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At 

Bacterial growth mechanisms and their role in cell size homeostasis and senescence 

 

Maryam Kohram, PhD 

 

University of Pittsburgh, 2021 

 

Growth is a fundamental feature of living organisms, which plays an important role in 

maintaining cellular characteristics such as cell size and contributes to cellular fitness. It is 

determined by the rate of biochemical reactions, their efficiency, and their collective organization 

in a cell, and it is strongly influenced by the environment and the nutrients available to the cell. 

This complexity can lead to significant fluctuations in the cell’s growth rate.  To avoid the 

accumulation of fluctuations over time and prevent processes from diverging, cells utilize control 

mechanisms to ensure the stability and accuracy of growth. The aim of this study is to better 

understand the dynamical processes and control mechanisms of cellular growth in the simple 

model organism E. coli bacterium, and how they contribute to cell size homeostasis and cellular 

senescence. We use an experimental setup consisting of a microfluidic device designed to trap 

single cells while continuously growing, to acquire long-term single cell measurements of cell-

size and protein content. We apply new regression analyses methods to the measured growth 

dynamics, which are not motivated by any preconceived growth control model. Our results reveal 

dependencies among measured cellular variables that were not considered before, and which point 

to new growth control mechanisms. By further investigating these dependencies, we find that DNA 

concentration plays an important role in determining bacterial growth rate, which works to 

compensate for size differences acquired during cell division and thus allows cells to maintain size 

homeostasis. We then turn our attention to the effect of metabolism efficiency on growth rate and 

we study how various metabolic defects affect the ability of cells to grow in different 
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environments. We focus on how these defects affect cellular senescence and contribute to cellular 

death. Our results uncover aging effects and distinguish different phenotypes of cell death. 
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1.0 Introduction 

Growth is a fundamental requirement for self-replication to maintain all life forms, and it 

is the integrative result of many cellular processes. Steady and reliable growth is achieved by 

cellular homeostasis, which is the regulation of internal processes to enable living cells to maintain 

their physical and functional characteristics even when facing significant changes in their 

environment. Examples of homeostasis in human beings include blood sugar levels, body 

temperature, or breathing patterns, which are fundamental for health; These properties are 

maintained within a constant range despite changes in diet or changes in the weather1,2,3. How 

physical and chemical homeostasis are preserved in various organisms and how these homeostasis 

mechanisms control individual growth has been one of the fundamental questions in biology. 

Nevertheless, with all the homeostatic mechanisms involved, living cells will deteriorate 

over time as they grow and divide to produce offspring, a process known as senescence, which 

eventually leads to their death. How cellular growth progress and contributes to cellular senescence 

in all living organisms has been another fundamental question in biology for decades. Despite 

extensive studies in recent times aimed at understanding the mechanisms controlling growth4-5 and 

aging-related senescence6-7 in bacteria, we are still unable to determine all molecular mechanisms 

that influence these processes and their variation among individual cells within a population 

experiencing identical environmental conditions.  My research is dedicated to the understanding 

of how growth is controlled in bacteria, and how it contributes to cell-size homeostasis and 

senescence. 

Over the years, different mechanisms for bacterial size homeostasis have been proposed. 

The three major models that have been extensively studied are the “sizer”, “adder”, and “timer” 
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(Figure 1). The sizer model8,9 proposes that each cell monitors its size and divides when it reaches 

a specific threshold size. In this mechanism, as the birth size of a cell becomes larger, the amount 

of added size during the following cell cycle decreases, concluding in the negative slope presented 

in Figure 1A. As a result of cell division occurring at constant size, and that E. coli cells are divided 

symmetrically, the birth size of a cell, in this model, is expected to converge to the steady state 

size within one generation (Figure 1B). 

In contrast to sizer, the adder model10–12 proposes that a single cell adds the same amount 

of size in every cell cycle regardless of its birth size (Figure 1A). This strategy would lead to the 

birth size converging to its steady state value within less than two generations12,13 (Figure 1B).  

 
Figure 1 Three behaviors for size control. A) When added size during a cycle does not depend on birth size, 

the mechanism is named adder, when they are correlated with a slope of -1 it is sizer, and when they are 

correlated with a slope of +1 it is timer. B) The effect of the three size homeostasis behaviors on cells. The 

dashed line presents the steady-state. Figure adapted from Facchetti et al., 20178.  

The timer model on the other hand, proposes that each cell can measure time, and it 

attempts to grow for a specific amount of time before division. The generation time in this model 

does not depend on birth size. Since the time that a cell grows during a cycle is constant, as the 

birth size increases, the size that a cell adds during that cycle also increases, leading to the positive 

slope seen in Figure 1A. With this mechanism, the birth size diverges from the steady state size 
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(Figure 1B), and therefore it cannot account for maintaining size homeostasis independently. 

Nevertheless, some studies have suggested the existence of this mechanism for controlling 

homeostasis of other factors in the cell such as protein folding14. 

Note that the above-described models of size control are phenomenological and are not 

based on any known molecular mechanism. More recently however, a mechanistic model that 

provides molecular basis for the adder phenomenon has been proposed15. The cell cycle in this 

model is divided into three major intervals designated as B, C, and D16. B starts right after cell 

division until chromosome replication initiation, C is from the start until the end of replication, 

and D is from the end of chromosome replication until cell division. This coordination of cellular 

events reveals a correlation between cell size at replication initiation and cell size at birth, and a 

link between growth initiation and DNA replication that accounts for the adder phenomenon 

observed in many bacterial species. 

Traditional experimental methods, such as agar plates or liquid cultures for measuring 

cellular growth, are unable to fully capture and characterize the growth dynamics of individual 

cells. On the other hand, having a comprehensive understanding of the heterogeneous nature of 

bacterial cells, which allows cells with the same genetic code to have variable properties even 

when in the same environment, is necessary for developing detailed description of the regulation 

mechanisms underlying fundamental biological processes such as growth and division. This 

requirement has led to developing a new experimental method, in which the growth of single cells 

could be measured accurately. The new method, which makes use of a microfluidic devices that 

allow for single cell trapping and monitoring for extended periods of time (see Chapter 2.0), has 

been used in recent years to investigate size homeostasis in bacteria, providing high-throughput, 

high-quality, single-cell level measurements of cell-size dynamics. As a result, researchers have 
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been able to gain a better understanding of how a cell changes in size and composition over time, 

and how cellular growth proceeds, and ultimately develop mathematical frameworks to model 

these changes.  

However, previous studies have been limited in several aspects. Firstly, the dynamic range 

of cellular growth does not allow for clear distinction of the mode of growth. The best fit for the 

measured dynamics has been simple exponential. Thus, cellular growth has been assumed to 

follow an exponential growth curve, whose exponential growth rate fluctuates between cell cycles. 

Recently, this purely exponential growth has been challenged. Nordholt et al.17 argue that Bacillus 

subtilis do not follow a constant exponential growth program and that they observe a biphasic 

dynamic18. Secondly, examination of the measurements in previous studies have been guided by 

preconceived models, which predict certain correlations and/or dependencies that are then tested 

in the data. This can often lead to missing correlation that are not accounted for in the model being 

tested.      

In this study, we use an agnostic approach in examining the dynamical data of cell size (see 

Chapter 2.0). Our goal is to be able to find how the growth characteristics of a cell is inherited, or 

how it affects the properties of its daughters, and following generations. We measure different 

properties of growth such as cycle time, birth length, and growth rate, and examine the relationship 

between them in consecutive generations. We find that several correlations exist simultaneously 

among many cellular properties, which suggest that the dynamics of cell growth and division is 

determined by multiple mechanisms whose integrated actions give rise to the homeostasis19,20. Our 

results recover correlations between cellular properties that have been previously reported for the 

adder model12, but more importantly, they reveal additional dependencies that were never 

discussed before. One newly revealed dependency between the growth rate and the size fraction 
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points to a feedback mechanism, which could potentially explain how cells control their growth 

rate in order to make up for size differences acquired during cell divisions – cells that receive a 

smaller fraction of the mother cell tend to grow faster than their sisters. Similar mechanisms have 

been reported in different cell types and recent studies have provided evidence that suggest 

individual animal cells are measuring and adjusting their growth rate.21. The growth rate of animal 

cells was shown to increase as the cell size decreases22. To further study the relationship between 

sister cells, we have measured the growth dynamics of sister cells immediately after division and 

throughout the first cell-cycle following their separation. Besides validating the new growth 

control mechanism, we find additional correlations between cellular properties of sister cells and 

genealogically more distant cells that were unaccounted for by previous models of cell-size control 

based only on single cell data. 

Following these findings, I initiated a study that aims to explore the source of this growth 

rate asymmetry between sister cells in order to better understand the control mechanism of cellular 

growth in general and how it contributes to size homeostasis. To gain a better understanding of 

this, we need to direct our attention towards the molecular content in a bacterial cell and understand 

what processes govern cellular growth and division. In reality, thousands of molecules are involved 

in cellular growth and division and many biochemical reactions are required, but here we make an 

effort to simplify the model of the cell as much as possible by categorizing the main chemical 

components of a dry E. coli bacterium cell into five groups: DNA (3%), RNA (20%), proteins (50-

55%), lipids (7-9%), and carbohydrates, soluble metabolites, and salts (16-18%)23. Note that this 

is an over-simplification of the chemical composition of a cell and a more thorough table can be 

found in Escherichia coli and Salmonella: cellular and molecular biology (Dennis and Bremer, 

1996)24. However, this classification is sufficient for the purposes of this research.  



 6 

The size and composition of a cell are sensitive functions of growth rate and previous 

studies have been conducted to find the relationship between the rate of synthesis of these 

molecules and their amount in a cell with respect to growth rate. Measurements made in cultures 

of E. coli B/r growing exponentially at 37℃ in different growth media revealed that the values of 

RNA-to-protein and DNA-to-protein ratios are increasing and decreasing, respectively, with an 

increase in growth rate. This study by Dennis and Bremer also reports the number of replication 

origins per cell at initiation to be 1, 2, 3, or 4, with higher growth rates having a higher number of 

origins24. In another study, Cox found that RNA-to-protein ratio is a key property of E. coli 

bacterial cells, and that their specific growth rate is directly proportional to 𝑚𝑅𝑁𝐴(𝑎𝑣𝑒)/𝑚𝑝(𝑎𝑣𝑒), 

where 𝑚𝑅𝑁𝐴(𝑎𝑣𝑒) and 𝑚𝑝(𝑎𝑣𝑒) are the average RNA and protein masses of one cell, respectively25. 

Note that all parameters reported in the two mentioned studies are averaged over many cells in a 

population and do not provide any information about the phenotypic heterogeneity among single 

cells in the same population. More recent studies26 have investigated the differences in the amounts 

of chemical composition of cells during single cell division and growth by considering the role of 

molecular stochasticity of metabolic reaction events and the expression level of metabolic proteins. 

Kiviet et al.27 showed that the instantaneous growth rate of single cells of E. coli can fluctuate with 

the expression fluctuations of catabolically active enzymes, and that noise transmission depends 

on the limitation of the enzyme to growth. Zhang et al.5 changed the concentration of free RNAP 

in single E. coli cells in an effort to decrease the amount of RNAP available for transcription of 

genes, and concluded that this is the main factor limiting growth rate of single cells. Several similar 

studies have been conducted in an attempt to discover the main effectors of growth rate in E. coli 

bacteria. A high-throughput analysis of metabolic enzyme genes disruptants revealed that E. coli 

cells regulate their metabolic enzymes levels in order to keep their metabolic state robust with 
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changing growth rates28. Another study on the ribosomal components and the rRNA processing in 

E. coli suggests that growth rate control is directly related to the synthesis of rRNA29. 

The effect of cellular composition on the cell’s growth rate, in addition to the fact that the 

smaller cell grows at a faster rate than its larger sister, suggest that at least one of the resources 

that influences the cell’s growth rate is divided unequally between the sisters such that it causes 

the smaller cell to grow at a faster rate. This could be a growth “activator” present at a higher 

concentration in the smaller sister cell, or a growth “inhibitor” present at a lower concentration. 

Since no growth inhibitor has been identified in bacteria, we consider the first possibility. We 

propose that the nucleoid, which is divided between the two sisters in equal copy numbers and 

thus would have a higher concentration in the smaller cell, might play an important role in 

determining the cell’s growth rate. This possibility is supported by the fact that all proteins and 

RNAs in the cell are produced from the DNA. Therefore, the rate of reactions that produce these 

materials, which are required for the cell to grow, depend on the DNA concentration. Several new 

investigations that have been reported recently support this possibility30-31. We further test this 

hypothesis in Chapter 4.0 and show that indeed, as the DNA concentration in the cell increases, so 

does the growth rate.  

Finally, we turn our attention to the effect of growth on aging in bacteria. In mammalian 

cells, aging is defined by the inability of the cell to carry out the physiological functions necessary 

for survival32. However, in single cell organisms, such as bacteria, there has been various 

definitions. Over the last 60 years, some unicellular species were considered to be immortal due 

to their symmetrical division. Nevertheless, biologically immortal organisms can die due to factors 

other than senescence, such as injury or disease33. Recent studies indicate that in various tissues, 

cells that enter into a non-dividing state and senescence-associated secretory phenotype are major 
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contributors to the onset of aging-related diseases34. Until now, aging-related processes have been 

mainly studied in eukaryotic organisms. Researchers have used various eukaryotic model 

organisms to identify cellular pathways that contribute to aging-related processes, from single-

celled species to simple multicellular animals and higher vertebrates35,36. Saccharomyces 

cerevisiae is a species of yeast (budding yeast), which despite being a unicellular organism, has 

been a long-standing platform for studying senescence due to its asymmetrical division that 

uniquely distinguishes between mother and daughter. This type of division concludes with the 

mother cell sustaining all the damage, while the daughter cell is rejuvenated. In S. cerevisiae, aging 

has been measured in two distinct periods. The first is “replicative life span” (RLS), counting the 

number of cell divisions a budding yeast cell can undergo before entering a permanently non-

dividing state, termed “replicative senescence”, or in other words, the lifetime before the budding 

ceases. The second is chronological life span (CLS), i.e., the time span that permanently non-

dividing, replicative senesced cells remain viable. Unbiased genetic screenings in S. cerevisiae 

have identified critical determinants of RLS37,38. However, similar studies in prokaryotes have 

been uncommon though their results could contribute to the development of a unified theory of 

cellular senescence. Recently it has been shown that even symmetrically dividing unicellular 

organisms, such as E. coli, which were considered to be immortal, are revealing signs of aging39,40. 

While a specific definition of aging in symmetrically dividing bacteria is not universally 

agreed upon, most recent studies take either one, or both of the following two factors into 

consideration when addressing replicative senescence: growth rate39–42, and survival function6,40,43. 

The first factor considers the cell as aging if its growth rate reduces over time, and as immortal in 

the case where its growth rate is stable over time. The second factor uses the Kaplan-Meier survival 

function estimate44: 
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𝑆(𝑡) =  ∏[1 −
𝑑𝑖
𝑛𝑖
]

𝑡𝑖≤𝑡

 

where 𝑆(𝑡) is the survival probability function,  𝑡 is time, 𝑑𝑖 is the number of deaths at point 𝑖, and 

𝑛𝑖 is the number of individuals at risk of death prior to point 𝑖. In different studies, 𝑆(𝑡) has been 

fitted to a number of distributions. Currently, only two forms of this function have been reported 

in studies of eukaryotic senescence. The first is a simple exponential decay6:  

𝑆(𝑡) =  𝑒−𝑎𝑡 

where  𝑎 > 0, and is considered to be the rate of death. The probability of cell death during a 

certain time is called the hazard function (or hazard rate, or failure rate, 𝜆(𝑡)) and can be calculated 

using 𝜆(𝑡) = −
𝑑𝑆/𝑑𝑡

𝑆
 45. In the exponential limit, 𝜆(𝑡) = 𝑎, and thus the hazard function does not 

depend on time, indicating age-independent or stochastic death in the population46. A population 

displaying this behavior is considered to exhibit no aging. The second behavior can be fitted to a 

Gompertz distribution47: 

𝑆(𝑡) = 𝑒−
𝑎
𝑏
(𝑒𝑏𝑡−1)

 

Where the death rate 𝑏 < 1, since a rate of 1 or higher would lead to the extinction of the 

population. The hazard function is then 𝜆(𝑡) = 𝑎𝑒𝑏𝑡. This hazard function increases with time, 

indicating increased death probability with time, which signifies aging. A population exhibiting 

this behavior is considered to be undergoing aging48. 

The theory of immortality in unicellular species was first challenged in 2005, when Stewart 

et al.39 reported a change in the growth rate of E. coli cells with age. This study differentiated 

between the two poles of the cell, since one of the poles is always created anew during the cell’s 

last division, while the other pole is not renewed and thus it determines the age of the cell. The age 
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of the cell then is defined as the number of divisions the old pole of the cell has survived. Using 

this designation, the two supposedly similar cells are functionally asymmetric due to their different 

age39. The results of this study showed that the cells with the old pole exhibit a decrease in growth 

rate relative to their younger sisters as they age. In 2010, Wang et al.49 obtained results in 

contradiction to Stewart et al., indicating the growth rate of a cell is robust. This contradiction was 

explained by the experimental limits of Stewart et al. methods, which allowed them to follow a 

cell up to only five generations. Wang et al. also plotted the fraction of surviving cells as a function 

of time, showing the function is not an exponential decay, indicating that there are age-dependent 

factors in the population death. In recent years, other studies have demonstrated a change in the 

growth rate of E. coli cells only in presence of stress, such as antibiotics, mutations, and heat7,50–

52. These studies agree that E. coli cells exhibit no age-related change in the growth rate in the 

absence of stress. 

The question then is how is the age of the cell manifested in its properties such as growth 

rate or accumulation of molecules, and how does it lead eventually to death in the absence of 

stress? One possibility is that aging reduces the efficiency of how cellular processes are performed. 

As an example, it could lead to reduced efficiency of the metabolic activity of the cell, yet without 

influencing the cellular growth rate. To address this question, I took a different approach, by 

asking: can the metabolic efficiency influence the cell’s senescence without influencing the cell’s 

growth rate?   

Hottes et al.53 were able to demonstrate multiple loss-of-function mutations that were 

beneficial to cells in changed environments. Takeuchi et al.54 took advantage of their newly 

developed high-throughput method to measure colony growth of a set of 3985 single-gene 

knockouts that were created by Baba et al. (the Keio collection)55 with the objective of easier 
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analyses of unknown gene functions. Their results indicated that many mutants grew similar to 

wild type cells on an agar plate, and some mutants exhibited defective growth. Conversely, these 

defective grown colonies might show a metabolic benefit in a different environment or affect the 

process of aging in the cells. 

By taking advantage of this mutant collection, we identified a specific mutation that does 

not change the growth rate of the cell under certain environmental conditions. Nevertheless, we 

find that such mutation does reduce the metabolic efficiency of the cell and increases its senescence 

(see Chapter 5.0). Our results confirm that deletion of the 𝛼-subunit of the ATP synthase increases 

cellular respiration56. A thorough examination of this mutation at the single-cell level in the 

microfluidic traps reveals different phenotypes of cell death, and that the fraction of phenotypes 

within the population is altered with the end result of accelerating cellular death upon deletion of 

the 𝛼-subunit of ATP synthase. Similarly, wild type cells display different phenotype fractions in 

a nutrient-limited environment. 



 12 

2.0 Design and fabrication of microfluidic machines 

Researchers have been studying populations of bacteria for several decades for different 

purposes such as understanding certain diseases, human health, and antibiotic resistance, which 

have resulted in significant outcomes such as the development of useful drugs57,58,59. However, 

bulk culture measurements cannot provide a detailed picture of cell dynamics, since phenotypic 

differences among individual cells within the population are not considered. Due to the exponential 

replication of bacteria in desirable growth conditions, studying one single cell is not a simple task 

and when on agar plates, only six to ten generations can be traced before the number of cells 

become too high and impossible to track39. Recently, studying single cells for hundreds of 

generations has become conceivable due to microfluidic machines.  

A microfluidic machine is a device that can control micro-scaled experiments due to its 

large surface to volume ratio. These devices are currently being used in many areas with promising 

results such as biological and biopolymer experiments, chemical analyses, 

microelectromechanical systems and optical telecommunication60. To produce such a machine, a 

permanent mold is first fabricated using photolithography. That mold is then used to prototype 

microfluidic devices that are made from elastomers, mostly polydimethylsiloxane (PDMS), due to 

its unique physical properties that make it useful in many areas. PDMS is a viscoelastic elastomer, 

meaning that at certain temperatures it acts as a viscous liquid, but at other temperatures it acts as 

an elastic solid. It has the property of being highly permeable to gases, making oxygen constantly 

available inside the machine61. PDMS is also optically transparent, non-toxic, biocompatible and 

cheap in cost. It is hydrophobic, but when treated with plasma oxidation the surface becomes 



 13 

hydrophilic temporarily, giving it the ability to bond with other layers to produce a useful 

machine62.  

Using such devices, has made trapping single cells for extended times, while washing away 

daughter cells to prevent accumulation of bacteria, feasible and simple. These devices also allow 

creating a homogeneous environment by constantly feeding the trapped bacteria. However micro-

niches can still exist within the device. One example trapping method that was recently developed 

is to use a strain where surface adherence features are integrated at a single chromosomal locus 

under the control of an inducible promoter63. After sufficient number of cells are stuck to the 

surface of the device, the excess cells can be washed away, and the inducer is removed so that no 

other cells adhere during the remaining of the experiment. In this research (chapters 3.0, 4.0, and 

5.0), another microfluidic device named the “mother machine”40,64 has been used to study growth 

and replication of single cells. This chapter is dedicated to detailing the design and fabrication of 

such machines, while the methods of utilizing them for our specific purposes are explained in each 

chapter. 

For my research purposes, I used two different photolithography methods to fabricate the 

same initial mold, namely mask alignment (Section 2.1.1, Figure 3) and 3D lithography (Section 

2.1.2, Figure 12). Once the mold was generated, the PDMS replicas were always prepared with 

the same approach (Section 2.2). A comprehensive explanation of the steps for each 

photolithography is presented in the following sections, followed by the method used to prepare 

the PDMS replicas. 
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2.1 Fabrication of permanent mold 

2.1.1 Mask aligner 

In this method, a contact mask aligner (Quintel Q4000 MA) represented in Figure 2 was 

used to create the mother machine. This system allows accurate alignment of semiconductor 

wafers with a mask and exposes ultraviolet light to create the pattern of the mask on the wafer. 

The mother machine consists of channels with two different heights, which mandates a two-layers 

fabrication procedure. The process of how each layer was fabricated is presented in Figure 3.  

 

Figure 2 Quintel Q4000 MA Mask Aligner located at Nanoscale Fabrication & Characterization Facility 

(NFCF) at the University of Pittsburgh. Picture adapted from NFCF webpage. 
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Figure 3 First line is the process of first layer fabrication, and second line is the process of the second layer. 

First, the channels with a lower height were fabricated on the substrate, and then the second 

layer with channels that were much higher was aligned and fabricated on top of the first 

layer. Hence, two masks had to be created in the beginning. These masks were designed with the 

desired pattern in AutoCAD® and were then ordered from Photo Sciences, Inc. (Torrance CA). 

Figure 4 shows a sample design of the mother machine in AutoCAD® with separated layers. 

Layers had to be designed according whether a positive or negative photoresist was used (see 

next paragraph for more detail). The substrate that was used for mask alignment was a 3-inch 

silicon wafer. Figure 5 presents a complete view of the two layers of the machine in a larger 

scale. 

 The first layer of our design consists of small channels to trap single cells. These 

channels were designed to be 1 𝜇𝑚 wide and 1 𝜇𝑚 high so that the cells would have a hard time 

escaping from them. The length of the channel was designed to be two different sizes, 15 𝜇𝑚 and 

30 𝜇𝑚. For the effect of channel width and length on cell growth see reference 65. To achieve 

these features, I used a positive resist, S1805. Figure 6 explains how photoresists work, and the 

difference between a positive and a negative resist. A positive resist is a chemical that binds very 

well to the substrate, and when exposed to light with specific wavelength, the binding becomes 

weak. This means that during the development step, all parts that were exposed to light will be 

washed away. In our case the small channels were not exposed to light, while everything else 

was. Accordingly, the AutoCAD® design was such that passage of light was blocked where the 

small channels were intended. 

pre ba e clean coat e pose  ost e posure ba e develop

coat soft ba e e pose develop  ard ba e  inal etch

etch remove resist



 16 

 

Figure 4 Two masks designed in AutoCAD® for the mother machine. Layer 1 are the small channels (traps) 

and layer 2 are the large channels. 

 

Figure 5 A complete look at the desing of the mother machine in AutoCAD®. Small channels (layer 1) are 

black and large channels (layer 2) are orange.  

layer  

layer  

alignment 

mar 

inlet outlet
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The second layer of our device consists of large channels with 30 𝜇𝑚 height and 1 mm 

length. For these dimensions, I used the negative resist, SU8-2015. A negative photoresist is a 

chemical that binds to the substrate temporarily, and when exposed to light with specific 

wavelength, the binding becomes very strong (Figure 6). Thus, during the development process, 

the substrate that was not exposed to light will be washed away. Accordingly, our AutoCAD mask 

design allowed passage of light where the large channels were intended. 

 

Figure 6 Visual explanation of positive and negative photoresist. When a positive photoresist is developed, the 

parts that were exposed to light are washed away, but when a negative photoresist is developed, parts that 

were not exposed to light are washed away. 

spread photoresist

e pose

develop

positive
negative

substrate
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2.1.1.1 First layer preparation 

1- Pre-baked the substrate (3-inch silicon wafer) at 200℃ for 5 minutes by placing it on a 

hotplate (Barnstead Super-Nuova). 

2- Cleaned the surface of the substrate using a Reactive Ion Etcher (Trion Phantom III LT 

RIE) with 𝑂2 for 60 seconds. 

3- Spread the first layer - S1805 optical - using a spin processor (Laurell WS-400B) with 

2000 rpm for 50 seconds. This created a layer that is almost 1 𝜇𝑚 high (Figure 7). 

 

Figure 7 Spin speed curves of MICROPOSIT S1800 photoresist undyed series adapted from Rohm and Haas, 

200666. 

4- Soft baked the substrate at 110℃ for 1 minute by placing it on a hotplate. 

5- Used Quintel Q4000 MA on vacuum mode with a wavelength of 365 nm and measured 

the lamp intensity.  

6- Calculated the exposure time from Figure 8 (~20 seconds).  
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7- Placed the mask onto the mask holder of the mask aligner and selected vacuum contact 

mode. Then placed the wafer on the stage and aligned it with the alignment bar. Pressed 

the expose button. Unloaded mask and wafer from the instrument. 

 

Figure 8 Photoresist interference curve adapted from Rohm and Haas, 200666. 

8- Post-exposure baked the substrate at 115℃ for 1 minute by placing it on a hotplate. 

9- Used 351 developer, mixed it with water at 15% final concentration, and used it to 

develop the substrate in it for 30 seconds. 

10- Checked the substrate under the microscope to make sure the development is complete. 

If not, developed it for an additional 10 seconds or until completely developed. 

11- Etched the substrate using RIE with the following recipe: 𝑆𝐹6 = 25, 𝑂2 = 4, 𝐶𝐻𝐹3 =

10, for 100 seconds. This step is a trial to to calculate the etch rate needed, since this 

rate is always variable. 

12- Used a surface profiler (KLA-Tencor AlfaStep IQ Surface Profilometer) to measure 

the depth of the etched parts. Calculated the etch rate and put the substrate back into 

RIE for the required time.  
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13- Checked the height with the surface profiler at the end again. For E. coli cells the best 

height is exactly 1 𝜇𝑚. 

14- To remove the photoresist, I made 3:1 Piranha mixture and warmed it to 150℃, then 

washed the substrate in it for 10 minutes.  

15- Washed the substrate extensively with water afterwards to make sure residuals of the 

Piranha mixture has been removed. 

2.1.1.2 Second layer preparation 

1- Spread the photoresist SU8-2015 using the spin coater in two stages: 20 seconds at 800 

rpm and 60 seconds at 500 rpm. This resulted in a layer ~20𝜇𝑚 high (Figure 9). 

 

Figure 9 Spin speed vs. thickness for SU8 2000 adapted from MichroChem, 201567. 

2- Left the substrate in dark for one day to allow the photoresist-substrate binding to 

stabilize. 

3- On the following day, I soft baked the substrate with the photoresist coating at 65℃ for 

5 minutes, and then at 95℃ for 10 minutes by placing it on a hotplate. 

4- The second layer mask was then aligned with the first layer using the mask aligner and 

predetermined marks on both layers.  
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5-  The second layer photoresist was exposed to light (wavelength 365 nm) for 60 seconds. 

This exposure time was determined using Table 1. 

6- The second layer was then developed using SU8 developer for 6 minutes. 

7- The resulting structure was then inspected under the microscope to make sure that the 

development step removed all excess photoresist. In cases where excess photoresist 

was observed, a supplementary development step was applied for an additional 1-2 

minutes or as needed. 

8- Hard baked the final structure at 200℃ for 20 minutes. 

9- Finally, I etched the complete structure using RIE with 𝑆𝐹6 for 30 seconds to acquire a 

smooth surface. 

Following this procedure, the resulting mold was then ready for salinization described in 

(section 2.1.3). 

Table 1 Exposure dose for SU8 2000 series adapted from MichroChem, 201567. 

Thickness (𝜇𝑚) Exposure Energy (𝑚𝐽/𝑐𝑚2) 

0.5 – 2 60 – 80 

3 – 5 90 – 105 

6 – 15 110 – 140 

16 – 25 140 – 150 

26 – 40 150 – 160 

2.1.2 3D lithography printing 

This process also requires two separate steps; however, each step has fewer procedures 

compared to fabrication with mask alignment. The overall process of fabrication of each layer with 
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this method is displayed in Figure 12. The first layer was printed using a 3d lithography system 

(Nanoscribe Photonic Professional (GT) - Dip-in Liquid Lithography model (DiLL) high 

resolution) represented in Figure 10, and the second layer was fabricated using a maskless aligner 

(Heidelberg MLA100 Direct Write Lithographer), represented in Figure 11. The substrate used in 

this process was a 30x30x0.7 mm square fused silica. Both layers were designed in AutoCAD® 

similar to the method explained in the previous section. The design of the second layer was exactly 

the same as the one explained in section 2.1.1. We designed the first layer also the same as before 

and then made it 3d and exported it from AutoCAD® as an .stl file. A sample view of a couple of 

small channels is presented in Figure 13. This file was converted to .gwl at the end for the 3d 

printer to be able to read and print it. 

