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We explored interaction cold atoms in new quantum regimes that have no prior analogue

in condensed matter materials in three related main topics. First, motivated by recent

advance in orbitally tuned Feshbach resonance experiments, we analyze the ground-state

phase diagram and related low-energy excitation spectra of a high partial wave interacting

Bose gas. Remarkably different from what was previously known in the p-wave case, the

atomic superfluid is found to be momentum-independent in the present d-wave case. What

is more, we study the quantum fluctuations in the condensates of a mixture of bosonic atoms

and molecules with interspecies p-wave interaction. Our analysis shows that the quantum

phase of coexisting atomic and molecular condensates is unstable at the mean-field level.

The quantum Lee-Huang-Yang correction to the mean-field energy provides a remarkable

mechanism to self-stabilize the phase. The correlated order spontaneously breaks a rich

set of global U(1) gauge, atomic spin, spatial rotation and translation, and time-reversal

symmetries.

Second, we study the dynamics of a non-integrable spin chain model composed of two

ingredients - a nearest neighbor Ising coupling, and an infinite range XX interaction. Unlike

other fast scrambling many-body systems, this model is not known to be dual to a black

hole. We demonstrate that our model exhibits fast scrambling for a wide parameter regime,

accompanied by a fast growth of the entanglement entropy, as well as a swift change in the

magnetization.

Third, to extend the study of the highly chaotic many-body model, we analyze the ground

state phases of the model with a nearest neighbor XXZ interaction and an infinite range XX

interaction. By employing spin-wave theory, we find that there is a large parameter regime

where the continuous U(1) symmetry of this model is spontaneously broken, which is not

possible in the absence of the infinite range interaction by the Mermin-Wagner theorem.
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Furthermore, we demonstrate that in the U(1) symmetry broken phase, the half chain en-

tanglement entropy violates the area law logarithmically. Our work demonstrates that the

interplay of short and long range interactions can lead to novel quantum phases of matter.
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1.0 Introduction

In the past three decades the outlook of condensed matter physics has been deeply and un-

expectedly revolutionized by a few experimental breakthroughs in atomic physics, quantum

optics and nanoscience. Equilibrium systems can often be understood using a combination

of a mean field theory, renormalization group, and universality. This allows us to understand

low temperature experimental data obtained in complex systems, such as interacting bosons,

in terms of simple effective models containing a few relevant parameters [3].

As the milestone of the history of Bose-Einstein condensate, the repulsive interacting

bosonic gases has been observed in a macroscopic regime experimentally [4] in a Rubidium

system, where the atoms were confined in magnetic traps and cooled down to extremely

low temperature, of the order of fractions of microkelvins. Countless of experiments were

applied to BEC with s-wave interaction [5, 6, 7, 8]. However, as the development of the

narrow Feshbach Resonance techniques, more and more attentions are addressed to bosonic

systems with high-partial wave interactions, due to their unique properties, such as the

finite momentum superfluidity and time reversal symmetry breaking [9, 2, 10]. We predict

a possible realization of self-confinement BEC with p-wave interaction, which breaks the

spherical symmetry naturally [11].

Away from equilibrium the situation is much less clear. The dynamics of thermalization

in closed quantum systems has received immense attention in recent years [12, 3, 13, 14, 15].

A central focus of these studies has been the ”scrambling” of quantum information [16, 17,

18, 19]. Scrambling is the process by which locally encoded information gets spread over non-

local many- body degrees of freedom during the time evolution of a complex quantum system.

This paradigm has been used to address a diverse array of questions in areas ranging from

quantum chaos to quantum gravity [20, 21, 22, 23]. Several recent experiments in a variety

of analog quantum simulator platforms have successfully probed quantum scrambling [24,

25, 26, 27], thereby paving the path to answer fundamental questions about non-equilibrium

quantum dynamics.
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2.0 Scattering and Feshbach Resonance

Due to the rich internal energy-level structure, an atom can interact with external electric

and magnetic fields to induce effective trapping potentials. In this chapter, we will introduce

the scattering between two atoms with the existence of an external magnetic field, i.e., the

Feshbach resonance, which is a key ingredient of ultracold atomic physics.

2.1 Scattering

In this section, we will study the scattering of two atoms [28]. If one neglects small rela-

tivistic spin interactions, the solution of the Schrödinger equation for the relative motion can

describe the collision process. For example, For positive energy ε, the s-wave wavefunction

in the asymptotic region r � R0 can be written as

ψ0(r) ∝ sin[kr + δ0(k)]/r, (2.1)

where r = |r1− r2| is the relative coordinate of the two atoms, R0 is the spatial range of the

interatomic potential, δ0(k) is the s-wave phase shift and k =
√

2mrε/~ is the wavevector of

the scattering wave with mr the reduced mass of the pair of atoms (mr = m/2 for identical

atoms). The s-wave scattering amplitude does not depend on the scattering angle and is

given as

f0(k) =
1

−k cot δ0(k) + ik
. (2.2)

The quantity a is the s-wave scattering length, which plays a crucial role in the scattering

processes at low energy. It is defined as a = −f0(k → 0). By including terms to order k2 in

the expansion of the phase shift δ0(k) at low momenta one obtains the result

f0(k) = − 1

a−1 − k2R∗/2 + ik
, (2.3)

defining the effective range R∗ of interactions. This length scale is usually of the same order

of the range R0, however in some cases, e.g . close to a narrow Feshbach resonance, it can
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become much larger than R0 providing a new relevant scale. In the limit a → ∞, referred

to as “unitary limit”, the scattering amplitude (2.3) at wavevectors k � 1/|R∗| obeys to the

universal law f0(k) = i/k, independent of the interaction.

In the many-body treatment of interactions it is convenient to use an effective poten-

tial Veff instead of the microscopic potential V . In many applications one introduces the

regularized zero-range pseudo-potential defined as (Huang and Yang, 1957)

Veff (r) = gδ(r)
∂

∂r
r , (2.4)

where the coupling constant g is related to the scattering length by the relationship g =

2π~2a/mr. This potential has a range R0 = 0 and results in the scattering amplitude

f(k) = −1/(a−1 + ik).

2.2 Feshbach Resonance

By changing an external magnetic field, it is possible to tune the scattering length a

to the values much larger than the interatomic distance. This situation exists near the so

called Fano-Feshbach resonances [29, 30]. These resonances take place when the energy

associated with the scattering process between two particles (referred to as open channel)

becomes close to the energy of a bound state of the pair in a different spin state (closed

channel). For example, for spin-triplet and spin-singlet states, their magnetic moments are

totally different. Thus the energy gap between spin-triplet open channel (free scattering)

and spin-singlet closed channel (weakly bound state) can be tuned by using the external

magnetic field. When the energy of the closed channel is close to the energy of the open

channel, the free scattering process will have resonance with this weakly bound state, and the

scattering length diverges. The transition between the two situations takes place at some

value (denoted by B0) of the magnetic field. In the absence of coupling, the existence of

the bound state in the closed channel has no effect on the scattering in the open channel.

However, in the presence of small coupling induced for example by exchange interactions,

the scattering length will be large and positive if the state is below threshold and large and
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negative in the opposite case. As a function of the magnetic field B the scattering length

can be parametrized in the following form

a = abg

(
1− ∆B

B −B0

)
, (2.5)

where ∆B is the width of the resonance and abg is the background scattering length away

from the resonance. We can see that a changes from positive to negative infinity as an

increasing B across B0, or vice versa. An example of Feshbach resonance of 6Li is shown in

Fig. 1.

Figure 1: Magnetic field dependence of the scattering length in 6Li, showing a broad Feshbach

resonance at B0 ' 834 G and a narrow Feshbach resonance at B0 ' 543 G [1].
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3.0 Finite-momentum Superfluidity and Phase Transitions in a p-wave Resonant Bose

Gas

In this chapter, we will talk about the the superfluidity and phase transitions of resonant

Bose gases with high order interactions [2]. Feshbach resonance (FR) has brought us the

possibility to manipulate degenerate atomic gases in studies of highly coherent, interacting

quantum many-body systems. We are able to finely control the two-body interactions by

tuning with an external magnetic field through the atomic continuum[30, 31]. It has led to a

realization of a long-sought-after s-wave paired superfluidity in bosonic[32, 33] and fermionic

atomic gases[34, 35, 36]. Specifically, the successful realization of FR in fermioic atoms has

proven the transition from Bardeen-Copper-Shrieffer regime (BCS) [37] to the Bose-Einstein

condensate (BEC) regime.

The phenomenology of resonantly interacting degenerate bosonic atoms contrasts strongly

and qualitatively with fermionic atoms. For a large positive detuning, molecules are strongly

energetically suppressed and unpaired atoms (as in any bosonic system at zero temperature)

form an atomic superfluid (ASF), exhibiting atomic off-diagonal long-range order (ODLRO),

and the relative molecular modes are gapped. On the other side, for a large negative detun-

ing, free atoms are strongly disfavored (gapped), pairing up into stable bosonic molecules. At

T = 0, the atoms form a diatomic molecular superfluid (MSF) characterized by a molecular

ODLRO. The MSF does not exhibit atomic ODLRO, nor the associated atomic superfluidity.

Together with a gapped atomic excitation spectrum and correlation functions (characteris-

tics that extend to finite temperature), these features qualitatively distinguish it from the

ASF. And in an intermediate detuning, the atomic and molecular superfluids are possible to

coexist, giving rise to gapless atomic and molecular spectrums [9, 11].

In a trapped, dilute atomic gas the existence of these qualitatively distinct superfluid

phases should be most directly detectable through independent images of atomic and molec-

ular density profiles. As illustrated in Fig. 2(a), the atomic component should exhibit a BEC

peak in the ASF phase, that is absent in the MSF phase, shown in Fig. 2(b). Both superfluid

phases are distinguished from the normal state by the BEC peak in the molecular density
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Figure 2: Atomic density profiles, n1(r) in (a) the ASF and (b) the MSF phases. These

are distinguished by the presence and absence of atomic BEC peak, respectively. Each

of these superfluid phases is distinguished from the “normal” (thermal) state by the BEC

peak in the molecular density profile, n2(r), illustrated in insets. In the dilute limit, the

quantum oscillator length r0 of the BEC peak (set by the single-particle Gaussian ground

state wavefunction), and the thermal oscillator length rT of the thermal part of the atomic

cloud [2].
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profile, as illustrated in the insets to these figures. Consequently, as illustrated in Fig. 3,

a thermodynamically sharp quantum phase transition, at an intermediate critical Feshbach

resonance detuning νc, must separate the MSF and ASF phases. Each in turn is also sepa-

rated by a finite-temperature transition from the “normal” (N) state lacking any order (i.e.,

breaking no symmetries). At zero temperature, two critical detunings separate the phases

into MSF, AMSF and ASF phases.

Figure 3: Schematic temperature-detuning phase diagram for a balanced two-species p-

wave resonant Bose gas. As illustrated, it exhibits atomic (ASF), molecular (MSF), and

atomic-molecular (AMSF) superfluid phases. The AMSF state is characterized by a p-wave,

molecular, and finite-momentum Q atomic superfluidity.

3.1 Model

We study a gas mixture of two distinguishable bosonic atoms (e.g., 85Rb, 87Rb) [9],

created by field operators ψ†σ(r) =
(
ψ†1(r), ψ†2(r)

)
and interacting through a p-wave FR

associated with a tunable “closed”-channel bound state. The corresponding p-wave (` =

1) closed-channel hetero-molecule (e.g., 85Rb-87Rb) is created by a Cartesian vector field
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operator φ†(r) = (φ†x, φ
†
y, φ

†
z), related to φ†± = (φ†x ± iφ†y)/

√
2, φ†z = φ†z operators, which

create closed-channel molecules in the `z = ±1, 0 eigenstates, respectively. This system is

governed by a grand-canonical Hamiltonian density (with ~ = 1 throughout),

H =
∑

σ=1,2

ψ̂†σ(− 1

2m
∇2 − µσ)ψ̂σ + φ̂† · (− 1

4m
∇2 − µm) · φ̂+Hbg (3.1)

+
α

2

(
φ̂† ·

[
ψ̂1(−i∇)ψ̂2 − ψ̂2(−i∇)ψ̂1

]
+ h.c.

)
,

with the effective molecular chemical potential,

µm = µ1 + µ2 − ν, (3.2)

adjustable by a magnetic-field-dependent detuning ν, the latter being the rest energy of the

closed-channel molecule relative to a pair of open-channel atoms. For simplicity we have

taken atomic masses to be identical (a good approximation for the 85Rb-87Rb mixture that

we have in mind) and will focus on the balanced case of µ1 = µ2 = µ, with µ fixing the total

number of 85Rb and 87Rb atoms.

The background (nonresonant) interaction density

Hbg = Ha +Hm +Ham (3.3)

is given by

Ha =
∑

σ=1,2

λσ
2
ψ̂†2σ ψ̂

2
σ + λ12ψ̂

†
1ψ̂
†
2ψ̂2ψ̂1, (3.4a)

Hm =
g1

2
(φ̂† · φ̂)2 +

g2

2
|φ̂ · φ̂|2, (3.4b)

Ham =
∑

σ=1,2

gamψ̂
†
σφ̂
† · φ̂ψ̂σ, (3.4c)

where coupling constants λσ, λ12, g1,2, gam are related to the corresponding background s-

wave scattering lengths (a1, a2, etc.) in a standard way and thus are fixed experimentally

through measurements on the gas in a dilute limit. Correspondingly, we take these back-

ground s-wave couplings to be independent of the p-wave detuning, an approximation that

we expect to be quantitatively valid in the narrow resonance and/or dilute limits considered

here.
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The above two-channel model, Eq. (3.1), faithfully captures the low-energy p-wave reso-

nant and s-wave nonresonant scattering phenomenology of the 85Rb-87Rb p-wave Feshbach-

resonant mixture. Its analysis at nonzero balanced atomic densities, which is our focus here,

leads to the predictions summarized in the previous section.

3.2 Mean-field Theory

The order parameters for the system are characterized here. The atomic condensates

Ψ1(r) and Ψ2(r) need to be complex periodic functions characterized by momenta Qn, with

the simplest single Q1 = Q form given by

ψ1(r) → Ψ1(r) = Ψ1,Qe
iQ·r, (3.5a)

ψ2(r) → Ψ2(r) = Ψ2,−Qe
−iQ·r, (3.5b)

φ(r) → Φ, (3.5c)

where Φ is a complex 3-vector order parameter characteristic of the ` = 1 molecular conden-

sate and the choice of ±Q momentum relation for the two atomic condensate fields is dictated

by momentum conservation. In general, we decompose the molecular order parameters in

terms of orthonormal real 3-vectors u and v

Φ = u + iv. (3.6)

We next consider the Landau free energy as a function of these atomic and molecular

order parameters and, by minimizing it for a range of experimentally tunable parameters,

compute the mean-field phase diagram for this p-wave resonant two-component Bose gas.

Atomic superfluid phase : For large positive detuning, ν, the molecular chemical poten-

tial µm < 0 is negative, with molecules gapped and therefore the ground state is a molecular

vacuum. We can thus safely integrate out the small Gaussian molecular excitations, leading

to an effective atomic free energy, F [Ψσ,Φ] by setting Φ = 0. This functional is a special

U(1) ⊗ U(1) form of a O(N) ⊗ O(M) model. This free energy is clearly minimized by a

spatially uniform atomic order parameter, Ψσ, giving
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fasf = F [Ψσ, 0]/V =
∑

σ=1,2

[
− µσ|Ψσ|2 +

λσ
2
|Ψσ|4

]
+ λ12|Ψ1|2|Ψ2|2 (3.7)

as the ASF free-energy density.

A minimization of fasf , leads to four states corresponding to condensed and normal

(nonsuperfluid) combinations of the two-component Bose gas. For both negative chemi-

cal potentials, µ1 < 0, µ2 < 0, both atoms are in the noncondensed, normal (N) phase,

|Ψ1| = |Ψ2| = 0. As physical parameters are varied (e.g., a weaker periodic potential,

lower temperature, and higher density for one of the atomic species) for asymmetric mix-

ture (different densities and/or masses), one of the two atomic chemical potentials, µ1, µ2

can turn positive, leading to a conventional normal-superfluid transition to ASF1 or ASF2

states, respectively. The order parameters and mean-field phase boundaries in each of these

conventional single-component atomic BECs are given by

ASF1: Ψ1 =

√
µ1

λ1

,Ψ2 = 0, for µ1 > 0, µ2 <
λ12

λ1

µ1, (3.8a)

ASF2: Ψ1 = 0,Ψ2 =

√
µ2

λ2

, for µ2 > 0, µ1 <
λ12

λ2

µ2. (3.8b)

We note that generically for a symmetric two-component Bose mixture, these phases will

be avoided by symmetry. Further changes in the system’s parameters, so as to drive both

chemical potentials positive, for λ1λ2 > λ2
12 leads to ASF1 - ASF12 or ASF2 - ASF12 tran-

sitions. The resulting two-component condensate, ASF12, is characterized by two nonzero

atomic condensates and mean-field phase boundaries given by

ASF12:

Ψ1 =

[
λ2µ1 − λ12µ2

λ1λ2 − λ2
12

] 1
2

,Ψ2 =

[
λ1µ2 − λ12µ1

λ1λ2 − λ2
12

] 1
2

,

for µ1 > 0, µ2 > 0, λ2
λ12

> µ2
µ1
> λ12

λ1
. (3.9)
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These classical phase transitions are generically continuous, in the XY universality class,

breaking the associated U(1) symmetries. The N-ASF12 transition only takes place in a fine-

tuned balanced mixture µ1 = µ2 (which is our primarily focus here) going directly through

a tetracritical point, µ1 = µ2 = 0.

For λ1λ2 < λ2
12, the ASF1 and ASF2 energies cross before either becomes locally unstable.

Consequently, instead of continuous transitions to the ASF12 state, the two-component ASF12

is absent and the ASF1 and ASF2 phases are separated by a first-order transition, located

at

µ2 =

√
λ2

λ1

µ1 (3.10)

which terminates at a bicritical point. On this critical line the ASF1 and ASF2 states coexist

and spatially phase separate.

Molecular superfluid phase : In the opposite limit of large negative detuning, open-

channel atoms are gapped and the ground state is an atomic vacuum. Hence, for µ < 0 the

free energy F [Ψσ,Φ] is minimized by Ψσ = 0 and a uniform molecular condensate Φ. The

free-energy density then reduces to

fmsf [Φ] = F [0,Φ] = −µm|Φ|2 +
g1

2
|Φ∗ ·Φ|2 +

g2

2
|Φ ·Φ|2, (3.11a)

= −µm(u2 + v2) +
g1

2
(u2 + v2)2 +

g2

2
(u2 − v2)2. (3.11b)

The minimization of fmsf [Φ] then leads to two superfluid phases, the MSFp for g2 < 0

and the MSFfm for g2 > 0 molecular condensates,

Φ =

√
µm

g1 + g2

n̂ = Φpn̂, for g2 < 0, (3.12)

Φ =

√
µm
2g1

(n̂+ im̂) =
Φfm√

2
(n̂+ im̂), for g2 > 0. (3.13)

For polar MSF, it spans the [U(1) × S2]/Z2 manifold of degenerate ground states. For

ferromagnetic MSF, it spans the SO(3) manifold of states. In the above equation, n̂, m̂, l̂ ≡
n̂× m̂ is an orthonormal triad and Φp,fm are complex order-parameter amplitudes, breaking

the SO(3)× UN(1) symmetry of the disordered phase.
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Atomic molecular superfluid phase : For the intermediate detuning, we consider a con-

densation of both atoms and molecules, for generality allowing atoms to condense at a

nonzero momentum. We focus on the simpler case of a single momentum, Q atomic conden-

sate, that we also find to be the preferred form of the AMSF state. We relegate to Appendix

A the conceptually straightforward, but technically slightly involved, analysis of the more

general ±Q momenta state.

Using the order parameter form from Eqs. (3.5a), (3.5b), and (3.5c) inside the mean-field

free-energy density famsf = F [Ψσ,Φ]/V = fQ + fmsf , we obtain

fQ = εQ
(
Ψ∗1,QΨ1,Q + Ψ∗2,−QΨ2,−Q

)
−∆QΨ∗1,QΨ∗2,−Q −∆∗QΨ1,QΨ2,−Q

+
λ1

2
|Ψ1,Q|4 +

λ2

2
|Ψ2,−Q|4 + λ12|Ψ1,Q|2|Ψ2,−Q|2, (3.14)

where εQ = Q2

2m
−µ+gam|Φ|2, ∆Q = αΦ ·Q ≡ |∆Q|eiϕ0 , and for simplicity we specialized to a

balanced mixture set by µ1 = µ2 = µ. Due to the quartic formula of atomic mean field, it is

generally difficult to derive the mean-field ground states. But it is possible to approach the

AMSF phase from MSF phase, where the atomic condensate density is relatively small, and

thus we can ignore the quartic terms effect. Without loss of generosity, we assume u > v,

and the minimization of the free energy density leads to

Q0 = αmu ≈ αm
√
nm. (3.15)

In the meanwhile, the sign of g2 strongly affects the composition of u and v. A straight-

forward minimization of famsf , for g2 < 0, leads to the AMSFp phase, characterized by order

parameters,

up =

√
λµm − g̃amµ

λ(g1 + g2)− g̃2
am

, vp = 0, (3.16a)

|Ψ1(2),p| =
√

(g1 + g2)µ− g̃amµm
2λ(g1 + g2)− 2g̃2

am

, (3.16b)
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where g̃am = gam−mα2/2. The phase boundaries corresponding to the MSFp - AMSFp and

AMSFp - ASF transitions are given by

νMSFp−AMSFp
c = − (g1 + g2 − 2g̃am)nm, (3.17a)

νAMSFp−ASF
c = (2λ− g̃am)na, , (3.17b)

Within the mean-field approximation, the MSFp-AMSFp and AMSFp-ASF transitions are of

second order. The phase transition figure is shown in Fig. 4

F=u

ÈYÈ

Νc1 Νc2MSFp AMSFp ASF
Ν

F, Y

Figure 4: (Color online) Schematic atomic (thick) and molecular (thin) order parameters

versus the FR detuning ν for the polar phase, with νc1 = ν
MSFp−AMSFp
c and νc2 = ν

AMSFp−ASF
c .

