
Strategies for Selective and Adaptive Resilience

in Reconfigurable Space Systems and Apps

by

Sebastian Sabogal

M.S. Electrical and Computer Engineering, University of Florida, 2017

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Sebastian Sabogal

It was defended on

April 2, 2021

and approved by

Alan D. George, Ph.D., Professor
Department of Electrical and Computer Engineering

Zhi-Hong Mao, Ph.D., Professor
Department of Electrical and Computer Engineering

Jingtong Hu, Ph.D., Assistant Professor
Department of Electrical and Computer Engineering

Samuel J. Dickerson, Ph.D., Assistant Professor
Department of Electrical and Computer Engineering

Michael S. Ramsey, Ph.D., Professor
Department of Geology and Environmental Science

Dissertation Director: Alan D. George, Ph.D., Professor
Department of Electrical and Computer Engineering

ii

Copyright © by Sebastian Sabogal

2021

iii

Strategies for Selective and Adaptive Resilience

in Reconfigurable Space Systems and Apps

Sebastian Sabogal, PhD

University of Pittsburgh, 2021

Due to ongoing advancements in sensor technology and innovations in spacecraft auton-

omy enabled by compute-intensive deep-learning (DL) methods, modern spacecraft increas-

ingly require more onboard processing capabilities that address the computational demands

required for future space missions. Spacecraft designers are challenged to create depend-

able, high-performance space computers capable of converting onboard an immense volume

of raw sensor data into actionable information that can be used to formulate critical de-

cisions autonomously. Furthermore, this space-computing challenge is further exacerbated

with stringent constraints in size, weight, power, and cost (SWaP-C) and dependability

requirements due to radiation effects in the harsh environment.

The proliferation of small satellites (SmallSats) has enabled a paradigm for low-SWaP-C

missions that frequently employ commercial-off-the-shelf (COTS) devices, including FPGAs

and hybrid system-on-chips (SoCs), to improve onboard processing capabilities. These com-

mercial devices have numerous architectural advantages that provide superior performance,

energy efficiency, and affordability compared to radiation-hardened (rad-hard) alternatives

but are highly susceptible to radiation-induced single-event effects (SEEs) that can impact

mission dependability. To improve dependability, hardware-redundancy techniques are fre-

quently employed for SEE mitigation; however, these methods incur a significant overhead

that can be impractical for resource-constrained systems and can limit system performance.

To create space computers capable of onboard DL, it is essential to create efficient methods

for SEE mitigation and dependability evaluation.

In this dissertation research, we propose both selective and adaptive strategies for effi-

cient SEE mitigation in reconfigurable space systems and applications. We devise, evaluate,

and demonstrate these approaches in reconfigurable architectures to maximize performability

subject to mission availability constraints. The first is HARFT, an environmentally adaptive,

iv

gracefully degradable system architecture that maximizes system performability in reconfig-

urable systems. The second is RECON, a selectively and adaptively resilient semantic-

segmentation accelerator that maximizes inference performability in reconfigurable systems.

Finally, we propose a methodology for evaluating the performance and dependability char-

acteristics of FPGA-accelerated DL models, which includes a hierarchical fault-injection

approach to accelerate the dependability evaluation. This methodology allows spacecraft

designers to create a design tradespace and select the optimal DL solution. This dissertation

research demonstrates the efficacy of these methods to enable dependable, high-performance

onboard processing for next-generation missions.

v

Table of Contents

Preface . xii

1.0 Introduction . 1

2.0 Background Research . 4

2.1 SmallSats, CubeSats, and Onboard Autonomy 4

2.2 Commercial Hybrid and Heterogeneous SoCs and Systems for Space Appli-

cations . 6

2.3 Radiation Effects . 12

2.4 Dependable Computing . 13

2.4.1 CPU Dependability . 14

2.4.1.1 Symmetric and Asymmetric Multiprocessing 14

2.4.2 FPGA Dependability . 15

2.4.2.1 Dependability Techniques . 16

2.4.2.2 Dependability Evaluation of FPGA Designs 19

2.4.2.3 Environmentally Adaptive Resilience for Near-Earth Radiation

Environments . 20

2.5 Deep Learning . 22

2.5.1 Semantic Segmentation . 22

2.5.2 FPGA Acceleration of DL Applications 24

3.0 Environmentally Adaptive Resilience in Reconfigurable Space Systems 29

3.1 Related Work . 30

3.2 HARFT Architecture Overview . 31

3.2.1 Hard Processing System (HPS) Framework 33

3.2.2 Soft Processing System (SPS) Framework 35

3.2.3 Configuration Manager (CM) . 38

3.2.3.1 Environmental Sensing and Prediction 39

3.2.3.2 Reconfiguration and Adaptation 40

vi

3.2.3.3 Control-Flow Model . 40

3.3 Modeling Approach . 42

3.3.1 Modeling the Dynamic Near-Earth Radiation Environment 42

3.3.2 Modeling the Adaptive and Gracefully Degradable System 46

3.3.2.1 Markov Modeling and Performability 46

3.3.2.2 Phased-Mission System Modeling 48

3.4 Evaluation and Analysis . 52

3.4.1 Orbital Case Studies . 54

3.4.2 Evaluation . 55

3.4.2.1 Performance . 58

3.4.2.2 Resource Utilization and Architectural Vulnerability Factor . . 60

3.4.2.3 Time-Varying Fault Rate . 60

3.4.2.4 Repair Rate . 62

3.4.3 Availability, Failure Rate, and Performability Analysis 62

3.5 Conclusion . 69

4.0 Resilient Semantic-Segmentation Acceleration for Space Apps 70

4.1 Related Work . 71

4.2 Architecture Overview . 73

4.2.1 Approaches for Efficient SEE Mitigation 75

4.2.1.1 Selective Mitigation for RSGDMA 77

4.2.1.2 Adaptive Mitigation for RACCEL 77

4.2.2 Architectures for Space Computers . 79

4.2.3 Accelerator Optimizations . 82

4.2.3.1 Model-Compression Optimizations 82

4.2.3.2 Algorithmic Optimizations . 82

4.2.3.3 Architectural Optimizations 83

4.3 Evaluation . 84

4.3.1 Performance Evaluation . 85

4.3.1.1 Inference Accuracy . 85

4.3.1.2 Resource Utilization . 86

vii

4.3.1.3 Performance and Energy Efficiency 86

4.3.2 Dependability Evaluation . 88

4.3.2.1 CRAM Fault-Injection Experiment 89

4.3.2.2 Time-Varying Fault Rate Prediction 94

4.3.2.3 Phased-Mission System Modeling and Analysis 96

4.3.2.4 Wide-Spectrum Neutron-Beam Test Experiment 102

4.4 Conclusion . 105

5.0 Evaluation and Analysis of FPGA-Accelerated, Deep-Learning Apps

for Onboard Space Processing . 107

5.1 Related Work . 108

5.2 Approach . 109

5.2.1 Hierarchical Fault-Injection Approach 109

5.2.2 Fault-Injection Procedure . 112

5.3 Evaluation . 113

5.3.1 Accuracy . 114

5.3.2 Resource Utilization . 115

5.3.3 Performance and Energy-Efficiency 119

5.3.4 Dependability . 120

5.3.4.1 Model-Level Analysis . 121

5.3.4.2 Node-Level Analysis . 125

5.3.4.3 Fault-Injection Evaluation . 128

5.4 Conclusion . 130

6.0 Conclusions . 131

Bibliography . 134

viii

List of Tables

1 Mission parameters of orbital case studies . 53

2 Predicted SEE rates for Z7020 for orbital case studies 56

3 HARFT CPU and accelerator performance and reward rates 58

4 HARFT module resource utilization . 59

5 HARFT CRAM fault-injection test results . 59

6 HARFT repair rates . 62

7 HARFT static modes and adaptive strategy . 63

8 HARFT unavailability, failure rate, and performability for orbital case studies . 67

9 RECON inference accuracy . 86

10 RECON module resource utilization . 87

11 RECON performance and energy-efficiency . 87

12 RECON model-level CRAM fault-injection test results 91

13 RECON static modes and adaptive strategy . 97

14 RECON unavailability, failure rate, and performability for orbital case studies . 101

15 RECON wide-spectrum neutron-beam test results 103

16 DPU DL models . 114

17 DPU convolution architectures . 114

18 DPU model accuracy . 115

19 DPU resource utilization . 116

20 DPU evaluation results for PYNQ-Z2 (Z7020) 117

21 DPU evaluation results for UZED-EG (ZU3EG) 118

22 DPU B512 fault-injection accuracy for Z7020 129

ix

List of Figures

1 NSF SHREC hybrid space computers . 8

2 STP mission experiments . 9

3 NASA GSFC hybrid space computers . 9

4 Space processor comparison . 11

5 Functional changes of FPGA design due to SEEs in CRAM 17

6 Granularity of TMR in FPGA designs . 18

7 SegNet semantic-segmentation model . 23

8 Xilinx Deep-Learning Processing Unit (DPU) architecture. 27

9 HARFT architecture . 32

10 HARFT HPS framework . 33

11 HARFT SPS framework . 36

12 HARFT control-flow model . 41

13 Methodology for time-varying SEE rate prediction 43

14 Example of phased-mission modeling with CTMCs 50

15 Orbital case studies . 53

16 Predicted McIlwain L-shell and SEE rate . 56

17 HARFT SPS framework implemented on Z7020 57

18 Predicted McIlwain L-shell and fault rates . 61

19 HARFT instantaneous system availability over time 65

20 HARFT design tradespace . 66

21 RECON acceleration framework . 74

22 RECON adaptive approach for SEE mitigation 78

23 RECON architectures for space processors . 80

24 RECON impact of CRAM faults on mIoU . 92

25 RECON impact of CRAM faults on mIoU by layer 92

26 RECON predicted McIlwain L-shell and fault rates 95

x

27 RECON instantaneous probability of system operation 98

28 RECON design tradespace . 100

29 LANSCE experiment setup . 103

30 Hierarchical fault-injection approach . 110

31 DPU impact of CRAM faults on mIoU . 122

32 DPU fault-injection experiment samples . 123

33 DPU average SDC-critical area . 124

34 DPU B512 SDCC-critical area and operations by node (Z7020) 126

35 DPU B512 SDCC-critical area and operations by node (ZU3EG) 127

xi

Preface

I dedicate this dissertation to my family and friends, especially Daniel Sabogal, whose

constant support has allowed me to persevere.

This dissertation research was supported by industry and government members of the

National Science Foundation (NSF) Center for Space, High-Performance, and Resilient Com-

puting (SHREC), formerly known as the Center for High-Performance Reconfigurable Com-

puting (CHREC), and its IUCRC Program under Grant Nos. CNS-1738783 and IIP-1161022.

I wish to thank Alan George for serving as coauthor and advisor for all dissertation research.

I wish to thank the students, faculty, members, sponsors, and vendors that supported

SHREC to develop novel space computers (CSP, µCSP, and SSP) and missions (STP-H5-

CSP, STP-H6-SSIVP, and STP-H7-CASPR). The opportunity to develop and contribute to

these platforms as part of a team has been a unique and invaluable experience. From the

STP-H6-SSIVP mission development team, I especially wish to thank Christopher Wilson,

Nicholas Franconi, Brad Shea, Eric Shea, Ansel Barchowsky, Thomas Cook, Patrick Gauvin,

Daniel Sabogal, Evan Gretok, Antony Gillette, Kevin Glunt, Theodore Schwarz, et al. From

the STP-H7-CASPR team, I especially wish to thank Noah Perryman, Thomas Cook, Justin

Goodwill, Theodore Schwarz, Evan Gretok, Antony Gillette, Tyler Garrett, Seth Roffe, et

al. Finally, I wish to thank the Space Test Program (STP) Houston team, especially Robert

Plunkett, Paige McClung, and Thomas Zerbe, for their support on mission integration and

operations.

I wish to thank the Embedded Processing Group of the NASA Goddard Space Flight

Center (GSFC) Science Data Processing (Code 587) Branch for their collaboration with this

dissertation research, for their strong support for SHREC’s space computers and missions,

and for my opportunity to develop and contribute to the next generation of the NASA

SpaceCube. I especially wish to thank Christopher Wilson, Gary Crum, Alessandro Geist,

Nicholas Franconi, and Thomas Flatley for their mentorship and guidance for this disserta-

tion research and my internship experiences at NASA GSFC.

xii

Finally, this research was performed, in part, at the Los Alamos Neutron Science Cen-

ter (LANSCE), an NNSA User Facility operated for the U.S. Department of Energy by

Los Alamos National Laboratory (Contract 89233218CNA000001). I especially wish to

thank Stephen Wender and Kranti Gunthoti for their support and guidance on using the

4FP30R/ICE-II instrument at LANSCE.

xiii

1.0 Introduction

Due to ongoing innovations in both sensor technology and spacecraft autonomy, space-

craft designers are challenged to create dependable, high-performance space computers that

address the computational demands required for future space missions [58]. Modern space-

craft increasingly require high-performance computers to compress vast volumes of raw sensor

data into actionable information to overcome bandwidth limitations in downlink. Spacecraft

also increasingly require real-time capabilities to formulate and execute critical spacecraft

maneuvers and operations autonomously. This space-computing challenge is further exacer-

bated with stringent constraints in size, weight, power, and cost (SWaP-C) and dependability

requirements for harsh environments (e.g., radiation, thermal, vibration, and vacuum) often

considered in space missions.

Simultaneously, machine learning (ML), particularly deep learning (DL), continues to

proliferate in space applications to enhance mission capabilities in onboard data analysis

and spacecraft autonomy [18, 65]. DL can enable a variety of complex mission tasks for

both science and defense missions such as remote sensing [24], constellation management

[90], and terrain-relative navigation [36]. However, despite these advantages, DL models

are computationally intensive and often impractical for deployment on traditional radiation-

hardened (rad-hard) space processors.

To address these challenges, space missions continue to adopt small satellites (SmallSats),

including CubeSats, as low-SWaP-C platforms enabled by the miniaturization of electronics,

sensors, and instruments [63]. Furthermore, to improve onboard processing capabilities,

SmallSat missions frequently employ systems developed with solely commercial-off-the-shelf

(COTS) technology or with a mix of commercial and rad-hard devices, often also including

commercial FPGAs and hybrid system-on-chips (SoCs) [28]. Hybrid SoCs synergize multiple

distinct computing architectures within one device to attain the architectural advantages of

each. FPGA-based hybrid SoCs combine dedicated fixed-logic CPUs with reconfigurable-

logic FPGAs. Commercial FPGAs and SoCs provide numerous architectural advantages

and offer superior performance, energy efficiency, affordability, and capability compared

1

to rad-hard alternatives but are highly susceptible to radiation-induced single-event effects

(SEEs) that can affect the dependability of the system and application [56]. To improve

dependability, hardware-redundancy techniques such as triple-modular redundancy (TMR)

are frequently employed for SEE mitigation. However, TMR incurs significant overhead in

the area, power consumption, and timing-critical path which can be impractical for resource-

constrained systems and can also limit the performance and energy-efficiency potential of

a system. To create dependable, high-performance systems capable of onboard DL, it is

essential to develop efficient approaches for SEE mitigation. Furthermore, it is also crucial

to devise accurate and efficient methods of evaluating the dependability of system designs

to demonstrate the effectiveness of novel dependability techniques.

In this dissertation, we propose three contributions to advance the state-of-the-art in de-

pendable, high-performance onboard computing with commercial FPGAs and SoCs. First,

we propose Hybrid, Adaptive, Reconfigurable Fault Tolerance (HARFT), a reconfigurable

framework for environmentally adaptive resilience in hybrid and heterogeneous SoCs and

systems for space applications. HARFT consists of a runtime-reconfigurable system archi-

tecture and a methodology for evaluating environmentally adaptive and gracefully degradable

systems in near-Earth radiation environments. By adapting system resources between per-

formance and dependability modes in response to the environmental condition, HARFT can

maximize system performability subject to mission availability constraints. Next, we pro-

pose Reconfigurable ConvNet (RECON), a reconfigurable framework for dependable, high-

performance semantic segmentation for space applications. RECON consists of a runtime-

reconfigurable semantic-segmentation accelerator architecture and includes selective and

adaptive approaches for efficient SEE mitigation. Using both approaches, RECON can

maximize inference performability subject to mission availability constraints. Finally, we

propose a methodology for evaluating FPGA-accelerated DL models and analyzing their

performance and dependability tradeoffs. With an emphasis on the dependability evalua-

tion, we also propose a hierarchical fault-injection approach to accelerate the characterization

of fault susceptibility in DL solutions. Using this methodology, we evaluate, analyze, and

compare the tradeoffs of multiple semantic-segmentation models accelerated on multiple

configurations of the Xilinx Deep-Learning Processing Unit (DPU) accelerator.

2

This dissertation is organized as follows. Chapter 2 provides a cursory overview of Small-

Sats missions and autonomy, commercial FPGAs and SoCs for space applications, radiation

effects and dependable computing, and DL to introduce relevant background for the disserta-

tion research. Chapter 3 describes HARFT, including the adaptive system architecture and

evaluation methodology. Chapter 4 describes RECON, including the reconfigurable acceler-

ator architecture, efficient SEE-mitigation approaches, and evaluation. Chapter 5 describes

a methodology for evaluating FPGA-accelerated DL models and analyzing their tradeoffs,

including the hierarchical approach to accelerate the fault-injection process. Finally, Chapter

6 concludes this dissertation.

3

2.0 Background Research

This section provides a cursory overview of space-computing trends including SmallSats,

CubeSats, autonomy for space missions, and commercial hybrid and heterogeneous SoCs and

systems that enable dependable, high-performance onboard processing. Next, this section

provides a background in DL including neural network (NN) and convolutional NN (CNN or

ConvNet) basics, semantic segmentation, inference accuracy metrics, and CNN architectures

and optimizations for FPGA acceleration. Finally, this section discusses topics in dependable

computing such as radiation effects on electronic devices, SEE susceptibility of commercial

CPUs and FPGAs, including mitigation techniques and evaluation methods, symmetric and

asymmetric multiprocessing, and the modeling of adaptive and evolvable systems for near-

Earth radiation environments.

2.1 SmallSats, CubeSats, and Onboard Autonomy

The application of onboard DL for spacecraft autonomy and data analysis is rapidly

trending in SmallSat and CubeSat missions. SmallSats, constrained to low size and mass

under 500 kg, and CubeSats, measured in Units (U) with 10×10×10 cm3 per U, have

emerged as useful, high-risk, low-SWaP-C platforms enabled by the miniaturization of elec-

tronics, sensors, and instruments, and have proliferated in both science and defense missions

[63, 105, 95]. The proliferation of CubeSat missions has also enabled complementary activi-

ties that use emerging techniques in big data, such as DL, to process vast CubeSat-generated

datasets. For example, Planet’s constellation of Dove CubeSats generates several terabytes

of high-cadence, high-resolution EO image data per day [31]. However, in 2016, the Na-

tional Academies’ Space Studies Board (SSB) highlighted the need for fault protection and

high-performance computing for spacecraft operations and payload processing for CubeSats

[63]. In 2018, the SSB issued a report for the 2017-2027 decadal strategy on Earth science

and applications from space, providing recommendations to the National Aeronautics and

4

Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA),

and U.S. Geological Survey (USGS) for future missions in EO [65]. The decadal strategy

accentuated the need for advanced methodologies to analyze and convert EO image data

into scientific knowledge, which can be achieved using DL methods. However, the decadal

strategy also emphasized the importance of mission design tradeoffs and the crucial balance

of three interrelated parameters: performance, cost, and risk, which signifies the importance

of considering all three parameters for a space computer capable of onboard DL. In 2011,

the SSB issued a report for the 2013-2022 decadal strategy for planetary science, which em-

phasized the need for reduced SWaP-C constraints in spacecraft and increased spacecraft

autonomy to achieve planetary science objectives [62]. Similarly, in 2019, the SSB issued

a report reviewing the planetary science aspects of NASA’s lunar science and exploration

initiative, which highlighted the deployment of lunar CubeSats and SmallSats to achieve

lunar science objectives [66].

In addition to advancing science missions, SmallSat and CubeSat technology are also

emerging in future defense missions. At the 2017 Small Satellite Conference keynote ad-

dress, the National Geospatial-Intelligence Agency (NGA) director, Robert Cardillo, accen-

tuated plans for the NGA to begin using immense volumes of data collected by commercial

constellations of imaging SmallSats [16]. Similarly, at the 2020 Small Satellite Conference

keynote address, the National Reconnaissance Office (NRO) director, Christopher Scolese,

emphasized a hybrid architecture approach that combines flagship satellites with prolifer-

ated SmallSats and commercial satellites to enhance flexibility, responsiveness, resiliency, and

prioritization in constellation management [90]. The Defense Advanced Research Projects

Agency (DARPA) Blackjack program seeks to create a next-generation avionics unit, called

Pit Boss, that will leverage both commodity and commercial technologies to enable ad-

vanced, on-orbit computing with payload-level and mission-level autonomy [18]. Blackjack

aims to demonstrate that a distributed, resilient constellation of autonomous, replenish-

able SmallSats in low-Earth orbit (LEO) can compete with expensive, flagship spacecraft in

geosynchronous orbit (GSO) [17].

5

2.2 Commercial Hybrid and Heterogeneous SoCs and Systems for Space

Applications

To improve onboard processing capabilities that enable DL applications, SmallSat and

CubeSat missions often employ commercial FPGAs and hybrid SoCs. Hybrid SoCs, such as

the Xilinx Zynq-7000 SoC (Zynq-7000) [113] and Xilinx Zynq UltraScale+ MPSoC (Zynq-

MPSoC) [115], combine fixed-logic CPUs with reconfigurable-logic FPGAs in a single device,

with both subsystems interconnected by high-speed Advanced Microcontroller Bus Archi-

tecture (AMBA) Advanced eXtensible Interface (AXI) interfaces. The Zynq-7000 features

single- or dual-core ARM Cortex-A9 APU and an Artix or Kintex 7-Series FPGA fabric in-

terconnected by 64-bit AXI3 interfaces. The Zynq-MPSoC features a multiprocessor system,

including dual- or quad-core ARM Cortex-A53 APU, dual-core ARM Cortex-R5 RPU, TMR

MicroBlaze PMU, and an UltraScale+ Architecture FPGA fabric interconnected by 128-bit

AXI4 interfaces. In both SoC series, the CPU and FPGA subsystems can interact over

AXI for general-purpose and high-performance memory-mapped accesses. Both series also

include configuration access ports (CAPs) that enable interactions with the FPGA config-

uration controller for FPGA reconfiguration and access to configuration memory (CRAM).

These ports include the processor CAP (PCAP) and internal CAP (ICAP) which are acces-

sible by the CPU and FPGA, respectively. In addition to full reconfiguration (FR), Xilinx

FPGAs and SoCs support partial reconfiguration (PR) that allows predefined partitions,

called PR regions (PRRs), to be reconfigured with compatible modules, called PR modules

(PRMs) at runtime without interrupting the remainder of the system, including the CPU

and logic in the static region (SR) and other PRRs. PR presents numerous advantages for

space applications, including runtime reconfiguration without compromising system uptime,

rotation of time-multiplexed PRMs for resource-constrained FPGAs, and reconfiguration to

extend the system for post-mission operations and objectives [69].

6

The Microchip SmartFusion2 SoC, which combines a single-core ARM Cortex-M3 with

flash-based IGLOO2 FPGA fabric interconnected by AMBA AHB-Lite or APB interfaces,

is another commercial SoC suitable for low-power applications. The flash-based CRAM also

improves the susceptibility of the FPGA to radiation-induced SEEs at the tradeoff of limited

reconfigurability.

Space missions increasingly continue to adopt hybrid and heterogeneous SoCs and sys-

tems for onboard processing. The CHREC Space Processor (CSP) [109, 106] and SHREC

Space Processor (SSP) [82] are two examples of multifaceted hybrid space computers, both

illustrated in Figure 1. CSP was developed by researchers at the National Science Foun-

dation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) in collab-

oration with NASA Goddard Space Flight Center (GSFC), and SSP was developed at the

NSF Center for Space, High-Performance, and Resilient Computing (SHREC), which super-

seded CHREC in 2018, at the University of Pittsburgh in collaboration with government

and industry partners. CSP and SSP are both 1U compute cards that feature a Zynq-

7000 (Z7020 or Z7030/Z7030/Z7045) and combine a novel mix of commercial technology

(processor and memory) for performance, rad-hard technology (monitoring and managing

circuits) for dependability, and supplementary dependable computing for extended reliabil-

ity enhancements. µCSP, another hybrid space computer developed at CHREC, is a sub-1U

system-on-module (SoM) that features a Microchip SmartFusion2 SoC (M2S090) designed for

low-SWaP-C applications [107, 106]. CSP has flight heritage as part of two U.S. Department

of Defense Space Test Program (STP) Houston missions to the International Space Station

(ISS), including STP-H5 CHREC Space Processor (STP-H5-CSP) and STP-H6 Spacecraft

Supercomputing for Image and Video Processing (STP-H6-SSIVP) [109, 106, 85]. CSP was

also flown on the NASA CeREs heliophysics-science CubeSat [38] and Seeker free-flying in-

spector CubeSat [71], and it will be featured on the Lockheed-Martin LunIR lunar-flyby

CubeSat [80], the NASA Mass Spectrometer observing lunar operations (MSolo) instrument

[2], and several other planned missions. µCSP also has flight heritage as part of STP-H6-

SSIVP. CSP, SSP, and µCSP are also planned for flight on the STP-H7 Configurable and

Autonomous Sensor Processing Research (STP-H7-CASPR) mission to the ISS [82]. All

7

(a) CSP (Rev. B EM) (b) SSP (Rev. B EM) (c) µCSP (Rev. B FM)

Figure 1: Hybrid space computers developed at NSF SHREC include (a) CSP, (b) SSP, and

(c) µCSP. EM and FM refer to engineering and flight models, respectively.

three STP mission experiments that include CSP, SSP, or µCSP are illustrated in Figure

2. Derivatives of CSP include the SHREC Hybrid Computer (SHC) and SpaceCube Mini-Z

[13], both developed at NASA and featured on many new science missions.

The Science Data Processing Branch at NASA GSFC is also developing two next-

generation hybrid space computers, including the SpaceCube v3.0 VPX (SCv3VPX) [27]

and SpaceCube v3.0 Mini (SCv3M) [13], both illustrated in Figure 3, as the next generation

of hybrid space computers for future missions. SCv3VPX is a 3U SpaceVPX Lite card that

features the Zynq-MPSoC and Kintex UltraScale FPGA (KU-FPGA) with both devices in-

terconnected by multi-gigabit transceivers (MGTs) and supervised by a rad-hard Microchip

RTAX FPGA. SCv3M is a 1U card that features the KU-FPGA, supervised by a Microchip

RT ProASIC3, and can be paired with a processor card (e.g., SSP) for external management

or self-managed with a soft-core processor (e.g., MicroBlaze or RISC-V).

8

(a) STP-H5-CSP (b) STP-H6-SSIVP (c) STP-H7-CASPR

Figure 2: STP mission experiments developed at NSF SHREC that feature CSP, SSP, or

µCSP include (a) STP-H5-CSP, (b) STP-H6-SSIVP, and (c) STP-H7-CASPR.

(a) SCv3VPX (b) SCv3M

Figure 3: Hybrid space computers developed at NASA GSFC include (a) SCv3VPX and (b)

SCv3M.

9

Alternative examples of single-board computers featuring a Zynq-7000 include the In-

noflight Compact Flight Computer (CFC-300), GomSpace Nanomind Z7000, and Xiphos

Q7. Alternative examples that feature a Zynq-MPSoC include the Innoflight CFC-400 and

Xiphos Q8.

Lovelly et al. [55] developed a methodology using device metrics to analyze and compare

the performance and energy-efficiency of select commercial, defense-grade (improved packag-

ing and parts qualification), and rad-hard processors for onboard computing. These device

metrics include the computational density (CD), measured in giga-operations per second

(GOPS), and computational density per Watt (CD/W), which approximate the potential

performance and energy-efficiency, respectively, for a processor. Using this methodology,

the commercial Zynq-7000, Zynq-MPSoC, and KU-FPGA all demonstrated substantial im-

provements over state-of-the-art rad-hard processors in both metrics, in addition to cost-to-

performance efficiency in U.S. Dollars per CD (USD/CD), highlighting the advantages of

using commercial and hybrid architectures for space applications.

10

0.01

0.10

1.00

10.00

100.00

C
D

/W
 [

G
O

P
S

/W
]

INT8 INT16 INT32 FP32 FP64

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

C
D

 [
G

O
P

S
]

INT8 INT16 INT32 FP32 FP64

$0

$1

$10

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

U
S

D
/C

D
 [

U
S

D
/G

O
P

S
]

Computational Density
[CD]

Computational Density per Watt
[CD/W]

Cost per Computational Density
[USD/CD]COTS

COTS COTSRad-HardRad-Hard Rad-HardDefense Defense

(a) CD (b) CD/W (c) USD/CD

Figure 4: Comparison of space processors in terms of (a) CDa, (b) CD/W, and (c) USD/CDb

[55, 27, 13].

aZU7EG and KU060 metrics are estimates extrapolated from existing data.
bCost based on average estimated price over survey data (2020).

11

2.3 Radiation Effects

Radiation sources are numerous and include galactic cosmic rays (GCRs), solar particle

events (SPEs), and charged particles trapped within the Van Allen radiation belts. In the

near-Earth radiation environment, GCRs are mostly composed of protons but also include

alpha particles and heavy ions. SPEs include coronal mass ejections (proton-rich) and solar

flares (heavy-ion-rich). The Van Allen radiation belts, which reside in the Earth’s magnetic

(geomagnetic) field, are primarily composed of protons and electrons. The geomagnetic field

provides shielding from GCRs and solar wind. However, geomagnetic shielding is dependent

upon the solar weather condition [42, 12].

The charged particles trapped in the Van Allen radiation belts are governed by three

periodic motions: gyration about the magnetic field lines, bounce between mirror points

near the magnetic poles, and longitudinal drift with positively charged particles drifting

westward and negatively charged particles drifting eastward [39]. Collectively, these periodic

motions cause charged particles to drift about a toroidal surface, called a drift shell. The

McIlwain L-shell (Lm), from McIlwain’s (B,L) geomagnetic coordinate system, labels these

drift shells (set of geomagnetic-field lines) that cross the geomagnetic equator in units of

Earth radii (R⊕) from the geomagnetic center. The Lm can be used to estimate the fluxes

of trapped particles within the geomagnetic field and GCRs attenuated after geomagnetic

shielding. Using the NASA trapped particle radiation models (AP-8/AE-8), the proton and

electron fluxes are indexed using the following parameters: energy, B, and Lm.

Radiation presents several challenges for electronic devices in space. Radiation effects

on electronic devices are typically categorized into long-term cumulative effects and short-

term transient effects. Cumulative effects include total ionizing dose (TID) and displacement

damage dose (DDD). TID refers to the ionizing-radiation dose absorbed by the device ma-

terial over time causing parametric or functional degradation (e.g., threshold-voltage shifts,

timing changes, current-leakage increase). DDD refers to non-ionizing damage that occurs

when radiation particles collide with atoms of the lattice structure to form Frenkel pairs (a

vacancy and interstitial atom).

12

SEEs are transient effects that occur due to direct-ionization or indirect-ionization pro-

cesses. Direct-ionization-induced SEEs typically occur when a single heavy-ion particle tra-

verses the device depositing enough charge to cause an effect. Indirect-ionization-induced

SEEs often occur when protons, or other species of radiation, form nuclear interactions near

the sensitive device causing an effect. SEEs can be destructive or nondestructive. Destruc-

tive SEEs include single-event latch-up (SEL), single-event burnout (SEB), and single-event

gate rupture (SEGR), among others. Nondestructive SEEs include single-event upset (SEU),

single-event transient (SET), and single-event functional interrupt (SEFI). Both cumulative

and transient effects are extensively covered by the National Academies’ report on the U.S.

infrastructure for space radiation effects testing [64].

Several examples of spacecraft system failures and anomalies attributed to the harsh

space environment, including radiation, are covered in [8, 21]. To improve mission depend-

ability, NASA created the Radiation Hardness Assurance (RHA), a multi-step approach to

address radiation concerns in spacecraft development [43, 44]. NASA further evolved RHA

for SmallSat missions that require high reliability but are too cost-constrained to follow

standard RHA practices [14].

2.4 Dependable Computing

Despite numerous architectural advantages provided by commercial hybrid SoCs, these

devices are infrequently deployed in NASA-qualified space avionics due to their high suscep-

tibility to radiation. The architectural response to SEEs differs between CPUs and FPGAs,

and several techniques in dependable computing exist for both architectures. A comprehen-

sive overview of the radiation effects on CPUs, including hardware and software mitigation

techniques, is covered in [40, 78, 81]. Similarly, an overview of radiation effects on FPGAs,

including fault-masking and fault-tolerance techniques, is provided in [110, 92] as well.

13

2.4.1 CPU Dependability

For CPUs, errors in the processor registers (general-purpose, special-purpose, and in-

ternal), caches, and memories (on-chip and external) can cause a variety of adverse effects,

including data errors, silent data corruption (SDC), program crashes, system resets, and

performance degradation [78, 81]. Various techniques exist for error mitigation in CPUs in

terms of hardware, information, network, software, and time redundancy. Error detection

and correction (EDAC) mechanisms, including error-correcting code (ECC), cyclic redun-

dancy check (CRC), and parity, are often integrated into the CPU architecture to improve

reliability. Time TMR (TTMR) can be used to run redundant replicas of software processes

over time. Process-level redundancy (PLR) can be used to schedule replicas across available

resources to reduce overhead [91]. Using algorithm-based fault tolerance (ABFT), input

operands are encoded and processed to yield an encoded output that can be used to detect

or correct errors [41]. One form of hardware redundancy for CPUs is lockstep operation,

which involves two or more synchronized CPUs running the same software at the same in-

struction order, with the processor states (i.e., registers or interconnects) running through a

comparator or majority voter for duplex-with-compare (DWC) or TMR operation, respec-

tively. CPUs in lockstep operation can be combined with checkpoint and rollback recovery

to minimize the latency of resynchronization [1].

