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Benchmarking Transformer-Based Transcription

on Embedded GPUs for Space Applications

Marika Schubert, M.S.

University of Pittsburgh, 2021

Speech transcription is a necessary tool for backend applications commonly found in

voice assistants. Transcription is typically performed using cloud-based servers or custom

hardware, but those resources are not always amenable to space environments due to size,

weight, power, and cost constraints. Therefore, it is important to determine the perfor-

mance of and optimal conditions for running transcription on hardware that is feasible for

deployment in a space application. This research investigates and evaluates the performance

of the wav2vec2 speech transcription engine, the current state-of-the-art model for this do-

main with and without optimizations. The target hardware, the NVIDIA Xavier NX Jetson

embedded GPU, was chosen for its modern GPU architecture and small form factor. In

addition to examining the input scaling behavior, we evaluate the hyperparameters of the

clustered attention optimization, and average power and energy for inference relative to

the operating power mode of the device. The clustered attention model outperformed the

improved-clustered model for large input sizes, but the wav2vec2 model without clustering

performed better for small input sizes. The clustered model energy per inference (13.90 J)

was less than energy per inference of the improved-cluster model (15.03 J) and the vanilla

softmax model (15.85 J). All models meet real-time speech processing requirements necessary

to perform onboard inference entirely on a space system.
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1.0 Introduction

As human space exploration pushes towards lunar orbit with the planned Gateway out-

post [14], there will be limited connectivity with traditional terrestrial resources. Current

operations on the International Space Station rely heavily on ground personnel to assist the

orbiting crew with procedures and vehicle operations. For lunar missions, the need for a con-

versational interface capable of assisting astronauts, similar to a chatbot, will become critical

for activities where it is difficult to consult a screen or manual. This chat interface will serve

in place of humans in mission control for tasks such as assisting in procedures, helping to

locate objects, and relaying information about the vehicle with the crew. Chatbots, like

the Amazon Alexa voice assistant and supporting services [1], rely on speech transcription

as the enabling technology for their backend, text-based natural language processing (NLP)

applications. The vast majority of similar applications are tailored to consumer electronics,

which are ill-suited for remote, extreme environments such as those found in space. An

example conceptional flow for a practical audio system for Gateway is shown in Fig. 1.

Transcription for space applications remains a vital but undetermined piece of such a

conversational system. Transcription as a whole typically involves preprocessing to reduce

noise and isolate speech. This is followed by feature vector calculation and frequency analysis

used as input to a NLP or machine-learning-based model. These models translate feature

vectors to an intermediate language representation. Frequently, the representation used is

phonemes, which are the distinct sounds that compose human speech. This intermediate

representation is then provided to a language model which translates the input sequence

to human-readable text. A common basis for a language model is connectionist temporal

classification (CTC). These models are able to generate an output sequence where the input

and output sequences may not be aligned, or where the input has potentially redundant

characters or symbols [7]. Depending on the framework, there may be additional compen-

sation for pronunciation of different words. An outline of a representative framework can be

seen in Fig. 2.
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Figure 1: Conceptual layout of space-based audio processing framework.
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Figure 2: High-level diagram of transcription frameworks
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Most systems capable of transcription do so with the aid of cloud servers, including those

provided by Google [6], IBM [24], and Amazon [10]. Communication to a lunar (moon-based)

spacecraft from Earth, for instance, would incur a minimum of 2.25-second round-trip time.

This minimum latency figure would be complicated by other factors such as loss of signal

(LOS), where the link for such a communication could be missing due to spacecraft position

or satellite availability [23]. This high latency and complexity of communication would

reduce usefulness of the voice system and impact crew productivity when real-time feedback

was necessary. This issue would be further magnified if this system were deployed in even

more remote environments such as Mars.

Without a remote server, the next source of assistance may come from a edge accelerator

such as a graphics processing unit (GPU). Currently, there is a general interest in flying

GPUs both for their traditional rendering and display use cases, but also for allowing machine

learning in remote environments [4]. For reasons of constrained size, weight, power, and cost

(SWaP-C), it is valuable to assess the feasibility of running transcription on an embedded

GPU.