For g2 > 0, a minimization of the free energy, famsf for a range of couplings shows

that for intermediate detuning, the low-temperature state is the ferromagnetic AMSFfm,
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characterized by

ufm =

√
2λg2µm − g2

amµm − (g1 + g2)g̃amµ+ (g1 − g2)gamµ+ gamg̃amµm
4λg1g2 − 4g2gamg̃am − (g1 + g2)(mα2/2)2

,

(3.18a)

vfm =

√
2λg2µm − g̃2

amµm − (g1 + g2)gamµ+ (g1 − g2)g̃amµ+ gamg̃amµm
4λg1g2 − 4g2gamg̃am − (g1 + g2)(mα2/2)2

,

(3.18b)

|Ψ1(2),fm| =
√

g2(4g1µ− 4gamµm +mα2µm)

4λg1g2 − 4g2gamg̃am − (g1 + g2)(mα2/2)2
. (3.18c)

The behavior of these order parameters as a function of detuning, ν, is illustrated in Fig. 5.

With increasing detuning, the component v (being smaller than u) vanishes first, signaling a

transition of the ferromagnetic AMSFfm to the polar AMSFp state. Depending on the value

of other parameters, upon further increase of ν the system either continuously transitions at

ν
AMSFp−ASF
c to one of the three ASF states or undergoes a first-order AMSFfm-ASF transition

with u discontinuously jumping to zero when v vanishes.

The detuning phase boundaries corresponding to the MSFfm - AMSFfm and the AMSFfm

- AMSFp transitions, determined by a vanishing of the atomic and the v (transverse to Q0)

component of the molecular condensates, respectively, are given by

νMSFfm−AMSFfm
c = −

(
g1 − 2gam +mα2/2

)
nm, (3.19a)

νAMSFfm−AMSFp
c =

8λg2 + gam (2mα2 − 4g2)−mα2 (g1 − g2 +mα2)

4g2 + 2mα2
na. (3.19b)
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u

v

ÈYÈ

Νc1 Νc2MSFfm AMSFfm AMSFp ASFΝc3
Ν

F=u+iv, Y

Figure 5: Schematic atomic (thick) and molecular (thin and dashed) order parameters versus

the FR detuning ν for ferromagnetic phases. The AMSFfm-AMSFp phase transition at νc2

leads to kinks (change in slope) in the molecular (u) and atomic (Ψ) order parameter, later

indicated by a black dot. Without loss of generality we choose the n̂ axis (component of

u) to lie along Q0. The critical detunings are denoted by νc1 = νMSFfm−AMSFfm
c , νc2 =

ν
AMSFfm−AMSFp
c , and νc3 = ν

AMSFp−ASF
c .

3.3 Elementory Excitations

We study quantum fluctuations within each of the ASF, MSF and AMSF classes of phases

established above. To this end we expand the atomic and molecular bosonic operators around

their mean-field condensate values ψσ = Ψσ + δψσ, φi = Φi + δφi, where δψσ (σ = 1, 2) are

fluctuation fields for atoms of flavors 1 and 2, respectively, and δφi (i = x, y, z) are triplet of

the ` = 1 molecular fluctuation fields. It is convenient to work in momentum space,

δψσ =
1√
V

∑

k

aσ,k e
ik·r, (3.20a)

δφi =
1√
V

∑

k

bi,k e
ik·r. (3.20b)
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Using the above momentum representation inside the Hamiltonian, Eq. (3.1) and expand-

ing to second order in the fluctuations operators aσ,k, bi,k, we obtain H = Hmft[Ψσ,Φ] +Hf ,

with

Hf =
∑

k

[ ∑

σ=1,2

(
1

2
ε̃σ,k+Qσa

†
σ,k+Qσ

aσ,k+Qσ + λ̃σaσ,−k+Qσaσ,k+Qσ

)
+ t1a

†
1,k+Qa2,k−Q

+ t2,k+Qa1,k+Qa2,−k−Q +
∑

i=x,y,z

(
1

2
ω̃i,kb

†
i,kbi,k + δibi,−kbi,k

)

+
1

2

∑

i,j=x,y,z,i 6=j

(
gijb

†
j,kbi,k + γijbi,−kbj,k

)
−
∑

σ

ασ,k · b†kaσ,k+Qσ + h.c.

]
, (3.21a)

≡
∑

k,α,β

c†α,kh̃
αβ
k cβ,k (3.21b)

where h̃αβk is a Bogoliubov Hamiltonian matrix defined by matrix elements

ε̃σ,k = εk − µσ + 2λσ|Ψσ|2 + λ12|Ψσ|2 + gam|Φ|2, (3.22a)

ω̃i,k =
1

2
εk − µm + g1|Φ|2 + (g1 + 2g2)|Φi|2,

+ gam(|Ψ1|2 + |Ψ2|2), (3.22b)

λ̃σ =
1

2
λσΨ∗2σ , (3.22c)

t1 = λ12Ψ1Ψ∗2, (3.22d)

t2,k = λ12Ψ∗1Ψ∗2 − αΦ∗ · k, (3.22e)

δi =
1

2
g1Φ∗iΦ

∗
i +

1

2
g2Φ

∗ ·Φ∗, (3.22f)

gij = g1Φ∗iΦj + 2g2Φ∗iΦj, (3.22g)

γij =
1

2
g1Φ∗iΦ

∗
j , (3.22h)

ασ=(1,2),k = ±αΨσ,Qσ(Qσ − k/2), (3.22i)

where εk = k2

2m
, 1 = 2, 2 = 1. A diagonalization of this ten-dimensional Bogoliubov Hamil-

tonian, preserving bosonic commutation relations of the cα,k components gives the spectrum

of the five modes throughout the phase diagram.

Atomic superfluid excitation: In the ASF phase, we consider the case where both atom

species condense. Standard analysis, consistent with two U(1) symmetries spontaneously
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broken, then leads to two gapless atomic Bogoliubov sound modes for species 1 and 2.

Together with the gapped molecular excitations this leads to spectra of the five modes:

E
(a12)
k1 =

√
k2

2m

( k2

2m
+ 2λn

)
, (3.23a)

E
(a12)
k2 ' c(a12)k, (3.23b)

E
(m12)
k1 = E

(m12)
k2 =

k2

4m
+ ν − 2λn+ gamn, (3.23c)

E
(m12)
k3 ' k2

4m∗
+ ν − 2λn+ gamn, (3.23d)

where for E
(a12)
k2 and E

(m12)
k3 we took k → 0 and α → 0 limit and defined the sound velocity

and effective atomic mass:

c(a12) =

√
(λ− λ12)n

m
− 3nα2

√
(λ− λ12)mn

4(ν − 2λn+ gamn)
, (3.24a)

1

m∗
=

1

m
+

3(ν − (λ+ λ12)n+ gamn)nα2

(ν − 2λn+ gamn)2
. (3.24b)

E
(a12)
k1 and E

(a12)
k2 are atomlike and gapless modes respectively. E

(a12)
k2 and E

(m12)
k3 are modified

by the FR interaction between atoms and molecules. The schematic plot of the excitations

is shown in Fig. 6. The ASF-AMSF phase boundary is determined by the point where the

molecular gap

EASF
gap = ν − 2λn+ gamn (3.25)

closes, and is consistent with the critical detuning determined by the development of the

molecular order parameter that we found in the mean-field calculations.

Molecular superfluid excitation: For large negative detuning, both atomic species are

gapped, and p-wave molecules are condensed into one of the two `z = 0 MSFp and `z =

±1 MSFfm. To see this, we note that the atomic Bogoliubov excitations are gapped and

can therefore be integrated out. Neglecting these small effects, the vanishing of ασ,k =

±αΨσ,Qσ(Qσ−k/2) = 0 decouples the Hamiltonian, Hf = Ha+Hm into atomic and molecular

parts, that then are straightforwardly diagonalized.
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Ek3
Hm12L

k

Eex

Figure 6: Schematic ASF double BEC (ASF12) excitation spectrum. There are two gapless

atomic Bogoliubov modes (thin) as well as three gapped molecular modes (thick).

The atomic sector, Ha is of standard Bogoliubov form, simplified to a 2 × 2 form by

t1 = λ̃σ = 0 inside the MSF phases, leading to the atomic excitation spectrum, that for the

symmetric case of µ1 = µ2 ≡ µ is given by

EMSF
a,k =

√
(ε̃k + |αΦ · k|)(ε̃k − |αΦ · k|), (3.26)

where ε̃k = k2/2m − µ + gam|Φ|2. One key observation is that inside the MSF phases the

atomic spectrum, EMSF
a,k (degenerate for σ = 1, 2 species) develops a minimum at a nonzero

momentum kmin = Qp,fm, with the corresponding atomic gap minimum, E
MSFp,fm
a,gap , given by

a value dependent on the nature of the MSFp,fm phase.

When g2 < 0, we have Φ = u = Φpn̂, with nm = |Φp|2. For the symmetric case

µ1 = µ2 = µ, the atomic spectrum minimum is characterized by

kmin = αm
√
nm, (3.27a)

E(MSFp,a)
gap = −µ+ gamnm −

mα2nm
2

, (3.27b)
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where in an isotropic trap the orientation of kmin is spontaneously chosen. The MSFp-AMSFp

phase transition boundary is set by the closing of this atomic gap and is given by

νMSFp−AMSFp
c = −

(
g1 + g2 − 2gam +mα2

)
nm. (3.28)

Reassuringly, this is identical to the critical detuning for this phase boundary as we obtained

in the mean-field analysis.

The diagonalization of molecular part Hm leads to three Bogoliubov-type dispersions,

E
MSFp

‖,k =
1

2

√
ε2k + 4(g1 + g2)nmεk, (3.29a)

'
√

(g1 + g2)nm
2m

k, (3.29b)

E
MSFp

⊥,k =
1

2

√
ε2k + 4|g2|nmεk, (3.29c)

'
√
|g2|nm

2m
k, (3.29d)

where the longitudinal mode, E
MSFp

‖,k describes the conventional MSF phase fluctuations and

the doubly degenerate transverse mode, E
MSFp

⊥,k is the dispersion for the ` = 1 molecular

orientational spin-waves. The schematic plot of the excitations is shown in Fig. 7.

When g2 > 0, inside the MSFfm state, the molecular condensate order parameter is given

by Φ = Φfm√
2

(n̂ + im̂), expressed in terms of an orthonormal triad, n̂ × m̂ = ˆ̀. To lowest

order, the atomic spectrum inside MSFfm has identical structure as that of the MSFp state,

Eq. (3.29), but with the replacement g1 + g2 → g1 and α2 → α2/2,

kmin =
1√
2
αm
√
nm, (3.30a)

E(MSFfm,a)
gap = −µ+ gamnm −

mα2nm
4

. (3.30b)

The MSFfm-AMSFfm phase transition boundary is determined by the vanishing of the atomic

gap, and is given by

νMSFfm−AMSFfm
c = −

(
g1 − 2gam +

1

2
mα2

)
nm, (3.31)
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Figure 7: Schematic excitation spectrum for the MSFp. The doubly degenerate atomic

spectrum (upper thin curve) exhibits a minimum gap at nonzero k, a precursor of finite-

momentum atomic condensation inside the AMSFp. The molecular spectra (thick curves),

one longitudinal (lowest) and two degenerate transverse (middle) modes, are of Bogoliubov

type.

identical to the critical detuning obtained from mean-field theory for the order parameter in

the mean-field analysis. Diagonalization of the above Hamiltonian then gives the following

spectrum

EMSFfm
z,k =

1

2
εk =

k2

4m
, (3.32a)

EMSFfm
+,k =

1

2
εk + 2g2nm, (3.32b)

EMSFfm
−,k =

1

2

√
ε2k + 4g1nmεk, (3.32c)

'
√
g1nm
2m

k, (3.32d)

We note that despite a three-dimensional coset space, SO(3) characterizing MSFfm, only

two modes (linear and quadratic in k) exhibit a spectrum that vanishes in k → 0 limit. The
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spectrum EMSFfm
−,k is that of a conventional Bogoliubov superfluid phase, here associated with

the U(1) broken gauge symmetry of the molecular condensate. The quadratic in k gapless

spectrum is that of the ferromagnetic spin waves, where the two components of the spinor

are canonically conjugate and, as a result, combine into a single low-frequency mode. The

schematic plot of the excitations is shown in Fig. 8.

E
+, k

MSFfm

E
a, k

MSFfm

E
-, k

MSFfm

E
z, k

MSFfm

Q
fm

k

Eex

Figure 8: Schematic excitation spectrum for the MSFfm. The doubly degenerate atomic

spectrum (thin curves) exhibits a minimum gap at nonzero k, a precursor of finite momen-

tum atomic condensation. The molecular spectrum (thick curves) consists of a longitudinal

gapless quadratic ferromagnetic spin-wave mode (lowest), a Bogoliubov sound mode, and a

quadratic gapped mode.

Atomic molecular superfluid excitation: To obtain the spectrum inside the AMSF phases

requires a solution of the fully general Hamiltonian, Hf . A complementary coherent-state

path-integral approach is taken to obtain the modes and dispersions analytically. We analyze

the low-energy fluctuations in the AMSF states using the coherent-state Lagrangian density,

L[ψσ,φ] = LMFT[Ψσ,Φ] + δL. To obtain δL we expand the atomic and molecular bosonic

fields ψσ,φ about their mean-field values (for clarity of notation in this section we choose to

21



use ρ instead of n of the previous sections, where ρσ = na/2, ρm = nm, and ρs = n),

ψσ =
√
ρσe

iθσ+iQσ ·r, (3.33a)

φ =
√
ρmφ̂e

iϕ, (3.33b)

where Qσ = ±Q for σ = 1, 2, respectively, ρm = ρm0 + δρm and ρσ = ρ0 + δρσ are the

molecular and atomic densities, with the mean-field values ρm0 = |Φ|2 and ρ0 = |Ψσ|2. For

the polar case, substituting these parametrizations of the atomic and molecular fields into

the Lagrangian, we obtain δL that controls fluctuations in the AMSF phases for the polar

case (φ =
√
ρmn̂e

iϕ),

δLp = iδρ+∂τθ+ +
ρ0

m
(∇θ+)2 + iδρ−∂τθ− +

ρ0

m
(∇θ− + Q)2 + iδρm∂τϕ

+
ρm0

4m
(∇ϕ)2 +

ρm0

4m
(∇n̂)2 − 2αρ0

√
ρm0n̂ · (∇θ− + Q) cos(ϕ− 2θ+)

+
1

16mρ0

(∇ρ+)2 +
1

16mρ0

(∇ρ−)2 +
1

16mρm0

(∇ρm)2 +
λ

4
δρ2

+ +
λ

4
δρ2
−

+
λ12

4
(δρ2

+ − δρ2
−) + gamδρ+δρm +

g

2
δρ2

m,

(3.34)

where g ≡ g1 + g2, λ = λ1 = λ2 for simplicity, and

θ± =
1

2
(θ1 ± θ2), (3.35a)

δρ± = δρ1 ± δρ2, (3.35b)

µ =
1

2
(µ1 + µ2), (3.35c)

h =
1

2
(µ1 − µ2), (3.35d)

Q = αm
√
ρm0n̂0. (3.35e)

The above Lagrangian is expanded up to quadratic order in fluctuations, and neglect high

order contributions. The Goldstone modes are characterized by dispersions:

ω+p(k) = c+k, (3.36a)

ω−p(k) =
√

(Bk2
z +Kk4

⊥)/χ−, (3.36b)
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with defined parameters

c+ =

√
2ρs0
χ+m

, (3.37a)

B =
2ρ0

m
, (3.37b)

K =
1

2m3α2
. (3.37c)

kz refers to the direction of Q. The linear ω+(k) dispersion of the superfluid phase θ+

is the expected Bogoliubov mode corresponding to the superfluid order. The anisotropic

smecticlike dispersion of the “phonon” θ− is a reflection of the uniaxial finite-momentum

order in the AMSFp state, akin to the FF superconductor.

For the ferromagnetic case, the analysis for the AMSFfm phase is very similar, with only

a single modification of the MSFfm order parameter,

δLfm ≈ i(δρ+ + 2δρm)∂τθ+ +
ρs0
m

(∇θ+)2 + iδρ−∂τθ− +
ρ0

m

(
∇θ− −

1√
2
αm
√
ρm0δn̂

)2

+ iρm0δn̂ · ∂τm̂+
ρm0

8m
(∇n̂)2 +

ρm0

8m
(∇m̂)2 +

1

16mρ0

(∇ρ+)2 +
1

16mρ0

(∇ρ−)2

+
1

16mρm0

(∇ρm)2 +
λ

4
δρ2

+ +
λ

4
δρ2
− +

λ12

4
(δρ2

+ − δρ2
−) + gamδρ+δρm +

g1

2
δρ2

m,(3.38a)

A straightforward diagonalization of the above Lagrangian leads to dispersions for three

Goldstone modes inside the AMSFfm state:

ω+
fm(k) = c+k, (3.39a)

ω−fm(k) =
√

[Bk2
z + k2(Kxk2

x +Kyk2
y)]/χ−, (3.39b)

ωγfm(k) =

√
Jk2[Bk2

z + k2(Kxk2
x +Kyk2

y)]

Jχ−k2 + κ2k2
y

. (3.39c)
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with defined parameters,

κ =

√
2ρm0

αm
, (3.40a)

Kx =
1

m3α2
= K, (3.40b)

Ky =
1

2m3α2
, (3.40c)

J =
ρm0

4m
= KyQ

2. (3.40d)

The anisotropic ωγfm(k) dispersion corresponds to the ferromagnetic spin waves in the plane

of atomic condensate phase fronts (“smectic layers”) of the p-wave atomic-molecular conden-

sate, AMSFfm, reducing to the dispersion of MSFfm in Eq. (3.32) for a vanishing smectic

order, with B = 0.
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4.0 Superfluid Phases and Excitations in a Cold Gas of d-wave Interacting Bosonic

Atoms and Molecules

Recently, d-wave scattering resonance was observed in more and more ultracold atomic

gases [38, 39, 40, 41]. Particularly the observation of degenerate d-wave-interacting Bose

gases with d-wave shape resonance [41] makes the hidden d-wave many-body correlation

experimentally more accessible.

As we discussed in the previous section, unlike s-wave interaction, the closed channels

of high-partial-wave Feshbach resonance carry finite momentum. It is predicted that finite-

momentum superfluid emerges in a p-wave interacting Bose gas [42, 9, 43]. The closed

channels of d-wave Feshbach resonance carry a total angular momentum of 2~, and hence the

many-body form is proportional to the square of momentum k2. Although d-wave electronic

Fermi superconductor has been studied extensively in condensed matter physics, to the best

of our knowledge, what possible many-body states the d-wave interacting atomic Bose gases

should exhibit is a widely open question.

Inspired by recent experimental progress [40, 41], we analyze the zero-temperature mean-

field ground state and Bogoliubov spectrum of a d-wave interacting Bose gas in this paper.

A two-channel model is adopted for a mixture of two components interacting via d-wave in-

teraction. Similar to the p-wave interacting Bose gas [42, 9, 43], the mean-field ground state

typically shows three quantum phases: atomic superfluid (ASF), molecular superfluid (MSF)

and atomic-molecular superfluid (AMSF). But unlike the p-wave case, the atomic superfluid

does not carry finite momentum. The phase boundaries are analytically obtained. Fur-

thermore, the Bogoliubov excitation spectrum is analyzed both numerically and analytically

above the superfluid ground state with d-orbital aspects.
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4.1 Model

Inspired by the experiments[40, 44], we will focus on a gas mixture of two distin-

guishable bosonic atoms (e.g., 85Rb and 87Rb). The two atomic fields are created by

ψ̂†σ = (ψ̂†1, ψ̂
†
2) and interact through a d-wave FR associated with a tunable molecular

bound state [9, 45]. According to the symmetry of this system, the angular momentum

is a good quantum number and the related d-wave molecule (e.g., 85Rb-87Rb) field is created

by φ̂†m = (φ̂†−2, φ̂
†
−1, φ̂

†
0, φ̂
†
1, φ̂
†
2), which corresponds to the five closed-channel molecule states

(e.g., lz=0, ±1, ±2). Apart from the d-wave interaction, we assume that the system is also

subject to the background atom-atom, molecule-molecule and atom-molecule s-wave inter-

actions. The Hamiltonian density for this system is written as (we take ~=1 throughout)

[46],

H =
∑

σ=1,2

ψ̂†σ(−∇
2

2m
− µσ)ψ̂σ +

2∑

m=−2

[φ̂†m(−∇
2

4m
+ z(−∇

2

4m
)2 − µM)φ̂m.− g(φ̂†mym + h.c.)]

