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Abstract 

Hydrodynamic Phonon Transport and Phonon Transport Across Interfaces from First 

Principles 

 

Xun Li, PhD 

 

University of Pittsburgh, 2021 

 

 

 

The high demand of effective heat removal from electronic devices has drawn significant 

interests in exploring ultrahigh thermal conductivity materials and a better understanding of 

thermal transport across interfaces. We developed a deviational Monte Carlo method to study the 

phonon transport with a full phonon scattering matrix in time, real, and reciprocal spaces. Our 

method uses inputs from first-principles calculations and explicitly calculates the spatial variation 

of phonon distribution function, thus can accurately simulate time-space dependent heat transport 

in various materials. 

Graphitic materials have ultrahigh thermal conductivities. The phonon transport in these 

materials is in the hydrodynamic regime, a new regime with unique thermal transport 

characteristics that are not possible in better known ballistic and diffusive regimes. The transport 

phenomena are fluid-like as can be seen in phonon Poiseuille flow, phonon Knudsen minimum, 

and second sound. We studied the characteristics of phonon Poiseuille flow in suspended graphene 

by introducing the concept of phonon hydrodynamic viscosity and proposed a decomposition 

framework to quantify the contribution from each transport regime. Also, we quantitatively 

predicted the transient propagation of second sound in bulk graphite and observed lattice cooling 

effect near the adiabatic boundary by pulse heating. Our studies provide fundamental insights on 

heat transport in ultrahigh thermal conductivity materials and phonon hydrodynamics in graphitic 

materials. 



 v 

The interfacial transport phenomena have drawn significant interest but mostly been 

studied in the Landauer framework which neglects internal phonon scattering and non-equilibrium 

near the interface. This may explain the large discrepancy commonly observed between 

experimental data and theoretical predictions. The strong non-equilibrium is a result of complex 

interplay between the interface scattering and internal phonon scattering. This non-equilibrium 

distribution decays with distance from the interface and recovers to the bulk phonon distribution 

at a distance which we define as an effective interfacial region. We find that the internal phonon 

scattering within the interfacial region provides an important contribution to overall interfacial 

resistance. Our study provides insights into large discrepancies between experimentally measured 

interfacial resistances and those calculated from the Landauer formula, which are often found in 

the literature, thus providing a useful way to interpret experimental data.  
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1.0 Introduction 

Efficient energy usage is an important part of the development of modern technology. 

According to the annual report of energy consumption published by department of energy, a lot of 

heat gets tossed out in the form of waste heat. Understanding and manipulating heat flow is crucial 

for applications including waste heat harvesting, thermal barrier coating, and cooling of micron 

transistors. A good thermal management always requires improving the thermal conductivity of a 

bulk material to better conduct heat and engineering the thermal interfaces between different 

materials. Over the years, huge success has been achieved in investigating thermal transport 

process in high thermal conductivity materials and across thermal interfaces by both theoretical 

and experimental methods, such as first-principles based calculations1–4 and thermoreflectance 

techniques5–7. However, there are still fundamental scientific interests in the topics due to the 

complex physics in the interaction among heat carriers and the interfaces8–10. 

1.1 High thermal conductivity materials 

Materials with high thermal conductivity are good candidates for applications including 

thermal management for electronic devices. These materials often follow four empirical rules 

based on their physical properties: 1) simple crystal structure, 2) strong atomic bonding, 3) light 

atomic mass, and 4) low anharmonicity10. Strong atomic bonding with light mass leads to high 

phonon frequencies and large group velocities, so that the phonons carry heat more efficiently. 

Low anharmonicity gives a reduced scattering phase space, which leads to a smaller number of 
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available scattering processes based on energy and momentum conservations. As a result, phonons 

experience less scattering and have longer lifetimes. Low anharmonicity of phonons could be due 

to many reasons such as a large bandgap between acoustic and optical phonons. Diamond generally 

satisfies these rules and has been known as the bulk material with the highest thermal conductivity, 

around 2000 W/m-K at room temperature. Thus, diamond thin film is widely used for thermal 

management. 

Other carbon-based materials, like graphitic materials including graphene and graphite, are 

also good choices because of similar thermal properties and high availability. Graphene, a single 

layer material with carbon atoms forming a honeycomb lattice structure, has the record-breaking 

thermal conductivity up to 5300 W/m-K at 300 K when suspended and measured by micro-Raman 

spectroscopy11. Even when supported by a substrate, the thermal conductivity of graphene can still 

reach 600 W/m-K at room temperature12. Despite the difficulty in obtaining high quality sample 

in the fabrication process, the superior thermal conductivity makes graphene a promising candidate 

for thermal management applications. 

