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Over the last few decades, Message Passing Interface (MPI) has become the parallel-
communication standard for distributed algorithms on high-performance platforms. MPI’s
minimal setup overhead and simple API calls give it a low barrier of entry, while still provid-
ing support for more complex communication patterns. Communication schemes that use
physically or logically shared memory provide a number of improvements to HPC-algorithm
parallelization. These models prioritize the reduction of synchronization calls between pro-
cessors and the overlapping of communication and computation via strategic programming
techniques. The OpenSHMEM specification developed in the last decade applies these ben-
efits to distributed-memory computing systems by leveraging a Partitioned Global Address
Space (PGAS) model and remote memory access (RMA) operations. Paired with non-
blocking communication patterns, these technologies enable increased parallelization of ex-
isting apps. This research studies the impact of these techniques on the Multi-Node Parallel
Boruvka’s Minimum Spanning Tree Algorithm (MND-MST), which uses distributed pro-
gramming for inter-processor communication. This research also provides a foundation for
applying complex communication libraries like OpenSHMEM to large-scale parallel apps.
To provide further context for the comparison of MPI to OpenSHMEM, this work presents
a baseline comparison of relevant API calls as well as a productivity analysis for both imple-
mentations of the MST algorithm. Through experiments performed on the National Energy
Research Scientific Computing Center (NERSC), it is found that the OpenSHMEM-based
app has an average of 33.9% improvement in overall app execution time scaled up to 16
nodes and 64 processes. The program complexity, measured as a combination of lines of
code and API calls, increases from MPI to OpenSHMEM implementations by ~25%. These
findings encourage further study into the use of distributed symmetric-memory architectures

and RMA-communication models applied to scalable HPC apps.
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1.0 Introduction

To maximize parallel processing and acceleration, programmers must minimize overhead
and synchronization bottlenecks. For distributed-memory systems the current standard is
the Message Passing Interface (MPI) due to its simplicity and support of many communi-
cation methods. Using handshake-based point-to-point send and receive calls and primitive
collectives like broadcast and gather, MPI supports parallelization of numerous kernels and
algorithms [3].

The remote memory access (RMA) model introduces new possibilities for further acceler-
ation of distributed parallel apps. Its support for non-blocking and one-sided communication
patterns can reduce synchronization bottlenecks in MPI that stem from multiple sequential
handshake communications. The increased flexibility afforded by RMA comes with added
complexity, requiring the programmer to manually synchronize parallel processes indepen-
dently to avoid race conditions and invalid memory accesses. Nevertheless; RMA models can
lead to increased acceleration by minimizing communication bottlenecks and maximizing the
amount of uninterrupted parallel computation for the target of the communication call [4].

Newer versions of the MPI specification support the RMA model by introducing MPI
“windows”. These windows must be allocated and locked manually to support one-sided
communication [4], which limits flexibility. Any performance improvement gained from the
model’s one-sided and non-blocking communication comes with added program complexity,
which may increase development time and detract from the library’s utility.

In the last few decades, the concept of distributed symmetric memory, or “SHMEM?” | has
been revisited as an alternative to MPI, resulting in a new specification called OpenSHMEM.
Utilizing a partitioned global address space (PGAS) and adhering to the RMA communica-
tion model, this specification attempts to support one-sided, non-blocking communication
without adding extensive setup overhead or complex API calls. Many OpenSHMEM API
calls are modeled after MPI methods, allowing for a low barrier of entry for parallel program-

mers while still affording increased parallelization [5]. This research contrasts the two-sided



MPT specification to the one-sided OpenSHMEM variant, evaluating RMA acceleration ben-
efits and quantifying any increased complexity or loss in productivity.

This comparison starts at the API level and then extends to the app level using a par-
allelized graph-processing algorithm based on Boruvka’s algorithm [2]. The OpenSHMEM
specification is directly compared to MPI by evaluating two different implementations of the
algorithm. A focus on overall execution time and productivity provides a basic framework
for the continued study and development of the OpenSHMEM specification at multiple levels
of complexity.

In summary, this research contributes:

e An evaluation of OpenSHMEM API calls based on existing distributed-communication
standards

e A discussion of OpenSHMEM programming techniques that lead to parallel acceleration
and corresponding levels of increased complexity

e Analysis of OpenSHMEM optimizations on a Parallel MST app



2.0 Background

The core of this research focuses on evaluating productivity and performance of paral-
lel communication libraries with distributed apps. The concepts presented in this section

illustrate the scope of the app with respect to that goal.

2.1 PGAS

The PGAS model imitates the synchronization benefits of a shared main memory us-
ing symmetric memory, while maintaining the performance and locality of the distributed-
memory model used by message-passing libraries like MPI. A shared main memory allows
for simultaneous and overlapping computation, which can be reproduced from symmetric
addressing across processors. The distributed-memory model allows for increased scalabil-
ity, where separate processors can communicate while storing data in smaller local memories
[1]. This distributed partitioning of memory allows a larger total space to be represented
over multiple cores or processors, rather than requiring a large-scale memory to be used on
a single node or multiprocessor.

To simulate and combine the benefits of both of these memory architectures, the PGAS
model implements a global address space, local and remote data storage, one-sided commu-
nication, and distributed data structures [1]. Global addressing allows individual processors
to simultaneously access the same location in their respective symmetric memories. This
one-sided communication leads to increased programming flexibility and communication-
computation overlap. However, symmetric memory is limited in size. This forces program-
mers to decide what data needs to be remotely accessible and what can be stored locally
(in “private” memory). This creates an efficient compromise between performance and ease
of access at the expense of more vigilant design [1]. Support for distributed data structures

allows more data to be stored, opening the door for complex program compatibility.
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Figure 1: PGAS diagram. [1]

2.2 SHMEM

Originally developed by Cray as a proprietary app interface in the 1990s, SHMEM has
been developed into a communication specification used for PGAS programming [6]. By
using a PGAS model, SHMEM allows distributed systems to reap the benefits of a “shared”
main memory. It also allows for efficient remote data transfer through the use of one-
sided point-to-point communication calls like shmem_put and shmem_get as well as collec-
tive calls like shmem_scatter and shmem_gather [7]. Non-blocking calls like shmem_get_nbi
and shmem_put_nbi provide further means for asynchronous acceleration. Promoted for its
ubiquity on existing PGAS systems and structural similarity to well-known communication
standards like MPI, SHMEM supports communication-computation overlap via one-sided
API-calls [6]. By defining a separate “symmetric heap” in which to store “symmetric vari-
ables” remotely accessible by all processors, SHMEM provides the means for simultaneous
remote data access, which can lead to uninterrupted computation and scalable parallel ac-
celeration.

