
An Examination of a Symmetric Memory Model’s Impact on Performance in a

Distributed Graph Algorithm

by

Michael Ing

B.S. in Computer Engineering, University of Pittsburgh, 2019

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Michael Ing

It was defended on

March 31, 2021

and approved by

Samuel Dickerson, Ph.D., Director and Assistant Professor
Department of Electrical and Computer Engineering

Wei Gao, Ph.D., Associate Professor
Department of Electrical and Computer Engineering

Thesis Advisor: Alan D. George, Ph.D., Professor, RH Mickle Endowed Chair
Department of Electrical and Computer Engineering

ii

Copyright © by Michael Ing

2021

iii

An Examination of a Symmetric Memory Model’s Impact on Performance in a

Distributed Graph Algorithm

Michael Ing, M.S.

University of Pittsburgh, 2021

Over the last few decades, Message Passing Interface (MPI) has become the parallel-

communication standard for distributed algorithms on high-performance platforms. MPI’s

minimal setup overhead and simple API calls give it a low barrier of entry, while still provid-

ing support for more complex communication patterns. Communication schemes that use

physically or logically shared memory provide a number of improvements to HPC-algorithm

parallelization. These models prioritize the reduction of synchronization calls between pro-

cessors and the overlapping of communication and computation via strategic programming

techniques. The OpenSHMEM specification developed in the last decade applies these ben-

efits to distributed-memory computing systems by leveraging a Partitioned Global Address

Space (PGAS) model and remote memory access (RMA) operations. Paired with non-

blocking communication patterns, these technologies enable increased parallelization of ex-

isting apps. This research studies the impact of these techniques on the Multi-Node Parallel

Boruvka’s Minimum Spanning Tree Algorithm (MND-MST), which uses distributed pro-

gramming for inter-processor communication. This research also provides a foundation for

applying complex communication libraries like OpenSHMEM to large-scale parallel apps.

To provide further context for the comparison of MPI to OpenSHMEM, this work presents

a baseline comparison of relevant API calls as well as a productivity analysis for both imple-

mentations of the MST algorithm. Through experiments performed on the National Energy

Research Scientific Computing Center (NERSC), it is found that the OpenSHMEM-based

app has an average of 33.9% improvement in overall app execution time scaled up to 16

nodes and 64 processes. The program complexity, measured as a combination of lines of

code and API calls, increases from MPI to OpenSHMEM implementations by ∼25%. These

findings encourage further study into the use of distributed symmetric-memory architectures

and RMA-communication models applied to scalable HPC apps.

iv

Table of Contents

Preface . ix

1.0 Introduction . 1

2.0 Background . 3

2.1 PGAS . 3

2.2 SHMEM . 4

2.3 Minimum Spanning Tree . 5

3.0 Related Research . 7

3.1 OpenSHMEM API Calls . 7

3.2 OpenSHMEM Graph Processing . 7

3.3 Productivity Studies . 8

3.4 Parallel MST . 9

4.0 Experiments . 11

4.1 Testbeds . 11

4.2 API Calls . 11

4.3 Datasets . 12

4.4 Algorithm . 12

4.5 Algorithm Variables . 15

4.6 SHMEM Optimizations . 17

5.0 Results . 21

5.1 API Calls . 21

5.2 MST Algorithm . 24

5.3 Productivity Studies . 26

6.0 Discussion . 31

6.1 API Calls . 31

6.2 Productivity Studies . 32

6.3 MST Algorithm . 33

v

7.0 Conclusions . 35

8.0 Future Work . 36

Appendix A. Point-to-Point Microbenchmarks 37

Appendix B. Collective Microbenchmarks . 39

Bibliography . 41

vi

List of Tables

1 Webgraph Dataset Details . 13

2 ara-2005 Node-PE Configurations . 16

3 uk-2005 Node-PE Configurations . 17

4 Barrier Latencies (μs) . 23

5 PE Scaling Performance Improvement . 25

6 Node Scaling Performance Improvement . 26

7 Best Configurations (Nodes, PEs) . 26

8 Average Performance Improvement . 27

9 Implementation Productivity . 27

vii

List of Figures

1 PGAS diagram. [1] . 4

2 MND-MST algorithm structure. [2] . 13

3 NERSC Point-to-point Log Latencies . 22

4 NERSC AllReduce Log Latencies (Legend specifies communication library and

node count) . 22

5 MPI implementation single (-S) vs. leader (-L) post-processing methods. 24

6 uk-2014 Webgraph Performance Comparison. 28

7 gsh-2015 Webgraph Performance Comparison. 28

8 ara-2005 Webgraph Performance Comparison. 29

9 uk-2005 Webgraph Performance Comparison. 29

10 it-2004 Webgraph Performance Comparison. 30

11 sk-2005 Webgraph Performance Comparison. 30

12 Scaling Put Latencies . 37

13 Scaling Get Latencies . 38

14 Scaling AllReduce Latencies (Top: 1KB, Bottom: 1MB) 39

15 Scaling Barrier Latencies . 40

16 Scaling Reduce Latencies (1MB) . 40

viii

Preface

This research was supported by SHREC industry and agency members and by the IUCRC

Program of the National Science Foundation under Grant No. CNS-1738783.

This research used resources of the National Energy Research Scientific Computing Cen-

ter (NERSC), a U.S. Department of Energy Office of Science User Facility operated under

Contract No. DE-AC02-05CH11231.

This research also used the Extreme Science and Engineering Discovery Environment

(XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Specifically, it used the Bridges-2 system, which is supported by NSF award number ACI-

1445606, at the Pittsburgh Supercomputing Center (PSC).

This author also wishes to extend thanks to Alex Johnson and Luke Kljucaric for

their support and direction in this research, as well as the NSF Center for Space, High-

Performance, and Resilient Computing for providing guidance and resources during the de-

velopment of this research.

In addition, the author thanks Rintu Parja and Sathish Vadhiyar for their work on the

MND-MST algorithm and for providing original source code for use.

Finally, this author would like to express deepest gratitude to his family, friends, and

teammates for their continued and constant support in his academic pursuits, without which

this author would not have made it this far. Their encouragement and love have played a

big part in making this research possible.

ix

1.0 Introduction

To maximize parallel processing and acceleration, programmers must minimize overhead

and synchronization bottlenecks. For distributed-memory systems the current standard is

the Message Passing Interface (MPI) due to its simplicity and support of many communi-

cation methods. Using handshake-based point-to-point send and receive calls and primitive

collectives like broadcast and gather, MPI supports parallelization of numerous kernels and

algorithms [3].

The remote memory access (RMA) model introduces new possibilities for further acceler-

ation of distributed parallel apps. Its support for non-blocking and one-sided communication

patterns can reduce synchronization bottlenecks in MPI that stem from multiple sequential

handshake communications. The increased flexibility afforded by RMA comes with added

complexity, requiring the programmer to manually synchronize parallel processes indepen-

dently to avoid race conditions and invalid memory accesses. Nevertheless, RMA models can

lead to increased acceleration by minimizing communication bottlenecks and maximizing the

amount of uninterrupted parallel computation for the target of the communication call [4].

Newer versions of the MPI specification support the RMA model by introducing MPI

“windows”. These windows must be allocated and locked manually to support one-sided

communication [4], which limits flexibility. Any performance improvement gained from the

model’s one-sided and non-blocking communication comes with added program complexity,

which may increase development time and detract from the library’s utility.

