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Abstract 

Valgus Fatigue and Damage Accretion of the Anterior Bundle of the Ulnar Collateral 

Ligament: a Finite Element Evaluation 

 

David Bernard Jordan, PhD 

 

University of Pittsburgh, 2021 

 

 

 

 

The pitching of a baseball is a strenuous action that applies exaggerated kinematic and 

kinetic influences at the elbow of the athlete.  The repeated application of these influences can 

gradually degrade the mechanical integrity of the native biological support structures over time 

and eventually lead to failure by fatigue.  One such structure is the anterior bundle of the ulnar 

collateral ligament (AMCL).   

The fatigue properties of a material are often characterized by its respective fatigue life, 

where the amount of repetitive loading possible for a given load state before failure is defined.  It 

is also important to predict how the damage is progressing throughout the material for cycles which 

are less than the predicted failure life.  This study seeks to determine these properties of fatigue 

for the elbow AMCL and implement them into the execution of a Finite Element (FE) simulation 

for the purpose of predicting the magnitude and location of damage to the AMCL, per magnitude 

of pitching action performed.  For applicability to the general pitching athlete, these results will be 

formulated using a non-dimensional material model. 

Twenty-two cadaveric elbow specimens were used for this study.  Eleven were tested in 

vertical elongation to make measurement of the AMCL elastic mechanical properties and 

subsequently tested to failure.  Eleven contralateral specimens were tested in valgus fatigue to 

make measurement of the AMCL fatigue properties.  These results were incorporated into a 

transversely isotropic hyperelastic constitutive equation and used to define the material properties 
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of a 3D elbow model within a FE environment.  Simulated displacements mimicking pitching-

induced joint opening were applied and both the stress and strain outputs were analyzed. 

The average tensile failure load was 595.25 N ± 201.93 N.  For specimens tested at 90% 

and 80% of their estimated one-cycle failure moment, the average cycles to failure were 3211 ±

4721.33 and 25063 ± 30487.58, respectively.  The middle band of the AMCL increased in 

maximum stretch by an average margin of 0.89% ± 1.46%, with an average failure stretch of 

1.077 ± 0.019.  The FE fatigue simulation utilizing the nonlinear damage accretion function 

produced fatigue-induced stretch increase results that agreed with experimental observation to 

within 1%. 
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1.0 Introduction 

In sporting activities, a particular action is often repeated several times in succession.  In 

baseball, a commonly repeated action is a pitch, which can be executed in excess of one-hundred 

times per game by a single pitcher.  Each pitch applies forces and moments to the upper extremity.  

One particular region, the elbow, is held together by a complex of ligaments.  On the medial, or 

inside of the arm, the joint is supported by the ulnar collateral ligament.  The anterior, or 

uppermost, bundle of the ulnar collateral ligament (AMCL) plays a primary role in resisting the 

valgus torques applied to the elbow during every pitch.  The repeated application of this loading 

can gradually degrade the mechanical properties of the ligament, and eventually cause failure by 

fatigue.   

In mechanics, fatigue failure is especially hazardous because it can occur at loads which 

are typically less than the ultimate failure load of the material.  The accumulation of fatigue effects 

is thought to be one of the many contributors that can lead to ligament failure.  Mitigation of 

ligament fatigue failure can possibly be achieved through the development of a predictive model 

that can be used to assess how the degradation is progressing throughout the ligament per level of 

pitching action performed.  In the study of material behavior, one such tool is known as a pseudo-

elastic constitutive damage model.  These models are phenomenologically formulated to represent 

the load-deformation response of a particular body.  The pseudo-elastic extension arises from the 

use of several parameters that act to degrade the mechanical response of the material as the body 

undergoes a prescribed loading condition.  Several damage models have been formulated for 

different biological tissues.   
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In this study, we seek to propose a fatigue-damage model for the elbow AMCL.  The model 

will be phenomenologically developed from experimental data taken from vertical elongation and 

valgus fatigue loading tests.  The model will use the principles of continuum mechanics to 

construct the stress-deformation constitutive response of the ligament.  The damage accretion in 

the ligament will be determined using the principles of continuum damage mechanics.  Because 

the model will be developed under valgus rotational loads, it has particular applicability to the 

pitching of a baseball.  All of these factors will be taken into account within the model and 

implemented into a finite element simulation.   

The goal of the study is to present a computational model that can predict the fatigue life 

of the AMCL corresponding to a given level of pitching, how much fatigue damage the AMCL 

might sustain per number of pitches thrown, where the greatest fatigue damage will amass and 

how the distribution of the fatigue damage will relate to the observed experimental failure 

characteristics.   

1.1 Modeling Significance 

The constitutive modeling of biological structures is a broad topic with wide ranging 

applicability to a variety of tissue types and loading scenarios.  These models provide a means to 

estimate the given mechanical response of a biological structure without any need for further 

physical testing.  This is especially convenient for those models which are derived for very specific 

tissues, subjected to very specific loadings.  It is almost invaluable for those models that extend 

toward more general circumstances.  The presentation of the proposed fatigue model of this paper 

will add to this knowledge. 
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1.2 Clinical and Athletic Significance 

The modeling and simulation of the elbow AMCL fatigue behavior will contribute to the 

clinical understanding of the ligament.  Having an estimate of the number of pitches necessary to 

damage the ligament can inform athletic coaching decisions.  Knowing the level of predicted 

damage to the ligament, based on the knowledge of pitches thrown, can possibly inform 

rehabilitation exercises for athletes who experience pain but no rupture.  For ligaments that have 

ruptured, having estimates of the nature of the rupture could inform pre and post-operative 

decisions.  The information added to these respective areas could improve overall athletic 

performance and clinical treatment. 
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2.0 Background 

The elbow is vital to daily human activity.  These activities include both athletic and non-

athletic endeavors.  In the athletic realm, nearly every sport requires the use of a fully functional 

elbow to execute the demands of the respective activity.  The biological constructs of the elbow 

which allow this execution are assembled in an intricate fashion which will be described below. 

2.1 Anatomy 

2.1.1 Bone Structure 

There are three bones at the elbow joint.  These are the humerus, the radius and the ulna 

(Figure 1).  With the terms distal and proximal referring to the terminal locations of the bones with 

respect to the head of the body, the distal humerus is comprised of the trochlea and the capitellum.  

The radial head of the proximal radius moves along the capitellum.  The trochlear notch of the 

ulna moves along the trochlea.  The radial notch of the ulna supports the radial head, as they are 

constrained to move together.   
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Figure 1: Bone Structure of the Elbow Joint [boneandspine.co.com] 

2.1.2 Ligaments 

The elbow joint is stabilized by two main ligament constructs.  On the outside (lateral) of 

the elbow, this is the lateral collateral ligament (LCL).  On the inside (medial) of the elbow, this 

is the ulnar collateral ligament (UCL).  These ligaments are composed of triple helix chains of 

collagen molecules, called tropocollagen, which assemble together to form collagen fibrils[1, 2] 

and elastin fibrils.  The collagen fibrils further assemble to form larger diameter collagen fibers 

(Figure 2) which are embedded in a ground substance of water and proteoglycans[3, 4].  

Mechanically, the collagen fibers are the primary load bearing structures of the ligament in tension 

and the elastin contributes substantially in shear and transverse tensile loading[5].  Previous studies 

have been performed which document the strength of collagen fibers[6] in tension. 
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Figure 2: Collagen Fiber Structure 

 

The UCL has its origin and insertion points at the far end (distal) humerus and near end 

(proximal) ulna, respectively.  The ligament consists of three bundles.  These are the posterior 

bundle, transverse bundle and anterior bundle (Figure 3).  Each bundle plays a respective role in 

maintaining the structural stability of the elbow joint. 
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            Figure 3: Ulnar Collateral Ligament Complex at the Medial Elbow 

 

2.2 Overhand Throwing (Baseball Pitching) 

The action of overhand throwing occurs in a variety of athletics.  In these sports, the 

overhand throwing motion must be executed many times.  This is especially true for baseball 

pitchers, where upwards of one hundred pitches per game may be executed.  This section provides 

a breakdown of the fundamentals of baseball pitching and the perceived implications. 

2.2.1 Mechanics 

The complete pitching motion is comprised of a series of phases that all occur within the 

time frame of milliseconds to achieve the goal of launching a baseball.  Six phases have been 
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identified and described by several authors[7, 8].  These phases are the wind-up, stride, arm 

cocking, arm acceleration, arm deceleration and follow-through.  

The wind-up phase begins with a shift in body weight into a prepared stance, followed by 

a rotation of the torso and a static, flexed elbow[8, 9].  The wind-up is followed by the stride phase 

where velocity in the targeted direction is generated.   

The arm cocking phase follows the stride phase and is denoted by extreme rotation of the 

elbow and shoulder, which can generate high magnitudes of torque.  The mean maximum inward 

(varus)/outward (valgus) torque at the elbow has been measured to be as high as 120 Nm[10].  Arm 

acceleration follows arm cocking, where the elbow is internally rotated from a position of 

maximum flexion, to a position of full extension at rotational rates as high as 2600 deg/sec[11].  

These magnitudes are extreme and the consistent measurement of these peak kinematics have been 

shown to vary in relation to ball speed and various upper kinematic variables[12]. 

Arm deceleration follows arm acceleration and is initiated by the release of the ball.  The 

mean minimum elbow flexion during this phase has been measured to be 24ᵒ[13].  The follow-

through phase succeeds the deceleration of the arm and is identified by the continued deceleration 

of the throwing arm and trunk[8].  The completion of the follow-through marks the end of the 

completed pitching motion. 

2.2.2 Affecting Parameters 

The motion described in the previous section is the fundamental pitching action.  This 

layout applies to the general pitcher, regardless of age, experience or competition level.  However, 

other factors can influence the kinematics observed throughout the pitching cycle.  
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The factor of age has been studied in relation to a variety of pitching variables.  Older 

pitchers have been shown to have higher external elbow rotation and greater elbow flexion during 

the early and late cocking phases[14].  Studies in youth pitchers have shown that lower reduced 

rotation can result from proper execution of pitching mechanics[15]. 

The effect of pitch type has also been studied.  Intuitively it seems reasonable that different 

pitch types should generate different effects on the upper extremity.  This was quantitatively shown 

in youth pitchers where fastballs and curveballs were shown to produce the highest elbow torque 

and arm speed, respectively[16].  The investigation of these parameters show that the kinematic 

and dynamic effects developed throughout the pitching motion, at the upper extremity, can be 

affected by both the mechanics and biology of the performing athlete. 

2.2.3 Valgus Stress 

Near the end of the arm cocking phase, the centroidal ulnar axis rotates laterally with 

respect to the centroidal humeral axis.  This motion is known as a valgus rotation and creates a 

valgus rotation angle θ, between the two axes (Figure 4).   
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Figure 4: Valgus Elbow Motion 

 

The valgus load is generated by both muscular and non-muscular torque effects, with the 

torque from the internal rotation of the shoulder being the primary influencer[17].  A natural gap 

exists between the ulna and the humerus.  This opening is referred to as the ulnohumeral joint 

space.  Increases in the magnitude of this spacing have been reported to occur in successive 

repetitions of twenty pitches[18].  The ulnar collateral ligament at the medial elbow is susceptible 

to the highest brunt of these valgus effects, especially with the anterior bundle being the primary 

valgus support structure[19]. 

2.3 Clinical Implications 

The presence of this valgus load at the elbow creates a potentially hazardous situation.  It 

is not only the magnitude of the valgus loads, but the repeated application, which presents potential 
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damaging effects at the UCL complex.  The implications of these effects can impact the required 

performance of the athlete and the rehabilitation/repair responsibilities of the physician/clinician. 

2.3.1 UCL Rupture 

Because baseball pitching requires successive repetition, the ligaments that support the 

elbow, especially the UCL are at risk of injury by fatigue.  Performance of a high number of pitches 

throughout a season can cause elbow pain in the athlete[20].  The incidence of pain can be a result 

of different factors.  In the worst case, it could be the indicator of significant ligament injury. 

Depending on the level of performance, pitchers can throw between 60-100, or more, per 

game.  This is directly correlated to the dominant risk factors for injury, which include pitches per 

game and innings pitched, citing repetitive pitching as the primary cause for the majority of elbow 

injuries[21].  In addition, radiographic studies have shown that pitchers can develop degenerative 

changes in the elbow of their pitching arm, such as radial head osteophytes, as a result of these 

repetitive actions[22]. 

2.3.2 Repair and Rehabilitation 

Ruptures of the UCL are commonly treated with one of two techniques, although others 

exist.  These techniques are either reconstruction with the docking method or repair with internal 

bracing.  Reconstruction with the docking technique (Figure 5) involves creation of an ulnar tunnel 

through the sublime tubercle through which a graft is passed while the opposite end is docked into 

holes drilled at the medial epicondyle using sutures[23, 24].  Repair with internal bracing involves 



 12 

fixing suture tape to the torn ligament which is held together at two ends by threaded anchors set 

into two tapped holes drilled in the ulna and humerus[25, 26].   

 

 

Figure 5: UCL Repair (Docking Technique) [researchgate.com] 

 

In a survey posed to the members of the ASES (American Shoulder and Elbow Surgeons), 

66% of surgeons cited the docking technique as the preferred reconstruction method for cases 

where surgery was deemed appropriate[27].  Although reconstruction is the preferred surgical 

option, studies have shown that repair can be just as viable.  In a study on valgus fatigue, the 

repaired elbow with internal bracing was shown to have less gap formation between the ulna and 

humerus[28].  At 90º of elbow flexion, load to failure, gapping and valgus opening angle were 

shown to be similar for reconstruction, repair and the native ligament[25, 26].  A systematic review 

on the biomechanical outcomes of patients who underwent UCL repair showed that performance 

return rates were comparable to those for reconstruction[29].  These studies show that UCL 

reconstruction and UCL repair can both be viable options for surgical treatment of the torn UCL.   

After surgical treatment, the concern shifts to the time required for the athlete to return to 

competition.  For athletes who undergo UCL reconstruction, the return rate can depend on the type 



 13 

of graft used, the tear type and the tear location[30].  In a retrospective study involving 942 

patients, surveys showed an average of 4.4 months was needed to initiate throwing after 

reconstruction[31].  In adolescent pitchers (less than 19 years old), an average of 11.6 months was 

needed for a complete return to sport after reconstruction[32].  This time is critical for the youth 

pitcher who may be aspiring for collegiate entry through athletic performance.  For pitchers in the 

MLB, an average of 20.5 months was required for return after reconstruction, with an average 

subsequent career length of 3.9 years[33].  Once the athlete is able to return to competition, the 

pitching performance has been observed to decrease, with respect to earned run average and fast 

ball velocity, in the first year and then gradually improve in the following years[34].    

These studies show that the issue of UCL damage is of high concern when considering how 

many athletes suffer from it, how long they could be out of action and the degree to which their 

respective post-performance levels may be impaired.  For amateur pitchers, an injury sustained to 

the UCL can significantly hinder potential prospects for collegiate or professional careers.  For 

professional pitchers, the injury presents a huge financial burden for the athlete, where average 

MLB pitcher contracts can be on the order of millions of dollars.  Given these considerations, it is 

evident that the concern of damage to the UCL is a substantial problem. 
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3.0 Relevant Literature 

The elbow joint undergoes a variety of motions.  When considering athletics, some of these 

motions can be super-physiological, exceeding the normal performance of the elbow in regard to 

the degree of motion and magnitude of loading.  The repeated application of such motions of the 

extremities can be potentially damaging to the ligaments which support the joints.  Because 

ligaments are surrounded by layers of muscle and other supportive tissue, which help to support 

the load, the ligaments are not subjected to the full magnitude of the loading.  However, the loading 

magnitudes that the ligaments do experience can gradually wear down the mechanical strength of 

the ligament in a mechanical process known as fatigue. 

3.1 Fatigue of Biological Tissue 

3.1.1 Anterior Cruciate Ligament 

The effects of fatigue loading have been studied for a variety of ligaments.  Because the 

constituents of ligaments located at different joints in the body are roughly similar, analogous 

inferences about the UCL can be made from observations of the behavior of other ligaments.  One 

such ligament is the anterior cruciate ligament (ACL) of the knee[35].  The ACL connects the 

femur to the tibia (Figure 6) and is one of the primary stabilizers of the knee joint. 
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                     Figure 6: ACL and Knee Joint Bone Structure [stoneclinic.com] 

 

In golfers, the target side knee is repeatedly loaded in adduction and abduction during each 

golf swing.  Similar to pitching, the moments at the knee during the golf swing have been shown 

to be much higher than the moments associated with normal living activities such as walking[36].  

A multibody simulation of the knee, utilizing tracking data taken from actual golfers, produced 

results suggesting that repeated application of these moments at the knee could be a factor of ACL 

fatigue failure[37].   

Jumps are a common action repeated by athletes in a multitude of sports.  It is routinely 

required by basketball players attempting a shot, track athletes attempting to clear a hurdle and 

wide receivers leaping for a football reception, among others.  When landing, the knee joint 

involves a pivot in the tibiofemoral joint.  In the absence of outside effects, the load maintained by 

the knee upon landing is some multiple of the individual body weight (BW) of the athlete.  In a 

cadaveric study of knee joints, it was shown that the ACL could fail after an average of 52 cycles 

at a load of 3BW and 21 cycles for a load of 4BW[38].   
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These studies show that repetitive application of athletic motions at the knee can lead to 

ACL fatigue failure.  The knee joint is similar to the elbow joint, in that they are both a prime 

actuator of athletic motion across a wide expanse of sports.  With the ACL at such risk of fatigue 

failure, it is understandable that the UCL would be at similar risk. 

3.1.2 Tendons 

Tendons are connective tissues composed of collagen fiber bundles that connect muscle to 

bone.  The primary function of a tendon is to move the bone to which it is attached.  The bones of 

the arms and legs are maneuvered in complex ways throughout the routine movements of daily 

and athletic activity.  Because of their usage, it is reasonable to expect tendons to be susceptible to 

similar effects of fatigue as is observed in ligaments.   

Cyclic tensile tests performed on flexor digitorum profundus (FDP) tendons of chicken feet 

showed that specimens loaded at higher magnitudes for longer periods of time displayed 

significantly lower strength compared to specimens with either no loading or loading with lesser 

magnitude and frequency[39].  This observed decrease in strength could be due to a multitude of 

factors.  One such factor could be the formation of defects within the tissue.  This has been 

observed in cyclic stimulation tests performed on FDP tendons of rabbit forearms, where the mean 

micro-tear area made up approximately 0.8% - 4.5% of the total tendon area and the overall density 

of tears was greater for loaded tendons than unloaded tendons[40, 41]. 

The Achilles tendon connects the muscles of the calf to the calcaneus bone of the heel 

(Figure 7).  The tendon is largely responsible for application of the necessary forces to the calf 

which allow actions like running, jumping and normal ambulation.  Because of its function, the 

Achilles tendon is one of the more commonly injured tendons in the body and the injury has a very 
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complex etiology[42].  In cyclic tensile testing of the human Achilles tendon, stress-strain load 

curves were observed to become less steep as the cyclic loading progressed, indicating a reduction 

in stiffness and increased energy dissipation[43].  This is very hazardous because a tendon with 

reduced stiffness can suffer greater deformation, increasing the likelihood of eventual failure. 

 

 

Figure 7: Achilles Tendon and Foot Anatomy [footvitals.com] 

 

These studies performed on the different tendons of human and animal specimens show 

evidence of an existing problem associated with the cyclic loading that these structures naturally 

encounter and support.   

3.2 Constitutive Modeling 

Experimental load-deformation data gathered from biological tissues has been used to 

develop computational models which can effectively capture the mechanical response.  These 

models are known as phenomenological constitutive models and are derived from hyperelastic 

strain energy functions.  A variety of these strain energy functions have been developed to model 
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the behavior of numerous biological tissues[44].  The contents of sections 3.2.1 through 3.2.5 give 

a summary of the fundamental concepts of constitutive modeling as referenced from two textbooks 

on the subject[45, 46]. 

3.2.1 Deformation 

The deformation of a soft biological tissue is typically given in terms of the stretch.  The 

stretch is obtained through observation of the path taken by a material point, p, from a position �⃗⃗� , 

in the reference configuration ko, to a new position  �⃗� , in the current configuration k.  The 

relationship between the two position vectors is defined through the deformation gradient tensor 

F (Figure 8). 

 

 

Figure 8: Deformation from Reference Configuration to Current Configuration 

 

The manner in which F relates the current configuration to the reference configuration is 

given by Equation (3-1).  Equation (3-1) represents a one-to-one linear mapping from points across 
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the respective configurations.  There are many classical forms of F representing well-known 1-D 

deformation cases, including simple tension with a tensile load 𝐅 𝐓 (Figure 9a) and pure shear with 

a shear load 𝐅 𝐒 (Figure 9b).  Two dimensional testing, such as biaxial tension[47], can also be 

represented.  The diagonal components of F are the principal stretches.  Application of Equation 

(3-1) for these special deformation cases makes the identification of the stretch variable apparent. 

 

 

Figure 9: Deformation Gradients for Simple Tension (a) and Pure Shear (b) 

 

The stretches are then taken from the principal components of the right Cauchy-Green 

stretch tensor C, and the left Cauchy-Green stretch tensor B, given by Equations (3-2) and (3-3). 

 

𝐅 =
∂𝐱

∂𝐗
…………………………………………….…[3-1] 

 

𝐂 = 𝐅𝐓𝐅………..……………………………………[3-2] 

 

𝐁 = 𝐅𝐅𝐓…………..……………….………………..[3-3] 
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3.2.2 Hyperelastic Materials 

Hyperelastic is a specific classification of materials that are able to undergo large 

deformations while maintaining their elastic properties.  Typical materials that fall into this 

category are rubbers, various types of polymers and some biological tissues.  For these materials, 

it is assumed that there exists a strain energy density W, which characterizes how strain energy is 

stored in the material when it is deformed.  For agreement with the restrictions of material frame 

indifference and invariance under superposed rigid body motions, W is often written with a 

dependence on C (Equation 3-4).  