In 2010, SHMEM was standardized into the OpenSHMEM specification by the PGAS

community, unifying development efforts and expanding its viability for widespread use



[6]. Analogous to the popular MPT specification, OpenSHMEM universalized functions and
standardized important aspects of the model including types, collectives, API-call structure
and communication protocols. OpenSHMEM has been supported across numerous platforms
by multiple libraries, including Cray OpenSHMEMX, OSHMEM, and OSSS-UCX.

The OpenSHMEM specification is under ongoing development and the most current
at the time of writing is version 1.5 released in June 2020. This version abstracts away
some data structure complexity for collective communications and introduces a teams-based
organization style to streamline more complex communication patterns [8]. However, due
to its recent release it has yet to be fully supported on existing testbeds and platforms,
including the testbeds used for this research. Therefore the app has been developed with
OpenSHMEM 1.4, which is supported by OSHMEM and Cray OpenSHMEMX, the specific

libraries used to develop and test this work on all three testbeds.

2.3 Minimum Spanning Tree

A weighted graph is a common data structure used in algorithms, composed of a set
of vertices (nodes) and a set of weighted edges that connects different vertices. A common
analytic of a weighted graph is the minimum spanning tree (MST), and is defined as the set
of edges with the least combined weight that connects every vertex in the graph. A fully
connected, weighted graph with N vertices would thus have an MST that consists of N-1
edges, the minimum number of edges required to include every vertex. The MST problem
has a number of direct applications including network design (telephone, road, electrical
circuit) as well as approximation for NP-hard problems in computer science such as the
traveling salesperson problem. It also has indirect applications including feature learning,
image registration, data storage reduction and cluster analysis [9].

The three most popular solutions to the MST problem are Prim’s, Kruskal’s, and Boru-
vka’s Algorithms. Prim’s algorithm starts with two sets of vertices, those added and not
yet added to the MST. It then searches for and adds the edge with the lowest weight to the

MST, and adds the new vertices to the appropriate set. This process is iterative, adding the



lowest-weight edge until all vertices are present in the set of added vertices and the chosen
edges make up the MST. [10].

Kruskal’s algorithm instead starts by sorting all edges in increasing order of weight. The
lowest weight edge is then examined to see if its addition would form a cycle. If so, that
edge is discarded. If not, it is added to the MST. This process is continued until there are
the appropriate number of edges, indicating that the MST is fully formed (N-1 edges for N
vertices). [11].

The baseline algorithm used for this research is Boruvka’s algorithm, one of the simplest
and oldest MST solutions. It starts with multiple small components composed of individual
vertices and their lightest edges. These small components are then merged along their
lightest available edges to form larger components. This process continues until only a single
component remains, which is the MST [12]. The bottom-up nature of this algorithm makes it
amenable to parallelization, since vertices can be separately tracked by different processors,
and computation can be distributed. The time complexity of Boruvka’s algorithm can be

improved through utilization of clever data structures and parallelization [9)].



3.0 Related Research

The OpenSHMEM specification has previously been explored on the API and app levels,
including apps focused on graph processing. This research extends this investigation by
analyzing the specification on both levels for an MST graph-processing app, and evaluating

its impact on productivity.

3.1 OpenSHMEM API Calls

Jose and Zhang tested OpenSHMEM API call performance across four different Open-
SHMEM libraries, including UH-SHMEM (University of Houston), MV2X-SHMEM (MVA-
PICH2X), OSHMEM, and Scalable-SHMEM (Mellanox Scalable) [13]. They compared
point-to-point, collective, and atomic performance on an Infiniband Xeon cluster, scaling
up to 1MB in message size and up to 4K processes for collective operations. This work
found that MV2X-SHMEM demonstrated consistently lower latencies compared to other
OpenSHMEM libraries, as well as a smaller memory footprint per process. Jose and Zhang
also compared the performance of two kernels, Heat Image and DAXPY. They found that
MV2X-SHMEM again outperformed other libraries, demonstrating consistent execution time

improvement that scaled with number of processes.

3.2 OpenSHMEM Graph Processing

OpenSHMEM has been used for graph processing in other contexts, as seen in the work
of Fu et. al [14] on “SHMEMGraph”, a graph processing framework that focused on the
efficiency of one-sided communication and a global memory space. To address communi-
cation imbalance, computation imbalance, and inefficiency, the SHMEMGraph framework

introduced a one-sided communication channel to support more flexible put and get opera-



tions as well as a fine-grained data serving mechanism that improves computation overlap.
The resulting framework was used to test four large web-based graphs on five representative
graph algorithms, finding 35.5% improvement in execution time over the state-of-the-art
MPI-based Gemini framework [14].

Grossman and Pritchard studied SHMEM-based graph processing through their work
on HOOVER, a scalable distributed C/C++ framework for dynamic graph problems [15].
HOOVER focused on flexibility while still maintaining scalability, leveraging one-sided com-
munication and a PGAS memory model. It divided work by splitting graph vertices evenly
among processing elements (PEs), which would execute separately at first and eventually
coalesce and execute in lockstep as the algorithm iterated. Used for problems such as in-
fectious disease and intrusion detection modeling, HOOVER demonstrated scalable speedup
up to 6000 PEs using communication-avoidance techniques and non-blocking communication

patterns to maximize computation [15].

