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Abstract 

Improving Production Strategies in Unconventional Oil and Gas Reservoirs Through 

Machine Learning 

 

Derek M. Vikara, PhD 

 

University of Pittsburgh, 2021 

 

 

 

This research involves the application of supervised, unsupervised, and deep learning ML 

modeling approaches using empirically-derived well completion, production, and geologic 

datasets from prominent unconventional O&G plays in the U.S. The anticipated outcome of this 

work is to provide substantial contribution to the knowledge base pertinent to O&G field 

development and reservoir management approaches (transferable to other subsurface applications) 

founded in data-driven strategies. ML-based models built through this work complete a multitude 

of tasks, including: 1) Evaluating potential well production response to various hydraulic 

fracturing completion designs using a gradient boosting ML algorithm; 2) hierarchical ranking of 

well design and geologic reservoir quality parameters and their associated interactions on 

production response by assessing parametric importance and partial dependence; 3) deriving well 

design strategies that maximize production given well placement through optimization; 4) 

development of time series-based predictive forecasting capability using long-short term memory 

neural networks that can generalize temporal or sequence-based tendencies in water and associated 

gas production trends; and, 5) to enable rapid identification of stratigraphic units within a basin 

using multiclass classification given total vertical depth and spatial positioning.  

The findings from this work show that ML provides fast, accurate, and cost-effective 

analytical approaches to a variety of O&G-related functions. These strategies can be used to 

analyze disparate datasets in innovative ways, provide utility in generating new insights, and may 
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be used in ways to identify improvements over industry benchmarks. They offer robust approaches 

that can supplement existing reservoir management best-practices and improve the return on 

investment from field data acquisition.   
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Di = initial decline per the Arps model (fraction/month) 

ft = LSTM forget gate 

G = normalized average Marcellus Shale gamma ray (API) 

Gstdev = Marcellus Shale normalized gamma ray standard deviation (API) 

h = Weak learner (in GBRT context) or prediction horizon (in forecasting context) 

hs = shale net pay zone thickness (ft) 

ht = LSTM cell output 

Ho = null hypothesis 

H1 = alternate hypothesis 

H(K) = Hartigan’s Index 

it = LSTM input gate 

k = decision tree or number of folds in cross-validation 

K = total number of decision trees or total number of clusters 

l = decision tree node 

L = loss function 

Lp = perforated interval length (ft) 

m = month 

maxx = maximum value in an x feature set 

minx = minimum value in an x feature set 

nsamples = number of samples in a dataset 

N =length of dataset or pseudo well count 

OGIP = original gas in place (scf) 

P = proppant per foot (lbs / foot) 
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pm = production value for a given month (MMcfge) 

q = monthly oil production per Arps model (bbls per month) 

qi = initial oil flow rate per Arps model (bbls per month) 

R = x-feature space region for decision terminal nodes 

relu = rectified linear unit function 

Rdeep = average Marcellus Shale deep resistivity (Ohm-m [via deep induction logging]) 

Rstdev = Marcellus deep resistivity standard deviation (Ohm-m) 

S = separate clusters 

SSRegression = regression sum of squares 

SSTotal = total sum of squares  

Sw = saturation of water (fraction) 

t = production month (month) 

tanh = hyperbolic tangent function 

Top 12w = top 12-months production (MMcfge) 

U = weight vector for recurrent component of LSTM layer 

Var = variance 

W = water per foot (bbls / foot) or neural network weight vector 

Wk = within-cluster sum of squares 

w = well 

x = input / predictor variable 

�̃� = population median 

xnormalized = x values normalized between 0 and 1 

y = response variable 
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�̂�i = simulated / predicted response variable 

Z = Z-values 

Zt = LSTM candidate values for the cell state 

 

Unit Conversions 

The units used throughout this dissertation are commonly used industry standards for the oil and 

gas sector in the United States.  Conversion factors to the international system of units are as 

follows: 

 

1 barrel =  0.1589 cubic meters 

1 pound = 0.4536 kilograms 

1 foot = 0.3048 meters 

1 cubic foot = 0.0283 cubic meters 

1 acre = 4,047 square meters 

1 square mile = 2.5899 square kilometers 

1.1023 ton = 1 tonne 
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1.0 Introduction 

 

 

The increasing demand for reliable, affordable, and secure domestic supplies of energy 

amplify the need for continued research into ways to economically and efficiently access our 

Nation’s vast unconventional natural gas and oil resources. These types of low permeability or 

“unconventional” reservoirs (described as tight source rocks containing organic rich matter that 

has reached thermal maturity and is absent of hydrocarbon migration) are geologically complex 

and heterogeneous on a variety of scales; from basin scale, to reservoir scale, to core scale and to 

pore scales [1]. The application of horizontal drilling and hydraulic fracturing techniques in oil 

and gas (O&G) production has revolutionized the energy system of the United States (U.S.) [2] 

and has been the leading driver in growth in domestic natural gas and oil production. The relatively 

rapid expansion of U.S. unconventional O&G gas resources over the last several years has resulted 

in low gas and oil prices not seen for over a decade (Figure 1) [3]. The benefits have been an 

emergence in new business markets, lower greenhouse gas emissions, and an increase in the 

security of U.S. energy resources.1 For instance, the U.S., in particular, is benefitting from some 

of the lowest prices for natural gas in the world due to the growth in natural gas production, 

primarily from shale gas. Industries reliant on natural gas have seen overall costs drop, and some 

have touted low natural gas prices as the main reason for a manufacturing revolution in the U.S. 

[3, 4]. Some companies have begun to make major investments to take advantage of the low natural 

gas prices. Examples exist in the petrochemicals industry [2] as well as in the U.S. electric power 

 

1 This circumstance is separate from recent events (March 2020 through the January 2021 timeframe) related to natural 

gas (and oil) demand reduction impacted by the COVID-19 epidemic.  
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sector, which has seen fossil-based energy generation transition from coal-fired to natural gas-

based generation [5].  

While significant advances in horizontal drilling and hydraulic fracturing technology were 

made during the “shale revolution,” these technologies are still unable to recover large portions of 

the natural gas and oil in place [6]. Additionally, the world has more recently experienced an 

abundance of natural gas and oil supply versus demand for some time now as new supplies and 

suppliers have entered the global market. Absent supply reductions, lower global demand 

translates to reduced commodity prices in competitive hub pricing and on spot prices [7]; 

suppressing the remaining gas (or oil) assets that can be economically recovered. 

 

 

Figure 1. Snapshot of recent and historical O&G market prices in the U.S., limited to West Texas Crude Spot Price 

(WTI) and Henry Hub Spot Price (HH). Data acquired from U.S. Energy Information Administration (EIA) [8, 9]. 

 

 

Regardless, energy-focused forecasts, including the EIA’s Annual Energy Outlook 2020 

[10], project continued growth in the production and utilization of natural gas (particularly from 
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shale gas resources in the eastern U.S. [i.e., Marcellus and Utica Shales]) and crude oil (particularly 

from the Permian Basin in the southwestern U.S.) through 2050 (Figure 2). The realizations of 

these EIA forecasts in Figure 2 are contingent upon the occurrence of several technical 

improvement and economic/market conditions – some of which include: 

• Increasing exports of crude oil, petroleum products, and liquefied natural gas from the U.S.; 

• Natural gas spot prices at Henry Hub increase from $2.56 to $3.70 per million British 

thermal units (MMBtu) from 2019 through 2050; 

• North Sea Brent crude oil prices increase from $63 to $104 per barrel (bbl) from 2019 

through 2050; and 

• Technological advancements (in the range of 1 to 6 percent per year) and improvements in 

industry practices which result in lower production costs (1.5 percent per year) for 

shale/tight hydrocarbon development in the EIA Reference case and an increase the volume 

of oil and natural gas recovery per well [11]. 

Given the suppressed O&G economic climate (December 2020 values: Henry Hub Natural 

Gas Spot Price - $2.59 per MMBtu; West Texas Intermediate and Brent Crude Oil Prices- $47 per 

bbl), novel and cost-effective approaches that can supplement existing reservoir and field 

management strategies and potentially help improve recovery may be needed to keep pace with 

energy production forecasts like the EIA’s Annual Energy Outlook 2020 and assure sustainability 

in unconventional field development moving forward. The absence of cost or efficiency 

improvements in unconventional O&G development may pose substantial risks to both national 

energy security, significant local economic impacts, less than effective use of the national oil and 

gas resource asset, and can be detrimental to the future investments and effective buildouts of 

energy infrastructure into the future. 
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Figure 2. EIA’s Annual Energy Outlook 2020 Reference Case showing dry gas production outlooks through 2050 

(top) and onshore crude oil prodution outlooks through 2050 (bottom) [10]. 
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Sustained suppression of market prices for O&G can diminish the economically-viable 

portions of remaining O&G assets. Under these circumstances, solutions would be encouraged that 

can improve productivity and lower costs and/or increase operational efficiency. It’s been 

mentioned that hydrocarbon production-related performance improvements in unconventional 

O&G development is expected to occur through tailored well design and completion strategies 

specific to the geologic conditions for which new wells may be placed [12, 13, 14]. In this pursuit, 

operators can benefit by considering approaches that can be both cost-effective and insightfully-

abundant in order to holistically evaluate the critical factors associated with both well design 

choices and the geologic conditions (including interactions) of potential drilling areas when 

considering field developing decisions [15]. Advancements in the computational power that are 

now widely available coupled with the emergence of digital datasets in the O&G sector creates a 

unique opportunity for machine learning (ML) to be applied for complex subsurface energy system 

applications. The intersection of these resources may facilitate the emergence of new strategies 

that could transform the way subsurface energy systems, including unconventional O&G 

development, are evaluated. While the applications of ML approaches are anticipated to help 

towards improving understanding of the phenomena and processes occurring in the subsurface, it 

also presents a challenge given the large amounts of data that must be collected, transmitted, stored, 

and processed. 

Machine learning has gained substantial interest as an innovative approach that can help 

address challenges facing O&G development. The technology may offer new techniques worthy 

of consideration by field operators in the pursuit of lowered cost and improved recovery objectives. 

The unconventional O&G arena has seen research take focus on applying ML-based techniques in 

various capacities. These include generalizing unconventional well productivity and informing 
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well completion designs [16, 15], improving well drilling operation practices [17, 18], 

characterizing lithology and geologic facies from well log data [19, 20, 21], detection of faulting 

in the subsurface using seismic data [22], operational predictive maintenance planning [23, 24], 

and detection of potentially high producing pay zones sweet spots via integration of disparate 

sources of data [25, 26]. The studies listed under each topic (as well as others not referenced here 

explicitly) provide innovative aspects that serve as a solid foundation for formulating new ML-

based research aimed at improving exploration and production efficiencies in unconventional 

O&G development.  

1.1 Background on Machine Learning 

 

Machine learning, a subset of artificial intelligence, has proved advantageous for use across 

various industries. These technologies help enhance business practices through the utilization of 

data. They are based upon the use of statistics-based algorithms that enable systems to learn 

automatically and improve from experience without being directly programmed. Machine learning 

aims to build model representations of systems of interest by learning from data provided. Once 

ML-based models are trained by observing data, they can be used to make predictions on unseen 

data examples that are within the same applicability domain. The ML model development process 

is a stark contrast from traditional rules-based modeling. A representation of each concept, for 

comparison, is provided in Figure 3.  
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Figure 3. Example dipction of the difference in approachs between traditional predictive modeling (top) and 

machine learning (bottom). Adapted from Zeiss [27]. 

 

 

Machine learning approaches typically fall under three prominent “learning” categories as 

follows: supervised learning, unsupervised learning, and reinforcement learning [28]. Each 

category is aimed towards a particular application depending on the underlying problem evaluated. 

Figure 4 provides a conceptual overview of the ML concept and the associated learning categories, 

applications, and problem from which each could be applied. Supervised learning is based on the 

development of models where training datasets are comprised of classified input-output data pairs 

that have been assigned under human supervision. Data applicable to supervised learning is often 

called “labeled” data. These labels apply to known attributes or features within the given dataset 
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[29]. Specific ML algorithms learn from labeled input or predictor variables (x) to generate a 

mapping function for labeled output or response variable (y) (i.e., y = f(x)). One of the main goals 

of supervised learning is to develop models that best approximate (i.e., generalize) the mapping 

function between predictor and response variables so that when new predictor data (x) are applied, 

a reliable prediction of the response (y) can be achieved [30]. Supervised learning is further 

subdivided into the applications per Figure 4 that includes 1) regression, where the response 

variable is typically continuous in nature, or 2) classification, where the response variable is 

typically categorical in nature. However, for both regression and classification applications, the 

labeled predictor variables (x) may be either continuous or categorical, or a combination of the two 

[31]. 

 

 

 

 

Figure 4. Schematic of machine learning categories and potential application examples. Figure sourced from Bettin 

et al. 2019 [32]. 
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Unsupervised learning differs from supervised in that it is applied through “unlabeled” data 

and algorithms are intended to identify patterns heuristically [28]. For instance, there are no 

predefined targets or responses for the attributes or features being studied (i.e., no explicit response 

variable (y) is predetermined). The goal in unsupervised learning cases is to enable algorithms to 

explore datasets and try and identify commonalities between attributes or features, as well as 

potential structures in the data. Since there is no targeted answer or objective, algorithms are 

empowered autonomy to discover commonalities and data structures (hence the “unsupervised” 

namesake) [29, 28]. Unsupervised learning applications can consist of 1) clustering, where the 

identified commonalities may define natural groupings of features or attributes, as well as 2) 

dimensionality reduction, where the number of features or attributes (i.e., dimensions) in the 

dataset under consideration can be reduced or downsized through a set of principal variables [33].  

Reinforced learning, the third category of ML outlined in Figure 4, involves learning within 

a specified environment via interactions and feedback based on a rewards system [34]. Supervised 

and unsupervised approaches are implemented as part of this dissertation, but reinforced learning 

strategies are not. Therefore, reinforced learning is not discussed at length here.  

The development of ML models typically follows a process of distinct and iterative steps 

that consists of problem classification (i.e., determining a modeling objective) through data 

collection, algorithm selection, validation, and model evaluation. A conventional process 

workflow for a ML development application is presented in Figure 5, which highlights prominent 

stages and sequence of events [31, 35]. However, despite the relatively linear process as depicted, 

the progression may, in practice, require iterations depending on realized versus expected results 

at any given step. 
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Figure 5. Example of a workflow scematic depicting common stages related to the development of data-driven ML 

models. Concept based on workflow proposed by Thallam and Dominguez (2019) [36]. 

 

 

In general, ML provides a benefit of enabling analysis of large volumes of data. Therefore, 

it is gaining popularity and wider-spread use in areas (applications outlined in Figure 4) where 

digital datasets are becoming available in large quantities, generated rapidly at high velocities, and 

patterns or relationships of interest may be difficult to represent using more conventional 

approaches. 

1.2 Research Objectives 

With the shale revolution, operators are producing unprecedented amounts of oil and gas 

from unconventional resources; however, only a small percentage of the resource in place is being 

recovered [37]. Additionally, the increased supply of natural gas and oil has also reduced 

commodity prices, straining operators who produce those resources to do so profitability. Many 
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have noted the potential for new, innovative possibilities in the O&G arena targeted at challenges 

pertaining to improving recovery and operational cost-effectiveness may occur through expanded 

use of digital empirical datasets and applying ML and data analytics to help improve well 

performance and operational planning moving forward [38, 39, 40, 31]. These types of data-driven 

approaches could provide added utility in cases where sufficient understanding of the overarching 

complexities of unconventional reservoirs is lacking; but the need exists to construct models 

capable of accurate and reliable replication of complex systems, or when expeditious predictive 

capability may be needed. They have proven effective in accurately modeling circumstances 

involving highly complex systems where variable conditions exist – not uncommon to 

unconventional O&G domains given the inherent relationship complexities between wellbore 

design, completion and stimulation processes, and prevailing geologic conditions of targeted 

reservoirs. The application of such approaches in unconventional O&G applications specifically 

could be aimed toward developing new insights, enabling improved understanding, help toward 

optimizing well/reservoir interactions [38], and provide a robust and cost-effective approach to 

supplement existing reservoir management best-practices.  

The research conducted in this dissertation applies ML to large unconventional O&G 

datasets with the aspiration of contributing towards the knowledge base relevant to O&G field 

development and reservoir management strategies through data-driven approaches.2 The specific 

goals of the research conducted through this dissertation include: 1) Developing accurate, 

multivariate, data-driven models that can generalize well performance in unconventional O&G 

 

2 The work implemented is not intended to replace detailed reservoir modeling with ML approaches explicitly, but 

instead consider them as an additional component to reservoir management strategies moving forward. 
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settings; 2) evaluate the impact of well design attributes, geologic properties, and their associated 

interactions on productivity in major unconventional O&G plays to assess productivity drivers; 3) 

implement ML-based models into a framework that can be used to inform future well design that 

maximizes productivity based on specific placement across a spatially heterogeneous 

unconventional O&G reservoirs; 4) develop data-driven modeling capability that estimates the 

volumes of multiple fluid types produced in tandem as part of hydrocarbon development – useful 

for informing field development strategies based on the volumes and quantities of produced fluids 

in order to effectively manage, treat, or potentially reuse produced fluids; 5) provide a means to 

supplement hydrocarbon production outlooks with associated fluid volumes as a function of time; 

and, 6) outline a methodology for implementing a ML-based subsurface formation identification 

tool that can be used in delineation tasks. A summary of the specific research objectives and the 

corresponding chapters of the dissertation in which they are addressed are provided in Table 1. 
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Table 1. Overview of dissertation research objectives and the chapter in which they are discussed 

 

Research Objective Chapter Title / Journal Paper 
Dissertation 

Chapter 

1 

Develop a ML-based predictive model built on a 

gradient boosted regression tree (GBRT) algorithm 

capable of accurate generalization of productivity for 
horizontal wells in the Marcellus Shale using data 

commonly available over large spatial scales 

Vikara, D., Remson, D., and Khanna, V. 

Gaining Perspective on Unconventional Well 

Design Choices through Play-level 

Application of Machine Learning Modeling. 
Upstream Oil and Gas Technology. 2020. 

Volume 4, 

https://doi.org/10.1016/j.upstre.2020.100007 

Chapter 2 

2 
Evaluate the effects of predictors on model production 

response for the tree-based models developed 

3 

Introduce a framework that ensembles a data-driven 

predictive model capable of accurate estimation of 

production with a well design optimization approach 

that maximizes well productivity 

Vikara, D., Remson, D., and Khanna, V. 

Machine Learning-informed Ensemble 

Framework for Evaluating Shale Gas 
Production Potential: Case Study in the 

Marcellus Shale. Journal of Natural Gas 

Science and Engineering. 2020. Volume 84, 

https://doi.org/10.1016/j.jngse.2020.103679 

Chapter 3 

4 

Classify the Marcellus region into distinct productivity 

bins or “grades” from high to low based on threshold 

cutoffs for simulated productivity from ML models 

5 

Evaluate similarity or disparity of the best well design 
choices that maximize well productivity and geologic 

properties of the Marcellus within associated rock 

quality bins 

6 

Develop a reduced order model that couples well 

design and geologic data into a single analytical 

method that can estimate production at new Marcellus 

Shale well sites without the reliance on ML 

7 

Develop a deep learning-based data driven modeling 
framework that enables formulation of joint prediction 

capability for associated gas and water produced 

alongside oil in the Permian basin region 
Application of a Deep Learning Network for 

Joint Predication of Associated Fluid 

Production in Unconventional Hydrocarbon 

Development 

Chapter 4 

8 

Generate oil, water, and gas production outlooks for 

various combinations of well designs and placement 

options that can be used to inform basin-level fluid 

production forecasting 

9 

Explore multiple ML classification-based algorithms 
and evaluate their effectiveness for identifying specific 

stratigraphic units (i.e., formations) as a function of 

total vertical depth and spatial positioning in a well-

developed geologic basin 
Machine Learning Classification Approach for 

Formation Delineation at the Basin-scale 
Chapter 5 

10 

Outline a data-driven model development framework 

that can be adapted for subsurface resource delineation 
or characterization across multiple domains, including 

oil and gas, geothermal, carbon dioxide storage, or 

environmental applications. 

https://doi.org/10.1016/j.upstre.2020.100007
https://doi.org/10.1016/j.jngse.2020.103679
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1.3 Significance and Technical Implication of Completed Research 

Developing and deploying ML technology in subsurface applications like unconventional 

O&G exploration and production has the potential to provide accurate, efficient, and cost-effective 

analytical methods that may transform how future subsurface energy resources are utilized into a 

much more data-driven science [35]. Insights gained from deploying ML as a novel compliment 

to reservoir management may enable improved understanding and insights of how engineered 

subsurface systems perform; thereby subsequently reducing the risk, improving the safety, and 

increasing the effectiveness of developing said resources. For instance, ML-based models have the 

potential to reduce time needed for reservoir simulations from days to seconds [32], which would 

provide a fast and reliable complement to the time-consuming operations performed with typical 

physics-based reservoir simulation models more commonly used. As a result, many more 

modeling “what if” scenarios can be implemented and evaluated using ML (when the availability 

of viable datasets exist) versus traditional simulation approaches – a concept depicted 

commendably by Abubakar in Figure 6. Therefore, there is a significant opportunity to gain more 

understanding of optimal field development approaches that result in the most prudent utilization 

of subsurface energy resources through new data-driven strategies. Additionally, ML approaches 

can be applied at various scales (i.e., basin-scale to the well level), thereby offering utility to 

evaluate various types of subsurface challenges.  
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Figure 6. Conceptual of traditional versus automated (i.e., machine learning-based) reservoir evaluation workflow. 

Sourced from Abubakar [41]. 

 

 

Beside the capability to perform data-driven modeling, analysis of subsurface systems 

using ML also provides capability, tools, and approaches that may facilitate the generation of new 

insight and knowledge pertaining to: 1) Acquiring and managing data in large volumes, of different 

varieties, and generated at high velocities; and, 2) the use of statistical techniques to thoroughly 

analyze the data and detect hidden patterns and associated relationships in large, complex, 

multivariate datasets [42, 43, 31]. The combination of these benefits may facilitate data-driven 
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insights for both understanding and optimizing the performance of engineered subsurface systems 

[43]. A critical next would involve industry adoption of the notable outputs generated from such 

approaches, tools, and/or new functionalities so they may be implemented into practice and 

generate performance improvements in the field. For instance, outputs from ML-based analyses 

could take multiple forms, including, but not limited to, supplemental data for existing physics-

based models, used explicitly to inform field or operational development decisions by operations, 

or stored or fed into other decision-support and/or situational awareness systems (sharing aspects 

of transfer learning). In regards the latter point, ML applications have enormous potential to 

integrate with other capabilities, including enhanced visualization (critical for enabling “human-

in-the-loop” functionality), optimization of modeled systems, and potentially autonomous 

monitoring system capability [44].  

The goal of this proposed work is to evaluate region-specific industry performance data 

through time and attempt to identify approaches conducive to improving the recovery of 

hydrocarbons in unconventional reservoirs, as well as evaluate the implications in terms of 

resulting fluid production given well design and placement decisions. Much of the proposed work 

focuses on the application of ML to large well datasets that span predominant O&G plays in the 

U.S.; most notability the Marcellus Shale (Marcellus) in the Appalachian Basin and in the 

“Wolfberry” payzones (typically considered the Upper Spraberry through Cisco/Cline [Wolfcamp 

D] reservoirs) of the Permian Basin. 

The International Energy Agency (2017) estimates that widespread use of digital 

technologies like ML could, for instance, increase O&G reserves by about 5% and reduce 

production costs by 10-20% [45]. The realization of this level of improvement over current best 

practices would be substantial towards more prudent development of our nation’s oil and gas asset 
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base through 1) improved recovery efficiency of development operations and 2) an expansion in 

economically viable hydrocarbon resources that could be developed. Findings from this 

dissertation research provide insight associated with the interaction of specific well designs and 

spatially-distinctive geology in the Marcellus Shale, the parameters most influential in terms of 

model impact and production, as well as a novel, data-driven approach for sweet spot 

identification, grading and ranking productivity across plays, and identifying well designs settings 

that maximize productivity based on their placement across the Marcellus. Additionally, this 

research provides a data-driven approach for a more holistic evaluation towards field development 

in the Permian Basin where multiple producing reservoir options are co-located, and where unique 

challenges facing the O&G industry exist related to associated gas and water production. Overall, 

the knowledge, data, and resources gained and provided through this research (Section 1.4 below) 

should be of interest to those in industry, academia, government, and otherwise interested in 

leveraging data-driven approaches to better understand and potentially improve the way 

unconventional O&G resources can be evaluated. Additionally, the data parameters utilized are 

relatively common across multiple O&G plays and may be readily acquired from public sources – 

therefore there is transferability for the frameworks discussed in this dissertation across O&G 

plays. Developing and deploying ML technology in O&G applications has the prospective to 

provide numerous global efficient and accurate analytical toolsets that can complement existing 

best-practices—a combination that can potentially revolutionize how wells are sited, designed, and 

operated moving forward.   
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1.4 Dissertation Research Products 

 

The body of work this dissertation encompasses takes form in peer-reviewed journal 

articles, scholarly research (not published at the time this dissertation was completed), and tangible 

products (including digital datasets, analytical models, and novel analytical strategies) that can be 

used by others interested in building upon the work created here. Additionally, portions of the 

research discussed in this dissertation was selected for presentation to elected officials in 

Pennsylvania as part of the University of Pittsburgh’s 2020 Pitt Day in Harrisburg (Appendix A), 

as well as presented in various capacities to federal and contractor staff, as well as visitors, at the 

National Energy Technology Laboratory.  

 

Peer-reviewed journal articles: 

1. D. Vikara, D. Remson, and V. Khanna, "Gaining Perspective on Unconventional Well 

Design Choices through Play-level Application of Machine Learning Modeling," 

Upstream Oil and Gas Technology, Volume 4. 2020. (Chapter 2 in this dissertation) 

2. D. Vikara, D. Remson, and V. Khanna, " Machine Learning-informed Ensemble 

Framework for Evaluating Shale Gas Production Potential: Case Study in the Marcellus 

Shale," Journal of Natural Gas Science and Engineering, Volume 84, 2020. (Chapter 3 in 

this dissertation) 

Scholarly research: 

1. D. Vikara and V. Khanna, “Application of a Deep Learning Network for Joint Predication 

of Associated Fluid Production in Unconventional Hydrocarbon Development.” (Chapter 

4 in this dissertation) 
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2. D. Vikara and V. Khanna. “Machine Learning Classification Approach for Formation 

Delineation at the Basin-scale.” (Chapter 5 in this dissertation) 

 

Tangible products developed: 

1. Detailed description of ML-based workflows that can be used to evaluate hydrocarbon 

and/or water production (both as static/cumulative variables, or in time series) applicable 

to several oil and gas plays in the U.S. and around the globe.  

2. A novel response variable (Top 12-months production) translatable to any unconventional 

oil or gas play that can better capture productivity potential for wells where production 

may be interrupted or well designs have been modified. 

3. A gradient boosted regression tree-based modeling framework and hyperparameter 

parameter settings capable of generalizing productivity potential in horizontal Marcellus 

Shale wells. 

4. Gradient boosted regression tree -model generated simulation datasets run across the 

entire Marcellus productive region under various well design combination (Standard and 

Tailored designs) that estimate the Top 12-month production estimate. The Tailored 

design data includes well design parameters that result in the highest Top 12-month 

production estimate depending on placement across the studied area. 

5. A compilation of well log data (51 in total) across the Marcellus Shale interval that are 

publicly available and includes bulk density (RHOB in g/cm3), gamma ray (API), neutron 

porosity (NPHI in percent or decimal), and deep resistivity (Ohm-m) – parameters 

common to the widely used Triple Combo well log tool string. 

6. A reduced order predictive model developed using a multiple linear regression approach 

which can estimate production at new Marcellus Shale well sites without having to employ 
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the GBRT machine learning model by the user. This model couples well design and 

geologic data into a single analytical method so that they can be evaluated in tandem. The 

reduced order model provides a simplistic and efficient option for evaluating potential 

well performance based on the specific design choices given known geologic conditions. 

The model should be helpful in informing future well designs given access to relatively 

common geologic data. Its linear formulation also enables potential well design parameter 

optimization.  

7. Digest of well completion and associated three-stream production outlook attributes in 

compilation for the Midland Basin of west Texas. The digest serves as a guiding resource 

for assessing the potential volumes of produced fluids associated with oil production in 

the Midland Basin based on well completion design considerations and placement within 

the basin.  

8. Policy Implications based on research findings – Demonstration of the need for continued 

investment in R&D to develop economically and environmentally prudent ways to access 

our Nation’s vast fossil energy resource base. 

1.5 Organization of Dissertation 

 

This dissertation is organized into five chapters followed by three appendices. An overview 

of each is discussed below: 

Chapter 2 is based on application of ML to a large dataset in order to develop models 

capable of accurate prediction of productivity indicators at the well level that strongly correlate to 
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estimated ultimate recovery (EUR) (in gas equivalents). The analysis focuses in the Marcellus 

Shale, a prominent unconventional gas-producing reservoir. The models developed provide for a 

fast and effective evaluation capability of the impact of various well placement and design choices 

in the Marcellus Shale. A series of analyses were conducted to 1) test and evaluate model 

performance and 2) use the developed models to explore the impact and overall effects of predictor 

parameters on well productivity. The models are used to explore well design optimization 

strategies that, in hindsight, may have improved in-field well design choices.   

Chapter 3 introduces an ensembled framework that couples a data-driven ML predictive 

model capable of estimating a productivity indicator for unconventional O&G horizontal wells 

that correlates to EUR with a well design optimization approach that maximizes productivity. The 

framework is tested and results discussed when applied to the producing extent of the Marcellus 

Shale. This framework is implemented to generate insights towards identifying the high-priority 

drilling regions based on productivity potential, as well as informing the tailoring of future well 

designs to maximize productivity given their placement in the Marcellus and associated controlling 

geologic conditions. 

Chapter 4 presents a combination of supervised and unsupervised ML approaches as part 

of a framework for the joint prediction of produced water and natural gas volumes associated with 

oil production from unconventional reservoirs in a time series fashion. The work focuses on the 

pay zones within the Spraberry and Wolfcamp Formations of the Midland Basin in the U.S.; a 

region with enormous oil producing potential, but burdened with the management of substantial 

volumes of water and gas (much of which is flared) produced alongside oil. The ensemble of the 

supervised and unsupervised elements of this work facilitates a means to forecast oil, water, and 

natural gas production at the well level as influenced by specific development considerations. Well 
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level three-stream production volumes can be leveraged to help support the formulation of 

management and/or remedial strategies based on the volumes of fluids expected from 

unconventional O&G development operational conditions. 

Chapter 5 outlines a framework for generating predictive models using multiple ML 

classification-based algorithms which can identify the specific stratigraphic units (i.e., formations) 

as a function of total vertical depth and spatial positioning. The framework is applied in a case 

study to 13 specific formations of interest (Upper Spraberry through Cisco/Cline [Wolfcamp D] 

reservoirs) in the Midland Basin, West Texas, United States. The framework is intended to 

generate classification models that can be applied as resource delineation tools in domains 

spanning subsurface energy (such as oil and gas or geothermal development) and environmental 

applications (including geologic carbon dioxide storage or deep well water disposal). 

Chapter 6 summarizes the main conclusions derived from this dissertation work and offers 

suggestions for future or follow-on work. 

Supporting information to this dissertation is provided in Appendices A, B, and C. 

Appendix A provides a poster presentation that aggregates a subset of results generated from this 

dissertation. Appendix B and Appendix C provide supporting information for Chapters 2 and 3 

respectively.  
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2.0 Graining Perspective on Unconventional Well Design Choices through Play-level 

Application of Machine Learning Modeling 

 

The following chapter is based on a peer-reviewed journal article published in Upstream 

Oil and Gas Technology, which can be cited as: 

 

Vikara, D., Remson, D., and Khanna, V. Gaining Perspective on Unconventional Well Design 

Choices through Play-level Application of Machine Learning Modeling. Upstream Oil and Gas 

Technology. 2020. Volume 4, https://doi.org/10.1016/j.upstre.2020.100007 

2.1 Chapter Summary 

The recent development of unconventional oil and gas (O&G) reservoirs has led to an 

abundant hydrocarbon supply, both domestically and globally. However, there is a continued push 

to develop new and innovative approaches to improve exploration and extraction efficiencies and 

overall well productivity moving forward. Substantial improvements in unconventional O&G 

development are expected through optimized well completion and stimulation strategies aimed at 

maximizing well productivity. Optimizing well designs will require tailoring to the distinctive 

geologic conditions present for any newly placed well. To better evaluate the impact of well design 

attributes and their associated interactions on productivity in a major unconventional play, 

multivariate machine learning-based models that use empirical datasets were developed. A 

gradient boosted regression tree (GBRT) algorithm was applied. GBRT has been narrowly 

investigated for O&G applications but enables straightforward parametric importance and 

https://doi.org/10.1016/j.upstre.2020.100007
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influence evaluation, as well as assessment of parameter interaction effects. Models were trained 

on well design and locational parameters that serve as a proxy for variable geologic conditions to 

estimate two types of productivity indicator response variables strongly correlated to estimated 

ultimate recovery (EUR). The dataset utilized consists of over 7,000 well observations that cover 

the majority of the productive region of the Marcellus Shale. Model performance was evaluated 

and algorithm parameters tuned by analyzing the goodness-of-fit for simulated results against 

observed data in a cross-validation approach. Models were found capable of 73–79 percent 

prediction accuracy on held out testing data of gas equivalent production and can be used to inform 

future well design and placement decisions for increasing EUR per well and improving overall 

field-level recovery. Study results indicate that Marcellus well performance improves most with 

upscaling perforated interval lengths and water and proppant volumes per foot; but relative 

productivity improvements are spatially dependent across the play. Additionally, optimal 

combinations of water and proppant on well performance were found to vary depending on well 

location, emphasizing the utility of data-driven models capable of broad application across a play 

of interest for informing tailored well design approaches prior to their field deployment. 
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2.2 Introduction 

Unconventional oil and gas (O&G) reservoirs were once economically unattainable 

resources [46]. However, the development and application of horizontal drilling with multi-stage 

and multi-cluster hydraulic fracturing techniques has enabled a surge in production from 

unconventional reservoirs, revolutionizing both the energy system of the United States (U.S.) as 

well as global energy markets [2, 47, 48]. The combination of horizontal drilling and hydraulic 

fracturing creates increased contact and flow pathways between reservoirs and horizontal wells, 

making production possible from these typically low permeability formations [49]. While the 

overall unconventional hydrocarbon resource in the United States is considerably large, the 

economically recoverable reserve portion is much smaller [50]. Recent downturns in O&G prices 

further diminish the economical portion of existing O&G assets, lending a sense of urgency to 

develop novel and innovative approaches aimed at improving exploration and extraction 

efficiencies and overall productivity. 

Many have argued that the largest improvements in unconventional O&G development 

will come through optimization of well designs (which includes completion and stimulation 

strategies) aimed at maximizing well productivity and overall hydrocarbon recovery [12, 13, 14]. 

Since each O&G production zone is likely to be geologically distinctive from others for any given 

play, optimum well designs may require tailored approaches to the specific geologic conditions 

present. Therefore, identification of the most critical factors associated with both well designs and 

the geologic conditions for potential drilling areas, as well as their interactions, is essential for 

operators prospecting future well sites with the intent of maximizing gas productivity cost-

effectively [15].  
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Many challenges still exist regarding well design optimization. For instance, further 

understanding is still needed related to the physical dynamics associated with fluid flow in highly 

complex fractured systems—a topic that is further complexed by potentially stark contrasts in 

geophysical conditions from one drilling location to another. This challenge is compounded in that 

acquisition of adequate levels of geological data at the well level is rare [51]. Reservoir modeling 

and simulation are the principal tools widely used to inform decision makers about reservoir 

response to potential hydraulic fracturing designs. However, even these types of models have noted 

challenges with overall predictive accuracy and can be both time and resource intensive to 

implement [47, 43, 52].  

New innovations in the O&G arena are expected to occur through an increased focus on 

multi-discipline well design and placement by leveraging the use of digital empirical datasets and 

applying machine learning (ML) and data analytics to help improve well performance moving 

forward [38, 39, 40, 31]. The recent expansion in unconventional O&G development has also 

simultaneously sparked a substantial increase in the amount and types of data generated that would 

be available for such analyses [53]. Machine learning is a field of artificial intelligence that utilizes 

statistical algorithms to enable computer systems to progressively improve performance associated 

with a specific task from data, without relying on rules-based programming of the underlying 

causal relationships. These advanced techniques are particularly effective in environments where 

large amounts of data are available, and highly complex, variable conditions are prominent. Recent 

developments associated with sophisticated ML techniques and data management have expanded 

rapidly in many commercial sectors [54], providing an array of methods that can be targeted for 

use in O&G applications. These types of approaches could provide added utility in cases where 

sufficient understanding of the overarching complexities of unconventional reservoirs is lacking; 
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but the need exists to construct models capable of accurate and reliable replication of complex 

systems, or when expeditious predictive capability may be needed. The application of such 

approaches in unconventional O&G applications specifically could be aimed toward developing 

new insights, enabling improved understanding, and help toward optimizing well/reservoir 

interactions [38]. 

Several recent studies have demonstrated the use of ML and data analytics in subsurface 

energy and O&G applications. These studies have explored topics pertaining to predicting 

hydrocarbon production in unconventional reservoirs [55, 56, 15, 57, 58], lithofacies identification 

and characterization through data inversion [21, 19, 20], hydrocarbon production forecasting [59, 

60, 61], and integration with advanced monitoring systems [62, 22]. Specifically, the studies that 

have developed data-driven approaches for predicting hydrocarbon production provide an initial 

foundation as well as implementation frameworks for using ML approaches to inform well design 

optimization. These types of studies involve the development of multivariate models using 

empirical data associated with design and completion-related well characteristics and use a 

productivity indicator (typically the cumulative production of hydrocarbons from wells over the 

first six or twelve months) as the response variable. The handling and incorporation of geologic 

parameters from these previous studies was varied, and included incorporation of explicit 

properties from geologic interpretation [56, 57, 47], assumed homogeneity across subsets of wells 

[63], utilized spatial coordinates as a proxy to evaluate variability in geologic conditions [64, 59, 

15, 55], or ignored geologic conditions all together [65, 66].  

The focus of this study involves the application of ML to a large well dataset that spans a 

prominent unconventional reservoir in the United States: the Marcellus Shale. The goal is to 

develop a predictive model capable of accurate estimation of a productivity indicator at the well 
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level that strongly correlates to estimated ultimate recovery (EUR) [67] using data commonly 

available. Both well design and spatial coordinate geologic proxy data parameters are utilized as 

predictors. This work is anticipated to supplement the advances from prior studies through several 

means, all focused towards model development intended to help inform future well designs to 

maximize productivity based on placement within the Marcellus Shale. The study includes the 

development and evaluation of a new productivity indicator that potentially better captures the 

production potential of a given well design/reservoir characteristics combination to enable models 

to make predictions with greater accuracy. As mentioned, one of the more overarching concerns 

in the modeling and simulation associated with any reservoir management strategy is in the 

reliability and accuracy of models utilized [43]. In unconventional reservoirs, this can be a greater 

challenge given the inherent complexity of the systems involved [64]. Therefore, the use of an 

improved productivity indicator should facilitate accurate improvements for data-driven modeling 

moving forward. A gradient boosted regression tree (GBRT) ML algorithm was implemented as 

part of model development. GBRT is in the boosting family of algorithms and believed to be an 

improved approach to other decision tree-based algorithms (like random forest) because of the 

way the algorithm sequentially addresses prediction shortcomings [68]. GBRT is also 

advantageous because it enables straightforward parametric importance and influence evaluation 

and assessment of parameter interaction effects. Boosting algorithms have recently become widely 

utilized in many data-science fields due to noted improvements realized in model accuracy. 

However, they have been narrowly applied in O&G applications. The work of LaFollette and 

coworkers is one example where boosted tree models were developed to rank the importance of 

predictor parameters in Middle Bakken Formation of the Willison Basin [55]. In another example, 
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Wang and Chen (2019) developed a predictive model using AdaBoost to evaluate oil production 

well performance in the Montney Formation in western Canada [15].  

This study is an extension of the National Energy Technology Laboratory’s existing 

research aimed towards gaining data-driven insights for better understanding and optimizing the 

well performance in the Marcellus Shale [56]. Nine algorithms of various complexities (including 

linear regression, neural networks, and support vector machines among others) were evaluated in 

the foundational study focusing on the western portion of the Marcellus Shale. The use of GBRT-

based models as part of this study will facilitate improved comprehension of the hierarchy of both 

well design and geologic reservoir quality parameters and their associated interactions by enabling 

evaluation of their relative importance—valuable information that could empower operators to 

determine the best well placement and completion designs that potentially maximize the EUR per 

well and improve overall field-level recovery in the highly prominent Marcellus Shale play. The 

authors are not suggesting to replace detailed reservoir modeling with ML approaches explicitly, 

but instead consider them as an additional component to reservoir management strategies moving 

forward. 

2.3 Data and Methods 

As the focus of this study, GBRT-based ML models are developed for estimating natural 

gas equivalent hydrocarbon production from horizontal wells across the Marcellus Shale. These 

models use a combination of well design and geologic proxy data parameters as inputs. Literature 

has demonstrated that methodologies employed for the development of ML-based models in 

unconventional O&G applications are highly variable and often fit-for-purpose; yet, all possess 
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some commonality in model development centered on best practices. This is largely due to the 

unique circumstances influencing the availability of data within a given study region, as well as 

from the specific application of developed models. With that said, the general approach used for 

this study was inspired from the model development procedures recommended by Esmaili and 

Mohaghegh (2016) and Mohaghegh, Gaskari, and Maysami (2017), caveated slightly for 

circumstances unique to this study (described in the upcoming sections).  The framework followed 

for this study is presented in Figure 7.  