 

W=W(C)…………………………………………….[3-4] 

 

3.2.3 Isotropic Incompressible Hyperelastic Materials 

Isotropic materials are those for which the material properties remain independent of the 

direction within the material.  Modeling materials of this nature require strain energy densities 

with similar directional independence.  For this purpose, W is often written as a function of the 

principal strain invariants (Equation 3-5).  These invariants (Equations 3-6 - 3-8) have the same 

value independent of the choice of mutually orthogonal basis vectors. 

 

W = W(I1,I2,I3)………...……………………..……………[3-5] 

 

I1 = tr(𝐂)……………………………..…………………[3-6] 
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I2 =
1

2
[tr(𝐂)2 − tr(𝐂𝐂)]…………...….…..…………….[3-7] 

 

I3= det(𝐂)……..….……………............……………….[3-8] 

 

Because these materials are capable of large deformations, they can also undergo large 

changes in shape.  However, this shape change is assumed to occur in such a way that the overall 

volume of the material remains nearly constant.  This condition is termed incompressibility, and it 

is assumed to hold for this hyperelastic class of materials.  This condition is represented through 

the third strain invariant I3, or the Jacobian J, which is taken to be equal to one.  For this 

assumption, I3 is omitted from inclusion in any further formulation. 

3.2.4 Anisotropic Hyperelastic Materials 

For materials that do have some directional dependence in their mechanical properties, an 

anisotropic strain energy density is needed to represent the behavior[48].  This directional 

dependence is typically included with the addition of another strain invariant, I4.  For biological 

tissues, the anisotropy is represented by the mean preferred fiber direction vector a, of any number 

of fiber families k.  I4 is then given as the tensor product of C with the dyadic product of a with 

itself (Equation 3-9). 

 

I4 = 𝐂: 𝐚(k)  ⊗ 𝐚(k)..................................................................[3-9] 
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This additional strain invariant contributes only to the anisotropic portion of W, while the 

isotropic portion of W maintains a dependence only on I1 and I2.  An additive decomposition of W 

is often utilized, given by Equation (3-10). 

 

W = Wisotropic(I1, I2) +Wanisotropic(I4)...…………….[3-10] 

 

In the literature, Wisotropic is typically taken to represent the strain energy of the matrix 

and Wanisotropic is taken to represent the strain energy of the fibers.  Decoupling of the strain 

energies of additional constituents such as elastin has also been used[49]. 

3.2.5 Fiber Dispersion 

In many collagenous tissues, not only do the collagen fibers have a mean preferred 

direction, as discussed in section 3.2.4, but the fibers also display some dispersion about this mean 

direction.  That is, the fibers are not all perfectly aligned.  This has been shown for collagen fibers 

in the major coronary artery of human hearts[50] and in the multiple layers of human aortas[51]. 

Many contributions have been made on the subject of modeling this fiber dispersion, with 

most being done on the basis of probability[52].  With respect to a Cartesian system, for a mean 

preferred fiber direction a, the probability of finding a single fiber in that direction is given by the 

probability density function, ρ(a).  Because a is a 1-D vector in 3-D space, it can be decomposed 

into in-plane and out-of-plane components (Figure 10), where the probability of finding a single 

fiber through searching the entire domain would be 100% (Equation 3-11), where ρip and ρop are 

the in-plane and out-of-plane probability density functions, respectively[53]. 
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Figure 10: In-Plane and Out-of-Plane Components of the Mean Fiber Direction Vector (a) 

 

1

4π
∫ ρip(ϕ)dϕ∫ pop(θ)cosθdθ

π

2

−
π

2

2π

0
= 1……………………[3-11] 

 

The magnitude of the dispersion can be set by assigning a scalar value to ρip or ρop 

individually.  A probability density value of 0 corresponds to no dispersion, while a probability 

density value of 1 corresponds to isotropic dispersion. 

3.2.6 Stress 

The first law of thermodynamics is a statement on energy conservation.  The second law 

of thermodynamics states that the entropy for a thermodynamically isolated system must be 

increasing for all exchanges of energy.  In continuum mechanics, this law manifests itself in the 

form of the Clausius-Duhem inequality, which is a combination of the first and second laws.  This 

principle states that the sum of the entropy generation, internal and external heat generation must 
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be non-negative (Equation 3-12). where θ is the temperature, s is the specific entropy, e is the 

specific internal energy, ρ is the density, σ:D is the stress power and q is the heat flux.   

 

ρṡ + divx [
𝐪

θ
] −

1

θ
(ρė − 𝛔:𝐃 + divx𝐪) ≥ 0…………..….[3-12] 

 

Substituting the strain energy density into Equation (3-12) leads to Equation (3-13) where, 

for a purely mechanical system, i.e. {∀𝐪, θ̇ = 0}𝑐, the relationship between the second Piola-

Kirchoff stress S and W is determined (Equation 3-14).  The Cauchy stress is referenced in the 

current configuration and is given by Equation (3-15). 

 

𝛔:𝐃 − ρẆ ≥ 0………………………………[3-13] 

 

𝐒 = 2
∂W

∂𝐂
……………………………………..[3-14] 

 

𝛔 =
1

J
𝐅𝐒𝐅𝐓…………………………….…….[3-15] 

 

3.2.7 Regression and Optimization 

With Equation (3-15), and all strain invariants defined in terms of the ligament stretch, a 

complete representation for the stress in terms of the stretch, S(λ)  and σ(λ), is formed.  These 

formulations may contain a large number of undetermined constants Ci.  The values of these 

constant parameters can be determined using a myriad of regression techniques.   
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With experimental testing of tissue samples, empirical measurements of stress and stretch 

can be made against which one can regress the unknown constant parameters.  Some commonly 

used regression methods are linear, polynomial and exponential. Each method can use any number 

of optimization techniques such as the least squares, Newtonian and Quasi-Newtonian to achieve 

the best-fit result[54].  The goal of the regression is to minimize the sum of the square of the 

residuals εi, in (Equation 3-16), between the model and empirical stress data. 

 

𝐒 = 2
∂W

∂𝐂
+ εi……………………………………..[3-16] 

 

The result of the regression leads to a completed model of, 𝐒(λ) and 𝛔(λ), which can be 

used to represent the mechanical behavior of the material. 

3.3 Continuum Damage Mechanics 

 

These hyperelastic models can be modified to include non-recoverable effects, as shown 

in a field of study known as continuum damage mechanics (CDM).  Because the energy input into 

the material through loading is not all recovered upon unloading, these models are termed pseudo-

elastic and the strain energy function is modified to include an effect which accounts for this energy 

loss.  A variety of damage models have been created to model the behavior in engineering materials 

and soft biological tissues[55]. 
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3.3.1 Stress Softening 

Some of the earliest work in modeling stress softening effects was done for engineering 

materials.  In particular, certain classes of rubbers would display softer responses after being 

loaded to a certain stress level, unloaded and then reloaded to a higher stress level.  This 

phenomenon is known as the Mullins effect (Figure 11).   

 

 

Figure 11: Stress-Stretch Behavior of Material Displaying Mullins Effect 

 

Modeling of this effect was accomplished by introducing a continuous scalar damage 

parameter η, into the expression for the strain energy density (Equation 3-17), which was made to 

evolve (Equation 3-18) throughout the course of a prescribed loading cycle and served to lessen 

the resulting stress response (Equation 3-19)[56], where erf is the error function, r and m are 

constants, Wm is the strain energy at the point of unloading and W̃(λ1, λ2) is the elastic strain 

energy.   

 

W = W(λ, η)…………………………………………[3-17] 
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η = 1 −
1

r
erf [

1

m
(Wm − W̃(λ1, λ2))]…………………[3-18] 

 

σ11 = λημ(λ − λ
−3)…………………………………[3-19] 

 

Equation (3-19) gives the stress in the primary loading direction for a Neo-Hookean 

material loaded in simple tension.  From this equation, it can be seen that, with 0 ≤ η ≤ 1, the stress 

will always be less than or equal to the elastic stress, i.e. η = 1.  It can also be seen that the damage 

parameter is a function of the strain energy and the choice of how it evolves is chosen subject to a 

few key constraints.  Modifications to this theory have been incorporated for the specifics of the 

Mullins effect that can account for changes in material symmetry[57] and permanent set[58].  The 

topic of permanent set is addressed in later sections. 

The inclusion of a scalar damage parameter has become a frequent means by which to 

model the softening effect in many materials.  In anisotropic models of fibrous tissues, the damage 

can be modeled separately between not only the matrix (ground substance) and the fibers, but also 

between the individual fiber families themselves.  The strain energy densities of this form 

(Equation 3-20) have been termed uncoupled directional damage models[59], where 𝐌 = 𝐦o⊗

𝐦o and 𝐍 = 𝐧o⊗𝐧o are the dyadic products of the two unit vectors in the two fiber directions, 

Dm and Df are the damage parameters for the matrix and fibers, Wvol is the volumetric strain 

energy density, �̂� is the isochoric left Cauchy-Green stretch tensor and Wo
m and Wo

fi  are the elastic 

strain energy densities for the matrix and fibers.   

 

W(𝐂,𝐌,𝐍, DmDf) = Wvol(J) + (1 − Dm)Wo
m(�̂�) + ∑ (1 − Dfi)Wo

fi(�̂�,𝐌, 𝐍)i=1,2  …[3-20] 
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Advantages in uncoupling the damage effects of the matrix and respective fiber families 

lie in the ability to individually monitor how each of the respective constituents is sustaining 

damage.  The means of separating the fiber damage from the matrix damage has also been used 

in modeling the softening of composite layers of arterial walls[60, 61]. 

3.3.2 Damage Definition and Evolution 

In many of the works aimed at modeling damage in biological tissue, the general form of 

the strain energy density is relatively similar.  The most variability in these models is found in the 

specific definition of the damage parameter, when the parameter initiates and how the parameter 

evolves once it has been initiated.   

In some works, the initiation of damage is defined by a damage criterion.  This criterion 

represents a threshold that governs when the damage parameter may or may not become active.  

This criterion is typically dependent on the value of the strain energy and has been given in many 

functional forms, including a one-to-one and a square root (Equation 3-21)[62], where Ξt
m is the 

maximum equivalent strain of the material defined as the square root of the strain energy density 

up to the current time t.   

 

φ(E(t), Ξs
m) ≔  √2Wo(E(t)) − Ξt

m ≤ 0…………………….[3-21] 

 

Equation (3-21) says that for equivalent strain values less than the previous maximum 

equivalent strain, i.e. φ ≤ 0, damage cannot occur.  If the equivalent strain exceeds the maximum 

equivalent strain, i.e. φ ≥ 0, damage is allowed to occur.   
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Once the damage occurs, the evolution of the damage is defined by an arbitrary function 

subject to the nature of the experimental data.  Examples of such  functions are the exponential 

models in Equation (3-22)[66] and Equation (3-23)[63]. 

 

g̅(x) = β + (1 − β)
1−e

−
x
α

x/α
…………….………………[3-22] 

 

gf(Df) =
1−exp(βff1(λ))

1−exp(βff2(λ))
……………….……………..[3-23] 

 

In Equation (3-22), β and α are assumed given parameters and x represents the strain.  In 

Equation (3-23), which was derived for the cyclic loading of human digitorum longus tendons, βf 

is a parameter associated with fiber crimping distribution, f1(λ) and f2(λ) are polynomials in 

definitions of λ that characterize different stretch-damage relationships.  Both Equations (3-22) 

and (3-23) are continuously differentiable and strictly decreasing, which are fundamental 

requirements for these damage evolution equations. 

3.3.3 Fatigue Modeling 

In fatigue experiments, a specimen is typically loaded cyclically for a prescribed or 

arbitrary number of cycles.  The amplitude of the cycling is usually constant and the cycling 

continues up until failure is achieved.  The number of cycles to fail a specimen at certain load 

levels is termed the fatigue life.  If the prescribed amplitude is much less than the ultimate failure 

load of the material, it is evident that some degradation of the material must have occurred 
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throughout the cycling for failure to have taken place.  This degradation can be similarly modeled 

using the techniques of CDM. 

In a fatigue study on bio-prosthetic heart valves[64, 65], the equivalent strain damage 

criterion was used and the evolution of the damage parameter was formulated to depend on the 

number of cycles performed (Equation 3-24).  The inelastic portion of the second Piola-Kirchoff 

stress tensor was given by Equation (3-25) , where εn
peak

 is the maximum strain achieved in cycle 

n, ψmin is the minimum equivalent strain needed to initiate fatigue damage accumulation as 

dictated by the equivalent strain damage criterion[62], ψmax is the maximum equivalent strain 

limit of the tissue for which only one cycle is needed to cause failure and ntot is the total number 

of cycles until failure. 

 

Ds(εn
peak

) = {

0                                          if εn
peak

< ψmin

∑ n/ntot
n
n=0                          if ψmin ≤ εn

peak
≤ ψmax

1                                       if εn
peak

> ψmax

    ………..[3-24] 

 

𝐒 = (1 − Ds)
∂Wo

∂𝐄
……………………….…………[3-25] 

 

The applicability of Equations (3-24) and (3-25) to the cyclic nature of fatigue is apparent.  

It can be seen that the quantity (1 − Ds) steadily decreases the elastic response of the tissue up 

until n → ntot , Ds → 1 , 𝐒 → 0 and failure has occurred.  The failure condition of zero stress is 

universal and has been explicitly modeled in regard to medial collateral ligaments of the knee[66]. 
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3.3.4 Viscoelasticity 

Viscoelasticity is a time-dependent phenomenon where the stress carried in a material can 

decrease over time for a constant value of stretch.  This is relevant in the topic of fatigue because 

both phenomena represent a degradation of strength over a period of time.  Experimentally, 

viscoelastic effects have been observed to occur in the medial collateral ligaments of rats[67] and 

rabbits[68] subjected to stress relaxation tests.  In human ACLs, this stress relaxation effect can 

affect the fiber alignment in the AM and PM bundles[69]. 

The time dependent nature of viscoelasticity presents some challenges in the constitutive 

modeling of such behavior.  This is primarily due to the fact that the functional form of the stress 

must include a dependence on time.  This is further complicated for ligaments where viscoelasticity 

may be present in both the matrix and fibers.  Assuming that these constituents have different 

viscoelastic behavior, convolution integrals (Equation 3-26) have been used to represent the time 

dependence of the stress in the constitutive modeling of ligaments displaying viscoelastic 

characteristics[70], where Gf(t) and Gm(t) are different relaxation functions for the matrix and 

fibers, respectively.  Because Equation (26) involves integration, a closed form solution is difficult 

to obtain and therefore, numerical software is the preferred method of solution. 

 

Sij(t) = p(t)Cij
−1(t) + ∫ Gf(t − τ)

d(S
ij

devf)

dτ
dτ

t

0
+ ∫ Gm(t − τ)

d(Sij
devm)

dτ
dτ

t

0
…..[3-26] 

 

Numerous software packages that utilize finite element techniques operate using implicit 

integration where the solution at the current time step is updated based on the solution at the 
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previous time step.  The topic of implementing constitutive modeling for finite element simulation 

is discussed in section 3.4. 

3.3.5 Permanent Set / Residual Stress 

Permanent set is a condition observed in the behavior of biological tissues where, after 

unloading, residual strains remain present in the unloaded tissue.  Ideally, when completely 

unloaded the strain in the tissue would be zero, however, with permanent set there can be non-zero 

strain values for stress levels of zero.  Several constitutive models have been developed which can 

account for this effect. 

The existence of residual strains prevents the material from completely returning to the 

undeformed state upon complete removal of load.  In terms of continuum mechanics, this 

prescribes the existence of residual stresses that will change the reference configuration of the 

body.  This asserts that materials which display permanent set effects are inelastic and can thus be 

modeled by pseudo-elastic constitutive damage models.  Similar to stress softening, permanent set 

effects have been incorporated into these models through the inclusion of a scalar parameter that 

evolves throughout the loading and does so independently of the stress softening (Equation 3-

27)[58], where the parameter η2 ϵ [0,1] is the residual strain variable, N̂ is an equation which 

characterizes the residual strains and ϕ is a dissipation function. 

 

W(λ1, λ2, η1, η2) = η1Ŵo(λ1, λ2) + (1 − η2)N̂(λ1, λ2) + ϕ(η1, η2)………[3-27] 
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It can be seen in Equation (3-27), that the damage parameters η1 and η2 operate 

independently.  Similar to the formulation of η1[56], the functional form of η2 depends only on the 

strain energy. 

Because the permanent set can represent a value of stretch at zero stress, it is somewhat 

related to the observations of fiber crimping.  It is known that fibers in biological tissues are 

crimped[71] up until some level of stretch where they become straightened and can now bear load 

(Figure 12).   

 

Figure 12: Stress-Stretch Behavior of Ligaments Displaying Fiber Crimping 

 

A permanent set would offset this ‘straightening stretch’ value to some degree.  This was 

represented in constitutive form (Equation 3-28) for an anisotropic damage model with the 

inclusion of a dimensionless parameter Ii̅o, representing the fiber crimp, and a weighting factor wi, 

that can alter the value of this fiber crimp as the structural changes occur[72]. 

 

W(𝐂,𝐌, Dm, Df4 , w4) = μ[1 − Dm][I1̅ − 3] + [1 − Dfi]
c1

c2
ec1[I̅i−wiI̅io]−c2[I̅i−wiI̅io]−1..[3-28] 
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3.4 Finite Element 

The finite element method (FE) is a computational technique developed for the mechanical 

simulation of a variety of physical systems including solid, fluid, thermal and wave-like systems.  

It is a numerical tool used to simulate the aggregate effect of a series of small perturbations.  The 

contents of section 3.4.1 present an overview of the FE method[73, 74], necessary to provide a 

foundation for the FE modeling of biological tissues. 

3.4.1 The Finite Element Method 

The FE method begins with the presentation of a physical system subjected to any number 

of influences.  These can be external loads such as forces 𝐅 , moments �⃗⃗⃗� ; boundary conditions 

such as prescribed displacements, rotations or velocities �⃗� ; external fields and internal fields such 

as pressures �⃗⃗� , and body forces 𝐛 ; or energy fluxes such as heat �⃗⃗�  or electricity (Figure 13).   

 

 

Figure 13: Arbitrary Body Subjected to Various External and Internal Influences 
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Using the principles of mathematics and physics, a partial differential equation (PDE) can 

be constructed to represent the behavior of the system (Equation 3-29).  Solution of this PDE 

would provide information on how the system responds to the imposed conditions.  Depending on 

the nature of the problem, this solution could be in terms of the resulting displacement, strain, 

stress, energy etc.  This PDE, with the associated boundary conditions, is termed the strong form. 

 

∂n

∂xn
[u(x)] +

∂n−1

∂xn−1
[u(x)]+. . . . . . . +u(x) = f(x)……………….[3-29] 

 

The PDE can be converted into an integral form (Equation 3-30), termed the weak form, 

by multiplying the PDE by a weighted residual w(x) and integrating over the domain.  By 

balancing the derivatives on u(x) and w(x), the weak form of the weighted residual can be 

obtained.   

 

∫ [
∂n

∂xn
[u(x)] +

∂n−1

∂xn−1
[u(x)]+. . . . . . . +u(x)]w(x) = ∫ f(x)w(x)……[3-30] 

 

The weak form then must be converted into a form that is suitable for numeric solution.  

For this, the weak form is discretized into a summation involving matrices.  This process starts 

with the discretization of the domain into a series of elements (Figure 14).  These elements have a 

number of nodes where the desired output variables are approximated as the product of the 

individual nodal output ui, and a shape function Ni.   
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Figure 14: Discretization of Problem Domain into Elements and Nodes 

 

The shape function is a ratio of polynomials whose order depends on the type of element.  

This approximation is applied to each term in the weak form and summed over the entire number 

of nodes, n (Equation 3-31). 

 

∫ [
∂n

∂xn
(∑Niui) +

∂n−1

∂xn−1
(∑Niui)+. . . . . . . +(∑Niui)] (∑Niwi) − ∫(∑Nifi)(∑Niwi) = 0…[3-31] 

 

Equation (3-31) can be further reduced into a single matrix equation where ∑𝑁𝑖𝑢𝑖 =

[𝑁]{𝑢}.  Reducing Equation (3-31) to the form of Equation (3-32) allows for the elimination of 

the weighed residual term wi and presents the problem in a form that can be solved using the 

standard techniques of matrix algebra. 

 

∫ [
∂n

∂xn
[N]T +

∂n−1

∂xn−1
[N]T+. . . . . . . +[N]T] [N]{u} − ∫[N]T[N]{f} = 0…….[3-32] 

 

In Equation (3-32), the term that multiples the displacement vector {u}, is termed the 

stiffness matrix [K].  The second term is called the residual {R}.  These matrices are formed for 
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every element and assembled into global matrices for the entire body.  If the global stiffness matrix 

[K]global is invertible, then the solution for the global output variable {u}global, can be determined 

(Equation 3-33). 

 

({u}nx1 = [K]nxn
−1{R}nx1)global………………………………….[3-33] 

 

The external conditions applied to the system are typically enforced quasi-statically, where 

the full magnitude of the external perturbation is approached incrementally over a series of time 

steps, tn.  With this, Equation (3-33) is solved at each time increment and updated over the course 

of the analysis, taking the solution for {u} at the previous step, tn−1 , as the input conditions for 

the current step.  This allows for the visualization of how the solution evolves over the course of 

the simulation. 