The speech-embedding framework benchmarked in this research was wav2vec2, which is

a state-of-the-art (SOTA) transformer-based model that translates sounds to a latent speech

representation using convolutional neural network feature encoding followed by a transformer

acoustic model [26, 3]. Additionally, two optimizations known as fast-transformers and

attention clustering are added to reduce runtime [9, 28].

This research benchmarks the runtime of the wav2vec2 model on a representative embed-

ded GPU for space applications. The key contributions of this paper are the comparisons of

number of clusters in wav2vec2 optimizations, insights into power and energy consumption

during inference, and the effect of varying GPU power limits on the runtime for this class of

transcription model.
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2.0 Related Work

This section describes the current SOTA of speech transcription, both with transformers

and more general recurrent structures. It additionally explores some of the models used for

complex language tasks and how those models inform the choice of wav2vec2 for speech-to-

text computation on an edge device. Moreover, it will introduce the issue of transformer

scaling, as well as optimizations chosen to overcome this issue.

While the subject of speech processing for space applications is a niche area, transcrip-

tion as a whole has a large body of supporting research driven by the push to integrate voice

control into consumer electronics and software. Transcription, also described as speech-to-

text, is a necessary function for converting audio signals for use in NLP backends designed

to accept text as an input. Many of the most prominent transcription applications have,

therefore, been created by companies like Amazon, Facebook, and Google, as well as large re-

search labs. Some systems, like IBM’s Watson [24] and NVIDIA’s emerging Jarvis framework

[19] are available via API. Other transcription apps are in precompiled formats for specific

hardware, like Google’s on-device speech recognition for Pixel phones [8]. Open-source code

for transcription, however, is beneficial for the development of a local, offline application for

space missions.

Transcription is considered a sequence-to-sequence learning task. The goal of sequence-

to-sequence tasks is to convert a sequential signal (e.g. audio) to a sequential output of a

different domain (e.g. a string of text). There are a variety of machine learning classes that

are able to perform this type of task. The models used typically require memory, recurrence,

or inclusion of output states.

One of the early demonstrations of end-to-end automatic speech recognition was found

in Deep Speech 2 [2]. Deep Speech 2 performed transcription using several layers of recurrent

neural networks (RNNs) and convolutional layers with CTC loss for training. This widely

adopted loss metric allows for the translation of sequences that do not have strict labeling

alignment between their input and output. Additionally, Amodei et. al. demonstrated

a model that could be deployed on GPU servers, but highlighted the viability of a fully
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trained machine-learning model for speech transcription over one that required individually

designed components as previously accomplished by models like Kaldi [22]. Deep Speech 2

was originally considered by the authors of this paper, but initial results demonstrated that

it was too large and slow for deployment on embedded platforms.

Wav2vec is another transcription model developed with the fairseq, which is a tool devel-

oped by Facebook for a variety of NLP text generation tasks including transcription [25, 20].

Wav2vec achieved a higher accuracy than Deep Speech 2 with significantly less training

data. Unlike Deep Speech 2, wav2vec was composed of two layers of cascaded convolutional

neural networks. The first network is a designed to perform feature embedding from audio.

This network could be pre-trained independently of the second network on unlabeled data,

meaning that it was able to achieve better accuracy with the same input data. This feature

encoding reduces the dimension of the input data and provides feature vectors that better

represent the underlying language. The second network converts this to an interpretable

context which was used to predict the next character or phoneme that would occur in audio.

Compared to DeepSpeech 2, this model was able to achieve a slightly better word error rate

(WER) (3.1 for Deep Speech 2 and 2.18 for a fine-tuned wav2vec2 model).

A sequence-to-sequence structure that has gained interest in recent years is known as

a transformer [26]. These models consist of an encoder/decoder structure connected by

an attention mechanism. This structure requires positional encoding to inform the model

of the relative position of an input within a sequence, making it inefficient for memory-

bandwidth-constrained hardware. A conceptual diagram of a transformer is shown in Fig 3.

A mathematical description is detailed in Sec. 3.