While the first three empirical rules for high thermal conductivity apply for graphene, the 

flexural phonons in suspended graphene actually experience large anharmonicity13. The large 

anharmonicity is suggested by the diverging mode Grüneisen parameters and originated from the 

low dimensionality of the material. The phonons experience strong scattering, yet the thermal 

conductivity is high. It is revealed by ab initio calculations that the thermal transport in graphene 

and other two-dimensional materials is in the hydrodynamic regime13,14, which is different from 

commonly known ballistic and diffusive transport.  
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1.2 Hydrodynamic phonon transport 

Phonon transport regimes is distinguished by the types of phonon-phonon scattering. 

Phonon scattering includes defect scattering, boundary scattering, and phonon-phonon scattering. 

Defect scattering happens when there is a change of mass or force constants on atomic sites, for 

example an isotope or vacancy in a crystal. The physical boundaries of a sample may scatter 

phonons differently depending on boundary conditions. Phonon-phonon scattering is the internal 

process in thermal transport due to the anharmonic interatomic force constants. Two different types 

of internal phonon scattering dominate in ballistic, diffusive, and hydrodynamic phonon transport 

regimes.  

1.2.1 Internal phonon scattering and transport regimes 

In ballistic regime, there is no internal phonon scattering, and phonons fly with group 

velocities until hitting the boundary. The adiabatic boundary scattering is a valid assumption for 

boundaries parallel to a temperature gradient in a sample with finite size. Incidental phonons are 

reflected into the sample with partially or fully randomized directions, depending on the boundary 

condition. As a result, the boundary scattering destroys the net phonon momentum and is the only 

source of thermal resistance in ballistic transport.  

The thermal transport in diffusive regime is governed by Fourier’s law, where heat flux 𝐪 

is related to temperature gradient ∇𝑇 by thermal conductivity 𝜅. The thermal resistance is mainly 

caused by Umklapp scattering (U-scattering). As illustrated in Figure 1(b), U-scattering is a 

momentum-destroying process involving large wavevector phonons. After U-scattering, the 

travelling direction and the momentum of phonons are changed, causing thermal resistance in the 



 4 

process. In diffusive regime, U-scattering is strong and occurs everywhere in the sample, relaxing 

phonons into local equilibrium Bose-Einstein distribution. 

 

Figure 1 Different mechanisms of phonon scattering in the reciprocal space: (a) N-scattering, (b) U-

scattering. The blue and red arrows represent wavevectors of phonons before and after scattering, respectively. The 

vector G is a primitive reciprocal lattice vector. 

 

Hydrodynamic transport regime, on the other hand, is dominated by Normal scattering (N-

scattering), making it distinguished from ballistic and diffusive regimes. As shown in Figure 1(a), 

N-scattering is a momentum-conserving process associated with small wavevector phonons. After 

N-scattering, the total momentum of phonons is conserved, and there is no direct thermal resistance 

in the scattering process. 

Generally, the three different transport regimes occur at different ranges of temperature. 

Ballistic regime usually exists at low temperature or in a sample with sizes smaller than phonon 

mean free paths. In such cases internal phonon scattering is much weaker than boundary scattering. 

The thermal transport is limited by the size and shape of the sample. At relatively higher 

temperatures, internal phonon scattering becomes important and phonon mean free paths are 

smaller than the sample size. Since N-scattering mostly involves phonons with small wavevectors, 

it will be dominating over U-scattering, and the transport is in hydrodynamic regime. At high 



 5 

temperatures when all the phonon states are occupied, U-scattering becomes significant and 

provides the major thermal resistance. The transport is in diffusive regime and can be described 

by the widely used Fourier’s law. It is worth noting that there is not a clear boundary between the 

transport regimes, and in many realistic cases the characteristics of all three regimes coexist16. 

The existence of hydrodynamic transport regime has been analytically and experimentally 

studied in bulk materials since more than fifty years ago17–22. These studies are carried out by 

examining the unique characteristics in the hydrodynamic regime, such as phonon Poiseuille flow 

and second sound, which will be explained later in more detail. The results validated the theory of 

hydrodynamic phonon transport and considered great triumph23. However, these findings are only 

at extremely low temperatures. This is because in bulk materials, only at very low temperatures 

can U-scattering be frozen out such that N-scattering is relatively strong. Since then, the study on 

hydrodynamic phonon transport has been inactive because it is not considered as technologically 

relevant. 