 

Figure 10 Nanoscribe Photonic Professional (GT) – Nano 3d Printer located at NFCF at the University of 

Pittsburgh. Picture adapted from NFCF webpage. 
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Figure 11 Heidelberg MLA100 Direct Write Lithographer located in NFCF at the University of Pittsburgh. 

Picture adapted from NFCF webpage. 

 

 

Figure 12 Process of fabrication of two layers of mother machine using 3d printing. First line represents 

fabrication of first layer (small channels) and second line represents the second layer (large channels). 

 

 

Figure 13 3d view of the design of small channels (first layer) in the mother machine. 

coat with surpass print develop
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2.1.2.1 First layer fabrication using the nanoscribe 

1- The fused silica substrate was coated with surpass 3000 by pouring it in a beaker and 

immersing the substrate in the beaker for 1 minute.  

2- The substrate was then taken out and blow dried using 𝑁2. 

3- Used Nano 3d printer with a 63x objective and IP-Dip resist. Marked the top part of 

the substrate for easier alignment. Mounted the substrate onto the holder and dipped a 

droplet of resist to the center of the substrate. Inserted the sample holder into the stage 

and printed the pattern. Unloaded the substrate. 

4- The printed structure was then developed in SU8 developer for 8 minutes and left to 

dry at room temperature. The developed layer was then stored overnight at room 

temperature and exposed to sunlight to allow the binding to stabilize.  

2.1.2.2 Second layer fabrication procedure using maskless aligner 

1-  Coated the substrate using an HMDS oven (YES 3TA HMDS Vapor Prime Oven). 

2- Spread the photoresist SU8- 2015 using the spin coater in two stages:   10s at 500 rpm 

and acceleration 100 
𝑟𝑝𝑚

𝑠2
, followed by a 60s spin at 1500 rpm and acceleration 300 

𝑟𝑝𝑚

𝑠2
. 

3- Pre- exposure baked the coated substrateat 65℃ for 5 minutes, and then at  95℃ for 50 

minutes using a hotplate. 

4- Exposed the coated substrate using the maskless aligner with LED light (390 nm - 

10000 mW).  

5- Post-exposure baked the substrate at 65℃  for 3 minutes, and then at 95℃ for 15 

minutes. 
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6- Developed the exposed photoresist in SU8 developer for 1:45 minutes. The timing of 

this development was very critical. Extending this time by even few seconds caused 

the channels to peel off, while shortening it by few seconds resulted in underdeveloped 

photoresist. 

7- Hard baked the substrate at 200 ℃ for 20 minutes. 

2.1.3 Silanization  

After the required pattern on the wafer (or the fused silica) was achieved, I coated the 

resulting mold with a silane monolayer. After this coating, no changes could be made to the pattern. 

This coating ensured that the surface of the mold does not bind to the PDMS, and that PDMS can 

be peeled off easily. The silanization was achieved as follows: 

1- Poured a small amount (~1 ml) of trichlorosilane 99% (Gelest Inc., USA) in a plastic 

cup.  

2- Left the cup and the wafer in vacuum for 30 minutes. 

The wafer was then ready for preparing the final microfluidic device with PDMS. 

2.2 PDMS fabrication 

1- Mixed a 9:1 mass ratio of PDMS oligomers and a cross-linking agent thoroughly. 

2- The wafer (or the fused silica) with the desired mold that was created using the methods 

described in section 2.1, was placed in a plastic petri dish (100×150 mm for silicon 

wafer and 35×15 mm for fused silica) and the PDMS mixture was poured on the mold. 
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3- Degassed the PDMS mixture, by incubating it in vacuum for ~20 minutes, or until all 

bubbles have disappeared from the PDMS mix. 

4- Cured the PDMS by incubating the petri dish in an oven overnight at 65℃. 

5- The following day, I cut out a small section of the PDMS around the pattern and peeled 

off the mold. I also cut out additional pieces of PDMS with no patterns to be used for 

forming the inlet and outlet of the device. 

6- Treated all PDMS parts with oxygen plasma for 30 seconds and attached them together. 

7- Made two small holes in the inlet and outlet of the machine using a syringe. 

8- The PDMS piece together with a microscope cover slip (24×60mm, 0.16 to 0.19 mm 

thick) were treated with oxygen plasma for 30 seconds to form the complete device 

(Figure 14). 

9- The complete device was then left on a hotplate at 70℃ for one hour to strengthen the 

binding. 

The device was then ready for carrying out the desired experiment. 

 

Figure 14 Different parts of the mother machine device. Darker grey is PDMS, and lighter grey is the 

microscope cover glass. Two small pieces of PDMS are first attached to the main PDMS with the 

mothermachine design, then they are all attached to the cover slip. 

inlet outlet

   S with design
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3.0 Correlation among measured properties during cellular growth68 

Living cells maintain cellular homeostasis despite significant molecular noise affecting all 

cellular processes10,12,69–72. Understanding how cells conserve their properties in the presence of 

such noise has been a central question in biology for decades. One area of research that falls within 

the scope of this question, and which has received significant consideration in the last decade, is 

bacterial cell-size homeostasis10,12,72–74. Mother machine experiments have provided high quality 

cell-size measurements that allow us to examine cell growth and division dynamics quantitatively 

(see Chapter 2.0), and develop new theoretical models of how cells’ growth dynamics contribute 

to size homeostasis10,40,64. Indeed, previous studies have shown strong correlations between 

particular pairs of measured cellular properties, which inspired various phenomenological models 

of cell-size control mechanisms10,64,73,75,76. However, such correlations exist simultaneously 

among many cellular properties, which suggests that the dynamics of cell growth and division is 

determined by multiple cellular mechanisms whose integrated actions give rise to the 

homeostasis19,20. On the other hand, the observed correlations may be indirect and do not 

necessarily imply that those cellular properties directly depend on one another. To separate indirect 

correlations from key dependencies between the various measured cellular properties, a systematic 

approach is required to infer simplified growth mechanism models from high-throughput data. 

In this chapter, I present our analysis of E. coli single-cell growth and division data 

obtained by the mother machine, which reveal dependencies that were previously not considered 

as part of the cell-size homeostasis mechanism. By measuring growth properties, such as growth 

rate, birth size, and cycle time, of several hundred cells and their descendants, we ask whether 

these properties of a mother cell can affect the growth of its offspring after several divisions? We 
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also attempt to find such relationships among properties of sisters and cousin cells. Our results 

allow for a better description of the growth of daughter cells, sister cells, and cousin cells. 

 Our analysis is based on applying regression methods to multiple simultaneously 

measured cellular properties and is not biased by preexisting models or proposed biological 

mechanisms. We measure cellular properties of sister cells and genealogically more distant cells, 

as shown in Figure 15, by methods explained in section 3.1. Our model predicts relations between 

these distant cells that can be tested in the future by designing new experiments. 

3.1 Experimental methods 

Measuring cell size dynamics was carried out using the mother machine40,77. A full 

explanation of this machine along with how to fabricate it is presented in chapter 2.0. 

All measurements were performed using the wild type MG1655 E. coli bacteria containing 

the medium copy-number plasmid pZA78, expressing Green Fluorescent Protein (GFP) under the 

control of the viral λ-phage Pr promoter. The bacteria were initially cultured overnight in LB 

medium at 30°C, diluted in the same medium the following day, and regrown to early exponential 

phase, Optical Density (OD) between 0.1 and 0.2. When the cells reached the desired OD, they 

were concentrated into fresh medium to an OD~0.3 and loaded into the microfluidic trapping 

device. The cells were grown in the traps for tens of generations under constant conditions. The 

medium (LB) was pumped through the device at a rate of 1 ml/hr. 

Images of the channels were acquired every 3 minutes in DIC and fluorescence mode 

(GFP) using a Hamamatsu ORCA-flash 4.0 camera, mounted on a Nikon Eclipse Ti2 inverted 

microscope with a 100X objective. Temperature was stabilized at 32℃ using an Okolab 
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microscope enclosure. TLMTracker79 and made-in-house MATLAB codes were used to measure 

the length of the cells as a function of time. In addition to trac ing the “mother” cell trapped at the 

end of the channel as in previous studies, its immediate sister was also tracked during every 

generation (Figure 15). These data were then used for further analysis as detailed below. 

 

Figure 15 a) A schematic depiction of a single microchannel, and the growth dynamics of trapped cells over 

time, where 𝒕 labels representative time points, 𝒏 labels the generation number, and A and B denote the cell 

at the bottom of the channel and its sister, respectively. A typical genealogical tree of the cell lineage is 

presented in (b), and the relations among different cells are elaborated by the arrows. 

3.2 Cell cycle variables are correlated across generations 

To begin our analysis, we need to extract dynamical variables that adequately describe the 

cell growth cycles and cell divisions. To this end, each cell cycle of a temporal sequence of cell 

length is fitted to an exponential curve: 

𝑥𝑛(𝑡) = 𝑥𝑛(0)𝑒
𝛼𝑛𝑡     for     0 ≤ 𝑡 ≤ 𝑇𝑛 
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where the subscript 𝑛 labels then 𝑛 -th cell cycle, 𝑥𝑛(0) is the length of the cell at the start of the 

cell cycle, 𝛼𝑛 is the exponential growth rate, and 𝑇𝑛 is the cell cycle duration. 

 Our raw data from image analysis include time points (every 3 min) and lengths of both 

cells (labeled A and B, where A is the so-called mother cell), as illustrated with blue dots in Figure 

16. These data were first parsed into individual cell cycles, labeled by 𝑎 = 𝐴, 𝐵 and 𝑛 = 1,⋯ , 𝑁, 

where 𝑁 is the number of cell cycles (generations) in a measured cell lineage. Thus, we have data 

points in the form (𝑇𝑛,𝑖
𝑎 , 𝑋𝑛,𝑖

𝑎 ), where 𝑇 represents time, 𝑋 represents length, 𝑖 = 1,⋯ , 𝑙𝑛
𝑎, where 𝑙𝑛

𝑎 

is the number of data points within the 𝑛-th generation of cell 𝑎. 

Next, we impose a constraint on our data that requires the sum of the initial sizes of both 

cells A and B to be equal to the final size of cell A in the previous cell cycle. To ensure all pairs 

of sisters are measured similarly after a mother’s division, we set a threshold for the line between 

two sisters in our image analysis. This constraint ensures that, when we calculate the fractional 

size of each cell right after division, the fractions sum to 1. To apply this constraint, which links 

consecutive cell cycles, we fit the growth curves of all cell cycles simultaneously, instead of fitting 

each cell cycle independently. The curve fitting is explained in detail in Appendix A. Thus, each 

cell cycle can be characterized by three variables, which we choose to define as: 

𝜒𝑛 = log 𝑥𝑛(0), 𝛼𝑛, and 𝜙𝑛 = 𝛼𝑛 𝜏𝑛 

In a plot of cell length (in log scale) versus time, where a cell cycle is approximately 

represented by a slanted line segment, these variables represent the initial height, slope, and 

vertical increment of the line segment (Figure 16). 

We represent these variables by a vector (𝜒𝑛, 𝛼𝑛, 𝜙𝑛)
⊤, where ⊤ denotes matrix transpose. 

Note that the variables are arranged in a causally consistent temporal order, such that in each cell 

cycle, 𝛼𝑛 may depend on 𝜒𝑛, and 𝜙𝑛 may depend on both 𝜒𝑛 and 𝛼𝑛. In addition, all variables in 
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one cell cycle may in principle depend on their values in previous cell cycles. To complete the link 

between consecutive cell cycles, we define another variable that represents the fraction in log 

scaled by which a cell divides, 𝜓𝑛 = log(𝑥𝑛(0)/𝑥𝑛−1(𝜏𝑛−1)) = 𝜒𝑛 − 𝜒𝑛−1 − 𝜙𝑛−1. In what 

follows, we analyze the multivariate time series of (𝜒𝑛, 𝛼𝑛, 𝜙𝑛).  

 

Figure 16 Example traces acquired from the mother machine for two sister cells, where cell A is always the 

one at the end of the channel and cell B is the sister. Note that at a single time point there can be zero, one, or 

two B cells being tracked (t1, t2, t4 in Figure 15a, respectively). The red lines are exponential fits (note that 

the y-axis is in logarithmic scale) calculated using a constraint that ensures the sum of initial sizes of cell A 

and B from generation n is equal to the final size of cell A from generation n-1 (See Appendix A). See also 

Appendix Figure 3. 

We first examine the temporal correlation between the variables. Black lines in Figure 17 

show the correlations between the cell cycle variables as a function of the time delay 𝑘 in numbers 

of generations. It can be seen that, for some pairs of variables, such as (𝜙, 𝜒), there is significant 

correlation over several generations. This suggests that information from one cell cycle is carried 

over to subsequent cycles, which influences the growth of descendant cells. Moreover, the negative 

correlation between the pair (𝜙, 𝜒) (Figure 22C and D) implies the existence of a stabilizing 
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mechanism that controls cell size accumulation and determines the distribution of cell size10,12,64. 

However, correlation does not necessarily imply direct dependence between the variables – two 

variables may be correlated simply because they both depend on a third variable, which causes 

indirect correlation. Below we investigate direct dependencies, which would better reveal 

mechanisms of cell size control. 

 

 

Figure 17 Temporal correlation and regression coefficients between cell cycle variables. Black lines: 

correlation among three variables (n, n, n) as a function of the time delay k. Blue lines: regression 

coefficients calculated using constrained multivariate regression. The coefficients of time delay ≥ 2 are largely 

negligible; hence, each cell cycle variable depends on the variables of the present and the previous cycle. All 

error bars are standard errors from 119 lineages (3994 cell cycles ). 
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3.3 Dynamics of cell cycle variables is approximately Markovian 

As in regression analysis80, we fit our time series data to a linear equation: 

(

𝜒𝑛
𝛼𝑛
𝜙𝑛
) = 𝑅(0) (

𝜒𝑛
𝛼𝑛
𝜙𝑛
) + 𝑅(1) (

𝜒𝑛−1
𝛼𝑛−1
𝜙𝑛−1

) +⋯+ 𝑅(𝑝) (

𝜒𝑛−𝑝
𝛼𝑛−𝑝
𝜙𝑛−𝑝

) + 𝐶 + 𝑁𝑛          Equation 3-1 

where 𝑅(𝑘) for 𝑘 = 0, 1,⋯ , 𝑝 are 3×3 matrices of regression coefficients at time delay 𝑘, 𝐶 =

(𝐶𝜒, 𝐶𝛼 , 𝐶𝜙)
⊤

 is a constant vector, and 𝑁𝑛 = (𝑁𝑛
𝜒
, 𝑁𝑛

𝛼 , 𝑁𝑛
𝜙
 )
⊤

 is the residual (a zero-mean random 

vector) that represents stochastic variation in cell size dynamics. Note that, due to causal 

constraints, the matrix 𝑅(0) must be strictly lower triangular. This equation describes a multivariate 

autoregressive process, which we use as an effective model for the dynamics of the variables. The 

coefficients 𝑅(𝑘) can be estimated using our method of “constrained multivariate regression”. By 

simultaneously fitting the coefficients 𝑅(𝑘), we essentially remove indirect correlations between 

the cell cycle variables (𝜒𝑛, 𝛼𝑛, and 𝜙𝑛), and reveal direct dependencies among them. 

To preserve causality according to the temporal order of variables, the matrix 𝑅(0) is 

constrained to be strictly lower triangular. Thus, the above equation can be written out in 

component form as: 

(

𝜒𝑛
𝛼𝑛
𝜙𝑛
) = (

0 0 0

𝑅𝛼𝜒
(0) 0 0

𝑅𝜙𝜒
(0) 𝑅𝜙𝛼

(0) 0

)(

𝜒𝑛
𝛼𝑛
𝜙𝑛
) +

(

 
 
𝑅𝜒𝜒
(1) 𝑅𝜒𝛼

(1) 𝑅𝜒𝜙
(1)

𝑅𝛼𝜒
(1) 𝑅𝛼𝛼

(1) 𝑅𝛼𝜙
(1)

𝑅𝜙𝜒
(1)

𝑅𝜙𝛼
(1)

𝑅𝜙𝜙
(1)

)

 
 
(

𝜒𝑛−1
𝛼𝑛−1
𝜙𝑛−1

) +⋯ 

+

(

 
 
𝑅𝜒𝜒
(𝑝) 𝑅𝜒𝛼

(𝑝) 𝑅𝜒𝜙
(𝑝)

𝑅𝛼𝜒
(𝑝) 𝑅𝛼𝛼

(𝑝) 𝑅𝛼𝜙
(𝑝)

𝑅𝜙𝜒
(𝑝) 𝑅𝜙𝛼

(𝑝) 𝑅𝜙𝜙
(𝑝)

)

 
 
(

𝜒𝑛−𝑝
𝛼𝑛−𝑝
𝜙𝑛−𝑝

) + (
𝐶𝜒

𝐶𝛼

𝐶𝜙
) + (

𝑁𝑛
𝜒

𝑁𝑛
𝛼

𝑁𝑛
𝜙

) 
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To estimate the values of the coefficients 𝑅𝑖𝑗
(𝑘)

, we use the least squares method row by row 

(each row corresponds to a “multiple regression” problem). As an e ample, for the first row, we 

can define a vector 𝑋𝑛 = (𝜒𝑛−1, 𝛼𝑛−1, 𝜙𝑛−1, ⋯ , 𝜒𝑛−𝑝, 𝛼𝑛−𝑝, 𝜙𝑛−𝑝, 1)
⊤

, so that the equation 

becomes 𝜒𝑛 = (𝑅𝜒𝜒
(1), 𝑅𝜒𝛼

(1), 𝑅𝜒𝜙
(1), ⋯ , 𝑅𝜒𝜒

(𝑝), 𝑅𝜒𝛼
(𝑝), 𝑅𝜒𝜙

(𝑝), 𝐶𝜒)𝑋𝑛 + 𝑁𝑛
𝜒

. Then the coefficients can be 

estimated using the standard formula: 

(𝑅𝜒𝜒
(1), 𝑅𝜒𝛼

(1), 𝑅𝜒𝜙
(1), ⋯ , 𝑅𝜒𝜒

(𝑝), 𝑅𝜒𝛼
(𝑝), 𝑅𝜒𝜙

(𝑝), 𝐶𝜒) = ⟨𝜒𝑛𝑋𝑛
⊤⟩ 〈𝑋𝑛𝑋𝑛

⊤〉−1 

where 〈𝑋𝑛𝑋𝑛
⊤〉 is the (uncentered) covariance matrix of 𝑋𝑛 and ⟨𝜒𝑛𝑋𝑛

⊤⟩ is the (uncentered) cross-

covariance between 𝜒𝑛 and 𝑋𝑛. Multiplying the cross-covariance by the inverse of the covariance 

matrix effectively decorrelates the variables in 𝑋𝑛. Moreover, the variance of 𝑁𝑛
𝜒

 can be estimated 

as:  

𝕍(𝑁𝑛
𝜒
) = ⟨𝜒𝑛𝜒𝑛⟩ − ⟨𝜒𝑛𝑋𝑛

⊤⟩ ⟨𝑋𝑛𝑋𝑛
⊤⟩−1 ⟨𝑋𝑛𝜒𝑛⟩, 

where 〈⋯ 〉 represent the ensemble average. Finally, the standard errors of the estimated 

coefficients are: 

(
diag(〈𝑋𝑛𝑋𝑛

⊤〉−1)

𝑀
𝕍(𝑁𝑛

𝜒
))

1
2⁄

, 

where diag(〈𝑋𝑛𝑋𝑛
⊤〉−1) represent a vector, whose components are the diagonal elements of the 

inverse of the matrix 〈𝑋𝑛𝑋𝑛
⊤〉, M is the number of data points, and the square root is taken 

elementwise. The other two rows of coefficients can be estimated in the same way.  

Our method of parameter estimation is similar but different from both “multiple 

regression” and “multivariate regression” often used in statistical analysis81 (see Table 2). Multiple 

regression typically deals with one response variable, 𝑦, and multiple explanatory variables, 𝑥𝑖’s, 

such that 𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑐, where 𝑎𝑖’s are the regression coefficients and 𝑐 is a constant. 
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If we represent the explanatory variables by a vector 𝑋 = (𝑥1, 𝑥2, ⋯ )
⊤ and the regression 

coefficients by a vector 𝐴 = (𝑎1, 𝑎2, ⋯ ), then 𝑦 = 𝐴⊤ 𝑋 + 𝑐. On the other hand, multivariate 

regression deals simultaneously with multiple response variables, 𝑦𝑖’s, and multiple e planatory 

variables, 𝑥𝑖’s, such that each response variable 𝑦𝑖 can be described as  𝑦𝑖 = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +⋯+

𝑐𝑖. In this case, using vectors 𝑌 = (𝑦1, 𝑦2, ⋯ )
⊤, 𝑋 = (𝑥1, 𝑥2, ⋯ )

⊤ and 𝐶 = (𝑐1, 𝑐2, ⋯ )
⊤, the 

regression coefficients then form a matrix 𝐴 = (𝑎𝑖𝑗) such that 𝑌 = 𝐴 𝑋 + 𝐶, where all entries 𝑎𝑖𝑗 

are to be estimated. In the method we used here, we have multiple response variables, (𝜒𝑛, 𝛼𝑛, 𝜙𝑛), 

as well as many explanatory variables, such as (𝛼𝑛, 𝜙𝑛, 𝜒𝑛−1, 𝛼𝑛−1, 𝜙𝑛−1, … ). However, due to 

constraints stemming from causality, not all entries of the regression coefficient matrix are free 

parameters. Therefore, we cannot directly apply formulas from multivariate regression that 

calculate the coefficient matrix as a whole; instead, we treat each row of the matrix separately, 

removing the non-free parameters and fitting the remaining entries using multiple regression. 

The estimated values of the coefficients 𝑅(𝑘) are shown in Figure 17 (blue lines) and 

presented also in Table 3, and the algorithms for calculating them is provided in Appendix B. For 

details on how the values for the black lines were calculated see section 3.8. The temporal behavior 

of the coefficients 𝑅(𝑘) can be contrasted with that of the correlation functions (black lines in 

Figure 17) that usually change slowly over a time interval. For example, the regression coefficient 

𝑅𝜙𝜒
(𝑘)

 is large and negative for 𝑘 = 0, but quickly vanishes at 𝑘 ≥ 1, indicating that much of the 

correlation between the pair (𝜙, 𝜒) is indirect. In fact, most regression coefficients with time delay 

𝑘 > 1 are small and do not significantly affect the correlation functions (Figure 18). This means 

that the values of the cell cycle variables mainly depend on their values in the previous cell cycle, 

but not on earlier ones. In other words, the dynamics of these variables is approximately 

Markovian. We will focus on those regression coefficients with 𝑘 ≤ 1. 
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Table 2 Comparison of “constrained multivariate regression” with other common types of regression 

methods. 

Method Number of variables 
Expected relationship 

between variables 
Parameters to be estimated 

simple regression 

one response variable (𝑦), 

one explanatory variable 

(𝑥) 

𝑦 = 𝑎 𝑥 + 𝑐 
regression coefficient (𝑎), 

constant (𝑐) 

multiple regression 

(multivariable regression) 

one response variable (𝑦), 

multiple explanatory 

variables (𝑥𝑖’s, represented 

by a vector 𝑋 =
(𝑥1, 𝑥2, ⋯ )

⊤) 

𝑦 =∑𝑎𝑖  𝑥𝑖
𝑖

+ 𝑐 

= 𝐴 𝑋 + 𝑐 

regression coefficients 

(𝑎𝑖’s, represented by a 

vector 𝐴 = (𝑎1, 𝑎2, ⋯ )), 
constant (𝑐) 

multivariate regression 

multiple response variables 

(𝑦𝑖’s, represented by a 
vector 𝑌 = (𝑦1, 𝑦2, ⋯ )

⊤), 

multiple explanatory 

variables (𝑥𝑖’s, represented 

by a vector 𝑋 =
(𝑥1, 𝑥2, ⋯ )

⊤) 

𝑦𝑖 =∑𝑎𝑖𝑗  𝑥𝑗
𝑗

+ 𝑐𝑖  

𝑌 = 𝑨 𝑋 + 𝐶 

regression coefficients 

(𝑎𝑖𝑗’s, represented by a 

matrix 𝑨 =

(
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯
⋮ ⋮ ⋱

)), 

constants (𝑐𝑖’s, represented 
by a vector 𝐶 =
(𝑐1, 𝑐2, ⋯ )

⊤) 

constrained multivariate 

regression 

multiple response variables 

(𝑦𝑖’s, represented by a 
vector 𝑌 = (𝑦1, 𝑦2, ⋯ )

⊤), 

multiple explanatory 

variables (𝑥𝑖’s, represented 

by a vector 𝑋 =
(𝑥1, 𝑥2, ⋯ )

⊤) 

𝑦𝑖 =∑𝑎𝑖𝑗  𝑥𝑗
𝑗

+ 𝑐𝑖  

𝑌 = 𝑨 𝑋 + 𝐶 

like above, but where 

certain entries of the 

regression coefficient 

matrix are constrained to 

take prefixed values. For 

example, the coefficient 

matrix 𝑅(0) in Eq. (1) is 

causally constrained to be 

strictly lower triangular. In 

such a case we must have 

𝑨 = (

0 0 0 ⋯
𝑎21 0 0 ⋯
𝑎31 𝑎32 0 ⋯
⋮ ⋮ ⋱ ⋱

) 
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Figure 18 Cross-correlation between cell cycle variables calculated from experimental data and from the 

estimated parameters of our model. Black dots: cross-correlation observed in the experimental data; red line: 

cross-correlation calculated using all regression coefficients R(k)
ij with 𝒌 ≤ 𝟏; green line: cross-correlation 

calculated using all regression coefficients R(k)
ij with 𝒌 ≤ 𝟐; blue line: cross-correlation calculated using only 4 

parameters from Table 4. 
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Table 3 Values of the first nine regression coefficients, constants, and variances estimated using our multi-

regression analysis (see Figure 17). 

regression 

coefficient 
matrix elements 

𝑅(0) 

0 0 0 

–0.49 ± 0.02 0 0 

–0.51 ± 0.02 0.40 ± 0.01 0 

𝑅(1) 

0.98 ± 0.01 –0.00 ± 0.01 0.98 ± 0.01 

0.32 ± 0.03 0.22 ± 0.02 0.48 ± 0.03 

0.05 ± 0.04 –0.12 ± 0.02 0.07 ± 0.03 

𝑅(2) 

0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.02 

0.17 ± 0.04 0.18 ± 0.02 0.10 ± 0.03 

0.00 ± 0.04 –0.10 ± 0.02 0.08 ± 0.03 

𝑅(3) 

0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.02 

0.01 ± 0.04 0.10 ± 0.02 -0.09 ± 0.03 

0.08 ± 0.04 -0.04 ± 0.02 0.11 ± 0.03 

𝑅(4) 

-0.01 ± 0.02 -0.01 ± 0.01 0.00 ± 0.02 

-0.01 ± 0.04 0.05 ± 0.02 -0.10 ± 0.03 

0.01 ± 0.04 -0.04 ± 0.02 0.05 ± 0.03 

𝑅(5) 

0.01 ± 0.02 0.00 ± 0.01 0.01 ± 0.02 

0.01 ± 0.04 0.03 ± 0.02 -0.09 ± 0.03 

0.03 ± 0.04 -0.04 ± 0.02 0.06 ± 0.03 

𝑅(6) 

0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.02 

-0.03 ± 0.04 0.05 ± 0.02 -0.10 ± 0.03 

-0.04 ± 0.04 -0.03 ± 0.02 0.05 ± 0.03 

𝑅(7) 

-0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.02 

-0.03 ± 0.04 0.03 ± 0.02 -0.06 ± 0.03 

0.05 ± 0.04 -0.04 ± 0.02 0.12 ± 0.03 

𝑅(8) 

0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.02 

0.02 ± 0.04 0.03 ± 0.02 -0.04 ± 0.03 

0.01 ± 0.04 0.03 ± 0.02 0.10 ± 0.03 

𝑅(9) 

0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 

-0.07 ± 0.03 0.05 ± 0.01 -0.07 ± 0.03 

0.11 ± 0.03 -0.02 ± 0.01 0.09 ± 0.03 

C 
–0.67 ± 0.03 

0.32 ± 0.05 

0.38 ± 0.05 

diag(𝛴)1/2 
0.06 

0.11 

0.12 
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3.4 Cell size dynamics can be described by just a few parameters 

Among the 18 entries of the matrices of regression coefficients 𝑅(0) and 𝑅(1), there are in 

principle 12 free parameters. This is because 𝑅(0) is constrained by causality to be strictly lower 

triangular as explained in the previous section, which eliminates 6 parameters. Furthermore, 

because cell divisions appear to be symmetric on average, the 3 entries in the top row of 𝑅(1) are 

expected to be (1, 0, 1), which is confirmed by our regression results. To prove this, recall that 

𝑒𝜓𝐴 and 𝑒𝜓𝐵 are the size fractions that sister cells, A and B, receive from their mother, which 

should sum to 1. Since the division asymmetry is small, we can write 𝜓𝑎 = log
1
2
+ 𝛥𝜓𝑎 for 𝑎 =

𝐴, 𝐵 and write the sum as: 𝑒𝜓𝐴 + 𝑒𝜓𝐵 = 1

2
 𝑒𝛥𝜓𝐴 + 1

2
 𝑒𝛥𝜓𝐵 = 1. Expanding to first order in 𝛥𝜓𝑎 

yields: 𝛥𝜓𝐴 + 𝛥𝜓𝐵 = 0,  and thus 𝜓𝐴 + 𝜓𝐵 = 2 log
1
2
 . We first use this relation to derive the 

constraints on the regression coefficients. Since by definition, 𝜓𝑎 = 𝜒𝑎 − 𝜒𝑀 − 𝜙𝑀 for 𝑎 = 𝐴, 𝐵, 

we expect: 

𝜒𝐴 + 𝜒𝐵 = 2𝜒𝑀 + 2𝜙𝑀 + 𝜓𝐴 + 𝜓𝐵 = 2𝜒𝑀 + 2𝜙𝑀 + 2 log
1

2
  

On the other hand, our model gives 𝜒𝑎 = 𝑅11
(1)𝜒𝑀 + 𝑅12

(1)𝛼𝑀 + 𝑅13
(1)𝜙𝑀 + 𝐶

𝜒 + 𝑁𝑎
𝜒

 for 𝑎 = 𝐴, 𝐵. 