In the last few decades, the concept of distributed symmetric memory, or “SHMEM”, has

been revisited as an alternative to MPI, resulting in a new specification called OpenSHMEM.

Utilizing a partitioned global address space (PGAS) and adhering to the RMA communica-

tion model, this specification attempts to support one-sided, non-blocking communication

without adding extensive setup overhead or complex API calls. Many OpenSHMEM API

calls are modeled after MPI methods, allowing for a low barrier of entry for parallel program-

mers while still affording increased parallelization [5]. This research contrasts the two-sided

1

MPI specification to the one-sided OpenSHMEM variant, evaluating RMA acceleration ben-

efits and quantifying any increased complexity or loss in productivity.

This comparison starts at the API level and then extends to the app level using a par-

allelized graph-processing algorithm based on Boruvka’s algorithm [2]. The OpenSHMEM

specification is directly compared to MPI by evaluating two different implementations of the

algorithm. A focus on overall execution time and productivity provides a basic framework

for the continued study and development of the OpenSHMEM specification at multiple levels

of complexity.

In summary, this research contributes:

• An evaluation of OpenSHMEM API calls based on existing distributed-communication

standards

• A discussion of OpenSHMEM programming techniques that lead to parallel acceleration

and corresponding levels of increased complexity

• Analysis of OpenSHMEM optimizations on a Parallel MST app

2

2.0 Background

The core of this research focuses on evaluating productivity and performance of paral-

lel communication libraries with distributed apps. The concepts presented in this section

illustrate the scope of the app with respect to that goal.

2.1 PGAS

The PGAS model imitates the synchronization benefits of a shared main memory us-

ing symmetric memory, while maintaining the performance and locality of the distributed-

memory model used by message-passing libraries like MPI. A shared main memory allows

for simultaneous and overlapping computation, which can be reproduced from symmetric

addressing across processors. The distributed-memory model allows for increased scalabil-

ity, where separate processors can communicate while storing data in smaller local memories

[1]. This distributed partitioning of memory allows a larger total space to be represented

over multiple cores or processors, rather than requiring a large-scale memory to be used on

a single node or multiprocessor.

To simulate and combine the benefits of both of these memory architectures, the PGAS

model implements a global address space, local and remote data storage, one-sided commu-

nication, and distributed data structures [1]. Global addressing allows individual processors

to simultaneously access the same location in their respective symmetric memories. This

one-sided communication leads to increased programming flexibility and communication-

computation overlap. However, symmetric memory is limited in size. This forces program-

mers to decide what data needs to be remotely accessible and what can be stored locally

(in “private” memory). This creates an efficient compromise between performance and ease

of access at the expense of more vigilant design [1]. Support for distributed data structures

allows more data to be stored, opening the door for complex program compatibility.

3

Figure 1: PGAS diagram. [1]

2.2 SHMEM

Originally developed by Cray as a proprietary app interface in the 1990s, SHMEM has

been developed into a communication specification used for PGAS programming [6]. By

using a PGAS model, SHMEM allows distributed systems to reap the benefits of a “shared”

main memory. It also allows for efficient remote data transfer through the use of one-

sided point-to-point communication calls like shmem put and shmem get as well as collec-

tive calls like shmem scatter and shmem gather [7]. Non-blocking calls like shmem get nbi

and shmem put nbi provide further means for asynchronous acceleration. Promoted for its

ubiquity on existing PGAS systems and structural similarity to well-known communication

standards like MPI, SHMEM supports communication-computation overlap via one-sided

API-calls [6]. By defining a separate “symmetric heap” in which to store “symmetric vari-

ables” remotely accessible by all processors, SHMEM provides the means for simultaneous

remote data access, which can lead to uninterrupted computation and scalable parallel ac-

celeration.

In 2010, SHMEM was standardized into the OpenSHMEM specification by the PGAS

community, unifying development efforts and expanding its viability for widespread use

4

[6]. Analogous to the popular MPI specification, OpenSHMEM universalized functions and

standardized important aspects of the model including types, collectives, API-call structure

and communication protocols. OpenSHMEM has been supported across numerous platforms

by multiple libraries, including Cray OpenSHMEMX, OSHMEM, and OSSS-UCX.

The OpenSHMEM specification is under ongoing development and the most current

at the time of writing is version 1.5 released in June 2020. This version abstracts away

some data structure complexity for collective communications and introduces a teams-based

organization style to streamline more complex communication patterns [8]. However, due

to its recent release it has yet to be fully supported on existing testbeds and platforms,

including the testbeds used for this research. Therefore the app has been developed with

OpenSHMEM 1.4, which is supported by OSHMEM and Cray OpenSHMEMX, the specific

libraries used to develop and test this work on all three testbeds.

2.3 Minimum Spanning Tree

A weighted graph is a common data structure used in algorithms, composed of a set

of vertices (nodes) and a set of weighted edges that connects different vertices. A common

analytic of a weighted graph is the minimum spanning tree (MST), and is defined as the set

of edges with the least combined weight that connects every vertex in the graph. A fully

connected, weighted graph with N vertices would thus have an MST that consists of N-1

edges, the minimum number of edges required to include every vertex. The MST problem

has a number of direct applications including network design (telephone, road, electrical

circuit) as well as approximation for NP-hard problems in computer science such as the

traveling salesperson problem. It also has indirect applications including feature learning,

image registration, data storage reduction and cluster analysis [9].

The three most popular solutions to the MST problem are Prim’s, Kruskal’s, and Boru-

vka’s Algorithms. Prim’s algorithm starts with two sets of vertices, those added and not

yet added to the MST. It then searches for and adds the edge with the lowest weight to the

MST, and adds the new vertices to the appropriate set. This process is iterative, adding the

5

lowest-weight edge until all vertices are present in the set of added vertices and the chosen

edges make up the MST. [10].

Kruskal’s algorithm instead starts by sorting all edges in increasing order of weight. The

lowest weight edge is then examined to see if its addition would form a cycle. If so, that

edge is discarded. If not, it is added to the MST. This process is continued until there are

the appropriate number of edges, indicating that the MST is fully formed (N-1 edges for N

vertices). [11].

The baseline algorithm used for this research is Boruvka’s algorithm, one of the simplest

and oldest MST solutions. It starts with multiple small components composed of individual

vertices and their lightest edges. These small components are then merged along their

lightest available edges to form larger components. This process continues until only a single

component remains, which is the MST [12]. The bottom-up nature of this algorithm makes it

amenable to parallelization, since vertices can be separately tracked by different processors,

and computation can be distributed. The time complexity of Boruvka’s algorithm can be

improved through utilization of clever data structures and parallelization [9].

6

3.0 Related Research

The OpenSHMEM specification has previously been explored on the API and app levels,

including apps focused on graph processing. This research extends this investigation by

analyzing the specification on both levels for an MST graph-processing app, and evaluating

its impact on productivity.

3.1 OpenSHMEM API Calls

Jose and Zhang tested OpenSHMEM API call performance across four different Open-

SHMEM libraries, including UH-SHMEM (University of Houston), MV2X-SHMEM (MVA-

PICH2X), OSHMEM, and Scalable-SHMEM (Mellanox Scalable) [13]. They compared

point-to-point, collective, and atomic performance on an Infiniband Xeon cluster, scaling

up to 1MB in message size and up to 4K processes for collective operations. This work

found that MV2X-SHMEM demonstrated consistently lower latencies compared to other

OpenSHMEM libraries, as well as a smaller memory footprint per process. Jose and Zhang

also compared the performance of two kernels, Heat Image and DAXPY. They found that

MV2X-SHMEM again outperformed other libraries, demonstrating consistent execution time

improvement that scaled with number of processes.