2.4.1.1 Symmetric and Asymmetric Multiprocessing

Some multicore processors can operate in both symmetric multiprocessing (SMP) and

asymmetric multiprocessing (AMP). In SMP, cores operate jointly under one operating sys-

tem (OS). SMP provides performance benefits by facilitating multitasking (parallel execution

of multiple processes) and multithreading (parallel execution of one process). However, due

to the tight coupling of cores in SMP operation, the corruption or functional failure of one

core due to radiation-induced errors can render the entire OS inoperable. In contrast, AMP

cores are partitioned, with each partition running an independent OS (i.e., one partition

runs Linux and the other runs bare-metal or FreeRTOS). AMP limits the capability for par-

allel processing but provides some degree of isolation to mitigate error propagation between

14

partitions. Thus, the corruption of one OS does not necessarily render the other inopera-

ble. AMP provides several additional capabilities suitable for space applications, including

(1) segregation of critical flight software (FSW) and science applications, (2) hybrid combi-

nation of OS paradigms (e.g., interactive and real-time OSs), (3) redundant processing for

dependable computing, and (4) physical zoning for security applications. The Zynq-7000 and

Zynq-MPSoC are both capable of SMP and AMP operation. Heterogeneous, multiprocessor

SoCs, such as the Zynq-MPSoC, enable another dimension of feasible AMP configurations.

Furthermore, the Zynq-MPSoC CPU architecture supports hardware extensions for efficient

virtualization. Hypervisors, such as Xen, can physically partition cores, with each partition

running its own virtual machine. Hypervisor-based fault-tolerance for space applications has

been explored by Sabogal et al. [84].

2.4.2 FPGA Dependability

Many FPGAs and FPGA subsystems in hybrid SoCs are SRAM-based. SRAM-based

FPGAs are high-density, high-reconfigurability architectures composed of many diverse re-

sources, including logic blocks and hard blocks (e.g., DSPs, BRAM, and high-speed I/O),

interconnected by a complex routing network. At runtime, a design bitstream is stored in

CRAM to configure the resources and network routing to implement a design onto the FPGA.

This paradigm provides designers with the flexibility to create customized, massively parallel

datapaths to accelerate compute-intensive algorithms on FPGAs as well as the capability to

reconfigure the FPGA fully or partially at runtime to multiplex applications or system config-

urations over time. However, despite these architectural advantages for onboard processing,

SRAM-based FPGAs and SoCs are seldom deployed in NASA-qualified avionics due to their

high susceptibility to radiation, which can introduce faults that manifest into a variety of er-

ror and failure modes. To address radiation concerns, many NASA missions deploy rad-hard,

flash-based, or antifuse-based FPGAs, which are relatively or completely immune to CRAM

faults, instead of SRAM-based FPGAs. Faults in static CRAM bits, which configure the

FPGA to realize the design, can cause functional changes in the design. Examples include

misconfiguration of resources (e.g., misconnected signals or functional changes) and routing

15

(e.g., misrouted or missing signals), as illustrated in Figure 5. Faults in dynamic CRAM

bits, which are typically used for distributed RAM or shift registers, and other design-specific

memories (e.g., BRAM, flip-flops, and internal hard-block registers) can also cause a wide

variety of adverse effects. Typically, design-specific memories can be protected with error

correction code (ECC) to improve dependability. A comprehensive overview of the radiation

effects on FPGAs, including SEE mitigation techniques for fault masking, avoidance, and

tolerance, is covered in the literature [110, 92, 77].

2.4.2.1 Dependability Techniques

TMR is a hardware redundancy technique that involves triplicating circuits and routing

the outputs through majority voters for single-fault masking. TMR can improve the reliabil-

ity of a design; however, triplication incurs a high overhead in the device resource utilization,

energy consumption, and timing-critical path of a design, which can reduce performance or

even detrimentally increase the critical area (critical bits) vulnerable to faults. The granular-

ity at which triplication is applied can vary. Fine-grain TMR (FG-TMR) involves triplication

of intra-modular circuits with more frequent voters to mask low-level faults (e.g., circuits

within the module are triplicated with voters inserted at the inputs of each flip-flop), and

coarse-grain TMR (CG-TMR) involves triplication of entire modules to mask module-level

faults (e.g., voters inserted at the modular interfaces). Generally, fine-grain replication pro-

vides greater reliability due to more frequent voters that inhibit the propagation of errors,

as illustrated in Figure 6, whereas coarse-grain replication provides greater area efficiency

[96]. Furthermore, reliability-aware placement and routing methods have been explored to

disaggregate replicas of TMR designs across separate domains to minimize common-mode

failures [93, 15]. DWC is another form of hardware redundancy that involves duplicating

circuits and comparing their outputs for single-fault detection.

A variety of tools have been developed for the automatic replication and insertion of ma-

jority voters or comparators of FPGA designs. Commercial tools, such as Xilinx TMRTool,

Synopsis Synplify Premier, and Mentor Graphics Precision Hi-Rel can triplicate designs

at the RTL level during synthesis, along with other reliability features. BL-TMR is an

16

CRAM

Abstraction

Architecture

Abstraction

User Logic

Abstraction

Misconfigured

Routing

Misconfigured

Resource

Figure 5: Functional changes of FPGA design due to SEEs in CRAM.

17

Majority Voter

Replica A Replica B Replica C

Majority Voter

V V

V

V V

V

V V

V

Coarse-grain TMR Fine-grain TMRSimplex

E
rr

o
r

p
ro

p
a

g
a

ti
o

n

(a) Simplex design (b) CG-TMR design (c) FG-TMR design

Figure 6: Granularity of TMR in FPGA designs with (a) the simplex design protected by

(b) CG-TMR and (c) FG-TMR.

academic tool that supports selective replication of designs in a post-synthesis netlist [37].

TLegUp is an academic extension of the LegUp tool that provides compiler directives and

fault-tolerance-aware scheduling and binding to triplicate high-level synthesis designs [51].

Hardware redundancy can be combined with PR for module-based error recovery (MER)

[11]. In this paradigm, the replicas of a CG-TMR design are PRMs residing in their inde-

pendent PRRs with majority voters inserted in the SR near the PRR boundaries. When

module-based errors are detected, the majority voters signal a reconfiguration controller re-

siding in the SR to reconfigure faulty PRMs for recovery. Various network topologies and

strategies for MER have been explored in the literature [3, 121, 122].

Hardware redundancy can also be combined with CRAM scrubbing to prevent the accu-

mulation of faults in CRAM that can overwhelm single-fault masking techniques like TMR.

CRAM scrubbing is a background process that detects and corrects faults in CRAM. On Xil-

inx FPGAs, scrubbing architectures can be implemented on-chip using the PCAP or ICAP

or off-chip using JTAG or SelectMAP [10], and the scrubbing approach can be categorized

18

into blind, readback, replacement, or hybrid forms [94]. A variety of optimization techniques

for CRAM scrubbing have been explored, such as prioritizing CRAM frames by number of

critical bits [88] or exploiting frame-level redundancy of TMR designs to repair fault frames

using the frame of the replica [98].

2.4.2.2 Dependability Evaluation of FPGA Designs

The dependability of a full or partial design of an FPGA can be measured experimentally

through fault-injection or radiation-beam testing. In CRAM fault injection, a bit-flip is in-

jected into CRAM to observe the architectural response to the fault during design operation.

Two metrics of interest for quantifying the dependability of a design include the architec-

tural vulnerability factor (AVF) and mean-work-to-failure (MWTF). In the context of this

dissertation, the AVF of a design is the probability that an injected fault will manifest into

an observable event [61], and MWTF describes the amount of useful work completed until

an observable event is expected [79]. The classification of observable events is user-defined

and can vary by design or application (e.g., SDC or hangs). AVF and MWTF are calculated

using Equations (2.1) and (2.2), respectively.

AVF =
Number of Observable Events

Number of Fault Injections
(2.1)

MWTF =
Amount of Useful Work Completed

Number of Observable Events
(2.2)

Radiation-beam testing involves irradiating devices-under-test (DUTs) by high-energy ra-

diation or laser beam to induce SEEs. In radiation-beam testing, the beam flux (number

of particles per unit area per second) or fluence (integration of flux over time; the number

of particles per unit area per second) are recorded in addition to the observed events. One

metric of interest is the cross-section (σ), which is the sensitive area of the DUT where

19

a radiation-induced fault will manifest into an observable event [76]. The cross-section is

calculated by dividing the number of observable events by the beam fluence using Equation

(2.3). In practice, the AVF and cross-section results are reported with the corresponding

95% confidence interval (CI) error to provide context for uncertainty in the measurements

of the experiment [76].

σ =
Number of Observable Events

Total Effective Fluence
(2.3)

2.4.2.3 Environmentally Adaptive Resilience for Near-Earth Radiation Envi-

ronments

Due to the dynamics of the near-Earth radiation environment, influenced by the geomag-

netic field, solar weather, and other phenomena, spacecraft are exposed to wide variations

of radiation fluxes resulting in SEE rates that can vary by multiple orders of magnitude

depending upon the orbit [12, 111]. Jacobs et al. [35] and Sabogal et al. [87] proposed

methodologies for modeling and evaluating adaptive and evolvable systems in near-Earth

radiation environments.

First, the dynamic radiation environment is modeled using the combination of multiple

well-established models to predict the time-varying SEE rates of a device. Simplified General

Perturbation (SGP4) [33] is an orbital-perturbation model that can predict the geographic

coordinates of the orbital position of near-Earth objects over a period. International Geo-

magnetic Reference Field (IGRF) [97, 103] is a geomagnetic-field model that can map the

geographic coordinates to the McIlwain L-shell (Lm), which labels the drift shells that cross

the geomagnetic equator in units of Earth radii (R⊕) from the geomagnetic center. Using the

NASA trapped particle radiation (AP-8/AE-8) and Cosmic Ray Effects on Micro-Electronics

(CRÈME96) models, the Lm can be used to estimate the fluxes of trapped particles within

the geomagnetic field and GCRs attenuated after geomagnetic shielding. CRÈME96 [101],

20

developed by Vanderbilt University and supported by NASA, is a state-of-the-art tool that

uses phenomenological models with device, mission, orbital, and environmental characteris-

tics to predict SEE rates induced by protons and heavy ions. CRÈME96 can also predict the

average SEE rates for a specific orbital segment between two drift shells bounded by lower

and upper Lm. These segmented SEE rates can be assigned to the time domain by mapping

SEE rates to the Lm of the spacecraft over time.

Next, for a specific observable event, the time-varying fault rate of an FPGA design

(λdesign(t)) can be approximated using Equation (2.4). For each resource type (r ∈ R), the

aggregated resource SEE rates (λr,SEE(t)) is scaled by the resource utilization (RUr) times

the resource AVF (AVFr). In cases where determining the AVF of a specific resource type is

infeasible, an estimate is made (e.g., assume worst-case or use another resource AVF). The

final design fault rate is the summation of the scaled fault rates for all resource types.

λdesign(t) =
∑
r∈R

λr,SEE(t) · RUr · AVFr (2.4)

Finally, phased-mission system modeling is used to model adaptive and evolvable systems,

where failure, recovery, and performance mechanisms change over time. At each phase of

the mission, the system configuration can be modeled using continuous-time Markov chains

(CTMCs), with time-varying fault rates, repair rates, and reward rates assigned to represent

failure, recovery, and performance mechanisms, respectively. The instantaneous and average

availability, failure rate, and performability of the system can be calculated by performing a

transient analysis of the phased-mission system model. Availability describes the probability

that a system is operational. The failure rate describes the rate at which a system enters a

failure state. Finally, performability describes the amount of useful work completed and is

dependent on system availability

21

2.5 Deep Learning

DL, particularly CNNs, have become increasingly popular in ML and computer-vision

(CV) applications for classification, detection, localization, and segmentation tasks on image

data [89] and can be applied to enhance applications in EO and remote sensing [7]. CNNs are

a form of classical supervised learning algorithms with a feed-forward process for inference

and a back-propagation process for training. CNNs consist of a combination of layers (or

nodes) that operate on feature maps (FMs). Convolutional layers extract features of input

FMs and generate new FMs that represent the locations and strengths of detected features.

Each convolutional operation contains a set of learnable weights and biases that are formu-

lated during model training. Initial convolutional layers extract low-level features (e.g., edges,

corners, surfaces), and deeper layers extract more complex abstractions (e.g., structures and

patterns). Activation layers (e.g., sigmoid, tanh, and rectified linear unit (ReLU)) introduce

nonlinearity into the model to approximate nonlinear patterns and functions. Pooling layers

(e.g., max pooling and average pooling) downsample and discretize the spatial resolution

of input FMs to reduce the number of parameters and operations. Fully connected layers

perform classification and map features extracted from previous layers into an output vector

of classes. The arguments of the maxima (argmax) of the output vector specify the most

probable classification of the input for class label assignment. CNNs can append an optional

softmax layer to convert the output vector into a discrete probability-distribution vector to

determine the confidence of the classification. Batch normalization (BatchNorm) is another

layer that can be inserted between convolutional and activation layers to accelerate training

and mitigate overfitting through the normalization of the inputs.

2.5.1 Semantic Segmentation

Semantic segmentation is a process that labels each pixel of an image, where pixels with

the same label share the same semantic characteristics. The application of DL to perform

semantic segmentation has been explored extensively in the literature [26, 45]. Five examples

of semantic-segmentation models evaluated in this dissertation research include SegNet [6],

22

Convolution + Batch Normalization + ReLU Pool Unpool Softmax

Encoder Decoder

1
2

3
4

5 5
4

3
2

1

Pooling Indices

Figure 7: SegNet semantic-segmentation model.

U-Net [83], Efficient Neural Network (ENet) [70], Feature Pyramid Network (FPN) [54], and

Efficient Spatial Pyramid Neural Network (ESPNet) [57], each with unique characteristics.

SegNet, illustrated in Figure 7, is a symmetric autoencoder that contains five encoder blocks

followed by five decoder blocks, each with two or three sets of convolutional, BatchNorm,

and ReLU layers. Each encoder block is followed by a max-pooling layer which produces

two outputs: downsampled FMs and pooling indices (PIs). Each decoder block begins with

a max-unpooling layer which uses the PIs of the corresponding encoder block to upsample

smaller FMs back to their original spatial resolution. SegNet uses PIs to perform nonlin-

ear upsampling without the need to learn to upsample. An optional softmax layer can be

appended at the end of the network to generate a discrete pixel-wise probability distribu-

tion. The argmax of the output layer can also be used to assign the most probable label for

each pixel. U-Net is a symmetric autoencoder and contains contracting and expanding data

pathways. The contracting pathway is a sequence of encoder blocks that perform feature

extraction and pooling-based downsampling, and the expanding pathway is a sequence of

decoder blocks that perform deconvolutional upsampling using feature maps (FMs) from

preceding and lateral blocks. ENet is an asymmetric autoencoder that uses dilated convo-

lution to achieve a larger receptive field of each convolutional filter, stores pooling indices

from early pooling layers for unpooling-based upsampling, and factorizes filters to drastically

23

reduce the number of parameters. FPN is a pyramidal structure with bottom-up and top-

down pathways. The bottom-up pathway generates FMs with increasing semantic value at

decreasing resolution, and the top-down pathway reconstructs higher resolution layers using

FMs from the preceding and lateral levels. Finally, ESPNet is an asymmetric autoencoder

that uses efficient spatial pyramid convolutional modules, which perform point-wise convo-

lution followed by a spatial pyramid of dilated convolutions that significantly decreases the

number of parameters required while maintaining a large receptive field.

To evaluate the accuracy of semantic-segmentation models, two common metrics include

the intersection-over-union (IoU; Jaccard index) and F1-score (F1; Dice score). The IoU is

the area of intersection (overlap) divided by the area of union between the predicted output

and ground-truth label mask. The F1 is defined as the harmonic mean of precision and

recall. Both metrics range from 0% to 100% (higher is better) and can be calculated from a

confusion matrix, which compares the predicted output and the ground-truth label in terms

of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) using

Equation (2.5). In multi-class segmentation, the mean IoU (mIoU) and mean F1 average

the IoU and F1, respectively, across all classes.

IoU =
TP

TP + FP + FN
and F1 =

2TP

2TP + FP + FN
(2.5)

2.5.2 FPGA Acceleration of DL Applications

The acceleration of DL on FPGAs has been explored extensively in the literature [30, 59].

Researchers have explored various model-compression, algorithmic, and architectural opti-

mization techniques to efficiently map CNN algorithms to FPGAs. Model compression

techniques, such as weight pruning and data quantization, can improve hardware efficiency

at the cost of decreased accuracy. Weight pruning is a sparsification technique that re-

moves weights with negligible representation in the model. Data quantization replaces high-

24

precision, resource-intensive floating-point (FP) data and arithmetic with low-precision in-

teger or fixed-point to reduce the bandwidth, storage, energy, and area requirements for

each operation. The 8-bit integer (INT8) quantization scheme proposed by Jacob et al. [34]

constrains the continuous input set (FP) to a discrete set (INT8) using scale and zero-point

parameters to map between real numbers and integers.

Additionally, algorithmic optimization techniques, such as fast convolution algorithms,

BatchNorm folding, and loop optimizations, can improve the parallelism and efficiency of

the accelerator architecture for FPGAs. Fast convolution algorithms, such as Winograd [46]

and frequency-domain convolution, can improve the hardware efficiency of convolutional op-

erations. Winograd convolution uses an algorithmic strength reduction technique to reduce

strong operations (multiplications) at the expense of increased weak operations (additions)

and is computed using Equation (2.6), where G, B, and A are Winograd transformation ma-

trices. The weights g and FMs d are converted to Winograd space using the transformations

U = GgGT and V = BTdB, respectively. Next, the transformed weights and FMs undergo

elementwise multiplication W = U � V to produce the output in Winograd space. Finally,

the outputs are converted back to normal space using the inverse transformation Y = ATWA.

Y = AT
[(
GgGT

)
�
(
BTdB

)]
A (2.6)

The F (2×2, 3×3) form of Winograd convolution requires a 3×3 weights matrix and 4×4

data matrix (subset of a FM) to compute a 2×2 output matrix. Compared to direct 3×3

convolution, the F (2×2, 3×3) form has a 2.25× improvement in multiplication efficiency

(number of multiplies to compute one output pixel) at a 2.625× increase in addition op-

erations, which can minimize utilization of limited DSP resources. BatchNorm folding is

a technique for embedding the parameters of a BatchNorm layer into the weights and bi-

ases of the preceding convolutional layer. BatchNorm folding is performed prior to model

deployment, which can eliminate the need for processing BatchNorm layers at runtime.

25

Loop optimization techniques include unrolling, tiling, and interchange. Loop unrolling,

combined with pipelining, exploits parallelism by executing multiple iterations of a loop us-

ing FPGA resources in parallel. Loop interchange involves reordering loop iteration variables

to improve the efficiency of cache usage. Loop tiling is used to partition large FMs into tiles

that can fit in on-chip memory (OCM), such as block RAM (BRAM) or Xilinx UltraRAM,

for accumulation or caching to reduce the bandwidth requirement for off-chip memory access.

Zhang et al. [119] proposed using design space exploration to determine the optimal param-

eters for loop optimization techniques given memory-bandwidth and resource constraints.

Zhang et al. also proposed a roofline model to quantitatively analyze an accelerator design

and determine whether the design is compute-bound or memory-bound.

Finally, architectural optimizations, such as systolic arrays, DSP time-multiplexing, and

layer fusion, can further improve CNN acceleration. Wei et al. [104] proposed a 2D sys-

tolic array architecture for accelerating convolutional layers composed of processing elements

(PE), each often implemented using one DSP slice. For each cycle, in a weight-stationary

topology, every PE performs a multiply-accumulate (MAC) operation and shifts its input

FM element and MAC output to adjacent PEs in a rippling flow. Because systolic arrays re-

place global multiplexers with interconnects between adjacent PEs, CNN accelerators based

on this topology can achieve high-frequency operation. Furthermore, the DSP slices of Xilinx

7-Series, UltraScale, and UltraScale+ FPGAs are rated for high-frequency operation. DSP

time-multiplexing involves reducing the number of DSP slices by a factor N and operating

them at N times the frequency of surrounding logic to accomplish the same amount of com-

putation [30]. This frequency technique can improve DSP efficiency but requires maintaining

matched routing to ensure synchronization between two clock domains. Layer-fusion (cross-

layer scheduling) techniques can improve latency and minimize off-chip memory access by

fusing and executing multiple adjacent layers in a pipeline [30]. Miscellaneous, channel-wise

operations can often be performed as a preprocess or postprocess of the main convolutional

operation. Because multiple layers are processed in the same stream, the total number of

streams and layer operations is reduced. These optimization techniques all demonstrate the

viability, advantages, and limitations of FPGAs for CNN acceleration.

26

PLPS

Off-Chip Memory

Interconnect

Xilinx DPU IP

H
y
b

ri
d

C
o

m
p

u
ti

n
g

A
rr

a
y Convolution Architecture

PE PE PE• • •
Misc.

Engine

G
lo

b
a

l

M
e

m
o

ry
 P

o
o

l

D
a
ta

 M
o
v
e
r

O
n
-C

h
ip

 B
R

A
M

B
R

A
M

 A
c
c
e
s
s
o
r

In
s

tr
u

c
ti

o
n

U
n

it

F
e
tc

h
e
r

D
e
c
o
d
e
r

D
is

p
a
tc

h
e
r

Interface
Monitor

Vitis AI
DNNDK

Memory
Controller

IR
Q

Figure 8: Xilinx Deep-Learning Processing Unit (DPU) architecture.

27

One example is the Xilinx DPU [118], the hardware component of the Vitis AI stack

[117], illustrated in Figure 8. The DPU is a general-purpose DNN accelerator that uses

a coprocessing architecture. The DPU includes (1) an instruction unit, which performs

instruction fetching and scheduling of node-level operations on FM data, (2) a global memory

pool, which manages on-chip and off-chip memory buffers, and (3) a hybrid computing array,

which is composed of a scalable number of processing engines (PEs) that perform multiply-

accumulate (MAC) and other miscellaneous operations for node processing.

The Vitis AI stack features a variety of model-compression, algorithmic, and architec-

tural optimizations to efficiently map DL models onto the FPGA for acceleration. Model-

compression optimizations include parameter pruning and data quantization that improve

efficiency at the expense of minimally decreased accuracy. Pruning removes parameters

with minimal representation in the model to reduce the model size, and quantization re-

places resource-intensive floating-point data with low-precision integer data to reduce area,

bandwidth, energy, and storage requirements. Next, algorithmic optimizations include loop

optimizations (unrolling, tiling, and interchange) to maximize the data-flow efficiency and

cache performance of on-chip memory. Finally, architectural optimizations include DSP time

multiplexing and node fusion. The DPU operates DSP resources at twice the frequency of

surrounding logic to accomplish the same amount of computations with only half of the

DSP resources. Node fusion involves fusing multiple node operations into one supernode to

improve latency and efficiency.

28

3.0 Environmentally Adaptive Resilience in Reconfigurable Space Systems

Despite the architectural advantages of commercial hybrid SoCs, these devices are highly

susceptible to radiation. Hardware-redundancy techniques, such as DWC and TMR, are of-

ten employed to mitigate radiation-induced SEEs to improve system dependability; however,

these techniques often incur substantial overhead that can limit system performance and en-

ergy efficiency. Furthermore, due to the dynamics of the near-Earth radiation environment,

influenced by the geomagnetic field, solar weather, and other phenomena, spacecraft are

exposed to wide variations of radiation fluxes resulting in SEE rates that can vary by mul-

tiple orders of magnitude depending upon the orbit [12, 111]. Traditionally, system designs

are static (nonchanging) and are designed conservatively to satisfy the worst-case analyzed

scenario for the orbit. However, the worst-case conditions can often be uncommon or infre-

quent for some orbits, which results in static designs that overcompensate for reliability with

excessive redundancy and inefficient use of resources. In such dynamic environments, an

adaptive design can repurpose system resources in response to the environmental condition.

An adaptive system can alternate between high-performance and high-dependability modes

in response to the dynamic fault rate to maximize system performance subject to availability

constraints throughout the mission.

In this chapter, we propose Hybrid, Adaptive, Reconfigurable Fault Tolerance (HARFT),

a reconfigurable framework for environmentally adaptive resilience in hybrid and heteroge-

neous SoCs and systems for space applications. The HARFT architecture combines runtime-

reconfigurable fault-tolerance modes for both subsystems (CPU and FPGA) of a hybrid SoC

into one integrated, synergistic framework. CPU modes include symmetric multiprocessing

(SMP) and asymmetric multiprocessing (AMP), and FPGA modes include PRMs (acceler-

ators or soft cores) arranged for simplex, DWC, or TMR operation. Each mode has unique

characteristics and tradeoffs in performance and reliability. The synergy of the system refers

to the recovery and failover paths within and between subsystems in HARFT to enable re-

29

pair and graceful-degradation mechanisms that elongate system uptime. In response to the

dynamic fault rate, HARFT adapts by selecting modes from the trade space that maximize

system performability while satisfying availability constraints throughout the mission.

Furthermore, to evaluate HARFT, we propose an extended methodology for evaluating

environmentally adaptive and gracefully degradable systems, using phased-mission model-

ing, subject to dynamic near-Earth radiation environments, using a combination of orbital-

perturbation, geomagnetic-field, and CRÈME96 models. Using this methodology, we can

formulate a trade space in performability and availability to allow users to select the optimal

strategy, static or adaptive, that achieves the highest performability subject to a user-defined

availability constraint. We evaluate HARFT on the Zynq-7000 for six orbital case studies

from four orbital regimes and demonstrate substantial performability gains while satisfying

availability constraints.

3.1 Related Work

Environmentally adaptive and resilient computing on FPGA-based systems has been

explored in the literature [35, 29, 108, 120, 60]. Jacobs et al. [35] proposed Reconfigurable

Fault Tolerance (RFT), a framework that includes an environmentally adaptive resilience

architecture, a time-varying fault rate model, and a performability model using phased-

mission models. RFT monitors radiation stimuli to estimate the environmental condition

and uses PR to reconfigure PRMs in various redundancy schemes (e.g., simplex, DWC, and

TMR) at runtime to efficiently accommodate the environmental condition. Furthermore,

the RFT fault rate model provides a method for predicting the SEE rate of the near-Earth

radiation environment, and phased-mission Markov modeling is used to calculate the system

availability and performability of RFT subject to these dynamic fault rates. Glein et al. [29]

proposed Adaptive SEE Mitigation (ASEEM), an environmentally adaptive architecture for

spacecraft in geostationary orbit (GEO), which monitors radiation stimuli using a BRAM-

based fault detector to estimate the solar condition and uses PR to alternate between simplex

and TMR designs in the FPGA. Zhang et al. [120] proposed a method for estimating the

30

reliability of accelerators in response to the dynamic SEE rate. This estimate is then used

to determine the duration at which accelerators satisfy the mission reliability constraint

once reconfigured into the FPGA. When an accelerated function is requested, a runtime

reliability manager uses a heuristic algorithm to select an accelerator variant from the trade

space. Möstl et al. [60] proposed a self-aware resource manager to allow a system to adapt its

applications in response to changing environmental conditions. The application reliability is

estimated by analyzing the fault rates at multiple decomposition levels, and the dependability

technique is selected based on the application reliability in response to the dynamic particle

flux. Wilson et al. [108] proposed the prototype of HARFT, which extends RFT (limited

to solely FPGAs) to hybrid SoCs, where both CPU and FPGA resources can be adapted in

response to the environmental condition.

We extended HARFT of Wilson et al. [108] to create a more versatile architecture

and modeling approach. Compared to previous research, we eliminate the assumption of

a fault-free configuration manager by decentralizing this function across multiple control

agents (e.g., hard cores and soft cores). Furthermore, we introduce synergistic mechanisms

for recovery and failover paths within and between subsystems (CPU and FPGA) to enable

repair and graceful degradation. To evaluate HARFT as an environmentally adaptive and

gracefully degradable system, we leverage the RFT fault rate model for time-varying SEE

rate predictions of the near-Earth radiation environment, and we extend the phased-mission

modeling approach described in [35]. Our extensions include the following: our approach

(1) removes the assumption of a fault-free control agent to account for the various control

agents that are available depending upon the current mode of operation and (2) models the

recovery and failover paths that differ between control agents.

3.2 HARFT Architecture Overview

The HARFT architecture is a hybrid framework providing environmentally adaptive re-

silience in commercial hybrid SoCs. Illustrated in Figure 9, the HARFT architecture consists

of three subsystems: the Hard Processing System (HPS) framework, the Soft Processing Sys-

31

Software FPGA

CRAM
Scrubber

BRAM
Fault Detector

Memory
CPU

Fine-Grain TMR

DMA1

• • •

DMAM

CoreC

Core1 • • •

• • •

Peripherals

Partial
Reconfiguration

Region1

• • •

Partial
Reconfiguration

RegionN
FSW State
Checkpoint

Remote OS
Environment

DMA
Buffers

Golden
Frames

Partial
Bitstreams

Remote
Firmware

SPS EDACHPS

Configuration Manager libaccel

DMA

AppsFSW

Hybrid
Crossbar

AXIS

Hybrid
Crossbar

AXI

Figure 9: HARFT architecture.

tem (SPS) framework, and the Configuration Manager (CM). The HPS and SPS subsystems

are low-level frameworks that enable versatility in the CPU and FPGA subsystems, respec-

tively. The CM is part of the FSW and is responsible for reconfiguring the HPS and SPS in

response to the environmental condition.

The HPS and SPS contain numerous control agents (e.g., hard and soft cores). These

control agents can execute the FSW and CM, at varied proportions, to maintain system

operation and configuration. The HARFT architecture includes failover mechanisms for

graceful degradation to enable the transfer of control of the FSW across available control

agents to extend system uptime as modules fail. In this section, an overview of the HPS,

SPS, and CM are provided, including details on the experimental implementation for the

Zynq-7000.

32

U
s
e
rs

p
a
c

e
K

e
rn

e
l

K
e
rn

e
l

U
s
e
rs

p
a
c

e

Core0 (Master) Core1 (Master)

HPS Framework in SMP Operation

HPS
Master Service

rpoc rpmsg

virtio

R
e
m

o
te

 O
S

/F
ir

m
w

a
re

Core0 (Master) Core1 (Remote)

HPS Framework in AMP Operation

HPS
Remote Service

rpoc rpmsg

virtio

rpmsg

virtio

(a) (b)

Master
Apps

Remote
Firmware

HPS
Master Service

remoteproc (rpoc) Control

SMP/AMP Transition

Master-to-Remote Flow

Heartbeat and IPC (virtIO)

Remote-to-Master Flow

Heartbeat and IPC (virtIO)

Master

CM

Master

FSW
Master

CM

Master

FSW
Remote

CM

Remote

FSW

Figure 10: HARFT HPS framework for a dual-core CPU in (a) SMP and (b) AMP configu-

rations.

3.2.1 Hard Processing System (HPS) Framework

The HPS framework, illustrated in Figure 10, resides on the CPU subsystem of the hybrid

SoC. The HPS has two functions: (1) dynamically reconfiguring the CPU operation between

various SMP and AMP configurations at runtime without interrupting system uptime (i.e.,

without a full system reset), and (2) detecting and managing failed OSs by recovery or

failover. Although the HPS only addresses OS and core failures, it can be supplemented

with user-defined dependability techniques (e.g., ABFT, TTMR, PLR) to protect core or

specific applications. Depending upon the number of CPU resources available, the HPS

partitions the CPU resources to create one master OS with zero or more remote OSs. The

master OS runs on a partition of cores (master cores) running in SMP, and each remote OS

runs on a separate partition of cores (remote cores). All OSs are control agents capable of

executing the FSW, but the master OS assumes initial control on reset.

33

The HPS leverages OpenAMP and libmetal [114]. Libmetal provides an abstraction for

the underlying OS (remote and master) with an API for device access, interrupt handling,

and memory requests. OpenAMP is composed of three modules: virtIO (shared memory

management for paravirtualization), remoteproc (life-cycle management), and RPMsg (API

for inter-process communication (IPC) between isolated OSs). OpenAMP uses a master-

remote paradigm for AMP, and the master OS manages all cores and launches or destroys

remote OSs at runtime. Initially, the system begins with all cores running under the master

OS. To launch a remote OS (SMP-to-AMP reconfiguration) at runtime, the master OS

executes the following procedure. First, remoteproc decouples master cores from the master

OS (i.e., the logical cores are disabled in Linux and are no longer scheduled to run processes),

converting them into a partition of remote cores. Next, remoteproc creates an execution

environment by loading the remote firmware to a preallocated memory space and assembles

virtIO channels to enable IPC over RPMsg between the master and remote OSs. Finally,

remoteproc signals the remote cores to begin executing the remote firmware, thus launching

the remote OS. To destroy a remote OS (AMP-to-SMP reconfiguration) at runtime, the

master OS executes the previously described procedure in reverse: remoteproc halts the

remote OS and cores, disassembles the virtIO channels, destroys the execution environment

of the remote cores, and consolidates the remote cores back into the master OS, converting

them back into the partition of master cores.

The HPS provides recovery and failover mechanisms to detect and manage failed OSs.

Self-checking duplex pairs are created between each master and remote OS by establishing

dedicated virtIO channels between the isolated OSs to exchange heartbeat signals. An OS

can detect the failure of another OS by lack of heartbeat signals received within an acceptable,

user-defined period. Since the HPS inherits a master-remote paradigm from OpenAMP and

libmetal, there are limitations to managing failed OSs depending upon the control agent. The

master OS can recover a failed remote OS by executing the SMP-to-AMP reconfiguration

process to recreate the execution environment, reload the remote firmware, and relaunch

the remote OS. However, a remote OS is unable to recover the failed master OS. Instead,

a failover occurs, and the remote OS quickly assumes control of the FSW with minimal

system interruption but with degraded performance and capability. To further minimize

34

system interruption, the master OS periodically writes checkpoints of the FSW state to

shared memory to allow other control agents to rollback and resume at a more recent state

during failover. When the mission enters an operational safe state (i.e., noncritical phase),

a self-reset is issued to restore the HPS and recover the master OS.