 

 

 
 

Figure 7. Framework for developing GBRT-based data-driven predictive models for Marcellus Shale wells. 
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2.3.1 Study Area and Data Sources 

The study area focused on a large portion of the Marcellus Shale play in the Appalachian 

Basin of the United States. The study well data utilized was obtained from the O&G data vendor 

DrillingInfo [69]. Horizontal wells with first production dates between January 1, 2010 and 

December 31, 2018 were acquired and utilized—totaling 7,043 well observations. The full dataset 

underwent a removal of entries that contained one or more missing data values for predictor and/or 

response parameters of interest (Table 2). As a result, a total of nine predictor parameters and two 

response parameters were obtained for each of the resulting 4,256 wells in the study dataset.  

 

Table 2.  Data parameters available for each well evaluated. 

 

Group Variable Type Parameter Mean Std. Dev. 

Well Design 

Predictors 

Water per perforated foot (bbls) 32 19.1 

Proppant per perforated foot (lbs) 1,475 866 

Additive per perforated foot (bbls) 1.54 3.81 

Perforated interval length (ft) 5,501 2,088 

Well trajectory azimuth (degrees)* 325 29.3 

Acre spacing (acres) 150 126 

Nearest neighbor spacing (ft) 1,197 944 

Geology Proxy 
Surface hole latitude (decimal degrees) 40.643055 0.97 

Surface hole longitude (decimal degrees) -78.721317 1.95 

Productivity Indicators Response 
First 12-months production (MMcfge) 1,503 1,030 

Top 12-months production (MMcfge) 1,637 1,084 

*Per similar approaches by Shih et al. (2018) and LaFollette et al. (2013), all well azimuth trajectory data was adjusted 

to fall between 180o and 360o to avoid a bi-modal distribution of well orientations. 
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These wells are plotted in Figure 8 and demarcate the portion of the Marcellus Shale 

evaluated based on well and data availability.3 The resulting study area covers nearly 23,700 square 

miles. One way for ML and data analytics to make a more immediate impact in unconventional 

O&G exploration and production operations is though the development and validation of accurate 

models that both can learn from past and inform future well designs based on their specific 

placement in heterogenous reservoirs. This requires that models be trained on datasets that include 

parameters reflective of the relevant technological well design components that would be deployed 

in the near-term (as models trained on certain datasets may struggle estimating the impact of new 

parameters where extensive data does not exist). This project dataset is large enough to provide 

ample data coverage to capture both Marcellus Shale well design changes over time and wells 

placed across the play in both core and peripheral areas. 

The Marcellus Shale is a Middle Devonian-age organic-rich formation that extends from 

New York State in the north to northeastern Kentucky and Tennessee in the south [70]. It is 

considered one the most prolific natural gas-producing formations in the world. The play has been 

a major shale gas producing resource since roughly 2008 and became the largest gas producing 

field in the United States in 2013 [71]. It is anticipated to continue to be a major gas producer into 

the future—projected to produce more than 20 billion cubic feet of gas per day through 2040 [72]. 

Similar to other continuous plays, the notable geologic and technical criteria that define the play 

boundaries and have been shown to influence hydrocarbon productivity include thermal maturity, 

total organic carbon content, formation thickness, porosity, permeability, depth, pressure, gas-in-

 

3 The geographic information systems layer used for all maps to display state and county boundaries as part of this 

project is provided from the U.S. Department of Commerce [331].  
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place, the ability to be fractured (brittle vs. ductile), presence of existing natural fracture networks, 

in addition to lateral target selection and completion design. However, the lithology of the 

Marcellus Shale is known to be highly heterogeneous and vary significantly across the 

Appalachian basin [71, 73]; therefore, the geologic criteria mentioned are highly spatially 

dependent. 

 

 
 

Figure 8. Map of the wells utilized as part of the study. All wells are horizontal wells within the Marcellus Shale 

with first production dates between the years of 2010 and 2017. A total of 4,256 wells were available for analysis 

that contain a complete set of data for each parameter of interest (Table 2). 

 

 

The Marcellus Shale contains two major core areas that have enabled higher relative 

production capability compared to the rest of the play. These include one in southwestern 

Study Area
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Pennsylvania and northern West Virginia (southwestern core) and the other in northeastern 

Pennsylvania (northeastern core). Both areas are captured in the study dataset. Each core area 

contains geologic characteristics that make it uniquely distinct. Notable contrasting formational 

characteristics between these two core areas relate to differences in depth, thickness, pressure 

gradients, organic content, and thermal maturities among others. The southwestern core is typically 

higher in total organic content, net (absent limestone intervals) to gross thickness, higher in 

porosity and permeability, contains a lower pressure gradient on average, and less thermally 

mature than the northeastern core. Given the thermal maturity conditions, portions of the 

southwestern core are rich in natural gas liquid content. However, the Marcellus Shale thickens 

from approximately 100 feet average gross thickness (including interbedded limestone intervals) 

near the southwestern core to greater than 300 feet average gross thickness towards the northeast 

core. Increases in the pressure gradient and thermal maturity also occur; the later condition 

resulting in predominantly dry gas conditions [74, 75, 70]. In addition to these core areas, there is 

a vast amount of peripheral area largely underexplored that could have promising production 

potential for future Marcellus Shale development [71].  

2.3.2 Predictor and Response Parameters 

Model development included incorporation of all relevant and available data across wells 

in the study region that relate to three broad categories: 1) Well design, 2) spatial coordinates that 

approximate variability in geologic conditions, and; 3) production response indicators for each 

well. The data included as predictor variables are associated with the length of the perforated 

interval contacting the reservoir, the volume of proppant, water, and additive used for hydraulic 

fracturing on a per foot of perforated interval basis, the azimuth orientation of the well lateral 
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trajectory, well locational data, and well spacing data to evaluate the potential impact of 

interference from offset wells. Two productivity indicator response variables were evaluated as 

part of this study; discussed later in this section. Table 2 lists the selected predictor and response 

parameters used in this study and basic statistical properties of each. An expanded statistical 

interpretation is available in Table 22 of Appendix B. 

In low permeability unconventional reservoirs, the hydraulic fracturing process involves 

injecting large volumes of fluid at high pressures into production zones to break the rock down 

and initiate flow pathways from which hydrocarbons can travel through to the well. The fluid 

consists of mostly water and proppant, but also includes a small portion of chemical additives. 

Proppant (which may consist of sand or ceramic material) keeps fractures highly conductive and 

open long-term. Additives can serve a multitude of purposes aimed at ensuring the wells maintain 

efficient fluid and proppant delivery as part of the hydraulic fracturing process, as well as 

hydrocarbon recovery afterwards. Specific additive formulations may vary from well to well, but 

may include biocides, scale inhibitors, iron stabilizing agents, corrosion inhibitors, friction 

reducing agents, gelling agents, and cross-linking agents to name a few [48]. Another important 

factor related to hydraulic fracturing well design is the number and placement of fracturing stages 

along the lateral. Unfortunately, these data were not readily available, but it is likely correlated 

with lateral length [59, 76]. Instead, proppant, fluid, and additive were normalized for each well 

on a per foot of perforated interval of lateral basis.  

Other important well design characteristics captured in the dataset relate to the wellbore 

lateral orientation and well spacing. Well lateral directional alignment (represented by well 

trajectory azimuth) is influenced strongly by the orientation of in situ stresses in the reservoir. 

Wells drilled along the minimum horizontal stress tend to generate transverse fractures via 
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horizontal fracturing, which are considered better suited for improving drainage areas and overall 

well productivity. When well laterals are oriented properly on azimuth, higher production rates are 

expected [48]. In terms of well spacing, both acre spacing and nearest neighbor data parameters 

were utilized. Each parameter can be used to infer the distance between wells evaluated and their 

anticipated drainage areas. Additionally, these data parameters may provide insight of any 

potential interference from hydraulic fracturing operations via nearby wells.  

Similar to studies performed by LaFollette et al. (2013), Schuetter et al. (2015), 

Montgomery and O’Sullivan (2017), and Wang and Chen (2019), the variability in geologic 

conditions across the Marcellus Shale was assessed via proxy using each well’s surface locational 

data (latitude and longitude). Since geological data is typically not available at large scales when 

evaluating thousands of wells, and interpolation of geologic properties over large areas can 

introduce uncertainty [77], well locational data provides an approximation approach to evaluate 

geologic conditions known to vary spatially across the study area. The aforementioned studies 

have found these input parameters critical for enabling subsequent models to accurately generalize 

well productivity.  

Two response variable productivity indicators were considered as part of this study; both 

involve the cumulative summation of twelve-monthly empirically-based production values per 

well in gas equivalent units (million cubic feet of gas equivalent [MMcfge]).4 The first, referred to 

as First 12-months of cumulative production, is a summation of each well’s total production in its 

first 12 months of operations (either oil, gas, or an equivalent). This is a widely-used productivity 

 

4 This step involves combining gas and/or oil production values for each well into a single unit by considering one 

barrel (bbls) of oil to contain contains six times the British thermal units as one thousand cubic feet of gas. 
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indicator common to similar types of data-driven unconventional well predictive modeling studies 

(e.g., Wang & Chen, 2019; Montgomery & O'Sullivan, 2017; Schuetter, Mishra, Zhong, & 

LaFollette, 2015; LaFollette, Izadi, & Zhong, 2013 among others). In unconventional reservoirs, 

a well’s production rate typically peaks within the first few months and then begins to decline over 

its productive life. Since a large portion of the hydrocarbons produced from these wells occur early 

on, this particular productivity indicator is a good proxy for overall well EUR [59]. However, 

limitations exist with using the First 12-months productivity indicator under many circumstances 

as it can fail to best represent the production potential of a well given its unique design 

characteristics and placement in the reservoir. For instance, well production profiles can vary from 

the typical “peak and decline” trend for a number of reasons, including being shut in or choked 

back due to less than favorable O&G prices, restrictions in pipeline offtake capacity, and 

equipment or maintenance issues. On the other hand, recompletion/refracturing efforts or 

installation of artificial lifting equipment can provide boosts in production. Given the potential 

impact from these circumstances, the First 12-months productivity indicator may underrepresent 

the true production potential of wells. Therefore, a second productivity indicator was developed 

and used as part of this study that may better represent a given well’s productivity potential and 

help towards improving the accuracy and reliability of future data-driven modeling efforts. The 

second productivity indicator, referred to as the Top 12-months production, is a summation of the 

12 highest monthly observed production values for a given well regardless of when they occur 

during a well’s existing productive lifetime. The mathematical expression for First 12-months 

production is described in Equation 2-1 and for Top 12-months production in Equation 2-2:  

 

𝐹𝑖𝑟𝑠𝑡 12𝑤 = ∑ 𝑝𝑚

12

𝑚=1

 such that every production month pm for each well w 

corresponds to months 1 through 12 

Equation 2-1 
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𝑇𝑜𝑝 12𝑤 = ∑ 𝑝𝑚

12

1

 
such that every production month pm for each well w 

corresponds to the highest recorded 12 values of pm 

 

Equation 2-2 

 

   

where pm is the monthly production value for a given well (w) in MMcfge, and m is a given 

production month. Each productivity indicator can only be calculated for wells with at least 12 

months of production history. Wells with less than 12 months of observed production data were 

therefore not included in this analysis. However, the potential benefits of the Top 12-months 

production is that it can better capture productivity potential for wells where production has been 

interrupted or well designs have been modified. Figure 9 highlights examples using empirical time-

series production data from arbitrarily selected wells in the study dataset where the two 

productivity indicators are comparable (Figure 9 top) and where they differ (Figure 9 bottom). The 

reason for the discrepancies observed in the productivity indicators in the bottom portion of Figure 

9 is unknown; however, it’s clear that the variable time-series production profiles of those wells 

make it challenging to represent their productivity potential by the first 12 months of production 

alone. In this study’s dataset, nearly 2,500 of the 7,043 wells available (35 percent) have a 

noticeable difference in the First 12-months production compared to the Top 12-months 

production of 50 MMcfge or greater; in roughly 100 cases, the discrepancy is greater than a 1,000 

MMcfge difference. It should be noted that for relatively newer wells that may have experienced 

some form of interruption, the 12 potentially highest months of production may not have yet 

occurred. For these instances, the First 12-months may be similar or equal to the Top 12-months. 
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Figure 9.  Examples of time-series production profiles for arbitrarily selected wells across the study area. The top 

chart features three wells (indicated by different colors) where the calculated values for each productivity indicator 

are the same. The bottom chart features three separate wells where the calculated values for each productivity 

indicator are different. The cumulated production in each chart is the summation of monthly production that 

corresponds to each productivity indicator for all wells featured for 12 total months (either First 12 or Top 12). 

 

 

The Pearson correlation (Pearson r) was used to evaluate the linear relationship between 

each productivity indicator and EUR estimates calculated by DrillingInfo to verify their utility as 

a response parameter for assessing well productivity. In Figure 10, scatter plots are presented 

between each productivity indicator and an estimation of EUR. The plots suggest that both 

productivity indicators are correlated to EUR, but the Top 12-months productivity indicator is 

correlated slightly higher with EUR estimates than First 12-months for wells in this study dataset. 
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Additionally, the histogram in Figure 10 shows the distribution of well counts per associated EUR 

estimate for perspective. One of the objectives of this study is to develop data-driven models and 

evaluate and compare model performance for predicting either productivity indicators using the 

methods described in the upcoming sections.  

 

 

 
Figure 10. Breakdown of the EUR for the 4,256 wells evaluated in this study. The top chart features a histogram for 

the distribution of well counts per associated best estimate EUR as determined by DrillingInfo [78]. The bottom left 

chart shows the correlation (via Pearson r) of the widely-used First 12-months production performance indicator to 

well EUR. The bottom right chart features the correlation (via Pearson r) of the new Top 12-months production 

performance indicator to well EUR.  
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2.3.3 Overview of Gradient Boosting for Regression 

This section includes a description of the gradient boosted regression (GBR) approach used 

to develop GBRT-based predictive models for productivity indicators for horizontal wells in the 

Marcellus Shale. It also provides information about the unique features of GBRT algorithm 

utilized, as well as important parameters and architectural components manipulated in this study 

to achieve accurate predictive models. Python version 3 and several packages within the scikit-

learn library [79] were used extensively to perform analyses for this study.   

Gradient boosting is an ensemble ML technique that can be used for classification and 

regression problems in which a final predictive model is developed consisting of an ensemble of 

weak prediction models, typically decision trees [80]. GBRT is inherent to the gradient boosting 

concept, and indeed uses the regression tree (or decision tree) groups of models [81]. Therefore, 

GBRT is considered an ensemble method (combination of several ML techniques into one 

predictive model [82]) that combines the strengths of two types of ML algorithms (boosting and 

decision trees) in order to improve the overall performance of a single, final model by fitting and 

combining many smaller models.  

Decision trees are sequential models, which logically combine an arrangement of tests that 

compare a given numeric feature against a threshold value or compare a nominal feature against a 

set of possible values [83]. The goal of decision trees is to essentially create models that can predict 

the value of a given target variable or feature (that can contain either discrete or continuous values) 

based on several input variables [84]. Decision trees where the target variable can take continuous 

values (typically real numbers) are called regression trees [81]. A decision tree is grown through 

binary splitting of the source dataset into subsets based on an attribute value test, a process that is 

repeated on subsets of the data in a recursive manner [85]. The splitting points are determined 
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when prediction error is minimized. The recursive process continues until a stopping criterion is 

achieved, like a node subset has all the same value of the target variable, or when splitting no 

longer adds value to the predictions [86]. Decision trees have several noted advantages as they can 

handle multiple data types and data of widely differing scales, as well as predict complex functions 

[86, 81] and are widely popular because of their easy interpretability. However, Eilth et al. (2008) 

and Hastie et al. (2001) have noted several challenges common to decision trees that can affect 

their overall predictive performance. For instance, decision trees can be less accurate than 

generalized linear or additive models, and may have difficulty in modeling simple, smooth 

function types.  

Boosting is an approach that builds an additive model in a sequential stage-wise fashion 

that enables numerical optimization by minimizing a differentiable loss function [80]. Different 

boosting algorithms vary in how they either quantify the lack of modeling fit from prior stage 

residuals or select settings for upcoming iterations [81]. In GBRT, each tree is constructed in 

sequence (i.e., boosting approach) as opposed to in parallel (i.e., bagging approach), where each 

new tree compensates for shortcomings associated with the previously developed tree [68, 64, 81]. 

The GBRT concept shares commonality with random forests in the sense that they are an ensemble 

of decision trees but are developed in sequence as opposed to in parallel. Overall model 

performance is essentially “boosted” by the addition of new trees fit to the residual errors of the 

previous model. The resulting final model is a consolidation of the many trees within the ensemble 

into a linear combination where each tree is essentially considered a term solving for a response 

variable (y). Gradient boosting through GBRT builds a predictive model in following manner as 

introduced by Friedman (1999): 
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𝐹(𝑥) = ∑ 𝛽𝑘ℎ(𝑥; 𝑎𝑘)

𝐾

𝑘=0

 Equation 2-3 

 

 

where h(x; ak) in Equation 2-3 are the basis functions which are referred as “weak learners” 

in the context of boosting. GBRT uses decision trees {0, k … K number of trees} of fixed size as 

the weak learners [79]. The weak learners are a function of input variables (x) with parameters a 

= {a1, a2, …}. Expansion coefficients () and parameters (a) can be fit to training data in a 

sequential, stage-wise manner. First, an initial weak learner model is determined (i.e., F0(x)), and 

then others for the specified number of trees k = {1, 2, … K} are added in a greedy fashion as 

follows in Equation 2-4: 

 

 

𝐹𝑘(𝑥) = 𝐹𝑘−1(𝑥) + 𝛽𝑘ℎ(𝑥; 𝑎𝑘) Equation 2-4 

 

 

and 

 

 

where the newly added tree h(xi;a) in Equation 2-5 attempts to minimize the loss function 

L, given the previous ensemble of the model Fk-1(x). Gradient boosting attempts to solve this 

minimization problem for arbitrary loss functions L numerically via steepest descent. The steepest 

descent direction is the negative gradient of the loss function evaluated at the current model (Fk-

1(x)) which can be calculated for any loss function in each region of a tree: 

(𝛽𝑘 , 𝑎𝑘) = arg min
𝛽,𝑎

∑ 𝐿(𝑦𝑖 , 𝐹𝑘−1(𝑥𝑖) + 𝛽ℎ(𝑥𝑖; 𝑎))

𝐾

𝑖=0

 Equation 2-5 
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𝐹𝑘(𝑥) = 𝐹𝑘−1(𝑥) + 𝑣𝛾𝑙𝑘1(𝑥 ∈ 𝑅𝑙𝑘) Equation 2-6 

 

 

where each step length lm is chosen using: 

 

 

𝛾𝑙𝑘 = arg min
𝛾

∑ 𝐿(𝑦𝑖, 𝐹𝑘−1(𝑥𝑖) + 𝛾)

𝑥𝑖∈𝑅𝑙𝑘

 
Equation 2-7 

 

 

For each iteration k, regression trees partition the x-feature space [87] into disjointed, 

rectangular regions and predict separate constants for each region. The term Rlk in Equation 2-6 

represents these regions for each corresponding terminal node l of the kth tree. The shrinkage 

parameter (v; where 0 < v < 1) in Equation 2-6 determines the learning rate of the procedure, which 

essentially controls the contribution of each tree within the final model. Smaller learning rate 

values (v < 0.1) have shown to result in improved model performance [81, 68]. However, 

decreasing the learning rate results in an increase in the number of decision trees required, and a 

greater number of decision trees may require longer computational times to fit the final model. 

Performance of the GBRT-developed models depends on the choice of the loss function, 

learning rate, and other selected parameters. In this study, the least absolute deviation loss function 

was ultimately used prior to the parameter tuning and optimization step (discussed in Section 

2.3.5), along with modifications to the parameter learning rate, boosting stages, the minimum 

number of sample splits, and the maximum depth of individual regression estimators (i.e., number 

of nodes in a tree). Overall, the use of the GBRT algorithm is an excellent choice for development 

of shale gas productivity indicator prediction models because of 1) being able to handle the 

complexity associated predicting the performance of a shale gas well, and 2) GBRT enables the 
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straightforward determination of predictor variable relative importance and partial dependence. 

The latter point provides for relatively expeditious insight into the major contributing production 

drivers considered and included as part of the model development. Identification of the hierarchy 

of both well design and geologic reservoir quality parameters and their associated interactions is 

paramount for determining the best well placement and completion designs that potentially 

maximize well EURs and help facilitate improved field-level recovery. 

2.3.4 Evaluating Results and Model Performance 

Model performance was evaluated by analyzing goodness-of-fit for simulated results 

against held out data (i.e., data not used for training) in several cases. While many performance 

evaluation approaches are available, the predicted output from developed models versus known 

observations were evaluated using R2 and root mean square error (RMSE). The R2 metric is 

considered reliable in similar O&G modeling applications [56, 64, 57, 58], and additionally, it is 

fairly easy to interpret. RMSE provides a complimentary performance metric, one that is directly 

interpretable in the units of the response variable. Evaluating model performance can provide 

insights toward each one’s susceptibility for generating error in prediction.  

The R2 metric indicates the degree of correlation between simulated and observed values. 

By definition, R2 is the regression sum of squares (SSRegression) divided by the total sum of squares 

(SSTotal). R2 values are proportional to the given data evaluated where higher values represent 

smaller variations between the observed data and predicted values. R2 values range from zero to 

one; a value of one would indicate a perfectly-fitted relationship, whereas zero would suggest no 

correlation exists. R2 is mathematically represented in Equation 2-8 as follows: 
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𝑅2 =
𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
= 1 −

∑ (𝑦𝑖 − �̂�𝑖)
2𝑁−1

𝑖=0

∑ (𝑦𝑖 − �̅�)𝑁−1
𝑖=0

2  Equation 2-8 

 

Where N is the length of the dataset, yi is the observed value, and �̂�i is the simulated or 

predicted value. The overbar above variables indicates the mean over the entire portion of the 

dataset evaluated.  

The RMSE metric represents the mean error between simulated values and observed values 

(i.e., residuals) and represents the variance of errors independent of sample size. Smaller RMSE 

values are associated with less mean error between simulated and observed results compared to 

higher RMSE values [87]. RMSE is one of the most commonly used metrics to assess model 

efficiency and is mathematically represented in Equation 2-9: 

 

 

𝑅𝑀𝑆𝐸 =  √𝑁−1 ∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

 Equation 2-9 

 

For this study, R2 and RMSE were used to evaluate model performance during several 

steps: 1) Algorithm parameter optimization and tuning (Section 2.3.5); 2) analyzing model 

performance with reduced predictor inputs (Section 2.3.6); and 3) evaluating the best performing 

final model formulation developed for predicting each production performance indicator type 

(Section 2.4.2). 
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2.3.5 Model Development Using Cross-Validation 

A model cross-validation approach was used to train, validate (often called “calibrate”), 

and test the developed models as part of this study. The cross-validation approach is a method of 

estimating the accuracy of classification or regression models in which the input dataset is divided 

into several distinct segments (at the discretion of the user). Each segment in turn is used to test a 

model trained to the remaining parts [88, 47]. The goal here is to develop models that can 

effectively generalize unconventional well performance while avoiding overfitting to the training 

data. The well data used for this study were broken down into training, validation, and testing 

datasets at random in a 60/20/20 percentage-based split following the removal of entries that 

contained one or more missing data values for input parameters of interest (Table 2). The resulting 

well count breakdown per dataset was 2,553 wells in the training dataset, 852 wells in the 

validation dataset, and 851 wells in the test dataset. The training dataset provides the GBRT ML 

algorithm sets of examples used for learning so that algorithm parameters (like expansion 

coefficients) can be fit. The validation dataset provides a unique set of hold out well completion 

and production response data examples not used as part of model training that are used to tune and 

optimize GBRT regularization parameters of the trained model. In this study, the learning rate, 

number of boosting stages, the minimum number of samples required to split an internal decision 

tree node, and maximum depth of the individual regression estimators (which limits the number 

of nodes in a tree) were tuned and optimized using a one-at-a-time grid evaluation consisting of 
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multiple possible regularization parameter combinations [89] against the validation dataset.5 For 

each possible combination of model parameters adjusted as part of tuning and optimization, a new 

model was fit to the training dataset under the given model regularization parameter combination. 

Each model was then used to predict either the Top 12-months or First 12-months productivity 

indicators using the validation dataset. R2 and RMSE were used to evaluate the performance of 

each model’s prediction. The parameter combination for the best performing models for each 

productivity indicator type was selected for further analysis based on the highest R2 score and 

lowest RMSE combination. Ultimately, the best configuration of GBRT parameters that 

generalizes well productivity, enables highest performance accuracy, and avoids overfitting are 

presented in Table 3. 

 
Table 3. Final set of GBRT regularization parameters following cross-validation 

 
Productivity Indicator Boosting Stages Min. Sample Splits Maximum Depth Learning Rate Loss Function 

First 12-months 3,000 15 14 0.01 least absolute deviation 

Top 12-months 3,000 10 14 0.005 least absolute deviation 

 

 

The testing dataset provides a final collection of unique holdout data examples used to 

assess the prediction performance of the fully developed model formulations for each productivity 

indicator that utilize the best performing predictor regularization parameter value combinations.  

 

5 Only the least absolute deviation (lad) loss function was utilized as part of this study. For the one at a time parameter 

optimization step, no other type of loss function was used.  
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2.3.6 Refining the Predictor Parameter Dataset 

A predictor parameter evaluation and selection approach was employed to establish a 

refined predictor parameter dataset that contributes most to the prediction response for models 

estimating each productivity indicator. For decision tree-based models, the ideal predictor 

parameter combination would maximize the mean value of R2 and reduce variance in prediction.  

In this study, a parameter removal approach was implemented to evaluate the impact of 

each parameter on model performance to predict either Top 12-months production or First 12-

months production. Additionally, such an analysis enables detection of potentially diminishing 

returns from adding certain predictor parameters into the model formulation. In general, the 

training and validation datasets were modified accordingly to reflect the omission of a given 

parameter attribute. Models were then re-trained 10 different times on the modified predictor 

dataset and the overall prediction accuracy is determined against the validation dataset. The 

process is repeated by swapping the previously omitted parameter back into the formulation for 

another. The GBRT regularization parameter configurations presented in Table 3 were used for 

this step. Influential parameters removed from the GBRT models would likely reduce model 

predictive accuracy relative to the impact of that parameter. On the other hand, removal of less 

influential predictors may only marginally reduce, even possibly improve, model performance 

through the parameter omission.  

The noted change in R2 and RMSE for the new model formulation in its prediction accuracy 

against the validation dataset are used to as the overall performance metric for this step. Parameters 

considered unimportant would be dropped altogether to form new model formulations. In a way, 

the approach shares similarities with recursive feature elimination, one parameter at a time 

sensitivity analysis [31], and the R2-loss evaluation approaches described by Schuetter et al. (2015) 
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and Mishra and Lin (2017). This type of simplification approach is considered useful under various 

circumstances, including where potential redundancy may exist between two or more predictor 

variables, or where developer preferences favor a certain combination of predictor variables [81]. 

The goal of this step is to establish model formulations that provide for the most accuracy and 

reliability, and that utilize a reduced but indispensable set of predictor parameters. 

2.3.7 Assessing the Effects of Parameters on Production 

To evaluate the effects of predictors on the production response for the GBRT-based 

models developed as part of this study, two approaches were used: 1) relative importance of 

predictor variables and 2) partial dependence analysis. These approaches can be evaluated 

collectively to understand the hierarchy of both well design and geologic reservoir quality 

variables on model response, as well as the unique functional relationships between predictor 

variables and response. 

Predictor parameter relative importance in GBRT-based models is determined from the 

number of times a given predictor variable is selected for splitting, weighted by the squared 

improvement to the overall model resulting from each split, then averaged over all trees [64, 90, 

68]. Essentially, the more a given parameter is leveraged to influence decisions within decision 

trees, the higher the importance. Since a relative importance value is calculated for each predictor 

variable, they can be ranked and compared relative to each other in a hierarchical fashion. For this 

study, values for importance are normalized relative to the most important predictor variable then 

scaled by 100 (the most important variable has a value of 100, and all others are less than 100).  

Partial dependence analysis enables evaluation of the marginal effect of one or two model 

predictor variables on the response variable, conducted by averaging the effects of all other 
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predictor variables and increasing values for the parameter(s) of interest from low to high over 

several iterations [68, 85, 91]. The mathematical foundation behind partial dependence functions 

is described by Friedman and Popescu (2005) [92]. Partial dependence can be plotted to visually 

illustrate the overall complexity in the functional relationships between the response variable and 

a given predictor variable or variables. Therefore, it is an effective approach for identifying overall 

causal relationships between predictors and the associated model response [93]. Additionally, it 

provides for a more robust technique in understanding each predictor parameter effect by 

evaluating them over a continuous range of values opposed to relying solely on a single numerical 

score that represents each parameter’s impact in its entirety.  

2.4 Results and Discussion 

The findings from this study, presented in the subsections below, confirm that accurate 

prediction of Marcellus Shale well productivity indicators can be achieved by using GBRT and 

data that combine well design and geologic proxy data.  

2.4.1 Parameter Selection for GBRT-Based Models 

Table 4 depicts the results from the one or two at a time parameter removal evaluation 

based on the approach discussed in Section 2.3.6. Each row in Table 4 represent aggregated model 

R2 and RMSE scores for 12 different cross-validation iterations where GBRT models were re-

trained 10 times each for the one or two parameters removed. Results are for prediction against 

the validation dataset. Predictor parameters are ordered (from top to bottom per Top 12-month 
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results) based on mean R2 scores for reduced models associated with their omission. The 

parameters listed toward the bottom of the table are more impactful for model accuracy than those 

toward the top in the sense that performance drops more extensively when they are excluded. The 

Full Model formulations where all nine predictors from Table 2 are included as part of model 

development and can be used as a baseline reference for model performance changes given the 

omission of predictors for new, reduced model formulations. Removal of any given parameter for 

new models trained results in an adjustment to performance relative to the Full Model 

formulations, either as an improvement or reduction. 

In Table 4, its noted that for models predicting each productivity indicator, well azimuth 

and water per foot both improve performance when omitted relative to the Full Model formulation 

with all parameters included. This can be attributed to these parameters having 1) a negligible 

effect on the model response (evaluated in Sections 2.4.4 and 2.4.5) or 2) strong collinearity with 

another predictor variable (discussed in the following paragraph). The most impactful parameters 

with the largest relative drops in R2 and gains in RMSE for predicting either productivity indicator 

are related to spatial coordinates and perforated interval length.  

For two instances, a two at a time parameter removal evaluation was also conducted for 

predictor variables known to be highly collinear to evaluate the overall impact on model 

performance by removing both. For instance, both the Shih et al. (2018) and Schuetter et al. (2015) 

studies identified strong collinearity between proppant and water volumes used in unconventional 

O&G wells. Therefore, both 1) proppant and water per foot (major components in hydrofracturing 

well design) as well as 2) surface latitude and longitude (used to evaluate spatial variability in 

geologic conditions) were removed as pairs to evaluate the corresponding change in model 

performance vs. omission of any given parameter individually. Findings indicate that the overall 
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impact is substantially larger for each case (proppant/water or latitude/longitude) compared to 

removing any single parameter on their own. For instance, when water per foot alone is omitted 

from the model formulation, the overall R2 value is shown to increase for Top 12-month and 

marginally reduces for First 12-months, suggesting the predictor parameter holds little importance. 

Intuitively, this seems to contradict unconventional O&G well design and stimulation best 

practices given the acknowledged significance of injecting water under high pressures to facilitate 

productivity. Removal of proppant per foot, on the other hand, reduces R2 relative to the Full 

Model formulation for predicting both productivity indicators, suggesting it is an impactful 

parameter to some degree. Given the known correlation of water and proppant per foot in 

unconventional O&G wells (Pearson r of 0.82 for wells in this study dataset), removing one 

predictor can tend to compensate for the loss by removing the other and possibly imply that neither 

parameter is of substantial importance. However, when both water per foot and proppant per foot 

are omitted, their combined impact can be assessed from the resulting R2 and RMSE change. 

Overall, the most impactful parameters are the spatial coordinates used to evaluate variable 

geologic conditions across the study area. This is true when either latitude or longitude are omitted 

individually or together. With both omitted, the most substantial loss in performance accuracy 

from the Full Model formulation is observed, emphasizing the importance of spatially dependent 

geologic reservoir variability when determining future well sites.  
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Table 4. Results of the one or two at a time parameter removal procedure and associated values of the R2 and RMSE 

adjustments against the validation dataset.  

 

Predictor(s) Omitted 

Top 12-months Production First 12-months Production 

Mean R2  

(stdev) 

Mean RMSE 

(stdev) 

Mean R2 

(stdev) 

Mean RMSE 

(stdev) 

Azimuth (degrees) 0.792 (0.002) 491 (2.93) 0.738 (0.005) 519 (5.22) 

Nearest Neighbor (ft) 0.780 (0.003) 504 (3.35) 0.726 (0.005) 531 (4.87) 

Additive per foot (bbls) 0.780 (0.003) 490 (3.22) 0.745 (0.004) 493 (4.31) 

Acre Spacing (acres) 0.776 (0.002) 528 (2.84) 0.721 (0.005) 556 (5.08) 

Water per foot (bbls) 0.772 (0.003) 514 (3.46) 0.725 (0.003) 532 (3.35) 

Full Model (no predictors omitted) 0.771 (0.004) 515 (4.41) 0.726 (0.004) 531 (4.24) 

Proppant per foot (lbs) 0.771 (0.004) 516 (4.07) 0.713 (0.004) 539 (3.77) 

Proppant (lbs) and Water (bbls) per foot 0.753 (0.004) 535 (4.60) 0.691 (0.005) 560 (4.10) 

Perforated Interval Length (ft) 0.726 (0.004) 564 (3.66) 0.656 (0.005) 595 (4.62) 

Longitude (degrees) 0.684 (0.004) 605 (3.90) 0.623 (0.006) 622 (4.84) 

Latitude (degrees) 0.671 (0.004) 617 (4.07) 0.630 (0.006) 617 (4.86) 

Latitude and Longitude (degrees) 0.424 (0.004) 817 (2.73) 0.390 (0.005) 791 (3.40) 

 

 

Given its placement in the order of parameters in Table 4 and both redundancy and 

correlation with the acre spacing parameter (Pearson r of 0.86 for wells in this study dataset), the 

nearest neighbor parameter is omitted as part of the final model formulation for both productivity 

indicators moving forward. Since removing acre spacing results in a smaller improvement in R2 

and RMSE as indicated in Table 4, nearest neighbor is omitted instead. The final model 

formulation is therefore the best suited reduced predictor parameter combination that affords for 

the most accuracy and eliminates redundancy between parameters. 

2.4.2 Regression Model Performance 

Table 5 compares the prediction performance for the different model formulations 

predicting either the Top 12-months or First 12-months productivity indicators. The results 

indicate that developed models are relatively high performing for data-driven O&G predictive 

models based on literature review. Prediction results are compared again the training, validation, 

and testing datasets where each formulation was re-trained on the training dataset under 10 separate 
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iterations prior prediction. The mean R2, RMSE, and their standard deviation values were used to 

evaluate performance. Results presented in Table 5 under the validation column confirm that the 

omission of the nearest neighbor parameter from the full model to final model formulations 

provided a slight boost in model performance and smaller standard deviation for predicting Top 

12-months production, but results in a subtle reduction in model performance and larger standard 

deviation for the model predicting First 12-months. Based on the parameter impact assessment 

highlighted in Table 4 above, there appears to be no obvious formulation via predictor parameter 

removal for a First 12-months production model that can result in a more accurate model compared 

to predicting Top 12-months (i.e., exceeding a mean R2 = 0.780 against validation dataset, or a 

mean R2 = 0.793 against the testing dataset).  

 

 
Table 5. Comparison of the mean and standard deviation (in parenthesis) predictive performance of developed 

models under different formulations 

 

Productivity Indicator 

 Training Validation Testing 

Predictor 

Configurations 
Mean R2 

Mean 

RMSE 
Mean R2 

Mean 

RMSE 

Mean 

R2 

Mean 

RMSE 

Top 12-months 

Production 

Full Model - All 

Parameters 

0.987 

(0.002) 

126 

(9.887) 

0.771 

(0.004) 

515 

(4.143) 

0.788 

(0.006) 

499 

(7.032) 

Final Model - Nearest 

Neighbor Dropped 

0.987 

(0.002) 

124 

(10.600) 

0.780 

(0.003) 

504 

(3.349) 

0.793 

(0.002) 

493 

(2.979) 

First 12-months 

Production 

Full Model - All 

Parameters 

0.990 

(0.001) 

100 

(6.137) 

0.726 

(0.004) 

531 

(4.236) 

0.725 

(0.004) 

536 

(4.029) 

Final Model - Nearest 

Neighbor Dropped 

0.991 

(0.001) 

100 

(4.242) 

0726 

(0.005) 

531 

(4.871) 

0.732 

(0.003) 

528 

(2.872) 

 

 

The prediction performance for the final model formulations is visually compared with 

observed data from the testing dataset in Figure 11. The cross plots provide a visual depiction of 

each model’s prediction to actual observed production, which is quantified using R2. Models that 



 

56 

provide a perfect fit would have an R2 of one, and all data would fall along the black dotted lines 

(i.e., 1-to-1 match). Both models predicting either productivity indicator is fairly accurate with 

regards to observed production values; however, the final model formulation for predicting Top 

12-months production holds a performance edge over the model predicting First 12-months. The 

evaluation of testing dataset observed values to 90% prediction intervals indicate that the majority 

of observations fall within the prediction interval ranges (67 percent for Top 12-months production 

and 65 percent for First 12-months production). The majority of the observations that fall outside 

of the prediction interval ranges occur at either extreme end of the sorted data set (i.e., < 800 

MMcfge and > 3,000 MMcfge) for both productivity indicators. 
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Figure 11. Assessment of model performance for predicting well production. The top plots depict actual (i.e., 

observed) production values plotted against predicted values for the Top 12-months production responses (A) and 

First 12-months production responses (B) for each well in the testing dataset using a single run under the final model 

formulations. The bottom plots show sorted testing data observations and 90% prediction intervals for Top 12-

months production (C) and First 12-months production (D).  

 

 

An analysis of model residuals between final model formulations predicting either 

productivity indicator against the testing dataset is provided in Figure 53 in Appendix B. 
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2.4.3 Evaluating Parameter Importance 

Parameter relative importance plots are presented in Figure 12. The predictor parameter 

relative importance is compared for both the Top 12-month and First 12-month response variables 

under the final model formulation. Variables are ordered from high to low based on their resulting 

relative importance. Examination indicates two notable findings: 1) There are noted commonalities 

in four of the top five ranked predictor parameters for both productivity indicators but differences 

in their relative importance, and 2) the relative importance magnitude of predictor parameters 

differs to some degree depending on the predicted productivity indicator.  

 

 
 

Figure 12. Summary of the relative importance of the predictor variables for the final model formulations for the 

Top 12-months response (left) and First 12-months response (right). 

 

 

Gross perforated interval length, the geologic proxy parameters of well surface longitude 

and latitude, and additive were commonly ranked in the top five for predicting either productivity 

indicator, with gross perforated interval length as most important in both cases. Similarly, most of 

these same parameters were found to be important as having substantial detrimental impacts on 
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model performance when removed from training data (Table 4). In general, these parameters are 

commonly considered by many to be highly influential in unconventional O&G well design and 

placement decisions. Therefore, their positioning in the overall rankings in Figure 12 is not 

surprising. Furthermore, the results suggest consistency with others studies that have also modeled 

and evaluated/ranked well design and geologic parameters on productivity performance in other 

unconventional plays [55, 58, 15, 64], thereby helping to validate that models developed as part of 

this study are effectively identifying parameters commonly believed to be critical in producing 

from unconventional reservoirs. The remaining parameters (azimuth, water per foot, proppant per 

foot, additive per foot, and acre spacing) are ranked lower, but they would still be considered 

important toward estimating production given their overall relative importance magnitude (>50 

for Top 12-months; >65 for First 12-months) in relation to the highest-ranking parameter. 

However, the disparity between the highest versus lowest importance parameters is much larger 

for the model estimating Top 12-months production compared to the model estimating First 12-

month production. 

For comparison prior to dropping the nearest neighbor parameter, Figure 54 in Appendix 

B provides predictor parameter relative importance for both the Top 12-month and First 12-month 

predictor parameters under the Full Model formulation. 

2.4.4 Partial Dependence 

Fitting data-driven-based models with large, multivariate datasets can result in the 

formation of complex parameter interactions that are often highly nonlinear. Therefore, challenges 

exist in attempting to gain straightforward understanding of input and output relationships, as well 

as key parameter sensitivities, based on an evaluation of model performance results alone [31]. 
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This is where partial dependence can be handy in helping to identify causal relationships and assess 

the functional relationship between the response variable and a given input predictor.   