A transformer based model frequently cited for natural language understanding (NLU)

tasks is the Bidirectional Encoder Representations from Transformers (BERT) [5]. Devlin

et al. demonstrated the accuracy of their model on a wide variety of NLU tasks including

sentence prediction, understanding, and sentence segmentation in a variety of languages, but

not translation. The utility of BERT for NLU tasks is also well demonstrated in its adoption

by other researchers [11, 12]. However, it was not desirable for this research as it did not

include a method of encoding audio to feature vectors or a model trained for this purpose.
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Figure 3: Conceptual diagram of a transformer.
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RoBERTa is one particularly notable BERT-based model [12] for this use case. This

model employed the base BERT training and examined optimizations of hyperparameters

and more extensive training to achieve SOTA accuracies on several of the benchmarks that

BERT had originally demonstrated. RoBERTa achieved this partly by drastically expanding

its training data to include five publicly available corpora. RoBERTa additionally rebuilt

the BERT base model using the fairseq repository.

The successor to wav2vec, Wav2vec2, traded wav2vec’s second convolutional network

for a transformer layer, the overall structure for which can be seen in Fig. 4. Additionally,

wav2vec2 incorporated some of the training methods demonstrated with BERT, like selective

input masking to allow the model to better generalize [5]. This allowed it to achieve SOTA

word error rate (WER) on the LibriSpeech corpus using fine-tuning with a small amount of

unlabeled data [3, 21]. This model demonstrates that a semi-supervised learning technique

that is well suited for applications where there are a relatively small amount of labeled data

for training. This will likely be the case for space applications as much of the spoken language

will be jargon and acronyms unique to this domain. There are example models for wav2vec2

available as a starting point, which could be fine-tuned on more powerful terrestrial hardware

for mission-specific terminology and speakers.

Wav2vec2 still suffers from the scaling issue inherent to transformers, specifically that

computation time scales on the order of O(N2) where N is the dimension of the input

sequence. It is, however, possible to implement transformers with a slight alteration of

the underlying equations to reduce the computation time prediction scaling to a factor of

O(N) through an approximation method demonstrated in [9]. One can further optimize

transformers using clustered attention [28]. Clustering partitions the input sequences and

calculates the centroid of this data to use in place of the entire cluster, introducing a small but

bounded error. Vyas et al. augment their clustering algorithm by additionally considering

the attention keys that have the highest weights, referring to this algorithm as improved-

clustering. This method is intended to overcome scenarios where there are too few clusters for

the given input size or where the error introduced by clustering is too high. For the purposes

of their experiment, the authors ran the RoBERTa translation model [12] using their modified

processes and saw only marginally decreased accuracy for many benchmarks using improved-
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Figure 4: Conceptual diagram of wav2vec2 model.
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clustering, but more complicated tasks saw more significant losses. Additionally, for short

sequence lengths, the full model performed inferences faster that the clustered model.

While the usefulness of these optimized were proved in GPU hardware, there is no guar-

antee that those improvements will scale well across applications and varying hardware. The

performance of the model presented by He et al. [8] is entirely dependent on the computing

architecture provided. In [13], Narang et al. examine various optimizations for transformers

as well as several fundamental model variations on Google’s tensor processing units (TPUs).

In their research, most of the modifications studied were ineffectual on the TPU hardware,

despite their supposed benefit from their original publications. The main conclusions of the

research are that models may not show the same level of improvements across codebases or

applications, meaning that were too dependent on a particular framework or transformer

implementation. For practical purposes, this means that a transformer likely needs to be

optimized for a particular codebase and hardware to perform well, but conclusions may not

transfer when one of these underlying states change. For this reason, it is necessary to test

optimizations in the desired application to understand their contextual use.

10



3.0 Background

This section will describe the optimizations present in the wav2vec2 approximation used

in this research. The derivation of transformer models, as well as the exact derivations for

these optimizations can be found in the referenced supporting literature [9, 26, 28], but a

highlight of the relevant mathematical changes are presented. Details about the target device

architecture are also provided.

3.1 Transformers

For a set of general scaled dot-product attention unit, define a set of queries (inputs)

as Q, a matrix of keys K, and a matrix of values V . Let dk be the dimension of the keys.

