described in the CCLE 

study (Barretina et al., 2012) to find the threshold to discretize the drug response measures (AUC 

or activity area). The approach we used is as follows. First, sort the measurements to generate the 

rank-ordered plot. If the curve appears linear (Pearson correlation > 0.95), then the median value 

is used as the threshold to binarize the response. If the curve is unilinear, estimate the major 

inflection point of the curve as the point on the curve with the maximal distance to the straight line 
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dawn between the start and end points of the curve. The value of the inflection point is used as the 

threshold. Unlike the original waterfall approach, we did not define an intermediate class of cell 

lines with moderate response values. Instead, all cell lines are assigned as either sensitive or 

resistant to a drug based on the threshold. 

5.2.3  ResAE and ResVAE 

We implemented six major different types of DGMs for learning latent representations 

from expression data. Among the models, AE and VAE are classic DGMs that have been widely 

adopted in deep learning application areas (Hinton & Salakhutdinov, 2006; Kingma & Welling, 

2014; Rezende et al., 2014). Here, we used AE and VAE to learning representations by 

reconstructing the expression profiles of samples. 

To enhance the representation learning using causal information between mutation genes 

and gene expressions, we developed four hybrid models based on AE and VAE. Among them, 

ResAE and ResVAE were developed inspired by ResNet (He et al., 2016). Unlike ordinary deep 

neural network models (DNN) that only establish connections between adjacent layers, ResNet 

utilizes skip connections to jump over layers, thus to shorten the path for backpropagation and 

prevent vanishing gradients. For example, suppose we have a single skip from layer 𝑙 − 2 to 𝑙, the 

activations 𝑎𝑙 of the layer 𝑙 would be 

𝑎𝑙 = 𝑔(𝑍𝑙 + 𝑎𝑙−2)                                                           (5.1) 

Here 𝑔  is the activation function for layer 𝑙 , and 𝑍𝑙 = 𝑊𝑙−1,𝑙 ⋅ 𝑎𝑙−1 + 𝑏𝑙   where 𝑊𝑙−1,𝑙  is the 

weight matrix between layer 𝑙 − 1 and 𝑙. With this formula, the skipped layer 𝑙 − 1 can be seen as 

learning the residual 𝑍𝑙 between the 𝑎𝑙−2 and the pre-activation of layer 𝑙, thus comes the name 

ResNet. An additional weight matrix can be used to learn the weights for the skipped connection, 
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which allows a flexible dimension matching between the start and destination layers. This leads to 

the HighwayNet (Srivastava, Greff, & Schmidhuber, 2015) with 

 𝑎𝑙 = 𝑔(𝑍𝑙 + 𝑊𝑙−2,𝑙 ⋅ 𝑎𝑙−2)                                                    (5.2) 

 

Parallel skips originating from the same layer and successively connecting to later layers can also 

be added with  

𝑎𝑙 = 𝑔(𝑍𝑙 + ∑ 𝑊𝑙−𝑘,𝑙 ⋅ 𝑎𝑙−𝑘𝐾
𝑘=2 )                                           (5.3) 

which gives rise to another extension known as the DenseNet (Huang, Liu, Van Der Maaten, & 

Weinberger, 2017). 

In our case, to incorporate the mutation data into the expression-data-learning AE and VAE 

models, we followed a similar structure of DenseNet where we parallelly transform the input 

mutation data vector (M) with weight matrices and add them to different hidden layers of AE and 

VAE (Figure 5.1 c and d). The activations 𝑎𝑙 of a hidden layer 𝑙 is 

𝑎𝑙 = 𝑔(𝑍𝑙 + 𝑊𝑚,𝑙 ⋅ 𝑀)                                                    (5.4) 

This can be seen as using the transformed mutation data as residuals to supplement 𝑍𝑙 to be used 

as the pre-activation of layer l. 

We tried different constraints on the weight matrices for transforming the mutation data, 

including assigning an independent weight matrix for each hidden layer, assigning and tying the 

weight matrix for all corresponding hidden layers in encoder and decoder (tied-weights), assigning 

and tying weight matrices to a subset of corresponding hidden layers in encoder and decoder, and 

only assigning independent weight matrices to encoder or decoder hidden layers. The assumption 

behind tying the weights of corresponding encoder and decoder layers is that the symmetric 

architectures of encoder and decoder may suggest they model the expression data generation 
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process in a reversed manner. Therefore, the contribution of the mutation data on the 𝑙th encoder 

layer should be the same as on the 𝑙th to last decoder layer. The tied-weights helps reduce the 

number of parameters for tuning and accelerate training convergence. 

The difference between ResAE and ResVAE is that ResVAE uses a VAE architecture as 

its backbone. As in an ordinary VAE, the variational inference over the posterior distribution of 

the latent variables is performed on the top hidden layer of the encoder in ResVAE. 

In general, we are expecting that the incorporation of mutation data in ResAE and ResVAE 

will help the model learn more robust and generalizable expression-based latent representations. 

The weight matrices that map between the mutation vector to each hidden layer may also help 

reveal the contribution of mutated genes to each hidden node, thus improve the interpretability of 

the model. 

5.2.4  RIAE and RIVAE 

Another two hybrid models we designed are RIAE and RIVAE, where instead of adding 

the transformed mutation data to different hidden layers, the mutation data are concatenated to 

hidden layers, as inspired by the RINN (Young, 2020).  

RINN is a DNN specifically designed to model the causal relationships between genomic 

alterations and gene expressions (Young, 2020). Similar to our motivation of using DGM to model 

the signaling network, RINN learns the hierarchical causal relationships between signaling 

network components through using the mutation profiles to predict the gene expression outcomes. 

Unlike the traditional DNNs where the input data are only fed in through the input layer, RINN 

allows the input mutation profiles to directly interact with all hidden layers through concatenations, 

thus comes the name of “Redundant Input”. This design is based on the assumption that different 
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alterations affect functional components on different levels of a cellular signaling cascade. 

Allowing direct connections between the “causes”, mutations, to the “outcomes”, latent variables 

make it possible for RINN to model any direct or indirect causal relationships between signaling 

network components.  

In our case, since we also want to utilize the causal relationships between mutations and 

gene expression to enhance signaling network representation learning, we followed the same idea 

of RINN and developed RIAE and RIVAE. In RIAE and RIVAE, the activations 𝑎𝑙 of a hidden 

layer 𝑙 is 

𝑎𝑙 = 𝑔(𝑊𝑙−1+𝑚,𝑙 ⋅ 𝑐𝑎𝑡(𝑎𝑙−1, 𝑀) + 𝑏𝑙)                                   (5.5) 

where 𝑊𝑙−1+𝑚,𝑙  is of dimension 𝐷(𝑙) × (𝐷(𝑙 − 1) + 𝐷(𝑀)) . For RIVAE, the variational 

inference is performed on the top hidden layer as in an ordinary VAE. 

5.2.5  Model architectures and training settings 

We used the same expression gene set as the input features for all our DGMs. This gene 

set contained 3,024 genes, extracted from the GDSC expression data based on the median absolute 

deviation (MAD) of expression level, the outlier sum statistics for differential gene expression, 

and the Hartigan dip test for expression bimodality. Specifically, a gene is included if its expression 

data cross all cell lines have MAD > 1, outlier sum statistics > 1100,  and Hartigan dip test p-value 

< 0.2. After intersecting with the TCGA, GDSC, and CCLE datasets to include genes that had 

expression data in all three datasets, 2,758 genes remained in the final input gene set. 

The DGMs were implemented in Python3 with the Pytorch library 1.3.1 (Paszke et al., 

2017). We used the tangent function as the activation function for all hidden layers. All DGMs 

were trained on 9/10 of the data and validated on the rest, with a learning rate of 1e-4 and batch 
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size 64. We tried over 200 different combinations of training settings, including different model 

architectures, training datasets, epoch numbers, and L1-norm regularizations. We compared the 

models based on reconstruction loss (Supplementary Table S5.1). 