+Hbg,

(4.1)

where the operator ym and background interaction Hbg are respectively given by

ym =
1

4

∑

a,b=x,y,z

Cm
ab[(∂aψ̂1)(∂bψ̂2)− (∂a∂bψ̂1)ψ̂2 + (∂bψ̂1)(∂aψ̂2)− ψ̂1(∂a∂bψ̂2)], (4.2)

Hbg =
1

2

∑

σ,σ′=1,2

λσσ′ |ψ̂σ|2|ψ̂σ′ |2 +
2∑

m,n=−2

g0

2
(φ̂†mφ̂m)(φ̂†nφ̂n) +

2∑

m=−2

gAM(|ψ̂1|
2

+ |ψ̂2|
2
)φ̂†mφ̂m.

(4.3)

Here µ1 and µ2 are the chemical potentials of the atoms and µM is that for the molecule.

The detuning between atomic and molecular channels is given by ν = µ1 + µ2 − µM . g

characterizes the d-wave interaction strength. Cm
ab is the Clebsch-Gordan coefficient [45],

satisfying
∑

a,bC
m
abkakb/k

2 =
√

4πY m
2 (k̂), where Y m

2 (k̂) is the spherical harmonics of degree 2

arising from the d-wave components of two-body wave function. For simplicity, we have taken

the two atomic masses m to be identical, which is a good approximation for the mixtures
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of isotopes like 85Rb and 87Rb. Thus, the molecules have the mass of 2m. The z term in

Eq. (4.1) is formally introduced for the normalization of the d-wave interaction [46], but it

actually does not affects the mean-field dynamics. In the background interaction Hbg, the

λσσ′ term characterizes the atom-atom interactions given by different species respectively, the

gAM term describes the atom-molecule interaction, and the g0 term describes the molecule-

molecule interaction. We restrict ourselves in the homogeneous case for simplicity and clarity

by the local density approximation widely applied to the study of trapped gaeses in the

experiment. It is proven to be a good approximation for a slowly varying trap potential with

a large number of atoms in the experiment.

4.2 Mean-field Theory

We will obtain the Landau free energy by applying mean-field theory to our model and

minimize it to establish the phase diagram and analyze the phase transition. This method

is equivalent to solving Gross-Pitaevskii equation. Replacing the atomic and molecular field

operators with their relative classical order parameters Ψσ,Φm, we obtain the Landau free

energy function F [Ψσ,Φm] = 〈H〉.
We decompose our mean-field parameters to characterize the states of the system. For the

atomic condensates Ψ1 and Ψ2, let us use Fourier transform and make these fields complex

periodic functions characterized by momenta Qn,

Ψσ =
∑

Qn

Ψσ,Qne
iQn·r. (4.4)

It is generally expected that the assumption of having a single component, Qn = Q is

sufficient to capture the qualitative picture of the ground state [47]. Unlike p-wave case [9],

the d-wave interaction is proportional to the square of momentum and thus can not give

rise to finite-momentum molecular condensates, since the minimum of the total energy still

keeps at the zero momentum of molecules. In order to make the momentum conservation, the

ground state should fall into two universal classes: FF (Fulde-Ferrell)-like [48] form ΨFF
σ =

Ψσ,Qσe
iQσ ·r or the LO (Larkin-Ovchinnikov)-like [49] form ΨLO

σ = Ψσ,Qe
iQ·r + Ψσ,−Qe

−iQ·r
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Figure 9: Mean-field phase diagram of a d-wave resonant two-component Bose gas for large

positive detuning and 4λ11λ22 − (λ12 + λ21)2 > 0. The atomic channels have lower energy.

ASF1 and ASF2 refer to single atom species superfluid state, and ASF12 refers to double

atom species superfluid state.

where Ψσ,Q = Ψσ,−Q. Based on the analysis of total energy (see Supplementary B), the order

parameters favor the simplest but non-trivial FF-like form with a single ordering wavevector

Q1 = −Q2 = Q, described by

Ψ1 = Ψ1,Qe
iQ·r, (4.5)

Ψ2 = Ψ2,−Qe
−iQ·r.

Atomic superfluid phase: For large positive detuning ν > 0, the atomic channels have

lower energy and the ground state is a molecule vacuum. The free energy is minimized by
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phase chemical potentials Ψ1 Ψ2

N µ1 < 0, µ2 < 0 0 0

ASF1 µ1 > 0, µ2 <
λ12+λ21

2λ11
µ1

√
µ1
λ11

0

ASF2 µ1 <
λ12+λ21

2λ22
µ2, µ2 > 0 0

√
µ2
λ22

ASF12 µ1 >
λ12+λ21

2λ22
µ2, µ2 >

λ12+λ21
2λ11

µ1

√
4λ22µ1−2(λ12+λ21)µ2
4λ11λ22−(λ12+λ21)2

√
4λ11µ2−2(λ12+λ21)µ1
4λ11λ22−(λ12+λ21)2

Table 1: Sub-phases of the ASF phase. i) When µ1 and µ2 are negative, both atomic

species are in the normal (N) phase. ii) When µ1 > 0, µ2 <
λ12+λ21

2λ11
µ1, the atom 1 forms

condensate. iii) When µ1 < λ12+λ21
2λ22

µ2, µ2 > 0, the atom 2 forms condensate. iv) When

µ1 >
λ12+λ21

2λ22
µ2, µ2 >

λ12+λ21
2λ11

µ1, both atom species form condensates.

spatially uniform atomic order parameters [50] and leads to the free energy density with the

form

fA = −
∑

σ=1,2

µσ|Ψσ|2 +
∑

σ,σ′=1,2

λσ,σ′

2
|Ψσ|2|Ψσ′|2 . (4.6)

For 4λ11λ22−(λ12+λ21)2 > 0, the minimization of fA leads to different superfluid phases as µ1

and µ2 change, which are listed in Table 1 (see Fig. 9). Otherwise, for 4λ11λ22−(λ12+λ21)2 <

0, the ASF12 phase tends to be unstable, there will be a direct first-order phase transition

from ASF1 to ASF2, and its phase boundary is determined to be µ2 =
√

λ22
λ11
µ1 (see Fig. 10).

Molecular superfluid phase: In the MSF phase, we have large negative detuning ν < 0,

that is, −ν � |µ1,2|. The molecular channels have lower energy and the ground state is an

atom vacuum. The free energy density fM is given as

fM =
2∑

m=−2

−µM |Φm|2 +
2∑

m,n=−2

g0

2
(Φ∗mΦm)(Φ∗nΦn). (4.7)

The molecular condensate density is obtained by minimizing the free energy,

Φ =

√
µM
g0

D(0, 0, 1, 0, 0)T , (4.8)
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where D is an SU(5) matrix satisfying D ∗ D† = 1. The ground state implies a broken

symmetry group SU(5).

Atomic-molecular superfluid phase: For the intermediate detuning, both the atomic

and molecular modes are gapless. To understand the phase boundaries and the behavior

of order parameters, it is convenient to approach the AMSF phase from MSF phase [9].

For simplicity, we specialize in a balanced mixture by µ1 = µ2 = µ. Applying mean-field

assumption, we obtain the free energy density fAM = F [Ψσ,Φm]/V = fQ + fM , where fQ

describes the Q-dependent fragment in the free energy density fAM ,

fQ =
∑

σ=1,2

εQ|Ψσ,Qσ |2 − (∆∗QΨ1,QΨ2,−Q + c.c.) +
∑

σ,σ′=1,2

λσ,σ′

2
|Ψσ,Qσ |

2|Ψσ′,Qσ′
|2, (4.9)

fM = −
2∑

m=−2

µMΦ∗mΦm +
2∑

m,n=−2

g0

2
(Φ∗mΦm)(Φ∗nΦn). (4.10)

In the above equations, the atomic order parameter ansatz Eqs. (4.5) is used to simplify fQ.

εQ = (Q
2

2m
− µ+

∑2
m=−2 gAM|Φm|2),∆Q =

∑2
m=−2 g

√
4πQ2Y m

2 (Q̂)Φm,Q1 = Q and Q2 = −Q.

When we approach the ASMF phase from the MSF phase, the atomic condensate fractions

are considered to be small and perturbative. Thus, the quadratic order terms are enough

to characterize the free energy density fQ. Besides, when the atom condensate is emergent

in the AMSF phase, they prefer to stay at a lower energy level. The condensate mean-field

ground states are obtained by minimizing the free energy fAM ,

Q = 0, (4.11)

Φ =
√

gAMµ−λµM
g2AM−g0λ

D(0, 0, 1, 0, 0)T , (4.12)

|Ψ1,2| =
√
g0µ− gAMµM
2λg0 − 2g2

AM

, (4.13)

where D is an SU(5) rotation matrix. Similar to the analysis in the MSF context, the broken

symmetry group is SU(5). Worth noting, a zero momentum solution is needed to minimize
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Figure 10: Mean-field phase diagram of a d-wave resonant two-component Bose gas for large

positive detuning and 4λ11λ22 − (λ12 + λ21)2 < 0. A valid phase of significant condensate

fraction in both atom fields is not found in mean-field calculation. The phases ASF1 and

ASF2 are separated by a first-order transition boundary.

the free energy, which is different from the finite momentum case in p-wave interaction gases

[9]. The condensate densities are

nM =
(2λ− gAM)µ− λν

λg0 − g2
AM

, (4.14)

nA =
(g0 − 2gAM)µ+ gAMν

λg0 − g2
AM

. (4.15)

By setting nA = 0 and nM = 0 respectively, we obtain the two phase boundaries to separate

the three phases, molecular superfluid (MSF), atomic-molecular superfluid (AMSF) and
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atomic superfluid (ASF). The relation between condensate densities and detuning is depicted

in Fig. 11,

νd1 = (2− g0

gAM

)µ, (4.16)

νd2 = (2− gAM

λ
)µ. (4.17)

ν

MSF AMSF ASF

ν1
d ν2

d

na

nM

n

Figure 11: Atomic and molecular condensate density versus the FR detuning ν. Red curves

are for molecule condensate density, blue curves are for atom condensate density, i) MSF for

ν < νd1 ii) AMSF for νd1 < ν < νd2 iii) ASF for ν > νd2 .

4.3 Low Energy Excitations

In this section, we will focus on the low energy excitations for d-wave FR to cross-

examine the consistency of mean-field results. To begin with, we expand the field operators

in the ASF, MSF and AMSF phases around their mean-field condensate values [43, 9],

ψ̂σ = Ψσ + δψ̂σ and φ̂m = Φm + δφ̂m. With these perturbation field representations, the

32



Hamiltonian (4.1) is expanded up to the second order in the momentum space with creation

and annihilation operators âσ,k and b̂m,k,

Hf =
∑

k

{
∑

σ=1,2

(
1

2
εσ,k+Qσ â

†
σ,k+Qσ

âσ,k+Qσ + λ̃σâσ,−k+Qσ âσ,k+Qσ) + t1â
†
1,k+Qâ2,k−Q (4.18)

+ t2,k+Qâ1,k+Qâ2,−k−Q +
∑

m

(
1

2
ωm,kb̂

†
m,kb̂m,k + δmb̂m,−kb̂m,k)

+
1

2

∑

m6=n

(gm,nb̂
†
n,kb̂m,k + γm,nb̂m,−kb̂n,k) +

∑

σ,m

β1,m,σâ
†
σ,k+Qσ

b̂m,k +
∑

σ,m

β2,m,σâ
†
σ,k+Qσ

b̂†m,−k

+
∑

σ,m

β3,m,σâσ,−k+Qσ b̂m,k +
∑

σ,m

β4,m,σâσ,−k+Qσ b̂
†
m,−k −

∑

σ,m

αm,σ,kb̂
†
m,kâσ,k+Qσ + h.c.}.

The parameters are defined below,

εσ,k = εk − µσ + 2λσ,σ|Ψσ|2 +
1

2
(λ12 + λ21)|Ψσ|2 + gAM

∑

m

Φ∗mΦm, (4.19)

ωm,k =
1

2
εk + z(

1

2
εk)2 − µM + g0

∑

n

Φ∗nΦn + g0Φ∗mΦm + gAM(|Ψ1|2 + |Ψ2|2), (4.20)

λ̃σ =
1

2
λσ,σΨ∗2σ , (4.21)

t1 =
1

2
(λ12 + λ21)Ψ1Ψ∗2, (4.22)

t2,k =
1

2
(λ12 + λ21)Ψ∗1Ψ∗2 − g

√
4πk2

∑

m

Φ∗mY
m

2 (k̂), (4.23)

δm =
1

2
g0Φ∗mΦ∗m, (4.24)

gm,n = g0Φ∗mΦn, (4.25)

γm,n = g0Φ∗mΦ∗n, (4.26)

β1,m,σ = gAMΨσΦ∗m, (4.27)
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β2,m,σ = gAMΨσΦm, (4.28)

β3,m,σ = gAMΨ∗σΦ∗m, (4.29)

β4,m,σ = gAMΨ∗σΦm, (4.30)

αm,σ,k = g
√

4πΨσ,Qσ(Qσ −
k

2
)2Y m

2 ( ̂k− 2Qσ), (4.31)

where εk = k2

2m
, 1 = 2 and 2 = 1. The Hamiltonian is diagonalized up to the order of k2

theoretically, and an exact diagonalization is used to testify our analysis in the meanwhile.

Atomic superfluid excitation: In the ASF phase, it has been found that the molecular

modes are gapped in the previous section. The relative mean-field Φm = 0, and the atoms

are condensed at zero momentum Q = 0. To find out the atomic modes, we need to integrate

the molecular modes out (see Supplementary C.1). In the low energy regime, when k → 0,

we calculate the dispersion up to k2 order. The atomic and molecular modes are given by

EA
1,k =

√
k2

2m
(
k2

2m
+ 2λnA), (4.32)

EA
2,k =

√
(2λ− λ12 − λ21)nA

2m
k, (4.33)

EM
−2,−1,0,1,2,k =

k2

4m
+ ν − 2λnA + gAMnA, (4.34)

where nA is the atom condensate density in the mean-field level, nA = |Ψ1|2 + |Ψ2|2. Ob-

viously, the atomic modes are gapless excitations in the superfluid states. The molecular

modes have energy gap ν − 2λnA + gAMnA. When it vanishes, we have the transition from

ASF phase to AMSF phase at the detuning value

ν = 2λnA − gAMnA, (4.35)
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Figure 12: ASF phase excitation spectrum. Here we use parameters {m = 1, µ = 1, ν =

3.2, λ11 = λ22 = 3, λ12 = λ21 = 1}. The unit is arbitrary. All the molecular modes are

gapped, but the atomic modes are gapless. The five molecule modes are degenerate. The

numerical results and theoretical results fit well in small k regime.

which is consistent with Eq. (4.17)(nA = µ/λ). Fig. 12 shows the theoretical results and

numerical results. They fit well in the small k region.

Molecular superfluid excitation: In the MSF phase, the atomic modes are gapped and

their mean-fields Ψ1 = Ψ2 = 0. The vanishing of atomic mean-fields results in αm,σ,k = 0,

which means the atomic Hamiltonian and molecular Hamiltonian are separable (see Supple-

mentary C.2). Referring to the mean-field ground state (4.8), we choose the simplest case

D = 1 to explore its low energy excitation, and it leads to Φ−2,−1,1,2 = 0, Φ0 =
√
nM . The

respective atomic dispersions are degenerate,

EA
k =

√
ε2

k − 4πg2k4∑
m,n ΦmY m

2 (k̂)Φ∗nY
n

2 (k̂), (4.36)

EM
0,k =

√
g0nM
2m

k, (4.37)
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EM
n=±1,±2,k =

k2

4m
, (4.38)

The five molecular modes are all gapless, which proves that they are in superfluid state. For

the MSF phase, µ = 1
2
(µM + ν) < 1

2
(µM + νd1 ), from which we can obtain −µ+ gAMnM > 0.

So in Eq. (4.36) k = 0 gives us the energy gap,

∆EA
k = −µ+ gAMnM , (4.39)

By setting ∆EA
k = 0, the atomic modes become gapless and the atomic condensates are

emergent. Applying ν = 2µ − µM and µM = g0nM(see Eq. (4.8)), we obtain the transition

from the MSF to AMSF phase at the detuning value,

ν = (2− g0

gAM

)µ, (4.40)

which is consistent with Eq. (4.16). Fig. 13 shows the consistency between the theoretical

results and numerical results.

Atomic-molecular superfluid excitation: For the intermediate phase, both atomic and

molecular condensates exist. Hence, they define a complicated coupled Hamiltonian (see

Supplementary C.3). The molecular and atomic condensate mean-field solutions are given

as

Φ =

√
gAMµ− λµM
g2

AM − g0λ
D(0, 0, 1, 0, 0)T , (4.41)

Ψ1,2 =

√
g0µ− gAMµM
2λg0 − 2g2

AM

. (4.42)

Similar to what we have achieved in the MSF phase, we choose the simplest case to compute

the spectrums, D = 1. Diagonalizing this Hamiltonian leads to the spectrums up to the

order of k,
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Figure 13: MSF phase excitation spectrum. The parameters used for MSF phase are {m =

1, µ = 0, ν = −1.44, g0 = 1}. The atomic modes are gapped and degenerate. All the

molecular modes are gapless, m = ±1,±2 are degenerate on the lower green line, m = 0 is

on the upper green line.

EA
1,k =

√
λnA
m

k, (4.43)

EA
2,k =

√
(2λ− λ12 − λ21)nA(

1

2m
−
√

5nMg)k, (4.44)

EM
0,k =

√
(g0 +

g2AM

λ
)nM

2m
k, (4.45)

EM
n=±1,±2,k =

k2

4m
, (4.46)

Fig. 14 shows the consistency between the theoretical results and numerical results.
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Figure 14: AMSF phase excitation spectrum. The parameters here are {m = 1, µ = 0, ν =

−1, λ11 = λ22 = 1.5, λ12 = λ21 = 0.5, g0 = 2, gAM = −1, g = 0.01}. The atomic modes

are gapless on the two blue lines. The molecular modes are also gapless: m = ±1,±2 are

degenerate on the lower green line; m = 0 is on the upper green line.

4.4 Atom Loss Effect

In general, atom loss is inevitable near a Feshbach resonance. In this case, the free

energy becomes complex and the ground states are no longer stable. For simplicity, let

us qualitatively estimate the effect of atom loss by introducing imaginary parts into the

chemical potentials µ1,2,M . Nevertheless, as a criteria, different quantum phases may be

straightforwardly obtained from Tab. 1 by replacing the chemical potentials with their real

parts, if we determine the ground states according to the real parts of the free energies in

Eqs. (4.6,4.8,4.9,4.10). The imaginary part of the free energies determines the damping rate

of the corresponding ground states. When the relaxation times (to the equilibrium states)

are far shorter than the life time of the atomic gas due to the atom loss, the ground states

predicted here are still observable. The qualitative properties of low-energy excitation spectra
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(such as the numbers of gapless modes) are also expected to be unchanged by introducing

the atom loss when the continuous symmetries are not broken. It is hard to quantitatively

estimate the effect of atom loss at this stage since the experiment lacks necessary data.
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5.0 Spontaneous Formation of Polar Superfluid Droplets in a p-wave Interacting Bose

Gas

Quantum fluctuation is one of the most intrinsic properties of quantum mechanics, which

is responsible for many fascinating physical phenomena, such as Casimir effect and abundant

quantum phase transitions. Recently, Petrov showed that quantum fluctuation reflected by

Lee-Huang-Yang (LHY) correction can prevent a mean-field-unstable Bose gas from collaps-

ing [51]. The competition between the mean-field attraction and LHY repulsion stabilizes

the Bose gas into a self-bound liquidlike droplet state. Subsequently, several experimental

groups reported this novel quantum state with the prediction of Petrov [52, 53, 54]. In or-

der to protrude the action of LHY correction, which is typically small in the dilute limit,

Petrov suggested to subtly balance the inter- and intra-species interactions at the mean-field

level. Owing to its unique formation mechanism, the self-bound state shows many interest-

ing features, such as the quantum droplet is self-trapped and evaporated without external

potential [51, 55].

The properties of quantum droplet are linked to the properties of interaction between

particles. It is natural to ask if quantum droplet can be stabilized with other types of

interaction and what their properties might be. It was also found that quantum droplets

can be stabilized in a dipolar Bose gas benefiting from the competition between the dipolar

interaction and s-wave contact interaction [56, 57, 58, 59]. The quantum droplets in a dipolar

Bose gas are anisotropic and form a regular array, as a consequence of the dipolar interaction

is anisotropic and long-ranged. Moreover, it is also predicted quantum droplets can be

stabilized with the assistance of three-body interaction [60, 61] and spin-orbit coupling [62].