From a high level, this describes a mapping from keys to an output. The overall equation

describing a transformer is seen in Equ. 3-1 [26]. Multi-headed attention, like implemented

in wav2vec2, is a concatenation of several of these units.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3-1)

Note that attention is composed of matrix multiplications and a softmax operation.

While GPUs are well equipped for highly parallel operations such as matrix multiplication,

softmax is more difficult to implement well on a GPU. Softmax maps a given input vector

(or matrix here) to the range (0, 1) using exponentials. For a vector w = w1, w2...wJ , the

softmax σ is shown in Eq 3-2. Note that this is is primarily a normalization function.

σ(w)i =
ewi

ΣJ
j=1e

wj
(3-2)

A typical transformer operation cost scales relative to input size N , the dimension of the

queries dQ, and the dimension of the values dV in Equ. 3-3.

O(N2 max(dQ, dV )) (3-3)
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3.2 Fast-Transformers

The fast, linear transformers discussed in Sec. 2 are a reformulation of the original trans-

former that has an runtime that scales linearly with respect to input sequence length [9].

This is done through a reformulation which allows the transformer to precalculate some

values to reduce the cost of an input query. This creates a larger burden on the memory,

but can reduce computation time overall. In [9], to linearize the transformer equation, the

authors applied two techniques. The first was to linearize the calculation of the transformer

itself without regard to the softmax function (abstracting it to a row-wise calculation φ(·)).

Through their derivation, they proved the conclusion in Eq 3-4.

(
φ(Q)φ(K)T

)
V = φ(Q)

(
φ(K)TV

)
(3-4)

With this reformulation, one could pre-calculate
(
φ(K)TV

)
, allowing for the values to

be reused across different queries. This assumption does require that φ(·) can be calculated

in this way.

The authors replaced the exponential calculation in the softmax kernel with a second-

degree polynomial approximation. This process reduces the complexity to O(Nd2QdV ). This

is preferable to Equ. 3-3 when N > d2Q, which is true when the input sequence is very large.

When this is not true, the authors implement a exponential linear unit as the feature vector

calculation reducing the complexity to O(NdQ2dV ). Conceptually, this change in calculation

procedure is shown in Fig 5.

With wav2vec2, the CNNs reduce the dimensionality of the input vectors, but the result

is still large. Additionally, the transformer model has eight attention heads in the base

model which means any speedup in the transformer calculation should be seen in the final

performance. This optimization is a strong candidate for optimizing wav2vec2.
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3.3 Clustered Attention

Clustered attention is another method for reducing runtime that is employed by this

research [28]. This method involves calculating an intermediate matrix reference to the

centroid matrix which contains the centroids of non-overlapping clusters S. The calculation

of this matrix is show in Equ. 3-5 where query vectors Qj are divided into clusters of size C.

Qc
j =

ΣN
i=1SijQi

ΣN
i=1Sij

(3-5)

QC
j is used in place of the original query matrix Q, reducing the dimension of the queries

by a factor equal to the cluster size C. Complexity is then reduced to the expression in

f. 3-6.

O(NCmax(dQ, dV )) (3-6)

Note that this is most useful where C << N , which should always be true. This is

beneficial for an architecture like wav2vec2 which has large input sequences, so most potential

cluster sizes should provide measurable speedup.

3.4 Improved Clustering

Improved clustering is an additional computation step on top of clustering designed to

reduce the error created by this approximation. It does this by by creating a distribution

based on the k keys with the highest attention values. To conform with the paradigm of

softmax (all outputs summing to 1), the results have to be normalized adding additional

complexity. For the sake of clarity, subsequent calculations use the definition in Equ. 3-7.

Note that QC is defined in Equ. 3-5

AC = softmax

(
QCKT

√
dK

)
(3-7)
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To make this calculation, Vyas et al. introduce a sparse matrix T where Tij = 1 where

the i-th key is the top k keys and Tij = 0 otherwise. They use this matrix to calculate

weights m̂j as shown in Equ. 3-8..

m̂j = ΣN
i=1

[
TjiA

C
ji

]
(3-8)

These m̂j are then used to weight an alternate normalization function shown in Equ. 3-9.