Thus, by adding the sister cells, we obtain: 

𝜒𝐴 + 𝜒𝐵 = 2𝑅11
(1)𝜒𝑀 + 2𝑅12

(1)𝛼𝑀 + 2𝑅13
(1)𝜙𝑀 + 2𝐶

𝜒 + (𝑁𝐴
𝜒
+ 𝑁𝐵

𝜒
) 

Comparing the coefficients in the above two equations leads to: (𝑅11
(1), 𝑅12

(1), 𝑅13
(1)) = (1, 0, 1). 

Moreover, initial regression results show that the 3 entries in the bottom row of 𝑅(1) are 

approximately zero (Figure 17) and so will be neglected. There are 6 entries of the regression 

coefficient matrices left with non-zero values: 𝑅𝛼𝜒
(0)

, 𝑅𝜙𝜒
(0)

, 𝑅𝜙𝛼
(0)

, 𝑅𝛼𝜒
(1)

, 𝑅𝛼𝛼
(1)

, and 𝑅𝛼𝜙
(1)

. Due to the 
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proximity between the absolute values of the entries 𝑅𝛼𝜒
(0)

, 𝑅𝛼𝜒
(1)

, and 𝑅𝛼𝜙
(1)

, we initially parameterized 

the matrices 𝑅(0) and 𝑅(1) as: 

𝑅(0) = (
0 0 0

−𝜅 + 𝜀 0 0
−𝛽 𝛾 0

)    and    𝑅(1) = (
1 0 1
𝜅 𝜆 𝜅 + 𝛿
0 0 0

) 

The estimated values of those 6 parameters calculated in five different experiments are 

shown in Figure 19. Among those values, the value of 𝛿 estimated from all the experiments is 

consistently small, with an average 0.01 ± 0.01, which is insignificant; the value of 𝜀 has an 

average of −0.11 ± 0.01, which is small compared to 𝜅 and, when estimated using data from 

different experiments, it fluctuates around zero (Figure 19). We therefore decided to drop these 2 

parameters; thus, this eventually brings us down to 4 parameters in total.  

We can now write the regression coefficients as: 

𝑅(0) = (
0 0 0
−𝜅 0 0
−𝛽 𝛾 0

)    and    𝑅(1) = (
1 0 1
𝜅 𝜆 𝜅
0 0 0

) 

The 4 parameters 𝜅, 𝜆, 𝛽, and 𝛾 have clear interpretations that will be discussed below. The 

values of these parameters are re-estimated under the additional constraints that the remaining 

entries of the matrices are fixed to 0 or 1, and the results are shown in Table 4 and Figure 20. These 

four parameters effectively summarize the statistical dependencies among the cell cycle variables 

measured in our experiments. 

To verify the effectiveness of our model, we simulated cell growth and division using a 

null model based on the adder mechanism alone which is explained in detail in Appendix C. In 

that case, all parameters except 𝛽 should be zero. We then estimated the values of the parameters 

from the simulated data. These estimates provide a baseline for the systematic errors of the 

parameters. Using this null model, we verified that the values of the parameters we found from our 
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experiments are significant compared to their baselines. These baselines are shown in Figure 19 

with blue dots. 

Figure 19 Comparison of estimated parameters across experiments with their baselines. Five separate 

experiments with the same conditions were performed to confirm the consistency in the values of estimated 

model parameters. Experiments 1–5 include 1953, 1980, 1363, 1453, and 1178 cell cycles, respectively. The 

blue dots represent the baselines for the parameters found using the simulated null model (see Appendix C). 

 

Table 4 Estimated parameters using constrained multivariate regression. 
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Figure 20 Comparison of estimated parameters across experiments with their baselines. Five separate 

experiments with same conditions were performed to confirm the consistency in the values of estimated model 

parameters. Experiments 1–5 include 1953, 1980, 1363, 1453, and 1178 cell cycles, respectively. The blue dots 

represent the baselines for the parameters found using the simulated null model (see Appendix C). Except for 

𝜷 which was set to 0.5 in the simulation, the other parameters all have a low baseline, validating the 

significance of the parameters estimated from our experimental data. 

3.5 Parameter values vary between experiments 

Although the estimated parameter values are significant compared to their baselines in each 

experiment, their values vary among different experiments (Figure 20). This variation is larger 

than the population variability measured in all experiments and is not due to the lack of statistical 

significance. In order to determine if this variation is related to other differences between the 

experiments, we examined the distribution of various measurable properties of the cells in each 
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experiment, such as the growth rate, cell-cycle time, and cell size. We found that, indeed, there are 

slight differences in those cellular properties between the experiments (Figure 21). Note that these 

differences emerged despite our effort to maintain the experimental conditions the same for all 

experiments. They may have resulted from variations in some environmental conditions that are 

beyond the extent of our control. To account for the differences in the distribution of cellular 

properties, we tried standardizing (removing the mean and normalizing by the standard deviation) 

each cell cycle variable before fitting the parameters in each experiment. The results still exhibited 

similar variation between the experiments (Figure 19). This indicates that environmental variations 

do not only affect the mean and distribution of those variables but also their dependencies, such as 

the dependency of total size accumulation on birth length (𝛽) or growth rate (𝛾). 

The variation of the parameter values shows that, on the one hand, the current experimental 

setup is imperfect and can be further improved to reduce environmental effects, as we discuss later. 

On the other hand, those parameters should be considered as effective descriptions of the cell 

growth dynamics and may not be universal across environmental conditions. In particular, there 

may be multiple mechanisms acting in tandem to maintain cellular homeostasis, and their relative 

contributions to the overall observed behavior of the cell may change in different conditions. 

Therefore, in analyzing experimental data, we should not be restricted to preexisting models that 

often focus on one mechanism and are characterized by few predefined parameters. Our regression 

analysis, which is not biased by preconceived models, provides an “agnostic” way of detecting 

effective parameters that characterize cell growth and size control. 

Despite the quantitative variation of these parameters, the qualitative dependencies 

between cell cycle variables are robust among experiments (Figure 20). They can be used to reveal 

possible control mechanisms of cell growth that were previously undetected. In all the analyses  
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Figure 21 Distribution of measured cellular properties in different experiments. Variables 𝜶, 𝝌, 𝝓 and 𝝍 

represent cell growth rate (hr-1), initial size (log scale) (𝝁𝒎), size accumulation (log scale), and division 

fraction (log scale), respectively, as defined in section 3.2. 𝝉 represents cell cycle duration (𝒉𝒓); and 𝝆 = 𝝌 +

𝝓 represents final size (log scale) before division (𝝁𝒎). Data from experiments 3-5 have more similar 

distributions of the variables and are used for analyses in this chapter. 
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we present, we combine the data of experiments 3–5 since the distributions of all variables obtained 

in these experiments are closest to each other (Figure 21). The quantitative values of the parameters 

we find from these analyses (Table 4) are representative of the dependencies between the cell cycle 

variables. 

3.6 Effective parameters imply mechanisms of cell size regulation 

Using the parameters found in section 3.4, we can write the dynamics of Equation 3-1 with 

time delay 𝑘 ≤ 1 as: 

𝜒𝑛 = 𝜒𝑛−1 + 𝜙𝑛−1 + 𝐶
𝜒 + 𝑁𝑛

𝜒
           Equation 3-2 

𝛼𝑛 = −𝜅 𝜓𝑛 + 𝜆 𝛼𝑛−1 + 𝐶
𝛼 + 𝑁𝑛

𝛼     Equation 3-3 

𝜙𝑛 = −𝛽 𝜒𝑛 + 𝛾 𝛼𝑛 + 𝐶
𝜙 + 𝑁𝑛

𝜙
         Equation 3-4 

Recall that the variables 𝜒𝑛, 𝛼𝑛, and 𝜙𝑛 represent the initial size (in log scale) of a cell, its 

growth rate during the cell cycle, and the relative amount of growth (in log scale) by the end of the 

cell cycle (Figure 16). These equations describe previously known features of cellular growth and 

division dynamics and reveal new details that were never discussed before. Equation 3-2 can be 

rewritten as 𝜓𝑛 = 𝐶
𝜒 + 𝑁𝑛

𝜒
, where 𝜓𝑛 = 𝜒𝑛 − 𝜒𝑛−1 −𝜙𝑛−1 is the fraction of cell size (in log 

scale) that a daughter cell receives from its mother following the cell division. This equation 

implies that the size fraction a cell receives from its mother is random and independent of other 

variables. Such independence on the variables of the mother cell can be understood from the 

symmetry between two daughter cells. On the one hand, we expect our equation to be applicable 

to both daughter cells, so their size fractions should depend on the mother cell in the same way. 
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On the other hand, their size fractions should sum to 1, a constant, which then implies that neither 

of the fractions can depend on the variables of the mother cell. The symmetry between the daughter 

cells is supported by our measurements. The regression analysis results in an estimated value of 

𝐶𝜒 being −0.67 ± 0.03, which implies an average size fraction of 0.51 ± 0.02 (mean ± SE), 

consistent with symmetric division. The measured variance of 𝐶𝜒 among cells (0.004) means that 

the size fraction can fluctuate by about 6% from cell to cell. 

Equation 3-3 suggests that the growth rate of the cell depends on the growth rate of its 

mother, and on the size fraction it received from its mother during the division. The parameter 𝜆 

can be interpreted as a kind of inertia, by which a cell that grew faster in the previous cell cycle 

tends to grow faster in the current cell cycle. A possible mechanism for such inertia is that the 

growth rate of the cell depends, in part, on the concentration of key cellular factors that are 

responsible for the production of various structural and metabolic elements, such as ribosomes, 

RNA polymerases, and ATPases. Since the concentration of these factors is roughly conserved 

during divisions, it is expected that the growth rate would persist to some extent in subsequent cell 

cycles. On the other hand, the parameter 𝜅, following a negative sign, acts as a form of growth 

compensation, i.e., the smaller daughter cell tends to grow faster and make up for the size 

difference acquired during the division. Such a negative correlation between the growth rate of 

sister cells and their relative sizes has also been found in plants82. More recently, it was observed 

that the growth rate of Bacillus subtilis is inversely proportional to the cell size at the start of the 

cell cycle, and changes as the cell cycle advances17. Note however, that in our case, it is not the 

absolute size of the daughter, but rather the relative size compared to the mother, that affects the 

growth rate. This is an important distinction, which we discuss in the following section. 
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Equation 3-4 implies that the relative amount by which a cell grows during each cell cycle 

is regulated by its initial size and the growth rate during the same cell cycle. Such dependence 

reflects potential mechanisms of cell size control. The −𝛽 term represents a negative control by 

which the cells that are bigger at the beginning of a cell cycle will grow relatively less during that 

cycle. This control mechanism would be equivalent to the “adder” mechanism (by which a cell 

adds a fixed amount of size before division) if 𝛽 = 0.5 12,64. On the other hand, the 𝛾 term 

represents a positive control by which cells that grow faster will have more relative growth during 

the cell cycle. This would agree with the “timer” mechanism (by which a cell grows for a fi ed 

period of time before division), if 𝛾 represents the period of time that the cell is allowed to grow. 

The fact that both terms are found experimentally to be non-zero suggests that cell size control is 

complex and might involve more than one mechanism working in tandem, and that both adder and 

timer are only effective consequences of some unknown actual control mechanism. Indeed, a 

combination of these mechanisms (a timer phase followed by an adder phase) was proposed to 

underlie size-homeostasis in the bacteria Caulobacter crescentus72. 

3.7 Sister cells comparison confirms growth rate dependence on size fraction  

To further verify our regression analysis and the model resulting from it, we conducted 

further experiments, in which we tracked both daughter cells after each cell division (Figure 15 

and Figure 16). One of the cells, the one at the end of the microfluidic trap, commonly known as 

the “mother” cell, forms a continuous lineage and has been the subject of many previous studies 

that resulted in several predictions of cell size control mechanisms10,73,64,83. The other cell is the 
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“sister” of the mother cell created after each division (Figure 15.b). From such experiments we 

extracted the same set of cell cycle variables as before, now for both cells. 

With such new types of dataset, we can directly examine the prediction of  Equation 3-3. 

In this equation, the variables for the 𝑛-th generation will now represent each of the daughter cells, 

and the variables for the (𝑛 − 1)-th generation will represent their common mother cell. 

Accordingly, the growth rates of both daughter cells are: 

𝛼𝐴 = −𝜅 𝜓𝐴 + 𝜆 𝛼𝑀 + 𝑁𝐴
𝛼    and    𝛼𝐵 = −𝜅 𝜓𝐵 + 𝜆 𝛼𝑀 + 𝑁𝐵

𝛼 

where the subscripts A and B denote the two sister cells, and M their common mother cell. Adding 

and subtracting these two equations yield: 

Δ𝛼 = −𝜅 (Δ𝜓) + Δ𝑁𝛼    and     Σ𝛼 = −𝜅 (Σ𝜓) + 𝜆 (2𝛼𝑀) + Σ𝑁
𝛼 

where Δ𝛼 = 𝛼𝐴 − 𝛼𝐵, Σ𝛼 = 𝛼𝐴 + 𝛼𝐵, and similarly for other variables. Note that Δ𝑁𝛼 and Σ𝑁𝛼 

are random variables, and Σ𝜓 ≈ 2 log 1
2
  (see section 3.4), which is constant. Therefore, simple 

linear regression of Δ𝛼 over Δ𝜓 and of Σ𝛼 over 2𝛼𝑀 should yield the slopes −𝜅 and 𝜆, respectively. 

The results of such linear regression are shown in Figure 22A and B. The inferred slopes 

match the estimated values of −𝜅 and 𝜆 (Figure 20) very well. Similarly, according to Equation 3-

4, we did simple linear regression of 𝜙𝑛 as a function of 𝜒𝑛 (see also 64), and 𝛼𝑛 respectively 

(Figure 22C and D), using data from both sister cells. In this case, the inferred slopes show 

deviations from the values of −𝛽 and 𝛾 obtained using constrained multivariate regression. This 

is because the latter accounts for the correlation between the variables 𝜒𝑛 and 𝛼𝑛, whereas simple 

linear regression does not. 
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Figure 22 Simple regression between selected variables of both sister cells. (A) The difference between the 

growth rates (n) of two sister cells plotted as a function of the difference between the natural logarithm of 

their fractions (n). Subscript A denotes the sister cell trapped at the end of the channel, and B denotes its 

sister adjacent to it. (B) The sum of the growth rates of sister cells plotted as a function of twice the growth 

rate of their common mother (M). The first two plots contain N = 3942 pairs of sister cells.  (C) The relative 

amount of growth (n) during a single cell cycle plotted as a function of log initial length (n) of the same 

cycle.  (D) n plotted as a function of growth rate (n) in the same cell cycle. The latter two plots contain 

N=8173 cells. Black squares and error bars in all plots depict the average and standard deviation of 

uniformly binned data, respectively. Black lines depict the best linear fit, and the values of the slopes are 

presented in the plots. The slopes in plots A and B are in good agreement with −𝜿 and 𝝀 calculated from 

constrained multivariate regression. The slopes in plots C and D show deviations from −𝜷 and 𝜸 estimated 

using constrained multivariate regression, because simple regression does not account for the correlation 

between n and n. 
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3.8 Comparison of sister cells reveals additional correlation in their growth 

It is expected that two sister cells sharing the same mother (we can alternatively name this 

pair as mother and daughter), would exhibit correlations among their cell cycle variables. Such 

correlations can be calculated from our model, since our description of the dynamics (Equation 3-

1 with time delay 𝑘 ≤ 1) does not differentiate between the two cells and can be applied to each 

of them separately.  

As shown in Figure 23A, we find that there is a significant difference in the correlations 

between the sister cells calculated using experimentally observed data (OBS) and predicted by the 

model (PM). The missing correlation suggests that our model needs to be generalized. The issue 

is that, like other cell growth models, it only describes the dynamics along a single branch of the 

lineage tree. Indeed, the model given by Equation 3-1 describes the conditional probability 

distribution of the cell cycle variables of the daughter cell given those of the mother. However, 

such a model only captures the probability distribution of one daughter cell given the mother 

(heuristically, 𝑃(𝐴|𝑀)), instead of the joint distribution of both daughters given the mother (i.e., 

𝑃(𝐴, 𝐵|𝑀)). In general, the two daughter cells need not be conditionally independent (i.e., 

𝑃(𝐴, 𝐵|𝑀) ≠ 𝑃(𝐴|𝑀) 𝑃(𝐵|𝑀)). For example, the size fraction that one cell receives from its 

mother is negatively correlated with the fraction its sister receives. Such conditional dependence 

would give rise to additional correlation between the sister cells, as observed in the experiments.  

We compare the correlation predicted by the model with the correlation calculated directly 

from the data as follows. We start from the regression coefficients 𝑅(0), 𝑅(1), the constant 𝐶 and 

the diagonal covariance matrix of the residuals Σ, whose diagonal elements are 

(𝕍(𝑁𝑛
𝜒
), 𝕍(𝑁𝑛

𝛼), 𝕍(𝑁𝑛
𝜙
)). We first calculate the covariance matrix 𝛤(𝑘) as a function of time delay 
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k. This is done by solving the discrete Lyapunov equation (e.g., by vectorization): 𝛤(0) =

𝑃 𝛤(0) 𝑃⊤ + 𝑄, where 𝑃 = (𝐼 − 𝑅(0))
−1
 𝑅(1) and 𝑄 = (𝐼 − 𝑅(0))

−1
 𝛴 (𝐼 − 𝑅(0))

−⊤
, and then 

iteratively calculating: 𝛤(𝑘) = 𝑃 𝛤(𝑘−1). To calculate the correlations of the cell cycle variables ( 

Figure 17), we normalize the covariance matrix 𝛤(𝑘) by the variances at 𝑘 = 0, i.e., 𝐶𝑖𝑗
(𝑘) =

𝛤𝑖𝑗
(𝑘) (𝛤𝑖𝑖

(0) 𝛤𝑗𝑗
(0))⁄

1/2

. 

We can write Equation 3-1 with time delay 𝑘 ≤ 1 for each cell as 

(

𝜒𝐴
𝛼𝐴
𝜙𝐴
) = 𝑅(0) (

𝜒𝐴
𝛼𝐴
𝜙𝐴
) + 𝑅(1) (

𝜒𝑀
𝛼𝑀
𝜙𝑀
) + 𝐶 + 𝑁𝐴,  

 (

𝜒𝐵
𝛼𝐵
𝜙𝐵
) = 𝑅(0) (

𝜒𝐵
𝛼𝐵
𝜙𝐵
) + 𝑅(1) (

𝜒𝑀
𝛼𝑀
𝜙𝑀
) + 𝐶 + 𝑁𝐵 

Equation 3-5 

then allow the residuals 𝑁𝐴 and 𝑁𝐵 to be correlated. The incorporation of the measurement 

uncertainties are explained in detail in Appendix A. The cross-correlation between 𝑁𝐴 and 𝑁𝐵 will 

represent the additional sister-cells correlation. Let the cross-covariance between the residuals 𝑁𝐴 

and 𝑁𝐵 be: 𝛴′ = ⟨𝑁𝐴𝑁𝐵
⊤⟩. The cross-covariance matrix between the sister cells can be calculated 

as: 𝛤′(0) = 𝑃 𝛤(0) 𝑃⊤ + 𝑄′, where 𝑄′ = (𝐼 − 𝑅(0))
−1
𝛴′(𝐼 − 𝑅(0))

−⊤
. Then the sister-sister 

correlation 𝐶′(0) (Figure 23A) is calculated by: 𝐶𝑖𝑗
′(0) = 𝛤′𝑖𝑗

(0)
(𝛤𝑖𝑖

(0) 𝛤𝑗𝑗
(0))

1/2

⁄ . 

Furthermore, the cross-covariance matrix between a niece and an aunt cell is given by: 

𝛤′(1) = 𝑃 𝛤′(0), and the niece-aunt correlation 𝐶′(1) (Figure 23B) is then calculated as: 𝐶𝑖𝑗
′(1) =

𝛤′𝑖𝑗
(1)

(𝛤𝑖𝑖
(0) 𝛤𝑗𝑗

(0))
1/2

⁄ . Similarly, the cross-covariance matrix between cousin cells can be 

calculated as: 𝑃 𝛤′(0) 𝑃⊤, and their cross-correlation can be obtained by normalization (Figure 24). 
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Figure 23 Effect of additional correlation between sister cells on the predictions of our model. Cross-

correlations between cell cycle variables of sister A and sister B are calculated using three different methods: 

the observed values calculated from experimental data (OBS), the predicted values calculated without 

incorporating additional correlation between sister cells (PM), and the new values calculated after adding the 

correlation between sister cells (PMwSC). (A) Cross-correlations between sister A and sister B. (B) Cross-

correlation between daughter of cell A (dA), and cell B, which have the niece-aunt relation (see Figure 15.b). 

In both cases, the predicted values become closer to the observed values after incorporating additional 

correlation in our model. Both plots contain N = 3942 pairs of cells. See also Figure 24. 

 

Figure 24 Prediction of the cross-correlation between two cousin cells. Our model allows for prediction of the 

cross-correlation between cousin cells (two cells whose mothers are sisters). Experimental measurement of 

these cross-correlations, however, is beyond the scope of this study and is subject to an ongoing investigation. 
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The additional correlation between sister cells can be readily incorporated into our model. 

The cross-correlation between 𝑁𝐴 and 𝑁𝐵 can be estimated from the data, as represented by a 

matrix shown in Figure 25. We find that the off-diagonal entries of the cross-correlation matrix 

are small. On the other hand, the first diagonal entry is −1, which means that 𝑁𝐴
𝜒

 and 𝑁𝐵
𝜒

 are fully 

anti-correlated as expected, since this reflects the fact that an increase in the birth size of a cell 

comes at the e pense of its sister’s birth size. This is due to the fact that the sum of the initial sizes 

of the two sister cells is equal to the final size of mother cell. Note that this is not contradictory to the 

results presented in Figure 23, which shows a positive correlation between 𝜒𝐴 and 𝜒𝐵. This positive 

correlation reflects the fact that a larger mother will give rise to two larger daughters.   

 

Figure 25 Additional cross-correlation between sister cells. Cross-correlation between the residuals NA and 

NB in Equation 3-5. The highest correlation is observed between N
A and N

B, which is associated with the 

birth length of the sisters (Equation 3-2). This value close to −𝟏 is expected, since sister cells receive 

complementary amounts of birth size from their common mother. Other unexpected significant correlations 

are observed on the diagonal entries, <N
AN

B> and <N
AN

B> (see Equation 3-3 and Equation 3-4), which 

reveal new sources of correlation between sister cells. These correlations were calculated using data collected 

from N= 3942 pairs of sister cells.  
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More importantly, the other two diagonal entries, which represent the correlations between 

𝑁𝐴
𝛼 and 𝑁𝐵

𝛼 and between 𝑁𝐴
𝜙

 and 𝑁𝐵
𝜙

, are both positive. These two terms will contribute as new 

sources of correlation between the sister cells. Taking such additional correlations into account, 

we calculated new values for the cross-correlation between sister cells (Figure 23), PMwSC: 

predicted by the model with sister-cells correlations. These values show an improved agreement 

with the observed values. 

3.9 Sister-cells correlation predicts correlation between niece and cousin cells 

To test our generalized model with additional sister-cells correlation incorporated, we used 

the model to calculate correlations between cells that are genealogically more distant. For example, 

the model predicts a specific amount of correlation between a “niece” and an “aunt” cell. This 

correlation can also be calculated from the data, by comparing a cell (for example A[n]) with its 

“aunt” (B[n-1]) (Figure 15.b). Figure 23B shows the results of the predicted and the observed 

niece-aunt correlations. Note that existing cell growth models without incorporating the additional 

sister-cells correlation found in the previous section would still predict a small amount of 

correlation between niece and aunt cells (Figure 23B, PM), because these cells share a common 

ancestor. Incorporating the additional sister-cells correlation in the model improves the agreement 

between predicted and observed niece-aunt correlations (Figure 23B, PMwSC), supporting the 

existence of such additional sister-cells correlation that is missing from single-cell growth models. 

Our model also allows us to make predictions about the correlation between two “cousin” 

cells, i.e., two cells whose mother cells are sisters. We calculated such cousin-cells correlation 

using our model with and without the additional sister-cells correlation (Figure 24). To 
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experimentally check the predicted cousin-cells correlation requires tracking the descendants of 

both sister cells. An experiment allowing such measurements is being devised by our group and 

will be reported in a future report. Notably, correlation between cousin cells has been reported 

before in mammalian cells, where cell-cycle time was found to be strongly correlated between 

cousin cells but not between mother and daughter84. In the newly devised experiment, we will 

measure such correlations in bacteria and further test our model of cell growth control. 

 



 56 

4.0 Immediate bacterial growth correlation with cell content 

Microorganisms live in a continuously changing environment, with fluctuations occurring 

both in time and space. Biological and biochemical processes that take place inside the cell and 

control biomass production and cellular growth are subject to molecular noise85–87, and are strongly 

influenced by the environment88. Bacterial growth is determined by the rate of such biochemical 

reactions, their efficiency, and their collective organization. It plays an important role in 

maintaining cellular characteristics such as cell size, and it contributes to cellular fitness.  

Observations have indicated that bacterial cells are able to self-replicate accurately and within a 

well-defined timeframe. As explained in Chapter 1.0, cell growth and protein production increase 

exponentially during the replication timeframe. This type of growth, if subject to random noise, 

will lead to divergence in cell-size and protein content12,89. Therefore, to guarantee the reliability 

of the replication process, cells need to have mechanisms of “chec s and balances” that will ensure 

tight regulation of cellular activities. Over the last few years, an extensive effort has been devoted 

to understanding the regulation mechanisms that control the cycle of microorganisms self-

replication in various bacterial and yeast species10,12,64,89–92. In bacteria, as well as budding yeast, 

it has been shown that the cell size at the end of the cell cycle right before a division event is 

linearly proportional to the cell size at the start of the cell cycle, with the slope being ~110,93. This 

suggests a model, in which cells add on average a constant size between two consecutive division 

events10,12,94,  nown as the “adder” model (see Chapter 1.0). In a more recent work, it has been 

argued that the constant size is in fact added between two consecutive DNA replication-initiation 

events93. In yeast, the concentration of a cell-cycle regulator protein was shown to determine the 

division event and control cell size90. Such regulators, however, do not exist in bacteria, and to 
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date, the mechanism used to determine cell-size and growth rate, and regulate cell division in 

bacteria remains unknown.  

In this chapter, we aim to connect the rate of growth to the cell composition. Many studies 

have made an attempt to identify the molecular mechanism of bacterial growth95,96,97, but a 

fundamental understanding of what cell composition will lead to a maximum efficiency in growth, 

and how the different cellular components influence its rate are still unknown. To shed some light 

on this problem, we will investigate Equation 3-3 further, which reveals that the growth rate of a 

cell depends on the fraction of size it received from its mother. This equation suggests a mechanism 

of how two bacterial sister cells are regulating their size during the cycle right after their birth (see 

Sections 4.2 and 4.3) and could be a solution to develop a mechanistic understanding of cell size 

homeostasis. In Chapter 3.064, we examined the dynamics of cell size in long lineages of E. coli 

bacteria measured at the single-cell level in microfluidic traps. Our data were consistent with 

previous studies and agreed with the adder model at the population level (Figure 35a). However, 

comparison between sister cells in the same experiment, reveals that the smaller sister adds a larger 

size during the first generation after division (Figure 35b). These two graphs contradict each other 

at first glance, however, when examined in detail, uncover some new mechanisms explained in the 

following sections. 
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4.1 Materials and methods 

4.1.1 Bacterial strains and plasmids 

All experiments were performed using E. coli K-12 derivative MG1655. The following 

plasmids were used in this study. 1) PZA3R-mcherry, which is a medium copy number plasmid 

expressing a red fluorescent protein under the control of the 𝜆-phage Pr promoter, 2) pRJ2001-

GFP-Fis (a kind gift from J.F. Marko), where the GFP-Fis gene is under the control of the lac 

promoter62, 3) pDB192-sulA+GFP-Fis, which was constructed by amplifying the GFP-Fis gene 

along with its promoter and terminator from the plasmid pRJ3306 (a kind gift from R. C. Johnson) 

by PCR using the primer (CGAGCTCCTCACTCATTAGGCACCC) that added the restriction site 

SacI to the 5’ end of the DNA fragment, and the reverse primer 

(CCAAGCTTCGATCTTCTTTCCAGGCTTC) which added HindIII to the 3’ end of it. This was 

then inserted between the SacI and HindIII sites of the plasmid pDB192-sulA (a kind gift from A. 

Amir63) to result in the Isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible pDB192-

sulA+GFP-Fis plasmid. This final plasmid induces both sulA and GFP-Fis under the lac promoter. 

A map of this plasmid is represented in Figure 26. 
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Figure 26 A map of the plasmid pDB192-sulA+GFP-Fis. This plasmid was constructed using the GFP-Gene 

from the plasmid PRJ3303 and inserting it into the plasmid pDB192-sulA. 