3.3 Productivity Studies

To evaluate and compare the productivity of the algorithm using different communication
paradigms, multiple metrics are needed. As seen in the work of [16], measuring both overall
lines of code (LOC) and number of communication-specific API calls strike a balance between
increased complexity and overall workload. Development time has also been used to measure
productivity with HPC toolsets as seen in [17], but this metric is more subjective and difficult
to measure and compare. The OpenSHMEM specification’s growing similarities to MPI
further legitimize these metrics, making a direct comparison of productivity more viable and

informative.



3.4 Parallel MST

Olman and Mao implement a parallel MST algorithm as a means for solving a Bioinfor-
matics clustering problem based on Prim’s algorithm [18]. Using a Fibonacci heap to find the
next smallest edge, this algorithm first divides the entire network into subgraphs of equal size
in terms of number of vertices. Bipartite graphs are also generated, which bridge subgraphs
via intra-vertex edges. An MST is then constructed for each subgraph and bipartite graph
in parallel. Finally, all resulting MSTs are merged in parallel to form a new graph, which
in turn constructs the overall MST for the original graph. The entire algorithm is tuned to
the optimum number of graph partitions.

Bently tackles the parallel construction of MSTs in the scope of VLSI technology, defin-
ing an algorithm with asymptotic execution time of O(V log V). This algorithm uses a “tree
machine” data structure, which is a mirrored binary tree with nodes for broadcasting, com-
puting, and combining data inputs. Based on Prim-Dijkstra’s MST, this parallel algorithm
uses the binary tree machine to search for minimum weight edges across multiple vertices
simultaneously. As edges are added to the MST structure, vertices are eliminated from the
original pool and added to the MST pool until no vertices remain and the MST is fully
constructed [19].

Yan and Cheng have developed a system to find MST data structures on distributed pro-
cessors called Pregel [20]. This system is “vertex-centric”, focusing on messages sent between
vertices to keep communication simple and efficient [21]. Based on the bulk synchronous
parallel model (BSP), Pregel was theoretically able to achieve performance improvements
for graph processing apps by increasing the number of parallel communications that could
simultaneously execute. However, this approach has inconsistency issues due to varying ver-
tex degree in large-scale graphs, leading to unequal communication backlog and bottlenecks.
This led to the development of Pregel+, which added vertex mirroring for message combining
and introduced a request-response API [21]. Running Pregel+ against modern competitive
graph processing systems like Giraph and GraphLab demonstrated the effectiveness of these
two techniques, resulting in reduced communication cost and reduced overall computation

time for the new Pregel+ implementation [21].



The algorithm used in this research is based on and uses source code from Panja and
Vadhiyar [2], who describe the operation of the parallelized, distributed MST graph algo-
rithm. The algorithm is explained in detail in Section 4.4. Panja and Vadhiyar validate the
algorithm’s performance compared to Pregel+4-, and show positive performance improvements
for overall execution time on a scaling number of parallel processes from 4 to 16. This work

was thus deemed suitable for use as a state-of-the-art scalable distributed parallel algorithm.
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4.0 Experiments

This section details the nature of experiments performed, data collected, and optimiza-
tions studied. Topics include supercomputing testbeds, API-level experiments, app datasets,

and the design and optimization of the app based on the MND-MST algorithm.

4.1 Testbeds

Microbenchmark data was collected on three testbeds. These testbeds are the University
of Pittsburgh’s Center for Research and Computing (CRC), the Pittsburgh Supercomputing
Center (PSC), and the National Energy Research Scientific Computing Center (NERSC).
CRC has 2.6GHz dual 10-core Haswell nodes with FDR Infiniband interconnects [22]. The
Bridges 2 system on PSC has 3.4GHz 256GB EPYC AMD Nodes with HDR Mellanox
Infiniband interconnects [23]. NERSC is a U.S. Department of Energy Office of Science User
Facility at Lawrence Berkeley National Laboratory, and uses over 2,300 2.3GHz Haswell
nodes each with 128GB of DDR4 memory [24].

All MST app data was collected exclusively on the Cori partition of NERSC, with exe-
cution times averaged over 15 executions for each configuration of MST runtime parameters.
Correspondingly, the microbenchmark results shown below represent only the data collected
on the NERSC supercomputing system. Microbenchmark data collected on all three testbeds
are compiled in Appendices A and B. Microbenchmark latencies are averaged over 500 exe-

cutions. For OpenMP sections, 4 threads were allocated per node.

4.2 API Calls

To frame and analyze results for a larger app, it is important to analyze differences of

the baseline, API-level performance. This is done by directly comparing relevant API calls
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between MPI and OpenSHMEM. Point-to-point and collective tests are scaled up in message
size, and the collective operations are scaled up in number of parallel processes. Microbench-
mark tests for both MPI and OpenSHMEM are created by the MVAPICH project from Ohio
State University, with minor adjustments made to scale all benchmarks to appropriate sizes
[25]. Point-to-point benchmarks were executed using two nodes and scaling from 1 byte up
to 4 MB in message size. Collective benchmarks were similarly scaled up to 4 MB, and the

number of nodes was scaled from 2 to 32. All API-level benchmarks used one PE per node.

4.3 Datasets

The datasets used for the app consist of large web-based graphs formed by web-crawling
[26] and created by the Laboratory for Web Algorithmics. These graphs are undirected,
weighted and have significantly more edges than vertices, which supports straightforward
vertex partitioning and makes them ideal for large-scale parallel processing and MST calcu-
lations. Although not all fully connected, consistent MSTs can still be calculated effectively
for execution time comparison. These graphs range in size from 1.8 million vertices to over
100 million vertices, with edge counts reaching nearly 2 billion. These large graphs have exe-
cution times on the order of tens of seconds, allowing for greater disparity in execution time
at scale. Execution times for MPI and SHMEM implementations can be directly compared
because the underlying nature of the algorithm remains unchanged despite which commu-
nication paradigm is used. Edges are still processed, removed, and exchanged in the same
way, and various implementations differ only in the order and method of communication of

edges and components.