3.2 OpenSHMEM Graph Processing

OpenSHMEM has been used for graph processing in other contexts, as seen in the work

of Fu et. al [14] on “SHMEMGraph”, a graph processing framework that focused on the

efficiency of one-sided communication and a global memory space. To address communi-

cation imbalance, computation imbalance, and inefficiency, the SHMEMGraph framework

introduced a one-sided communication channel to support more flexible put and get opera-

7

tions as well as a fine-grained data serving mechanism that improves computation overlap.

The resulting framework was used to test four large web-based graphs on five representative

graph algorithms, finding 35.5% improvement in execution time over the state-of-the-art

MPI-based Gemini framework [14].

Grossman and Pritchard studied SHMEM-based graph processing through their work

on HOOVER, a scalable distributed C/C++ framework for dynamic graph problems [15].

HOOVER focused on flexibility while still maintaining scalability, leveraging one-sided com-

munication and a PGAS memory model. It divided work by splitting graph vertices evenly

among processing elements (PEs), which would execute separately at first and eventually

coalesce and execute in lockstep as the algorithm iterated. Used for problems such as in-

fectious disease and intrusion detection modeling, HOOVER demonstrated scalable speedup

up to 6000 PEs using communication-avoidance techniques and non-blocking communication

patterns to maximize computation [15].

3.3 Productivity Studies

To evaluate and compare the productivity of the algorithm using different communication

paradigms, multiple metrics are needed. As seen in the work of [16], measuring both overall

lines of code (LOC) and number of communication-specific API calls strike a balance between

increased complexity and overall workload. Development time has also been used to measure

productivity with HPC toolsets as seen in [17], but this metric is more subjective and difficult

to measure and compare. The OpenSHMEM specification’s growing similarities to MPI

further legitimize these metrics, making a direct comparison of productivity more viable and

informative.

8

3.4 Parallel MST

Olman and Mao implement a parallel MST algorithm as a means for solving a Bioinfor-

matics clustering problem based on Prim’s algorithm [18]. Using a Fibonacci heap to find the

next smallest edge, this algorithm first divides the entire network into subgraphs of equal size

in terms of number of vertices. Bipartite graphs are also generated, which bridge subgraphs

via intra-vertex edges. An MST is then constructed for each subgraph and bipartite graph

in parallel. Finally, all resulting MSTs are merged in parallel to form a new graph, which

in turn constructs the overall MST for the original graph. The entire algorithm is tuned to

the optimum number of graph partitions.

Bently tackles the parallel construction of MSTs in the scope of VLSI technology, defin-

ing an algorithm with asymptotic execution time of O(V log V). This algorithm uses a “tree

machine” data structure, which is a mirrored binary tree with nodes for broadcasting, com-

puting, and combining data inputs. Based on Prim-Dijkstra’s MST, this parallel algorithm

uses the binary tree machine to search for minimum weight edges across multiple vertices

simultaneously. As edges are added to the MST structure, vertices are eliminated from the

original pool and added to the MST pool until no vertices remain and the MST is fully

constructed [19].

Yan and Cheng have developed a system to find MST data structures on distributed pro-

cessors called Pregel [20]. This system is “vertex-centric”, focusing on messages sent between

vertices to keep communication simple and efficient [21]. Based on the bulk synchronous

parallel model (BSP), Pregel was theoretically able to achieve performance improvements

for graph processing apps by increasing the number of parallel communications that could

simultaneously execute. However, this approach has inconsistency issues due to varying ver-

tex degree in large-scale graphs, leading to unequal communication backlog and bottlenecks.

This led to the development of Pregel+, which added vertex mirroring for message combining

and introduced a request-response API [21]. Running Pregel+ against modern competitive

graph processing systems like Giraph and GraphLab demonstrated the effectiveness of these

two techniques, resulting in reduced communication cost and reduced overall computation

time for the new Pregel+ implementation [21].

9

The algorithm used in this research is based on and uses source code from Panja and

Vadhiyar [2], who describe the operation of the parallelized, distributed MST graph algo-

rithm. The algorithm is explained in detail in Section 4.4. Panja and Vadhiyar validate the

algorithm’s performance compared to Pregel+, and show positive performance improvements

for overall execution time on a scaling number of parallel processes from 4 to 16. This work

was thus deemed suitable for use as a state-of-the-art scalable distributed parallel algorithm.

10

4.0 Experiments

This section details the nature of experiments performed, data collected, and optimiza-

tions studied. Topics include supercomputing testbeds, API-level experiments, app datasets,

and the design and optimization of the app based on the MND-MST algorithm.

4.1 Testbeds

Microbenchmark data was collected on three testbeds. These testbeds are the University

of Pittsburgh’s Center for Research and Computing (CRC), the Pittsburgh Supercomputing

Center (PSC), and the National Energy Research Scientific Computing Center (NERSC).

CRC has 2.6GHz dual 10-core Haswell nodes with FDR Infiniband interconnects [22]. The

Bridges 2 system on PSC has 3.4GHz 256GB EPYC AMD Nodes with HDR Mellanox

Infiniband interconnects [23]. NERSC is a U.S. Department of Energy Office of Science User

Facility at Lawrence Berkeley National Laboratory, and uses over 2,300 2.3GHz Haswell

nodes each with 128GB of DDR4 memory [24].

All MST app data was collected exclusively on the Cori partition of NERSC, with exe-

cution times averaged over 15 executions for each configuration of MST runtime parameters.

Correspondingly, the microbenchmark results shown below represent only the data collected

on the NERSC supercomputing system. Microbenchmark data collected on all three testbeds

are compiled in Appendices A and B. Microbenchmark latencies are averaged over 500 exe-

cutions. For OpenMP sections, 4 threads were allocated per node.

4.2 API Calls

To frame and analyze results for a larger app, it is important to analyze differences of

the baseline, API-level performance. This is done by directly comparing relevant API calls

11

between MPI and OpenSHMEM. Point-to-point and collective tests are scaled up in message

size, and the collective operations are scaled up in number of parallel processes. Microbench-

mark tests for both MPI and OpenSHMEM are created by the MVAPICH project from Ohio

State University, with minor adjustments made to scale all benchmarks to appropriate sizes

[25]. Point-to-point benchmarks were executed using two nodes and scaling from 1 byte up

to 4 MB in message size. Collective benchmarks were similarly scaled up to 4 MB, and the

number of nodes was scaled from 2 to 32. All API-level benchmarks used one PE per node.

4.3 Datasets

The datasets used for the app consist of large web-based graphs formed by web-crawling

[26] and created by the Laboratory for Web Algorithmics. These graphs are undirected,

weighted and have significantly more edges than vertices, which supports straightforward

vertex partitioning and makes them ideal for large-scale parallel processing and MST calcu-

lations. Although not all fully connected, consistent MSTs can still be calculated effectively

for execution time comparison. These graphs range in size from 1.8 million vertices to over

100 million vertices, with edge counts reaching nearly 2 billion. These large graphs have exe-

cution times on the order of tens of seconds, allowing for greater disparity in execution time

at scale. Execution times for MPI and SHMEM implementations can be directly compared

because the underlying nature of the algorithm remains unchanged despite which commu-

nication paradigm is used. Edges are still processed, removed, and exchanged in the same

way, and various implementations differ only in the order and method of communication of

edges and components.