The extent of redundancy provided by the HPS is versatile and depends on the archi-

tecture and resources available in the CPU. The Zynq-7000 dual-core CPU is capable of one

SMP dual-core (simplex) and two AMP single-core (duplex) structures. The Zynq-MPSoC

quad-core CPU is capable of several possible operating modes, from one SMP quad-core

(simplex) to four AMP single-core (quadruplex) structures. The Zynq-MPSoC is also a

multiprocessor, which enables AMP operation across multiple processors. A high degree

of redundancy enables multiple failover paths that can extend system uptime at degraded

performance and capability.

3.2.2 Soft Processing System (SPS) Framework

The SPS framework resides on the FPGA subsystem of the hybrid SoC. The SPS includes

DMAs, interconnects, and hybrid crossbars that reside in the SR and are selectively protected

by FG-TMR using the BL-TMR tool. The SPS also includes the PRRs that can be configured

with soft-core (e.g., MicroBlaze, RISC-V, and LEON3) or accelerator PRMs. The SPS

is capable of dynamically reconfiguring the FPGA operation between various redundancy

configurations at runtime without interrupting system uptime. Soft core processors can

serve as control agents capable of executing the FSW, but control is initially assumed by a

control agent in the HPS on reset.

The SPS leverages PR to reconfigure PRRs in the FPGA subsystem and operates the

hybrid crossbars to configure the redundancy scheme. The PRRs expose three virtual inter-

faces: one AXI port (for soft cores to access memory) and two AXI4-Stream (AXIS) ports

(for input and output data streams through stream-based accelerators). For hardware ac-

celeration, the AXIS hybrid crossbar is used to connect DMAs to PRMs. The AXIS hybrid

crossbar can connect one DMA to two or three PRRs containing the same PRM in lockstep

for coarse-grain DWC or TMR operation, respectively. When configured for redundancy, the

35

Fine-Grain TMR Coarse-Grain Replication

DMA1

• • •

DMAM Fine-Grain
Replication

PRR SimplexStatic Region PRR Triplex

(c)(a) (b)

Hybrid
Crossbar

AXI

Hybrid
Crossbar

AXIS

Figure 11: HARFT SPS framework with (a) static logic protected by FG-TMR, with recon-

figurable regions in two configurations: (b) PRR triplex with PRMs operating in lockstep

for coarse-grain redundancy and (c) PRR simplex with fine-grain replication implemented

within the PRR.

36

input data stream is replicated to all connected PRMs, and the output data stream of each

replica runs through a comparator or majority voter for DWC or TMR, respectively. Since

all replicas run in lockstep, module-based errors are captured, signaled to the connected

DMA, and recovery is serviced by the application using that DMA. The DMA has built-in

decoupling mechanisms to safely perform PR and to inhibit the propagation of faults from

faulty PRMs to the static logic. When PRMs are unable to complete the interconnect trans-

action (e.g., hang), the decoupling mechanism is invoked, and the transaction is terminated

to protect the interconnect and static logic. Similarly, the AXI hybrid crossbar will bypass,

compare, or vote on the transactions over AXI depending upon the number of redundant

soft cores.

Depending upon the PRM, some form of resynchronization is required to restore lockstep

operation following MER. For PRMs that do not maintain state or residue after use, PR

with an optional reset can be sufficient for resynchronization. Accelerators, which do not

serve as control agents, are recovered and resynchronized in between use by performing

PR with an optional reset. However, soft cores, which serve as control agents, require

additional steps to minimize system downtime during self-repair, especially when the soft

cores are the active control agent (i.e., the HPS has failed). In TMR operation, the soft

cores can identify the faulty replica via the status of the AXI hybrid crossbar. Next, the

soft cores write a checkpoint of the FSW state to shared memory and issue a PR request

to reconfigure the faulty replica. The soft cores signal the AXI hybrid crossbar to lock AXI

(i.e., the interconnect is stalled until a transaction is received from all replicas) and issue a

self-reset. All soft cores, now in a reset state, initialize and issue their first transactions to

the AXI hybrid crossbar. Once the AXI hybrid crossbar receives the first transaction from all

replicas, the soft cores are now resynchronized, and AXI is unlocked. The soft cores proceed

to read and validate the FSW state checkpoint for rollback. In DWC operation, self-repair

is also possible provided that the faulty replica is quiet (i.e., it does not issue unexpected

transactions over AXI).

Due to the reconfigurability of FPGAs, the number and size of the PRRs are highly

configurable and depend upon the architectural layout and resources available in the FPGA.

Furthermore, there are two approaches for using the SPS, as illustrated in Figure 11. The

37

first approach involves instantiating PRRs in triplexes. In this approach, the PRRs can run

decoupled PRMs in parallel for performance (e.g., three separate accelerators in parallel)

or synchronized PRMs in lockstep for reliability (e.g., TMR soft cores) using the hybrid

crossbars for coarse-grain redundancy. The second approach involves instantiating PRRs

in simplexes, with mitigation techniques implemented within the PRRs. In this approach,

the PRRs can run unmitigated, high-area PRMs for performance (e.g., unmitigated, large

accelerators) or mitigated, low-area PRMs for reliability (e.g., mitigated, small accelerators).

The SPS also provides failover mechanisms to create redundancy structures between

HPS and SPS control agents. Since the CPU-FPGA system also inherits a master-remote

paradigm from the Zynq-7000 architecture, the capabilities for system recovery vary between

HPS and SPS control agents. HPS control agents can recover failures in the SPS via FR or

PR. However, SPS control agents are not able to recover failed HPS control agents. If the

HPS fails, an SPS control agent can assume control of the FSW with degraded performance

and capability. Having numerous soft cores instantiated can improve system availability;

however, there is a potential performance tradeoff because FPGA resources are allocated

for redundancy instead of acceleration. In the Zynq-MPSoC architecture, the control agents

between the HPS and SPS can form self-checking duplex pairs because the HPS can be reset

while the SPS remains active and vice versa.

3.2.3 Configuration Manager (CM)

The CM is responsible for configuring the HPS and SPS in response to the dynamic

radiation environment. To maintain control of system recovery and reconfigurability, the

CM is part of the FSW and is executable on all control agents (i.e., master OS, remote OSs,

and soft cores). However, the extent of management and control available by the CM is

proportional to the capabilities provided by the control agent.

38

3.2.3.1 Environmental Sensing and Prediction

To assess the environmental condition, the CM can monitor radiation stimuli (via on-

board SEU-detection circuitry or external radiation-flux sensors or dosimeters) or use model-

based predictions (discussed in Section 3.3). The CM monitors SEUs in various memory

subsystems of the hybrid SoC. In the CPU, the processor caches, on-chip memory, and,

optionally, external memory are monitored using the EDAC module. When SEUs occur,

the events are captured by ECC and parity mechanisms built into the CPU architecture,

which are polled and counted by the EDAC module. In the FPGA, CRAM, BRAM, and

LUTRAM are monitored. Static CRAM monitoring is enabled by a hybrid CRAM scrub-

ber. The hybrid scrubber includes a readback first-stage scrubber (FSS) and replacement

second-stage scrubber (SSS). This FSS is an asynchronous controller residing in the FPGA.

This controller interfaces to the ICAP, for CRAM frame readback and writeback operations,

and the FRAME ECC module, for calculating the ECC syndrome and CRC checksum of a

CRAM frame during a readback operation. The FRAME ECC can locate all single-bit faults

and detect most multibit faults. The FSS periodically scans the entire device CRAM frame-

by-frame. The FSS issues a frame readback command to the ICAP to retrieve and store

the frame contents into a buffer, and it reads the outputs calculated by the FRAME ECC

of the corresponding frame. If the frame is faulty and correctable, the ECC syndrome is

used to decode the word and bit location of the erroneous bit. A bit flip is performed in

the corresponding bit location of the buffered frame, and the FSS issues a frame writeback

command to the ICAP to overwrite the CRAM frame with the corrected contents. In the

uncommon case where the faulty frame is uncorrectable by the FSS (e.g., a multibit upset

that overcomes the FRAME ECC EDAC mechanisms), the FSS halts and invokes the SSS

via an interrupt. The SSS is software executed on the CPU that uses the frame address of

the faulty frame to index golden frames stored in protected memory. The SSS issues a frame

writeback command to the PCAP to replace the faulty frame. The BRAM fault detector is a

counter that monitors application-specific memory structures, such as BRAM or LUTRAM

equipped with ECC. The counter increments when signaled by an ECC controller on fault

detection.

39

The CM monitors and records onboard SEUs over time. Using an aging-window ap-

proach, the CM can estimate the SEE rate for a segment of the orbit. For some missions,

SEEs occur too infrequently to be reliably used as stimuli, such as orbits with low exposure

to radiation or computers with a low probability of SEUs (e.g., few or small hybrid SoCs).

In these cases, several orbits of SEU monitoring are necessary to estimate and predict the

dynamics of the radiation environment for that orbit. Alternatively, dedicated radiation-flux

sensors or model-based prediction approaches can be used.

3.2.3.2 Reconfiguration and Adaptation

The HPS and SPS are highly versatile and can be configured to one of several operating

modes, each with its own set of tradeoffs. In Section 3.4, we demonstrate a model-based

approach for determining the Pareto-optimal set of HARFT strategies of the availability and

performability trade space. Using a threshold-based approach, the environmental conditions

can be segmented into orbital segments bounded by SEE rate thresholds. For each orbital

segment, the CM selects the operating mode that maximizes system performance subject to a

user-defined availability constraint for that corresponding environmental condition. To adapt

CPU and FPGA resources, the CM controls the HPS and SPS, respectively. To reconfigure

the HPS, the CM invokes the remoteproc module to launch or destroy remote OSs. To

reconfigure the SPS, the CM reconfigures the PRRs and operates the hybrid crossbars to

configure the redundancy scheme.

3.2.3.3 Control-Flow Model

The HARFT architecture has numerous failover mechanisms for graceful degradation.

These failover mechanisms are represented by a control-flow model that represents the trans-

fer of control (edges) between control agents (nodes) as subsystems change or modules fail.

At least one control agent must be available for the system to be operational. The control-

flow model of the HARFT architecture for the Z7020 is illustrated in Figure 12. On reset,

the master OS assumes initial control of the FSW. The master OS has the full capability of

the CM and can reconfigure or recover modules in the HPS and SPS. If the master OS fails,

40

Failure

Transition

Recovery

Transition

Phase

Transition

Operational

State

Failure

State

Reconfigure

PRMs

Reconfigure PRMs and

Recover Remote OSs

Reconfigure

PRMs

H
P

S
 F

a
ilu

re

SPS

Unavailable

S
P

S
 F

a
il
u
re

Failure

SMP

AMP
Master

AMP
Remote

SPS
TMR

SPS
DWC

SPS
Simplex

Initial State

Reconfigure PRMs

(self-repair)

Reconfigure PRMs

(self-repair)

Figure 12: HARFT control-flow model on the Zynq-7000 (dual-core).

41

a remote OS, if available, assumes control at a degraded performance (nonfunctional cores)

and capability (cannot reconfigure HPS). If the HPS (master OS and all remote OSs) fails,

the soft cores, if available, can assume control at a further degraded performance (nonfunc-

tional CPU) and capability (cannot reconfigure HPS; limited reconfiguration of SPS). The

SPS control agents can perform self-repair (e.g., self-reconfiguration of one faulty PRM in

the coarse-grain TMR or DWC configurations). Control agents can issue a self-reset when

the mission enters an operational safe state to recover the full system.

3.3 Modeling Approach

To analyze the dependability of HARFT, a methodology is required for modeling adap-

tive and gracefully degradable systems subject to dynamic fault rates. To address this

problem, our methodology is composed of two steps: (1) modeling the dynamic environment

to determine the module fault rates over time and (2) modeling the adaptive and gracefully

degradable system for reliability analysis. To account for the dynamic radiation environment,

three well-established models (orbital perturbation, geomagnetic field, and CRÈME96) are

combined to predict the time-varying SEE rate, which can be scaled to approximate the

fault rates for modules of the HARFT architecture. To model the hybrid, adaptive system,

a phased-mission system modeling approach is used to describe the reliability characteristics

of the HARFT architecture. Combined, this methodology is used to analyze the availability,

failure rate, and performability of various static and adaptive strategies for HARFT subject

to user-defined near-Earth orbits.

3.3.1 Modeling the Dynamic Near-Earth Radiation Environment

To model the fluctuating, radiation-induced fault rate, an approach is needed for mod-

eling the device susceptibility to the dynamic radiation environment of user-defined orbits.

Jacobs et al. [35] proposed the combination of three models (orbital perturbation, geomag-

netic field, and CRÈME96) to predict the time-varying SEE rate for a given system and

42

Mapper

Geomagnetic
Coordinates
(Lm and time)

Time-varying
SEE Rate
Predictions
(λSEE and time)

Binned
Predictions
(λSEE and Lm bins)

Device, Mission,
and Environment
Characteristics

Orbital Elements
and Time Period

CRÈME96 SEE Rate (λSEE) Prediction Model

HUP
Heavy-ion
SEE Rate
Prediction

PUP
Proton

SEE Rate
Prediction

LETSPEC
LET Spectrum

TRANS
Shielding
Transport
Particle
Fluxes

FLUX
Ionizing

Radiation
Environment

Model

TRP
Trapped
Particle
Fluxes

GTRN
Geomagnetic

Transmission

L-shell Bins (Lm bins)

Simplified
Perturbations

Model

SGP4

Geomagnetic Field Models

IGRF
Internal Magnetic

Field Model

Tsyganenko
External Magnetic

Field Model

Geographic
Coordinates
(position and time)

TLE and
Time Period

Figure 13: Methodology for time-varying SEE rate prediction.

orbit. This approach focuses on the dynamic radiation environment of near-Earth orbits,

which includes the geomagnetic field with influence from the solar weather. Drift shells,

labeled by Lm, are used to estimate the fluxes of trapped particles within the geomagnetic

field and GCRs attenuated after geomagnetic shielding. Depending upon the orbit or trajec-

tory, a spacecraft can traverse several drift shells, each with its own radiation characteristics

(species, energies, and fluxes). The complete methodology is illustrated in Figure 13.

The Simplified General Perturbation (SGP4) model is used to predict the orbital position

(in geographic coordinates) of near-Earth objects and debris for a specified period [33].

The North American Aerospace Defense Command tracks and assigns space objects with a

two-line element (TLE) that provides designator information and a set of orbital elements

(e.g., inclination, eccentricity, perigee) measured at some epoch time. SGP4 uses these

orbital elements to predict the orbital position of the object using orbital perturbation and

propagation. For specified TLE and period inputs, SGP4 predicts the orbital position over

time.

43

The International Geomagnetic Reference Field (IGRF) and Tsyganenko geomagnetic-

field models are used to convert the geographic coordinates (orbital position) into the

geomagnetic-field coordinates of the McIlwain coordinate system. IGRF models Earth’s

main magnetic field [97, 103], and Tsyganenko models Earth’s external magnetic field, which

includes the geomagnetic-field influence from solar winds and interplanetary currents [100].

Both models are included in the open-source International Radiation Belt Models (IRBEM)

library [68]. For specified geographic position and time, both geomagnetic-field models pre-

dict the Lm over time.

CRÈME96 is the state-of-the-art tool for SEE rate prediction based on phenomenological

models, developed by Vanderbilt University and supported by NASA [101]. CRÈME96 uses

orbital, device, mission, and environmental characteristics to predict the SEE rate induced by

protons and heavy ions. The orbital characteristics specify the orbital elements (e.g., perigee,

apogee, inclination) of the spacecraft. Device characteristics specify the SEE susceptibility

of a device to protons and heavy ions. SEE susceptibility is experimentally measured by

radiation-beam testing and the characterization is often specified as Weibull parameters

that fit the experimental data. The SEE characterizations for numerous resource types

(e.g., FPGA primitives like CRAM, BRAM, and DSPs) in Xilinx 7-Series, UltraScale, and

UltraScale+ devices under heavy-ion irradiation are available [50, 48, 49]. Extrapolation

methods are available to approximate the SEE susceptibility to protons using heavy-ion

characterizations [72, 22, 23]. Mission characteristics include mission duration (number of

orbits) and spacecraft shielding (material and thickness) parameters. Finally, environmental

characteristics specify the solar condition, space-radiation models, and radiation species to

consider. CRÈME96 can also predict the average SEE rates for a specific orbital segment

bounded by lower and upper Lm (between two drift shells), which form an Lm bin. Multiple

Lm bounds can be specified in CRÈME96 to predict the SEE rates for several Lm bins.

Finally, the SEE rates are assigned to the time domain by mapping the corresponding Lm

to the Lm bin. The accuracy of the SEE rate predictions depends upon the accuracy of the

models used in our methodology.

44

To approximate the fault rate for a given design and orbit, the following procedures

are performed. First, the time-varying SEE rate prediction method is used to predict the

SEE rates for each resource type. For each resource type r ∈ R, this method will produce

two SEE rates: one heavy-ion-induced λSEEr,HI
(t) and the other proton-induced λSEEr,p+

(t).

Both SEE rates are added to produce the combined SEE rate λr,SEE(t) for that resource type.

λr,SEE(t) = λr,SEEHI
(t) + λr,SEEp+

(t) (3.1)

Next, the resource utilization of the design must be determined. For FPGA designs, the

design tools can be used to obtain the FPGA resource utilization of the design, and for

software/CPU designs, the embedded system configuration or software can be analyzed to

estimate the memory footprint and CPU resource utilization. For each resource type, the

resource utilization RUr of the design is used to scale the corresponding SEE rates predicted

for that resource. The scaled SEE rates are combined across all resource types to approxi-

mate the design fault rate.

λdesign(t) =
∑
r∈R

λr,SEE(t) · RUr (3.2)

Furthermore, the AVF can be used to improve the accuracy of the fault rate approxima-

tion. AVF refers to the probability that a fault in the system will manifest into failure [61]

and can be determined by fault injection or radiation-beam testing. Fault injection is the

practice of injecting faults into the design to observe the architectural response and propa-

gation of faults. With fault injection, the AVF of a design is calculated using Equation (2.1):

45

AVF =
Number of Observable Events

Number of Fault Injections
(3.3)

In this context, the AVF describes the fraction of the resource utilization that is critical

to faults. If the AVF is infeasible to measure (e.g., resources that are not accessible for fault

injection), then the worst-case (AVF = 1) or an alternative resource AVF is assumed. The

final approximation of the time-varying design fault rate is calculated using Equation (2.4):

λdesign(t) =
∑
r∈R

λr,SEE(t) · RUr · AVFr (3.4)

3.3.2 Modeling the Adaptive and Gracefully Degradable System

This section describes the modeling approach and analysis methods for evaluating adap-

tive and gracefully degradable systems using phased-mission system models. This approach

can accurately model the dynamic recovery and failover paths to represent system adapta-

tions in response to changes in the environmental condition and graceful degradation mech-

anisms as control agents fail.

3.3.2.1 Markov Modeling and Performability

Continuous-time Markov chains (CTMCs) are often used to model systems for depend-

ability analysis [75]. A CTMC model is composed of states and transition rates. A state

represents a feasible operating mode of the system. A state is an available state if the system

is available at that state; otherwise, it is an unavailable state. Transition rates represent the

fault and repair mechanisms of the system and are weighted by constant fault rates (de-

noted as λ) and repair rates (denoted as µ), respectively. The average availability of the

46

system is calculated as the average probability that the system is in an available state. The

instantaneous availability is the probability that the system is in an available state at time

t.

CTMC reward models are weighted CTMCs that include weights at each available state

to model the reward rate for the system being in that state, enabling performability to be

calculated. Performability is a metric that combines system availability and performance,

which is useful for evaluating adaptive and gracefully degradable systems. As with availabil-

ity, the average performability of a system is calculated as the average probability that the

system is in an available state at time t times the reward rate of that state.

A transient analysis of a CTMC is useful for determining the transient state occupancy

probabilities pt at time t, given initial state occupancy probabilities p0 at initial time t0.

CTMCs can be solved using symbolic or numerical methods to calculate the transient prob-

abilities. The instantaneous availability is equal to the sum of transient probabilities of

available states. Assuming CTMC x(t) with state space S (available state subspace SA and

unavailable state subspace SU), the instantaneous availability and performability at time t

are defined using Equations (3.5) and (3.6):

Availability(t) =
∑
a∈SA

Probability{x(t) = a}, (3.5)

Performability(t) =
∑
a∈S

Performance(a) · Probability{x(t) = a}. (3.6)

The instantaneous failure rate, which is the rate at which the system enters an unavail-

able state, can also be determined using transient analysis. To calculate this quantity, the

CTMC is modified to include an immediate repair transition rate (µ =∞) from any unavail-

able state to the initial state. When analyzed, the instantaneous failure rate of the CTMC

47

is the total flow rate from available states to unavailable states. This flow rate is equal to

the sum of the fault transition rates from available states to unavailable states times the

transient probability of the corresponding available states.

Failure Rate(t) =
∑
a∈SA

∑
u∈SU

Transition Ratea→u(t) · Probability{x(t) = a} (3.7)

The state space of a CTMC can also be divided into subspaces, where states in one subspace

share a common property. Using transient analysis, the instantaneous probability that the

system is in the state subspace SG is equal to the sum of the transient probabilities of all

states in that subspace.

ProbabilityG(t) =
∑
s∈SG

Probability{x(t) = s} (3.8)

3.3.2.2 Phased-Mission System Modeling

To model adaptive systems that change at different phases throughout the mission, a

phased-mission system approach is used. A CTMC-based phased-mission system is repre-

sented as a sequence of phases, with one CTMC model for each phase and phase transitions

modeling the transitions from states of one phase to states of the subsequent phase [4, 102].

Phase transitions can be probabilistic (weighted) or deterministic (unweighted).

For CTMC-based phased-mission systems, the transient analysis is executed sequentially

in discrete timestep intervals. For each timestep, the CTMC representing the current phase

of the system is determined, and the corresponding initial probabilities, fault rates, and repair

rates are specified. The CTMC is then analyzed over the timestep interval, with the fault

rates and repair rates assumed to be constant. Once analyzed, the transient probabilities are

48

calculated, which are used to determine the initial probabilities for the next timestep. Using

the transient probabilities, the instantaneous availability, failure rate, and performability at

time t are calculated using Equations (3.5), (3.6), and (3.7), respectively.

At each timestep, the system may or may not undergo a phase change. If a phase

change occurs, the CTMC of the subsequent phase is specified, and the phase transitions

between the current and subsequent phases are used to determine the initial probabilities for

the next phase. The initial probability of each state in the subsequent phase is equal to the

weighted (probabilistic) or unweighted (deterministic) sum of transient probabilities of states

in the current phase with phase transitions to that state. Alternatively, if a phase change

does not occur, then the current CTMC is reused with fault rates updated, and the initial

probabilities of the next timestep are equal to the corresponding transient probabilities of

the current timestep.

Figure 14 illustrates a simplified example of the phase-mission model for the HPS and

SPS. The HPS model in Figure 14(a) has SMP (CTMCSMP) and AMP (CTMCAMP) modes

as phases. CTMCSMP contains two normal states {MMSMP, FSMP}, and CTMCAMP con-

tains four {MRAMP, MAMP, RAMP, FAMP}. The normal states are sufficient to model

both modes independently. For example, in SMP, the HPS (master OS) fails if either

core fails (MMSMP→FSMP; a fault transition), and the HPS is recovered by a board-level

watchdog reset (FSMP→MMSMP; a periodic repair transition). In AMP, the HPS (master-

remote pair) can encounter a failure of the remote core (MRAMP→MAMP) or master core

(MRAMP→RAMP). The master OS can recover the remote core (MAMP→MRAMP), but the

HPS fails if the master core fails prior to remote recovery (MAMP→FAMP). The remote OS

cannot recover the master core, and the HPS fails if the remote core fails (RAMP→FAMP).

Because phase transitions are instantaneous, additional states are introduced to model

and account for (1) event-driven adaptation time and (2) failover. To demonstrate (1),

suppose that the HPS is in state MMSMP and an SMP-to-AMP reconfiguration (a phase

change) occurs. Because phase changes are instantaneous, they do not model the temporary

downtime due to system adaptation during a phase change. Therefore, CTMCAMP introduces

the state MAMP, which forms a phase transition with MMSMP. During the phase change,

the MMSMP→MAMP phase transition occurs instantly followed by the HPS launching the

49

CTMCB 2 Accelerators & 1 Soft-core◆

▲

▲

▲

CTMCSMP CTMCAMP
CTMCA 3 Accelerators

C
T

M
C

T
T

M
R

 S
o
ft
-c

o
re

 F
a
ilo

v
e
r

(a) (b)

Repair Transition

(Event Driven)
Phase Transition

Operational

State

Failure

State

Repair Transition

(Periodic)
Fault Transition Remote CoreR

Master CoreM

Soft-coreS

AcceleratorA

FailureF

λR λM

µM2λM

λM λR

λR
λMµR

µWDT

MR

M R

FF

R

MM

1 1

λM

3λA

2λA

λA

µA

µA

µA

3λS

2λS

2λA

λA

λS

µA

µS

λS

2λA

λA

µS

µA

µA

µA

Present when HPS is Active◆

◆
◆
◆◆

◆
◆

◆

Present when HPS is Inactive▲

µR

2λS

µS

λS

A

AA

AAA

F

1 F2F µS+2µA3µA
◆

1

µS

µS

µS

µS

▲

▲

▲
M

M

S

SS

SSS

F

SS
µS

λS

2

2

◆

F

S A◆

SA AA◆◆
SAA

Figure 14: Example of phased-mission modeling with CTMCs for (a) HPS modes and (b)

SPS modes.

50

remote OS (MAMP→MRAMP; an event-driven repair transition). Similarly, this behavior is

modeled when the HPS is in state MRAMP and an AMP-to-SMP reconfiguration occurs,

using the additional state MSMP. To demonstrate (2), suppose that the HPS is in state

RAMP and an AMP-to-SMP reconfiguration occurs. Because CTMCSMP does not have a

state with the remote OS in control, there is no logical phase transition from RAMP to any

state in CTMCSMP. Therefore, CTMCSMP introduces the state RSMP, which forms a phase

transition with RAMP so that the remote OS remains in control after the phase change.

The SPS model in Figure 14(b) has two modes as phases: three parallel accelerators

(CTMCA) and two parallel accelerators and one soft core (CTMCB), both with failover

to TMR soft cores (CTMCT) on HPS failure. CTMCA and CTMCB model the PRMs as

independent, simplex modules. The SPS model is nested within each state of the HPS model,

and depending upon the operational state of the HPS, there can be differences in the (1)

repair and phase transitions and (2) reward rates. To demonstrate (1), consider the two

following scenarios. When the HPS is operational, it uses PR to change the SPS mode.

This can be modeled as a phase transition from the states of CTMCA to the failure state

(no operational PRMs) in CTMCB followed by an event-driven PR to repair the PRMs of

CTMCB. This approach accounts for the temporary downtime due to system adaptation,

but this example is simplistic because both modes have common PRMs that do not need

to be reconfigured during a phase change. When the HPS fails, the soft core of ModeB can

perform a failover procedure to self-reconfigure for TMR operation. This can be modeled

as an event-driven repair transition from any soft-core-controlled state of CTMCB to state

SST followed by another transition to enter TMR operation (SST→SSST). To demonstrate

(2), consider the scenarios when the SPS is in a state containing accelerators (e.g., AAAA

or SAAB). When the HPS or soft core in the same state is operational, the system receives

a performance reward for these states because there is an active control agent able to use

the accelerators. However, if the HPS fails and there is no operational soft core, these states

become failure states with no performance reward.

51

3.4 Evaluation and Analysis

In this section, we use the modeling methodology described in Section 3.3 to evaluate

the HARFT architecture and to analyze the architectural tradeoffs between both static and

adaptive strategies in terms of availability, failure rate, and performability. The HARFT

architecture is implemented on the Zynq-7000 Z7020 platform and is subjected to the envi-

ronmental conditions of six different near-Earth orbits from four orbital regimes: low-Earth

orbit (LEO), sun-synchronous orbit (SSO), highly elliptical orbit (HEO), and geostationary

orbit (GEO). The spacecraft in these orbits serve as case studies to compare the application

of HARFT for various environmental conditions.

Section 3.4.1 describes the orbital case studies, evaluates the time-varying SEE rate pre-

diction model, and analyzes the predicted SEE rates. Section 3.4.2 describes the HARFT

implementation and the acquisition of experimental quantities, including performance, re-

source utilization, AVF, and repair rates. To quantify the performance potential of HARFT

modules, the CoreMark benchmark [73], a synthetic benchmark for embedded CPUs, and

two-dimensional bilateral-filtering application kernel are used. The bilateral filter is an edge-

preserving kernel for reducing noise in images and is used in numerous space applications,

such as image fusion for multisensor images, anomaly detection for hyperspectral images,

and speckle-noise reduction for synthetic-aperture radar. To determine the fault rates of

the HARFT modules, the predicted SEE rates are scaled using the resource utilization and

AVF approximated by CRAM fault injection. Finally, the repair rates of several recovery

mechanisms provided by HARFT are measured. The performance, fault rates, and repair

rates are inputs to the phased-mission system models. Finally, Section 3.4.3 describes the

static and adaptive strategies for HARFT and evaluates the transient analysis of the CTMC-

based phased-mission system models. The availability, failure rate, and performability are

calculated to compare between strategies and to demonstrate the advantages of adaptive

resilient computing.

52

(a) LEO/SSO regimes (b) HEO/GEO regimes

Figure 15: Orbital case studies with spacecraft in the (a) LEO/SSO and (b) HEO/GEO

regimes. Rendered using the AGI Systems Tool Kit (STK) 11 software.

Table 1: Mission parameters of orbital case studies.

Spacecraft Identifier
(SATCAT)

Orbital
Regime

Perigee
(km)

Apogee
(km)

Inclination
(°)

Period
(min)

ISS 25544U LEO 404.04 407.68 51.64 92.69
Jason-3 41240U LEO 1331.76 1343.71 66.04 112.39
EO-1 26619U SSO 671.04 686.47 97.81 98.27
NOAA-20 43013U SSO 825.91 827.94 98.75 101.38
Molniya 1-88 23420U HEO 1073.71 23942.45 63.61 430.47
GOES-17 43226U GEO 35774.55 35800.00 0.06 1436.18

Orbital parameters calculated using SGP4 for TLEs with an epoch of January 1, 2019 UTC.

53

3.4.1 Orbital Case Studies

To provide a comprehensive assessment of the HARFT architecture, six different orbital

case studies from four orbital regimes (LEO, SSO, HEO, and GEO) are investigated. The

orbital case studies include the ISS (LEO), Jason-3 (LEO), EO-1 (SSO), NOAA-20 (SSO),

Molniya 1-88 (HEO; Molniya orbit), and GOES-17 (GEO) spacecraft. For each spacecraft,

the orbital parameters are shown in Table 1 and the orbital paths are illustrated in Figure

15. The ISS and Jason-3 reside in LEO and experience relatively high radiation fluxes when

traversing near Earth’s poles or through the South Atlantic Anomaly (SAA), where the inner

Van Allen radiation belt is closest to Earth’s surface, at an altitude as low as 200 km [32].

Jason-3 orbits at a higher altitude and inclination than the ISS, exposing it to higher fluxes

of high-energy trapped protons in the inner Van Allen radiation belts and GCRs and SPEs

due to reduced geomagnetic shielding. The EO-1 and NOAA-20 spacecraft reside in SSO,

which is a nearly polar orbit with an inclination of approximately 98°. In SSO, the orbit has

a precession period of one year, which allows spacecraft to maintain a synchronized orbital

relationship with the Sun. As with LEO, spacecraft in SSO are exposed to relatively higher

radiation fluxes near Earth’s poles or at the SAA. The Molniya 1-88 spacecraft resides in

HEO. The HEO regime refers to orbits with high eccentricity. A special class of HEOs, called

Molniya orbits, has an inclination of approximately 63.4° to provide a wide viewing angle over

high-latitude regions. Depending upon the orbital apogee and perigee, spacecraft in HEO

often traverse several drift shells. During the apogee pass, which accounts for most of the

orbit, spacecraft are exposed to GCRs, SPEs, and trapped particles in the outer Van Allen

radiation belts, and during the perigee pass, spacecraft are exposed to trapped protons in the

inner Van Allen radiation belt. The GOES-17 spacecraft resides in GEO. Spacecraft in GEO

are synchronized with Earth’s rotation with minimal inclination to orbit over the equator.

GEO is useful for space applications that require a constant presence over a specific area

on Earth. Spacecraft in GEO have low susceptibility to trapped protons, which are present

at very low energy levels at this altitude. However, due to reduced geomagnetic shielding,

these spacecraft are highly susceptible to GCRs and SPEs, and the radiation environment

is heavily influenced by the solar weather condition. Spacecraft in these orbits can benefit

54

from high-performance onboard processing to compress massive volumes of raw sensor data

for efficient downlink or spacecraft autonomy. However, the magnitude and variation of

radiation fluxes each spacecraft is exposed to are highly characteristic of its orbit. As a

result, the optimal static or adaptive strategies will depend significantly upon the orbit.

The SEE rate prediction methodology described in Section 3.3.1 is performed to deter-

mine the time-varying SEE rates for each orbit. The SEE characterizations of the Zynq-7000

are used, which approximate the device susceptibility of several resource types to SEEs in-

duced by protons and heavy ions. For a worst-case evaluation of the orbit, solar-minimum

conditions and 100 mils of aluminum shielding are assumed. Figure 16 illustrates the fluctu-

ation of the predicted Lm and SEE rate over time for each orbital case study. The detectable

SEE rate aggregates the SEE rates of all accessible, on-chip bits (L1/L2 cache, on-chip mem-

ory, BRAM, and CRAM), which can be used to monitor SEEs. Table 2 shows the average,

minimum, and maximum SEE rates predicted for each orbit. The SEE rate can fluctuate

by up to three orders of magnitude depending upon the orbital position of the spacecraft.

Furthermore, for all orbital case studies (except GOES-17), the SEE rates are within the

lower 10% of the anticipated SEE rates for most of the orbital period, and some space-

craft (e.g., Jason-3, NOAA-20, and Molniya 1-88) are often within the lower 1%. Although

the worst-case SEE rates must be considered to ensure high availability, these predictions

demonstrate that the worst-case conditions are infrequent, and a static system designed for

the worst-case conditions can result in inefficient utilization of system resources for most of

the orbit.

