
Performance and Productivity Evaluation of HPC Communication Libraries

and Programming Models

by

Alex Johnson

B.S. in Electrical Engineering, University of Pittsburgh, 2019

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical and Computer Engineering

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Alex Johnson

It was defended on

April 1, 2021

and approved by

Ahmed Dallal, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Robert Kerestes, Ph.D., Assistant Professor, Department of Electrical and Computer

Engineering

Thesis Advisor: Alan D. George, Ph.D., Professor, Department Chair, R&H Mickle

Endowed Chair, Department of Electrical and Computer Engineering

ii

Copyright © by Alex Johnson

2021

iii

Performance and Productivity Evaluation of HPC Communication Libraries

and Programming Models

Alex Johnson, M.S.

University of Pittsburgh, 2021

To reach exascale performance, data centers must scale their systems, increasing the

number of nodes and equipping them with high-performance network interconnects. Orches-

tration of the communication between nodes serves as one of the most performance-critical

aspects of highly distributed app development. While the standard for HPC communication

is two-sided communication as represented by Message Passing Interface (MPI), the use of

two-sided communication may not effectively express certain communication patterns. It

may also fail to take advantage of key performance-critical features supported by state-of-

the-art interconnects such as remote direct memory access (RDMA). By contrast, one-sided

communication libraries such as MPI’s extensions for remote memory access (RMA) and

OpenSHMEM can provide developers with the added flexibility of one-sided communication

primitives and the capability to take advantage of RDMA. To investigate these approaches,

this research provides comparative performance and productivity analysis of two-sided MPI,

one-sided MPI and OpenSHMEM using kernels to simulate various communication and com-

putation patterns representative of HPC apps. Performance is measured in terms of latency

and achieved throughput using up to 320 nodes at the National Energy Research Scientific

Computing Center (NERSC) Cori and Pittsburgh Supercomputing Center (PSC) Bridges-2

systems. Additionally, the productivity of the communication interfaces is analyzed quan-

titatively and qualitatively. RMA-based APIs are found to show lower latency and efficient

scalability across the DAXPY, Cannon’s Algorithm Matrix Multiply, SUMMA Matrix Mul-

tiply and Integer Sort kernels. Similarly, the RMA-based libraries achieve the best through-

put, with OpenSHMEM achieving up to double the total concurrent data movement of MPI.

Conversely, MPI’s two-sided API produces the simplest programs in terms of lines of code

and API calls, but it generally shows the highest latency across the evaluated kernels. The

OpenSHMEM API achieves the highest performance for the four kernels and is simpler in

iv

terms of our productivity metrics than one-sided MPI for RMA-optimized codes. In contrast

to these findings, two-sided MPI remains a strong library for HPC communication due to its

robust set of API calls and optimized collective performance.

v

Table of Contents

Preface . x

1.0 Introduction . 1

2.0 Background . 4

2.1 One- and Two-Sided Communication Models 4

2.2 MPI . 5

2.3 MPI-RMA . 6

2.4 PGAS . 7

2.5 OpenSHMEM . 8

3.0 Related Research . 10

4.0 Evaluated Kernels . 12

4.1 DAXPY . 12

4.2 Cannon’s Algorithm Matrix Multiplication 13

4.3 SUMMA . 15

4.4 Integer Sort . 16

5.0 Experimentation . 19

5.1 Testbeds . 19

5.2 Approach . 20

6.0 Results . 22

6.1 DAXPY . 22

6.2 Cannon’s Algorithm Matrix Multiplication 26

6.3 SUMMA . 30

6.4 Integer Sort . 33

7.0 Discussion . 37

7.1 Performance . 37

7.2 NERSC and PSC Comparison . 39

7.3 Productivity . 40

vi

8.0 Conclusions . 42

9.0 Future Work . 43

Bibliography . 44

vii

List of Tables

1 API Calls Used in Kernel Implementations . 18

2 Summary of Productivity Metrics for Evaluated Kernels 23

viii

List of Figures

1 One- and two-sided communication . 4

2 Illustration of PGAS memory model . 7

3 DAXPY kernel latency weak scaling from 1 to 320 nodes on NERSC. 24

4 DAXPY throughtput weak scaling from 1 to 320 nodes on NERSC. 24

5 DAXPY kernel latency weak scaling from 1 to 320 nodes on PSC. 25

6 DAXPY throughtput weak scaling from 1 to 320 nodes on PSC. 25

7 Breakdown of API calls for the various DAXPY kernel implementations explored 26

8 Cannon’s MM latency weak scaling from 1 to 289 nodes on NERSC. 27

9 Cannon’s MM throughtput weak scaling from 1 to 289 nodes on NERSC. 27

10 Cannon’s MM latency weak scaling from 1 to 289 nodes on PSC. 28

11 Cannon’s MM throughtput weak scaling from 1 to 289 nodes on PSC. 28

12 Breakdown of API calls for the various Cannon’s MM kernel implementations

explored . 29

13 SUMMA latency weak scaling from 1 to 289 nodes on NERSC. 31

14 SUMMA throughtput weak scaling from 1 to 289 nodes on NERSC. 31

15 SUMMA latency weak scaling from 1 to 289 nodes on PSC. 32

16 SUMMA throughtput weak scaling from 1 to 289 nodes on PSC. 32

17 Breakdown of API calls for the various SUMMA kernel implementations explored 33

18 Integer Sort latency weak scaling from 1 to 320 nodes on NERSC. 34

19 Integer Sort throughput weak scaling from 1 to 320 nodes on NERSC. 34

20 Integer Sort latency weak scaling from 1 to 320 nodes on PSC. 35

21 Integer Sort throughput weak scaling from 1 to 320 nodes on PSC. 35

22 Breakdown of API calls for the various Integer Sort implementations explored . 36

ix

Preface

This research was supported by SHREC industry and agency members and by the IUCRC

Program of the National Science Foundation under Grant No. CNS-1738783.

This research used resources of the National Energy Research Scientific Computing Cen-

ter (NERSC), a U.S. Department of Energy Office of Science User Facility operated under

Contract No. DE-AC02-05CH11231.

This research also used the Extreme Science and Engineering Discovery Environment

(XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Specifically, it used the Bridges-2 system, which is supported by NSF award number ACI-

1445606, at the Pittsburgh Supercomputing Center (PSC).

I would like to thank the University of Pittsburgh Center for Research Computing, Na-

tional Energy Research Scientific Computing Center and Pittsburgh Supercomputing Center

for their role in enabling this research and for their resources for debugging and configuring

their systems.

I would also like to thank Jeff Hammond at NVIDIA for his guidance when I began

working with SHMEM and one-sided MPI routines.

Finally, I would like to thank all at NSF SHREC who have helped support and review

this work.

x

1.0 Introduction

As data centers continue to approach exascale performance, there is a growing emphasis

on parallel-communication languages and libraries in an effort to harness high-performance

computing (HPC) resources effectively. The first exascale system in the world, Frontier,

scheduled to be completed in 2021, will deliver over 1.5 exaflops and feature tens of thou-

sands of compute nodes [1]. Additionally, modern supercomputers are moving towards het-

erogeneous architectures, leveraging massively parallel hardware such as GPUs. Nonetheless,

many apps require computational capability that is far beyond that of a single node, often

employing over 1000 nodes [2] [3] [4]. The data center itself is a parallel architecture, with

many nodes connected through complex network fabrics. Additionally, as these supercom-

puting centers scale upwards in number of nodes, their associated energy footprint matches

that increase. For example, the Frontier system is projected to consume 30 megawatts

[1]. These powerful systems provide new possibilities due to their computational potential,

but also introduce novel challenges in terms of efficiency, reliability and programmability.

Systems of this magnitude are difficult to efficiently program due to complex coordination

between nodes, creating a significant challenge for app designers.