The partial dependence for the two production prediction indicators for each of the eight 

predictor variables that constitute the final model formulation are presented in Figure 13. In this 

figure (and similarly in Figures 8 and 9), the vertical axes depict the partial dependence for each 

variable. The average effect for each variable occurs when set at the point(s) on the horizontal axis 

that results in a partial dependence equal to zero. Any variable setting that results in a negative 

partial dependence value correlates to a response less than the model average. For instance, a given 

variable at a value setting that correlates to a negative partial dependence value would generate a 

model response lower than the average MMcfge production response assuming all other variables 

are set at their average. Conversely, any variable setting that results in a positive partial dependence 

value indicates a model response greater than average. In general, the models developed to predict 

either productivity indicator are highly similar in terms of partial response. The findings from this 

analysis indicate that for the eight variables evaluated, Marcellus Shale well performance improves 

most substantially with increasing perforated interval length and proppant and water per foot 

volumes. These findings are not necessarily surprising as these parameters have been identified by 

many as highly influential well productivity design factors [59, 57, 14, 63, 58]. Interestingly, the 

partial response for proppant remains relatively flat until approximately 850 lbs/ foot; at which it 

then increases linearly with added proppant intensity. Additionally, well performance improves in 

regions where latitudes trend less than ~40.3 (toward southwestern Pennsylvania and northern 

West Virginia) and longitudes trend greater than -77 (towards northeast Pennsylvania). Partial 

response is influenced strongly by the availability of training observations. Figure 13 highlights 

how model response varies for each parameter based on the availability or lack of training data.  
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Figure 13. Partial dependence plots for the eight predictor variables as part of the final model formulations. The red 

lines pertain to the Top 12-months productivity indicator response, and the blue lines pertain to the First 12-months 

productivity indicator partial response. Histograms (green) emphasize the prominence of training data available at 

given values along the x-axes. Ranges on the x-axes evaluated over the scales between each parameter’s 5th and 95th 

percentile based on observations in the dataset (azimuth ranges between 0 to 100th percentile).  
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Additive and acre spacing have noticeable, but more subtle effects than the previously 

described parameters. Acre spacing, in particular, is shown to have a positive effect on well 

production as the spacing value for wells increases. This supports the premise that more closely-

spaced wells can be subjected to reduced production due to proximal well interference, or possibly 

from intentionally reduced proppant and water injection design regimes aimed at preventing well 

interference via smaller stimulated reservoir volume. Well azimuth trajectory seems to have 

limited effect on production. However, it is possible that operators have identified close to optimal 

wellbore trajectory for given parts of the Marcellus Shale play that would maximize hydraulic 

fractures and associated production. Therefore, if true for the wells within this study’s dataset, 

contrast in partial dependence for various levels of azimuth would not be expected.   

2.4.5 Evaluating Key Parameter Interactions 

Evaluating single partial dependence evaluation (Figure 13) alone may imply that each 

parameter is independent if not evaluated in context, and that no correlations exist with other 

features. However, two parameters can be evaluated in concert using partial dependence to assess 

their interactive effects. The predictor parameters with more noticeable effects highlighted in 

Figure 13 were evaluated in select combinations to evaluate their interaction effects with joint 

partial dependence plots in Figure 14 and Figure 15 below. These plots were constructed where all 

parameters are marginalized by being held constant at their means except for the two evaluated for 

interaction. Only the Top 12-months productivity indicator is evaluated here, but Figure 55 and 

Figure 56 in Appendix B feature similar plots for First 12-months. 

The interaction between well perforated interval length and latitude and longitude in 

Figure 14 demonstrates that improving production is not just dependent on longer laterals, but 
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also on their placement spatially within the Marcellus Shale. In this case, the interactions support 

the highest productivity typically occurs in areas common to the Marcellus Shale core regions 

with longer perforated interval lengths. Additionally, Figure 8 (B) highlights that shorter well 

laterals in core areas achieve common partial responses as longer laterals in peripheral areas. In 

general, there is less disparity in the partial dependence response under the perforated interval 

interaction with latitude compared to with longitude. It is suspected that the aggregated effect of 

moving north to south in the play is suppressed due to a blending of geologic reservoir qualities 

(i.e., both high and low reservoir qualities occur at any given latitude) comparted to moving west 

to east (where both core areas are more apparent in the plots).  
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Figure 14. Three dimensional plots of partial dependence for predicting the Top 12-months productivity indicator 

using the final model formulation. The top figure (A) evaluates the interaction of perforated interval length and 

surface latitude. The bottom figure (B) evaluates the interaction of perforated interval length and surface longitude.  
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Figure 15. Three dimensional plots of partial dependence for predicting the Top 12-months productivity indicator 

using the final model formulation. The top figure (A) evaluates the interaction of perforated interval length and 

water injected per foot. The bottom figure (B) evaluates the interaction of latitude and longitude.  
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Another notable interaction between perforated interval length and water per foot (Figure 

15) indicates that higher productivity has been achieved by applying increased volumes of water 

during hydraulic fracturing or during any refracturing processes. Given that proppant and 

additive per foot are correlated to water per foot to some degree (Pearson r of 0.82 and 0.19 

respectively), they would correspondingly scale up with increased volumes of water injected. 

Figure 15 also evaluates the latitude and longitude interaction. The emergence of the two 

core regions of the Marcellus Shale can be seen by the prominence of local maxima when the 

effects from well design are marginalized. The southwestern core is represented by a local 

maximum between 39.5o to 40o in latitude, and between -80.5o and -79.8o in longitude. The 

northeastern core dominates the entire eastern portion of Marcellus Shale development and 

represented by local maxima at longitude greater than -77o. The Marcellus Shale is considered to 

be generally under-pressured to the southwest and normal-pressured to potentially over-pressured 

to the northeast, with a transitional area in between. Higher well productivities are expected from 

the normal to over-pressured areas relative to the transitional area [70, 94]. This dynamic seems to 

be largely reflected in the model based on the surface response per Figure 15B, which demonstrates 

the model’s utility in capturing the effects from the highly variable geologic conditions across the 

play. However, the existence of distinctive pressure regimes and highly variable lithology across 

the Marcellus Shale suggests that tailored approaches to well stimulation and completion would 

be needed to maximize the production potential depending on where future wells are placed. 

2.4.6 Application of Models Through a Case Study 

There is substantial utility in evaluating the effects of predictor parameter via partial 

dependence as highlighted in Sections 2.4.4 and 2.4.5. However, partial dependence is limited to 
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two-dimensional (i.e., two parameters) representations [91]; but regression models, particularly 

for complex subsurface applications, likely contain more variables of interest. One of the important 

functions of regression models, like the ones developed through this study, is in their predictive 

capability. Given the existence of highly variable geologic conditions across the Marcellus Shale 

and the noted effects of water and proppant volumes on productivity (Figure 13 and Figure 15 

above), the developed GBRT models can be employed to essentially optimize the volumes of 

proppant and water as part of the well design process. This concept was applied in a case study 

described below which intends to provide an initial look at using the capability of ML-based 

models to 1) assess the potential shortcomings in current well designs implemented and 2) help 

inform the tailoring of future well designs for maximizing the production potential depending on 

their placement in the Marcellus Shale. 

For this example, six existing wells in the study dataset were selected at random across the 

study area for evaluation. Table 6 provides a summary of the characteristics associated with each 

and supplemented with approximate geologic data common to each well location acquired from 

literature [71, 95, 96, 56]. Each well evaluated has different productivity characteristics that may 

be attributed to spatial placement in the Marcellus Shale, distinctive well design characteristics, 

and potentially from unique operational circumstances (i.e., reflected in differences in Top 12-

months versus First 12-months). Simulations were performed for predicting both productivity 

indicators (only Top 12-months featured here; First 12-months results can be found in Figure 57) 

by holding constant all parameters, but enabling water and proppant per perforated foot to vary 

independently within operationally feasible ranges of +/- 1.5 standard deviations from their mean 

values across the dataset (originally presented in Table 2).  
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Table 6. Characteristics from the six wells used as part of the case study. 

 
Parameter Well A Well B Well C Well D Well E Well F 

Water per perforated foot (bbls) 36.9 20.1 34.7 33.7 45.7 32.5 
Proppant per perforated foot (lbs) 1,684 1,929 1,603 1,347 1,999 863 

Additive per perforated foot (bbls) 0.192 1.615 1.248 0.428 2.54 2.96 

Perforated interval length (ft) 4,560 1,107 3,005 7,797 3,102 5,186 

Well trajectory azimuth (degrees) 337 193 303 344 338 319 
Acre spacing (acres) 101 81 66 124 57 345 

First production year (year) 2015 2012 2015 2016 2014 2017 

Surface hole latitude (decimal degrees) 39.936853 41.677194 40.305922 39.556682 41.675722 39.43821 

Surface hole longitude (decimal degrees) -80.156403 -75.835547 -80.234289 -80.579967 -76.032447 -80.772416 
True vertical depth (ft) 8,086 7,456 6,569 7,679 7,391 6,649 

Thermal Maturity (% Ro) 1.50 3.30 1.50 1.50 2.75 1.55 

Thickness (ft) 65 300 50 55 300 50 

Normalized Gamma Ray (API) 570 350 450 453 420 330 
First 12-months production (MMcfge) 1,687 2,096 818 1,834 2,310 1,496 

Top 12-months production (MMcfge) 1,702 2,434 840 1,899 2,523 1,526 

 

 

The results from simulations are presented as contour maps in Figure 16, where the 

colorations represent different levels of predicted Top 12-months productivity in MMcfge as a 

function of existing well designs and variable proppant and water per foot volumes. Warmer colors 

indicate higher predicted productivity and colder colors indicate lower predicted productivity. The 

black dots in Figure 16 represent actual proppant and water per foot design volumes used for each 

well in the field (which correspond to the associated Top 12-months production value).  
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Figure 16. Contour diagrams for estimated Top 12-months production for each well evaluated in the case study with 

varying water and proppant per foot input values. The black dots represent the implemented field designs for each 

corresponding well.  

 

Simulation results concur with parameter partial dependence analysis in that water per foot 

seems to have the largest influence on improving well productivity compared to proppant. 

However, the optimal combinations of water and proppant (within the bounds of water and 

proppant levels simulated) for maximizing productivity vary differently across wells evaluated 
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based on their location. While latitude and longitude data were used as part of the GBRT model 

input set, the geologic features in Table 5 can be referenced in tandem to provide some insight to 

why the resulting heat map responses to different proppant and water combinations vary for each 

well. Additionally, each well appears to fall short of the optimal water and proppant combination 

that would have ultimately maximize productivity at their respective well locations. For instance, 

Well A (southwestern core) is near optimum but could improve production by adding more water 

per foot. Well B (northeast core) could improve productivity by substantially increasing the water 

per foot to near 50 bbls/foot of perforation without any change to the proppant volume. Well C 

(liquids rich portion near southwestern core) could benefit by increasing water volume and may 

see no productivity improvement from any increase in proppant. Well D (liquids rich portion of 

southwestern core) falls short of the noticeable optimal design point near 45 gallons per foot and 

2,200 lbs proppant per foot. Well E (northeast core) is close to an optimal point, but interestingly, 

the model suggests a subtle reduction in proppant concentration may improve productivity. 

Finally, Well F (liquids rich portion near southwestern core) could benefit strongly from increasing 

proppant per foot greater than 1,800 lbs/foot and water to 40 bbls/foot or greater. Further analyzes 

would ultimately be needed to fully evaluate the economic, logistical, or environmental 

considerations for deploying wells closer to their optimal design settings (related to proppant and 

water volumes).  

Productivity response is highly variable across the wells evaluated (given that common 

water and proppant volumes were applied to each well), which suggests that spatial variability in 

geology is highly influential on production despite the specific choices in well design. However, 

for each well, unique adjustments to the design choices implemented in the field may potentially 

improve overall productivity given each well’s specific location based on modeling results. 
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Therefore, moving forward, the bottom-up design considerations for each new Marcellus Shale 

well will be critical in setting the production trajectory of the play’s remaining development 

potential. Any advances for how wells are designed (from modeling tools like the ones presented 

in this study, technology improvements, or otherwise) based on the specific geologic conditions 

for which they are placed can potentially alter future production forecasts, recovery factors, and 

overall resource estimates across the entire play. While this case study is a relatively 

straightforward example application (and does not include manipulation of other design 

parameters like additive, azimuth, or acre spacing), this type of data-driven model has the 

capability to quickly and effectively evaluate the impact of given well design choices on 

productivity and potentially help inform future reservoir management strategies. 

2.5 Conclusions 

This study applied ML to a large dataset that spans across a prominent unconventional 

reservoir and developed models capable of accurate prediction of productivity indicators at the 

well level that strongly correlate to EUR. The models developed provide a capability beneficial to 

reservoir management in the Marcellus Shale that enables fast and effective evaluation of the 

impact of various well placement and design choices. Prudent and efficient extraction of the 

Marcellus Shale’s remaining resources though the most effective reservoir management strategies 

are vital to its contribution as a sustained, long-term hydrocarbon asset. 

Dependable evaluation of tailored well designs and their associated interactions within the 

reservoir requires models that capture the inherent complexity associated with unconventional 

systems with the highest accuracy possible. The models developed here were found to perform 
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accurately (based on R2 and RMSE scores against hold out datasets) for predicting the productivity 

indicators evaluated over a large, play-wide study scale. The noted performance accuracy is 

attributed to two main factors: 1) the use of GBRT that handles the complexity associated with 

unconventional O&G systems quite well, and its inherent sequential construction of weak learners 

that compensates for shortcomings of those previously developed; and 2) the Top 12-months 

productivity indicator provides added utility for estimating the production potential for a given 

well based on its design and placement in the reservoir. 

A series of analyses were conducted using the developed models to explore the impact and 

overall effects of predictor parameters on well productivity. Findings demonstrated the importance 

of the geologic proxy parameters of well surface longitude and latitude on well productivity, as 

well as gross perforated interval length and water and proppant per foot. Relative improvements 

in well productivity are tied to upscaling of water and proppant volumes per foot as part of 

hydraulic fracturing. However, the magnitude of productivity improvements is spatially dependent 

across the play as influenced by geologic heterogeneity. While upscaling water and proppant are 

shown to improve productivity, optimal combinations of water and proppant volumes were found 

to vary depending on well placement within the play as indicated when models were applied under 

a case study. Additive per foot and acre spacing were shown to have noticeable, but more 

understated effects on productivity compared to gross perforated interval, water and proppant per 

foot, and geology. The effect of azimuth was found to be marginal at best despite being widely 

considered a critical well design consideration in unconventional reservoirs.  

While the methodology and models developed as part of this study are specific to the 

Marcellus Shale, the basic framework can be utilized and applied to other O&G reservoirs 

relatively quickly. Additionally, the data parameters utilized are relatively common across plays 
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and may be readily acquired from public sources. Developing and deploying ML technology in 

O&G applications has the prospective to provide efficient and accurate analytical toolsets that can 

complement existing best-practices—a combination that can potentially revolutionize how wells 

are sited, designed, and operated moving forward.   
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3.0 Machine Learning-Informed Ensemble Framework for Evaluating Shale Gas 

Production Potential: Case Study in the Marcellus Shale 

 

The following chapter is based on a peer-reviewed journal article published in Journal of 

Natural Gas Science and Engineering, which can be cited as: 

 

Vikara, D., Remson, D., and Khanna, V. Machine Learning-informed Ensemble Framework for 

Evaluating Shale Gas Production Potential: Case Study in the Marcellus Shale. Journal of Natural 

Gas Science and Engineering. 2020. Volume 84, https://doi.org/10.1016/j.jngse.2020.103679 

3.1 Chapter Summary 

Artificial intelligence and machine learning (ML) are being applied to many oil and gas 

(O&G) applications and seen as novel techniques that may facilitate efficiency gains in exploration 

and production operations. Significant improvements in that regard are likely to occur when ML 

can be applied to evaluate O&G challenges with inherent synergies that may have otherwise not 

been evaluated concurrently. This study introduces an ensembled framework that couples a data-

driven ML predictive model capable estimating a productivity indicator for unconventional O&G 

horizontal wells that correlates to estimated ultimate recovery (EUR) with a well design 

optimization approach that maximizes productivity. The framework is then applied to spatially 

rank productivity potential from low to high across the Marcellus Shale. The ML model developed 

used a gradient boosted regression tree (GBRT) algorithm and is capable of 82 percent prediction 

accuracy on holdout data. The distribution of geological properties as well as the resulting 

https://doi.org/10.1016/j.jngse.2020.103679
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optimized well design and completion attributes specific to regions commonly ranked in 

productivity potential are evaluated statistically to comprehend controlling factors on shale well 

production, and to identify if commonality or disparity exists in the prominent features. The 

highest productivity ranked region is isolated in the Marcellus Shale’s northeastern core region 

and its periphery. Statistical analyses indicate that regions higher in productivity ranking show a 

significant difference for certain (but not all) geologic features favorable to gas production 

potential relative to lower productivity regions; most notably net thickness and porosity. Optimized 

well design parameter settings vary relative to their placement across the study area and subsequent 

productivity ranking region. Overall, the ML-based framework discussed in this chapter attempts 

to analyze shale controlling factors concurrently, to deliver a systematic evaluation result for 

production potential that accounts for and quantifies controlling features associated with geologic 

properties and well design attributes.  
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3.2 Introduction 

Horizontal drilling and hydraulic fracturing are transformational technologies that have 

enabled the widespread development of unconventional oil and gas (O&G) reservoirs that were 

otherwise uneconomical to develop. Expansive development of unconventional O&G resources 

has facilitated substantial growth in hydrocarbon production enabling an energy abundance – the 

result of which has led to a revolution in the energy landscape of the United States (U.S.) as well 

as in energy markets across the globe [2, 47, 48, 97]. However, more recently, the increased supply 

(particularly for natural gas) in the U.S. has been coupled with decreasing demand growth resulting 

in suppressed oil and gas prices. Additionally, in certain cases, a lack of pipeline infrastructure 

prohibits hydrocarbon supplies to potentially emerging markets; a circumstance which prevents a 

possible increase in overall hydrocarbon demand.  

Suppressed market prices for O&G can diminish the economically-viable portions of 

existing O&G assets unless 1) technological advancements that can improve productivity can keep 

pace with declining market prices or 2) mechanisms that lower cost and/or increase operational 

efficiency are developed and implemented. Such a predicament may compel O&G operators to 

optimize unit costs ($/unit of energy) by balancing higher-cost completion designs with enhanced 

performance, as well as through improved operational efficiencies [98]. Artificial intelligence and 

machine learning (ML) have emerged as promising approaches that may reshape the exploration 

and production landscape for the O&G arena and provide new techniques for operators to consider 

in the pursuit of lowered costs and improved recovery objectives [38, 39, 40, 99, 31]. The 

International Energy Agency estimates that widespread use of digital technologies like ML could, 

for instance, increase O&G reserves by about five percent and reduce production costs by 10 to 20 

percent [45]. Furthermore, the increase in the types and volumes of digital data formats becoming 
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available via unconventional O&G development [32, 53] makes applying ML for use cases in 

O&G and other subsurface applications highly intriguing. 

The challenge in developing unconventional fields lies in the inherent high-dimensional 

decision-making problem, especially when substantial uncertainty may exist with subsurface 

conditions and prevailing economic factors [100]. An integrated ML-based decision-making 

framework that can accommodate two or more field development dimension considerations would 

seem to provide efficiency improvements in multiple facets. A multi-faceted but correlated 

example O&G operators routinely manage include 1) cost-effectively locating drilling locations 

with high production potential (i.e., sweet spots) in a regionally extensive and highly heterogenous 

unconventional play and 2) engineering well designs tailored to geologic conditions present at new 

well sites that maximize production potential.  In general, sweet spots are target locations or 

regions within a play or a reservoir that represent known high productivity or have the potential 

for high productivity. These locations are often delineated to enable wellbore placement in the 

most productive areas of producing reservoirs. Sweet spots in unconventional reservoirs are 

typically defined by several controlling geologic factors (described in detail in Section 3.3). 

Traditionally, geoscientists and engineers have employed the likes of core analysis, well log data, 

and seismic attribute data to attempt to identify regions with high productivity potential [101, 102, 

103]. A challenge is that existing approaches for sweet spot identification often require disparate 

datasets that are expensive to acquire and are specific to an isolated portion of a potentially 

expansive hydrocarbon play. Given the current O&G economic climate (April 2020 values: Henry 

Hub Natural Gas Spot Price - $1.74 USD per MMBtu; West Texas Intermediate Crude Oil Price - 

$16 per bbl), continued investment in expensive data acquisition pursuits to inform reservoir 

management approaches seems disadvantageous. The disparate types of data required for 
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traditional analyses also present a challenge to integrate when they occur on different scales – both 

spatially and temporally [104]. In addition, these forms of reservoir evaluation provide a 

comparison of relative productivity potential within the area evaluated based on geologic 

conditions only. They can inform the well completion design process but do not translate directly 

to well productivity. Furthermore, they cannot be scaled across an expansive play given data 

requirements; and interpolation approaches can be fraught with uncertainty when applied over 

large spatial domains [77].  

Another on-going field development challenge has been determining the controlling factors 

on shale well productivity potential given geologic conditions inherent to new drilling sites and 

well completion design choices. Physics-based multiphase flow models are widely used tools for 

gaining an understanding of the subsurface response to engineered permutations from operations 

like geologic carbon dioxide storage, liquid waste disposal, as well as hydraulic fracturing 

processes. However, predictions from multiphase flow modeling are known to contain inherent 

uncertainty given the challenges associated in sufficiently representing the heterogeneity in 

subsurface media. Furthermore, challenges may exist in procuring geologic data in sufficient 

volumes at the lowest level possible (for instance, at the well level) to build representative reservoir 

models [51]. The more typically used physics-based fluid flow models for reservoir simulation can 

also be both time and computationally rigorous to carry out [47, 52, 32, 105]. However, given 

certain reservoir geological properties at potential drilling sites, major production efficiency gains 

may come through determining the best tailored completion strategy that maximizes the 

production potential at that location. Machine learning-based models may offer a faster and 

potentially more reliable complement to commonly used reservoir modeling when evaluating well 

designs that can be tailored to site conditions and more amenable to productivity gains.  
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Several studies have examined ML-based approaches for a variety of different O&G 

applications. Examples of topics investigated include modeling hydrocarbon production in 

unconventional O&G plays [56, 15, 58, 16], well drilling operations [17, 18], lithology and 

geologic facies classification [21, 19, 20, 106], subsurface fault detection [22], operational 

predictive maintenance planning [23, 24], and detection of potentially high producing pay zones 

sweet spots [25, 26]. The studies under each topic provide innovative aspects which may facilitate 

exploration and production efficiencies and/or more cost-effective approaches, enabling 

sustainable development of hydrocarbon resources moving forward. However, significant 

improvements in that respect may likely occur when two or more of the concepts are integrated 

into a more robust decision informing framework; one that connects the cause and effect of 

applications included and when applied, may offer improvements over common benchmarks or 

industry best practices.  

Machine learning has recently been applied as an innovative approach addressing the 

challenges described above, most notably 1) delineating and appraising the productive quality in 

unconventional reservoirs and 2) generalizing unconventional well productivity and informing 

well completion designs. In terms of appraising reservoirs, Tahmasebi et al. (2017) developed a 

hybrid ML technique that integrates neural networks and fuzzy logic; an approach that can 

effectively predict total organic carbon (TOC) and reservoir fracturability given a suite of well log 

data and mineral compositions from the x-ray diffraction analysis [25]. Their approach helps in 

estimating the probability of targeting sweet spots, as well as identify the necessary well log data 

needed to inform reservoir evaluation most effectively. Qian et al. (2018) developed a workflow 

based on fuzzy mathematics and support vector machines that enables characterization of sweet 

spots in unconventional O&G reservoirs by correlating seismic attributes to petrophysical 
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characteristics [26]. In mature plays, the use of historic well completion and production data has 

facilitated analyses and developed alternative approaches for evaluating new well sites over larger 

spatial domains [107, 108, 59, 109, 110]. This same concept can be applied using ML on existing 

data that is widely available and low-cost to attain. Regarding well optimization, Wang and Chen 

(2019) used an adaptive boosting ML algorithm to formulate predictive models for oil production 

focusing on the Montney Formation in Canada [15]. Their study implemented sensitivity analyses 

modifying the proppant and water intensity of in-field well designs to determine optimal attribute 

settings that maximized productivity. Shih et al. (2018) performed a similar optimization exercise 

using Kernel Ridge regression on hydraulic fracturing additive and water usage in horizontal wells 

in the western region of the Marcellus Shale [56]. Luo et al. (2018) is another example in which a 

neural network model was developed to correlate the relationship between the first-year oil 

production in the Bakken with input parameters consisting of well design attributes and geologic 

properties. The neural network model was used to perform a sensitivity analysis to investigate the 

relationships between well completion strategies and geologic conditions on the first-year 

production response [16].  

The application of ML has proved to provide fast, accurate, and cost-effective analytical 

approaches to many O&G-related problems and can be used to analyze disparate datasets in 

innovative ways. However, many of the existing ML-based approaches that have proven capable 

for specific applications (i.e., identifying sweet spots, generalizing well performance, 

characterizing lithology, etc.) are rarely applied in ways to demonstrate notable improvements over 

more widely used field development methods. These types of ML topics have been explored 

mostly in parallel, but larger benefits may exist by coupling approaches at various scales (pad, 

field, or basin-scale). This concept could facilitate the development of more robust decision-
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making frameworks, thereby helping assure longer-term sustainability and overall improvement 

in unconventional field development moving forward.  

This study introduces an ensembled framework that couples a data-driven ML predictive 

model capable estimating a productivity indicator for unconventional O&G horizontal wells that 

correlates to estimated ultimate recovery (EUR) [67] with a well design optimization approach 

that maximizes productivity. The novel framework is applied to the Marcellus Shale 

unconventional reservoir located in the Appalachian Basin of the northeastern U.S. The Marcellus 

is a relatively mature play with approximately a decade of production history. As a result, data 

exists for wells from multiple operators that have employed a variety of well design options across 

the assortment of geologic conditions of the play. The framework is applied in a fashion to rank 

productivity potential across the Marcellus. The distribution of geologic properties together with 

the resulting optimized well design attributes specific to regions common in productivity potential 

are evaluated statistically to analyze controlling factors on shale well productivity potential. This 

step will identify if statistically significant commonality or disparity exists in the prominent 

geologic and/or well design characteristics depending on their geographic placement across the 

Marcellus. The insights gained should be advantageous in both the 1) identification of high-priority 

drilling regions and their geographic extent along with 2) informing future well designs tailored to 

their geographic positioning and spatially-dependent geologic conditions across the Marcellus that 

can potentially offer improved productivity.  
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3.3 Overview of Controlling Factors for Gas Production in Shale Reservoirs 

Comprehensive evaluation of the controlling factors influencing unconventional gas 

recovery requires consideration of both geologic and engineering (i.e., well design) aspects [26]. 

Specifically, well stimulation and completion designs need to be tailored to maximize productivity 

potential for any given well site based on the controlling geologic conditions present. Some of the 

major geologic parameters that influence a given unconventional play’s boundaries and 

productivity potential include total organic carbon (TOC), formation thickness, porosity, 

hydrocarbon and/or water saturation, thermal maturity, depth, pressure, presence of existing 

fracture networks, and ability of the formation to be hydraulically fractured (i.e., fracturability) 

[111, 107, 112, 102]. Several of these parameters, which are explored to some degree in the 

analyses presented later in this study, are briefly discussed below as they relate to shale gas 

productivity potential. Aside from the effects on hydrocarbon production, these geologic 

controlling factors can also strongly influence well drilling logistics and safety concerns, but those 

are not discussed here. 

• Total Organic Carbon - TOC is widely considered amongst the most crucial 

parameters for shale reservoir evaluation. Thermal degradation of organic material like 

kerogen and bitumen creates hydrocarbons – the process is what defines a source rock. 

Generally, in shales that are thermally mature (> 1 % vitrinite reflectance [Ro]) the 

higher the TOC, the greater the potential exists for higher gas adsorption capacity [111]. 

However, measurable TOC tends to decrease with increasing thermal maturity and 

subsequent hydrocarbon generation [113]. TOC is typically required to be above two 

percent to have viable production potential [114]. Higher TOC content in 

unconventional reservoirs tends to increase porosity, permeability, and fracture density, 



 

83 

and is shown to reduce the overall bulk density of the reservoir [114, 101, 115].  One 

of the best proxy measurements of TOC content in a reservoir is gamma ray count as 

well as resistivity. A strong correlation exists between reservoir organic content, well 

log gamma ray intensity, and high resistivity [116]. As an example, five percent TOC 

content can be detected with gamma-ray counts of 200 API units or greater. Gamma-

ray counts in the lower member of the Marcellus formation often exceed 400 API units, 

which generally indicates higher TOC contents in the basal part of Marcellus [70].  

• Thickness - The thickness of an organic-rich unconventional reservoir may or may not 

correlate with overall hydrocarbon storage capacity and productivity potential, because 

the entire reservoir segment may contain both productive and relatively non-productive 

rock intervals. Therefore, thickness is typically demarcated in terms of gross and net 

thickness. Net thickness is the aggregate sum of the reservoir intervals with geologic 

properties favorable for hydrocarbon production. Gross thickness is the total thickness 

of the stratigraphically defined reservoir interval which may include non-productive 

segments with unfavorable geologic conditions for hydrocarbon production 

interbedded within. The larger the net thickness, the greater the likelihood of overall 

hydrocarbon storage capacity and productivity potential.  

• Porosity - Reservoir porosity consists of the pore space that can potentially hold gas 

(or oil), but may also contain water. The greater the porosity, the greater the gas storage 

potential. Unconventional reservoirs may contain both free gas and adsorbed gas. Free 

gas is stored in the effective porosity of the rock matrix (gas saturation = 1 – water 

saturation) and the absorbed gas adheres to the organic content of the reservoir. Low 

reservoir density typically correlates with higher porosity, especially because organic-



 

84 

hosted porosity dominates unconventional shale porosity, and organic material has 

lower bulk density relative to the mineralogical content. While no standard logging 

technique for assessing porosity in situ exists, neutron, density, and acoustic velocity 

(or sonic) logs can be used to infer porosity [117]. The presence of natural fractures 

can provide additional pore space for hydrocarbon accumulation, as well as a flow path 

network favorable to productivity. Alternatively, natural fractures can be thief zones 

for expulsion and migration of hydrocarbons out of the reservoir over geologic time, or 

be thief zones for hydraulic fracture energy over the completions timeframe. 

• Resistivity – Resistivity is a material property associated with how strongly a material 

opposes the flow of an electric current. The materials within most rock matrices are 

inherently insulators and resist current, but fluids in the pore space could be either 

resistive or conductive. For instance, oil and gas have higher resistivity than water. 

Therefore, a favorable productivity interval may contain high resistivity log readings 

[118] when coupled with higher porosity values. Induction logs are commonly used to 

assess resistivity in situ by measuring the conductivity of rock formations by using 

electromagnetics.  

• Depth - True vertical depth can impact multiple geologic properties. Deeper reservoirs 

may experience greater compaction effects, resulting in reduced porosity and 

permeability [114], which could be detrimental to gas productivity. However, 

hydrostatic pressure increases as a function of depth but may vary location to location 

(from under- to normal- to over-pressured) dependent upon on the geomechanics of the 

reservoir and seal, the structural evolution of the region, and the basin’s burial history. 

Generally, over-pressured unconventional reservoirs correlate to higher production 
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rates [119]. Depth also correlates with thermal maturity within a region with similar 

basin burial history.   

• Fracturability - The mineral composition of the reservoir controls the brittleness, a 

favorable condition that enables fracturability. The higher content of brittle minerals 

like quartz and calcite generally better enables fractures – either natural or 

operationally-induced. Fracturing is critical to productivity by establishing 

hydrocarbon flow pathways from the reservoir to the producing well. The presence of 

higher content of ductile material like clay, on the other hand, can lead to flow path 

blockage [120]. Reservoirs high in Young’s Modulus (reflection of rock rigidity) and 

low Poisson’s ratio (reflects rock elasticity) typically possess greater fracturability.  

The impact of many of these factors on the upper limit of the gas available in situ can be 

observed mathematically. The volume of original gas in place (OGIP) in standard cubic feet (scf) 

in unconventional reservoir that includes free and adsorbed gas per Richardson and Yu (2018) is 

outlined in Equation 3-1 [121]: 

 

 

𝑂𝐺𝐼𝑃 = 43,560
𝐴ℎ𝑠[∅𝑚(1 − 𝑆𝑤) + ∅𝑓𝑟𝑎𝑐(1 − 𝑆𝑤) − ∅𝑎]

𝐵𝑔
+ 1,359.7𝐴ℎ𝑠𝜌𝑏𝜐𝑎 Equation 3-1 

 

 

Where A is the drainage area (in acres), hs is pay zone thickness (ft), m and frac are matrix 

and fracture porosity respectively (fraction), Sw is the water saturation (fraction) which may vary 

between the matrix and fractures, a is pore space occupied by adsorbed gas (fraction), b is the 

bulk density of shale (in g/cm3), a is the specific volume of gas absorbed per unit mass of shale 

(standard ft3/ton), and Bg is the formation volume factor (reservoir ft3/standard ft3). The volume of 

OGIP per Equation 3-1 generally increases with thicker, more porous rock with high gas and lower 
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water saturations. With increasing pore pressure, the a term may increase as well, resulting in a 

greater amount of the overall gas volume in place. Equation 3-1, however, does not account for 

hydrocarbon flow to the wellbore; an aspect influenced by both the presence of natural fractures 

as well as those induced by the hydraulic fracturing process. 

Several studies have classified and ranked prominent controlling geologic attributes in 

unconventional reservoirs [114, 101]. However, little emphasis has been placed on how the 

distribution of various controlling geologic parameters at candidate drilling sites can be 

collectively evaluated and used to inform well designs options that maximize productivity. 

Additionally, variation that likely exists in controlling geologic characteristics from one site to 

another given inherent heterogeneity makes differentiating prospective drilling sites from a 

productivity perspective a challenge. This study implements an evaluation approach that enables 

ML to leverage existing well design and production data to differentiate and rank productivity 

potential in the Marcellus from a spatial perspective. The controlling geologic factors are 

compared within and across regions differentiated as a function of well productivity by analyzing 

well log data post-hoc to the systematic assessment of productivity using ML. Since the availability 

of comprehensive, reliable, and represented geologic data associated with the shale gas controlling 

factors for production at the well-level (where production was observed to complement the well 

design attribute data) is not feasible to acquire at large scales, these types of data were not 

integrated into the front end (i.e., ML development component) of the modeling framework. 
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3.4 Data and Methods 

The predictive model utilized for this study was built on a Gradient Boosted Regression 

Tree (GBRT) ML algorithm. The model estimates natural gas equivalent hydrocarbon production 

for horizontal wells producing from the Marcellus Shale. Through our previous research, we have 

found that GBRT performs admirably in generalizing the performance of horizontal wells in the 

Marcellus [122]. Developed models are then used to simulate well productivity across a bulk of 

the Marcellus producing region in an attempt to 1) grade and rank regions based on productivity 

potential from low to high and 2) identify the optimal well design configurations within each 

region driven by controlling geologic conditions. Statistical analyses are then performed to identify 

differentiable geologic and/or well design attributes between graded regions. This analytical 

approach that leverages readily available datasets provides a fast and efficient compliment that can 

supplement existing prospecting site selection and reservoir management practices. Additionally, 

the insights gained should be useful in informing tailored well designs given their potential drilling 

location. Figure 17 highlights the study framework that was implemented. The following sub-

sections discuss the framework component in detail. 
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Figure 17. Study framework using GBRT-based machine learning predictive models to grade and rank producing 

regions in the Marcellus. 

3.4.1 Study area overview 

Well data used for this study was obtained from the O&G data vendor DrillingInfo [123] 

and consists of horizontal production wells placed in the Marcellus all with first production dates 

between the January 1, 2010 to December 31, 2018 timeframe. The resulting dataset consists of 

7,043 wells in total extending across Pennsylvania and northern West Virginia. An initial data 

preprocessing step included data filtering for dataset entries with missing data values for either 

predictor or response parameters of interest (Table 7); no attempts at data interpolation on missing 

values were made. The resulting dataset consists of 4,256 wells and is the identical to the dataset 
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used in our previous study [122] – all of which contain data for every predictor and response 

parameter evaluated. Figure 18 delineates the extent of the study area and the distribution of well 

data available. The study area includes the most currently active, appraised, and developed 

portions of the Marcellus. 

 
 

Figure 18. Map outlining the study area of interest and the well set used as part of the study. Well data is used in the 

machine learning workflow to train, validate, and test predictive models. 

 

 

The Marcellus Shale is a marine sedimentary carbonaceous rock of Middle Devonian-age 

located in the Appalachian Basin of the U.S. The formation covers nearly 95,000 square miles and 

underlays portions of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, 

Kentucky, and Tennessee, as well as extending into Ontario, Canada, [70, 124, 125]. Since 2013, 
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the Marcellus has become the largest gas producing play in the U.S. [71] and is expected to be a 

vital natural gas resource moving forward with estimates of recoverable resource potential ranging 

from 220 to upwards of 560 trillion cubic feet (tcf) of natural gas [126, 127, 2]. Implementing 

effective and efficient reservoir management strategies when planning production towards the 

remaining resources of the Marcellus Shale will be critical for the play to remain a leading 

hydrocarbon asset over the long-term. The decade of the Marcellus’ production history has enabled 

a wealth of data from which ML based models can be developed. Models like these can help inform 

the well designs for future well sites, reservoir management decisions, potential infill development, 

and even in retesting initial step-outs wells that occurred in drilling regions peripheral to core 

producing areas early in the play’s development.  

The Marcellus’ geological characteristics have been described in detail by the likes of 

Milici and Swezey (2006), Engelder and Lash (2008), Boyce and Carr (2009), Zagorski et al. 

(2012), and the U.S. Energy Information Administration (2017) among others [94, 128, 70, 129, 

130] and are therefore not described in length here. However, not uncommon to other continuous 

and expansive O&G plays, prominent reservoir properties that define the Marcellus boundaries 

include burial depth, pressure, TOC, thermal maturity, reservoir gross and net thickness, porosity, 

permeability, gas-in-place, fracturability (brittle vs. ductile), and the prominence or absence of 

natural fractures. Geologic properties are vastly diverse across the extent of the Marcellus due to 

the reservoir’s inherent heterogeneity [71, 73]. Ranges of several of these reservoir properties 

across the producing sections of the Marcellus include thermal maturity between 1.23 to 3.5 

percent Ro, 1 to >18 percent TOC content by weight, 4 to 20 percent total porosity, 0.4 to >0.8 

psi/foot pressure gradient, 3,900 to >8,500 total vertical depth, and 50 to 350 feet gross thickness 

[94, 131, 132].  
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Two prominent core areas exist in the Marcellus. Each core region has facilitated higher 

productivity when compared to other portions of the play. One core region spans across portions 

of southwestern Pennsylvania and northern West Virginia (southwestern core) and the second is 

located in northeastern Pennsylvania (northeastern core). The core regions are known to contain 

disparity in their controlling geologic characteristics that make each uniquely distinct. Relative to 

the northeastern core area, the southwestern core is characteristically higher in TOC, has a higher 

net-to-gross thickness ratio (due to absence of limestone intervals, and a more distal depositional 

environment resulting in a condensed section), a smaller gross thickness, is more porous and 

permeable, contains a lower pressure gradient on average, and is less thermally mature. In contrast, 

the Marcellus’ northeastern core is substantially thicker, known to have a higher-pressure gradient, 

and is more thermal mature [74, 70, 75]. Production data has indicated that wells in the 

northeastern core, where the play is at its thickest relative to other areas are, in general, larger 

producers of natural gas. However, thermal maturity conditions favor portions of the southwestern 

core to be abundant in natural gas liquids. As a result, these areas of the play may be more enticing 

to operators given the potential economic benefits over the dryer gas areas prominent in the 

northeast. Aside from the core areas, the Marcellus’ periphery remains largely underexplored and 

may contain segments of favorable production potential for future development [71].  

3.4.2 Gradient boosted regression tree model overview 

A GBRT-based ML model capable of predicting natural gas equivalent hydrocarbon 

production from horizontal wells in the Marcellus Shale was recently developed in our previous 

work [122]. The model predicts, either the Top 12-months or First 12-months production 

indicators, both of which have shown to that correlate to well-level EUR. The GBRT approach 
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proved to provide for an accurate predictive model for predicting both production indicators, but 

showed better performance when predicting the Top 12-month indicator. As noted in our previous 

study, the Top 12-month indicator effectively represents productivity potential for wells with or 

without disruptions to their production time-series profiles; whereas the First 12-month indicator 

is less effective for wells when interruptions to their production time-series from the distinctive 

“peak and decline” trends exist. The Top 12-month metric is calculated by summing the largest 12 

monthly production values in gas equivalent (million cubic feet of gas equivalent [MMcfge]6) for 

a given well irrespective of when those months occur during a well’s productive lifetime.  

For this study, the GBRT modeling approach and dataset presented in Vikara et al. (2020) 

were leveraged to assess productivity over the extent of the study domain by generating predictions 

for the Top 12-months production indicator given a few subtle adjustments to the overall model 

development approach. This model uses an input set that consists of multiple well completion 

attributes along with well spatial coordinate data; the latter serving as a proxy for spatially-

dependent geologic conditions (Table 7). The Vikara et al. (2020) study conducted a feature 

engineering and selection approach which was used to refine the input parameter dataset for the 

final model formulation. The approach consisted of one-at-a-time parameter removal where 

training and validation datasets are altered to reflect the omission of a given parameter from all of 

the attributes evaluated. GBRT-based models were then re-trained on the modified predictor 

dataset and the overall prediction accuracy (R2 and root mean squared error [RMSE]) was 

quantified against the validation dataset. The process was repeated by swapping the previously 

 

6 Determining the gas equivalent involves combining gas and/or oil production values for each well into a single unit 

by considering one barrel (bbls) of oil to contain six times the British thermal units as one thousand cubic feet of gas. 
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omitted parameter back into formulation for another. The approach was similar to recursive feature 

elimination, one parameter at a time sensitivity analysis [31], and the R2-loss evaluation 

approaches that have been used by others [64, 38]. The result of the feature engineering and 

selection approach conducted by Vikara et al. (2020) established the final model formulations that 

offer the most accuracy and reliability, and are built on a refined but essential set of predictor 

parameters. The resulting parameter set consist of those presented in Table 7.  

 

 
Table 7. Predictor and response variables for the GBRT-based predictive model. 

 

Variable Category 
Variable 

Type 
Parameter Mean Std. Dev. 