3.4.2 Evaluation

The HARFT architecture is implemented on the Z7020 platform, the same device fea-

tured on the CSP. The HPS on the dual-core CPU allows for SMP (one master OS with

two cores) and AMP (one master OS and one remote OS with one core each) operation.

Figure 17 illustrates the floorplan of the triplex configuration of the SPS implemented on

the FPGA. The static logic is triplicated using the BL-TMR tool, and the PRMs include

55

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000
10 5

10 4

10 3

10 2

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000
10 6

10 5

10 4

10 3

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

10 4

10 3

10 2

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

Orbital McIlwain L-shell (Lm) SEE Rate (SEE) Average SEE Rate (SEE)

M
cI

lw
ai

n
L-

sh
el

l (
L m

)
[R

]

SE
E

Ra
te

 [
SE

Es
 ·

de
vi

ce
1

· s
1]

Time [s]

Jason-3

NOAA-20

Molniya 1-88

Figure 16: Predicted McIlwain L-shell (Lm) and SEE rate (λSEE detectable) for Z7020 over time

for the Jason-3, NOAA-20, and Molniya 1-88 orbital case studies.

Table 2: Predicted SEE rates for Z7020 for orbital case studies.

Spacecraft Predicted SEE Rate (λSEE) Percentage of Orbital Period
(SEEs · device−1 · day−1) (%)

Avg Min Max λSEE < Avg λSEE < 10% λSEE < 1%

ISS 4.48 0.05 17.80 68.45 52.81 23.59
Jason-3 410.84 1.08 1,864.50 68.01 65.37 50.32
EO-1 28.55 0.07 146.99 74.11 70.40 27.46
NOAA-20 59.55 0.07 261.95 74.19 72.18 55.07
Molniya 1-88 51.94 1.27 1,600.48 92.86 95.03 90.21
GOES-17 2.85 2.85 2.85 N/A N/A N/A

56

(a) (b) (c)

Figure 17: HARFT SPS framework implemented on the Z7020 in PRR triplex configuration

with unmitigated static logic, FG-TMR static logic, and PRMs (bilateral-filtering accelera-

tors and MicroBlaze soft-cores).

57

Table 3: HARFT CPU and accelerator performance and reward rates.

Module CoreMark
(iterations · s−1)

Bilateral
Filtering (FPS)

Reward
(·)

ARM Cortex-A9 Master Core (667 MHz) 2,411.29 0.14 1.00
ARM Cortex-A9 Remote Core (667 MHz) 2,348.66 0.13 1.00
MicroBlaze (100 MHz) 202.77 0.01 0.10
Accelerator (100 MHz) N/A 23.79 1.00

bilateral-filtering accelerators and MicroBlaze soft-cores. The implemented design is used to

determine the performance reward rates, fault rates, and repair rates, which are specified as

input parameters of the CTMC-based phased-mission system model.

3.4.2.1 Performance

The individual performance of each control agent and accelerator is measured to specify

the potential performance reward rate for each state. The performance of each control

agent is measured using the CoreMark benchmark and bilateral-filtering application. The

performance of the accelerator is also measured using the bilateral-filtering application. Table

3 shows the measured performance of each module. The assignment of performance reward

rates is user-defined and depends upon the mission requirements. For this evaluation, each

state is assigned a reward rate that is the sum of (1) the reward rate of the CoreMark

performance achieved by the active control agent, baselined to the highest-performing agent,

and (2) the reward rate of the bilateral-filtering performance of each accelerator available

for parallel operation, if a control agent is available.

58

Table 4: HARFT module resource utilization.

Subsystem Configuration LUTs FFs BRAM DSPs CRAM Bits
(18b×1k)

Accelerator Unmitigated 2,964 5,193 15 24 761,686
MicroBlaze Unmitigated 2,720 2,073 21 6 581,801
Static Logic Unmitigated 3,293 2,731 9 0 735,000
Static Logic FG-TMR 14,917 7,409 27 0 2,629,400

Table 5: HARFT CRAM fault-injection test results.

Subsystem Configuration Injections Errors AVF 95% Confidence
Interval

Accelerator Unmitigated 2,020,657 608,241 30.101% [30.026%, 30.177%]
MicroBlaze Unmitigated 2,171,329 359,137 16.540% [16.486%, 16.594%]
Static Logic Unmitigated 1,910,970 119,964 6.278% [6.242%, 6.313%]
Static Logic FG-TMR 2,120,657 15,082 0.711% [0.700%, 0.723%]

59

3.4.2.2 Resource Utilization and Architectural Vulnerability Factor

To approximate the fault rates for modules in the HARFT architecture, the module

resource utilization and AVF are determined. The Xilinx design tools are used to determine

the resource utilization of each module, which is shown in Table 4. CRAM fault injection is

performed to approximate the AVF of these modules. In our fault injection procedure, each

iteration begins with the system in a clean state. Next, the location (frame address, word,

and bit) of a CRAM bit is randomly selected for fault injection. A frame-readback command

is issued to the PCAP to retrieve the contents of the frame containing the selected CRAM

bit into a software buffer. A single bit flip is performed on the buffered frame to inject the

fault, and a frame-writeback command is issued to the PCAP to write the buffered frame

back to CRAM to complete the injection. Next, the application is executed until completion

(i.e., the accelerator processes one 512×512 image or the MicroBlaze runs one iteration of

CoreMark). Once the execution is complete, a checksum of the output is compared against a

golden checksum to determine if the outcome is correct or erroneous. An erroneous outcome

indicates that the injected bit is a critical bit for that application and input, and these critical

bits are counted. Finally, the system is reset into a clean state for the subsequent iteration.

To minimize uncertainty in the measurements, a significant number of fault injections are

performed. To accelerate this process, the Xilinx design tools are used to generate a list of

essential CRAM bits (directly used by the design) to target exclusively [47]. Furthermore,

eight TUL PYNQ-Z2 boards are used to parallelize the fault injection process. The AVF

is calculated using Equation (2.1). Table 5 shows the resulting AVF with 95% CI of each

tested module.

3.4.2.3 Time-Varying Fault Rate

Using Equation (2.4), the fault rate of each module can be determined. For each module,

the resource utilization and AVF are used to scale the SEE rate of each resource type. For this

evaluation, the experimentally measured AVF quantities are used for the CRAM resource

60

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000
10 8
10 7
10 6
10 5
10 4
10 3

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000
10 9
10 8
10 7
10 6
10 5
10 4

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
10 8
10 7
10 6
10 5
10 4
10 3

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

Orbital McIlwain L-shell (Lm)
Static LogicTMR (Static LogicTMR)

Master Core (Master Core)
Remote Core (Remote Core)

MicroBlaze (MB)
Accelerator (Accelerator)

M
cI

lw
ai

n
L-

sh
el

l (
L m

)
[R

]

Fa
ul

t
Ra

te
 (

m
od

ul
e)

 [
fa

ul
ts

 ·
m

od
ul

e
1

· s
1]

Time [s]

Jason-3

NOAA-20

Molniya 1-88

Figure 18: Predicted McIlwain L-shell (Lm) and fault rates (λmodule) of multiple HARFT

modules for Z7020 over time for the Jason-3, NOAA-20, and Molniya 1-88 orbital case

studies.

61

Table 6: HARFT repair rates.

Repair Mechanism Repair Rate

Periodic Recovery Event-Driven Adaptation

(repairs · s−1) (s) (repairs · s−1) (s)

Master Core Recovery N/A N/A 10.0000 0.1
Remote Core Recovery 0.1000 10.0 10.0000 0.1
CRAM Scrubbing 0.0167 60.0 0.0167 60.0
Partial Reconfiguration 0.0167 60.0 10.0000 0.1
Full Reconfiguration 0.0167 60.0 10.0000 0.1
Watchdog System Reset 0.0083 120.0 0.0083 120.0

type, and the worst-case AVF is assumed for all other resource types. Finally, the scaled

SEE rates are aggregated to produce the time-varying fault rate for each module. Figure 18

illustrates the approximated time-varying fault rates of several HARFT modules.

3.4.2.4 Repair Rate

Finally, the repair rates are determined to model the recovery mechanisms of HARFT.

Table 6 shows the recovery mechanisms and their corresponding rates. Repair rates are

measured for two scenarios. One scenario is periodic recovery, where the CM periodically

checks the system to identify failed modules and perform repairs. The other scenario is an

event-driven adaptation, where the CM is immediately invoked to reconfigure the system

during a phase change.

3.4.3 Availability, Failure Rate, and Performability Analysis

The HARFT architecture is modeled as a CTMC-based phased-mission system using

the performance reward rates, time-varying module fault rates, and module repair rates

determined in Section 3.4.2. Table 7 shows the static modes and adaptive strategies used for

this evaluation. CTMCs are generated to independently model each static mode. For static

62

Table 7: HARFT static modes and adaptive strategy.

Static Mode HPS SPS Accelerators SPS MicroBlazes

Mode0 SMP 3 0
Mode1 AMP 3 0
Mode2 SMP 2 1
Mode3 AMP 2 1
Mode4 AMP 0 TMR

Adaptive Strategya

N -Mode1,2,3,...,N (α1, α2, α3, . . . , αN−1)(t) =

Mode1, if λSEE(t) < α1

Mode2, if λSEE(t) ∈ [α1, α2)

Mode3, if λSEE(t) ∈ [α2, α3)
...

ModeN , if λSEE(t) ≥ αN−1

aThreshold parameters α1, α2, α3, . . . , αN−1 ∈ [λmin, λmax], where α1 ≤ α2 ≤ α3 ≤ . . . ≤ αN−1,
and [λmin, λmax] are the extrema of the expected range of SEE rates.

63

strategies, only one mode is active throughout the evaluation period. Adaptive strategies

(denoted as N -Mode) adapt between N different modes over time using a threshold-based

approach. The detectable SEE rate from Section 3.4.1 is compared to user-defined thresholds

to determine the active mode over time. A transient analysis is performed for each static

and adaptive strategy using 60-second timestep intervals over a one-week period. At each

timestep, the module fault rates are updated, and the CTMC representing the active phase

of the system is changed if the detectable SEE rate crosses any thresholds.

In our threshold-based approach, the adaptive strategies attain a combination of the

properties of the modes in use. Figure 19(a) illustrates the instantaneous availability over

time for numerous static and adaptive strategies in the Jason-3 orbital case study. Depending

upon the thresholds and the fluctuating SEE rate, the instantaneous availability, failure rate,

and performability of the adaptive strategies will alternate between those of the modes in

use. Furthermore, because the HARFT architecture contains numerous failover paths to

redundant control agents, the availability of control agents can also vary over time for the

adaptive strategies. To determine the instantaneous probability that a control agent is

active, the states of the phased-mission system model are divided into subspaces labeled

by the active control agent, and a transient analysis is performed. Figure 19(b) illustrates

the instantaneous probabilities of active control agents over time for three strategies in the

Jason-3 orbital case study. Similarly, the adaptive strategies will attain some combination

of the active control agent probabilities of each mode in use.

Analyzing the phased-mission system for varied threshold parameters produces a trade

space in terms of the average system availability and performability. Figure 20 illustrates the

trade space including several static and adaptive strategies for the Jason-3, NOAA-20, and

Molniya 1-88 orbital case studies. The trade space is used to determine the optimal strat-

egy subject to some constraints. For a given availability constraint, the optimal strategy

is the one that satisfies that constraint and offers the most performability, and vice versa.

The Pareto-optimal set is dominated by 2-Mode strategies, with some static and 3-Mode

strategies but no 4-Mode or greater strategies. Because adaptive strategies attain the prop-

erties of each mode they use, adapting across too many modes can attenuate and negate the

advantages of each.

64

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
50

90

99

99.9

99.99

99.999

99.9999

Sy
st

em
 A

va
ila

bi
lit

y
[%

]

10 5

10 4

10 3

10 2

SE
E

Ra
te

 [
SE

Es
 ·

de
vi

ce
1

· s
1]

SEE Rate
Mode0 Availability
Mode1 Availability
Mode2 Availability

Mode3 Availability
Mode4 Availability
2-Mode0,1(40%) Availability

2-Mode0,3(4%) Availability
2-Mode2,3(48%) Availability
3-Mode2,3,4(10%,80%) Availability

Time [s]

(a) Instantaneous system availability versus time

50
90
99
99.9
99.99
99.999

50
90
99
99.9
99.99
99.999

Sy
st

em
 A

va
ila

bi
lit

y
[%

]

50
90
99
99.9
99.99
99.999

SEE Rate HPS Master OS HPS Remote OS SPS MicroBlaze Unavailable

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
10 5

10 4

10 3

10 2

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
10 5

10 4

10 3

10 2

SE
E

Ra
te

 [
SE

Es
 ·

de
vi

ce
1

· s
1]

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
10 5

10 4

10 3

10 2

Time [s]

Performance Mode [Mode0]

Reliable Mode [Mode3]

Adaptive Strategy [2-Mode0,3(4%)]

(b) Instantaneous system control-state probability versus time

Figure 19: HARFT instantaneous system availability over time for various static and adap-

tive strategies of HARFT in the Jason-3 orbital case study, with (a) an overlay comparing

strategies and (b) the instantaneous system control-state probability over time.

65

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
90

99

99.9

99.99

99.999

99.9999

3-Mode2,3,4(10%,80%)

2-Mode0,3(4%)

2-Mode2,3(48%)

2-Mode0,1(40%)

Mode4
Mode3

Mode2

Mode1

Mode0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
99

99.9

99.99

99.999

99.9999

99.99999

99.999999
3-Mode2,3,4(20%,90%)

2-Mode0,1(38%)

2-Mode2,3(99%)

2-Mode2,3(68%)
Mode4 Mode3

Mode2

Mode1

Mode0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
99

99.9

99.99

99.999

99.9999

99.99999

3-Mode2,3,4(10%,69%)

2-Mode0,1(5%)

2-Mode2,3(61%)Mode4
Mode3

Mode2

Mode1

Mode0

Static Mode 2-Mode Strategy 3-Mode Strategy 4-Mode Strategy Pareto-optimal Set

Av
er

ag
e

Sy
st

em
 A

va
ila

bi
lit

y
[%

]

Average System Performability

Jason-3

NOAA-20

Molniya 1-88

Figure 20: HARFT design tradespace in terms of performability and availability and with

Pareto-optimal curves for static and adaptive strategies.

66

Table 8: HARFT unavailability, failure rate, and performability for orbital case studies.

Spacecraft Availability Unavailability Failure Rate Performability

Strategy Constraint (days · yr−1) (failures · day−1) (·)
(%) Average Maximum Average Maximum Average Improvementa

ISS

Mode0 ≥99.9 2.63×10−1 9.71×10−1 5.19×10−1 2.07×100 5.00

2-Mode0,1(18%) ≥99.99 3.06×10−2 1.74×10−1 6.05×10−2 3.43×10−1 4.63 1.16× (Mode1)

2-Mode0,1(3%) ≥99.999 2.10×10−3 2.05×10−2 4.16×10−3 6.40×10−2 4.25 1.06× (Mode1)

Mode1 ≥99.9999 1.05×10−4 6.76×10−4 2.19×10−4 1.50×10−3 4.00

Jason-3

Mode0 ≥90 2.07×101 8.42×101 4.83×101 2.16×102 4.71

2-Mode0,1(40%) ≥99 3.00×100 1.77×101 6.13×100 5.65×101 4.65 1.17× (Mode1)

Mode1 ≥99 1.02×100 6.68×100 2.10×100 1.35×101 3.98

Mode2 ≥99.9 1.86×10−1 1.11×100 3.75×10−1 2.23×100 3.88

2-Mode2,3(48%) ≥99.99 1.93×10−2 1.44×10−1 4.25×10−2 4.64×10−1 3.71 1.24× (Mode3)

Mode3 ≥99.99 1.11×10−2 9.70×10−2 2.30×10−2 1.93×10−1 2.99

3-Mode2,3,4(10%,80%) ≥99.999 3.51×10−3 1.93×10−2 7.74×10−3 5.76×10−2 3.37 3.37× (Mode4)

Mode4 ≥99.999 1.51×10−3 1.44×10−2 3.13×10−3 2.90×10−2 1.00

EO-1

Mode0 ≥99 1.64×100 7.60×100 3.28×100 1.74×101 4.98

2-Mode0,1(60%) ≥99.9 2.67×10−1 2.39×100 5.28×10−1 8.07×100 4.78 1.20× (Mode1)

2-Mode0,1(1%) ≥99.99 1.78×10−2 7.00×10−2 3.58×10−2 2.24×10−1 4.28 1.07× (Mode1)

Mode1 ≥99.99 5.68×10−3 3.87×10−2 1.20×10−2 9.89×10−2 4.00

NOAA-20

Mode0 ≥99 3.44×100 1.43×101 6.97×100 3.07×101 4.95

2-Mode0,1(38%) ≥99.9 3.32×10−1 2.30×100 6.60×10−1 8.13×100 4.75 1.19× (Mode1)

Mode1 ≥99.99 2.58×10−2 1.56×10−1 5.40×10−2 3.27×10−1 4.00

Mode2 ≥99.99 5.36×10−3 3.02×10−2 1.11×10−2 6.11×10−2 3.98

2-Mode2,3(99%) ≥99.999 1.64×10−3 1.52×10−2 4.04×10−3 5.21×10−2 3.88 1.29× (Mode3)

Mode3 ≥99.9999 4.55×10−5 3.34×10−4 9.74×10−5 6.82×10−4 3.00

Molniya 1-88

Mode0 ≥99 2.86×100 7.44×101 6.55×100 1.86×102 4.96

2-Mode0,1(5%) ≥99.9 3.39×10−1 4.83×100 6.77×10−1 1.14×101 4.93 1.23× (Mode1)

Mode1 ≥99.9 1.18×10−1 4.83×100 2.40×10−1 1.03×101 4.00

Mode2 ≥99.99 2.03×10−2 8.22×10−1 4.07×10−2 1.70×100 3.98

2-Mode2,3(61%) ≥99.999 1.88×10−3 5.89×10−2 4.05×10−3 1.82×10−1 3.96 1.32× (Mode3)

Mode3 ≥99.999 1.07×10−3 5.77×10−2 2.18×10−3 1.25×10−1 3.00

3-Mode2,3,4(10%,69%) ≥99.9999 3.00×10−4 1.58×10−2 6.33×10−4 3.29×10−2 3.89 3.89× (Mode4)

Mode4 ≥99.9999 1.48×10−4 7.94×10−3 3.03×10−4 1.80×10−2 1.00

GOES-17

Mode0 ≥99.9 1.31×10−1 1.31×10−1 2.58×10−1 2.58×10−1 5.00

Mode1 ≥99.9999 1.27×10−5 1.27×10−5 2.51×10−5 2.51×10−5 4.00

aThe performability improvement compares the adaptive strategy to the static strategy that offers the
highest performability and satisfies the same availability constraint.

67

Table 8 shows the average and worst-case unavailability, failure rate, and performability

results for several strategies subject to select availability constraints (orders of nine). The

performability improvement is measured by comparing adaptive strategies against the best

performing static strategy that satisfies the same availability constraint. For example, in

the ISS case study, both Mode0 and 2-Mode0,1(18%) satisfy the availability constraint of

≥ 99.9% (three nines), but 2-Mode0,1(18%) has a 1.16× performability improvement over

Mode1. Similarly, in the Jason-3 case study, both Mode4 and 3-Mode2,3,4(10%,80%) sat-

isfy the same availability constraint ≥ 99.999% (five nines), but 3-Mode2,3,4(10%,80%) has a

3.37× performability improvement over Mode4. In some cases, such as the ≥ 99% (two nines)

availability constraint of the NOAA-20 case study, there is no adaptive strategy that outper-

forms Mode1. Ultimately, the performability improvement depends upon the reliability and

performance characteristics of each mode used for adaptation as well as several user-defined

parameters (e.g., recovery rates, performance reward rates, and availability constraints).

The ISS, Jason-3, EO-1, NOAA-20, and Molniya 1-88 spacecraft all experience relatively

low fault rates for most of the orbit, with short intervals of relatively high fault rates. As

such, spacecraft in these orbits can benefit from adaptive resilience. The GOES-17 (GEO)

spacecraft experiences minimal fluctuations in the SEE rate, thus making it infeasible for

adaptation in response to the SEE rate based on the dynamic near-Earth radiation models

described in Section 3.3.1. However, the approach in the work of Glein et al. [29] can be

used to adapt in response to the SEE rate based on the dynamic solar condition. Although

this evaluation focuses on the near-Earth radiation environment, which is nearly periodic for

orbital missions, adaptive strategies are also applicable to missions where high reliability is

required during phases of critical operations. The system can adapt in response to changes

in the criticality of mission phases instead of a fluctuating SEE rate. In this approach, the

failure rate is useful for determining the optimal high reliability and high-performance modes

of operation for critical and noncritical phases, respectively.

68

3.5 Conclusion

As spacecraft designers continue to adopt SmallSat technology, there is a need for depend-

able, high-performance onboard processing to address the computational demands required

for future missions. Commercial hybrid SoCs provide numerous architectural advantages for

onboard space computing, but these devices are highly susceptible to radiation compared

to traditional rad-hard alternatives. The dynamics of the near-Earth radiation environment

expose spacecraft to radiation fluxes that can vary the SEE rate by multiple orders of magni-

tude. Due to the duality of high-performance and high-reliability system design, an adaptive

approach to dependable computing can more efficiently use system resources by responding

to the dynamic environment versus a static system designed for the worst-case condition.

In this chapter, we proposed HARFT, a reconfigurable framework for environmentally

adaptive resilience in reconfigurable space systems. The HARFT architecture combines

runtime-reconfigurable fault-tolerance modes for the CPU and FPGA subsystems of the

hybrid SoC into one integrated, synergistic framework. HARFT provides numerous recov-

ery and failover mechanisms within and between subsystems to enable repair and graceful

degradation. Additionally, we extended the modeling methodology proposed by Jacobs et al.

[35] to evaluate adaptive, gracefully degradable systems for the near-Earth radiation environ-

ment. Using this methodology, we evaluate the HARFT architecture for numerous static and

adaptive strategies subject to the radiation environment of various orbital case studies. By

responding to the fluctuating fault rate, HARFT can adapt to the dynamic environment by

selecting operating modes that maximize performability while satisfying availability require-

ments throughout the mission. When evaluated on the Zynq-7000 Z7020, we demonstrate

substantial performability improvements for given system availability constraints.

69

4.0 Resilient Semantic-Segmentation Acceleration for Space Apps

DL presents several opportunities for enhancing spacecraft autonomy, onboard data anal-

ysis, and intelligent applications for space missions. One example is semantic segmentation,

a powerful ML/CV process that learns to classify pixels within an image. Semantic segmen-

tation has numerous applications in onboard remote sensing for both science and defense

missions, from analyzing EO for Earth science (e.g., land use, land cover, and cloud masking),

to monitoring natural disasters for emergency response, and to conducting reconnaissance

for national security. Despite these advantages, DL models are computationally intensive

and often impractical for deployment on traditional rad-hard space processors. Commercial

FPGAs and SoCs provide superior performance, energy efficiency, and affordability com-

pared to their rad-hard alternatives but are highly susceptible to radiation-induced SEEs

that can affect the dependability of the system and application [56]. To improve depend-

ability, fault-masking techniques such as triple-modular redundancy (TMR) are frequently

employed for SEE mitigation. However, TMR incurs significant overhead in area, power

consumption, and timing-critical path which is impractical for resource-constrained systems

and can also limit the performance and energy-efficiency potential of a system. To create

a dependable and high-performance system capable of onboard DL, efficient approaches in

SEE mitigation are essential.

In this chapter, we propose Reconfigurable ConvNet (RECON), a runtime-reconfigurable

acceleration framework for dependable, high-performance semantic segmentation for space

applications on FPGAs and SoCs. RECON uses several model-compression, algorithmic,

and architectural optimization techniques to maximize the inference performance, energy

efficiency, and area efficiency for onboard processing. In RECON, we propose both selective

and adaptive strategies to enable efficient SEE mitigation. RECON is disaggregated into

separate control-flow and data-flow subsystems. In our selective approach, the control-flow

subsystem, which is vulnerable to SEE-induced hangs, is selectively protected with TMR

to minimize the frequency of hangs that are disruptive and slow to repair. In our adap-

tive approach, the data-flow subsystem, which is more vulnerable to SEE-induced SDC but

70

is faster to repair, is protected using an environmentally adaptive strategy leveraging dy-

namic PR. Due to the dynamics of the near-Earth radiation environment, spacecraft are

exposed to SEE rates that can vary by multiple orders of magnitude. Using PR, RECON

can adapt its data-flow subsystem by alternating between parallel (performance) and redun-

dant (dependable) configurations in response to the fluctuating SEE rates of the dynamic

near-Earth radiation environment. RECON selects the data-flow configuration that uses

only the amount of redundancy that is necessary for the immediate environmental condition

and uses remaining resources for performance. Combined, both approaches enable RECON

to maximize performability, in terms of performance and energy efficiency, subject to mis-

sion availability constraints. Finally, to demonstrate the efficacy of RECON for onboard

semantic segmentation, we evaluate this framework accelerating the SegNet model [6], a

symmetric encoder-decoder architecture for semantic segmentation, in terms of accuracy,

resource utilization, performance, energy-efficiency, performability, and availability. In our

dependability evaluation, we perform fault injection and neutron irradiation to analyze the

SEE susceptibility of SegNet accelerated on RECON, and we use dependability modeling to

evaluate RECON in various orbital case studies to demonstrate a 1.5-3.0× performability

improvement in performance and energy-efficiency compared to static approaches.

4.1 Related Work

The evaluation, analysis, and mitigation of SEEs in machine-learning applications ac-

celerated on FPGAs have been explored in the literature [99, 52, 53, 19, 9, 25, 20, 86]. An

overview of concepts and taxonomy for dependability in FPGA-based NNs, including pas-

sive and active methods for fault tolerance, is provided in [99]. A variety of methods using

fault injection and radiation-beam testing have been explored to evaluate the dependabil-

ity of NNs. Du et al. [20] performed fault injection, targeting both static and dynamic

CRAM with single-bit and multi-bit faults, to evaluate the susceptibility of a binary NN to

single-bit and multi-bit upsets in various resource types. Benevenuti et al. [9] characterized

the SEE susceptibility of a multi-layer perceptron for Iris flower classification accelerated on

71

the Zynq-7000 in terms of tolerable and critical SDC. Layers of the NN were assigned to

separate FPGA partitions to analyze the design susceptibility at the model and layer levels.

Dos Santos et al. [19] used fault injection and neutron irradiation to evaluate the impact

of double-, single-, and half-precision floating-point data representations on the reliability of

an MNIST CNN implemented on the Zynq-7000. The reduced area due to reduced precision

decreased the critical area. Libano et al. [53] used fault injection to evaluate the impact of

binary quantization on the reliability of an MNIST CNN implemented on the Zynq-MPSoC.

The reduced area due to quantization decreased the critical area but increased the error

criticality.

Methods to improve NN dependability using efficient methods for SEE mitigation have

also been explored. Libano et al. [52] used fault injection to identify the most vulnerable

layers of two fully unrolled models, Iris flower NN and MNIST CNN, accelerated on the

Zynq-7000 and Zynq-MPSoC, respectively. Selective TMR was applied to protect the most

vulnerable layers of each model to reduce redundancy overhead. Gambardella et al. [25] used

fault injection to identify the most vulnerable channels of a binary NN. Selective TMR was

applied to the PEs processing the most vulnerable channels to reduce redundancy overhead.

For folded implementations where PEs each process multiple channels, Gambardella et al.

proposed a fault-aware scheduler to schedule channels through mitigated or unmitigated PEs

based on the vulnerability of the channel (e.g., the most vulnerable channels run through

mitigated PEs). Sabogal et al. [86] performed fault injection and neutron irradiation to

evaluate a CNN accelerator for the SegNet model on the Zynq-7000 and Zynq-MPSoC. Due

to the impracticality of unrolling deep CNNs on resource-constrained FPGAs, a reusable

instruction-based CNN architecture was created. TMR was selectively applied to the control-

flow part of the acceleration framework to minimize the hang rate, and high-performance,

unmitigated and low-performance, TMR versions of the data-flow part were evaluated to

quantify the SDC rate and the tradeoffs in performance and dependability.

In this chapter, we extend upon our previous work in [86] and make the following contri-

butions. First, we present an updated acceleration framework for RECON that is comparable

to the current paradigm of state-of-the-art CNN architectures, including instruction-based

processing and model-compression, algorithmic, and architectural optimizations that maxi-

72

mize inference performance with efficient hardware. Second, we propose the partitioning of

control-flow and data-flow parts of RECON into static and reconfigurable regions, respec-

tively, and applying selective TMR to protect control-flow parts to reduce the hang rate.

Leveraging the reconfigurability of FPGAs, we also propose an environmentally adaptive

approach to mitigate SDC in the data-flow part in response to the environmental condition.

Combined, both approaches can maximize inference performability subject to mission avail-

ability constraints. Finally, we evaluate the susceptibility of the SegNet model accelerated on

RECON for the Zynq-7000 and Zynq-MPSoC using fault injection and neutron irradiation,

and we discuss our methodology and analyze the architectural response of RECON to both

injected CRAM faults and neutron-induced SEEs at the model and layer levels.

4.2 Architecture Overview

This section provides an architectural overview of the RECON framework, which is

illustrated in Figure 21. RECON is a runtime-reconfigurable acceleration framework for

dependable, high-performance semantic segmentation for space applications. The framework

is composed of three major modules including the Configuration Manager (CM), RECON

Scatter-Gather DMA (RSGDMA) and RECON Accelerator (RACCEL).

The CM is responsible for three functions: (1) environmental monitoring, (2) system

reconfiguration and adaptation, and (3) fault management. To assess the environmental

condition, the CM can monitor radiation stimuli, using on-chip or onboard SEE-detection

circuitry or external radiation-flux sensors or dosimeters, or use model-based predictions. In

response to the severity of the environmental condition or criticality of the mission phase,

the CM adapts the system by using PR to dynamically reconfigure each PRR at runtime

without interrupting system operation. For fault management, the CM performs periodic

CRAM scrubbing, event-driven MER using PR, and FR. The CM exists as software on a

CPU or as a controller residing in the SR.

73

RACCEL
RECON Accelerator

FPGA

E
n
g
in

e
 C

o
n
tr

o
lle

r

Inverse
Winograd Transform

AT • () • A
W

in
o
g
ra

d
 T

ra
n
s
fo

rm
V

 =
 B

T
• () • B

M
a
x

U
n
p
o
o
lin

g

RSGDMA
RECON SGDMA

S
c
a
tt
e
r-

G
a
th

e
r

D
M

A

Data-Flow
Controller

DDR Memory

Feature

Maps

FMX

Feature

Maps

FMY

Model

Weights

Uw

Pooling

Indices

PI

TMR

Uw

FMX /PIX
F

M
Y

/P
I Y

A
X

IS

A
X

I

Memory
Controller

R
e
L
U

6

A
lig

n
m

e
n
t

D
C

L
K

M
a
x

P
o
o
lin

g

R
e
q
u
a
n
ti
z
e
r

DCLK

Weight-Stationary

Systolic Array𝑊 = 𝑈 ⊙ 𝑉

CPU

C
R

A
M

S

c
ru

b
b
e
r

AXI

IRQ

C
o
n
fi
g
u
ra

ti
o
n

M
a
n
a
g
e
r

CM

R
E

C
O

N
A

p
p
lic

a
ti
o
n
s

Static Region Partial Reconfiguration Region

Accumulator

Buffer

Instruction Buffer

Figure 21: RECON acceleration framework.

74

The RSGDMA and RACCEL modules constitute the control-flow and data-flow subsys-

tems of the RECON acceleration framework, respectively. The RSGDMA performs most

of the control-flow functions of the framework, including instruction processing, accelerator

configuration, and memory access, and resides in the SR. The RACCEL performs all data-

flow functions of the framework to accelerate SegNet processing with optimizations and

resides in a PRR as a PRM. Both the RSGDMA and RACCEL modules are scalable and

runtime parameterizable to accommodate various FPGA platforms and application domains

and to support runtime reconfiguration. The degree of parallelism in RECON is primarily

defined by the number of input channels and output channels N processed concurrently,

with four parallel pixels per channel, for a total of 16N2 PEs. The notations RSGDMAM

and RACCELN are used to denote the configuration of RSGDMA and RACCEL, respec-

tively, where M and N are user-specified, pre-synthesis parameters. Both RSGDMAM and

RACCELN are compatible if N≤M .

The RSGDMA and RACCEL interface via AXI4-Stream (AXIS), and AXIS packets are

used to parameterize and operate the RACCEL. Input stream packets specify the datapath

configuration and provide weights, biases, quantization parameters, and input data of tiled

FMs and PIs. Output stream packets return output data of tiled FMs and PIs. The RS-

GDMA has a built-in decoupling mechanism that can sever the AXIS interface between the

RSGDMA and RACCEL. This mechanism is activated during PR to protect the RSGDMA

by ensuring that the AXIS interface remains inactive, and this mechanism can also be ac-

tivated to inhibit the propagation of errors from faulty RACCEL PRMs to the RSGDMA

and other static logic.

4.2.1 Approaches for Efficient SEE Mitigation

In RECON, we focus on mitigating two event classifications due to faults: silent data

corruption (SDC) and hangs. SDC refers to an erroneous outcome of the application due to

faults and is neither detectable nor correctable without dependable-computing techniques.

SDC usually occurs when faults affect the data-flow parts of the design (e.g., faults corrupting

the datapaths). Faults causing SDC can be repaired by CRAM scrubbing or reconfiguration.

75

Depending upon the application, the severity of SDC can vary broadly. Some algorithms,

including NNs, have been demonstrated to have an inherent fault tolerance due to high

redundancy in the weights of the model [99]. SDC events with low severity (e.g., few in-

correct pixels) are classified as tolerable SDC (SDCT) if the accuracy loss remains below

a user-defined tolerance threshold. Otherwise, SDC events with high severity (e.g., severe

distortions) are classified as critical SDC (SDCC). Depending upon mission requirements, if

some loss in accuracy due to SDC is acceptable, then the dependability analysis is adjusted

to focus on SDCC.