A major consideration for efficient execution on supercomputer resources is communica-

tion between nodes. For instance, large simulation apps fundamentally have memory and

computational requirements that go beyond a single node, so having functionality to move

data efficiently over a network has become necessary for many apps. Just as the com-

putational capabilities of HPC nodes have improved, network interconnects such as Cray

Slingshot and NDR InfiniBand are improving, supporting throughputs of over 200 Gb/s

while also providing other novel features to enable more communication acceleration [5] [6].

One such feature is Remote Direct Memory Access (RDMA), which enables a node to access

remote memory over the network without interrupting the remote CPU. This functionality

allows for remote memory access (RMA) to occur without the need for separate runtime

threads on the remote CPU to manage incoming communication actions, thereby freeing

computational resources of the remote CPU.

1

High-level programming libraries enable rapid, simplified development of high-performance

distributed HPC programs. Although low-level application program interfaces (APIs) like

InfiniBand Verbs [7] and Distributed Memory Application (DMAPP) [8] expose highly ex-

tensible networking capabilities, most app developers use higher-level libraries such as MPI

for communication on HPC systems. Higher-level libraries still allow for flexibility in com-

munication patterns, but abstract away tedious tasks such as setting up socket connections,

packing message payloads, and managing communication channels. These libraries also ex-

pose methods for performing collective routines such as broadcast() or scatter() which must

be programmed manually in low-level APIs. A productive HPC library can provide high-level

abstractions while also achieving high performance, potentially with the usage of modern

features like RDMA and network-accelerated collective routines [9]. There is a trade-off be-

tween high- and low-level libraries, as abstraction can result in performance penalties, while

the flexibility provided by lower-level APIs may increase the probability of hard-to-resolve

bugs being introduced into code and hinder development.

While Message Passing Interface (MPI) has been the de facto communication library for

HPC apps, other libraries and languages use new approaches, features, and communication

models. MPI’s primary model for communication is two-sided in nature, meaning a commu-

nication call of send() has a corresponding recv() call. Newer additions to the MPI standard

add a secondary API for one-sided communication calls such as put() and get(). One-sided

communication is synonymous to RMA; therefore it allows programmers to leverage RDMA

on modern HPC interconnects. The RMA interface exposed by modern MPI will be referred

to as MPI-RMA in this paper and can be thought of as its own API. SHMEM is another

communication model implemented as a library and standardized as the OpenSHMEM spec-

ification. OpenSHMEM leverages a partitioned global address space (PGAS) memory model

and also uses RMA as its primary communication method. It is crucial to investigate these

newer APIs for potential productivity and performance benefits. Much of MPI’s success has

come from its relatively simple interface, so if a new communication paradigm is shown to

provide better overall performance but at a significant cost in productivity, it may not be

worth developers’ time to learn. On the other hand, in scenarios when performance is critical,

developers may choose the most performant API regardless of programming overhead.

2

To evaluate HPC communication libraries in terms of productivity and performance,

this research investigates a set of distributed kernels containing a variety of communication

patterns, a common practice as shown in [10] [11] [12]. Different kernels can stress specific

aspects of a system, allowing for more granular performance insights to be understood. The

communication patterns found in parallel implementations of various computational kernels

vary widely, and can be representative of common patterns found in larger, supercomputer-

scale apps. Using a controlled study with optimized implementations for all libraries and

communication styles, this work studies a set of kernels for useful insights on an API’s

pattern-specific performance and overall programmability. The goals of this research are

to provide an evaluation of MPI, MPI-RMA, and OpenSHMEM in terms of weak scaling

performance as well as programmability. DAXPY, Cannon’s Algorithm Matrix Multipli-

cation, SUMMA and Integer Sort kernels are benchmarked using up to 320 nodes on two

supercomputing centers, NERSC Cori and PSC Bridges-2, for comprehensive performance

insights.

3

2.0 Background

The libraries explored in this research expose different communication primitives and

potential for optimizations. This section first explains one- and two-sided communication,

as understanding these core behaviors is crucial to the APIs and optimizations explored in

this research. Subsequently, each API will be explained by detailing memory models and

communication primitives.

2.1 One- and Two-Sided Communication Models

Figure 1: One- and two-sided communication

It is first important to distinguish between the two major communication paradigms

explored in this research: one- and two-sided. Two-sided communication, also known as

message passing, is a cooperative operation between both the receiving and sending processes.

This paradigm is realized with the following communication primitives: send() and recv().

4

Fig. 1 shows a send()/recv() pair. Both nodes are involved in this communication as they

must call the necessary primitives, both in the written code and at runtime. One-sided

communication, commonly referred to as RMA, involves only one process, the caller of the

communication routine. The primitives for this paradigm are get() and put(). Fig. 1 shows

an example of a get() operation. On modern interconnects, this operation leverages RDMA,

meaning Node 1’s computation will be completely uninterrupted. While this explanation may

present one-sided communication as being superior to two-sided routines due to decreased

overhead, a common pitfall when using RMA is the need for added synchronization. In

Fig. 1, if the data being accessed with the get() call is dependent on some condition or

computation having occurred, nodes 0 and 1 must explicitly synchronize to ensure that

the data being transferred is valid. On the other hand, the send()/recv() model expresses

this elegantly as the pair of communication calls acts as a form of synchronization between

processors at runtime.

2.2 MPI

MPI has been the de facto standard for HPC communication on distributed systems. As

its name implies, the core communication mechanism of MPI is message passing. Regard-

less of if the underlying hardware is a Symmetric Multiprocessor (SMP), the programming

model in MPI is that of a distributed memory architecture [13]. This programming model’s

prevalence in MPI stems from its origins in the early 1990s when multiprocessors were not as

widely adopted. This model can be thought of as a trade-off; Abstracting away the locality of

the data simplifies the programming model, but obfuscates optimizations that can be made

for SMPs. Portability has been a driving goal of the specification since it was introduced,

and this can be thought of as a key reason for its broad success. Along with point-to-point

interfaces, MPI provides an extensive range of collective communication operations such as

MPI Bcast(), MPI Gather() and MPI Alltoall().

5

2.3 MPI-RMA

One-sided communication functionality was added to MPI as part of MPI-2 in 1997.

Operations that can be performed using two-sided communication can also be performed

using one-sided communication. As such, this research treats the RMA extensions to MPI as

a separate API, MPI-RMA. The core RMA operations for this API extension are MPI Get()

and MPI Put().

Listing 1: Windowed memory management in MPI-RMA.

#include <mpi . h>
int main ()
{

// i n i t code
int ∗ x ; // po in t e r to memory
MPI Win winX ; // window o b j e c t

MPI Alloc mem(s izeof (int) , MPI INFO NULL, &x) ;
MPI Win create (x , s izeof (int) , MPI INFO NULL, &winX) ;

// communication/ computation code

MPI Win free(&winX) ;
MPI Free mem(x) ;

// f i n a l i z e code
}

Because the calling process must have knowledge of memory addresses on the target

process, the API must provide some functionality for distributing addresses. MPI-RMA uses

the concept of memory “windows” for distributing transfer parameters at runtime. Window

creation is collective among all processors, distributing memory location information. Listing

1 shows sample code of MPI-RMA window set up. First, an MPI win object must be

created. The MPI specification recommends users allocate memory that is being exposed

in a window with the MPI Alloc mem() function [13]. Specially allocated memory can

be handled by the runtime library, which can attempt to establish memory at symmetric

6

offsets, simplifying address translation. This allocated memory can then be exposed to all

processors with the MPI Win create() function, which takes the allocated memory and

MPI Win object as parameters. Because one-sided communication removes the implicit

synchronization provided by a send()/recv() pair, more explicit synchronization calls must

be made in the program such as MPI Win fence().

2.4 PGAS

Figure 2: Illustration of PGAS memory model

In the PGAS programming model, a process is denoted as a Processing Element (PE).