4.4 Algorithm

Based on [2], the baseline algorithm of this research is a parallelized version of the classic

Boruvka’s algorithm for finding MST's, as described in Section 2.3.
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Table 1: Webgraph Dataset Details

Webgraph Dataset (E/V = Edge-to-vertex ratio)
Name | Size (GB) | Vertices | Edges | Max Deg | E/V
uk-2014 0.15 1.77e6 | 3.65e7 6.59e4 20.66
gsh-2015 4.70 3.08e7 1.20e9 2.18e6 39.09
ara-2005 4.90 2.27e7 1.28€9 5.76ed 56.28
uk-2005 7.25 3.95e7 | 1.87e9 1.78e6 47.46
it-2004 8.80 4.13e7 2.30e9 1.33e6 55.74
sk-2005 15.00 5.06e7 3.90e9 8.56¢€6 77.00

Level 5
(postProcess)

Level 4
(indComp + mergeGraph)

Level 3
(indComp + exchangeSegments)

Level 2

(indComp + mergeGraph)

Level 1

(exchangeSegments)

Figure 2: MND-MST algorithm structure. [2]
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The parallelized version of the algorithm is split into four major parts: graph partitioning,
independent computation, merging, and post-processing, as shown in Fig. 2. During graph
partitioning the input graph is read in parallel by each PE and divided into equal parts. All
vertices and edges are split evenly among the PEs, with a focus on edge balancing. This
partitioning method preserves graph locality while also maximizing parallel computation
efficiency. To keep track of edges that span multiple PEs, a list of “ghost information” is
maintained by each PE, which consists of the list of edges that are connected to external
PEs. Keeping track of this extra information adds memory and communication overhead,
but allows independent computation and merging to operate efficiently in parallel [2].

The bulk of the work is performed during independent computation and merging. During
independent computation each PE executes Boruvka’s algorithm locally, combining as many
components as possible to minimize the number of distinct internal partitions. If a lightest
edge for a given internal component connects to a “ghost vertex,” computation is halted
until data is exchanged in the merging step. To improve efficiency, a tolerance threshold is
introduced, ©, which measures the number of MST edges added during each loop iteration.
Once the number of new MST edges dips below this threshold, independent computation
ceases and merging begins. © was optimized to le-3 * E [2], where E is the number of total
MST edges. This threshold is used to avoid slowdown caused by having large numbers of
unresolved components with “ghost edges”.

In the merging portion of the algorithm, each PE cleans up local components by removing
internal or “self” edges (connecting two vertices within a component) and “multi” edges
(heavier edges that were not chosen for the MST). After cleaning up components, PEs
recalculate lists of ghost edges to account for any restructuring. Finally, component data is
exchanged between PEs in a ring pattern. A small percentage of vertices and edges from
each PE are sent to the PE of the next higher rank, updating ghost information and vertex
data in turn. This consideration allows independent parallel computation to continue, as
new sets of components and edges can be evaluated.

After independent computation and merging, the total MST size is calculated by sum-

ming over each PE with a reduction communication. The number of remaining MST edges
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(based on the number of vertices) is then calculated and compared against the “MST thresh-
old”. Once the number of remaining edges dips below this threshold, post-processing can
begin.

The post-processing step combines all remaining components and edges into a smaller
number of PEs, where a final round of computation can be done to construct the full MST.
This process can be done in one of two ways. With the “single” mode of the algorithm, all
data is sent to PE 0, which then does one final round of computation with a © of 0 (i.e., all
MST edges must be found). The “leader” mode splits PEs into groups of a specified size, and
each group combines all data into a “leader” PE, which then runs independent computation
again. The group size was set to 4 PEs as consistent with [2] for best performance.

The algorithm is visually presented in Fig. 2. As shown, the initial group of vertices is
divided evenly among the processors in the partitioning step. Then independent computation
and merging takes place, wherein each processor eliminates edges, combines components, and
exchanges some combined vertices and edges with a neighboring processor to continue the
process. These steps are repeated until the number of newly added MST edges goes below a
new threshold, called the MST threshold. Once this threshold is surpassed, all components
are combined into a single processor and post-processing occurs. The remaining components

are calculated and the full MST is returned.

4.5 Algorithm Variables

Runtime parameters including post-processing mode, MST Threshold, number of nodes,
and PE count were tuned during data collection for optimal performance. The post-processing
mode was either single or leader. The single mode consists of having each node send all left-
over components to PE 0 before performing MST computation on this final PE. In contrast,
the leader mode splits PEs into groups of 4, sending leftover components to the leader PE,
and then re-running the algorithm to merge and compute the MST. This alternative mode

was intended to reduce execution time by parallelizing long post-processing times.
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The MST threshold determined the point at which component consolidation and post-
processing was performed, based on the number of new MST edges. This threshold was

optimized to be 0.24, or 24% of the total number of MST edges.

Table 2: ara-2005 Node-PE Configurations

ara-2005 Node-PE Configurations (S: Success, -: Failure)
Configuration (Nodes, PEs)

Nodes 1 2 4
SH | CB |4 |8|16[32|4|8|16|32|4|8|16 |32
IGB|1GB |S|S| - | - |-|-|-|-1|-1-1]"-]-
2GB|1GB|S|S| - | - |S|S|S|S|S|S|S|S
2GB |2GB |S|S| - | - |S|S|S|S|S|S|S|S
AGB |2GB |S|-| - | - |S|S| S| S |S|S|S|S
4GB 4GB |S |- | - | - |S|S| S| - |S|S]|S|S
6GB |6GB |S|-| - |- |S|[S|-|-|S|S]|S|S
8GB|8GB |- |-| - |- |-|-]-|-|S|[S]S|-