Well Design 

Predictors 

Water per perforated foot (bbls) 32 19.1 

Proppant per perforated foot (lbs) 1,475 866 

Additive per perforated foot (bbls) 1.54 3.81 

Perforated interval length (ft) 5,501 2,088 

Well trajectory azimuth (degrees)* 325 29.3 

Acre spacing (acres) 150 126 

Geology Proxy 
Surface hole latitude (decimal degrees) 40.643055 0.97 

Surface hole longitude (decimal degrees) -78.721317 1.95 

Productivity Indicator Response Top 12-months production (MMcfge) 1,637 1,084 

*Well azimuth trajectory data was normalized between 180o and 360o to set all well data to consistent orientations 

 

 

A feature importance evaluation was performed on the input parameters (data in Table 7) 

for the GBRT-based models conducted in the Vikara et al. (2020) study. The evaluation included 

analyzing the relative importance of predictor variables [90] to evaluate parameter importance 

hierarchy, and a partial dependence analysis [93, 85, 91] to evaluate functional relationships 

between predictor variables and response. Perforated interval length, the geologic proxy 

parameters of well surface longitude and latitude, well spacing, and water intensity were shown to 
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have the most notable effects of on the production response (Top 12 months) when both analyses 

are evaluated in tandem. The well design attributes consisting of perforated interval length, well 

spacing, and water intensity were shown to demonstrate positive linear relationships with 

production. Conversely, the effects of both latitude and longitude on production were highly non-

linear. Partial dependence analyses focusing on the concurrent effects of latitude and longitude in 

the Vikara et al. (2020) study highlighted an emergence of the two core regions of the Marcellus 

(described earlier in Section 3.4.1) that elicited higher effects on productivity than areas in the 

play’s periphery regions when the effects from well designs were marginalized.  

A GBRT ML algorithm was implemented as part of model development. GBRT is a 

powerful statistical learning technique that can solve both classification and regression style 

problems. GBRT-based models also enable straightforward feature importance evaluation as well 

[133]. Our previous work has demonstrated that GBRT, when applied to complex unconventional 

O&G systems, performs quite well [122]. Additionally, the use of GBRT enabled unique feature 

importance evaluation to better understand the hierarchy of both well design and geologic reservoir 

quality variables on model response. GBRT produces a final prediction model in the form of an 

additive ensemble of weak prediction models, typically decision trees. The model is built in 

sequential fashion where new decision trees are fit to prior stage model residuals [68, 81, 80]. This 

“boosting” approach has been noted in many instances to provide improvements compared to other 

decision tree-based algorithms (like random forests which use a bagging approach) because of the 

way the algorithm sequentially addresses prediction shortcomings [68, 134, 135]. The final model 

is therefore a linear combination ensemble of every decision tree (Equation 2-3). Each decision 

tree within the ensemble contributes to solving for a response variable (y). 
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𝐹(𝑥) = ∑ 𝛽𝑘ℎ(𝑥; 𝑎𝑘)

𝐾

𝑘=0

 Equation 3-2 

 

 

Per Equation 2-3, the GBRT algorithm aims to approximate a final model F(x) which 

minimizes a loss function against the training dataset through a weighted sum of basis functions 

h(x; ak) called “weak learners,” which take the form of the decision trees{0, k … K number of 

trees} of a specific size [79]. Each weak learner within the ensemble is function of input variables 

(x) with parameters a = {a1, a2, … aK}. Expansion coefficients () provide the weighted sum 

contribution for each weak learner and are fit to training data along with parameters (a) in 

sequence. An initial weak learner model F0(x) is first established followed others in greedy fashion 

set that the specified number of trees and fit to prior stage residuals. Boosting algorithms, like 

GBRT, are becoming broadly utilized in several data-science applications due to noted 

improvements realized in model accuracy. However, they have been narrowly applied in studies 

evaluating unconventional O&G production with a few noted exceptions [55, 15].  

The model development and validation approach implemented as part of the Vikara et al. 

(2020) study was applied here but adapted through two steps. The first step involved randomly 

subdividing the final project dataset into training, validation, and testing datasets through an 

80/10/10 percentage-based split. A validation holdout approach [136, 137] was then implemented 

as part of model training, hyperparameter optimization, and performance testing. This adjustment 

from the previous 60/20/20 split enables a larger and more diverse training dataset while still 

providing a validation dataset (first holdout set) to confirm optimal hyperparameter settings as well 

as a testing dataset (second holdout set) used to evaluate the finalized model performance other 

holdout data. An exhaustive grid search approach was used in which different models were built 

on the training data for the distinctive hyperparameter combinations evaluated [89]. Trained 
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models were then used to make predictions against the validation dataset. The model resulting 

from the hyperparameter combination that yields the most accurate model while avoiding over or 

underfitting was selected as part of the finalized model formulation. The second step involved 

evaluating final model performance on the 10 percent subset holdout test data, as well as to provide 

additional confirmation that models were not over or underfit.  

These modifications resulted in 1) confirmation that the optimal combination of GBRT-

related hyperparameters for predicting the Top-12 months production indicator response are the 

same as the original Vikara et al. (2020) study (Boosting stages [i.e., number of trees] = 3,000; 

Minimum sample splits = 10, Maximum depth [i.e., tree size] = 14, and Learning rate = 0.005; 

least absolute deviation was used as the loss function for all hyperparameter combinations 

evaluated) and 2) an improvement in overall model performance when predicting against the 

holdout test dataset (R2 = 0.82; root mean square error [RMSE] = 397) (Figure 19).  Python version 

3 and packages within the scikit-learn library [79] were leveraged as part of the ML workflow 

implementation. 
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Figure 19. Scatter plot for evaluating model performance of the GBRT machine learning predicted values for Top 

12-months production against the actual (i.e., observed) values for wells in the testing dataset. 

 

3.4.3 Simulation approach and productivity contouring 

The GBRT machine learning model was used to estimate the Top 12-month production 

productivity indicator over the entirety of the study area under two different well design scenarios. 

The resulting data was then plotted spatially and contoured against Top 12-month production 

estimates across the play. The contours enable spatial assessment of the productivity potential 

across the Marcellus’ producing region. Top 12-month production estimates were determined 

through simulation at evenly-spaced points (called “pseudo wells”) located at centroids of sub-

grids within a larger cartesian grid framework fit to the study area outlined in Figure 18 using 

geographic information system (GIS) tools. The cartesian grid was trimmed at its peripheral to 

ensure simulations only where in-field well observations used to train the GBRT model had 
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occurred by: 1) fitting a convex hull envelope [138] around the perimeter of the study wells (Figure 

18) and trimming pseudo wells outside the envelope boundary; 2) trimming pseudo wells outside 

of the Marcellus geospatial extent per Figure 18; and 3) trimming pseudo wells falling south of the 

southernmost limit of commercial production in the northeast Pennsylvania dry gas window (i.e., 

Marcellus Line of Death) [139, 140]. The resulting simulation grid included 27,631 pseudo wells 

with roughly 1 x 1 square mile spacing—where each pseudo well therefore contains a unique value 

for geologic proxy parameters latitude and longitude.  

The two well design simulation scenarios evaluated were under “standard” well design and 

“tailored” well design configurations. Under the standard well design scenario, a single simulation 

was conducted at each of the pseudo well locations to generate a Top 12-month production value. 

Each pseudo well completion design was identical – affixed at the mean value for each of the 

GBRT model well design predictor parameters from the study dataset (Table 7). Latitude and 

longitude were allowed to vary based on the specific coordinates of each pseudo well. Therefore, 

the only production factors varying over the simulation grid relate to spatially-influenced geology 

variability. Other studies have demonstrated the utility of well locational data in data-driven O&G 

modeling [64, 59, 15, 55] as an effective strategy for handling spatial disparity driven by geologic 

heterogeneity over large study domains. The tailored well design scenario was intended to generate 

improvements in well design component combination for each pseudo well which maximized the 

Top 12-month production response given the pseudo well’s location. Implementing this approach 

tests the hypotheses that 1) well designs must be custom to the corresponding geologic conditions 

present to maximize production potential [12, 13, 14, 141] and 2) a ML model capable of 

generalizing horizontal well behavior can provide rapid insights into such a pursuit. This step 

includes a brute force optimization approach performed by simulating each pseudo well under 700 
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randomly determined well design combinations (perforated interval length was not varied). A 

Monte Carlo Latin hypercube (LHC) sampling approach [142, 143] was used to generate 

controlled random samples of well design parameters within an operationally practical P20 to P80 

range observed in wells from the study dataset. Perforated interval length was fixed at the dataset 

mean to compare resulting well productivity against the standard well designs. The well design 

combination resulting in the highest Top 12-month production estimate for the 700 simulations at 

each pseudo well was chosen as the best tailored well design and used for further evaluation (data 

available in Appendix  [144]). The input variable ranges for both well design scenarios evaluated 

are summarized in Table 8.  

 

 
Table 8. Input variable ranges used for the standard and tailored well design simulation scenarios. 

 

Predictor Parameter 
Standard Well Design Value 

(mean) 

Tailored Well Design Range 

(P20 – P80) 

Perforated interval length (ft) 5,501 5,051 (fixed at mean value) 

Water per perforated foot (bbls) 32 22.4 – 41.6 

Proppant per perforated foot (lbs) 1,475 1,045 – 1,930 
Additive per perforated foot (bbls) 1.54 0.4 – 2.01 

Well trajectory azimuth (degrees) 325 314 – 342 

Acre spacing (acres) 150 68 - 182 

Surface hole latitude (decimal degrees) Specific to each pseudo well Specific to each pseudo well 
Surface hole longitude (decimal degrees) Specific to each pseudo well Specific to each pseudo well 

Mean, P20, and P80 values used are explicit to the study well dataset for in-field deployed 

Marcellus Shale wells. 

 

 

The Top 12-month production responses from both the standardized simulations and 

tailored well design simulations with LHC sampling are then plotted on maps and contoured as a 

function of predicted well productivity at each pseudo well location. This approach can highlight 

the mutability in productivity potential across the Marcellus’ regional extent due to the inherent 

spatially-induced geologic variability, as well as changes in productivity potential from 

standardized to tailored well designs that maximize production given unique well placement. The 
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study area is then classified into distinct productivity bins or “grades” from low to high based on 

threshold cutoffs for the simulated productivity potential (using data generated from tailored well 

design simulation and LHC sampling only). This binning / grading approach concept has been 

implemented in various forms from several existing sources as a way to isolate, analyze, and 

compare different regions of a given play based on productivity [145, 146, 147, 114]. The approach 

implemented here is unique in that ML modeling served as the basis for estimating productivity 

potential. Geologic data (described in Section 3.4.4 from well wireline logs was analyzed as a 

means to evaluate the geologic properties spanning the Marcellus net thickness interval and 

determine where differences or similarities exist from one productivity bin to another.  

3.4.4 Evaluation of well log data 

Basic geologic parameters for the Marcellus Shale interval were determined from 

evaluation of wireline log data. The parameters of interest include bulk density (RHOB in g/cm3), 

gamma ray (API), neutron porosity (NPHI in percent, fraction, or decimal), and deep resistivity 

(Ohm-m) – parameters common to the widely used Triple Combo well log tool string. These basic 

measurements capture many (but not necessarily all) of the geologic parameters believed to 

influence shale gas productivity as discussed in Section 3.3.  

Well log data, collected typically in half foot resolution, was extracted at two intervals of 

interest: 1) the gross interval of Marcellus including interbedded limestones like the Cherry Valley; 

and 2) for the Tully Limestone. Insights from studies conducted by Zagorski et al. (2011), Arthur 

(2011), and Carter et al., (2011) were used to inform the picks for the Marcellus Shale and Tully 

Limestone intervals [74, 96, 75]. Gamma ray readings were normalized (referred to as Normalized 

Gamma Ray from here) using a single-point normalization approach against the Tully Limestone 
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as a reference for all of the well logs evaluated. Other data processing included removal of data in 

intervals associated with washout zones. Well log data were used to identify three other parameters 

of interest at each well: 1) the total vertical depth to the top of the Marcellus (in feet); 2) the gross 

thickness of the Marcellus (feet); and 3) the net thickness of the Marcellus absent limestone 

intervals (feet). 

For each well log, data across the Marcellus net thickness interval pertaining to the six 

following geologic attributes were set aside for further analyses: total vertical depth, net thickness, 

normalized gamma ray, density, neutron porosity, and deep resistivity. Well log data is made 

available through Appendix  [144]. It is worth noting that of the well logs available (51 in total), 

many were missing log data for one or more of the parameters of interest. Additionally, since the 

thickness of the Marcellus and interbedded Cherry Valley limestone varies across the play, the 

volume of data at each well extracted varies depending on: 1) The gross thickness of Marcellus, 

2) The logging resolution at a given well and, 3) The availability of each logging string at each 

well. The following statistical analyses performed described in Section 3.4.5 were therefore 

typically conducted with highly unequal sample sizes depending on productivity bin(s) evaluated.  

3.4.5 Statistical approaches applied 

Multiple Kruskal-Wallis (KW) tests were conducted to evaluate the similarity or disparity 

of both the optimal well design choices (from the LHC sampling described in Section 3.4.3) and 

geologic properties (from the geologic assessment described in Section 3.4.4) within associated 

productivity bins. Kruskal-Wallis is a nonparametric statistical technique performed on the ranking 

order of observations from different datasets [148]. The KW test can be implemented to assess the 

probability that a random observation from each group are equally likely to be above or below a 
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random observation from a different group. This test was used because it does not require the 

evaluated groups to be normally distributed and the test is more stable to outliers. The independent 

variable evaluated was productivity bin, which included five levels [A, B, C, D, E]. The dependent 

variables are each of the simulation response data for the five well design attributes (with the 

exception of perforated interval length which was held constant) along with the well log data for 

the six geologic parameters evaluated. The equality of the five medians for each productivity bin 

was tested under the following null (H0) and alternate (H1) hypotheses list in Equation 3-3: 

  
𝐻0: �̃�𝐴 = �̃�𝐵 = �̃�𝐶 = �̃�𝐷 = �̃�𝐸  

𝐻1: �̃�𝑖 ≠ �̃�𝑗 for at least one pair (i,j) 
Equation 3-3 

 

 

The subscripts in Equation 3-3 i and j correlate to any potential productivity bin levels 

combination under each well design or geologic property evaluated. The null hypothesis is rejected 

at a significance level of  = 0.05. Kruskal-Wallis tests can provide insights into the overall 

significance of given factors (i.e., productivity bins) and the corresponding best well design 

attributes and geologic properties associated with each, but the test cannot inform exactly where 

differences lie.  

Following KW tests, Dunn’s tests [149] were used post-hoc to compare the respective pairs 

of medians for the given well design or geologic properties across each of the five productivity 

bins where null hypotheses are rejected. The overall significance level was assumed  = 0.05 for 

testing pairwise comparisons for the well design and geologic properties evaluated in this study 

under the hypotheses presented in Equation 3-4. A Bonferroni adjustment factor was applied for 

comparisons using Dunn’s test [150, 151]. 
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𝐻0: �̃�𝑖 = �̃�𝑗  

𝐻1: �̃�𝑖 ≠ �̃�𝑗  
Equation 3-4 

 

Confidence intervals on the differences in all pairs of medians were also constructed at the 

100(1 - ) level (i.e., 95% based on  = 0.05). Specifically, Dunn’s tests in this application will 

be able to determine where statistical similarities or differences exist across the best well design 

choices and geologic properties associated within each productivity bin—an approach that should 

help differentiate characteristics for controlling gas recovery across varying productivity ranges of 

the Marcellus. The statistical approaches described in this section are performed using Minitab 18 

Statistical Software. A macro developed by Orlich (2010) [152] was used to perform Dunn’s Test 

pairwise comparisons.  

3.5 Results and Discussion 

This section illustrates how the ensembled ML modeling and well design optimization 

approach described throughout Section 3.4 has been applied to the Marcellus. The results discussed 

throughout this section demonstrate that well designs tailored to their specific placement across 

the Marcellus can improve well productivity compared to standard designs that might be more 

commonly applied in the field.  

3.5.1 Productivity contorting 

The maps in Figure 20 show the predicted productivity potential under the standard well 

design and tailored well design simulation scenarios. The warmer color contours in Figure 20 could 
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be classified as higher productivity regions and the colder colors are essentially lower productivity 

regions. Simulation data between scenarios are quantified in Figure 21. Results of these 

simulations show the expansion of increased potential productivity (i.e., warmer colors) to new 

regions of the play coupled with a reduction in lower productivity regions (i.e., colder colors) using 

tailored well designs compared to standard well designs.  
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Figure 20. Contour maps depicting simulation results from the standard (top) and tailored (bottom) scenarios. The 

contours are derived from the Top 12-month production responses generated at pseudo well locations. 
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The application of tailored wells has resulted in a shift of the marginal mean of the entire 

pseudo well population Top 12-month production estimate from 1,162 MMcfge under standard 

well designs to 1,430 MMcfge – an overall increase of roughly 23 percent. The histogram 

presented in Figure 21A visually depicts the comparison of the pseudo well counts and resulting 

productivity estimates under each modeling scenario. The entire population of pseudo wells shifts 

towards larger productivity (x-axis in Figure 21A) when tailored well approaches are applied. 

Notable improvements in productivity from the standard to tailored well design scenario are 

realized in several regions across the play per Figure 20 and Figure 21B; particularly in the 

northeastern core (latitude = 41.75; longitude = -76.6) where substantial improvements are realized 

(> 1,000 MMcfge) and most of the southwestern region (longitude < -81).  
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Figure 21. Comparison of productivity outputs from the tailored and standard well design simulation scenario: (A) 

histogram of pseudo well counts and estimates Top 12-months Production; (B) scatter plot quantifying the 

difference in Top 12-months production between scenarios. 

 

 

Our previous study [122] explored the impact of varying only water and proppant intensity 

and observed the simulated Top 12-month production response for a handful of wells. This work 

concluded that well design choices pertaining to water and proppant deployed in the field fell short 

of more optimal combinations that would potentially improve gas productivity at each of their 
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corresponding well locations. Table 9 below provides a similar comparison of simulated tailored 

pseudo wells to actual in-field designs at randomly-selected locations within the extent of the study 

area – however additional well design parameters are adjusted than just water and proppant. In-

field wells with similar gross perforated interval lengths (5,501 feet +/- 75 feet), other well design 

parameters within the P20 and P80 ranges for those simulated, and roughly proximal to those pseudo 

wells simulated were conditionally screened for comparison. This analysis provides added 

perspective on the impact of tailoring wells and their noted performance improvement to not just 

the modeled standardized designs, but to Marcellus wells recently deployed in the field.  

 

 
Table 9. Characteristics from the four wells reviewed as part of the in-field vs. tailored well design comparison 

 

Well Parameter 

Well Location A 

Westmoreland County, PA 

Well Location B 

Doddridge County, WV 

In-field 

design 
Tailored design In-field design Tailored design 

Water per perforated foot (bbls) 26.8 31 32.3 41.3 

Proppant per perforated foot (lbs) 1,200 1,613 1,180 1,786 

Additive per perforated foot (bbls) 0.93 0.47 0.98 1.03 
Perforated interval length (ft) 5,545 5,501 5,448 5,501 

Well trajectory azimuth (degrees) 349 330 304 341 

Acre spacing (acres) 110 125 134 175 

First production year (year) 2013 NA 2015 NA 
Surface hole latitude (decimal degrees) 40.508006 40.50843424 39.265388 39.26388838 

Surface hole longitude (decimal degrees) -79.545961 -79.54867426 -80.596312 -80.59495965 

Top 12-months Production (MMcfge) 967 1,343 1,305 1,847 

Well Parameter 

Well Location C 

Susquehanna County, PA 

Well Location D 

Bradford County, PA 

In-field 

design 
Tailored design 

In-field 

design 
Tailored design 

Water per perforated foot (bbls) 28 41.1 29 38.9 

Proppant per perforated foot (lbs) 1,284 1,911 1,311 1,811 

Additive per perforated foot (bbls) 1.55 1.35 1.62 0.46 
Perforated interval length (ft) 5,477 5,501 5,435 5,501 

Well trajectory azimuth (degrees) 351 314 346 331 

Acre spacing (acres) 134 113 140 156 

First production year (year) 2011 NA 2012 NA 
Surface hole latitude (decimal degrees) 41.738956 41.73035199 41.879733 41.87743468 

Surface hole longitude (decimal degrees) -76.029431 -76.02050261 -76.441567 -76.43415032 

Top 12-months Production (MMcfge) 2,804 3,040 1,352 1,522 
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The comparison between the four wells chosen at random indicate that improvements in 

productivity can occur with subtle variations to in-field well designs. In each well, improvements 

were noted with increasing both the water injected per perforated foot in addition to proppant per 

foot intensity. However, additive, acer spacing, and well trajectory had differing effects on the 

resulting productivity response subject to the specific location of the well.  

3.5.2 Grading regions and well log locations 

The results from estimating productivity potential using the tailored well design simulation 

and LHC sampling step were differentiated into five distinct productivity bins or “grades” from 

high (A) to low (E). The five productivity bins cutoffs were semi-arbitrarily determined at the 

percentiles outlined in Table 10 with the objective of limiting the top two bins (A and B) at or 

above the 90th percentile of the simulated pseudo wells from the results in the tailored well 

simulation scenario. The total count of pseudo wells in the highest productivity bin (Bin A), for 

instance, includes only the top two percent of the simulation results (in terms of the Top 12-month 

production indicator) evaluated across the extent of the study area. The second bin (Bin B) includes 

the segment of the study area from the 90th to 97th percentile productivity range. This grouping 

convention was intended to isolate the most prolific production regions in the area evaluated for 

comparison purposes in the following analyses (in Sections 3.5.3 and 3.5.4). The resulting spatial 

distribution of the subsequent productivity binning is depicted in Figure 22. Bin A is isolated in 

the Marcellus’ northeastern core region. The majority of Bin B is also in the northeast core 

geographic region and includes a subset in the southwestern core. The other bins are split across 

the northeast core, southwestern core, and peripheral areas of the study region.  
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Table 10. Cutoffs of the simulated Top 12-month productivity indicator for the five productivity bins. 

 
Low End 

Percentile 
High End Percentile 

Low End Productivity 

(MMcfge) 

High End Productivity 

(MMcfge) 
Bin 

0.01 0.30 1,033 1,200 E 

0.31 0.60 1,201 1,390 D 

0.61 0.89 1,391 1,990 C 
0.90 0.97 1,991 3,290 B 

0.98 0.99 3,291 >3,882 A 

 

 
 

Figure 22. Contour map depicting 1) the extent of each of the five productivity bins based on simulation data from 

the tailored well simulation scenario and 2) the location of logging data analyzed. 

 

The locations of the 51 geologic well logs analyzed in this study are also plotted in Figure 

22. The well log data for the Marcellus interval compiled from these logs were aggregated based 

on their spatial placement to a corresponding productivity bin. As a result, the following quantity 
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of well logs available for analysis in each productivity bin were: 3 in Bin A; 4 in Bin B; 19 in Bin 

C; 4 in Bin D; and 21 in Bin E. Figure 23 depicts a well log interpretation example at depths within 

and proximal to the Marcellus interval in two different productivity bins. This figure highlights 

some of the noticeable differences in the geologic properties of the Marcellus from the highest 

productivity bin compared against one of the lower quality bins. For instance, the notable geologic 

features with the Marcellus in the Bin A well compared to the Bin D well demonstrate that larger 

net thickness (275 feet vs. 85 feet) and greater overall average neutron porosity across the 

Marcellus interval (20 percent vs. 14 percent) exist in this Bin A well example compared to the 

Bin D well example. These geologic properties, as discussed early in this chapter in Section 3.3, 

correspond to favorable hydrocarbon producing characteristics for shale reservoirs as documented 

previous in literature [114, 153, 131, 154, 147]. However, in contrast, the Bin A well example 

from Figure 23 is lower in other properties favorable to hydrocarbon production—particularly in 

average gamma ray (269 API vs. 320 API – not normalized in this example), average resistivity 

(97 Ohm-m vs. 164 Ohm-m), and a pore pressure proxy of true vertical depth (6,500 feet vs. 7,550 

feet) compared to the Bin D well. The Marcellus Shale in both wells possess relatively the same 

density on average (2.54 g/cm3 vs. 2.51 g/cm3). 
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Figure 23. Examples of well log data from two distinct productivity bins. The top is from a well located in Bin A 

and the bottom is from a well located in Bin D. The net thickness of the Marcellus interval picks are highlighted in 

blue and Cherry Valley Limestone intervals (where present) are highlighted in light red. 



 

113 

Determination of the productivity bins is partially a result from the resulting GBRT 

modeling response for every pseudo well evaluated under the LHC sampling scenario. The 

productivity response at pseudo well location is inherently influenced by both geologic 

characteristics of the Marcellus (indirectly evaluated by the GBRT model through the use of 

latitude and longitude coordinates) and the best well design combination that result in the highest 

productivity. The initial assessment of two well logs from the two productivity bins in Figure 23 

suggest that: 1) Higher productivity regions may not comprise of the most favorable geologic 

characteristics for natural gas potential (on average) for all controlling factors to peripheral, lower 

productivity regions; 2) A hierarchy of geologic characteristics, or a favorable combination of 

several characteristics, in terms of productivity potential may therefore exist and, 3) In order to 

maximize productivity, well design choices will likely need to be fit-for-purpose to specific 

geologic conditions. Sections 3.5.3 and 3.5.4 evaluate the distributions and statistical significance 

of several well design criteria and geologic properties resulting from the LHC sampling scenario 

as they relate to the five productivity bins. These sections provide insight into which properties are 

likely affecting the productivity of Marcellus wells and which bins have statistically unique well 

design criteria or geologic properties—information that should help differentiate key drivers to 

improved productivity and inform tailored well design choices for future wells.  

 

3.5.3 Statistical evaluation of geologic characteristics 

The box-and-whisker plots in Figure 24 depict the distribution of geologic parameters of 

interest in the Marcellus net thickness interval determined from evaluation of wireline log data as 

they relate to each productivity bin. For each geophysicial parameter, its mean, median, and 
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relative variance can be compared across productivity bins. A smaller variance for given parameter 

may suggest more geologic homogeneity exists (at least vertically across the net pay portion of the 

Marcellus) for that productivity bin, whereas greater variation suggests higher heterogeneity. 

Therefore, the mean or median values for any particular parameter must be evaluated in context of 

a given property’s distribution disparity across the Marcellus interval when considering 

productivity potential and fit for purpose well design choices.  

 

 
 

Figure 24. Box-and-whisker plot of geologic properties in the Marcellus net thickness interval for each productivity 

bin determined through the tailored well design scenario. The box extends from the 25th to 75th quartile values of the 

data, with a line at the median (50th quartile). The triangle is at the data mean. Whiskers extend to the range of the 

data at the 10th and 90th quantiles. 
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The KW results on the geologic data yielded significant variation for all parameters among 

rock quality ( = 0.05). No parameter was determined to be insignificant on the rock quality 

groupings. Therefore, a Dunn’s test was performed for all six geologic parameters within each 

productivity bin. The post hoc Dunn’s test results (Table 11) showed which geologic parameters 

differed significantly within each rock quailty bin at  = 0.05. Mean and median values, standard 

deviations, and 95% confidence intervals (CI) around the median are also presented for each 

geologic parameter in Table 11. Property values in Table 11 that do not share a Dunn’s test group 

number [1 through 5] are considered significantly different from each other. 

 

 
Table 11. Results from Dunn’s test on geologic properties across productivity bins 

 
Geologic 

Attribute 
Summary Statistic Bin A Bin B Bin C Bin D Bin E 

Total vertical 

depth (feet) 

Mean 6,931 6,742 7,146 7,387 6,018 

Median 6,754 6,713 7,397 7,361 5,748 

Standard Deviation 419 908 1,070 706 1,045 
95% CI (6,630, 7,410)* (5,665, 7,878)* (7,050, 7,568) (6,570, 8,255)* (5,245, 6,795) 

Dunn’s Test Group 1 1 1 1 2 

Net thickness 

(feet) 

Mean 261.5 126.6 90.8 55.9 62.9 

Median 240 115 83 48 45 

Standard Deviation 60.6 84.9 39.2 19.6 44.7 

95% CI (215, 330)* (43, 235)* (63, 107) (44, 85)* (34, 85) 
Dunn’s Test Group 1 2 2 2 2 

Normalized 

gamma ray 

(API) 

Mean 126 201 211 231 256 
Median 122 198 175 224 209 

Standard Deviation 36.9 40.4 140.1 77.5 154.1 

95% CI (119, 124) (186, 206) (171, 179) (219, 228) (203, 214) 

Dunn’s Test Group 3 1 2 1 1 

Density (g/cm3) 

Mean 2.54 2.37 2.52 2.51 2.49 

Median 2.56 2.36 2.56 2.51 2.51 
Standard Deviation 0.086 0.097 0.140 0.079 0.141 

95% CI (2.55, 2.57) (2.35, 2.38) (2.56, 2.57) (2.50, 2.53) (2.51, 2.52) 

Dunn’s Test Group 1 3 1 2 2 

Neutron 

porosity 
(percent) 

Mean 0.203 0.203 0.189 0.165 0.205 

Median 0.196 0.203 0.189 0.132 0.216 

Standard Deviation 0.046 0.054 0.056 0.089 0.064 
95% CI (0.195, 0.2) (0.18, 0.23) (0.187, 0.191) (0.128, 0.135) (0.214, 0.219) 

Dunn’s Test Group 1,2 1 3 4 1 

Deep resistivity 

(Ohm-m) 

Mean 96.8 364.6 178.1 126.3 330.7 

Median 83.8 331.6 99 99 148.2 

Standard Deviation 62.4 177.6 371.3 67.7 664.9 

95% CI (80.1, 88.3) (310, 394) (93.9, 102.4) (90.5, 117.8)) (141.1, 160.4) 
Dunn’s Test Group 4 1 3 3 2 

* Indicates the CI’s achieved based on data available. CI’s are lower than 95% as a result; Bin A = 75% CI and Bin B 

= 88%. CI  
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The Dunn’s test group number orders are based on the resulting highest group population 

value for that given parameter relative to the other Dunn’s test groups. The resulting groups 

determined from the Dunn’s test indicate that the higher productivity bins do not necessarily 

contain the most favorable geologic conditions under all circumstances. For instance, the highest 

productivity bin (Bin A) is in the 1st Dunn’s test group for total vertical depth, net thickness, 

density, and neutron porosity; Bin A also contains lower standard deviations for each property 

relative to other bins, suggesting higher homogeneity may exist. However, Bin A is in the lowest 

groups for deep resistivity (group 4) and normalized gamma ray (group 3). This circumstance 

suggests that one or more of the geologic parameters pertaining to depth, thickness, or neutron 

porosity are contributing towards Bin A being the highest in terms of productivity potential 

(agnostic to pseudo well designs deployed) relative to the other bins despite the comparative 

shortfalls in normalized gamma ray (likely a function of Bin A being predominantly located in the 

overly thermal mature northeastern core area) and resistivity. In contrast, productivity bin E, the 

lowest productivity bin, is in Dunn’s test group 1 for neutron porosity and normalized gamma ray 

– two of the properties strongly tied to in-place hydrocarbons. However, Bin E is relatively thinner 

and shallower than the other groups, and typically has a higher standard deviation across geologic 

properties compared to other bins, suggesting that larger relative heterogeneity exists. These 

findings may suggest that the actual rock quality in Bin E could be, in many instances, relatively 

high compared to the other groups. But because Bin E is thinner compared to other bins, there 

might not be as much resource in place from a volumetric quantitative perspective. In terms of 

exploration, the Bin E extent is quite large and less developed than core areas of the Marcellus; 

but could, perhaps, contain potentially high-productivity regions in isolation worthy of future 

prospecting efforts. 
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The noted disparity in geologic property medians and standard deviations across 

productivity bins indicates that there are various combinations of geologic drivers at play 

influencing productivity potential. Given those dissimilarities, well completion strategies would 

likely require targeted designs to specific geologic circumstances in order maximize productivity. 

In the prior discussion example, the best well completion approaches for Bin A rock, which is 

thick, deep, dense, and homogenous relative to other groups, would likely differ from thinner, 

more heterogenous Bin E rock. The resulting data for the best wellbore designs for pseudo wells 

in each productivity bin determined through LHC sampling are evaluated in Section 3.5.4. 

3.5.4 Statistical evaluation of well design attributes 

The box-and-whisker plots in Figure 25 depicts the distribution of the resulting aggregation 

of well design attributes that generated the highest Top 12-month production estimate at each 

pseudo well following LHC sampling and simulation as they relate to each productivity bin. The 

resulting Top 12-month production estimate from the pseudo wells that correspond to each bin are 

also presented for comparison across bins within Figure 25. For each well design attribute, its 

mean, median, and relative variance can be compared across productivity bins, highlighting: 1) 

ranges of the most favorable attribute setting that maximized production for pseudo wells common 

to each bin; 2) the intra-bin variability of a given attribute that results in the most productive pseudo 

wells; and 3) comparison and contrast of the most productive well design attribute combinations 

across bins. Figure 25 highlights the disparity and extent of the range in optimal well design 

attribute settings across bins that maximize the GBRT productivity response – a finding that 

emphasizes that the most prudent utilization of hydrocarbon resources is likely attained though fit 

for purpose well designs. 
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Figure 25. Box-and-whisker plot of best well design attributes across each productivity bin determined through the 

tailored well design scenario.7 The box extends from the 25th to 75th quartile values of the data, with a line at the 

median (50th quartile). The triangle is at the data mean. Whiskers extend to the range of the data at the 10th and 90th 

quantiles. The red dashed line represents the mean values for each design attribute under the standard well design 

scenario. 

 

 

The dashed red line in Figure 25 provides a reference point to the attribute settings used 

under the standard well modeling scenario for each parameter evaluated. Results presented in 

Section 3.5.1 (Figure 20 and Figure 21) comparing the standard and tailored well design indicated 

 

7 The strong convergence and minimal variance for well design settings noted in Bin E is attributed to the smaller 

relative contribution of real-world training data (Figure 2) given Bin E’s regional extent (Figure 6) in the periphery of 

the Marcellus Shale producing area.  
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that higher well productivity was attained when using well design configurations determined 

through the tailored well design scenario. The tailored well design scenario was also found to 

potentially improve upon well performance for in-field well designs with similar perforated 

interval lengths and in proximity as those modeled through pseudo wells (Table 9). The results 

here demonstrate that optimized well design parameter settings can vary substantially relative to 

the dataset mean values used in the standard well design scenario depending on well placement 

within the extent of the area evaluated (i.e., productivity bin). For two parameters, water per foot 

and proppant per foot, the best attribute settings (referencing the mean and median values) are 

found at greater levels at all productivity bins relative to the standard well design scenario. 

However, substantial variation exists in the optimal proppant per foot settings in Bins B (northeast 

core and subset of southwest core) and C (fringe of northeast core and majority of southwestern 

core); possibly attributed to the extensive regional extent and associated geologic heterogeneity of 

those bins. The sensitivity of both water volumes and proppant intensity on resulting productivity 

are consistent with findings from our previous work using case studies to explore optimized well 

design choices compared to in-field designs [122]. Conversely, higher productivity typically 

occurs when additive per foot is set lower than the dataset means for all bins. Bins B through E 

settings are relatively consistent at below one bbl per foot. However, Bin A (northeast core) is 

shown to be more productive when more additive per foot is implemented, near 1.55 bbl per foot 

on average.  

In the two other cases, acre spacing and azimuth, the optimal settings straddle the dataset 

mean with Bins A and B optimized at settings typically below the dataset mean, and Bins C, D 

and E near or above the mean. Resulting wellbore azimuth trajectory ranges from modeling appear 

relatively consistent to being perpendicular to the overall present-day tectonic stress field and J1 
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joint sets common to Devonian-aged reservoirs within the Appalachian Basin – a well design 

practice believed to maximize productivity in unconventional horizontal wells [155, 75, 156]. 

Present-day stress orientation may vary across the basin; therefore, it is expected that the optimal 

design attribute for each resulting productivity bin would vary accordingly given the resulting 

spatial constraints of the bin. Bin A and B that have a small geographically constrained footprint 

have a smaller ideal wellbore azimuth standard deviation; while bins C and D that range across 

both the north and south region of the study area have a large standard deviation of ideal wellbore 

azimuth. In terms of acre spacing, Bins A and B are showing that production in down-spaced wells 

relative to the dataset mean is not negatively impacted, whereas Bins C, D, and E are optimized 

when well spacing is near or above the dataset mean. Bins A and B predominantly cover the 

northeastern core of the Marcellus play. Operators prominent in that region have demonstrated that 

down-spacing wells has indeed not negatively impacted well productivity [157] – a notion that 

better utilization of the nation’s gas asset can be developed more prudently and higher “play-level” 

recovery factors achieved by potentially down-spacing wells in those regions. Additionally, less 

child/parent well interactions may therefore be occurring and well completion upscaling (increased 

proppant and water use) may lead to productivity improvements without detrimental effects on 

neighboring wells. This is likely because the thicker Marcellus interval in the northeast core offers 

more vertical “stacked” targets per acre, at least for Bin A acreage. On the other hand, an operator 

predominantly active in the southwestern core (prominent in portions of the extent of Bins C, D, 

and E) has reported reduced normalized performance in down-spaced wells [158]. The 

southwestern core is more condensed (thinner with net-to-gross closer to one) than the northeast 

core, and the vertical stacking strategy is less applicable. Therefore, well design considerations, 
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particularly regarding overall hydrocarbon recovery at the field scale vs. individual well level, are 

much different in the southwest core compared to the northeast. 

The KW findings on the resulting optimal well design attributes for each pseudo well 

yielded significant variation for all attributes with rock quality ( = 0.05). No parameter was 

determined to be insignificant on the rock quality groupings. Therefore, a Dunn’s test was 

performed on all five well design attributes within each productivity bin. The post hoc Dunn’s test 

(Table 12) showed which well design attributes differed significantly within each productivity bin 

at  = 0.05. Mean and median values, standard deviations, and 95% CI’s around the medians are 

also presented for each well design attribute. Property values in Table 12 that do not share a Dunn’s 

test Group number are considered significantly different from each other. Table 12 also features 

the number of pseudo wells within each productivity bin. 
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Table 12. Results from Dunn’s test on best well design attributes from LHC sampling across productivity bins. 

 
Well Design 

Attribute 
Summary Statistic Bin A Bin B Bin C Bin D Bin E 

Pseudo wells  Count (N) 282 1,492 8,378 8,219 9,259 

Proppant per foot 

(lbs) 

Mean 1,877 1,602 1,481 1,616 1,749 

Median 1,912 1,622 1,590 1,777 1,787 

Standard Deviation 84 244 296 267 131 

95% CI (1,912, 1,912) (1,517, 1,656) (1,569, 1,613) (1,777, 1,777) (1,787, 1,787) 
 Dunn’s Test Group 1 3 5 4 2 

Water per foot 

(bbls) 

Mean 38.5 38.7 38.8 36.6 39.6 
Median 41.1 39.7 39.7 37.2 41.3 

Standard Deviation 3.82 3.65 2.83 4.45 3.67 

95% CI (41.1, 41.1) (39.7, 39.7) (39.7, 39.7) (37.1, 37.4) (41.3, 41.3) 

 Dunn’s Test Group 2,3 4 2 3 1 

Additive per foot 
(bbls) 

Mean 1.56 0.92 0.73 0.77 0.90 

Median 1.35 0.73 0.61 0.64 1.03 
Standard Deviation 0.26 0.49 0.29 0.32 0.23 

95% CI (1.35,1.35) (0.73, 0.73) (0.61, 0.64) (0.61, 0.9) (1.03, 1.03) 

Dunn’s Test Group 1 2 4 3 2 

Well bore azimuth 

(degrees) 

Mean 318 324 328 331 338 

Median 315 322 327 331 342 

Standard Deviation 5.9 8.5 9.7 10.4 8.5 
95% CI (315, 315) (322, 322) (327, 327) (331, 331) (342, 342) 

Dunn’s Test Group 5 4 3 2 1 

Acre spacing 

(acres) 

Mean 128 134 149 158 169 

Median 113 113 171 168 175 

Standard Deviation 21.2 31.5 35.5 21.2 15.2 

95% CI (113, 113) (113, 117) (171, 171) (168, 169) (175, 175) 
Dunn’s Test Group 4 3 2 2 1 

 

 

Results indicate that wells in Bin A, on average, receive the most intensive designs (most 

proppant, second most water, most additive, and smallest spacing) relative to wells in the other 

bins. Despite the higher intensity completion settings, wells in Bin A can also handle tightener 

acre well spacing placement.  

3.5.5 Reduced order multivariate predictive model 

Since the GBRT machine learning model can make predictions at unique latitude and 

longitude coordinates given certain well design inputs, production estimates can be generated at 

locations where geologic properties are known. Then, the collection of the production prediction 
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data, well design parameters, and geologic properties can be correlated into a model that leverages 

actual geologic data as inputs. A reduced order predictive model was developed using a multiple 

linear regression approach which can estimate production at new Marcellus horizontal well sites 

without having to employ the GBRT machine learning model by the user. Additionally, this 

approach can couple well design and geologic data into a single analytical method so that they can 

be evaluated in tandem. The reduced order model is intended to be as simplistic as possible in its 

formulation and therefore easily interpretable by end-users; but must also be accurate in its 

generalization of estimating gas productivity. The model formulation is presented in Equation 3-5 

where yi denotes the Top 12-months production (MMcfge) at a given horizontal well (i) used in 

model fitting. The model was fit using a total of 16 input parameters related to well design and 

well log data geology attributes. The model formulation was fit using Least Squares to obtain 

parameter estimates () for each input parameter considered. The intercept (0) was assumed zero 

and the error () assumed independent and normally distributed.  