A PE can be a node in a distributed system or a logical core in an SMP system. This

model aims to provide better programmability with the abstraction of logically partitioned

data. In this system, data can be logically shared, extending the model of an SMP to a

distributed system. Fig. 2 illustrates the PGAS memory model, showing symmetric and

private memory regions. Private memory can be allocated in a PE-dependent manner, but

symmetric memory must be allocated in a manner that creates symmetric size and offsets for

7

all PEs. Data must still be explicitly communicated between PEs at the app level, therefore

behavior is not actually the same as an SMP. As processors have knowledge of one another

through the PGAS abstraction, one-sided communication can be exploited.

2.5 OpenSHMEM

PGAS languages such as Unified Parallel C (UPC) and Chapel exist, but OpenSH-

MEM—similar to MPI—is implemented as a library, currently with bindings for Fortran

and C. SHMEM, or “shared memory” has existed since 1993 as a parallel programming

model, first beginning as Cray-SHMEM [14] [15] [16]. A growing effort and body of lit-

erature around the OpenSHMEM standard shows its potential as an alternative to MPI

for some apps due to superior performance on large clusters [17] [11]. While MPI’s RMA

routines allow for one-sided communication, developers do not benefit from an abstraction

such as PGAS, making apps harder to develop and debug. The combination of one-sided

routines and a PGAS memory model makes investigating OpenSHMEM worthwhile as there

is potential for both productivity and performance gains.

Listing 2: Symmetric memory management in OpenSHMEM.

#include <shmem . h>
int main ()
{

// i n i t code
stat ic int y ; // symmetric memory
int ∗ x = shmem malloc (s izeof (int)) ;

// communication/ computation code

shmem free (x) ;

// f i n a l i z e code
}

The abstraction provided by OpenSHMEM is the “symmetric heap.” Listing 2 illustrates

the basic symmetric memory management seen in an OpenSHMEM program. Memory can

8

be allocated from this region of memory using shmem malloc()/shmem free() similar to

traditional heap memory management in C. Memory can also be assigned to the symmetric

heap using the static keyword for a variable declaration. Communication can only occur to

or from a symmetric region because RMA operations require the address of remote memory

in the symmetric heap. OpenSHMEM implementations leverage the symmetric memory ab-

straction for remote address calculation and shmem malloc() routines can be optimized

by establishing memory at symmetric offsets, simplifying address translation [16]. The

primary one-sided operations are shmem get() and shmem put(). While standard RMA

operations in OpenSHMEM and MPI are blocking at the calling process, OpenSHMEM

also provides non-blocking RMA operations in shmem get nbi() and shmem put nbi(). The

API also exposes collective operations similar to those found in MPI. Examples of such op-

erations include shmem broadcast() and shmem collect() which mirror MPI Bcast() and

MPI Reduce(), respectively.

9

3.0 Related Research

Communication libraries are consistently evaluated for their performance on a variety of

apps. Often performance evaluations are done within a single API on different interconnects

or implementations. For example, Hjelm [18] evaluates the overall performance of MPI-RMA

with the OpenMPI library, while Jithin et al. [11] characterize OpenSHMEM scalability on

InfiniBand systems. These works often use artificial microbenchmarks [19] or computational

kernels for performance characterization [10] [11].

There is not significant conclusive evidence indicating a specific communication API’s

superiority in terms of performance, as various popular architectures, library implementa-

tions, and apps would need to be analyzed. Existing research comparing the APIs explored

in this research also show inconsistent results. In [10], OpenSHMEM, MPI, and MPI-RMA

are tested by creating code implementations of the NAS Parallel Benchmarks. OpenSH-

MEM performs the worst, primarily due to unoptimized collective operations in the library

implementation tested. Conversely, Baker et al. [17] evaluate MPI-RMA and OpenSH-

MEM on the Smith-Waterman algorithm for genome sequence alignment, showcasing that

the OpenSHMEM-based app executes over 2× faster than MPI at 128 nodes. This re-

search does not aim to provide conclusive evidence as to which API is the most performant.

Rather, it attempts to augment the existing performance research while also providing novel

productivity insights.

Productivity is a nebulous and subjective concept, making it challenging to effectively

quantify. Chamberlain et al. [20] detail the Chapel parallel programming language and

discuss it and other parallel tools’ programmability, but do not aim to quantify any of these

concepts. Other research has aimed to compare MPI and OpenMP, employing qualitative

discussion and detailed counts of API-specific lines of code (LOC) [21]. This measurement

of LOC is the most common metric for productivity of high-performance tools, middleware,

languages and libraries.

Wang et al. [22] similarly use LOC as their core productivity metric along with measure-

ments of development time. This research does not measure development time, as it varies

10

significantly from developer to developer. For example, because many developers in the HPC

community are familiar with MPI, they will likely be able to write and test MPI-based code

more efficiently than OpenSHMEM code. This scenario may result in a large reduction in

development times, but would not necessarily accurately reflect a difference in productiv-

ity, which aims to capture inherent “ease-of-development.” This research aims to use an

approach similar to [21], by characterizing APIs using kernel performance while extending

their quantitative productivity analysis by breaking code down in a more granular fashion.

11

4.0 Evaluated Kernels

The distributed kernels used in this research, their communication-computation patterns

and the specifics of their various implementations are discussed in this section. Each of the

four kernels stress a different communication-computation pattern commonly found in large

distributed apps. Table I details the API calls used for each library, breaking them down by

their core types: synchronization, communication, allocation, rank-query.

4.1 DAXPY

The DAXPY kernel is a simple Basic Linear Algebra Subprogram (BLAS) kernel, typi-

cally found in libraries like Eigen or OpenBLAS [23] [24]. It consists of a scatter()/gather()

pattern with intermediate local computation, which is a common idiom in distributed pro-

grams. The kernel is based on one-dimensional arrays representing vectors and is given by

Eq. 4.1. The data originates on the MASTER process (i.e. PE of rank 0), and is distributed

to all other processes using a scatter() operation. Local portions of the vector are computed

using Eq. 4.1 after which the vector is reassembled on the MASTER process with a gather()

operation.

~y = α · ~x+ ~y (4.1)

The implementations investigated are:

• MPI

• MPI-RMA

• OpenSHMEM synchronous (sync)

• OpenSHMEM asynchronous (async)

The MPI implementation uses MPI Scatter() and MPI Gather() to distribute and re-

assemble the vector. The MPI-RMA implementation usesMPI Get() andMPI Accumulate().

12

The OpenSHMEM synchronous implementation uses shmem get() and shmem put(). The

OpenSHMEM asynchronous implementation is an additional optimized version of the kernel

using the OpenSHMEM API, and uses shmem get nbi(), shmem put() and the shmem quiet()

synchronization call. This implementation attempts to use non-blocking RMA operations to

compute the local vectors in a pipelined manner. The specific optimization is unique to the

DAXPY kernel and is not explored for the other kernels.

4.2 Cannon’s Algorithm Matrix Multiplication

The Cannon’s algorithm Matrix Multiplication (Cannon’s MM) kernel is a dense matrix

multiplication algorithm specifically for
√
N ×
√
N meshes of nodes or processors. The orig-

inal algorithm given in [25] assigns individual matrix elements to each process and therefore

is severely limited in the size of matrices that can be computed. However, the algorithm can

be expanded to assign submatrices to each process as shown by Algorithm 1.

The core pattern found in this kernel is structured peer-to-peer communication, which

is extremely common in simulation workloads which use 2D decompositions on virtual grids

[2] [3] [11]. The algorithm computes the resultant matrix using submatrices of size M/
√
N×

M/
√
N . As seen in Algorithm 1, the submatrices are first distributed among the PEs on

the 2D mesh with an initial skew. Subsequently, the submatrices of the resultant matrix, C,

are computed as the multiplicand submatrices, A and B, are shifted between the PEs along

the grid.