Strong scaling was performed by altering the number of nodes and processing elements
per job. Nodes were scaled from 1 to 16, and PEs were scaled from 4 up to 64, as the number
of PEs is restricted to a multiple of 4. NERSC nodes were limited to 118GB per node, and 64
PEs per node [24]. It was noted in [2] that the algorithm scaled effectively on 4 nodes up to
16 PEs, so data for additional node-PE configurations was collected to further evaluate the
scalability of both implementations. Node-PE configurations were also influenced by memory
limits and allocations, including that of the private heap, the symmetric heap (SH), and a
separate “collective symmetric buffer” (CB) used for SHMEM collective communications.
The two symmetric buffers were set before running jobs and were allocated per PE. NERSC
memory limitations for individual nodes coupled with large graph sizes required fine-tuning
of these parameters to fully execute the algorithm. Multiple webgraphs of different sizes and
characteristics were tested to diversify results and draw more robust conclusions about the

algorithm and the communication schemes. Graph data can be referenced in Table 1.
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Table 3: uk-2005 Node-PE Configurations

uk-2005 Node-PE Configurations (S: Success, -: Failure)
Configuration (Nodes, PEs)

Nodes 1 2 4
SH |CB |4|8|16(32|4|8|16[32|4|8]|16 32
IGB|1GB |- |- - | - |-|-|-|-1|-|-1]~-1-
2GB|1GB |S|S|S | - [S|S| -] -|S|[S| -] -
2GB |2GB |S|S| - | - [S|S| -] -|S|[S|S]| -
4GB [2GB |S|S| - | - |[S|S| S| -|S|S|S|S
AGB [4GB |S|S| - | - |[S|S| -] -|S|S|S|S
6GB |6GB|S|-| - |- |[S|S|-]-|S|S|[S|S
8GB [8GB |- |- | - | - |[S|-|-]-|S|S|S|-

Configurations for two webgraphs are presented in Tables 2 and 3. Note that the uk-2005
graph is larger in size than the ara-2005 graph, which tends to require larger symmetric heap
sizes to execute. Some failures resulted from symmetric memory (heap and the collective
buffer) that was too small to handle communications, while others were caused by over-
allocation that infringed on private memory. As shown, some node-PE configurations were
rendered impossible, as there wasn’t enough memory available to support both symmetric
memory for communication and private memory for graph data storage. Systems with more

available memory per node could allow more extensive configuration testing.

4.6 SHMEM Optimizations
A number of techniques are used to optimize the OpenSHMEM-based app beyond simple

one-to-one API call replacement. By leveraging partitioning, non-blocking communication

and RMA, SHMEM enables programmers to reduce communication overhead and accelerate
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parallel execution without introducing overwhelming complexity. This section details some of
the specific SHMEM optimizations used for the baseline parallel MST algorithm to provide a
framework for large-scale optimizations for other apps in the future. The first major source
of OpenSHMEM optimization occurs during the exchanging of ghost information, which
consists of external vertices and their corresponding edges, after independent computation.
As each PE could contain ghost information for any other PE, all pairs must be examined and
information exchanged. In the baseline MPI approach, this consists of a series of handshake
MPI_send and MPI recv calls, first exchanging the message size (i.e. the number of ghost
edges to be exchanged and updated) before sending the full data structure of vertices and
edges to be updated. This process repeats, one pair of PEs at a time, until all information is
exchanged. Each PE then locally updates the corresponding data structure to reflect changes
in component sizes as well as edges that have been newly removed.

This relatively straightforward communication can be improved with the use of Open-
SHMEM. First, the message size can be sent using one-sided put and get operations followed
by a shmem_wait_until synchronization API call. While this does not completely remove the
handshake from the MPI-based app, each PE can operate independently while sending the
message size, which allows for more efficient execution. Second, the ghost information can be
communicated via RMA without the need for any synchronization. Since each PE can uni-
laterally get all necessary data, handshaking overhead and slowdown from synchronization
are eliminated.

Third, the OpenSHMEM implementation takes advantage of partitioning, which is es-
sentially overlapping communication and computation. Although the message size com-
munication is relatively small (only a single int or long data value), the ghost information
itself can consist of thousands or even tens of thousands of edges. Such a large message
can be divided and sent between PEs in chunks, each overlapped with the updating of the
local PE data structure. Rather than using a single get operation to send the entire mes-
sage, a non-blocking get operation of a smaller chunk size is executed. While the smaller
non-blocking RMA operation executes, the PE updates the local data structure for the previ-

ous data chunk. In this way, communication and computation are overlapped, using a simple
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shmem_quiet synchronization call to ensure that the previous chunk of data is transferred
fully before being used to update the data structure.

The other prime target for OpenSHMEM optimization is the exchanging of component
data during the merging step. In the baseline MPI implementation, sizes of exchanged
vertices and edges are communicated for each pair of processors. These sizes are then used
to exchange portions of several different data structures between the pair of processors using
a series of synchronous send-receive communications. Some local clean-up computation is
then performed, copying exchanged information and ensuring that the data structures are
properly formatted for continued execution.

The OpenSHMEM implementation avoids the handshake overhead entirely by using non-
blocking communication calls as well as RMA. As before, the use of RMA allows each PE to
operate independently, retrieving the required information simultaneously. The use of non-
blocking API calls allows some local computation to overlap, leading to acceleration. Par-
titioning is also used to overlap this communication with some of the ending data structure
updating and copying. Used together, these techniques take advantage of the thousands of
edges that must be communicated between PEs and overlaps that communication with data
structure update overhead to maximize the amount of uninterrupted, pure computation. The
independent computation step is done locally by each process, so no OpenSHMEM optimiza-
tions can be performed. The original MPI algorithm uses blocking communication with no
overlap, so both PEs must communicate all data before running computation. The optimized
OpenSHMEM implementation uses non-blocking communication-computation overlap, with
a pre-defined number of partitions. The data is divided into equal chunks and communicated
chunk-by-chunk asynchronously, and each communication is overlapped with computation
and later confirmed by a synchronization call (shmem_quiet). Although MPI and OpenSH-
MEM both have the capability for non-blocking communication and computation overlap,
the OpenSHMEM implementation benefits from RMA communication calls and fewer lines
of code. Non-blocking two-sided MPI still necessitates handshake-based communication, and
also requires the use of additional MPI_Request and MPI_Status objects for synchronization,
which adds overhead.
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These same techniques are applied to the post-processing step of the algorithm. Data
structures are gathered and combined in a similar manner to the merge step, except that
they are gathered into a smaller number of PEs for further computation. However, the
OpenSHMEM implementation provides further benefits during this step. For the baseline
MPTI implementation, all communications require handshakes between a pair of processors.
For the single mode PE 0 must execute a series of send-receives with every other PE, resulting
in a handshake bottleneck. The RMA nature of the OpenSHMEM specification allows each
PE to simultaneously get data from PE 0 via a series of one-sided communication operations.
To support these communications, the OpenSHMEM implementation adds an additional all-
reduce collective call to first calculate address offsets. At the cost of an extra API call and
an extra data structure, this technique removes the handshake bottleneck with PE 0 and