4.4 Algorithm

Based on [2], the baseline algorithm of this research is a parallelized version of the classic

Boruvka’s algorithm for finding MSTs, as described in Section 2.3.

12

Table 1: Webgraph Dataset Details

Webgraph Dataset (E/V = Edge-to-vertex ratio)

Name Size (GB) Vertices Edges Max Deg E/V

uk-2014 0.15 1.77e6 3.65e7 6.59e4 20.66

gsh-2015 4.70 3.08e7 1.20e9 2.18e6 39.09

ara-2005 4.90 2.27e7 1.28e9 5.76e5 56.28

uk-2005 7.25 3.95e7 1.87e9 1.78e6 47.46

it-2004 8.80 4.13e7 2.30e9 1.33e6 55.74

sk-2005 15.00 5.06e7 3.90e9 8.56e6 77.00

Figure 2: MND-MST algorithm structure. [2]

13

The parallelized version of the algorithm is split into four major parts: graph partitioning,

independent computation, merging, and post-processing, as shown in Fig. 2. During graph

partitioning the input graph is read in parallel by each PE and divided into equal parts. All

vertices and edges are split evenly among the PEs, with a focus on edge balancing. This

partitioning method preserves graph locality while also maximizing parallel computation

efficiency. To keep track of edges that span multiple PEs, a list of “ghost information” is

maintained by each PE, which consists of the list of edges that are connected to external

PEs. Keeping track of this extra information adds memory and communication overhead,

but allows independent computation and merging to operate efficiently in parallel [2].

The bulk of the work is performed during independent computation and merging. During

independent computation each PE executes Boruvka’s algorithm locally, combining as many

components as possible to minimize the number of distinct internal partitions. If a lightest

edge for a given internal component connects to a “ghost vertex,” computation is halted

until data is exchanged in the merging step. To improve efficiency, a tolerance threshold is

introduced, Θ, which measures the number of MST edges added during each loop iteration.

Once the number of new MST edges dips below this threshold, independent computation

ceases and merging begins. Θ was optimized to 1e-3 * E [2], where E is the number of total

MST edges. This threshold is used to avoid slowdown caused by having large numbers of

unresolved components with “ghost edges”.

In the merging portion of the algorithm, each PE cleans up local components by removing

internal or “self” edges (connecting two vertices within a component) and “multi” edges

(heavier edges that were not chosen for the MST). After cleaning up components, PEs

recalculate lists of ghost edges to account for any restructuring. Finally, component data is

exchanged between PEs in a ring pattern. A small percentage of vertices and edges from

each PE are sent to the PE of the next higher rank, updating ghost information and vertex

data in turn. This consideration allows independent parallel computation to continue, as

new sets of components and edges can be evaluated.

After independent computation and merging, the total MST size is calculated by sum-

ming over each PE with a reduction communication. The number of remaining MST edges

14

(based on the number of vertices) is then calculated and compared against the “MST thresh-

old”. Once the number of remaining edges dips below this threshold, post-processing can

begin.

The post-processing step combines all remaining components and edges into a smaller

number of PEs, where a final round of computation can be done to construct the full MST.

This process can be done in one of two ways. With the “single” mode of the algorithm, all

data is sent to PE 0, which then does one final round of computation with a Θ of 0 (i.e., all

MST edges must be found). The “leader” mode splits PEs into groups of a specified size, and

each group combines all data into a “leader” PE, which then runs independent computation

again. The group size was set to 4 PEs as consistent with [2] for best performance.

The algorithm is visually presented in Fig. 2. As shown, the initial group of vertices is

divided evenly among the processors in the partitioning step. Then independent computation

and merging takes place, wherein each processor eliminates edges, combines components, and

exchanges some combined vertices and edges with a neighboring processor to continue the

process. These steps are repeated until the number of newly added MST edges goes below a

new threshold, called the MST threshold. Once this threshold is surpassed, all components

are combined into a single processor and post-processing occurs. The remaining components

are calculated and the full MST is returned.

4.5 Algorithm Variables

Runtime parameters including post-processing mode, MST Threshold, number of nodes,

and PE count were tuned during data collection for optimal performance. The post-processing

mode was either single or leader. The single mode consists of having each node send all left-

over components to PE 0 before performing MST computation on this final PE. In contrast,

the leader mode splits PEs into groups of 4, sending leftover components to the leader PE,

and then re-running the algorithm to merge and compute the MST. This alternative mode

was intended to reduce execution time by parallelizing long post-processing times.

15

The MST threshold determined the point at which component consolidation and post-

processing was performed, based on the number of new MST edges. This threshold was

optimized to be 0.24, or 24% of the total number of MST edges.

Table 2: ara-2005 Node-PE Configurations

ara-2005 Node-PE Configurations (S: Success, -: Failure)

Configuration (Nodes, PEs)

Nodes 1 2 4

SH CB 4 8 16 32 4 8 16 32 4 8 16 32

1GB 1GB S S - - - - - - - - - -

2GB 1GB S S - - S S S S S S S S

2GB 2GB S S - - S S S S S S S S

4GB 2GB S - - - S S S S S S S S

4GB 4GB S - - - S S S - S S S S

6GB 6GB S - - - S S - - S S S S

8GB 8GB - - - - - - - - S S S -

Strong scaling was performed by altering the number of nodes and processing elements

per job. Nodes were scaled from 1 to 16, and PEs were scaled from 4 up to 64, as the number

of PEs is restricted to a multiple of 4. NERSC nodes were limited to 118GB per node, and 64

PEs per node [24]. It was noted in [2] that the algorithm scaled effectively on 4 nodes up to

16 PEs, so data for additional node-PE configurations was collected to further evaluate the

scalability of both implementations. Node-PE configurations were also influenced by memory

limits and allocations, including that of the private heap, the symmetric heap (SH), and a

separate “collective symmetric buffer” (CB) used for SHMEM collective communications.

The two symmetric buffers were set before running jobs and were allocated per PE. NERSC

memory limitations for individual nodes coupled with large graph sizes required fine-tuning

of these parameters to fully execute the algorithm. Multiple webgraphs of different sizes and

characteristics were tested to diversify results and draw more robust conclusions about the

algorithm and the communication schemes. Graph data can be referenced in Table 1.

16

Table 3: uk-2005 Node-PE Configurations

uk-2005 Node-PE Configurations (S: Success, -: Failure)

Configuration (Nodes, PEs)

Nodes 1 2 4

SH CB 4 8 16 32 4 8 16 32 4 8 16 32

1GB 1GB - - - - - - - - - - - -

2GB 1GB S S S - S S - - S S - -

2GB 2GB S S - - S S - - S S S -

4GB 2GB S S - - S S S - S S S S

4GB 4GB S S - - S S - - S S S S

6GB 6GB S - - - S S - - S S S S

8GB 8GB - - - - S - - - S S S -

Configurations for two webgraphs are presented in Tables 2 and 3. Note that the uk-2005

graph is larger in size than the ara-2005 graph, which tends to require larger symmetric heap

sizes to execute. Some failures resulted from symmetric memory (heap and the collective

buffer) that was too small to handle communications, while others were caused by over-

allocation that infringed on private memory. As shown, some node-PE configurations were

rendered impossible, as there wasn’t enough memory available to support both symmetric

memory for communication and private memory for graph data storage. Systems with more

available memory per node could allow more extensive configuration testing.