13

Algorithm 1: Cannon’s Matrix Multiplication for M x M matrices with N PEs

Data: Two input M x M Matrices, A and B

Result: M x M Resultant Matrix, C

Map each processor of rank [0, N-1] to a 2D virtual address tuple (x,y):

x := rank mod
√
N ;

y := rank/
√
N ;

Initialization: Skew Matrices

for x← 0 to N-1 do

Left circular shift submatrix B(x,y) by x, so it is assigned submatrix A(x, (y+x)

mod N);

end

for y ← 0 to N-1 do

Upward circular shift submatrix B(x,y) by y, so it is assigned submatrix B((y+x)

mod N, y);

end

Computation & Communication

for k ← 0 to N do

for i← 0 to M - 1 do

for j ← 0 to M - 1 do

C[i,j] = C[i,j] + A[i,j] * B[i,i];

end

end

Left circular shift each row of A by 1, so submatrix A(x,y) is assigned submatrix

A(x, (y+1) mod N);

Upward circular shift each column of B by 1, so submatrix B(x,y) is assigned

submatrix B((x+1) mod N, y);

end

14

The implementations investigated are:

• MPI

• MPI-RMA

• OpenSHMEM

The MPI implementation uses MPI send recv replace() to shift the submatrices between

PEs, and uses MPI Scatter() and MPI Gather() to distribute and collect the initial and

final matrices, respectively. The MPI-RMA implementation uses MPI Put() to shift the

submatrices between PEs, and uses MPI Scatter() and MPI Gather() to distribute and

collect the initial and final matrices, respectively. The OpenSHMEM implementation uses

shmem put() to shift the submatrices between PEs, and uses custom RMA-based scatter()

and collect() operations to distribute and collect the initial and final matrices, respectively.

The RMA-based implementations (MPI-RMA and OpenSHMEM) use alternating buffers

to hold submatrices of A and B, allowing matrices to be passed to the next PE without

overwriting the currently used one. The MPI implementation avoids this hazard altogether

due to its usage of MPI send recv replace(), which guarantees that a matrix will not be

overwritten at the potential penalty of added idle time.

4.3 SUMMA

The Scalable Universal Matrix Multiplication Algorithm (SUMMA) kernel is a dense

matrix multiplication algorithm for arbitrarily sized 2D meshes of nodes or processors. Sim-

ilar to Cannon’s MM, SUMMA uses a shift-based algorithm on the 2D grid, but instead

of peer-to-peer shifts, matrix rows and columns are partially broadcasted [26]. This kernel

therefore simulates a partial broadcast and reduce communication pattern using a 2D grid

processor decomposition. SUMMA and its communication pattern are chosen because they

simulate a common pattern found in apps like ray tracing and molecular dynamics [27] [2].

The algorithm is also chosen because partial broadcasts are not natively supported in cur-

rent OpenSHMEM libraries, potentially requiring significant effort to implement which may

15

demonstrate the maturity of the MPI API. For more information regarding this algorithm,

the reader is referred to [26].

The implementations investigated are:

• MPI

• MPI-RMA

• OpenSHMEM

The MPI-based versions of the code take advantage of MPI’s native support for creat-

ing custom ”communicator” groups, whereby the programmer is able to create groups of

processors to perform collective operations on. The default behavior for collective op-

erations in MPI is that they operate on all processors using the default communicator,

MPI COMM WORLD. The MPI Comm split() API call is used to divide communi-

cators for both MPI version of the kernel, while a custom group-based broadcast solution

needed to be written for the OpenSHMEM version. The MPI and OpenSHMEM imple-

mentations use their respective scatter() and gather() to distribute and collect the initial

and final matrices. For communication of the row and column submatrices, the MPI-based

codes use the MPI Bcast() call, while the OpenSHMEM version uses a custom broadcast()

solution using RMA put() calls.

4.4 Integer Sort

The integer sort kernel is based off of the Integer Sort (IS) kernel found in the NAS

Parallel Benchmarks [28]. The goal is to sort N keys in parallel, using a pseudorandom

number generator to generate the keys within a specified range to ensure the benchmark is

repeatable. This work creates implementations based on the existing work of [29] and [30].

The sorting method used is a distributed bucket sort. Each PE receives a segment of the

unsorted integers and places its given elements into buckets. Using an all-to-all pattern, the

buckets are distributed to the proper PE which will then perform a local sort. For further

information on the kernel, the reader is referred to [28].

16

The implementations investigated are:

• MPI

• MPI-RMA

• OpenSHMEM

The MPI implementation uses MPI All to All() and MPI All to Allv() to exchange bucket

sizes and buckets, respectively. Both RMA-based implementations use a loop structure

with put() operations to realize an all-to-all operation. The execution stages of all kernel

implementations are separated by their respective barrier() API calls. This structure ensures

that the IS kernel primarily compares the library-based all-to-all API call of MPI to RMA-

based all-to-all operations created using MPI-RMA and OpenSHMEM.

17

T
ab

le
1:

A
P

I
C

al
ls

U
se

d
in

K
er

n
el

Im
p
le

m
en

ta
ti

on
s

S
y
n
ch

ro
n
iz
a
ti
o
n

C
o
m
m
u
n
ic
a
ti
o
n

A
ll
o
ca

ti
o
n

R
a
n
k
-Q

u
e
ry

M
P
I

M
P
I
B
a
rr
ie
r(

)
M
P
I
S
ca
tt
er

()
,

M
P
I
G
a
th
er

()
,

M
P
I
se
n
d
re
cv

re
pl
a
ce

()
,

M
P
I
A
ll
to
a
ll

()
,

M
P
I
A
ll
to
a
ll
v
()

M
P
I
C
om

m
si
ze

()
,

M
P
I
C
om

m
ra
n
k
()

,

M
P
I
C
a
rt
cr
ea
te

()
,

M
P
I
C
a
rt
sh
if
t(

),

M
P
I
C
om

m
sp
li
t(

)

M
P
I-
R
M

A
M
P
I
B
a
rr
ie
r(

),

M
P
I
W
in
f
en
ce

()

M
P
I
P
u
t(

),
M
P
I
G
et

()
,

M
P
I
A
cc
u
m
u
la
te

()

M
P
I
A
ll
oc
m
em

()
,

M
P
I
W
in
cr
ea
te

,

M
P
I
F
re
e
m
em

()
,

M
P
I
W
in
f
re
e(

)

M
P
I
C
om

m
si
ze

()
,

M
P
I
C
om

m
ra
n
k
()

,

M
P
I
C
a
rt
cr
ea
te

()
,

M
P
I
C
a
rt
sh
if
t(

)

O
p
e
n
S
H
M

E
M

sh
m
em

ba
rr
ie
r
a
ll

()
,

sh
m
em

qu
ie
t(

)

sh
m
em

pu
t(

),

sh
m
em

pu
t
n
bi

()
,

sh
m
em

g
et

()
,

sh
m
em

co
ll
ec
t(

),

sh
m
em

br
oa
d
ca
st

()

sh
m
em

m
a
ll
oc

()
,

sh
m
em

f
re
e(

)

sh
m
em

n
pe
s(

),

sh
m
em

m
y
pe

()

18

5.0 Experimentation

In this section, the experimental setup is discussed. First, the two supercomputing

centers used to evaluate kernel performance are detailed. Next, the specific metrics and

methodologies for data collection are discussed. This work investigates performance on

two different HPC systems that use differing compute hardware, interconnects and software

libraries. The goal of using multiple systems is to ensure that measured performance insights

can generalize to many platforms. Performance trends observed on a single system may only

reflect a specific hardware configuration or library implementation like the Cray libraries of

the OpenMPI suite.

Cray-MPI and OpenSHMEMX use different underlying low-level APIs for their RMA

with Cray-MPI MPICH [31] using Generic Network Interface (uGNI) and OpenSHMEMX

using DMAPP [8], which can potentially explain performance discrepancies between the two

RMA APIs.