In order to estimate the usability of the DGMs in the following drug sensitivity prediction 

task, we also trained ordinary Logistic Regression models (LRs) with latent representations from 

each DGM and compared DGMs based on validation AUC average over GDSC2 drugs (Figure 

5.2a). Concretely, for each drug from the GDSC2 dataset, we trained a set of LRs, each using a 

type of representation (raw expression profile or latent representations) from the given DGM. The 

LR was trained in a 10-fold cross-validation manner, where in each iteration,  an independent LR 

is trained on 9/10 of the cell lines and made predictions for the other 1/10 cell lines. After the 10 

iterations, the validation predictions were collected and combined for all cell lines, and an AUC 

score was computed. Different types of representations were compared based on the AUC score 

to determine the best representation type for predicting the given drug. The best AUC score 

achieved for each drug was collected and average over all drugs as a metric for comparison 

between DGMs (Supplementary Table S5.1). For each DGM, we also computed the proportion of 

drugs that achieved their best prediction AUCs using the raw input features rather than a latent 

representation. The lower the raw proportion, the relatively more informative the learned latent 

representations for drug sensitivity prediction. 
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Figure 5.2. Diagrams of drug sensitivity prediction model construction and application. 

(a) For each drug, use the raw expression profiles of cell lines and latent representations from different hidden layers 

of a given DGM to train a set of prediction models. Select the best model for each drug with the highest AUC score. 

(b) For a drug of interest, extract the best prediction model for it, and input the corresponding latent representations 

for real patients to generate drug sensitivity predictions. Divide the patients into sensitive, intermediate, and resistant 

groups based on the predictions and compare their survival outcomes. 
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5.2.6  Elastic net logistic regression for drug sensitivity prediction 

The learned latent representations from DGMs as well as the raw expression profile were 

used as input features to train ENLRs to predict drug sensitivity (Figure 5.2a). The models were 

implemented in R 3.6.2 with glmnet library 3.0.2 (Friedman, Hastie, & Tibshirani, 2010). The 

objective function of ENLR in glmnet is the negative binomial log-likelihood function as 

min
(𝛽0,𝛽)

−[
1

𝑁
∑ 𝑦𝑖 ∙ (𝛽0 + 𝑥𝑖

𝑇𝛽) − log (1 + 𝑒𝛽0+𝑥𝑖
𝑇𝛽)𝑁

𝑖=1 ] + 𝜆[
(1−𝛼)||𝛽||

2

2

2
+ 𝛼||𝛽||

1
]     (5.6) 

When 𝛼 = 1 the model reduces to the Lasso regularization and when 𝛼 = 0 the model reduces to 

the Ridge regularization. 

For each drug in GDSC1 and GDSC2, we trained multiple models independently on 

different types of representations. The models were trained with 25-cross validation using 

𝑎𝑙𝑝ℎ𝑎 = 0.5 and 𝜆 ∈ [𝑒−8, 𝑒−1]. Lambda was selected by glmnet to maximize the validation AUC 

score of prediction. We used a random seed of 42 to allow repeat experiments. For each drug, the 

representation (either a latent representation or the raw expression profile) gives the best validation 

AUC was selected, and then validation AUCs and F1 scores were averaged overall all drugs to 

compare between DGMs. Since GDSC1 and GDSC2 tested different sets of drugs on a different 

number of cell lines using different techniques, models trained on GDSC1 and GDSC2 were 

compared separately. 

The ENLRs were tested on an independent subset of CCLE drugs that overlaps with 

GDSC1 or GDSC2. 16 out of 24 CCLE drugs were available in GDSC1 and used to test GDSC1 

trained DGMs, and 12 out of 24 CCLE drugs were available in the GDSC2 and used to test GDSC2 

trained DGMs. 
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5.2.7  Survival analysis of lung cancer patients with drug response predicted by cell line-

trained ENLRs 

We applied the GDSC-trained ENLRs on TCGA lung cancer patients to see if the predicted 

drug responses are correlated with the patients’ survival outcomes (Figure 5.2b). Specifically, for 

each set of chemotherapy drugs of interest, we extract the subset of lung cancer patients that were 

given at least one of the drugs for adjuvant therapy. For each patient that took a drug, we used the 

corresponding ENLR to predict the drug sensitivity probability. We then sorted the patients 

according to their predictions and marked the top 1/3 patients as sensitivity to the drug, middle 1/3 

as intermediate, and tail 1/3 as resistant. Finally, we divided patients into three mutual-exclusive 

groups, sensitive, intermediate, and resistant with the following rules. 

1. A patient is classified into the sensitive group if he is predicted as sensitive to at least 

one of the drugs he was given. 

2. A patient is classified into the resistant group if he is NOT predicted as sensitive to any 

drug AND is predicted as resistant to at least one of the drugs he was given. 

3. All other patients are classified as the intermediate group. 

We used the Python library lifelines 0.23.9 (DOI: 10.5281/zenodo.3727281) to generate 

the Kaplan-Meier curves of the three response groups and compare them using the log-rank test to 

see if the curves are significantly different. 
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5.2.8  Prediction analyses of PANCAN patients with drug responses predicted by cell line-

trained ENLRs 

We also tested our ENLRs on 880 TCGA patients of 15 cancer types extracted from (Z. 

Ding et al., 2016) (see Data). The patients were labeled with four different types of response: 

“Complete Response”, “Partial Response”, “Stable Disease”, and “Clinical Progressive Disease”. 

We considered the first two as indicators of a responder and the last two as indicators of a non-

responder, and we binarized the ground-truth response label accordingly. For each patient, we 

made predictions for all the drugs he took that we have corresponding GDSC1-trained ENLR 

models. The predictions were in the form of probability of sensitivity. The patient is represented 

by the highest probability among all drugs he took (highest prob.) as well as the probability 

calculated through a noisy-or mechanism across the drugs (noisy-or prob.). We then computed 

AUC and F1 scores from the ground-truth label and the predicted probability as a measure to 

evaluate our ENLRs. A threshold of 0.5 was used to binarized the predictions when computing F1 

scores and conducting independent tests. 

5.2.9  Code availability 

The Python code for preprocessing raw data, training DGMs, generating latent 

representations, and doing model and survival analyses, R code for training ENLRs and prediction 

drug responses, and trained DGMs are available upon request. 
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5.3 Results 

5.3.1  Non-paranormal transformation for merging expression data from different 

resources 

The GDSC expression data are microarray data, while the expression data from the CCLE 

and TCGA are RNA-seq data. The different measuring platforms and preprocessing procedures 

resulted in incompatible distributions across the three expression datasets (Figure 5.3a). In order 

to allow a DGM trained on one dataset to be transferrable to the others, we applied a 

nonparanormal (NPN) transformation on each dataset for distribution normalization. As shown in 

Figure 5.3 a and b, after the nonparanormal transformation, the distribution of TCGA, GDSC, and 

CCLE expression data became compatible. In Figure 5.3b, there is an outlier group in the TCGA 

data with higher first component values. This group consists of 879 samples from three neuron 

related cancer types, the Lower Grade Glioma (LGG), Glioblastoma (GBM), and 

Pheochromocytoma and Paraganglioma (PCPG) (Figure 5.3c). These cancer types have distinct 

expression profiles compared to other cancer types due to their special origin of cells. Therefore, 
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we excluded this outlier group from the training dataset, which resulted in a consistent distribution 

across all three data resources as shown in Figure 5.3d. 

 

 

Figure 5.3. NPN transformation of TCGA, GDSC, and CCLE expression data. 

(a) the two-component PCA plot of raw TCGA, GDSC, and CCLE expression data. (b) the PCA plot of TCGA, 

GDSC, and CCLE expression data after NPN transformation. (c) the PCA plot of TCGA expression data with the 

outlier group of neuron-related cancer types highlighted. (d) the PCA plot of TCGA, GDSC, and CCLE expression 

data after NPN transformation and excluding the outlier group. 

 



131 

In addition to the overall distribution compatibility, we next examined whether NPN 

transformation preserves the tumor-type-specific characteristics of samples. We compared the cell 

lines of GDSC with samples in TCGA and cell lines in CCLE by computing the cosine distance 

(1 - cosine similarity) between their expression profiles, and then examined the nearest neighbor 

relationships before and after NPN transformation. We are expecting that NPN transformation 

should not reduce the proportion of GDSC cell lines where their nearest neighbors in TCGA or 

CCLE are of the same tumor type. To determine whether two samples are of the same tumor type, 

we utilized the TCGA cancer type labels of GDSC cell lines to match between GDSC and TCGA 

samples and the tumor type description keywords to match between GDSC and CCLE cell lines. 