Here we study the beyond-mean-field ground state of a p-wave interacting Bose gas, and

predict the existence of finite-momentum anisotropic self-stabilized quantum droplet. At the

mean-field level, this p-wave interacting Bose gas typically has three ground-state phases:

atomic superfluid (ASF) phase with only the atomic condensate, atomic-molecular superfluid

(AMSF) phase with both atomic and molecular condensates, and molecular superfluid (MSF)

phase with only the molecular condensate. We find AMSF phase is unstable and tends to
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symmetry ψ̂1(r) ψ̂2(r) φ̂x,y,z(r) ∇

UN(1) eiθψ̂1 eiθψ̂2 e2iθφ̂x,y,z −
[SU(2)/Uy(1)] eiθxσx+iθzσz(ψ̂1, ψ̂2)T − −

SO(3) − − ei
∑
i=x,y,z θiλiφ̂ ei

∑
i=x,y,z θiλi∇

Tr ψ̂1(r + r′) ψ̂2(r + r′) φ̂x,y,z(r + r′) −
T ∑

p1
e−ip1·râ1,−p1

∑
p2
e−ip2·râ2,−p2

e−i(p1+p2)·rb̂i,−p1−p2
−

Table 2: Symmetry transformation. UN(1): θ ∈ [0, 2π) is an arbitrary angle. This symmetry

corresponds to the total number conservation. [SU(2)/Uy(1)] with spin rotation symmetry

Uy(1) generated by σy: θx and θz are arbitrary angles. Here σx,y,z are the Pauli matrices.

SO(3): λx,y,z are defined in Eq. (5.2) and θx,y,z are arbitrary rotation angles. Tr: r′ is an

arbitrary displacement vector in a 3D spatial coordinate. T time-reversal: We use momentum

representation to expand ψ̂1 and ψ̂2 fields. Due to momentum conservation, the momentum

of the molecule fields is restricted to p1 + p2.

collapse. Unlike pure s-wave interaction [63], we find the sign of the LHY correction of p-wave

interaction may be different from that of the mean-field term when varying particle densities.

A balance between the mean-field part and LHY correction exists for certain particle density,

which gives rise to a self-stabilized (-bound) state without external potential. It is shown

the self-stabilized state even survives in the dilute limit estimated with scattering volume.

In addition to the U(1) global phase symmetry, the rotation, translation and time-reversal

symmetries are found to be spontaneously broken by the presence of finite momentum of the

order parameters. The result ground state is predicted to be an anisotropic quantum droplet

with finite momentum for a system with finite particle number.
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5.1 Model

Inspired by the experimental observations of p-wave Feshbach resonance in the mixture

of 85Rb and 87Rb atoms [64, 65], we consider a mixture of two distinguishable species of

bosonic atoms respectively created by ψ̂†1(r) and ψ̂†2(r) with interspecies p-wave interaction.

The p-wave interaction arises from a p-wave Feshbach resonance by coupling with three

closed molecular channels denoted by lz = −1, 0, 1. Here lz~ are the magnetic angular

momentum carried by the molecules on the closed channels, which are created by φ̂†lz=−1,0,1(r)

respectively. It will be convenient to discuss the physics with bases φ̂†i=x,y,z, which are related

with φ̂†lz=−1,0,1 through φ†±1 = (φ†x ± iφ†y)/
√

2, and φ†0 = φ†z. To focus on the physics arising

from p-wave interaction, we will restrict our attention to the case where the closed channels

are degenerate and background (non-resonant) interactions are negligible. The system we

consider is characterized by Hamiltonian density

H =
∑

σ=1,2

ψ̂†σ(−∇
2

2m
)ψ̂σ +

∑

i=x,y,z

φ̂†i (−
∇2

4m
− ε0)φ̂i

+
∑

i=x,y,z

[
g

2
φ̂†i (ψ̂1, ψ̂2)σy∂i(ψ̂1, ψ̂2)T + h.c. ],

(5.1)

where the atomic masses have been assumed to be the same, i.e. m1 = m2 = m, ε0 is the

detuning of molecule channels, ḡ represents the strength of p-wave interaction, and σy is the

Pauli matrix. Here the reduced Plank constant ~ has been set as 1.

Our model possesses UN(1)× [SU(2)/Uy(1)]×SO(3)×Tr×T symmetries, where UN(1)

is the global gauge symmetry, [SU(2)/Uy(1)] the spin rotation symmetry around x and z

directions, SO(3) the 3-dimensional spatial rotation symmetry, Tr the translation symmetry

in the absence of an external field, and T the time reversal symmetry. The symmetry trans-

formations are listed in Tab. 2. It is worth noting that spin-rotation symmetry [SU(2)/Uy(1)]

is reduced to a spin-rotation symmetry Uz(1) generated by σz in the presence of intraspecies

s-wave interaction [42, 9]. In SO(3) rotation symmetry, the atom fields are scalar fields, so

they remain constant under SO(3) transformation. However, molecular field φ̂ and gradient
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operator ∇ are all vector fields, and they are transformed by a 3D spatial rotation. In Tab. 2,

the generators of rotation symmetry λx,y,z are given by,

λx =




0 0 0

0 0 −i
0 i 0


 , λy =




0 0 i

0 0 0

−i 0 0


 , λz =




0 −i 0

i 0 0

0 0 0


 . (5.2)

Time-reversal symmetry T is given by reversing the momentum of atomic and molecular field

operators, i.e. transforming â1,p1
, â2,p2

, and b̂i,p1+p2
as â1,−p1

, â2,−p2
, and b̂i,−p1−p2

, respectively.

The total particle number N and atomic number difference δN are defined as below,

N1 +N2 + 2NM = N, N1 −N2 = δN, (5.3)

where we use N1,2 =
∫
d3r〈ψ̂†1,2ψ̂1,2〉 and NM =

∑
i=x,y,z

∫
d3r〈φ̂†i φ̂i〉 to denote the numbers of

atoms and molecules, respectively. Here 〈· · · 〉 represents the average over the ground state.

N and δN are conserved in our model, which correspond to the UN(1) and [SU(2)/Uy(1)]

symmetries.

5.2 Mean-field Ground State

As the foundation of beyond-mean-field study, we need to characterize the ground state

at the mean-field level at first. We use the mean fields Ψ1 = 〈ψ̂1〉, Ψ2 = 〈ψ̂2〉 and Φi = 〈φ̂i〉
to describe the atomic and molecular condensates. The mean-field ground state of a p-

wave resonant Bose gas including considerable large intraspecies s-wave interaction has been

systematically discussed before [42, 9]. Three mean-field phases for the ground states: atomic

(ASF), atomic-molecular (AMSF) and molecular (MSF) superfluid, are found. Typically, the

atomic condensates carry finite momentum due to the p-wave interaction in AMSF phase.

Actually, the ground-state phase diagram of our model is similar to the case there. Due to

the lack of intraspecies s-wave interaction (or due to weak intraspecies s-wave interaction)

in our model, it is shown that such previously known types of ground state are unstable at

the mean field level.
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Phase ε0 nM n1 = n2 Q µ Z E0/V

ASF ε0 < −1
2
g2mn 0 1

2
n 0 0 0 0

AMSF −1
2
g2mn < ε0 <

1
2
g2mn 1

4
n+ ε0

2g2m
1
4
n− ε0

2g2m
−gm

√
1
4
n+ ε0

2g2m
−1

8
g2mn− 1

4
ε0 0 − 1

16g2m
(g2mn+ 2ε0)2

MSF ε0 >
1
2
g2mn 1

2
n 0 − 1√

2
gm
√
n −1

4
g2mn 0 −1

2
ε0n

Table 3: Table of ground state phases. Here we have three phases by setting different

detuning. ASF, AMSF and MSF are the atomic, atomic-molecular and molecular condensate

phases, respectively.

As the typical feature of p-wave interaction, the atomic condensates generally carry fi-

nite momentum due to the shift of energy minimum in momentum space by the interaction

terms [42, 9]. Although a general description of atomic order parameters should be written

as Ψ1 =
∑

Qn
Ψ1,Qne

−iQn·r and Ψ2 =
∑

Qn
Ψ2,−Qne

iQn·r, where Qn is the set of possible mo-

mentums, it is generally expected that the assumption Qn = Q is sufficient to capture the

qualitative picture of the ground state. That is, the order parameters can be taken as

Ψ1 = Ψ1,Qe
−iQ·r, Ψ2 = Ψ2,−Qe

iQ·r. (5.4)

Correspondingly the molecular components are space-independent, since the molecular

fields only feel a homogeneous potential by atoms. Considering the symmetries of our model,

we have the following ground-state ansatz

Ψ =
√
nAe

iθei(θxσx+θzσz)


cosχAe

−iQ·r

sinχAe
iQ·r


 ,

Q = ei
∑
i=x,y,z θiλiQ0,

Φ =
√
nMe

i(2θ+θM )ei
∑
i=x,y,z θiλi




cosχM

i sinχM

0


 ,

(5.5)

where θ, θM ∈ [0, 2π) are U(1) phases, θx,z ∈ [0, 2π) are [SU(2)/Uy(1)] spin rotation angles,

θx,y,z are SO(3) rotation angles, χA, χM ∈ [0, 2π), Q0 = (Q0,x, Q0,y, Q0,z)
T is an arbitrary
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real three dimensional vector, nA = (N1 + N2)/V, nM = NM/V with system volume V are

the total atomic density and molecular density respectively.

Furthermore, we derive the free energy density by substituting the above ansatz (5.5) to

the Hamiltonian density (5.1)

F/V =
∑

σ=1,2

Q2

2m
nσ − ε0nM − µ(n1 + n2 + 2nM − n)

+
g

2
nA
√
nM sin 2χA[e−iθM (cosχM ,−i sinχM , 0)

·Q0 + h.c]− Z(n1 − n2),

(5.6)

where n1,2 = N1,2/V , µ and Z are the Lagrange multipliers set for the conservations of

the total particle number and atom-number difference. For simplicity, we only consider a

nonpolarized situation in this paper, i.e. n1 = n2 = nA/2, and fix the total particle number.

The free energy density does not depend on θ, θx,z, θx,y,z. To minimize the free energy, we

obtain the optimal values for the parameters: θM = 0, χA = π/4, χM = 0, Q0,x = |Q|, Q0,y,z =

0, from which we can see that Φ is real and parallel to Q by setting θ = 0. To be more

convenient, we set θy = π/2, θx,z = 0 so that Q and Φ are aligned to z direction. Without

loss of generosity, we choose g to be negative (if g > 0, Q will be opposite to Φ, however, it

gives us the same phases and LHY corrections as we obtain below). Gross-Pitaevskii (GP)

equations can be derived from the free energy density formula, and we obtain the optimized

solutions to minimize the free energy.

Similar to previous chapter, the ground state phase diagram of our model is also divided

into three phases for different detuning ε0, where the ground state phases are listed in the

Tab. 3. Here ASF refers to the atomic superfluid phase, where only atomic condensates

exist. Note that there is no superfluidity here due to the absence of background atom-

atom interaction, where the name of phase is only taken to be consistent with previous

convention [42, 9]. AMSF refers to the atomic-molecular superfluid phase, where atom and

molecular condensates are present in the same phase. MSF with only molecular condensate

is the molecular superfluid phase.

In ASF phase, the condensate in both atomic species stays stationary due to vanishing

Q and the two condensates do not interact. The atomic chemical potential remains zero.
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In AMSF phase, the rotation and time-reversal symmetries are all broken due to the finite-

momentum condensates. The SO(3) rotation symmetry is spontaneously broken into SO(2)

symmetry. In MSF phase, although the density of the atomic condensates is zero, we still

have non-zero Q. This results in an MSF excitation spectrum translated in momentum space

by Q as we will see in section IV.

From Tab. 3, we can also find the total energy E0 is proportional to particle number

N = nV in phases ASF and MSF, which is due to the lack of background atom-atom

and molecule-molecule interactions in these phases, respectively. It means the total energy

E0 is constant, such that the ground state is stable, for a system with fixed total particle

number. However, we can find it is energetically favorable to increase density n to reach

lower total energy E0 in AMSF phase. It implies that in this phase the mean-field ground

state is unstable and tends to collapse into a state with smaller volume but large particle

density when the total particle number is fixed. The instability of the ground state in AMSF

phase also manifests itself in the fact that the excitation mode becomes complex in the

long-wavelength limit k → 0 [66]. It will be shown the ground state collapses into a small

droplet after considering LHY correction [63]. In order to calculate this correction, we need

to analyze the Bogoliubov excitation spectrum at first.

5.3 Bogoliubov Excitations

We will study the Bogoliubov excitation spectrum in this section. Following Bogoliubov’s

theory [67, 68], we expand the atomic and molecular fields around the ground-state mean

fields,

ψ̂σ = Ψσ + δψ̂σ, φ̂i = Φi + δφ̂i, (5.7)

with the fluctuation fields δψ̂σ and δφ̂i. For convenience, we furthermore expand δψ̂σ and

δφ̂i with the Fourier transformation

δψ̂σ =
1√
V

∑

k

δâσ,ke
−ik·r, δφ̂i =

1√
V

∑

k

δb̂i,ke
−ik·r, (5.8)
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Figure 15: Schematic plot of dimensionless function fj for subplots (a), (d): ∆ = −0.4;

(b), (e): ∆ = 0.1; and (c), (f): ∆ = 0.4, which are inside ASF, AMSF and MSF phases,

respectively. Here j means different modes. We can find the low-energy modes become

imaginary in phase AMSF, which arises from the instability of the mean-field ground state.

Here r̃ =
√
x̃2 + ỹ2 + z̃2 represents the distance from the momentum-space origin.

where δâσ,k and δb̂i,k are the corresponding quantum fluctuation fields in momentum space.

Substituting Eqs. (5.7) and (5.8) into Eq. (5.1) and keeping only the second-order terms

(the first-order terms vanish due to the saddle-point solution and higher-order terms will be

neglected), we can derive the Bogoliubov Hamiltonian. The Bogoliubov excitation spectrum

can be extracted by diagonalizing Bogoliubov Hamiltonian.

ASF phase: This phase has only atomic condensates, i.e. n1 = n2 = n/2, nM = 0 and

the zero atomic condensates momentum Q = 0. The Bogoliubov Hamiltonian can be written
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as

Hf =
1

2

∑

k

{
∑

σ=1,2

εσ,k+Qσδâ
†
σ,k+Qσ

δâσ,k+Qσ

+
∑

i=x,y,z

ωi,kδb̂
†
i,kδb̂i,k − 2

∑

σ,i

αi,σ,kδb̂
†
i,kδâσ,k+Qσ

+ h.c.},

(5.9)

where σ = 3 − σ, σ = 1, 2, Q1 = −Q2 = Q, and the parameters in the above equation are

given as

εσ,k = εk =
k2

2m
, ωi,k =

1

2
εk +

1

2
g2mn,

αi,σ,k = (−1)σ
1

2
√

2
g
√
nki.

(5.10)

The corresponding Bogoliubov excitation spectrum is given by

EASF
j,k =

1

4
g2mnfASFj (x̃, ỹ, z̃), j = 1, · · · , 5 (5.11)

where fASFj is a dimensionless function, j corresponds to different modes and the dimension-

less variables x̃ = kx
gm
√
n
, ỹ = ky

gm
√
n
, z̃ = kz

gm
√
n
.

We show fASFj along the radial direction in Fig. 15(a) and (d). The spectrum is symmetric

in all directions and has two gapless atomic modes. The quadratic dispersions of gapless mode

are due to the absence of atom-atom interaction.

AMSF phase: In AMSF phase, particles are condensed into both the atomic and molec-

ular channels, and the atomic condensates carry opposite finite momentums. The directions

of atomic momentum Q and molecular condensates order parameter Φ = (Φx,Φy,Φz) are

parallel in mean-field ground state, where the direction of Φ is defined by the it three spatial

components. For convenience, we build the coordinate so that this direction is aligned along

z axis. The Bogoliubov Hamiltonian is written as

Hf =
∑

k

{
∑

σ=1,2

1

2
εσ,k+Qσδâ

†
σ,k+Qσ

δâσ,k+Qσ

+
∑

i

1

2
ωi,kδb̂

†
i,kδb̂i,k + tk+Qδâ1,k+Qδâ2,−k−Q

−
∑

σ,i

αi,σ,kδb̂
†
i,kδâσ,k+Qσ + h.c.},

(5.12)
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where the parameters in the above equation are given by

εσ,k = εk +
1

8
g2mn+

1

4
ε0, ωi,k =

1

2
εk +

1

4
g2mn− 1

2
ε0,

tk = −g
∑

i

Φ∗i ki, αi,σ,k = ±g√nσ(Qσ,i − ki/2),
(5.13)

with εk = k2

2m
, σ = 1, 2 (correspondingly σ̄ = 2, 1), Q1 = Q and Q2 = −Q. The Bogoliubov

excitation spectrum can be written as

EAMSF
j,k =

1

4
g2mnfAMSF

j (x̃, ỹ, z̃,∆), j = 1, · · · , 5 (5.14)

where fAMSF
j is a dimensionless function, j corresponds to different modes, the dimensionless

variables x̃ = kx
gm
√
n
, ỹ = ky

gm
√
n
, z̃ = kz

gm
√
n

and ∆ = ε0
2g2mn

is the dimensionless detuning.

The schematic plots of fAMSF
j are shown in Fig. 15(b) and (e) along z and x directions

respectively. As we can see from the two figures, the blue-dashed curve shows imaginary

mode consistent with the instability of the mean-field ground state [66], which is absent

when the ground state is stable [42, 9]. Actually, the true ground state is lost due to the

homogeneous assumption (the system with finite particle number will collapse into a droplet

shape that breaks the spatial translation symmetry) and the absence of LHY correction.

On the other hand, the inverse of the largest momentum carried by imaginary modes is

expected to be comparable with the size of the droplet [66]. The minima on the blue-solid

curve in Fig. 15(b) corresponds to the nonvanishing momentum 2Q in AMSF phase, where

the atomic condensates locate. That the spectrum softens to zero at kz = 2Q implies our

ansatz correctly captures the feature of the ground state.

MSF phase: In this phase, we have nM = n/2 and n1 = n2 = 0. The Bogoliubov

Hamiltonian is given as

Hf =
∑

k

{
∑

σ=1,2

1

2
εσ,k+Qσδâ

†
σ,k+Qσ

δâσ,k+Qσ

+ tk+Qδâ1,k+Qδâ2,−k−Q

+
∑

i

1

2
ωi,kδâ

†
i,kδâi,k + h.c.},

(5.15)

where εσ,k = εk + 1
4
g2mn, ωi,k = 1

2
εk and tk = −g∑i Φ

∗
i ki.
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Fortunately, we can derive analytical formulas for the excitation modes in this phase, i.e.

EMSF
1,2,3,k =

1

8
g2mnr̃2,

EMSF
4,k =

1

4
g2mn

√
(r̃2 + 2∆− 1

2
)(r̃2 − 2

√
2r̃ cos γ + 2∆ +

3

2
),

EMSF
5,k =

1

4
g2mn

√
(r̃2 + 2∆− 1

2
)(r̃2 + 2

√
2r̃ cos γ + 2∆ +

3

2
).

(5.16)

where r̃2 = (k2
x + k2

y + k2
z)/g

2m2n and γ is the angle between z axis and unit vector k̂ as we

have aligned Q̂ along z. Similar to what we defined in ASF and AMSF phases, we rewrite

the excitation modes in this formula

EMSF
j,k =

1

4
g2mnfMSF

j (x̃, ỹ, z̃,∆), j = 1, · · · , 5. (5.17)

Fig. 15(c) and (f) are the corresponding fMSF
j along z and x directions. In Fig. 15(c), the

red dotted and green dashed curves are the two atom modes respectively, and the minima on

green dashed curve corresponds to the nonvanishing momentum 2Q. The blue curve denotes

the triply-degenerated molecule modes. In Fig. 15(f), the red curve denotes the doubly-

degenerated atom modes and blue curve denotes the triply-degenerated molecule modes.

5.4 LHY Correction

The LHY correction is the leading-order correction of quantum fluctuation. It is com-

posed of Bogoliubov excitation energies, commutation energies which appear due to the

commutation relations of Nambu basis, and energy correction due to the interaction renor-

malization. Here the interaction renormalization is employed to remove the energy divergence

arising in collecting the energy of quantum fluctuation [63]. Let us review the renormalization

procedure before going ahead.
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Figure 16: Diagram for calculating the T matrix for p-wave interaction. Single lines denote

the bare atom propagators G(0), double lines denote the bare molecule propagators D(0), and

the bold one denotes the renormalized molecule propagators D. The blue square represents

the T matrix: −iT (lz)
k,k′ . The blue dot represents the interaction vertex: −igkY1,lz(k̂).

To remove the divergence appears in the calculation of LHY correction, we need to

renormalize the interaction parameter g and detuning ε0 [63, 66]. As shown in Fig. 16, the

two body T matrix for p wave interaction is given by [69]

− iT (lz)

k,k′
(k) = D(0)(k)(−ig)2k2Y1,lz(k̂)Y ∗1,lz(k̂

′
)

+D(0)2(k)(−ig)42Πlz(k)k2Y1,lz(k̂)Y ∗1,lz(k̂
′
) + ...

= D(k)(−ig)2k2Y1,lz(k̂)Y ∗1,lz(k̂
′
).

(5.18)

where the index lz denotes different interacting channels lz = −1, 0, 1. Y1,lz(k̂) is the lz-th

channel of the first order spherical harmonics. D(0)(k) is the p-wave scattering propagator

and Πlz(k) is the polarization bubble for channel lz, which are given by

D(0)(k) =
i

k2/m+ ε0 + i0+
, (5.19)

and

Πlz(k) =

∫
d3p

(2π)3

ip2|Y1,lz(p̂)|2
k2/m− p2/m+ i0+

. (5.20)

Using Eq. (5.18), we yield

D−1(k) = [D(0)(k)]−1 − (−ig)2Πlz(k). (5.21)
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Comparing k0 term and k2 term on both sides of Eq. (5.21), we obtain the renormalization

relations [70],
ε̃0

g̃
2 =

ε0
g2 +

∫
d3p

(2π)3
m|Y1,lz(p̂)|2, (5.22)

and
1

g̃
2 =

1

g2 −
∫

d3p

(2π)3
m2 |Y1,lz(p̂)|2

p2
, (5.23)

where ε̃0 and g̃ are the renormalized detuning and p-wave interacting strength respectively.