5.1 Testbeds

The first testbed is the National Energy Research Computing Center (NERSC) Cori

supercomputer system. This system consists of 2,388 dual-socket nodes with 32-core, 2.3

GHz Intel Xeon E5-2698 v3 processors and 128 GB of DDR3 memory [32]. The nodes are

connected by the Cray Aries interconnect with a dragonfly network topology with native sup-

port for RDMA [33]. The default toolchain for this system, which uses the Intel 19.0.3.199

compiler, is used for all compilation with -O3 flags. The MPI implementation used is Cray-

MPICH 7.1.1.0, which is optimized for performance on the given hardware [31]. The Open-

SHMEM implementation used for this research is Cray-OpenSHMEMX 9.1.0, which again is

optimized for the platform and uses the DMAPP library for its underlying RMA operations

[34].

19

The second testbed is the Pittsburgh Supercomputing Center (PSC) Bridges-2 super-

computer system. This system consists of 488 dual-socket nodes with 64-core, 3.40 GHz

AMD EPYC 7742 processors and 256 GB of DDR4 memory. The nodes are connected using

HDR-200 InfiniBand interconnects with a fat tree network topology with native support for

RDMA and SHARP [35]. The MPI and OpenSHMEM implementation used on this system

are part of the OpenMPI 4.0.5 library package. The compiler toolchain used on this system

is GCC 10.0.5 with -O3 flags enabled. OpenMPI is specifically configured for InfiniBand sys-

tems and is able to use Mellanox SHARP to accelerate collective operations such as reduce()

and broadcast(). SHARP is enabled for all tests on PSC.

A notable difference between the communication libraries on the NERSC tesbed and

those on the PSC testbed is that the NERSC libraries are completely separate from one

another in terms of their underlying transport mechanisms. On NERSC, Cray-MPICH uses

Generic Network Interface and OpenSHMEMX uses DMAPP for their underlying commu-

nication. On the other hand, on PSC, both SHMEM and MPI functionality fall under

OpenMPI and use Unified Communication X (UCX) for their underlying transport handling

[31] [34] [36].

5.2 Approach

For each test, five “burn in” iterations were performed, then the latency was averaged

over 50 iterations. This setup was used for all node and problem size configurations shown

in the Results section. This research measures weak scalability for each kernel. When

measuring weak scaling, the total problem size is scaled correspondingly with the number of

processes. This metric is chosen because it shows how well an app can exploit the increasing

resources at hand, making it valuable when inferring performance for large-scale apps found

on exascale systems. Tests are performed with up to 320 nodes on both testbed systems.

Throughput of each kernel is calculated using Eq. 5.1. This metric encapsulates the

kernel and its API-specific implementation’s ability to concurrently process and communicate

20

large amounts of data. Throughput can be thought of as another view of a kernel’s scaling

ability, as it also encapsulates latency. As with weak scaling latency, data for this metric is

collected for up to 320 nodes on both systems.

Throughput (Bytes/s) =
Total Data Transferred (Bytes)

Latency (s)
(5.1)

When measuring LOC for productivity, comments, blank lines, and debug print state-

ments are ignored. MPI and OpenSHMEM share similar init() and finalize() library calls for

runtime startup and cleanup, respectively. These calls occur in identical locations within the

code and have identical functionality. As the calls are identical between libraries and do not

fit within the categories of synchronization, communication, or allocation, they are similarly

ignored for API call counting. Library calls to query the number of active processors or

current rank are also counted in the rank-query category, as other querying operations such

as MPI Cart shift() are only used in the matrix multiplication kernels.

21

6.0 Results

The main performance metrics for this research are weak scaling in terms of latency and

throughput. Fig. 3, 8, 13 and 18 show latency weak scaling for the four kernels from 1 to

320 nodes on the NERSC Cori system. Fig. 5, 10, 15 and 20 show latency weak scaling for

the four kernels from 1 to 320 nodes on the PSC Bridges-2 system. Fig. 4, 9, 14 and 19

show throughput weak scaling for the four kernels from 1 to 320 nodes on the NERSC Cori

system. Fig. 6 11, 16 and 21 show throughput weak scaling for the four kernels from 1 to

320 nodes on the PSC Bridges-2 system.

Productivity is measured in terms of LOC and API calls broken down into four cate-

gories: synchronization, communication, allocation, and rank-query. Table II summarizes

the productivity results with total LOC and total API calls for each kernel. Fig. 7, 12, 17 and

22 break down the API calls for the DAXPY, Cannon’s Algorithm Matrix Multiplication,

and Integer Sort kernels, respectively.

6.1 DAXPY

The DAXPY kernel is evaluated with a per-PE vector size of 1,000,000 double-precision

values (8 MB). Two vectors, ~x and ~y, must be distributed to each processor with a result

vector being returned, making the total message size for each PE 24 MB. Both OpenSHMEM-

based kernels show the most stable scaling up to 320 nodes as can be seen in Fig. 3 and 5

on NERSC and PSC respectively.

Between 1 and 64 nodes, the OpenSHMEM async implementation remains over 15%

faster than MPI-RMA and over 30% faster than MPI in terms of runtime. At 320 nodes, the

OpenSHMEM synchronous implementation has over 1%, 13% and 21% lower latency than

the OpenSHMEM asynchronous, MPI-RMA, and MPI implementations, respectively. This

22

region is also where the kernel achieves its highest throughput as can be seen in Fig 4 and Fig.

6 where the SHMEM-based code is able to achieve up to 46% and 105% higher throughput

than the MPI-based solution on NERSC and PSC, respectively.

Fig. 7 breaks down the API calls used by type. The MPI version of the code is the

simplest in terms of LOC and API calls, with all other implementations using over 2× more

API calls to realize the kernel. The MPI version uses no allocation library calls, while the

OpenSHMEM and MPI-RMA versions use 6 and 10, respectively.

Table 2: Summary of Productivity Metrics for Evaluated Kernels

Kernel Version Lines of Code Total API Calls

DAXPY

MPI 259 7

MPI-RMA 282 22

OpenSHMEM sync 262 12

OpenSHMEM async 269 14

Cannon’s MatMult

MPI 405 12

MPI-RMA 453 40

OpenSHMEM 559 28

SUMMA

MPI 353 15

MPI-RMA 392 44

OpenSHMEM 602 28

Integer Sort

MPI 1045 8

MPI-RMA 1215 16

OpenSHMEM 1029 11

23

Figure 3: DAXPY kernel latency weak scaling from 1 to 320 nodes on NERSC.

Figure 4: DAXPY throughtput weak scaling from 1 to 320 nodes on NERSC.

24

Figure 5: DAXPY kernel latency weak scaling from 1 to 320 nodes on PSC.

Figure 6: DAXPY throughtput weak scaling from 1 to 320 nodes on PSC.

25

Figure 7: Breakdown of API calls for the various DAXPY kernel implementations explored

6.2 Cannon’s Algorithm Matrix Multiplication

The Cannon’s Algorithm Matrix Multiplication kernel is evaluated with a per-PE sub-

matrix size of 160,000 double-precision values (1.28 MB). The OpenSHMEM-based kernel

has the lowest latency for nearly all node configurations up to 289 PEs on both systems

At 289 nodes on NERSC, the OpenSHMEM-based kernel has over 8% lower latency than

the MPI-RMA-based kernel and over 13% lower latency than the MPI-based kernel. At

289 nodes on PSC, the MPI-RMA kernel is the fastest with 38% lower latency than the

MPI-based kernel and 14% lower latency than the OpenSHMEM-based kernel. In terms of

throughput, implementations on both systems remain within 25% of each other for all node

configurations.

26

Figure 8: Cannon’s MM latency weak scaling from 1 to 289 nodes on NERSC.

Figure 9: Cannon’s MM throughtput weak scaling from 1 to 289 nodes on NERSC.

27

Figure 10: Cannon’s MM latency weak scaling from 1 to 289 nodes on PSC.

Figure 11: Cannon’s MM throughtput weak scaling from 1 to 289 nodes on PSC.

28

Figure 12: Breakdown of API calls for the various Cannon’s MM kernel implementations

explored

The API breakdown for the Cannon’s MM kernel can be seen in Fig. 12. The OpenSHMEM-

based kernel uses over 150 more lines of code than the MPI-based kernel, primarily due to

additional utility code required to translate 1D PE addressing to a 2D virtual grid. This

functionality is currently directly supported by utility functions in MPI, while it is not in

OpenSHMEM 1.4. The two additional rank -type API calls found in the MPI- and MPI-

RMA-based kernels account for these utility functions, effectively saving over 150 lines of

code for this kernel.