4.1.2 Experimental setup and data acquisition  

In experiments where cell filamentation was induced by exposure to one of two types of 

antibiotics, Nalidixic acid or Cephalexin, MG1655 E. coli cells containing two plasmids, PZA3R-

mcherry, and PRJ2001-GFP-Fis, were used. The concentration of both nalidixic acid and 

cephalexin used was 5𝜇𝑔/𝑚𝑙, and cells were exposed to the relevant antibiotic for 1.5 hours. All 

media getting pumped into the device contained 1mM IPTG for GFP-Fis induction. In experiments 

where filamentation was induced by overexpression of sulA, the same strain of cells was used but 

with the plasmids, PZA3R-mcherry, and pDB192-sulA+GFP-Fis. In these experiments, cells were 

exposed to 1mM IPTG for 2.5 hours to induce expression of sulA.  
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To acquire single-cell growth movies, cells were cultured overnight in LB medium at 32℃, 

and then diluted in the same medium the following day. When the cells reached Optical Density 

(OD) between 0.1 and 0.2, they were concentrated and loaded into a mother machine which was 

fabricated as explained in chapter 2.0. After sufficient number of cells were trapped, the excess 

cells were washed away with LB medium and the trapped cells were allowed to grow in the 

channels for one day. The next day, LB medium containing the desired antibiotic and/or inducer 

was pumped into the device for the desired time using a PTFE tube (Cole-Parmer, IL) with inner 

diameter of 0.022 inch and length of 0.7 meters at a rate of 1 ml/hr. With these conditions, it took 

the medium ~14.75 minutes to reach the device, so in all figures and graphs presented in this 

chapter, the time of adding or removing a chemical has been moved forward by 15 minutes. The 

medium was changed back to LB after this, and the cells were allowed to grow back to normal 

exponential growth for one day. Images were taken from the traps in DIC and fluorescence modes 

every 3 minutes during the entire experiment using a Hamamatsu ORCA-flash4.0 camera, 

mounted on a Nikon Eclipse Ti2 inverted microscope with a 100X objective. An Okolab 

microscope enclosure stabilized the temperature at 32℃. Cell length and fluorescence intensity of 

cells were measured using Oufti64 and custom-made MATLAB codes.  

4.1.3 DNA concentration estimation 

To find the true concentration of bacterial DNA using our experimental measurements, we 

consider the following chemical reaction: [𝑓𝑟𝑒𝑒 𝐺𝐹𝑃 (𝑓𝐺𝐹𝑃)] + [𝑓𝑟𝑒𝑒 𝑠𝑖𝑡𝑒𝑠] →

[𝑏𝑜𝑢𝑛𝑑 𝐺𝐹𝑃 (𝑏𝐺𝐹𝑃)], where [.] is the notation for concentration and in our case is fluorescence 

intensity. This reaction indicates that free GFP (𝑓𝐺𝐹𝑃) in the cytoplasm (GFP-Fis expressed by 

plasmid), binds to free binding sites on the chromosome, and produces Fis-DNA compounds, 



 61 

namely bound GFP (𝑏𝐺𝐹𝑃). [𝑓𝐺𝐹𝑃] and [𝑏𝐺𝐹𝑃] are directly measurable from our experimental 

data, and [𝑓𝑟𝑒𝑒 𝑠𝑖𝑡𝑒𝑠] is the value we are seeking to find. This reaction allows us to measure the 

true value of DNA concentration in cells that express GFP-Fis as follows. Considering the above 

chemical reaction goes to equilibrium in time scales much smaller than our measurement time65, 

we can use the law of mass action: 𝑘𝑎[𝑓𝐺𝐹𝑃][𝑓𝑟𝑒𝑒 𝑠𝑖𝑡𝑒𝑠] = 𝑘𝑑[𝑏𝐺𝐹𝑃], where 𝑘𝑎 and 𝑘𝑑 are the 

association and dissociation constants, respectively.  

We find the concentration of free GFP, [𝑓𝐺𝐹𝑃], by measuring total GFP intensity in 

multiple small areas which are located outside the chromosome but inside the cytoplasm and divide 

it by the sum of areas we have selected (Figure 27). Figure 28 illustrates sample measurements for 

[𝑓𝐺𝐹𝑃] in single cells during their filamented cycle. On the other hand, concentration of bound 

GFP, [𝑏𝐺𝐹𝑃], is equal to the total intensity of chromosome divided by cell area. We use two 

intensity measurements from our experiments to find this. We subtract the total GFP of the cell by 

the total free GFP of the cell to get total bound GFP. In other words, 

[𝑏𝐺𝐹𝑃] =  
𝑡𝑜𝑡𝑎𝑙 𝐺𝐹𝑃 −[𝑓𝐺𝐹𝑃]∗𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎
. Figure 29 illustrates sample measurements for [𝑏𝐺𝐹𝑃] in the 

same single cells as in Figure 28. The measured concentration of bound GFP and free GFP in 

cephalexin, nalidixic acid, and sulA are presented in Figure 30, Figure 31, and Figure 32, 

respectively. As it can be seen from these figures, [𝑏𝐺𝐹𝑃] does not change in any of these cases, 

which is a demonstration that all free sites on the DNA are bound to Fis molecules at all times. 

However, [𝑓𝐺𝐹𝑃] changes only in the case of nalidixic acid. This could be due to the fact that in 

this case, the DNA is not being replicated and so there are more free molecules of Fis available in 

the cell. 
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Figure 27 A sample cell in two different time points when exposed to nalidixic acid. In the first frame, the cell 

is in the beginning of its cycle and has a length of ~𝟑𝝁𝒎, and in the second frame the cell has elongated to a 

length of ~𝟏𝟎𝝁𝒎. The color red is mcherry expressed from the plasmid PZA3R-mcherry, which was used as 

a sample protein expression measure, and the color green is GFP expressed from the plasmid PRJ2001-GFP-

Fis. The intensity of green is much higher when Fis molecules are bound to the chromosome, but some can 

also be detected in the cytoplasm area when measuring green intensity in white circles. By averaging this 

value we obtain [𝒇𝑮𝑭𝑷]. [𝒃𝑮𝑭𝑷] is subsequently found using the method described in the text. 

 

 

Figure 28 Concentration of fGFP in sample single cells when exposed to cephalexin, excess sulA and nalidixic 

acid. Each line represents one single cell. 
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Figure 29 Concentration of bGFP in the same sample single cells as presented in Figure 28 when exposed to 

cephalexin, excess sulA and nalidixic acid. Each line represents one single cell. 

 

 

Figure 30 Concentration of bound and free GFP in the experiments where cells were exposed to cephalexin. 

Black dots are measurements from individual cells, red squares are binned data, and red line is a fit to these 

points. 
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Figure 31 Concentration of bound and free GFP in the experiments with nalidixic acid. Black dots are 

measurements from individual cells, red squares are binned data, and red line is a fit to these points. 

 

Figure 32 Concentration of bound and free GFP in the cells with excess sulA. Black dots are measurements 

from individual cells, red squares are binned data, and red line is a fit to these points. 
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In conclusion, we can find the concentration of free binding sites by using [𝑓𝑟𝑒𝑒 𝑠𝑖𝑡𝑒𝑠] =

𝑐0

𝑡𝑜𝑡 𝐺𝐹𝑃 −[𝑓𝐺𝐹𝑃]∗𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

[𝑓𝐺𝐹𝑃]
, where 𝑐0 is a constant equal to 

𝑘𝑑

𝑘𝑎
. In this equation, the concentration of 

free sites is related to the concentration of DNA, [𝐷𝑁𝐴]. We can write this as: [𝐷𝑁𝐴] = 𝑐 ∗

[𝑓𝑟𝑒𝑒 𝑠𝑖𝑡𝑒𝑠], assuming that Fis binds to DNA in a sequence-independent manner, and in the case 

of additional Fis molecules, they bind to previous Fis-DNA filaments cooperatively and create 

higher-order complexes66. The value of the constant 𝑐 is not in our interest, so we use the calculated 

value of [𝑓𝑟𝑒𝑒 𝑠𝑖𝑡𝑒𝑠] as a direct measure for DNA concentration. 

4.1.4 Fluorescence calibration experiments 

Binding of Fis to the chromosome of E. coli could change due to the antibiotics that were 

used in our experiments, which make the shape of the chromosome to change during growth. 

however, DAPI is a dye whose binding to DNA does not change with the change of DNA shape, 

so the relation between the fluorescence of DAPI and DNA concentration is linear98. To ensure 

that Fis also binds to DNA in a similar form and that the concentrations of DNA that we calculated 

are reliable, we used our strain, MG1655 with two plasmids PRJ2001-GFP-Fis and PZA3R-

mcherry and started an experiment similar to the ones described in Section 4.1.2, with the 

difference that the experiment was set up under a Zeiss Axio Observer microscope with a 100x 

objective. 5𝜇𝑔/𝑚𝑙 nalidixic acid was added to the medium and left to flow through the device for 

3.5 hours. One set of images were taken from a total of 190 channels which contained 837 single 

cells using four modes, phase contrast, green and red fluorescence, and UV. Then the device was 

washed using 1X PBS (8 gr NaCl, 0.2 gr KCl, 1.44 gr Na2HPO4, 0.24 gr KH2PO4, 1 L DI water, 

pH=7.4), and the bacteria were fixed by being exposed to 10% formalin (100 mL 36.5-38.0% 
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formaldehyde, 4 gr NaH2PO4, 6.5 gr Na2HPO4, 900 mL DI water) for 20 minutes99. At this point, 

1X PBS containing 3 𝜇M DAPI was pumped into the device for 30 minutes. The device was 

washed again with 1X PBS and left to stabilize for 20 minutes. The second set of images was taken 

at this point, again using all four channels. The temperature was fixed at 32℃ using a made-in-

house incubator at all times. The total and free green fluorescence and UV were measured from 

the images similar to explained in the previous section, and the concentration of each channel was 

calculated similarly ([𝐷𝐴𝑃𝐼] =
𝑡𝑜𝑡𝑈𝑉−([𝑓𝑈𝑉]×𝑎𝑟𝑒𝑎)

𝑎𝑟𝑒𝑎

[𝑓𝑈𝑉]
). The calculated values for concentration of UV 

and GFP were plotted against each other (Figure 33) and a linear relationship between them was 

observed. This ensures that the concentrations calculated in Section 4.1.3 are reliable. 

 

 

Figure 33 The emission of UV light from the dye DAPI as well as the fluorescence emission from a green 

protein connected to Fis were measured and plotted against each other to make sure that binding of Fis 

molecules does not change due to the addition of the antibiotic nalidixic acid. A linear relationship between 

them ensures the calculations performed in Section 4.1.3 are reliable. 
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4.2 Division of E. coli is symmetric 

Let us start by stating that each cell-cycle, can be well described with the following 

mapping model: 

𝑥𝑛(𝑡) = 𝑥𝑛(0)𝑒
𝛼𝑛𝑡,    0 ≤ 𝑡 ≤ 𝑇𝑛 

𝑥𝑛+1(0) = 𝑓𝑛𝑥𝑛(𝑇𝑛)    → 𝑥𝑛+1(0) = 𝑓𝑛𝑥𝑛(0)𝑒
𝛼𝑛𝑇𝑛        

where 𝑥𝑛 is cell size at the 𝑛-th cycle, 𝑇𝑛 the duration of the 𝑛-th cycle, 𝛼𝑛 the exponential growth 

rate, and 𝑓𝑛 the division ratio. This equation links the cell size at the start of the cell cycle along 

generations. In this discrete mapping, cell size undergoes a total increase by a factor of 𝑒𝜑𝑛  and a 

decrease by a factor of 𝑓𝑛 every cycle. 𝜑𝑛 is the total accumulation exponent during the 𝑛-th cycle 

which is connected to the growth rate and cycle time as 𝜑𝑛 = 𝛼𝑛𝑇𝑛, where 𝑓𝑛+1 is the size fraction 

that a daughter cell receives from its mother. When measured from experimental data, the 

distribution of this parameter can be well-fitted to a Gaussian plot and will have a mean of 0.5 as 

can be seen in Figure 34. This distribution suggests that cell division is symmetric with noise and 

has been therefore assumed not to affect growth rate of the cell.  In chapter 3.0, Equation 3-2, we 

found that the size fraction is random and independent of other variables, and we explained how 

this independence can be understood from the complementarity of the daughter cells size-fractions 

to each other. In short, since Equation 3-2 should be applicable to both daughter cells, and the sum 

of their size-fractions should be 1, neither of the fractions can depend on the variables of the mother 

cell. However, this does not mean that the variables of daughter cells do not have a dependency 

on the fraction. In fact, our experimental analyses reveal that there is a dependency of some 

daughter variables on the fraction that it receives from its mother. 
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Figure 34 Distribution of fraction of size that daughter cell receives from mother cell. The Gaussian fit 

ensures that cell division is in fact symmetric and an independent variable, however it does not imply that 

other variables are independent of fraction. 

The adder model, explained in Chapter 1.0, suggests that the amount of size that a cell adds 

in each cycle is constant and independent of the cell size at the start of the cell cycle. This is a 

phenomenon which to date is found to be true for all experimental data acquired from E. coli cells, 

however, it does not explain the mechanism of cell growth. Figure 35a presents the amount of cell 

growth (∆) plotted against birth size (𝑥(0)) and it is evident that the adder phenomenon is 

consistent with our single-cell data as well. This clearly stands in contradiction to what we found 

in Equation 3-3, which reveals that the growth rate of a cell depends on the size-fraction that it 

receives from its mother at birth. The cells that were used to plot this graph, if from the same 

experiment, all have the same ancestor (they were grown from a single colony from an agar plate), 

but their relationship is very distant, and this causes the phenotypes to have a huge variability. In 

Figure 35a this factor has been ignored, along with other factors, such as possible variations among 

cells measured in different experiments, and cell history which might have long-term effect on 

cellular dynamics. To eliminate these elements and reduce variation among cells considered, we 
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examined the difference between two sister cells immediately after separation from a single 

mother. smaller variation is expected between these two cells since the mother divides almost 

symmetrically. We observe a dependency of the difference in the added sizes of the two sister cells 

on the size-fraction they receive from their mother. Figure 35b demonstrates this dependency 

where a and b denote the two sister cells and are assigned randomly. The large negative slope of 

the linear fit to the binned data, points to a new growth control mechanism that has not been 

considered previously. This inverse dependency of the added cell size on the size-fraction received, 

implies that the smaller sister is adding a larger volume during the cycle immediately following its 

birth compared to its larger sister. 

 

Figure 35 A hidden growth mechanism is uncovered by removing the huge variability in a population of cells. 

a) The amount of length added (∆) during a cycle (𝒏) versus the birth length (𝒙(𝟎)) of the same cycle. Blue 

squares are binned data and blue line is a fit to the bins. The horizontal line with a small slope (0.003) 

indicates no dependency between these two variables. b) The amount of length added in one daughter cell (a) 

subtracted by the amount added by its immediate sister (b) versus the difference in fractions that they 

receive from the mother (fa - fb). Cells a and b are randomly apponted to the sister cells. The high negative 

slope (-3.02) indicates a dependency between these two parameters. 
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4.3 Smaller sister has a higher growth rate 

The parameter ∆𝑛 in Figure 35 is in fact proportional to the total length accumulation, 

𝜙𝑛(𝑇𝑛), where 𝑛 is the cycle number, and 𝑇 is the cycle time. As denoted before, length 

accumulation itself has a dependency on two different measurable parameters: 𝜙𝑛(𝑇𝑛) = 𝛼𝑛𝑇𝑛, 

where 𝛼 is the growth rate of the cycle. To determine which of these parameters contributes to the 

observed difference in added volume between the two sister cells, we examined the distributions 

of the two parameters and their differences between the two cells. We denote the smaller sister as 

“a” and the larger sisters as “b”. Our results, presented in Figure 36, show a zero mean for the 

difference between cycle times of the two sisters, but a slightly positive mean for the difference 

between their growth rates. It can be concluded that sister “a” (the smaller sister) has a higher 

growth rate compared to its larger sister and both sisters grow for a similar time period.  

 

 

Figure 36 Distribution of difference in two parameters in sister cells. “a” is always denoted to the smaller 

sister and “b” to the larger sister. a) The difference between growth rate of sisters exhibits a slightly positive 

mean indicating that the smaller sister has a higher growth rate. b) The difference between cycle time of 

sisters has a mean value very close to zero indicating cycle time is the same, independent of the fraction. 

<   > = 0. 0    
 1 <   > = 0.77   

          

a) b)
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To further verify this result, in Figure 37 we inspect these differences as a function of the 

difference in the fractions both cells receive from their mother. Figure 37a shows that the cell cycle 

time is independent of the size fraction the cell receives from its mother. On the other hand, the 

large negative slope of the linear fit to the data in Figure 37b suggests an inverse dependency of 

the cell’s growth rate on the size fraction it receives from its mother. We thus conclude that the 

sister that receives a smaller size fraction from the mother will grow faster than its larger sister. 

This is consistent with the results presented earlier in Chapter 3.0.  

 

 

Figure 37 Dependency between sister parameters and size fraction, where “a” is the smaller sister and “b” is 

the larger sister. a) T = Ta - Tb and f = fa – fb. Blue squares are binned data and the blue line is the fitted 

line to these points. The slope close to zero (0.08) indicates no dependency between cycle time and fraction. b) 

 = a - b and f = fa – fb. The high negative slope (-1.01) suggests a negative dependency between growth 

rate and size fraction, interpreted as the smaller sister having a higher growth rate. 

a) b)
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4.4 Growth rate varies in one cycle 

Previous studies always assumed that the growth rate of a cell is constant during one cycle 

(but varies from cycle to cycle). Therefore, the growth rate was always determined using 

exponential regression over the size measurements of a complete cell cycle as displayed in Figure 

38a. The results of Section 4.3, however, reveal that when the cellular content between two cells 

is almost identical then the growth rate depends on the cell size at the start of the cell cycle. This 

results in the smaller cell increasing its volume faster than the larger cell. If the growth rate 

dependence on the cell size is maintained throughout the cell cycle, then it would lead to smaller 

difference in the growth rate between the sisters as the cell cycle progress.  

To test this hypothesis, we evaluated the growth rate during various periods of the cell 

cycle separately and independently of each other. Instead of fitting all of the complete cell cycle 

to one exponent, we applied the exponential regression to a moving window of five points at a 

time, which constitute ~half of a cell cycle. This provides a number of exponents for each cycle as 

depicted in Figure 38b-c. We applied this fitting method to both sister cells, and for many pairs of 

sisters. We then evaluated the difference in these exponents between sisters, whose average is 

depicted in Figure 39 . ∆𝛼 in this graph is always the growth rate of the larger sister subtracted 

from that of the smaller sister. Similar results were also obtained in another study of our group 

using different methods100. Surprisingly, this graph reveals that at the beginning of a cycle, the 

difference between the growth rates of sisters is high, however, as time goes by and they get closer 

to the middle and the end of the cycle, this difference becomes smaller until it approaches zero. 

We interpret this into a growth mechanism that when a mother cell divides into two daughters, the 

smaller one grows faster in the beginning, which allows the smaller cell to compensate for the size 
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difference acquired during division, and as the size difference becomes smaller the growth rates 

become similar (Figure 40). 

 

Figure 38 Exponential regression on cell size. Blue dots are measured values and the red line is an exponential 

fit. a) So far, we have been fitting all the points of one cycle to one exponent and appointed that as the growth 

rate of the cycle. b) Exponential fitting was applied on a window of five points, then the window was moved 

by one point until the last point of the cycle was reached. One exponent was found for each fit. c) All 

exponential fits for one cycle presented in a single graph.  

 

Figure 39 Difference in growth rates between sisters in one cycle.  = a - b, and is the average of many 

pairs. a is always the sister with a smaller birth size and b always the larger one. This difference has been 

normalized by dividing by the average of the growth rate of all cells (both sisters). Error bars are standard 

deviation.  

a) b) c)
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Figure 40 Our analyses are interpreted into a growth mechinsm that when a mother cell divides into two 

daughters with a slight difference in size, the smaller one grows faster than the larger one in the beginning of 

the cycle. After the smaller one has compensated for its size difference, their growth rate becomes similar. 

4.5 DNA concentration is unequally distributed in sisters 

Our analyses so far demonstrate that indeed the difference in the growth rate of two sister 

cells at the beginning of their cycle is proportional to their difference in size fraction as illustrated 

in Figure 40. This result offers an important insight into a possible source of the feedback 

responsible for size homeostasis. It suggests that whatever controls the growth rate to make up for 

the size inequality between two sister cells during division is inversely proportional to the size 

fraction the cell receives from its mother. Note that, in our case, it is not the absolute size of the 

daughter, but rather the relative size compared to the mother, that affects the growth rate. This is 

a very important distinction. It implies that in addition to the growth rate of the mother cell (i.e., 

the contribution of 𝛼𝑛−1), the distribution of resources between cells during division is also critical. 

This raises the question: what resource is distributed unequally between sister cells and can result 

in growth rate variation? To answer this question, we should remember that the rate of cell growth 

faster growth

slower growth

similar growth

similar growth
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depends on the rate of biochemical activity, which is determined by the concentration of resources 

and not their amount. Most resources in the cell, including enzymes, ribosomes, amino acids, and 

the various chemicals and proteins, are expected to be distributed between sister cells with equal 

concentration with some random noise that will not lead to a measured bias. Even membrane 

proteins are mostly distributed with equal concentration between the cells, and therefore cannot be 

responsible for the observed difference in growth rate. DNA is the only resource that is distributed 

between two cells in equal amounts (same number of copies) and not concentration. Thus, a cell 

with a smaller size fraction will have a higher concentration of DNA. This does not mean that the 

macromolecular crowding is higher in the smaller cell, but that the proportionality of the DNA to 

other molecules is higher. Such mechanism can provide a feedback source to offset size difference 

between cells, which is fundamental for size homeostasis.  

To test this hypothesis, our former data are not sufficient, due to the small dynamical range 

that cells have while growing in desirable environmental conditions. The difference between the 

fraction that sisters receive, and their DNA concentration in these conditions is insignificant and 

not detectable. Therefore, we developed a new experimental procedure in which the dynamical 

range of cellular growth is broadened to allow better evaluation of the effect of DNA concentration 

on the growth rate. In these new experiments, cells were made to filament with and without DNA 

replication. In both cases, protein production and cell growth continued, and the only difference 

was the number of DNA replicates in the cell. This was facilitated by exposing cells to a very low 

concentration of antibiotics while growing in the microfluidic traps. Nalidixic acid is a quinolone 

antibacterial agent which results in DNA strand breaks. The outcome of this is either a decrease, 

or complete inhibition of DNA synthesis, causing elongation in a cell without division101. Thus, 

cells subjected to nalidixic acid would grow to lengths of ~20µm and continue to produce proteins 
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as displayed in Figure 41A. It can be seen that the DNA in the cell exposed to nalidixic acid is not 

segregating during elongation and only one nucleoid exists in the cell. While our measurements of 

the DNA concentration in cells exposed to nalidixic acid (Figure 49) do not conclusively determine 

whether the DNA synthesis is completely inhibited or is only slowed down, they do show a 

significant decrease in concentration. On the other hand, subjecting the cells to a small amount of 

cephalexin prevents the cell from dividing by interfering with the septum of cell division, while 

protein is continuously being expressed, DNA is being replicated and the cell is growing in size102, 

as presented in Figure 41B. In this figure it is evident that several nucleoids exist in one elongated 

cell which is exposed to cephalexin. Previous studies have observed the effect of both of these 

antibiotics on populations of wild type E. coli cells103,104 and some of its mutants105, here we focus 

on their effect on the DNA replication in wild type bacteria, and how that influences the cell’s 

growth rate at the single-cell level. Figure 42 illustrates sample traces of two cells where each one 

was exposed to one of the antibiotics. Here, a red fluorescent protein expressed from a medium 

copy number plasmid was used as a sample protein measurement, and a green fluorescent protein 

attached to the protein Fis (which binds to the chromosome in a non-specific manner) was used to 

measure the DNA concentration. For details on how DNA concentration was estimated in these 

experiments see Section 4.1.3. Except for the type of antibiotics introduced to induce 

filamentation, all other experimental conditions and procedures were kept identical between the 

two experiments (see Section 4.1 for more detail). 

Our results show that while cells filament in both cases, their growth rate remains 

exponential similar to their growth before the addition and after the removal of antibiotics, only 

when exposed to cephalexin (with DNA replication) as seen in Figure 42b and Figure 43a. Figure 

42a and Figure 43b, on the other hand, show that cells grow exponentially prior to exposure to  
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Figure 41 Cell filamentation with and without DNA replication. The color red is a red flourescenc protein 

(mcherry) expressed under the control of the -Pr promoter. The green images depict the protein GFP-Fis, 

which bind to DNA and are used to estimate the DNA concentration (see Section 4.1.3). (A) Nalidixic acid 

prevents cell division and induces filamentation by blocking the replication of DNA as can be seen in the 

green images, which show a single nucleoid region as the cell grows. (B) Cephalexin induces filamentation 

while allowing DNA to replicate as it is clear from the visible multiple nucleoid regions in green images. In 

both cases the cells continue to produce protein as can be seen in red images. White line on the top is 2 𝝁𝒎. 
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Figure 42 Sample trajectories of wild type E. coli cells growing in the absence and in the presence of a) 

nalidixic acid, and b) cephalexin. The cell was exposed to the antibiotic between two vertical dotted lines. 

After removal of the antibiotic, the cell goes back to normal exponential growth, ensuring both antibiotics are 

reversible.  

 

Figure 43 Growth of single cells when exposed to two different antibiotics. The antibiotic was added at time 

1hr indicated with a blue vertical line, and removed at tim 2.5hrs indicated with a vertical black line. a) 

Growth is exponential during and after exposure of cephalexin because DNA is being replicated as in normal 

a) b)
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growth. b) Growth deviates from exponential curve when exposed to nalidixic acid, but returns to exponential 

growth after removal of the antibiotic. It can be seen that the lines in (a) are more straight compared to lines 

in (b), which is the indication of exponential growth with cephalexin and non-exponential growth with NA. A 

more clear comparison is presented in Figure 44.  

 

nalidixic acid, deviates from an exponential growth upon exposure to nalidixic acid (no DNA 

replication) and goes back to exponential growth after its removal. These figures also reveal that 

the cells divide once after addition of the antibiotic and before filamentation, which could be due 

to the fact that multiple chromosome copies always exist in a cell, so they are still able to go 

through one more division before the number of completed chromosome copies is too low to allow 

division. Furthermore, after removal of nalidixic acid, it takes around one hour for the cells to 

resume the exponential growth. This delay could be due to the fact that it takes some time to 

replicate the DNA before the cell is able to divide again. This delay is not observed with cephalexin 

since in that case growth is always exponential. The growth of a few sample cells when DNA is 

being replicated (cephalexin) and when DNA replication is inhibited (nalidixic acid) are compared 

in Figure 44. The slowdown witnessed in the blue graphs is consistent with a population growth 

model with carrying capacity106. In this model, cells in a population have to compete for resources, 

and therefore when the resources are limited, the growth rate will be determined by the amount of 

resources available per cell. As the population grows, this amount decreases, and as a result so 

does the population growth rate. Similarly, if that resource is the DNA, as the cell grows larger, 

the competition for the DNA increases and therefore the rate of protein production and cell growth 

decreases. Note that it has already been shown that the concentration of RNAP affects the growth 

rate of the cell95. However, the concentration of RNAP cannot account for the variation in growth 

rate among sister cells as it is divided equally between the two. 
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Figure 44 Comparison between growth of cells when DNA is being replicated (exposure to cephalexin – 

purple lines) and when DNA replication is inhibited (exposure to nalidixic acid – blue lines). It is apparent 

that when DNA is consistently being replicated growth remains exponential, but a slowdown is witnessed 

when DNA replication is inhibited. 

4.6 Lower DNA concentration causes lower growth rate 

The growth rate of single cells exposed to both antibiotics was calculated in order to verify 

and quantify the slowdown observed in Figure 43. As mentioned before, we did not fit the entire 

cycle to one curve, but to several curves. The growth rate (alpha) was calculated in the same 

manner explained in Section 4.4 and Figure 38, by fitting an exponential function to five points at 

a time. The results of such analysis are presented in Figure 45 and Figure 46, plotting once as a 

function of time and once as a function of length, for growth with and without DNA synthesis, 

respectively. These figures reveal that the growth rate of cells remains constant under cephalexin 

(with DNA replication) but slows down drastically under Nalidixic acid (no DNA replication). 

These values indicate no dependency of the growth rate of cells on time or length where DNA  
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Figure 45 Growth rate (alpha) of single cells exposed to cephalexin as a function of a) time and b) length. 

Black dots are single points from 45 cells, blue squares are binned data, and blue line is a linear regression to 

the binned data. Error bars are standard deviation. 

 

 

Figure 46 a) Growth rate (alpha) of single cells exposed to nalidixic acid as a function of a) time, and b) 

length. In this graph, only data points between 1.5 to 3 hr have been used. Black dots are single points from 

48cells, red squares are binned data, and red line is a linear regression to the binned data. Error bars are 

standard deviation.  

 

a) b)

a) b)
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replication is continuous, indicating that exposing cells to cephalexin has no effect on their growth 

rate. Figure 46a displays the same data as in Figure 43b, indicating that the nalidixic acid affected 

the cells between times 1.5 hr and 3 hr. The growth rate of cells clearly decreases during this time, 

and after the removal of the antibiotic, the cells revert to their high growth rate as before the 

exposure. To only consider data where the cells were under the effect of nalidixic acid, we removed 

all points before 1.5 hr and after 3 hr and plotted the growth rate as a function of length in Figure 

46b. The negative slope verifies that an increase in length results in a decrease in growth rate. We 

predict that the intercept of this line will reflect the cells’ growth rate constant DNA concentration. 

Figure 47 compares the fits for cells exposed to both antibiotics. Remarkably, the analysis of the 

growth rate of cells exposed to cephalexin, where DNA concentration is constant (Figure 45), 

reveals a horizontal line with a value very close to the intercept of the red line.  