3.4.2 Application to Constitutive Modeling 

The constitutive modeling principles discussed in the previous section exist in explicit form 

in most software packages and can be readily applied to the problem of choice.  However, when 

the nature of the problem requires the definition of some behavior that is not represented in these 

available models, unique models can be implemented as user defined materials.  In ABAQUS 

(Dassault Systèmes Simulia Corp, Providence, Rhode Island) these user defined materials are 

implemented using the UMAT subroutine[75].  This subroutine has been used by various authors 

to implement their desired material models.   
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In the definition of the material it is necessary to present a closed formed expression for 

both the Cauchy stress σ,and elasticity tensor ℂ.  For an anisotropic, hyperelastic, incompressible 

material with one preferred material direction a, the 2nd Piola-Kirchoff stress is given by Equation 

(3-34).  The Cauchy stress is the push-forward representation of S (Equation 3-35).   

 

𝐒 = 2 [(
∂W

∂I1
+ 𝐈

∂W

∂I2
) 𝐈 −

∂W

∂I2
𝐂 +

∂W

∂I4
𝐚⨂𝐚] + p𝐂−1………………..[3-34] 

 

𝛔 = 2 [(
∂W

∂I1
+ 𝐈

∂W

∂I2
)𝐁 −

∂W

∂I2
𝐁𝟐 + I4

∂W

∂I4
𝐚⨂𝐚] + p𝐈……..………[3-35] 

 

The elasticity tensor (i.e. stiffness matrix) is given, in material form, by Equation (3-36).  

Applying Equation (3-36) to the expression for S, gives the closed form for the material version 

of ℂ (Equation 3-37)[76].  By applying the push-forward of ℂ one can derive the spatial version of 

the elasticity tensor. 

 

ℂ = 2
∂𝐒

∂𝐂
…………………………………………..[3-36] 

 

ℂ = 4 [𝐈 ⊗
∂

∂𝐂

∂W

∂I1
+ 𝐈⊗

∂W

∂I2

∂I1

∂𝐂
+ I⊗ I1

∂

∂𝐂

∂W

∂I2
− C⊗

∂

∂𝐂

∂W

∂I2
−
∂W

∂I2

∂𝐂

∂𝐂
+ 𝐚⊗ 𝐚⊗

∂

∂𝐂

∂W

∂I4
]…[3-37] 

 

Equations (3-34)-(3-37), can be written in indicial notation for ease of expression in the 

finite element script.  Once these respective tensors have been defined, the finite element solution 

is then approached in an iterative fashion[77].  Based on the prescribed loading and boundary 

conditions, the deformation gradient, along with the Jacobian, is calculated at the current time step.  
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The deformation gradient is then used to calculate the respective Cauchy-Green stretch tensors, 

which are then used to calculate the stress.  The stress is then used to calculate the stiffness.  An 

appropriate equilibrium check is used to check the convergence conditions for the current time 

step.  If the conditions are met, the solver moves to the next time step, taking the parameters from 

the previous time step as inputs.  This process continues until the final time increment has been 

reached. 

For the finite element simulation of damage, the damage variables have to be defined as 

internal variables in the material definition.  As discussed in the previous sections, these 

parameters are often written with a dependence on the strain energy.  The strain energy at each 

time step can be calculated based on the value of the strain invariants.  The internal variable at the 

current time step is then updated based on the strain energy of the previous time step[78]  and 

modifies the stress response as prescribed by the user. 

3.4.3 Convergence 

With the modeling of complicated problems, it is expected that a confident solution should 

not only be feasible, but also stable.  Convergence of the finite element solution is a critical aspect 

of achieving a stable and reliable result.  It ensures that the obtained solution is uninfluenced by 

the parameters of the model.  Most commonly, convergence can be sought in terms of the changing 

mesh size and element order.  If the desired solution remains relatively unchanged with the 

changing properties of the mesh, then the solution can be considered to have good mesh 

convergence. 

For the modeling of hyper-elastic material, the issue of volumetric locking can affect 

convergence.  Because these materials are typically assumed to be incompressible (i.e. infinite 
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bulk modulus) they are volume preserving and, depending on the type of element, can cause 

problems with finding a solution.  To avoid these problems, it is best to use quadratic elements 

that have more degrees of freedom, allowing the elements to deform as needed to preserve the 

volume of the structure. 

On the administrative side of the simulation, convergence problems can be encountered 

with the prescribed solution settings.  With approaching the solution iteratively at prescribed time 

steps, the rate at which the solution is approached depends on the size of the step.  If the step is too 

large, convergence can possibly be missed.  In this case, a cutback is performed where the solver 

moves progressively to smaller time steps until a converged solution is found.  For each problem, 

there is a critical time step, tcrit , that can be calculated, beyond which the solution may become 

unbounded.  A generalized eigenvalue problem (Equation 38) can be derived for each element by 

solving the homogenous PDE with arbitrary stiffness and capacitance matrices, k an m.  Solving 

Equation (3-38) for each element, tcrit is then proportional to the maximum eigenvalue of all the 

elements λmax
e  (Equation 3-39). 

 

𝐤e𝐱e = 𝛌e𝐦e𝐱e……………………………………..[3-38] 

 

tcrit ≤
2

λmax
e …………………………………………..[3-39] 
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3.4.4 Validation 

Validation of a finite element model can be inferred from the relative agreement of the 

model with experimental findings.  The experimental findings used for validation can be 

numerous, as seen in an FE simulated knee model where tibiofemoral kinematics, pressures and 

ACL/MCL strains were all used[79].  It  is expected that the simulated ligament stress-stretch 

response will agree with the empirical response to within some degree of error.  The magnitude of 

this agreement can be measured with an error term which compares the numerical result to the 

analytical value (Equation 3-40). 

 

%error =
|σ(εi)analytical−σ(εi)numeric|

σ(εi)analytical
x100…………..….[3-40] 

 

In Equation (3-40), σ(εi) is the value of the stress at a given value of strain.  The value of 

%error needed to infer validation is up to the discretion of the simulator and is more stringently 

dictated by the needs of the problem. 
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4.0 Methodology 

The objective of this work was to predict the amount of damage the AMCL will sustain as 

a result of repetitive overhand throwing.  This will be done through the construction of a predictive 

computational model.  All physical testing will be done using cadaveric specimens.  Testing will 

be conducted to acquire data on the mechanical behavior of the healthy AMCL.  Data will also be 

collected on how the ligament accumulates damage from frequent valgus throwing motions.  This 

data will then be used to inform a constitutive model which will be incorporated into a finite 

element material model.  This material model will then be applied to an anatomical geometry of 

the ligament-bone structure to simulate and predict damage accumulation from overhand throwing 

induced fatigue. 

4.1 Paired Testing 

Paired testing involves the use of two elbow specimens from the same donor.  The 

presumption is that both of the AMCL specimens will possess similar mechanical properties.  This 

is critical for the proposed experimental methodology which involved two stages. 

The first stage was an elastic mechanical test.  In this test, the elbow specimens were 

elongated to first determine its healthy stress-strain behavior.  This behavior will be used to tune 

the parameters of the elastic portion of a constitutive model suitable for biological, fiber-imbedded 

tissue.  The specimen will then be elongated to failure to determine the absolute failure strength. 
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The second stage was a fatigue test.  In this test, the specimens were repeatedly loaded with 

a valgus moment for an indefinite number of cycles until failure was achieved.  The magnitude of 

the applied moment was proportional to the failure load determined in the elastic test.  The 

calculation for the moment Mf, in Nm is given by Equation (4-1), where Ff is the determined 

contralateral failure load, Lcap is the distance from the center of the capitellum to the center of the 

AMCL (measured using calipers) and C is a conversion factor.  An illustration of these parameters 

is presented in Figure (15). 

 

Mf = Ff ∗ Lcap ∗ C………………….……………..[4-1] 

 

 

                 Figure 15: Illustration of Test Specimen and Parameters Used for Valgus Moment Calculation 
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The results of the fatigue test defined the parameters for the inelastic portion of the 

constitutive model.   

The experimental portion of the work concluded after these two stages and was followed 

by the computational effort.  The computational aspect involved the use of a transversely isotropic 

hyperelastic material model in conjunction with the experimentally determined nonlinear damage 

accretion behavior to simulate the testing conditions and predict the resulting behavior.  The 

material model was driven by the tuned constitutive model and the physical specimen geometry 

was formed from MRI images taken of actual elbow specimens.  The details of the work will be 

expanded upon in the following sections. 

4.2 Specimen Preparation 

Twenty-two cadaveric elbow specimens were used in two separate stages of the study.  In 

the first stage, the elastic testing, eleven specimens were prepared with the removal of all soft 

tissue surrounding the UCL.  This left only the exposed ulna, humerus, radius and UCL.  The 

radius was subsequently removed.  The posterior bundle and transverse bundle of the UCL were 

both transected away, along with the joint capsule, leaving the anterior bundle of the UCL, the 

AMCL, as the only connecting tissue between the ulna and humerus. 

In order to be mounted in the testing fixture, the shaft of the ulna and humerus were cut to 

fit the length of two separate PVC pipes.  The humerus was placed into the first pipe at a neutral 

flexion/extension angle and bonded in place by an adhesive polyester resin.  With the second PVC 

section filled with polyester resin, the ulna was set into the second pipe while mounted in an MTS 

machine.  Use of the machine allowed for consistent anatomical alignment of the ulna and 
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humerus.  A set screw was then drilled into both of the PVC holsters through the bone.  This 

process secured the bones to the interior of the PVC holsters (Figure 16).  

 

 

Figure 16: Prepared Specimen with Humerus and Ulna Secured into PVC Holsters 

 

Optical markers, 0.8 mm black spheres, were then attached to the ligament using a 

cyanoacrylic adhesive.  A single column of markers was placed along the anterior, middle and 

posterior portions of the ligament with equal spacing between markers and between columns.  This 

placement distinguished between three individual bands of the ligament.  A set of three additional 

1 mm diameter markers was placed at the humeral and ulnar insertions.  These served as points of 

measure of absolute displacement.  A single marker was then placed above and below the joint 

line, serving as indicators for joint opening.  Lastly, the olecranon was removed in order to alleviate 

any restrictions of the specimen to vertical distraction.  The prepared specimen can be seen in 

Figure (17). 
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Figure 17: Prepared Specimen Secured into Loading Fixture 

 

The preparation of the specimens used in stage two, the fatigue testing, was similar.  The 

only differences were that the radius and olecranon were not removed.  The ulna, radius and 

humerus were also cut to a longer length, as necessitated by the design of the fatigue apparatus. 

4.3 Elastic and Failure Testing Protocol 

The prepared specimen was loaded into the testing fixture.  The fixture allowed for flexion 

of the specimen from 0ᵒ to 120ᵒ and sat within an MTS machine which was capable of applying 

tensile, compressive and twisting loads controlled through MATLAB (MathWorks, Natick, MA).  

The action of the test was recorded by two cameras.  The range of the cameras was checked as the 
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specimen was positioned from 0ᵒ to 90ᵒ.  The cameras were then calibrated with the specimen 

positioned at 45ᵒ.   

Testing began at 0ᵒ of flexion, where the specimen was vertically elongated, upwards with 

respect to the ulna, to a prescribed displacement value in mm.  The value of displacement was 

iteratively achieved with 0.5 mm increments to reach a load of at least 80 N.  This was done to 

achieve adequate lengthening of the ligament without risking rupture.  The recorded displacement 

was achieved using displacement control for three preconditioning cycles, followed by a fourth 

cycle which was recorded by the cameras.  This was repeated for every angle in 30ᵒ increments up 

to 120ᵒ.  A sample of the load vs. time plot for specimen 4 can be seen in Figure (18). 

   

 

Figure 18: Load vs Time Plot for Arbitrary Specimen in the Elastic Testing Protocol 

 

For the failure test, the specimen was returned to 90ᵒ.  The displacement value was set to 

an arbitrarily large magnitude and the specimen was elongated until failure occurred.  The failure 

was signified by a sharp drop in the force vs time plot (Figure 19 ).  The maximum failure load 
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was recorded.  An example from one of the failed specimens (specimen 4) can be seen in Figure 

(20).  All camera and MATLAB data was stored for later processing. 

 

 

        Figure 19: Load vs Time Plot for Specimen 4 Tested to Failure 

 

 

         Figure 20: Failure in Vertical Elongation of Specimen 4 
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4.4 Fatigue Testing Protocol 

Once the elastic and failure testing of the specimen concluded, the fatigue testing followed 

using a specimen from the contralateral side.  The device used to perform the test was of a custom 

design (Figure 21).  This design allowed the specimen to be loaded into the device through the use 

of an aluminum fixture.  The interior of each fixture was sized to fit the PVC holsters of the 

specimen.  Once inside, the PVC was tightened to the fixture using screws.  The screws ensured 

that no relative displacement, or sliding, would exist between the contacting surfaces of the PVC 

and aluminum.  

 

 

Figure 21: Fatigue Testing Apparatus 
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The testing device consisted of two swing arms.  These were aluminum, t-shaped handles, 

custom designed to attach the fixtures to the testing device.  One swing arm was always stationary.  

The other swing arm was connected to a 10 Hp, 450 Hz servo motor.  The action of the motor was 

controlled through MATLAB.  Depending on the type of elbow specimen, right or left, the 

orientation of the two swing arms relative to one another, would be altered so that the ulna and 

radius would always be attached to the arm connected to the motor.  This was done so that the 

radius could rotate on the capitellum, replicating realistic forearm rotation.  A labeled diagram of 

the testing apparatus is presented in Figure (22). 

 

 

                   Figure 22: Labeled Schematic of the Fatigue Testing Components 

 

A set of bolts were used to attach the fixture to the swing arms of the fatigue tester.  

Horizontal and vertical groves in the swing arms allowed the screws to be translated, as needed, 

to achieve optimum placement of the specimen within the device.  Ideally, the specimen was 
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positioned in a manner which would allow the radius to rotate along the capitellum, with the 

fulcrum of the rotation aligned with the center of the capitellum.  Having this position would most 

closely mimic the lever motion of the static humerus, with respect to the rotating forearm.  The 

fully prepared specimen mounted into the fatigue tester can be seen in Figure (23). 

 

 

             Figure 23: Prepared Specimen Secured within the Fatigue Tester 

 

4.5 Data Acquisition 

There were two classes of data being monitored for the tests.  The first was the motion data 

of the optical markers.  The motion of the markers throughout the test was captured by two high 
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resolution Prosilica GC 1350C cameras (Allied Vision Technologies, Exton, PA).  The use of two 

cameras allowed for a higher degree of spatial resolution.  The cameras were mounted on two 

tripods and positioned for the most optimum viewing of the specimen (Figure 24).  The second 

type of data collected was the kinetic and kinematic data recorded through MATLAB.  The load 

cell was connected to the movable swing arm and data on three variables was collected.  These 

variables were torque Ƭ, angular position θ, and elapsed time t. 

 

 

Figure 24: Positioning of Cameras Used for Specimen Recording 
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4.6 Fatigue Testing Protocol 

With the specimen loaded into the testing apparatus and the means of data acquisition 

prepared, testing of the specimen was ready to commence.  The goal of the fatigue test was to load 

the specimen with a valgus moment repeatedly until failure of the AMCL was achieved. 

4.6.1 Standard Fatigue Properties 

The characterization of the fatigue properties of the AMCL included the formation of a 

general fatigue life curve, as seen in the example of Figure (25), where the cycles to failure n, 

increase as the stress level σ, decreases.   

 

 

Figure 25: Representation of General Fatigue Life Curve for an Arbitrary Material 
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The contralateral side for the eleven specimens examined in the elastic test, were tested in 

valgus fatigue.  The magnitude of the applied moment was chosen so that the results could be 

analyzed in a uniform manner for all specimens and simultaneously reflect fatigue behavior 

relevant to the individual specimen.  For this, the applied moment was chosen to be a multiple of 

the individual specimen valgus failure moment 𝐌𝐟.  As calculated using Equation (41), 𝐌𝐟 is a 

theoretical failure moment for which failure occurs after 1 cycle.  Five specimens were tested with 

a valgus moment of 90% of their respective 𝐌𝐟 and six were tested at 80% of 𝐌𝐟.   

With the load level selected, the specimens were placed into the apparatus.    Testing began 

with a single valgus cycle at half the magnitude of the 𝐌𝐟 to observe the stretch level of the 

specimen and to ensure that failure did not occur at the first cycle.  Three cycles were then applied 

at a frequency of 0.5 Hz for preconditioning, followed by a fourth cycle which was recorded by 

the camera system.  Testing then proceeded with five hundred uninterrupted cycles at a frequency 

of 1Hz.  At the conclusion of the 500 cycles, the procedure of preconditioning and recording 

repeated indefinitely until failure was achieved.   

During the test, saline was manually applied to the specimens regularly to prevent 

dehydration of the tissue.  In the event that failure was not achieved within a reasonable time frame, 

the specimen was refrigerated and the testing was resumed the following day.  If necessary, the 

interval of 500 cycles was increased to 2000 cycles to automate the process further for specimens 

that required extensive testing time. 

The total number of cycles to achieve failure at each stress level was recorded using 

MATLAB and averaged together for each of the specimens at each 𝐌𝐟 multiple of 90% and 80%.  

A graph showing the intermediate results for 4 specimens, along with the standard deviations in 

load magnitude and failure cycles, is given in Figure (26).   



 55 

 

 

Figure 26: Preliminary Results for the Average Fatigue Life for 4 Specimens Tested at 90% and 80% of Mf 

 

4.6.2 Damage Definition 

The fatigue life curve defines how many valgus loading cycles the AMCL can perform at 

a particular load level until failure occurs.  However, it does not describe how the damage is 

accumulated throughout the loading.  For this work, we will utilize a rotational displacement-based 

damage definition, where the initial valgus angle of the rotating elbow θo, gradually increases over 

the course of indefinite cycling to the maximum angle θm, where failure occurs.  

To uncover how the rotation angle increases over the loading cycle, the absolute rotational 

position of the elbow was recorded using MATLAB at a frequency of 100 Hz.  An example of a 

complete plot of the rotational angle θ, vs cycle number n, is given in Figure (27).  The plot starts 

from the initial angular position of the specimen and gradually increases up to the point of failure, 
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signified by the sudden jump in angular position.  The failure of a particular specimen during the 

cyclic valgus testing is shown in Figure (28). 

 

 

Figure 27: Angular Position vs Time for Representative Specimen 
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Figure 28: Failure of Arbitrary Specimen Tested in Valgus Cycling 

 

Each specimen was tested following the procedure described in 4.6.1 for the torque levels 

of 90% and 80% of 𝐌𝐟.  To track how the angle increased, a custom MATLAB script extracted 

the angular position values at the peak of each cycle.  These values for the representative specimen 

are designated by the circular markers shown in Figure (29).  Figure (30) shows a singular plot of 

these maximum values for one specimen tested at 90% and another specimen tested at 80% of their 

respective 𝐌𝐟 magnitudes. 
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           Figure 29: Designation of Peak Angles Achieved During Each Cycle 

 

 

            Figure 30: Peak Angular Positions for Representative Specimens Tested at 90% and 80% of 𝐌𝐟 
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The peak angle values were used to define a vector of m total elements, representing the 

values of these peak angles for each cycle.  The vector was then normalized so that the starting 

angle was 0ᵒ.  The amount of damage was then defined as the ratio of these normalized angular 

position values to the maximum angular position at failure θm.  This produced a vector of damage 

values that increased nonlinearly from 0 (no damage) to 1 (failure).  This process is depicted in 

Figure (31). 

 

 

                 Figure 31: Process for Damage Definition Derived from Peak Angle Measurements 

 

This process was carried out for the angular data set for each of the eleven specimens.  For 

future finite element implementation, it is desired to have a single definition of damage that can 
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encapsulate a wide range of specimen behavior.  For this, a custom MATLAB script was written 

to look at how the specimens incurred damage in an average sense.   

Because each specimen failed at a different total number of cycles, the rate at which 

damage was incurred was different for each specimen.  To normalize this for all specimens, the 

average damage was defined as the average amount of damage achieved at any designated fraction 

of the respective specimen-specific cycle life nf. The percentages were obtained by dividing the 

current cycles n, by the total number of cycles to failure nf for each individual specimen. 

The results are represented in Figure (32).  In Figure (32), every ith value of D represents 

the average amount of damage incurred for that ith fraction of the loading cycle. 

 

 

                             Figure 32: Average Damage per Fraction of Fatigue Life Cycles 

 



 61 

The results for these average damage calculations taken at every 5% of cyclic life 

completion (n/nf = 0.05) is presented in Figure (33). 

 

 

           Figure 33: Results for Average Damage Incurred at Every 5% of nf 

 

A cubic curve fit using nonlinear optimization was applied to gain a functional form for 

the dependence of average damage on total cycle percentage, D(
n

nf
) (Equation 4-2 ), where A, B, 

C and E are constants to be determined.  A cubic function was chosen because the damage 

accretion function is known to be constantly increasing and there may be multiple points of 

inflection displayed within the data that need to be captured.  The optimization was performed 

with two constraints (Equations 4-3 – 4-4).  These enforce that the amount of damage is equal to 
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zero when no cycles have been performed and is equal to one when 100% of the loading cycle has 

completed.  Figure (34) shows the quality of the fit for the experimental data with the damage 

accretion function.   

D(
n

nf
) = A (

n

nf
)
3

+ B(
n

nf
2)
2

+ C(
n

nf
) + E………………..[4-2] 

 

D(
n

nf
= 0) = 0…………………………………….[4-3] 

 

D(
n

nf
= 1) = 1……………….……………………[4-4] 

 

 

Figure 34: Cubic Curve Fit of Average Damage Data 
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Because the domain of a cubic function is infinite, a piecewise set of boundary conditions 

needed to be enforced to ensure that the damage function did not extend beyond the regions of no 

damage (
n

nf
= 0) and failure (

n

nf
= 1).  This resulted in the finalized form of the damage function 

given by the piecewise relation of Equation (4-5). 