29

6.3 SUMMA

The SUMMA kernel is evaluated with a per-PE submatrix size of 160,000 double-

precision values (1.28 MB) to match the Cannon’s MM kernel. The OpenSHMEM-based

kernel has the highest latency for all node configurations on NERSC but the lowest latency

for all node configurations on PSC. The OpenSHMEM-based kernel uses over 235 more lines

of code than the MPI-based kernel from additional utility code required to translate 1D PE

addressing to a 2D virtual grid and to execute group-based collective operations using RMA

primitives.

Fig. 17 breaks down the API calls used by the SUMMA kernel. Similar to results found

for the Cannon’s MM kernel, 2D virtual PE addressing is currently directly supported by

utility functions in MPI, while it is not in OpenSHMEM 1.4. The three additional rank -

type API calls found in the MPI- and MPI-RMA-based kernels account for these utility

functions. Additionally, this kernel’s partial broadcast needed to be implemented by hand

for the OpenSHMEM version of the code. These two shortcomings of the OpenSHMEM API

contributed to a 70% increase in LOC over MPI, but led to superior performance on PSC.

30

Figure 13: SUMMA latency weak scaling from 1 to 289 nodes on NERSC.

Figure 14: SUMMA throughtput weak scaling from 1 to 289 nodes on NERSC.

31

Figure 15: SUMMA latency weak scaling from 1 to 289 nodes on PSC.

Figure 16: SUMMA throughtput weak scaling from 1 to 289 nodes on PSC.

32

Figure 17: Breakdown of API calls for the various SUMMA kernel implementations explored

6.4 Integer Sort

The Integer Sort kernel is evaluated with a per-PE key count of 228 32-bit integer values.

The keys are initialized on each PE and only bucket information is communicated between

PEs with a variable message size based on the random distribution of values. This kernel

shows the smallest performance differences between APIs, as they are all within 5% of each

other in terms of execution time and throughput for both NERSC and PSC.

Table II summarizes the productivity metrics for the Integer Sort kernel while Fig. 22

breaks down the API calls used by type. The OpenSHMEM version uses the least LOC

with 1029. The MPI version uses the least API calls with 8. The additional allocation calls

used by the MPI-RMA implementation come from RMA window object creation and freeing,

which does not need to occur in MPI or OpenSHMEM.

33

Figure 18: Integer Sort latency weak scaling from 1 to 320 nodes on NERSC.

Figure 19: Integer Sort throughput weak scaling from 1 to 320 nodes on NERSC.

34

Figure 20: Integer Sort latency weak scaling from 1 to 320 nodes on PSC.

Figure 21: Integer Sort throughput weak scaling from 1 to 320 nodes on PSC.

35

Figure 22: Breakdown of API calls for the various Integer Sort implementations explored

36

7.0 Discussion

The performance of the kernels depends on an implementation’s level of optimization,

its ability to take advantage of modern interconnect features such as RDMA, and its API’s

flexibility to allow for novel optimizations. This section analyzes why these factors are

reflected in the results seen in this research across the set of kernels and their respective

communication/computation patterns. Additionally, the differences between performance

on the two testbed systems is analyzed. The productivity metrics investigated indirectly

measure each API’s ”ease-of-use” and can provide the reader some indication of the work

required in distributing an app on an HPC platform.

7.1 Performance

In terms of weak scaling, the RMA-based versions (MPI-RMA or OpenSHMEM) per-

formed the best with OpenSHMEM-based kernels scaling the best for the kernels that pri-

marily leverage point-to-point communication (DAXPY and Cannon’s MM). This result is

expected, as when properly utilized, one-sided protocols are able to leverage RDMA, enabling

faster overall communication due to less overhead by the library runtime. Performance for

RMA-based APIs on the SUMMA and Integer Sort kernels is less conclusive. For SUMMA,

OpenSHMEM scales the worst on NERSC, while on PSC OpenSHMEM and MPI-RMA

scale the best. For the Integer Sort kernel, all API versions behave very similarly in terms

of throughput and latency.

The results for the DAXPY kernel show the largest scalability difference below 100

nodes, with the OpenSHMEM asynchronous version scaling the best. This scalability can

most notably be seen in Fig. 4 and 6 where throughput of the OpenSHMEM version exceeds

more than double that of the MPI version. The pipelined, computation-communication

overlap pattern used for this implementation scales well under 100 nodes, but begins to

converge with the OpenSHMEM synchronous version afterwards. This convergence may

37

be due to the fact that this implementation splits the vector into multiple chunks per-

PE, thereby introducing more total communication requests. The additional requests may

overwhelm the network when more PEs are added, as they all must compete for data from

the MASTER node. Still, this optimization shows a significant performance benefit at low

node counts, indicating that RMA-based optimizations could provide substantial latency

reduction as long as network traffic remains manageable.

The Cannon’s MM kernel performs similarly to the DAXPY kernel with the OpenSHMEM-

based kernel showing the lowest runtime for all node configurations. This app mainly shows

the benefits of RMA-based peer-to-peer communication, as operations can be more eas-

ily overlapped. In the two-sided MPI-based kernel, both the sender and receiver must be

finished with computation before sending and receiving data, while in the RMA-based im-

plementations, A PE can put() its data to its receiver using RDMA, leaving computation

uninterrupted.

The SUMMA kernel implements the same matrix multiplication as seen in the Cannon’s

MM kernel, but uses a partial broadcast scheme as opposed to peer-to-peer messaging.

Here, the inherent benefit of peer-to-peer communication that RMA provides is lost, as on

NERSC, the OpenSHMEM implementation is the worst performing of all implementations.

The MPI- and MPI-RMA-based codes can be seen to be similar in terms of both throughput

and latency, which can be attributed to their common usage of MPI Bcast() to realize

partial collectives. The OpenSHMEM version’s custom RMA-based collective solution can

be seen to perform the best on PSC, but is the worst on NERSC. It is suspected that the

Cray-MPICH library contains more hardware-specific optimized collective calls than those

found on the OpenMPI-based PSC system despite the PSC tests’ usage of Mellanox SHARP.

The DAXPY, Cannon’s MM and SUMMA kernels require the data to be initialized

and distributed from the MASTER PE, whereas for the Integer Sort (IS) kernel, the data

is initialized at each PE as specified by the benchmark [28]. This difference explains the

overall trends in scaling. The size of the data originating at the MASTER PE grows as more

PEs are added to the problem. Therefore, a communication bottleneck exists at the scatter()

portion of the DAXPY, Cannon’s MM and SUMMA programs, which becomes more limiting

as nodes are added, explaining the upward trends in their runtimes. The IS kernel has the

38

best scaling of all evaluated kernels, due to the fact that no such bottleneck exists. The

performance difference between all APIs is the least notable for this kernel. This is likely

due to the all-to-all communication pattern of this kernel, which utilizes the least RMA API

calls of the kernels.

It is worth noting that marginal differences (below 10%) in performance seen in the

results may in fact reflect larger runtime reductions in real apps. The apps that leverage

supercomputers such as NERSC and PSC can consist of many kernels executing sequentially,

often executing for hours or days [2] [3]. Marginal latency reductions across an entire app

at this time-scale can mean hours of runtime saved, freeing more time for other jobs and

improving the overall efficiency of a supercomputer.

7.2 NERSC and PSC Comparison

Overall, the performance levels seen between NERSC and PSC are expected primarily

due to the generational difference between the systems. The Cori system on NERSC was

delivered in 2017 whereas the Bridges-2 system at PSC was delivered in 2021. The general

50% to 80% performance improvement seen from running equivalent kernels on NERSC to

PSC can be adequately explained by hardware improvements from newer CPU, memory and

interconnects.