allows this entire series of communications to execute asynchronously.
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5.0 Results

All data collected are presented in this section, including microbenchmark performance
for various API calls and an app-level comparison of OpenSHMEM and MPI. Additional algo-
rithm tuning data and productivity comparisons are also examined. All results shown in this
section were collected on the Cori partition of the NERSC system. Additional point-to-point
and collective microbenchmark data collected on CRC and PSC are shown in Appendices A

and B.

5.1 API Calls

The results of the API-level OSU microbenchmarks executed on NERSC are shown
in Figures 3 and 4 and Table 4. All latencies are measured in ps. To provide proper
context for the distributed MST algorithm, communication calls that are most often used
in the algorithm are presented in these tables, including get, put, all-reduce, and barrier-
all operations. To compare one-sided and two-sided point-to-point operations, the MPI
benchmarks measure two two-sided handshake communications and then divide the round
trip time by two. The barrier operation measures the latency for the indicated number of
processes to call barrier.

For point-to-point calls, the OpenSHMEM put and get operations show comparable la-
tencies at all sizes, with get operations slower at low message sizes and faster at high message
sizes. This crossover occurs around a message size of 4KB. The MPI basic communication
calls show execution latencies that are similarly comparable to both put and get communi-
cation latencies. At smaller message sizes (<4KB), put latencies are lower by an average of
0.091us, and get latencies are higher by an average of 0.531us. This latency gap widens at
larger message sizes to 3.56us higher for put and 3.75us lower for get per operation, but is

still a relatively insignificant difference in comparison to app execution time.
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Table 4: Barrier Latencies (us)

Barrier Latencies (us)
N | MPI 2-sided | OpenSHMEM
2 1.24 1.48
4 5.16 2.15
8 7.12 2.62
16 12.72 6.41
32 13.10 4.62
64 14.48 6.64

Collective operations shown in Figure 4 and Table 4 are scaled in message size and number
of processes. The OpenSHMEM barrier-all latencies increase at a slower rate than the MPI
counterparts, scaling by a factor of 4.47 from 2 to 64 nodes, while MPI scales by a factor of
11.66. The all-reduce latencies display more variation. At lower message sizes (<4KB) the
OpenSHMEM latencies are on average 74.18% slower than MPI, but at larger message sizes
are 28.7% faster on average than MPI. As the number of processes increases, the difference
in latency between the MPI and OpenSHMEM calls shrinks. There is an average of 111.8%
absolute difference in latency from MPI to OpenSHMEM for 2 processes, but only 63.9%,
75.8%, and 71.5% average absolute difference for 4, 8, and 16 processes, respectively. In
addition, OpenSHMEM latencies are higher than MPI counterparts for large message sizes
(>8KB) with 2 processes, but are on average lower when running with more processes.
There is also a range of message sizes (32 bytes to ~2KB) where OpenSHMEM latencies are

significantly larger than MPI, with an average percent increase of 118.3%.
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5.2 MST Algorithm

Figure 5 displays the differences between the single and leader modes of post-processing
measured on 4 nodes, scaled from 4 to 16 PEs on the dataset of six webgraphs for the MPI
implementation. The total execution time at 4 processes was similar between the two post-
processing methods, with an average of only 1.1% increase in execution time from leader
to single modes for MPI. At a higher number of nodes the two versions diverged further,
with average percent increase widening to 18.9%, 21.7%, and 22.2% for 8, 12, and 16 PEs,
respectively. The peak observed for multiple webgraphs at 12 PEs is a result of under-
utilization of resources, since each node gets data from 4 PEs and one node is unused. These
differences at a higher number of PEs were in favor of the single post-processing method.
As a result, final data was collected using the single post-processing method for both MPI
and OpenSHMEM implementations.
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Figure 5: MPI implementation single (-S) vs. leader (-L) post-processing methods.

The scaled execution time data for both implementations of the MND-MST algorithm
are presented below with raw execution times in Figs. 6, 7, 8, 9, 10, and 11. Data for

these experiments was collected for all 6 webgraphs using NERSC Haswell nodes on the Cori
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partition, and was scaled up to 16 nodes and up to 64 PEs. MPI results are denoted by
the blue bars, and SHMEM results are denoted by the orange bars. The yellow bar displays
the best overall MPI performance, and the green bar displays the best overall SHMEM
performance. As mentioned previously, not all node-PE configurations were executable on
NERSC due to memory limitations. These are represented by blank bars. Bar labels denote
the total number of PEs.

Tables 5 and 6 show averaged performance improvement results for MPI and OpenSH-
MEM implementations. PE scaling and node scaling are displayed separately. These results
are averaged over all 6 webgraphs, and represent performance improvement compared to the
1 node, 4 PE configuration for each implementation. Best percent increase in performance
is in bold. Table 7 shows the best configuration by webgraph for each implementation.

Configurations are represented as (Nodes, PEs).