A hang refers to the nonperformance of the application that can be detected by timeout

or watchdog. A hang usually occurs when faults affect the control-flow parts of the design

that can corrupt finite-state machines (e.g., entry into unreachable states), disrupt flow-

control processes, or activate/inhibit control signals. The severity of hangs can also vary.

Some hang conditions can be repaired by a combination of CRAM scrubbing and asserting a

reset signal to repair the faulty control logic and reinitialize the control state. However, some

hang conditions can propagate to other subsystems and require reconfiguration or external

mechanisms (e.g., software-issued reboot or watchdog timer reset) to recover.

CRAM scrubbing and PR are fast, nondisruptive recovery mechanisms to repair faults.

FR and other mechanisms that reset the FPGA are slow, disruptive recovery mechanisms

that must be minimized to avoid system downtime. The application of FG-TMR can sub-

stantially reduce the critical area to minimize both SDC and hangs; however, FG-TMR incurs

a substantial overhead in the design area, energy consumption, and timing-critical path that

can limit the performance and energy-efficiency potential of the system. To improve the

dependability of RECON with minimal impact on performance, we propose selective and

adaptive strategies for efficient SEE mitigation of hangs and SDC, respectively. The RE-

CON framework is disaggregated into control-flow (RSGDMA) and data-flow (RACCEL)

subsystems, and the selective and adaptive approaches are applied to the RSGDMA and

RACCEL subsystems, respectively.

76

4.2.1.1 Selective Mitigation for RSGDMA

Since hangs result in system downtime and require slow processes to recover, the critical

area vulnerable to hangs must be minimized to reduce the hang rate. FG-TMR is selectively

applied to the RSGDMA and supporting logic (e.g., interconnects and memory controllers) in

the SR because these subsystems perform most of the control-flow functions of the framework.

Additionally, FG-TMR will also reduce SDC due to faults in the RSGDMA.

Although RACCEL is mostly data-flow-oriented, this module is not devoid of control-

flow function and is also vulnerable to hangs. However, the decoupling mechanism of the

RSGDMA can be activated to sever the AXIS interface between the RSGDMA and RACCEL

to inhibit the propagation of both SDC and hang conditions to protect the RSGDMA and

other static logic, and the CM is invoked to perform MER using fast, nondisruptive repair

mechanisms. For example, if RACCEL hangs and the RSGDMA runtime exceeds a prede-

fined timeout, the CM activates the decoupler and performs PR to recover the RACCEL

with minimal system interruption.

4.2.1.2 Adaptive Mitigation for RACCEL

Since the SEE rate of a system exposed to the dynamic near-Earth radiation environ-

ment can vary by multiple orders of magnitude, the application of static (nonchanging) SEE

mitigation can be excessive and inefficient, especially when the worst-case SEE rates are

infrequent or brief. An environmentally adaptive approach for SEE mitigation can repur-

pose system resources between parallelism (performance) and redundancy (dependability) in

response to the current environmental condition. Using this approach, a system can adapt

its resources to maximize performance while providing SEE mitigation that is sufficient to

the environmental condition to satisfy mission availability constraints.

As a PRM, the RACCEL configuration can be changed at runtime, and the degree of

parallelism and redundancy of the RACCEL configuration can vary but is constrained by

the amount of resources available in the PRR. Each RACCEL configuration has its own per-

formance, energy efficiency, and dependability tradeoffs. With several configuration modes

available, the CM can adapt to the environment by selecting the RACCEL configuration

77

A B

D
e
p

e
n

d
a
b

il
it

y

P
e
rf

o
rm

a
n

c
e

D
e
p

e
n

d
a
b

il
it

y

P
e
rf

o
rm

a
n

c
e

RECON4 RECON2-TMR

0 10,000 20,000 30,000 40,000 50,000
Time [s]

10 5

10 4

10 3

10 2

10 1

SE
E

Ra
te

 (
de

vi
ce

)
[S

EE
s

· d
ev

ic
e

1
· s

1]

A B A B A B A B A

SEE Threshold

AdaptA B

AdaptB A

0

10

20

30

40

M
cI

lw
ai

n
L-

sh
el

l (
L m

)
[R

]

Figure 22: RECON adaptive approach for SEE mitigation selects between high-performance

ModeA (RECON4) and high-dependability ModeB (RECON2-TMR) in response to the current

SEE rate of the orbital environment.

78

with the tradeoffs best suited for the immediate environmental condition. The policy used

by the CM to select a RACCEL configuration can also vary. One such policy is a threshold-

based approach, where adaptation occurs when the monitored SEE rate crosses predefined

thresholds.

Figure 22 illustrates an example of this adaptive approach for a RECON framework

with mitigated RSGDMA4-TMR. In this example, the CM selects between high-performance

ModeA (RECON4) or high-dependability ModeB (RECON2-TMR) using a threshold-based

policy for mode selection. Both RACCEL configurations have similar resource utilization

but different tradeoffs in performance and dependability. During periods with SEE rates be-

low the threshold, ModeA is deployed to maximize performance and energy-efficiency at the

expense of dependability, and, during periods with SEE rates above the threshold, ModeB

is deployed to improve dependability at the expense of performance and energy-efficiency.

Depending upon the orbit and mission availability constraint, this adaptive approach can

achieve substantial performability gains compared to a static, high-dependability approach.

In Section 4.3, we demonstrate the effectiveness of this adaptive approach and generate a de-

sign tradespace with static and adaptive strategies in terms of performability and availability.

Using this tradespace, users can select the strategy that achieves the most performability

subject to an availability constraint, and vice versa.

4.2.2 Architectures for Space Computers

The RECON framework can be deployed on space computers featuring a hybrid and het-

erogeneous SoC and system architecture. Space computers, such as the CSP (Z7020) [106],

SSP (Z7030, Z7035, or Z7045) [82], and SpaceCube Mini-Z (Z7020) [13] that feature hybrid

SoCs can accommodate the RSGDMA and RACCEL modules in the FPGA subsystem and

run the CM software in the CPU subsystem, as illustrated in Figure 23(a). The CSP and

SpaceCube Mini-Z computers, which do not contain FPGA-interfaced DDR memory, must

reserve a partition of the CPU-interfaced DDR memory for use by the RSGDMA.

79

Software FPGA

CRAM
Scrubber

ReconfigureMonitor

Configuration Manager librecon

RDMA

RECON Application

TMR
A

X
I-

M
M

IRQ

AXIS

Partial
Reconfiguration

Region

RACCEL
RECON Accelerator

Memory

Model
Definition

Model
Weights

Partial
Bitstreams

DMA
Buffers Peripherals

CPU

• CoreC

Core1 •

Memory

Memory
Controller

RSGDMA
RECON

SGDMA

Zynq-7000 SoC or Zynq UltraScale+ MPSoC

(a) Architecture for hybrid SoCs

Software FPGA

ReconfigureMonitor

Configuration Manager librecon

RDMA

RECON Application

TMR

A
X

I-
M

M

IRQ

Memory

Model
Definition

Model
Weights

Partial
Bitstreams

DMA
Buffers Peripherals

CPU

• CoreC

Core1 •

Memory

FPGA

CRAM
Scrubber

TMR

A
X

I-
M

M

IRQ

AXIS

Partial
Reconfiguration

Region

RACCEL
RECON Accelerator

Memory

Memory
Controller

Aurora
64B/66B

Zynq-7000 SoC or Zynq UltraScale+ MPSoC Kintex UltraScale FPGA

Aurora
64B/66B

AXI
C2C

AXI
C2C

CRAM
Scrubber

RSGDMA
RECON

SGDMA

Memory
Controller

DMA

A
u
ro

ra

(b) Architecture for heterogeneous SoC/FPGA systems

Figure 23: RECON architecture for space processors including (a) hybrid SoCs and (b)

heterogeneous SoC/FPGA systems.

80

RECON can also be deployed on space computers featuring heterogeneous, disaggregated

CPU-FPGA systems, which often combine a large FPGA coprocessor to a relatively low-

profile CPU or SoC interfaced by a high-speed interconnect. One example is the space

single-board computer architecture exemplified by the SCv3VPX design (Zynq-MPSoC and

KU-FPGA) [27]. Another example is a space computer system with both the SoC and

FPGA coprocessor as separate cards. Such a system is demonstrated by the SCv3M design

(KU-FPGA) [13] connected to a SoC (e.g., SSP). In both examples, illustrated in Figure

23(b), the RSGDMA and RACCEL modules reside in the FPGA coprocessor and run the

CM software in the SoC, and the model can be communicated to the RSGDMA via AXI

Chip2Chip using the Aurora 64B/66B protocol with MGTs as the high-speed interconnect.

In both architectures illustrated in Figure 23, the FPGA containing RECON can serve as

a coprocessor, where the adjacent CPU or SoC can offload massive workloads for acceleration

with minimal communication overhead. Alternatively, the FPGA can serve as a front-end

data processor for sensors interfaced directly with the FPGA. In this configuration, the

FPGA can directly process raw sensor data and provide compressed data to the adjacent

CPU or SoC for downlink or storage.

The RECON framework is supported by software, including Linux device driver and

userspace library, that enables userspace applications to have shared access to the RSGDMA

for inference acceleration. The RECON software is parameterizable to support arbitrary

input image volumes (spatial resolution and dimension) and shapes or variations of a DL

model to accommodate various space applications and imaging sensors (e.g., monochromatic,

multispectral, or hyperspectral). When initialized, the software references two resources: the

model definition, which specifies the shape of the model and the instructions to process the

model, and the corresponding model parameters, which are the trained weights, biases, and

quantization parameters that are loaded into memory prior to execution. Both resources are

obtained after model development (training, testing, and analysis) and are uploaded to the

onboard computer for deployment. For model development, a model can be constructed using

a dataset generated from downlinked sensor data or approximated by using or manipulating

existing datasets.

81

4.2.3 Accelerator Optimizations

Several optimization techniques from the literature have been incorporated into RECON

to maximize the inference performance, energy efficiency, and area efficiency for onboard

processing. This discussion includes model-compression, algorithmic, and architectural op-

timizations implemented into RECON.

4.2.3.1 Model-Compression Optimizations

RECON uses the INT8 quantization scheme of [34] for model compression. This quanti-

zation scheme is applied per-layer and per-channel for FMs and weights, respectively, with

asymmetric quantization used for both FMs and weights. To improve the precision of the

quantization mapping, a winsorizing approach is used to set all outliers and extreme values

of the continuous input set to the edges of the user-specified percentile of the discrete set.

Furthermore, ReLU layers, which have an unbounded range, [0,∞), are replaced with ReLU6

layers to constrain values to [0, 6]. With INT8 quantization, RECON uses resource-efficient,

low-precision hardware to improve area and energy efficiency. INT8 quantization also im-

proves the bandwidth and storage efficiency by 4× compared to single-precision FP (FP32).

Combined with additional techniques in quantization mapping and model modifications, the

loss in accuracy due to INT8 quantization can be a minimal and tolerable tradeoff for the

substantial hardware-efficiency benefits.

4.2.3.2 Algorithmic Optimizations

Using the F (2×2, 3×3) form of Winograd convolution, a fast algorithm for convolution,

the RACCEL improves DSP efficiency by 2.25× compared to direct 3×3 convolution. Be-

cause FMs are determined at runtime, the Winograd transform for input FMs and inverse

Winograd transform for output FMs are implemented into RACCEL. However, because the

weights of convolutional layers are predetermined, the Winograd transform can be either

82

implemented using FPGA resources or be applied to the weights prior to model deployment.

RECON uses the latter approach, which results in no FPGA resources being used for the

Winograd transform for weights at the expense of a 1.78× larger model size.

Additionally, BatchNorm folding is used to embed the parameters of BatchNorm layers

into the parameters of the preceding convolutional layer prior to model deployment. This

optimization eliminates the need for RECON to process BatchNorm layers at runtime.

Finally, the RSGDMA implements the controls to perform loop tiling and access tiles

of partitioned FMs stored in off-chip memory. These FM tiles are cached by the RACCEL

using an OCM-based accumulator buffer of user-specified size. Because burst transactions

of the RSGDMA AXI interface use an incrementing access pattern, the FMs are partitioned

by rows to maximize the efficiency of DDR memory accesses and streaming bandwidth.

Furthermore, because convolutional operations require complete kernel windows, tiles require

additional rows from adjacent tiles to address the data dependency for the edge cases. Using

this optimization, RECON substantially reduces the latency and bandwidth requirements of

off-chip memory access by accumulating cacheable FM tiles in OCM.

4.2.3.3 Architectural Optimizations

The RACCEL uses a 2D weight-stationary systolic array for processing convolutional

layers to achieve high-frequency operation. Each PE is implemented using one DSP slice

to perform a single multiply-accumulate operation per cycle, and all PEs are interlinked

using cascaded signals, which are dedicated paths between DSP slices in Xilinx FPGAs.

Furthermore, since DSP slices of recent Xilinx FPGAs are rated for high-frequency operation,

RACCEL uses DSP time-multiplexing with a factor of two to halve the number of DSP

slices required by operating the DSPs at two times the frequency of the surrounding logic.

In RACCEL, the weights are multiplexed into the inputs of the DSP, and the output of the

DSP is demultiplexed into the surrounding logic.

Additionally, RECON uses layer fusion to process multiple adjacent layers in a pipeline.

All instructions compute convolutional layers with optional preprocess or postprocess oper-

ations. Both the elementwise ReLU6 and compressive, channel-wise max-pooling layers are

83

optional postprocess operations that follow the convolutional layers. Inversely, the decom-

pressive, channel-wise max-unpooling layers are optional preprocess operations that precede

the convolutional layers. Combined with the BatchNorm folding optimization, RECON re-

quires only 26 instructions to process all 86 layers of the SegNet model. This data-flow is

illustrated in Figure 21.

Finally, the RSGDMA uses an AXI-based scatter-gather DMA (SGMDA), which con-

tains multiple AXI descriptors to access multiple memory buffers to support scattering and

gathering data-flows. In a scattering operation, the SGDMA rotates between AXI descrip-

tors, each completing one AXI-burst transaction per rotation, to read input FMs or PIs from

multiple memory buffers to generate an interleaved input stream for processing. Inversely,

in a gathering operation, the SGDMA deinterleaves the output stream and writes the out-

put FMs and PIs to multiple memory buffers. Because interleaving and deinterleaving are

seamlessly performed as part of the scattering and gathering operations, the FMs and PIs

remain deinterleaved in memory without the need for software interleaving or deinterleaving

to reorganize accelerator inputs and outputs. Finally, pointers to memory buffers containing

FMs and PIs are alternated at runtime for zero-copy to avoid inefficient memory copies.

After each instruction, the buffer pointers are swapped so that the output FM buffer of the

preceding instruction becomes the input FM buffer for the following instruction. During the

encoder stages, PIs are generated and stored into output PI buffers, and, during the decoder

stages, these PI buffers become inputs.

4.3 Evaluation

This section describes the performance and dependability evaluations for RECON. RE-

CON is implemented for the Z7020 (PYNQ-Z2 and Zybo Z7-20) and ZU3EG (Ultra96-V2 and

UltraZed-EG) that serve as facsimiles for hybrid space computers (similar to those described

in Sections 2.2 and 4.2.2). The Z7020 and ZU3EG devices use the configuration illustrated

in Figure 23(a) but use CPU-interfaced DDR memory for DMA buffers. In our performance

evaluation, both platforms are evaluated in terms of accuracy, resource utilization, perfor-

84

mance, and energy efficiency. In our dependability evaluation, we use CRAM fault injection

and neutron irradiation to evaluate the SEE susceptibility of the SegNet model accelerated

on RECON for the Z7020. We also use dependability modeling to evaluate our adaptive

strategy for various orbital case studies. For both platforms, Vivado 2020.1 is used to syn-

thesize and implement the RECON design with default strategies, and PetaLinux 2020.1 is

used to generate an embedded Linux OS. FG-TMR is applied using the BL-TMR tool [37].

The Potsdam dataset of the ISPRS commission II/4 benchmark for 2D semantic labeling [74]

is used for this evaluation. This dataset uses EO images in IRRGB (infrared-red-green-blue)

format with six classes for segmentation: roads, buildings, low vegetation, trees, automo-

biles, and clutter. Three shapes of the SegNet model are trained and evaluated: NetA (86

layers, 7,376,806 weights), NetB (86 layers, 1,849,814 weights), and NetC (86 layers, 465,262

weights).

4.3.1 Performance Evaluation

This section quantifies and analyzes the RECON modules in terms of conventional met-

rics. Towards a dependability analysis, we measure the inference accuracy and resource

utilization which affect the vulnerability of RECON to faults. Furthermore, we measure

performance and energy efficiency to quantify the advantages of FPGA-accelerated DL and

to define reward states to analyze the tradeoffs in performance and dependability for RE-

CON.

4.3.1.1 Inference Accuracy

Because RECON uses INT8 quantization for efficient, low-precision hardware, the infer-

ence accuracy is measured for both FP32 and INT8 versions of the SegNet model to quantify

the loss in inference accuracy. Using Equation (2.5), the interface accuracy of the segmented

images is measured in terms of the mIoU and F1 metrics, and the results are shown in Table

9. For this evaluation, an mIoU difference of −0.7%-−1.7% was observed with loss decreasing

85

Table 9: RECON inference accuracy.

Precision NetA (7.38M weights) NetB (1.85M weights) NetC (465k weights)

(mIoU) (F1) (mIoU) (F1) (mIoU) (F1)

FP32 71.04 81.58 70.55 81.04 67.63 78.91
INT8 70.17 80.85 69.69 80.35 65.95 77.58
Difference –0.87 –0.73 –0.86 –0.69 –1.68 –1.33

as the model size increased. Although the INT8 version deviates in accuracy compared to

FP32 due to low-precision hardware, the loss in accuracy is a small and acceptable tradeoff

for the hardware efficiency benefits of INT8.

4.3.1.2 Resource Utilization

The resource utilization of several implemented RECON modules (RACCEL and RS-

GDMA) are shown separately in Table 10. In RACCELN , the number of DSP slices increase

quadratically as N increases. RACCELN requires 16N2 and 4N DSP slices for the convolu-

tional and requantization operations, respectively, for a total of 16N2+4N . Furthermore, the

number of DSPs is halved when RACCEL is configured for DSP time-multiplexing, for a final

total of 1
2
(16N2+4N) DSPs. Other resource types, such as LUTs, FFs, BRAM, and CRAM,

increase linearly as N increases because these resources are predominately utilized for the N

channel-wise datapaths. Furthermore, the application of FG-TMR in RACCELN incurs a

3-5× increase in resource utilization compared to RACCELN -TMR. For this evaluation, the

amount of OCM used for tiling and accumulation is set to 8,192 pixels per channel.

4.3.1.3 Performance and Energy Efficiency

Performance and energy-efficiency, quantified in frames-per-second (FPS) and FPS-per-

Watt (FPS/W), respectively, are measured for several configurations of SegNet executed as

software on the SoC CPU or accelerated on RECON. In the software versions, the FPGA

86

Table 10: RECON module resource utilization.

Device LUTs FFs BRAM DSPs CRAM Bits

Module (36b×1k)

Z7020 53,200 106,400 140 220 25,636,224

RACCEL1 2,547 (4.79%) 3,532 (3.32%) 7 (5.00%) 10 (4.55%) 770,172 (3.00%)

RACCEL2 4,171 (7.84%) 7,057 (6.63%) 21 (15.00%) 36 (16.36%) 1,460,587 (5.70%)

RACCEL4 8,102 (15.23%) 16,890 (15.87%) 41 (29.29%) 136 (61.82%) 3,294,802 (12.85%)

RACCEL1-TMR 10,604 (19.93%) 10,939 (10.28%) 21 (15.00%) 30 (13.64%) 2,614,220 (10.20%)

RACCEL2-TMR 16,844 (31.66%) 21,571 (20.27%) 63 (45.00%) 108 (49.09%) 4,910,929 (19.16%)

RSGDMA4 4,577 (8.60%) 4,871 (4.58%) 21 (15.00%) 0 (0.00%) 1,166,741 (4.55%)

RSGDMA4-TMR 22,919 (43.08%) 14,593 (13.72%) 63 (45.00%) 0 (0.00%) 4,728,197 (18.44%)

ZU3EG 70,560 141,120 216 360 30,834,336

RACCEL1 2,808 (3.98%) 4,040 (2.86%) 7 (3.24%) 10 (2.78%) 1,256,868 (4.08%)

RACCEL2 4,435 (6.29%) 7,814 (5.54%) 21 (9.72%) 36 (10.00%) 2,393,780 (7.76%)

RACCEL4 8,329 (11.80%) 17,855 (16.65%) 41 (18.98%) 136 (37.78%) 5,309,913 (17.22%)

RACCEL1-TMR 11,321 (16.04%) 11,674 (8.27%) 21 (9.72%) 30 (8.33%) 4,344,837 (14.10%)

RACCEL2-TMR 17,562 (24.89%) 23,100 (16.37%) 63 (29.17%) 108 (30.00%) 7,302,230 (23.68%)

RSGDMA4 6,025 (8.54%) 6,523 (4.62%) 41 (18.98%) 0 (0.00%) 2,926,567 (9.49%)

RSGDMA4-TMR 26,379 (37.39%) 19,452 (13.78%) 123 (56.94%) 0 (0.00%) 10,630,561 (34.48%)

Table 11: RECON performance and energy-efficiency.

Platform Configuration Performance (FPS) Power Performance/Watt (FPS/W)

Version NetA NetB NetC (W) NetA NetB NetC

PYNQ-Z2 (Z7020)

Software 650 MHz; 1 Thread 0.005 0.018 0.065 0.520 0.009 0.035 0.126

Software 650 MHz; 2 Threads 0.010 0.036 0.127 0.730 0.013 0.050 0.174

RECON1 250.00/500.00 MHz 0.211 0.825 3.171 1.285 0.164 0.642 2.468

RECON1-TMR 200.00/400.00 MHz 0.169 0.660 2.537 2.480 0.068 0.266 1.023

RECON2 250.00/500.00 MHz 0.653 2.528 9.436 1.800 0.363 1.405 5.242

RECON2-TMR 142.85/285.70 MHz 0.412 1.606 6.117 3.155 0.131 0.509 1.939

RECON4 200.00/400.00 MHz 1.117 4.256 15.472 2.065 0.541 2.061 7.492

Ultra96-V2 (ZU3EG)

Software 1.2 GHz; 1 Thread 0.011 0.041 0.147 0.310 0.016 0.059 0.211

Software 1.2 GHz; 2 Threads 0.023 0.086 0.302 0.620 0.037 0.138 0.487

Software 1.2 GHz; 4 Threads 0.042 0.155 0.546 1.060 0.040 0.146 0.515

RECON1 375.00/750.00 MHz 0.316 1.240 4.773 1.205 0.262 1.029 3.961

RECON1-TMR 375.00/750.00 MHz 0.316 1.240 4.773 4.100 0.077 0.302 1.164

RECON2 375.00/750.00 MHz 1.033 4.002 15.022 1.730 0.597 2.313 8.684

RECON2-TMR 300.00/600.00 MHz 0.938 3.655 13.877 4.935 0.190 0.741 2.812

RECON4 375.00/750.00 MHz 2.101 7.970 28.837 2.440 0.861 3.267 11.818

87

is kept blank (unprogrammed) to assume a CPU-only system. The software version uses

INT8 quantization, Winograd convolution, BatchNorm folding, and compilation with op-

timizations (-O3) and OpenMP for shared-memory multiprocessing. Table 11 shows the

performance and energy-efficiency measurements. In all situations, RECON outperforms

the software versions by up to three orders of magnitude depending upon the model shape

and system configuration. In RACCELN , performance increases quadratically as N increases

because the number of PEs is scaled quadratically. To maintain this quadratic relationship,

the memory bandwidth must increase linearly as N (number of channels) increases; other-

wise, once saturated, the performance of RACCELN begins to increase linearly.

Using a power meter, the board power was measured when idle (i.e., CPU is not busy, and

FPGA is blank) and active (i.e., continuously executing convolutional layers) to determine

the dynamic power consumption. The idle power was measured at 1.97W and 5.20W for the

PYNQ-Z2 and Ultra96-V2 platforms, respectively. Although RECON often has higher peak

power consumption, the substantially increased performance leads to significant improve-

ments in energy efficiency, up to two orders of magnitude compared to the software versions.

To accommodate space applications with stricter power requirements, the FPGA operating

frequency and RECON configuration can be reduced at the cost of decreased performance.

4.3.2 Dependability Evaluation

This section describes the dependability evaluation of RECON. Both CRAM fault in-

jection and neutron irradiation are performed to observe the architectural response of the

SegNet model accelerated on RECON to both injected and neutron-induced faults. These

experiments quantify and analyze the AVF, MWTF, and neutron cross-section of multiple

configurations of RECON modules to both SDC and hangs.

To evaluate our selective and adaptive approaches, we perform CRAM fault injection

and use the methodology for evaluating adaptive systems in near-Earth radiation environ-

ments, described in Section 2.4.2.3, for three orbital case studies, including the Jason-3 in

LEO, NOAA-20 in SSO, and Molniya 1-88 in HEO. The selected orbital case studies repre-

sent the dynamic radiation environment of three distinct orbital regimes to demonstrate the

88

versatility of RECON. Spacecraft in GEO experience minimal fluctuation in SEE rates due

to their low susceptibility to trapped protons that are present at very low energy levels at

GEO altitude. Consequently, with minimal predictable variation in the GEO radiation en-

vironment, our adaptive approach that is based on the dynamics of the near-Earth radiation

environment is not applicable for GEO and is therefore not included in our analysis.

Our evaluation includes the following steps. First, we use the fault-injection results

and analyze the impact of CRAM faults on the inference accuracy and adjust the AVF to

account for SDCT. Next, we use a combination of state-of-the-art models to predict the

time-varying SEE rates of the Z7020 for each orbital case study. Next, using the resource

utilization and AVF results, we scale the time-varying SEE rates to approximate the time-

varying fault rates of multiple RECON modules on the Z7020 for each orbital case study.

Finally, using the time-varying fault rates of RECON modules, repair rates for the recovery

mechanisms in RECON, and reward rates (performance and energy-efficiency), we create a

phased-mission system model to calculate the instantaneous and average availability, failure

rate, and performability. By analyzing this phased-mission system model for several static

and adaptive strategies at varied threshold parameters, a design tradespace in terms of

availability and performability (FPS and FPS/W) is generated with a Pareto-optimal set for

selecting the best strategy subject to some user-defined availability constraint.

4.3.2.1 CRAM Fault-Injection Experiment

CRAM fault injection was performed to observe the architectural response of the SegNet

model accelerated on RECON to injected faults. In our fault-injection experiment, we eval-

uate several configurations of the static RSGDMA and reconfigurable RACCEL modules.

The RSGDMA modules include RSGDMA4 and RSGDMA4-TMR, and the RACCEL modules

include RACCEL1, RACCEL2, RACCEL4, RACCEL1-TMR, and RACCEL2-TMR. FG-TMR

is applied using the BL-TMR tool [37]. All RECON modules have tradeoffs in performance,

energy-efficiency, and dependability.

89

CRAM fault injection is performed to quantify the susceptibility of each RECON module

to injected CRAM faults in terms of the AVF and MWTF. Two experiments are performed

to analyze RECON at the model-level and layer-level. In the model-level experiment, CRAM

faults are present during the execution of the entire model, and in the layer-level experiment,

CRAM faults are present only during the execution of one selected layer. In the model-level

experiment, each iteration begins with the system in a clean state (i.e., FPGA is fully

reprogrammed) to remove any latent faults from preceding iterations, and the input image

and CRAM bit location (frame address, word, and bit) are both randomly selected using the

Linux system call getrandom(). The input image is varied to eliminate any potential bias

with the input to the model. Next, the fault is injected into the randomly selected CRAM bit,

and the model is fully executed to completion. Finally, the execution event is recorded. In

the layer-level experiment, the input image, CRAM bit location, and layer are all randomly

selected. Next, the model is fully executed with the execution halted immediately prior to

the randomly selected layer to inject the fault and after to repair the fault, thus isolated the

fault to the randomly selected layer. Finally, the execution event is recorded.

The execution will either complete correctly, complete with SDC, or hang. SDC is

detected if the mIoU, F1, or checksum of the output does not match that of the golden

output for the randomly selected image. The mIoU and F1 are also used to analyze the

impact of CRAM faults on the inference accuracy and to classify events as SDCT and SDCC.

A hang is detected when RECON fails to fully execute the model within the expected timeout

interval (2 seconds). Finally, all events (correct, SDC, and hang) are recorded and the system

is reset into a clean state for the subsequent iteration.

Fault injection is performed using the PCAP. A frame-readback command is issued to

the PCAP to retrieve the contents of the frame containing the selected CRAM bit into

a software buffer. The selected CRAM bit is inverted in the buffered frame, and a frame-

writeback command is issued to the PCAP to write the faulty, buffered frame back to CRAM

to complete the fault injection. To minimize uncertainty in the measurements, a significant

number of fault injections, which will vary between designs, is performed to minimize the

95% CI error. To accelerate this process, the Xilinx design tools are used to generate a list of

90

Table 12: RECON model-level CRAM fault-injection test results on PYNQ-Z2 (Z7020).

Module Injections AVF (%) Critical CRAM Bits ±95% CI Error

SDCT SDCC Hangs SDCT SDCC Hangs

RACCEL1 2,459,068 16.14 12.55 6.13 124,292 ± 387 96,622 ±341 47,238 ±238

RACCEL1-TMR 6,936,806 0.09 0.11 0.06 2,336 ± 58 2,978 ± 66 1,490 ± 46

Improvement 53.2× 32.5× 31.7×

RACCEL2 4,851,293 23.38 11.86 3.43 341,524 ± 628 173,268 ±448 50,096 ±241

RACCEL2-TMR 9,876,758 0.14 0.13 0.05 6,889 ± 115 6,144 ±108 2,260 ± 66

Improvement 49.6× 28.2× 22.2×

RACCEL4 8,819,211 33.02 10.33 1.85 1,087,875 ±1,250 340,388 ±699 61,107 ±296

RSGDMA4 2,773,146 13.75 6.73 10.03 160,463 ± 509 78,475 ±356 117,015 ±435

RSGDMA4-TMR 4,573,435 0.17 0.19 0.04 7,961 ± 178 9,216 ±191 2,102 ± 91

Improvement 20.2× 8.5× 55.7×

essential CRAM bits, which are CRAM bits actively used by the design, to target exclusively

[47]. Furthermore, several PYNQ-Z2 boards are deployed to parallelize the fault-injection

campaign.

Table 12 shows the results of the model-level fault-injection experiment including (1)

the number of SDCT, SDCC, and hang events, (2) the measured AVF for SDCC and hang

events, and (3) the approximated number of critical CRAM bits (AVF × number of essential

bits) with 95% CI error vulnerable to SDCC and hang events of each tested module. As

shown in Table 12, the static RSGDMA4 module, which performs most of the control-flow

operations in RECON, has the most critical bits vulnerable to hangs and is the biggest

contributor to system downtime. Because a hang of the RSGDMA requires a slow, disruptive

process to repair the module, SEE mitigation must be selectively applied to the RSGDMA

module to minimize the critical area vulnerable to hangs and the associated downtime. The

RSGDMA4-TMR module, which is protected by FG-TMR, substantially reduces the critical

area vulnerable to hangs by 56× at the expense of a 3-5× increase in area (Table 10) and 10%

decrease in energy-efficiency. Similarly, the application of FG-TMR substantially reduces the

91

100 80 60 40 20 0 +20
Accuracy Difference [mIoU]

10 5

10 4

10 3

10 2

10 1

10±0
Pr

ob
ab

ili
ty

 [
%

]
SDCC SDCT

To
le

ra
nc

e
Th

re
sh

ol
d

5

RACCEL1
RACCEL2
RACCEL4

RACCEL1 TMR
RACCEL2 TMR

RSGDMA4
RSGDMA4 TMR

(a) Histogram of probability distribution

0 20 40 60 80 100
Probability [%]

RACCEL1

RACCEL2

RACCEL4

RACCEL1 TMR

RACCEL2 TMR

RSGDMA4

RSGDMA4 TMR

43.7%

33.7%

23.8%

56.0%

47.1%

32.8%

53.7%

56.3%

66.3%

76.2%

44.0%

52.9%

67.2%

46.3%

SDCC SDCT

(b) SDCT and SDCC probability

Figure 24: Impact of CRAM faults on mIoU with (a) the probability distribution of mIoU

difference in SDC events and (b) probability of SDCT and SDCC by RECON module. Mul-

tiple, overlaid histograms represented as line plots. 60 bins with widths of 2% mIoU loss per

bin.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 AVG Model
101
102
103
104
105
106

RACCEL1 RACCEL2 RACCEL4 RACCEL1 TMR RACCEL2 TMR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 AVG Model
0

50,000

100,000

150,000

Layer

Cr
it

ic
al

 C
RA

M
 B

it
s

Layer

Cr
it

ic
al

 C
RA

M
 B

it
s

Figure 25: Critical CRAM bits vulnerable to SDCC by layer and model for each RACCEL

configuration in (top) logarithmic and (bottom) linear scale.

92

critical area of both RACCEL1-TMR and RACCEL2-TMR compared with their unmitigated

counterparts in terms of SDC and hangs, also at the expense of increased area and energy

overhead.

Figure 24(a) illustrates a histogram that shows the impact of model-level CRAM faults

on the inference accuracy (mIoU) of SDC events. The impact is quantified by the mIoU

difference between each SDC output and its corresponding golden output, and the histogram

shows the distribution of accuracy differences across all RECON modules. SDC events vary

broadly. Due to the inherent fault tolerance of CNNs, the accuracy difference of SDC events

is most frequently near the golden mIoU (i.e., at the peak with an accuracy difference of

0%). In our fault-injection campaign, most input images had a golden mIoU between 60%-

80%, which limits the maximum mIoU loss due to SDC to this range. The worst-case SDC

events with near-zero mIoU (i.e., at the hump with an accuracy difference of −80%-−60%)

are relatively more frequent than intermediate SDC events between the worst-case and near-

zero loss. Few SDC events resulted in a considerably improved mIoU greater than the golden

mIoU (i.e., accuracy difference greater than 0%). For this evaluation, we assume a tolerance

threshold of −5% mIoU, where a loss in accuracy ≥−5% mIoU is considered acceptable.