As noted, NERSC and PSC use different libraries to implement the OpenSHMEM and

MPI specifications. PSC uses OpenMPI to realize both OpenSHMEM and MPI with both

using the common backend of UCX [36]. We speculate that this common backend contributes

to the similarity in performance between the various implementations of the collective-based

kernels like Integer Sort and SUMMA on PSC.

The most notable difference between performance of a single kernel on the two platforms

is the SUMMA kernel. On NERSC, the OpenSHMEM version which uses a custom RMA-

based solution to implement its partial broadcasts is the worst performing. The MPI and

MPI-RMA versions which primarily use the MPI library broadcast() operation have nearly

identical performance. This trend is reversed on PSC where the OpenSHMEM variant has

39

the lowest latency. This scaling behavior of the kernel may indicate a discrepancy in collective

API call performance between the MPI libraries found on NERSC and PSC, as the behavior

of point-to-point calls is consistent for all kernels between the systems.

7.3 Productivity

MPI’s API simplicity stems from its two-sided nature. One-sided APIs such as OpenSH-

MEM and MPI-RMA require memory to be specially allocated using library calls, whereas

two-sided MPI does not. In a two-sided call, the addresses of the send() and recv() buffers

are communicated explicitly; in a one-sided call, the remote target buffer address of a

put() or get() must be held by the communication library at runtime, requiring an allo-

cation call to have occurred previously to distribute target address information between

PEs. OpenSHMEM’s PGAS abstraction simplifies the memory allocation process, as sym-

metrically allocated memory is inherently RMA-compatible. Additionally, the pattern of

shmem malloc()/shmem free() in an OpenSHMEM program is identical to the normal

malloc()/free() pattern found in equivalent C MPI programs, incurring no true additional

productivity overhead. With this in mind, the API call counts between OpenSHMEM and

MPI are much closer when revisiting Fig. 7, Fig. 12, Fig. 17 and Fig. 22 if allocation calls

are ignored.

The RMA-based APIs also require additional synchronization calls to be placed in code,

replacing the implicit synchronization points created by a send()/recv() pair. While added

synchronization calls incur productivity overhead, they also can directly enable optimiza-

tions. A synchronization point can be placed later in the program’s execution, overlapping

more communication and computation. These optimizations are used in the DAXPY and

CMM kernels, pointing to the fact that the additional overhead from RMA-based communi-

cation can be directly offset by performance gains. Additionally, synchronization uses fewer

API calls in OpenSHMEM than MPI-RMA, as can be seen in Fig. 7, Fig. 12, Fig. 17 and

Fig. 22. This is because in MPI-RMA synchronization must be called on a per-window basis,

whereas in OpenSHMEM, synchronization occurs on a PE’s entire symmetric memory. The

40

more granular synchronization approach found in MPI-RMA could in fact be exploited for

better performance, as less objects are required to be synchronized in a single call, although

a scenario where this could be exploited was not found in this research.

41

8.0 Conclusions

In this work, four distributed kernels were studied using the MPI, MPI-RMA and

OpenSHMEM APIs to compare scalability and programmability. Cray-MPICH and Cray-

OpenSHMEMX were the library implementations used to evaluate the APIs on NERSC

while OpenMPI was used to evaluate the APIs on PSC. Each kernel stresses a unique

communication-computation pattern: the DAXPY kernel simulates scatter()/gather() with

intermediate computation, the Cannon’s Algorithm Matrix Multiplication kernel highlights

structured peer-to-peer communication with intermediate computation, the SUMMA kernel

emphasizes group-based collectives and the Integer Sort kernel simulates an all-to-all pattern.

The kernels were evaluated on up to 320 nodes on the NERSC and PSC HPC systems.

One-sided communication libraries such as OpenSHMEM and MPI-RMA perform better

in terms of weak scaling for the evaluated kernels that required peer-to-peer or custom com-

munication solutions, but incur more productivity overhead to create equivalent programs.

Two-sided MPI allows for the simplest programs, both in terms of lines of code and number

of API calls used, and even achieves the best performance for collective-based kernels like

SUMMA and Integer Sort on some systems. However, two-sided MPI lacks the granular-

ity and potential for novel optimizations found in one-sided APIs, illustrating a trade-off

between performance and productivity.

As OpenSHMEM performs better than MPI-RMA with reduced programmer overhead,

it was found to be the most viable one-sided communication API for distributed HPC,

demonstrating the best overall performance with productivity that approaches the simplicity

of MPI. This research illustrates the benefits of developing custom, performance-optimized

communication solutions for specific execution patterns seen in a variety of HPC apps. The

performance levels demonstrated by strategic OpenSHMEM programming on the kernel level

have the potential to extend to hours or days of runtime and resource reduction when applied

to real HPC apps, enabling significantly more efficient supercomputing center utilization.

42

9.0 Future Work

This work investigates kernels that focused on scatter()/gather(), structured peer-to-

peer, partial-collective, and all-to-all communication patterns. One communication pattern

that is commonly seen in large simulation work on HPC data centers is unstructured peer-to-

peer communication on 2D or 3D virtual grids. This pattern could be thoroughly explored

with a comparison study using a larger, dynamic-simulation app.

Along with the longstanding approach of lower-level communication libraries explored

in this work, there is a new generation of languages and libraries to be explored for HPC.

The Chapel language has been under development for over 10 years and promises perfor-

mance similar to C-based libraries like MPI, but with far simpler codes due to data- and

task-parallel constructs being standard language features. Libraries like Apache Spark and

Apache Hadoop expose software frameworks in more modern languages like Python, promis-

ing scalability and simplicity at the cost of runtime overhead.

Communication libraries themselves are ever-evolving. New additions to the OpenSH-

MEM 1.5 specification address some shortcomings that may make it less attractive to users

of MPI. One key example is PE groups called “teams” similar to the concept of “communi-

cators” in MPI [37]. The newest specification also adds utility functions to decompose teams

into 2D virtual grids, which would greatly simplify the OpenSHMEM version of the matrix

multiply kernels. At the same time, the MPI specification is evolving. A large portion of

future plans includes addressing one-sided operations, so productivity findings for both APIs

will need to be continually evaluated [13]. Similarly, individual library implementations are

regularly optimized with new features, algorithms, and hardware support, opening them to

further evaluation as advancements are continually made.

43

Bibliography

[1] “Frontier spec sheet,” May 2019.

[2] S. Mondal, R. Gupta, S. Park, B. Yoon, T. Bhattacharya, and H.-W. Lin, “Moments
of nucleon isovector structure functions in 2+1+1 -flavor QCD,” Physical Review D,
vol. 102, Sep 2020.

[3] K. D. Fong, J. Self, B. D. McCloskey, and K. A. Persson, “Onsager transport coef-
ficients and transference numbers in polyelectrolyte solutions and polymerized ionic
liquids,” Macromolecules, vol. 53, no. 21, pp. 9503–9512, 2020.

[4] R. C. Vincent et al., “Li5VF4(SO4)2: A prototype high-voltage Li-ion cathode,”
ACS Applied Materials & Interfaces, vol. 12, no. 43, pp. 48662–48668, 2020. PMID:
33047963.

[5] “HPE slingshot: The interconnect for the exascale era.” White Paper, 2020.

[6] “Nvidia Mellanox InfiniBand NDR 400G architecture.” White Paper, 2020.

[7] D. Roland et al., “Linux RDMA and InfiniBand.”

[8] M. ten Bruggencate and D. Roweth, “DMAPP - an api for one-sided program models
on baker systems.” White Paper, 2010.

[9] A. Gainaru, R. L. Graham, A. Polyakov, and G. Shainer, “Using InfiniBand hardware
gather-scatter capabilities to optimize MPI all-to-all,” in Proceedings of the 23rd Euro-
pean MPI Users’ Group Meeting, EuroMPI 2016, (New York, NY, USA), p. 167–179,
Association for Computing Machinery, 2016.