 

Figure 47 A comparison between fitted data found for cells exposed to cephalexin (Figure 45) and nalidixic 

acid (Figure 46). Blue lines indicate how growth rate of cells with continuous DNA synthesis does not change 

with respect to either time or length, and red lines reveal a drastic decrease in growth rate of cells with 

inhibition of DNA replication with respect to both time and length. 

 



 83 

To further verify this hypothesis, we have measured the DNA concentration in each cell as 

it filaments (see Section 4.1.3 for DNA measurement details), as well as a constitutively expressed 

fluorescent protein as a representative of all cellular proteins (see Section 4.1.1). As expected, the 

method of filamentation does not affect protein concentration. This value remains constant on 

average and has no dependency on either time or length (Figure 48c-d, Figure 49c-d).  

 

Figure 48 It has been previously shown that in cells exposed to cephalexin, DNA replication continues as the 

cell elongates102. Our results verify this, and also indicate the validity of our DNA concentration measurement 

method. Concentration of DNA as a function of a) time, and b) length. Concentration of red protein expressed 

from a plasmid as a function of a) time, and b) length. Black circles are values calculated for 50 single cells, 

blue squares are binned data, and blue line is a linear fit to binned data. Error bars are standard deviation. 

 

b)a)

c) d)
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Figure 49 Nalidixic acid has previously shown to inhibit DNA replication in cells while also not allowing them 

to divide101. Our results presented here verify this, and also indicate the validity of our DNA concentration 

measurement method. Concentration of DNA as a function of a) time, and b) length. Concentration of red 

protein expressed from a plasmid as a function of a) time, and b) length. Black circles are values calculated 

for 48 single cells, red squares are binned data, and red line is a linear fit to binned data. Error bars are 

standard deviation. 

DNA concentration, on the other hand, is expected to be constant for cells exposed to cephalexin, 

and Figure 48a-b point towards this, implying the continuation of DNA synthesis during 

elongation. In addition, DNA concentration is expected to decrease for cells exposed to nalidixic 

acid. Figure 49a-b show that the DNA concentration is indeed decreasing with respect to time and 

length. This implies that as a cell elongates, DNA is either not synthesized or synthesized at a 

lower rate compared to other material in the cell, causing the ratio of DNA to other biomaterials 

to continuously decline. Figure 50 compares the results of cephalexin and nalidixic acid and 

confirms a significant decrease in DNA concentration for cells exposed to nalidixic acid compared 

b)a)

c) d)
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to cells exposed to cephalexin. This figure also validates the accuracy of our DNA concentration 

measurement method. 

 

Figure 50 A comparison between the results of DNA and protein concentration found in cephalexin (Figure 

48) and nalidixic acid (Figure 49). Blue lines indicate how DNA and protein are being synthesized at a 

constant rate throughout the entire experiment, including when cells were exposed to cephalexin. Red lines 

indicate that protein synthesis remains constant at all times including when cells were exposed to nalidixic 

acid, however DNA concentration decreases, indicating inhibition of DNA synthesis. 

Next, we examined the correlation between the DNA concentration and growth rate. The 

results we present confirm that the growth rate of the cell in both cases is linearly proportional to 

the concentration of DNA, and an increase in growth rate is observed when the DNA concentration 

increases (Figure 51). When the binned data achieved from nalidixic acid experiments and 

cephalexin experiments were plotted on the same graph, one line could fit all data points well as 

can be seen in Figure 52. 
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Figure 51 Correlation between growth rate and DNA concentration of cells exposed to a) cephalexin, where 

DNA concentration is not changing much for each cell in each cycle, and b) nalidixic acid, where DNA 

concentration is decreasing with an increase in length for each cell. Positive slope in both graphs varifies a 

positive correlation between these two parameters. Black dots are data from single cells, blue squares are 

binned data, blue line is a linear regression to the binned data, and error bars are standard deviation. 

 

 

 

Figure 52 Same data as in Figure 51. Here, only the binned data are represented and all data are fitted to one 

line (black line). 

cephale in nalidi ic acidb)a)
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4.7 Inhibition of cell division by overexpression of sulA confirms the results of division 

inhibition by cephalexin  

Since antibiotics might have other effects on cellular growth besides inhibiting DNA 

replication or blocking cell division, we induced filamentation and carried out the measurements 

described in Section 4.6 without the use of antibiotics. Instead, we regulated the expression of the 

division inhibitor protein SulA, which allows DNA replication but prevents cell division by 

inhibition of FtsZ polymerization. This strain has been shown previously to grow at constant rate 

as in the case of growth under cephalexin in our experiments107. To regulate the expression of the 

sulA gene, we used an IPTG inducible plasmid that expresses SulA and GFP-Fis under the lac 

promoter (see Section 4.1.1). Figure 53 shows a sample channel of the mother machine containing 

a mother cell carrying this plasmid. IPTG is added after 15 minutes to the medium feeding this 

channel, and it can be seen that GFP becomes visible around 15 minutes after that. The cell also 

stops dividing after one hour and elongates until 15 minutes after the IPTG is removed (IPTG is 

removed at 𝑡 = 2.45ℎ𝑟), however, it takes much longer for the GFP signal to disappear. The delay 

witnessed in this type of experiment could be due to our chosen method of filamentation. After 

addition of IPTG, it takes time for the amount of sulA in the cell to be enough for inhibiting 

division, and after removal of IPTG, FtsZ proteins need time to polymerize and create the septum 

for the cell to divide. Figure 54 shows how cells undergo one or two divisions before starting to 

filament. It can also be seen that the cells continue their exponential growth, as observed in the 

experiments with cephalexin (Figure 43a). This is expected since DNA replication continues at a 

constant rate during cell elongation under excess SulA.  
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Figure 53 Time-lapse of one sample channel when induced with IPTG in three channels. IPTG was added at 

15 min and removed at 165 min. White line on the top left is 2 𝝁𝒎. 
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Figure 54 Growth of single cells carrying a plasmid that expresses excess sulA when induced with IPTG. In 

this experiment, IPTG was added at 𝒕 = 𝟎. Some cells undergoe few divisions before they start to filament. 

The growth of cells seems to remain exponential even after induction of excess sulA. The IPTG was removed 

at time 𝒕 = 𝟐. 𝟓𝒉𝒓 indicated by a vertical black line, and cells begin to divide again shortly after that. 

 

Analysis similar to the previous section on single cells exposed to excess sulA confirm our 

hypothesis of how growth rate is unaffected when DNA concentration is constant. Figure 55 shows 

that the growth rate of single cells does not change as a function of time or length. Figure 56 reveal 

that neither the DNA nor the protein concentration changes during such experiments as well. Note 

that the slight increase in Figure 56a is due to the fact that IPTG induces GFP expression, and with 

time this expression slightly increases before it can stabilize. In addition, a positive slope between 

the variables in Figure 57 points to a positive correlation between the growth rate and the DNA 

concentration. Similar analysis with another plasmid that constrains DNA synthesis (such as a 

plasmid that expresses excess dnaA) could be performed in a future study to strengthen the results 

obtained from experiments with nalidixic acid. 
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Figure 55 Growth rate (alpha) for 40 single cells exposed to excess sulA as a function of a) time, and b) length. 

Black dots are measurements from single cells, blue squares are binned data, and blue line is a fit to the 

binned data points. Error bars are standard deviation. 

 

 

Figure 56 Concentration of DNA as a function of a) time, and b) length. [DNA] remains constant during the 

entire experiment. Concentration of protein as a function of c) time, and d) length, which remains constant as 

well. Black dots are measurements from single cells, blue squares are binned data, and blue line is a fit to the 

binned data points. Error bars are standard deviation. 

a) b)

b)a)

c) d)
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Figure 57 Correlation between growth rate and DNA concentration for cells with excess sulA, where DNA 

concentration is not changing much for each cell in each cycle. Positive slope varifies a positive correlation 

between these two parameters. Black dots are data from single cells, blue squares are binned data, blue line is 

a linear regression to the binned data, and error bars are standard deviation. 
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5.0 Aging as a consequence of ecosystem-level bacterial adaptability 

When encountering an unfavorable environment, (micro)organisms can have one or more 

of the following three behavioral responses: they can migrate away from the new environmet108, 

they can adapt to it109, or they die110. Migration away from harmful environments can be propelled 

by chemical gradients (chemotaxis111), thermal gradients (thermotaxis112), light gradients 

(phototaxis113), and/or ionic gradients (electrotaxis114). While our understanding of the various 

modes of taxes has been greatly advanced, the modes of adaptation to new environments are still 

largely unclear115.  

The process of random gene mutation enables the co-existence of genetically diverse cells 

of a bacterial species upon which natural selection acts. A favorable outcome of this process is the 

expansion of cells with mutations in genes that favor survival and proliferation in the new 

environment.   owever, an unavoidable ‘side effect’ of this process is the emergence of many 

deleterious gene variants in cells. In its extreme form, this can lead to cell death. In other cases, 

the presence of deleterious mutations does not manifest until late in the life cycle of a cell. This in 

turn would allow mutant cells to grow and proliferate similar to their wild-type variant, which will 

lead to the preservation of the mutation in the population. An example of such mutation in humans 

is the  untington’s disease, whose effects start in people at ages over 30 or 40. In such cases, the 

growth of the population might seem normal and almost identical to the wild-type population. Yet, 

the consequence of non-lethal random deleterious mutations on the physiology and function of 

individual cells, and on the cell ecosystem as a whole, is not well understood. In this chapter, we 

focus on the details of how some gene deletions that appear to have almost no consequences to the 

population proliferation despite the cell’s limitation in  ey metabolic processes, affect cellular 
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growth at the single-cell level. We focus on the long-term fate of cells with a single gene deletion 

in nutrients rich and poor environments. Specifically, we investigate the mode by which cellular 

homeostasis is maintained in the presence of metabolic gene inactivating mutations by observing 

population growth of multiple strains in microbatch cultures and single cells in homogeneous 

environments. Our single cell experiments provide new insights into bacterial senescence and the 

bacterium’s various modes of death and identify cellular characteristics of aging. 

5.1 Materials and methods 

5.1.1 Bacterial strains, growth conditions and reagents 

E. coli K12 BW25113 and its isogenic mutant derivatives were obtained from the Keio E. 

coli mutant collection81,82. A complete list of all used strains is presented in Appendix D.  All 

mutants harbored the single copy number plasmid pXX563 containing kanamycin resistance54. 

The cells used in the mother machine experiments carried two additional plasmids, the 

chloramphenicol-resistant medium copy number plasmid pZA under the control of the constitutive 

viral 𝜆 − 𝑃𝑅 promoter78, and the plasmid PRJ2001-GFP-Fis which was used for chromosome 

labeling (a kind gift from John F. Marko116).Three different growth media were used in the 

experiments: Luria Broth (LB, used as a rich medium for rapid growth), M9 minimal medium 

supplemented with 1 g/L casamino acids and 4 g/L glucose (M9CG, used for medium growth), 

and M9 minimal medium supplemented with 4 g/L glucose (M9G, used for slow growth). 

Depending on the identity of the strain being used either 25 𝜇𝑔/𝑚𝑙 kanamycin, or 30 𝜇𝑔/𝑚𝑙 

chloramphenicol, or both were added to the medium.  
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5.1.2 Microbatch culture experiments 

All isogenic single gene deletion mutants and wt E. coli strains were stored in microtiter 

plates at -80℃. On the day before the e periment, strains were pic ed from frozen stoc s and 

grown overnight at 37°C with strong agitation (240 rpm) in a selected medium and with the 

appropriate antibiotic. The overnight cultures were then further diluted to optical density (OD600) 

~ 0.001 in fresh medium. 250 µl of each cell type was then transferred into a 96-well cell culture 

plate in triplicates and grown up to  6 hours at 37℃ in a plate reader (Infinite  00, Tecan Trading 

AG, Switzerland). The growth of the various cell-type populations in the different growth 

conditions was characterized by obtaining optical density measurements at 600nm every 5 minutes 

with shaking in between measurements. All experiments were repeated three times. 

5.1.3 Microbatch culture data analysis 

In a previous study, growth of non-lethal E. coli isogenic single-gene knockout mutants 

(the Keio collection) on semi solid agar was investigated, and three E. coli colony growth values 

– lag time of growth (LTG), maximum growth rate (MGR) and saturation point of growth (SPG) 

– were measured using a high-throughput measurement system. The results were able to identify 

a subset of genes whose deletion delayed colony formation or changed saturation point and 

presented a better understanding of the range of phenotypes that exist in this strain54. We chose 65 

mutants among this subset which are listed in Appendix D.  

Specific growth rate of bacterial population at time 𝑡𝑖 was calculated using the equation: 

𝜇𝑖 = 𝑙𝑛 (
𝑁𝑖−1

𝑁𝑖
) /(𝑡𝑖 − 𝑡𝑖−1), where 𝑁𝑖 is the population concentration (𝑂𝐷600) at time  𝑡𝑖 (Figure 
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64). MGR and SPG were found for each mutant from their growth curves as follows (Figure 58 

and Figure 59). First, all 𝑂𝐷600 values that were below zero were set to zero, since a negative value 

for OD does not have any meaning and is a result of a measurement error. Then the background 

measurements, obtained in each experiment from a blank sample, where the well contained only 

the growth medium, were subtracted point by point from each population growth graph. To find 

MGR, the maximum of the first derivative of 𝑙𝑛 (
𝑁

𝑁0
)  was found, and that point plus five points 

before and five points after were fitted to a line and the slope of that line was calculated as the 

MGR. For SPG, the last 20-50 points of the graph were forced to fit to a horizontal line, and the 

value of that line was calculated. Figure 58 illustrates in more detail how these values were 

extracted for one sample graph (wild type in LB). Figure 59 presents the growth curves of 

microbatch cultures of all 65 mutants in three media, and the fitted lines for MGR and SPG. The 

values extracted from these graphs are represented in Figure 65. 

 

Figure 58 Extraction of growth parameters in microbatch cultures. (A) Maximum Growth Rate (MGR): 

maximum of the first derivative of ln(N/N0) (where 𝑵 is OD600 and N0 is the starting OD600 values) was found 

and 5 points before and 5 points after were fitted to a line. MGR is the slope of that line. For wt E. coli in LB, 

the MGR was found to be 0.15 min-1. B) Saturation Point of Growth (SPG): the last 20-50 points on the 

growth curves were fitted to a straight line and the value of ln(N/N0) was taken as the SPG. For wt in LB, 

SPG was found to be 2.61. 
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Figure 59 Population growth using microbatch cultures for all 65 mutants and wild-type in LB, M9CG, and 

M9-G growth media. Straight lines indicate fit lines for extracting parameters as shown in Figure 58. 

Horizontal axis is time (min) and vertical axis is ln(N/N0) where N is OD600 and N0 is the starting OD600 values. 

Black lines represent the medium LB, blue lines M9CG, and red lines M9G. All negative values of OD600 were 

set to zero. After reaching saturation, some of the growth curves show a decline which is the indication of the 

death phase. This phase was neglected and deleted from the curve for parameter extraction. To see extracted 

values see Figure 65. 
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5.1.4 Data reduction and clustering 

Principal Component Analysis (PCA) was performed to extract the underlying dimensions 

of the dataset characterizing the microbatch cultures growth curves. All the parameters (MGRs 

and SPGs) distinguishing the different growth curves of all 65 mutants + 1 wild type strains grown 

in 3 different media form a 66 × 6 matrix, which we label 𝑋. The built-in MATLAB function 

“svd” (singular value decomposition) was used to decompose 𝑋 as a product of three matrices: 

𝑋 = 𝑈𝛴𝑉∗, Where 𝑈 (66 × 66) contains the left eigenvectors and 𝑉 (6 × 6) contains the right 

eigenvectors. The matrix 𝛴 (66 × 6) contains the eigenvalues, or the principal components, along 

its main diagonal. The scree plots are shown in Figure 60.  

 

Figure 60 PCA scree plots of six growth parameters. Calculating the cumulative sum of the eigenvalues 

indicates that the first three are enough to explain 99% of the variance in the data. 

 

The cumulative sum of the eigenvalues indicated that more than 99% of the variance can be 

explained by the first three principal components, and so it is reasonable to reduce the dimension 

of these measurements from six to three. In addition, the Pearson correlation coefficients between 

the MGRs and SPGs were calculated (Figure 61). To reduce the dimension, the first three rows 

from the right side of matrix 𝑉 were deleted and multiplied by 𝑋 from the right side: 𝑋𝑉𝑟 = 𝑈𝑟𝛴𝑟. 



 98 

This is now a representation of the projection of the entire data on three principal components, 

which are presented in Figure 62.  

 

Figure 61 Pearson correlation coefficient among set of parameters found in three different environments (LB, 

M9CG, and M9G media) for 65 E. coli single gene deletion mutants and the wild type from their minibatch 

growth phenotypes. The correlations are high and significant among most parameters. *𝒑 = 𝟎. 𝟎𝟏, **𝒑 =

𝟎. 𝟎𝟎𝟏, ***𝒑 = 𝟎. 𝟎𝟎𝟎𝟏. 

 

Figure 62 Mutants are categorized into two clusters (A and B) based on three calculated principle 

components. Cluster A includes mutants that exhibit very slow growth or low saturation under low nutrition 

conditions (M9CG and M9G). Both wild type and ΔatpA are in cluster B, illustrating similarities in their 

population growth. 



 99 

Clustering of data was performed using the hierarchical method. In this method, first the 

similarities between every pair of mutants are found by measuring the distance between them, then 

using that information, each pair is linked into a binary cluster. In the next step these binary clusters 

are linked again to form larger clusters. This process is repeated until the number of clusters 

reaches the intended value. We used the built-in MATLAB function “clusterdata” for this purpose 

and set the maximum number of clusters to two. 

5.1.5 Oxygen consumption rate and extracellular acidification rate  

Oxygen consumption rate (OCR) and extracellular acidification rate (EACR) were 

measured using a Seahorse assay modified for bacterial cells100. The wells of a 96- tissue well 

microplate (Agilent) were coated by poly-L-lysine (0.1% (w/v) Poly-L-lysine from Sigma-

Aldrich) in order to bind and immobilize the bacteria in preparation for the measurements. This 

was achieved by adding 15 𝜇𝑙 of 0.0004% and leaving the plate in a hood overnight to allow the 

evaporation of the solution. The following day, each well was rinsed with 200 𝜇𝑙 of dH2O to 

remove excess poly-L-lysine molecules. This has been shown to have a negligible effect on the 

metabolism of E. coli118. 

Wild type and ΔatpA cells were grown in LB overnight in an incubator at 37℃ with shaking 

at 240 rpm. The following day, they were diluted 100x in the three different media (LB, M9CG, 

and M9G) and regrown at 37℃ while shaking at 240 rpm until OD600 ~ 0.3. The cultures were 

then diluted further to OD600 ~ 0.02 in the associated fresh medium. 90 𝜇𝑙 of each culture was 

added to the poly-L-lysine coated wells of the microplate in triplicate wells, and the plate was 

centrifuged for 10 minutes at 4,000 rpm. An additional 90 𝜇𝑙 of the associated fresh medium was 

then added to each well. In addition to the bacterial cultures, three wells were filled with clear 
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media (no cells) only for control, and the plate was incubated for 1 hour before placing it in an 

Agilent Seahorse XFe96 Analyzer for measurements.  The OCR and EACR measurements of the 

control wells are represented in Figure 63. For normalization, multiple bright field images of 

multiple wells were taken, and an approximate concentration of cells was calculated using imageJ. 

Examples of these images can be seen in Figure 63. 

 

Figure 63 Examples of brightfield images taken from a microplate prepared the same way as used in the 

seahorse experiment. a) wild type in LB, concentration was found to be 61±30 cells/mm. b) ΔatpA cells in LB, 

concentration was found to be 50±47 cells/mm. c) Wild type in M9CG, concentration was found to be 70±35 
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cells/mm. d) ΔatpA cells in M9CG, concentration was found to be 68±22 cells/mm. e) wild type in M9G, 

concentration was found to be 73±18 cells/mm. f) ΔatpA cells in M9G, concentration was found to be 77±27 

cells/mm. g) Background measurements for oxygen consumption rate and extracellular acidification rate for 

samples where there are no cells present in the liquid. 

5.1.6 Single-cell experiments in mother machine 

Cell length and protein expression were measured using the microfluidic trapping device, 

the “mother machine”49 (for details on fabrication of mother machine see Chapter 2.0). The wild 

type strain containing the plasmids PZA3R-mcherry and PRJ2001-GFP-Fis, or the ΔatpA strain 

with these two plasmids and also pXX563, were grown from an agar plate overnight at 37°C with 

strong agitation (240 rpm) in the selected medium (LB, M9CG, or M9G) and with appropriate 

antibiotics. The overnight cultures were then diluted 100-fold in fresh medium and grown at 32°C 

until early exponential phase, optical density (OD600) of 0.1-0.2. Cells were then concentrated into 

fresh medium to an OD600 ∼ 0.3 and loaded into the trapping device that was then mounted on a 

Zeiss Axio Observer microscope with a 100× objective. Temperature was maintained at ~ 30°C 

using an in-house made incubator. Fresh medium was flown into the device at a rate of 1 ml/hr 

throughout the entire experiment. All media getting pumped into the device contained 1mM 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) for GFP-Fis induction. In some experiments, 

propidium iodide (IP) from LIVE/DEAD TM BacLight TM Bacterial Viability Kit (ThermoFisher 

Scientific) was added to the medium to identify dead cells. In such experiments, cells did not 

contain the plasmid PZA3R-mcherry, and so the red channel was used to detect the dye. Images 

of the channels were acquired every 3-6 minutes in phase contrast and fluorescence mode using a 

CCD camera (Zeiss AxioCam MRm). This resolution ensures a continuous measurement relative 
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to the typical timescales of change in both cell size and protein content, while minimizing the 

damage to the cells. The software TLM tracker62, along with custom designed MATLAB codes 

were used to measure the length and fluorescence intensity of the mother cell. 

5.2 E. coli single gene deletion mutants display media-dependent growth in microbatch

cultures 

Random gene inactivation in cells of bacterial colonies can have substantial consequences 

for bacterial physiology in an environment-dependent fashion. To explore this idea further, first 

we tested, in microbatch cultures, the growth of wild-type (wt) E. coli BW25113 and its 65 isogenic 

single gene deletion mutants (listed in Appendix D). We selected these mutants because in a 

previous study they displayed the most severe growth defects in a soft-agar based colony assay 

under single-substrate limited growth54. We used three different growth media as proxy for 

different environments for wt E. coli cells as mentioned in Section 5.1.1: a rich medium (LB) that 

results in rapid growth (25 minutes division time at 37°C); a medium resulting in average growth 

(M9CG, 50 minutes division time at 37°C); and a glucose-limited medium resulting in slow growth 

(M9G, 75 minutes division time at 37°C). In this microbatch plate setup, favored nutrients are 

consumed first by the growing E. coli population, which leads to a continuous change in substrate 

concentrations and the pH of the environment120,121. However, in contrast to that seen in soft-agar 

colony assays114, the emergence of localized microenvironments is not expected to occur.  

 We observed significant differences in the growth curves (Figure 59) and derived growth 

rates (Figure 64) of wt E. coli and its isogenic single gene deletion mutant strains in the three  
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Figure 64 Specific growth rate of bacterial populations. The calculated specific growth rate () for wild-type 

E. coli and its 65 tested isogenic mutants in LB, M9CG, and M9-G growth media are shown. The value for i 

at time ti is derived from the growth curves of Figure 59 using the equation, ln(Ni-1/Ni)/(ti-ti-1), where Ni is the 

population concentration (OD600) at time ti. Labels are the same as in Figure 59. 
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different growth media. To quantitatively assess these differences, we extracted two parameters 

from the obtained growth curves: maximum growth rate (MGR) and saturation point of growth 

(SPG), using an established method54 explained in Section 5.1.3 (Figure 58). We observed 

significant differences in the calculated MGR and SPG values for the wt and 65 single gene 

deletion mutant strains (Figure 65) in the three growth environments.  

 

Figure 65 Histograms of MGR and SPG values for E. coli cultures. (A) The MGR and (B) SPG values for 

wild type (wt) E. coli and the indicated isogenic single gene deletion mutants are shown. Values are 

normalized such that all parameters for wt E. coli are equal to one. 
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We then assessed the relationships among the strains by calculating the Pearson correlation 

coefficient among their six derived growth parameters (MGR and SPG in LB, M9CG, and M9G). 

The observed strong correlations among several of them (Figure 61) suggested that our data could 

be reduced to fewer parameters. Thus, we performed principal component analysis (PCA) to obtain 

key attributes underlying growth features, and to identify mutants that display similar growth 

profiles. The principal components acquired from these analyses have indicated that 99% of the 

variability among the mutant strains can be characterized by using only three parameters (Figure 

60). The projection of data points onto the principal components is shown in Figure 62. Subsequent 

hierarchical clustering grouped the strains into two main clusters. Mutant strains in Cluster A 

(depicted in light gray in Figure 62) exhibit significant population growth differences with wt E. 

coli. The remaining mutants in the second cluster (depicted in blue in Cluster B) display less 

difference from wt E. coli and less divergence in their growth profiles.  

When grown in LB medium, some mutants with a deleted ATP synthase subunit (ΔatpA, 

ΔatpD, ΔatpE, ΔatpF, ΔatpH), a DNA repair and stress response related gene (ΔrecB), ubiquinone 

biosynthesis related genes (ΔubiF, ΔubiH), a gene related to electron transport (ΔnuoJ), a 

tricarbo ylic acid cycle related gene (ΔsucB), a bacteriocin transport gene (ΔtolR), and one other 

strain (ΔfkpB), were found to have significantly lower growth rate compared to wt. However, of 

these strains, only five of them showed a significant lower saturation point compared to wt cells 

(ΔatpA, ΔatpH, ΔrseA, ΔsucB, ΔubiF,). When grown in M9CG or M9G media, a different set of 

mutants showed significantly lower growth rates. These strains consist of a mutant where a 

different ATP synthase subunit has been deleted (ΔatpB) and a mutant that also existed in the first 

set (ΔatpH), mutants with deleted genes related to sulfur metabolism (ΔcysC, ΔcysG, ΔcysH, ΔcysI, 

ΔcysN, ΔcysU, ΔcysW), mutants with deleted bacteriocin transport genes (ΔtolA, ΔtolB), and one 
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other mutant (ΔrimM). All these strains, except for two (ΔcysW, ΔtolA,), demonstrated a lower 

saturation point than wt E. coli cells in M9CG. Also, all mutants in addition to one more strain 

(ΔcysE) exhibited a lower SPG when grown in M9G. One strain had lower growth rate than wt in 

M9CG, but higher in M9G (ΔydjI). As expected, all values for growth rate are lower than wild 

type (except for the two cases of ΔdegP and ΔydjI in M9G), illustrating that no single gene deletion 

can increase the E. coli cells’ normal growth rate in these e perimental conditions. It is also notable 

that some mutants have a closer growth rate value to wt E. coli in M9CG than in LB; for example, 

ΔatpA exhibits higher similarity in growth to wt E. coli when in M9CG, and even higher similarity 

when grown in the nutrient limited medium, M9G. 

Among the E. coli mutant strains there were single gene deletion mutants of the eight 

subunit-encoding genes of ATP synthase enzyme complex (ΔatpA, ΔatpB, ΔatpC, ΔatpD, ΔatpE, 

ΔatpF, ΔatpG, ΔatpH). The structure of ATP synthase in E. coli consists of two main modules 

(Figure 66); The F0 module is comprised of subunits a, b, and c, is embedded in the inner bacterial 

membrane, and is responsible for proton transfer. The other module, F1, with subunits 𝛼, 𝛽, 𝛾, 𝜀, 

and 𝛿 is membrane extrinsic and carries out the proton gradient-driven ATP synthesis115,122. The 

growth characteristics of the strains lacking either the 𝛿 subunit (ΔatpH) or the a subunit (ΔatpB) 

(Figure 66) places them in cluster A (Figure 62) (The a-subunits constitute two aqueous channels 

that allow proton migration, while the 𝛿-subunit is part of the peripheral stalk and is bound to one 

of the three 𝛼-subunits123). In contrast, in the absence of the b-, c-, 𝛼-, 𝛽-, 𝛾-, or 𝜀-subunits, cells 

grow more similarly to wt E. coli (Figure 66). Such differences were not unique to ATP synthase; 

for example, we observed similar dichotomies among the growth of single gene deletion mutants 

encoding enzymes of the cysteine metabolism pathway (Figure 67). In summary, these data imply 
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that environmental conditions alter the growth of ATP synthase subunit deficient bacteria, with 

various dependences on intact ATP synthase activity. 

 
 
Figure 66 Growth similarities of E. coli ATP synthase subunit gene deletion mutants. The multi-unit enzyme 

complex, ATP synthase is embedded in the bacterial inner cell membrane and consists of two main modules; 

F0 contains subunits a, b, and c, while F1 contains subunits α, β, γ, ε, and δ. The graphs plotted for the 

growth of wild type (darker lines) compared to growth of indicated isogenic mutant strains (lighter lines) are 

shown. The x axis of all graphs is time (hr) and y axis is ln(N/N0), where N is the concentration (OD600) and N0 

is the initial concentration of the batch culture. 
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Figure 67 Cysteine metabolism pathway in E. coli bacteria . The population growth of both wild type (darker 

lines) and the single gene subunit deletion mutant (lighter lines) are shown in graphs around the pathway. 

Five of these mutants (∆cysC, ∆cysH, ∆cysI ,∆cysN, ∆cysU) are in cluster A from  Figure 62, indicating slow or 

no growth in nutrient limited conditions (M9CG and M9G). The other four mutants (∆cysD, ∆cysP, ∆cysE, 

∆cysW)  are in cluster B, indicating adaptive behaviors in all tested environments. 