The keyword pairs we used are summarized in Supplementary Table S5.2. 

Before NPN transformation, 247 out of 1018 (24.26%) GDSC cell lines had their nearest 

neighbors in TCGA of the same cancer type label. This number increased to 303 (29.76%) after 

the transformation. The GDSC and CCLE cell lines are already aligned well in the original 

expression data space, even though they were measured on different platforms. Specifically, 794 

(78.00%) GDSC cell lines had a CCLE nearest neighbor of the same tumor type, and 789 out of 

1019 (77.43%) CCLE cell lines had a GDSC nearest neighbor of the same tumor type. The similar 

cell line composition between GDSC and CCLE is also supported by the similar contour of the 

distributions of the raw expression profiles as shown in Figure 5.3a. After the transformation, the 

numbers were further increased, with 832 (81.73%) GDSC cell lines had a matched CCLE nearest 

neighbor and 791 (77.63%) CCLE cell lines had a matched GDSC nearest neighbor. Therefore, 

NPN transformation not only preserves the tumor-type-specific information of expression profiles 

but also improves the expression profile matching across datasets by normalizing the data 

distribution. 
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5.3.2  Model selection for learning latent representations 

We trained over 200 DGMs with different training settings (see Methods). We also 

preliminarily tested the potential of the latent representations learned by these models for drug 

sensitivity prediction by training LR models using GDSC2 drug response data (see Methods). The 

performances of the majority of the models are summarized in Supplementary Table S5.1. We 

compared the models based on their validation reconstruction losses and LR AUC scores. From 

these experiments, we obtained the following observations. 

1. VAE-based models had higher reconstruction loss than AE models, and adding L1 

regularization of weight matrices would decrease reconstruction loss for AE-based models but 

increase loss for VAE-based models (Figure 5.4a). 

2. The architecture that generally achieved a lower loss across all model types contained 

three hidden layers with 1000, 500, 1000 hidden nodes respectively (Figure 5.4b). 

3. Pre-training the models with TCGA data then fine-tuning with GDSC data generally 

reduces the reconstruction loss compared to using the GDSC data alone (Figure 5.4c). 

4. Incorporating mutation data did not significantly impact the reconstruction loss 

compared to using expression data alone (Figure 5.4d). 

5. VAE and its extension models generally achieved higher AUC scores compared to AE 

models, when using their latent representations to train LRs for drug sensitivity predictions (Figure 

5.4e, see Methods). 

6. L1 regularization helped improve LR prediction performance (Figure 5.4f). 
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Figure 5.4. Performance comparison for all trained DGMs from the aspects of GDSC expression profile 

reconstruction loss and ordinary logistic regression AUC score. 

 

The reason VAE-based models had higher reconstruction loss compared to AE-based 

models is due to the variational inference step performed on the top hidden layer of VAE encoder. 

This variational inference can be seen as a strong regularization operation. According to our 

previous experience with the LINCS data (introduced in Chapter 4), the variational inference helps 
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VAEs learn more concise and robust latent representations compared to AEs, which are often more 

informative and noisy tolerant for a secondary prediction task. This is supported by the higher LR 

AUC scores for VAE-based models compared to AE-based models (Figure 5.4e). 

Among the VAE-based models, ResVAE consistently outperformed the ordinary VAE and 

RIVAE from the aspect of LR AUC scores when the other aspects of model setting up (e.g, 

architecture, training data, and regularization) are similar (Figure 5.4e and Supplementary Table 

S5.1).  Based on these observations, in the following analyses, we mainly focused on VAE-based 

models, especially ResVAE, with a backbone architecture of 1000-500-1000. 

5.3.3  Weight matrices for transforming mutation data revealing pathway information 

Adding linearly transformed mutation data in ResAE and ResVAE not only helps reduce 

the validation reconstruction loss for the input expression data but also improve the interpretability 

of the model. The weight matrices (𝑊ℎ×𝑀) learned to transform the mutation data provide a 

numeric vector for representing each mutated gene. This vector, the same dimension as the target 

hidden layer the transformed mutation data is added to, quantifies how much the mutated gene 

contributes to hidden nodes. Comparing the vectors between the mutated genes will help reveal 

the functional correlations between the genes. Our assumption is that the more similar the vectors 

of two genes, the more similar the pattern in which they affect the hidden nodes and the expression 

reconstruction process, and the more functional correlated the two genes are. 

To test this assumption, we computed the cosine similarity between the vectors of each pair 

of the 143 input mutation genes and retrieved the top 3 nearest neighbors for each gene. Cosine 

similarity was chosen over other distance measurements to emphasize the direction consistency 

between the numeric vectors. We represented each gene by the corresponding vector from the 
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mutation transformation weight matrix for the first hidden layer. Then we counted the number of 

genes that had their top 1 nearest neighbor gene or at least one of the top 3 nearest neighbor genes 

from the same oncogenic signaling pathway. The ground truth of oncogenic signaling pathway 

assignments was extracted from Figure 2 of (Sanchez-Vega et al., 2018). Among the 143 mutation 

genes, 57 had their signaling pathway information available (in total 10 pathways), so we focused 

on these genes in particular. 

In Table 5.1 we show the counting results of ResAEs and ResVAEs trained with tied-

weight (see Methods). We can see that ResVAE representations are generally much better than 

ResAEs for revealing functional correlations between genes, with significantly more genes having 

their nearest neighbors of the same pathways. In addition, models trained or pre-trained with 

TCGA are better than models trained with GDSC alone. This again supports the usability of larger, 

real tumor data for revealing oncogenic pathway information with deep graphical models.  
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Table 5.1. Mutation genes with nearest neighbors from the same oncogenic signaling pathway. 

DGMa # of genes with top 1 

nearest neighbor of the 

same pathway 

# of genes with at least one of 

top 3 nearest neighbor of the 

same pathway 

ResAE_1000_500_1000_0_TCGA_EN 4 14 

ResAE_1000_500_1000_0_TCGA_DE 5 16 

ResAE_1000_500_1000_0_TCGA_ALL 7 12 

ResAE_1000_500_1000_0_GDSC_FT_EN 4 14 

ResAE_1000_500_1000_0_GDSC_FT_DE 5 13 

ResAE_1000_500_1000_0_GDSC_FT_ALL 6 15 

ResAE_1000_500_1000_0_GDSC_ALL 1 8 

ResVAE_1000_500_1000_0_TCGA_EN 19 30 

ResVAE_1000_500_1000_0_TCGA_DE 10 24 

ResVAE_1000_500_1000_0_TCGA_ALL 16 31 

ResVAE_1000_500_1000_0_GDSC_FT_EN 20 30 

ResVAE_1000_500_1000_0_GDSC_FT_DE 11 23 

ResVAE_1000_500_1000_0_GDSC_FT_ALL 17 27 

ResVAE_1000_500_1000_0_GDSC_ALL 5 14 

ResVAE_1000_500_1000_0_TCGA_FI 21 31 

ResVAE_1000_500_1000_0_GDSC_FT_FI 18 26 

ResVAE_1000_500_1000_0_GDSC_FI 7 13 
aModel nomenclature: ModelType + [ModelArchitecture] + L1Coef. + TrainData + MutationDataLayer. GDSC: 

model trained using GDSC data alone. GDSC_FT: model pre-trained with TCGA data then fine-tuned with GDSC 

data. TCGA: model trained using TCGA data alone. EN: mutation data added to all encoder hidden layers. DE: 

mutation data added to all decoder hidden layers. ALL: mutation data added to all hidden layers. FI: mutation data 

added to the first encoder hidden layer and last decoder hidden layer. 