[10] S. Pophale et al., “OpenSHMEM performance and potential: A NPB experimental
study,” in Proceedings of the 1st Conference on OpenSHMEM Workshop, Oct. 2013.

[11] J. Jose, J. Zhang, A. Venkatesh, S. Potluri, and D. K. D. Panda, “A comprehensive
performance evaluation of OpenSHMEM libraries on InfiniBand clusters,” in OpenSH-
MEM and Related Technologies. Experiences, Implementations, and Tools (S. Poole,
O. Hernandez, and P. Shamis, eds.), (Cham), pp. 14–28, Springer International Pub-
lishing, 2014.

44

[12] E. F. D’Azevedo and N. Imam, “Graph 500 in OpenSHMEM,” in OpenSH-
MEM and Related Technologies. Experiences, Implementations, and Technologies
(M. Gorentla Venkata, P. Shamis, N. Imam, and M. G. Lopez, eds.), (Cham), pp. 154–
163, Springer International Publishing, 2015.

[13] “MPI: A message passing interface standard 2019 draft specification,” Nov. 2019.

[14] T. El-Ghazawi and L. Smith, “UPC: Unified Parallel C,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, (New York, NY, USA), p. 27–es,
Association for Computing Machinery, 2006.

[15] “The Chapel parallel programming language.”

[16] “OpenSHMEM application programming interface version 1.4,” Dec. 2017.

[17] M. Baker, A. Welch, and M. Gorentla Venkata, “Parallelizing the Smith-Waterman
algorithm using OpenSHMEM and MPI-3 one-sided interfaces,” in OpenSH-
MEM and Related Technologies. Experiences, Implementations, and Technologies
(M. Gorentla Venkata, P. Shamis, N. Imam, and M. G. Lopez, eds.), (Cham), pp. 178–
191, Springer International Publishing, 2015.

[18] N. T. Hjelm, “An evaluation of the one-sided performance in Open MPI,” in Proceed-
ings of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016, 2016.

[19] J. R. Hammond, S. Ghosh, and B. M. Chapman, “Implementing OpenSHMEM using
MPI-3 one-sided communication,” in OpenSHMEM and Related Technologies. Expe-
riences, Implementations, and Tools (S. Poole, O. Hernandez, and P. Shamis, eds.),
(Cham), pp. 44–58, Springer International Publishing, 2014.

[20] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and the Chapel
language,” The International Journal of High Performance Computing Applications,
vol. 21, no. 3, pp. 291–312, 2007.

[21] R. Brown and I. Sharapov, “Performance and programmability comparison between
OpenMP and MPI implementations of a molecular modeling application,” in OpenMP
Shared Memory Parallel Programming (M. S. Mueller, B. M. Chapman, B. R.
de Supinski, A. D. Malony, and M. Voss, eds.), (Berlin, Heidelberg), pp. 349–360,
Springer Berlin Heidelberg, 2008.

45

[22] G. Wang, H. Lam, A. George, and G. Edwards, “Performance and productivity evalua-
tion of hybrid-threading HLS versus HDLs,” in 2015 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2015.

[23] G. Guennebaud, , et al., “Eigen.” http://eigen.tuxfamily.org, 2020.

[24] W. Saar, W. Qian, Z. Chothia, C. Shaohu, and L. Wen, “OpenBLAS.”
https://www.openblas.net/, 2020.

[25] L. E. Cannon, A Cellular Computer to Implement the Kalman Filter Algorithm. PhD
thesis, USA, 1969. AAI7010025.

[26] R. A. V. D. Geijn and J. Watts, “SUMMA: Scalable universal matrix multiplication
algorithm,” tech. rep., Concurrency: Practice and Experience, 1995.

[27] B. Burley et al., “The design and evolution of Disney’s Hyperion renderer,” ACM
Trans. Graph., vol. 37, July 2018.

[28] D. Bailey et al., “The NAS Parallel Benchmarks,” tech. rep., National Aeronautics
and Space Administration, 1994.

[29] J. Hemstad and U. R. Hanebutte, “ISx: A scalable integer sort mini-application,” in
Supercomputing 2015, (Austin, Texas), Nov. 16-19 2015.

[30] D. Griebler, J. Loff, G. Mencagli, M. Danelutto, and L. G. Fernandes, “Efficient NAS
benchmark kernels with C++ parallel programming,” in 2018 26th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Processing (PDP),
pp. 733–740, 2018.

[31] P. Mendygral, “Cray MPI for KNL,” CMPSCI Tech. Rep., Argonne National Lab,
2018.

[32] K. Antypas, N. Wright, N. P. Cardo, A. Andrews, and M. Cordery, “Cori: A Cray-XC
pre-exascale system for NERSC.” White Paper, 2014.

[33] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series network,” tech.
rep., Cray Inc., 1994.

46

[34] N. Ravichandrasekaran, B. Cernohous, D. Pou, and M. Pagel, Introducing Cray Open-
SHMEMX - A Modular Multi-communication Layer OpenSHMEM Implementation,
pp. 41–55. 01 2019.

[35] J. Urbanic, “Bridges-2 early user workshop.”

[36] P. Shamis et al., “UCX: An open source framework for HPC network APIs and be-
yond,” in 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pp. 40–43, 2015.

[37] “OpenSHMEM application programming interface version 1.5,” Jun. 2020.

47

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. API Calls Used in Kernel Implementations
	2. Summary of Productivity Metrics for Evaluated Kernels

	List of Figures
	1. One- and two-sided communication
	2. Illustration of PGAS memory model
	3. DAXPY kernel latency weak scaling from 1 to 320 nodes on NERSC.
	4. DAXPY throughtput weak scaling from 1 to 320 nodes on NERSC.
	5. DAXPY kernel latency weak scaling from 1 to 320 nodes on PSC.
	6. DAXPY throughtput weak scaling from 1 to 320 nodes on PSC.
	7. Breakdown of API calls for the various DAXPY kernel implementations explored
	8. Cannon's MM latency weak scaling from 1 to 289 nodes on NERSC.
	9. Cannon's MM throughtput weak scaling from 1 to 289 nodes on NERSC.
	10. Cannon's MM latency weak scaling from 1 to 289 nodes on PSC.
	11. Cannon's MM throughtput weak scaling from 1 to 289 nodes on PSC.
	12. Breakdown of API calls for the various Cannon's MM kernel implementations explored
	13. SUMMA latency weak scaling from 1 to 289 nodes on NERSC.
	14. SUMMA throughtput weak scaling from 1 to 289 nodes on NERSC.
	15. SUMMA latency weak scaling from 1 to 289 nodes on PSC.
	16. SUMMA throughtput weak scaling from 1 to 289 nodes on PSC.
	17. Breakdown of API calls for the various SUMMA kernel implementations explored
	18. Integer Sort latency weak scaling from 1 to 320 nodes on NERSC.
	19. Integer Sort throughput weak scaling from 1 to 320 nodes on NERSC.
	20. Integer Sort latency weak scaling from 1 to 320 nodes on PSC.
	21. Integer Sort throughput weak scaling from 1 to 320 nodes on PSC.
	22. Breakdown of API calls for the various Integer Sort implementations explored

	Preface
	1.0 Introduction
	2.0 Background
	2.1 One- and Two-Sided Communication Models
	2.2 MPI
	2.3 MPI-RMA
	2.4 PGAS
	2.5 OpenSHMEM

	3.0 Related Research
	4.0 Evaluated Kernels
	4.1 DAXPY
	4.2 Cannon's Algorithm Matrix Multiplication
	4.3 SUMMA
	4.4 Integer Sort

	5.0 Experimentation
	5.1 Testbeds
	5.2 Approach

	6.0 Results
	6.1 DAXPY
	6.2 Cannon's Algorithm Matrix Multiplication
	6.3 SUMMA
	6.4 Integer Sort

	7.0 Discussion
	7.1 Performance
	7.2 NERSC and PSC Comparison
	7.3 Productivity

	8.0 Conclusions
	9.0 Future Work
	Bibliography