Recent advances in low dimensional materials make it possible to reconsider the 

importance of hydrodynamic phonon transport. The graphitic materials, including graphene, 

graphite, and carbon nanotubes (CNTs), have high Debye temperatures and large anharmonicity, 

both of which favor strong N-scattering. In these materials, it is recently found that phonon 

transport is in the hydrodynamic transport regime at significantly higher temperatures13,14. It is 

found that the rate of N-scattering is larger than that of U-scattering by at least one order of 

magnitude. These studies have opened the door for studying hydrodynamic phonon transport in 

graphitic materials. 
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1.2.2 Characteristics of phonon hydrodynamics 

N-scattering is similar to intermolecular scattering in fluid flow in a sense that the total 

momentum is conserved upon scattering in both of them. As a result, the phonon flow in ideal 

hydrodynamic regime is similar to fluid flow in terms of macroscopic behaviors. 

1.2.2.1 Collective motion of phonons 

In a fluid flow with a pressure gradient, molecules follow the displaced Boltzmann 

distribution with a drift velocity. Despite each molecule has its own velocity, all the molecules 

move collectively with the constant drift velocity due to the intermolecular interaction. Similarly, 

for a phonon flow driven by a temperature gradient with strong N-scattering, phonons show a 

collective motion with a drift velocity 𝐮, and the equilibrium distribution is the displaced Bose-

Einstein distribution 

 
𝑓𝑖

disp
=

1

exp [
ℏ(𝜔𝑖 − 𝐪𝑖 ∙ 𝐮)

𝑘B𝑇
] − 1

 
(1-1) 

where 𝑖 refers to a phonon state, 𝐪𝑖 is the phonon wavevector, 𝜔𝑖 is the phonon frequency, 𝑇 is 

temperature, ℏ is the reduced Planck constant, and 𝑘B is the Boltzmann constant. The drift velocity 

𝐮 represents the displacement from the equilibrium Bose-Einstein distribution. 

In ideal hydrodynamic regime, 𝐮 is constant for all phonon modes and much smaller than 

𝜔𝑖/𝐪𝑖. The displaced distribution can be expanded with respect to 𝐮 as 

 𝑓𝑖
disp

≈ 𝑓𝑖
eq

+
ℏ

𝑘B𝑇
𝑓𝑖

eq
(𝑓𝑖

eq
+ 1)𝐪𝑖 ∙ 𝐮 (1-2) 

where 𝑓𝑖
eq

 is the equilibrium Bose-Einstein distribution. It can be seen that 𝐮 is directly related to 

the properties of phonon flow such as momentum and heat flux. In ballistic and diffusive transport, 
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the value of 𝐮 is not a constant but depends on the specific phonon mode. It should also be noted 

that even with the presence of weak U-scattering, the drift motion of all phonons can still be 

observed13. 

1.2.2.2 Phonon Poiseuille flow 

For a hydrodynamic phonon flow in a sample with finite width, it resembles the fluid 

Poiseuille flow and is called phonon Poiseuille flow. In such situation, the diffuse boundary 

scattering provides direct thermal resistance, but it’s impeded by strong N-scattering because the 

boundary is screened from phonons. This causes a gradient of heat flux, which is the smallest at 

the boundary and largest in the middle of the sample. As a result, the heat flux profile looks the 

same as the velocity profile in fluid Poiseuille flow and is a parabolic function of sample width. 

This feature of parabolic heat flux in the hydrodynamic regime clear differs from that in the 

diffusive regime, where the local heat flux is constant across the sample since U-scattering happens 

homogeneously13. 

Because of the dominance of N-scattering, thermal conductivity for phonon Poiseuille flow 

increases with temperature and sample width faster than that in the ballistic regime. This can be 

understood using the kinetic theory combined with a simple random walk theory19,24. According 

to the kinetic theory, thermal conductivity is proportional to 𝐶V𝑣𝐿eff, where 𝐿eff is the effective 

MFP of phonons, i.e., the total travel distance until a phonon particle encounters a momentum-

destroying scattering process. In purely ballistic transport with fully diffuse boundary scattering, 

there is no internal phonon scattering, and 𝐿eff is fixed at the characteristic size of a sample. 