 

𝑦𝑖 =  𝛽0 + ∑{𝛽1𝑥1 + 𝛽2𝑥2 … 𝛽16𝑥16} + 𝜀

16

𝑥=1

 Equation 3-5 

 

 

A new training dataset was compiled by generating production estimates at specific spatial 

coordinates of the well logs available as part of this study. A similar LHC resampling approach to 

the one described in Section 3.3 was conducted here on the same well design input parameters and 

ranges (Table 8), however, gross perforated interval was also included and evaluated between 

3,320 to 6,544 feet in length. The other 10 input parameters relating to geologic properties (which 

included mean values for the Marcellus net thickness interval, alongside the standard deviation of 

each property) were held constant based on observed data representative at each well log location. 
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A total of 31 of the available 51 well logs contain data for each of the six geologic properties 

evaluated. Data from those 31 well logs were used as part of the linear model development. LHS 

resampling using different well design choices were conducted at each of the 31 well log locations 

1,000 times. A production estimate was generated using the GBRT model for each sample as the 

response. As a result, 31,000 specific training realizations were used for model fitting (data 

available through Appendix  [144]). The model was fit as purely additive (no interactions 

considered) and under various polynomial orders in order to maintain simplistic formulation. A 3rd 

order polynomial result in the best fit. 

The fitted model has a squared correlation coefficient is 0.733 and RMSE is 241, meaning 

the trained model should be reliable for production prediction in areas across the Marcellus where 

the specific geologic properties needed as inputs are known. This reduced order model is intended 

to provide a simplistic and efficient option for evaluating potential well performance founded on 

the specific design choices given known geologic conditions. The model should be helpful in 

informing future well design choices given access to relatively common geologic data. 

Additionally, its linear formulation also enables potential well design parameter optimization.  

The resulting reduced model equation is segmented by three brackets in Equation 3-6 – the 

first of which includes parameters related to well design choices, the second to the mean values 

for the geologic properties evaluated, and the third related to the heterogeneity (in terms of standard 

deviation) of the corresponding geologic properties across the Marcellus interval. 

 

 

�̂� = [2.84 × 10−9𝐿𝑃
3

+ 3.55 × 10−8𝑃3 + 5.26 × 10−3𝑊3 + 2.15 × 10−5𝐴2
3 + 2.05 × 10−5𝐴3

3
− 4.66𝐴1

3] 

Equation 3-6 + [1.37 × 10−9𝐷1
3 + 1.17 × 10−4ℎ𝑠

3 + 8.03 × 10−3∅3 + 7.04 × 10−9𝑅𝑑𝑒𝑒𝑝
3 − 6.59 × 10−7𝐺3 − 66.3𝐷2

3] 

+ [5.75 × 10−9𝑅𝑆𝑡𝑑𝑒𝑣
3 + 1.57 × 10−5𝐺𝑆𝑡𝑑𝑒𝑣

3 + 12.5∅𝑆𝑡𝑑𝑒𝑣
3 − 2.61 × 10−2𝐷2𝑆𝑡𝑑𝑒𝑣

3] 
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Where: 

�̂�= Estimation of Top 12-months productivity indicator (MMcfge) for a new well 

LP = Gross perforated interval length (feet) 

P= Proppant per foot (lbs / foot) 

W= Water per foot (bbls / foot) 

A1= Additive per foot (bbls / foot) 

A2= Wellbore azimuth trajectory (degrees) 

A3= Acre spacing (acres) 

D1= Top of Marcellus Shale depth (feet below ground surface) 

hs= Marcellus net thickness (feet [net limestone units]) 

G= Normalized average Marcellus Shale gamma ray (API [normalized per Section 3.4.4]) 

D2= Average Marcellus Shale density (g/cm3) 

= Average Marcellus Shale porosity (fraction [based on neutron porosity]) 

Rdeep= Average Marcellus Shale deep resistivity (Ohm-m [via deep induction logging]) 

Rstdev= Marcellus deep resistivity standard deviation (Ohm-m) 

Gstdev= Marcellus normalized gamma ray standard deviation (API) 

stdev= Marcellus porosity standard deviation (fraction) 

D2stdev= Marcellus density standard deviation (g/cm3) 

 

All model  coefficients are statistically significant (p < 0.05) in influencing the response 

variable �̂�, with the exception of Marcellus deep resistivity standard deviation (Rstdev). Model 

residuals were evaluated and are normally distributed (Appendix  [144]). The model estimates are 

only relevant when input parameter ranges for well design features fall within those used to fit the 

model presented in Table 8 and for gross perforated intervals between 3,320 to 6,544 feet in length. 

The positive or negative sign associated with the beta coefficients for each term in Equation 

3-6 can suggest each parameters’ impact on productivity. For instance, positive beta coefficients 

and associated terms improve the productivity response, whereas negative terms are potentially 

detrimental to the productivity. Data used to fit the linear model here were not standardized [159] 

so that input data remains in the units commonly attained in the field and are inherently in different 

scales—therefore the magnitude of each beta coefficient cannot be compared in pairwise fashion 

from one term to another to assess each parameter’s influence. Notice the positive impact of the 

beta coefficients for geologic properties associated with depth, resistivity, porosity, and thickness; 
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the negative beta coefficients correspond to gamma ray, density, and the standard deviation term 

associated with density. This outcome coincides with the statistical findings regarding the standard 

deviation and confidence intervals of geologic properties and associated productivity bins (Figure 

24 and Table 11) discussed in Section 3.5.3, along with the notion that high in-reservoir vertical 

heterogeneity (inferred from the Marcellus standard deviation terms) has a prominent impact on 

the overall hydraulic fracturing process, fracture propagation, and subsequent well productivity 

[160, 161, 162]. A potential contradiction here is the negative effect of measured normalized 

gamma ray to heuristic belief on gas/oil availability. The likely reason is the noticeable low gamma 

ray associated with the overly thermally mature Marcellus northeast core (Bin A and portions of 

Bin B) despite being a high productivity region. 

3.6 Conclusions and Outlook 

In this chapter, we have introduced a framework that ensembles a data-driven predictive 

model that estimates well-level productivity with a completion design optimization approach 

aimed at improving well production potential. This analytical approach developed leverages 

readily available datasets provide to be a fast and cost-effective evaluation tool that could 

complement existing reservoir management practices. The framework has been tested and results 

discussed when applied to the producing extent of the Marcellus. The insights gained through this 

work should be advantageous in both the 1) identification of high-priority drilling regions based 

on productivity potential as well as 2) informing the tailoring of future well designs given their 

placement in the Marcellus. These aspects are resolved through spatial ranking of regional 

productivity potential and demarcation via contour mapping, as well as identification of optimal 
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well design configurations within each ranked region driven by controlling geologic conditions. 

Simulation results from the LHC sampling and brute force well optimization approach show the 

expansion of increased potential productivity across the study area when wells were tailored based 

on placement as compared to standard well designs.  

The framework developed does not consider infrastructure development issues or 

limitations, the impact of well design choices on costs, nor are larger macroeconomic drivers 

which may impact natural gas demand reflected. Therefore, the authors suggest that such a 

framework serve as compliment to reservoir and field management strategies moving forward – 

not a replacement for current approaches. Additional work is needed to integrate geological data 

in a reliable fashion on a larger scale into the front end (i.e., ML development component) of the 

modeling framework. This addition may expand the framework utility in evaluating geologic 

properties and well design attributes (as well as their interactions) that make up shale production 

controlling factors. 

While this approach was applied across the Marcellus producing region, it could be 

modified and adapted to a more focused scale; either in the Appalachian Basin or elsewhere. The 

types of data sets used are likely commonplace for different gas or oil reservoirs and may be 

obtained from public sources. Furthermore, the study area was grouped based on simulated 

productivity bins, but the same framework could be applied on a different grouping configuration 

(i.e., regional delineations, geologic conditions delineation, political boundaries [state or county], 

etc.) and reevaluated statistically in a similar manner. 
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4.0 Application of a Deep Learning Network for Joint Prediction of Associated Fluid 

Production in Unconventional Hydrocarbon Development 

4.1 Chapter Summary 

Machine learning (ML) approaches have risen in popularity for use in many oil and gas 

(O&G) applications. Time series-based predictive forecasting of hydrocarbon production using 

deep learning ML strategies that can generalize temporal or sequence-based information within 

data has become an impactful research topic. Recent emphasis on hydrocarbon production 

provides opportunities to explore the use of deep learning ML to other facets of O&G development 

where dynamic, temporal dependencies exist and that also hold implications to production 

forecasting. This study proposes a combination of supervised and unsupervised ML approaches as 

part of a framework for the joint prediction of produced water and natural gas volumes associated 

with oil production from unconventional reservoirs in a time series fashion. The study focuses on 

the pay zones within the Spraberry and Wolfcamp Formations of the Midland Basin in the U.S. 

The joint prediction model is based on a deep neural network architecture leveraging long short-

term memory (LSTM) layers. Our model is capable to both reproduce and forecast produced water 

and natural gas volumes for wells at monthly resolution and has demonstrated 90 percent joint 

prediction accuracy to held out testing data with little disparity noted in prediction performance 

between the training and test datasets. Additionally, model predictions replicate water and gas 

production profiles to wells in the test dataset, even for circumstances that include irregularities in 

production trends. We apply the model in tandem with an Arps decline model to generate 

cumulative first and five-year estimates for oil, gas, and water production outlooks at the well and 
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basin-levels. Production outlook totals are influenced by well completion, decline curve, and 

spatial and reservoir attributes. These types of model-derived outlooks can aid operators in 

formulating management or remedial solutions for the volumes of fluids expected from 

unconventional O&G development. 

4.2 Introduction 

The continued pursuit for reliable, affordable, and secure supplies of energy accentuates 

the necessity for continued research into ways to economically and efficiently access the vast 

amount unconventional natural gas and oil resources that exist. Over the last decade and a half, the 

application horizontal drilling techniques coupled with advanced, multi-stage hydraulic fracturing 

technologies has facilitated the widespread development of unconventional oil and gas (O&G) 

reservoirs (such as shale and tight oil reserves) [2]; resulting in a revolution in the energy landscape 

[3, 4, 5], particularly in the United States (U.S.). 

Hydraulic fracturing methods make use of injected liquids under high pressure to generate 

breakages in subsurface formations and are usually implemented where low permeability 

conditions exist. The fracturing fluid is composed of a base fluid, typically water, constituting >98 

percent of the total fluid volume [163] and the remaining contribution coming from proppant and 

chemical additives. The goal of the hydraulic fracturing process is to promote the generation of 

new fractures in the tight hydrocarbon-bearing rock formations inherently low in both permeability 

and porosity while simultaneously augmenting the size, magnitude, and connectivity of existing 

fractures to stimulate oil and/or gas flow to wells [164, 165, 166]. Once the hydraulic fracturing 

process is completed, the high in situ pressures within the reservoir as compared to the lower 
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bottomhole pressure in the wellbore (which can be managed via artificial lifting) prompts fluids to 

migrate towards the well and be produced at the surface. The fluid that returns to the surface may 

contain a combination of hydrocarbons (oil and/or gas) and water, in addition to injected chemical 

additives from the hydraulic fracturing process, as well as naturally occurring materials like brines, 

metals, and radioactive materials [167]. Each constituent requires some form of management, 

depending heavily on the intended endues of each, which may include sale to market as a 

commodity, reuse as part of site operations, or treatment and disposal. 

Horizontal wells drilled and completed in shale gas and tight oil formations make up the 

preponderance of hydrocarbon production in the United States. Specifically, crude oil production 

from tight formations alone reached 6.5 million barrels per day in the U.S. through 2018, 

accounting for 61 percent of the total oil produced in the U.S. The U.S. Energy Information 

Administration (EIA) indicates that use of horizontal wells accounted for 96 percent of the overall 

U.S. crude oil production from tight formations by the end of 2018 [97]. A recent surge in the 

development of tight oil reserves located in the Permian Basin in western Texas and eastern New 

Mexico (41 percent of total tight oil production in the U.S. in 2018) has led to considerable growth 

in overall U.S. crude oil production [168]. 

While unconventional oil (and gas) resources remain critically important in the pursuit 

towards energy security, challenges persist in effectively forecasting their production potential. 

For instance, productivity in unconventional reservoirs is known to be responsive to the nature and 

effectiveness of the interactions between wellbore design, completion and stimulation processes 

and the inherent irregularities in reservoir conditions. As a result, fluid production responses can 

be highly disparate across: 1) An entire O&G play [169]; 2) wells on a given pad targeting the 

same formation; or even 3) the different perforation stages of single well’s lateral component 
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[170]. Production forecasts hold implications on the strategic decisions made by the O&G sector. 

For instance, resulting production outlooks, depending on the long-term trajectories of fluid 

volumes produced, can prompt macro-scale consequences like potential fluctuations in oil and/or 

gas market prices and associated impacts on the environment [171]. Additionally, forecasts can 

influence micro-scale outcomes that ultimately shape a wide range of operating and maintenance 

scenarios for field operators or even effect company profit margins. Reservoir modeling and 

simulation are commonly used to inform decision makers regarding the potential production 

response and long-term performance of hydraulically fractured horizontal wells in unconventional 

reservoirs. These approaches can be costly in terms of the time and computational resources 

needed to execute effectively [47, 105]. Furthermore, difficulties exist in attaining sufficient levels 

of geological data at the well level [51] to sufficiently reflect the diversity in reservoir conditions 

needed to model fluid flow. This challenge intensifies when the interest spans to multi-well 

performance evaluation at the field-scale or larger. 

Given the computational resources that are typically widely available and the emergence 

of O&G digital datasets that include features associated with well completion, stimulation, and 

production, many have taken to machine learning (ML) and data analytics as a compliment to 

existing approaches for O&G production analysis [40, 32, 38]. ML-based tactics can provide 

additional analytical functionality to traditional reservoir simulation methods.  They have proven 

effective in accurately and reliably modeling circumstances involving highly complex systems 

where variable conditions are known to be prominent, not uncommon to wellbore/reservoir 

relationship interactions in unconventional O&G development. Additionally, they offer 

expeditious predictive capability, allowing users to quickly generate multiple realizations thereby 

enabling greater insight into the systems modeled [41].  
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A number of potential use cases exist where ML has been applied as part evaluating the 

effects of hydraulic fracturing designs on hydrocarbon production in unconventional reservoirs. 

As an example, several studies utilize static productivity indicators that reflects cumulative 

production under a fixed time duration (i.e., six months or one year) as response variables [15, 56, 

172, 122, 55] to evaluate potential well response to various hydrofracking completion designs. The 

use of static response variables enabled straightforward evaluation of input feature impact rating 

and ranking, as well as sensitivity evaluation. The findings from these studies have proven 

insightful in identifying key production drivers representative to the study areas evaluated, as well 

as effective in approximating well productivity given well completion design choices. However, 

they are not directly translatable to well history matching, production forecasting, and facilitating 

data-driven production outlook scenarios [59, 60, 61, 10]. 

Many studies are taking focus on using ML for dynamic reservoir analysis by evaluating 

time series-based topics, like oil or gas production over the life of producing wells. These studies 

are leveraging empirical data that includes daily or monthly cumulative hydrocarbon production 

values over all or a portion of each well’s productive life. Many of the relevant studies apply deep 

learning ML strategies in order to capture and generalize the intrinsic temporal or time sequence-

based properties within the data. Findings from recent studies indicate that the deep learning 

approaches applied have been exceedingly effective at predicting dynamic production trends 

accurately on holdout data. The results of which suggests that these approaches hold substantial 

implications and potential viability in production forecasting.  

To gain further comprehension on O&G-related time series analysis using ML, we provide 

a short review of relevant studies works that have focused on this topic. A study by Jie et al. 

developed two deep learning models to predict daily gas production from a single well completed 
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in the Sichuan basin in China [173]. The researchers developed artificial neural network- (ANN) 

based models using: 1) A fully-connected multilayer perceptron-based ANN with a single hidden 

layer and 2) a long-short term memory- (LSTM) based ANN with stacked LSTM layer 

architecture. Empirical data for daily gas production over a three-year period was used for analysis. 

The first 900 dataset observations were used for model training while and the last 100 observations 

were used for holdout model performance testing. Input data included the data features (assumed 

at daily resolution) of oil pressure, casing pressure, daily water production, cumulative gas 

production, cumulative water production, and water-gas ratio. Results indicated prediction error 

of 1.56 percent for the LSTM-based model and upwards of 9.66 percent for the MLP-ANN. 

Sagheer and Kotb implemented deep LSTM architectures to estimate monthly oil production for 

two oil fields; one was the Tarapur Block of Cambay Basin to the west of Cambay Gas Field in 

India and the other in the Huabei oilfield in China [174]. They demonstrate the predictive 

effectiveness in stacking LSTM layers as part of network architecture when long interval temporal 

dependencies may exist as compared to model performance when shallow neural network 

architectures are used. Additionally, the researchers noted that their LSTM-based model 

outperformed counterpart formulations explored that were based on deep recurrent neural 

networks (RNN) and Deep Gated Recurrent Unit models. The work performed by Huaibei Liu et 

al. included the development of an ensemble empirical mode decomposition (EEMD) based LSTM 

learning network capable of time series forecasting of oil production. Case studies were performed 

to empirical field from the SL and JD oilfields, China [175]. Their proposed EEMD-LSTM 

configuration outperformed other model types developed under ensembles between EEMD and 

MLP-based artificial neural networks and EEMD with support vector machine.  
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Collectively, these studies demonstrate the utility and capability of deep learning-based 

ML (with noted effectiveness of LSTM) for time series hydrocarbon production prediction. The 

knowledge gained through these works provides both a foundation as well as an opportunity to 

extend these approaches to other aspects critical to O&G development where: 1) Dynamic, 

temporal dependencies exist; 2) said aspects possess significant connotations to production 

forecasting; and 3) that have not been extensively explored in previous research. An obvious need 

that meets these criteria would be to possess the ability for assessing the potential volumes of the 

associated water and natural gas produced in tandem with crude oil. Many operators targeting oil-

rich unconventional reservoirs are faced with the challenge of managing large volumes of water 

and natural gas that are often co-produced. Limited natural gas processing and pipeline takeaway 

capacity can force operators to resort to venting or flaring produced natural gas.  

Venting is the direct release of natural gas produced from O&G operations to the 

atmosphere. Flaring involves the controlled combustion of produced natural gas at the wellhead, 

converting methane to carbon dioxide and water vapor. From an environmental standpoint, flaring 

is less detrimental than venting given that carbon dioxide is 25 to 28 times less impactful as a 

greenhouse gas than methane over a 100-year period [176, 177]. According to the EIA, the 

quantities of natural gas vented or flared from O&G wells in the U.S. reached record levels in 2019 

averaging 1.48 billion cubic feet per day (Bcf/day) (1.3 percent of the total natural gas volume 

produced) [178]. Texas and North Dakota contributed nearly 85% (1.3 billion cubic feet per day 

[Bcf/day]) of all reported flaring and/or venting (only Texas contributed to gas venting) of 

produced natural gas. Produced water is often managed via disposal through deep well 

underground injection.  
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The injection of large volumes of waste water from O&G operations has been strongly 

correlated to the increased frequency of occurrence of induced seismic events including magnitude 

2+ earthquakes, particularly in Oklahoma, Ohio, Arkansas, West Virginia, and Texas [179]. 

Literature suggests that many are working to generate solutions and reuse options for associated 

gas and water production [180, 181, 182] – but a need exits to be able to effectively quantify and 

forecast produced volumes of both natural gas and water to best inform the development of 

management or remedial solutions as well as grasp the potential environmental implications for 

planned O&G development [183]. 

For this study, we propose a combination of supervised and unsupervised ML approaches 

as part of a framework that can reliability estimate both produced water volumes and natural gas 

associated with oil production in a time series fashion. This type of predictive modeling capability 

is expected to be useful towards 1) informing well operators as part of developing strategies to 

ensure the effective management, treatment, or potential reuse based on the volumes and quantities 

of produced fluids, and 2) supplementing hydrocarbon production outlooks with additional fluid 

volumes in time series fashion. Study efforts focus on the Permian Basin region of the U.S. The 

region holds enormous consequence regarding domestic oil and gas production. According to a 

report by the Texas Independent Producers & Royalty Owners Association, yearly crude oil 

production in the Permian Basin has grown by 1.2 billion barrels since 2009, resulting in a 371% 

increase in oil output over the last ten years [184]. This overall growth has enabled the Permian to 

become the world’s top-producing oil field [185]. While the region itself major producer of both 

oil and gas, the basin currently faces several challenges. These include: 1) Steeper well decline 

rates and lower initial production (IP) values as development is moving to non-core regions; 2) 

associated natural gas production has outpaced pipeline takeaway capacity, which has led to an 



 

136 

increase in flaring and venting practices; and 3) produced water volumes and associated 

management costs are both on the rise [186, 187, 183]. Combined, these impacts threaten to 

potentially lower the Permian's overall production potential while consequently increasing the 

environmental burden associated with O&G operations. Therefore, an opportunity exists to 

propose research targeted towards these specific challenges and would provide beneficial 

outcomes to both potentially improving recovery and estimation of the types and volumes of fluids 

produced at the well level – each of which require specific management strategies and bear 

potential environmental implications. 

4.3 Data, Study Area, and Methods 

The focus of this study is to generate a ML-based prediction model capable of time series 

joint prediction of associated natural gas and water that are produced alongside oil as part of 

unconventional hydrocarbon development (three-stream production example presented in Figure 

26). Secondarily, this study aims to demonstrate the utility of such a model as a compliment to 

existing O&G operational management strategies. 
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Figure 26. Example of oil, water, and natural gas production data for a horizontal well in northern Reagan County, 

Texas producing from Wolfcamp A and placed at a total vertical depth of 7,713 feet below ground surface. 

 

The model is based on a deep neural network architecture leveraging LSTM layers in order 

to accommodate time-dependent conditions in the data and be proficient towards multi-output 

prediction. The model development workflow, described throughout the following subsections, is 

interconnected with several data preprocessing steps that includes data sub-division, engineering 

of new features, outlier removal, data standardization, and feature selection. The model would 

have the functionality to not only replicate well production history (the primary focus of many 

existing time series O&G analyses), but also enable fluid production forecasts that extend past 

observed production timeframes for existing wells, as well as be used to predict fluid volumes in 

time series fashion at new (i.e., theoretical) well sites. Additionally, the ML-based model proposed 

here is intended to be applicable across multiple producing reservoirs, focusing on the “Wolfberry” 

pay zones (highlighted in Upper Spraberry through Cisco/Cline [Wolfcamp D] reservoirs in Figure 

27). Such a model will help provide a data-driven approach for a more holistic evaluation towards 

field development where multiple producing reservoir options are co-located. In the current low-
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price environment for oil and gas, operators must be informed to the best extent possible of 

potential risks and opportunities they may face over both the short and long term [188]. The 

inherent challenges facing the Permian suggests that field development decision making is 

complex. Overall, this study proposes a modeling tool that works towards helping inform complex 

field decision choices by scaling up model outputs via a single predictive model. 

4.3.1 Study Area 

The study area for this work focuses in the Midland Basin, one of the major sub-basins of 

the larger Permian Basin. The Permian Basin (Permian) is an extensive sedimentary basin and 

major and O&G-producing region geographically located in West Texas and the neighboring areas 

of southeastern New Mexico. The Permian spans roughly 75,000 square miles and comprises 

greater than 7,000 fields in West Texas alone [189]. The Permian has been important in the U.S. 

energy economy for nearly a century. According to the EIA, the Permian has produced 

hydrocarbons for approximately 100 years and has supplied more than 35.6 billion barrels of oil 

and roughly 125 trillion cubic feet of natural gas (data as of January 2020). The Permian accounted 

for approximately 35 percent of the total U.S. crude oil production and over 13% of the total U.S. 

natural gas production in 2019 [190]. It is expected to remain one of the largest hydrocarbon-

producing regions in the world with remaining reserves on the order of 46 trillion cubic feet of 

natural gas and over 11 billion barrels of oil [191]. The Permian contains several sub-basins and 

platforms that include the westernmost Delaware Basin, Central Basin Platform, and the 

easternmost Midland Basin [192]. The extent of the Central Platform and Midland sub-basins as 

well as the eastern edge of the Delaware Basin is shown in Figure 28.  
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The Midland Basin is the eastern subbasin of the larger Permian Basin and is bordered by 

carbonate platforms like the Central Basin Platform, Eastern shelf, and Northern shelf. The basin 

is at its deepest on its western edge and shallows to the east. Its western delineation is marked by 

folding and faulting on the eastern edge of the neighboring Central Platform. It is bounded to the 

east by the Eastern shelf, considered a somewhat arbitrary description that represents the 

shallowing in burial depth from the western edge [193]. The Northern shelf limits the basin’s extent 

to the north. Towards its southernmost portion, basin’s formations start to thin towards the Ozona 

Arch – an extension of the Central Basin Platform. [192].  

 

 

 

Figure 27. Stratigraphic description for a subset of the Midland Basin, Texas. The producing reservoirs of interest to 

this study are highlighted. This figure was generated from collective content compiled from lithostratigraphic 

interpretations of the Permian Basin from several literature sources [194, 195, 196, 197, 198, 192, 190]. 
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The Lower Permian aged (Leonardian epoch) Spraberry and Dean formations are made up 

of interbedded turbidite sands, laminated siltstone, carbonate, and organic-rich shales [196]. The 

Spraberry consists of upper- and lower-unit intervals [199, 200] (certain interpretations include a 

middle Sprayberry and Jo Mill as well [201, 202]) – the Dean formation is located stratigraphically 

beneath the Lower Spraberry. Each stratigraphic unit is distinguished by its lithologic composition. 

For instance, each of the three formations consists of thick sequences of fine-grained sandstones 

and siltstones that lie on top of an equally thick lower unit made up of black shales and dark 

carbonates [203]. The formations are known to be generally under-pressured (averaging 800 – 900 

psi [5.4 – 6.1 MPa]) with matrix porosity ranging from 6 to 15 percent, matrix permeability below 

10 md, and are highly naturally fractured [204, 205, 206].  The average true vertical depth to the 

top of the Upper Spraberry unit is roughly 6,800 feet across the Midland Basin. The complete 

section from the top of the Upper Spraberry to the base of the Dean ranges in thickness between 

1,200 and 1,870 feet [204]. Similar to other unconventional hydrocarbon plays, productivity in the 

Spraberry fluctuates across the basin [207]. 

The early Permian aged (Wolfcampian-Leonardian epoch) Wolfcamp is described as a 

mixed siliciclastic-carbonate succession with stacked stratigraphic units comprising of cyclic 

gravity flow deposits – each separated by mudstone and siltstone [190]. The Wolfcamp is 

described by Sutton [204] as a dual-lithology system consisting of organic-rich shale with 

interbedded limestone. Lower reservoir quality portions of the Wolfcamp are associated with the 

presence of grainy carbonate facies, whereas higher reservoir quality portions have been tied to 

the occurrence of siliceous mudstones [208]. The entire section of the Wolfcamp ranges in porosity 

between 2 and 12 percent with average permeability near 10 millidarcies (mD) [190]. The 

formation varies substantially across the Midland Basin in terms of depth, thickness, and lithologic 
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composition. The Wolfcamp is at its deepest near the center of the Midland Basin, measuring 

approximately 12,000 feet deep. It shallows substantially towards the edges of the basin, varying 

in depth from 4,000 to 7,000 feet [204]. The thickness of the entire section of the Wolfcamp 

averages around 1,800 feet. The Wolfcamp is extensive throughout the Permian Basin and is 

considered one of the most abundant unconventional O&G plays worldwide.  

The Wolfcamp formation has been appealing to O&G operators given its stacked 

configuration, in which multiple thick hydrocarbon-producing zones exist in sequence [209]. The 

stacked intervals of the Wolfcamp formation are called benches – from shallow to deep they are 

referred to as A, B, C, and D. Each bench has shown to be different in terms of its overall lithology, 

fossil content, total organic carbon content, and thermal maturity [210]. Saller et al. (1994), 

Blomquist (2016), and Peng et al. (2020) provide detail on the geologic composition of the 

Wolfcamp and various benches within and therefore the differentiation is not described at length 

here [211, 212, 213]. Recent development efforts in the Midland Basin are preferentially targeting 

the more oil-rich Wolfcamp A and B (roughly 95 percent of total Wolfcamp production) opposed 

to the more gas-rich Wolfcamp benches C and D [214, 210]. 
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Figure 28. Map of the study area in the Midland Basin, Texas. Well data used for the study was acquired from 

DrillingInfo / Enverus [215]. The geographic information system (GIS) layers applied to support the generation of 

this figure were acquired from the University of Texas at Austin [216] and United States Geological Survey [217]. 

 

The Permian region and associated sub-basins have been known to produce large volumes 

of natural gas and water that are co-produced with oil. A study by Kondash et al. has noted that 

Permian Basin wells have increased the water used per well as part of hydraulic fracturing 

operations from 30,800 barrels per well in 2011 up to 267,325 barrels per well in 2016 – a 770 

percent increase [218]. The flowback and produced water volumes during that same timespan had 

increased over 400 percent; averaging 56,610 barrels per well in 2011 to over 232,700 barrels per 
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well in 2016. Specifically, in the Midland Basin, waste water disposal volumes derived from O&G 

operations have steadily increased since 2011, reaching approximately 4.5 billion barrels per day 

in 2017 [219]. 

In 2017, flaring and venting of natural gas in the Permian basin in Texas and New Mexico 

was estimated at nearly 300 million cubic feet per day (MMcfd), roughly 4.4 percent of the total 

gas produced that year. In that same year, the Midland Basin produced approximately 1,019 billion 

cubic feet (Bcf) of natural gas, and flared 24 Bcf of that total (2.35 percent of all gas produced) 

[220]. In 2019, flaring and venting of natural gas in the Permian reached an all-time record high 

based on the year’s third quarter estimates, averaging 752 MMcfd (275 Bcf total) [221]. The 

Midland Basin portion of 2019 flaring ranged from approximately 150 to 290 MMcfd [222]. 

Well data leveraged for this study (described further in Section 4.3.2) are grouped based 

on the associated targeted producing reservoirs listed in Figure 27. Wells are tabbed as either 

“Spraberry / Dean” or “Wolfcamp” dependent upon their associated Stratigraphic / Formation 

Name. The wells used as part of this study are plotted in Figure 28; they are colored based on their 

associated producing formation and sized based on each well’s initial oil production (in barrels 

[bbls] / month).  

4.3.2 Study Data Overview and Data Processing 

Much of the well completion and production-related data used for this study is acquired 

from the O&G data vendor DrillingInfo / Enverus [215]. Other features were derived through 

feature engineering to further supplement the available feature dataset. The dataset contains 

features related to well production performance attributes, Arps decline curve attributes [223], well 

completion attributes, and spatial and reservoir attributes – all specific to horizontal production 
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wells spanning the Spraberry / Dean and Wolfcamp producing intervals (highlighted in Figure 27) 

in the Midland Basin with drilling initiation dates within the January 1, 2010 to June 30, 2020 

timeframe. The dataset includes a combination of static (well data that does not change over the 

well’s productive lifetime) and dynamic features (well data with temporal dependencies – mostly 

three-stream production data) for the wells meeting these screening criteria. This database query 

yields data for approximately 6,480 wells in total in which each well has data reported for all 

features of interest (both static and dynamic features) and duplicate entries are omitted. No 

attempts at data interpolation with respect to missing values occurs in this study.  

 

 

 
 

Figure 29. Distribution of static features for each well in the study dataset. 

 

The distributions of the static study features of interest are evaluated to screen and remove 

potential outlying well data and refine the overall dataset. Their distributions are presented in 
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Figure 29. Data outside of +/- 3 standard deviations from a given feature’s mean value (grey 

margins within subplots in Figure 29) are considered outlying and possibly highly influential on 

ML model response [224, 225]; even if distributions are not explicitly normally distributed. All 

outlying data is removed from the static and dynamic contributions to the dataset (approximately 

270 wells had features meeting outlying criteria). The resulting dataset consists of 6,210 wells in 

total extending across 12 Texas counties, the extent of which is plotted in Figure 28 and the 

descriptive statistics for features from these wells are summarized in Table 13. 

 

 
Table 13. Summary of the study dataset features evaluated. 

 

Dataset Features Data Group Static Dynamic Mean Median Standard Deviation 

Monthly Oil (bbls) 

Well Performance 

Attributes 

 X 4,863 2,429 6,448 

Monthly Gas (Mcf)8  X 12,500 7,906 13,846 

Monthly Water (bbls)  X 8,510 3,572 13,496 

Top 12 Months Gas (Mcf) X  251,286 207,532 182,648 

Top 12 Months Oil (bbls) X  124,320 114,314 70,210 
Top 12 Months Water (bbls) X  226,856 197,664 157,721 

EUR Gas (MMcf) X  1,732,470 1,171,682 1,722,215 

EUR Oil (bbls) X  449,302 380,333 326,663 

Initial Oil Production (bbls)9 

Decline Curve 

Attributes 

X  20,807 19,675 11,593 

Initial Decline (fraction / month) X  0.35 0.36 0.13 

b-factor X  1.2 1.0 0.2 
Timestep Cumulative (months)  X 25.3 21 18.8 

Perforation Length (foot) 

Well Completion 

Attributes 

X  8,480 8,302 1,959 
Proppant per foot (lbs) X  1,732 1,718 548 

Water per foot (bbls) X  43 44 14 

Additive per foot (bbls) X  2.9 2.4 2.4 

Azimuth (degrees)10 X  166 163 8 
Nearest Well Distance (feet) X  438 231 838 

Percent in Zone (percent) X  97 100 10 

True Vertical Depth (feet) 
Spatial and 

Reservoir 

Attributes 

X  8,571 8,828 993 

Thickness (feet) X  460 415 188 

Surface Hole Latitude (degrees) X  31.8253 31.7971 0.4093 

Surface Hole Longitude (degrees) X  -101.7740 -101.8346 0.3204 

 

 

8 Mcf = thousand cubic feet 

9 DrillingInfo / Enverus quantifies initial oil production as the cumulative production volume observed during a given well's first full month of 

production [330]. 

10 All wellbore azimuth trajectories based on true north = 0 degrees.  
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The features within each data group from Table 13 have a specific role as part of the 

hydraulic fracturing and oil / gas production process. The breadth of data features available within 

the study dataset affords the opportunity to explore a multitude of aspects related to unconventional 

oil and gas production in the Midland Basin. Data groupings and their associated features are 

briefly described in the following bullets: 

• Well Performance Attributes: These features relate to fluid production for wells in 

the study dataset. The dynamic features within the data group represent summation 

of the three-stream (oil, gas, and water) empirically-derived monthly values at the 

well level provided by DrillingInfo / Enverus. Data for these dynamic features is 

available for each month in a given well’s productive lifetime. Therefore, the 

volume of this data varies across wells depending on when they began production 

and how long wells are kept online. The “Top 12-months” static features for oil, 

gas, and water were derived via summation of the 12 largest observed values for 

each well based on monthly dynamic feature data. This approach has been 

implemented in our prior work [169, 122] and has proven to effectively represent 

productivity potential for unconventional wells that may or may not have been 

subject to disruptions to their production time series profiles. Both the Top 12-

months Oil and Gas features correlate strongly to well level estimated ultimate 

recover (EUR) as indicated in Figure 30. The static EUR features represent an 

estimation of the technically recoverable reserves at the well level. They are 

calculated by DrillingInfo / Enverus [226] using a combination of historic 

production data and a combination of Arps decline curve models [223]. 
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• Decline Curve Attributes: These features are inherent to decline curve analyses 

based on the Arps decline curve model [223]. The Arps model can be used to 

evaluate oil and / or gas declining production rates over time. Time-dependent 

reduction in hydrocarbon production can be attributed to reduced reservoir pressure 

as well as the relative change in the volumes of the produced fluids. The approach 

can also be used to forecast hydrocarbon production into the future. The Arps 

approach is based on fitting a mathematical decline model (either exponential, 

hyperbolic, or harmonic) to empirical observations of an asset’s (i.e., well) 

performance history [227]. Well features related to initial (oil) production, the 

initial decline, and degree of curvature (b-factor) are the parameters related to the 

Arps model. Values for these features for each well in the study dataset have been 

determined by Drillinginfo / Enverus [226]. The DrillingInfo / Enverus approach 

solves for the most appropriate Arps model parameters that minimize the sum of 

squared errors based on empirical production values for a given well [226]. 

DrillingInfo / Enverus restricts b-factors between 0 and 2. The b-factor is typically 

greater than 1 in unconventional shale plays given the inherent low permeability 

rock matrix and resulting extended duration of transient flow [228]; potentially a 

derivative of the bulk of empirical observations with shorter producing timeframes 

[229]. 

• Well Completion Attributes: These features pertain to each well’s design and 

completion attributes as it relates to well placement, orientation, and hydraulic 

fracturing design. The major hydraulic fracturing design features include the length 

of the perforated interval contacting the reservoir and the volume of proppant, 
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water, and additive used for hydraulic fracturing normalized to a per foot of 

perforated interval basis. Proppant includes solids that may vary in size, shape or 

material type. They typically consist of sand or engineered materials (i.e., resin-

coated sand or high-strength ceramic materials like sintered bauxite) and are used 

to keep reservoir fractures open and conductive following hydraulic fracturing 

[230]. Additives may serve a variety of functions, with examples including the 

assurance of effective transport of water and proppant downhole and throughout 

the reservoir, as well as to ensure sustained hydrocarbon recovery after hydraulic 

fracturing. Specific components can tend to vary from one well to another and from 

operator to operator. However, example constituents include acids, friction 

reducers, biocides, pH adjusters, scale inhibitors, iron stabilizers, corrosion 

reducers, gelling agents, and cross-linking agents [48, 231]. Other important well 

design characteristics captured in the dataset relate to the wellbore lateral 

orientation, spacing distance to nearby wells, and the portion of the horizontal 

perforated length within the targeted producing reservoir zone of interest. The 

directional alignment (reflected by azimuth) is often a design choice by field 

operators; one that is driven by the natural orientation of in situ stresses in targeted 

reservoir producing zones. Horizontal segments of wells that are drilled along the 

minimum horizontal stress often produce transverse fractures following horizontal 

fracturing. This form of fracturing may improve drainage efficiency. As a result, 

well laterals oriented properly on azimuth given natural in situ stress regimes may 

experience higher productivity [48, 163]. Well azimuth was approximated based on 

the geographic orientation between each well’s surface hole latitude and longitude 
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and lateral toe latitude and longitude. Well spacing may provide insight into the 

field operator’s anticipated drainage area based on the applied water and proppant 

intensity. Additionally, spacing-related data can be helpful in determining if 

closely-spaced wells suffer from possible interference from hydraulic fracturing 

operations (i.e., frack hits) or effects from parent / child well interactions [232, 233] 

from nearby wells. We approximated the nearest well distance for each well in the 

dataset using the haversine formula and bottom hole latitude and longitude 

coordinates to its closest well neighbor prior to any dataset reduction. Percentage 

in zone is a metric which provides an indication of the wellbore geo-steering 

efficiency of the horizontal lateral component. DrillingInfo / Enverus provides this 

data readily for each well. Wells with a high portion of their perforated segment in 

the targeted producing zone are more likely to be better producers than those wells 

expected to deviate substantially off target. Each feature in this data group is treated 

as static. In actuality, many of these features, like proppant, water, and additive per 

foot, could essentially vary over the life of any given well due to refracturing 

campaigns.  

• Spatial and Reservoir Attributes: The features included attempt to best 

approximate the variability that may exist in the geologic conditions which 

influence hydrocarbon prominence and producibility that span the reservoirs of 

interest across the study domain. True vertical depth and thickness (i.e., reservoir 

thickness) are provided from DillingInfo / Enverus for each well. However, other 

relevant geologic characteristics that are known to influence hydrocarbon 

production, like total organic carbon, porosity, hydrocarbon and/or water 
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saturation, thermal maturity, reservoir pressure, existence of fracture networks, and 

capacity of the reservoir(s) to be hydraulically fractured [111, 107, 112, 102], are 

not directly or readily available in bulk. Additionally, many of these features are 

dynamic in nature and change over the duration of hydrocarbon production (such 

as fluid saturation and pressure in the reservoir), while others essentially remain 

static (such as porosity and thermal maturity) [234]. Each well’s locational data 

(surface latitude and longitude) is used as a contingency means to approximate 

geologic conditional variability known to vary spatially across the study area – an 

approach widely used in other ML-based model development efforts occurring over 

large spatial horizons [64, 59, 15, 55]. 

A correlation matrix using Pearson’s Product-Moment Correlation is presented in Figure 

30 which provides quantitative indication of the linear relationship between each of the various 

static features of interest. A Pearson Correlation value of 0 or proximal to 0 indicates that no linear 

relationship exists between the two variables. Positive values indicate increasing linear 

relationships (1 represents a perfect positive relationship), whereas negative values signify 

decreasing linear relationships (with −1 representing a perfective negative relationship). 
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Figure 30. Pearson correlation matrix for the static dataset features evaluated. 

 

 

The analysis represented in Figure 30 is informative specifically because: 1) This helps 

summarize the emerging patters that exist given the large volume of data features available; 2) it 

suggests how attributes correspond to other attributes, as well as with potential model outputs; and 

3) it serves as a diagnostic check on data quality to ensure data features are related in a fashion 

that is intuitive and confirmatory based on heuristic understanding of the Midland Basin.  

The Pearson Correlations alone highlight a number of noteworthy trends. For instance, 

Figure 30 shows several positive relationships between many of the well performance attributes 
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representing fluid production with well completion attributes specific to hydraulic fracturing 

design. The attributes of top 12-month oil, water, and gas, as well as the estimated EUR per well 

for both oil and gas are all positively correlated with increasing values of perforation length, 

proppant, and water per foot. These relationships suggest greater production results from well 

completion and hydraulic fracturing design upscaling; a concept noted by others [15, 56, 122]. 

Additionally, the decline curve attributes show correlation to both the well performance and well 

completion attribute features. Initial oil production is mostly positively correlated to these 

attributes, while initial decline (for oil), as expected is negatively correlated. The b-factor 

component is mostly uncorrelated to all features in the dataset with the exception of a positive 

correlation to oil EUR, and therefore holds influence over a well’s longer-term productive profile. 

Finally, worth note are the correlations associated with reservoir thickness and true vertical depth 

based on well location in the basin. Moving west to east in the basin (based on surface hole 

latitude), Figure 30 suggests the reservoirs become both shallower and thinner. In contrast, 

reservoirs trend thicker and deeper when moving south to north (based on surface hole longitude). 

