Embracing Heterogeneity in Modern GPUs

Xulong Tang, School of Computing and Information, University of Pittsburgh

Motivation
- GPUs are widely used in modern applications for parallel acceleration.
- Deep Learning; Personal medicine; VR/AR.
- The scaling of GPUs is behind the ever-increasing complexity of application algorithms and ever-increasing data volume of inputs.
- Memory wall and expensive data movement.

Project Description
- This project targets near-data computing (NDC) aware GPU systems to mitigate the memory wall [1].
- This project aims to enable scalability, high performance, and energy efficiency of applications running on NDC GPUs.
- The project goal is to deliver a tailored GPU runtime system that automatically and opportunistically schedules the application kernels in an NDC-aware fashion.

Context
- Given NDC GPUs, the fundamental question remains to answer:
 - How do the applications realize and take full advantage of the underlying NDC feature?
- Modern GPU runtime management is not aware of underlying heterogeneity.

Primary project goal is that, with the proposed Near Data Computing (NDC) aware GPU runtime framework, NDC-GPUs will become one of the first-class computing platforms for processing modern applications, delivering promising performance, energy-efficiency, and quality of service in the big data era.

Project Deliverables
- We propose a flexible NDC aware GPU runtime that is
 - Application-aware launching.
 - Locality-aware execution.
 - Heterogeneity-aware dynamic load-balancing.
- We will leverage the NDC-GPU[2] simulation framework to design and test our proposed runtime optimizations.

Potential Impact
- Impact on future research
 - The success of this project will broaden and have profound impact on the adoption of heterogeneous NDC-GPUs for large-scale graph processing applications.
 - This research will influence many application domains such as social networking, machine learning, scientific computing, bioinformatics, medical imaging, and virtual reality.
 - It will also inspire future graph library developers to employ the NDC feature.
- Education and Curriculum Development
 - Heterogeneous computing and GPUs parallel computing In graduate course.
 - Introduce parallel computing and GPUs to undergraduate students.

References and/or Acknowledgements