 

The model with the highest number of genes in Table 5.1 (21 for top 1 and 31 for top 3 

nearest neighbors) is ResVAE_1000_500_1000_0_TCGA_FI, which is a ResVAE model trained 

using the TCGA data and have the transformed mutation data added to the first hidden layer in the 

encoder and the last hidden layer in the decoder with tied-weights. With representations learned 

with this model, many mutated genes had all their top 3 nearest neighbors from the same pathway 

(Figure 5.5). For example, the top 3 nearest neighbors of BRAF were NRAS, NF1, and KRAS, and 

the top 3 nearest neighbors of MAP2K1 were BRAF, NRAS, and HRAS. All these genes are from 

the RTK/RAS pathway (light blue in Figure 5.5), where the products of NRAS and KRAS directly 
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interact with BRAF, and BRAF directly interacts with MAP2K1. Another closely bounded group 

of genes included AKT1, PIK3CA, PTEN, and PIK3R1. They were mutually the top 3 nearest 

neighbors to each other, except for PIK3CA for which the top 1 nearest neighbor was TP53. These 

four genes are from the PI3K/Akt pathway (yellow in Figure 5.5) and are directly interacting with 

each other. Therefore, even though the weight matrix of a ResVAE was randomly initialized and 

the mutated genes were fully connected to all hidden nodes in a layer, without incorporating any 

prior knowledge of gene products interaction topology, the weight matrix was able to learn the 

inner correlations among the mutations, which in turn reveal the functional associations between 

the mutation genes. 
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Figure 5.5. Mutation genes and their top 3 nearest neighbors identified based on DGM-learned 

representations. 

 

We also tested other models without tied-weights, as well as using vectors from weight 

matrices for other hidden layers. In general, the number of mutated genes with pathway-related 

top nearest neighbors were lower in these cases. Introducing tied-weights reduces the number of 

parameters of a model and helps the model converge faster. These tied-weight models were later 

found to be more robust for generating latent representations for drug sensitivity prediction, which 

suggests the tied-weight as a more efficient architecture constraint for combining mutation data 

with expression data. 
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The effects of mutation data also differ across hidden layers, among which the effect to the 

first encoder hidden layer seems to the strongest. It was previously found that the first hidden layer 

of a deep learning model for learning expression data may correspond to transcription factors that 

directly control the expression of genes (Chen et al., 2016). Therefore, incorporating the mutation 

data to the first hidden layer could be more efficient to transmit the information than the other 

layers. This was supported by the model with the highest counts of genes mentioned above, 

ResVAE_1000_500_1000_0_TCGA_FI, which only added the transformed mutation data to the 

first hidden layer of encoder and symmetrically the last hidden layer of decoder. 

5.3.4  Drug sensitivity prediction for cell lines 

Based on the validation reconstruction loss and the AUC score of classic LR models, we 

selected 59 DGMs to generate latent representations for training ENLRs for drug sensitivity 

prediction and compare their performances. These included models representing different model 

types (AE-based and VAE-based), different architectures, and different training settings 

(Supplementary Table S5.3). For each DGM, we trained and selected an ENLR for each drug in 

the GDSC2 response data (Figure 5.2a), and computed the average AUC and F1 score across drugs 

to compare between DGMs (see Methods). We then tested the ENLRs on 12 CCLE drugs available 

in GDSC2 (Table 5.2). The validation and test performances of the 59 DGMs are shown in 

Supplementary Table S5.3. Figure 5.6 compares the performances of ENLRs trained based on 

different DGMs. Similar to what we have observed with LRs, ENLRs trained with VAE-based 

representations generally achieved higher AUC and F1 scores than AE-based representations 

(Figure 5.6 a and b).  The TCGA pre-training step, on the other hand, even though it helped reduce 

the reconstruction loss for GDSC expression data, it did not help predict GDSC drug sensitivity 
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compared to DGMs trained using GDSC data alone (Figure 5.6 c and d). The outcomes for CCLE 

test drugs were more controversial, where DGMs trained or pre-trained with TCGA achieved 

higher AUC and F1 scores, which suggests these models are more generalizable to new data 

(Figure 5.6 c and d). Similarly, adding regularization did not help ENLRs in GDSC validation 

performance but improve CCLE test performance (Figure 5.6 e and f). This inconsistency between 

GDSC validation and CCLE test outcomes may partially due to the limited number of CCLE test 

drugs and may also suggest overfitting among GDSC-trained DGMs. 

 

Table 5.2. Drug name correspondence between GDSC and CCLE. 

GDSC name Available GDSC dataset CCLE name 

Erlotinib GDSC1/GDSC2 Erlotinib 

Irinotecan GDSC2 Irinotecan 

Lapatinib GDSC1/GDSC2 Lapatinib 

Nilotinib GDSC1/GDSC2 Nilotinib 

Nutlin-3a (-) GDSC1/GDSC2 Nutlin-3 

PD0325901 GDSC1/GDSC2 PD-0325901 

Palbociclib GDSC1/GDSC2 PD-0332991 

Crizotinib GDSC1/GDSC2 PF2341066 

PLX-4720 GDSC1/GDSC2 PLX4720 

Paclitaxel GDSC1/GDSC2 Paclitaxel 

Sorafenib GDSC1/GDSC2 Sorafenib 

Topotecan GDSC2 Topotecan 

Tanespimycin GDSC1 17-AAG 

Saracatinib GDSC1 AZD0530 

Selumetinib GDSC1 AZD6244 

PHA-665752 GDSC1 PHA-665752 

Panobinostat GDSC1 Panobinostat 

NVP-TAE684 GDSC1 TAE684 
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Figure 5.6. Performance comparison of ENLRs trained with latent representations from DGMs. 

 

The above experiments were carried out using the GDSC2 drug response data as GDSC2 

adopted a new type of assay to measure cell viability that is more robust than GDSC1. The number 

of drugs and cell lines tested in GDSC2, however, was much smaller compared to GDSC1. 

Therefore, we also tried training ENLRs on GDSC1 response data with latent representations from 

eight DGMs selected based on their validation performances on GDSC2. We tested the ENLRs 

for 16 CCLE drugs available in GDSC1 (Supplementary Table S5.4, Table 5.2). Compared to 
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GDSC2, both the validation and test scores were lower for GDSC1 ENLRs (Supplementary Table 

S5.4). 

 Table 5.3 summarizes the drug sensitivity prediction performance for GDSC2 and 

GDSC1-trained ENLRs. The number of drugs with validation/test AUC above a threshold for the 

best DGM or across all DGMs is shown in Table 5.3. We selected the best single DGM for GDSC 

validation and CCLE test according to the average AUC score across all drugs. The best DGM for 

both GDSC2 and GDSC1 validation is ResVAE_1000-500-1000_0_GDSC_ALI (average 

validation AUC 0.7542 for GDSC2 and 0.7348 for GDSC1), which is a ResVAE with mutation 

data independently transformed and added to all hidden layers. The best DGMs for CCLE test are 

ResVAE_1000-500-1000_50_GDSC_FT_ALL when training with GDSC2 (average test AUC 

0.7702) and ResVAE_1000_500_1000_0_GDSC_FT_ALL when training with GDSC1 (average 

test AUC 0.6997). Both are ResVAEs with mutation data added to all hidden layers with tied-

weight and pre-trained with TCGA data, except that ResVAE_1000-500-

1000_50_GDSC_FT_ALL uses L1 regularization with a coefficient of 50 for all hidden layers. 

The involvement of tied-weight, pretraining and L1 regularization again supports that these 

measures helped prevent overfitting and enhanced the generalizability of GDSC-trained ResVAE 

on new datasets. 

For the 10 CCLE drugs that are both available in GDSC2 and GDSC1 (Table 5.2), the 

average AUC is 0.7649 for GDSC2-trained models and 0.6546 for GDSC1-trained models. This 

suggests that GDSC-trained models can be transferred to CCLE effectively, where GDSC2 

response data are better aligned with CCLE data. 
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Table 5.3. Drug sensitivity prediction performance summary. 