 

D(
n

nf
) = {

0

A (
n

nf
)
3

+ B(
n

nf
)
2

+ C(
n

nf
) + E

1

        

n

nf
= 0

0 <
n

nf
< 1

n

nf
= 1

 ………….[4-5] 

 

Figure (35) shows the finalized damage accretion function D(
n

nf
), describing the average 

damage incurred per fraction of cycle life completed for the eleven tested specimens. 
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Figure 35: Nonlinear Average Damage Accretion Function for the AMCL Tested in Cyclic Valgus Loading 

 

This was a critical step in the work, as previous damage evolution curves for cyclic fatigue 

have been assumed linear, as in Equation (3-24), where an equivalent amount of damage is 

accumulated after each cycle.  This is the first nonlinear damage evolution model developed from 

empirical measurement for the elbow AMCL.  With the nonlinear damage characteristic defined, 

the deformation data of the two experiments needed to be analyzed to define the relationship 

between ligament stress and stretch. 
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4.7 Calculation of Stretch (Processing of Elastic Testing Data) 

 

The camera footage for the elastic testing was imported into a motion tracking software 

package, Spicatech (Spica Technology Corp., Kihei, HI), where the 3D Cartesian coordinates of 

each marker (mm) were output for each frame of the recording.  For each video frame, the distance 

between each of the markers in a single column (Figure 36), was calculated using the square  root 

of the sum of the squares of the coordinate differences (Equation 4-6 ).  The sum of these values 

for each pair of adjacent markers gave the total length of the ligament for that frame (Equation 4-

7). 

 

 

                     Figure 36: Distance Between Adjacent Markers Along AMCL 
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di = √(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2……….[4-6] 

 

 

Lk = ∑ di
n−1
i=1 ………………….…………..[4-7] 

 

In Equation (4-6), di was the distance between two adjacent markers; xi, yi and zi were the 

Cartesian coordinates of the ith marker.  In Equation (4-7), Lk was the total length of the ligament 

for the kth frame and n was the total number of markers along the length of one band.  The stretch 

of the ligament was given by the ratio of the current length to the reference length (Equation 4-8). 

 

λk =
Lk

Lo
……………………..……………….[4-8] 

 

In Equation (4-8), λk was the current stretch of the ligament, Lk was the current total length 

of the ligament, Lo was the initial/reference length of the ligament.  The ligament slack is a length 

of the ligament that can bear no load.  To incorporate this laxity into the stretch measurements, the 

magnitude of the slack Ls
α , was measured and subtracted from the initial reference length of the 

ligament.  This resulted in an adjusted stretch value (Equation 4-9). 

 

λk′ =
Lk

Lo−Ls
α……………………………………….[4-9] 

 

In Equation (4-9), λk′ was the adjusted stretch level and Ls
α was the measured value of slack 

at flexion angle α.   
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4.8 Constitutive Modeling of Elastic Behavior 

4.8.1 Deformation 

Derivation of an appropriate constitutive model depends on the definition of the 

deformation being studied.  In a theoretical framework, this deformation definition can be formed 

through the deformation gradient, F.  Classic force-deformation tests of biological tissues are 

performed uniaxially or biaxially, where at least one component of the applied load is coincident 

with a principal direction of the material.  In this case, the deformation gradient tensor is given by 

a diagonal matrix (Equation 4-10), where the components are the stretches in the principal 

directions, λj with j ϵ (1,2,3). 

𝐅 =   [

λ1 0 0
0 λ2 0
0 0 λ3

]………………..………………..[4-10] 

 

The assumption of incompressibility imposes that the determinant of this tensor be 

equivalent to one.  This leads to the requirement of Equation (4-11). 

 

λ1λ2λ3=1…………………………………….[4-11] 

 

Using the simplification for the pure uniaxial elongation; λ1 = λ and λ2 = λ3, then 𝐅 is 

given by Equation (4-12). 
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𝐅 = [

λ 0 0

0
1

√𝜆
0

0 0
1

√𝜆

]………………………………….[4-12] 

 

The right Cauchy-Green stretch tensor, C, is then given by Equation (4-13). 

 

𝐂 = 𝐅𝐓𝐅 = [

λ2 0 0

0
1

λ
0

0 0
1

λ

]………………….……………[4-13] 

 

The left Cauchy-Green stretch tensor, B, is then given by Equation (4-14). 

 

𝐁 = 𝐅𝐅T = [

λ2 0 0

0
1

λ
0

0 0
1

λ

]…………..…..............……….[4-14] 

 

These three second order tensors characterize the deformation of the AMCL.  The right 

and left Cauchy-Green stretch tensors will be used to construct the constitutive model. 

 

4.8.2 Strain Energy Function 

The constitutive modeling began with the selection of a hyperelastic constitutive model 

(summarized in sections 3.2.2 - 3.2.4) that is commonly used for biological tissues.  This model 

would be dependent only on the principal strain invariants. 
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Choice of which invariants to include in the strain energy function depended on what 

influences needed to be considered.  When considering effects from the ground substance, 

invariants I1 and I2 need to be included.  The contribution of the fibers to the mechanical response 

is accounted for within I4.  I3 becomes equal to one due to incompressibility.  With these factors 

considered, the strain energy function had a dependence on three invariants.  The strain energy for 

the AMCL would then be represented by Equation (3-10). 

The functional forms of Wisotropic and Wanisotropic are typically chosen to be given by 

well-known strain energy functions.  For this work, we employ the transversely isotropic Mooney-

Rivlin model (Equation 4-15), where C1, C2, C3 and C4 are material constants to be determined. 

 

WAMCL(I1, I2, I4) = C1(I1 − 3) + C2(I2 − 3) + C3e
C4(I4−1)

2
 ……..[4-15] 

4.8.3 Stress 

The second Piola-Kirchoff stress 𝐒, is given by Equation (4-16). 

 

𝐒 =
∂Wb

∂𝐂
= ∑

∂Wb

∂Iq

∂Iq

∂𝐂q=1,2,4 ……………………………[4-16] 

 

Equation (56), is derived using the chain rule.  Forming the second Piola-Kirchoff stress 

tensor in this manner ensures consistency with the equations of equilibrium and the Clausius-

Dunheim inequality.  Applying Equation (4-16) to Equation (4-15) gives Equation (4-17). 

 

𝐒 = C1
∂I1

∂𝐂
+ C2

∂I2

∂𝐂
+ C3C4e

C4(I4−1)
2
(I4 − 1)

∂I4

∂𝐂
…………..[4-17] 
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Performing the differentiation of Equation (4-17) results in Equation (4-18), where I is the 

second order identity tensor.   

 

𝐒 = C1𝐈 + C2[2I1𝐈 + 2𝐂] + C3C4e
C4(I4−1)

2
(I4 − 1)𝐚⊗ 𝐚……….[4-18] 

 

For simulation purposes, it is preferred to give the stress in the current configuration.  The 

second Piola-Kirchoff stress, which is defined in the reference configuration, can be converted to 

the current configuration in the form of the Cauchy stress 𝛔, by using a push forward operation 

(Equation 4-19).  This resulted in the final form of the Cauchy stress given by Equation (4-20), 

where p is a Lagrange multiplier representing a hydrostatic pressure. 

 

𝛔 = 𝐅𝐒𝐛𝐅
𝐓………………….……………..[4-19] 

 

𝛔 = C1𝐁 + C2[2I1𝐁 + 2𝐁𝐁] + C3C4e
C4(I4−1)

2
(I4 − 1)𝐅𝐚⊗ 𝐚𝐅𝐓 − p𝐈………[4-20] 

 

4.8.4 Fiber Direction 

Previous studies have shown that the direction of the fibers of the AMCL remain relatively 

straight during loading[80].  For the twenty-two specimens tested, measurements were taken of 

width and thickness of the distal and proximal ends, as well as the overall length using calipers.  
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These measurements, presented in Figure (37), show that the average joint line (distal) width is 

larger than the average proximal width. 

 In the absence of technology for micro-level fiber visualization, this knowledge was used 

to presume what the general alignment of the fibers should be.  Assuming minimal discontinuities, 

the fibers would be relatively straight near the mid-substance and parallel to the anterior and 

posterior boundaries (Figure 38).  Near the wider region of the joint line, the fibers would ‘fan’ 

out.  This assumption assumes no broken fibers at the boundaries. 

 

 

               Figure 37: Average Distal and Proximal Width and Thickness Results for the 22 Specimens 
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            Figure 38: Schemetic of Theoretical Idealized AMCL Fiber Alignment 

 

The visualization of Figure (38) leads to the formulation of some basic direction vectors 

for the fibers given by Equations (4-21 – 4-23). 

 

𝐚𝐚 =
1

√(Dw−Pw)
2

4
+L2

[
|Dw−Pw|

2
𝐱𝟏 + L𝐱𝟐]……………..[4-21] 

 

𝐚𝐩 =
1

√(Dw−Pw)
2

4
+L2

[−
|Dw−Pw|

2
𝐱𝟏 + L𝐱𝟐]………….[4-22] 

 

𝐚𝐦 = 𝐱𝟐…………………………………[4-23] 
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In Equations (4-21 – 4-23), Dw is the average distal width, Pw is the average proximal 

width and L is the average length of the ligament.  If 𝐚𝐛 is the mean fiber direction vector for a 

given band b, and it has components ab
i , with i = [1,3], then the strain invariant characterizing fiber 

direction I4, is given by Equations (4-24 – 4-25). 

 

I4 = [

ab
1

ab
2

ab
3

]

T

[

λ2 0 0

0
1

λ
0

0 0
1

λ

] [

ab
1

ab
2

ab
3

]……………..…………[4-24] 

 

I4 = ab
1(ab

1λ2) + ab
2 (ab

2 1

λ
) + ab

3 (ab
3 1

λ
)……………….[4-25] 

 

It can be seen from Equations (4-24 – 4-25), that if the distal and proximal widths are 

assumed equivalent, then all fibers will be aligned with the centroidal long axis of the ligament 

and I4 would simplify to the form of Equation (4-26).  This was the form of I4 used in the final 

calculations. 

 

I4 = (ab
1)2λ2…………………………….[4-26] 

 

4.8.5 Stress in the Primary Loading Direction 

The component of the Cauchy stress in the primary loading direction is often the 

component of most interest.  This is because the loading direction is often chosen to be the fiber 
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direction, meaning that the ligament is undergoing deformation in the preferred or ‘structurally 

strongest’ direction.  This component of the stress is given by Equations (4-27 – 4-28). 

 

σ11 = C1λ
2 + 4C2(λ

4 + 𝜆) + σ11
f − p ………………….……….[4-27] 

 

where, 

 

σ11
f = {

       0                                                                                   if                     λ < λs

 C3C4e
C4(Ik−1)

2
(Ik − 1)λ

2                                                            if                     λ ≥ λs
…….[4-28] 

 

In Equation (4-27), σ11
f  is the fiber stress and λs is the slack-stretch which quantifies the 

amount of slack in the ligament.  For stretches less than λs, the ligament can bear no load and the 

stress is zero. 

The Lagrange multiplier for the hydrostatic pressure can be determined by making a plane 

stress assumption (σ33 = 0).  This assumption is based on the fact that the length of the ligament 

is significantly greater than the ligament thickness, as shown by the results of Figure (37) and the 

illustration of Figure (39).  The hydrostatic pressure was then given by Equation (4-29) and the 

finalized stress in the primary loading direction was given by Equation (4-30). 
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Figure 39: Ligament Width and Thickness Depiction for Assumption of Plane Stress 

 

p = C1 (
1

λ
) + C2 [2I1 (

1

λ
) +

2

λ2
]…………………[4-29] 

 

σ11 = C1 (λ
2 −

1

λ
) + C2 (4λ

4 + 2𝜆 −
6

𝜆2
) + σ11

f (λ2 −
1

λ
)…………..[4-30] 

 

4.9 MATLAB Routine 

With the general form of the elastic constitutive model formulated and the mechanical 

testing of the specimen completed, a MATLAB routine was generated to inform the constitutive 
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model with experimental data.  The result of the MATLAB routine would be a fully-formed elastic 

constitutive model, representing the mechanical behavior of the healthy AMCL. 

4.9.1 Constitutive Model Implementation 

In Equation (4-30). there are four unknown constants, C1 − C4.  Using a custom MATLAB 

script, these constants were determined through non-linear regression.  The regression was 

accomplished using the built-in function ‘fmincon’.  The MATLAB routine started with the 

organization of the stretch data for the three bands taken from the elastic test.  These were 

organized into three columns, along with the force data (Table 1).  The force data was then 

converted into stress data by dividing each force measurement by the nominal cross-sectional area 

of the ligament (width*thickness), which was measured prior to each test using calipers. 

 

Table 1: Stress and Stretch Vectors for AMCL Bands 

 

 

The stretch data from the middle band was chosen to represent the stretch of the AMCL.  

This was because the middle band was judged to be the most ‘position-neutral’ band, displaying 
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less variability in slack with respect to flexion angle, as compared to the anterior and posterior 

bands, respectively. The total stress data and middle band stretch data were imported into 

MATLAB.  The regression of the four constants resulting from the constitutive model given by 

Equation (70) finalized the formulation of the elastic constitutive model for the AMCL.  A 

representation of this model is given in Figure (40) which shows the results for specimen 1 at 90˚ 

of flexion. 

 

 

              Figure 40: Curve Fit of Hyperelastic Transversely Isotropic Constitutive Model to Experimental 

Data 
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4.10 Constitutive Modeling of Inelastic Behavior (Fatigue Effect) 

In modeling the gradual reduction of stiffness due to the fatigue damage, two factors are 

necessary.  These are the damage criteria and the damage function, which are summarized in 

section 3.2.2.  In the finite element formulation, the damage criteria is evaluated at each element.  

If this condition is met, then the fatigue damage proceeds and the stress of the element degrades 

as given by Equation (4-31), where D(n) is the damage function given as a function of the number 

of cycles and σo is the elastic undamaged stress. 

 

σ = (1 − D(n))σo………………………………..[4-31] 

 

The function D(n) describes how the damage evolves from the cycling at a specific load 

level.  Although the cycling may be performed at the same magnitude, the stress in each element 

may be different.  Therefore, D(n) needs to be properly adjusted based on the value of the 

maximum strain Ξmax, in the element. 

Previous works have assumed a linear fatigue damage function[64, 65] such as D∗(n) 

(Equation 4-32), wherein the damage is accumulated equally for all elements, given that the total 

number of cycles to failure ntot is known and given as a function of the maximum equivalent strain  

Ξmax. 

 

D∗(n) =
n

ntot( Ξmax)
………………..…………..[4-32] 
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In this formulation  Ξmax is evaluated, which determines the value of ntot and sets the slope 

of the linear damage function D∗(n), which gradually increases from 0 to 1, as n increases from 0 

to ntot.  

In the nonlinear formulation,  Ξmax is evaluated similarly, which also determines the value 

of ntot.  This value of ntot then ‘selects’ the appropriate nonlinear damage function D(n).  These 

nonlinear functions are those determined by the inelastic fatigue tests performed at varying valgus 

stress levels.  These functions range from D(n) = 1 at σmax , where failure occurs instantly with 

one cycle, to D(n) = 0 at σmin , where failure will not occur for theoretically infinite number of 

cycles.  A representation for these functions superimposed along the representative fatigue life 

curve is given in Figure (41). 

 

 

                  Figure 41: Representation of Nonlinear Damage Accumulation Curves Dependent on Fatigue Life 
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The representation of this idea is encapsulated within the non-dimensional form of the 

damage function D(
n

nf
) given in Figure (35).  The abscissa of this function is set from 0 to 1.  

However, once nf is known from the loading, the abscissa then scales from 0 to nf.  This allows 

for the modeling of any elbow specimen with an arbitrarily unique value of ntot, thus creating the 

series of uniquely defined nonlinear damage functions along the fatigue-life curve represented in 

Figure (41). 

4.11 Interpolation and Extrapolation 

The construction of the entire fatigue life curve for the AMCL up to a theoretical fatigue 

life limit would require extensive testing.  However, the total curve is necessary to complete the 

definition of the damage model.  To form the complete fatigue life curve, the three experimental 

data points for the average cycles to failure at 100%, 90% and 80% (Figure 42) of the scaled valgus 

fatigue moment 𝐌𝐟, were used to fit a complete model.  For illustrative purposes, the intermediate 

data for 4 specimens is presented. 



 81 

 

                 Figure 42: Non-Dimensional Average AMCL Fatigue Life Curve for Valgus Cycling [4 specimens] 

 

These three points were used in a MATLAB script to form a model of the fatigue life curve 

S(n), using nonlinear regression.  The chosen functional form had to satisfy two criteria.  The first 

was that the function had to be monotonically decreasing.  The second was that the function needed 

to be continuous.  To satisfy these criteria, an exponential decay equation was chosen to model the 

fatigue life curve.  The general form of this equation is given by Equation (4-33). 

 

S(n) = βe−
γ

r
nf………………………..…………..[4-33] 

 

In Equation (73), β and γ are constants to be determined and r is a scaling parameter.  This 

equation needed to satisfy one constraint given by Equation (74), which enforces that the cycles 

to failure when the load is at 100% of 𝐌𝐟 is equal to one. 

 

S(nf = 1) = βe−
γ

r = 1……………………………[4-34] 
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The correlation of the model with the three experimental data points for 4 specimens is 

shown in Figure (43).  The fatigue life curve up to an arbitrary asymptote is shown without the 

experimental data in Figure (44). 

 

 

           Figure 43: Correlation Between Experimental Average Fatigue Life Data and Exponential Decay 

Model for 4 Specimens 
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                      Figure 44: Non-Dimensional Modeled Average AMCL Fatigue Life Curve for Valgus Cycling [4 

specimens] 

 

4.12 Model Generation 

There were three stages necessary for the development of the 3D elbow joint model.  These 

stages were MRI imaging, segmentation and model smoothing.  All of these processes were 

necessary in order to produce an anatomically accurate geometry of the elbow joint suitable for 

mechanical analyses. 
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4.12.1 MRI Imaging 

To build the 3D model of the elbow joint and ligament, magnetic resonance imaging (MRI) 

scans were taken of a single elbow specimen.  To take the scans, the specimen needed to be 

mounted in a stable position.  Additionally, images were desired to be taken at four different 

flexion angles: 0º, 30º, 60º and 90º.  To accommodate these conditions, a custom device was built 

in order to both secure the specimen and allow for flexion at the desired angles (Figure 45). 

 

 

            Figure 45: Custom Designed Elbow Mount for MRI Imaging 

 

The custom mount of Figure (45) was designed and built in the machine shop of the 

Biomechanics Laboratory at Allegheny General Hospital.  The mount was made of plexiglass.  

The dimensions in the figure are given in inches and were chosen to allow the mount to fit within 

a 27.5 cm diameter coil.  The five slots were positioned at intervals of 30º and were the mechanism 

that allowed for the flexion of the specimen. 
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The specimen was centered at the midpoint of the mount.  Two holes were drilled through 

the ulna and nylon screws were placed through the holes and into two of the four holes at the 

bottom of the mount.  A single hole was drilled into the humerus and a threaded rod was placed 

through and into the top slot of the mount.  With this, the specimen was securely fixed to the mount 

at full extension (0º flexion) . 

The scans were taken in the radiology department at West Virginia University Hospital 

using a three Tesla, 27.5 cm diameter magnetic coil.  The scans were taken using 2mm slices in a 

direction perpendicular to the ulna.  The resulting images (Figure 46) were extracted and saved 

onto an external storage device as DICOM files. 

 

 

           Figure 46: Representative Elbow MRI Image 

 

After the images at full extension were saved, the specimen and mount were taken out of 

the coil.  By removing the threaded rod within the humerus out of the first slot and moving it to 

the next slot, the specimen was flexed to the next angle 30º.  The specimen and mount were then 
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placed back within the coil and images were again taken at the new flexion angle.  This process 

was repeated for the subsequent flexion angles of 60º and 90º. 

4.12.2 Segmentation 

The MRI DICOM files for each of the flexion angles were loaded into the image 

segmentation software MIMICs (Materialise, Plymouth, MI).  For each image, there were several 

key constructs that needed to be identified and highlighted.  These were the radius, ulna, humerus 

and AMCL. 

From the lower-most image, as you move up along the ulna, the radius was the first 

significant landmark to come into view.  It was followed into frame by the olecranon process of 

the proximal ulna.  Both bones can be seen in Figure (47). 

 

 

                 Figure 47: MRI Image (Olecranon Process and Radius) 
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Moving the frames further along the ulna, the radius began to disappear from view.  The 

view continued to span the proximal ulna as the trochlear notch appeared, along with the capitellum 

of the distal humerus (Figure 48). 

 

 

Figure 48: MRI Image (Distal Humerus, Ulnar Nerve, Trochlear Surface and Notch) 

 

It was at this level of the image that the AMCL first started to appear.  For consistency 

between angles, the same protocol was followed for finding the ligament.  The appearance of the 

coronoid process was the first indicator, as this is one of the insertion sites of the ligament.  

Identification of the ulnar nerve followed, as the ligament is positioned underneath the nerve.  

Around this area, any tissue which displayed significantly darker color than the surrounding tissue 

was identified as the ligament and was traced out for the remainder of the images. 

Moving further up the proximal ulna, the ligament continued to be traced out, along its 

length, as it steadily moved from the coronoid process to the medial epicondyle of the distal 
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humerus.  The disappearance of the darker tissue and the visual of the olecranon fossa (Figure 49) 

were indicators that the entirety of the ligament had been traversed. 