Note that this calculation only occurs for values where Tij = 1.

Mil =
m̂je

QiK
T
l

ΣR
r=1Trje

QiKT
r

(3-9)

These weights are then substituted into the output of the softmax layer as shown in

Equ. 3-10. This operation in shown in the diagram in Fig. 5.

Âil =

 Mil if Tjl = 1

AC
jl else

(3-10)

The matrix Â is similar to the AC , except where Tij = 1. At these points, the value is

replaced by the normalized attention for the top k keys. Note that Â still needs to be multi-

plied by V to compute the full attention. This mechanism overall adds O(Nk max(dk, dv))

asymptotic complexity, and so is expected to run slower, but is potentially more accurate

than the centroid method on its own. A graphical summary of the different types of attention

used in this paper are shown in Fig. 5.

3.5 Embedded GPUs

NVIDIA, known for its high-performance consumer- and server-grade GPUs, has an ad-

ditional line of system-on-module (SoM) GPU platforms. These heterogeneous architectures

combine an ARM CPU with an NVIDIA GPU on the same die and packaged in an em-

bedded form factor. The entire system can be constrained to meet the requirements of

battery-powered environments. Compared to their server-grade counterparts, these boards

attain only a fraction of the memory bandwidth (∼50GB/s vs ∼900GB/s) but also operate

14



at significantly lower power (∼15W vs ∼300W) [16, 17]. For these reasons, embedded GPUs

would be able to provide acceleration for sufficiently small or optimized models onboard

spacecraft.

While embedded GPUs exhibit desirable SWaP-C properties, they are also less capable

than their consumer- or server-grade counterparts. Most transcription models are trained

on high-performance hardware, and therefore there is little data on performance for edge

devices. Embedded GPUs have a shared memory path between the CPU and GPU, which

limits their performance for memory-bound applications. The most important characteristics

of embedded GPUs for the purpose of this research is the shared path to memory and the

feasibility of deployment in space applications due to desirable SWaP-C.

This research targeted the NVIDIA Jetson Xavier NX. This system has 6 Carmel ARM-

based cores (AArch64 architecture) with an NVIDIA Volta GPU and 8GB of LPDDR4x

memory. The GPU portion contains 384 CUDA cores, 48 Tensor Cores, and two Deep

Learning Accelerators (DLAs). Tensor Cores are designed to accelerate tensor operations,

specifically matrix multiplication [17]. DLAs are a structure that accelerate other deep-

learning operations like convolution [15].

The Xavier NX GPU supports five standard power modes. The configurations of these

power modes are summarized in Table 1. There are two operational power budgets: 10W

and 15W. Within each power budget, the main difference between power modes is number

of available CPU cores and their operating frequency. This should not have an effect on the

GPU operation as the function in question should be taking place exclusively on the GPU.

For all modes, it is assumed that if fewer CPU cores are active, a smaller percentage of the

power budget is used for the CPU, and the GPU may run at a higher power. All modes

were considered as the CPU idle power was assumed to impact the maximum GPU power.

15



Figure 5: Types of attention.
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Table 1: Summary of Xavier NX Power Modes

Mode

ID

Power

Budget (W)

Online CPU

Count

CPU Max

Frequency

(MHz)

GPU Max

Frequency

(MHz)

Memory Max

Frequency

(MHz)

0 15 2 1900 1100 1600

1 15 4 1400 1100 1600

2 15 6 1400 1100 1600

3 10 2 1500 800 1600

4 10 4 1200 800 1600
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4.0 Approach

This research examined an approximation of wav2vec2 based on a fork from the fairseq

repository [9, 20, 28]. This fork augments wav2vec with both linear transformers and input

clustering. This was done on the NVIDIA Jetson Xavier NX GPU.

4.1 Experiments

In this section, details of the experiments performed for this research. The first exper-

iment was intented to collect data on the accuracy of the models under different hyperpa-

rameters. The next experiment tested if the model execution time was approximately linear

relative to the input sequence length. The last experiment explored the effect of GPU mode

on power and energy consumption of the Xavier GPU.