Using this tolerance threshold, Figure 24(b) illustrates the probabilities of SDC events

being either SDCT or SDCC for each module. For both RACCELN and RACCELN -TMR

modules, as N increases, the SDC severity (i.e., probability of SDCC) decreases, possibly

due to the ratio of functional and faulty channels. For example, if RACCEL1 has one faulty

channel, then all input FMs flow through the faulty channel, but if RACCEL2 has one faulty

channel, then only half of all input FMs flow through the faulty channel. For all tested mod-

ules, the mitigated modules (RACCELN -TMR) have greater SDC severity compared to their

unmitigated counterparts (RACCELN); however, the overall reduced critical area negates

this increase. For example, RACCEL2-TMR has greater severity than RACCEL2 (47% versus

34%) but a 37× reduction in critical CRAM bits vulnerable to SDCC.

Figure 25 illustrates the number of critical bits vulnerable to SDCC by layer and model

due to layer-level and model-level CRAM faults, respectively. In both mitigated and un-

mitigated RACCELN , across all layers and the full model, the critical area vulnerable to

SDCC increases as N increases. For all RACCEL modules, outer layers had greater critical

93

area compared to inner layers. This architectural response is possibly due to outer layers

operating on FMs with larger spatial resolution, partitioned into tiles constrained by OCM

size, but less dimensionality compared to the FMs of the inner layers. The last layers of the

encoder blocks (layers 2, 4, 7, 10, and 13) and the first layers of the decoder blocks (layers 14,

17, 20, 24, and 25) tend to have greater critical area compared to other layers within their

respective encoder/decoder blocks. This architectural response is probably due to the adja-

cent max-pooling postprocess and max-unpooling preprocess, which are executed as part of

the pipeline due to the layer-fusion optimization. Consequently, because additional circuits

are enabled to execute these processes, CRAM faults in these circuits can also manifest into

errors.

4.3.2.2 Time-Varying Fault Rate Prediction

Using the SEE rate prediction methodology of [87], the time-varying SEE rates are

predicted for the Zynq-7000 for each orbital case study during the first week of 2020. The

SEE characterizations of the Zynq-7000 are used, which model the SEE susceptibility of each

resource type of the FPGA subsystem in the Zynq-7000 to protons and heavy ions. Solar-

minimum conditions and 100 mils of spherical, aluminum shielding are assumed for a worst-

case evaluation of each orbit. Next, using Equation (2.4), the time-varying fault rates due to

SDCT, SDCC, and hangs are determined for each RECON module. For this evaluation, the

resource utilization and AVF are used to scale the SEE rates of all resource types, which are

then summed to produce the time-varying fault rates. Figure 26 illustrates the time-varying

fault rates of multiple RECON modules to SDCC. The average fault rates for unmitigated

RECON modules are orders of magnitude greater than their TMR counterparts (100-1000×

for RACCEL modules and 10-100× for RSGDMA modules). Furthermore, for all three

orbital case studies, the fault rates are often within the lower 1% of the expected range

of fault rates (i.e., between extrema of SEE rates during the first week of 2020) for most

of the orbital period, with periodic, short-term worst-case SEE rates. Although hardware-

redundancy techniques such as TMR can improve dependability substantially, especially

during high SEE rates, these methods are excessive for most of the orbital period, and the

94

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
10 10
10 9
10 8
10 7
10 6
10 5
10 4

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
10 11
10 10
10 9
10 8
10 7
10 6
10 5

Fa
ul

t
Ra

te
 (

m
od

ul
e)

 [
fa

ul
ts

 ·
m

od
ul

e
1

· s
1]

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
Time [s]

10 910 8
10 710 6
10 510 410 310 2

0
10
20
30
40

0
10
20
30
40

M
cI

lw
ai

n
L-

sh
el

l (
L m

)
[R

]

0
10
20
30
40

L-shell (Lm)
RACCEL4, SDCC

RACCEL2, SDCC
RACCEL2 TMR, SDCC

RACCEL1, SDCC
RACCEL1 TMR, SDCC

RSGDMA4, SDCC
RSGDMA4 TMR, SDCC

Jason-3

NOAA-20

Molniya 1-88

Figure 26: Predicted McIlwain L-shell (Lm) and fault rates (λmodule) of multiple RECON

modules for Z7020 over time for the Jason-3, NOAA-20, and Molniya 1-88 orbital case

studies.

95

resources could instead be used to improve performance and energy efficiency. By using an

environmentally adaptive approach for SEE mitigation, the system can repurpose resources

at runtime to improve performance while providing SEE mitigation that is sufficient to the

immediate environmental condition.

4.3.2.3 Phased-Mission System Modeling and Analysis

RECON adapts to the environment by configuring the system into one of several static

modes, each with its own performance and dependability characteristics, in response to the

environmental condition. Table 13 lists the static modes, including the performance, energy-

efficiency, and MWTF tradeoffs of each one, and shows the adaptive strategy, a threshold-

based approach, used in this evaluation. Static strategies use only one mode during the

evaluation period. Adaptive strategies (denoted as N -Mode) adapt between N different

modes during the evaluation period, and adaptation is invoked whenever the device SEE

rate crosses any user-defined thresholds. Depending upon the thresholds and fluctuating

SEE rate, the adaptive strategies attain some combination of the availability, failure rate,

and performability characteristics of each of the modes in use.

The RECON architecture and adaptive behavior are modeled as a CTMC-based phased-

mission system model. Each mode is independently modeled as a CTMC, and all CTMCs

are interconnected with phase transitions to model the transition between modes as RE-

CON adapts. For each CTMC, all SEEs causing SDC are correctable by CRAM scrubbing

(repair rate µScrub), RACCEL SDC and hangs are recoverable by PR (repair rate µPR), and

RSGDMA hangs are recoverable by an external watchdog system reset (repair rate µWDT).

The time-varying module fault rates (fault-rate transitions), module repair rates (repair-

rate transitions), and performance and energy-efficiency (reward rates) are assigned to the

model at runtime. A transient analysis of the phased-mission system model is performed

for each static and adaptive strategy using 60-second intervals over a one-week period. At

each timestep, the fault-rate transitions are updated and, if the device SEE rate crosses any

thresholds, the active CTMC is changed to reflect the new operating mode using the phase

transitions.

96

Table 13: RECON static modes and adaptive strategy.

Static Configuration Performance Energy SDCC MWTF
Mode Efficiency

(FPS) (FPS/W) (FPS) (FPS/W)

Mode0 RSGDMA4-TMR/RACCEL4 15.472 5.545 82.06 14.80
Mode1 RSGDMA4-TMR/RACCEL2 8.006 3.550 41.39 11.66
Mode2 RSGDMA4-TMR/RACCEL1 3.171 1.639 16.48 10.05
Mode3 RSGDMA4-TMR/RACCEL2-TMR 6.117 1.939 4,873.72 2,513.52
Mode4 RSGDMA4-TMR/RACCEL1-TMR 2.537 1.023 2,221.65 2,171.71

Adaptive Strategya

N -Mode1,2,3,...,N (α1, α2, α3, . . . , αN−1)(t) =

Mode1, if λSEE(t) < α1

Mode2, if λSEE(t) ∈ [α1, α2)

Mode3, if λSEE(t) ∈ [α2, α3)
...

ModeN , if λSEE(t) ≥ αN−1

aThreshold parameters α1, α2, α3, . . . , αN−1 ∈ [λmin, λmax], where α1 ≤ α2 ≤ α3 ≤ . . . ≤ αN−1,
and [λmin, λmax] are the extrema of the expected range of SEE rates.

97

90

99

99.9

99.99

99.999

99.9999

Selective Mitigation

Adaptive Mitigation

90
99
99.9
99.99
99.999
99.9999

90

99

99.9

99.99

99.999

99.9999

90
99
99.9
99.99
99.999
99.9999

In
st

an
ta

ne
ou

s
Pr

ob
ab

ili
ty

 [
%

]

90

99

99.9

99.99

99.999

99.9999

SEE Rate SEE Rate Threshold Normal SDCT SDCC Hang Unavailable

90
99
99.9
99.99
99.999
99.9999

0 2,000 4,000 6,000 8,000 10,000
10 5

10 4

10 3

10 2

0 2,000 4,000 6,000 8,000 10,000
10 5

10 4

10 3

10 2

0 2,000 4,000 6,000 8,000 10,000
10 5

10 4

10 3

10 2

SE
E

Ra
te

 (
de

vi
ce

)
[S

EE
s

· d
ev

ic
e

1
· s

1]

0 2,000 4,000 6,000 8,000 10,000
10 5

10 4

10 3

10 2

0 2,000 4,000 6,000 8,000 10,000
Time [s]

10 5

10 4

10 3

10 2

2.0%

0 2,000 4,000 6,000 8,000 10,000
Time [s]

10 5

10 4

10 3

10 2

2.0%

(A) Static ModeA (RSGDMA4/RACCEL4)

(B) Static ModeB (RSGDMA4/RACCEL2 TMR)

(C) Adaptive 2-ModeA,B(2.0%) (RSGDMA4)

(D) Static Mode0 (RSGDMA4 TMR/RACCEL4)

(E) Static Mode3 (RSGDMA4 TMR/RACCEL2 TMR)

(F) Adaptive 2-Mode0,3(2.0%) (RSGDMA4 TMR)

Figure 27: Instantaneous probability of system operation for six strategies in Jason-3 orbit

over time. Strategies D, E, and F (right column) use selective mitigation and strategies C

and F (bottom row) use adaptive mitigation.

98

Figure 27 illustrates several static and adaptive strategies of RECON with the instan-

taneous probability of the system operating in normal, SDCT, SDCC, hung (application

is nonoperational), or unavailable (system is nonoperational) states over time. First, we

examine the effect of selective mitigation in RECON. System availability is predominately

affected by the vulnerability of the RSGDMA to hangs. Since selective mitigation is specific

to the RSGDMA, changing RACCEL has minimal impact on system availability. Strate-

gies D (Mode0), E (Mode3), and F (2-Mode0,3(2.0%)) use selective mitigation (i.e., use

RSGDMA4-TMR), and strategies A (ModeA), B (ModeB), and C (2-ModeA,B(2.0%)) mirror

strategies D, E, and F, respectively, but omit selective mitigation (i.e., use RSGDMA4). With

selective mitigation, strategies D, E, and F have substantially lower system unavailability

due to the reduced vulnerability of the RSGDMA to hangs (represented by less probability

area of unavailability in Figure 27).

Next, we compare static versus adaptive strategies. Strategies D and E are static strate-

gies tuned for performance and dependability, respectively, and strategy F is an adaptive

strategy that adapts between D and E when the immediate SEE rate crosses the 2.0%

threshold within the expected range of SEE rates. As a result, strategy F, which adapts

between D and E, attains the static performability and availability characteristics of D and

E when the SEE rate is below or above the threshold, respectively, with transients during

the adaptation events. With adaptive mitigation, strategy F is beneficial when the mission

availability constraint is between the availability of D and E because the threshold can be

adjusted to select E to sufficiently satisfy that constraint and to select D for the remainder

of the period to maximize performability. However, in strategy C, which adapts between A

and B, the advantage of adaptive mitigation is negated by the high system unavailability

due to the omission of selective mitigation. Therefore, the combination of both selective and

adaptive approaches, as demonstrated by strategy F, is essential to minimize system unavail-

ability due to RSGDMA hangs and to enable system adaptation to repurpose resources to

maximize performability subject to availability constraints.

By analyzing this phased-mission system model for several static and adaptive strategies

at varied threshold parameters, a design tradespace in terms of availability and performa-

bility is generated for each orbital case study. Figure 28 shows the design tradespace with

99

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

99.9

99.99

99.999

2-Mode0,3(25.6%)

2-Mode0,3(0.9%)
Mode4 Mode3

Mode2

Mode1 Mode0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

99.99

99.999

99.9999

Av
er

ag
e

Av
ai

la
bi

lit
y

[%
]

3-Mode0,3,4(0.5%,1.5%)

2-Mode0,3(6.3%)

Mode4 Mode3

Mode2

Mode1 Mode0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Average Performability [FPS]

99

99.9

99.99

2-Mode0,3(19.4%)

2-Mode0,3(2.0%)

2-Mode0,3(0.2%)
Mode4 Mode3

Mode2

Mode1 Mode0

Static Mode 2-Mode Strategy 3-Mode Strategy Pareto-Optimal Set

Jason-3

NOAA-20

Molniya 1-88

Figure 28: RECON design tradespace in terms of performability and availability and with

Pareto-optimal curves for static and adaptive strategies.

100

Table 14: RECON unavailability, failure rate, and performability for orbital case studies.

Orbit Availability Average Average Average

Strategy Constrainta Unavailability Failure Rate Performability

(%) (days · yr−1) (failures · day−1) (FPS) (FPS/W)

Jason-3

Mode0 ≥99 2.10×100 9.66×100 15.38 5.51

Mode1 ≥99 6.76×10−1 3.30×100 7.99 3.54

Mode2 ≥99.9 2.19×10−1 1.19×100 3.17 1.64

Mode3 ≥99.99 4.45×10−3 1.74×10−2 6.12 1.94

Mode4 ≥99.99 3.72×10−3 1.39×10−2 2.54 1.02

2-Mode0,3(25.6%) ≥99.9 3.17×10−1 1.44×100 12.46 (2.04× Mode3) 4.38 (2.26× Mode3)

2-Mode0,3(0.9%) ≥99.99 3.63×10−2 1.61×10−1 10.68 (1.75× Mode3) 3.70 (1.91× Mode3)

2-Mode1,4(80.9%) ≥99.9 3.36×10−1 1.63×100 7.29 (2.30× Mode2) 3.22 (1.97× Mode2)

2-Mode1,4(3.1%) ≥99.99 3.14×10−2 1.48×10−1 5.46 (2.15× Mode4) 2.38 (2.32× Mode4)

NOAA-20

Mode0 ≥99.9 2.51×10−1 1.14×100 15.46 5.54

Mode1 ≥99.9 8.04×10−2 3.90×10−1 8.00 3.55

Mode2 ≥99.99 2.62×10−2 1.41×10−1 3.17 1.64

Mode3 ≥99.999 5.93×10−4 2.31×10−3 6.12 1.94

Mode4 ≥99.999 4.95×10−4 1.85×10−3 2.54 1.02

2-Mode0,3(6.3%) ≥99.99 3.10×10−2 1.40×10−1 12.56 (2.05× Mode3) 4.42 (2.28× Mode3)

3-Mode0,3,4(0.5%,1.5%) ≥99.999 3.48×10−3 1.60×10−2 8.27 (1.35× Mode3) 3.12 (1.61× Mode3)

2-Mode1,4(92.6%) ≥99.99 3.13×10−2 1.51×10−1 6.96 (2.20× Mode2) 3.07 (1.87× Mode2)

2-Mode1,4(2.0%) ≥99.999 3.55×10−3 1.67×10−2 5.61 (2.21× Mode4) 2.44 (2.39× Mode4)

Molniya 1-88

Mode0 ≥90 8.09×100 4.98×101 15.13 5.42

Mode1 ≥99 3.08×100 1.69×101 7.94 3.52

Mode2 ≥99 1.06×100 5.98×100 3.16 1.63

Mode3 ≥99.99 1.61×10−2 6.28×10−2 6.12 1.94

Mode4 ≥99.99 1.34×10−2 5.03×10−2 2.54 1.02

2-Mode0,3(19.4%) ≥99 3.54×100 1.81×101 14.92 (1.88× Mode1) 5.34 (1.52× Mode1)

2-Mode0,3(2.0%) ≥99.9 3.40×10−1 1.55×100 14.15 (2.31× Mode3) 5.03 (2.60× Mode3)

2-Mode0,3(0.2%) ≥99.99 3.52×10−2 1.49×10−1 13.63 (2.23× Mode3) 4.84 (2.49× Mode3)

2-Mode1,4(3.7%) ≥99.9 2.80×10−1 1.36×100 7.41 (2.92× Mode4) 3.28 (3.20× Mode4)

2-Mode1,4(0.6%) ≥99.99 3.24×10−2 1.42×10−1 7.05 (2.78× Mode4) 3.11 (3.04× Mode4)

aRECON availability includes normal and SDCT operation.

101

the Pareto-optimal set, which can be used to identify the optimal design that achieves most

of one trade subject to the constraint of another trade. In this context, for a given avail-

ability constraint, a strategy is optimal if it satisfies that constraint and achieves the most

performability, and vice versa. Table 14 shows the average unavailability, failure rate, and

performability of several static and adaptive strategies subject to select availability con-

straints (orders of nine) for each orbital case study. The performability improvement of an

adaptive strategy is measured by comparing that strategy to the best performing static strat-

egy that satisfies the same availability constraint. For example, in the Jason-3 case study,

both Mode3 and 2-Mode0,3(0.9%) satisfy the availability constraint of ≥99.99% (four nines),

but 2-Mode0,3(0.9%) has a performability improvement in performance (1.75×) and energy-

efficiency (1.91×) over Mode3. As another example with low-area constraints for the PRR,

in the Molniya 1-88 case study, both Mode4 and 2-Mode1,4(3.7%) satisfy the availability

constraint of ≥99.9%, but 2-Mode1,4(3.7%) has a performability improvement in perfor-

mance (2.92×) and energy-efficiency (3.20×) over Mode4. Depending upon the performance

and dependability tradeoffs between the RECON modules in use, the SEE susceptibility of

the FPGA device to the radiation characteristics of the orbit, and user-defined parameters

(e.g., repair rates, reward rates, and availability constraints), the achievable performability

gains can vary. In our evaluation, the optimal adaptive strategies of RECON for the select

availability constraints achieved performability improvements of 1.5-3.0× for all orbital case

studies.

4.3.2.4 Wide-Spectrum Neutron-Beam Test Experiment

RECON was irradiated under wide-spectrum neutrons at the Los Alamos Neutron Sci-

ence Center (LANSCE) using the 4FP30R/ICE-II instrument [67] to characterize the sus-

ceptibility of the SegNet model accelerated on RECON to neutron-induced SEEs. In this ex-

periment, the neutron cross-section was calculated for two design configurations of RECON:

RSGDMA2-TMR/RACCEL2 (Mode1) and RSGDMA2-TMR/RACCEL1-TMR (Mode4). The ex-

perimental setup is illustrated in Figure 29. Four Zybo Z7-20 (Z7020) and two UltraZed-EG

(ZU3EG) DUTs were placed in the beam to parallelize the fluence each design was exposed

102

W
a

ll

DUTs
Ethernet

UART

Power
Switch

Neutron
Flight Path

Host
Computer

Network
Switch

Counter
Pulses U238 Dosimeter

Power

(a) Experiment block diagram (b) Experiment photo

Figure 29: Experimental setup at LANSCE.

Table 15: RECON wide-spectrum neutron-beam test results.

Platform Effective Total Execution Events Cross-Sectiona

Design Fluence Runs 95% Confidence Interval

(n · cm–2) SDCT SDCC Hangs SDCC (cm2)

Zybo Z7-20 (Z7020)

RSGDMA2-TMR/RACCEL2 3.80×1011 158,216 491 129 18 3.69×10–10

[3.06×10–10, 4.33×10–10]

RSGDMA2-TMR/RACCEL1-TMR 4.17×1011 100,702 48 29 7 7.56×10–11

[4.82×10–11, 1.05×10–10]

Improvement 4.88×

UltraZed-EG (ZU3EG)

RSGDMA2-TMR/RACCEL2 1.51×1011 208,128 16 2 3 1.58×10–11

[7.90×10–13, 2.19×10–11]

RSGDMA2-TMR/RACCEL1-TMR 1.50×1011 135,224 0 0 1 8.01×10–12

[0.00×10–00, 1.57×10–11]

Improvement 1.97×

aAssuming one event when no events were detected [76].

103

to. DUT management software hosted on a separate monitoring laptop was used to auto-

mate the logging, monitoring, and power cycling of the DUTs. At boot, DUTs pulled their

bootable image via Ethernet. At runtime, DUTs reported execution events via serial UART

and transmitted SDC samples to the host via Ethernet. Using a networked power switch, a

DUT was power cycled when it became unresponsive (i.e., the DUT failed to signal a heart-

beat prior to timeout), reported consecutive SDC or hangs (counted as one), or detected

that the CRAM scrubber had failed. For the Zybo Z7-20 DUTs, the DDR memory was

configured with ECC enabled and the unified L2 caches were disabled to prevent the high

neutron-flux from overwhelming the DUTs and to minimize error modes associated with the

CPU and DDR memory. For the UltraZed-EG DUTs, the DDR memory was configured with

ECC disabled (not supported) and the caches remained enabled because the Zynq-MPSoC

APU caches have high resilience to SEUs [5]. Since the wide-spectrum neutron beam induces

an uncontrolled fault rate, the CRAM scrubber was enabled to prevent the accumulation

of CRAM faults. However, the neutron beam can expose the DUTs to fault modes that

cannot be directly compared or reproduced with our CRAM fault-injection procedure (e.g.,

multi-bit upsets, CPU or memory faults, or overwhelmed scrubber).

In our radiation-beam test procedure, the DUTs continuously executed the SegNet model

using RECON. Checksums were used to validate the correctness of the execution, and correct,

SDC, and hang events were recorded with timestamps. The 4FP30R/ICE-II instrument

contains a U238 dosimeter that recorded the integrated neutron flux (above 10 MeV) with

timestamps. The neutron fluence (above 10 MeV) was calculated by integrating the neutron

flux over the time interval that the DUTs were active. The designs were alternated between

DUTs and the recorded fluence was derated to account for the distance between the DUT

and beam source (r2/(r+d)2 where r is the distance between the dosimeter and beam source

and d is the distance between the DUT and dosimeter).

The experimental results are shown in Table 15. For both sets of DUTs, the 5× (Zynq-

7000) and 2× (Zynq-MPSoC) improvement in the neutron cross-section reaffirms the de-

pendability advantage of RACCEL1-TMR over RACCEL2 with selective mitigation applied to

the RSGDMA; however, with increased overhead in area, performance, and energy-efficiency.

104

The dissimilarity in the cross-section magnitudes between both sets of DUTs (Zynq-7000 and

Zynq-MPSoC) can be attributed to generational differences in both the device architecture

and process technology.

4.4 Conclusion

Dependable, high-performance onboard processing is essential for enabling DL applica-

tions to enhance spacecraft autonomy, data analysis, and intelligent applications for both

science and defense missions. Commercial hybrid and heterogeneous SoCs and systems fea-

turing SRAM-based FPGAs provide several architectural advantages compared to rad-hard

processors that can enable the deployment of DL applications for spacecraft systems. How-

ever, these commercial devices are highly susceptible to radiation-induced SEEs that can

degrade the dependability of the DL application.

In this chapter, we proposed RECON, a runtime-reconfigurable framework for depend-

able, high-performance semantic segmentation for space applications on FPGAs and hybrid

SoCs. RECON leverages several model-compression, algorithmic, and architectural optimiza-

tion techniques to maximize the inference performance, energy efficiency, and area efficiency

for onboard processing. To enhance the dependability of DL applications for the space envi-

ronment, we proposed selective and adaptive approaches to enable efficient SEE mitigation

in RECON. In our selective approach, the control-flow parts of RECON are protected by

TMR to minimize SEE-induced hangs, which are slow and disruptive to repair. We demon-

strated a 56× reduction in the critical area at the expense of 3-5× increase in area (for

control-flow parts only) and 10% decrease in energy-efficiency. In our adaptive approach, we

leverage PR to alternate between configurations of the data-flow parts of RECON to adapt

the degree of SEE-induced SDC mitigation in response to the fluctuating SEE rates of the

dynamic near-Earth space radiation environment. Combined, both approaches enable RE-

CON to maximize performability subject to mission availability constraints. We performed

fault injection and neutron irradiation to observe the susceptibility of the SegNet semantic-

segmentation model on RECON, and we used dependability modeling to evaluate RECON

105

in various orbital case studies to demonstrate 1.5-3.0× performability improvements in both

performance and energy-efficiency compared to static approaches. Our evaluation, which

was conducted on facsimiles of flight hardware that is currently deployed in space missions,

demonstrates that compute-intensive DL applications such as semantic segmentation can be

dependably executed onboard for next-generation missions.

106

5.0 Evaluation and Analysis of FPGA-Accelerated, Deep-Learning Apps for

Onboard Space Processing

Commercial FPGAs and SoCs provide several architectural advantages suitable for on-

board DL acceleration. However, due to the high susceptibility of these commercial devices

to radiation-induced SEEs that can degrade the dependability of the DL application, de-

pendability must be considered for systems that use these commercial devices to deploy DL

in mission-critical applications. Furthermore, researchers have created a broad variety of DL

models for a wide range of applications that can also vary in dependability. Some exam-

ples include DL models that perform classification, detection, localization, and segmentation

tasks on image data and can be applied to enhance applications in EO and remote sens-

ing (e.g., semantic labeling, image compression, image super-resolution, change detection,

and 3D estimation) [7]. However, due to characteristic differences between DL models (e.g.,

network structure, operations, and trained parameters) and accelerators (e.g., architecture,

optimizations, and data-flow), DL solutions can vary broadly in terms of accuracy, resource

utilization, performance, energy efficiency, and dependability. All these tradeoffs are crucial

for resource-constrained and mission-critical systems. To select an optimal DL solution for

a specific task that maximizes inference performance, conserves onboard resources, and sat-

isfies dependability requirements, a methodology is required to evaluate and compare the

tradeoffs between competing options.

In this chapter, we propose a methodology for evaluating FPGA-accelerated DL models

and analyzing their tradeoffs. With an emphasis on the dependability evaluation, we also

propose a hierarchical fault-injection approach to accelerate the characterization of fault

susceptibility in DL solutions. In our hierarchical approach, fault injection is performed at

multiple levels, in order of decreasing application granularity (coarse to fine), and the targeted

area at each level is continually reduced by omitting inconsequential bits of the preceding

level, thus substantially reducing the number of fault injections required. Furthermore, we

propose analytical methods that use our hierarchical fault-injection approach to quantify and

examine FPGA-accelerated DL models in terms of well-established dependability metrics

107

and to observe the impact of faults on inference accuracy, profile and map vulnerability to

node-level operations, and predict design fault rates for near-Earth orbital environments.

To demonstrate the versatility of our methodology, we evaluate four semantic-segmentation

DL models accelerated on four Xilinx DPU accelerator configurations implemented on two

generations of Xilinx SoCs: Zynq-7000 and Zynq-MPSoC.

5.1 Related Work

The dependability of FPGA-accelerated ML models, including methods for evaluation

and mitigation, has been explored in the literature [99]. A variety of approaches for eval-

uating ML dependability using fault injection and radiation-beam testing have also been

proposed. In [20], single-bit and multi-bit fault injection were performed in both static and

dynamic CRAM to observe the architectural response of a binary NN to both single and

multi-bit upsets. In [19, 53], the dependability tradeoffs between mixed-precision float-point

and binary quantization data types of a CNN were analyzed. In [9], fault injection and neu-

tron irradiation were performed on multi-layer perceptron with layers assigned to separate

FPGA partitions to analyze the ML model at the model and layer levels.

The dependability analysis of FPGA-accelerated ML models has also enabled efficient

methods for SEE mitigation. In [52, 25], fault injection was performed to identify the

most vulnerable layers and channels, respectively, for selective replication to improve overall

dependability with minimal overhead due to replication. In [86], a CNN was disaggregated

into a static, replicated control-flow subset and a runtime-reconfigurable data-flow subset

that can be exchanged with unmitigated, high-performance and mitigated, low-performance

versions of the accelerator. In this chapter, we propose an efficient fault-injection approach

to accelerate the evaluation of DL solutions for FPGAs to enable a rapid tradespace analysis

between DL models and accelerators for optimal selection, and to quickly identify vulnerable

parts of the DL solution for selective or adaptive SEE mitigation.

108

5.2 Approach

Due to the depth of DL models (up to hundreds of nodes) and area of FPGA accelerators

(up to tens of millions of CRAM bits), which can amount to billions of possible fault injections

per DL solution, a time-efficient approach is required to accurately and comprehensively

quantify the dependability of FPGA-accelerated DL models. In this section, we present an

overview of our hierarchical fault-injection approach and describe the low-level details about

our CRAM fault-injection process used in our evaluation.

5.2.1 Hierarchical Fault-Injection Approach

Our hierarchical approach involves fault injection at multiple levels, in order of decreasing

granularity (e.g., application→ phases→ subphases), and focuses on continually narrowing

the size of targeted CRAM between levels by omitting bits with noncritical representation in

the preceding level. At each level transition, the subset of tested CRAM that manifests into

observable events becomes the target CRAM for the subsequent level, and the remaining bits

(noncritical and untested) are omitted. The continual omission of inconsequential bits can

substantially reduce the number of fault injections required to analyze an FPGA-accelerated

application at low levels of granularity. For our evaluation of FPGA-accelerated DL models,

two levels are sufficient to evaluate a DL model at the model and node levels. The approach

is illustrated in Figure 30.

Initially, the set of targeted CRAM must be determined prior to fault injection. The

Xilinx design tools can be used to generate the set of essential CRAM bits (essential area),

which refers to the subset of CRAM that is actively used by the design. Since nonessential

bits do not affect the design, these bits are omitted. Furthermore, to evaluate the DL

accelerator exclusively, only the subset of the essential area associated with the partial design

is to be targeted. To generate the essential area of a partial design, the Xilinx design tools

are used to generate the essential areas from two designs. The first design is the complete

design that generates the full essential area. The second design is a post-implementation

modification the first design, with all cells and nets associated with the DL accelerator

109

CRAM

Tested Area

Untested Area

Target Area

Evaluation

CRAM CRAM CRAM

Model-level
Fault Injection

Node-level
Fault Injection

Model-Level

Coverage C
0

Full Essential Area

Partial Essential Area

Model-Level Critical Area

Node-Level Critical Area

CRAMCRAM

Node-Level

Coverage C1

Design A

Full Design

Including Target

Design B

Full Design

Excluding Target

Difference

Partial Design

with Target Only

Figure 30: Hierarchical fault-injection approach.

110

removed, that generates an essential area that excludes the partial design. The difference

between both essential areas is the partial essential area (AreaE) that is exclusive to the DL

accelerator.

In our hierarchical approach, fault injection is first performed at the model level (highest

granularity), where injected faults are present during the execution of the entire model (all

nodes). AreaE is the target area, and fault injection is performed to generate the model-level

critical area (AreaM,C), which is the subset of AreaE that is vulnerable to model-level faults

that will manifest into observable events. The coverage factor C0 refers to the fraction of the

target area that has been tested. At this level, the model-level dependability metrics AVFM,

MWTFM, and AreaM,C are measured, and AreaM,C can be approximated using Equation

(5.1).

AreaM,C = AVFM × AreaE (5.1)

Next, fault injection is performed at the node level, where injected faults are present only

during the execution of a randomly selected node. AreaM,C is the targeted area, and fault

injection is performed to generate the node-level critical area (AreaN,C), which is the subset

of AreaM,C that is vulnerable for node-level faults that cause observable events. At this

level, node-level dependability metrics are measured, and AreaN,C can be approximated us-

ing Equation (5.2). The coverage factor C0 inversely scales the AreaM,C to account for any

untested, critical bits potentially missed in the previous level of fault injection. The accuracy

of AreaN,C increases when the coverage factor of the model-level process increases (C0 → 1).

AreaN,C =
1

C0

× AVFN × AreaM,C (5.2)

111

5.2.2 Fault-Injection Procedure

Initially, a target CRAM bit, input image, and node (node-level process only) are ran-

domly selected. In the model-level process, the fault is injected, then the model is executed

completely, and finally, the fault is repaired. In the node-level process, the DL model exe-

cuted is halted immediately before and after the execution of the randomly selected node

to inject and repair a fault, respectively. Fault injection is performed using a CAP device

(PCAP or ICAP). First, a frame readback command is issued via the CAP to read a CRAM

frame into a software buffer. Next, a bit-flip is performed on the randomly selected bit in

the buffered CRAM frame. Finally, a frame writeback command is issued via the CAP to

write the fault-injected, buffered CRAM frame back to CRAM. To repair the fault, the same

process is repeated on the same CRAM bit.

In our evaluation of the DPU, a custom interface monitor (IM), illustrated in Figure 8,

was created to monitor the interrupt and all AXI interfaces of the DPU (one instruction and

two data interfaces). Since the DPU interrupt fires at the end of each node operation, the

IM can calculate checksums of each interface at the node level. Consequently, the IM can

identify errors at the node level, including harmless faults that may corrupt intermediate

data but may be masked by a later node (e.g., faulty FMs generated from convolutional

nodes masked by later pooling or activation nodes).

At the end of each fault-injection iteration, the execution output and intermediate data

are analyzed to classify the outcome. We focus upon two classifications of observable events,

including SDC and hangs, and the criticality of the faults. SDC events are erroneous and

normally undetectable outcomes of an application execution due to faults. SDC events

usually occur when faults affect the data-flow subset of a design (e.g., corrupting datapaths).

In our fault-injection procedure, SDC events are observed if the checksum of the predicted

output does not equal the checksum of the golden (fault-free) output. SDC events can also be

observed if any intermediate checksums generated by the IM are not equal to the checksums

of a golden execution. Hang events refer to the nonperformance of the application execution

due to faults. Hang events usually occur when faults affect the control-flow subset of a

design (e.g., corrupting finite-state machines). In our fault-injection procedure, hang events

112

are observed if a model execution is preempted to abort by timeout prior to completion.

The DPU runtime software was configured to timeout after 3 seconds if the execution did

not finish.