4.6 SHMEM Optimizations

A number of techniques are used to optimize the OpenSHMEM-based app beyond simple

one-to-one API call replacement. By leveraging partitioning, non-blocking communication

and RMA, SHMEM enables programmers to reduce communication overhead and accelerate

17

parallel execution without introducing overwhelming complexity. This section details some of

the specific SHMEM optimizations used for the baseline parallel MST algorithm to provide a

framework for large-scale optimizations for other apps in the future. The first major source

of OpenSHMEM optimization occurs during the exchanging of ghost information, which

consists of external vertices and their corresponding edges, after independent computation.

As each PE could contain ghost information for any other PE, all pairs must be examined and

information exchanged. In the baseline MPI approach, this consists of a series of handshake

MPI send and MPI recv calls, first exchanging the message size (i.e. the number of ghost

edges to be exchanged and updated) before sending the full data structure of vertices and

edges to be updated. This process repeats, one pair of PEs at a time, until all information is

exchanged. Each PE then locally updates the corresponding data structure to reflect changes

in component sizes as well as edges that have been newly removed.

This relatively straightforward communication can be improved with the use of Open-

SHMEM. First, the message size can be sent using one-sided put and get operations followed

by a shmem wait until synchronization API call. While this does not completely remove the

handshake from the MPI-based app, each PE can operate independently while sending the

message size, which allows for more efficient execution. Second, the ghost information can be

communicated via RMA without the need for any synchronization. Since each PE can uni-

laterally get all necessary data, handshaking overhead and slowdown from synchronization

are eliminated.

Third, the OpenSHMEM implementation takes advantage of partitioning, which is es-

sentially overlapping communication and computation. Although the message size com-

munication is relatively small (only a single int or long data value), the ghost information

itself can consist of thousands or even tens of thousands of edges. Such a large message

can be divided and sent between PEs in chunks, each overlapped with the updating of the

local PE data structure. Rather than using a single get operation to send the entire mes-

sage, a non-blocking get operation of a smaller chunk size is executed. While the smaller

non-blocking RMA operation executes, the PE updates the local data structure for the previ-

ous data chunk. In this way, communication and computation are overlapped, using a simple

18

shmem quiet synchronization call to ensure that the previous chunk of data is transferred

fully before being used to update the data structure.

The other prime target for OpenSHMEM optimization is the exchanging of component

data during the merging step. In the baseline MPI implementation, sizes of exchanged

vertices and edges are communicated for each pair of processors. These sizes are then used

to exchange portions of several different data structures between the pair of processors using

a series of synchronous send-receive communications. Some local clean-up computation is

then performed, copying exchanged information and ensuring that the data structures are

properly formatted for continued execution.

The OpenSHMEM implementation avoids the handshake overhead entirely by using non-

blocking communication calls as well as RMA. As before, the use of RMA allows each PE to

operate independently, retrieving the required information simultaneously. The use of non-

blocking API calls allows some local computation to overlap, leading to acceleration. Par-

titioning is also used to overlap this communication with some of the ending data structure

updating and copying. Used together, these techniques take advantage of the thousands of

edges that must be communicated between PEs and overlaps that communication with data

structure update overhead to maximize the amount of uninterrupted, pure computation. The

independent computation step is done locally by each process, so no OpenSHMEM optimiza-

tions can be performed. The original MPI algorithm uses blocking communication with no

overlap, so both PEs must communicate all data before running computation. The optimized

OpenSHMEM implementation uses non-blocking communication-computation overlap, with

a pre-defined number of partitions. The data is divided into equal chunks and communicated

chunk-by-chunk asynchronously, and each communication is overlapped with computation

and later confirmed by a synchronization call (shmem quiet). Although MPI and OpenSH-

MEM both have the capability for non-blocking communication and computation overlap,

the OpenSHMEM implementation benefits from RMA communication calls and fewer lines

of code. Non-blocking two-sided MPI still necessitates handshake-based communication, and

also requires the use of additional MPI Request and MPI Status objects for synchronization,

which adds overhead.

19

These same techniques are applied to the post-processing step of the algorithm. Data

structures are gathered and combined in a similar manner to the merge step, except that

they are gathered into a smaller number of PEs for further computation. However, the

OpenSHMEM implementation provides further benefits during this step. For the baseline

MPI implementation, all communications require handshakes between a pair of processors.

For the single mode PE 0 must execute a series of send-receives with every other PE, resulting

in a handshake bottleneck. The RMA nature of the OpenSHMEM specification allows each

PE to simultaneously get data from PE 0 via a series of one-sided communication operations.

To support these communications, the OpenSHMEM implementation adds an additional all-

reduce collective call to first calculate address offsets. At the cost of an extra API call and

an extra data structure, this technique removes the handshake bottleneck with PE 0 and

allows this entire series of communications to execute asynchronously.

20

5.0 Results

All data collected are presented in this section, including microbenchmark performance

for various API calls and an app-level comparison of OpenSHMEM and MPI. Additional algo-

rithm tuning data and productivity comparisons are also examined. All results shown in this

section were collected on the Cori partition of the NERSC system. Additional point-to-point

and collective microbenchmark data collected on CRC and PSC are shown in Appendices A

and B.

5.1 API Calls

The results of the API-level OSU microbenchmarks executed on NERSC are shown

in Figures 3 and 4 and Table 4. All latencies are measured in μs. To provide proper

context for the distributed MST algorithm, communication calls that are most often used

in the algorithm are presented in these tables, including get, put, all-reduce, and barrier-

all operations. To compare one-sided and two-sided point-to-point operations, the MPI

benchmarks measure two two-sided handshake communications and then divide the round

trip time by two. The barrier operation measures the latency for the indicated number of

processes to call barrier.

For point-to-point calls, the OpenSHMEM put and get operations show comparable la-

tencies at all sizes, with get operations slower at low message sizes and faster at high message

sizes. This crossover occurs around a message size of 4KB. The MPI basic communication

calls show execution latencies that are similarly comparable to both put and get communi-

cation latencies. At smaller message sizes (≤4KB), put latencies are lower by an average of

0.091μs, and get latencies are higher by an average of 0.531μs. This latency gap widens at

larger message sizes to 3.56μs higher for put and 3.75μs lower for get per operation, but is

still a relatively insignificant difference in comparison to app execution time.

21

Figure 3: NERSC Point-to-point Log Latencies

Figure 4: NERSC AllReduce Log Latencies (Legend specifies communication library and

node count)

22

Table 4: Barrier Latencies (μs)

Barrier Latencies (μs)

N MPI 2-sided OpenSHMEM

2 1.24 1.48

4 5.16 2.15

8 7.12 2.62

16 12.72 6.41

32 13.10 4.62

64 14.48 6.64

Collective operations shown in Figure 4 and Table 4 are scaled in message size and number

of processes. The OpenSHMEM barrier-all latencies increase at a slower rate than the MPI

counterparts, scaling by a factor of 4.47 from 2 to 64 nodes, while MPI scales by a factor of

11.66. The all-reduce latencies display more variation. At lower message sizes (≤4KB) the

OpenSHMEM latencies are on average 74.18% slower than MPI, but at larger message sizes

are 28.7% faster on average than MPI. As the number of processes increases, the difference

in latency between the MPI and OpenSHMEM calls shrinks. There is an average of 111.8%

absolute difference in latency from MPI to OpenSHMEM for 2 processes, but only 63.9%,

75.8%, and 71.5% average absolute difference for 4, 8, and 16 processes, respectively. In

addition, OpenSHMEM latencies are higher than MPI counterparts for large message sizes

(≥8KB) with 2 processes, but are on average lower when running with more processes.