The original wav2vec2’s SOTA accuracy has been demonstrated in literature [3] and so

was considered out of scope for this study. The optimizations here do introduce small errors

into the model, but it is assumed that these errors can be compensated for in model tuning.

4.1.1 Linearity

The untrained small wav2vec model was used to demonstrate the ceiling for runtimes as

model pruning may be training-data dependent. To test the behavior of the model without

computing accuracy, the input sequence length (32k-450k samples), model type (no cluster-

ing, clustered, and improved-clustered), number of clusters (50, 100, and 150), and GPU

mode were varied. For all clustered models, the ”conditional-full” option was used to pre-

vent errors with input sizes that are too small by introducing zero padding. The codebase

leveraged for this model did not allow for batch size increases, but these are not necessary for

this particular application as it targets real-time inference. All calculations were performed

with single-precision floating-point.
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For each size, model, cluster number, and power mode, the runtime was averaged over ten

model runs. GPU cache priming runs were not counted in the final results as it is assumed

that the GPU cache is either used frequently enough to limit this operation, or infrequently

enough that it could be primed prior to use. As a note, cache priming was required when

the model was updated, and took between five and ten seconds. Therefore, priming would

need to be planned for in practical settings.

4.1.2 Clustering

Using the same data set as the one collected for the previous section, but specifically

examines the effect of clustering and improved-clustering on the model. This subset of data

looks at three input sizes: 170kB, 920kB, and 1800kB across cluster sizes in GPU mode 2.

4.1.3 Power

Power numbers were collected on a subset of these runs using system calls during 100

evaluations with three sizes of data (small, medium, large) in each GPU mode with 50

clusters where applicable. Power measurements for the Xavier device are collected by using

direct system calls to the I2C power monitor, which returns values at mW-precision at a 1-

second sampling frequency. These measurements are of the CPU and GPU combined power

rail [17]. Unlike other platforms in the same GPU family (like the Xavier AGX), the CPU

and GPU power can not be measured independently.

4.2 Evaluation Platform

The software environment was reproduced from the Google Colab script developed by

the authors of [9] in an embedded Ubuntu 18.04 installation on the NVIDIA Xavier NX.

For this application, Python v3.6.12, PyTorch v1.7.0 for AArch64 (specifically compiled for

Jetson platforms) [18], fast-transformers v0.3.0, sounddevice v0.4.1 and the branch of fairseq

by Apoorv [27] were used.
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Note that audtorch is additionally required to load the model, and v0.6.4 was used. For

AArch64 architectures like this one, it was required that llvmlite be compiled from source to

support the audtorch dependency numba. The audtorch package additionally requires that

the sox package (v14.4.2.) is installed.

The NVIDIA Jetson Xavier NX is run in all of its default power modes, which have

power budgets of 10W and 15W. These modes additionally have varying numbers of active

CPU cores. All tests were run with single-precision floating-point values. With the Volta

architecture, that means that the Tensor Cores were unused.
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5.0 Results

This section contains data collected on the power and energy consumption, inference

time, and effect number of clusters on execution time. These results verify that this model

is feasible for space applications from an energy and latency perspective. Additionally, the

effect of attention clustering type and size is discussed to inform practical implementations.

All error bars presented represent a 95% confidence interval.

5.1 GPU Power Modes and Execution Time

The effect of the different GPU power modes is shown in Fig. 6. For this evaluation, the

number of clusters was set to 50 for the clustered models, and the times are shown for the

170kB, 920kB, and 1800kB data sizes. Note that there are error bars representing the 95%

confidence interval, but they are small. The first three power modes have similar execution

times, regardless of the input size. However, we also see that when the power budget is

reduced to 10W, the execution time of the model does increase, indicating that the GPU

is being throttled to meet the power constraint. Note that, in all cases, there are small

increases in the runtime as additional cores are brought online. These cores consume power,

reducing power in the budget available for the GPU.