Therefore, the thermal conductivity in this case follows the same trend of the ballistic thermal 

conductance with temperature and is linearly proportional to sample size. When the transport is in 

the ideal hydrodynamic regime, i.e., N-scattering is significantly strong and U-scattering is 
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negligibly weak compared to the diffuse boundary scattering, the boundary cannot be seen directly 

by phonon particles, but screened by many N-scattering processes. This circumstance can be 

roughly described by a random walk of phonon particles experiencing N-scattering processes. 

Then, 𝐿eff is 𝑊2/ΛN, where 𝑊 is the sample width and ΛN is the MFP for N-scattering. As 

temperature increases, ΛN decreases due to the increased N-scattering, making 𝐿eff larger, while 

𝐿eff is a constant in the ballistic transport. Therefore, the thermal conductivity in the hydrodynamic 

regime changes with temperature faster and increases superlinearly with sample size. These unique 

dependences can be measured in experiments as the confirmation of the existence of hydrodynamic 

regime. 

Past theoretical studies of the phonon Poiseuille flow in suspended graphene13,25,26 and 

graphite27 showed sample size dependences of thermal conductivity that are different from ballistic 

case. However, they relied on a simplified Callaway’s scattering model28,29 which cannot 

guarantee the accuracy in many cases. Also, some of them25,26 used an empirical relation for 

scattering rates that was developed for three-dimensional materials30,31. These approximations to 

the scattering term hinder the quantitative guidance of future experimental efforts from first 

principles. 

1.2.2.3 Second sound 

In hydrodynamic regime, the response of the phonon system to a temporal perturbation is 

very different from that of ballistic and diffusive regimes. Let’s consider a heat pulse applied at 

one end of the sample, which creates a high local phonon density. In ballistic regime where there 

is no interaction between phonons, phonons just fly with their group velocities. For graphitic 

materials, phonons have varied group velocities, thus the local phonon density will spread out and 

there is no significant temperature peak, as shown in Figure 2(a). In diffusive regime, strong U-
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scattering destroys the net phonon momentum and scatters locally excited phonons to equilibrium 

distribution. As a result, the temperature pulse cannot propagate but gradually dies down, as shown 

in Figure 2(b). However, in hydrodynamic regime, N-scattering conserves net phonon momentum, 

creating a collective motion for phonons. Different phonons can travel together with drift velocity, 

despite they have different group velocities. The local phonon density wave can propagate along 

the sample with a well-maintained peak, as shown in Figure 2(c). An analogous phenomenon in 

fluid flow is the propagation of pressure pulse in real space, which is referred to as acoustic sound, 

while the propagation of temperature pulse in hydrodynamic regime is called second sound. 

 

Figure 2 Propagation of a heat pulse in ballistic, diffusive, and hydrodynamic regimes. 

 

For experimental confirmation of second sound, the most common method is a heat-pulse 

experiment22,32–34 where temporal temperature is detected with a distance from the location where 

a heat pulse is applied. Since the hydrodynamic regime is sensitive to temperature, different 

temperature signals will be observed at different ambient temperatures. Here we take a three-

dimensional bulk material as an example. At low temperatures, internal phonon scattering is weak, 

and the temporal temperature response shows two clear peaks representing the ballistic transport 

of longitudinal and transverse phonons. At higher temperature when N-scattering becomes 

significant, a third temperature peak appears with the speed similar to theoretically calculated 

second sound speed. The third temperature peak is then considered second sound. At even higher 

temperatures when U-scattering dominates and destroys the collective motion, the second sound 

(a) ballistic (b) diffusive (c) hydrodynamic
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peak disappears, and the temperature continues to increase. Second sound has been experimentally 

measured by this heat-pulse method in solid helium32, sodium fluoride22,33, and bismuth34 at 

extremely low temperatures. It is worth mentioning that second sound has recently been observed 

in graphite at much higher temperatures using a transient thermal grating experiment35. In the 

experiment, second sound was observed through the shift of peak thermal expansion, different 

from the observation of the direct propagation in heat-pulse experiments. 