Table 5: PE Scaling Performance Improvement

PEs | MPI | SHMEM
4 2.63% 10.04%
3 25.16% 23.37%
12 | 28.18% 29.96%
16 | 28.46% | 32.94%
20 | 20.94% 17.28%
32 | 14.93% 19.10%
64 | -67.60% 2.43%

Comparative performance data by webgraph is presented in Table 8. This table shows
the average percent decrease in total execution time from MPI to OpenSHMEM across all
Node-PE configurations. It also shows the correlation coefficients for three metrics (edges,

file size, and edge-to-vertex ratio) with respect to average performance improvement.
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Table 6: Node Scaling Performance Improvement

Nodes | MPI | SHMEM
19.53% 3.43%
14.94% 21.86%
22.16% | 10.49%
17.90% | 37.48%
16 13.40% 32.90%

o A~ N

Table 7: Best Configurations (Nodes, PEs)

Webgraph | MPI | SHMEM
uk-2014 | (4, 16) | (8, 20)
gsh-2015 | (4, 20) | (8, 16)
ara-2005 | (4, 16) | (8, 16)
uk-2005 | (1,12) | (4, 8)
it-2004 (4, 20) (8, 16)
sk-2005 | (4, 16) | (16, 32)

5.3 Productivity Studies

In addition to demonstrating scaling and performance results for the MPI and OpenSHMEM-
based apps, the development productivity of each implementation of the algorithm is mea-
sured and compared. When measuring API calls, OpenSHMEM and MPI share a common
setup structure each with corresponding init and finalize calls. For the sake of simplicity,
these along with shmem_malloc and shmem_free calls are ignored in API counts to avoid di-
lution. The OpenSHMEM-based app shows an increase in LOC by 18.01%, and an increase
in API calls by 34.15% as shown in Table 9.
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Table 8: Average Performance Improvement

Webgraph Performance Improvement | Edges | Size (GB) | E/V
uk-2014 21.07% 3.65e7 0.15 20.66
gsh-2015 20.71% 1.20e9 4.70 39.09
ara-2005 37.93% 1.28¢9 4.90 56.28
uk-2005 26.75% 1.87€9 7.25 47.46

it-2004 39.04% 2.30e9 8.80 55.74
sk-2005 39.63% 3.90e9 15.00 77.00
Avg/Correlation 30.86% 0.71 0.71 0.86

Table 9: Implementation Productivity

Function API Calls Lines of Code
MPI | SHMEM | MPI | SHMEM
Graph Part 3 6 247 273
Ghost Info 7 12 54 91
Merge 14 25 117 185
Post Proc 24 29 128 160
Total 82 110 1188 1402
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6.0 Discussion

This section evaluates differences in performance at the API and app levels, in the context
of message size and webgraph composition. It also examines the change in productivity with

respect to overall performance.

6.1 API Calls

When compared directly on the API-level, the point-to-point OpenSHMEM operations
are on-par with their MPI counterparts, with some variation depending on message size and
number of processes. Providing inherent nonblocking behavior at the target PE, the put
and get SHMEM calls have similar latencies to the MPI Send-Recv pair. On the collective
side, the OpenSHMEM barrier-all operation outperforms that of MPI for all processor counts
above two. This is likely due to the lack of a communicator argument in the SHMEM barrier-
all call that is present in MPI_Barrier, which could reduce latency. The all-reduce operation
is more nuanced. MPI _allreduce outperforms the OpenSHMEM implementation for message
sizes larger than 16 bytes and processor counts greater than 2. The average percent increase
in latency from MPI to OpenSHMEM is 142.09% for message sizes between 32 bytes and
2KB, but this increase falls to an average of only 31.76% for message sizes greater than 2KB.
While the discrepancies in latency for collective operations are more significant (45.07%
average decrease for barrier-all and 57.24% increase for all-reduce compared to only ~2.5%
combined decrease for put and get), these differences are still relatively minor in the scope of
the entire app runtime. With a difference of at most a few milliseconds per call at the largest
message sizes and a few hundred API calls in the entire app at runtime, the performance
improvement from SHMEM API calls is on average less than 2% of the total execution time.
This result is consistent across all three testbeds (see Appendices A and B), and such a
minor improvement alone is not enough to justify the increase in programming complexity

that comes with the OpenSHMEM specification. Instead, it is the combination of one-sided
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and non-blocking communication patterns with strategic programming techniques explained

above that lead to concrete, noticeable speedup over MPI.

6.2 Productivity Studies

The use of communication-computation overlapping techniques and flexible one-sided
communication patterns comes with additional program complexity, demonstrated by the
~34% increase in API-calls and ~18% increase in LOC for the OpenSHMEM implemen-
tation. To combine these metrics into a single result, we averaged both increases to find
a combined increased complexity of ~25%. To produce significant performance improve-
ment and justify this increase in complexity, these programming paradigms must also be
thoroughly understood and implemented by the programmer, with the added risk of manual
synchronization.

It is important to note that a portion of this increase can be attributed to the use
of custom MPI types which are currently not supported by OpenSHMEM. Due to the
“shmem_TYPE_OP()” format of SHMEM calls, certain lines were doubled to ensure that the
right datatype was being used. Another portion of the increased overhead is caused by the
use of “pWrk” and “pSync”, two array data structures used to perform certain OpenSHMEM
communications including many collective operations [6].

The majority of the differences in productivity can be attributed to the merge and post-
processing portions of the algorithm, due to the high number of communication operations
present. In addition, the optimized OpenSHMEM-based app uses partitioning and non-
blocking communication, which adds additional complexity in the form of synchronization
calls (shmem_barrier and shmem_quiet).

Finally, certain symmetric variables and data structures had to be introduced to keep
symmetric memory locations consistent between processors. With MPI, variables of the same
name are stored in separate locations across processors and can thus be of different sizes.
However, any pointer or variable declared in the symmetric memory must be the same size

across every PE to avoid invalid accesses. For this reason, new “maximum value” variables
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were introduced to ensure symmetric variables had consistent sizes across PEs, which had
to be calculated via collective communication. This introduced more overhead in the form
of additional API calls as well as lines of code.