 

When a gene is randomly inactivated, E. coli cells likely undergo changes in their internal 

state in order to compensate for the loss of that gene’s function. Consequently, the similarities 

among the observed growth profiles may reflect shared adaptive strategies. Although previous 

studies have investigated the roles of the residues of the ATP enzyme in detail124,125, their specific 

roles in bacterial adaptation to environmental challenges remain unclear. In the following sections, 

we focus on the adaptive strategies of one such single gene deleted mutant.  
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5.3      Deletion of the ATP synthase atpA subunit increases cellular respiration in E. coli 

We next wished to determine how major cellular metabolic functions in E. coli change 

when one of the ATP synthase subunits is inactivated. To this end, we focused on the atpA gene, 

which encodes the 𝛼-subunit of the ATP synthase (Figure 66).  This subunit is part of the catalytic 

head of the enzyme that phosphorylates A   and is connected to the enzyme’s central stal . Three 

active sites are formed at the interfaces of the three 𝛼- and 𝛽-subunits53. It has been proposed that 

the 𝛽-subunit serves as the high affinity catalytic site responsible for binding ADP80. Thus, E. coli 

cells may be able to synthesize ATP to some e tent even in the absence of AT  synthase’s 𝛼-

subunit. Indeed, the specific growth rate (𝜇) of wt and ΔatpA cells are different in the three 

different growth media. In LB medium, wt and ΔatpA cells have significantly different growth 

rates; however, when grown in less rich media (M9CG and M9G) their growth becomes more 

similar (Figure 68a).  Consequently, the calculated MGR and SPG of both populations display 

similar values only in environments where cells grow slower (Figure 68b).  

To further investigate this phenomenon, we explored the association of population growth 

with E. coli cells’ respiration and glycolysis. To this end, we measured the o ygen consumption 

rate (OCR) and extracellular acidification rate (ECAR) (proxy for cellular respiration and 

glycolysis, respectively55) of wt and ΔatpA cells by using the Seahorse technology126.  ΔatpA cells 

exhibited a higher OCR and ECAR in all media (Figure 68c). However, this difference was most 

striking in rich LB medium while the difference was minimal in nutrient poor M9G medium. 

Cumulatively, these data indicate that during slow growth, ΔatpA mutant cells are able to 

compensate for their suboptimal ATP synthase activity, at least in part by consuming oxygen and 

glucose at a higher-than-normal rate. However, this compensatory mechanism(s) is not sufficient 

to maintain maximal growth in rich medium for ΔatpA mutant cells. The mode by which cells use 
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oxygen or glucose at a higher rate in the absence of a certain gene products requires further 

investigation.   

 

Figure 68 Differences in the physiology of ∆𝒂𝒕𝒑𝑨 from wt E. coli cells in varied media . Darker colors 

represent wild type and lighter colors represent ∆𝒂𝒕𝒑𝑨 mutant: black, darker blue, darker red = wild type; 

gray, lighter blue, lighter red = ∆𝒂𝒕𝒑𝑨. a) Specific growth rate of bacterial population calculated by the first 

derivative of population growth curves. Gray exhibits a larger perturbation from black compared to light 

blue from dark blue and light red from dark red, indicating the similarity of wild type and ∆𝒂𝒕𝒑𝑨 growth 

curves during slow growth (in M9CG and M9G). b) Maximum growth rate and saturation point of growth of 

wild type and ∆𝒂𝒕𝒑𝑨 compared in three different media. The saturation of wild type and mutant display 

similarities during slow growth. c) Oxygen consumption rate and extracellular acidification rate of wild type 

and mutant compared in three different media. ∆𝒂𝒕𝒑𝑨 cells consume oxygen and glucose at a higher rate 

compared to wild type in order to compensate for their lower ATP synthesis rate. 
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5.4 Deletion of the ATP synthase atpA subunit increases death rate in single E. coli cells 

Differences among the growth curves of bacterial populations may reflect different 

adjustments in growth on a single-cell level, i.e., a difference in cell mass or cell proliferation rate 

of wt and mutant cells. Alternatively, it could also reflect difference in cell senescence and death 

rate. To investigate this issue, we examined the growth, proliferation and phenotypic behavior in 

senescence and death of wt and ΔatpA mutant E. coli cells at the single-cell level when cells were 

trapped individually in a microfabricated array of channels (i.e., in a “mother machine”)127. In such 

experiments, we selected one colony from a plate culture, allowed it to grow in the desired 

medium, and then loaded the cells into the machine when the population was in its exponential 

growth phase (for details of experimental procedures see Section 5.1.6). As a result, all cells in 

each experiment were the descendants of one single mother cell; however, their relationship at the 

time of the measurements was distanced and unknown to us. After enough cells were trapped, we 

fed the cells with one of the media used in the previous sections (5.2 and 5.3) and acquired their 

images in phase contrast and fluorescence modes until they stopped proliferating, and their 

fluorescence decayed to non-detectable levels. Images taken over several days were analyzed 

image by image to obtain the data presented here. If a cell was trapped at the end of a channel in 

the first frame and was still elongating during the last 10 frames, it was considered to be alive at 

the end of the experiment, otherwise it was considered dead. Sometimes a cell would enter a 

channel in the middle of the experiment, divide for a while and then die; these cells were also 

considered in our statistics since.  

To investigate whether the death rate of cells can explain the difference in the population 

growth observed in Figure 68, we used the survival function, which is a measure of how many 

cells are still proliferating after a certain amount of time. This measure cannot be combined from 
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different experiments due to the unknown differences of the initial conditions and minor 

differences in nutrition, so the results of this analysis are presented here for one example 

experiment in each strain and each medium. The first columns of Figure 69 and Figure 70 show 

such measurements for wild type and ΔatpA cells, respectively. The cells are considered dead after 

they stop replicating in these graphs. These data points could all be well-fitted to a Gompertz 

distribution, 𝑒−
𝑎

𝑏
(𝑒𝑏𝑡−1)

, where 𝑎 is a constant, 𝑏 is the death rate and 𝑡 is time. We also calculated 

the probability of cell death during a certain time, namely the hazard function. A hazard function 

that increases with time indicates increased death probability with time, which signifies aging. 

Although molecular mechanism of aging in bacteria has yet to be identified, multiple previous 

studies have demonstrated aging in wt E. coli by means of the increase in their hazard function54.  

The hazard functions for cells in different media are presented in the right columns of 

Figure 69 and Figure 70 for wild type and ΔatpA cells, respectively. These plots demonstrate aging 

in our cultures, in agreement with published literature, irrespective of the medium or the strain 

used. In addition, our results show that the deletion of the atpA subunit of the ATP synthase does 

not alter the behavior of the hazard accumulation function in time. In both, wt and ΔatpA strains, 

the hazard accumulation increases linearly in time. However, comparing the death rate of the 

ΔatpA cells to that of the wt, represented by the parameter b in the Gompertz distribution function, 

which is obtained by fitting our data to the Gompertz model, reveal a significantly higher death 

rate for the mutant strain. Figure 71 illustrates a comparison of the values for both strains in all 

three environmental conditions. It is evident that the death rate of cells is much higher when the 

atpA subunit of the ATP synthase is deleted. Also, the death rate of both strains increases as the 

nutrients become more limited in the growth medium. A negative correlation between the death 
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rates and the maximum growth rates found for the population in Figure 68b suggests that a higher 

death rate in single cells results in a lower maximum growth rate of the population.  r 

 

 

Figure 69 Survival functions and Hazard functions of MG1655 wild type cells in three different media. Only 

cells that are still proliferating are considered as survived cells. Black represents the medium LB, blue 

represents M9CG, and red represents M9G. The dots are the actual data, and solid lines are the fits. The 

survival function has been fitted to a Gompertz distribution with the equation exp(-(a/b)(exp(bt)-1)), the value 

of 𝒃 from this fit has been used to plot the exponential function (solid line) on the hazard function graph with 

the equation aebt. The R2 values are the coefficient of determination of the Gompertz fit. The value of death 

rate increases as the nutrition is limited. 
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Figure 70 Survival functions and Hazard functions of MG1655 ΔatpA cells in three different media. Only 

cells that are still proliferating are considered as survived cells. Grey represents the medium LB, light blue 

represents M9CG, and light red represents M9G. The dots are the actual data, and solid lines are the fits. The 

survival function has been fitted to a Gompertz distribution with the equation exp(-(a/b)(exp(bt)-1)), the value 

of 𝒃 from this fit has been used to plot the exponential function (solid line) on the hazard function graph with 

the equation aebt. The R2 values are the coefficient of determination of the Gompertz fit. The value of the 

death rate is higher when the nutrition is more limited. 
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Figure 71 Values of death rate for MG1655 wild type and ΔatpA cells. These values were extracted from the 

Gompertz fits of Figure 69 and Figure 70. It is evident that cells without the atpA subunit of the ATP synthase 

have a higher death rate compared to the wild type. Also, when the nutrition is more limited, the death rate 

becomes higher. A negative correlation between these values and the population maximum growth rate 

values represented in Figure 68b is observed. 

5.5 Mutant cells exhibit a higher post-replicative lifetime compared to wild type cells 

Another major revelation of our single cell analysis was that cells did not disintegrate as 

soon as they stopped proliferation. To better identify the e act time of death relative to the cell’s 

replicative lifetime, we utilized a commonly used commercial bacterial viability kit (BacLightTM, 

Thermofisher) in our experiments. The red dye propodeum iodide from this kit was added to the 

medium being pumped into the mother machine at all times. This dye can only enter the cell and 

stain it when the plasma membrane has been disintegrated. To our surprise, the dye did not stain 

cells right after they stopped proliferating, but several hours later. We termed this segment of the 

cell’s lifetime as ‘post-replicative lifetime’ ( RL) and the time where the cell is proliferating as 
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‘replicative lifetime’ (RL). The values for these two parameters were measured in all experiments 

and are represented in Figure 72. Note that the replicative lifetime presented in this figure is not a 

real parameter, because at the time that the cells enter one of the traps in our experimental setup, 

the number of replications since its birth is not known. However, due to the high number of data 

points in each experiment, the distribution of these values should be a good representation of the 

entire population. In addition, with respect to the conditions of our experiments, comparison 

between wild type and mutant cells is valid even if the values themselves do not have a significant 

meaning.  

 

Figure 72 A comparison of replicative lifetime and post-replicative lifetime between MG1655 wild type and 

ΔatpA cells. The two strains show more or less similar distributions of replicative lifetime, however an 

increase is observed in the post-replicative lifetime of ΔatpA cells. Three colors refer to three media: black is 

LB, blue is M9CG, and red is M9G. 
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A comparison of the replicative lifetime distributions of the wt and the ΔatpA strains, 

reveals that they exhibit almost the same range, albeit with distinct distribution shape. Wild type 

cells tend to have a higher fraction of cells dying earlier in the experiment, while the distribution 

of mutant cells is more uniform. Notice that these values are the same used in Figure 69 and Figure 

70, which show a higher death rate for mutant cells. It is also worth noting here that the distribution 

of replicative lifetime for wild type and mutant cells looks very similar in M9CG, where they also 

exhibit similar population growth (Figure 66). 

An examination of the post-replicative lifetime distributions in Figure 72 shows that the 

mutant cells have significantly higher values in M9CG and M9G. This indicates that while mutant 

cells do not significantly differ in their replicative lifetime from wt cells, they are able to maintain 

their cellular integrity for a longer time. 

5.6 E. coli cells exhibit three death phenotypes  

A thorough examination of the images acquired from single cells described in the previous 

section reveal that individual cells have different fates and growth rates depending on their 

environmental conditions. Here, we focus on the modes of senescence and death that the different 

cells exhibit. A subset of cells lose one of the plasmids we introduced, and die as a result of losing 

the antibiotic resistance gene contained in that plasmid, and which allows the cells to survive the 

antibiotic present in the medium. Since the death of such cells is due to our experimental 

conditions, we did not consider this mode of death as a phenotype in our analyses. We organize 

the rest of the cells into three phenotypes based on the death mode they exhibit. In this section we 

describe the different phenotypes of cell death identified in our experiments. 
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Our results show that E. coli cells display three distinct death phenotypes. Figure 73 

presents an example of each of these phenotypes. In phenotype I- cells lose their chromosome 

during division, however, the cell can still perform some activities that are not reliable on the 

chromosome (Figure 73a). This activity in bacteria with no chromosome has also been reported 

previously128. In phenotype II- cells preserve their chromosome throughout their entire life, but 

they enter a non-dividing phase before lysis (Figure 73b). In phenotype III – cells behave the same 

as in phenotype II, with the difference that at the time of their last division, they become 

filamented. We consider any cell whose length exceeds twice the average size in the same strain 

and medium to be filamented (Figure 73c). Most cells in all experiments filamented at some point 

during their replicative lifetime, however phenotype III only includes cells that remained long after 

their last division. Also, none of type I cells were filamented during their last division. In instances 

where the cells became much longer than the channel length (30 𝜇m), they would escape from the 

channel, so our statistics do not include that subset of the population. In Figure 73 the time before 

the dashed line represents the replicative lifetime of the cell, and the time between the black and 

the red dashed lines represents the post-replicative lifetime. 
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Figure 73 Growth and death phenotypes of individual E. coli cells. Superimposed images of differential 

interference contrast (DIC), green, and red fluorescence. Cells express GFP-Fis upon induction with IPTG 

which bind to the chromosome making it visible, hence the green color in these figures represents the cell 

nucleoid129. Propidium iodide is present in the medium, which stains lysed cells red. All three example cells 

are wild type BW25113 in LB. (a) An example of a Type I cell. The last division of this cell’s lifetime occurs at 

12:30 in which a part with no chromosome is separated. This cell can hold on to its structure for more than 

three hours, when at 16:15 the cell membrane is compromised and the dye can enter (lysis). (b) An example of 

a Type II cell. This cell divides at 09:45 for the last time. It still contains a chromosome but no change in 

length is visible after this division. Lysis occurs at 11:15. (c) An example of Type III cell. The last time-point 

that the cell is changing in length is at 16:55 where there are two separate chromosomes in the cell. The cell 

then holds its structure until time 24:00 where the red die can enter the cell. 

c)
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5.7 Single cells switch their phenotype to adapt to new conditions 

The fraction of each phenotype in the two strains growing in different media are presented 

in Table 5 (for details see Appendix Table 2). Our results indicate that the fraction of phenotype 

II within the population is increased upon deletion of the 𝛼-subunit of ATP synthase. Similarly, 

wt cells switch to phenotypes II and III in an environment with lower nutrients (M9CG or M9G). 

Thus, we can conclude that the transformation from phenotype I to phenotypes II and III is the 

source, or one of the sources, of the differences observed on a population level and is a direct result 

of bacterial adaptation to the environment. In addition, our observations revealed that some cells 

would filament right before their growth stops (phenotype III), while others would not (phenotypes 

I and II). It is known that filamentation is an SOS response of the cell, but the details of how and 

when a cell enters this phase is not completely known56.  

Table 5 Percentage of each death phenotype present in two strains and in three growth media. Wild type E. 

coli cells revealed three different death modes, while ∆atpA cells revealed only two.  

 
Wild type ∆atpA 

Type I % Type II % Type III % Type I % Type II % Type III % 

LB 20.4 59.2 20.4 0 76.3 23.7 

M9CG 16.3  65.5 18.2 0 83.6 16.4 

M9G 10.7 17.7 71.6 0 56.4 43.6 

 

We next questioned whether any of the discovered phenotypes expresses spontaneous 

death. The cells that were still alive at the end of the experiment were removed from the statistics, 

and we divided the rest into three categories and calculated the survival function for each 

phenotype. Figure 74 displays the hazard function for each phenotype in three different media for 

wild type cells. It can be seen that all three types exhibit aging, but with different death rates. The 
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death rate of phenotype I seems to be the highest, which means that cells that lose their DNA tend 

to die much faster than cells that do not lose their DNA. Figure 75 displays the same data for ΔatpA 

cells. In most cases, type III cells have a higher death rate compared to type II cells. Figure 76 

represents all death rates of both strains in three media. A comparison of these values shows that 

as mentioned before, type I cells tend to have a higher growth rate compared to type II and type 

III. This figure also reveals that wild type and ΔatpA cells exhibit different behaviors in different 

media. For example, when ΔatpA cells are in M9G medium (low nutrition), type II exhibits a lower 

death rate compared to type III, but for wild type cells in the same medium, type II cells exhibit 

almost the same rate compared to type III. These differences could account for the differences 

observed in the population growth seen in Figure 66.  

 

Figure 74 The hazard functions for wild type cells in three different media. Each phenotype was considered 

as a separate population which their survival function goes from 1 (all cells alive) to 0 (no cells alive), then the 

hazard function was calculated from it as described in Section 5.4. Colors correspond to different media, 

black is LB, blue is M9CG, and red is M9G. All three phenotypes in all three media exhibit signs of aging but 

with different death rates. 
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Figure 75 The hazard functions for ΔatpA cells in three different media plotted as described in Figure 74. 

Mutant cells only exhibit two phenotypes. Colors represend media, black is LB, blue is M9CG, and red is 

M9G. 

 

Figure 76 The measured death rate for each phenotype in each strain in each medium. Type I cells exhibit a 

higher death rate compared to the other two phenotypes. Wild type and ΔatpA cells behave differently in 

different media. Colors represend media, black is LB, blue is M9CG, and red is M9G. Darker colors are wild 

type and lighter colors are ΔatpA cells. 
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The distributions of replicative and post-replicative lifetimes of each phenotype were also 

determined, and they are illustrated in Figure 77.  

 

Figure 77 Replicative lifetime (RL) and post-replicative lifetime (PRL) of each phenotype in each strain in 

each medium. The distributions for wild type and mutant cells look similar in LB, but in M9CG and M9G 
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mutant cells exhibit a higher percentage of the population with long lifetime. Colors represend media, black is 

LB, blue is M9CG, and red is M9G. Darker colors are wild type and lighter colors are ΔatpA cells. 

 

These distributions seem to behave similarly for wild type and ΔatpA cells in LB (rich medium), 

but in M9CG and M9G the mutant cells exhibit a higher number of cells with longer lifetimes. 

Figure 78 compares the averages of these distributions. It can be seen that the average replicative 

lifetime of ΔatpA cells is always lower than wild type cells, except for when they are growing in 

M9G. Note that all these lifetimes are measured in hours, and it is possible that the results would 

be different if the lifetime was measured as number of divisions. It is interesting to plot these 

graphs in generation instead of time, which will be accomplished in a future study by our group. 

 

Figure 78 The average replicative and post-replicative lifetimes of each phenotype in each strain in each 

medium. These values are the averages of the distributions in Figure 77. Mutant cells exhibit shorter average 

lifetimes compared to wild type cells, except for in M9G. Colors represent media, black is LB, blue is M9CG, 

and red is M9G. Darker colors are replicative lifetime and lighter colors are post-replicative lifetime. 

5.8 Conclusions  

The main goal of this chapter was to link the metabolic efficiency of cells to their growth 

rate and death. For this purpose, we performed two types of experiments, one set of population 

experiments where a very low concentration of cells were grown in a medium until saturation, and 
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one set of single-cell experiments where the experimental conditions were favorable and allowed 

a cell to grow forever, however, we observed that this does not happen and that all cells eventually 

die.   

Moreover, we find that ΔatpA cells in all media display a higher death rate compared to wt, 

which can be due to their lower metabolic efficiency. Our results show that death rates were always 

higher, and maximum growth rates were always lower, in strains and media that revealed lower 

OCR and EACR, which again points to the fact that the cells with lower metabolic efficiency die 

sooner. 
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6.0 Discussions and future directions 

This research provides a better understanding of the cellular growth and its control affect 

size homeostasis and senescence in bacteria organisms, which are fundamental processes essential 

for all life forms, and central problems in biophysics research. In the current study, we utilize 

recent technical developments that have made it possible to obtain large number of precise 

measurements of cell growth and gene expression dynamics at the single-cell level, in order to 

develop a better quantitative characterization of bacterial growth and division dynamics, and lysis 

processes.  

In chapter 2.0, we discussed one of these measurement methods applied in this research to 

obtain the main experimental data, which is based on the use of a microfluidic device known as 

the “mother machine”40. Using this experimental setup, we were able to obtain high-throughput, 

high-quality measurements of cell growth and division dynamics. Analyzing such large quantities 

of data in a meaningful manner to infer phenomenological models and molecular mechanisms that 

govern cellular behavior remains a challenging task. Much of the effort is usually guided by 

preconceived models of cell growth and presumed roles of various factors, which are then tested 

in the experimental data13,118. Such an approach could limit the ability to uncover hidden 

information as it narrows the scope of the examination of the data. In Chapter 3.0, we have 

employed a new method in analyzing the dynamics of single bacterial cells, which aims to uncover 

dependencies among different measurable quantities without any prior assumptions about 

underlying mechanisms. Our method, which we termed “constrained multivariate regression”, is 

similar to both standard “multiple regression” and “multivariate regression”. Our analysis 

reproduces dependencies that were reported in previous publications, including those found in 
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phenomenological models such as the adder model10,12,130. Our findings emphasize a more general 

aspect of this approach. A search for mechanisms controlling size regulation of dividing cells is 

only one example of recent quantitative studies of complex biological processes. Looking for the 

underlying mechanism of a biological phenomenon, such as the bacterial growth control, can lead 

to proposing preconceived models about the nature of the mechanism. In reality however, many 

mechanisms can contribute to the same phenomenon, and their relative contributions can also 

change depending on various conditions. It is thus important, not to be restrained by such 

preconceived models and to use more “agnostic” approaches for quantitative analyses, such as the 

one presented in this chapter. 

This method provided us with the same qualitative theories from several repeat 

experiments. However, the values that we achieved varied quantitatively among experiments. 

These variations could be due to cryptic difference between cell lineages and their history, such as 

growth time and final cell concentration reached prior to loading the cells into the traps. They 

could also result from experimental conditions beyond our control. The latter illustrates the 

presence of possible systematic errors even in well-controlled experiments.  This may include 

small variation in the width of the microchannels obtained from the microfabrication process65, 

the conditions of the media used, and the temperature dynamics in the incubator. Another potential 

source of variation is the build-up of microenvironments in those microchannels over time. As 

often is the case, answering quantitative questions more precisely calls for improving the 

experimental approach. To remove possible microenvironments, more sophisticated microfluidic 

devices can be used, such as replacing one side of the microchannels with a semipermeable 

membrane through which nutrients can be exchanged more efficiently131 as shown in Figure 79. 
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Figure 79 The left device depicts a current model of the mother machine where cells are fed through a wide 

channel. The right device is a possible model for a new device, where a semipermeable membrane is placed on 

the entire device so that the cells can be fed through a flow that moves above the channels, and the offsprings 

can be washed out through a flow that is under the membrane. 

 

Another important result of our analysis in Chapter 3.0 is that two sister cells born from 

the same mother cell exhibit distinct growth rates; the cell that receives a smaller fraction has a 

higher growth rate. The main theory of symmetrical division of bacteria states that when a cell 

divides, each daughter cell receives half of the molecular content of the mother cell. Since the 

molecular content of the cell is distributed uniformly in the cell volume, each daughter receives 

the same concentration of molecules with the exemption of DNA. Multiple chromosome 

replication forks are initiated in each cell while growing in length, and once two are complete, the 

cell divides and allocates one complete copy of the chromosome, with all the ongoing replication 

forks attached to it, to each of its daughters. The number of replication forks that each daughter 

receives is the same, which results in higher DNA concentration in the smaller sister cell. This in 

turn would lead to a faster production of proteins and other cellular building blocks and thus the 
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smaller sister grows faster than its larger sister. In Chapter 4.0, we tested this hypothesis by forcing 

the cell to grow without division with and without DNA replication. This increased the span of 

DNA concentration in the cells and provided a wider dynamical range of cellular growth. 

Examining the relationship between DNA concentration and growth rate using this method 

revealed a clear linear correlation between the two, suggesting that indeed, higher DNA 

concentration leads to faster cellular growth.   

To uncover more details of the molecular mechanism of cellular growth the effect of other 

cellular components involved in producing building blocks for the cell, on the growth rate should 

be investigated. The effect of ribosomes copy number on the cell growth rate has been speculated 

for a long time, however, it has never been measured at the single cell level. In addition, since the 

production of all important ingredients in the cell starts from the action of the RNA polymerase 

(RNAP) on the DNA, a higher concentration of DNA to RNAP could lead to a faster cellular 

growth and so a more detailed investigation on this matter could reveal interesting results. Such 

investigations combined with the results of our study here, could lead to the establishment of a 

quantitative mathematical link between the cellular growth regulation mechanism and the observed 

phenomenological feedback depicting cell size homeostasis, which is currently lacking. 

In addition to cellular growth, cellular death is also one of nature’s fundamental realities 

that is still subject to intense research efforts and the question of why all organisms undergo 

senescence and death is still challenging. Previous studies have assigned various reasons to cellular 

aging such as accumulation of damage132, genome instability133, and telomere maintenance in 

eukaryotes134. In Chapter 5.0, we explored how metabolic efficiency can contribute to cellular 

aging and death. We demonstrated that the model bacterium, E. coli, displays three alternative 

aging phenotypes, and that the majority of cells enter into a state that is phenotypically similar to 
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eu aryotic cells’ replicative senescence before lysis. We were also able to reveal signs of aging in 

wild type cells as well as a mutant where a subunit of the ATP synthase was deleted and show that 

in the absence of sufficient nutrients or in the case of a mutation, cells can adapt to their new 

environment by changing the ratio of phenotypes in the population. In conclusion, lowering the 

metabolic efficiency of cells by deleting a subunit of one of its most important enzymes (ATP 

synthase) does not lead directly to cellular death, however, it does affect cellular aging. Even 

though E. coli is a prokaryotic organism, where aging is different, using the toolkit of systems 

biology, we can e tend our understanding of how cells’ metabolic networ  organization and 

function influence their aging phenotype in bacteria to be applied to other eukaryotic cells as well 

as human aging-related diseases such as Alzheimer’s and heart diseases.  

The ultimate goal of such research studies is to be able to model senescence of E. coli and 

the effects of metabolic efficiency on aging, and to be able to obtain concrete conclusions on how 

the processes of aging and death are occurring. This model can then be used for a regression 

analysis, which will examine the correlation between the obtained parameters and their 

corresponding noises on the last generations before entering non-replicative lifespan. This will 

provide insight into whether the cell has a memory of how long it has lived, and as a consequence 

is determined to age and die. For a better understanding on the molecular mechanisms directly 

affecting cellular death, the content of a cell can be examined to observe whether an accumulation 

of damage appears, and in the case of its presence the aggregation could be identified by using 

dyes with the ability to tag proteins and DNAs, to recognize its content. In addition, the diffusion 

of the aggregation and origin of accumulation can be studied using single molecule tracking. The 

effect of single cell growth parameters (such as growth rate or division time) on the size and 

location of aggregations is also an interesting subject to investigate. Using a different microfluid 
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device where a cell can be trapped from its birth to death could also provide more insight into the 

process of aging. Genome-scale models such as flux balance analysis (FBA) are well-established 

tools for studying the metabolic state of cells. This modeling approach might be able to identify 

metabolic enzymes whose deletion or inactivation affect the replicative and non-replicative 

lifespans of E. coli cells, but do not kill them, such as the one studied here.  
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Appendix A Fitting growth curves 

The fitting parameters are: the initial size of each cell cycle, 𝑥1
𝐴, ⋯ , 𝑥𝑁

𝐴 and 𝑥1
𝐵 , ⋯ , 𝑥𝑁

𝐵; the 

growth rate of each cell cycle, 𝛼1
𝐴, ⋯ , 𝛼𝑁

𝐴 and 𝛼1
𝐵, ⋯ , 𝛼𝑁

𝐵; the time of division at the end of each 

cell cycle, 𝑡1
𝐴, ⋯ , 𝑡𝑁

𝐴 and 𝑡1
𝐵 , ⋯ , 𝑡𝑁

𝐵; the beginning time of the first cell cycle, 𝑡0
𝐴; and finally, an 

overall length offset, 𝑧. Thus, the duration of each cell cycle is given by 𝜏𝑛
𝐴 = 𝑡𝑛

𝐴 − 𝑡𝑛−1
𝐴  for cell 

A and 𝜏𝑛
𝐵 = 𝑡𝑛

𝐵 − 𝑡𝑛−1
𝐴  for cell B. Among the fitting parameters, 𝑡1

𝐵 , ⋯ , 𝑡𝑁
𝐵 as well as 𝑡𝑁

𝐴 and 𝑡0
𝐴 

(the latter is degenerate with 𝑥1
𝐴) are not affected by the constraint, so we set those to be the mid-

point of the two consecutively measured time points between which a division happened. The rest 

5𝑁 parameters are fitted using a least-squares cost function, 

𝐿 = ∑ ∑∑
1

2
 (𝑋𝑛,𝑖

𝑎 − 𝑥𝑛
𝑎  e𝛼𝑛

𝑎 (𝑡𝑛,𝑖
𝑎 −𝑡𝑛−1

𝑎 ) − 𝑧)
2

𝑙𝑛
𝑎

𝑖=1

𝑁

𝑛=1𝑎=𝐴,𝐵

 

with constraint equations, 

𝑥𝑛
𝐴 + 𝑥𝑛

𝐵 = 𝑥𝑛−1
𝐴  e𝛼𝑛−1

𝐴  (𝑡𝑛−1
𝐴 −𝑡𝑛−2

𝐴 )    for 𝑛 = 2,⋯ ,𝑁. 

The cost function is minimized numerically using the sequential quadratic programming 

method. 