Training 

dataset 

Validation/test 

dataset (# of 

drugs) 

Model for generating latent representations # of drugs with 

latent 

representations 

achieving the 

best prediction 

performance 

Average 

AUC 

# of 

drugs 

with 

AUC > 

0.7 

# of 

drugs 

with 

AUC > 

0.75 

# of 

drugs 

with 

AUC > 

0.8 

# of 

drugs 

with 

AUC > 

0.85 

# of 

drugs 

with 

AUC > 

0.9 

GDSC2a GDSC2 (158)b ResVAE_1000-500-1000_0_GDSC_ALI 110 0.7542 117 82 45 17 3 

Across all models 139 0.7813 137 106 61 31 4 

GDSC2 CCLE (12)c ResVAE_1000-500-

1000_50_GDSC_FT_ALL 

7 0.7702 10 9 5 0 0 

Across all models 10 0.7869 11 9 5 1 0 

GDSC1 GDSC1 (320) ResVAE_1000-500-1000_0_GDSC_ALI 241 0.7348 212 129 68 15 2 

Across all models 273 0.7516 248 152 85 23 3 

GDSC1 CCLE (16)c ResVAE_1000_500_1000_0_GDSC_FT_ALL 12 0.6997 9 5 1 0 0 

Across all models 16 0.7164 9 6 2 0 0 
aFor GDSC2 response data, we only included drugs that had been tested over 100 cell lines for training robustness. 

bFor validation, the reported performance is for 25-fold cross validation. 

cWhen testing on the CCLE data set we only made predictions for drugs that were available in the training dataset. 
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We also combined all available DGMs for GDSC2 and GDSC1 respectively to retrieve the 

overall best ENLR model for each drug (Table 5.3). The highest average AUC we achieved was 

0.7813 for GDSC2 (158 drugs), 0.7516 for GDSC1 (320 drugs), and 0.7869 for CCLE (12 drugs). 

For GDSC2, when all available models were taken into consideration, 137 out of 158 drugs got an 

AUC above 0.7 (86.71%); this proportion is much higher than a previously best classification 

model (83 out of 138 or 60.14%) evaluated with a similar metric (Jang et al., 2014). We also 

counted the number of drugs for which the best performance was achieved with latent 

representations rather than the raw expression profiles. For the majority of drugs (139 out of 158 

for GDSC2 and 273 out of 320 for GDSC1), the best ENLRs were trained with latent 

representations, which proves that DGMs learned to condense information from the raw input 

expression data. 

We also compared our best GDSC1 drug sensitivity prediction model, ResVAE_1000-500-

1000_0_GDSC_ALI + ENLR, with four other DNN based approaches. The first one is the 

previously state-of-art model, DeepDR, for drug sensitivity prediction (Zeng et al., 2019). The 

second one is directly training a DNN in a supervised manner for sensitivity prediction. The DNN 

is composed of 2-4 hidden layers with 20-2500 hidden nodes per layer, and the architecture is 

optimized for each drug. The third approach is replacing ResVAE with an ordinary AutoEncoder 

(AE), following the same setups as in (M. Q. Ding et al., 2018), and the last one is replacing 

ResVAE with and an ordinary VAE of the same backbone architecture. The average 25-fold cross-

validation AUC for the 320 GDSC1 drugs are 0.6695 for DeepDR, 0.7056 for DNN, 0.7250 for 

AE-ENLR, and 0.7319 for VAE-ENLR, all lower than the best ResVAE-ENLR model (Figure 

5.7). 
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Figure 5.7. Violin plots of GDSC1 drug 25-fold cross-validation AUCs of different drug sensitivity prediction 

models. 

 

Since for all validation and test datasets, the single models that achieved the highest 

average AUC scores are ResVAE models (Table 5.3), in the following model analyses, we only 

focus on these ResVAEs for latent representation generations. 

5.3.5  Drug specific cell line latent representations cluster cell lines into groups of distinct 

response rates 

ENLRs use the elastic net regularization to tease out the features that are most correlated 

to the targets being predicted. Informative features will be assigned with a non-zero coefficient 

after training, while others are simply ignored in the final predictive model. In this way, even 

though we used the same type of cell line representations to train ENLRs for all drugs, different 

drugs may turn out to use different sets of genes or hidden nodes for sensitivity predictions. These 
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drug-specific feature sets in-turn generate drug-specific cell line representations that can be used 

to reveal how the genes or hidden nodes are correlated with the drug response. 

With this assumption, we extracted GDSC cell line representations, both raw input 

expression profiles and latent representations from three hidden layers of ResVAE_1000-500-

1000_0_GDSC_ALI, to visualize the correlations between the ENLR selected covariates and drug 

response outcomes. ResVAE_1000-500-1000_0_GDSC_ALI was used as this is the best single 

DGM for drug sensitivity predictions for both GDSC1 and GDSC2 (Table 5.3). For each drug, we 

selected the ENLR trained with the representation type that achieved the highest cross-validation 

AUC and then extracted the significant covariates for this representation type. We constructed the 

drug-specific representations of cell lines by only including the significant covariates, and 

clustered cell lines into groups accordingly to see if they are aligned with the responder group.  

Figure 5.8 and Figure 5.9 show the top 4 drugs, from the aspect of cross-validation AUC, 

of GDSC1 and GDSC2 as examples. Different drugs achieved the best AUC with different 

representation types (raw expression or different hidden layers). Yet, in most cases, cell lines are 

clustered such that responders tend to get close to each other. For example, Lapatinib from GDSC 

1 has the responding cell lines gathering at the top cluster (Figure 5.8a). Venotoclax from GDSC1 

also has most responders in the same cluster at the top, with particularly high and low values of 

hidden nodes in the middle columns that present a reversed pattern compared to non-responding 

cell lines (Figure 5.8b). A similar trend can also be observed in VNLG-124 in GDSC1 (Figure 

5.8c) and Venotoclax in GDSC2 (Figure 5.9c). In these cases, most responders are in the same 

cluster that split from the majority of the other non-responding cell lines at a high level in the 

dendrogram, which presents distinct representation patterns, and are not specifically correlated 

with tissue type (Figure 5.8 and Figure 5.9). 
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Figure 5.8. Drug-specific cell line representations and cell line clustering for top 4 drugs from GDSC1-trained 

ENLRs. 

The top 4 drugs are the drugs with the highest AUC from GDSC1-trained ENLRs. Each cell line is represented by 

the subset of genes or hidden nodes that received a non-zero coefficient from the ENLR trained with the 

representation type that gave the best AUC across all representation types (row expression and latent 

representations) 
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Figure 5.9. Drug-specific cell line representations and cell line clustering for top 4 drugs from GDSC2-trained 

ENLRs. 

The top 4 drugs are the drugs with the highest AUC from GDSC2-trained ENLRs. Each cell line is represented by 

the subset of genes or hidden nodes that received a non-zero coefficient from the ENLR trained with the 

representation type that gave the best AUC across all representation types (row expression and latent 

representations) 

 

In other cases, Afatinib in GDSC1 (Figure 5.8d) and Nutlin-3a(-) in GDSC2 (Figure 5.9b) 

specifically, subgroups exist in non-responding cell lines or responding cell lines. For Afatinib, 
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there are two major subgroups of non-responders, one on the top with particularly high values in 

hidden nodes clustered on the left and low values in hidden nodes clustered on the right; one on 

the bottom with low values in the hidden nodes on the left (Figure 5.8d). Despite that they are not 

responding to Afatinib, the distinct hidden node patterns of the two groups suggest that molecular 

subtypes exist in these non-responders, and they may potentially present different sensitivities to 

other drugs. For Nutlin-3a(-), an outlier group was clustered on the top. Even though this group 

has a similar responder proportion as the other few clusters below, it has a distinct latent 

representation pattern with significantly low values of hidden nodes clustered on the left and high 

values of hidden nodes in the middle. As a result, this responder-enriched group can be more easily 

distinguished from non-responders. On the other hand, the other responding cell lines are less 

discriminative from the aspect of latent representations compared to non-responding cell lines, 

thus it becomes harder to attribute their sensitivities to the hidden nodes. 

In the above cases, the responding cell lines are not specifically correlated with tissue type. 

This is not the case for OSI-027 in GDSC2 (Figure 5.9a), where most responders are breast cancer 

cell lines (deep red). OSI-027 is a small molecule that targets mTORC1 and mTORC2 (Mateo et 

al., 2016) and has been used in clinical trials for the treatment of advanced solid tumors or 

lymphoma. It is not specifically known to work on breast cancer, but the heatmap we show here 

indicates that breast cancer cell lines present a unique latent representation pattern and are more 

likely to respond to this drug compared to other tissue types. Similarly, Niltonib was mainly used 

to treat chronic myelogenous leukemia, but it also presents a higher responding rate for the breast 

cell lines (Figure 5.9d); these cell lines also present a distinct latent representation pattern for them 

to be clustered together. These tissue-specific observations, though not directly resulted from the 

use of ResVAE, are still valuable for guiding drug usage repurposing, thus we point them out here. 
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5.3.6  Pathway specific cell line latent representations correlate with pathway targeting 

drug sensitivity 

Instead of examining each drug independently, we moved on to the groups of drugs that 

target the same signaling pathways to see if the responding cell lines to these drugs share a similar 

latent representation profile. This can, in turn, help identify hidden nodes that are specific 

indicators of the state of signaling pathways. 