These correlations are as expected based on interpretations of Midland Basin reservoir depth and 

thickness isopaches and interpretations generated by the EIA [235, 192], Hamlin and Baumgardner 

[199], and Blomquist [213]. Based on this analysis, the dataset following outliers removed appears 

representative and suitable for use in ML model development. 

4.3.3 Data Preprocessing Prior to Model Training and Testing 

An important data preprocessing step is applied that scales attribute data in order to 1) 

afford equal consideration to all attributes considered, 2) improve training efficiency and, 3) 

increase numerical stability of the resulting models [236]. Data scaling is widely common in many 
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ML applications. The data scaling approach is implemented to both the static and time series 

parameters prior to use in the following feature selection and ML model development steps 

(described in Section 4.3.4 and 4.3.5). For the feature selection and clustering, input and response 

features are standardized to Z-values (Z) per Equation 4-1. For model training regarding the time 

series joint associated fluid production model, all features are scaled between 0 and 1 using linear 

mapping via Equation 4-2: 

 
 

𝑍 =  
𝑥 − 𝜇

𝜎
 Equation 4-1 

  

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑚𝑖𝑛𝑥

𝑚𝑎𝑥𝑥 − 𝑚𝑖𝑛𝑥
 Equation 4-2 

 

 

Where x represents feature values, 𝜇 is the feature mean value, 𝜎 is the feature standard 

deviation, minx and maxx represent the respective minimum and maximum values for each dataset 

feature. The Z-score standardization step in Equation 4-1 rescales data for each parameter to a 

standard normal distribution with a mean of 0 and a standard deviation of 1. The data 

transformation from Equation 4-2 is used as a variant to the zero mean, unit variance 

standardization from Equation 4-1. The authors have gleaned from recent experience the 

effectiveness of 0 to 1 scaling in deep learning ML applications [237, 238, 239, 240] and are 

therefore applying it here. Predictions using finalized ML models are rescaled to their normal unit 

ranges.  

Following data standardization and/or normalization, project dataset features are 

apportioned and merged into distinct dataset aggregates for use dependent upon the associated 
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project objective. The data features that are carried forward are largely dependent on the results 

from the feature selection, described in Section 2.4. 

4.3.4 Feature Selection Approach 

Features (i.e., variables) that are strongly correlated are therefore linearly dependent and 

may have almost correspondingly similar (if positively correlated) or opposing (if negatively 

correlated) effects on dependent variables of interest. The Pearson correlation metric (presented in 

Figure 30) is limited to assessing linear relationships concerning two features. However, important 

functional relationships between two or more features may exist which may not be linear in nature. 

This can be true even if Pearson correlation coefficients are close or equal to 0 [241]. As a result, 

Pearson correlation may be insufficient for informing model feature selection if used in isolation.  

Feature selection involves a systematic process to down-select a subset of the most relevant 

features within the study dataset that strongly contribute to the ML model prediction response. 

Utilizing fewer features (and eliminating redundant or non-informative features) enables ML 

algorithms to train faster and more efficiently. Additionally, the use of fewer parameters can reduce 

dataset complexity, thereby decreasing the likelihood of ML algorithms overfitting to irrelevant 

input features and negatively impacting model prediction performance [242]. This study utilizes 

recursive feature elimination with cross validation (RFECV) as a feature selection approach. The 

objective was to establish a final set of input features that would be commonly applied as part of 

both the clustering evaluation and the development of the time series joint associated fluid 

production model.  

The feature elimination component of the RFECV process searches for a subset of features 

by starting with all features in the training dataset and fitting a ML algorithm which is used as the 
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estimator [243, 242]. The estimator is trained on the original set of features considered. A total of 

14 input features (i.e., x data) are included in this study which comprise variables associated with 

the “Well Completion Attributes,” the “Spatial and Reservoir Attributes,” and the Top 12-months 

Oil listed in Table 13, as well as two categorical variables that label the production wells evaluated 

based on their producing reservoir group – either the Wolfcamp or Spraberry / Dean formations. 

Two features are used as responses (i.e., y data) which comprise of the Top 12-month Water and 

Top 12-Month Gas. Static data (e.g., Top 12-month Water or Gas) was used as part of the RFECV 

instead of dynamic time series data (e.g., Monthly Water) in order to enable more efficient training 

of the estimator model. The importance of each feature is acquired (via beta coefficients for linear 

estimators or feature importance attributes common to tree-based models) following model 

training. The feature(s) with the lowest importance are then pruned from original set of features 

[244, 245]. The procedure is recursively repeated on the pruned set and resulting model accuracy 

is calculated for each iteration. The feature elimination process continues until a single feature 

remains. The desired number of features can then be established [246, 245]; typically set at the 

number of features that maximizes model performance, or where the inclusion of additional 

features does not substantially improve model performance.  

Random forest (RF) is used as the estimator in the RFECV process for this study. RF-based 

models are considered advantageous in RFECV [247]; most notably because they possess the 

ability to measure the importance of each feature [87] based on mean decrease impurity (described 

effectively by Hur et al. [248]). Prior to use in RFECV, the RF estimator’s hyperparameters are 

tuned via k-fold cross-validation using five folds. In this process, four folds of the training dataset 

are amassed to train models, and the remaining fifth fold is used to test (i.e., validate) the 

performance of resulting prediction models. The step is repeated so that each fold is ultimately 
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used once for model validation while the other k - 1 folds constitute the training set [249]. An 

exhaustive grid search occurs as part of the cross-validation loop to tune hyperparameters. The RF 

estimator formulated on all 14 input data features is built on four folds training data for distinctive 

hyperparameter combinations evaluated [89] as part of the grid search. Trained models were then 

used to make predictions against held out fifth fold validation data. The process is repeated for 

each combination of hyperparameters evaluated. The RF-specific hyperparameters tuned as part 

of cross-validation includes 1) the number of trees in each forest ensemble and 2) the minimum 

number of samples needed to split an internal node. The maximum depth corresponding to each 

tree (i.e., limits the number of nodes in each tree) was unbounded. The RF hyperparameter 

combination that provides for the best prediction accuracy while avoiding over or underfitting is 

used for RFECV. 

The RFECV process also involves k-fold cross-validation using five folds. For each of the 

five RFECV fold iterations, 14 RF models are generated with the feature subset size decreasing 

from 14 to 1. The subset size is based on the number of input features used as part of model 

training. Resulting prediction model performance is evaluated by explained variance (Equation 

4-3) which can effectively evaluate the multi-output response nature of the RF estimator.  

 

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦, �̂�) = 1 −
𝑉𝑎𝑟{𝑦 − �̂�}

𝑉𝑎𝑟{𝑦}
 Equation 4-3 

 

where �̂� is the predicted value, y is the observed value, and Var is the variance (or square 

of the standard deviation). The goal of the RFECV process is to identify the formulation of the RF 

estimator with the feature set size that maximizes the explained variance relative to the other 13 

estimator feature set combinations. The selected feature set can then be utilized as the input 
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features for performing the clustering analysis as well as for the time series-based joint associated 

fluid production model.  

4.3.5 Machine Learning Model Development and Evaluation 

This section describes the various ML approaches implemented as part of this study, the 

contribution of each towards the study objectives, and how their performance accuracy is 

quantified. The ML approaches utilized include both supervised and unsupervised methods, as 

well as the use of deep learning. Static data features that remain following RFECV step are 

incorporated in ML-based workflows. Python (version 3) and packages within the scikit-learn 

library [79] and Keras [250] are leveraged as part of the ML workflow implementation. 

4.3.5.1 Clustering Evaluation 

The majority of the static features within the study dataset undergo evaluation via k-means 

clustering [251], an unsupervised ML approach, prior to the development of the joint associated 

fluid production model. This step is intended to identify congregations of closely related wells 

based on their well completion, decline, well performance, and spatial and reservoir attributes 

(Table 13). The goal of this step is to be able to harvest Arps Decline properties (b-factor, initial 

production, and initial decline discussed) and well completion attributes representative of given 

clusters; from which oil production forecasts can be generated at the well level. 

The k-means clustering process aims to determine the optimal number of clusters based on 

the input dataset features incorporated. Assuming dataset A of V-dimensional entities ai ∈ A, for i 

= 1, 2, ... N, with N being the number of data entities in the dataset, k-means creates K number 

non-empty separate clusters S = {S1, S2, ... SK} proximal to centroids C = {c1, c2, ... cK}, by 
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iteratively minimizing the sum of the within-cluster sum of squared distances (WK, Equation 4-4) 

between each centroid and the data entities associated [252]. 

 

 

𝑊𝐾 = 𝑊(𝑆, 𝐶) =  ∑ ∑ 𝑑(𝑎𝑖 , 𝑐𝑘)

𝑖∈𝑆𝑘

𝐾

𝑘=1

 Equation 4-4 

 

 

The term d(ai, ck) in Equation 4-4 is the distance between data entity ai and the associated 

centroid location ck. In this study, k-means analysis is performed over a range of K = 1 through 30.  

Two heuristic algorithms are applied to determine the optimal number of clusters – the 

Elbow method [253] and Hartigan’s Rule [254]. The Elbow method can be used to visually 

evaluate Wk as a function of the number of clusters. The optimal number of clusters occurs at the 

point in which adding another cluster does not result in a substantial improvement to Wk. However, 

determining the optimal number of clusters through a visual determination approach like the Elbow 

Method can be highly subjective to the evaluator’s judgement. Hartigan’s Rule provides an 

alternative cluster determination approach and is based on comparing the resulting Hartigan’s 

Index, which is a ratio between the Euclidean within-cluster sum of squared error based on k 

number of clusters (i.e., Wk) to that based on k + 1 clusters (Wk+1). The rule utilizes the notion that 

when clusters are effectively separated, Hartigan’s Index (H(K)) becomes < 10 and is taken as k to 

be the optimal number of clusters (Equation 4-5). 

 

 

𝐻(𝐾) = (
𝑊𝑘

𝑊𝑘+1
− 1) (𝑁 − 𝐾 − 1) Equation 4-5 
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The optimal number of clusters will be determined based on the resulting H(K) for each K 

= 1 through 30 evaluated. The Elbow Method will be applied in tandem to provide a visual heuristic 

complement to the resulting optimal K derived from Hartigan’s Rule.  

4.3.5.2 Time Series Joint Associated Fluid Production Model  

For forecasting in time series circumstances, a deep learning neural network based on Long 

Short-Term Memory was developed for the joint prediction of associated water and natural gas 

production as part of oil production operations (referred to as the joint associated fluid production 

model [model]). The model objective is to possess the capability to reproduce as well as forecast 

water and natural gas volumes produced at a given well at monthly resolution based on the well’s: 

1) Monthly oil production volume; 2) explicit spatial and reservoir attributes (limited to the 

Spraberry / Dean and Wolfcamp Formations) in the Midland Basin; 3) specific well completion 

attributes; 4) producing month number (i.e., Timestep Cumulative data per Table 13), and 5) prior 

three-stream (oil, gas, and water) production volumes relative to current time (t) = montht-1, montht-

2, montht-3, and montht-4.  

LSTM are variants of Recurrent Neural Networks (RNN) which include memory functions 

that enable networks to learn long-term dependencies. The conceptual basis behind RNN is to 

utilize information where sequential dependencies exist so that output response is influenced by 

prior, yet relevant elements in sequence. The inherent RNN “memory” feedback component 

provides differentiation from “feedforward” neural networks (e.g., multilayer perceptron) where 

input data are independent from one another and strictly flow from input to output [255]. As a 

result, RNNs are effective in evaluating sequences of data, but are subject to gradient vanishing 

and struggle to handle longer-term sequential dependencies [256]. LSTM is a choice RNN-based 
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architecture for dealing with these two noted shortcomings under circumstances where temporal 

dependencies that span several time steps.  

The LSTM concept was first introduced by Hochreiter and Schmidhuber in 1997 [257] and 

subsequently expanded and adapted by other since. LSTMs utilize a memory cell structure (Figure 

31) to handle long-term dependencies in time series datasets [258]. The long-term memory 

component is reflected in the cell state (Ct-1). LSTM memory cells have the ability add or omit 

information to the cell state (i.e., Ct-1 → Ct), but only does so through carefully regulated structures 

called gates. Network gates consist of sigmoid or hyperbolic tangent (tanh) activation coupled with 

pointwise multiplication operations.  

 

 
 

Figure 31. Example schematic of an LSTM cell. Figure concept is adapted from Kwak & Hui [259], Olah [260], 

and Poornima & Pushpalatha [261]. 

 

 

Given the input data vector at time step t (Xt) and the previous time step LSTM cell output 

(ht−1) instituted, the hidden state output for current LSTM cell (ht) is calculated per the sequence 

discussed in the following bullets [257, 262]: 
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• First, the forget game (ft) is utilized to determine information that becomes omitted 

away from the cell state. New information introduced to the LSTM memory cell 

via ht−1 and Xt undergoes sigmoid transformation, the result of which is output 

between 0 (becomes fully omitted) and 1 (becomes fully included) for each number 

in the cell state Ct−1 per Equation 4-6. 

 

 

𝑓𝑡 = 𝜎(𝑈𝑓𝑋𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) Equation 4-6 

 

 

• The second step involves determining new information to be stored in the cell state; 

this step occurs through two separate parts. The input gate (it) applies sigmoid 

activation to ht−1 and Xt and is used to inform values that will be updated in the cell 

state (Equation 4-7). Additionally, tanh activation generates a vector of new 

candidate values (Zt), which could be included in the cell state per Equation 4-8. 

 

 

𝑖𝑡 = 𝜎(𝑈𝑖𝑋𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) Equation 4-7 

  

𝑍𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑧𝑋𝑡 + 𝑊𝑧ℎ𝑡−1 + 𝑏𝑧) Equation 4-8 

 

 

• The prior cell state Ct-1 is updated with new information to a new cell state Ct, via 

Equation 4-9: 

 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝑍𝑡 Equation 4-9 
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• The final step generates output (ht) from the memory cell. The output is a function 

of the cell state Ct filtered via tanh activation as well as output from the output gate 

(ot). The mathematical expressions for these steps are presented in Equation 4-10 

and Equation 4-11. 

 

 

𝑜𝑡 = 𝜎(𝑈𝑜𝑋𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑏𝑜) Equation 4-10 

  

ℎ𝑡 = 𝑜𝑡 × tanh (𝐶𝑡) Equation 4-11 

 

 

• The equation variables pertaining to U and W include, respectively, the weights to 

the recurrent (ht-1) and input data (Xt) vectors. The b term is the bias for each gate. 

 

 
Table 14. Summary of network architecture for the joint associated fluid production model. 

 
Layer Type Activation Output Shape Trainable Parameters 

LSTM Sigmoid (None, 1, 48) 14,016 

LSTM Sigmoid (None, 1, 96) 55,680 

Dense Relu (None, 1, 96) 9,312 

Dense Linear (None, 1, 2) 194 

 

 

Model architecture (Table 14) and hyperparameter settings were ultimately determined via 

trial and error opposed to a more systematic approach like cross-validation (CV) with grid-search. 

The deep learning-based model requires a fairly extensive training duration (trained on a personal 

computer requiring approximately five seconds to train per epoch), therefore a holistic grid-search 

approach with CV to refine hyperparameter settings was not considered practical. Ultimately, the 

model network consists of three hidden units comprised of two stacked LSTM layers in a recurrent 

network fashion with sigmoid activation and one dense layer with rectified linear activation (Relu). 
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The stacked LSTM architecture is used given the noted successes demonstrated from comparable 

studies like Sagheer & Kotb, Utgoff & Stracuzzi, and Jie et al. that found improved modeling 

generalization with deep, stacked structures over shallower architectures [174, 263, 173]. The 

hidden layer sizes are set to vary as a function of the input size (input shape = 24 features) by 2x 

and 4x accordingly. The output layer enables regression-based prediction and is a dense layer with 

linear activation consisting of two neurons; one handling the predicted response for natural gas 

production and the other handling the predicted response for water production. All neurons are 

fully connected between model layers. 

The inclusion of the dynamic well performance attributes of monthly oil, gas, and water 

results in a dataset size with 230,178 observations at monthly resolution. The portion of the project 

dataset used as part of the joint associated fluid production model development was randomly 

segmented into training, validation, and testing datasets through an 80/10/10 percentage-based 

split. This approach implements a training, validation, and testing split that respects the temporal 

order of observations from the project dataset by keeping the entire productive timeframe for a 

given well intact. For instance, 10 percent of the dataset wells (based on American Petroleum 

Institute well ID number) were selected at random to isolate a test dataset. All associated static and 

dynamic data is cross-referenced to each well for use in model development. The same process is 

conducted on the remainder of the dataset to isolate an additional 10 percent to serve as a validation 

dataset. The data from the remaining 80 percent of the wells is used for training as part of model 

training. 

Early stopping is applied as an additional regularization step to combat overfitting. This 

approach monitors the predictive performance of the model for every epoch during training against 

predictions on the held-out validation set (22,989 observations) as a proxy for generalizing error. 
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Model training is discontinued when validation error is minimized conditional to the use of a 

patience tolerance of 25 epochs. Model weight optimization is determined under mini-batch 

gradient decent using the “Adam” adaptive learning rate optimization algorithm [264], a batch size 

= 500, and epochs = 1,000. The learning rate is set at 0.001. Keras default settings for first and 

second-momentum estimate decay rates as well as epsilon were used as part of Adam 

implementation.  Once trained, model performance accuracy is evaluated on the 10 percent subset 

holdout test data (23,282 observations). This step also provides additional confirmation that 

models were not over or underfit. The performance metrics used as part of model training, early 

stopping, and testing evaluation are discussed in Section 4.3.5.3. 

The model is easily employed to replicate a given well’s historic water and gas production 

with the use of required input data for the given month of interest. To generate prediction forecasts 

for future time instances, we employ a recursive prediction approach as explained by Ji et al [265]. 

This strategy involves implementing the model in a t + 1 one step ahead prediction functionality 

under multiple iterations through the desired prediction horizon (t + h); where the prediction for 

the prior month (t) is used as an input for making a prediction for the following month (t + 1). 

Assuming well completion attributes do not change over time, these input features can be simply 

carried forward for all timesteps predicted. However, oil production is a dynamic, time-dependent 

input and required for forecasting water and gas volumes. Therefore, oil production forecasts that 

serve as inputs to the model must be derived from another means; potentially reservoir simulation 

output, a separate ML oil production predictive model, or even though analytical methods 

proposed by Fetkovich [227] and Arps [223].  
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4.3.5.3 Model Performance Evaluation 

Our model performance was evaluated for the supervised learning-based joint associated 

fluid production model in two specific instances; 1) during model training against both the training 

and validation data sets and 2) through analysis goodness-of-fit for simulated predictions against 

the test dataset.  

During model training, mean squared error (MSE) is used as the loss function. Performance 

of the model is quantified by MSE at each epoch against both the training and validation datasets; 

the later provides an overall generalization error estimate as well as an indication to potential 

overfitting if training and validation MSE’s begin to diverge substantially [266]. MSE measures 

the mean squared difference between predicted values and the actual, ground-truth value. The 

metric is always non-negative and lower values (closer to zero) would suggest higher model 

performance. MSE is mathematically represented in Equation 4-12: 

 

 

𝑀𝑆𝐸 =  𝑁−1 ∑(𝑦𝑖 − �̂�𝑖)
2

𝑁

𝑖=1

 Equation 4-12 

 

 

where N represents the length of the dataset, yi is the observed value, and �̂�i is the simulated or 

predicted response value.  

The finalized joint associated fluid production model prediction performance is evaluated 

by making predictions against the test dataset. A combination of MSE, root mean squared error 

(RMSE), and R2 are used to evaluate model performance accuracy. RMSE correspond to the mean 

error between predicted and observed values and reflects the variance of errors independent of 

sample size. Like MSE, smaller RMSE values are associated with reduced mean error between 
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predicted and ground-truth data compared to model predictions where higher RMSE values occur 

[87]. RMSE provides a compliment to MSE and R2, one expressed in the units of the response 

variable(s) of interest. The R2 metric signifies the degree of correlation between simulated and 

observed values and is defined as the regression sum of squares (SSRegression) divided by the total 

sum of squares (SSTotal). R
2 values are proportional to the data being evaluated and range between 

0 and 1 – higher values represent smaller variations between the ground truth data and predicted 

values and lower values may suggest little to no correlation exists. RMSE and R2 are described 

mathematically in Equation 4-13 and Equation 2-8 respectively: 

 

 

𝑅𝑀𝑆𝐸 =  √𝑁−1 ∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

 Equation 4-13 

  

𝑅2 =
𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
= 1 −

∑ (𝑦𝑖 − �̂�𝑖)2𝑁−1
𝑖=0

∑ (𝑦𝑖 − �̅�)𝑁−1
𝑖=0

2  Equation 4-14 

 

 

The overbar above variables Equation 2-8 indicates the mean value for the complete dataset of 

ground truth observations considered.  

4.3.6 Oil Forecasting 

Monthly oil production estimates are needed in order to predict the associated gas and 

water production for wells in the study area using the LSTM-based deep learning time series joint 

associated fluid production model. We utilize the Arps decline curve model [223] to enable oil 
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forecasts, either for 1) new (theoretical) wells where no historic production exists or 2) to extend 

historical production for existing wells. The Arps hyperbolic decline model, common for lower 

permeability shale production [267], is applied per Equation 4-15 to forecast oil production at the 

well level: 

 

𝑞 =  
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 
Equation 4-15 

  

 

where q is the monthly oil production (bbls / month), qi is the initial oil flow rate (bbls / month), b 

is the decline component which is dimensionless, Di is the initial decline constant (fraction/ 

month), and t is the production month (month).  

The Arps models have shown to provide for reliable hydrocarbon history matches (even in 

cases with b > 1) and affords simplicity in their use [268]. However, the hyperbolic model can 

tend to over approximate reserves when extrapolated without constraints to long-term transient 

flow considerations  [269, 267]. Therefore, in this study, Equation 4-15 is only applied to forecast 

oil in short durations (limited to 60 months).  

4.4 Results and Discussion 

The findings from this study suggest that the approach outlined in Section 4.3 provides for 

a capable time series ML-based predictive model that can be used to either reproduce or forecast 

cumulative volumes of natural gas and water produced alongside oil at the well level. Based on 

the spatial extent of the dataset used for this analysis, the model is limited to application in the 

Midland Basin. However, the model can be applied to the producing intervals of both the Spraberry 
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/ Dean and Wolfcamp formations. The following subsections outline key results as part of model 

development, evaluation, and application.  

4.4.1 RFECV Feature Selection Results 

The hyperparameter combination selected via grid search cross-validation for the RF 

estimator used as part of RFECV included a formulation of 5,050 trees and a minimum of two 

samples to split an internal node. Figure 32 depicts the predictive performance of the RF estimator 

based on the number of features employed as part of training and testing via cross-validation. For 

this study, explained variance for each model iteration across the range of features selected are 

normalized relative to the feature inclusion resulting in the highest score. Once the number of 

features is reduced below six, the estimator’s predictive performance begins to substantially 

decrease as more features are omitted as part of estimator training. In contrast, estimator 

performance gains are marginal at best when the number of features included in training are greater 

than six; with an optimal range between six and 11 features. 
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Figure 32. Effect of feature inclusion relative to the highest feature count score. 

 

 

The ranking importance of each feature based on the estimator formulation with all 14 

features included as part of training is presented in Figure 33. The ranking is based on the “relative” 

importance of each feature to that of the feature with the highest importance. The values for 

importance for each feature are normalized relative to the most import feature then scaled by 100. 

As a result, the feature with the highest importance has a value equal to 100, and all others less 

than 100. Examination of the feature importance ranking and magnitude indicates that oil 

production (reflected as Top 12 Months Oil) is the most important estimator feature for joint 

prediction of Top 12 Months Water and Top 12 Months Gas (static proxies for Monthly Gas and 

Monthly Water dynamic data features). The Top 12 Months Oil static data feature serves as a 

proxy for Monthly Oil, which is a dynamic model that changes with time. The following three 

features (latitude, longitude, and true vertical depth) specify the three-dimensional coordinates for 
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well horizontal placement within the basin. This finding suggests that the associated geological 

characterizes of producing reservoirs that also vary spatially and with burial depth are important 

contributors to the associated fluid response. Feature ranks five through seven (perforation length, 

water per foot, and proppant per foot) are noteworthy well completion design attributes.  

The feature importance values in Figure 33 are used in concert with RFECV results from 

Figure 32 to inform the feature selection process. As a result, 11 static features are selected and 

three omitted from consideration for analysis moving forward. This down-selection includes 

omission of the features with the three lowest values of importance; which include percent in zone 

and the two categorical variables demarcating wells completed in either the “Spraberry / Dean” or 

“Wolfcamp” formations. The removal of three features and inclusion of the remaining 11 coincide 

with the RFECV upper bound feature range count presented in Figure 32 where explained variance 

remains high. 

 

 
 

Figure 33. Summary of feature importance for the RF estimator used as part of RFECV. 
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The feature selection step helps establish final sets of input features that can be applied as 

part of both the clustering evaluation and the development of the time series joint associated fluid 

production model. Informed from the findings from RFECV and importance evaluation, two 

distinct dataset aggregates (in addition to the set used for feature selection) are created; one for 

clustering and another for the joint associated fluid production model training and testing.  

Table 15 highlights the specific dataset features that make up each dataset aggregate. These 

data features are used for each of the following associated subsequent project tasks described in 

Sections 4.3.5.1 (clustering) and Section 4.3.5.2 (the joint associated fluid production model). 

 

Table 15. Summary of feature inclusion for the various dataset aggregates. Each feature is demarcated for inclusion 

into the associated dataset aggregates as an input feature (x) or a response feature (y). 

 

Dataset Features Data Group 
Feature 

Selection 
Clustering 

Deep 

Learning 

Time series 

Monthly Oil (bbls) (t through t-4) 

Well 

Performance 

Attributes 

  x 

Monthly Gas (Mcf) (t through t-4)   y 
Monthly Water (bbls) (t through t-4)   y 

Top 12 Months Gas (Mcf) y x  

Top 12 Months Oil (bbls) x x  

Top 12 Months Water (bbls) y x  
EUR Gas (MMcf)    

EUR Oil (bbls)    

Initial Oil Production (bbls) 
Decline 

Curve 

Attributes 

 x  

Initial Decline (fraction / month)  x  

b-factor  x  

Timestep Cumulative (months)   x 

Perforation Length (foot) 

Well 

Completion 

Attributes 

x x x 

Proppant per foot (lbs) x x x 
Water per foot (bbls) x x x 

Additive per foot (bbls) x x x 

Azimuth (degrees) x x x 

Nearest Well Distance (feet) x x x 
Percent in Zone (percent) x   

True Vertical Depth (feet) 

Spatial and 

Reservoir 

Attributes 

x x x 
Thickness (feet) x x x 

Surface Hole Latitude (degrees) x x x 

Surface Hole Longitude (degrees) x x x 

Wolfcamp (yes / no) x   
Spraberry / Dean (yes / no) x   
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4.4.2 Cluster Analysis 

The results from the k-means clustering analysis are exhibited in Figure 34. Clustering 

results are presented in the context of both the Elbow method and Hartigan’s rule; both of which 

are used in tandem to select a representative number of well clusters from the study dataset where 

adding another cluster does not result in any substantial improvement to within-cluster sum of 

squared error. The visual heuristic results for the Elbow method suggest an appropriate cluster 

count falls somewhere between roughly 17 and 21 clusters (Figure 34A). The Hartigan Solution 

in Figure 34B explicitly identifies 18 clusters as optimal, and that adding the 19th cluster (where 

19 is the k + 1 cluster where the Hartigan Index ratio between k and k + 1 is < 10) results in 

negligible reductions to within-cluster sum of squared error. 

Wells within in the study dataset were mapped to their corresponding cluster and then 

plotted to inspect clustering distribution across the study area (Figure 35). An initial observation 

is that the resulting distribution of well clusters appears influenced by more so than just three-

dimensional placement characteristics. For instance, clusters five and 14 (dark green and dark 

purple respectively) span a large area and occur over a variety of burial depths. Although the 

specific reasoning for cluster assignment is not analyzed in detail as part of this study, it is likely 

that non-spatial features related to well completion design or potentially well performance were 

influential for the commonalities of wells in these clusters. However, in certain cases, wells within 

certain clusters are in close spatial proximity. This seems true for cluster eight (red) in the southern 

portion of the basin as well as cluster 15 (light yellow) in the northeast portion of the basin. Table 

18 presented later in this study provides a summary of descriptive statics for wells making up each 

cluster. 
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Figure 34. Elbow diagrams from k-means clustering analysis. The top figure (A) represents the total within-cluster 

sum of squared errors based on the number of clusters evaluated. The lower figure (B) shows the resulting 

Hartigan’s Index as a function of the numbers of clusters evaluated. 
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Figure 35. Well data demarcated by color corresponding one of the 18 clusters (labeled 0 – 17 based on Python’s 

zero-based indexing). The top (A) is a three-dimensional representation of well data location which features 

placement along burial depth. The bottom (B) is a top-down depiction featuring well location by latitude and 

longitude coordinates only. 
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Figure 36. Box-and-whisker plots of Arps decline curve attributes calculated for wells within each cluster; including 

(A) initial oil production, (B) initial decline, and (C) b-factor. Boxes extends from the 25th to 75th quantile values of 

the data. A line occurs at the median (50th quantile). Green triangles occur at the mean value. Whiskers extend to the 

minimum and maximum values of the data absent outliers. 
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Arps decline properties can be extracted that are representative of the wells common to 

each cluster. These properties can then be used to forecast oil production at the well level using 

the Arps model (Equation 4-15). Figure 36 shows the distribution of the Arps decline properties 

for each cluster. Based on the distribution of these properties across clusters, oil production trends, 

and therefore associated gas and water, are expected to vary across clusters as well.   

Multiple one-way Analysis of Variance (ANOVA) were conducted to evaluate the 

similarity or disparity of the Arps decline properties within across each cluster as a way to 

statistically infer and differentiate variability in oil production trends across clusters. ANOVA is 

a parametric statistical technique used to compare different datasets—specifically equality 

associated with their means and the relative variance between them [270, 271, 272]. In this case, 

the independent variable evaluated was the cluster number, which included 18 levels [0 through 

17]. The dependent variables included initial oil production, initial decline, and b-factor. Null 

hypotheses are rejected at a significance level of  = 0.05. ANOVA can provide insights into the 

overall significance of the well clusters and corresponding Arps decline properties, but the test 

cannot inform exactly where differences lie. Following ANOVA, Tukey’s Test [273, 270] are used 

post-hoc to compare pairs of means for Arps decline attributes for which null hypotheses are 

rejected across each of 18 well clusters. The overall significance level is assumed  = 0.05 for 

testing pairwise mean comparisons.  
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Table 16. Descriptive statistics and results from Tukey’s test on decline curve attributes across well clusters. 

 

Cluster 
Number 

Initial Oil Production (bbls) 
Initial Decline  

(fraction / month) 
b-factor 

Count Mean Stdev 
Tukey’s 

Group 
Mean Stdev 

Tukey’s 

Group 
Mean Stdev 

Tukey’s 

Group 

0 84 14,816 7,459 H, I, J, K 0.40 0.12 A, B, C, D 1.25 0.24 B, C, D, E 

1 259 15,364 7,653 J, K 0.18 0.09 H 1.55 0.08 A 

2 246 28,382 7,826 C 0.36 0.12 D, E 1.07 0.14 I, J 
3 594 20,148 7,935 G 0.40 0.11 B 1.07 0.13 I, J 

4 460 7,481 4,835 M 0.41 0.12 A, B 1.21 0.22 C, D, E, F 

5 574 35,577 10,694 B 0.39 0.11 B, C, D 1.14 0.20 G, H 

6 328 17,625 7,588 H, I 0.41 0.10 A, B 1.06 0.13 I, J 
7 609 14,442 7,392 K 0.32 0.14 F 1.24 0.25 B, C 

8 230 13,408 7,594 K 0.34 0.12 E, F 1.17 0.22 D, E, F, G 

9 173 25,506 8,124 D, E 0.32 0.13 F 1.15 0.23 F, G, H 

10 515 17,353 8,606 H, I, J 0.40 0.11 B 1.19 0.23 E, F 
11 101 14,630 8,813 I, J, K 0.35 0.13 C, D, E, F 1.29 0.24 B 

12 485 17,666 6,449 H 0.43 0.08 A 1.18 0.18 F, G 

13 304 26,324 6,777 C, D 0.25 0.11 G 1.11 0.18 H, I 

14 554 23,346 7,579 E, F 0.27 0.13 G 1.04 0.09 J 
15 160 20,971 8,156 F, G 0.26 0.12 G 1.26 0.25 B, C 

16 346 40,342 8,293 A 0.26 0.10 G 1.03 0.08 J 

17 188 9,959 5,386 L 0.39 0.11 B, C, D 1.06 0.11 I, J 

 

 

ANOVA results yielded significant variation for all Arps attributes among well cluster as 

a condition, p < 0.05. No Arps attribute was determined to be insignificant based on well cluster 

groupings. Therefore, a Tukey’s test was performed for each of the three Arps attributes across the 

18 well clusters. The post hoc Tukey’s test (Table 16) highlights which Arps decline attributes 

differed significantly within each cluster at  = 0.05. Property values in Table 16 that do not share 

a Tukey’s Group are considered significantly different from each other. The Tukey’s Group 

lettering [A through L] are order based on the highest mean value for that given attribute relative 

to the other Tukey’s Groups. Tukey’s test results indicate that out of 18 different clusters, there 

are 12 statistically different initial oil production groupings, only eight statistically different groups 

exist for initial decline, and 10 statistically different b-factor groupings. From an Arps model 

perspective, higher oil productivity is tied to larger values of initial oil production and b-factor and 
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smaller values of initial decline. The analysis of variance and Tukey’s pairwise comparison tests 

are performed using Minitab 18 Statistical Software. 

4.4.3 Joint associated fluid production model training and performance 

The predictive performance of the model as a function of training epoch is presented in 

Figure 37. The figure depicts the associated model loss (as MSE where model predictions, training, 

and validation data values are in normalized form between 0 and 1) following the update of 

network weights prompted by new estimates of the error gradient following each training epoch. 

Given the consistency of the trends in validation and training loss, the model appears to 

demonstrate a suitable fit to the training data with no suggestion of over or underfitting, indicating 

the model’s overall effectiveness at generalizing associated fluid production. The application of 

early stopping ended model training after 325 epochs, resulting in a minimal generalization gap 

between training (2.56e-4 MSE) and validation (2.63e-4 MSE) performance.  

 

 
 

Figure 37. Learning curves for the joint associated fluid production model over training epochs.  
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The model’s predictive performance summary against both the training and test dataset set 

is compared in Table 17. Performance metrics presented in Table 17 are based on the response 

data transformed from its normalized state per Equation 4-2 back into its original units (Mcf and 

bbls). Overall, there is little disparity for model performance between the training and held-out test 

data, as well as marginal difference in the model’s ability to predict either water or gas.  

 

 
Table 17. Model results for prediction on the training and test dataset. 

 

Predicted Value 
Training Data  Test Data 

R2 MSE RMSE  R2 MSE RMSE 

Monthly Gas (Mcf) 0.905 1.83e7 4,273  0.900 1.93e7 4,391 
Monthly Water (bbls) 0.890 2.00e7 4,482  0.904 1.84e7 4,294 

Joint Prediction (Monthly Water and Gas) 0.900 1.91e7 4,379  0.900 1.87e7 4,343 

 

 

The prediction performance is visually compared with observed data from the test dataset 

in Figure 38. The parity plots (Figure 38 A and C) provide a visual depiction of the model’s 

prediction to actual observed water or gas production on a monthly basis. The R2 metric (listed in 

Table 17) is used to quantify the correlation of actual to predicted monthly production data as part 

of the comparison in Figure 38. Model performance that would perfectly generalize production 

trends would have an R2 of one, and all data would fall exactly along the black dotted lines (i.e., 

1-to-1 match) provided for reference. The model’s joint predictive capability is fairly strong 

overall; however, the model is slightly more accurate at predicting monthly water production on 

holdout data compared to gas (this trend is inversed on training data predictions). Data is color 

coded by producing formation and sized by the production month to provide visual indicators for 

potential glaring trends in residual patterns. Fortunately, none seem to exist given that no 
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irregularities in model residuals for either formation occur based on upon visual inspection of the 

Figure 38 parity plots.  

 

 

 

Figure 38. Parity plots of model performance comparing predicted values for monthly gas (A) or water (C) against 

actual values (i.e., observations) for wells in the test dataset. Additionally, the density of data within plot area pixels 

is provided for gas (B) and water (D).  

 

 

Figure 38 (parts B and D) also features visual depictions of the density of data within each 

pixel of the x and y plotting area. Pixel coloration is based on the amount of data at a given x and 

y pixel. Viewed in isolation, the parity plots can be a bit challenging to assess the distribution of 

data around the 1-to-1 line given the large volume of data presented within and the spread 
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throughout the plotting space. The density plots emphasize where higher aggregations of data fall 

and where model residual (variation from the 1-to-1 line) are most prominent. The majority of 

monthly gas and water predictions compared to test data actuals fall along the 1-to-1 line and 

residuals appear evenly distributed at all fluid production volumes. Density plots are zoomed in to 

focus on the 0 to 80,000 bbls or Mcf fluid volume range where the majority of test data occurs. 

Figure 39 shows replication of the production history for water and gas for four different 

randomly selected wells within the test dataset. Predictions using the joint associated fluid 

production model stop when known production observations end. Solid lines in Figure 39 depict 

actual production data for oil (green), water (blue), and gas (red) from each of the four wells. Red 

and blue dots indicate prediction responses for LSTM-based joint associated fluid production 

model. For reference, a brief review of each well evaluated in Figure 39 is provided in the bullets 

below: 

• Well 1: Located in central Martin County producing from the Lower Spraberry 

with an 8,409-foot perforated length, and placed at a total vertical depth of 9,334 

feet below ground surface. 

• Well 2: Located in northern central Midland County producing from the Wolfcamp 

B with a 7,142-foot perforated length, and placed at a total vertical depth of 9,673 

feet below ground surface. 

• Well 3: Located in southeastern Midland County producing from the Wolfcamp B 

with a 6,722-foot perforated length, and placed at a total vertical depth of 9,383 feet 

below ground surface. 
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• Well 4: Located in western Martin County producing from the Wolfcamp C with a 

4,855-foot perforated length, and placed at a total vertical depth of 10,031 feet 

below ground surface. 

 

 

 
 

Figure 39. Replication of production history using the joint associated fluid production model for four test dataset 

wells. 

 

 

Prediction results in Figure 39 are encouraging given the favorable replications of water 

and gas production profiles, even when circumstances that include irregular production trends 

exist. Worth noting is that the actual production trends for oil, water, and gas for each of the four 

wells evaluated are dissimilar in nature, yet the model is effective in replicating production 

profiles. Noted discrepancies in predictions to actual monthly flows seem to most commonly occur 

when highly transient (i.e., spikes or rapid falloffs) events transpire. However, given that the model 
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input features are heavily dependent on prior timestep flows for oil, water, and gas, the model 

appears to adjust to transient events in making next timestep predictions.  

Results to this point have been based on comparison of model prediction to replicate known 

production flows from wells within the test dataset. However, one of the functionalities of a time 

series-based model lies in the ability to forecast into the future where no observations exist. We 

implement the model under a recursive multi-step forecasting strategy as a way to predict gas and 

water production trends past existing wells’ known producing timeframes, as well as for generating 

production outlooks for new, theoretical well sites. Under this strategy, the model is used to make 

a prediction at time t, then the predicted values are appended to the input dataset to serve as prior 

month flow input data for predicting at time t+1. Oil predictions via the Arps model are 

incorporated as part of the input dataset to enable prediction at time t, t+1, through t+h where h = 

the total producing months prediction horizon. This process is repeated in a recursive manner until 

the t+h is reached. A simple exponential forecast smoothing function [274] is applied t > 36 

months where the t+1 prediction is a sum of model’s t+1 estimate plus the prior t value in a 

weighted 60/40 percentage contribution. Past the t > 36 producing timeframe, observed monthly 

water and gas values for wells in the study dataset are commonly in the range (or lower) of the 

model prediction error (see Table 17). The smoothing approach ensures stability in the forward 

predictions. 

Since the joint associated fluid production model is a purely data driven model, it may be 

limited at making sound predictions for 1) circumstances where low quantities of data to train 

models exists and 2) timeframes that extend beyond the production durations for wells in the 

training data. Over 80 percent of the wells in the study dataset have well production timeframes 

less than 60 months (Figure 40). After 60 months, the volume of well data becomes sparse, 
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especially for Spraberry / Dean wells. Additionally, as discussed in Section 4.3.6, the application 

of the Arps model over the long-term with high b-factors using the hyperbolic model may 

overestimate hydrocarbon production. Plus, the recursive prediction strategy can suffer from error 

accumulation and propagation, particularly when the forecasting horizons increase [275, 276]. 

These potential limitations serve as the basis for setting our constraint to limit forecasts to shorter-

term predictions. 

 

 
 

Figure 40. Stacked (left y-axis) and cumulative (right y-axis) histograms of well counts within the study dataset 

based on the production timeframe for each well. 

 

 

Results in Figure 41 show forecasted production for oil, water, and gas for four different 

wells; three of which (Wells A, B, and C) are existing wells selected from the test dataset and the 

fourth (Well D) is a theoretical well based on the dataset mean values for input features common 

to Cluster 13 (see Table 18). Cluster 13 was selected as an example for analysis here because it 
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contains a realitvely large mean initial oil production and encompases a substantial portion of the 

well count from the study dataset; the majority of which are Wolfcamp wells. Forecasts using the 

joint associated fluid production model intentionally stop at 50 months under all cases regardless 

of well production history. Solid lines in Figure 41 depict actual production data for oil (green), 

water (blue), and gas (red). Red, green, and blue dots represent the montly forecasts for the Arps 

(oil) and joint associated fluid production model (water and gas).  