An example of the fitted cell growth curves is shown in Appendix Figure 3. Note that the 

consecutive cell cycles of cell A are adjacent in time, whereas those of cell B can overlap or have 

gaps. From the fitted parameters, we could calculate the other cell cycle variables described in the 

main text. In particular, 𝜒𝑛
𝑎 = log 𝑥𝑛

𝑎 and 𝜙𝑛
𝑎 = 𝛼𝑛

𝑎 (𝑡𝑛
𝑎 − 𝑡𝑛−1

𝐴 ). Besides, the minimum value of 

the cost function represents the variance of the residual from the curve fitting, which gives an 

estimate of the measurement error: 
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𝜎2 = 2𝐿min ∑ ∑𝑙𝑛
𝑎

𝑁

𝑛=1𝑎=𝐴,𝐵

⁄  

Algorithm written in Python 3.5135 by BingKan Xue: 

1. # read raw data on cell length vs time: A (mother) and B (daughter)   
2. # locate division time and label cell cycle   
3. # extract growth factor, division fraction, and cycle duration   
4.    
5. import sys, os, glob   
6. import numpy as np   
7. import scipy.optimize as opt   
8. import matplotlib.pyplot as plt   
9.    
10. input_dir = '../SalmanLab/Traces_2cells'   
11. input_name = ''   
12. output_name = 'trace(crct)'   
13. output_name1 = 'extract(crct)'   
14. output_dir = 'results6_042817'   
15. if not os.path.isdir(output_dir):   
16.     os.mkdir(output_dir)   
17. file_list = glob.glob('%s/%s*.txt' % (input_dir, input_name))   
18. skip = 1    # number of rows to skip in the data file   
19. num_all = []   
20.    
21. for f in sorted(file_list):   
22.     # read file   
23.     filename = os.path.basename(f)[len(input_name):-4]   
24.     dat = np.genfromtxt(f, delimiter='\t', skip_header=skip)   
25.     print '\nfile: %s' % filename   
26.  
27.     # extract time and size for both cells   
28.     crop = ~np.isnan(dat[:,0])   
29.     timeA = dat[crop,0]   
30.     sizeA = dat[crop,1]   
31.     if np.isnan(sizeA).any():   
32.         raise RuntimeError('NaN found in data')   
33.     crop = ~np.isnan(dat[:,4])   
34.     timeB = dat[crop,4]   
35.     sizeB = dat[crop,5]   
36.     if np.isnan(sizeB).any():   
37.         raise RuntimeError('NaN found in data')   
38.      
39.     # locate divisions   
40.     divA = np.diff(sizeA) < -1    # size decrease   
41.     begA = np.nonzero(divA)[0][:-1] + 1    # beginning of each FULL cycle   
42.     endA = np.nonzero(divA)[0][1:]    # end of each FULL cycle   
43.     num = len(begA)    # number of cell cycles recorded   
44.     num_all.append(num)   
45.     print 'number of cycles: %d' % (num)   
46.     sizeB[np.isnan(sizeB)] = 99.    # cell B data may contain NaN (cell escapes)   
47.     divB1 = np.diff(sizeB) < -0.6    # size decrease   
48.     divB2 = np.diff(timeB) <= 0      # overlapping cycles   
49.     divB3 = np.diff(timeB) >= 0.3   # gap between cycles   
50.     divB = np.any(np.vstack([divB1, divB2, divB3]), axis=0)   
51.     begB = np.nonzero(divB)[0][:-1] + 1    # beginning of each FULL cycle   
52.     endB = np.nonzero(divB)[0][1:]    # end of each FULL cycle   
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53.    
54.     # fit exponential growth for all cycles   
55.     start = np.zeros(num)     # start time of each cycle   
56.     slopeA = np.zeros(num)    # slope of each cycle   
57.     duratA = np.zeros(num)    # duration of each cycle   
58.     initA = np.zeros(num)     # initial size of each cycle   
59.     finaA = np.zeros(num)     # final size of each cycle   
60.     growA = np.zeros(num)     # growth factor during each cycle   
61.     fracA = np.zeros(num)     # division fraction (linear) BEFORE each cycle   
62.     slopeB = np.zeros(num)    # slope of each cycle   
63.     duratB = np.zeros(num)    # duration of each cycle   
64.     initB = np.zeros(num)     # initial size of each cycle   
65.     finaB = np.zeros(num)     # final size of each cycle   
66.     growB = np.zeros(num)     # growth factor during each cycle   
67.     fracB = np.zeros(num)     # division fraction (linear) BEFORE each cycle   
68.     both = np.zeros(num)      # sum of initial sizes BEFORE each cycle   
69.    
70.     # initial guess by fitting exponential curves independently for each cycle   
71.     for n in xrange(num):   
72.         # cell A   
73.         bnA = begA[n]   
74.         enA = endA[n]   
75.         indA = np.arange(bnA, enA+1)   
76.         start[n] = 0.5 * timeA[bnA] + 0.5 * timeA[bnA-1]  # extrapolate   
77.         if len(indA) < 3:    # too few data points   
78.             print 'too few points, skip fitting A'   
79.         else:   
80.             # fit exponential curve   
81.             def fun(t, a, b):   
82.                 return a * np.exp(b * (t - start[n]))   
83.             fit, cov = opt.curve_fit(fun, timeA[indA], sizeA[indA], p0=(3., 1.))   
84.             initA[n], slopeA[n] = fit   
85.         # cell B   
86.         bnB = begB[n]   
87.         enB = endB[n]   
88.         indB = np.arange(bnB, enB+1)   
89.         if sizeB[enB] == 99.:    # incomplete cycle (cell escaped)   
90.             print 'incomplete cycle, skip fitting B'   
91.         elif len(indB) < 3:    # too few data points   
92.             print 'too few points, skip fitting B'   
93.         else:   
94.             # fit exponential curve   
95.             def fun(t, a, b):   
96.                 return a * np.exp(b * (t - start[n]))   
97.             fit, cov = opt.curve_fit(fun, timeB[indB], sizeB[indB], p0=(3., 1.))   
98.             initB[n], slopeB[n] = fit   
99.     missB = np.nonzero(initB == 0.)[0]    # skipped cycles   
100.   
101.    # optimize variables under length constraint   
102.    def growth(time, init, slope, start, offset):   
103.        """  
104.        exponential growth function.  
105.        Input:  
106.        time: real, or 1-d array, time points to evaluate size  
107.        Parameters:  
108.        init: real, initial size at birth  
109.        slope: real, exponential growth rate  
110.        start: real, start time of cell cycle  
111.        offset: real, due to measurement error 
112.        Return:  
113.        size: real, or 1-d array, estimated size at given time points  
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114.        """   
115.        size = init * np.exp(slope * (time - start)) + offset   
116.        return size   
117.   
118.    def loss(initA, initB, slopeA, slopeB, start, offset):   
119.        """  
120.        loss function for least-square fit.  
121.        Input:  
122.        initA/B: 1-d array, initial size of cell A/B at start of each cycle  
123.        slopeA/B: 1-d array, growth rate of cell A/B during each cycle  
124.        start: 1-d array, start time of each cycle for both cells A&B  
125.        offset: real, measurement error 
126.        Return:  
127.        sqls: real, square loss between data and estimated sizes  
128.        """   
129.        sqls = 0.   
130.        pts = 0    # total number of data points   
131.        for n in xrange(num):   
132.            # cell A   
133.            bnA = begA[n]   
134.            enA = endA[n]   
135.            indA = np.arange(bnA, enA+1)   
136.            tA = timeA[indA]   
137.            dA = sizeA[indA]   
138.            sA = growth(tA, initA[n], slopeA[n], start[n], offset)   
139.            sqls += 0.5 * np.sum((dA - sA)**2)   
140.            pts += len(indA)   
141.            # cell B   
142.            bnB = begB[n]   
143.            enB = endB[n]   
144.            indB = np.arange(bnB, enB+1)   
145.            if sizeB[enB] == 99.:    # incomplete cycle (cell escaped)   
146.                continue   
147.            elif len(indB) < 3:    # too few data points   
148.                continue   
149.            tB = timeB[indB]   
150.            dB = sizeB[indB]   
151.            sB = growth(tB, initB[n], slopeB[n], start[n], offset)   
152.            sqls += 0.5 * np.sum((dB - sB)**2)   
153.            pts += len(indB)   
154.        if np.isnan(sqls):   
155.            raise RuntimeError('loss function is NaN')  
156.      # save data   
157.    fout = open('%s/%s_%s.dat' % (output_dir, output_name, filename), 'w')   
158.    fout.write('# exponential fit of cell length vs time\n' +\   
159.               '# overall length offset = %.6f\n' % offset +\   
160.               '# standard deviation of residuals = %.6f\n' % resid)   
161.    info = 'slope, duration, initial size, final size, ' +\   
162.           'growth factor, division fraction:'   
163.    info += '\ncell A (mother):'   
164.    results = np.vstack((slopeA, duratA, initA, finaA, growA, fracA)).T   
165.    np.savetxt(fout, results, fmt = '%.8f', delimiter='\t', header=info)   
166.    info = 'cell B (daughter):'   
167.    results = np.vstack((slopeB, duratB, initB, finaB, growB, fracB)).T   
168.    np.savetxt(fout, results, fmt = '%.8f', delimiter='\t', header=info)   
169.    fout.close()     
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Appendix B Constrained multivariate regression coefficients 

The algorithm for calculating the coefficients of our constrained multivariate regression 

model was written in Python 3.5 by BingKan Xue and in MATLAB by Maryam Kohram. The 

input for these algorithms are the outputs of the code provided in Appendix A. 

%% 04/12/2018 Maryam Kohram - This program calculates R matrices 
clear all 
source_dir = '/Users/maryam/Box/Computer 

Backup/Research/MotherMachine/regression_analysis/data/TLM_output/text'; 
source_files = dir(fullfile(source_dir,'*.csv')); 
figure(1) 
for inp = 1:length(source_files) 
    filename = [source_dir filesep source_files(inp).name]; 
    data{inp} = csvread(filename); 

 
    %% input three variables 
    X{inp}(i,1) = data{inp}(i,1); 
    Alpha{inp}(i,1)= data{inp}(i,2); 
    Phi{inp}(i,1) = data{inp}(i,3); 
    %% define two extra variables 
    Eta = X{inp} + Phi{inp}; 
    Psi(i,1) = X{inp}(i+1) - X{inp}(i) - Phi{inp}(i); 

     
    %% examine the temporal correlation between the variables 
    %% a) <X_(n+l)X_n> 
    m = length(X{inp}); 
    ave = mean(X{inp}); 
    v=1; 
    lag = 9; 
    lag1(:,1) = linspace(0,9,10); 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((X{inp}(t+s)-ave))*((X{inp}(t)-ave)); 
            summ=summ+mult; 
        end 
        acf{inp,1}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,1) 
    %plot(acf{inp,1}) 
    axis([-0.5 10 -0.03 0.035]) 
    title('$<X_{n+l}X_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{00}(l)$','Interpreter','latex') 
    hold on 
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    %% b)    <X_(n+l)alpha_n> 
    m2 = length(Alpha{inp}); 
    ave2 = mean(Alpha{inp}); 
    v=1; 
    stdalpha = std(Alpha{inp}); 
    stdx = std(X{inp}); 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((X{inp}(t+s)-ave))*((Alpha{inp}(t)-ave2)); 
            summ=summ+mult; 
        end 
        acf{inp,2}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,2) 
    %plot(acf{inp,2}) 
    axis([-0.5 10 -0.008 0.006]) 
    title('$<X_{n+l}\alpha_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{01}(l)$','Interpreter','latex') 
    hold on 
    %% c) <X_(n+l)phi_n> 
    m3 = length(Phi{inp}); 
    ave3 = mean(Phi{inp}); 
    v=1; 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((X{inp}(t+s)-ave))*((Phi{inp}(t)-ave3)); 
            summ=summ+mult; 
        end 
        acf{inp,3}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,3) 
    %plot(acf{inp,3}) 
    axis([-0.5 10 -0.02 0.02]) 
    title('$<X_{n+l}\phi_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{02}(l)$','Interpreter','latex') 
    hold on 
    %% d) <alpha_(n+l)X_n> 
    v=1; 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((Alpha{inp}(t+s)-ave2))*((X{inp}(t)-ave)); 
            summ=summ+mult; 
        end 
        acf{inp,4}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,4) 
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    %plot(acf{inp,4}) 
    axis([-0.5 10 -0.008 0.005]) 
    title('$<\alpha_{n+l}X_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{10}(l)$','Interpreter','latex') 
    hold on 
    %% e) <alpha_(n+l)alpha_n> 
    v=1; 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((Alpha{inp}(t+s)-ave2))*((Alpha{inp}(t)-ave2)); 
            summ=summ+mult; 
        end 
        acf{inp,5}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,5) 
    %plot(acf{inp,5}) 
    axis([-0.5 10 -0.03 0.04]) 
    title('$<\alpha_{n+l}\alpha_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{11}(l)$','Interpreter','latex') 
    hold on 
    %% f) <alpha_(n+l)phi_n> 
    v=1; 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((Alpha{inp}(t+s)-ave2))*((Phi{inp}(t)-ave3)); 
            summ=summ+mult; 
        end 
        acf{inp,6}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,6) 
    %plot(acf{inp,6}) 
    axis([-0.5 10 -0.01 0.013]) 
    title('$<\alpha_{n+l}\phi_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{12}(l)$','Interpreter','latex') 
    hold on 
    %% g) <phi_(n+l)X_n> 
    v=1; 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((Phi{inp}(t+s)-ave3))*((X{inp}(t)-ave)); 
            summ=summ+mult; 
        end 
        acf{inp,7}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,7) 
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    %plot(acf{inp,7}) 
    axis([-0.5 10 -0.02 0.02]) 
    title('$<\phi_{n+l}X_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{20}(l)$','Interpreter','latex') 
    hold on 
    %% h) <phi_(n+l)alpha_n> 
    v=1; 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((Phi{inp}(t+s)-ave3))*((Alpha{inp}(t)-ave2)); 
            summ=summ+mult; 
        end 
        acf{inp,8}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,8) 
    %plot(acf{inp,8}) 
    axis([-0.5 10 -0.01 0.013]) 
    title('$<\phi_{n+l}\alpha_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{21}(l)$','Interpreter','latex') 
    hold on 
    %% i) <phi_(n+l)phi_n> 
    v=1; 
    for s=0:lag 
        mult=0; 
        summ=0; 
        for t=1:m-s 
            mult=((Phi{inp}(t+s)-ave3))*((Phi{inp}(t)-ave3)); 
            summ=summ+mult; 
        end 
        acf{inp,9}(v,1)=summ/(m-s); 
        v = v + 1; 
    end 
    subplot(3,3,9) 
    %plot(acf{inp,9}) 
    axis([-0.5 10 -0.03 0.03]) 
    title('$<\phi_{n+l}\phi_n>$','Interpreter','latex') 
    xlabel('time delay l') 
    ylabel('$C_{22}(l)$','Interpreter','latex') 
    hold on 
    clearvars -except source_dir source_files inp acf celllength celltime 

data lag1 Alpha X Phi 
end 

  
%% calculate averages with error bars 
for j = 1:9 
    sum1 = 0; 
    for i = 1:inp 
        if ~isnan(acf{i,j}) 
            acf1 = acf{i,j}; 
            sum1 = sum1 + acf1; 
        end 
    end 
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    ave1 = sum1./inp; 
    for e = 1:10 
        l = 1; 
        for i = 1:inp 
            allpoints(e,l) = acf{i,j}(e,1); 
            l = l + 1; 
        end 
    end 
    zeroline = zeros(12,1); 
    lag2(:,1) = linspace(-1,10,12); 
    subplot(3,3,j) 
    %plot(lag1, ave1,'b','linewidth',3) 
    plot(lag2,zeroline,'k','linewidth',2) 
    for i = 1:10 
        err(i,1) = std(allpoints(i,:)); 
    end 
    errorbar(lag1,ave1,err,'b-o') 
end 

  
%% Confined Autoregressive Model 

  
for inp = 1:length(source_files) 
    Y{inp} = [X{inp},Alpha{inp},Phi{inp}]; 
    for i = 1:size(X{inp})-1 
        Y1{inp}(i,1) = X{inp}(i+1,1); 
        Y1{inp}(i,2) = Alpha{inp}(i,1); 
        Y1{inp}(i,3) = Phi{inp}(i,1); 
        Y2{inp}(i,1) = X{inp}(i+1,1); 
        Y2{inp}(i,2) = Alpha{inp}(i+1,1); 
        Y2{inp}(i,3) = Phi{inp}(i,1); 
    end 
    Mdl{inp} = varm(3,3); 
    EstMdl{inp} = estimate(Mdl{inp},Y{inp}); 
    EstMdl1{inp} = estimate(Mdl{inp},Y1{inp}); 
    EstMdl2{inp} = estimate(Mdl{inp},Y2{inp}); 

     
    %% R parameters for X 
    ARparam{1,1}(inp,1) = 0; 
    ARparam{1,1}(inp,2) = EstMdl{inp}.AR{1}(1,1); 
    ARparam{1,1}(inp,3) = EstMdl{inp}.AR{2}(1,1); 
    ARparam{1,2}(inp,1) = 0; 
    ARparam{1,2}(inp,2) = EstMdl{inp}.AR{1}(1,2); 
    ARparam{1,2}(inp,3) = EstMdl{inp}.AR{2}(1,2); 
    ARparam{1,3}(inp,1) = 0; 
    ARparam{1,3}(inp,2) = EstMdl{inp}.AR{1}(1,3); 
    ARparam{1,3}(inp,3) = EstMdl{inp}.AR{2}(1,3); 

     
    %% R parameters for alpha 
    ARparam{2,1}(inp,1) = EstMdl1{inp}.AR{1}(2,1); 
    ARparam{2,1}(inp,2) = EstMdl1{inp}.AR{2}(2,1); 
    ARparam{2,1}(inp,3) = EstMdl1{inp}.AR{3}(2,1); 
    ARparam{2,2}(inp,1) = 0; 
    ARparam{2,2}(inp,2) = EstMdl1{inp}.AR{1}(2,2); 
    ARparam{2,2}(inp,3) = EstMdl1{inp}.AR{2}(2,2); 
    ARparam{2,3}(inp,1) = 0; 
    ARparam{2,3}(inp,2) = EstMdl1{inp}.AR{1}(2,3); 
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    ARparam{2,3}(inp,3) = EstMdl1{inp}.AR{2}(2,3); 

     
    %% R parameters for phi 
    ARparam{3,1}(inp,1) = EstMdl2{inp}.AR{1}(3,1); 
    ARparam{3,1}(inp,2) = EstMdl2{inp}.AR{2}(3,1); 
    ARparam{3,1}(inp,3) = EstMdl2{inp}.AR{3}(3,1); 
    ARparam{3,2}(inp,1) = EstMdl2{inp}.AR{1}(3,2); 
    ARparam{3,2}(inp,2) = EstMdl2{inp}.AR{2}(3,2); 
    ARparam{3,2}(inp,3) = EstMdl2{inp}.AR{3}(3,2); 
    ARparam{3,3}(inp,1) = 0; 
    ARparam{3,3}(inp,2) = EstMdl2{inp}.AR{1}(3,3); 
    ARparam{3,3}(inp,3) = EstMdl2{inp}.AR{2}(3,3); 

     
    %% constant values 
    ARparam{1,4}(inp,1) = EstMdl{inp}.Constant(1,1); 
    ARparam{2,4}(inp,1) = EstMdl1{inp}.Constant(1,1); 
    ARparam{3,4}(inp,1) = EstMdl2{inp}.Constant(1,1); 
end 

  
%% Average values for R 
figure(2) 
k = 1; 
num = [0;1;2]; 
zline = [0;0;0]; 
zxline = [-0.5;1;2.5]; 
for l = 1:3 
    for j = 1:3 
        for i = 1:3 
            RR(k,i) = mean(ARparam{l,j}(:,i)); 
            errRR(k,i) = std(ARparam{l,j}(:,i)); 
        end 
        subplot(3,3,k) 
        errorbar(num,RR(k,:),errRR(k,:),'b-o','linewidth',2) 
        hold on 
        plot(zxline,zline,'k','linewidth',2) 
        hold off 
        axis([-0.5 2.5 -2 2]) 
        xlabel('time delay l') 
        k = k + 1; 
    end 
end 
subplot(3,3,1) 
title('${R_{xx}}^{(l)}$','Interpreter','latex') 
subplot(3,3,2) 
title('${R_{x\alpha}}^{(l)}$','Interpreter','latex') 
subplot(3,3,3) 
title('${R_{x\phi}}^{(l)}$','Interpreter','latex') 
subplot(3,3,4) 
title('${R_{\alpha x}}^{(l)}$','Interpreter','latex') 
subplot(3,3,5) 
title('${R_{\alpha\alpha}}^{(l)}$','Interpreter','latex') 
subplot(3,3,6) 
title('${R_{\alpha\phi}}^{(l)}$','Interpreter','latex') 
subplot(3,3,7) 
title('${R_{\phi x}}^{(l)}$','Interpreter','latex') 
subplot(3,3,8) 
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title('${R_{\phi\alpha}}^{(l)}$','Interpreter','latex') 
subplot(3,3,9) 
title('${R_{\phi\phi}}^{(l)}$','Interpreter','latex') 

1. # BingKan Xue 
2. # pool over multiple datasets, for each and both cells A, B   
3. # infer autoregressive model using least square estimation   
4.  
5. import sys, os, glob   
6. import numpy as np   
7. import matplotlib.pyplot as plt   
8.    
9. p = 9    # order of autoregression   
10.    
11. input_folders = [#'results6_042817', 'results5_101218',   
12.                  'results6_062819',   
13.                  'results3_081619', 'results4_092519']   
14. output_folder = 'results_pool'   
15. input_name = 'trace(crct)_'   
16. output_name = 'lstsq%d_pool%d' % (p, len(input_folders))   
17.    
18. files = []   
19. for folder in input_folders:   
20.     files.extend(glob.glob('%s/%s*.dat' % (folder, input_name)))   
21. files.sort()   
22.    
23. variables = [r'$\alpha_{n}$', r'$\tau_{n}$', r'$x_{n}$', r'$y_{n}$', r'$g_{n}$', r'$f_{

n}$']   
24. log_variables = [r'$\alpha_{n}$', r'$\tau_{n}$', r'$\chi_{n}$', r'$\eta_{n}$', r'$\phi_

{n}$', r'$\psi_{n}$']   
25. definitions = [r'$\alpha_{n}$', r'$\tau_{n}$', r'$x_{n}(0)$', r'$x_{n}(\tau_{n})$', r'$

x_{n}(\tau_{n})/x_{n}(0)$', r'$x_{n}(0)/x_{n-1}(\tau_{n-1})$']   
26. ranges = [[0.4,1.6], [0.2,1.4], [1.1,11.], [1.1,11.], [1.0,4.0], [0.3,0.7]]   
27.    
28. log = True   
29. if log:   
30.     ranges = np.asarray(ranges)   
31.     ranges[2:] = np.log(ranges[2:])   
32.     variables = log_variables   
33.     for i in range(2,len(variables)):   
34.         definitions[i] = r'$\log\,%s' % definitions[i][1:]   
35. vid = np.array([2, 0, 4])   
36. var = [variables[i] for i in vid]   
37. rng = [ranges[i] for i in vid]   
38. info = 'variables: ' + ', '.join(var) + '\n'   
39.    
40. lab = ['A', 'B', 'both']   
41. col = plt.rcParams['axes.prop_cycle'].by_key()['color']   
42.    
43. nv = len(vid)   
44. nf = len(files)   
45.    
46. num_all = []   
47. dat_all = []   
48. X_all = [[] for k in range(3)]    # for cell A, B, both   
49. Y_all = [[] for k in range(3)]   
50. est_all = [[] for k in range(3)]   
51. cov_all = [[] for k in range(3)]   
52. sig_all = [[] for k in range(3)]   
53. phi_all = [[] for k in range(3)]   
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54. phi_err_all = [[] for k in range(3)]   
55.    
56. # for each trace   
57. for f in files:   
58.     filename = os.path.basename(f)[len(input_name):-4]   
59.     dat = np.loadtxt(f)   
60.     if log:   
61.         dat[:,2:] = np.log(dat[:,2:])   
62.     num = dat.shape[0] / 2   
63.     datA = dat[:num,vid]   
64.     datB = dat[num:,vid]   
65.     dat = np.hstack([datA, datB])   
66.     if num < 20:    # minimum number of cycles   
67.         continue   
68.     dat_all.append(dat)   
69.     num_all.append(num)   
70.     print 'file: %s, #cycles: %d' % (filename, num)   
71.     # estimate regression coefficients using least square   
72.     Y = [None] * 3   
73.     Y[0] = datA[p:,:]    # daughter cell A   
74.     Y[1] = datB[p:,:]    # daughter cell B   
75.     Y[2] = np.vstack((Y[0], Y[1]))    # both cells   
76.     X = [None] * 3   
77.     anc = np.hstack([datA[p-l:num-l,:] for l in range(1,p+1)]) # ancestor cell A   
78.     X[0] = np.hstack([datA[p:,:], anc, np.ones((num-p,1))])   
79.     X[1] = np.hstack([datB[p:,:], anc, np.ones((num-p,1))])   
80.     X[2] = np.vstack((X[0], X[1]))   
81.     for k in xrange(3):   
82.         nanY = np.any(np.isnan(Y[k]), axis=1)   
83.         nanX = np.any(np.isnan(X[k]), axis=1)   
84.         ind = np.logical_and(~nanY, ~nanX)   
85.         Y[k] = Y[k][ind]   
86.         X[k] = X[k][ind]   
87.         Y_all[k].append(Y[k])   
88.         X_all[k].append(X[k])   
89.     # estimate coefficients column by column   
90.     est = [None] * 3   
91.     cov = [None] * 3   
92.     sig = [None] * 3   
93.     phi = [None] * 3   
94.     phi_err = [None] * 3   
95.     cns = [None] * 3   
96.     cns_err = [None] * 3   
97.     for k in xrange(3):   
98.         est[k] = np.zeros((X[k].shape[1], Y[k].shape[1]))   
99.         for j in xrange(nv):   
100.            nzj = np.array(range(j) + range(nv,X[k].shape[1]))   
101.            est[k][nzj,j] = np.linalg.lstsq(X[k][:,nzj], Y[k][:,j])[0]   
102.        est_all[k].append(est[k])   
103.        # estimate noise covariance   
104.        res = Y[k] - np.dot(X[k], est[k])    # residuals   
105.        sig[k] = np.dot(res.T, res) / (Y[k].shape[0]-nv-1)   
106.        sig_all[k].append(sig[k])   
107.        # variance of estimation error for regression coefficients   
108.        cov[k] = np.zeros((X[k].shape[1], Y[k].shape[1]))   
109.        mat = np.dot(X[k].T, X[k])   
110.        for j in xrange(nv):   
111.            nzj = np.array(range(j) + range(nv,X[k].shape[1]))   
112.            cov[k][nzj,j] = np.linalg.inv((mat[nzj,:])[:,nzj]).diagonal() * sig[k][j,j

]   
113.        cov_all[k].append(cov[k])   
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114.        # transform to regression coefficients and constant terms   
115.        cns[k] = est[k][-1,:]   
116.        cns_err[k] = np.sqrt(cov[k][-1,:])   
117.        phi[k] = np.reshape(est[k][:-1,:], (p+1,nv,nv)).swapaxes(1,2)   
118.        phi_err[k] = np.reshape(np.sqrt(cov[k][:-1,:]), (p+1,nv,nv)).swapaxes(1,2)   
119.        phi_all[k].append(phi[k])   
120.        phi_err_all[k].append(phi_err[k])   
121.    continue    # skip saving each trace   
122.    # save results   
123.    fout = open('%s/%s_%s.dat' % (output_folder, output_name, filename), 'w')   
124.    fout.write('# for each cell A, B, and both cells:\n')   
125.    for k in xrange(3):   
126.        results = np.vstack((np.vstack(phi[k]), cns[k], sig[k], np.vstack(phi_err[k]),

 cns_err[k]))   
127.        info_f = '\n' + info + 'number of cell cycles = %d\n' % num +\   
128.                 'regression coefficients, constants, and noise variance (vstack):'   
129.        np.savetxt(fout, results, fmt='%.8f', delimiter='\t', header=info_f)   
130.    fout.close()   
131.    # plot results   
132.    fig, ax = plt.subplots(figsize=(3*(nv+1),3*nv), nrows=nv, ncols=nv+1)   
133.    fig.subplots_adjust(left=0.07, right=0.92, bottom=0.07, top=0.92, wspace=0.5, hspa

ce=0.5)   
134.    for i in xrange(nv):   
135.      for j in xrange(nv):   
136.        for k in xrange(3):   
137.            ax[i,j].errorbar(np.arange(p+1), phi[k][:,i,j], yerr=phi_err[k][:,i,j], ma

rker='.', capsize=3, label=lab[k])   
138.        ax[i,j].axhline(0, color='k', lw=1)   
139.        ax[i,j].set_xlim(-0.5, 1.5)   
140.        ax[i,j].set_xticks(np.arange(p+1))   
141.        ax[i,j].set_xlabel(r'time delay $\ell$')   
142.        ymax = 1.2   
143.        ax[i,j].set_ylim(-ymax, ymax)   
144.        ax[i,j].legend()   
145.        ax[i,j].set_title(r'$R^{(\ell)}_{%s %s}$' % (var[i][1:-5], var[j][1:-5]))   
146.    for i in xrange(nv):   
147.        for k in xrange(3):   
148.            ax[i,nv].errorbar([0], [cns[k][i]], yerr=[cns_err[k][i]], marker='.', caps

ize=2, label=lab[k], color=col[k])   
149.            ax[i,nv].errorbar([1], [0], yerr=[np.sqrt(sig[k][i,i])], capsize=2, color=

col[k])   
150.        ax[i,nv].axhline(0, color='k', lw=1)   
151.        ax[i,nv].set_xlim(-0.5, 1.5)   
152.        ax[i,nv].set_xticks([0, 1])   
153.        ax[i,nv].set_xticklabels([r'$C$', r'$N$'])   
154.        ax[i,nv].set_xlabel(r'constant, noise')   
155.        ymax = 1.2   
156.        ax[i,nv].set_ylim(-ymax, ymax)   
157.        ax[i,nv].legend()   
158.        ax[i,nv].set_title(r'$C_%s$, $N_%s$' % (var[i][1:-5], var[i][1:-5]))   
159.    fig.suptitle('%d cycles' % num)   
160.    plt.savefig('%s/%s_%s.png' % (output_folder, output_name, filename))   
161.    plt.close(fig)   
162.   
163.# for all traces   
164.filename = 'all'   
165.Y = [None] * 3   
166.X = [None] * 3   
167.for k in xrange(3):   
168.    X[k] = np.vstack(X_all[k])   
169.    Y[k] = np.vstack(Y_all[k])   
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170.num = X[0].shape[0]   
171.print 'file: %s, #cycles: %d' % (filename, num)   
172.# estimate regression coefficients using least square   
173.est = [None] * 3   
174.cov = [None] * 3   
175.sig = [None] * 3   
176.phi = [None] * 3   
177.phi_err = [None] * 3   
178.cns = [None] * 3   
179.cns_err = [None] * 3   
180.for k in xrange(3):   
181.    est[k] = np.zeros((X[k].shape[1], Y[k].shape[1]))   
182.    for j in xrange(nv):    # estimate column by column   
183.        nzj = np.array(range(j) + range(nv,X[k].shape[1]))   
184.        est[k][nzj,j] = np.linalg.lstsq(X[k][:,nzj], Y[k][:,j])[0]   
185.    # estimate noise covariance   
186.    res = Y[k] - np.dot(X[k], est[k])    # residuals   
187.    sig[k] = np.dot(res.T, res) / (Y[k].shape[0]-nv-1)   
188.    # variance of estimation error for regression coefficients   
189.    cov[k] = np.zeros((X[k].shape[1], Y[k].shape[1]))   
190.    mat = np.dot(X[k].T, X[k])   
191.    for j in xrange(nv):   
192.        nzj = np.array(range(j) + range(nv,X[k].shape[1]))   
193.        cov[k][nzj,j] = np.linalg.inv((mat[nzj,:])[:,nzj]).diagonal() * sig[k][j,j]   
194.    # transform to regression coefficients and constant terms   
195.    cns[k] = est[k][-1,:]   
196.    cns_err[k] = np.sqrt(cov[k][-1,:])   
197.    phi[k] = np.reshape(est[k][:-1,:], (p+1,nv,nv)).swapaxes(1,2)   
198.    phi_err[k] = np.reshape(np.sqrt(cov[k][:-1,:]), (p+1,nv,nv)).swapaxes(1,2)   
199.# save results   
200.fout = open('%s/%s_%s.dat' % (output_folder, output_name, filename), 'w')   
201.fout.write('# datasets: %s\n\n' % input_folders)   
202.for k in xrange(3):   
203.    fout.write('# for cell %s:\n' % lab[k])   
204.    results = np.vstack((np.vstack(phi[k]), cns[k], sig[k], np.vstack(phi_err[k]), cns