Applying these renormalization relations into the ground state energy in different phases,

one obtains the renormalized mean-field ground state energies

EASF
0,r /V = 0, (5.24)

EAMSF
0,r /V =

∫
d3k

(2π)3
(

1

12
g2mn+

1

6
ε0 +

g4m2n2 − 4ε20
72k2

), (5.25)

and

EMSF
0,r /V =

∫
d3k

(2π)3
(
1

6
g2mn+

g2mn− 2ε0
12k2

). (5.26)

LHY correction is the zero-point energy corresponding to the Bogoliubov modes. It is

necessary to remove the commutation energies which are the diagonal terms in the Bogoli-

ubov Hamiltonian. The commutation energies for different phases are listed below,

EASF
c /V =

∫
d3k

(2π)3

k2
x + k2

y + k2
z

2m
+

3k2

8m
+

3g2mn

8
, (5.27)

EAMSF
c /V =

∫
d3k

(2π)3

1

2
(
k2
x + k2

y + (kz + gm
√

1
4
n+ ε0

2g2m
)2

2m
+

1

8
g2mn+

1

4
ε0) (5.28)

+
1

2
(
k2
x + k2

y + (kz − gm
√

1
4
n+ ε0

2g2m
)2

2m
+

1

8
g2mn+

1

4
ε0)

+
3

2
(
k2

4m
+

1

4
g2mn− 1

2
ε0),

EMSF
c /V =

∫
d3k

(2π)3

1

2
(
k2
x + k2

y + (kz + gm
√
n/2)2

2m
+

1

4
g2mn) (5.29)

+
1

2
(
k2
x + k2

y + (kz − gm
√
n/2)2

2m
+

1

4
g2mn) +

3k2

8m
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From the analysis of Bogoliubov spectrum and interaction renormalization, we obtain the

LHY correction densities in different phases, Eα
LHY /V =

∑5
j=1

∫
d3k

(2π)3
Eα
j,k−Eα

c /V +Eα
0,r/V ,

where α = ASF,AMSF,MSF .

EASF
LHY /V =− g5m4n2.5

∫
d3r̃

(2π)3
(

5∑

j=1

1

4
fASFj

− 7

8
r̃2 + 3∆),

(5.30)

EAMSF
LHY /V =− g5m4n2.5

∫
d3r̃

(2π)3
(

5∑

j=1

1

4
fAMSF
j

− 7

8
r̃2 − 13

24
+

5

6
∆ +

1− 16∆2

72r̃2
),

(5.31)

and

EMSF
LHY /V =− g5m4n2.5

∫
d3r̃

(2π)3
(

5∑

j=1

1

4
fMSF
j

− 7

8
r̃2 − 1

3
+

1− 4∆

12r̃2
).

(5.32)

Unlike the AMSF and MSF phases, there is no particle-hole coupling as presented in

Eq. (5.9) in the ASF phase, which results in the cancellation between the total excitation

energies and the commutation energies in LHY calculation. As a proof to this inference, we

find Eq. (5.30) shows result EASF
LHY = 0 numerically. Combining the mean-field ground state

energy densities and LHY corrected energy densities yields the total ground state energy

density Eg/V = E0/V + ELHY /V for different phases as follows,

EASF
g /V = 0, (5.33)

EAMSF
g /V =− g5m4n2.5F (∆)− 1

16
g2mn2

− 1

4
ε0n−

1

4

ε20
g2m

,
(5.34)

and

EMSF
g /V = −g5m4n2.5F (∆)− 1

2
nε0, (5.35)
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Figure 17: Schematic plot of F (∆). The blue solid line is a linearized approximation for the

regime with a stabilized particle number density.

where F (∆) is depicted in Fig. 17 numerically.

We plot the total energy density versus particle density for different detuning in Fig. 18.

As we can see, for ε0 > 0, the minimum energy density is well defined, and lies in the AMSF

phase. It implies that there exists a self-stabilized state at around the minimum. If the

particle number is finite, it forms a quantum droplet [51]. We also depict the dependence

between the particle density of the self-stabilized state ns and the detuning ε0 in Fig. 19.

It is shown the stabilized density is almost linearly proportional to ε0. However, if ε0 < 0,

the energy density is degenerated inside ASF phase, but it can be broken by introducing an

atom-atom s-wave interaction. Typically, the atom-atom s-wave interaction is repulsive and

the corresponding LHY correction is also positive [63]. Therefore, the lowest energy density

lies at n = 0 inside ASF phase. For this reason, we do not expect a self-stabilized state when

the detuning ε0 < 0.

The diluteness of p-wave interacting gas can be characterized by the product between the

particle density and the scattering volume vp [70, 71], i.e. nvp = g2mn/(16π2ε0). Therefore,

we can rewrite the ground-state energy given by mean-field theory (MFT) and the LHY
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Figure 18: Total ground-state energy density versus total number density for different de-

tuning: ε0ma
2
res = 0.5 (a), 1 (b), 2 (c), 5 (d), −0.5 (e), −1 (f), −2 (g), −5 (h). In subfigures

with ε0 > 0, the yellow circle (red square) dots represent the energies in MSF (AMSF) phase.

The minimum energy density is presented with a finite number density after we introduce

the LHY correction and lies in the AMSF phase. In subfigures with ε0 < 0, the yellow

circle (red square) dots represent the energies in ASF (AMSF) phase. To emphasize the

dominance of p-wave interaction, we choose ares = 103a0 with the Bohr radius a0 as the unit

of length, which is typically far larger than the background scattering length. We set the

Planck constant ~ as 1 for convenience.

correction in terms of the diluteness as

EMFT
AMSF/V = − ε20

64g2m
(32π2nvp + 4)2, (5.36)

EMFT
MSF /V = − ε20

4g2m
32π2nvp, (5.37)

and

ELHY /V = m1.5(ε0/2)2.5(32π2nvp)
2.5F (

1

32π2nvp
). (5.38)
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Figure 19: The stabilized density ns versus detuning ε0. The stabilized density ns is almost

proportional to detuning ε0 linearly. As ε0 becomes larger, ∆s = ε0
2g2mns

converges to ≈ 0.08.

The diluteness of the self-stabilized state with respect to detuning is shown in Fig. 20.

As detuning approaches zero, the diluteness tends to diverge, which may indicate that higher

order corrections besides MFT and LHY are needed. But for a large detuning regime, the

mixture is dilute, so that it is reasonable to characterize our model with only first order

beyond-mean-field calculation.

5.5 Quantum Droplets

According to the above analysis, we find the mean-field collapsing state becomes self-

stabilized after considering beyond-mean-field correction. This self-stabilized state forms a

quantum droplet when the particle number is finite [51]. To figure out the density distribution

of the quantum droplet, we will derive an effective theory to characterize the density profile.

Here we employ function ξ(r) to characterize the droplet density profile. If the system size

is infinite, we have solution ξ(r) = 1 as it should be a uniform gas. However, if the system
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Figure 20: Relation between the diluteness and the detuning. As detuning approaches zero,

the diluteness tends to diverge, which may indicate that higher order corrections besides

MFT and LHY are needed. But for a large detuning regime, the mixture is dilute, so that it

is reasonable to characterize our model with only first order beyond-mean-field calculation.

The inset shows the energy comparison for different diluteness, as we set ε0ma
2
res = 5. The

lowest total energy is ensured to appear in the dilute regime.

size is finite, the density profile will be inhomogeneous.

As a qualitative analysis, we will take the local density approximation (LDA). With this

approximation, the order parameters can be rewritten as [66],

Ψ1 = Ψ1,Qe
−iQ·r, Ψ2 = Ψ2,−Qe

iQ·r, (5.39)

and Φ =
√
ns,Mξ(r)ẑ, where

Ψ1,Q =
√
ns,1ξ(r), Ψ2,−Q =

√
ns,2ξ(r). (5.40)

ns,{1,2,M} are the densities that correspond to the minimum of Eg/V as shown in Fig. 18.

Here we have chosen ẑ direction due to the spontaneous breaking of SO(3) rotation symmetry

by Q = −gm√ns,Mξ(r)ẑ.
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Figure 21: Density profile of the droplet. The background color represents ξ =
√
n(r)/ns,

where n(r) is density at different locations and ns is the stabilized density. The x axis and y

axis for each subfigure label the x direction and z direction in real space. The detunings from

the top row to the bottom row are ε0ma
2
res = 0.5, 5, 50 respectively. The normalization factor

for ξ from the left column to the right column are N/(nsa
3
res) = 104, 105, 106 respectively.

When the particle number grows large enough with ns fixed, it breaks SO(3) symmetry

clearly. As the detuning grows smaller and deep inside the AMSF phase, the droplet is more

and more reduced along z axis.

To access the analytical form of effective Hamiltonian, an approximative form of F (∆)

at around the stable point is considered. For ε0 > 0, we find a linearized formula for F (∆),

which captures its behavior at around the minimum energy density inside the AMSF phase
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(0 < ∆ <≈ 0.08) [see Fig. 17]. It is written as

F (∆) ≈ −0.460333∆ + 0.01624807. (5.41)

According to Eq. (5.34), the approximated total ground-state energy in AMSF phase is

given by

EAMSF
g /V =− 1

16
g2mn2

s −
1

4
ε0ns −

1

4

ε20
g2m

− 0.01625g5m4n2.5
s + 0.2302ε0g

3m3n1.5
s .

(5.42)

Furthermore, by substituting Eqs. (5.39) and (5.40) to Eq. (5.42) along with the kinetic

energy, we derive the effective Hamiltonian

Heff = g2mn2
s{[

1

g2m2ns
(
3

4
∆− 5

16
) + (∆2 − 1

16
)z2ξ2]ξ∇2ξ

−(2∆2 +
1

2
∆)ξ2 + 0.460333∆g3m3√nsξ3

+(∆2 − 1

16
)ξ4 − 0.01625g3m3√nsξ5} .

(5.43)

The chemical potential µ̃ is fixed by the normalization condition
∫
d3r|ξ|2 = N/ns, where N

is the total number of particles and ns is the stabilized total density. The profile function

ξ(r) is determined by the GP equation

µ̃ξ2 = g2mn2
s{[

1

g2m2ns
(
3

4
∆− 5

16
) + 2(∆2 − 1

16
)z2ξ2]ξ∇2ξ

−(2∆2 +
1

2
∆)ξ2 + 0.690501∆g3m3√nsξ3

+2(∆2 − 1

16
)ξ4 − 0.0460202g3m3√nsξ5} ,

(5.44)

which is derived by minimizing the effective Hamiltonian.

The above GP equation is solved numerically by using the imaginary time evolution

method. The solutions for different detuning and particle numbers are shown in Fig. 21. We

can find the quantum droplet is typically suppressed in the z direction. The degrees of sup-

pression decreases for a larger ε0. Hence the droplet looks like a pancake when N/ns is large

enough but ε0 is small (see the upper right subfigure of Fig. 21). We also show the section

of the solution where ε0ma
2
res = 0.5, N/(nsa

3
res) = 106 in Fig. 22. The density is found to

suddenly fall to zero in the horizontal directions (x or y directions), while gently decreasing
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Figure 22: Density profile on the centered lines along x and z directions inside the droplet

under condition ε0ma
2
res = 0.5 and N/(nsa

3
res) = 106. The red dashed curve is the centered

line along x direction and the blue solid curve is along z direction. The value on the plateau

is almost constant and close to 1.025. If the system size is increased, the height of the plateau

will be closer to 1.

to zero in the z direction. Except for the boundary regime, the profile varies smoothly ev-

erywhere, which implies that LDA could qualitatively catch the features of quantum droplet

here. In fact, the anisotropy of quantum droplet arises from the spontaneous breaking of

SO(3) rotation symmetry by finite-momentum atomic condensates. It is intrinsically different

from the anisotropic quantum droplets in the presence of dipolar interaction [56, 57, 58, 59]

or spin-orbit coupling [62], where the anisotropy arises from external fields. As we can see,

the value on the plateau remains almost constant and close to 1, which will be exactly 1

when the system size goes to infinity. Another special feature of quantum droplet here is

that the atomic components carry finite momentums due to the breaking of time-reversal

symmetry.
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5.6 Background s-wave Interactions

Hereinbefore we mainly focused on the case without background interactions. In the

presence of the background s-wave interactions, which are characterized by

V̂bg =g1ψ̂
†
1ψ̂
†
1ψ̂1ψ̂1 + g2ψ̂

†
2ψ̂
†
2ψ̂2ψ̂2 + g12ψ̂

†
1ψ̂
†
2ψ̂2ψ̂1

+ g(1)
mm

∑

i,j=x,y,z

φ̂†i φ̂
†
jφ̂jφ̂i + g(2)

mm

∑

i,j=x,y,z

φ̂†i φ̂
†
i φ̂jφ̂j

+ gam
∑

σ=1,2

∑

i=x,y,z

ψ̂†σφ̂
†
i φ̂iψ̂σ,

(5.45)

where g1, g2 and g12 (g
(1)
mm and g

(2)
mm) are the atom-atom (molecule-molecule) interaction

coefficients and gam is the atom-molecule interaction coefficient, the mean-field ground state

energy in the AMSF phase (taking the polar molecular state [42, 9] as example) takes the

form,

E0

V
=[−4ε20(gaa − 3gam + 2gmm + g2m)

− 4ε0n(2gaa − 2gam + g2m)

× (gaa − 3gam + 2gmm + g2m)

+ (4g2
aagam + (3gam − 2gmm − g2m)(−2gam + g2m)2

− gaa(12g2
am − 4g2

mm − 8gamg
2m+ g4m2))n2]

/[16(gaa − 2gam + gmm + g2m)2].

(5.46)

Here gaa = g1 + g2 + g12 and gmm = g
(1)
mm + g

(2)
mm. In order to capture the profile of

quantum droplet with finite particle number, we consider the ground-state energy with the

canonical condition in this paper instead of the grand canonical condition in Refs. [42, 9],

while we would like to emphasize that the statistic condition does not affect the stabil-

ity mechanism of quantum droplet, which is mainly determined by intra-atomic interac-

tion. When the p-wave interaction strength is far larger than the background interaction

strengths, i.e. the effective p-wave interaction strength gp = mḡ2 � gaa, gam, gmm, we have

E0/V = − (2ε0+g2mn)2

16g2m
+O(δaa, δam, δmm) with δaa,am,mm = gaa,am,mm/mḡ

2, which implies that
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the mean-field instability should exist in a finite regime of background-interaction parame-

ters.

On the other hand, since the LHY corrections of s-wave interactions are typically pro-

portional to (gsn)2.5 with the s-wave interaction strength gs and average density n [63, 51],

and that of p-wave interaction is proportional to (gpn)2.5 [see Eq. (5.31)], if the background

s-wave interactions are weak enough with respect to the p-wave interaction, the background

s-wave interactions should also not qualitatively affects the stabilization of the p-wave quan-

tum droplet. Therefore, we can believe the presence of weak background s-wave interactions

will not qualitatively affect the main conclusions of this paper. However, we have to point

out that, to the best of our knowledge, the complete experimental data for the background

interactions in a p-wave Feshbach resonance (especially the molecule-molecule interactions)

is not available currently, and further investigations are necessary for judging if the quantum

droplet could emerge under realistic conditions.
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6.0 Fast Scrambling Without Appealing to Holographic Duality

The dynamics of thermalization in closed quantum systems has received immense atten-

tion in recent years [12, 3, 13, 14, 72, 73, 74, 75, 76]. A central focus of these studies has

been the “scrambling” of quantum information [16, 17, 18, 19, 77, 78, 79, 80, 81, 82, 83, 84].

Scrambling is the process by which locally encoded information gets spread over non-local

many-body degrees of freedom during the time evolution of a complex quantum system.

This paradigm has been used to address a diverse array of questions in areas ranging from

quantum chaos to quantum gravity [20, 21, 22, 23, 85, 86, 87, 88, 89, 90, 91, 92, 93]. Sev-

eral recent experiments in a variety of analog quantum simulator platforms have successfully

probed quantum scrambling [24, 25, 26, 27, 94, 95, 96, 97], thereby paving the path to answer

fundamental questions about non-equilibrium quantum dynamics.

Black holes are the fastest scramblers known in nature. In the context of quantum

information recovery, the scrambling time scale can be viewed as a lower bound on the time it

takes between throwing information into a black hole and being able to recover it, with small

error from the subsequent Hawking radiation [98]. It has also been described as the amount of

time it takes for a qubit of information thrown into a black hole to become thoroughly“mixed”

[99]. There are many methodologies in the current literature to calculate the scrambling time

scale for black holes [99, 100, 101]. Depending on the particular approach one takes the exact

mathematical expression for the scrambling time scale may vary. However, as diverse as they

may be, it seems that the approaches described in [99, 100] give a time scale that can be

roughly quantified by the following expression:

tscr ∼ β ln(S). (6.1)

Here, β is the inverse temperature of the system and S can be viewed as the number of

microscopic degrees of freedom in the system which take part in the fast scrambling process.

Unlike the normal scramblers, where the characteristic times are usually linear to system

entropy or system size, the fast scramblers process information in characteristic times scaling

logarithmically as shown in Eq. 6.1.
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Motivated by advances in holography, researchers have studied quantum many-body

systems that can exhibit fast scrambling. Perhaps, the most celebrated example of this

is the Sachdev-Ye-Kitaev (SYK) model [102, 103, 104, 105, 106]. This model describes N

Majorana fermions interacting via random infinite range interactions. The SYK model can

be exactly solved in the large N limit, where it is conjectured to be holographically dual

to the Jackiw-Teitelboim model of gravity in two dimensions [107, 108, 109], and it can

scramble as fast as a black hole in the low temperature limit [110]. The comparison to show

the duality is summarized in Fig. 23 [110].

However, the randomness in the long range interactions is not necessary to produce fast

scrambling. As Bentsen et al. have demonstrated in a recent paper, a non-disordered spin

model describing sparsely connected spin-1/2 particles, can also be a fast scrambler [111].

Their proposal was motivated by the p-adic version of the anti-de Sitter/conformal field

theory correspondence [112]. While their model is very elegant, its experimental realization

can be very difficult when the system size becomes large. Thus, it is necessary to search for

alternative approaches to realize fast scrambling without disordered interactions. Further-

more, all of these works raises a crucial question: are all fast scramblers holographically dual

to quantum gravity?

In this chapter, we address this issue by proposing a fast scrambling many-body model,

that is not inspired by holography. Our model essentially comprises two ingredients - a short

range Ising interaction, and an infinite range XX interaction. Both of these features are

crucial since short range interacting systems can not be fast scramblers [113], while uniform

infinite range interactions can not induce quantum chaos [114]. Although our model is inte-

grable in certain limits, we show that there is a large parameter regime, where the system

exhibits fast scrambling. Furthermore, such a vanilla model may be easier to realize exper-

imentally, even for large system sizes. Our results suggest that an appropriate combination

of short and long range interactions can lead to fast scrambling.

We study information scrambling by studying the dynamics of an out-of-time ordered

correlator (OTOC). In quantum chaotic systems, the growth of the OTOC at early times is

exponential (∼ eλt), where λ is bounded (λ ≤ 2πkBT/~)[89]. Moreover, the fast scrambling

conjecture states that the time it takes for local information be thoroughly scrambled in a
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Figure 23: Summary of the properties of the SYK model and planar charged black holes at

T = 0. The spatial co-ordinate ~x has d dimensions. The fermion mass m has to be adjusted

to obtain the displayed power-law. The spectral asymmetry parameter E appears in the

fermion correlators and in the AdS2 electric field. A key observation in the holographic

framework is that E , now related to the electric field, obeys an important identity which

follows from the laws of black hole thermodynamics, where SBH is the Bekenstein-Hawking

entropy densiy of the AdS2 horizon.
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N body quantum system obeys a lower bound (t ≥ log(N)/λ) [87]. We identify a large

parameter regime where our model behaves as a fast scrambler. We also find that in this

regime, our model is non-integrable, and the entanglement entropy grows very fast.

6.1 Model

We study a one dimensional spin chain with N sites described by the following Hamilto-

nian:

H =
N∑

i=1

(
σzi σ

z
i+1 + J

∑

j>i

(σ+
i σ
−
j + σ−i σ

+
j )

)
, (6.2)

Figure 24: Schematic representation of the model: The model in Eq. (7.1) is characterized

by a nearest neighbor Ising coupling and an infinite range XX coupling.

where σ±i = 1√
2
(σxi ± iσyi ) and σγi is the standard Pauli matrix at lattice site i. A schematic

of this model is shown in Fig. 24. In accordance with realistic experimental realizations of

the all-to-all interaction, we do not rescale J by 1/N . We note that this spin chain can

not exhibit fast scrambling, when J is rescaled by 1/N [115]. Two other recent studies on

related spin models have reached a similar conclusion [116, 117]. When J →∞, this model

reduces to a form of the Lipkin-Meshkov-Glick model, and it is mean field solvable in the

thermodynamic limit [118, 119]. On the other hand, when J → 0, the model is the exactly

solvable Ising model [120]. Intriguingly, between these two extreme limits, this model can
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exhibit non-integrability - an essential criterion for fast scrambling [115]. In the remainder

of the paper, we focus on the J ∼ O(1) regime, where the spin chain is characterized by

Wigner-Dyson level statistics, and the system exhibits chaotic dynamics.