One drawback of using OpenSHMEM is that, as of writing, the OpenSHMEM specifica-
tion version 1.4 only supports “to-all” communication for many collective API-calls, meaning
all processes receive data from each communication [5]. MPI allows for single processes to
be the target of a collective communication, as with an MPI_Reduce or MPI_Gather. This is
due to the use of the symmetric heap present across all PEs, and leads to more overhead for
corresponding OpenSHMEM calls. In addition, performing any “to-one” collective operation
equivalent to an MPI_Reduce or MPI_Gather must be programmed manually, using a series
of sequentially executed point-to-point operations that reduce productivity and increase ex-
ecution time. An example comparison between an MPI to-one collective communication and
an OpenSHMEM to-one communication using seqeuential point-to-point operations can be
found in Appendix B. As a result, any such to-one communications in the algorithm were

simply replaced with to-all communications, unless noted otherwise.

6.3 MST Algorithm

The changes in API calls alone do not provide a significant amount of performance
improvement, and increase the programming complexity of the app. To fully exploit the
benefits of the OpenSHMEM specification, the programmer must use strategic programming
techniques, non-blocking communication, and RMA to maximize uninterrupted computation
and minimize communication time.

The result of the added overhead and nuanced programming strategies is promising, with
performance improvements from MPI to OpenSHMEM averaging over 30% for all node-PE
configurations. Some graphs seemed to perform better with OpenSHMEM; the it-2004 and
sk-2005 webgraphs averaged nearly 40% improvement in execution while gsh-2015 and uk-
2014 showed an average improvement of 20%. This variation in performance correlates

roughly with file size and number of edges, with the largest two webgraphs (sk-2005 and it-
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2004) showing the best improvement and the smallest two webgraphs (gsh-2015 and uk-2014)
showing the least improvement. The correlation coefficient between average percent decrease
in execution time and both file size and number of edges is 0.71. Performance improvement
is even better correlated with edge-to-vertex ratio, with a correlation coefficient of 0.86. This
improvement is likely due to the larger number of edges per vertex to analyze, which results
in a larger volume of communication and more potential for performance gain from SHMEM
optimizations. These strong correlations suggest promising scaling results for OpenSHMEM
with larger graphs and other large-scale HPC apps.

In terms of PE scaling, this work demonstrates results that are consistent with [2], insofar
as the app scales up to and reaches a minimum around 16 PEs before plateauing or losing
performance. At all node counts, both MPI and OpenSHMEM implementations display the
best performance improvement between 12 and 20 PEs with the exception of the sk-2005
webgraph. When measuring percent decrease in execution time compared to the 1 node, 4
PE configuration, both implementations show optimum performance with a PE count of 16,
with an average percent improvement of 28.46% for MPI and 32.94% for OpenSHMEM. The
worst performance for both implementations is at 64 PEs, followed closely by 4 PEs. PE
counts of 8 to 20 see more consistent performance improvement.

For node scaling, MPI shows optimum performance with 4 nodes at an average of 22.16%
improvement, while OpenSHMEM peaks at 8 nodes, with an average of 37.48% decrease
compared to 1 node and 4 PEs. MPI displays worst performance with 16 nodes, while
OpenSHMEM displays worst performance when using 1 node. With too few or too many
nodes, graph data can either be too distributed or not distributed enough, resulting in extra
communication overhead or inadequate parallelization. The variability of scaling results
is due to the partitioning of the graphs by the processes, and is highly dependent on the
format of the graph itself. While some graphs are amenable to more PEs and increased
vertex subdivision, other graphs might not be able to mask the increased communication

overhead with independent computation or data partitioning.
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7.0 Conclusions

At the app level, PGAS communication models such as OpenSHMEM show promising
results in terms of consistent scaled performance improvement, in spite of limited latency
difference between API calls. Through the utilization of strategic programming techniques
and flexible RMA communications, the OpenSHMEM specification demonstrated significant
improvement over MPI on a parallel graph app, with an equal or lower percent increase
in programming complexity based on lines of code and number of API calls. The per-
formance improvement from MPI to OpenSHMEM also demonstrates positive correlation
with increasing webgraph size and edge-to-vertex ratio, indicating that OpenSHMEM has
promising scaling potential on HPC apps. As the specification continues to be developed,
more complex communication schemes will be supported, increasing the range of apps and
problems that can adopt this growing model.

This research provides a foundation for studying the OpenSHMEM specification at a
higher level. The baseline API-call comparison provides context for evaluating the pre-
sented RMA programming optimizations, and the examination of productivity quantifies
the increased workload for the app developer. As apps and databases increase in scale,
distributed-computing systems will become even more prominent, and large-scale distributed
app developers may turn to other methods to improve performance. With high scalability
and a low barrier of entry, the OpenSHMEM specification should be heavily considered for
complex apps in the ever-adapting field of HPC.
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8.0 Future Work

The speedup displayed from using OpenSHMEM optimizations is promising, and scales
well. It has presently only been applied to the baseline version of the algorithm which focuses
on CPUs. Panja and Vadhiyar also describe a hybrid version of the algorithm, leveraging
GPUs to achieve higher levels of acceleration, with the added cost of host-device communica-
tion overhead and complexity. There is significant potential for further development on this
implementation. NVIDIA has recently released its own version of the OpenSHMEM library
for GPUs, called NVSHMEM, which uses GPUDirect RDMA (GDR). This allows GPUs to
directly communicate with one another, avoiding the CPU communication bottleneck [27].
In addition to the acceleration displayed in this work with one-sided and non-blocking com-
munication, the application of the NVSHMEM library to the MST algorithm could lead to
further latency reduction.

While NVSHMEM has not yet been applied to larger apps, it is our hope to continue
to expand this work to the hybrid GPU algorithm, potentially combining OpenSHMEM
and NVSHMEM libraries. This would more robustly explore the performance improvement
potential of the MND-MST algorithm, and would combine two SHMEM libraries at a larger

scale.
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Appendix A Point-to-Point Microbenchmarks
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