5.2 GPU Power and Energy

The average power of the varying GPU modes is shown in Fig. 7. Note that the error

bars represent a 95% confidence interval. This graph shows that the power modes do strictly

dictate the power of the device. An interesting feature is that the improved-clustered model

does not require the full 15W to run in the higher power modes, which means it may not be

optimized well for this device. Smaller models are still able to use the full device power.
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Figure 6: Effect of GPU power modes on execution time for different data sizes.
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Figure 7: Effect of GPU power modes on power consumption.
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Figure 8: Effect of GPU power modes on energy per inference.
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Energy is shown in Fig. 8. These results were calculated using the average execution times

for each inference and the average power consumption during inference for three different

sizes of data. In terms of total energy per inference, the vanilla softmax model has a higher

energy cost than the other two models. The clustered model had the lowest inference energy,

specifically in the 10W power modes. Between the 10W modes, the energy is similar for all

models except the clustered model.

It is also worth noting that the smaller model require less energy per inference, but they

are also processing much less data. This can be overcome by normalizing energy consumed

by the size of the data.

The energy used per kB of input data is shown in Fig. 9. This chart only shows power

modes 0 and 3, with this scaling, there is little discernible difference between the first three

modes or the last two. While the energy efficiency of small and large data sizes is poor,

there does appear to be a decrease for medium sized data inputs. This phenomenon will be

explored in the discussion Sec. 6.

5.3 Linear Scaling

Due to system complexity, it was prudent to confirm that runtime linearly scales with

input size for this model, so the results are reported for the vanilla softmax, clustered, and

improved-clustered attention models with varied input sequence lengths. These results are

shown in Fig. 10. Note that sequence length is listed in time of input audio sample (assuming

a 16kHz sampling rate). Again, the error bars represent a 95% confidence interval. Within

expected input ranges, which were determined by the input size bounds in the LibriSpeech

dev-clean dataset, the execution time is linear with coefficients of determination exceeding

0.99. For improved-clustering, small input sequences have similar execution times as the

other models, but it becomes significantly slower once the input length reaches 10 seconds.

This is likely due to the increased overhead for calculating which of the k input keys will be

provided to the model.
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Figure 9: Energy used per kB of input data.
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Figure 10: Execution time compared to input sequence length.
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5.4 Cluster Number

The effect of number of clusters on relative performance is shown in Fig. 11. Note that

more clusters results in smaller clusters. This data was collected in the default GPU power

mode (2) with a small, medium, and large sample. For this hardware and model, these

optimizations only improve performance for very large audio samples. This makes sense as

clustering was intended for models with large input vectors. However, for even modest audio

samples, the vanilla softmax model is faster.

It is also worth noting that the improved-clustering model is much slower than the base

clustered model due to the additional computation of the relevant keys. This trend is also

consistent with the performance metrics provided by Katharopoulos et al. on RoBERTa

execution with regards to input size [9].
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Figure 11: Effect of number of clusters on relative performance (GPU power mode 2).
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6.0 Discussion

This section will analyze the data presented in 5. Here, the power and energy of the

system will be discussed, as well as the effect of clustering on these metrics. The linearity of

this system will also be discussed under various optimizations.

6.1 Execution Time

From a practical perspective, the model executes fast enough to be viable in an onboard

processing system. The largest input, roughly 28 seconds of audio, can be processed in

approximately 1.2 seconds. This sample is significantly longer than a standard query to a

chatbot, which is usually on the order of several seconds. Even input sample lengths up

to ten seconds execute in under half a second, which is significantly less than the floor for

latency of lunar round-trip communication with a ground server (2.25 seconds) [23]. While

it is assumed there is still unknown latency associated with other backend systems such as

intent parsing or database searches, this transcription engine is sufficiently quick for other

expensive computations to take place and still be advantageous over an earth-based system.

As shown in the results, execution time scaled roughly linearly to the input size. While

this isn’t strictly a requirement for a space-based platform, this does inform implementation

choices. There is no meaningful benefit from the perspective of execution time to restricting

the input length of the vector, meaning that the choice to split an input vector would likely

be for reasons related to power.