Criticality is associated with SDC events and refers to the negative impact a fault has

on inference accuracy. The criticality of SDC events can vary broadly, from low criticality

(e.g., few bad pixels) to high criticality (e.g., severe distortions). Depending upon mission re-

quirements, SDC with low criticality may be acceptable. SDC events with criticality below a

user-specified tolerance threshold can be classified as tolerable SDC (SDCT), and SDC events

above this threshold can be classified as critical SDC (SDCC). SDCC events are the primary

classification used to analyze dependability. Due to high redundancy in the parameters of a

model, DL algorithms have been demonstrated to have an inherent tolerance to faults [99].

Therefore, the SDC criticality is essential for an accurate dependability assessment. When

an SDC event is observed, the criticality can be measured as the difference in accuracy be-

tween the predicted output and golden output using a standard metric depending upon the

DL task (e.g., mIoU or F1 metrics for semantic segmentation).

5.3 Evaluation

In our evaluation, we quantify and analyze the accuracy, area, performance, energy-

efficiency, and dependability characteristics of four semantic-segmentation models (ENet,

ESPNet, FPN, and U-Net, shown in Table 16) on four configurations of the DPU (B512,

B800, B1024, and B1152, shown in Table 17) on two generations of Xilinx SoC platforms:

the TUL PYNQ-Z2 (PYNQ-Z2) and UltraZed-EG (UZED-EG), which feature a Z7020 and

ZU3EG, respectively. The DL models are based on the Caffe models in [116] and were mod-

ified to use the Potsdam dataset [74] in 512×512 RGB image patches. The pixel parallelism

(PP), input channel parallelism (ICP), and output channel parallelism (OCP) parameters

correspond to the convolution architecture of the DPU, and the peak number of operations

per cycle is equal to 2×PP×ICP×OCP. The DPU exposes 64-bit AXI3 and 128-bit AXI4

interfaces for the Zynq-7000 and Zynq-MPSoC, respectively. The DPU v3.1 IP is configured

113

with one DPU core, low RAM and DSP usage, and extras enabled (channel augmentation,

depth-wise convolution, average pool, ReLU, Leaky ReLU, and ReLU6). The trained DL

models are quantized and compiled for the DPU using the DNN Development Kit (DNNDK;

Vitis AI predecessor) v3.1 flow, with PetaLinux v2019.2 and Vivado v2020.1.

Table 16: DPU DL models.

Model Number Parameter Workload I/O Memory
of Nodes Size (MB) MACs (GOps) Space (MB)

ENet 98 0.36 4.06 3.53
ESPNet 190 0.33 3.71 6.96

FPN 76 5.84 17.30 8.63
U-Net 33 7.40 96.68 40.78

Table 17: DPU convolution architectures.

DPU PP ICP OCP Peak Ops

B512 4 8 8 512
B800 4 10 10 800
B1024 8 8 8 1024
B1152 4 12 12 1152

5.3.1 Accuracy

The Vitis AI (and DNNDK) compiler quantizes the DL models to use the INT8 data type

as a model-compression technique to reduce area, bandwidth, energy, and storage require-

ments with low-precision integer arithmetic at the cost of reduced accuracy. Table 18 shows

the inference accuracy (mIoU and F1) of each evaluated DL model in floating-point FP32

and quantized INT8 forms and the accuracy loss due to quantization. As demonstrated,

these efficiency benefits of quantization can be attained with a slight tradeoff in accuracy.

The accuracy loss varies by DL model but was less than 2% across all evaluated models.

114

Table 18: DPU model accuracy.

Model FP32 INT8 Difference

(mIoU) (F1) (mIoU) (F1) (mIoU) (F1)

ENet 64.9 76.1 63.3 74.8 –1.7 –1.3
ESPNet 56.7 69.4 55.5 68.4 –1.2 –1.0

FPN 65.7 77.1 65.3 76.9 –0.4 –0.3
U-Net 62.1 74.3 61.4 73.8 –0.7 –0.5

5.3.2 Resource Utilization

The FPGA design resource utilization for each DPU is shown in Table 19. The DSP

resources, which implement the PEs that form the convolution architecture of the DPU,

scale linearly to PP×ICP×OCP and quadratically to the channel parallelism (ICP/OCP

parameter). Since the DPU uses the DSP time-multiplexing optimization, the DSPs operate

at twice the frequency to halve the number of DSPs required. Observing configurations

B512, B800, and B1152, which have fixed PP and varied ICP/OCP, the resource utilization

of other resource types (LUTs, FFs, BRAM, and essential CRAM) is approximately linear

to the channel parallelism (ICP/OCP parameter).

115

Table 19: DPU resource utilization.

DPU LUTs FFs BRAM DSPs CRAM Bits
(36b×1k)

Z7020 53,200 106,400 140 220 25,636,224

B512 48.47% 39.60% 52.14% 35.45% 28.61%
B800 59.57% 50.03% 57.86% 53.18% 36.73%
B1024 64.87% 62.33% 75.00% 70.00% 45.49%
B1152 67.18% 61.39% 80.00% 74.55% 46.93%

ZU3EG 70,560 141,120 216 360 30,834,336

B512 38.24% 24.85% 33.80% 21.67% 35.28%
B800 42.28% 29.89% 37.50% 32.50% 40.94%
B1024 47.81% 35.77% 48.61% 42.78% 47.61%
B1152 45.85% 34.55% 51.85% 45.56% 46.68%

116

Table 20: Evaluation results for performance, energy-efficiency, and model-level dependability for the Z7020 (PYNQ-Z2).

DPU Model Performance MWTF AVF (%) SDC-Critical Area SDC Rates
±95% CI Error (SDC · dev–1 · day–1)

FPS FPS/W Util (%) FPS FPS/W SDC SDCT SDCC Hangs LEO GEO

B
5
1
2

2
5
0
/
5
0
0
M

H
z ENet 13.2 4.9 41.9 63.4 23.6 31.0 17.2 13.8 2.8 2,270,773 ± 3,954 0.19 0.11

ESPNet 5.5 2.3 15.9 18.6 7.8 31.4 12.0 19.3 3.2 2,299,408 ± 4,180 0.19 0.11
FPN 6.0 2.1 80.5 33.4 12.0 27.9 15.5 12.4 2.7 2,045,829 ± 4,227 0.17 0.10

U-Net 1.2 0.5 88.3 5.9 2.6 28.8 15.4 13.5 2.7 2,114,796 ± 4,466 0.18 0.10
Average 6.5 2.5 56.7 29.4 11.6 29.8 15.0 14.8 2.8 2,182,701 ± 2,100 0.18 0.10

B
8
0
0

2
5
0
/
5
0
0
M

H
z ENet 13.3 4.1 26.9 58.8 18.0 36.2 22.3 13.9 2.3 3,406,655 ±12,562 0.33 0.18

ESPNet 6.2 2.2 11.4 18.0 6.4 36.6 15.8 20.8 2.6 3,445,554 ±12,450 0.33 0.18
FPN 7.8 2.0 67.3 39.2 10.2 33.6 20.9 12.7 2.3 3,165,791 ±13,581 0.30 0.16

U-Net 1.5 0.5 73.6 6.9 2.2 34.5 20.6 13.9 2.3 3,247,737 ±11,928 0.31 0.17
Average 7.2 2.2 44.8 29.2 9.0 35.2 19.9 15.3 2.4 3,316,434 ± 6,298 0.32 0.17

B
1
0
2
4

2
0
0
/
4
0
0
M

H
z ENet 14.8 5.0 29.3 53.5 18.2 42.5 27.3 15.2 2.6 4,958,499 ±15,683 0.50 0.27

ESPNet 6.5 2.6 11.8 14.8 5.9 42.2 18.0 24.1 2.9 4,917,392 ±16,489 0.50 0.27
FPN 8.9 2.3 75.3 36.1 9.5 39.3 25.0 14.3 2.5 4,587,410 ±16,751 0.46 0.25

U-Net 1.7 0.6 81.2 6.5 2.2 39.7 24.4 15.3 2.5 4,627,702 ±14,580 0.47 0.25
Average 8.0 2.6 49.4 26.2 8.5 40.9 23.7 17.2 2.6 4,772,751 ± 7,907 0.48 0.26

B
1
1
5
2

1
6
7
/
3
3
3
M

H
z ENet 12.7 4.2 26.9 44.7 14.7 43.9 28.6 15.3 2.3 5,276,269 ±18,517 0.55 0.29

ESPNet 5.8 2.3 11.3 12.4 4.9 44.4 19.5 24.9 2.7 5,344,894 ±18,015 0.56 0.29
FPN 8.6 2.3 77.8 32.8 8.7 41.3 26.4 14.9 2.3 4,964,799 ±19,871 0.52 0.27

U-Net 1.5 0.5 75.1 5.3 1.8 41.8 25.9 15.9 2.3 5,026,491 ±17,671 0.52 0.28
Average 7.2 2.3 47.8 22.2 7.2 42.8 25.1 17.7 2.4 5,153,113 ± 9,236 0.54 0.28

117

Table 21: Evaluation results for performance, energy-efficiency, and model-level dependability for the ZU3EG (UZED-EG).

DPU Model Performance MWTF AVF (%) SDC-Critical Area SDC Rates
±95% CI Error (SDC · dev–1 · day–1)

FPS FPS/W Util (%) FPS FPS/W SDC SDCT SDCC Hangs LEO GEO

B
5
1
2

3
7
5
/
7
5
0
M

H
z ENet 23.3 7.4 49.3 158.5 50.2 20.6 9.3 11.3 2.2 2,240,818 ± 5,569 0.03 0.08

ESPNet 9.7 3.4 18.8 51.7 17.8 21.7 7.4 14.3 2.5 2,357,773 ± 9,253 0.03 0.09
FPN 9.2 3.1 82.5 80.9 27.4 18.1 9.0 9.0 2.2 1,966,019 ± 7,946 0.03 0.07

U-Net 1.8 0.7 91.4 12.8 5.1 19.3 8.2 11.2 2.2 2,100,344 ± 8,769 0.03 0.08
Average 11.0 3.8 60.5 74.5 25.9 19.9 8.5 11.5 2.3 2,166,238 ± 3,714 0.03 0.08

B
8
0
0

3
7
5
/
7
5
0
M

H
z ENet 24.8 6.6 33.5 165.8 43.9 21.3 9.9 11.5 2.0 2,692,359 ±22,366 0.05 0.13

ESPNet 11.5 3.5 14.2 60.4 18.3 22.2 7.8 14.4 2.4 2,803,479 ±22,630 0.05 0.13
FPN 12.2 3.1 70.6 102.7 26.3 20.0 10.7 9.3 2.0 2,526,930 ±21,299 0.04 0.12

U-Net 2.4 0.7 77.0 16.0 4.9 20.8 9.4 11.5 2.0 2,631,772 ±22,479 0.05 0.13
Average 12.7 3.6 48.9 84.3 23.7 21.1 9.4 11.7 2.1 2,663,635 ±11,095 0.05 0.13

B
1
0
2
4

3
0
0
/
6
0
0
M

H
z ENet 25.2 7.5 33.2 168.7 50.1 22.5 11.2 11.3 1.8 3,301,512 ±26,157 0.07 0.18

ESPNet 11.7 3.8 14.2 60.9 19.5 22.9 8.4 14.5 2.0 3,363,317 ±26,821 0.07 0.18
FPN 14.1 3.5 79.6 119.5 29.5 20.2 11.0 9.2 1.7 2,968,996 ±24,144 0.06 0.16

U-Net 2.7 0.8 85.6 18.5 5.6 20.9 9.5 11.4 1.7 3,071,384 ±27,529 0.06 0.17
Average 13.4 3.9 53.1 89.1 25.7 21.6 10.0 11.6 1.8 3,176,302 ±13,051 0.06 0.17

B
1
1
5
2

3
0
0
/
6
0
0
M

H
z ENet 25.0 6.6 29.4 170.3 45.1 21.9 10.7 11.2 1.7 3,150,305 ±25,030 0.07 0.18

ESPNet 11.4 3.5 12.2 59.6 18.5 22.5 8.1 14.4 2.0 3,240,436 ±26,008 0.07 0.19
FPN 16.3 3.7 81.5 133.4 29.9 20.9 11.5 9.4 1.7 3,011,382 ±26,530 0.06 0.18

U-Net 2.8 0.8 77.2 18.6 5.3 21.2 9.8 11.4 1.7 3,052,462 ±28,955 0.07 0.18
Average 13.9 3.7 50.1 91.3 24.4 21.6 10.0 11.6 1.8 3,113,646 ±13,264 0.07 0.18

118

5.3.3 Performance and Energy-Efficiency

The inference performance (FPS) and energy-efficiency (FPS/W), for each DL solution are

shown in Tables 20 and 21. Both performance and energy efficiency are dependent upon both

the DL model (e.g., network, operations, size, and data-flow) and accelerator (e.g., number

of PEs and other computational units, bandwidth and caching, and operating frequency).

Vitis AI (and DNNDK) provide runtime tools and libraries that can profile the inference

performance and DPU utilization of a DL model. Furthermore, a power meter was used

to measure the board power when the DL solution was (1) active and (2) unloaded (i.e.,

the FPGA is programmed with the design with all cells and nets associated with the DPU

removed). The difference is approximately the power consumption exclusive to the DPU.

The power of the unloaded DPU was measured at approximately 2.1W and 6.5W for the

PYNQ-Z2 and UZED-EG, respectively.

The DPU primarily accelerates convolutional operations that often dominate the exe-

cution time of DL model inference. Despite this capability, DL models may contain nodes

with little to no convolutional operations that underutilize the convolution architecture of

the DPU. When profiled, all four evaluated DL models demonstrate varied DPU utiliza-

tions, resulting in varied performance scalability. For example, for the PYNQ-Z2 and B512

configuration operating at 100MHz/200MHz operation, both FPN and U-Net have high av-

erage utilizations (83% and 94%, respectively) resulting in an inference performance that

scales approximately linearly to the DPU peak performance (2×PP×ICP×OCP), and both

ENet and ESPNet have low average utilizations (51% and 22%, respectively) resulting in

an inference performance that scales sublinearly. For the evaluated models, the DPU uti-

lization decreases when the DPU scales and operating frequency increases, possibly due to

insufficient scaling of memory bandwidth to maintain the DPU utilization. Furthermore, as

the DPU scales, the area and power increase but the maximum frequency decreases due to

place-and-route difficulties in designs with high resource utilization.

Next, we compare DL models in order of performance. ENet achieves the best perfor-

mance due to low parameter count and workload MACs despite a medium DPU utilization

(51%). Next, FPN is second due to a high DPU utilization (83%) despite high parameter

119

count and workload MACs. Next, ESPNet is third due to having the lowest DPU utilization

(22%) despite also having the lowest parameter count, workload MACs. Next, U-Net is

fourth due to having the highest parameter count, workload MACs despite also having the

highest DPU utilization (94%).

When compared cycle-per-cycle, the Z7020 and ZU3EG both have similar inference per-

formance. However, the maximum frequency is substantially higher for the ZU3EG than the

Z7020, possibly due to a combination of (1) generational differences between both FPGA

architectures (i.e., combined configurable logic blocks, added control sets, distribution RAM

control, and flip-flop I/O, upgraded tile-based columnar architecture to improve flexibility

and logic and routing efficiency in UltraScale and UltraScale+ FPGAs compared to 7-Series

FPGAs [112]) and (2) higher bandwidth in the UZED-EG compared to the PYNQ-Z2 (128-

bit AXI4 interface and DDR4 memory versus 64-bit AXI3 and DDR3 memory).

To summarize, DL models with higher DPU utilization have greater scalability, and

performance and energy efficiency will increase with larger DPUs; however, this will decrease

the maximum frequency and increase resource utilization and critical area vulnerable to SDC

and hangs. DL models with lower DPU utilization have lesser scalability and can suffice with

smaller DPUs with improved maximum frequency, resource utilization, and critical area.

Additionally, lightweight properties (e.g., low parameter size and workload MACs) in DL

models can also be favorable to improve performance and energy-efficiency.

5.3.4 Dependability

In this section, we apply our hierarchical CRAM fault-injection approach to evaluate and

analyze the susceptibility of each DL solution (model, configuration, and SoC) to CRAM

faults. Dependability metrics are quantified at both the model and node levels and are

used to compare tradeoffs between options and to identify trends. Finally, we compare

our hierarchical fault-injection approach to a traditional, direct approach to demonstrate

substantial efficiency improvements. To parallelize the process, fault injection was performed

on a cluster of 20 PYNQ-Z2 and 2 UZED-EG boards.

120

5.3.4.1 Model-Level Analysis

At the model level, fault injection is performed on the full DL solution, and the model-

level AVF, MWTF, and critical area are calculated using equations Equations (2.1), (2.2),

and (5.1), respectively, and are shown in Tables 20 and 21. In Figure 31, SDC criticality is

represented as a histogram to illustrate the probabilities of losses in inference accuracy due to

CRAM faults. Figure 32 illustrates experimental samples including the input image, ground-

truth label mask, golden output, and SDC outputs with varied criticality. To demonstrate the

significance of SDC criticality in our dependability analysis, we assume a tolerance threshold

of −5%, where an mIoU difference greater than or equal to −5% is tolerable.

Most fault injections resulted as correct outputs or SDCT with minor defects (mIoU

difference near 0%). This observation is supported by related works that have demonstrated

an inherent fault tolerance in DL algorithms [99]. A few fault injections resulted in SDCT

that improved the inference accuracy by a considerable amount (mIoU difference greater

than 0%). The remaining fault injections resulted in SDCC (mIoU difference less than the

−5% tolerance threshold). Most notably, for each model, the shape of the distribution is

similar across all tested DPUs for both SoCs. This observation indicates that SDC criticality

is possibly more dependent on the characteristics of the DL model than the characteristics

of the DPU.

Figure 33 shows the SDC-critical area averaged across all DL solutions in terms of SDCT

and SDCC. For both SoCs, the SDCT and SDCC-critical areas both increase as the DPU

scales. However, both the AVF and critical areas increase more rapidly in the Z7020 com-

pared to the ZU3EG, possibly due to (1) generational differences between both FPGA archi-

tectures or (2) substantially fewer resources in the Z7020 resulting in higher FPGA design

resource utilization. This trend is not observed for the average hang-critical area, which

increases slightly as the DPU scales. For both SoCs, the ratio of SDC criticality (SDCT

to SDCC) increases as the DPU scales, possibly due to the increasing ratio of functional to

faulty PEs. For example, each PE in B512 will process more FM data and parameters than

121

100 80 60 40 20 0 +20
Accuracy Difference [mIoU]

10 5

10 4

10 3

10 2

10 1

10±0

Pr
ob

ab
ili

ty
 [

%
]

SDCC SDCT

To
le

ra
nc

e
Th

re
sh

ol
d

5

ENet ESPNet FPN U Net All
(a) Histogram of probability distribution for PYNQ-Z2 (Z7020)

100 80 60 40 20 0 +20
Accuracy Difference [mIoU]

10 5

10 4

10 3

10 2

10 1

10±0

Pr
ob

ab
ili

ty
 [

%
]

SDCC SDCT

To
le

ra
nc

e
Th

re
sh

ol
d

5

ENet ESPNet FPN U Net All
(b) Histogram of probability distribution for UZED-EG (ZU3EG)

Figure 31: Impact of CRAM faults on mIoU with the probability distribution of mIoU

difference in SDC events by DL solution for the (a) PYNQ-Z2 (Z7020) and (b) UZED-EG

(ZU3EG). Multiple histograms represented as line plots are overlaid. 60 bins with widths of

2% mIoU loss per bin.

122

(a) Input image (b) Ground-truth mask (c) Golden output

(d) SDCT (–4.86%) (e) SDCC (–16.93%) (f) SDCC (–33.81%)

(g) SDCC (–50.07%) (h) SDCC (–64.74%) (i) SDCC (–76.76%)

Figure 32: DPU fault-injection experiment samples including input image, ground-truth la-

bel mask, golden output (86.33% mIoU), and variety of SDC outputs (with mIoU difference).

123

0 1 2 3 4 5
Critical Area [Mbits]

Z7020 B512
Z7020 B800
Z7020 B1024
Z7020 B1152
ZU3EG B512
ZU3EG B800
ZU3EG B1024
ZU3EG B1152

14.9%
15.5%

17.2%
18.0%

11.4%
11.7%

11.6%
11.7%

15.0%
19.8%

23.8%
25.0%

8.7%
9.4%

10.1%
10.0%

SDCC SDCT

Figure 33: Average SDC-critical area of DPUs in terms of SDCT and SDCC. Percentage

with respect to total area of DPU.

each PE in B1152 due to reduced parallelism in B512. As a result, one faulty PE in B512 can

corrupt more data than one PE in B1152. However, the ratio of SDC criticality is greater

and increases more rapidly in the Z7020 compared to the ZU3EG.

In the context of DL dependability, MWTF is a useful metric that combines the amount

of useful work completed (performance and energy-efficiency) between SDCC events. The

MWTF for each DL solution is shown in Tables 20 and 21. MWTF is highly dependent

upon the performance and SDC AVF of the DL solution. For the Z7020, MWTF decreases

as the DPU scales due to rapid increases in SDC-critical area despite varied increases in

performance. For the ZU3EG, MWTF increases slightly as the DPU scales due to moderate

increases in SDC-critical area surpassed by increases in performance. ENet offers the highest

performance and has a relatively low SDC AVF, and thus, achieves the highest MWTF. FPN

offers medium performance but has the lowest SDC AVF, resulting in the second-highest

MWTF. ESPNet also offers medium performance but has the highest SDC AVF, resulting

in a low MWTF. Finally, U-Net offers the lowest performance despite a low SDC AVF,

resulting in the lowest MWTF.

124

Using CRÈME96, the SEE fault rates for the LEO, particularly ISS orbit, and GEO en-

vironments were predicted for various resource types of the Z7020, assuming solar-minimum

conditions and 100 mils of spherical, aluminum shielding. Using Equation (2.4), the pre-

dicted SEE rates are scaled by the DPU resource utilization (Table 19) and AVF of SDC

(Tables 20 and 21) to approximate the SDC rates of each DPU for both orbital environ-

ments, as shown in Tables 20 and 21. The SDC rates are approximately proportional to

the SDC-critical area of the DL solution. The substantially lower SDC rates in ZU3EG

compared to the Z7020 designs are due to the reduced SEE susceptibility in UltraScale+

FPGAs compared to 7-Series FPGAs [49].

5.3.4.2 Node-Level Analysis

At the node level, fault injection is performed on randomly selected nodes of each DL

model for each DL solution, and fault injection is performed exclusively on the model-level

critical area vulnerable to both SDC and hangs. The node-level critical areas are calculated

using Equation (5.2). Figures 34 and 35 illustrate the sequence of nodes executed by the

DPU for each DL model, including the SDCC-critical area (tolerance threshold of −5%) and

set of operations performed by each node for the Z7020 and ZU3EG, respectively. Nodes

with more than one operation are referred to as supernodes which have fused multiple node

operations into one to improve efficiency. Convolution-based operations include convolution

(ConvNd) and deconvolution (DeConvNd), and miscellaneous operations include concate-

nation (Concat), pooling (Pooling), elementwise (Eltwise), scale (Scale), and rectified linear

unit (ReLU).

When all SDC (SDCC and SDCT) is considered, the SDC-critical area is roughly con-

sistent between nodes and supernodes with the same set of operations. Furthermore, the

SDC-critical area is generally much greater in nodes containing convolution-based operations

than nodes containing solely miscellaneous operations, possibly due to the much greater DPU

utilization in convolution-based operations. However, the hang-critical area is roughly con-

sistent across all nodes and supernodes regardless of the operations.

125

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96
AV

G
M

od
el

103

104

105

106

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

AV
G

M
od

el

103

104

105

106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
AV

G
M

od
el

103

104

105

106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
AV

G

M
od

el

103

104

105

106

ConvNd
ConvNd/ReLU
ConvNd/ReLU/Pooling
ConvNd/ReLU/Eltwise/ReLU

ConvNd/Eltwise
ConvNd/Eltwise/ReLU
Concat
Concat/Pooling

DeConvNd
DeConvNd/ReLU
Eltwise
Pooling
Scale/ReLU

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

ENet

ESPNet

FPN

U-Net

Figure 34: SDCC-critical area and operations by node for each DL model for the B512

configuration of the DPU on the Z7020.

126

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96
AV

G
M

od
el

103

104

105

106

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

AV
G

M
od

el

103

104

105

106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
AV

G
M

od
el

103

104

105

106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
AV

G

M
od

el

103

104

105

106

ConvNd
ConvNd/ReLU
ConvNd/ReLU/Pooling
ConvNd/ReLU/Eltwise/ReLU

ConvNd/Eltwise
ConvNd/Eltwise/ReLU
Concat
Concat/Pooling

DeConvNd
DeConvNd/ReLU
Eltwise
Pooling
Scale/ReLU

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

ENet

ESPNet

FPN

U-Net

Figure 35: SDCC-critical area and operations by node for each DL model for the B512

configuration of the DPU on the ZU3EG.

127

However, when only SDCC is considered, the SDCC-critical area has a much greater

variation between nodes and supernodes with the same set of operations. Generally, the

SDCC-critical area in convolution-based nodes is greater than nodes without it, but some

nodes are substantially less vulnerable than others. For example, in FPN, convolution-based

nodes 54-66 are an order of magnitude less vulnerable than other convolution-based nodes of

the same model. By evaluating and analyzing DL models at the node level, one can identify

the most vulnerable nodes that can be prioritized for efficient SEE mitigation (e.g., selective

replication).

5.3.4.3 Fault-Injection Evaluation

To demonstrate the efficiency and accuracy of our hierarchical fault-injection approach,

we compare with a direct fault-injection approach targeting solely the essential area of the

DPU for both model and node levels. First, we compare the fault-injection efficiency and

speed-up. The total number of possible fault injections for both direct and hierarchical ap-

proaches is represented by Equation (5.3) and Equation (5.4), respectively, where Nm is the

number of nodes for each model m ∈M .

InjectionsDirect =
∑
m∈M

(Nm + 1)× AreaE (5.3)

InjectionsHierarchical =
∑
m∈M

(AreaE +Nm × AreaM,C) (5.4)

For example, in the B512 configuration for the Z7020, the partial essential area (AreaE)

is 7.3 Mbits, and the aggregated critical area (AreaM,C), which is the union of critical areas

across all evaluated DL models, is 2.6 Mbits (AVFM = 35%). To evaluate all four models

(397 nodes) at the node level, a direct approach has 2.91 billion possible injections, whereas

our hierarchical approach has 1.04 billion possible injections, thus a maximum efficiency

128

improvement of 2.7×. Similarly, the B512 configuration for the ZU3EG, with AreaE and

aggregated AreaM,C equal to 10.9 Mbits and 2.5 Mbits, respectively, there is a maximum

efficiency improvement of 4.2×. Efficiency is dependent upon the ratio of AreaM,C to AreaE.

As shown in Figure 33, this ratio increases rapidly as the DPU scales for the Z7020, result-

ing in efficiency decreasing from 2.7× (B512) to 2.1× (B1152). However, this ratio increases

relatively slightly for the ZU3EG, so efficiency decreases slightly from 4.2× (B512) to 4.1×

(B1152).

Table 22: Fault-injection accuracy for DPU B512 configuration on Z7020.

Approach Level Target Area (bits) AVF Critical Area
SDC (bits)

Both Model AreaE (7,333,820) 29.76% 2,182,702
Direct Node AreaE (7,333,820) 16.39% 1,201,803

Hierarchical Node AreaM,C (2,459,512) 46.07% 1,133,154

Inverse scaling by model-level coverage C0 (94.72%) 1,196,380
Error compared to direct node-level approach 0.45 %

Next, we compare the fault-injection accuracy. Both direct and hierarchical approaches

result in equivalent approximations for AreaM,C and similar estimations for AreaN,C. An

example for the B512 configuration for the Z7020 averaging all four DL models is shown in

Table 22. The direct approach, which targets AreaE, has a SDC AVF of 16.39% resulting in

AreaN,C with 1,201,803 bits. The hierarchical approach, which targets AreaM,C, has a SDC

AVF of 46.07% resulting in AreaN,C with 1,133,154 bits. However, our model-level procedure

had a coverage C0 of 94.72%, so 1–C0 of AreaE, which may contain critical bits, was not

tested. To adjust for untested, critical bits, AreaN,C is inversely scaled by C0, resulting in

a final approximation for AreaN,C with 1,196,380 bits, and a 0.45% error compared to the

direct approach. Notably, compared to the direct approach, the SDC AVF of the hierarchical

approach increased by a factor of 2.7× (equal to the maximum efficiency improvement), thus

reaffirming the efficiency benefits of omitting inconsequential bits and exclusively targeting

vulnerable bits.

129

5.4 Conclusion

Modern spacecraft increasingly require more computational capabilities to enable compute-

intensive, DL methods that can enhance onboard analysis, spacecraft autonomy, and intel-

ligent applications. Commercial-off-the-shelf FPGAs and hybrid SoCs, which provide the

architectural capabilities for the onboard acceleration of DL algorithms, can address these

requirements. However, commercial FPGAs and SoCs are highly susceptible to radiation-

induced SEEs that can affect dependability. Furthermore, with a broad variety of DL tasks

and a diverse collection of DL models, each with its own accuracy, resource utilization, per-

formance, energy efficiency, and dependability characteristics, a methodology is required to

evaluate and compare the tradeoffs between DL models and accelerators to select the optimal

design.

In this chapter, we proposed a comprehensive methodology to evaluate the tradeoffs

between DL models and accelerators. With an emphasis on dependability, we proposed a

hierarchical fault-injection approach that continually narrows the set of targeted bits by

removing bits with noncritical representation and thereby accelerating the fault-injection

process. Compared to direct fault injection, our approach achieves an efficiency improvement

of 2.1-2.7× and 4.1-4.2× for the Zynq-7000 and Zynq-MPSoC, respectively, to evaluate all DL

solutions in this study. Furthermore, we describe methods to analyze the dependability of DL

models and accelerators at both the model and node levels and in terms of the AVF, MWTF,

and critical area. Finally, using this methodology, we evaluated, analyzed, and compared

the tradeoffs and trends of four semantic-segmentation models across four configurations

of the Xilinx DPU for two generations of Xilinx SoCs (Zynq-7000 and Zynq-MPSoC). Our

evaluation, which was conducted on facsimiles of flight hardware that is currently deployed

in space missions, demonstrates that compute-intensive DL applications can be dependably

executed onboard for next-generation missions.

130

6.0 Conclusions

Due to continued innovations in onboard data analysis and spacecraft autonomy, enabled

by deep learning (DL), modern spacecraft increasingly require dependable, high-performance

computers to process onboard an immense volume of raw sensor data into actionable infor-

mation to formulate critical decisions autonomously. To enable compute-intensive DL algo-

rithms, commercial-off-the-shelf (COTS) processors, including FPGAs and system-on-chips

(SoCs), are often employed for their superior performance, energy-efficiency, affordability,

and capability compared to traditional radiation-hardened (rad-hard) alternatives; however,

these commercial processors are highly susceptible to radiation-induced single-event effects

(SEEs) that can degrade the dependability of the system and application. To enable depend-

able, high-performance systems capable of onboard DL using commercial FPGAs and SoCs,

efficient methods for SEE mitigation are essential for maximizing system performability while

satisfying mission dependability requirements.

In this dissertation, we proposed three key contributions to address these space-computing

challenges. First, we proposed Hybrid, Adaptive, Reconfigurable Fault Tolerance (HARFT),

a reconfigurable framework for environmentally adaptive resilience in hybrid and heteroge-

neous SoCs and systems for space applications. HARFT includes a runtime-reconfigurable

system architecture that combines fault-tolerance frameworks in both CPU and FPGA sub-

systems of a hybrid SoC into one integrated, synergistic framework to enable unique repair

and graceful-degradation mechanisms that elongate system uptime. By selecting between

performance and dependability modes for both subsystems in response to the environmental

condition, HARFT can maximize system performability subject to mission availability con-

straints. To evaluate this capability, a methodology was enhanced for evaluating environmen-

tally adaptive and gracefully degradable systems, using phased-mission modeling, subject to

dynamic near-Earth radiation environments, using a combination of orbital-perturbation,

geomagnetic-field, and CRÈME96 models. When evaluated on the Zynq-7000, HARFT

demonstrated substantial system performability gains compared to static approaches.

131

Next, we proposed Reconfigurable ConvNet (RECON), a reconfigurable framework for

dependable, high-performance semantic segmentation for space applications. RECON con-

sists of a runtime-reconfigurable semantic-segmentation accelerator architecture and includes

selective and adaptive approaches for efficient SEE mitigation. In our selective approach,

control-flow parts are selectively protected by TMR to minimize SEE-induced hangs, and

in our adaptive approach, partial reconfiguration is leveraged to adapt the mitigation of

silent data corruption of data-flow parts in response to the dynamic radiation environment.

Combined, both approaches enable RECON to maximize performability subject to mission

availability constraints. When evaluated on the Zynq-7000, RECON demonstrated substan-

tial inference performability gains compared to static approaches.

Finally, we proposed a methodology for evaluating FPGA-accelerated DL models and an-

alyzing their performance and dependability tradeoffs, including a hierarchical fault-injection

approach to accelerate the characterization of fault susceptibility in DL solutions. In our

hierarchical approach, fault injection is performed at multiple levels with varied application

granularities (coarse to fine) while continually omitting inconsequential bits between levels

to significantly reduce the number of fault injections required. Additionally, we proposed an-

alytical methods that use our hierarchical fault-injection approach to quantify and examine

FPGA-accelerated DL models in terms of well-established dependability metrics. We demon-

strated the versatility of this methodology by evaluating, analyzing, and comparing multiple

DL models accelerated on multiple configurations of the Xilinx DPU for the Zynq-7000 and

Zynq-MPSoC.

The entirety of this dissertation research was evaluated on facsimiles of flight hardware

that is currently deployed in space missions to demonstrate that compute-intensive DL al-

gorithms, which are useful for spacecraft autonomy, onboard data analysis, and intelligent

applications, can be dependably executed onboard for next-generation missions. This re-

search can directly benefit missions that employ reconfigurable space computers, require

high-performance onboard processing capabilities for compute-intensive applications, and

are subject to mission dependability constraints. The application of these efficient resilience

strategies can enable spacecraft designers to select from a design tradespace the optimal solu-

tion that maximizes system or application performability while satisfying dependability con-

132

straints. Opportunities for future work include (1) exploring novel, efficient SEE-mitigation

strategies for other applications (e.g., other ML/CV, navigation, communication, etc.) and

architectures (e.g., GPUs, TPUs, neuromorphic, etc.) and (2) enhancing the evaluation of

these methods by radiation-beam testing or on-orbit demonstration.