While cousins of our model have been studied extensively [121, 122, 123, 124, 125, 126,

127], to the best of our knowledge, neither the equilibrium phase diagram, nor the non-

equilibrium dynamics of this precise model has been studied before. Consequently, we dis-

cover a trove of rich non-equilibrium physics that arises from the interplay of nearest neighbor

and infinite range interactions. We use exact diagonalization to study this model with open

boundary conditions. The total z-magnetization (Mz =
∑N

i=1 σ
z
i ) is conserved during the

time evolution of this system, and we examine the Mz = 0 sector in this work.

6.2 Out-of-time-order Correlations

Information scrambling is typically diagnosed by analyzing the dynamics of out-of-time

ordered correlators (OTOCs). OTOCs capture the spreading of quantum information in a

system by measuring operator growth. In particular, for two unitary and Hermitian operators

A and B, the operator growth can be quantified by examining the expectation value of a

squared commutator:

C(t) = 〈[A(t), B]2〉 = 2− 2Re[〈A(t)BA(t)B〉], (6.3)

where A(t) = eitHAe−itH , and the OTOC is 〈A(t)BA(t)B〉. For our model, we take A = σz1,

B = σzj , and we compute the following OTOC:

F (j, t) =
1

2

(
1 + Re[〈σz1(t)(t)σzjσ

z
1(t)σzj 〉]

)
. (6.4)

We note that F is a bounded function (0 ≤ F ≤ 1). In quantum chaotic systems, F (t) decays

exponentially at early times i.e. F (t) = 1 − εeλLt, where λL is analogous to the Lyapunov

exponent. A salient characteristic of fast scramblers is that F (j, t) spreads super-ballistically

and starts deviating significantly from 1 on all sites, at a time t∗ ∝ log(N). In order to

compare the properties of our model to other fast scramblers that have previously been
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b.

a.

j log(N )

Figure 25: Scrambling of the infinite temperature state : a. Time evolution of the OTOC,

F (j, t) (defined in Eq. (6.4)) for a 18−site chain when J = 1. The red line represents the

time at which the OTOC reaches its minimum value. The OTOC spreads super-ballistically

in this parameter regime. This is a salient characteristic of a fast scrambler. b. Semiclassical

numerics for the dynamics of the spin chain when J = 1. The left panel shows the time, tscr

at which the sensitivity Ccl(j, t) (defined in Eq. (6.5)), reaches 1 on site j, when the chain

length, N = 200. We conclude that this system exhibits super-ballistic spreading, since tscr

is (almost) constant for j � 1. The right panel shows the system size dependence of the

scrambling time t∗, at which Ccl(j, t) reaches 1 on all sites. We find that, t∗ ∝ log(N) - a

characteristic signature of fast scrambling.

studied in the literature [21, 111, 128, 129], we compute F (j, t) for the infinite temperature
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state. Our results for a 18 site chain is shown in Fig. 25a. It is clear from these figures that

super-ballistic spreading of the OTOC occurs in this system, when J ∼ 1. As detailed in

the supplementary material D, we can obtain an analytical understanding of this behavior

using a short-time expansion [115].

While all the numerical results that we have discussed so far are exact, our study has been

limited to small system sizes. However, in order to convincingly establish that out model is

indeed a fast scrambler, we have to determine the dependence of t∗ on N for N � 1. To

overcome this limitation, we study the spin-S version of our model, in the S → ∞ limit,

where it can be analyzed semi-classically. Following Ref. [130], we compute the averaged

sensitivity:

Ccl(j, t) =
1

4S2
〈
(
dSzj (t)

dφ

)2

〉, (6.5)

where φ is a small initial rotation of spin 1 about the z-axis, and the factor of 1/4 has been

introduced to establish correspondence with F (j, t). This quantity can capture the sensitivity

to initial conditions in classical systems, and it can be derived from Eq. (6.3) by substituting

the commutator with appropriate Poisson brackets. In order to compute the infinite tem-

perature OTOC, we evaluate Eq. (6.5) for an ensemble in which each spin is initially aligned

in a random direction. We characterize the scrambling rate in this semi-classical limit by

computing the j−dependence of the time, tscr at which Ccl(j, tscr) becomes significant (∼ 1).

As shown in Fig. 25b, we find that tscr is (almost) constant for j � 1, thereby implying

that this chain exhibits super-ballistic spreading. Furthermore, we systematically analyze

the system size dependence of the scrambling time, and find that Ccl(t
∗) becomes significant

(∼ 1) on all sites at time t∗ ∝ log(N). These calculations confirm that our model can exhibit

fast scrambling.

6.3 Quench Dynamics

While the infinite temperature OTOC dynamics provides compelling evidence for fast

scrambling in our model, preparing this state in an experiment can be challenging. To

alleviate this concern, we also study quench dynamics of this system for different initial
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states in the Mz = 0 sector. In particular, we examine the OTOCs for unentangled product

states of the form |z1; z2; z3 . . . zL〉, where zi is a spin polarized along the z-direction at site i

(↑ or ↓). Motivated by experiments on cold atoms, we study the time evolution of the system,

when it is initially prepared in the classical Néel initial state (| ↑↓↑↓ . . . ↑↓↑↓〉). As shown in

Fig. 26, we find that signatures of fast scrambling can be seen in the quench dynamics. We

observe qualitatively similar behavior for other initial states [115]. We note that the infinite

temperature results imply that fast scrambling can be observed for any typical initial state

[117].

a. b.J=0.7 J=0.8

J=0.9 J=1.0

Figure 26: Quench dynamics for the classical Néel state: a. The OTOC for different long

range interactions, J . The red line is the time at which the OTOC reaches its minimal

value. Similar to the infinite temperature case, the OTOC spreads super-ballistically. b.

The dynamics of the half-chain entanglement entropy, for different long range interactions,

J . This model is identical to the Ising model when J = 0, and the entropy does not grow.

As we increase J , the entropy grows faster and saturates to higher values. This result is

consistent with the behavior of the OTOC.

A complementary approach to study information propagation in a quantum many-body

system is to examine the growth of the half-chain entanglement entropy, SA = Tr[ρL log(ρL)],

where ρL = TrR(|ψ〉〈ψ|) is the reduced density matrix obtained by tracing over the degrees

of freedom of one half of the chain. As shown in Fig. 26b, we find that SA grows faster and

saturates to higher values as J increases. These results agree with our previous observation
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that the system exhibits faster scrambling when the strength of the infinite range interaction

increases, as long as the system remains non-integrable.

Figure 27: Quench dynamics for different magnetization sectors: Density plot for the local

z-magnetization for initial states with different total magnetizations, when J = 1. The

initial state has M spin downs clustered at the center of the chain, and N −M spin-ups

present symmetrically around this cluster. We find that there is a crossover from slow to

fast scrambling, as the spin imbalance decreases.

Finally, we also explore the quench dynamics, when the total magnetization Mz is fi-

nite. In particular, we compute the localization magnetization, since this order parame-

ter is accessible to experimental measurements. Furthermore, this quantity can be related

to the recently proposed fidelity out of time order correlators, and can hence be used to

quantify scrambling [131]. We note that in the one-magnon sector, i.e. when there is one

spin-up (spin-down), and N − 1 spin-down (spin-up) in the initial state, then the system

is integrable, and the system exhibits localized dynamics. This localization can be traced

to the presence of localized eigenstates of the form: |ψ〉 = |φi〉 + 1
N−1

∑
j 6=i |φj〉 , where

|φi〉 = | ↑↑ . . . ↑i−1↓i↑i+1 . . . ↑↑〉 [132]. While this model is integrable in the one-magnon

sector, and it can be non-integrable for a large parameter regime in the N/2 magnon sector.

We carefully study the crossover from slow to fast scrambling can be seen as |Mz| decreases.
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As shown in Fig. 27, we find that the fastest scrambling occurs when Mz = 0.

6.4 Experimental Realizations

The most natural way to realize our model is to couple an Ising spin chain to a single

mode cavity [133]. By adiabatically eliminating the cavity degrees of freedom in the dispersive

limit, we can obtain an effective infinite range coupling of the form described in Eq. (7.1)

[134, 135, 136]. A promising scheme to realize our spin model using Rydberg dressed atoms

in an optical cavity has been proposed in Ref. [137]. As detailed in the supplementary

material D, implementing this scheme is within the reach of current experiments. Another

feasible route is to place a trapped ion crystal in the cavity [138, 139]. Alternatively, it

is possible to engineer this model by employing photon-mediated interaction between spins

trapped in a photonic crystal waveguide [140], or by performing digital-analog simulations

with trapped ions [141]. Several experimental protocols have been proposed to measure

OTOCs in the experimental platforms described above. The infinite temperature OTOC can

be determined by examining statistical correlations between measurements on randomized

initial states [142]. Furthermore, some recent investigations have shown that it is possible to

probe the scrambling dynamics after a quantum quench by measuring two point correlation

functions [143, 144]. Alternatively, interferometric techniques can also be used to measure

OTOCs in different experimental platforms.

6.5 Comparison with Other Fast Scramblers

Before we conclude this paper, it is instructive to compare our model to other fast

scramblers studied in the literature. As illustrated in Fig. 2, the scrambling time in our

model is finite at infinite temperature. This feature is shared by several other fast scramblers,

including most noticeably the SYK model, which describes N Majorana fermions interacting

via disordered global interactions drawn from a gaussian distribution of width J /N3/2. The
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scrambling time in this model shows a logarithmic dependence on the system size: t∗ ∼
log(N)/J [145, 146]. It is worth noting, there are some quantum chaotic systems, where

the scrambling time is much faster (∼ 0) and N -independent [129]. A particularly striking

example of this is a model of N spins interacting with a central spin on a star like graph,

where t∗ ∼ 0, even at finite temperatures [147]; this is the fastest scrambler found till date.

We note that after our preprint was posted on the arXiv, there appeared two other

papers exploring fast scrambling in related spin models. Belyansky et al. have demonstrated

super-ballistic spreading of OTOCs in a spin model similar to ours (with the infinite range

interaction is given by J/
√
N). Furthermore, they have argued that the infinite temperature

Lyapunov exponent is finite in these systems and t∗ ∼ 3/2 log(N)/J2 [116]. In a similar vein,

Yin and Lucas have studied a family of non-integrable spin chains with two ingredients: (1)

a global interaction rescaled by 1/N δ and (2) a time dependent magnetic field that ensures

locally chaotic dynamics. They have derived a lower bound on the scrambling time in these

models: t∗ > N δ−1/2; fast scrambling occurs only when δ ≤ 1/2 [117]. Thus, akin to

our model, fast scrambling and extensivity of the total energy (which requires δ > 1) can

not occur simultaneously in these systems. Intriguingly, the scrambling rate can increase

dramatically in these models (and even become N -independent), when the infinite range

couplings are strongly time-dependent.

6.6 Summary and Outlook

The paradigm of fast scrambling is of fundamental importance in understanding the dy-

namics of highly chaotic quantum systems. Observing fast scrambling is widely considered

to be an important milestone towards exploring aspects of quantum gravity in the labora-

tory [148, 149, 150]. Furthermore, fast scramblers can be harnessed for performing quantum

information processing tasks, and is thus of great practical use [151, 152]. An extremely

important feature of our work is that unlike other proposals studied in the literature, our

model is not motivated by holography. This leads us to conjecture that fast scrambling can

arise in non-holographic quantum matter. A rigorous proof of this conjecture can lead to
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the discovery of precise probes for distinguishing holographic and non-holographic quantum

models, thereby shedding light on some fundamental questions in non-equilibrium quantum

dynamics. Future work can examine other models with both short and long range inter-

actions, and determine general conditions under which quantum many-body systems can

exhibit fast scrambling.
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7.0 Quantum Phases of the Heisenberg Spin Chain with Competing Short and Long

Range Interactions

In recent years, there has been a lot of interest in exploring the kaleidoscope of quantum

phases that arise in quantum many-body systems with cavity induced long range interactions

[153, 154, 155, 156, 157, 158, 159]. These systems provide a promising platform for realizing

quantum spin liquids [160], supersolids [161, 126, 162], exotic superconductors [163, 164, 165],

charge density waves [166], time crystals [167, 168], chaotic dynamical phases [124, 123],

and even topological states of matter [169]. Moreover, cavity mediated interactions can be

harnessed to explore many-body chaos [114, 111, 78, 82, 131] and dynamical quantum phase

transitions [170, 171].

In the previous chapter, we have demonstrated that a one dimensional Ising spin chain

coupled to a single mode cavity can exhibit fast scrambling; this highly chaotic dynamics

originates from the interplay of short and long range interactions [15]. Concurrently, other

groups have also shown that competing short and long range interactions can induce fast

scrambling [116, 117]. In this context, it is worth noting that even though scrambling is

an inherently non-equilibrium phenomenon, several fast scrambling many-body models host

a rich array of quantum phases at equilibrium [102, 172, 173, 174, 175]. This observation

naturally leads to the following question: what are the ground state phases of this new class

of cavity induced fast scramblers?

In this chapter, we address this question by investigating the quantum phases of an one-

dimensional spin chain composed of two ingredients - a nearest neighbor XXZ interaction

and an infinite range XX interaction. A schematic representation of our model is shown in

Fig. 28. This model describes a Heisenberg XXZ spin chain coupled to a single mode cavity

in the “bad cavity” limit. By employing an analytical spin-wave analysis as well as numerical

Density Matrix Renormalization Group (DMRG) computations, we demonstrate that this

system exhibits three different phases: (a) a long-range ordered Ising ferromagnetic phase,

(b) a quasi-long range ordered critical phase, and (c) a long-range ordered U(1) symmetry

breaking XY phase. While the first two phases can be realized in the short range interacting

75



Figure 28: Schematic representation of the model: The model in Eq. (7.1) is characterized by

a nearest neighbor XXZ coupling and an infinite range XX coupling. This model describes

a XXZ spin chain is coupled to a single mode cavity.

Heisenberg model, the cavity induced interaction leads to the realization of the third phase.

We demonstrate that these phases can be distinguished by their entanglement entropy; in

particular, phases (b) and (c) violate the area law logarithmically and can be associated with

an effective central charge. The effective central charge distinguishes phase (b) from phase

(c).
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7.1 Model

We study a one dimensional spin chain with N sites described by the Hamiltonian,

H = HXXZ +HLMG, where

HXXZ = −1

4

N∑

i=1

(
σzi σ

z
i+1 + α(σxi σ

x
i+1 + σyi σ

y
i+1)
)

HLMG =
J

4N

N∑

i=1

∑

j>i

(
σxi σ

x
j + σyi σ

y
j

)
(7.1)

where σγi is the standard Pauli matrix at lattice site i. We have rescaled the infinite range

interaction by 1/N to ensure extensivity of the total energy. We note that this model has a

U(1)× Z2 symmetry. The chain is in the Ising ferromagnetic phase when the Z2 symmetry

is broken; when the continuous U(1) symmetry is broken on the other hand, the system is

in the XY phase [176].

When J → 0, the model is the exactly solvable by the Bethe ansatz [177, 178], and in

this case there are two possible phases: the Ising ferromagnetic phase (when α < 1) and

a quasi-long range ordered critical phase, known as the Tomonaga-Luttinger Liquid (TLL)

(when α ≥ 1) [179]. We note that the Mermin-Wagner theorem forbids the existence of a

truly long range ordered phase with only short range interactions [180, 181].

The ground state of this system can also be exactly determined in the J →∞ limit, when

the model reduces to mean-field solvable Lipkin-Meshkov-Glick (LMG) model [182, 118, 119].

In this case, the ground state of the system is in the XY phase [183]. In the next section,

we explore the phase diagram of this model when J is finite. This is precisely the regime,

where the model is non-integrable and its out-of-equilibrium dynamics is chaotic.

7.2 Spin Wave Analysis

In this section, we employ spin-wave analysis to explore the phase diagram of the model.

It is well known that the ground state spontaneously breaks the Z2 symmetry, when α→ 0
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and J → 0. In order to determine the phase boundary of this Ising ferromagnetic state, we

define the vacuum state to be:

|ψ〉FM = | ↑↑↑↑ . . . ↑↑↑↑〉, (7.2)

and apply the Holstein-Primakoff transformation to map the spin excitations to bosons:

S−j = 1
2
(σxj − iσyj ) =

(√
1− a†jaj

)
aj;S

+
j = 1

2
(σxj + iσyj ) = a†j

(√
1− a†jaj

)
;Szj = (1

2
− a†jaj)

[184]. In the weak excitation regime, 〈a†a〉 � 1, and the Hamiltonian describing these spin

waves is given by:

HFM =
∑

i

(
(a†iai + a†i+1ai+1)− α(a†iai+1 + a†i+1ai)

)

+
J

N

∑

i

∑

j>i

(
a†iaj + a†jai)

)
(7.3)

Assuming periodic boundary conditions, we can express the spin-wave Hamiltonian can be

in the following form:

HFM =
∑

k

ωka
†
kak, (7.4)

where

ωk = 1− α cos(k) +
J

N

∑

r

cos(kr). (7.5)

If min[ωk] > 0, then the ground state of the system is the z-polarized state in Eq. 7.2. On

the other hand, when min[ωk] < 0, then the ground state is no longer z-polarized. From this

expression, it is clear that the ground state is ferromagnetic when α = 1 (for J ≥ 0), and

α = 1 + J (for J ≤ 0).

The Holstein-Primakoff transformation can also be employed to study the stability of the

U(1)-symmetry breaking phase. In this case, we define the vacuum state to be spin polarized

along the +x direction:

|ψ〉XY = | →→→→ . . .→→→→〉, (7.6)

78



The Holstein-Primakoff mapping in this case is Sxi = (1
2
− a†iai); S

y
i ≈ a†i + ai; S

z
i ≈

(a†i − ai)/i. The Hamiltonian describing the spin-wave excitations in this case is:

Hsw =

N/2∑

k=−N/2

ωk(a
†
kak + a−ka

†
−k) + µk(a

†
ka
†
−k + aka−k); (7.7)

where,

ωk = (α− J

2
)− 1 + α

2
cos(

2πk

N
) +

J

2N

N/2∑

r=1

cos(
2πk

N
r)

(7.8)

µk =
1− α

2
cos(

2πk

N
)− J

2N

N/2∑

r=1

cos(
2πk

N
r) (7.9)

where ak = 1√
N

∑
j exp(i2πjk/N)aj. Hsw can be diagonalized by a Bogoliubov transfor-

mation [185]. In this case, the Bogoliubov quasiparticles are composed of both particles

and holes and the ground state of the spin chain has spin excitations. The density of these

excitations is given by:

〈a†iai〉 = lim
N→∞

1

2N

∑

k 6=0

([1− µ2
k/ω

2
k]
−1/2 − 1)

=
1

4π

∫ π

−π
dq
(
[1− µ(q)2/ω(q)2]−1/2 − 1

)

=
1

4π

∫ π

−π
dq I(q) (7.10)

By expanding the integrand around q = 0, we find that I(q) ∝ 1/|q|, when J = 0. And

more generally, I(q) ∝ 1/
√

(J − αq2)(1− α + (q2 − J)/2). This implies that in the absence

of the infinite range interactions, 〈a†iai〉 ∼ ln(N) and the long range order is destroyed in

the thermodynamic limit. On the other hand, 〈a†iai〉 does not diverge and U(1) symmetry

breaking occurs, when J 6= 0. Our results are summarized in Fig. 29. In the next section,

we compliment our spin wave analysis results with numerical density matrix renormalization

group calculation of the ground state phase diagram.

79



FM

U(1)

SSB

U(1)

SSB

TLL

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

α

J

Figure 29: Phase diagram from dpin-wave analysis: The spin-wave analysis presented in

section III reveals that there are three phases in this spin-chain: (a) A z-polarized ferro-

magnetic phase, (b) a quasi-long range ordered Tomonaga Luttinger liquid (TLL), and (c)

a long-range ordered XY -like phase that spontaneously breaks the U(1) symmetry of this

model.

7.3 Density Matrix Renormalization Group Simulations

The density matrix renormalization group is a powerful tool to diagnose the equilib-

rium phases and out-of-equilibrium dynamics of one-dimensional and quasi-one-dimensional

quantum systems [186, 187, 188]. We now proceed to to determine the phase diagram of

our model using the DMRG algorithm. In this method, we employ a Matrix Product State

ansatz to represent the ground state [189, 190], and ensure that the algorithm converges

globally with a truncation error less than 10−6. The short range part of the Hamiltonian

(HXXZ) has already been extensively studied with this method [187]. For the long range

part, we represent HLMG as a sum of Matrix Product Operators; this choice avoids system-

atic errors introduced by other schemes [191]. Our codes are mainly based on tensors .net
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library [192].
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Figure 30: Ground state entanglement entropy: The entanglement entropy of the ground

state is 0, when the spins are polarized along the z-direction and the correlations are ferro-

magnetic in nature. The entanglement entropy violates the area law logarithmically, when

the correlations are XY -like. Panel (a) shows the density plot for the half chain entangle-

ment entropy, defined in Eq. 7.11 for a 100 site chain. Panel (b) shows the dependence of

the entanglement entropy on the system size, when the correlations are XY -like.