There is also a range of message sizes (32 bytes to ∼2KB) where OpenSHMEM latencies are

significantly larger than MPI, with an average percent increase of 118.3%.

23

5.2 MST Algorithm

Figure 5 displays the differences between the single and leader modes of post-processing

measured on 4 nodes, scaled from 4 to 16 PEs on the dataset of six webgraphs for the MPI

implementation. The total execution time at 4 processes was similar between the two post-

processing methods, with an average of only 1.1% increase in execution time from leader

to single modes for MPI. At a higher number of nodes the two versions diverged further,

with average percent increase widening to 18.9%, 21.7%, and 22.2% for 8, 12, and 16 PEs,

respectively. The peak observed for multiple webgraphs at 12 PEs is a result of under-

utilization of resources, since each node gets data from 4 PEs and one node is unused. These

differences at a higher number of PEs were in favor of the single post-processing method.

As a result, final data was collected using the single post-processing method for both MPI

and OpenSHMEM implementations.

Figure 5: MPI implementation single (-S) vs. leader (-L) post-processing methods.

The scaled execution time data for both implementations of the MND-MST algorithm

are presented below with raw execution times in Figs. 6, 7, 8, 9, 10, and 11. Data for

these experiments was collected for all 6 webgraphs using NERSC Haswell nodes on the Cori

24

partition, and was scaled up to 16 nodes and up to 64 PEs. MPI results are denoted by

the blue bars, and SHMEM results are denoted by the orange bars. The yellow bar displays

the best overall MPI performance, and the green bar displays the best overall SHMEM

performance. As mentioned previously, not all node-PE configurations were executable on

NERSC due to memory limitations. These are represented by blank bars. Bar labels denote

the total number of PEs.

Tables 5 and 6 show averaged performance improvement results for MPI and OpenSH-

MEM implementations. PE scaling and node scaling are displayed separately. These results

are averaged over all 6 webgraphs, and represent performance improvement compared to the

1 node, 4 PE configuration for each implementation. Best percent increase in performance

is in bold. Table 7 shows the best configuration by webgraph for each implementation.

Configurations are represented as (Nodes, PEs).

Table 5: PE Scaling Performance Improvement

PEs MPI SHMEM

4 2.63% 10.04%

8 25.16% 23.37%

12 28.18% 29.96%

16 28.46% 32.94%

20 20.94% 17.28%

32 14.93% 19.10%

64 -67.60% 2.43%

Comparative performance data by webgraph is presented in Table 8. This table shows

the average percent decrease in total execution time from MPI to OpenSHMEM across all

Node-PE configurations. It also shows the correlation coefficients for three metrics (edges,

file size, and edge-to-vertex ratio) with respect to average performance improvement.

25

Table 6: Node Scaling Performance Improvement

Nodes MPI SHMEM

1 19.53% 3.43%

2 14.94% 21.86%

4 22.16% 10.49%

8 17.90% 37.48%

16 13.40% 32.90%

Table 7: Best Configurations (Nodes, PEs)

Webgraph MPI SHMEM

uk-2014 (4, 16) (8, 20)

gsh-2015 (4, 20) (8, 16)

ara-2005 (4, 16) (8, 16)

uk-2005 (1, 12) (4, 8)

it-2004 (4, 20) (8, 16)

sk-2005 (4, 16) (16, 32)

5.3 Productivity Studies

In addition to demonstrating scaling and performance results for the MPI and OpenSHMEM-

based apps, the development productivity of each implementation of the algorithm is mea-

sured and compared. When measuring API calls, OpenSHMEM and MPI share a common

setup structure each with corresponding init and finalize calls. For the sake of simplicity,

these along with shmem malloc and shmem free calls are ignored in API counts to avoid di-

lution. The OpenSHMEM-based app shows an increase in LOC by 18.01%, and an increase

in API calls by 34.15% as shown in Table 9.

26

Table 8: Average Performance Improvement

Webgraph Performance Improvement Edges Size (GB) E/V

uk-2014 21.07% 3.65e7 0.15 20.66

gsh-2015 20.71% 1.20e9 4.70 39.09

ara-2005 37.93% 1.28e9 4.90 56.28

uk-2005 26.75% 1.87e9 7.25 47.46

it-2004 39.04% 2.30e9 8.80 55.74

sk-2005 39.63% 3.90e9 15.00 77.00

Avg/Correlation 30.86% 0.71 0.71 0.86

Table 9: Implementation Productivity

Function API Calls Lines of Code

MPI SHMEM MPI SHMEM

Graph Part 3 6 247 273

Ghost Info 7 12 54 91

Merge 14 25 117 185

Post Proc 24 29 128 160

Total 82 110 1188 1402

27

Figure 6: uk-2014 Webgraph Performance Comparison.

Figure 7: gsh-2015 Webgraph Performance Comparison.

28

Figure 8: ara-2005 Webgraph Performance Comparison.

Figure 9: uk-2005 Webgraph Performance Comparison.

29

Figure 10: it-2004 Webgraph Performance Comparison.

Figure 11: sk-2005 Webgraph Performance Comparison.

30

6.0 Discussion

This section evaluates differences in performance at the API and app levels, in the context

of message size and webgraph composition. It also examines the change in productivity with

respect to overall performance.

6.1 API Calls

When compared directly on the API-level, the point-to-point OpenSHMEM operations

are on-par with their MPI counterparts, with some variation depending on message size and

number of processes. Providing inherent nonblocking behavior at the target PE, the put

and get SHMEM calls have similar latencies to the MPI Send-Recv pair. On the collective

side, the OpenSHMEM barrier-all operation outperforms that of MPI for all processor counts

above two. This is likely due to the lack of a communicator argument in the SHMEM barrier-

all call that is present in MPI Barrier, which could reduce latency. The all-reduce operation

is more nuanced. MPI allreduce outperforms the OpenSHMEM implementation for message

sizes larger than 16 bytes and processor counts greater than 2. The average percent increase

in latency from MPI to OpenSHMEM is 142.09% for message sizes between 32 bytes and

2KB, but this increase falls to an average of only 31.76% for message sizes greater than 2KB.

While the discrepancies in latency for collective operations are more significant (45.07%

average decrease for barrier-all and 57.24% increase for all-reduce compared to only ∼2.5%

combined decrease for put and get), these differences are still relatively minor in the scope of

the entire app runtime. With a difference of at most a few milliseconds per call at the largest

message sizes and a few hundred API calls in the entire app at runtime, the performance

improvement from SHMEM API calls is on average less than 2% of the total execution time.

This result is consistent across all three testbeds (see Appendices A and B), and such a

minor improvement alone is not enough to justify the increase in programming complexity

that comes with the OpenSHMEM specification. Instead, it is the combination of one-sided

31

and non-blocking communication patterns with strategic programming techniques explained

above that lead to concrete, noticeable speedup over MPI.