 

 

          Figure 49: MRI Image (Medial Epicondyle and Olecranon Fossa) 

 

Once the relevant structures had been identified, an initial rendering of the 3D model could 

be generated.  This initial build was very jagged with rough surfaces, exaggerated peaks and 

various other miscellaneous imperfections (Figure 50).   
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                             Figure 50: Initial Build of 3D Elbow Model 

 

4.12.3 Smoothing 

With the preliminary model of the elbow joint complete, the next step was to remove any 

and all anatomically incorrect features from the model.  This could be done by transferring the 

model over to the geometric alteration software GeoMagic Design X (3D Systems, Research 

Triangle Park, NC). 

Each individual component of the elbow model was imported separately into the software 

as polygonal surfaces.  Several tools were used to perform the geometric operations.  These 

included tools to remove any peaks that extended a certain distance from the solid surface.  Any 

holes in the surfaces were filled and aligned with the topography of the surrounding surface.   
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Material could be added or removed to either extend or retract the boundaries of the bodies 

to match features of experienced observation.  For example, it is known that the insertion of the 

ligament at the proximal ulna is along the sublime tubercle and the insertion at the distal humerus 

is along the medial epicondyle.  The length that the ligament extended onto these features could 

be adjusted manually along a prescribed direction based on prior observation.  With the conclusion 

of these operations, the smoothed polygon surface of the elbow model was completed (Figure 51). 

 

 

Figure 51: Smoothed Polygon 3D Elbow Model 

 

After the smoothing was completed, the polygon surface was converted into a mesh of 

triangular elements.  These elements were then ‘stitched’ together to form one coherent surface, 

in a process called ‘exact surfacing’.  The result of this operation was a fully coherent solid body,  

termed a ‘nurbs surface’ (non-uniform rational b-spline)  (Figure 52). 



 91 

 

Figure 52: Nurbs Surface of 3D Elbow Model 

 

The creation of the nurbs surface marked the completion of the generation of the elbow 

solid model.  The solid model was then suitable to be imported into the finite element environment 

for mechanical analysis. 

 

4.13 Finite Element Computation 

The initial procedure for the FE analysis was to define the material via a custom subroutine 

using the UMAT subroutine skeleton within ABAQUS.  The subroutine was to be written in 

FORTRAN.  Due to difficulties in obtaining the requisite software packages, the model was 

instead implemented using the built-in anisotropic material model within FeBio.  For 

completeness, the method for coding the custom subroutine is included.  The definition of the 
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material model was followed by the meshing of the elbow joint model within FeBio and the 

subsequent application of the boundary conditions and loading cycles needed to replicate repetitive 

overhand throwing motions. 

4.13.1 Material Definition 

In defining the material model, the matrices necessary in the theoretical definition of 

Equation (4-35) need to be converted into a suitable form for finite element utilization. 

 

𝛔𝐛 = C1𝐁 + C2[2I1𝐁 + 2𝐁𝐁] + C3C4e
C4(I4−1)

2
(I4 − 1)𝐅𝐚⊗ 𝐚𝐅𝐓 − p𝐈……….[4-35] 

 

These matrices included the Left Stretch Tensor B, the square of the Right Stretch Tensor 

𝐁𝐁, the product of the deformation gradient and its transpose with the dyadic product of the mean 

fiber directions 𝐅𝐚⊗ 𝐚𝐅𝐓 and the stiffness tensor ℂ. 

The deformation gradient F, was provided in the UMAT subroutine through a built in 

variable.  In defining the Left Stretch Tensor, the general calculation for B (Equation 78) was 

performed and converted to the appropriate nomenclature using Equations (4-36 – 4-38). 

 

𝐅 = Fij𝐞𝐢⊗𝐞𝐣…………………..……..…………..[4-36] 

 

  𝐅𝐓 = Fqr𝐞𝐪⊗𝐞𝐫………………………………….[4-37] 

 

𝐁 = 𝐅𝐅𝐓 = FijFjr𝐞𝐢⊗𝐞𝐫 = Bab𝐞𝐚⊗𝐞𝐛…………..[4-38] 
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This produced a 3x3 symmetric matrix.  Because the matrix was symmetric, the 

independent components (Equation 4-39) could be extracted in the formation of a one-dimensional 

vector B* (Equation 4-40). 

 

𝐁 = [
B11 B12 B13
B21 B22 B23
B31 B32 B33

]………………………………[4-39] 

 

𝐁∗ = [B11  B22  B33  B12  B13  B23]………………………[4-40] 

 

The square of the Left Stretch Tensor was given by Equation (4-41) and was similarly 

converted into a one-dimensional vector 𝐁𝐁∗ (Equation 4-42). 

 

𝐁𝐁 = BijBjr𝐞𝐢⊗𝐞𝐫……………………………….[4-41] 

 

𝐁𝐁∗ = [BB11  BB22  BB33  BB12  BB13  BB23]…………[4-42] 

 

For the general case where the mean fiber direction consists of three components in the 

Cartesian space  𝐚 = ai𝐞𝐢, the second order tensor  𝐅𝐚⊗ 𝐚𝐅𝐓 was calculated as provided by 

Equation (4-43). 

 

𝐅𝐚⊗ 𝐚𝐅𝐓 = Fijajei⊗akFpkep……….……………..[4-43] 
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For the simplified case where the mean fiber direction consists of only one component in 

the direction of loading, Equation (4-43) reduces to Equation (4-44). 

 

𝐅𝐚⊗ 𝐚𝐅𝐓 = (Fijei⊗Fpkep)a1
2……………….……….[4-44] 

 

In matrix form, 𝐅𝐚 ⊗ 𝐚𝐅𝐓 was given by Equation (4-45).  The symmetric components, 

shown in red, were transformed into the one-dimensional vector 𝐅𝐚⊗ 𝐚𝐅𝐓
∗
 (Equation 4-46). 

 

𝐅𝐚⊗ 𝐚𝐅𝐓 = [

F11
2 F11F21 F11F31

F11F21 F21
2 F21F31

F11F31 F21F31 F31
2

] a1
2……………..[4-45] 

 

𝐅𝐚⊗ 𝐚𝐅𝐓
∗
= [F11

2   F21
2   F31

2   F11F21  F11F31  F21F31]a1
2……….[4-46] 

 

4.13.2 Stiffness Tensor 

The stiffness tensor c, or compliance matrix, defines the relationship between the stress 

tensor  𝛔, and the strain tensor 𝛆 (Equation 4-47).  The calculation of ℂ was given by Equation (4-

48), where C is the Right Cauchy-Green Stretch Tensor and W is the strain energy density 

(Equation 4-49). 

 

𝛔 = ℂ𝛆……………………….………………..[4-47] 
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ℂ = 2
∂2W

∂𝐂2
…………………………………….[4-48] 

 

W = W(I1, I2, I4) = C1(I1 − 3) + C2(I2 − 3) + C3e
C4(I4−1)

2
……….[4-49] 

 

Using the chain rule and product rule for differentiation, the derivation of c follows from 

the work of Weiss et al[76].   

 

ℂ = 2
∂

∂𝐂
[
∂W

∂I1

∂I1

∂𝐂
+
∂W

∂I2

∂I2

∂𝐂
+
∂W

∂I4

∂I4

∂𝐂
]………………..[4-50] 

 

ℂ = 2
∂

∂𝐂
[
∂W

∂I1
𝐈 +

∂W

∂I2
(I1𝐈 − 𝐂) +

∂W

∂I4
𝐚⊗ 𝐚]……………[4-51] 

 

ℂ = 4 [𝐈 ⊗
∂

∂𝐂

∂W

∂I1
+ 𝐈⊗

∂W

∂I2

∂I1
∂𝐂

+ 𝐈 ⊗ I1
∂

∂𝐂

∂W

∂I2
− 𝐂⊗

∂

∂𝐂

∂W

∂I2
−
∂W

∂I2

∂𝐂

∂𝐂
+ 𝐚⊗ 𝐚⊗

∂

∂𝐂

∂W

∂I4
] 

………[4-52] 

 

 

 

 

 

 

………..[4-53] 

 

∂

∂𝐂

∂W

∂Ik
=
∂2W

∂Ik
2

∂Ik
∂𝐂

 

k = 1,2,4 

 

∂

∂𝐂

∂W

∂I1 
=
∂2W

∂I1
2

∂I1
∂𝐂

=
∂2W

∂I1
2 𝐈 

∂

∂𝐂

∂W

∂I2 
=
∂2W

∂I2
2

∂I2
∂𝐂

=
∂2W

∂I2
2 (I1𝐈 − 𝐂) 

∂

∂𝐂

∂W

∂I4 
=
∂2W

∂I4
2

∂I4
∂𝐂

=
∂2W

∂I4
2 𝐚⊗ 𝐚 
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ℂ = 4 [
∂2W

∂I1
2 𝐈 ⊗ 𝐈 +

∂W

∂I2
𝐈 ⊗ 𝐈 + I1

2 ∂
2W

∂I2
2 𝐈 ⊗ 𝐈 − 𝐈⊗ 𝐂

∂2W

∂I2
2 I1 − 𝐂⊗ 𝐈I1

∂2W

∂I2
2 + 𝐂⊗

𝐂
∂2W

∂I2
2 + 𝐚⊗ 𝐚⊗ 𝐚⊗ 𝐚

∂2W

∂I4
2 ]                                                                                                         …[4-54] 

 

In Equation (4-54), 𝐈 ⊗ 𝐈 is the fourth-order identify tensor (3x3x3x3) and has components 

given by Equation (4-55). 

 

𝐈 ⊗ 𝐈 = δirδjh𝐞𝐢⊗𝐞𝐣⊗𝐞𝐫⊗𝐞𝐡 = 𝐞𝐢⊗𝐞𝐣⊗𝐞𝐢⊗𝐞𝐣………..[4-55] 

 

Equation (4-56) gives the general form of the fourth-order compliance tensor (3x3x3x3) in 

the reference configuration.  To obtain the form of ℂ in the current configuration 𝓒 (Equation 4-

56), the push-forward operation was applied to Equation (4-54). 

 

𝓒 = 4 [(
∂2W

∂I1
2 +

∂2W

∂I2
+ I1

2 ∂
2W

∂I2
2 )𝐁⨂𝐁− 𝐁⨂𝐁

𝟐 ∂
2W

∂I2
2 I1 − 𝐁

𝟐⨂𝐁I1
∂2W

∂I2
2 + 𝐁

𝟐⨂𝐁𝟐
∂2W

∂I2
2 +

∂2W

∂I4
2 I4

2𝐚⊗ 𝐚⊗ 𝐚⊗ 𝐚]                                                                                                                   …[4-56] 

 

𝐁⨂𝐁 is a fourth-order tensor with components given by Equation (4-57). 

 

𝐁⨂𝐁 = BijBkl𝐞𝐢⊗𝐞𝐣⊗𝐞𝐤⊗𝐞𝐥……………………[4-57] 

 

𝐚⊗ 𝐚⊗ 𝐚⊗ 𝐚 is a fourth-order tensor with components given by Equation (4-58). 

 

𝐚⊗ 𝐚⊗ 𝐚⊗ 𝐚 = aiajakal𝐞𝐢⊗𝐞𝐣⊗𝐞𝐤⊗𝐞𝐥……………….[4-58] 
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Equation (4-56) gives the general form for the stiffness tensor for a hyper elastic material 

with an arbitrary strain energy function.  Given the form of the chosen strain energy (Equation 4-

59), the form of 𝓒 is simplified (Equation 4-64) using the results of Equations (4-59 – 4-63). 

 

∂W

∂I1
= C1…………………………….……………….[4-59] 

 

    
∂W

∂I2
= C2……………………………………………[4-60] 

 

  
∂2W

∂I1
2 = 0…………………………………………….[4-61] 

 

   
∂2W

∂I2
2 = 0………………………….…………………[4-62] 

 

∂2W

∂I4
2 = 𝟐C3C4e

(C4(I4−1))
2

[2C4(I4 − 1)
2 + 1]…………….[4-63] 

 

𝓒 = 4 [C2 𝐁⨂𝐁 +
∂2W

∂I4
2 I4

2𝐚⊗ 𝐚⊗ 𝐚⊗ 𝐚]……………..[4-64] 
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4.13.3 Reduction of Stiffness Tensor 

The indicial notation 𝓒 is given by Equation (4-65).  The components of the Cauchy stress 

tensor σij(3x3), are then related to the components of the strain tensor εkl(3x3), through Equation 

(4-66). 

 

𝓒 = 𝒞ijkl𝐞𝐢⊗𝐞𝐣⊗𝐞𝐤⊗𝐞𝐥………………………[4-65] 

 

σij = 𝒞ijklεkl……………………………………[4-66] 

 

𝓒 generally has 81 material constants.  Through consideration of the symmetries of the 

stress and strain tensors σij = σji and εkl = εlk , the number of independent material constants are 

reduced to 21 and 𝓒(3x3x3x3) is reduced to 𝓒(6x6) (Equation 4-67).   

 

[
 
 
 
 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝒞1111 𝒞1122 𝒞1133

𝒞2222 𝒞2233
𝒞3333

𝒞1123 𝒞1113 𝒞1112
𝒞2223 𝒞2213 𝒞2212
𝒞3323 𝒞3313 𝒞3312

𝑠𝑦𝑚𝑚

𝒞2323 𝒞2313 𝒞2312
𝒞1313 𝒞1312

𝒞1212]
 
 
 
 
 
 

[
 
 
 
 
 
𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12]

 
 
 
 
 

……….[4-67] 

 

4.13.4 Transversely Isotropic Stiffness Matrix 

Ligaments are commonly modeled as transversely isotropic materials[45].  These materials 

have one plane of isotropy.  The preferred direction of the material is symmetric about the normal 
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axis of this plane (Figure 53).  This material symmetry reduces the compliance matrix to the form 

given in Equation (4-68), with five independent components. 

 

 

Figure 53: Transverse Isotropy of Ligament Sturcture 

 

[
 
 
 
 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝒞1111 𝒞1122 𝒞1133

𝒞1111 𝒞1133
𝒞3333

 
0       0                             0
0       0                             0
0      0                            0

𝑠𝑦𝑚𝑚

𝒞2323   0                    0

𝒞2323                    0
1

2
(𝒞1111 − 𝒞1122)]

 
 
 
 
 
 

[
 
 
 
 
 
𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12]

 
 
 
 
 

....[4-68] 

 

From the results of Equation (4-68), the individual components for the transversely 

isotropic hyper elastic incompressible material are given by Equations (4-69 – 4-73). 
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𝒞1111 = 4C2B11B11 + 𝟐C3C4e
(C4(I4−1))

2

[2C4(I4 − 1)
2 + 1]I4

2(a1a1a1a1)......[4-69] 

 

𝒞1122 = 4C2B11B22 + 𝟐C3C4e
(C4(I4−1))

2

[2C4(I4 − 1)
2 + 1]I4

2(a1a1a2a2).....[4-70] 

 

𝒞1133 = 4C2B11B33 + 𝟐C3C4e
(C4(I4−1))

2

[2C4(I4 − 1)
2 + 1]I4

2(a1a1a3a3)....[4-71] 

 

𝒞2323 = 4C2B23B23.................................................[4-72] 

 

𝒞3333 = 4C2B33B33 + 𝟐C3C4e
(C4(I4−1))

2

[2C4(I4 − 1)
2 + 1]I4

2(a3a3a3a3)........[4-73] 

 

If it is assumed that the mean fiber direction vector a, has only one component in the 

preferred direction of loading, then a2 = a3 = 0 and Equations (4-69 – 4-73) reduce to Equations 

(4-74 – 4-78). 

 

𝒞1111 = 4C2B11B11 + 𝟐C3C4e
(C4(I4−1))

2

[2C4(I4 − 1)
2 + 1]I4

2(a1a1a1a1)......[4-74] 

 

𝒞1122 = 4C2B11B22....................................................[4-75] 

 

𝒞1133 = 4C2B11B33.................................................[4-76] 

 

𝒞2323 = 4C2B23B23.................................................[4-77] 
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𝒞3333 = 4C2B33B33.................................................[4-78] 

 

With the relevant matrices and vectors defined, the damage augmentation was to be added.  

This was to be done by defining a scalar function given by Equation (4-5).  In FORTRAN, this 

function can be defined explicitly.   

 This completes the description of the intended FORTRAN coding.  The FE simulations to 

follow were performed using built-in routines in the open-source software FeBio. 

4.14 Finite Element Details within FeBio 

FeBio is an open-source finite element package specifically designed for the solution of 

nonlinear problems involving bio-materials.  It was desired to use this package to perform the work 

because of the readily available constitutive models for fibrous tissues. 

4.14.1 Mesh and Elements 

The three solid bodies (distal humerus, proximal ulna and AMCL) were imported 

separately into the FeBio environment.  Each body was identified as a solid continuum.  The 

meshing of each body was done individually using the automatic meshing tool with tetrahedral 

elements of size 1.  The tet4 element is a 4 node linear tetrahedral element.  The ulna, humerus 

and AMCL were each meshed with this element (Figure 54). 
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Figure 54: Meshed Bodies of 3D Elbow Model 

 

4.14.2 Step Details and Incrimination 

The type of analysis step chosen was ‘Static General’.  This step is used for analyses where 

effects from inertia can be neglected.  The total simulation time was dictated by the maximum 

displacement and loading frequency of the experimental protocol.  Experimentally, specimens 

were loaded at a frequency equal to half the measured quantity per second.  So, a simulation to a 

displacement of x, would have a total simulation time of 2x.  As a general rule of thumb, the initial 

step increment was set to one-tenth of the total simulation time, 0.2x.  Other essential settings such 

as cutback behavior, Newton/Quasi-Newton solution methods and maximum number of iterations 

per step were adjusted as needed. 



 103 

4.14.3 Material Properties 

The ulna and humerus were modeled as Neo-Hookean materials.  To define this material 

two parameters were needed.  These were the elastic modulus and Poisson’s ratio.  The elastic 

modulus used was that of cortical bone (approximately 1.7 Gpa).  Poisson’s ratio was taken as 

0.45.  The utilized material models are shown in Figure (55). 

The AMCL was modeled as hyperelastic using the transversely isotropic Mooney-Rivlin 

material model.  To define this model the four constants C1-C4, needed to be given, as well as the 

density and bulk modulus.  The density was given as 1000 kg/m3, which is typical for ligaments 

where water makes up the majority of the mass.  The bulk modulus, which defines the tendency 

for volume change of the material when subjected to uniform pressure was given as 1e9 N/m2.  A 

high bulk modulus is typical for materials which are nearly incompressible.   

 

 

Figure 55: Material Definitions for the 3D Elbow Model 
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4.14.4 Fiber Direction 

With a transversely isotropic material, it is necessary to prescribe a fiber direction.  There 

were several options within FeBio to define the fiber direction.  The method which uses two local 

node numbers was chosen.  The local fiber axis was defined by the local element nodes, as a vector 

originating at the initial node and terminating at the latter node.  This chosen alignment is in 

accordance with the shape of the ligament.  Figure (56) shows an example of a local fiber axis for 

a 4 node tetrahedral element (tet4) defined from local node numbers 2 to 4.  These local fibers, 

chosen such that they align with the long axis of the ligament, are shown in Figure (57). 

 

 

Figure 56: Example of Local Fiber Axis for 4 Node Tetrahedral Element 
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                                 Figure 57: Fiber Alignment Along AMCL Long Axis 

 

4.14.5 Constraints 

The constraints in the model were defined at the contact points between the AMCL and its 

insertion points at the distal humerus and proximal ulna (Figure 58).  A tied-elastic constraint was 

used to model the contact.  This type of constraint allows no relative motion between two surfaces 

within a specified location tolerance, with all surfaces located within the tolerance being ‘tied’ 

together.  This meant that the motion of the nodes, for each degree of freedom (DOF), would be 

equivalent for the AMCL and boney materials. 
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Figure 58: Tied-Elastic Constraints at Ulna and Humerus Insertions 

 

4.14.6 Boundary Conditions 

The boundary conditions in the model were applied to the two bones.  These conditions 

were fixed and prescribed displacements.  The proximal humerus was set to be fixed in all six DOF 

(ux = uy = uz = 0  &  θx = θy = θz = 0).   

The prescribed displacement of the ulna was set to mimic the kinematics of valgus rotation.  

Applying a pure rotation in a finite element setting is challenging.  To circumvent this, the 

displacement was instead applied as a pure vertical distraction, with observations made regarding 

the joint spacing and small angle theory. 
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For an arbitrary vertical and rotational displacement δv and δr, the opening of the joint can 

be monitored by observing the separation of two points a and b (Figure 59) on the distal humerus 

and proximal ulna, respectively.  For the same initial position, the vertical and rotational 

displacements will produce displacement vectors r and r’, respectively.  

 

 

Figure 59: Displacement Vectors for Arbitrary Points during Vertical and Rotational Ulnar Motion 

 

According to small angle theory, for sufficiently small angles θ, the sinθ ≈ θ.  So, for small 

angle rotations about the arc s, the length bb’ is approximately equal to rθ.  From the Pythagorean 

theorem (Equations 4-79 – 4-82), it can be seen that for sufficiently small angles 𝑟 ≈ 𝑟′ and the 

displacement caused by the pure vertical displacement is comparable to that caused by a pure 

valgus rotation. 
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r′ = √r2 + (bb′)2.....................................................[4-79] 

 

= √r2 + (rθ)2.......................................................[4-80] 

 

= √r2(1 + θ2).......................................................[4-81] 

 

r′ ≈ r................................................................[4-82] 

 

4.14.7 Iterative Fatigue Damage Loading Protocol 

Because the damage variable is a scalar quantity independent of the finite element routine, 

its effect on the simulated mechanical response could be imposed in an iterative fashion through 

the successive operation of multiple simulations.  The damage variable D, multiplies the elastic 

constitutive model 𝛔, to create the modified constitutive model 𝛔′, given by Equation (4-83). 