In this experiment, it was found that the vanilla softmax model was the best performing

model up to 18 second queries (where both vanilla and clustered models executed in about

0.7s). Realistically, queries to a chatbot are likely a single sentence, and therefore only a few

seconds long. Additionally, it is assumed that the system would be on only when needed,

similar to current ISS systems that employ push to talk (PTT) or voice operated switches

(VOX). Therefore, it is recommended that the vast majority of queries should be run on
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a vanilla model. If this system were to be left operating continuously for black-box audio

recording, longer audio segments would be produced, and it may be advantageous to use a

clustered model.

Overall, for short input audio segments (up to and including 8 seconds), improved-

clustered models executed faster than the clustered model. After this point, the improved-

clustered model executed slower than the clustered model by a wide margin. This behavior

confusing as the improved-clustered method is asymptotically always slower than the clus-

tered model. However, it may be that the improved-clustered model performs better than the

clustered model at this level because of how the cache is primed during these optimizations.

6.2 Power and Energy

From the energy perspective, the softmax vanilla model operated at roughly a joule more

than improved-clustered model, and two joules more than the clustered model when running

the largest model tolerated by memory capacity. This means that for large input sizes, the

clustered model is more desirable under energy constraints. However, when a model is run

on a small audio sample (170kB), the softmax vanilla model becomes the more desirable

model by margins of 0.8-1.1 J for 15W modes and 0.3-0.5 J for 10W modes.

Looking at energy normalized to the amount of data processed, both 170kB and 1800kB

input sizes perform worse than the 920kB size. This is likely a result of how memory is

accessed within this model. For small input sizes we observe memory-bound behavior, as

expected. Particularly for a high-latency device like a GPU, a small input results in under-

utilization of hardware compute resources, resulting in reduced overall efficiency. For large

input sizes, we see compute-bound behavior since there is more data than hardware can

consume concurrently. The size in-between represents a point where the system is neither

memory nor compute bound and is thus more efficient overall. Practically, there is limited

control over the length input data since it is variable depending on use case. Determining

the precise region for this behavior is considered out of scope for this research since input

sizes are constrained by system users and not set by the algorithm. However, it is still worth
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noting that particularly large input would sequences benefit from being split up. This type

of splitting would be relevant in cases where the speech-to-text engine is used to create long

transcripts and audio may be cached before processing.

6.3 Effect of Clustering

The clustering optimizations examined by this paper did not provide speedup unless

the input sequence was larger than practical for this application. For medium data sizes,

clustering is approximately as good as the softmax vanilla model with 50 and 100 clusters,

which indicates that it is the point at which the clustering algorithm becomes advantageous

over a softmax vanilla model. Improved-clustering, however, did not provide speedup in any

of the configurations for this platform. The inability to transfer transformer optimizations

to new algorithms and hardware is not an unreasonable find, and is consistent with other

preliminary research [13].

Despite the short-comings of clustering as a whole, the base fast-transformers optimiza-

tion does provide a fast enough implementation to warrant performing this calculation on-

board the spacecraft instead of sending it to a ground station for processing. Clustering

may be used if there are tight power margins at the cost of additional computation time.

Improved-clustering is not recommended.
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7.0 Conclusions

In this research, it is demonstrated that a base wav2vec2 model run on an embedded

GPU can achieve real-time inference (less than 1 s for inputs 2 − 28 s in length). This is a

critical find for adapting transcription for space applications as it demonstrates the feasibility

of adapting an open-source model intended for high-performance hardware to an embedded

scale. Additionally, it was shown that the clustered model was a favorable optimization

compared to a vanilla and improved-clustered model in terms of energy, but not runtime.

The best energy consumption was derived by running the device in its 10W modes (3 and

4) over its 15W power modes (0, 1, and 2) by several joules per inference. It is also advised

that these models be run with a small number of clusters (50 performed best in these tests).

For most expected inputs, the best runtime is achieved with the vanilla model over the

clustered model at the cost of optimal energy efficiency. Overall, it was found that wav2vec2

is amenable to the specific architecture of embedded GPUs in terms of speed and power

consumption without optimization.
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8.0 Future Work

Due to software constraints, authors were unable to leverage the Tensor Cores or DLAs

on the Xavier NX. Future work includes modifying the software models used to accept

automatic mixed precision. This would allow for utilization of the Tensor Cores and improve

execution time.
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