In this case, we examined drugs in GDSC1 as GDSC1 contains more drugs than GDSC2 

as well as tested them on more cell lines. From the top 50 drugs in GDSC1 we predicted using 

ResVAE_1000-500-1000_0_GDSC_ALI and ENLR, we identified drugs that targeting four 

cancer-driving signaling pathways, including EGFR pathway, ERK/MAPK pathway, PI3K/mTOR 

pathway, and RTK pathway. For drugs that target the same pathway, we combined the significant 

covariates from the ENLRs trained on the first hidden layer representations and generated 

pathway-specific representations of cell lines. The first hidden layer was chosen as this is often the 

most informative layer for drug sensitivity prediction judging from both validation AUCs and 

representation heatmaps. Figure 5.10 visualizes the representations and the clustering of cell lines. 

As we have expected, cell lines that are sensitive to a drug are more likely to respond to other 

drugs with the same target. For EGFR, PI3K/mTOR, and RTK pathways, responding cell lines 

tend to be clustered together according to the latent representations. For PI3K/mTOR and RTK 

pathways in particular, whether a cell line is responding to the drugs is strongly correlated with a 

few hidden nodes (Figure 5.10c and d). Specifically, having high values in hidden nodes 730, 614, 

947, and/or 728 and low values in 76, 787, 596, and/or 304 would confidently indicate a cell line 

as sensitive to drugs targeting the PI3K/mTOR pathway (Figure 5.10c). Having high values in 

nodes 944, 444, 425, 251, 558, and/or 639 and low values in nodes 371, 274, 787, 247, 508, and/or 
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686 would likely make a cell line responding to drugs targeting the RTK pathway (Figure 5.10d). 

These hidden nodes capture the pathway status information from the expression profile and can 

serve as sensitivity indicators for judging whether a new sample may respond to the pathway 

targeting drugs in the future. 

 

 

Figure 5.10. Signaling pathway targeting drugs latent representations and response clustering for GDSC1. 

 

Such dense clustering of responders and strong indicators of sensitivity, however, does not 

exist with the ERK MAPK targeting drug representations (Figure 5.10b), where responders 
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distribute across all cell lines. The only subgroup that is more enriched in responders is aligned 

well with the tissue type melanoma (brown, middle rows in Figure 5.10b). The ERK/MAPK 

signaling pathway is known to be essential in the progress of melanoma skin cancer (Savoia, Fava, 

Casoni, & Cremona, 2019), therefore, melanoma cell lines are naturally more sensitive to the 

pathway targeting drugs. Despite the less clear separation between responding groups, distinct 

inherent representation patterns still exist in different clusters of cell lines that mix various tissue 

types. Therefore, tissue type or cell of origin is not the only factor that affects the expression profile 

and determines a tumor’s drug sensitivity. More fundamental disease mechanism effects, as 

revealed by the latent representation, provide crucial information towards whether a tumor is 

responding or not to a drug. 

Together with the responding outcomes and tissue types, we also show the mutation state 

of genes in the corresponding signaling pathway in Figure 5.10. These include EGFR for EGFR 

signaling pathway, MAP2K1, MAP2K4, MAP3K1, MAP3K4, and MAP4K3 for ERK/MAPK 

signaling pathway, and MTOR, PIK3C2B, PIK3CA, PIK3CB, PIK3R1 for PI3K/mTOR. Despite 

the direct participation of these genes in the signaling pathways, the gene mutation states are not 

strongly correlated with the sensitivities of cell lines to the pathway targeting drugs. For the 

PI3K/mTOR pathway in particular (Figure 5.10c), the PIK3CA mutation is even more frequent 

among non-responding cell lines than responding cell lines. When using the mutation states as 

markers and predicting a cell line as sensitive to the drugs if it carries at least one of the related 

mutations, the average positive prediction value (PPV) is 0.2062 for the five EGFR pathway 

targeting drugs, 0.2125 for the ten ERK/MAPK pathway targeting drugs, and 0.1744 for the four 

PI3K/mTOR pathway targeting drugs. The average false omission rate (FOR) is 0.1037 for EGFR 

pathway, 0.2095 for ERK/MAPK pathway, and 0.1508 for PI3K/mTOR pathway. The low PPVs 
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and relatively high FOR suggests that mutations may not be the best markers for guiding drug 

assignment for cancer patients, despite its being overwhelmingly adopted in clinic. On the other 

hand, the drug-specific latent representations learned by our models are more informative towards 

drug responses, which can serve as better indicators for treatment selection. 

Observing the descent alignment of response profiles of drugs targeting the same pathway, 

as shown in the sidebars of Figure 5.10 a, c, and d, it may be tempting to train a single ENLR for 

each signaling pathway by combining data of drugs that target the pathway. The increment in the 

training data should improve the generalizability of the resulting ENLR. The important assumption 

underlying is that drugs that share a similar targeted process should lead to a similar sensitivity 

outcome to the same set of cell lines. This assumption, however, does not always hold. Figure 5.11 

visualizes the pairwise Pearson correlations between 320 drugs in GDSC1. A correlation was 

computed using the response profiles of two drugs across all cell lines that the two drugs were both 

tested on. The drugs were then clustered based on the pairwise correlations (1- Pearson correlation 

as distance) and the targeted pathways of interest were highlighted. Except for the EGFR pathway 

targeting drugs that are highly pairwise correlated and hence clustered together (yellow in Figure 

5.11), the other drugs generally do not share a similar response profile for them to be grouped. 

This suggests different mechanisms of action (or off-target effects) exist among drugs that are 

supposed to target the same cellular process. 
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Figure 5.11. Pairwise Pearson correlation between GDSC1 drugs. 

Correlations were computed using the response profiles of each pair of drugs over cell lines that both drugs were 

tested on. Drugs are clustered based on the correlations. 

 

Nonetheless, we gave it a try to train an ENLR for EGFR pathway, ERK/MAPK pathway, 

PI3K/mTOR pathway, and RTK pathway separately by combining cell line representations and 

labels of drugs that target the pathway. Since a cell line could be tested on multiple drugs, when 

combining drugs, we randomly jittered the representations a little to avoid exact repeats in the 

training data. We then computed the 25-fold validation AUC for each drug by training and 

applying the pathway ENLR iteratively to see if the training data augmentation improves the 

performance for member drugs. The outcomes, however, were generally undesirable, thus are not 
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shown here. Though a few drugs received a slightly higher AUC and hence benefited from the 

increment of training data, the others experienced a significant drop in AUC compared to using 

the drug-wise ENLRs. 

The weak correlations between drugs targeting the same process, as shown in Figure 5.11, 

suggest that the inherent diversity in the drug effects cannot be simply ignored, and combining 

their data to train a single model is statistically inappropriate. One explanation is that drugs target 

the same pathway by targeting different members on the pathway. A cell line that responds to a 

drug due to a misfunction of a member protein may not respond to another drug that targets the 

same pathway but through a different member upstream or downstream that cannot eliminate the 

impact of the problem protein. Drug off-target effects and other side-effects may also contribute 

to the inconsistent sensitivity outcomes for the same cell line. Consequently, we did not move 

forward training pathway-level predictive models and stick with drug-wise models for our 

following analyses.  

5.3.7  Transfer cell line sensitivity prediction models to cancer patients 

So far we have shown that DGM latent representations together with ENLR are very 

effective in predicting drug sensitivities for cell lines. We next examined whether these in vitro 

models can be applied to real patients. 

We first selected lung cancer patients (LUAD + LUSC) from TCGA with drug usage 

information as a test patient group. Since drug response data are not available for many of these 

patients, in order to determine whether the predictions correctly reflect the drug response status of 

patients, we compared the survival outcomes of patients that were predicted as sensitive vs. 

resistant by our models. Our assumption is that a patient that is predicted as sensitive to a drug 
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prescribed to the patient is more likely to survive longer compared to a patient that also took the 

drug but is predicted as resistant. We only included patients that took chemotherapy drugs as 

adjuvant therapy to further rule out other confounders that may impact the survival outcome other 

than drug usage. 