 

 

 
 

Figure 41. Gas and water prediction forecast using the joint associated fluid production model leveraging oil 

forecast outlooks generated from the Arps model. 

 

 

For reference, a brief review of each well evaluated in Figure 41 is provided in the bullets 

below: 
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• Well A: Located in northern Upton County producing from the Wolfcamp A with 

a 7,745-foot perforated length, and placed at a total vertical depth of 9,476 feet 

below ground surface. 

• Well B: Located in western Irion County producing from the Wolfcamp B with a 

10,114-foot perforated length, and placed at a total vertical depth of 6,709 feet 

below ground surface. 

• Well C: Located in southern Glasscock County producing from the Wolfcamp A 

with a 10,261-foot perforated length, and placed at a total vertical depth of 7,976 

feet below ground surface. 

• Well D: Theoretical well representative of Cluster 13 (see Table 18 in Section 4.5 

for specifics) based on a 9,870-foot perforated length, an initial monthly oil 

production of 26,324 bbls, and placed at a total vertical depth of 9,128 feet below 

ground surface. 

4.5 Oil, Gas, and Water Production Outlook 

The joint associated fluid production model has been applied in combination with the Arps 

model to generate oil, gas, and water production outlooks at the well level representative of each 

of the 18 cluster groups identified in Section 4.3.5.1. In this example, outlooks provide cumulative 

first and five-year estimates for production totals based well completion, decline curve, and spatial 

and reservoir attributes at the mean for each of the 18 clusters. The suite of data presented in Table 

18 is a digest of attribute statistics (most notably mean, standard deviation, and interquartile range 

[IQR]) as well as cumulative production estimates from the combination of the Arps and joint 
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associated fluid production models for each cluster. The collective data compiled within Table 18 

is intended to serve as a guiding resource for assessing the potential volumes of produced fluids 

associated with oil production in the Midland Basin based on well completion design 

considerations and placement within the basin. 

The predictions for each cluster appear aligned to typical volumes of in-field production 

trends for wells in the Midland Basin. For instance, our predicted production totals in Table 18 

when compared in the context of water-to-oil and gas-to-oil ratios appear in range with those 

reported in literature [277, 188, 278, 279]. The calculated ratios are reflective of industry trends 

for the first year of production (ranging from approximately 1.4 to 2.8 bbls/bbls for water-to-oil 

[mean of 1.94] and 1.2 to 3.5 [mean of 2.0] thousand cubic feet [Mcf] / bbl for gas-to-oil). 

Cumulative produced water and gas (to-oil) estimates after 5-years or production are in the ranges 

reported by Kondash et al. and Kim respectively [280]. Additionally, the predictions capture 

increasing gas-to-oil ratio trends as wells becomes older [281]; not uncommon to unconventional 

plays, particularly when production causes reservoir pressures to fall below the bubble-point [282]. 
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Table 18. Inventory of descriptive statics, 1st year, and cumulative 5-year production estimates for wells within each Midland Basin Well Cluster. 

Data 

Group 

Dataset 

Feature 
Statistic 

Midland Basin Well Cluster Number 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

W
el

l 
C

o
m

p
le

ti
o
n
 A

tt
ri

b
u
te

s 

Perforation 

Length (foot) 

Mean 6,782 8,791 9,593 7,928 7,719 10,061 9,177 7,139 9,663 8,307 7,677 7,253 7,225 9,870 8,762 9,448 9,972 7,417 

Stdev. 1,990 1,770 1,319 1,665 1,563 1,502 1,856 1,565 1,763 1,814 1,970 2,103 1,794 1,155 1,469 1,892 1,333 1,605 

IQR 2,985 2,704 1,132 2,378 1,065 756 2,581 1,545 1,756 2,711 2,933 4,212 2,361 563 2,313 2,612 740 1,549 

Proppant per 

foot (lbs) 

Mean 1,818 1,698 1,764 1,659 1,303 1,845 1,938 1,477 2,283 3,281 1,728 1,609 1,441 1,752 1,812 1,787 1,828 1,342 

Stdev. 570 391 331 349 413 389 428 395 394 775 464 535 547 336 359 412 490 394 

IQR 487 468 319 430 495 367 459 517 546 872 677 759 687 305 413 507 407 532 

Water per foot 

(bbls) 

Mean 46.8 45.6 50.7 40.6 28.2 47.8 49.6 37.2 51.4 71.4 39.4 40.6 36.6 49.4 48.8 44.9 48.0 32.8 

Stdev. 15.3 10.3 9.0 12.2 8.3 10.1 10.9 10.6 9.3 19.7 11.2 14.9 14.0 8.0 10.7 12.5 10.2 8.6 

IQR 9.8 12.4 11.6 15.5 9.1 13.0 13.1 13.2 8.7 23.2 13.8 17.3 18.9 8.7 9.6 15.5 10.6 7.8 

Additive per 

foot (bbls) 

Mean 12.1 2.8 2.9 4.1 1.8 2.6 3.5 3.2 2.1 4.9 2.1 4.2 2.1 2.2 2.3 2.1 2.9 1.9 

Stdev. 3.9 1.8 1.5 3.1 1.3 1.6 3.3 1.8 1.2 2.9 1.5 3.4 1.3 1.4 1.5 1.5 1.7 1.2 

IQR 3.9 2.5 2.0 4.9 2.1 2.3 2.5 2.6 1.3 3.0 1.8 3.8 1.6 2.0 2.3 2.0 1.9 2.0 

Azimuth 

(degrees) 

Mean 165.1 162.4 162.6 162.6 180.3 162.6 178.9 162.6 180.8 163.2 162.6 168.0 162.2 162.9 162.4 163.3 162.8 180.8 

Stdev. 7.0 3.7 3.7 3.6 3.4 3.3 5.9 3.3 3.1 5.5 2.9 8.8 3.3 3.7 3.4 3.3 3.6 2.1 

IQR 3.2 4.2 3.4 4.1 4.3 4.0 5.1 2.3 4.1 4.6 2.5 17.6 3.6 3.5 3.8 3.2 4.4 2.2 

Nearest Well 

Distance (feet) 

Mean 844 288 254 261 550 259 523 382 388 395 392 5,658 303 328 243 486 278 343 

Stdev. 1,013 384 307 324 473 269 441 556 428 542 473 1,942 354 308 306 764 270 438 

IQR 1,185 307 277 267 519 295 413 390 453 419 404 2,770 285 386 259 511 316 438 

D
ec

li
n
e 

C
u
rv

e 
A

tt
ri

b
u
te

s Initial Oil 

Production 

(bbls) 

Mean 14,816 15,364 28,382 20,148 7,481 35,577 17,625 14,442 13,408 25,506 17,353 14,630 17,666 26,324 23,346 20,971 40,342 9,959 

Stdev. 7,459 7,653 7,826 7,935 4,835 10,694 7,588 7,392 7,594 8,124 8,606 8,813 6,449 6,777 7,579 8,156 8,293 5,386 

IQR 10,635 11,155 10,173 10,197 5,895 13,455 10,748 9,233 9,916 11,762 12,799 13,555 9,324 9,246 9,785 10,744 11,795 6,533 

Initial Decline 

(fraction / 

month) 

Mean 0.40 0.18 0.36 0.40 0.41 0.39 0.41 0.32 0.34 0.32 0.40 0.35 0.43 0.25 0.27 0.26 0.26 0.39 

Stdev. 0.12 0.09 0.12 0.11 0.12 0.11 0.10 0.14 0.12 0.13 0.11 0.13 0.08 0.11 0.13 0.12 0.10 0.11 

IQR 0.20 0.15 0.22 0.17 0.18 0.19 0.17 0.26 0.22 0.21 0.18 0.25 0.13 0.15 0.18 0.17 0.11 0.21 

b-factor 

Mean 1.25 1.55 1.07 1.07 1.21 1.14 1.06 1.24 1.17 1.15 1.19 1.29 1.18 1.11 1.04 1.26 1.03 1.06 

Stdev. 0.24 0.08 0.14 0.13 0.22 0.20 0.13 0.25 0.22 0.23 0.23 0.24 0.18 0.18 0.09 0.25 0.08 0.11 

IQR 0.50 0.08 0.08 0.11 0.40 0.26 0.04 0.50 0.39 0.26 0.39 0.54 0.31 0.17 0.02 0.59 0.02 0.09 

S
p
at

ia
l 

an
d
 R

es
er

v
o
ir

 A
tt

ri
b
u
te

s 

True Vertical 

Depth (feet) 

Mean 8,924 8,964 8,947 9,310 7,112 8,811 7,150 9,020 7,460 9,078 7,883 8,340 9,238 9,128 9,123 7,751 8,963 7,523 

Stdev. 752 630 626 470 741 785 620 771 577 609 568 1,101 465 424 511 727 587 723 

IQR 798 848 884 563 963 1,296 1,018 1,174 686 784 527 1,950 555 540 673 956 962 961 

Thickness 

(feet) 

Mean 443 398 471 320 774 375 633 374 553 503 384 463 541 653 380 369 356 477 

Stdev. 157 137 115 96 146 108 207 134 191 209 103 183 145 176 103 111 86 151 

IQR 209 148 137 148 59 136 338 185 361 244 132 224 168 289 119 110 115 254 

Surface Hole 

Latitude 

(degrees) 

Mean 31.64 31.92 31.70 32.08 31.15 32.08 31.38 31.98 31.32 31.83 32.23 31.80 31.68 31.60 31.91 32.33 32.09 31.39 

Stdev. 0.3 0.3 0.2 0.3 0.1 0.3 0.2 0.3 0.1 0.3 0.3 0.5 0.2 0.2 0.3 0.2 0.2 0.2 

IQR 0.4 0.5 0.2 0.5 0.2 0.5 0.4 0.6 0.2 0.6 0.5 0.9 0.2 0.3 0.4 0.2 0.4 0.3 

Surface Hole 

Longitude 

(degrees) 

Mean -101.9 -101.9 -101.8 -102.1 -101.3 -101.9 -101.3 -101.9 -101.4 -101.9 -101.6 -101.7 -101.9 -101.8 -102.0 -101.6 -101.9 -101.4 

Stdev. 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.3 0.1 0.1 0.2 0.2 0.2 0.2 

IQR 0.4 0.3 0.3 0.2 0.3 0.4 0.3 0.5 0.1 0.3 0.1 0.6 0.2 0.2 0.2 0.3 0.4 0.2 

Wolfcamp Count 68 168 223 315 456 419 326 445 230 137 356 89 459 301 321 88 227 188 

S.berry / Dean Count 16 91 23 280 4 155 2 164 0 36 159 12 26 3 223 72 119 0 

P
ro

d
u
ct

io
n
 

F
o
re

ca
st

 p
er

 W
el

l 

Cumulative 

Oil (Mbbls) 

1st year 77 111 147 100 38 181 86 82 73 141 89 80 87 160 135 129 237 50 

5-years 154 282 275 183 74 346 156 169 145 281 173 168 167 328 265 279 465 91 

Cumulative 

Gas (Bcf) 

1st year 0.15 0.20 0.35 0.14 0.10 0.27 0.29 0.14 0.26 0.26 0.12 0.11 0.17 0.39 0.23 0.16 0.38 0.15 

5-years 0.23 0.56 0.79 0.24 0.13 0.58 0.48 0.26 0.47 0.51 0.17 0.14 0.25 1.23 0.46 0.31 1.04 0.20 

Cumulative 

Water (Mbbls) 

1st year 144 212 261 182 108 269 154 164 152 235 217 123 183 325 222 315 336 107 

5-years 262 710 710 316 239 685 334 315 376 502 414 190 302 998 483 913 952 213 
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Table 19 highlights several major takeaways from the digest presented in Table 18; 

particularly the cluster groups estimated to have the highest or lowest totals for 1) oil, gas, and 

water production per well, as well as 2) associated fluids normalized to a barrel of oil produced. 

The results indicate that Cluster 16 is the best oil producer for the first producing year and through 

5 years of production. Cluster 16 also is noted to be comparatively efficient versus other clusters 

based on the associated fluids volumes produced with oil. Cluster 4 is the lowest oil producing 

cluster and highly inefficient regarding the associated fluids volumes produced with oil. Cluster 

13 produces some of the largest volumes of associated water and gas, especially in the first year. 

As a result, it is one of the most inefficient clusters in terms of oil to gas and oil to water production 

ratios. Clusters 11, 15, and 16 are noted as relatively more “efficient” cluster than several others 

based on their higher oil to gas and oil to water producing ratios; both in shorter and longer 

projections. Overall, clusters 4, 8, and 13 appear to be the least efficient regarding associated fluid 

production normalized to oil.   

 

 
Table 19. Summary of the highest and lowest predicted production totals and associated cluster groups. 

 

Metric 

Oil Production 
Natural Gas 

Production 

Water 

Production 
Oil to Gas Oil to Water 

Mbbls Cluster Bcf Cluster Mbbls Cluster 
Mbbl / 

Bcf 
Cluster 

Mbbl / 

Mbbl 
Cluster 

Highest 1st year 237 16 0.39 13 336 16 806 15 0.71 16 
Highest 5 years 465 16 1.23 13 998 13 1,200 11 0.88 11 
Lowest 1st year 38 4 0.10 4 107 17 281 8 0.35 4 
Lowest 5 years 74 4 0.13 4 190 11 265 13 0.31 4 

 

 

We performed one last analytical case study using the data in Table 18 to generate 

production volume outlooks in regards to associated fluid production in the Midland Basin. 

Specifically, first and 5-year production outlooks are generated at the basin-level under three 
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development scenarios that comprise of a new fleet of wells built on different contributions of 

wells common to certain cluster groups. The scenarios include: 

• Scenario 1: high efficiency development – 33.3 percent of wells based on Cluster 

11, 33.3 percent of wells based on Cluster 15, and 33.3 percent of wells based on 

Cluster 16 

• Scenario 2: low efficiency development – 50 percent of wells based on Cluster 4; 

50 percent of wells based on Cluster 8 

• Scenario 3: diversified development – contribution of wells from each cluster 

randomly assigned under equal probability per cluster 

An average of 1,842 wells have been spud per year in Spraberry / Dean and Wolfcamp 

formations in the Midland Basin from 2017 through 2019 based on the study dataset. The generated 

outlooks under each of the three scenarios evaluated are therefore based on a theoretical new well 

fleet of 1,842 wells in each scenario. Production outlooks for oil, water, and gas volumes produced 

from the new well fleet in the 1st year and through five years of production are shown in Figure 

42. 

 

 

 
Figure 42. Oil, water, and gas production volumes under three different development scenarios for the Midland 

Basin. Each scenario assumes 1,842 new wells drilled and completed. 
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First year production volumes range from approximately 102,000 to 273,000 Mbbls oil, 

239,000 to 406,000 Mbbls water, and 332 to 402 Bcf of gas across the three scenarios constructed. 

Production volumes through five years extend from 201,700 to 559,000 Mbbls oil, 566,000 to 

1,145,000 Mbbls of water, and 552 to 913 Bcf of gas. Results emphasize the notion that 

development choices regarding well design and placement (varied here by clusters implemented) 

have considerable implications on resulting fluid production outlooks. Worth noting is that under 

Scenario 1, where well deployment is limited to the highest oil to associated fluid clusters, the 

largest volumes of associated fluids are produced compared to other scenarios. Furthermore, fluid 

volumes are likely to scale accordingly based on the number of wells that come online, which 

could be reflected in other deployment scenarios. Based on the approximate percentage of gas 

flared to gas produced in the Midland Basin per Leyden (2.35 percent of total), roughly 13 to 21 

Bcf of gas would be flared over the five-years of production based on the results presented in 

Figure 42.  

While this is a relatively straightforward example, it is nonetheless effective for quantifying 

produced volumes of both natural gas and water based on potential O&G development 

considerations. The outlooks can aid operators when formulating management or remedial 

solutions for the volumes of fluids expected. However, this analysis only includes production 

outlooks for the new wells considered and does not incorporate legacy production from wells 

producing prior to the installation of the new well fleet or those wells that come online afterwards. 

Production outlooks for natural gas or oil are highly dependent on a multitude of factors, including 

the typical production profiles of individual wells over time, the cost of drilling and operating 

those wells, the prospective economic return generated by those wells, the prevailing economic 

conditions related to O&G supply and demand, the intensity in which new wells are drilled, 
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completed, and turned online, and the available prospective area remaining for a given play [61, 

11, 283, 284]. Forecasting associated water and gas would also be subject to similar factors. 

Therefore, alternative scenario formulations could be used to reflect different basin development 

outlooks than the one’s analyzed here.  

4.6 Conclusions 

In this chapter, we have introduced a data-driven modeling framework that combines 

supervised and unsupervised ML approaches. The intent of the supervised learning component 

was to produce a deep learning-based model with the capability to generate reliable estimates of 

produced water and natural gas in a time series manner based on well completion and placement 

decisions. The unsupervised learning aspect established groupings of related wells, enabling a 

straightforward method to deduce Arps Decline, well completion, and reservoir and spatial 

attributes characteristic of each cluster group. The ensemble of the supervised and unsupervised 

elements of this work facilitates a means to forecast oil, water, and natural gas production at the 

well level as influenced by specific development considerations. Well level three-stream 

production volumes can be used to scale up outlooks at the pad, field, or basin-level (as 

demonstrated in Section 4.5). The framework has been applied to the producing extent of the 

“Wolfberry” within the Midland Basin. However, since the overall analytical approach is based 

on readily available datasets common to public sources, it could be easily modified for use in other 

mature unconventional O&G producing regions.  

Major environmental concerns regarding shale O&G development are associated to water 

usage, induced seismicity via wastewater disposal, and flaring (and possible venting) of produced 
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natural gas. The framework presented in this study can be leveraged to help support the formulation 

of management and/or remedial strategies based on the volumes of fluids expected from 

unconventional O&G development operational conditions. Study results have highlighted the 

variability in noted water and gas volumes produced depending on wellbore design and placement 

considerations – a finding which suggests forecasting is a nontrivial task. Table 18 provides 

quantitative insight that can reduce the burden in estimating associated fluid production for future 

wells. Data compiled in Table 18 summarizes the potential volumes of produced fluids associated 

with oil production across the study area given well completion design considerations and 

placement within the basin. These data can be used to build out three-stream fluid production 

outlooks for the Midland Basin. Forward-looking production outlooks for oil, water, and natural 

gas as highlighted in Figure 42 are highly dependent on the nature of well design and placement 

considerations of the subsequent fleet of wells (as well as legacy production from existing wells). 

However, many of these design choices that would determine the composition of the out-year fleet 

of wells can be strongly influenced by external economic or market-driven factors. 

Potential follow-on work could be beneficial in addressing possible limitations and 

imposed constrains in the research presented here. For instance, a potential area for improvement 

to the study in regards to the model development pertains to limited access to geologic data which 

could be used as inputs. Readily available geologic data at the well level in large volumes is 

uncommon. Nevertheless, the inclusion of additional geologic characteristics that are known 

controlling factors to unconventional oil and gas recovery [26] may provide added utility in data-

driven ML modeling. Additionally, our study was without access to key time series data pertaining 

to how wells were operated (i.e., choke, bottom-hole pressure, lift type). The result of which 

presents a challenge in integrating the human element as part of forecasting component. In regards 
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to forecasting oil production, gradual or abrupt changes in the producing rate of a well due to 

reservoir depletion, fluctuation in bottom-hole producing pressure, and changes in conditions in or 

immediately adjacent to the wellbore are not directly considered when using the Arps models 

alone. Lastly, potential model performance improvement gains might be realized thorough the 

development of separate models for predicting monthly water and gas individually instead of in 

joint fashion. 
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5.0 Machine Learning Classification Approach for Formation Delineation at the Basin-

Scale 

5.1 Chapter Summary 

Machine learning and artificial intelligence approaches have rapidly gained popularity for 

use in many subsurface energy applications. They are seen as novel methods that may enhance 

existing capabilities, providing for improved efficiency in exploration and production operations. 

Furthermore, their integration into reservoir management workflows may shape the future 

landscape of the energy industry. This study implements a framework that generates predictive 

models using multiple machine learning classification-based algorithms which can identify 

specific stratigraphic units (i.e., formations) as a function of total vertical depth and spatial 

positioning. The framework is applied in a case study to 13 specific formations of interest (Upper 

Spraberry through Cisco/Cline [Wolfcamp D] reservoirs) in the Midland Basin, West Texas, 

United States; a prominent hydrocarbon producing sub-basin of the larger Permian Basin. The 

study dataset consists of over 275,000 records and includes attributes like formation identifier, true 

vertical depth (in feet) of formations observed, and latitude and longitude coordinates (in decimal 

degrees). A subset of 134,374 data records were relevant to 13 distinct formations of interest and 

were extracted and used for machine learning model training, validation, and testing. Four 

supervised learning approaches including random forest (RF), gradient boosting (GB), support 

vector machine (SVC), and multilayer perceptron neural network (MLP) were evaluated and their 

prediction accuracy compared. The best performing model was ultimately built on the RF 

algorithm and is capable of an overall prediction accuracy of 93 percent on holdout data. The RF-

based model demonstrated high prediction accuracy for major oil and gas producing zones 
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including the San Andres, Upper Spraberry, Lower Spraberry, Clearfork, and Wolfcamp at 98, 94, 

89, 94, and 94 percent respectively. Overall, the resulting data-driven model provides a robust, 

cost-effective approach which can complement contemporary reservoir management approaches 

for multiple subsurface energy applications.  
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5.2 Introduction 

Fit for purpose development and deployment of machine learning-based technology for 

subsurface resource applications (e.g., conventional and unconventional oil and gas [O&G], liquid 

waste disposal, geothermal energy, and geologic carbon dioxide [CO2] storage) has the potential 

to provide accurate, efficient, and cost-effective analytical compliments to conventional reservoir 

management strategies. Such approaches may transform future subsurface energy resource 

exploration, utilization, and management into a much more data-driven science [35, 40]. Machine 

learning tools use statistical techniques that can “mine” through data and potentially uncover 

hidden patterns or relationships within large, complex, multivariate datasets [42, 43, 31] that may 

otherwise go undiscovered. The resulting insights gained from deploying machine learning as a 

novel compliment to reservoir management may therefore enable better understanding of 

engineered subsurface system performance: thereby offering reduced risk, improved safety, and 

increased effectiveness of developing said subsurface resources [32, 43].  

A number of potential use cases for machine learning as part of subsurface energy systems 

management and decision making have been noted in literature, spanning topics like improving 

oil and gas production [16, 285], modeling CO2 injection and potential leakage [286, 287], 

informing drilling practices [17, 18], uncertainty quantification for field site monitoring [288, 289], 

and geologic formation, stratigraphy, and lithology classification or inversion [290, 291]. The 

latter of which related to geologic formational classification is the focus of the research discussed 

in this study.  

Delineation of the burial depth, thickness, and lateral extent of specific geologic strata is a 

crucial undertaking when exploring for and ultimately developing subsurface energy resources 

[292]. Typically, each geologic formation is in some way unique and distinct in terms of 
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lithostratigraphic characteristics from neighboring formations [293, 294]. The specific depth, 

thickness, and lithostratigraphic characteristics of a given formation(s) of interest, along with those 

associated with overburden and possibly underburden strata, strongly influence operational 

decision-making. For instance, planning well drilling operations and logging, well completion 

engineering and design choices, subsurface resource quantification estimation (i.e., oil and gas 

productivity potential, CO2 storage or liquid waste disposal resource capacity and containment 

amenability, geothermal potential, etc.), and project cost estimation are all dependent on the 

geologic sequencing and their associated areal extents at new well sites.  

Determination of the lateral and vertical distribution of geologic formations typically 

occurs during the exploration and delineation phase of subsurface resource development. 

Information gleaned from this step can help determine where potentially viable sites exist. 

Technical information considered during this step may come from a variety of existing data 

sources, including production or injection data from existing wells, reviewing data from existing 

core samples, assessing available seismic surveys, analyzing well logs, reviewing records and 

sample descriptions from existing or plugged and abandoned wells, and reviewing other geologic 

data available in literature [295]. Once new a well site(s) is determined, the vertical formational 

extent of geologic formations present are confirmed from various methods, including rate of 

penetration (ROP) charts during drilling, well log analysis, or drill cutting and mud logging [290]. 

This information aids in establishing proper well casing and perforation placement to ensure proper 

zonal isolation as needed, as well as informing geologic model development.   

The methods described above have their own advantages and limitations regarding their 

associated costs, accuracy attained, manpower resources, potential waste products generated, and 

time needed to implement [290]. Additionally, geologic formational sequencing and associated 
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lithostratigraphic characteristics are highly spatially dependent. Over larger spatial domains (e.g.; 

field to basin scale) interpolation approaches are known to be highly uncertain [77]. The currently 

deflated market prices in the O&G sector encourages operators pursuing any subsurface energy 

resource type to become more operational efficient and cost-effective [98]. Consequently, 

formational delineation is one aspect of subsurface resource exploration and development that may 

benefit from new approaches that provide efficient and cost-effective alternatives to more 

expensive exploration strategies. As mentioned, machine learning has emerged as promising 

option for operators and researchers alike to consider in this regard [38, 99]. Particularly, the recent 

growth in unconventional O&G development has prompted a simultaneous escalation in the types 

and volumes of data generated amenable for machine learning analyses for subsurface energy 

applications [53]. 

In this study we develop predictive models using multiple machine learning classification-

based algorithms which can identify specific stratigraphic units (i.e., formations) as a function of 

total vertical depth and spatial positioning. The models rely on straightforward data types that 

would be common to basins with relatively mature O&G development. The basic framework could 

be directly applied to any basins where similar data exists. Machine learning model development 

in this study focuses on the Permian Basin region of the U.S; primarily in the Midland Basin 

portion of the Permian. The region holds enormous consequence regarding domestic oil and gas 

production. A report by the Texas Independent Producers & Royalty Owners Association indicates 

that yearly crude oil production in the Permian Basin has grown by 1.2 billion barrels since 2009, 

resulting in a 371% increase in oil output over the last ten years [184]. This overall growth was 

facilitated by the application of horizontal drilling and hydraulic fracturing technologies and has 

enabled the Permian to become the world’s top-producing oil field [185]. While the region itself 
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major producer of both oil and gas, the basin still faces several challenges regarding 1) 

improvements needed in production efficiency and 2) associated natural gas and water production 

management [186, 187, 183].  

The resulting data-driven model helps inform future decision-making by learning from 

previous development. The model provides a robust and cost-effective approach which can 

supplement contemporary reservoir management best-practices, spanning multiple subsurface 

applications, including: 

• Delineation of over and underburden expected at new drill sites which can aid in 

well drilling planning, like efficient drill bit management and fluid selection; 

• Delineation of over and underburden expected at new drill sites which can aid in 

well completion and design considerations, like optimizing casing and cement 

placement; 

• Ability to develop geologic formation cross-sections for a given basin(s) using a 

consistent stratigraphic framework without extensive manual interpretations from 

well logs; 

• Facilitate the development of structural mapping like isopachs, depth to formation 

top, and depth to base of formation contours – data that can complement static 

geomodel development;  

• Real-time synchronization with geo-steering techniques to help ensure optimal 

wellbore placement; and  

• Integration into subsurface visualization applications [296, 297, 298, 299, 300, 301] 

to depict stratigraphy and other geologic properties in three dimensions.  
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5.3 Materials and Methods 

The machine learning-based prediction models (called “Formation Labeler” from this 

point) were developed using a Formation Tops dataset acquired from oil and gas data vendor 

DrillingInfo [302]. The workflow used to develop the Formation Labeler model is presented in 

Figure 43. Ultimately, several machine learning models were systematically developed using 

various algorithms and training data configurations in order to achieve a model with the highest 

classification prediction accuracy as possible. 

 

 

 

 

Figure 43. Workflow implemented to develop the Formation Labeler Model. Random forest = RF; GB = gradient 

boosting; MLP = multi-layer perceptron neural network; SVC = support vector machine classification; SMOTE = 

Synthetic Minority Oversampling Technique. 
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5.3.1 Study Data 

The Formation Tops dataset contains over 275,000 records specific to the Midland Basin. 

The dataset is primary a large list of formation identifiers at given well locations and the associate 

depth the formations were noted. Specifically, the Formation Tops dataset includes data attributes 

like formation identifier name (string), associated well API numbers where formations were noted 

(integer), the true vertical depth (in feet) (integer) of formations observed, and latitude and 

longitude coordinates (in decimal degrees) (float). Information within the Formation Tops dataset 

could be generated from field data derived from multiple source types, including from well log 

interpretation, evaluating drill cuttings and mud logging, and simply from interpretations published 

in open literature. The Formation Tops dataset required extensive relabeling into distinct and 

consistent formational nomenclature that aligned with the 13 Stratigraphic / Formation Name 

groups of interest within the Midland Basin per Figure 44. These stratigraphic units include a 

combination of both oil and gas producing and non-producing intervals (the prominence of each 

as a hydrocarbon producer can vary by location within the basin), and include the “Wolfberry” 

pay zones (highlighted in Upper Spraberry through Cisco/Cline [Wolfcamp D] reservoirs in Figure 

44). The resulting dataset of the distinct formations were used to fit and test multiple classification-

based machine learning models using different algorithms to generate the Formation Labeler 

model.  
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Era Period Epoch 
Local 
Series 

Stratigraphic / 
Formation Name 

Operational Name 

Prominent 

Hydrocarbon 
Producing Formation 

[198, 303] 

P
al

eo
zo

ic
 

Permian 

Guadalupe Ward 

San Andreas San Andreas ● 

San Angelo / 

Glorieta 

San Angelo / 

Glorieta 
 

Leonard 

Clearfork 

Clearfork Upper Leonard  

Tubb Tubb  

Wichita Albany 
Wichita Albany / 
Lower Clearfork 

 

Wichita 

Upper Spraberry 

Spraberry 

● 

Lower Spraberry ● 

Dean ● 

Lower 

Leonard 
Wolfcamp Wolfcamp A ● 

Wolfcamp Wolfcamp 
Wolfcamp B ● 

Wolfcamp C  

Pennsylvanian 

Virgil Cisco / Cline Wolfcamp D ● 

Missouri Canyon Canyon ● 

Des 

Moinesian 
Strawn Strawn  

Atokan 
Atoka / Morrow  

Atoka / Bend ● 

Mississippian Morrow Morrow / Bend ● 

 

Figure 44. Stratigraphic description for a subset of Midland Basin, Texas relevant to the stratigraphic / formation 

names of interest to this study. The figure was amalgamated from lithostratigraphic interpretations from several 

literature sources [194, 195, 196, 197, 198, 192]. 

 

 

The areal extent of the relabeled Formation Tops dataset in the Midland Basin, and broader 

Permian Basin, is plotted in Figure 45. The Permian Basin is a complex sedimentary system that 

covers an area of more than 75,000 square miles in portions of West Texas and Southeast New 

Mexico. The basin consists of a number of sub-basins and platforms, including the Delaware 

Basin, Central Basin Platform, and the Midland Basin [192]. The regional extent of the Central 

Platform and Midland sub-basins is shown in Figure 45. The Midland Basin (the study area for 

this research) is constrained to the east by formational shallowing towards the Eastern shelf and to 

the west by folding and faulting on the eastern portion of the neighboring Central Platform. In its 
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southern portion, the Midland Basin formations start to thin in an extension of Central Basin 

Platform called the Ozona Arch [193]. The Permian’s Northern shelf limits the Midland Basin’s 

extent to the north. The basin is also deepest on its western flank and shallower towards the east; 

in many portions stratigraphic units experience several thousand feet of relief across the basin.  

 

 
 

Figure 45. Map of the study area in the Midland Basin, Texas. Well data evaluated as part of the Formation Tops 

dataset where noted observations for each formation of interest had occurred are presented. Geographic information 

system (GIS) layers used to create this figure were acquired from the University of Texas at Austin [216] and United 

States Geological Survey [217]. 
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5.3.2 Machine Learning Approaches Applied 

The Formation Labeler model uses latitude, longitude, and true vertical depth as input 

attributes (x variables) and predicts the specific formation (y or response variable – limited to the 

Stratigraphic / Formation Name in Figure 44) given those input conditions. The workflow that 

includes the application of multiclass classification machine learning is intertwined with data 

preprocessing steps (following formation relabeling) that includes data standardization, sub-

division, and augmentation as shown in Figure 43. Input attributes are standardized to z-values (Z) 

per Equation 5-1.11  

 

 

𝑍 =  
𝑥 − 𝜇

𝜎
 Equation 5-1 

 

 

Where:  

x = input attribute value 

𝜇 = input attribute mean value 

𝜎 = input attribute standard deviation 

 

 

The input dataset then undergoes a preliminary data evaluation step using k-means 

clustering [251]. This step aims to determine the optimal number of clusters for the input dataset 

as a means to evaluate dataset complexity spanning across the basin (influenced mostly by the 

dimensions of the spatial extent and burial depth of formational observations in the study area). 

 

11 Two of the four machine learning algorithms applied are decision tree-based models; Random Forest and Gradient 

Boosting. Since decision trees are invariant to different input variable scales, training data was not standardized for 

Random Forest and Gradient Boosting.  
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The optimal number of clusters occurs when adding additional clusters results in no substantial 

improvement to the within-cluster sum of squared error. Two heuristic algorithms are applied to 

determine the optimal number of clusters - the Elbow method [253] and Hartigan’s Rule [254]. 

The optimal number of clusters is compared against the number of stratigraphic / formation 

groupings (13 total) as an independent data quality assurance step / comparative analysis for the 

formation relabeling effort. A large noted discrepancy between optimal clusters and the number of 

discrete stratigraphic / formation groups used may suggest that a more extensive formation 

relabeling effort that generates more expansive formation groupings is warranted prior to 

classification-based machine learning model development.  

The input and response variable datasets are sub-divided into training and test datasets 

through a 90/10 percentage-based split. A data augmentation step was applied to the training 

dataset (not the holdout test dataset) prior to cross-validation, resulting in two separate training 

dataset options that were ultimately evaluated as part of model development. This step applied a 

Synthetic Minority Oversampling Technique (SMOTE) which involves oversampling data 

examples in minority classes as a way to reduce data imbalance across the 13 stratigraphic / 

formation groups. The augmented data examples do not add new information to the dataset, but 

their addition is intended to help classification models more effectively learn decision boundaries 

between groups, and therefore improve in accuracy [304]. The resulting SMOTE training dataset 

was expanded by a roughly 19 percent increase compared to the original training dataset (described 

as Regular Set in Figure 43). SMOTE manipulation was implemented using the Imbalanced-learn 

Python library [305].  

A k-fold cross-validation approach [306] using 5-modeling folds was then implemented on 

the training datasets (Regular and SMOTE) as part of model training. The cross-validation 
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approach was implemented in two steps. The first step was used to evaluate different combinations 

of hyperparameters for each machine learning algorithm evaluated. An exhaustive grid search 

approach was used where different models are built on the training data for the distinctive 

hyperparameter combinations considered specific to each algorithm employed [89]. Model 

performance is then evaluated against the holdout data in each fold. For simplicity, the Regular 

training dataset was used as part of hyperparameter tuning step for each machine learning 

algorithm evaluated. The model formulation for each algorithm resulting from the hyperparameter 

combination generating the most accurate model was selected as the finalized model formulation 

for that algorithm.  

The second cross-validation step involved evaluating final model formulation performance 

on each of the five validation folds. Separate models using each algorithm / optimal 

hyperparameter combination formulation underwent cross-validation on both the Regular and the 

SMOTE datasets and the performance of each model was noted against the holdout data for each 

of the five folds. As a result, a total of eight Formation Labeler predictive models (built on four 

different algorithms and two different training datasets) were generated as part of this study. 

Finalized model performance was conducted on the 10 percent subset holdout test data that was 

not used in cross-validation as a secondary evaluation of model performance accuracy. 

The accuracy metric [307] was used to evaluate model prediction performance in this study 

and is described in Equation 5-2. 

 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, �̂�) =  
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 1(

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

𝑦�̂� = 𝑦𝑖) Equation 5-2 
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Where:  

𝑦𝑖          = response attribute true value of the i-th observation 

𝑦�̂�          = response attribute predicted value of the i-th observation 

nsamples   = total samples 

 

 

The accuracy metric (Equation 5-2) was used as the performance metric in several 

components of the model development workflow, including the hyperparameter tuning step and to 

compare across the finalized model formulations generated from the different machine learning 

algorithms employed (both in cross-validation and against the test dataset).  

The performance of various machine learning algorithms was compared in their prediction 

of stratigraphic / formation names. In total, four different supervised machine learning algorithms 

were evaluated, including random forest (RF), gradient boosting (GB), multilayer perceptron-

based neural network, and support vector machine (SVC). Given the nature of this research, all 

algorithms were applied for solving multiclass classification. A basic description of each algorithm 

is provided in the bullets below; the foundational mathematics for each can be readily found 

elsewhere in literature: 

• Random Forest (RF) – An ensemble-based learning method proposed by Breiman 

(2001) in which randomized decision trees are constructed in parallel on 

bootstrapped training samples and their individual predictions aggregated into a 

single response [308, 87]. In this study, the RF hyperparameters tuned as part of 

cross-validation included 1) the number of trees in the forest; 2) the minimum 

number of samples required to split an internal node, 3) the maximum tree depth 

(i.e., limits the number of nodes in each tree); and 4) with and without bootstrap 

sampling when building trees. Optimum values were found to be 1,250 trees, a 
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minimum of two samples to split an internal node, a maximum tree depth of 20, 

and the use of bootstrapping. 

• Gradient Boosting (GB) – Gradient boosting algorithms produce a finalized 

prediction model in the form of an additive ensemble of weak prediction models, 

typically decision trees. The model is built in sequential fashion (i.e., boosting 

approach) where new decision trees are fit to prior stage model residuals in a greedy 

fashion. The newly added tree attempts to minimize loss given the previous 

ensemble of the model [68, 81, 80]. Ultimately, the final model is a linear 

combination ensemble of every weak prediction decision tree. A shrinkage 

parameter (v; where 0 < v < 1) sets a learning rate. This parameter controls the 

contribution of each tree to minimize the loss function within the final model. 

Smaller values (v < 0.1) tend to result in improved model performance [81, 68] but 

at the cost of requiring a greater number of decision trees and potentially a larger 

computational expense to fit the final model. In this study, the GB hyperparameters 

tuned as part of cross-validation included 1) the number of trees as weak learners; 

2) the minimum number of samples required to split an internal node, 3) the 

shrinkage parameter v; and 4) the maximum tree depth. Optimum values were 

found to be 1,000 trees, a minimum of two samples to split an internal node, v set 

to 0.1, and a maximum tree depth of 15.  

• Multilayer perceptron neural network (MLP) – Neural networks are machine 

learning algorithms that have interconnected neurons used to reconstruct complex 

nonlinear input and output relationships—considered analogous to synapses in the 

human brain [309]. Each neuron consists of a network of nodes and weighted links 
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(i.e., synaptic connections) that connect predictor variables to response variables 

[310]. Neural networks are specified by network structure (like the number of 

hidden layers and neurons within each), activation functions, and training 

algorithms [311]. Different variants of neural networks exist, but multilayer 

perceptron (MLP) is one of the more widely used [312, 15]. MLP is a class of 

feedforward artificial neural network where at least three layers of nodes exist: (1) 

an input layer, (2) one or more hidden layers, and (3) an output layer. With the 

exception of the input nodes, every other node is considered a neuron and is related 

to other neurons in the preceding layer. Every neuron implements a nonlinear 

activation function that defines the output of that particular neuron, given an input 

or set of inputs. The neuron output is then used as input for the next set of neurons 

in the following layer. The signal passing through a given neuron via feed-forward 

propagation is adjusted by weights that alter the functions and nonlinear activation 

which alters the combined output signal that eventually reaches neurons in the 

following layer [309]. Modification to the weights occur via gradient decent 

through back-propagation of error between prediction and response. This process 

continues through multiple iterations (i.e., epochs) until a desired solution that 

results in a suitable error rate is achieved [313]. In this study, the MLP 

hyperparameters tuned as part of cross-validation included 1) alpha 

hyperparameter, which serves as an L2 weight regularization function [314]; 2) the 

number of iterations or epochs; 3) activation function types; 4) the number of 

hidden layers; and 5) number of neurons per hidden layer. Optimum values were 

found to be alpha at 0.0001, 1,000 epochs, the hyperbolic tan activation function 
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(tanh), four hidden layers, and 100 neurons per hidden layer. Additionally, the adam 

stochastic gradient-based optimizer was used for weight adjustment. Early stopping 

was applied using a validation fraction of 10 percent and a loss tolerance of 0.005. 

• Support vector machine (SVC) – The concept of SVC was introduced by Cortes 

and Vapnik (1995) [315]. The concept is based on constructing a hyperplane or a 

set of hyperplanes in a multi-dimension feature space. The hyperplane(s) enable(s) 

categorization of new data depending on that data’s given position in relation to the 

hyperplanes(s) within the multi-dimensional space. Good separation is achieved by 

the hyperplane that has the largest distance to the nearest training data points of any 

class (those data are called support vectors) [316]. Kernel function options such as 

linear, polynomial, and radial basis function (rbf) are used to map the input vectors 

into high-dimension feature spaces [317, 318]. The Gaussian rbf kernel was used 

here. The gamma () parameter controlling the width of the Gaussian function [319] 

was set to scale based on the number of input features and variance of those features 

in the input dataset [320]. In this study, the SVC hyperparameters tuned as part of 

cross-validation included 1) the soft margin cost function parameter (C). The 

optimum value was found to be 10,000 for C. 

All models have been developed by leveraging Python’s scikit-learn library [79] on Python 3. 

 

5.4 Results and Discussion 

This section summarizes key results related to the Formation Tops relabeling effort, the 

findings from the optimal cluster count determination through k-means, and the Formation Labeler 
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model performance. The results discussed throughout this section indicate that the Formation 

Labeler model for the Midland Basin performs well at predicting each of the 13 stratigraphic / 

formation groups given the spatial positioning within the basin as well as true vertical depth below 

ground surface.  