 

𝛔′ = (1 − D)[C1𝐁 + C2[2I1𝐁 + 2𝐁𝐁] + C3C4e
C4(I4−1)

2
(I4 − 1)𝐅𝐚⊗ 𝐚𝐅𝐓 − p𝐈 ]...[4-83] 

 

The multiplication of the scalar parameter (1-D), creates the modified constitutive 

parameters C1′, C2′  and C3′ , given by Equations (4-84 – 4-86).  C4 was unmodified. 

 

C1
′ = (1 − D)C1.................................................[4-84] 
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C2
′ = (1 − D)C2.................................................[4-85] 

 

C3
′ = (1 − D)C3.................................................[4-86] 

 

The damage variable D, evolves during every cycle of a cyclic loading event.  Therefore, 

the value of D is a constant during any particular cycle.  The modified parameters can then be 

updated during every cycle i, of the loading and depend only on the current value of the damage 

parameter and the value of the constitutive parameter from the undamaged model (Equations 4-87 

– 4-89). 

 

C1(i)
′ = (1 − Di)C1............................................[4-87] 

 

C2(i)
′ = (1 − Di)C2.............................................[4-88] 

 

C3(i)
′ = (1 − Di)C3............................................[4-89] 

 

These updated parameters then ‘soften’ the stress response accordingly.  The entire 

iterative fatigue damage loading protocol is outlined in the next section. 
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4.14.8 Iterative Fatigue Damage Loading Protocol 

The transversely isotropic Mooney-Rivlin constitutive model for anisotropic elastomers 

was selected in FeBio.  The regressed parameters C1, C2, C3 and C4 were input into the model. 

The modeled specimen was to be loaded in vertical elongation, replicating valgus rotation-

induced joint opening.  The displacement was applied linearly, with a constant ramp up towards 

the maximum displacement over the course of the allotted time (Figure 60).   

 

 

                  Figure 60: Triangular Finite Element Displacement Curve 

 

Every element of the AMCL was selected for processing (Figure 61).  The data for stress 

and strain along the fiber direction (1st principal direction) were extracted and the maximum stress 

and strain were identified.  To move forward in the analysis, the maximum stress or strain could 

have either been utilized.  As a representation, the maximum stress was identified on the 
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interpolated fatigue life curve as a fraction of the absolute failure stress and the corresponding total 

cycles to failure nf, was determined (Figure 62). 

 

 

 

Figure 61: Selection of Every AMCL Element for Postprocessing 
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               Figure 62: Identification of nf from AMCL Fatigue Life Curve 

 

The selected value of nf, was then used to set the scale of the damage evolution curve for 

the AMCL.  With the evolution curve set, the manner in which the damage variable D, would 

evolve over the remainder of the cycling was fixed.  For a desired number of cycles n, the amount 

of requisite damage D, was known (Figure 63).   

For example, if the results for the average stress produced a nf of 10,000 cycles and the 

resulting mechanical response after 6,000 cycles was desired, then the value of D corresponding 

to an n/nf value of 6000/10000 = 0.6 would be selected.  This would produce a mechanical 

response of σ′ = (1 − D(0.6))σ. 
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                        Figure 63: Identification of Damage from AMCL Damage Evolution Curve 

 

With D known, the modified constitutive parameters C1′, C2′  and C3′  were determined.  

These modified values were re-entered into the FeBio model and the simulation was repeated.  

This was repeated for an indefinite number of desired cycles.  The results for each interaction were 

extracted and analyzed in the post processing.  An example of the expected results for an arbitrary 

specimen are given in Figure (64), where the mechanical response gradually progresses toward 

failure (σ = 0) as the cycles progress toward nf. 
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                Figure 64: Representative Stress-Stretch Behavior for Anticipated Fatigue-Induced Stress Softening 

 

4.14.9 Convergence 

Convergence was evaluated in terms of mesh independence.  The maximum stress was 

recorded for a particular group of elements after the completion of a given simulation.  The mesh 

size was reduced by half and the simulation was repeated.  This process continued until the 

maximum stress for subsequent simulations changed by less than 1 kPa for an arbitrary series of 

simulations. 
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4.14.10 Post-Processing and Model Validation 

The variables of interest in post processing were the stress and strain in the primary (fiber) 

loading direction.  For a given number of cycles and a given level of valgus torque, there was an 

estimated level of average damage.  This average damage not only softened the ligament response 

over the cycling, but also increased the range of the valgus rotation and, therefore, the maximum 

stretch of the ligament.  These simulated stretch results can be compared to the experimental stretch 

measures.  Validation will be inferred for simulation stretch increase measurements that resulted 

to within 10% of the average empirical results, for a given number of cycles and valgus torque 

level.  
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5.0 Results 

5.1 Anatomy 

Every specimen tested in the elastic and fatigue testing protocols, were measured prior to 

testing using calipers.  The average distal width and thickness were 8.52 mm ±

1.84 and 1.66 mm ± 0.45 mm.  The average proximal width and thickness were 5.7 mm ±

1.21 and 2.09 mm ± 0.35 mm.  These results are presented in Figure (65). 

 

 

Figure 65: Average AMCL Width and Thickness Results 
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5.2 Elastic Tensile Testing and Failure Testing Results 

A total of eleven specimens were tested in the elastic testing and failure testing protocols.  

The average failure load for the specimens was 595.25 N ± 201.93 N.  The failure loads for each 

specimen and the average are presented in Figure (66). Dividing the failure load by the cross-

sectional area of each specimen, resulted in an average nominal failure stress of 47.46 Mpa ±

25.42 Mpa.   

 

 

Figure 66: AMCL Failure Load Results 

 

Applying the transversely isotropic Mooney-Rivlin four parameter constitutive model to 

the elastic data for the middle band of each specimen at 90˚ of flexion, produced the average results 

given in Table (2).  The average value of C3 was at least one order of magnitude greater than that 

for C2 and C1.  C4 was at least six orders of magnitude less than C1-C3. 
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           Table 2: Average Parameters for the Transversely Isotorpic Mooney-Rivlin Constitutive Model 

 

 

5.2.1 Tensile Testing Failure Modes 

Of the eleven specimens tested in vertical elongation, five failed due to humeral avulsion.  

In this type of failure, the fibers of the AMCL were separated from their insertion at the medial 

epicondyle.  Figure (67) shows two examples of this failure mode. 
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Figure 67: Humeral Avulsion Tensile Failure 

 

Six of the tested specimens failed in ulnar avulsion.  In this failure mode, the AMCL fibers 

were separated from the sublime tubercle.  Figures (68) gives two examples of this failure mode. 
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Figure 68: Ulnar Avulsion Tensile Failure 

5.3 Fatigue Testing Results 

The use of the failure loads from the elongation tests for the calculation of the theoretical 

valgus failure moments 𝐌𝐟, produced an average single cycle moment of 25.3 Nm ± 8.77 Nm.  

For the specimens tested at 90% of their respective 𝐌𝐟 magnitude, the average failure torque was 

23.14 Nm ± 6.24 Nm.  The average cycles to failure was 3211 ± 4721.33.  For the specimens 

tested at 80% of their respective 𝐌𝐟 magnitude, the average failure torque was 19.96 Nm ±

7.97 Nm.  The average cycles to failure was 25063 ± 30487.58.   A log plot of the acquired data 

for the eleven specimens is given in Figure (69). 
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Figure 69: Specimen AMCL Valgus Fatigue Fatilure Results 

 

In Figure (69), it can be seen that, in general, the fatigue life of the specimens tended to 

increase as the experimentally applied valgus moment magnitude decreased.  This trend can be 

seen more clearly (Figure 70) utilizing the regression of a linear logarithmic model (Equation 5-

1), where τ is the applied valgus moment and the undetermined constants are a and b.  The results 

for the parameters a and b were 45.9623 and -3.115, with an R2 value of 0.91. 

 

τ = a + bln(n).....................................................[5-1] 
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Figure 70: Linear Logarithmic Regression Showing Negative Trend 

5.3.1 Stress-Based Fatigue Life Curve 

The average results for this data were used to create the average AMCL fatigue life curve 

of Figure (71), where each data point represents the average valgus moment and failure cycles for 

all of the specimens tested at that particular percentage of their respective 𝐌𝐟 magnitude (5 

specimens at 90% and 6 specimens at 80%). 
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Figure 71: Average AMCL Valgus Fatigue Life Curve 

 

Figure (72) gives an alternative non-dimensional version of the fatigue life curve where the 

ordinate is given as the respective fractions of 𝐌𝐟.   The data from Figure (72) was used to 

determine the parameters of the exponential decay model of Equation (4-33). 
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              Figure 72: Non-Dimensional Average AMCL Valgus Fatigue Life Curve 

 

The parameters γ and β of the exponential decay model (Equation 4-33) used to model the 

fatigue life curve are given in Table (3).  The parameter r was equivalent to the average maximum 

number of cycles to failure at 80% of 𝐌𝐟.  The final modeled stress-based AMCL fatigue life curve 

is presented in Figure (73). 

 



 125 

Table 3: Results for Exponential Decay Parameters 

 

 

 

Figure 73: Stress-Based Non-Dimensional AMCL Fatigue Life Curve 
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The loss of stiffness was defined through the increase of rotation angle for each specimen 

during the test.  The average initial angle θi, failure angle θf, and change in angle Δθ, were 

16.06ᵒ ± 5.55ᵒ, 20.83ᵒ ± 4.22ᵒ, and 4.77ᵒ ± 2.82ᵒ, respectively.  These results are displayed in 

Figure (74). 

 

 

Figure 74: Angular Position Results 

 

The change in the peak rotation angle for each specimen was used to fit a cubic damage 

model (Equation 4-5) for the experiment to formulate the nonlinear damage evolution curve 

(Figure 35).  The parameters for the model are given in Table (4).   
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Table 4: Results for Cubic Damage Model Parameters 

 

5.3.2 Fatigue Stretch Results 

For each specimen, the stretching of the ligament throughout the cycling was measured by 

tracking the displacement of the markers along each of the three bands.  In general, the maximum 

stretch of every specimen gradually increased as the cycling progressed.  This behavior for the 

anterior, middle and posterior bands of a representative specimen (specimen 9) is shown in Figure 

(75).  The stretch vs time plots for the middle band of three additional specimens (specimens 4,7 

and 11) are shown in Figure (76). 
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                 Figure 75: Fatigue Stretch Results for Anterior, Middle and Posterior Bands (specimen 9) 
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Figure 76: Fatigue Stretch Results for Middle Band (specimens 4,7 and 11) 

 

The results for the average failure stretch for each band are given in Table (5).  The overall 

increase in stretch, given as a percentage relative to the stretch recorded during the initial cycle to 

the stretch recorded during the last recorded cycle, is given in Table (6). 
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                 Table 5: Average Failure Stretch Results for Anterior, Middle and Posterior Bands 

 

 

               Table 6: Average Stretch Increase Results for Anterior, Middle and Posterior Bands 

 

5.3.3 Stretch-Based Fatigue Life Curve 

Similarly, as for the stress-based fatigue life curve, a non-dimensional stretch-based fatigue 

life curve (Figure 77) can be formed by taking the ratio of the maximum stretch at the first cycle 

and the maximum stretch at the failure cycle.  A similar regression was performed for the 

exponential decay model of Equation (4-33) and the resulting parameters are given in Table (7). 
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       Figure 77: Non-Dimensional Stretch-Based AMCL Valgus Fatigue Life Curve 

 

Table 7: Parameters for Stretch-Based Exponential Decay Model 
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5.3.4 Fatigue Failure Modes 

Of the eleven specimens tested, three specimens failed by humeral avulsion.  The failure 

mode was characterized by the tearing of the fibers from the base of the humerus insertion cite at 

the medial epicondyle.  An example of this failure mode for one specimen is presented in Figure 

(78). 

 

 

Figure 78: Humeral Avulsion Failure in Valgus Fatigue 

 

Three specimens failed at the mid substance.  Failure modes of this type originated on 

either side of the ligament at the mid substance and traversed across the width in either a diagonal 

or s-shaped pattern.  An example of this failure mode for one specimen is presented in Figure (79). 
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           Figure 79: Mid-Substance Failure in Valgus Fatigue 

 

Five specimens failed by ulnar avulsion.  This failure mode saw the fibers disengaged from 

the base of the ulna insertion cite at the sublime tubercle.  An example of this failure mode for one 

specimen is presented in Figure (80). 

 

 



 134 

 

         Figure 80: Ulnar Avulsion Failure in Valgus Fatigue 

5.4 Finite Element Simulation Results 

 

5.4.1 Mesh Convergence Results 

The mesh size used for the analysis was 1.  Mesh convergence was evaluated by changing 

the general element size by several orders of magnitude and observing the change in the stress-

strain results.  Mesh sizes of 500, 5, 1 and 0.5 were used for convergence analysis and the results 

are presented in Figure (81) and summarized in Table (8). 
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Figure 81: FE Model Mesh Convergence Results 

 

Table 8: Average % Difference for Mesh Convergence 

 

 

Mesh independence was observed for mesh sizes within the range of 5 to 1, where the 

difference in successive results was approximately 5%. 
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5.4.2 Elastic Simulation Results 

For any particular specimen, the constitutive model parameters C1-C4 taken from the 

nonlinear regression were input into the model.  After the vertical elongation, the results for the 1st 

deviatoric stress and strain were extracted for every element of the ligament.  The deviatoric stress 

was chosen in post-processing because it gives the ligament stress in the absence of hydrostatic 

pressure.   

The stress and strain values were averaged together at each time increment.  These average 

stress and strain results, along with the results plus one standard deviation, were plotted together 

with the stress-stretch curve for that particular specimen for a visual comparison.  Five 

representative results for specimens 2, 6, 8, 10 and 11 are presented in Figures (82-86). 

 

 

Figure 82: Specimen 2 Elastic FE Results 
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Figure 83: Specimen 6 Elastic FE Results 

 

 

Figure 84: Specimen 8 Elastic FE Results 
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Figure 85: Specimen 10 Elastic FE Results 

 

 

Figure 86: Specimen 11 Elastic FE Results 
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The agreement of the FE results with the experimental constitutive model was analyzed in 

terms of the percent difference between the constitutive model stress and FE stress at predisposed 

values of stretch.  The stretch values, percent differences between the stress and the standard 

deviations are given in Table (9).  Figure (87) shows how the percent differences progress with 

increasing levels of stretch. 

 

Table 9: % Difference Results Stress and Given Stretch 
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Figure 87: Correlation Between Simulation and Constitutive Model 

5.4.3 Fatigue Simulation Results 

The simulation of the fatigue effect was performed by imposing 2 mm and 3 mm 

randomized elongations on the eleven specimens.  The maximum 1st principal deviatoric stress 

and stretch were recorded for that single cycle of elongation.  This maximum stretch was then 

compared to the average maximum valgus failure stretch by forming a ratio of the two magnitudes.   

This ratio then produced a maximum cycles to failure (nf), using the stretch-based fatigue 

life curve of Figure (77).  The exact number of cycles to failure was calculated using Equation (5-

2), which is equivalent to Equation (4-33) with the dependent variable being the number of cycles 

to failure. 

 

nf = −ln (
Sn

β
) (

r

γ
)..........................................[5-2] 
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This value of  nf then scaled the abscissa of the damage evolution curve of Figure (35).  

This allowed the simulation to be repeated as desired to predict the mechanical behavior of the 

stress softened ligament after an arbitrary number of cycles.  An example for specimen 10 is 

presented hereafter. 

For the 3 mm distraction of the AMCL with elastic constitutive parameters corresponding 

to those of specimen 10, the average maximum 1st deviatoric principal stress was 7.69 Mpa.  The 

average maximum 1st deviatoric principal stretch value was 1.073.  From the experiments, the 

average maximum valgus failure stretch λf
avg

, was approximately 1.077.   

Because a direct conversion from the ligament stress experienced in vertical elongation and 

valgus rotation is not immediately obvious, the fatigue life curve based on the fatigue stretch ratio 

was used for fatigue life prediction (Figure 77).  The stretch ratio  rλ , was calculated by taking the 

ratio of the maximum simulated stretch for one cycle λmax
FE  , and the average maximum valgus 

failure stretch λmax
EXP  (Equation 5-3).  The ratio rλ was equivalent to the ratio Sn. 

 

rλ =
λmax
FE

λmax
EXP ...........................................................[5-3] 

 

The ratio was calculated to be approximately rλ ≈ 0.997.  Using the stretch-based fatigue 

life curve, the cycles to failure for this percentage of load was predicted to be approximately 7754 

cycles.  With nf = 7754, the damage evolution curve, was scaled appropriately (Figure 88), using 

the scaled version of the cubic damage evolution equation (Equation 4-5), Equation (5-4). 
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Figure 88: Scaled Damage Evolution Curve with nf=7754 

 

Using the scaled damage evolution curve, this allowed the fatigue simulations to be 

performed using the modified constitutive parameters of Equations (4-87 – 4-89).  The damage 

scaling of these parameters was dictated by the number of cycles (i.e. pitches) performed and the 

corresponding incurred damage.  The designated number of simulated cycles was chosen to 
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coincide with 0, 25%, 50%, 75% and 95% of the respective value of nf for each specimen.  The 

results for specimen 10 are presented in Figure (89).  The legend entries give the number of cycles, 

the value of 
n

nf
 and the corresponding amount of damage. 

 

 

Figure 89: FE Fatigue Results for Specimen 10 

 

For representation, the results for specimens 2 and 8 are also given in Figures (90-91), 

where the cycles to failure were calculated to be approximately 64054 and 4359 cycles, 

respectively. 
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Figure 90: FE Fatigue Results for Specimen 2 

 

 

Figure 91: FE Fatigue Results for Specimen 8 
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Representative visualizations for the stress and strain distributions for specimen 10 for the 

cyclic cases of 
n

nf
= 0, 0.5 and 0.95 are shown in Figures (92-93).  The increase in the maximum 

stretch, relative to the first cycle, was calculated for each of the simulated cycles and is presented 

in Figure (94).  The decrease in the maximum stress was also calculated relative to the first cycle 

and is given in Figure (95). 

 

 

Figure 92: FE Stress Distribution for Specimen 10 for Representative n/nf Cases 
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Figure 93: FE Strain Distribution for Specimen 10 for Representative n/nf Cases 

 

 

Figure 94: Increase in Max Stretch FE Results for Specimen 10 
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Figure 95: Decrease in Max Stress FE Results for Specimen 10 

 

This simulation was performed for all eleven specimens.  The average results for the 

decrease in maximum stress are presented in Figure (96). 
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Figure 96: Average Decrease in Max Stress FE Results for Eleven Specimens 

 

5.5 Validation 

To validate the results, the increase in stretch from the simulation was compared to the 

increase in stretch measured during the experimental fatigue tests.  The experimental stretch 

increases were given as average values calculated at 50% and 100% of cycle completion and are 

given in Figure (97). 
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Figure 97: Average Experimental Stretch Increase Results 

 

The increase in stretch for each simulated specimen was calculated at all of the simulated 

n

nf
 values and averaged together.  These results, along with the experimental results are presented 

in Figure (98). 

 

 

Figure 98: Average Experimental and FE Stretch Increase Results 
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The agreement between the simulation results and experimental results for stretch increase 

are summarized in Table (10). 

 

              Table 10: % Difference Results Between Experimental and FE Stretch Increase Results 

 

 

 

5.6 Elemental Cycles to Failure & Stress Softening  

To visualize where along the AMCL failure was likely to occur as a result of repetitive 

cycling, a visualization of the model was produced in MATLAB.  After running the FeBio 

simulation for the undamaged ligament, data for stress, strain and centroidal element position were 

extracted for each element.  The positions of the element centroids were plotted in 3D for the initial 

and final positions of a 2mm displacement (Figure 99). 
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Figure 99: Elemental Centroid Coordinates 

 

The maximum stretch data was recorded for each element and used to produce an 

individual cycle ratio rλ
e

, for each element given by Equation (5-5), where λmax
FEe  is the maximum 

stretch value for element e. 

 

rλ
e =

λmax
FEe

λmax
exp ..........................................................[5-5] 

 

Using the stretch-based fatigue life curve, these ratios were used to calculate individual 

cycle to failure estimates for each element, nf
e.  The maximum cycles to failure nfmax

e  , was 

extracted and taken as the limiting value for which each  nf
e was compared.  The elements with nf

e 

less than 10% and 25% of nfmax
e  were identified and highlighted in Figure (100).  Figure (100) 
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essentially shows the locations along the AMCL where fatigue failure is likely to occur first, for 

an equivalent level of 2mm cycling, for the simulated specimen. 

 

 

Figure 100: Predictied Locations of Fatigue Failure Initiation 

 

Using the elemental cycles to failure values, a MATLAB script was used to sequentially 

damage the elements over the course of an arbitrary number of cycles.  This elemental damage De, 

was defined individually for each element (Equation 5-6) by using the elemental cycles to failure 

values nf
e. 
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This allowed for the visualization of how the stress carried by each element softened as the 

cycling progressed.  The number of cycles tested were 0, 25, 75 and 100.  The maximum was 

chosen to be 100 because that is approximately equivalent to the standard number of overhand 

pitches thrown in a regulation baseball game by a single pitcher.   

To determine how the stress was changing, the difference rσ
e, between the maximum 

element stress at the first cycle σo
e  and the maximum element stress at the current cycle σn

e , was 

calculated using Equation (5-7). 