The ground state entanglement entropy, provides a powerful tool to numerically diagnose

the phases of long range interacting systems [193, 194, 195]. In particular, the Z2-symmetry

broken ferromagnetic phase is characterized by an area law entanglement entropy, while

ground states with XY -like order exhibit violation of the area law. We compute the entan-

glement entropy, S, defined as:

S = TrρB log(ρB), (7.11)

where ρB is the reduced density matrix of the right (left) half of the chain, and it is obtained

by tracing over the degrees of freedom of the left (right) half of the chain. As shown in

Fig. 30(a), S = 0, when the spins are z-polarized and the spin chain is in the ferromagnetic

phase. On the other hand, the entropy is finite, when the ground state is XY -like. Our

results are shown in Fig. 30(a).
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Figure 31: Phase diagram from the effective central charge: The density plot for the effective

central charge, c (defined in Eq. 7.12) shows that there are three phases: (a) A ferromagnetic

phase characterized by c = 0 (b) the critical Tomonaga Luttinger Liquid characterized by

c = 1 and (c) A true U(1) spontaneous symmetry breaking (SSB) phase characterized by

c > 1. The phase diagram obtained from the central charge qualitatively matches the results

from the spin wave analysis.

It is evident from Fig. 30(b) that in the XY -like phase, the entanglement entropy violates

the area law logarithmically. Employing an analogy with critical systems [196], we can define

an effective central charge, c using the following relation:

S =
c

6
log(L) (7.12)

The central charge, c is 0 for the Ising ferromagnetic phase and it is 1 for the critical

Tomonaga-Luttinger liquid phase. Furthermore, in the long range ordered U(1) symmetry

breaking XY phase, c > 1 [197, 176, 191]. As shown in Fig. 31, we find that the cavity

mediated long range interactions can lead to the spontaneous breaking of a continuous U(1)

symmetry for a large parameter regime. Furthermore, our results demonstrate that even an

infinitesimally weak coupling between the short range interacting spin chain and the optical

cavity is sufficient to induce long range XY order in the spin chain, thereby providing a

route to circumvent the Mermin-Wagner theorem.

82



8.0 Conclusions

In this chapter, I will conclude the researches in my PhD study. In Chapter 4, we study

the mean-field ground state of a d-wave interacting Bose gas, and it is found that there are

three superfluid phases: atomic, molecular and atomic-molecular superfluid phases. What

is most surprising is that unlike the p-wave case [42, 9, 43], we find the atomic superfluid

does not carry finite momentum. Furthermore, we study the low-energy excitation spectrum

above the superfluid phases. Our work provides a basic reference for the experiment on

degenerate d-wave interacting Bose gas.

In Chapter 5, we study the quantum fluctuation correction to the ground states of a p-

wave interacting Bose gas. Beginning with the mean-field analysis of the ground states, it is

found that the ground states can be divided into three typical phases for different detunings

of molecule channel, i.e. the ASF, AMSF and MSF phases, where particles are condensed

into only the atomic, both the molecular and atomic, and only the molecular channels, re-

spectively. Particularly, we find the ground state is unstable in phase AMSF. The instability

of the ground state in the phase AMSF also manifests itself in the emergence of imaginary

long-wavelength Bogoliubov excitation modes. Furthermore, we calculate the LHY correc-

tion with the Bogoliubov excitations. We find the LHY correction can stabilize the ground

state in the mean-field-unstable regime. That means that the p-wave interacting Bose gas

is self-stabilized at a certain density. Finally, we construct an effective Hamiltonian to char-

acterize the ground state of a finite system. By solving the corresponding GP equation, we

find self-stabilized quantum-droplet solutions. Unlike the s-wave case, the quantum droplet is

anisotropic and carries finite momentums because the spatial rotation and the time-reversal

symmetries are spontaneously broken. Although only the interspecies p-wave interaction is

considered here, our results could be extended into the case with weak background s-wave

interactions and may be observed in systems like 85Rb−87 Rb Bose mixture [64, 65].

In Chapter 6, we have demonstrated a novel route for creating a fast scrambler in an

experimentally realizable spin model. Our proposal exploits the interplay of short and long

range interactions to make the system highly chaotic. By studying the infinite temperature
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OTOC of the system, using both exact diagonalization, and a semi-classical approximation

technique, we have first demonstrated that the system exhibits fast scrambling. Next, we

have examined the quench dynamics of the system, when it is initially prepared in the

classical Néel state, and found that the OTOC and the half chain entanglement entropy

grows very fast. Similar results are found for other non-entangled initial states when the

total magnetization, Mz is 0. We have systematically explored how the scrambling rate

depends on the total magnetization, and found that the system exhibits a crossover from

slow to fast scrambling as the total magnetization decreases from |Mz| = N (i.e. the fully

polarized state) to Mz = 0. Finally, we have proposed possible experimental realizations

of our model. Thus, our work presents a rare example of a many-body model where the

fast scrambling is not induced by random long range interactions, and provides a possible

solution to the critical outstanding challenge of observing fast scrambling experimentally.

In Chapter 7, we have examined the ground state phases of a Heisenberg spin chain

with competing short and long range interactions. Our results demonstrate that cavity

mediated long range interactions can lead to the spontaneous breaking of the continuous U(1)

symmetry and a consequent violation of the area law. In the future it would be interesting

to extend our study to spin-1 systems and examine whether Haldane-like topological phases

can arise in those systems.
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Appendix A p-wave Model Order Parameter Structure

Here we discuss two collinear states falling into two universality classes, represented by

the FF-like [48] and the LO-like [49] single harmonic forms [9],

ΨFF
σ = Ψσ,Qσe

iQσ ·r, (A.1)

ΨLO
σ = Ψσ,Qe

iQ·r + Ψσ,−Qe
−iQ·r. (A.2)

In the FF-like (LO-like) state each species is characterized by a single Q (double ±Q)

momentum, exhibiting a uniform (periodic) atomic density. We reexpress the mean-field

energy densities for FF and LO in terms of the corresponding eigenmodes, Ψ±Q± , the latter

involving two (±Q) critical modes,

EFF = (εQ − |∆Q|)|ΨQ
−|2 +

1

2
λ|ΨQ

−|4, (A.3)

ELO = (εQ − |∆Q|)(|ΨQ
−|2 + |Ψ−Q− |2)

+
1

2
λ(|ΨQ

−|2 + |Ψ−Q− |2)2 + λ′|ΨQ
−|2|Ψ−Q− |2, (A.4)

where λ = 1
4
(λ1 + λ2 + 2λ12) and λ′ = 1

4
(λ1 + λ2 − 2λ12).

These free energies thus show that the energetically preferred form of the AMSF state is

determined by the coefficient λ′ of last term in Eq. ( A.4). For λ′ > 0, that is, λ1 +λ2 > 2λ12,

the single Q FF-like state is selected. On the other hand, for λ′ < 0, that is, λ1 + λ2 < 2λ12,

it is the LO-like state that has the lowest energy. Combining the above requirement on λ′ for

the stability of the LO-like state with the condition for two-species miscibility, λ1λ2 > λ2
12,

we find an inequality,
λ1 + λ2

2
< λ12 <

√
λ1λ2 (A.5)

which for positive couplings λi can be shown to have a zero range of stability. Thus, as

advertised, within mean-field approximation it is the single Q FF-like AMSF state that is

always energetically selected.
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Appendix B FF-like and LO-like Atomic Order Parameters Comparison

The FF-like [48] and LO-like [49] forms of order parameters are respectively given by

ΨFF
σ = Ψσ,Qσe

iQσ ·r,

ΨLO
σ = Ψσ,Qe

iQ·r + Ψσ,−Qe
−iQ·r,

where Ψσ,Q = Ψσ,−Q. We will prove in the following context that FF-like form is energetically

preferred in a low energy regime.

In LO form, the free energy density is

f = F/V = fM + fQ,

where

fM =
2∑

m=−2

−µM |Φm|2 +
2∑

m,n=−2

g0

2
(Φ∗mΦm)(Φ∗nΦn),

fQ =
1

V

∫

V

d3r
∑

σ=1,2

4εQ(|Ψσ,Q|2 cos2 (Q · r))

−[∆∗(Ψ1,QΨ2,−Q + Ψ1,−QΨ2,Q) + c.c.]

+
∑

σ,σ′=1,2

λσ,σ′

2
|Ψσ|2|Ψσ′ |2,

and εQ = Q2

2m
− µ + gAMnM ,∆ =

∑2
m=−2 g

√
4πQ2ΦmY

m
2 (Q̂). For the quadratic part, we

rewrite it in the matrix formula,

f 0
Q =

1

V

∫

V

d3r




Ψ∗1,Q
Ψ1,−Q

Ψ∗2,Q
Ψ2,−Q




T 


2εQ cos2 (Q · r) 0 0 −∆Q

0 2εQ cos2 (Q · r) −∆∗Q 0

0 −∆Q 2εQ cos2 (Q · r) 0

−∆∗Q 0 0 2εQ cos2 (Q · r)







Ψ1,Q

Ψ∗1,−Q

Ψ2,Q

Ψ∗2,−Q


,

We diagonalize the quadratic Hamiltonian, obtaining the eigenvector matrix and eigenvalues,

U =
1√
2




e−iθ0 0 −e−iθ0 0

0 eiθ0 0 −eiθ0
0 1 0 1

1 0 1 0


,

86



V =




2εQ cos2 (Q · r)− |∆Q| 0 0 0

0 2εQ cos2 (Q · r)− |∆Q| 0 0

0 0 2εQ cos2 (Q · r) + |∆Q| 0

0 0 0 2εQ cos2 (Q · r) + |∆Q|


.

Hence, we can write the Nambu basis as




Ψ−,Q

Ψ∗−,−Q

Ψ+,Q

Ψ∗+,−Q


 =

1√
2




eiθ0Ψ1,Q + Ψ∗2,−Q

e−iθ0Ψ∗1,Q + Ψ2,−Q

−eiθ0Ψ1,Q + Ψ∗2,−Q

−e−iθ0Ψ∗1,Q + Ψ2,−Q


.

In the AMSF phase and ASF phase, the atoms prefer to stay at a lower energy level,

such that in the ground state Ψ+,Q = 0,Ψ∗+,−Q = 0. We obtain Ψ∗2,−Q = eiθ0Ψ1,Q, and

Ψ−,Q =
√

2eiθ0Ψ1,Q,Ψ−,−Q =
√

2e−iθ0Ψ∗1,Q, where θ0 is the angle of ∆. The free energy can

be rewritten in the form of the eigenvalues and eigenstates,

ELO =
1

V

∫

V

d3r2(2εQ cos2 (Q · r)− |∆Q|)|Ψ−,Q|2

+8λ|Ψ−,Q|2 cos4 (Q · r) ,

We use integral

1

V

∫

V

d3r cos2 (Q · r) =
1

2
+

1

2
δ(Q),

1

V

∫

V

d3r cos4 (Q · r) =
3

8
+

5

8
δ(Q),

to obtain

ELO = 2(εQ − |∆Q|)|Ψ−,Q|2 + 3λ|Ψ−,Q|4,Q 6= 0,

ELO = 2(2εQ − |∆Q|)|Ψ−,Q|2 + 8λ|Ψ−,Q|4,Q = 0.

Comparing with the calculations in the main context,

EFF = (εQ − |∆Q|)|Ψ−,Q|2 +
1

2
λ|Ψ−,Q|4.

We can see that the FF-like state has lower energy, which is preferred in the ground state

regime.
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Appendix C Bogoliubov Hamiltonians

C.1 ASF Bogoliubov Hamiltonian

The Bogliubov Hamiltonian for ASF condensates is rewritten as

Hf =
∑

k,i,j

ĉ†i,kh
i,j
k ĉj,k, (C.1)

where ĉk and hk are defined below,

ĉ†k =
[
â†1,k â1,−k â†2,k â2,−k b̂†−2,k b̂2,−k b̂†−1,k b̂1,−k b̂†0,k b̂0,−k b̂†1,k b̂−1,−k b̂†2,k b̂−2,−k

]
, (C.2)

hk =




ε1,k 2λ̃∗1 t1 t∗2,k −α∗−2,2,k 0 −α∗−1,2,k 0 −α∗0,2,k 0 −α∗1,2,k 0 −α∗2,2,k 0

2λ̃1 ε1,−k t2,−k t∗1 0 −α2,2,−k 0 −α1,2,−k 0 −α0,2,−k 0 −α−1,2,−k 0 −α−2,2,−k

t∗1 t∗2,−k ε2,k 2λ̃∗2 −α∗−2,1,k 0 −α∗−1,1,k 0 −α∗0,1,k 0 −α∗1,1,k 0 −α∗2,1,k 0

t2,k t1 2λ̃2 ε2,−k 0 −α2,1,−k 0 −α1,1,−k 0 −α0,1,−k 0 −α−1,1,−k 0 −α−2,1,−k

−α−2,2,k 0 −α−2,1,k 0 ω−2,k 0 0 0 0 0 0 0 0 0

0 −α∗2,2,−k 0 −α∗2,1,−k 0 ω2,k 0 0 0 0 0 0 0 0

−α−1,2,k 0 −α−1,1,k 0 0 0 ω−1,k 0 0 0 0 0 0 0

0 −α∗1,2,−k 0 −α∗1,1,−k 0 0 0 ω1,k 0 0 0 0 0

−α0,2,k 0 −α0,1,k 0 0 0 0 0 ω0,k 0 0 0 0 0

0 −α∗0,2,−k 0 −α∗0,1,−k 0 0 0 0 0 ω0,k 0 0 0 0

−α1,2,k 0 −α1,1,k 0 0 0 0 0 0 0 ω1,k 0 0 0

0 −α∗−1,2,−k 0 −α∗−1,1,−k 0 0 0 0 0 0 0 ω−1,k 0 0

−α2,2,k 0 −α2,1,k 0 0 0 0 0 0 0 0 0 ω2,k 0

0 −α∗−2,2,−k 0 −α∗−2,1,−k 0 0 0 0 0 0 0 0 0 ω−2,k




, (C.3)

where the reduced parameters are defined below,

εσ,k = εk − µσ + 2λσ,σ|Ψσ|2 +
λ12 + λ21

2
|Ψσ|2, (C.4)

ωk =
1

2
εk + z(

1

2
εk)2 − µM + gAM(|Ψ1|2 + |Ψ2|2), (C.5)

λ̃σ =
1

2
λσ,σΨ∗2σ , (C.6)

t1 =
1

2
(λ12 + λ21)Ψ1Ψ∗2, (C.7)

t2,k =
1

2
(λ12 + λ21)Ψ∗1Ψ∗2, (C.8)

αm,σ,k =
1

4
g
√

4πΨσ,Qσk
2Y m

2 (k̂). (C.9)
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C.2 MSF Bogoliubov Hamiltonian

The Bogliubov Hamiltonian for MSF condensates is rewritten as

Hf = HA +HM , (C.10)

the atomic Hamiltonian HA is given as,

HA =
∑

k,i,j

â†i,kh
i,j
A,kâj,k, (C.11)

where âk and hA,k are defined below,

â†k = (â†1,k, â
†
2,k, â1,−k, â2,−k), (C.12)

hA,k =




ε1,k 0 0 t∗2,k

0 ε2,k t∗2,−k 0

0 t2,−k ε1,−k 0

t2,k 0 0 ε2,−k



, (C.13)

the reduced parameters are defined below,

εσ,k = εk − µσ + gAMnM , (C.14)

t2,k = g
√

4πk2
∑

m

Φ∗mY
m

2 (k̂). (C.15)

The molecular Hamiltonian is hence given as

HM =
∑

k,i,j

b̂†i,kh
i,j
M,kb̂j,k, (C.16)

where b̂k and hM,k are defined below,

b̂†k = (b̂†−2,k, b̂2,−k, b̂
†
−1,k, b̂1,−k, b̂

†
0,k, b̂0,−k, b̂

†
1,k, b̂−1,−k, b̂

†
2,k, b̂−2,−k), (C.17)
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hM,k =




Ω−2 0 0 0 0

0 Ω−1 0 0 0

0 0 Ω0 0 0

0 0 0 Ω1 0

0 0 0 0 Ω2




, (C.18)

where Ωn is a 2× 2 matrix, defined as

Ωn6=0 =


ωn,k 0

0 ω−n,k


 , (C.19)

Ωn=0 =


ω0,k 2δ∗0

2δ0 ω0,k


 , (C.20)

the reduced parameters are

ωn6=0,k =
1

2
εk + z(

1

2
εk)2 − µM + g0nM , (C.21)

ωn=0,k =
1

2
εk + z(

1

2
εk)2 − µM + 2g0nM , (C.22)

δ0 =
1

2
g0nM . (C.23)
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C.3 AMSF Bogoliubov Hamiltonian

The Bogliubov Hamiltonian for AMSF condensates is rewritten as

Hf =
∑

k,i,j

ĉ†i,kh
i,j
k ĉj,k, (C.24)

where ĉk and hk are defined below,

ĉ†k =
[
â†1,k â1,−k â†2,k â2,−k b̂†−2,k b̂2,−k b̂†−1,k b̂1,−k b̂†0,k b̂0,−k b̂†1,k b̂−1,−k b̂†2,k b̂−2,−k

]
, (C.25)

hi,jk =




ε1,k 2λ̃∗1 t1 t∗2,k −α∗−2,2,k 0 −α∗−1,2,k 0 −α∗0,2,k + β1,0,1 β2,0,1 −α∗1,2,k 0 −α∗2,2,k 0

2λ̃1 ε1,−k t2,−k t∗1 0 −α2,2,−k 0 −α1,2,−k β3,0,1 −α0,2,−k + β4,0,1 0 −α−1,2,−k 0 −α−2,2,−k

t∗1 t∗2,−k ε2,k 2λ̃∗2 −α∗−2,1,k 0 −α∗−1,1,k 0 −α∗0,1,k + β1,0,2 β2,0,2 −α∗1,1,k 0 −α∗2,1,k 0

t2,k t1 2λ̃2 ε2,−k 0 −α2,1,−k 0 −α1,1,−k β3,0,2 −α0,1,−k + β4,0,2 0 −α−1,1,−k 0 −α−2,1,−k

−α−2,2,k 0 −α−2,1,k 0 ω−2,k 0 0 0 0 0 0 0 0 0

0 −α∗2,2,−k 0 −α∗2,1,−k 0 ω2,k 0 0 0 0 0 0 0 0

−α−1,2,k 0 −α−1,1,k 0 0 0 ω−1,k 0 0 0 0 0 0 0

0 −α∗1,2,−k 0 −α∗1,1,−k 0 0 0 ω1,k 0 0 0 0 0

−α0,2,k + β∗1,0,1 β∗3,0,1 −α0,1,k + β∗1,0,2 β∗3,0,2 0 0 0 0 ω0,k 2δ∗0 0 0 0 0

β∗2,0,1 −α∗0,2,−k + β∗4,0,1 β∗2,0,2 −α∗0,1,−k + β∗4,0,2 0 0 0 0 2δ0 ω0,k 0 0 0 0

−α1,2,k 0 −α1,1,k 0 0 0 0 0 0 0 ω1,k 0 0 0

0 −α∗−1,2,−k 0 −α∗−1,1,−k 0 0 0 0 0 0 0 ω−1,k 0 0

−α2,2,k 0 −α2,1,k 0 0 0 0 0 0 0 0 0 ω2,k 0

0 −α∗−2,2,−k 0 −α∗−2,1,−k 0 0 0 0 0 0 0 0 0 ω−2,k




,(C.26)

where the reduced parameters are given as

εσ,k = εk − µ+ λσ,σnA +
1

4
(λ12 + λ21)nA

+gAMnM , (C.27)

ωm,k =
1

2
εk + z(

1

2
εk)2 − µM + g0nM (C.28)

+g0nMδm,0 + gAMnA ,

λ̃σ =
1

4
λσ,σnA, (C.29)

t1 =
1

4
(λ12 + λ21)nA, (C.30)

t2,k =
1

4
(λ12 + λ21)nA − g

√
4πnMk

2Y 0
2 (k̂), (C.31)
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δm =
1

2
g0nMδm,0, (C.32)

βi,0,σ = gAM

√
nAnM

2
, i = 1, 2, 3, 4, (C.33)

αm,σ,k =

√
2π

4
g
√
nAk

2Y m
2 (k̂), (C.34)

where δm,0 is Kronecker delta function, and nA, nM represent the atom and molecule con-

densate density respectively.
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Appendix D Fast Scrambling Without Appealing to Holographic Duality:

Supplementary Material

D.1 Level Statistics and Information Scrambling

An important diagnostic that is used to distinguish quantum chaotic systems from inte-

grable systems is the energy level statistics [198, 199, 200]. Since fast scrambling can only

occur when the system is non-integrable, we study the spectral statistics of our model this

section. To keep our discussion slightly more general, we study the following model:

H =
N∑

i=1

(
σzi σ

z
i+1 + α(σ+

i σ
−
i+1 + σ−i σ

+
i+1) + J

∑

j>i

(σ+
i σ
−
j + σ−i σ

+
j )

)
, (D.1)

We examine the level statistics of this model by sorting the energy eigenvalues E1 < E2 <

E3 < . . ., computing the adjacent energy gaps ∆En = En+1 − En, and then calculating the

ratio of the adjacent energy gaps, rn = min(∆Em,∆Em+1)/max(∆Em,∆Em+1). Integrable

systems are typically characterized by a Poisson distribution of rn i.e. P (r) = 2/(1 + r)2,

with a mean value of 〈r〉 ≈ 0.39. In contrast, thermalizing systems are characterized by

Wigner-Dyson distribution of rn i.e. P (r) = (27/8)(r + r2)/(1 + r + r2)5/2, with a mean

value of 〈r〉 ≈ 0.53. Figure 32a shows the energy level statistics for our model. We conclude

that there is a wide parameter regime, where 〈r〉 ∼ 0.53, and the system is thermalizing in

nature; the model is integrable only when α ∼ 1. While, we have focused on α = 0 regime

in the main text, we note that a small finite α does not alter the results qualitatively.