_err[k]))   
205.    info_f = '\n' + info + 'number of cell cycles = %d\n' % num +\   
206.             'regression coefficients, constants, and noise variance (vstack):'   
207.    np.savetxt(fout, results, fmt='%.8f', delimiter='\t', header=info_f)   
208.fout.close()   
209.# plot results   
210.phi = np.array(phi)   
211.phi_err = np.array(phi_err)   
212.cns = np.array(cns)   
213.cns_err = np.array(cns_err)   
214.sig = np.array(sig)   
215.fig, ax = plt.subplots(figsize=(3*(nv+1),3*nv), nrows=nv, ncols=nv+1)   
216.fig.subplots_adjust(left=0.07, right=0.92, bottom=0.07, top=0.92, wspace=0.5, hspace=0

.5)   
217.for i in xrange(nv):   
218.  for j in xrange(nv):   
219.    for k in xrange(3):   
220.        ax[i,j].errorbar(np.arange(p+1), phi[k,:,i,j], yerr=phi_err[k,:,i,j],   
221.                         marker='.', capsize=3, label=lab[k])   
222.    ax[i,j].axhline(0, color='k', lw=1)   
223.    ax[i,j].set_xlim(-0.5, p+0.5)   
224.    ax[i,j].set_xticks(np.arange(p+1))   
225.    ax[i,j].set_xlabel(r'time delay $\ell$')   
226.#    ymax = 1.2 * np.amax(np.abs(phi[:,:,i,j]) + phi_err[:,:,i,j])   
227.    ymax = 1.2   
228.    ax[i,j].set_ylim(-ymax, ymax)   
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229.    ax[i,j].legend()   
230.    ax[i,j].set_title(r'$R^{(\ell)}_{%s %s}$' % (var[i][1:-5], var[j][1:-5]))   
231.for i in xrange(nv):   
232.    for k in xrange(3):   
233.        ax[i,nv].errorbar([0], [cns[k,i]], yerr=[cns_err[k,i]], marker='.', capsize=2,

 label=lab[k], color=col[k])   
234.        ax[i,nv].errorbar([1], [0], yerr=[np.sqrt(sig[k,i,i])], capsize=2, color=col[k

])   
235.    ax[i,nv].axhline(0, color='k', lw=1)   
236.    ax[i,nv].set_xlim(-0.5, 1.5)   
237.    ax[i,nv].set_xticks([0, 1])   
238.    ax[i,nv].set_xticklabels([r'$C$', r'$N$'])   
239.    ax[i,nv].set_xlabel(r'constant, noise')   
240.#    ymax = 1.2 * np.amax([np.abs(cns[:,i])+cns_err[:,i], np.sqrt(sig[:,i,i])])   
241.    ymax = 1.2   
242.    ax[i,nv].set_ylim(-ymax, ymax)   
243.    ax[i,nv].legend()   
244.    ax[i,nv].set_title(r'$C_%s$, $N_%s$' % (var[i][1:-5], var[i][1:-5]))   
245.fig.suptitle('%d cycles' % num)   
246.plt.savefig('%s/%s_%s.png' % (output_folder, output_name, filename))   
247.plt.close(fig)   
248.   
249.# average over traces   
250.filename = 'avg'   
251.nf = len(X_all[0])   
252.print 'file: %s, #traces: %d' % (filename, nf)   
253.est_mean = [None] * 3   
254.est_se = [None] * 3   
255.cov = [None] * 3   
256.sig_mean = [None] * 3   
257.phi_mean = [None] * 3   
258.phi_se = [None] * 3   
259.cns_mean = [None] * 3   
260.cns_se = [None] * 3   
261.for k in xrange(3):   
262.    sig_mean[k] = np.mean(sig_all[k], axis=0)   
263.    est_mean[k] = np.mean(est_all[k], axis=0)   
264.    est_se[k] = np.std(est_all[k], axis=0) / np.sqrt(nf)   
265.    # transform to regression coefficients and constant terms   
266.    cns_mean[k] = est_mean[k][-1,:]   
267.    cns_se[k] = est_se[k][-1,:]   
268.    phi_mean[k] = np.reshape(est_mean[k][:-1,:], (p+1,nv,nv)).swapaxes(1,2)   
269.    phi_se[k] = np.reshape(est_se[k][:-1,:], (p+1,nv,nv)).swapaxes(1,2)   
270.# save results   
271.fout = open('%s/%s_%s.dat' % (output_folder, output_name, filename), 'w')   
272.fout.write('# datasets: %s\n\n' % input_folders)   
273.for k in xrange(3):   
274.    fout.write('# for cell %s:\n' % lab[k])   
275.    results = np.vstack((np.vstack(phi_mean[k]), cns_mean[k], sig_mean[k], np.vstack(p

hi_se[k]), cns_se[k]))   
276.    info_f = '\n' + info + 'number of cell cycles = %d\n' % num +\   
277.             'regression coefficients, constants, and noise variance (vstack):'   
278.    np.savetxt(fout, results, fmt='%.8f', delimiter='\t', header=info_f)   
279.fout.close()   
280.# plot results   
281.fig, ax = plt.subplots(figsize=(3*(nv+1),3*nv), nrows=nv, ncols=nv+1)   
282.fig.subplots_adjust(left=0.07, right=0.92, bottom=0.07, top=0.92, wspace=0.5, hspace=0

.5)   
283.for i in xrange(nv):   
284.  for j in xrange(nv):   
285.    for k in xrange(3):   
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286.        ax[i,j].errorbar(np.arange(p+1), phi_mean[k][:,i,j], yerr=phi_se[k][:,i,j], ma
rker='.', capsize=3, label=lab[k])   

287.    ax[i,j].axhline(0, color='k', lw=1)   
288.    ax[i,j].set_xlim(-0.5, p+0.5)   
289.    ax[i,j].set_xticks(np.arange(p+1))   
290.    ax[i,j].set_xlabel(r'time delay $\ell$')   
291.#    ymax = 1.2 * np.amax(np.abs(phi[:,:,i,j]) + phi_err[:,:,i,j])   
292.    ymax = 1.2   
293.    ax[i,j].set_ylim(-ymax, ymax)   
294.    ax[i,j].legend()   
295.    ax[i,j].set_title(r'$R^{(\ell)}_{%s %s}$' % (var[i][1:-5], var[j][1:-5]))   
296.for i in xrange(nv):   
297.    for k in xrange(3):   
298.        ax[i,nv].errorbar([0], [cns_mean[k][i]], yerr=[cns_se[k][i]], marker='.', caps

ize=2, label=lab[k], color=col[k])   
299.        ax[i,nv].errorbar([1], [0], yerr=[np.sqrt(sig_mean[k][i,i])], capsize=2, color

=col[k])   
300.    ax[i,nv].axhline(0, color='k', lw=1)   
301.    ax[i,nv].set_xlim(-0.5, 1.5)   
302.    ax[i,nv].set_xticks([0, 1])   
303.    ax[i,nv].set_xticklabels([r'$C$', r'$N$'])   
304.    ax[i,nv].set_xlabel(r'constant, noise')   
305.#    ymax = 1.2 * np.amax([np.abs(cns[:,i])+cns_err[:,i], np.sqrt(sig[:,i,i])])   
306.    ymax = 1.2   
307.    ax[i,nv].set_ylim(-ymax, ymax)   
308.    ax[i,nv].legend()   
309.    ax[i,nv].set_title(r'$C_%s$, $N_%s$' % (var[i][1:-5], var[i][1:-5]))   
310.fig.suptitle('%d cycles' % num)   
311.plt.savefig('%s/%s_%s.png' % (output_folder, output_name, filename))   
312.plt.close(fig)   
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Appendix C Simulating null model 

To test our methods for extracting cell cycle variables from data and doing multi-regression 

analysis in Section 3.3, we simulated cell growth and length measurement using a null model. This 

model is based on the “adder” mechanism and does not include any other correlation between cell 

cycle variables within or across generations. By applying our methods on the simulated data, we 

were able to estimate the systematic errors and obtain a baseline for the inferred regression 

coefficients. 

Let 𝑥𝑛
𝑎 and 𝑦𝑛

𝑎 be the initial and final sizes of cell 𝑎 = 𝐴, or 𝐵 in the 𝑛-th cell cycle. The 

null model asserts that 𝑦𝑛
𝑎 = 𝑥𝑛

𝑎 + Δ, where Δ is a random variable that is drawn independently for 

each cell cycle. To simulate the null model, we used the empirical distribution of Δ, denoted by 

𝑃(Δ), the empirical distribution of the growth rate, 𝑃(α), and the empirical distribution of the 

division fraction, 𝑃(𝑓). Those distributions are collected from the measured cell cycle variables 

(using curve-fitting as described above). 

A cell lineage of (𝑁 + 2) cell cycles is simulated as follows (two extra cycles are added 

because later when we fit growth curves, the first and last cycles are always treated as incomplete 

and discarded). Starting from a size 𝑦0
𝐴 (e.g., 2Δ), randomly draw a fraction 𝑓1

𝐴 from 𝑃(𝑓) and let 

𝑥1
𝐴 = 𝑓1

𝐴 𝑦0
𝐴 and 𝑥1

𝐵 = (1 − 𝑓1
𝐴)𝑦0

𝐴. Then randomly draw two numbers Δ1
𝐴 and Δ1

𝐵 from 𝑃(Δ), and 

let 𝑦1
𝐴 = 𝑥1

𝐴 + Δ1
𝐴 and 𝑦1

𝐵 = 𝑥1
𝐵 + Δ1

𝐵. Also draw two numbers 𝛼1
𝐴 and 𝛼1

𝐵 from 𝑃(𝛼). Those 

numbers completely determine the growth curves of cell A and B in the 1-st generation. The same 

procedure is repeated for the next generation, starting from 𝑦1
𝐴, and so on. The other cell cycle 
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variables can be calculated from those numbers, such as 𝜙𝑛
𝑎 = log(𝑦𝑛

𝑎 𝑥𝑛
𝑎⁄ ) and 𝜏𝑛

𝑎 = 𝜙𝑛
𝑎 𝛼𝑛

𝑎⁄ . We 

will refer to these simulated cell cycle variables as their “true” values. 

To mimic the measurement process and error, we reconstructed the cell length as a function 

of time, using the “true” values of cell cycle variables and assuming exponential growth. 

Consecutive cell cycles of cell A are concatenated continuously in time, whereas the beginning 

time of cell B is aligned with that of cell A in each generation. Then we sampled the reconstructed 

time courses of cell lengths at every 3 min. On top of these “true” cell lengths, we added a random 

noise to each data point, which is independently drawn from a Gaussian distribution with mean 

zero and variance 𝜎2 (obtained from curve-fitting, as described above). These noise-added 

discrete-time data points are our “measured” cell lengths, which we used as simulated data. 

Finally, we used the same methods as for the real data to fit growth curves and extract cell 

cycle variables from the simulated data. We will refer to these as the “fitted” values of the cell 

cycle variables, which can be compared to their “true” values. Such a comparison is shown in 

Appendix Figure 1, and can be used to estimate the systematic errors incurred during the curve 

fitting. 

Since in the simulation the “true” cell cycle variables are drawn independently, it is 

expected that all regression coefficients, except 𝛽 = 0.5 which comes from the adder mechanism, 

should be zero. Therefore, any other coefficient found in the “fitted” cell cycle variables would be 

a systematic error of the curve-fitting and multi-regression methods. We evaluated the regression 

coefficients from such “fitted” cell cycle variables and used their values as a “baseline” for judging 

the significance of the coefficients found in the real data, as shown with blue dots in Figure 20 and 

Appendix Figure 2. 
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Appendix Figure 1 Simulation results of a null model based on the “adder” mechanism. The adder model is 

used to simulate the dynamics of cell cycle variables over many generations. Three such variables are shown 

here, the log initial size n, the growth rate n, and the log relative growth n. Their “true” values are those 

coming from the simulation, and their “fitted” values are those given by our curve-fitting method applied to 

simulated noisy measurements. The difference between “true” and “fitted” values shows the extent of 

systematic error in our curve-fitting method. 

 

 

Appendix Figure 2 Comparison of estimated parameters across experiments with their baselines after 

standardizing cell cycle variables. The same data as for Figure 20 is used to fit the parameters, except that 

each cell cycle variable is standardized (i.e., removed the mean and normalized by the standard deviation) 

before fitting. Like in Figure 20, blue dots represent the baselines for the parameters found using simulated 
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data from the null model, with cell cycle variables also standardized before fitting . Values of 𝜺 and 𝜹 are 

negligible and fluctuate around zero. 

 

Appendix Figure 3 Cell size growth curves fitting and null model simulation. Examples of cell size dynamics 

for a pair of sister cells from our experiments are presented for comparison with simulation results. In the 

experimental data, cell A denotes the cell at the end of a growth channel, and cell B is its sister cell. The 

simulations were carried out using the adder model, as described above. The red lines depict exponential 

growth curves during individual cell cycles, fitted using the procedure described in Appendix A. The 

experimental data are the same as that used in Figure 16 of the main text. The simulation results are used to 

estimate the systematic errors of our data analysis methods. 
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Algorithm for simulating null model: 

1. # BingKan Xue 
2. # resample cell traces by making simulated data   
3. # use ADDER mechanism to stabilize size distribution   
4. # randomly draw growth rate, final size, division fraction for each cell   
5. # using empirical distribution of each variable   
6.    
7. import sys, os, glob   
8. import numpy as np   
9. import matplotlib.pyplot as plt   
10.    
11. #model = 'timer'   
12. #model = 'sizer'   
13. model = 'adder'   
14.    
15. folder = 'results6_042817'   
16. input_name = '042817'   
17. output_name = model   
18. output_name1 = 'trace(sim)'   
19.    
20. variables = [r'$\alpha_{n}$', r'$\tau_{n}$', r'$x_{n}$', r'$y_{n}$', r'$g_{n}$', r'$f_{

n}$']   
21. log_variables = [r'$\alpha_{n}$', r'$\tau_{n}$', r'$\chi_{n}$', r'$\eta_{n}$', r'$\phi_

{n}$', r'$\psi_{n}$']   
22. definitions = [r'$\alpha_{n}$', r'$\tau_{n}$', r'$x_{n}(0)$', r'$x_{n}(\tau_{n})$', r'$

x_{n}(\tau_{n})/x_{n}(0)$', r'$x_{n}(0)/x_{n-1}(\tau_{n-1})$']   
23. ranges = [[0.4,1.6], [0.2,1.4], [1.1,11.], [1.1,11.], [1.0,4.0], [0.3,0.7]]   
24.    
25. # load number and lengths of traces   
26. hist = np.loadtxt('%s/%s.dat' % (folder, 'extract(crct)_hist'), dtype=int)   
27. num_all = np.repeat(hist[:,0], hist[:,1])   
28.    
29. # read empirical distribution of variables   
30. dist = np.load('%s/%s.npz' % (folder, 'dist_all'))   
31. dat_all = dist['dat_all']   
32. nv = len(variables)   
33. datA = dat_all[:,:nv]   
34. datB = dat_all[:,nv:]   
35. dat = np.vstack((datA, datB))   
36. emp = []   
37. for i in range(nv):   
38.     ind = np.isnan(dat[:,i])   
39.     emp.append(dat[~ind,i])   
40. if model == 'adder':   
41.     add = dat[:,3] - dat[:,2]   
42.     ind = np.isnan(add)   
43.     add = add[~ind]   
44.    
45. # read std of residuals   
46. dist = open('%s/%s.dat' % (folder, 'dist_all'), 'r')   
47. for line in dist:   
48.     if line.startswith('std of residuals', 2):   
49.         i = line.index('=')   
50.         resid = float(line[i+2:-1])   
51.         break   
52.    
53. # simulate data   
54. nf = len(num_all)    # number of traces   
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55. num_all = np.random.choice(num_all, size=10*nf, replace=True)   
56. for n in xrange(10*nf):   
57.     filename = '%s%d' % (output_name, n+1)   
58.     num = num_all[n]   
59.     print 'file: %s, #cycles: %d' % (filename, num)   
60.  
61.     # draw variables that determine each cycle (first and last will not count)   
62.     rateA = np.random.choice(emp[0], size=(num+2))    # resample empirical dist   
63.     rateB = np.random.choice(emp[0], size=(num+2))   
64.     fracA = np.random.choice(emp[5], size=(num+2))   
65.     fracB = 1. - fracA   
66.     initA = np.zeros(num+2)   
67.     initB = np.zeros(num+2)   
68.     if model == 'timer':   
69.         duraA = np.random.choice(emp[1], size=(num+2))   
70.         duraB = np.random.choice(emp[1], size=(num+2))   
71.         finaA = np.mean(emp[3])   
72.         for i in xrange(num+2):   
73.             initA[i] = finaA * fracA[i]   
74.             initB[i] = finaA * fracB[i]   
75.             finaA = initA[i] * np.exp(rateA[i] * duraA[i])    # timer   
76.     elif model == 'sizer':   
77.         duraA = np.zeros(num+2)   
78.         duraB = np.zeros(num+2)   
79.         finaA = np.random.choice(emp[3], size=(num+2))   
80.         finaB = np.random.choice(emp[3], size=(num+2))   
81.         for i in xrange(num+2):   
82.             initA[i] = finaA[i-1] * fracA[i]  # first cycle uses last final size   
83.             initB[i] = finaA[i-1] * fracB[i]   
84.             if finaA[i] <= initA[i] or finaB[i] <= initB[i]:   
85.                 raise RuntimeError('size decreased!')   
86.             duraA[i] = np.log(finaA[i] / initA[i]) / rateA[i]    # sizer   
87.             duraB[i] = np.log(finaB[i] / initB[i]) / rateB[i]   
88.     elif model == 'adder':   
89.         duraA = np.zeros(num+2)   
90.         duraB = np.zeros(num+2)   
91.         addA = np.random.choice(add, size=(num+2))   
92.         addB = np.random.choice(add, size=(num+2))   
93.         finaA = np.mean(emp[3])   
94.         for i in xrange(num+2):   
95.             initA[i] = finaA * fracA[i]   
96.             initB[i] = finaA * fracB[i]   
97.             finaA = initA[i] + addA[i]    # adder   
98.             finaB = initB[i] + addB[i]   
99.             duraA[i] = np.log(finaA / initA[i]) / rateA[i]   
100.            duraB[i] = np.log(finaB / initB[i]) / rateB[i]   
101.    start = np.cumsum(duraA) - duraA   
102.    if np.any(duraA < 0.2) or np.any(duraB < 0.2):   
103.        print 'cycle too short'   
104.        continue   
105.    # simulate time series of cell length   
106.    dt = 1./12   
107.    time = np.arange(0., start[-1] + duraA[-1], dt)   
108.    timeA, sizeA = [], []   
109.    timeB, sizeB = [], []   
110.    for i in xrange(num+2):   
111.        beg = np.nonzero(time >= start[i])[0][0]   
112.        endA = np.nonzero(time < start[i] + duraA[i])[0][-1]   
113.        indA = np.arange(beg, endA+1)   
114.        if len(indA) < 2:   
115.            raise RuntimeError('cycle A too short')   



 154 

116.        tA = time[indA]   
117.        sA = initA[i] * np.exp(rateA[i] * (tA - start[i]))   
118.        timeA.append(tA.copy())   
119.        sizeA.append(sA.copy())   
120.        endB = np.nonzero(time < start[i] + duraB[i])[0][-1]   
121.        indB = np.arange(beg, endB+1)   
122.        if len(indB) < 2:   
123.            raise RuntimeError('cycle B too short')   
124.        tB = time[indB]   
125.        sB = initB[i] * np.exp(rateB[i] * (tB - start[i]))   
126.        timeB.append(tB.copy())   
127.        sizeB.append(sB.copy())   
128.    if len(timeA) != len(timeB):   
129.        raise RuntimeError('number of cycles not match')   
130.    elif not np.allclose([tA[0] for tA in timeA], [tB[0] for tB in timeB]):   
131.        raise RuntimeError('beginning times not match')   
132.    timeA = np.hstack(timeA)   
133.    sizeA = np.hstack(sizeA)   
134.    timeB = np.hstack(timeB)   
135.    sizeB = np.hstack(sizeB)   
136.    # add measurement noise   
137.    sizeA += resid * np.random.randn(len(sizeA))   
138.    sizeB += resid * np.random.randn(len(sizeB))   
139.    # save simulated data points   
140.    dat = np.vstack([np.hstack([timeA, timeB]), np.hstack([sizeA, sizeB])]).T   
141.    np.savetxt('%s/%s_%s.csv' % (folder, input_name, filename), dat,   
142.               fmt='%.6f', delimiter=', ')   
143.   
144.    # save true cell cycle variables   
145.    slopeA = rateA[1:-1]   
146.    duratA = duraA[1:-1]   
147.    initA = initA[1:-1]   
148.    growA = np.exp(rateA[1:-1] * duraA[1:-1])   
149.    finaA = initA * growA   
150.    fracA = fracA[1:-1]   
151.    slopeB = rateB[1:-1]   
152.    duratB = duraB[1:-1]   
153.    initB = initB[1:-1]   
154.    growB = np.exp(rateB[1:-1] * duraB[1:-1])   
155.    finaB = initB * growB   
156.    fracB = fracB[1:-1]   
157.    fout = open('%s/%s_%s.dat' % (folder, output_name1, filename), 'w')   
158.    fout.write('# exponential fit of cell length vs time\n' +\   
159.               '# standard deviation of residuals = %.6f\n' % resid)   
160.    info = 'slope, duration, initial size, final size, ' +\   
161.           'growth factor, division fraction:'   
162.    info += '\ncell A (mother):'   
163.    results = np.vstack((slopeA, duratA, initA, finaA, growA, fracA)).T   
164.    np.savetxt(fout, results, fmt = '%.8f', delimiter='\t', header=info)   
165.    info = 'cell B (daughter):'   
166.    results = np.vstack((slopeB, duratB, initB, finaB, growB, fracB)).T   
167.    np.savetxt(fout, results, fmt = '%.8f', delimiter='\t', header=info)   
168.    fout.close()   
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Appendix D List of mutants 

Appendix Table 1 List of isogenic single-gene deletion E. coli K12 BW25113 mutants obtained from the Keio 

collection.55,136,137,138 

Gene 

Name 
location, protein, subunit 

aspA cytosol, aspartate ammonia-lyase 

atpA inner membrane, ATP synthase; F1 sector; alpha-subunit 

atpB inner membrane, ATP synthase; F0 sector; subunit a 

atpC inner membrane, ATP synthase; F1 sector; epsilon-subunit 

atpD inner membrane, ATP synthase; F1 sector; beta-subunit 

atpE inner membrane, ATP synthase; F0 sector; subunit c 

atpF inner membrane, ATP synthase; F0 sector; subunit b 

atpG inner membrane, ATP synthase; F1 sector; gamma-subunit 

atpH inner membrane, ATP synthase; F1 sector; delta-subunit 

cpxR cytosol, DNA-binding transcriptional dual regulator CpxR 

cydD inner membrane, glutathione/L-cysteine ABC exporter subunit CydD 

cysB cytosol, DNA-binding transcriptional dual regulator CysB 

cysC cytosol, adenylyl-sulfate kinase 

cysD cytosol, sulfate adenylyltransferase subunit 2 

cysE cytosol, serine acetyltransferase 

cysG cytosol, siroheme synthase 

cysH cytosol, phosphoadenosine phosphosulfate reductase 

cysI sulfite reductase, hemoprotein subunit 

cysN cytosol, sulfate adenylyltransferase subunit 1 

cysP 
periplasmic space, hiosulfate/sulfate ABC transporter periplasmic binding protein 

CysP 

cysU inner membrane, sulfate/thiosulfate ABC transporter inner membrane subunit CysU 

cysW inner membrane, sulfate/thiosulfate ABC transporter inner membrane subunit CysW 

degP inner membrane, periplasmic space, periplasmic serine endoprotease DegP 

fkpB cytosol, peptidyl-prolyl cis-trans isomerase FkpB 

folB cytosol, dihydroneopterin aldolase 

gmhB 
cytosol, D-sedoheptulose 7-phosphate isomerase; GDP-heptose biosynthesis; T-phage 

resistance 

guaA cytosol, GMP synthetase 

hyaD cytosol, putative hydrogenase 1 maturation protease HyaD 

iscS cytosol, cysteine desulfurase 
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lipA cytosol, lipoyl synthase 

lipB cytosol, lipoyl(octanoyl) transferase 

lpd inner membrane, cytosol, lipoamide dehydrogenase 

nlpI inner membrane, outer membrane, lipoprotein NlpI 

nuoA inner membrane, NADH:quinone oxidoreductase subunit A 

nuoB inner membrane, NADH:quinone oxidoreductase subunit B 

nuoC inner membrane, NADH:quinone oxidoreductase subunit CD 

nuoE inner membrane, NADH:quinone oxidoreductase subunit E 

nuoF inner membrane, NADH:quinone oxidoreductase subunit F 

nuoG inner membrane, NADH:quinone oxidoreductase subunit G 

nuoH inner membrane, NADH:quinone oxidoreductase subunit H 

nuoI inner membrane, NADH:quinone oxidoreductase subunit I 

nuoJ inner membrane, NADH:quinone oxidoreductase subunit J 

nuoK inner membrane, NADH:quinone oxidoreductase subunit K 

nuoL inner membrane, NADH:quinone oxidoreductase subunit L 

nuoM inner membrane, NADH:quinone oxidoreductase subunit M 

nuoN inner membrane, NADH:quinone oxidoreductase subunit N 

prc periplasmic space, inner membrane, tail-specific protease 

recB cytosol, exodeoxyribonuclease V subunit RecB 

rimM cytosol, ribosome, ribosome maturation factor RimM 

rseA inner membrane, anti-sigma-E factor RseA 

sdhB inner membrane, succinate:quinone oxidoreductase, iron-sulfur cluster binding protein 

sucA cytosol, dihydrolipoyltranssuccinylase 

sucB cytosol, dihydrolipoyltranssuccinylase 

tolA inner membrane, Tol-Pal system protein TolA 

tolB periplasmic space,Tol-Pal system periplasmic protein TolB 

tolR inner membrane, Tol-Pal system protein TolR 

tpiA cytosol, triose-phosphate isomerase 

ubiE 
bifunctional 2-octaprenyl-6-methoxy-1,4-benzoquinone methylase and S-

adenosylmethionine:2-DMK methyltransferase 

ubiF cytosol, 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol hydroxylase 

ubiG 
inner membrane, cytosol, bifunctional 3-demethylubiquinone-8 3-O-methyltransferase 

and 2-octaprenyl-6-hydroxyphenol methylase 

ubiH cytosol, 2-octaprenyl-6-methoxyphenol to 2-octaprenyl-6-methoxy-1;4-benzoquinone 

yciH cytosol, putative translation factor 

ydjI cytosol, putative aldolase YdjI 

yeeS cytosol, CP4-44 prophage; RadC-like JAB domain-containing protein YeeS 
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Appendix E Individual mother machine experiments for death phenotype statistics 

Appendix Table 2 Death phenotypes of individual ∆atpA and wt cells grown in the indicated growth media 

(LB, M9CG or M9G). Numbers (exp. nom.) indicate individual experiments.  

 
exp. 

nom. 

experiment 

time (hrs) 

tot. 

num. 

of 

cells 

dead 

cells 

% 

Type 

I 

cells 

% 

Type 

II 

cells 

% 

Type  

III 

cells 

% 

wild type 

LB 1 122 84 77.4 20.4 59.2 20.4 

M9CG 

1 161 68 97.0 14.3 60.7 25.0 

2 104 629 96.0 17.5 75.7 6.8 

M9G 

1 88 60 84.0 10.6 19.2 70.2 

2 50 84 55.0 10.5 18.4 71.1 

∆atpA 

LB 

1 97 91 78.3 0 73.3 26.7 

2 102 28 85.7 0 79.2 20.8 

M9CG 
1 140 99 98 0 81.5 18.5 

2 151 42 100 0 85.7 14.3 

M9G 1 160 40 100 0 56.4 43.6 
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