 

rσ
e = 1 −

σn
e

σo
e..................................................[5-7] 

 

The results for each of these cyclic steps are shown in Figures (101-104).  The circles 

designate changes within a specified range of rσ
e.  The red cross symbols designate the elements 

where the decrease in stress was greater than 50%.   
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Figure 101: Elemental Stress Decrease (25 cycles) 

 

 

Figure 102: Elemental Stress Decrease (50 cycles) 
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Figure 103: Elemental Stress Decrease (75 cycles) 

 

 

Figure 104: Elemental Stress Decrease (100 cycles) 



 156 

6.0 Discussion 

6.1 Anatomy 

The average measured width of the AMCL distal to proximal was 8.52 mm ± 1.84 and 

5.7 mm ± 1.21 mm.  These results fall within the range of previously reported values of 

approximately 4 – 8 mm[81-83].  The observation that the width of the ligament changes along its 

length was not a new one, and gives the ligament a tapered surface toward the insertions, as was 

observed in the ACL of the knee[84]. 

The thickness of the AMCL distal to proximal was between 2.11 mm and 2.44 mm.  These 

thickness measurements fell within the range of previously reported averages of approximately 2 

to 3 mm[85].  Ultrasonic measurements using various techniques have reported slightly smaller 

measurements of about 1.4 – 1.9 mm[86].  This difference can be attributed to uncertainty in 

mechanical measurements and the manual operation of measuring devices.   

The discrepancy in the thickness values between the distal and proximal ends was not as 

large as the difference in widths.  This would suggest that changes in the cross-sectional area of 

the ligament and, therefore, the amount of stress that can be carried by different sections of the 

ligament along its length, is more immediately affected by the width.  The implications on the 

regional mechanical strength of the ligament are apparent, as sections of the ligament with greater 

cross-sectional area would be stronger.  This was shown to be true in a transection study involving 

the ACL, showing regional variations in the mechanical properties of the ligament are indeed 

possible[69].  This would affect the tendency of the ligament to fail at a specific location.   
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This variability in width also affects the surface area of the ligament.  Previous studies have 

measured the surface area at the ulna and epicondyle insertion cites to be dissimilar with the ulnar 

area being approximately 128 mm2 and the epicondyle area being approximately 45 mm2[83].  

Whether the ligament fails due to ulnar or humeral avulsion could be influenced by the effective 

surface area of the ligament at these respective sites. 

This result can also be significant in the construction of future models where parametric 

studies are performed based on minute model variations.  Knowing that the width is the most 

critical geometric component can save computation time by eliminating the need to study effects 

due to variations in other features, such as thickness and length. 

6.2 Elastic Testing 

6.2.1 Tensile Failure Loads 

The average AMCL failure load for the specimens tested at ninety degrees of flexion was 

595.25 N ± 201.93 N.  This range of results was significantly greater than the previously reported 

AMCL tensile failure load of approximately 260 N ± 71.3 N [87].   

Several factors could have been responsible for this difference.  The first factor was loading 

rate.  The current work loaded the specimen at a uniform rate of 0.5 mm/s for all specimens, while 

the previous work [87] loaded each specimen at a variable rate dependent on the initial ligament 

length. 

The second factor could have been the loading configuration.  The current work loaded 

each specimen in a vertical direction aligned with the centroidal axis of the ulna, while flexed at 
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ninety degrees.  The previous work [87] loaded the specimen in a manner consistent with the long 

axis of the ligament.  The difference in loading configuration could have produced different states 

of stress within the specimens, causing them to fail at different load magnitudes.   

Having the loads aligned with the ligament long axis could produce lesser failure loads, 

because most of the load magnitude would be aligned with the elongation direction of the ligament.  

If the axis of the load and principal direction of the ligament have some misalignment, then less 

of the load magnitude would influence the elongation of the ligament, possibly leading to higher 

failure loads. 

6.2.2 Tensile Testing Failure Modes 

Avulsion at the medial epicondyle of the humerus and at the sublime tubercle of the ulna 

accounted for five and six of the respective failure modes for each specimen.  Avulsion of the 

ligament fibers from their boney insertion or origins is an injury commonly found amongst 

ligament tears.  In the anterior cruciate ligament (ACL) of the knee, root tears of the lateral 

meniscus can be found in approximately 7-12 % of cases [88].  MRI was the primary means of 

identifying these injuries[89].  In a study involving 264 patients, 12.8% of the ACL tears were 

characterized by root tears, either laterally or medially[90]. 

The prevalence of these failure modes in the torn ligaments of patients can be intuitively 

reasoned.  The insertion and origin cites are the anchors of the respective ligament and the point 

of direct load transmission from the bone to the ligament.  The mismatch of material properties 

between the collagenous tissue and cartilage of the bone can act as a stress riser, increasing the 

likelihood of failure at that location.   
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Whether the avulsion occurs at the origin or insertion could depend on the footprint, or 

surface area of the ligament at that location, as well as the cross-sectional area.  The average width 

and thickness for the tested specimen were dissimilar, but not by a large margin.  This could 

explain why nearly an equivalent number of specimens failed proximally and distally. 

6.2.3 Constitutive Model Parameters 

The average results for the four parameters C1-C4, of the transversely isotropic Mooney-

Rivlin constitutive equation used to model the AMCL stress-stretch behavior were given in Table 

(2).    The magnitudes of the average values for C1 and C2 were on the order of 1E6.  With the 

value of stress being on the order of approximately 1E6, it sufficed that the magnitudes for C1 and 

C2 would be of a similar magnitude, given the form of the Cauchy Stress Tensor (Equation 4-20), 

where C1 and C2 multiplied the linear portion of the constitutive model.   

In the strain energy function, the parameters C1 and C2 were presumed to represent the 

strain energy function for the isotropic matrix material[45, 46].    These constants accompany the 

first and second invariants.  Inclusion of the second invariant and, thus, C2 has been shown to be 

critical when looking to fully represent the non-homogenous deformation behavior of fibrous 

materials[91].  The results of the eleven tested specimens agree with this premise, as shown by the 

average magnitudes of C1 and C2, which are roughly equivalent.  This suggests that both 

parameters were equally important in capturing the mechanical response of the matrix material. 

The average magnitude of C3 was on the order of 1E8.  This was two orders of magnitude 

greater than the average values for C1 and C2.  In the additive form of the strain energy function, 

C3 was the stress multiplier for the strain energy function of the fibers[45, 46].  The higher 

magnitude for C3 suggests that the mechanical response provided by the fibers was greater than 
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that provided by the matrix.  Also, it suggested that the contribution to the strength of the AMCL 

was greater from the fibers than that from the matrix material.  This is indeed the case, as the fibers 

are the primary load bearing structures in the ligament. 

C4 was the exponential coefficient and was taken as the fiber scaling parameter[45].  The 

average magnitude was on the order of 1E1, which was significantly less than those for C1-C3.  As 

C4 multiplies the exponential input, it was seen as a control parameter for fiber crimping.  The 

larger the value, the faster the fibers straighten and the quicker the exponential function grows.   

With an average C4 value of approximately 1.26, this suggested that the fibers of the AMCL tended 

to straighten fairly slowly.  This was evident in the mechanical responses observed for the 

specimens which displayed a primarily exponential response, although a fair number of specimens 

did display a completely linear behavior. 

The average correlation coefficient between the constitutive model and experimental data 

was approximately 0.992.  This suggested that the utilized model was sufficient in fitting the 

experimental data.   

6.3 Fatigue Testing 

Every specimen tested was free from any known defects such as prior elbow damage and 

other various health ailments.  There was one specimen which was not tested due to calcification 

at the proximal end and a capitellum fracture.   

The results for the fatigue life of the tested specimens had very high variability.  This was 

expected given the variable nature of biological materials.  Every ligament had slightly different 
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geometric properties, which could undoubtedly create some structural differences, leading to the 

mixed results.   

Other factors, such as specimen age, could have contributed to the differences as well.  

Older individuals are generally physically weaker than younger individuals.  Even specimens of 

the same age can differ greatly in their respective biological age, which reflects factors such as 

individual wear and tissue damage.  For example, a 40-year-old specimen who was a pro pitcher 

for 15 years, would have a UCL with significantly more wear than a 40-year-old non-athlete.  This 

was shown in a study involving age-identical birds exposed to experimental stressors which 

produced noticeable changes in several biological age biomarkers, as compared to a control group. 

[92].   

Not only was there a wide variety of fatigue life results, but there was also a large disparity 

in the individual fatigue life magnitudes.  At least three specimens each were within the ranges of 

102 through 103, 103 through 104, and 104 through 105 cycles to failure.  The specimens tested were 

randomized in terms of right and left elbows.  The hand dominance of the specimens was not 

recorded.  This would mean that some specimens tested could have been the dominant upper 

extremity, while others could have been the non-dominant extremity.  Regarding hand strength, it 

has been shown that the dominant hand is typically stronger than the non-dominant 

counterpart[93].  Regarding ACLs, the effect of limb dominance was inconclusive in the 

identification of primary mechanical risk factors[94].  These findings make the topic of limb 

dominance interesting, and a potential, yet undetermined influencer of fatigue life. 

The average overall applied valgus torque for each specimen was 21.4 Nm.  This was much 

less than the reported valgus failure torque of the UCL of 64 Nm[7].  This result was also 

significantly less than the reported maximum valgus load experienced at the medial elbow during 
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standard pitches for adolescent baseball pitchers[16], 47.3 Nm for fastballs and 44.2 Nm for 

curveballs; and professional baseball pitchers[95], 54.3 Nm for fastballs and 52.1 Nm for 

curveballs.  This corroborates the general knowledge that fatigue leads to failure at loads which 

can be less than the typical performance strength and the ultimate failure strength of the material. 

The individual valgus torques produced an expected observation, which was a higher 

rotation angle for higher values of valgus torque.  These two variables showed a similar correlation 

and have a significant relationship when it comes to overhand throwing mechanics[96].  These 

variables can have some biological dependence, as a thicker, more stiff, ligament may produce a 

lesser angle of rotation than a thinner, less stiff, ligament cycled at a lower magnitude of torque. 

The angular position of the tested specimens increased by an average of 22.9%.  The 

increase in position over time was a result experienced in multiple fatigue tests.  In a study 

involving the tensile cycling of rabbit MCLs, the average displacement increased by approximately 

45%[97].   

This increase in angular displacement can also be an indicator of non-passive valgus laxity.  

Non-passive valgus laxity under an imposed valgus torque has been shown to depend on the 

flexion angle of the elbow[81].  With all of the specimens in the present study being tested at 90˚, 

it was not possible to study and compare this effect.  However, given the results of the previous 

study by Safran et al., it can be reasoned that the results for the average increase in angular position 

may be different for other flexion angles. 

The increase in valgus angle over repeated cycling can have immediate implications on 

joint spacing.  Ultrasonically, the joint space at the medial elbow has been shown to increase under 

valgus loading[98].  Qualitatively, this was also observed during testing.  With the humerus held 

relatively static, the rotation of the ulna caused the joint to open up.  The degree of joint opening 
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grew slightly larger, as discernable by visual inspection, as the cycling progressed to larger values.  

This opening of the joint may produce some unforeseen health concerns by possibly placing 

additional stresses on the boney constructs of the elbow or the surrounding muscles which have 

been shown to deteriorate in mechanical performance as a result of imposed fatigue protocols[99]. 

The increase in rotational displacement was used to characterize the damage in the AMCL, 

as opposed to the measure of ligament stretch, because it was more consistent.  While the stretch 

measured for the final tested cycle was always larger than the measured stretch at the initial cycle, 

giving a positive value for the reported increase (Tables 5-6), some values for this change at some 

of the intermediate cycles were negative.  This meant that for some of the in-between cycles, the 

measured stretch was less than the initial cycle.  This was not physically feasible.  The likely error 

in these measurements came from some form of camera defect arising from either the positioning 

or calibration.  The angle measures taken through the load cell were free of such influences and 

so, produced the physically consistent results, showing a steady increase in angle for steadily 

progressive cycling. 

6.3.1 Equation Regression 

The information in this section was referenced from a textbook on the subject of numerical 

methods[100].  The model for the fatigue life curve was generated by fitting a three-parameter 

exponential decay equation (Equation 4-33) to the data set for the average fatigue life.  The 

regression to determine the best-fit parameters was performed using the three data points at 100%, 

80% and 90% of the respective specimen 𝐌𝐟 magnitude.  For a powerful regression, it is desired 

to have a sufficient number of experimental observations.  Gaps in the data that arise from either 
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an insufficient number of data points or data points that are too dispersed, either randomly or in 

one direction, can lead to a number of non-ideal circumstances within the model. 

However, although only three points were used for the stress-based fatigue life curve, these 

data points contained information from eleven empirical measurements.  This was the basis for 

assuming sufficient observations for the curve fit.  The stretch-based fatigue life curve was 

explicitly fit to the individual eleven data points.   

This data set for the stress-based fatigue life curve has a deficit in the range between each 

data point of 10%.  Regarding the domain of the experimental data, between the ordinate values 

100% and 90%, there was a gap of 3211 cycles.  Between 90% and 80%, this gap was 21852 

cycles.  This meant that interpolation was needed to model the behavior of the curve between these 

points.  The built-in function ‘fmincon’ was used in MATLAB to perform the curve-fit and data 

interpolation.  Using the available options, spline interpolation using a cubic model was chosen as 

the interpolating algorithm.   

Spline interpolation was chosen because it tends to be more accurate than other 

interpolation methods, as the data at the end points of each interval are constrained to equal the 

experimental values.  A downside of this method was that individual equations are formulated 

within each interval.  This can lead to some erratic model behavior, such as inflection points 

between experimental observations that follow the data very poorly.  This was avoided by selecting 

interpolating polynomials that were not too high of a degree.  The utilized experimental data, i.e. 

the end behavior of each interval, was well-distributed, which generated smooth splines within 

each interval. 

Because the fatigue life curve was sought to model the fatigue life beyond the tested limit 

of 80%, extrapolation was needed to model the equation behavior beyond the experimental 
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domain.  The extrapolation of the data followed from the cubic model used in the interpolation 

step.  Because the data was well-dispersed, this allowed the extrapolated curve to follow a smooth 

trend from the final data point.  This, along with the general knowledge of standard fatigue life 

curve behavior, was the subject of confidence in the extrapolation result. 

6.3.2 Fatigue Failure Modes 

In the fatigue test, five of the eleven specimens failed at the sublime tubercle of the ulna.  

This was a greater amount than the three specimens that failed each at the epicondyle and mid-

substance.  In the experiment, the motion of the humerus was maintained relatively static and the 

ulna was made to rotate.  This motion mimicked the kinematics of the rotating forearm during an 

overhand pitch.  Because the ulna was the location on the ligament furthest away from the axis of 

rotation, the magnitude of the moment was greatest at this point.  This could explain why the 

majority of the specimens failed due to ulnar avulsion. 

The issue of injury/failure location was highlighted by the variability of injury locales in 

the results and was tested by the work of Frangiamore et al[101].  In a study involving the UCL, 

cuts were made to the distal and proximal insertions while applying varying degrees of valgus 

torque.  The results showed that the posterior distal insertion contributed more to the rotational 

stability and stiffness of the medial elbow for all cases.  This directly supports the current findings.  

The majority of the failures occurring at the distal, or ulnar insertion, suggest that the majority of 

the load was being supported at this location, leading to a higher likelihood of localized failure. 

In addition, the experimentally observed tendency of the valgus loaded specimens to fail 

at the ulnar insertion was also supported by the work of Hassan et al[102].  Different degrees of 

detachment of the UCL from its distal and proximal ends were imposed while varying degrees of 
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valgus torque was applied at 90˚ and 30˚ of flexion.   Measurements were made regarding the 

change in contact area and center of pressure which showed the proximal half of the UCL ulnar 

footprint having the primary role in maintaining elbow biomechanics in the posteromedial elbow.  

The failure modes of the presently tested specimens, all at 90˚ of flexion, were supported by this 

work.   

The primary cause of the avulsion failures observed in the experiment was assumed to be 

due to fatigue, although other factors like creep and viscoelastic stress relaxation may have played 

a role.  If these effects were appreciable, the increase in stretch could have altered the ligament 

failure properties.  It is known that the conditions of the experiment play a role in the failure mode 

exhibited by the ligament.  In knee ligaments, it was shown that the strain rate can significantly 

affect the ligament failure mode[103].  All of the specimens in the current work were cycled at the 

same frequency of 1 Hz.  The previously discussed failure patterns may be different for different 

cycling frequencies. 

Because the ultimate fatigue failure is an amalgamation of smaller micro-traumas arising 

during the cycling, the presence of pain may serve as an indicator of impending failure.  Potential 

pain caused by these micro-traumas has been evaluated through physical examination of throwing 

athletes using a variety of tests[104, 105].  The sensitivity of these tests may not be sufficient to 

identify the exact location of the source of pain, but the general observations of these results and 

the related work could give high probability to the likelihood of the issue being located near the 

region of the ulnar insertion.   

Other indicators of the onset of fatigue failure can be sound.  Athletes with acute UCL tears 

have been known to hear or feel a “popping” sensation at the time of suspected injury[106].  During 

the fatigue testing, there were several minute “popping” sounds that could be distinguished 
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throughout the cycling.  These sounds became more pronounced as the specimens reached their 

failure point.  Complete failure was often accompanied by a significant “pop” which was not as 

sudden, but longer in duration, signifying the continuous tearing of the ligament. 

Whether the fatigue failure of the ligament occurs by avulsion at the origin/insertion cites 

or tearing at the mid-substance, the reconstruction of the fractured ligament can be performed by 

many different techniques.  These may include the docking technique, Jobe technique, Dane 

Tommy John technique or American Sports Medicine Institute technique[107].  Good outcomes 

in regard to valgus stability restoration and return-to-play have also been documented[31, 108].   

6.4 Finite Element 

6.4.1 Elastic Simulation 

For the elastic finite element simulation, the post-processing took the average of all the 

deviatoric stress and strain results for every element in the ligament.  The average was taken 

because it was desired to run a large number of simulations and, while taking the results from a 

specified region of the ligament was possible, selection of the same elements for analysis after 

each simulation was impractical.  It was also desired to gain a complete representation of the 

whole-ligament response, which could be better achieved by analyzing all of the elements. 

Selection of every element had its disadvantages.  The first disadvantage was that the 

inclusion of every element meant that those elements at the boundary, either in direct contact with 

the bone or in the near vicinity, were included in the results.  This could have introduced some 

irregularities in the average results.  In accordance with St. Vennant’s Principle[109], the behavior 
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of the material farther away from the boundary more closely represents the actual material 

behavior.  To mesh the material at the boundaries, some elements may have been stretched or 

compressed, leading to high aspect ratios.  Because of this, these elements too close to the 

boundary could have displayed stress and strain responses that were far removed from the 

physiological range.   

This was noticeable when analyzing the individual responses of the elements.  Some 

elements displayed maximum stresses on the order of 108 and strains greater than 100 percent.  

Both of these values were non-physiological.  To account for this, it was assumed that the number 

of elements near the mid-substance of the ligament, away from the ulna and humerus insertion 

sites, was much greater than the number of elements at the boundary.  This assumption was based 

on the quantitative measurements taken of the ligament length, which has the greater proportion 

away from the boney insertions.  Therefore, given their quantity, the mechanical responses of the 

mid-substance elements would out-weigh the influences from the boundary and contribute more 

to the average stress-strain response. 

Another disadvantage of taking the average of the results for every element was the loss of 

non-linearity.  As seen from the results of Figures (82-86), every average response was linear.  

However, when analyzing the individual responses, the non-linear stress-strain behavior typical of 

ligaments was present in a majority of the elements.  When considering that there were thousands 

of elements involved in the simulation, it was likely that the total response of the ligament could 

become linearized within the average calculation.  This is because amongst the individual element 

responses, some were entirely linear.  This was not unexpected because some of the specimens in 

the experimental elastic testing displayed similar behavior.  If the magnitude of the stress in these 

elements was significantly greater than the magnitude of stress in those elements with non-linear 
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responses, then the average response of all the elements would be dominated by the linear 

behavior. 

As seen in Figures (82-86), for several specimens, the average response correlated well 

with the modeled behavior of the ligament.  For other specimens, the average response did not 

correlate very well, but the addition of one standard deviation did.  Analyzing the response with 

the inclusion of one standard deviation was done because it is commonplace to include the standard 

deviation with average measurements.   

For every specimen, the constitutive modeled behavior was always within one standard 

deviation of the average simulated FE behavior.  When the results did not closely agree, the 

average FE results were typically less than the constitutive modeled behavior.  This may have been 

a result of the small degree of displacement that was imposed in the FE model.  Excluding the rigid 

body motion of the elements near the displacing ulna, the relative motion between the elements 

along the length of the ligament may not have been great enough to produce large stress-stretch 

responses.  Averaging all of these minute responses together would undoubtedly produce an 

average response that was less than the constitutive modeled response. 

6.4.2 Fatigue Simulation 

For the fatigue simulation, the simulated displacement of 2-3 mm was consistent with the 

measured joint opening of the cadaveric specimens during testing, and was within the range of 

ultrasonically measured values of 3 – 5 mm for current athletes undergoing valgus loading 

protocols[98].   

The direction of ulnar displacement was set to be vertical with respect to the humerus.  The 

olecranon constrains the ulna from separating too far out of the same plane as the distal humerus.  
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Given the results of Pexa et al[98], it was seen that no such constructs prevent the joint from 

opening in a plane perpendicular to the ulna, as observed in valgus rotation.  The tetrahedral 

elements used in the simulation do have rotational degrees of freedom however, the asymmetric 

geometry of the ulna made the boundary conditions necessary for rotational displacement difficult 

to define.  The experimental findings, small angle theory and limitations of the simulation lead to 

the utilized vertical elongation method. 