For LUAD and LUSC specifically, we focused on four drugs, Cisplatin, Pemetrexed, 

Paclitaxel, and Vinorelbine, that are commonly used in the treatment protocol for lung cancer and 

have been tested in GDSC1. This resulted in a dataset with 64 adjuvant LUAD and LUSC patients, 

where 42 were given Cisplatin, 19 were given Pemetrexed, 18 were given Paclitaxel, and 10 were 

given Vinorelbine (some patients were prescribed multiple drugs). We used our GDSC1-trained 

ENLRs to generate the predictions and classify patients into three groups, sensitive, intermediate, 

and resistant (see Methods and Figure 5.2b). We compared the ENLRs trained with latent 

representations from different DGMs to see if any DGMs would result in a division of patients 

with significantly different survival curves. It turned out that for the eight DGMs that we trained 

GDSC1-based ENLRs (Supplementary Table S5.4), the predicted sensitivity probabilities for these 

four drugs were always negatively correlated with the hazard rate of survival if running a Cox 

Regression. A negative correlation with the hazard rate means the higher the probability a patient 

is predicted as sensitive to the drug, the higher the probability the patient survives longer. Thus, 

our drug sensitivity predictions correctly reflect the effectiveness of taking drugs to improve 

survival outcomes. 

Among the models, predictions generated with ENLRs trained with latent representations 

from ResVAE_1000_500_1000_0_GDSC_FI resulted in the most significant survival division of 

the patients, with a multi-variate log-rank test p-value of 0.0298. As shown in Figure 5.12a, the 

sensitive group survived significantly longer than the intermediate group, followed by the resistant 
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group. If only the two most significant drugs, Cisplatin and Pemetrexed were included, the patients 

were divided into groups as shown in Figure 5.12b, with a multi-variate log-rank test p-value of 

0.0464. We repeated the whole experiments multiple times by independently training ResVAE of 

the same architecture with different random initializations and training downstream ENLRs to 

regenerate predictions. The patient division outcome may be slightly different across runs, but the 

trend of significantly different survival curves for the three patient groups remained the same. 

Therefore, our ResVAE latent representation trained ENLRs can successfully discriminate lung 

cancer patients into different drug response groups that are correlated with survival outcomes. 

ResVAE_1000_500_1000_0_GDSC_FI is a ResVAE model trained using only GDSC 

data with mutation data adding to the first and last hidden layers. Its outstanding performance in 

this transferring learning supports that the information of the mutation data is more efficiently 

incorporated into the model through the hidden layer that is the closest to the expression data; the 

same conclusion as we drew in analyzing mutation representations above.  
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Figure 5.12. Kaplan-Meier curves of three drug response groups of lung cancer patients that took 

chemotherapy drugs for adjuvant therapy. 

(a). Patient groups divided by predictions of Cisplatin, Pemetrexed, Paclitaxel, and Vinorelbine. (b). Patient groups 

divided by predictions of Cisplatin and Pemetrexed. 

 

We moved on to apply our ResVAE_1000_500_1000_0_GDSC_FI and ENLRs on a 

PANCAN TCGA dataset that contains drug usage and overall treatment response information of 
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880 patients from 15 cancer types (see Methods). In total, 31 drugs were prescribed for these 

patients that were also tested in GDSC1. For each patient, we make sensitivity predictions for all 

the drugs he took that we also had a prediction model. A patient was then represented by two 

measures, one is the highest sensitivity probability (max prob.) among his drug predictions, which 

represents the probability that the most probable drug had worked; one is the noisy-or sensitivity 

probability (noisy-or prob.) calculated from his predictions, which represents the probability that 

at least one drug had worked if all drugs worked independently. A patient was then marked as 

sensitive if the measure, max prob. or noisy-or prob, is above 0.5, and resistant if equal or below 

0.5. We compared the survival curves between the sensitive and resistant patient groups as shown 

in Figure 5.13. Patients that were predicted as sensitive to their treatments survived significantly 

longer than patients predicted as resistant, with a log-rank test p-value 0.0020 for max prob. and 

0.0207 for noisy-or porb., respectively. This again demonstrates the utility of our models on real 

patients. 

 

 

Figure 5.13. Kaplan-Meier curves of TCGA patient groups divided by max prob. vs. noisy-or prob. 
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We also computed the AUC score between the prediction probabilities and the clinical 

response outcomes provided by the dataset. The AUC scores are 0.5478 for the highest prob. and 

0.5451 for the noisy-or prob. The AUCs are not themselves very impressive for three reasons. First, 

among the 152 drugs taken by the patients, only 31 were tested in GDSC for which we can make 

predictions. Patients that have a positive disease outcome (‘Complete Response’ or ‘Partial 

Response’, see Methods) may respond to other drugs they took that we have no corresponding 

models. As a result, our models are incapable of predicting these patients as responders. Second, 

the overall responding rate of these TCGA patients, 66.45%, is much higher than the average 

GDSC1 drug sensitivity rate, 23.78%. In other words, the label distribution of these patients is not 

statistically compatible with the GDSC1 data we used to train the ENLRs, which underlies the 

hardness for transferring the models for this specific dataset. Indeed, a higher proportion of patients 

were predicted as non-responders (resistant) than should be (Table 5.4). Nonetheless, the true 

positive rate (69.83%) is significantly higher than the false-negative rate (62.97%) and the 

contingency table passes the Chi-square independency test with a p-value of 0.0335. In other words, 

a patient predicted as sensitive to his treatment is more likely to be a real responder than a patient 

predicted as resistant. 
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Table 5.4. Contingency table of TCGA patients true response state and predicted response state from noisy-

or probabilities. 

Number of patients Predicted responder Predicted non-

responder 

Sum 

True responder 324 284 608 

True non-responder 140 167 307 

Sum 464 451 915a 

aThe number is larger than the number of patients 880 as some patients took multiple therapeutic regimens through 

the treatment and each resulted in a different outcome. We made predictions for each of such cases. 

 

The third reason that the overall performance over TCGA patients is less impressive is due 

to the mixing of cancer types. Patients of different cancer types have very different survival 

expectations due to the nature of the tumors. They also underwent different treatment protocols 

and were given different drugs, for some of which our models generate more accurate predictions. 

Indeed, after we examined each major cancer types independently, we noticed that our models 

work better for certain cancer types, particularly for LUSC. Our predictions divided LUSC patients 

into survival-related groups as shown in Figure 5.14, which agrees with our analyses of the lung 

cancer patient set above. In fact, the patient groups we identified are more correlated with the 

survival outcomes compared with the clinical response label, where the log-rank test p-value is 

0.1307 for clinical labeled groups and 0.0024 for our prediction-divided groups. 
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Figure 5.14. Kaplan-Meier curves of LUSC patient groups divided by true response outcome labels vs. noisy-

or predicted response labels. 

5.4 Discussion 

In this chapter, we systematically examined the potential of DGMs in learning latent 

representations from expression data for drug sensitivity prediction. We compared six different 

types of  DGMs, including the ordinary AE and VAE, and four extension models, ResAE, ResVAE, 

RIAE, and RIVAE. We incorporated mutation data into the extension models to utilize the causal 

relationships between gene mutations and expressions to enhance feature learning from expression 

data. We showed that adding the mutation information significantly improved both the 

representation learning and drug sensitivity prediction performances, where ResVAEs 

outperformed the other DGMs on all tasks we measured. 
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The most efficient way of incorporating mutation data into a ResVAE for reconstructing 

expression data is by adding the mutation information into the first and last hidden layers of the 

model. This is supported by the pathway-informative mutation gene representations learned from 

ResVAE_1000_500_1000_0_TCGA_FI (the suffix “_FI” indicates the mutation data is added to 

the first and last hidden layers, same below), the drug-response-related cell line representations 

constructed from the first hidden layer of  ResVAE_1000-500-1000_0_GDSC_ALI (Figure 5.8, 

Figure 5.9, and Figure 5.10), and the best model, ResVAE_1000_500_1000_0_GDSC_FI, for 

making predictions for real patients. The first and last hidden layers are directly connected with 

the input and output expression data layers, which may represent the effects of transcript factors 

or signaling pathways in real cells (Chen et al., 2016). As a result, the gene expression regulatory 

information from mutation data is more efficiently transmitted to the DGM by interacting with 

these layers. 