 

5.4.1 Formation Label Categorization 

The formation relabeling effort resulted in a substantial reduction in the overall data from 

the original Formation Tops dataset that was ultimately used going forward. Out of the full 275,343 

records, 134,374 had formation identifiers in the original Formation Tops dataset that were 

sufficiently distinctive and could be confidently relabeled into one of the 13 stratigraphic / 

formation groupings. However, the nomenclature used for the original formation identifiers was 

highly disparate. Out of the 134,374 records relabeled, a total of 902 unique label identifiers existed 

from which the 13 stratigraphic / formation groupings were derived.12  

Table 20 provides a statistical overview of the relabeled dataset grouped by distinct 

stratigraphic / formation name and sorted by average depth across the basin. For each stratigraphic 

/ formation name, Table 20 summarizes the standard deviation for all observations (influenced by 

formation thickness extent and burial depth across the basin), the observation count, and the 

 

12 To provide additional context, a few examples of the formation identifiers in the original Formation Tops dataset 

that were mapped to the relabeled distinctive stratigraphic / formation names in Figure 44 are provided here:  

• Upper Spraberry (Original identifier examples: Top Upper Spraberry, T. Spraberry, Upper Sprayberry, Top 

of Upper Spraberry) 

• Dean (Original identifier examples: Dean, Top of Dean, Base of Dean, Top Dean, Dean Sand) 
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percent of total observations. The distribution of observations indicates that the dataset suffers 

from imbalance.  
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Table 20. Summary statistics of the Formation Tops dataset used for the study following relabeling. A total of 

134,375 formation observations from over 32,800 specific wells were utilized as part of the study. 

 

Stratigraphic / Formation 

Name 

Average 

Formation 

Depth (feet) 

Depth Standard 

Deviation (feet) 

Observation 

Count 

Observation Count  

Percent of Total 

San Andres 3,801 1,071 16,590 12.3% 

San Angelo / Glorieta 4,525 1,290 5,984 4.5% 

Clearfork 5,557 1,433 13,749 10.2% 

Tubb 5,707 1,392 351 0.3% 

Wichita Albany 6,636 1,343 1,298 1.0% 

Upper Spraberry 7,049 1,078 26,891 20.0% 

Lower Spraberry 7,273 1,272 4,781 3.6% 

Dean 8,144 1,119 16,849 12.5% 

Wolfcamp 8,196 1,330 22,797 17.0% 

Canyon 8,224 1,547 2,545 1.9% 

Cisco / Cline 9,022 1,351 3,546 2.6% 

Strawn 10,130 722 13,229 9.8% 

Atoka / Morrow 10,386 682 5,764 4.3% 

 

 

 
 

Figure 46. Three-dimensional visualization of the observations from the relabeled stratigraphic / formations of 

interest. 
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Figure 47. Box and whisker plots of the dataset well observations for each formation of interest as a function of 

depth below ground surface. The box extends from the 25th to 75th quartile values of the data, with a line at the 

median (50th quartile). The circle is at the data mean. Whiskers extend to the minimum and maximum values of the 

data absent outliers. 

 

 

Figure 46 provides a visual representation of the distribution of the relabeled 134,374 

datapoints for each of the stratigraphic / formation groupings based on their spatial coordinates 

and true vertical depth. The box-and-whisker plots in Figure 47 depict the distribution of the 

resulting aggregation of observations for each stratigraphic / formation group. These figures 

indicate that the burial sequencing for the stratigraphic / formation groups as they proceed from 

shallow to deep follows the stratigraphic description order presented in Figure 44. The one 

exception is the Canyon formation, which has a shallower average depth than the Cisco / Cline 

based on dataset observations. However, the observed depths for the Canyon formation across the 

basin was shown to be more variable on average (based on depth standard deviation in   
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Table 20 and resulting box and whisker extent in Figure 47); which could attribute to the 

average depth value. As a result, the relabeling efforts seemed to enable appropriate mapping of 

data from formation identifiers to stratigraphic / formation groupings. 

5.4.2 k-means Clustering Analysis 

The results from the k-means clustering analysis to determine the optimal number of 

clusters from the Formation Tops input dataset are presented in Figure 48 using the Elbow method 

and Hartigan’s rule.  

The Elbow method evaluates the total within-cluster sum of squared errors (SSE) as a 

function of the number of clusters. The optimal number of clusters occurs at the point in which 

adding another cluster does not result in a substantial improvement to the total within-cluster SSE. 

Hartigan’s Rule is based on comparing the Hartigan’s Index, which is a ratio between the within-

cluster sum of squared error based on k number of clusters to that based on k + 1 clusters. The rule 

utilizes the intuition that when clusters are well separated, the ratio becomes less than 10 (dashed 

red line in Figure 48 B) and is taken as k to be the optimal number of clusters. The visual heuristic 

results for the Elbow method suggest between approximately 17 and 23 clusters (i.e., stratigraphic 

/ formation groups) seem appropriate (Figure 48 A). The Hartigan Solution in Figure 48 B however 

indicates that 21 clusters are ideal, and that adding the 22nd cluster (where 22 is the k + 1 where 

the Hartigan Index ratio between k and k + 1 is < 10) results in negligible reductions to SSE. 



 

217 

 
 

Figure 48. Elbow diagrams from k-means clustering results. The top figure (A) represents the total within-cluster 

sum of squared errors based on the number of clusters evaluated. The lower figure (B) represents the resulting 

Hartigan’s Index based on the numbers of clusters evaluated. 
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The optimal number of clusters determined through this exercise via Hartigan’s rule (21) 

is not extensively different from the number of stratigraphic / formation groupings (13 total) used 

for distinctive reservoir labeling. However, this finding suggests that the finalized Formation Tops 

dataset relabeling effort could possibly benefit from a more granular labeling schema to separate 

the stratigraphic / formation groupings into a higher number of groups prior to the machine 

learning model development step.   

5.4.3 Formation Labeler Model Performance 

During model cross-validation, final model formulation performance was evaluated on 

each of the five validation folds once the optimal hyperparmeter settings were determined for each 

algorithm. Finalized models were trained on both the Regular and the SMOTE datasets and the 

performance of each model was noted against the holdout data for each of the five folds; totaling 

eight different Formation Labeler predictive models being generated. The accuracy results are 

presented in Figure 49, in which the box and whisker plots show the results from the 5-fold cross-

validation using the best hyperparameter combinations for each model. The prediction accuracy 

against the 10 percent holdout test data is also presented as an “X” in the figure. The results 

demonstrate that all models are capable of greater than an overall 85 percent prediction accuracy 

against holdout data (for either the 5-fold cross-validation performance assessment or against the 

test dataset). Additionally, the augmented SMOTE training dataset afforded models greater 

prediction accuracy (limited to the 5-fold cross-validation). However, the overall best performing 

model was determined to be the RF model developed on the SMOTE dataset, which was capable 

of an overall prediction accuracy of 93 percent on holdout data. 
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Figure 49. Box and whisker plot of the Formation Labeler classification model performance under various 

algorithms and training datasets. The box extends from the 25th to 75th quartile values for prediction accuracy across 

each of the five folds from the cross-validation step. The line is at the median value (50th quartile) and green circles 

are at the mean. Whiskers extend to the minimum and maximum values of the data absent outliers. The blue “X” 

represents the prediction accuracy on the holdout test data.  
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Since the RF model trained on the augmented SMOTE training dataset was the best 

performing model, it was further explored and evaluated. The RF model’s prediction results 

against the test dataset are further analyzed in Figure 50, which presents a confusion matrix of the 

predicted formations by the model against the test dataset compared to the actual formation 

groupings. Figure 50 highlights how well the RF model was at predicting each of the 13 

stratigraphic / formation groups by quantifying the predicted fraction between the predicted versus 

actual formation within the test dataset. Additionally, Figure 50 shows the fraction of 

misclassification predictions for each associated true formation. The model was most accurate in 

predicting the San Andres Formation (average depth of 3,801 feet with a standard deviation 1,071 

feet per Table 20) and least accurate predicting the Wichita Albany Formation (average depth of 

6,636 feet with a standard deviation of 1,343 feet per Table 20). The fraction of misclassifications 

when Wichita Albany was the true formation included predicted fractions of six percent for the 

Clearfork, eight percent for the Dean, two percent for the Lower Spraberry, and five percent for 

the Wolfcamp. Major oil and gas producing zones in the Midland Basin including the San Andres, 

Upper Spraberry, Lower Spraberry, and Wolfcamp were accurately predicted at fractions of 98, 

94, 89, 94 and 94 percent respectively.  
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Figure 50. Confusion matrix of prediction accuracy against the test dataset using the random forest model trained on 

the SMOTE dataset.  

 

5.4.4 Case Study Evaluation 

The results presented in Section 5.4.3 indicate that the finalized Formation Labeler model 

is capable of accurate prediction on holdout test data. In this section, the model was applied in a 

case study that compares the Formation Labeler’s prediction of stratigraphic / formation groups at 

known in-field well sites to those where the stratigraphy has been interpreted by oil and gas 

professionals and made available in literature.  
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For this example, two in-field wells within the Midland Basin study area were selected for 

evaluation.  Both wells are located in Reagan County, Texas. In each case, the literature sources 

leveraged provide interpretations of stratigraphic columns via wireline logging analysis. 

Additionally, the spatial coordinates can be inferred from well API numbers and a reference is 

provided to the corresponding depth at which stratigraphic / formation groups have been 

interpreted – all necessary inputs for the Formation Labeler model. The first in-field example came 

Baumgardner, Hamlin, and Rowe (2014) for the O.L. Greer 2 well and includes interpretation from 

the Wolfcamp through Strawn Formations [321]. The second is provided by Flumerfelt (2014) 

from a stratigraphic interpretation of the Saxon Oil Branch well which includes the Lower 

Spraberry through Atoka / Morrow Formations [279]. Neither of these wells had data that were 

part of the training or test datasets. The Formation Labeler model was used to predict the 

stratigraphic / formation group as a function of depth at both the O.L. Greer 2 and Branch well 

sites (predictions occurred on 20-foot interval resolution).  

Table 21 provides a comparison of the Formation Labeler’s predicted stratigraphic / 

formation groups at each of the known in-field well sites to those determined by interpretation. 

For the O.L. Greer 2 well, the predicted depth for the Wolfcamp identically matched the interpreted 

depth via logging analysis. However, some discrepancy exists between predicted and interpreted 

for the deeper Cisco / Cline and Strawn Formations. For the Branch well, the Wolfcamp and 

Strawn Formations have less discrepancy between predicted and interpreted depths compared to 

other known interpreted formations at that well site. The top of the Lower Spraberry between 

interpreted and predicted also closely align. 
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Table 21. Comparison of the Formation Labeler predicted top depth for various Stratigraphic / Formation Groupings 

versus those interpreted from well logs at two specific in-field well locations. The “--" indicates the grouping was 

not included in the specific well interpretation or was not indicated to be present based on the Formation Labeler 

prediction.  

 

Stratigraphic / Formation 
Grouping 

O.L. Greer 2 Well Branch Well 

Interpreted Top 

Depth (feet) 

Predicted Top Depth 

(feet) 

Interpreted Top 

Depth (feet) 

Predicted Top Depth 

(feet) 

San Angelo / Glorieta -- -- -- 4,000 to 4,260** 

Clearfork -- 4,140 -- 4,780 

Tubb -- -- -- -- 

Wichita Albany -- -- -- -- 

Upper Spraberry -- 5,760 -- 6,080 

Lower Spraberry -- 6,580 7,050 7,040 

Dean -- 7,040 7,850 7,520 

Wolfcamp 7,780 7,780 8,050 7,980 

Canyon -- -- -- -- 

Cisco / Cline 9,620 9,000 – 9,280* 9,950 8,820 

Strawn 9,900 9,300 10,200 10,140 

Atoka / Morrow -- -- 10,350 10,640 

*The prediction for the top of the Cisco / Cline spans a depth of 9,000 – 9,280 feet and is interbedded with 

the Wolfcamp Formation 

**The prediction for the San Angelo / Glorieta spans a depth of 4,020 and 4,280 feet and is interbedded with 

the San Andres Formation 

 

 

For both well instances, predicted results diverged most substantially from the interpreted 

depths for the Cisco / Cline Formation (i.e., Wolfcamp D). Per results in the confusion matrix in 

Figure 50, the Formation Labeler model most commonly misclassifies the Cisco / Cline as either 

the Wolfcamp (six percent of prediction fraction) or Strawn (11 percent of prediction fraction); 

two formations that commonly bound the Cisco / Cline at shallower and deeper burial depths 

respectively. Additionally, potential discrepancies are likely to originate from operator-specific 

variability related to both 1) nomenclature choice for geologic horizons within the Midland Basin 

and 2) formation top selection, determination, and bench-marking [322]; both of which may have 

contributed to inconsistencies with data used in the relabeled Formation Tops dataset used to train 

predictive models.  
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5.5 Conclusion 

In this chapter, we have introduced a straightforward framework for the development of a 

machine learning-based predictive model that can determine the specific stratigraphic / formation 

group in the Midland Basin given spatial positioning and true vertical depth. The Formation 

Labeler model developed can be effectively trained and applied to as a resource delineation tool 

in domains spanning subsurface energy and environmental applications. The final model 

formulation, which was built on the random forest algorithm, was capable of an overall prediction 

accuracy of 93 percent on holdout data.  

Despite its noted high predictive accuracy on holdout test data, the model may benefit from 

modifications that would improve its utility and performance precision. For instance, results from 

the k-means clustering analysis suggests the existing dataset may contain inherent complexity 

better aligned to 21 distinct groupings opposed to the 13 which were used in this study. The use of 

additional stratigraphic / formational groupings may be one approach to further improve model 

prediction utility (i.e., may occur though inclusion us of middle Sprayberry intervals, the Jo Mill, 

or sub-benches of the Wolfcamp). However, the added level of complexity would likely require 

the use of more data as part of model training. Additionally, the findings presented in Table 21 beg 

for ensured consistency in formation nomenclature and top bench-marking across all domains to 

improve framework utility.  

Another viable next step for this work would be to incorporate the framework described 

with a lithology classification approach from well log data as described by the likes of Wang and 

Carr (2012), Xie et al., (2019), and Ren et al., (2019) [291, 323, 324]. The coupling of the two 

concepts may offer a basin-wide formation classification and geologic property approximation 

approach. Given more granularity in datasets (for example, well log data at foot or half-foot 
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resolution), the framework discussed here could be applied to enable higher resolution and more 

precise prediction for specific geologic features and property characteristic of interest at new 

drilling sites. Specific examples in this regard include the identification of specific landing targets 

for oil and gas applications, identifying the depth and thickness of injection and / or confining 

layers for carbon dioxide geologic storage cases, or even reservoir temperature regimes for 

geothermal energy exploration. While this approach was implemented across the Midland Basin 

producing region, it could be easily applied to other mature basins; either in another Permian sub-

basin or elsewhere. 
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6.0 Conclusions and Future Work 

The use of ML-based techniques is gaining substantial interest to complement existing 

decision-making strategies in unconventional O&G exploration and production operations. 

Researchers are taking advantage of the emergence of digital O&G datasets by exploring the use 

of ML, the result of which provides an opportunity for the various facets of O&G to become much 

more data-informed than ever before. However, a research need remains regarding the application 

of ML modeling beyond data-driven replication of O&G exploration and operational tasks, but 

aimed towards informing improvements in future O&G development and operations over current 

industry baselines. The objectives of this dissertation were targeted, in part, at this specific research 

need. The approaches taken included an evaluation of region-specific industry performance data 

through time for identifying opportunities through the use of ML conducive to: 1) Garnering 

insight associated with the interaction of specific well designs and spatially-distinctive geology in 

studied areas through feature importance analyses; 2) improving the recovery of hydrocarbons in 

unconventional reservoirs; and 3) estimation of the types and volumes of fluids produced at the 

well level – each of which require specific management strategies and hold potential 

environmental implications.   

In general, the resulting ML-based models developed through this dissertation work were 

specific to the targeted plays chosen for evaluation. However, the methodological framework 

implemented could transfer to other O&G reservoirs not evaluated in this dissertation relatively 

seamlessly. Furthermore, the data parameters utilized are relatively common for plays across the 

U.S. and may be readily acquired from public sources. The combination of these topics suggests 

that there is ample opportunity to continue or expand upon the research conducted within this 
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dissertation. Section 6.1 below highlights key findings and implications from the studies conducted 

and compiled in Chapters 2 through 5, as well as reiterate suggested potential follow on or 

continuation research under each. Section 6.2 below suggests broader topics which are worthy of 

consideration for future work related to ML in subsurface applications. Even the most recent 

accounts of exploration and production from O&G plays are creating an abundance of data from 

which ML based techniques can be implemented and evaluated. The result of which affords 

certainty towards a bright future for applying research across various facets of the O&G domain 

using data-driven approaches.  

6.1 Summary of Conclusions and Potential Next Steps from Dissertation Research 

Work conducted in Chapter 2 involved application of ML to a large dataset encompassing 

the producing extent of the Marcellus Shale. Models were developed that were capable of accurate 

prediction of two different productivity indicators at the well level that strongly correlate to EUR. 

Specifically, GBRT was applied; an algorithm that has been narrowly investigated for O&G 

applications but enables straightforward parametric importance and influence evaluation, as well 

as assessment of parameter interaction effects. The models developed provide a capability 

beneficial to reservoir management in the Marcellus Shale that enables fast and effective 

evaluation of the impact of various well placement and design choices. The models developed 

performed well (based on R2 and RMSE scores against hold out datasets) for predicting the 

productivity indicators evaluated over a large, geologically diverse study domain. The noted 

performance accuracy is attributed to two main factors: 1) the use of GBRT that handles the 

complexity associated with unconventional O&G systems quite well, and its inherent sequential 
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construction of weak learners that compensates for shortcomings of those previously developed; 

and 2) the Top 12-months productivity indicator developed through this research, which provides 

for added utility for estimating the production potential for a given well based on its design and 

placement in the reservoir.  

Study results indicate that the importance of the geologic proxy parameters of well surface 

longitude and latitude on well productivity. A valuable expansion to this approach would be to 

consider inclusion of explicit geologic data as part of modeling inputs to further explore the 

specific geologic conditions influencing productivity. However, a noted challenge in such a pursuit 

is that the availability of adequate levels of geological data at the well level is hard to come by 

[51]. Evaluation over expansive spatial domains with the inclusion of large well counts within the 

dataset (e.g., over 7,000 wells used in Chapter 2 work) can make this type of approach even more 

challenging. One solution is to evaluate geology post-hoc to ML model development and analysis. 

Geologic data, which may be limited based on availability, can be more effectively evaluated 

through targeted analysis based on the findings and implications from ML modeling results and 

output. This post-hoc conceptual approach was considered and implemented as the basis behind 

Chapter 3 work. 

Chapter 2 study results also identified gross perforated interval length and water and 

proppant per foot as critical well completion and design choices influencing productivity. These 

results suggest consistency with others studies that have also modeled and evaluated/ranked well 

design and geologic parameters on productivity performance in other unconventional plays [55, 

64, 15, 58]; a finding which also supports the efficacy of the GBRT models in this case. When 

employing GBRT models to evaluate specific well case studies case by case, relative 

improvements in well productivity were found tied to upscaling of water and proppant volumes 
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per foot as part of hydraulic fracturing. However, the relative magnitude of noted productivity 

improvements based on water and proppant levels is spatially dependent across the Marcellus, 

influenced by the prevailing geologic conditions. Other well completion design considerations like 

additive per foot and spacing to other wells were shown to have noticeable, but more understated 

effects on productivity compared to gross perforated interval, water and proppant per foot, and 

geology. The effect of wellbore azimuth was found to be marginal at best despite being widely 

considered a critical well design consideration in unconventional reservoirs. A potential hypothesis 

worth exploration is to evaluate if operators have historically aligned wellbore trajectories to near 

optimal azimuth orientations, hence the suppressed marginal effect noted in Chapter 2. 

Additionally, Chapter 2 study results indicate that Marcellus well performance improves 

most with upscaling perforated interval lengths and water and proppant volumes per foot; but 

relative well-level productivity improvements are spatially dependent across the play. 

Additionally, optimal combinations of water and proppant on well performance were found to vary 

depending on well location, emphasizing the utility of data-driven models capable of broad 

application across a play of interest for informing tailored well design approaches prior to their 

field deployment. 

The intent of the research conducted in Chapter 3 is to further build off of the 

accomplishments achieved via Chapter 2 work, but do so in a way that attempts to offer insights 

that may prompt improvements over industry well performance benchmarks or best/common 

practices. Chapter 3 work introduces the ensembled framework which combines the GBRT 

predictive model developed and discussed in Chapter 2 with a well design optimization approach 

that maximizes productivity. The ensembled framework is applied across the producing extent of 

the Marcellus under various sampling strategies; the result of which enables spatial segregation 
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and regional ranking of the Marcellus based on productivity potential. This analysis strategy 

enables systematic evaluation of the distribution of the major drivers noted as highly influential to 

natural gas productivity by ranked region with common production potential (i.e., called “bins” in 

Chapter 3), including: 1) key geological properties as well as 2) the resulting optimized well design 

and completion attributes from LHC sampling. The production drivers were evaluated statistically 

to comprehend controlling factors on shale well production, and to identify if commonality or 

disparity exists in the prominent features. The outcome of this analysis can help informing the 

tailoring of designs of future well given their placement in the Marcellus and the associated 

geologic conditions they might encounter. The simulation results from the LHC sampling and 

brute force well optimization approach show the expansion of increased potential productivity 

across the Marcellus when wells were tailored based on placement as compared to standard well 

designs. Additionally, the LHC-derived optimized well deigns estimated higher gas productivity 

when compared to actual in-field designs at randomly-selected locations within the extent of the 

study area (to ensure fair comparison, in-field wells had similar gross perforated interval lengths 

[within +/- 75 feet from LHC designs] and were roughly proximal to the locations of the LHC-

based simulated wells).  

The statistical analyses conducted in Chapter 3 indicates that regions higher in productivity 

ranking show a significant difference for certain (but not all) geologic features favorable to gas 

production potential relative to lower productivity regions. Net reservoir thickness and porosity 

were notable geologic parameters that were significantly different between higher productivity and 

lower productivity groupings. Optimized well design parameter settings were shown to vary 

relative to their placement across the study area and subsequent productivity ranking region. 

Results indicate that wells in the highest productivity region/bin were generally 1) thicker and 
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more porous than lower productivity bins and 2) on average, tailored designs that maximize 

productivity are more intensive designs (more proppant, water, and additive, and reduced spacing) 

relative to wells in the other bins. Lower productivity regions / bins were relatively much thinner 

on average. To maximize productivity in these lower productive regions, optimal wells were found 

to be less proppant, water, and additive intense, and wells required spacing farther apart. The 

outcome of this ensembled ML deployment strategy can be insightful for future well planning and 

design exercises given their specific intended placement in the Marcellus.  

The resulting tailored well designs discussed in Chapter 3 help to provide further 

comprehension towards achieving higher production potential in Marcellus wells given the 

prevailing geologic conditions. However, it remains unknown if the tailored well designs would 

be the most economically-viable well design considerations given their placement. A viable next 

step would be one that explores coupling the ensembled framework described in Chapter 3 (or 

similarly to deploy the reduced order model in Equation 3-6) with a cash flow / economic model 

to evaluate profitability potential of tailored well designs. For instance, a specific well that 

theoretically produces larger volumes of oil or gas and was tailored for the specific geologic 

conditions for which it was placed may not necessarily result in the most favorable economics 

compared to other designs that produce lower volumes of hydrocarbons. Wells that produce less 

could be favored by operators over wells that produce more, but do so as result of over 

capitalization of the higher-producing well. A study by Shahkarami and Wang (2017) is one 

example that explored this concept, but in the context of drilling spacing decisions on resulting 

production estimates and overall operational net present value [325]. Such a follow-on study could 

derive well designs that achieve either the most economic and/or most hydrocarbon production; 

and evaluate the differences between each.  
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Research discussed in Chapter 4 (and subsequently Chapter 5) shifts focus away from the 

Appalachian Basin (major natural gas producing region) and towards the Permian Basin region of 

the U.S. The Permian Basin holds enormous consequence regarding both domestic oil and gas 

production and has become the world’s top-producing oil field. Despite its prominence as a vital 

oil and gas producing asset, the basin currently faces several development challenges, including: 

1) noticeably steeper well decline rates and IP’s as development shifts to non-core regions; 2) 

associated natural gas production is exceeding pipeline takeaway capacity, resulting in flaring or 

even venting excess natural gas; and 3) produced water volumes are substantially large, and 

volumes are typically managed via disposal through deep well underground injection. Collectively, 

these circumstances may threaten the Permian's overall production efficacy while consequently 

increasing the environmental burden associated with O&G operations. Chapter 4 research targets 

these specific challenges. 

Chapter 4 work leverages a combination of supervised and unsupervised ML approaches 

as part of a framework to enable joint prediction of both produced water and natural gas volumes 

associated with oil production from unconventional reservoirs in a time series fashion; focusing 

primarily in the pay zones within the Spraberry and Wolfcamp Formations of the Midland Basin 

in the U.S. The supervised learning component included a deep learning-based model (based on 

LSTM) with the capability to generate reliable estimates of produced water and natural gas in a 

time series manner based on well completion and placement factors. The unsupervised learning 

component (based on k-means clustering) establishes groupings of related wells based on a 

multitude of factors, including spatial placement within the basin, well design component features 

(i.e., proppant, water, additive volumes, perforated interval length, etc.), and historic productivity. 
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The clustering method provides a structure from which to extract attribute properties related to 

Arps Decline, well completion, and reservoir and spatial attributes characteristic of each cluster 

group. The ensemble of the supervised and unsupervised elements of this work facilitates a means 

to forecast oil, water, and natural gas production at the well level as influenced by specific 

development considerations. The ML model functionality developed enables well level three-

stream production volume estimates which can be used generate production outlooks at various 

scales. Fluid volume outlooks can be used to help support the formulation of management and/or 

remedial strategies based on the volumes of fluids expected from O&G development. The example 

outlooks demonstrated in Chapter 4 emphasize the variability in water and gas volumes produced 

depending on wellbore design and placement considerations – a finding which indicates the high 

degree of complexity which exists and can confound forecasting tasks. 

Time series-based predictive forecasting of hydrocarbon production using deep learning 

ML strategies has garnered substantial research interest as of late. Chapter 4 work intends to 

expand upon the foundation established from prior research that focuses heavily on time series oil 

production, to other aspects critical to O&G development also known to share 1) dynamic, 

temporal dependencies in data and 2) aspects with implications to production forecasting. 

Continued research as it relates to time series, associated fluid production worthy of consideration 

may include topics that address the imposed constrains in the research presented in Chapter 4. For 

instance, the inclusion of additional geologic characteristics (also relevant to Chapters 2 and 3) 

that are known controlling factors to unconventional oil and gas recovery [26] may provide added 

utility in the data-driven ML modeling (some of which may be temporally-dependent, like oil, 

water, and gas saturations, formation temperature, and formation pressure). Additionally, the work 

in Chapter 4 lacked access to temporal attributes pertaining to how wells were operated and 
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managed (i.e., choke, bottom-hole pressure, lift type). Essentially, oil production volumes were 

used as a proxy to capture those temporal components (i.e., they served as inputs to the joint 

prediction model). Without such insight, there are challenges to integrating the human element as 

part of the forecasting component. As a result, any gradual or abrupt changes in the producing rate 

of wells due to reservoir depletion, fluctuations in bottom-hole pressure, or changes in conditions 

in or immediately adjacent to the wellbore cannot be directly considered when only using the Arps 

decline models in isolation. This level of temporal data is often held proprietary by operators that 

oversee in-field wells. However, the additional insight this type of data may provide when applied 

to ML could be vast – a concept that is discussed in more detail in Section 6.2 of this conclusion 

section. Furthermore, the potential inclusion of this level of data enables forecasting (separate from 

history matching replication) to include dynamic aspects more representative of the physical 

interactions expected in-field. 

Chapter 5 introduces a framework for creating classification-based predictive models to 

identify specific formations given input data consisting of total vertical burial depth, latitude, and 

longitude coordinates. The example used in this dissertation was designed to identify 13 different 

reservoirs in the Midland Basin. Study results indicated that a random forest classifier algorithm 

performed best out of the four different algorithms evaluated. The final model formulation is 

capable of an overall prediction accuracy of 93 percent on holdout data. This type of ML model 

can be employed to provide rapid delineation of specific geologic strata. Essentially, one can easily 

infer burial depth, thickness, and lateral extent of formations of interest – a critical undertaking 

relatively common when exploring for, visualizing, and ultimately developing or appraising 

subsurface resources [292]. Specific examples in this regard include, planning well drilling 

operations and logging, well completion engineering and design choices, subsurface resource 
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quantification estimation (i.e., oil and gas productivity potential, CO2 storage or liquid waste 

disposal resource capacity and containment amenability, geothermal potential, etc.), and project 

cost estimation; all of which are dependent on the geologic sequencing and their associated areal 

extents at new well sites. 

This modeling described in Chapter 5 provides a straightforward and cost-effective 

approach applicable to multiple subsurface applications where identification or delineation of 

resources is needed. As discussed in Chapter 6, viable options for follow on research that would 

add the utility of the 3D mapping potential, by infusing into the framework, the ability to map 

specific subsurface properties of interest; either via ML or more physically-rooted approaches. For 

instance, the lithology classification framework from well log data implemented by the likes of 

Wang and Carr (2012), Xie et al., (2019), and Ren et al., (2019) may provide ML-specific examples 

to couple with the formation labeler framework, potentially offering a basin-wide formation 

classification and geologic property approximation approach. The requirement here would be 

higher granularity in the datasets needed (for example, point data like well log data at foot or half-

foot resolution, or more spatial sources like seismic data in 2D or 3D formats). The basis of the 

framework discussed in Chapter 6 could be applied (with some tailoring expected) to integrate 

higher resolution data, which could enable more precise prediction for specific geologic features 

and property characteristic of interest. The specific uses of the output from this type of modeling 

could be vast (specific examples listed in bullets in the introduction in Chapter 5) and attract 

interest that spans multiple domains (i.e., O&G, environmental, geothermal, energy storage).   
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6.2 Broader Research Concepts 

Several ML-based analyses, including those discussed in this dissertation, offer new ways 

to implement O&G field exploration or development strategies. However, there are limited 

examples of actual deployment of in-field exploration or development informed by ML. A novel 

research endeavor could involve the implementation of an in-field exploration, well design and 

production strategy, or forecasting exercise that is largely ML-informed. Such a research approach 

can be used to 1) evaluate the efficacy of ML-derived field strategies, as well as 2) provide ground-

truth data from which ML-based processes can be refined. Researches at West Virginia University 

and Los Alamos National Laboratory are exploring this concept at the Marcellus Shale Energy and 

Environment Laboratory under the U.S. DOE-supported SMART Initiative as an example [326]. 

Additionally, physics-based reservoir modeling and simulation can create synthetic data streams 

which can be used to validate ML models as an alternative to field test confirmation (a potential 

earlier mover topic and predecessor to full field-scale testing). The successful demonstration of 

notable in-field improvements using ML may prompt wider and more rapid adoption from industry 

moving forward. 

A second concept topic relates to broader access to expanded datasets not typically 

available in the public domain. Publicly-available datasets, as well as those curated by vendors 

(i.e., DrillingInfo and IHS Markit), have been critical in enabling ML-based analyses for O&G 

applications. DrillingInfo, in particular, has been extensively leveraged throughout this 

dissertation. However, publicly available datasets alone may be considered insufficient to achieve 

certain targeted solutions for specific O&G problems. Site-specific field data collected by O&G 

operators often exists and can help augment those available publicly [32]. Unfortunately, these 

types of data are often held in proprietary formats that are not easily accessible by others outside 
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that particular organization. Access to proprietary datasets may enable the development of more 

complex ML-based models by increasing the magnitude of available input parameters that may be 

influencing system response. As a result, there is an opportunity to potentially explain more of the 

modeling variability by including input parameters that influence the response variable(s). Such 

an exercise may provide further insight into the controlling factors (and their magnitude) on 

productivity response. Additionally, higher complexity models that account for greater variability 

in the specific O&G application evaluated will be more accurate and provide greater insight into 

improving industry best practices. Resulting models, for instance, could be integrated into similar 

ensemble frameworks described in Chapter 3 for process optimization. 

In this regard, there has been an interest, particularly by the research community, towards 

data sharing to gain larger insight for improving subsurface engineered systems. Access to large 

datasets, often owned by more than one operator, may be necessary to perform more meaningful 

ML analyses. For instance, site characterization data in the O&G industry are often held stringently 

and not shared with others because of the competitive value that they are perceived to possess. 

However, in certain cases, a single operator might not have a sufficient volume of data assets in a 

single field or play to justify the use of ML. Recent studies have shown that, for some applications, 

data from several hundred to a thousand wells may be needed before data analytics and machine 

learning can inform operators in meaningful ways [327]. 

Data sharing or data pooling should be encouraged to create larger datasets that can provide 

significant new insights to field operators when circumstances to do so make practical sense. Even 

when data pooling among operators is not necessary, researchers may generate breakthroughs via 

access to significant volumes of data from operators. For such an endeavor to be successful, 

operators must be willing to share resources, but, in return, should also expect to receive some type 
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of ancillary benefit as a result of the research performed. Secure agreements that can allow 

researchers access to data while ensuring that proprietary data remain secure will be necessary as 

new techniques are applied and developed for specific use cases [32]. Research endeavors using 

ML, or through non-data-driven approaches, that can demonstrate the impact of proprietary data 

in attaining insightful findings and results could be of substantial benefit for operators who 

provided the data, as well as the research community as a whole. The hope would then facilitate 

continued data sharing from operators moving forward and prompt new research that can generate 

findings which can improve the way we explore and use our vast subsurface resources. 

Lastly, the final concept mentioned here is in regards to potential inclusion of additional 

physics-informed insight into ML modeling for subsurface applications. In general, ML (and deep 

learning) serve as universal interpolators that attempt to find correlations within large datasets in 

multidimensional spaces. While they do offer the benefits and advantages of speed in prediction, 

accuracy, and the potential to gain new insights from large datasets, ML, by nature, they may only 

perform well when models are used for interpolating under circumstances when cause and effect 

are fairly well known and constrained. For instance, these circumstances would include when ML-

derived models are used in a parameter space in which the controlling factors remain constant and 

the empirical observations from which the data are derived are made with the same biases. 

However, ML approaches can struggle and often fail when links between cause and effect are more 

uncertain. Vasudevan et al. (2021), as one example, has argued for the infusion of physical 

statistics (e.g., Bayesian methods with prior knowledge, loss function augmentation to account for 

physics-relevant regularization, constrained model response, and pre-trained models with 

synthetic data from physical models [328]) into ML modeling workflows in order to make ML and 

deep learning more robust [329]. This concept would be applicable in the subsurface energy / 



 

239 

environmental application research domain where ML methods are generating substantial interest 

and value in their use. From an O&G perspective, a blend of physics-based modeling with ML 

may enable new and improved reservoir management strategies than from the use of either in 

isolation. Two use-case examples have been proposed by Bettin et al. (2019) related to subsurface 

applications [32]; these include: 1) Coupling physical modeling with ML to enable attainment of 

key information within an emerging play / basin where limited exploration and data collection has 

previously occurred and 2) the use of physics-based modeling with ML approaches may enable 

model transferability to enable extrapolation from a mature and well-understood formation (i.e., 

like the Midland Basin or Appalachian [Marcellus] Basin) and into a new plays, either within the 

basin or elsewhere.   
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Appendix A 

University of Pittsburgh Day in Harrisburg Research Showcase Poster Presentation 

 

 
 

Figure 51. Screenshot of research poster for presentation as part of University of Pittsburgh’s 2020 Pitt Day in 

Harrisburg. 
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Appendix B 

Supporting Material for “Gaining Perspective on Unconventional Well Design Choices 

through Play-level Application of Machine Learning Modeling” 

 

Table 22. Summary statistics of the well dataset used for the study. A total of 4,257 wells were utilized. Every well 

included had data available for each of the parameters listed below. 

 
Parameter Mean Std. Dev Minimum 25% 50% 75% Maximum 

First 12-months (MMcfge) 1,503 1,030 0 774 1,284 1,975 8,295 

Top 12-months (MMcfge) 1,637 1,084 49 863 1,373 2,132 8,313 

Gross Perforated Interval (ft) 5,501 2,088 507 4,051 5,180 6,651 15,530 

Proppant per foot (lbs) 1,475 866 11.8 1,112 1,371 1,788 30,091 

Water per foot (bbls) 32 19.1 0.6 23.6 31.6 40 895 

Additive per foot (bbls) 1.54 3.81 0.001 0.47 0.89 1.69 102 

Azimuth (degrees)* 325 29.3 180 319 331 340 360 

Nearest Neighbor (ft) 1,197 944 4 699 921 1,140 5,241 

Acre Spacing (acres) 150 126 0 79 113 166 1,094 

Surface Latitude (decimal degrees) 40.643055 0.97 38.787357 39.818957 40.614137 41.658483 41.996642 

Surface Longitude (decimal degrees) -78.721317 1.95 -81.026254 -80.529332 -79.844768 -76.834225 -75.555286 

*Per similar approaches by Shih et al. (2018) and LaFollette et al. (2013), all well azimuth trajectory data was adjusted 

to fall between 180o and 360o to avoid a bi-modal distribution of well orientation. 

 

 

Analysis of Model Residuals: The histograms in Figure 52 compare the residuals between 

final model formulations predicting either productivity indicator against the testing dataset. For 

both models, the bulk of the residuals occur below a 500 MMcfge difference between actual and 

predicted production (82 percent of residuals for Top 12-months and 78 percent of residuals for 

First 12-months). Figure 52 also emphasizes that the First 12-months prediction typically has a 

larger count of wells at most residual levels along the x-axis when compared to the Top 12-months 

production; providing an alternative perspective toward the error manifestation between models.  
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Figure 52. Histogram of the absolute values prediction residuals for each productivity indicator against the testing 

dataset using the final model formulations. 

 

A mapping exercise was conducted for visual inspection of the distribution of model 

residuals for prediction against the testing dataset (Figure 53). This execrise is not intended to be 

a quantitative analysis of residual patterns or spatial autocorrelation, but rather to point out if 

noticable trends in error manifestation emerge. No obvious or unusual patterns seem to exist, 

suggesting that models are effectively handling spatial variabilities.  
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Figure 53. Maps depicting the final model formulations prediction residuals for testing dataset wells for the Top 12-

months productivity indicator response (top) and First 12-months prediction indicator response (bottom). Positive 

residuals (red coloration) indicate models over-estimate production compared to observed values, and negative 

residuals (blue coloration) indicate models under-estimate production compared to observed values. 
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Under a few instances, larger residuals (darker blue or brighter red coloration in Figure 53) 

appear at various points across the play. The potential causes for large discrepancy between actual 

and predicted production values in many of these cases could occur for a number of reasons—

several of which might not be reflected in parameters of the current project dataset. For instance, 

large residuals could simply be a result of the models slightly under or over predicting production 

on high performing wells and the actual percentage delta between actual and predicted production 

values is relatively small (this can be reconciled via review of the scatter plots in Figure 11 in the 

article). Additionally, there is no way to assess if other well design characteristics are influencing 

productivity that are not captured in the current dataset. As one example, well laterals that may 

have deviated substantially out of zone or have drastically dissimilar wellbore orientations (toe up 

vs. toe down vs. high wellbore tortuosity) to other proximal wells in comparable geologic 

conditions could be subject to unknown factors that influence model prediction discrepancy 

compared to actual observed production. There could also be cases where drastic but localized 

variation in geologic characteristics occur compared to nearby wells. The spatial assessment of 

residuals presented here enables identification of certain areas or of individual wells where more 

focused studies can be conducted to evaluate if unique circumstances or characteristics exist that 

are impacting productivity not captured in the dataset.  
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Figure 54. Summary of the relative importance of the predictor variables for the Full Model formulations (with 

nearest neighbor parameter included) for the Top 12-months response (left) and First 12-months response (right). 
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Figure 55. Three dimensional plots of partial dependence for predicting the First 12-months productivity indicator 

using the final model formulation. The top figure (A) evaluates the interaction of perforated interval length and 

surface latitude. The bottom figure (B) evaluates the interaction of perforated interval length and longitude. 
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Figure 56. Three dimensional plots of partial dependence for predicting the First 12-months productivity indicator 

using the final model formulation. The top figure (A) evaluates the interaction of perforated interval length and 

water injected per foot. The bottom figure (B) evaluates the interaction of latitude and longitude. 
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Figure 57. Contour diagrams for estimated First 12-months production for each well evaluated in the case study 

with varying water and proppant per foot input values. The black dots represent the implemented field designs for 

each corresponding well. 
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Appendix C 

Supporting data for “Machine Learning-informed Ensemble Framework for Evaluating 

Shale Gas Production Potential: Case Study in the Marcellus Shale” 

 

Supplementary material files and data were generated as part of this study and provided as 

appendices on Mendeley Data [144]. These data can be cited as: 

 

Vikara, D., Remson, D., Khanna, V. 2020, “Supplementary Data for Machine Learning-informed 

Ensemble Framework for Evaluating Shale Gas Production Potential: Case Study in the Marcellus 

Shale.” Mendeley Data, V1, doi: 10.17632/vbgywdcdjp.1 

 

The first component includes the results from simulations at all pseudo well locations for 

the standard and tailored modeling scenarios. The second component is a compilation of the well 

log data used in this analysis. The third component includes the training dataset generated for the 

reduced order linear model, as well as an evaluation of model residuals. The datasets are 

extensively long and therefore, raw data is not appended in this thesis. Each dataset can be 

downloaded at the following Mendeley website: 

 

https://data.mendeley.com/datasets/vbgywdcdjp/1 

  

https://data.mendeley.com/datasets/vbgywdcdjp/1
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