We now proceed to investigate the dynamics of the spin chain in the α = 0 regime when

J is rescaled by 1/N . In this case, the system does not exhibit fast scrambling (see Fig. 32b).

While, we have presented the N = 100 results here, we have verified that this result remains

unchanged for other values of J and N . More generally, if J is scaled by 1/Nα, then fast

scrambling can occur only when α ≤ 1/2 [117].
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a.a. b. J=0.8

J=1

c.b.

Figure 32: Level statistics and scrambling of the infinite temperature state: a: The spectral

statistics for our model (Eq. D.1) when the total z-magnetization is 0, as characterized by

the averaged ratio of adjacency gaps. We conclude that there is a large parameter regime,

where 〈r〉 ∼ 0.53, and the system is non-integrable. We find that 〈r〉 ∼ 0.39, only when

α ∼ 1, and the model is integrable. Fast scrambling is only expected when the system in

non-integrable, and thus we focus on the α = 0 regime in the main text. b: The spread of

the semiclassical sensitivity, Ccl(j, t) for a 100-site chain, when the infinite range interaction

is 1/N . In this case, the spin model does not exhibit fast scrambling.

D.2 Short Time Expansion

In the main text, we have computed the OTOC employing exact diagonalization. How-

ever, at early times, it is possible to obtain an analytical expression for the decay of the

OTOC. To do this we expand the operator σz1(t) in the form

σz1(t) = σz1(0)− it[σz1, H]− 1

2
t2[[σz1, H], H] + . . . . (D.2)

Using Eq. ( D.2), we can express the OTOC given in Eq. (3) of the main text as a poly-

nomial in t. Fig. 33 shows the comparison between the numerically calculated OTOC and
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analytical expression (upto O(t30)).

α=0 α=1

Figure 33: Comparison of an analytic short time expansion and exact diagonalization results

for the OTOC, F (8, t): The circles represent numerical data from the exact diagonalizaton

calculation, while the lines represent the analytical expression. Both approaches agree at

short times, even though they differ at longer times in the fast scrambling regime.

We find that for the non-integrable spin chain (α = 0), there is reasonably good agree-

ment between both approaches at short times. However, the analytical and numerical results

diverge in the fast scrambling regime at longer times. The analytical expression is valid up

to longer times, when the spin chain becomes integrable (i.e. α = 1).

D.3 Quench Dynamics

We have already demonstrated that signatures of fast scrambling can be observed in the

quench dynamics of the spin chain. In the main text, we had presented the results for the

classical Nèel initial state. However, we had concluded that this system is expected to exhibit

similar dynamical behavior for any typical initial state [117]. In this section, we examine
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a. b. J=0.8

J=1

c.

Figure 34: Quench dynamics for J = 1: a: Exact results for the OTOC of a 16-site chain

initially prepared in various experimentally realizable product states. The initial states

have been stated above each sub-figure. b: Matrix-product-state simulations for the quench

dynamics of a 30-site chain initialized in the classical Néel state. It is clear the the OTOC

spreads super-ballistically in all of these cases.

the dynamics of the model for some experimentally realizable initial states. By performing

exact diagonalization on a 16-site chain, we find that fast scrambling can indeed be exhibited

by the spin chain for several initial product states (see Fig. 34a). Furthermore, we employ

matrix-product-state (MPS) techniques to access quantum dynamics for larger system sizes

[190]. As shown in Fig. 34b, we find that a 30-site chain initialized in the classical Néel

state exhibits super-ballistic spreading. These results agree with the exact diagonalization

calculations presented in the main text.
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D.4 Experimental Realization

We have mentioned in the main text that the model in Eq. (1) can be realized by coupling

a spin chain to a single mode cavity [137]. In this section, we explicitly derive the effective

spin Hamiltonian that arises when this scenario is realized.

Figure 35: Schematic of the experimental realization of the spin model: The fast scrambling

model that we have studied can be realized when a one dimensional spin chain is collectively

coupled to an optical cavity.

The dynamics of an Ising chain interacting with a cavity can be described by the master

equation:
dρ̂

dt
= −i[ĤSL, ρ̂] + Lc[ρ̂], (D.3)

where ρ̂ is the density matrix of the system. The Hamiltonian describing the unitary evolu-
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tion of the system is

ĤSL = −∆câ
+â+ Jz

N∑

i=1

σ̂zi σ̂
z
i+1 + g

N∑

i=1

(â+σ̂−i + âσ̂+
i ), (D.4)

where ∆c is the effective cavity frequency, g is the coupling between the spins and the cavity

field, Jz is the Ising interaction strength, and the Lindblad term capturing the photon loss

from the cavity at a rate κ is given by:

Lc[ρ̂] =
κ

2
(2âρ̂â+ − â+âρ̂− ρ̂â+â). (D.5)

We can eliminate the cavity mode adiabatically in the bad cavity limit (κ � g), and

obtain a master equation for the reduced density matrix ρ̂s of the spin chain,

dρ̂s
dt

= −i[Ĥeff , ρ̂s] + LΓ[ρ̂s], (D.6)

where the effective Hamiltonian is given by:

Ĥeff =
4g2∆c

4∆2
c + κ2

∑

i,j

σ̂+
i σ̂
−
j + Jz

L∑

i=1

σ̂zi σ̂
z
i+1, (D.7)

and

LΓ[ρ̂s] =
2g2κ

4∆2
c + κ2

∑

i,j

(2σ̂−i ρ̂sσ̂
+
j − σ̂+

i σ̂
−
j ρ̂s − ρ̂sσ̂+

i σ̂
−
j ). (D.8)

When ∆c � κ/2, the dynamics is approximately unitary.

For realistic state of the art experiments, g ∼ 2π × 4 Hz, ∆c ∼ 1Mhz Jz ∼ 21Hz, and

J = g2/(∆cJz) ∼ 0.76 [135, 201]; the spin chain exhibits fast scrambling in this parameter

regime (see Fig. 36). These results indicate that our proposal provides a promising avenue

for observing fast scrambling in state-of-the-art quantum simulators.
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a.

b.

J=1.0

J=0.8

J=0.9

J=0.7

Figure 36: Fast scrambling of the infinite temperature state: The OTOC for different values

of the long range interactions, J , when N = 16. The red line represents the time at which

the OTOC reaches its minimum value. We find that when J ∼ O(1), the system exhibits

super-ballistic spreading of the OTOC. The scrambling becomes faster with increasing J in

this regime.
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O. Gorceix. Feshbach resonance in d-wave collisions. Phys. Rev. A, 79:032706, Mar
2009.

[40] Yue Cui, Chuyang Shen, Min Deng, Shen Dong, Cheng Chen, Rong Lü, Bo Gao,
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Stránskỳ, Sergio Lerma-Hernández, Lea F Santos, and Jorge G Hirsch. Quantum
and classical lyapunov exponents in atom-field interaction systems. Physical Review
Letters, 122(2):024101, 2019.

[84] Po-Yao Chang, Xiao Chen, Sarang Gopalakrishnan, and JH Pixley. Evolution of
entanglement spectra under generic quantum dynamics. Physical Review Letters,
123(19):190602, 2019.
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[190] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Annals of physics, 326(1):96–192, 2011.

[191] Jie Ren, Wen-Long You, and Xiaoqun Wang. Entanglement and correlations in a
one-dimensional quantum spin-1 2 chain with anisotropic power-law long-range inter-
actions. Physical Review B, 101(9):094410, 2020.

[192] Glen Evenbly. Tensors.net (https://www.tensors.net/), 2019.

[193] Thomas Koffel, M Lewenstein, and Luca Tagliacozzo. Entanglement entropy for the
long-range ising chain in a transverse field. Physical review letters, 109(26):267203,
2012.

[194] Davide Vodola, Luca Lepori, Elisa Ercolessi, and Guido Pupillo. Long-range ising
and kitaev models: phases, correlations and edge modes. New Journal of Physics,
18(1):015001, 2015.

[195] Jens Eisert, Marcus Cramer, and Martin B Plenio. Colloquium: Area laws for the
entanglement entropy. Reviews of Modern Physics, 82(1):277, 2010.

[196] Pasquale Calabrese and John Cardy. Entanglement entropy and quantum field theory.
Journal of Statistical Mechanics: Theory and Experiment, 2004(06):P06002, 2004.

[197] Z-X Gong, Mohammad F Maghrebi, Anzi Hu, Michael Foss-Feig, Phillip Richerme,
Christopher Monroe, and Alexey V Gorshkov. Kaleidoscope of quantum phases in a
long-range interacting spin-1 chain. Physical Review B, 93(20):205115, 2016.

[198] Lea F Santos and Marcos Rigol. Onset of quantum chaos in one-dimensional
bosonic and fermionic systems and its relation to thermalization. Physical Review
E, 81(3):036206, 2010.

117



[199] Fausto Borgonovi, Felix M Izrailev, Lea F Santos, and Vladimir G Zelevinsky. Quan-
tum chaos and thermalization in isolated systems of interacting particles. Physics
Reports, 626:1–58, 2016.

[200] Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Marcos Rigol. From quantum
chaos and eigenstate thermalization to statistical mechanics and thermodynamics.
Advances in Physics, 65(3):239–362, 2016.
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	3. Schematic temperature-detuning phase diagram for a balanced two-species p-wave resonant Bose gas. As illustrated, it exhibits atomic (ASF), molecular (MSF), and atomic-molecular (AMSF) superfluid phases. The AMSF state is characterized by a p-wave, molecular, and finite-momentum Q atomic superfluidity.
	4. (Color online) Schematic atomic (thick) and molecular (thin) order parameters versus the FR detuning  for the polar phase, with c1= cMSFp-AMSFp and c2= cAMSFp-ASF.
	5. Schematic atomic (thick) and molecular (thin and dashed) order parameters versus the FR detuning  for ferromagnetic phases. The AMSFfm-AMSFp phase transition at c2 leads to kinks (change in slope) in the molecular (u) and atomic () order parameter, later indicated by a black dot. Without loss of generality we choose the  axis (component of u) to lie along Q0. The critical detunings are denoted by c1= cMSFfm-AMSFfm, c2= cAMSFfm-AMSFp, and c3= cAMSFp-ASF. 
	6. Schematic ASF double BEC (ASF12) excitation spectrum. There are two gapless atomic Bogoliubov modes (thin) as well as three gapped molecular modes (thick).
	7. Schematic excitation spectrum for the MSFp. The doubly degenerate atomic spectrum (upper thin curve) exhibits a minimum gap at nonzero k, a precursor of finite-momentum atomic condensation inside the AMSFp. The molecular spectra (thick curves), one longitudinal (lowest) and two degenerate transverse (middle) modes, are of Bogoliubov type.
	8. Schematic excitation spectrum for the MSFfm. The doubly degenerate atomic spectrum (thin curves) exhibits a minimum gap at nonzero k, a precursor of finite momentum atomic condensation. The molecular spectrum (thick curves) consists of a longitudinal gapless quadratic ferromagnetic spin-wave mode (lowest), a Bogoliubov sound mode, and a quadratic gapped mode.
	9. Mean-field phase diagram of a d-wave resonant two-component Bose gas for large positive detuning and 411 22-(12+21)2>0. The atomic channels have lower energy. ASF1 and ASF2 refer to single atom species superfluid state, and ASF12 refers to double atom species superfluid state.
	10. Mean-field phase diagram of a d-wave resonant two-component Bose gas for large positive detuning and 411 22-(12+21)2<0. A valid phase of significant condensate fraction in both atom fields is not found in mean-field calculation. The phases ASF1 and ASF2 are separated by a first-order transition boundary.
	11. Atomic and molecular condensate density versus the FR detuning . Red curves are for molecule condensate density, blue curves are for atom condensate density, i) MSF for <1d ii) AMSF for 1d<<2d iii) ASF for >2d.
	12. ASF phase excitation spectrum. Here we use parameters { m=1, =1, =3.2, 11= 22=3, 12=21=1}. The unit is arbitrary. All the molecular modes are gapped, but the atomic modes are gapless. The five molecule modes are degenerate. The numerical results and theoretical results fit well in small k regime.
	13. MSF phase excitation spectrum. The parameters used for MSF phase are {m=1, =0, =-1.44, g0=1} . The atomic modes are gapped and degenerate. All the molecular modes are gapless, m=1,2 are degenerate on the lower green line, m=0 is on the upper green line.
	14. AMSF phase excitation spectrum. The parameters here are {m=1, =0, =-1, 11= 22=1.5, 12=21=0.5, g0=2, gAM=-1, g=0.01}. The atomic modes are gapless on the two blue lines. The molecular modes are also gapless: m=1,2 are degenerate on the lower green line; m=0 is on the upper green line.
	15. Schematic plot of dimensionless function fj for subplots (a), (d): =-0.4; (b), (e): =0.1; and (c), (f): =0.4, which are inside ASF, AMSF and MSF phases, respectively. Here j means different modes. We can find the low-energy modes become imaginary in phase AMSF, which arises from the instability of the mean-field ground state. Here =2+2+2 represents the distance from the momentum-space origin.
	16. Diagram for calculating the T matrix for p-wave interaction. Single lines denote the bare atom propagators G(0), double lines denote the bare molecule propagators D(0), and the bold one denotes the renormalized molecule propagators D. The blue square represents the T matrix: -iTk,k'(lz). The blue dot represents the interaction vertex: -igkY1,lz().
	17. Schematic plot of F(). The blue solid line is a linearized approximation for the regime with a stabilized particle number density.
	18. Total ground-state energy density versus total number density for different detuning: 0 m ares2=0.5 (a), 1 (b), 2 (c), 5 (d), -0.5 (e), -1 (f), -2 (g), -5 (h). In subfigures with 0>0, the yellow circle (red square) dots represent the energies in MSF (AMSF) phase. The minimum energy density is presented with a finite number density after we introduce the LHY correction and lies in the AMSF phase. In subfigures with 0<0, the yellow circle (red square) dots represent the energies in ASF (AMSF) phase. To emphasize the dominance of p-wave interaction, we choose ares=103a0 with the Bohr radius a0 as the unit of length, which is typically far larger than the background scattering length. We set the Planck constant  as 1 for convenience.
	19. The stabilized density ns versus detuning 0. The stabilized density ns is almost proportional to detuning 0 linearly. As 0 becomes larger, s=02g2mns converges to 0.08.
	20. Relation between the diluteness and the detuning. As detuning approaches zero, the diluteness tends to diverge, which may indicate that higher order corrections besides MFT and LHY are needed. But for a large detuning regime, the mixture is dilute, so that it is reasonable to characterize our model with only first order beyond-mean-field calculation. The inset shows the energy comparison for different diluteness, as we set 0 m ares2=5. The lowest total energy is ensured to appear in the dilute regime.
	21. Density profile of the droplet. The background color represents =n(r)/ns, where n(r) is density at different locations and ns is the stabilized density. The x axis and y axis for each subfigure label the x direction and z direction in real space. The detunings from the top row to the bottom row are 0 m ares2=0.5,5,50 respectively. The normalization factor for  from the left column to the right column are N/(nsares3)=104,105,106 respectively. When the particle number grows large enough with ns fixed, it breaks SO(3) symmetry clearly. As the detuning grows smaller and deep inside the AMSF phase, the droplet is more and more reduced along z axis.
	22. Density profile on the centered lines along x and z directions inside the droplet under condition 0 m ares2=0.5 and N/(ns ares3)=106. The red dashed curve is the centered line along x direction and the blue solid curve is along z direction. The value on the plateau is almost constant and close to 1.025. If the system size is increased, the height of the plateau will be closer to 1.
	23. Summary of the properties of the SYK model and planar charged black holes at T=0. The spatial co-ordinate  has d dimensions. The fermion mass m has to be adjusted to obtain the displayed power-law. The spectral asymmetry parameter E appears in the fermion correlators and in the AdS2 electric field. A key observation in the holographic framework is that E, now related to the electric field, obeys an important identity which follows from the laws of black hole thermodynamics, where SBH is the Bekenstein-Hawking entropy densiy of the AdS2 horizon.
	24. Schematic representation of the model: The model in Eq. (7.1) is characterized by a nearest neighbor Ising coupling and an infinite range XX coupling.
	25. Scrambling of the infinite temperature state : a. Time evolution of the OTOC, F(j,t) (defined in Eq. (6.4)) for a 18-site chain when J=1. The red line represents the time at which the OTOC reaches its minimum value. The OTOC spreads super-ballistically in this parameter regime. This is a salient characteristic of a fast scrambler. b. Semiclassical numerics for the dynamics of the spin chain when J=1. The left panel shows the time, tscr at which the sensitivity Ccl (j,t) (defined in Eq. (6.5)), reaches 1 on site j, when the chain length, N=200. We conclude that this system exhibits super-ballistic spreading, since tscr is (almost) constant for j 1. The right panel shows the system size dependence of the scrambling time t*, at which Ccl (j,t) reaches 1 on all sites. We find that, t* log(N) - a characteristic signature of fast scrambling.
	26. Quench dynamics for the classical Néel state: a. The OTOC for different long range interactions, J. The red line is the time at which the OTOC reaches its minimal value. Similar to the infinite temperature case, the OTOC spreads super-ballistically. b. The dynamics of the half-chain entanglement entropy, for different long range interactions, J. This model is identical to the Ising model when J=0, and the entropy does not grow. As we increase J, the entropy grows faster and saturates to higher values. This result is consistent with the behavior of the OTOC.
	27. Quench dynamics for different magnetization sectors: Density plot for the local z-magnetization for initial states with different total magnetizations, when J=1. The initial state has M spin downs clustered at the center of the chain, and N-M spin-ups present symmetrically around this cluster. We find that there is a crossover from slow to fast scrambling, as the spin imbalance decreases.
	28. Schematic representation of the model: The model in Eq. (7.1) is characterized by a nearest neighbor XXZ coupling and an infinite range XX coupling. This model describes a XXZ spin chain is coupled to a single mode cavity.
	29. Phase diagram from dpin-wave analysis: The spin-wave analysis presented in section III reveals that there are three phases in this spin-chain: (a) A z-polarized ferromagnetic phase, (b) a quasi-long range ordered Tomonaga Luttinger liquid (TLL), and (c) a long-range ordered XY-like phase that spontaneously breaks the U(1) symmetry of this model.
	30. Ground state entanglement entropy: The entanglement entropy of the ground state is 0, when the spins are polarized along the z-direction and the correlations are ferromagnetic in nature. The entanglement entropy violates the area law logarithmically, when the correlations are XY-like. Panel (a) shows the density plot for the half chain entanglement entropy, defined in Eq. 7.11 for a 100 site chain. Panel (b) shows the dependence of the entanglement entropy on the system size, when the correlations are XY-like.
	31. Phase diagram from the effective central charge: The density plot for the effective central charge, c (defined in Eq. 7.12) shows that there are three phases: (a) A ferromagnetic phase characterized by c=0 (b) the critical Tomonaga Luttinger Liquid characterized by c=1 and (c) A true U(1) spontaneous symmetry breaking (SSB) phase characterized by c>1. The phase diagram obtained from the central charge qualitatively matches the results from the spin wave analysis.
	32. Level statistics and scrambling of the infinite temperature state: a: The spectral statistics for our model (Eq.  D.1) when the total z-magnetization is 0, as characterized by the averaged ratio of adjacency gaps. We conclude that there is a large parameter regime, where r 0.53, and the system is non-integrable. We find that r 0.39, only when 1, and the model is integrable. Fast scrambling is only expected when the system in non-integrable, and thus we focus on the =0 regime in the main text. b: The spread of the semiclassical sensitivity, Ccl (j,t) for a 100-site chain, when the infinite range interaction is 1/N. In this case, the spin model does not exhibit fast scrambling. 
	33. Comparison of an analytic short time expansion and exact diagonalization results for the OTOC, F(8,t): The circles represent numerical data from the exact diagonalizaton calculation, while the lines represent the analytical expression. Both approaches agree at short times, even though they differ at longer times in the fast scrambling regime.
	34. Quench dynamics for J=1: a: Exact results for the OTOC of a 16-site chain initially prepared in various experimentally realizable product states. The initial states have been stated above each sub-figure. b: Matrix-product-state simulations for the quench dynamics of a 30-site chain initialized in the classical Néel state. It is clear the the OTOC spreads super-ballistically in all of these cases.
	35. Schematic of the experimental realization of the spin model: The fast scrambling model that we have studied can be realized when a one dimensional spin chain is collectively coupled to an optical cavity.
	36. Fast scrambling of the infinite temperature state: The OTOC for different values of the long range interactions, J, when N=16. The red line represents the time at which the OTOC reaches its minimum value. We find that when J O(1), the system exhibits super-ballistic spreading of the OTOC. The scrambling becomes faster with increasing J in this regime.
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