For a single cycle of displacement, the average maximum stretch of all the elements was 

observed to be approximately 99.7 percent of the experimentally observed average failure stretch.  

The result of the one cycle average stretch being close in magnitude to the average fatigue failure 

stretch for an approximately equivalent level of loading could be explained numerically and 

physically.  Physically, the AMCL is the primary inhibitor of elbow valgus rotation[19], therefore, 

the amount of stretch to prevent rotation should be relatively close to the stretch at failure, given 

the tendency of the ligament to resist excessive stretching to stabilize the elbow.  Numerically, any 

number of misshapen elements or elements to close to the boundary could contribute to an enlarged 

stretch result. 

The maximum stretch was used instead of the maximum stress to form the ratio by which 

to estimate the cycles to failure, because while the displacements for a small degree of valgus 

rotation and vertical elongation may be similar, the stresses may be different.  Because stress is a 

second order tensor, the 3D loading of a body can greatly affect the magnitudes of the components.  

The orientation of the body with respect to a given coordinate system can also have a significant 

effect on the components, as transformations may need to be considered.  In contrast, the 

strain/stretch tensor, when considering the principal values, can be represented as a vector whose 
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components are independent of the orientation of the body or the loading.  This is because these 

principal values occur in planes where shear influences are negligible[109]. 

Only three of the eleven tested specimens produced cycles to failure values that were of 

the same magnitude of the experimental values.  For most cases, the experimental values were 

much higher.  This could be a consequence of the lack of individual specimen geometry present in 

the model.  The same 3D model was utilized for the simulation of each specimen.  As mentioned 

before, each specimen was unique in their width, thickness and length measures.  Having these 

variables more closely related to the actual physical attributes may have produced closer cycles to 

failure estimates.   

6.4.2.1 Iterative Manual Application of Damage 

This method of simulating fatigue differs from the standard finite element method.  In the 

standard method, the 3D model would be cycled automatically given the conditions of the 

simulation.  After every unloading, the constitutive equation parameters would be altered 

individually for each element.  This would then alter their elemental stiffness matrices and, 

likewise, the global stiffness matrix.  The average stress-strain response of the AMCL would then 

be output.   

The current method adjusted the constitutive equation and consequently, the stiffness 

matrices, of every element on a global scale.  This method can be justified through assumptions 

made about how the ligament accrues damage and where the damage may occur.  This method 

considered the ligament as one body and for the first cycle, the maximum stress/stretch represented 

an equivalent stress/stretch that would be experienced at every level of the body.  This was akin to 

the stress/stretch that would be measured in a standard tensile test of a rectangular tissue specimen.  
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This singular maximum stress/stretch then presented a single estimate of the cycles to failure for 

the whole ligament and, thus, every element. 

This cycles to failure value governed the nature of the subsequent cycling, for which each 

element was assumed to accrue, nonlinearly, the same amount of damage per cycle.  Therefore, 

each element had a different stress-strain response, but each element’s response was changing at 

the same nonlinear rate and would ultimately reduce to a failure state at the same number of cycles.  

This was a holistic approach to characterizing the damage accumulation of the AMCL, rather than 

a localized one. 

While a localized method may be useful for predicting where failure may occur for the 

AMCL, it may not be as necessary when predicting when failure might occur.  As mentioned 

earlier, every cycle produces a wide variety of stress-stretch responses for each element.  Elements 

with very high stress responses would be predicted to fail at a low cycle number.  Conversely, 

elements with low stress responses would fail at a high cycle number.  Both of these results would 

provide an insufficient prediction for the cycles to failure causing the ligament to approach 

localized failure either too quickly or too slowly.  Having the holistic approach, where the average 

of these responses was considered, could have possibly brought the cycles to failure prediction 

into a more anatomically accurate range. 

6.4.2.2 Elemental Stress and Strain Distribution Contours 

The contour options in post processing gave a visualization of the respective stress and 

strain distributions.  Figures (92-93) show these distributions for specimen 10 for the cyclic cases 

of n/nf equal to 0, 0.5 and 0.95.  For both stress and strain, the more focused regions indicating the 

greater magnitudes of stress and strain were located at the mid-substance of the ligament.  These 

results were expected because the elements near the humerus are near the static body and therefore, 
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displace less and should show lesser magnitudes of the kinetic variables.  The elements closer to 

the mid-substance would have more relative displacement, as compared to the rigid body motion 

of the elements near the ulna, producing a more distinguishable stress/strain distribution. 

The contours of strain did not change by a noticeable degree for each of the cyclic cases.  

This meant that the distributive effect seen in the strain behavior remained relatively constant 

throughout the simulated cycling.  This could be indicative of stretch magnitudes that do not 

change much with the altering of the constitutive parameters, i.e. softening of the ligament.  This 

was indicative of the nonlinear relationship between stress and stretch, where the changes in these 

two variables in response to some perturbation can be non-proportional. 

The contours of stress changed by a moderately distinguishable amount for each of the 

representative cases (Figures 92-93).  As the value of n/nf increased, the distribution of stress 

concentration became more broadened around the mid-substance of the ligament.  This suggested 

that the magnitude of the stresses near this portion changed significantly as the cycling progressed.  

This was expected because altering the constitutive parameters directly affected the stress response 

of the elements.  The highest stresses being located near the mid-substance is difficult to analyze 

because the results discussed in section 6.3.2 would suggest that the regions of greatest 

concentration should be near the ulna, but these elements were near the boundary, so some of the 

ulnar element behaviors may be irregular. 

6.4.2.3 Stress Softening 

The simulated decrease in stress and increase in stretch was evaluated at n/nf values of 0.25, 

0.5, 075 and 0.95.  These specific evaluation points were chosen for ease of comparison with the 

experimental results.  The stress was observed to decrease nonlinearly across the simulated cases.  

The stretch was observed to increase nonlinearly from the first to last cycles. 



 174 

The profile of the nonlinear stress softening nearly resembled that of the damage evolution 

curve of Figure (35) and had very little variation according to the average results seen in Figure 

(96).  This was expected because the fraction by which the stress decreased was governed by the 

manual altering of the constitutive model parameters.  The relative matching of the two curves 

justified the method of altering the parameters of C1-C3 only, excluding C4, showing that the 

straightening of the fibers represents a physical property that remains unaffected by the stress 

softening from fatigue loading. 

6.4.2.4 Stretch Increase  

It was expected for the maximum stretch of the ligament to increase with increasing values 

of n/nf.  The magnitude of this increase was evaluated for the same values of n/nf as the analysis 

for the stress decrease.  As seen in Figure (98), the rate of this increase for the simulation was 

nearly linear and constant up to a value of n/nf of 0.75.   Up to a value of n/nf of 0.95, the curve 

then exhibits a sharp increase in slope up to the maximum value of stretch increase.     

The constant slope of the linear region could be indicative of the minute, yet steady, 

formation of micro-trauma failure mechanisms, such as individual fiber deformations.  This small 

degree of fiber deformation at low cycle fatigue levels has been observed ultrasonically in animal 

tendons subjected to repetitive cycling[110].  It could be at this point during a pitching cycle that 

small indicators of these fiber deformations can arise on the macro-level, such as discomfort in the 

throwing elbow.  The degree of these deformations was observed to grow in magnitude as the 

cycling progressed until the tendon reached a state of significant matrix disruption at the higher 

cyclic levels[110].  This severe matrix distortion would undoubtedly result in high rates of stretch 

increase, which could be indicative of the sharp increase in slope seen in the results for fatigue 

induced stretch increase.    
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The breaking of the fibers during this initial region may present an opportunity for healing 

of the ligament to occur.  These small defects in the ligament where the fiber tearing might have 

occurred would be healed by the typical ligament/tendon healing pathway.  This pathway includes 

cell proliferation, fibrous tissue reformation and collagen fiber realignment[111] and collagen 

fibril diameter growth[112]. 

The accelerated slope near the latter end of the curve could represent a region during the 

cycling where irreparable damage has occurred and failure is likely imminent.  However, it is 

necessary to highlight that the data in these results was taken at every approximate 25th percent of 

the total cycle life for each specimen.  If the data were sampled at a finer rate, then the dramatic 

rise in slope displayed between 75% and 95% cycle completion may not be as pronounced.   

6.4.3 Model Validation 

The validation of an FE model is predicated on the ability of the model to predict the 

outcome of experimental observation.  The experimental observation chosen for proof of 

validation was the increase in maximum stretch recorded after specified cycle completion.  The 

average experimental increase in stretch for the eleven specimens was approximately 0.63% and 

0.91% for 50% and nearly 100% of their respective cycles to failure value.  The simulated stretch 

increase values agreed well with the experimental values, giving percent difference magnitudes of 

less than 1% for each case, as seen in Table (10).   

The variable of stretch increase was used to validate the model because it was a dependent 

variable of the displacement-controlled simulation.  The damage evolution curve of Figure (35) 

was derived using the experimental data for the increase in rotation angle for the specimens 

subjected to cyclic valgus loading.  Rotational angle and ligament stretch are understandably 
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correlated, as larger rotation angles will produce larger stretch values.  However, this relationship, 

given the nonlinear behavior of the ligament, is not one-to-one.  Therefore, the information 

contained in the damage evolution curve and imparted into the model has no inclusion of 

information regarding fatigue induced ligament stretch effects.  Thus, the increase in the maximum 

stretch was a uniquely predicted variable and was not influenced by the mechanical properties 

input into the elastic model, or the modified cycling model, rendering it a suitable variable for 

validation analysis. 

Another variable for validation would be the stress-stretch behavior.  With this 

consideration, the stress-stretch behavior of the specimen would be analyzed at some experimental 

cyclic step and compared to the stress-stretch behavior of the simulation at the same number of 

cycles.  In the absence of a method to relate ulnar torque to ligament force, or to measure ligament 

force directly, this method of validation was not feasible for the current work. 

6.4.4 Elemental (Localized) Stress Softening 

The localized stress softening method was used to visualize where along the AMCL failure 

was likely to occur.  It was not a finite element routine.  The elements were treated as isolated 

entities with their own stress-strain responses, damage evolution rate and cycles to failure value.  

In a finite element routine, these variables would also be unique to each element, but there would 

also be individual alterations to the elemental and global stiffness matrices, making the stretch-

stress responses inherently different after each cycle.  However, the damage evolution rate and the 

cycles to failure for each respective element, as dictated by the results of the first cycle, would be 

unaltered in the finite element routine. 
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Because these two variables, the damage evolution rate and elemental cycles to failure, 

were independent of the finite element method, the effect of these variables on the initial stress-

stretch behavior of the ligament was also independent.  Therefore, a visualization of how the stress 

and strain distribution was changing during cycling was not plausible in the absence of the finite 

element resources, but a visualization of how quickly the stress would soften was plausible.  In the 

interest of predicting fatigue failure location, this was more valuable. 

The results showed the regions with the quickest stress deterioration were at the mid-

substance and at the ulnar insertion.  These results match with the findings of the fatigue 

experiment where the most failures occurred at the ulna and the mid-substance, respectively.  

However, it is again mentioned that because the elements near the ulna were located at the 

boundary, these results warrant further attention.  These results are also supported by previously 

reported works.  In a study involving 353 patients, MRI was used to classify acute ACL tears based 

on location.  Of those patients tested, approximately 43% of the tears occurred at the proximal 

ligament and 52% at the mid-substance[113].  In adolescent pitchers, these numbers were 

approximately 38% and 52%[114]. 

This observation of proximal vs distal ligament tearing is critical when concerning the UCL 

of baseball pitchers.  In a study involving 25 pitchers who underwent UCL reconstruction (UCLR), 

60% had proximal tears and had lesser return to sport (RTS) rates and lower postoperative 

utilization than athletes with distal tears[115].   These findings show how critical it is to know who 

may be susceptible to a fatigue injury and where, because it can significantly affect the career of 

the athlete.  The visualization results of Figure (100), could provide a rough estimate of this 

valuable information. 
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The progression of the stress softening as the cycles were increased was evident across 

Figures (101-104).    As the number of cycles grew, the number of elements within the designated 

problem ranges increased and those elements previously within the problem range progressively 

moved toward more hazardous ranges.  This shows how the visualization model can track the 

progression of stress softening at different locations along the ligament.   

A disadvantage of this technique was how the cyclic ratio for each element was calculated.  

It was a ratio of the maximum average elemental stretch to the maximum average experimental 

fatigue failure stretch.  If this ratio was greater than one, then the natural log in the cycles to failure 

equation (Equation 5-2) would have produced a negative number for the predicted cycles to failure 

value, which is not feasible.  This was inevitable, due to the nature of finite elements, that some 

elements would produce maximum stretch values that exceed the experimental value.  Elements 

exhibiting this result had to be excluded from the visualization.   

Another disadvantage was that the rate of stress softening could be faster in the finite 

element method.  The softening of surrounding elements could have an effect on the nearest 

neighbors, causing softening to occur at an accelerated rate in the adjacent vicinities.  This would 

affect the visualization and the overall results. 

6.4.5 Alternative Influencing Factors 

6.4.5.1 Stress Relaxation 

Stress relaxation could have played a role in the final results, based on the nature of the 

fatigue experiment.  After each step of 500 cycles, the apparatus was stopped for a period of time 

to allow for the re-initiation of the next 500 cycles and video recording.  Depending on the total 
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cycles achieved, this brief window of inaction occurred multiple times during the testing of each 

specimen and could have provided the opportunity for stress relaxation to occur. 

The rate of stress relaxation in ligaments is dependent on the magnitude of strain[67].  

Because each specimen was loaded to a different magnitude of valgus torque, the strain magnitude 

was different for each specimen.  This meant that any relaxation experienced would occur at a 

different rate for each specimen.  Those tested at lesser loads would relax faster than those tested 

at higher loads, as the rate of stress relaxation in ligaments has been shown to decrease with 

increasing strain magnitude[116].   

If the influence of stress relaxation were significant, the varying degree of relaxation rates 

between the specimens could have affected the results.  Specimens loaded to lesser strains would 

have relaxed faster, possibly allowing the ligament to recover and increase the ultimate fatigue life 

of the ligament.  Ligaments loaded to larger strains would not have been afforded this mechanical 

advantage.   

This advantage for the lower strained specimens could have been mitigated by the time 

allowed for relaxation.  It has been shown that the effects of time allotted and strain magnitude 

influence the relaxation phenomenon independently of each other, with relative relaxation rates 

being equivalent for similar times and varying strains[117].  This means that if the time spent in 

these periods of inactivity were relatively equivalent for each specimen, each specimen would 

experience a similar rate of relative relaxation regardless of the strain magnitude.  With this in 

mind, the time of each dead period was dependent on the consistency of the operator and was not 

consciously controlled for each specimen.  However, the relative speed was fairly consistent. 
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6.4.5.2 Temperature 

Three of the fatigue tests could not be concluded in one day.  Those specimens had to be 

stored in a cooling unit for testing to resume the following day.  There was one specimen which 

had to be completely refrozen.  It has been shown that the refreezing and thawing of fibrous tissues, 

such as ligaments[118] and tendons[119], does little to affect the mechanical, viscoelastic or 

damage properties of the material.  This is true assuming the tissue has been thawed to room 

temperature.  Given the time scale of the current work, the single refrozen specimen and the three 

re-cooled specimens were not able to equilibrate to room temperature before testing resumed. 

It is known that temperature changes within a body can affect the mechanical properties.  

In dynamic frequency testing of brain tissue, it was shown that decreasing temperatures resulted 

in stiffer material responses[120].  Assuming that the cooled specimens experienced an increase 

in stiffness, this would significantly affect the results for their fatigue life.  The fatigue failure 

characterized by decreasing stiffness could have been counteracted by the increase in stiffness 

experienced from the lowered temperature.   

This was addressed during the test, as observation of the colder tissue did reveal a tougher 

texture and seemingly less flexibility.  After a few hundred cycles, the heat generated from the 

motion eventually returned the specimens to room temperature.  Because this was only 

experienced for four of the eleven specimens, it was assumed that the overall fatigue life results 

remained adequately representative. 
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7.0 Conclusion 

This work was the first to define the nonlinear damage accumulation behavior of the 

AMCL resulting from repetitive valgus loading and provide a basis for implementation of the 

nondimensional results into a finite element routine.  An empirical result by which to estimate the 

fatigue life of the AMCL based on the maximum stretch/stretch was also presented.  When 

combined, these two contributions provide a method by which to estimate the nonlinear stress-

softening of the AMCL resulting from an arbitrary number of valgus repetitions, relevant to 

baseball pitching. 

This work was performed in the interest of providing a contribution to the understanding 

of the mechanical and damage accumulation properties of the AMCL.  Having a reliable model 

phenomenologically derived from the behavior of twenty-two specimens can be a valued asset in 

the effort to manage and improve the elbow health of the overhand throwing athlete. 

Regarding baseball pitchers, if estimates can be made about the stretch experienced by the 

AMCL during a certain type of pitch, then the fatigue life of the AMCL can be estimated using 

the fatigue life curve provided by this work.  That curve would inform the athlete and trainers 

about how many approximate pitches of that type can be performed before failure.  This could help 

the relevant decision makers devise routines that alternate and optimize periods of performance 

and rest.   

At the conclusion of performance periods, the amount of pitches thrown can be used to 

estimate the accrued amount of damage using the nonlinear damage evolution curve provided by 

this work.  This could inform physicians about what degree of additional stretching and stress 

softening has occurred.  Having this information could inform decisions on how long to rest the 
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athlete to enable an adequate amount of healing.  If any assistive rehabilitation is necessary, 

knowledge of the degree of estimated damage could guide decisions on utilized methods and 

techniques. 

In the presence of elbow pain, knowing the amount of damage could help clinicians make 

estimates as to whether significant tearing has occurred.  Knowing this before having the 

confirmation of MRI could help in the immediate stabilization of the elbow prior to imaging and 

subsequent intervention.  

Having an additional method for the purpose of monitoring and predicting the fatigue 

health of the AMCL in the throwing athlete can provide an improvement in the confidence of 

performance, reliability in investment and assuredness of availability. 

7.1 Limitations 

To measure the deformation of the ligament during the elastic testing, the tracking of 

optical markers was used to make measures of strain.  The reliability of this method depended on 

the positioning of the markers.  Markers too close together could register as a single marker and 

markers too far apart could fail to capture the curvilinear nature of the ligament.  This could have 

resulted in some inaccuracies in the strain measurements, which would affect the stress-stretch 

behavior and the resulting model.  Full-field strain measurement techniques, such as digital image 

correlation (DIC) may be more suitable. 

It was desired to have the humerus completely stationary during the valgus cycling of the 

fatigue tests.  This was never exactly accomplished, as the swing arm housing the humerus did 

experience some slight motion for each specimen.  The cause of this could have been the 
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inadequate properties of the shaft which allowed for bending to take place.  Slight movement of 

the humerus allowed for increased relative motion between the ulna and humerus, resulting in 

strain measurements that would be inherently different from those measured from an ideally 

stationary humerus.  Because the motion of the humerus was relatively small in comparison to that 

of the ulna, the magnitude of this effect on the resulting strains was assumed negligible.  This was 

a design issue that will be corrected for future works. 

The fatigue properties were unable to be explicitly implemented into a finite element 

routine.  This limited the ability of the work to analyze the local stress and strain states at different 

locations along the ligament.  It necessitated that a simpler, more general formulation be used 

which was sufficient for the purposes of the current work, but may lack the sophistication needed 

for more advanced efforts.  With the resources available to acquire the necessary software, this 

limitation could be readily overcome. 

7.2 Future Work 

Completely implementing the fatigue effects defined by the work into a fully automated 

finite element routine would be the primary continuation.  Once this has been achieved, complete 

simulations can be ran without the need for manual augmentation and full analyses on the local 

stress and strain effects can be performed. 

The hope is for this work to someday benefit the performance and health of the baseball 

pitcher.  For this to happen, the utility of the work needs to be extended for the consideration of 

active pitchers.  Non-invasive methods such as ultrasound assisted shear wave elastography could 

be used to estimate the stress-stretch behavior of the throwing athlete for a variety of pitch types 
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and pitch speeds.  This data could then be used in conjunction with the fatigue life curve, damage 

evolution curve and finite element simulation to make accurate predictions on the relevant 

ligament health implications for the athlete, resulting from any number of prospective performance 

levels. 

The 3D models, for purposes of increasing predictive accuracy, would need to be better 

suited to fit the native biology of the individual athlete.  Because every AMCL can vary in width, 

thickness and length, a method to accurately adjust these variables based on the measurements of 

the current subject would be critical in increasing model reliability.  This could be accomplished 

by taking an MRI of the athlete’s elbow and generating a unique solid model specifically for that 

athlete.  In cases where that may not be possible, the current model can be augmented as guided 

by certain anthropometric variables, such as body mass index (BMI), height or bone structure that 

may correlate with ligament geometry, as has been shown to be true for the diameter[121] and 

length[122] of hamstring grafts used in ACL reconstruction. 

To increase the utility of the model, the ability to simulate the fatigue implications resulting 

from different pitch types could be potentially added.  Because the model simulates valgus motion 

through vertical joint opening, different pitches would need to be categorized by their respective 

joint opening magnitudes.  This could be measured ultrasonically on a population of pitchers 

performing different pitching actions.  In addition, because different amounts of these pitches are 

thrown per game, the utility of the model would need to be extended for the purpose of simulating 

an arbitrary number of mixed pitch types. 

The current model consists only of the ulna, humerus and AMCL.  It does not consider the 

effect of the surrounding muscle complexes.  The muscles at the elbow and forearm support valgus 

motion and therefore, relieve some of the stress on the AMCL.  This relief in stress would 
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intuitively increase the fatigue life of the ligament.  Improving the accuracy of the model for future 

work would include introducing additional model parameters that could effectively simulate the 

presence of the surrounding muscle. 
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