The pathway-informative mutation gene representations and the capability of latent 

representations for clustering cell lines into groups of distinct patterns also suggest that ResVAE, 

though as a deep neural network model, is not simply a black-box. Although no pathway or disease 

mechanism information was directly incorporated into the ResVAE, the mutation gene 

representations learned from the model are more similar if the genes are members of the same 

signaling pathway; the change of pathway status in an input sample is also strongly correlated to 

the value of a few hidden nodes on the first hidden layer (Figure 5.10). Even though a clear 

mapping between biological functional modules and a ResVAE model architecture is not yet 

established, these observations provide ResVAE with a moderate level of interpretability, which 

is not available with a classic DGM like AutoEncoder. 
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In the meantime, the latent representations learned from ResVAE turned out to be better 

aligned with drug sensitivities than the mutation state of drug-targeting-pathway genes, despite 

that mutations have been commonly used as markers for guiding drug assignment. Both the model 

interpretability and the stronger drug response indicative information equip ResVAE with a high 

potential for clinic use. 

We used the latent representations of cell line expression data generated by DGMs to train 

ENLRs to predict binary drug response for GDSC and CCLE cell lines. We showed that for most 

drugs, the models trained on GDSC cell lines can be transferred to CCLE cell lines. Our models 

achieved an average AUC > 0.78 for both GDSC2 drugs and CCLE test drugs. For the GDSC 

drugs that were consistently receiving low AUC scores, most of them were either highly biased 

labeled, with a small fraction of sensitive training cell lines (e.g. < 5%), or only tested on a small 

number of cell lines, both of which prevent obtaining a robust ENLR. We also noticed that for 

certain drugs, like Nutlin-3, the GDSC validation AUC was always significantly higher than the 

CCLE test AUC (>0.9 for Nutlin-3a in GDSC2 and < 0.7 in CCLE), which suggest a failed transfer. 

Nutlin-3a, specifically, was contradictorily reported among the hardest or easiest predicted drugs 

when only considering CCLE data (Q. Li et al., 2019; X. Wang et al., 2019; N. Zhang et al., 2015). 

The relatively high AUC for Nutlin-3 in GDSC and the failure of applying the GDSC trained 

Nutlin-3 model to CCLE may suggest an inconsistency between GDSC and CCLE measurements, 

which should be cautiously treated in further studies. 

The ultimate goal of developing drug response prediction models is to apply them on real 

patients to guide drug selection and improve treatment protocol. In this study, we briefly examined 

the potential of transferring the models to real patients by classifying TCGA patients into different 

drug response groups and compared their survival outcomes. As we have expected, the patients 
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that were classified as sensitive to chemotherapy drugs had significantly better survival outcomes 

than patients that took the same drugs but were predicted as resistant. This supports that our drug 

sensitivity prediction models can be transferred to make predictions for real patients and improve 

personalized cancer therapy. 

Most DGMs we used to generate the final results shown here were trained on GDSC cell 

line data. We also tried pre-training DGMs with TCGA data to take advantage of transferring 

learning with a large dataset. This pre-training step reduced the loss for reconstructing the GDSC 

expression profile and resulted in more robust latent representations for predict drug response on 

the test CCLE dataset. The GDSC-alone-trained DGMs, on the other hand, are better at predicting 

GDSC cell line drug responses. A similar inconsistency between the validation GDSC data and 

test CCLE data was observed for regularization, where adding regularization to DGMs helped 

improve test performance but not validation. These observations suggest that the DGMs may be 

slightly overfitted on GDSC data. Like other deep learning models, the deep hierarchy and flexible 

architecture guarantee DGMs with great power to learn the distribution of the input data, which 

can easily overfit on small datasets compared to traditional shallow models. This, however, also 

indicates that the learning potential of DGMs has yet been fully exploited given the limited amount 

of data. We are expecting that with the fast-growing of genomic and drug response data, we will 

be able to learn more informative representations for drug response prediction in the short future. 
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6.0 Discussion, conclusions and future work 

In this dissertation project, we demonstrated the utility of machine learning techniques, 

especially deep generative models (DGMs), for learning cellular signaling state representations 

and predicting drug responses.  

We first designed a graph-based machine learning framework, which uses tumor-specific 

causal relationships between somatic genetic alterations (SGAs) and differentially expressed genes 

(DEGs) to identify DEG modules that each represent the differential expression outcomes resulted 

from an aberrant signaling pathway. We applied the model on TCGA and METABRIC data and 

showed that the identified DEG modules are indicative of the disease mechanism of each tumor, 

which can be utilized to divide cancer patients into subtypes of different survival outcomes. 

The DEG modules were simply represented as the average expression level of all genes in 

a module. To learn more interpretable cellular state representations that capture comprehensive 

information from expression data, we switched to DGMs for representation learning. We 

implemented the variational autoencoder (VAE) and designed a new model, the supervised vector-

quantized variational autoencoder (S-VQ-VAE) for learning individual and global representations 

from the LINCS L1000 expression data. We found that the trained VAEs can accurately 

reconstruct the distribution of input expression profiles and generate sample-specific latent-

representations that enhance drug-gene target predictions. The drug class representations learned 

by S-VQ-VAE can reveal mechanism-of-action correlations between different drugs, which can 

be further utilized for guiding drug development and drug re-purposing. 

After observing the utility of DGMs for refining information from expression data, we 

moved on to apply DGMs for drug sensitivity prediction, which will directly promote precision 
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oncology. In this case, we designed four new DGMs, ResAE, ResVAE, RIAE, and RIVAE, that 

incorporate the mutation data to further enhance representation learning and improve model 

interpretability. We compared them with ordinary autoencoder (AE) and VAE for learning 

representations from GDSC and CCLE expression data. We showed that for most drugs of interest, 

DGM latent representations produced higher AUC compared to raw expression data when using 

elastic net logistic regressions (ENLRs) for drug sensitivity prediction. The mutation gene 

representations learned from new models also revealed functional correlations, from the aspects 

of oncogenic signaling pathways, between the mutated genes. We applied the cell line-trained 

ENLRs to real patients and showed that patients predicted as resistant to the drugs they were given 

had significantly worse survival outcomes compared to patients predicted as sensitive. This 

represents a successful transfer learning from in vitro data to in vivo applications. Our drug 

sensitivity prediction models, therefore, have the potential to be deployed as a decision-supporting 

tool to facilitate personalized drug selection. 

From the graph-based module detection framework to more advanced DGMs, step by step, 

our results support the value of machine learning techniques for representation learning from 

genomic data and their potential to promote precision oncology. Thus, the methods introduced 

here represent a step towards more domain-specific, comprehensive, and interpretable deep 

learning models for use in biomedical research and clinical applications. 

One major shortcoming of general deep learning models is their interpretability. In many 

cases, an uncontroversial interpretation of the architecture of a deep generative model or a clear 

one-to-one mapping between model structural components and cellular function components is 

not available. We partially resolved this problem by designing new DGMs including S-VQ-VAE, 

ResVAE, etc, for learning interpretable representations from expression and mutation data. We 
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understand, however, the connections between our models and a real cellular signaling system are 

often indirect, and developing more interpretable DGMs is the main focus in our future work. This 

may be realized by designing hybrid model architectures that incorporate new deep learning 

techniques like multi-attention and/or graph neural networks and integrate the signaling network 

topology information into the model as prior knowledge. 

In this dissertation project, we preliminarily tried applying drug sensitivity prediction 

models trained on cell line data to real patients, which produced promising results. To obtain a 

more robust computational tool for serving patients, another major direction for future work is to 

train DGMs and drug sensitivity prediction models directly on data collected from real tumors. We 

are currently working on this direction to prepare a large dataset for new model development.  
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Appendix A Supplementary tables 

The supplementary tables cited in chapter 3 and chapter 5 have been deposited in D-

Scholarship@pitt and are available at http://d-scholarship.pitt.edu/cgi/export/40249/HTML/d-

scholarship-40249.html 

 

http://d-scholarship.pitt.edu/cgi/export/40249/HTML/d-scholarship-40249.html
http://d-scholarship.pitt.edu/cgi/export/40249/HTML/d-scholarship-40249.html
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