133

Bibliography

[1] Francesco Abate, Luca Sterpone, Carlos A. Lisboa, Luigi Carro, and Massimo Vi-
olante. New techniques for improving the performance of the lockstep architecture
for SEEs mitigation in FPGA embedded processors. IEEE Transactions on Nuclear
Science, 56(4):1992–2000, Aug 2009.

[2] National Aeronautics and Space Administration. The year in review 2018, 2019 the
year ahead. Kennedy Space Center’s Spaceport Magazine, 6(1):1–22, February 2019.

[3] Dimitris Agiakatsikas, Nguyen T. H. Nguyen, Zhuoran Zhao, Tong Wu, Ediz Cetin,
Oliver Diessel, and Lingkan Gong. Reconfiguration control networks for TMR systems
with module-based recovery. In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 88–91, May 2016.

[4] Mansoor Alam and Ubaid M. Al-Saggaf. Quantitative reliability evaluation of re-
pairable phased-mission systems using Markov approach. IEEE Transactions on Re-
liability, 35(5):498–503, Dec 1986.

[5] Jordan D. Anderson, Jennings C. Leavitt, and Michael J. Wirthlin. Neutron radia-
tion beam results for the Xilinx UltraScale+ MPSoC. In 2018 IEEE Nuclear Space
Radiation Effects Conference (NSREC 2018), pages 1–7, July 2018.

[6] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: a deep convolu-
tional encoder-decoder architecture for image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(12):2481–2495, 2017.

[7] John E. Ball, Derek T. Anderson, and Chee Seng Chan Sr. Comprehensive survey of
deep learning in remote sensing: theories, tools, and challenges for the community.
Journal of Applied Remote Sensing, 11(4):1 – 54, 2017.

[8] Keith L. Bedingfield, Richard D. Leach, and Margaret B. Alexander. Spacecraft
system failures and anomalies attributed to the natural space environment. NASA
Technical Report NASA-RP-1390, 1390:56, August 1996.

134

[9] Fabio Benevenuti, Fabiano Libano, Vincent Pouget, Fernanda Lima Kastensmidt, and
Paolo Rech. Comparative analysis of inference errors in a neural network implemented
in SRAM-based FPGA induced by neutron irradiation and fault injection methods.
In 2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI), pages
1–6, Aug 2018.

[10] Melanie Berg, Christian Poivey, David Petrick, Daniel Espinosa, Austin Lesea, Ken-
neth A. LaBel, Mark Friendlich, Hak Kim, and Anthony Phan. Effectiveness of inter-
nal versus external SEU scrubbing mitigation strategies in a Xilinx FPGA: Design,
test, and analysis. IEEE Transactions on Nuclear Science, 55(4):2259–2266, Aug
2008.

[11] Cristiana Bolchini, Antonio Miele, and Marco D. Santambrogio. TMR and partial
dynamic reconfiguration to mitigate SEU faults in FPGAs. In 22nd IEEE Interna-
tional Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), pages
87–95, Sep. 2007.

[12] Sébastien Bourdarie and Michael Xapsos. The near-Earth space radiation environ-
ment. IEEE Transactions on Nuclear Science, 55(4):1810–1832, Aug 2008.

[13] Cody Brewer, Nicholas Franconi, Robin Ripley, Alessandro Geist, Travis Wise, Se-
bastian Sabogal, Gary Crum, Sabrena Heyward, and Christopher Wilson. NASA
SpaceCube intelligent multi-purpose system for enabling remote sensing, communi-
cation, and navigation in mission architectures. In Proceedings of the 34th Annual
AIAA/USU Conference on Small Satellites, pages 1–6, Logan, UT, 2020. AIAA.

[14] Michael J. Campola and Jonathan A. Pellish. Radiation Hardness Assurance: Evolv-
ing for NewSpace. 2019.

[15] Matthew J. Cannon, Andrew M. Keller, Hayden C. Rowberry, Corbin A. Thurlow,
Andés Pérez-Celis, and Michael J. Wirthlin. Strategies for removing common mode
failures from TMR designs deployed on SRAM FPGAs. IEEE Transactions on Nuclear
Science, 66(1):207–215, Jan 2019.

[16] Robert Cardillo. 2017 Small Satellite Conference keynote address. In Proceedings of
the 31st Annual AIAA/USU Conference on Small Satellites, Logan, UT, aug 2017.
AIAA.

[17] BAA DARPA. Blackjack (BAA HR001118S0032), May 2018.

135

[18] BAA DARPA. Blackjack Pit Boss (BAA HR001119S0012), April 2019.

[19] Fernando Fernandes dos Santos, Caio Lunardi, Daniel Oliveira, Fabiano Libano, and
Paolo Rech. Reliability evaluation of mixed-precision architectures. In 2019 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA), pages
238–249, Feb 2019.

[20] Boyang Du, Sarah Azimi, Corrado de Sio, Ludovica Bozzoli, and Luca Sterpone.
On the reliability of convolutional neural network implementation on SRAM-based
FPGA. In 2019 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), pages 1–6, Oct 2019.

[21] Robert Ecoffet. Overview of in-orbit radiation induced spacecraft anomalies. IEEE
Transactions on Nuclear Science, 60(3):1791–1815, June 2013.

[22] Larry D. Edmonds. Proton SEU cross sections derived from heavy-ion test data. IEEE
Transactions on Nuclear Science, 47(5):1713–1728, Oct 2000.

[23] Larry D. Edmonds and Farokh Irom. Extension of a proton SEU cross section model
to include 14 MeV neutrons. IEEE Transactions on Nuclear Science, 55(1):649–655,
Feb 2008.

[24] Marco Esposito, Simon S. Conticello, Massimiliano Pastena, and Bernardo Carnicero
Domı́nguez. In-orbit demonstration of artificial intelligence applied to hyperspectral
and thermal sensing from space. In CubeSats and SmallSats for Remote Sensing III,
volume 11131, pages 88 – 96. International Society for Optics and Photonics, SPIE,
2019.

[25] Giulio Gambardella, Johannes Kappauf, Michaela Blott, Christoph Doehring, Martin
Kumm, Peter Zipf, and Kees Vissers. Efficient error-tolerant quantized neural network
accelerators. In 2019 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pages 1–6, Oct 2019.

[26] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez,
Pablo Martinez-Gonzalez, and Jose Garcia-Rodriguez. A survey on deep learning tech-
niques for image and video semantic segmentation. Applied Soft Computing, 70:41–65,
2018.

136

[27] Alessandro Geist, Cody Brewer, Milton Davis, Nicholas Franconi, Sabrena Heyward,
Travis Wise, Gary Crum, David Petrick, Robin Ripley, Christopher Wilson, and
Thomas Flatley. SpaceCube v3.0 NASA next-generation high-performance processor
for science applications. In Proceedings of the 33rd Annual AIAA/USU Conference
on Small Satellites, pages 1–9, Logan, UT, 2019. AIAA.

[28] Alan D. George and Christopher M. Wilson. Onboard processing with hybrid and
reconfigurable computing on small satellites. Proceedings of the IEEE, 106(3):458–
470, March 2018.

[29] Robért Glein, Florian Rittner, and Albert Heuberger. Adaptive single-event effect
mitigation for dependable processing systems based on FPGAs. Microprocessors and
Microsystems, 59:46–56, 2018.

[30] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. [DL] a survey
of FPGA-based neural network inference accelerators. ACM Trans. Reconfigurable
Technol. Syst., 12(1), March 2019.

[31] Tanya Harrison. Science enabled by high cadence and high resolution imagery from
the Planet constellation of satellites. In AGU Fall Meeting Abstracts, volume 2019,
pages PA54B–09, December 2019.

[32] James R. Heirtzler. The future of the South Atlantic anomaly and implications for
radiation damage in space. Journal of Atmospheric and Solar-Terrestrial Physics,
64(16):1701–1708, 2002. Space Weather Effects on Technological Systems.

[33] Felix R. Hoots and Ronald L. Roehrich. Models for propagation of NORAD element
sets. Technical report, AEROSPACE DEFENSE COMMAND PETERSON AFB CO
OFFICE OF ASTRODYNAMICS, 1980.

[34] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

[35] Adam Jacobs, Grzegorz Cieslewski, Alan D. George, Ann Gordon-Ross, and Herman
Lam. Reconfigurable fault tolerance: A comprehensive framework for reliable and
adaptive FPGA-based space computing. ACM Trans. Reconfigurable Technol. Syst.,
5(4):21:1–21:30, December 2012.

137

[36] Andrew E. Johnson, Yang Cheng, James F. Montgomery, Nikolas Trawny, Brent
Tweddle, and Jason X. Zheng. Real-Time Terrain Relative Navigation Test Results
from a Relevant Environment for Mars Landing.

[37] Jonathan M. Johnson and Michael J. Wirthlin. Voter insertion algorithms for
FPGA designs using triple modular redundancy. In Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA
’10, pages 249–258, New York, NY, USA, 2010. ACM.

[38] Shrikanth Kanekal, Lauren Blum, Eric Christian, Gary Crum, Jeff Dumonthier, Al-
lison Evans, Thomas Flatley, Ashley Greeley, Sergio Guerro, Agbontaen Imasuen,
John Lucas, James Mackinnon, Nikolaos Paschalidis, Deepak Patel, Khary Parker,
Quintin Schiller, Errol Summerlin, and George Suarez. CeREs: The Compact Radi-
ation Belt Explorer. In Proceedings of the 29th Annual AIAA/USU Conference on
Small Satellites, pages 1–11, Logan, UT, 2018. AIAA.

[39] Josef Koller, Geoffrey D. Reeves, and Reiner H. W. Friedel. LANL* V1.0: a radiation
belt drift shell model suitable for real-time and reanalysis applications. Geoscientific
Model Development, 2(2):113–122, 2009.

[40] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1st edition, 2007.

[41] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Transactions on Computers, C-33(6):518–528, June 1984.

[42] Kenneth A. LaBel. Radiation effects on electronics 101. NASA Electronic Parts and
Packaging Program (NEPP), Apr 2004.

[43] Kenneth A. LaBel, Allan H. Johnston, Janet L. Barth, Robert A. Reed, and Charles E.
Barnes. Emerging Radiation Hardness Assurance (RHA) issues: a NASA approach
for space flight programs. IEEE Transactions on Nuclear Science, 45(6):2727–2736,
Dec 1998.

[44] Kenneth A. LaBel and Jonathan A. Pellish. National Radiation Hardness Assurance
(RHA) planning for NASA missions: Updated guidance. NASA Electronic Parts and
Packaging Program (NEPP), Mar 2014.

[45] Fahad Lateef and Yassine Ruichek. Survey on semantic segmentation using deep
learning techniques. Neurocomputing, 338:321–348, 2019.

138

[46] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4013–4021, 2016.

[47] Robert Le. Soft error mitigation using prioritized essential bits. Xilinx XAPP538 (v1.
0), 2012.

[48] David S. Lee, Gregory R. Allen, Gary Swift, Matthew Cannon, Michael Wirthlin,
Jeffrey S. George, Rokutaro Koga, and Kangsen Huey. Single-event characterization
of the 20 nm Xilinx Kintex UltraScale field-programmable gate array under heavy
ion irradiation. In 2015 IEEE Radiation Effects Data Workshop (REDW), pages 1–6,
July 2015.

[49] David S. Lee, Michael King, William Evans, Matthew Cannon, Andrés Pérez-Celis,
Jordan Anderson, Michael Wirthlin, and William Rice. Single-event characterization
of 16 nm FinFET Xilinx UltraScale+ devices with heavy ion and neutron irradiation.
In 2018 IEEE Nuclear Space Radiation Effects Conference (NSREC 2018), pages 1–8,
July 2018.

[50] David S. Lee, Michael Wirthlin, Gary Swift, and Anthony C. Le. Single-event char-
acterization of the 28 nm Xilinx Kintex-7 field-programmable gate array under heavy
ion irradiation. In 2014 IEEE Radiation Effects Data Workshop (REDW), pages 1–5,
July 2014.

[51] Ganghee Lee, Dimitris Agiakatsikas, Tong Wu, Ediz Cetin, and Oliver Diessel.
TLegUp: A TMR code generation tool for SRAM-based FPGA applications using
HLS. In 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 129–132, April 2017.

[52] Fabiano Libano, Brittany Wilson, Jon-Paul Anderson, Michael J. Wirthlin, Carlo Caz-
zaniga, Christopher Frost, and Paolo Rech. Selective hardening for neural networks
in FPGAs. IEEE Transactions on Nuclear Science, 66(1):216–222, Jan 2019.

[53] Fabiano Libano, Brittany Wilson, Michael Wirthlin, Paolo Rech, and John Brunhaver.
Understanding the impact of quantization, accuracy, and radiation on the reliability
of convolutional neural networks on FPGAs. IEEE Transactions on Nuclear Science,
67(7):1478–1484, July 2020.

[54] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 936–944, 2017.

139

[55] Tyler M. Lovelly, Donavon Bryan, Kevin Cheng, Rachel Kreynin, Alan D. George,
Ann Gordon-Ross, and Gabriel Mounce. A framework to analyze processor archi-
tectures for next-generation on-board space computing. In 2014 IEEE Aerospace
Conference, pages 1–10, March 2014.

[56] Tyler M. Lovelly and Alan D. George. Comparative analysis of present and future
space-grade processors with device metrics. Journal of Aerospace Information Sys-
tems, 14(3):184–197, Mar 2017.

[57] Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Ha-
jishirzi. ESPNet: Efficient spatial pyramid of dilated convolutions for semantic seg-
mentation. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

[58] David J. Miranda. 2020 NASA technology taxonomy: 2015 technology areas to 2020
taxonomy areas crosswalk. 2020.

[59] Sparsh Mittal. A survey of FPGA-based accelerators for convolutional neural net-
works. Neural Computing and Applications, 32(4):1109–1139, Feb 2020.

[60] Mischa Möstl, Alexander Dörflinger, Mark Albers, Harald Michalik, and Rolf Ernst.
Self-adaptation for availability in CPU-FPGA systems under soft errors. In 2019
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 9–16, July
2019.

[61] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt,
and Todd Austin. A systematic methodology to compute the architectural vulner-
ability factors for a high-performance microprocessor. In Proceedings. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36., pages
29–40, Dec 2003.

[62] National Academies of Sciences, Engineering, and Medicine. Vision and Voyages for
Planetary Science in the Decade 2013-2022. The National Academies Press, Wash-
ington, DC, 2011.

[63] National Academies of Sciences, Engineering, and Medicine. Achieving Science with
CubeSats: Thinking Inside the Box. The National Academies Press, Washington, DC,
2016.

140

[64] National Academies of Sciences, Engineering, and Medicine. Testing at the Speed of
Light: The State of U.S. Electronic Parts Space Radiation Testing Infrastructure. The
National Academies Press, Washington, DC, 2018.

[65] National Academies of Sciences, Engineering, and Medicine. Thriving on Our Chang-
ing Planet: A Decadal Strategy for Earth Observation from Space. The National
Academies Press, Washington, DC, 2018.

[66] National Academies of Sciences, Engineering, and Medicine. Report Series: Commit-
tee on Astrobiology and Planetary Science: Review of the Planetary Science Aspects
of NASA SMD’s Lunar Science and Exploration Initiative. The National Academies
Press, Washington, DC, 2019.

[67] Suzanne F. Nowicki, Stephen A. Wender, and Michael Mocko. The Los Alamos Neu-
tron Science Center spallation neutron sources. Physics Procedia, 90:374–380, 2017.

[68] Paul P. O’Brien and Sébastien Bourdarie. The IRBEM library – open source tools for
radiation belt modeling. AGU Fall Meeting Abstracts, pages IN53C–1760, December
2012.

[69] Björn Osterloh, Harald Michalik, Sandi A. Habinc, and Björ Fiethe. Dynamic partial
reconfiguration in space applications. In 2009 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 336–343, July 2009.

[70] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. ENet:
A deep neural network architecture for real-time semantic segmentation. CoRR,
abs/1606.02147, 2016.

[71] Sam Pedrotty, Jacob Sullivan, Elisabeth Gambone, and Thomas Kirven. Seeker free-
flying inspector GNC flight performance. 02 2020.

[72] Edward L. Petersen. The SEU figure of merit and proton upset rate calculations.
IEEE Transactions on Nuclear Science, 45(6):2550–2562, Dec 1998.

[73] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A benchmark
characterization of the EEMBC benchmark suite. IEEE Micro, 29(5):18–29, Sep.
2009.

[74] ISPRS Potsdam. 2D semantic labeling dataset, 2018.

141

[75] Paul Pukite and Jan Pukite. Markov Modeling for Reliability Analysis. Wiley-IEEE
Press, 1st edition, 1998.

[76] Heather Quinn. Challenges in testing complex systems. IEEE Transactions on Nuclear
Science, 61(2):766–786, April 2014.

[77] Heather Quinn. Radiation effects in reconfigurable FPGAs. Semiconductor Science
and Technology, 32(4):044001, mar 2017.

[78] Heather Quinn, Tom Fairbanks, Justin L. Tripp, George Duran, and Beatrice Lopez.
Single-event effects in low-cost, low-power microprocessors. In 2014 IEEE Radiation
Effects Data Workshop (REDW), pages 1–9, July 2014.

[79] George A. Reis, Jonathan Chang, Neil Vachharajani, Shubhendu S. Mukherjee, Ram
Rangan, and David I. August. Design and evaluation of hybrid fault-detection sys-
tems. In 32nd International Symposium on Computer Architecture (ISCA’05), pages
148–159, June 2005.

[80] Kimberly Robinson, Andrew Schorr, and David Smith. NASA’s Space Launch System:
Opportunities for small satellites to deep space destinations. In Proceedings of the
32nd Annual AIAA/USU Conference on Small Satellites, pages 1–9, Logan, UT, 2018.
AIAA.

[81] William H. Robinson, Michael L. Alles, Theodore A. Bapty, Bharat L. Bhuva, Jef-
frey D. Black, Alfred B. Bonds, Lloyd W. Massengill, Sandeep K. Neema, Ronald D.
Schrimpf, and Jason M. Scott. Soft error considerations for multicore microproces-
sor design. In 2007 IEEE International Conference on Integrated Circuit Design and
Technology, pages 1–4, May 2007.

[82] Seth Roffe, Theodore Schwarz, Thomas Cook, Noah Perryman, Justin Goodwill, Evan
Gretok, Aidan Phillips, Mitchell Moran, Tyler Garrett, and Alan George. CASPR:
autonomous sensor processing experiment for STP-H7. In Proceedings of the 34th
Annual AIAA/USU Conference on Small Satellites, pages 1–11, Logan, UT, 2020.
AIAA.

[83] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer Inter-
national Publishing.

142

[84] Daniel Sabogal and Alan D. George. Towards resilient spaceflight systems with vir-
tualization. In 2018 IEEE Aerospace Conference, pages 1–8, March 2018.

[85] Sebastian Sabogal, Patrick Gauvin, Brad Shea, Daniel Sabogal, Antony Gillette,
Christopher Wilson, Ansel Barchowsky, Alan D. George, Gary Crum, and Thomas
Flatley. SSIVP: Spacecraft supercomputing experiment for STP-H6. In Proceedings
of the 31st Annual AIAA/USU Conference on Small Satellites, pages 1–12, Logan,
UT, 2017. AIAA.

[86] Sebastian Sabogal, Alan George, and Gary Crum. ReCoN: A reconfigurable CNN
acceleration framework for hybrid semantic segmentation on hybrid SoCs for space
applications. In 2019 IEEE Space Computing Conference (SCC), pages 41–52, July
2019.

[87] Sebastian Sabogal, Alan George, and Christopher Wilson. Reconfigurable framework
for environmentally adaptive resilience in hybrid space systems. ACM Trans. Recon-
figurable Technol. Syst., 13(3), July 2020.

[88] Aitzan Sari and Mihalis Psarakis. Scrubbing-based SEU mitigation approach
for systems-on-programmable-chips. In 2011 International Conference on Field-
Programmable Technology, pages 1–8, Dec 2011.

[89] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85–117, 2015.

[90] Christopher Scolese. 2020 Small Satellite Conference keynote address. In Proceedings
of the 34th Annual AIAA/USU Conference on Small Satellites, Logan, UT, aug 2020.
AIAA.

[91] Alex Shye, Joseph Blomstedt, Tipp Moseley, Vijay J. Reddi, and Daniel A. Connors.
PLR: A software approach to transient fault tolerance for multicore architectures.
IEEE Transactions on Dependable and Secure Computing, 6(2):135–148, April 2009.

[92] Felix Siegle, Tanya Vladimirova, Jørgen Ilstad, and Omar Emam. Mitigation of ra-
diation effects in SRAM-based FPGAs for space applications. ACM Comput. Surv.,
47(2):37:1–37:34, January 2015.

[93] Luca Sterpone and Massimo Violante. A new reliability-oriented place and route
algorithm for SRAM-based FPGAs. IEEE Transactions on Computers, 55(6):732–
744, June 2006.

143

[94] Aaron Stoddard, Ammon Gruwell, Peter Zabriskie, and Michael J. Wirthlin. A hybrid
approach to FPGA configuration scrubbing. IEEE Transactions on Nuclear Science,
64(1):497–503, Jan 2017.

[95] Michael A. Swartout. CubeSats mission assurance trends. In Proceedings of the NASA
Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW),
Greenbelt, MD, June 2020. NASA GSFC.

[96] Lucas A. Tambara, Felipe Almeida, Paolo Rech, Fernanda L. Kastensmidt, Giovanni
Bruni, and Christopher Frost. Measuring failure probability of coarse and fine grain
TMR schemes in SRAM-based FPGAs under neutron-induced effects. In Applied
Reconfigurable Computing, pages 331–338, Cham, 2015. Springer International Pub-
lishing.

[97] Erwan Thébault, Christopher C. Finlay, Ciarán D. Beggan, Patrick Alken, Julien
Aubert, Olivier Barrois, Francois Bertrand, Tatiana Bondar, Axel Boness, Laura
Brocco, et al. International Geomagnetic Reference Field: the 12th generation. Earth,
Planets and Space, 67(1):79, 2015.

[98] Jorge Tonfat, Fernanda Lima Kastensmidt, Paolo Rech, Ricardo Reis, and Heather M.
Quinn. Analyzing the effectiveness of a frame-level redundancy scrubbing technique
for SRAM-based FPGAs. IEEE Transactions on Nuclear Science, 62(6):3080–3087,
Dec 2015.

[99] César Torres-Huitzil and Bernard Girau. Fault tolerance in neural networks: Neural
design and hardware implementation. In 2017 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), pages 1–6, Dec 2017.

[100] Nikolai A. Tsyganenko. A magnetospheric magnetic field model with a warped tail
current sheet. Planetary and Space Science, 37(1):5–20, 1989.

[101] Allan J. Tylka, James H. Adams, Paul R. Boberg, Buddy Brownstein, William F.
Dietrich, Erwin O. Flueckiger, Edward L. Petersen, Margaret A. Shea, Don F. Smart,
and Edward C. Smith. CREME96: A revision of the Cosmic Ray Effects on Micro-
Electronics Code. IEEE Transactions on Nuclear Science, 44(6):2150–2160, Dec 1997.

[102] Dazhi Wang and Kishor S. Trivedi. Reliability analysis of phased-mission system
with independent component repairs. IEEE Transactions on Reliability, 56(3):540–
551, Sep. 2007.

144

[103] Ingo Wardinski, Diana Saturnino, Hagay Amit, Aude Chambodut, Benoit Langlais,
Mioara Mandea, and Thébault Erwan. Geomagnetic core field models and secular
variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-
13). Earth, Planets and Space, 72(1):155, Oct 2020.

[104] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu,
Yun Liang, and Jason Cong. Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs. In Proceedings of the 54th Annual Design
Automation Conference 2017, DAC ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[105] Caleb Williams and Stephanie DelPozzo. 2020 nano/microsatellite market forecast,
10th edition. SpaceWorks Enterprises, Inc, 1, 2020.

[106] Christopher Wilson and Alan D. George. CSP hybrid space computing. Journal of
Aerospace Information Systems, 15(4):215–227, Feb 2018.

[107] Christopher Wilson, James MacKinnon, Patrick Gauvin, Sebastian Sabogal, Alan D.
George, Gary Crum, and Thomas Flatley. µCSP: A diminutive, hybrid, space proces-
sor for smart modules and CubeSats. In Proceedings of the 30th Annual AIAA/USU
Conference on Small Satellites, pages 6–11, Logan, UT, 2016. AIAA.

[108] Christopher Wilson, Sebastian Sabogal, Alan D. George, and Ann Gordon-Ross. Hy-
brid, adaptive, and reconfigurable fault tolerance. In 2017 IEEE Aerospace Confer-
ence, pages 1–11, March 2017.

[109] Christopher Wilson, Jacob Stewart, Patrick Gauvin, James MacKinnon, James Coole,
Jonathan Urriste, Alan D. George, Gary Crum, Elizabeth Timmons, Jaclyn Beck,
Thomas Flatley, Michael Wirthlin, Alex Wilson, and Aaron Stoddard. CSP hy-
brid space computing for STP-H5/ISEM on ISS. In Proceedings of the 29th Annual
AIAA/USU Conference on Small Satellites, pages 1–12, Logan, UT, 2015. AIAA.

[110] Michael Wirthlin. High-reliability FPGA-based systems: Space, high-energy physics,
and beyond. Proceedings of the IEEE, 103(3):379–389, March 2015.

[111] Michael A. Xapsos, Patrick M. O’Neill, and T. Paul O’Brien. Near-Earth space
radiation models. IEEE Transactions on Nuclear Science, 60(3):1691–1705, June
2013.

145

[112] Xilinx. UltraScale Architecture Configurable Logic Block. Xilinx, v1.5 edition, Feb
2017. Xilinx User Guide (UG574).

[113] Xilinx. Zynq-7000 SoC Technical Reference Manual. Xilinx, v1.12.2 edition, Jul 2018.
Xilinx User Guide (UG585).

[114] Xilinx. Libmetal and OpenAMP for Zynq Devices User Guide. Xilinx, v2019.1 edition,
May 2019. Xilinx User Guide (UG1186).

[115] Xilinx. Zynq UltraScale+ Device Technical Reference Manual. Xilinx, v2.1 edition,
Aug 2019. Xilinx User Guide (UG1085).

[116] Xilinx. ML Caffe segmentation tutorial, Dec 2020. Accessed: 2021-02-01.

[117] Xilinx. Vitis AI User Guide. Xilinx, v1.3 edition, Dec 2020. Xilinx User Guide
(UG1414).

[118] Xilinx. Zynq DPU. Xilinx, v3.3 edition, Dec 2020. Xilinx Product Guide (PG338).

[119] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing FPGA-based accelerator design for deep convolutional neural net-
works. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’15, pages 161–170, New York, NY, USA, 2015.
ACM.

[120] Hongyan Zhang, Michael A. Kochte, Michael E. Imhof, Lars Bauer, Hans-Joachim
Wunderlich, and Jörg Henkel. GUARD: Guaranteed reliability in dynamically recon-
figurable systems. In 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, June 2014.

[121] Zhuoran Zhao, Dimitris Agiakatsikas, Nguyen T. H. Nguyen, Ediz Cetin, and Oliver
Diessel. Fine-grained module-based error recovery in FPGA-based TMR systems.
In 2016 International Conference on Field-Programmable Technology (FPT), pages
101–108, Dec 2016.

[122] Zhuoran Zhao, Nguyen T. H. Nguyen, Dimitris Agiakatsikas, Ganghee Lee, Ediz Cetin,
and Oliver Diessel. Fine-grained module-based error recovery in FPGA-based TMR
systems. ACM Trans. Reconfigurable Technol. Syst., 11(1), January 2018.

146

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Mission parameters of orbital case studies
	2. Predicted SEE rates for Z7020 for orbital case studies
	3. HARFT CPU and accelerator performance and reward rates
	4. HARFT module resource utilization
	5. HARFT CRAM fault-injection test results
	6. HARFT repair rates
	7. HARFT static modes and adaptive strategy
	8. HARFT unavailability, failure rate, and performability for orbital case studies
	9. RECON inference accuracy
	10. RECON module resource utilization
	11. RECON performance and energy-efficiency
	12. RECON model-level CRAM fault-injection test results
	13. RECON static modes and adaptive strategy
	14. RECON unavailability, failure rate, and performability for orbital case studies
	15. RECON wide-spectrum neutron-beam test results
	16. DPU DL models
	17. DPU convolution architectures
	18. DPU model accuracy
	19. DPU resource utilization
	20. DPU evaluation results for PYNQ-Z2 (Z7020)
	21. DPU evaluation results for UZED-EG (ZU3EG)
	22. DPU B512 fault-injection accuracy for Z7020

	List of Figures
	1. NSF SHREC hybrid space computers
	2. STP mission experiments
	3. NASA GSFC hybrid space computers
	4. Space processor comparison
	5. Functional changes of FPGA design due to SEEs in CRAM
	6. Granularity of TMR in FPGA designs
	7. SegNet semantic-segmentation model
	8. Xilinx Deep-Learning Processing Unit (DPU) architecture.
	9. HARFT architecture
	10. HARFT HPS framework
	11. HARFT SPS framework
	12. HARFT control-flow model
	13. Methodology for time-varying SEE rate prediction
	14. Example of phased-mission modeling with CTMCs
	15. Orbital case studies
	16. Predicted McIlwain L-shell and SEE rate
	17. HARFT SPS framework implemented on Z7020
	18. Predicted McIlwain L-shell and fault rates
	19. HARFT instantaneous system availability over time
	20. HARFT design tradespace
	21. RECON acceleration framework
	22. RECON adaptive approach for SEE mitigation
	23. RECON architectures for space processors
	24. RECON impact of CRAM faults on mIoU
	25. RECON impact of CRAM faults on mIoU by layer
	26. RECON predicted McIlwain L-shell and fault rates
	27. RECON instantaneous probability of system operation
	28. RECON design tradespace
	29. LANSCE experiment setup
	30. Hierarchical fault-injection approach
	31. DPU impact of CRAM faults on mIoU
	32. DPU fault-injection experiment samples
	33. DPU average SDC-critical area
	34. DPU B512 SDCC-critical area and operations by node (Z7020)
	35. DPU B512 SDCC-critical area and operations by node (ZU3EG)

	Preface
	1.0 Introduction
	2.0 Background Research
	2.1 SmallSats, CubeSats, and Onboard Autonomy
	2.2 Commercial Hybrid and Heterogeneous SoCs and Systems for Space Applications
	2.3 Radiation Effects
	2.4 Dependable Computing
	2.4.1 CPU Dependability
	2.4.1.1 Symmetric and Asymmetric Multiprocessing

	2.4.2 FPGA Dependability
	2.4.2.1 Dependability Techniques
	2.4.2.2 Dependability Evaluation of FPGA Designs
	2.4.2.3 Environmentally Adaptive Resilience for Near-Earth Radiation Environments

	2.5 Deep Learning
	2.5.1 Semantic Segmentation
	2.5.2 FPGA Acceleration of DL Applications

	3.0 Environmentally Adaptive Resilience in Reconfigurable Space Systems
	3.1 Related Work
	3.2 HARFT Architecture Overview
	3.2.1 Hard Processing System (HPS) Framework
	3.2.2 Soft Processing System (SPS) Framework
	3.2.3 Configuration Manager (CM)
	3.2.3.1 Environmental Sensing and Prediction
	3.2.3.2 Reconfiguration and Adaptation
	3.2.3.3 Control-Flow Model

	3.3 Modeling Approach
	3.3.1 Modeling the Dynamic Near-Earth Radiation Environment
	3.3.2 Modeling the Adaptive and Gracefully Degradable System
	3.3.2.1 Markov Modeling and Performability
	3.3.2.2 Phased-Mission System Modeling

	3.4 Evaluation and Analysis
	3.4.1 Orbital Case Studies
	3.4.2 Evaluation
	3.4.2.1 Performance
	3.4.2.2 Resource Utilization and Architectural Vulnerability Factor
	3.4.2.3 Time-Varying Fault Rate
	3.4.2.4 Repair Rate

	3.4.3 Availability, Failure Rate, and Performability Analysis

	3.5 Conclusion

	4.0 Resilient Semantic-Segmentation Acceleration for Space Apps
	4.1 Related Work
	4.2 Architecture Overview
	4.2.1 Approaches for Efficient SEE Mitigation
	4.2.1.1 Selective Mitigation for RSGDMA
	4.2.1.2 Adaptive Mitigation for RACCEL

	4.2.2 Architectures for Space Computers
	4.2.3 Accelerator Optimizations
	4.2.3.1 Model-Compression Optimizations
	4.2.3.2 Algorithmic Optimizations
	4.2.3.3 Architectural Optimizations

	4.3 Evaluation
	4.3.1 Performance Evaluation
	4.3.1.1 Inference Accuracy
	4.3.1.2 Resource Utilization
	4.3.1.3 Performance and Energy Efficiency

	4.3.2 Dependability Evaluation
	4.3.2.1 CRAM Fault-Injection Experiment
	4.3.2.2 Time-Varying Fault Rate Prediction
	4.3.2.3 Phased-Mission System Modeling and Analysis
	4.3.2.4 Wide-Spectrum Neutron-Beam Test Experiment

	4.4 Conclusion

	5.0 Evaluation and Analysis of FPGA-Accelerated, Deep-Learning Apps for Onboard Space Processing
	5.1 Related Work
	5.2 Approach
	5.2.1 Hierarchical Fault-Injection Approach
	5.2.2 Fault-Injection Procedure

	5.3 Evaluation
	5.3.1 Accuracy
	5.3.2 Resource Utilization
	5.3.3 Performance and Energy-Efficiency
	5.3.4 Dependability
	5.3.4.1 Model-Level Analysis
	5.3.4.2 Node-Level Analysis
	5.3.4.3 Fault-Injection Evaluation

	5.4 Conclusion

	6.0 Conclusions
	Bibliography