6.2 Productivity Studies

The use of communication-computation overlapping techniques and flexible one-sided

communication patterns comes with additional program complexity, demonstrated by the

∼34% increase in API-calls and ∼18% increase in LOC for the OpenSHMEM implemen-

tation. To combine these metrics into a single result, we averaged both increases to find

a combined increased complexity of ∼25%. To produce significant performance improve-

ment and justify this increase in complexity, these programming paradigms must also be

thoroughly understood and implemented by the programmer, with the added risk of manual

synchronization.

It is important to note that a portion of this increase can be attributed to the use

of custom MPI types which are currently not supported by OpenSHMEM. Due to the

“shmem TYPE OP()” format of SHMEM calls, certain lines were doubled to ensure that the

right datatype was being used. Another portion of the increased overhead is caused by the

use of “pWrk” and “pSync”, two array data structures used to perform certain OpenSHMEM

communications including many collective operations [6].

The majority of the differences in productivity can be attributed to the merge and post-

processing portions of the algorithm, due to the high number of communication operations

present. In addition, the optimized OpenSHMEM-based app uses partitioning and non-

blocking communication, which adds additional complexity in the form of synchronization

calls (shmem barrier and shmem quiet).

Finally, certain symmetric variables and data structures had to be introduced to keep

symmetric memory locations consistent between processors. With MPI, variables of the same

name are stored in separate locations across processors and can thus be of different sizes.

However, any pointer or variable declared in the symmetric memory must be the same size

across every PE to avoid invalid accesses. For this reason, new “maximum value” variables

32

were introduced to ensure symmetric variables had consistent sizes across PEs, which had

to be calculated via collective communication. This introduced more overhead in the form

of additional API calls as well as lines of code.

One drawback of using OpenSHMEM is that, as of writing, the OpenSHMEM specifica-

tion version 1.4 only supports “to-all” communication for many collective API-calls, meaning

all processes receive data from each communication [5]. MPI allows for single processes to

be the target of a collective communication, as with an MPI Reduce or MPI Gather. This is

due to the use of the symmetric heap present across all PEs, and leads to more overhead for

corresponding OpenSHMEM calls. In addition, performing any “to-one” collective operation

equivalent to an MPI Reduce or MPI Gather must be programmed manually, using a series

of sequentially executed point-to-point operations that reduce productivity and increase ex-

ecution time. An example comparison between an MPI to-one collective communication and

an OpenSHMEM to-one communication using seqeuential point-to-point operations can be

found in Appendix B. As a result, any such to-one communications in the algorithm were

simply replaced with to-all communications, unless noted otherwise.

6.3 MST Algorithm

The changes in API calls alone do not provide a significant amount of performance

improvement, and increase the programming complexity of the app. To fully exploit the

benefits of the OpenSHMEM specification, the programmer must use strategic programming

techniques, non-blocking communication, and RMA to maximize uninterrupted computation

and minimize communication time.

The result of the added overhead and nuanced programming strategies is promising, with

performance improvements from MPI to OpenSHMEM averaging over 30% for all node-PE

configurations. Some graphs seemed to perform better with OpenSHMEM; the it-2004 and

sk-2005 webgraphs averaged nearly 40% improvement in execution while gsh-2015 and uk-

2014 showed an average improvement of 20%. This variation in performance correlates

roughly with file size and number of edges, with the largest two webgraphs (sk-2005 and it-

33

2004) showing the best improvement and the smallest two webgraphs (gsh-2015 and uk-2014)

showing the least improvement. The correlation coefficient between average percent decrease

in execution time and both file size and number of edges is 0.71. Performance improvement

is even better correlated with edge-to-vertex ratio, with a correlation coefficient of 0.86. This

improvement is likely due to the larger number of edges per vertex to analyze, which results

in a larger volume of communication and more potential for performance gain from SHMEM

optimizations. These strong correlations suggest promising scaling results for OpenSHMEM

with larger graphs and other large-scale HPC apps.

In terms of PE scaling, this work demonstrates results that are consistent with [2], insofar

as the app scales up to and reaches a minimum around 16 PEs before plateauing or losing

performance. At all node counts, both MPI and OpenSHMEM implementations display the

best performance improvement between 12 and 20 PEs with the exception of the sk-2005

webgraph. When measuring percent decrease in execution time compared to the 1 node, 4

PE configuration, both implementations show optimum performance with a PE count of 16,

with an average percent improvement of 28.46% for MPI and 32.94% for OpenSHMEM. The

worst performance for both implementations is at 64 PEs, followed closely by 4 PEs. PE

counts of 8 to 20 see more consistent performance improvement.

For node scaling, MPI shows optimum performance with 4 nodes at an average of 22.16%

improvement, while OpenSHMEM peaks at 8 nodes, with an average of 37.48% decrease

compared to 1 node and 4 PEs. MPI displays worst performance with 16 nodes, while

OpenSHMEM displays worst performance when using 1 node. With too few or too many

nodes, graph data can either be too distributed or not distributed enough, resulting in extra

communication overhead or inadequate parallelization. The variability of scaling results

is due to the partitioning of the graphs by the processes, and is highly dependent on the

format of the graph itself. While some graphs are amenable to more PEs and increased

vertex subdivision, other graphs might not be able to mask the increased communication

overhead with independent computation or data partitioning.

34

7.0 Conclusions

At the app level, PGAS communication models such as OpenSHMEM show promising

results in terms of consistent scaled performance improvement, in spite of limited latency

difference between API calls. Through the utilization of strategic programming techniques

and flexible RMA communications, the OpenSHMEM specification demonstrated significant

improvement over MPI on a parallel graph app, with an equal or lower percent increase

in programming complexity based on lines of code and number of API calls. The per-

formance improvement from MPI to OpenSHMEM also demonstrates positive correlation

with increasing webgraph size and edge-to-vertex ratio, indicating that OpenSHMEM has

promising scaling potential on HPC apps. As the specification continues to be developed,

more complex communication schemes will be supported, increasing the range of apps and

problems that can adopt this growing model.

This research provides a foundation for studying the OpenSHMEM specification at a

higher level. The baseline API-call comparison provides context for evaluating the pre-

sented RMA programming optimizations, and the examination of productivity quantifies

the increased workload for the app developer. As apps and databases increase in scale,

distributed-computing systems will become even more prominent, and large-scale distributed

app developers may turn to other methods to improve performance. With high scalability

and a low barrier of entry, the OpenSHMEM specification should be heavily considered for

complex apps in the ever-adapting field of HPC.

35

8.0 Future Work

The speedup displayed from using OpenSHMEM optimizations is promising, and scales

well. It has presently only been applied to the baseline version of the algorithm which focuses

on CPUs. Panja and Vadhiyar also describe a hybrid version of the algorithm, leveraging

GPUs to achieve higher levels of acceleration, with the added cost of host-device communica-

tion overhead and complexity. There is significant potential for further development on this

implementation. NVIDIA has recently released its own version of the OpenSHMEM library

for GPUs, called NVSHMEM, which uses GPUDirect RDMA (GDR). This allows GPUs to

directly communicate with one another, avoiding the CPU communication bottleneck [27].

In addition to the acceleration displayed in this work with one-sided and non-blocking com-

munication, the application of the NVSHMEM library to the MST algorithm could lead to

further latency reduction.

While NVSHMEM has not yet been applied to larger apps, it is our hope to continue

to expand this work to the hybrid GPU algorithm, potentially combining OpenSHMEM

and NVSHMEM libraries. This would more robustly explore the performance improvement

potential of the MND-MST algorithm, and would combine two SHMEM libraries at a larger

scale.

36

Appendix A Point-to-Point Microbenchmarks

Figure 12: Scaling Put Latencies

37

Figure 13: Scaling Get Latencies

38

Appendix B Collective Microbenchmarks

Figure 14: Scaling AllReduce Latencies (Top: 1KB, Bottom: 1MB)

39

Figure 15: Scaling Barrier Latencies

Figure 16: Scaling Reduce Latencies (1MB)

40

Bibliography

[1] T. Stitt, An Introduction to the Partitioned Global Address Space (PGAS) Program-
ming Model. OpenStax CNX, March 2020.

[2] R. Panja and S. Vadhiyar, “Mnd-mst: A multi-node multi-device parallel boruvka’s
mst algorithm,” in Proceedings of the 47th International Conference on Parallel Pro-
cessing, ICPP 2018, (New York, NY, USA), Association for Computing Machinery,
2018.

[3] M. Schulz et al., “Mpi: A message passing interface standard 2019 draft specification,”
Nov. 2019.

[4] W. D. Gropp and R. Thakur, “Revealing the performance of mpi rma implementa-
tions,” in Recent Advances in Parallel Virtual Machine and Message Passing Interface
(F. Cappello, T. Herault, and J. Dongarra, eds.), (Berlin, Heidelberg), pp. 272–280,
Springer Berlin Heidelberg, 2007.

[5] U. D. of Defense, O. R. N. Laboratory, and L. A. N. Laboratory, “Openshmem appli-
cation programming interface version 1.4,” Dec. 2017.

[6] B. Chapman et al., “Introducing openshmem: Shmem for the pgas community,” in
Proceedings of the Fourth Conference on Partitioned Global Address Space Program-
ming Model, PGAS ’10, (New York, NY, USA), Association for Computing Machinery,
2010.

[7] K. Feind, “Shared memory access (shmem) routines,” in Mile High Performance (CUG
1995), Cray Research, Inc., 1995.

[8] “Openshmem application programming interface version 1.5,” Jun. 2020.

[9] J. Nesetril, “A few remarks on the histroy of mst-problem,” Archivum Mathematicum,
vol. 33, no. 1, pp. 15–22, 1997.

[10] V. Jarńık, “O jistém problému minimálńım [about a certain minimal problem],” vol. 6,
no. 4, pp. 57–63, 1930.

41

[11] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” vol. 7, pp. 48–50, American Mathematical Society with MSC, 1956.

[12] O. Borúvka, “O jistém problému minimálńım [about a certain minimal problem],”
vol. 5, no. 3, pp. 37–58, 1926.

[13] J. Jose, J. Zhang, A. Venkatesh, S. Potluri, and D. Panda, “A comprehensive per-
formance evaluation of openshmem libraries on infiniband clusters,” in OpenSHMEM
Workshop, March 2014.

[14] H. Fu, M. Gorentla Venkata, S. Salman, N. Imam, and W. Yu, “Shmemgraph: Ef-
ficient and balanced graph processing using one-sided communication,” in 2018 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pp. 513–522, 2018.

[15] M. Grossman et al., “Hoover: Distributed, flexible, and scalable streaming graph
processing on openshmem,” in OpenSHMEM and Related Technologies. OpenSHMEM
in the Era of Extreme Heterogeneity, (Cham), pp. 109–124, Springer International
Publishing, 2019.

[16] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and the chapel
language,” The International Journal of High Performance Computing Applications,
vol. 21, no. 3, pp. 291–312, 2007.

[17] G. Wang, H. Lam, A. George, and G. Edwards, “Performance and productivity eval-
uation of hybrid-threading hls versus hdls,” in 2015 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2015.

[18] V. Olman, F. Mao, H. Wu, and Y. Xu, “Parallel clustering algorithm for large data
sets with applications in bioinformatics,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 6, no. 2, pp. 344–352, 2009.

[19] J. L. Bentley, “A parallel algorithm for constructing minimum spanning trees,” Jour-
nal of Algorithms, vol. 1, no. 1, pp. 51–59, 1980.

[20] G. Malewicz et al., “Pregel: A system for large-scale graph processing,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’10, (New York, NY, USA), p. 135–146, Association for Computing Machinery,
2010.

42

[21] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Effective techniques for message reduction
and load balancing in distributed graph computation,” in Proceedings of the 24th
International Conference on World Wide Web, WWW ’15, (Republic and Canton of
Geneva, CHE), p. 1307–1317, International World Wide Web Conferences Steering
Committee, 2015.

[22] “Pitt research center for research computing,” 2018.

[23] J. Towns et al., “Xsede: Accelerating scientific discovery,” Computing in Science
Engineering, vol. 16, pp. 62–74, sep 2014.

[24] B. Friesen, “Cori system - nersc documentation,” 2020.

[25] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The mvapich project:
Transforming research into high-performance mpi library for hpc community,” Journal
of Computational Science, p. 101208, 2020.

[26] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,” in
Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
(Manhattan, USA), pp. 595–601, ACM Press, 2004.

[27] C.-H. Hsu and N. Imam, “Assessment of nvshmem for high performance computing,”
International Journal of Networking and Computing, vol. 11, no. 1, pp. 78–101, 2021.

43

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Webgraph Dataset Details
	2. ara-2005 Node-PE Configurations
	3. uk-2005 Node-PE Configurations
	4. Barrier Latencies (s)
	5. PE Scaling Performance Improvement
	6. Node Scaling Performance Improvement
	7. Best Configurations (Nodes, PEs)
	8. Average Performance Improvement
	9. Implementation Productivity

	List of Figures
	1. PGAS diagram. PGAS
	2. MND-MST algorithm structure. MND-MST
	3. NERSC Point-to-point Log Latencies
	4. NERSC AllReduce Log Latencies (Legend specifies communication library and node count)
	5. MPI implementation single (-S) vs. leader (-L) post-processing methods.
	6. uk-2014 Webgraph Performance Comparison.
	7. gsh-2015 Webgraph Performance Comparison.
	8. ara-2005 Webgraph Performance Comparison.
	9. uk-2005 Webgraph Performance Comparison.
	10. it-2004 Webgraph Performance Comparison.
	11. sk-2005 Webgraph Performance Comparison.
	12. Scaling Put Latencies
	13. Scaling Get Latencies
	14. Scaling AllReduce Latencies (Top: 1KB, Bottom: 1MB)
	15. Scaling Barrier Latencies
	16. Scaling Reduce Latencies (1MB)

	Preface
	1.0 Introduction
	2.0 Background
	2.1 PGAS
	2.2 SHMEM
	2.3 Minimum Spanning Tree

	3.0 Related Research
	3.1 OpenSHMEM API Calls
	3.2 OpenSHMEM Graph Processing
	3.3 Productivity Studies
	3.4 Parallel MST

	4.0 Experiments
	4.1 Testbeds
	4.2 API Calls
	4.3 Datasets
	4.4 Algorithm
	4.5 Algorithm Variables
	4.6 SHMEM Optimizations

	5.0 Results
	5.1 API Calls
	5.2 MST Algorithm
	5.3 Productivity Studies

	6.0 Discussion
	6.1 API Calls
	6.2 Productivity Studies
	6.3 MST Algorithm

	7.0 Conclusions
	8.0 Future Work
	Appendix A. Point-to-Point Microbenchmarks
	Appendix B. Collective Microbenchmarks
	Bibliography