1.3 Phonon transport across thermal interfaces 

Thermal transport across the interfaces between solid materials has drawn significant 

interest due to its importance in applications including thermal management in electronic devices 

and energy conversion. As the device dimension shrinks to micro- and nano-scale due to the rapid 

miniaturization, the density of these thermal interface increases dramatically. When the size of a 

single thin film material becomes comparable or even smaller than the average phonon mean free 

path, the thermal transport is not only determined by the properties of the bulk material, but also 

the conditions of thermal interfaces. In these cases, the resistance brought by thermal interfaces 

may be larger than thermal resistance in the bulk material and plays a key role in the thermal 

transport in the devices. For applications where a fast heat dissipation is needed such as high-

power transistors, the interfacial resistance needs to be reduced. For other applications where a 

large temperature gradient is desired such as thermal barrier coating, the thermal interface should 

be designed with large resistance. Due to the complex physical mechanisms around thermal 

interfaces brought by atomic structure mismatching, interaction among heat carriers, etc., a better 

understanding of interfacial resistance is still the center of research efforts36. 
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1.3.1 Interfacial thermal resistance 

When heat flows across an interface, the temperature discontinues at the interface due to 

the atomic mismatch between two solid materials. The interfacial thermal resistance 𝑅int is 

calculated as the ratio of temperature drop ∆𝑇 at the interface and the heat flux 𝑞 across the 

interface: 

 𝑅int =
∆𝑇

𝑞
. (1-3) 

The reverse of 𝑅int is the thermal conductance 𝐺, or Kapitza conductance which was first measured 

experimentally between a solid and superfluid helium by Kapitza37. The interfacial thermal 

resistance shows the ability of the system to dissipate or confine the heat across the interface, and 

has been studied both experimentally and theoretically for various interfaces between 

semiconductors, metals, amorphous materials, etc. Numerous past studies have shown great 

success in understanding and engineering the thermal interface, yet there are still fundamental 

questions unanswered because of the complex physics near the interface. 

1.3.2 Experimental measurements 

Since Kapitza’s pioneering work, many experimental methods have been developed for 

measuring interfacial thermal conductance, which are systematically reviewed38.  Here we briefly 

discuss the methods that are most commonly used39, which are the pump-probe thermoreflectance 

techniques including time-domain thermoreflectance (TDTR)5,40 and frequency-domain 

thermoreflectance (FDTR)41. 



 12 

The main idea of both TDTR and FDTR is to heat a metal transducer layer with the 

thickness of around 100 nm on top of a substrate by a modulated pump laser beam and detect the 

surface temperature through the metal’s reflectance by another probe laser beam. The obtained 

signals of reflectance are then fitted into thermal models to calculate thermal properties of the 

system. The difference is that in TDTR both lasers are pulsed with pulse width of 0.1 to 10 

picoseconds, while in FDTR they are continuous wave with the pump laser modulated at different 

frequencies. Using these transient heating methods, the thermal penetration depth can be well 

controlled. The measurements can be sensitive to the interfacial thermal resistance as the thermal 

excitation can be localized to the immediate vicinity of the thermal interface38. 

In the measurements for interfacial thermal resistance by both methods, the thermal model 

is fitted with several free parameters to match detected signals5,40–43. The interfacial thermal 

conductance is a direct fitting parameter to the ratio of in-phase and out-of-phase signals in 

TDTR5,40,42 and to the phase lag between the applied heat flux and the resulting temperature rise 

in FDTR41,43. Other parameters that affect the fitting process include the thermal conductivity of 

the transducer layer and non-metal layer, the layer thickness, and the heat capacity. 

The thermal conductivities for the interfacial layers or the substrate are usually the bulk 

values5,40,42–44. For example, the fitted thermal conductivity of the thick SiO2 layer in a TiN/SiO2/Si 

system is identical to the bulk value40,44. In some cases, the thermal conductivity of the metal 

transducer layer is determined through Wiedemann-Franz law with the measurements on electrical 

conductivity42,43 and is close to the bulk thermal conductivity at room temeprature42. In other cases 

the thermal conductivities are directly set to bulk values for the metal transducer layer and the 

substrate43. The layer thickness can also be experimentally measured40,42,43, and the heat capacity 



 13 

is usually set as bulk values40,42. These measured or preset parameters are then used as known 

inputs to the fitting process. 

1.3.3 Theoretical models and calculations 

On the theoretical side, tremendous progress has been achieved since the pioneering work 

by Landauer45 and Swartz46 who proposed simple models to describe interfacial phonon transport. 

The fast-increasing computing power and the first-principles based calculations have contributed 

to the success of many theoretical methods including the solution to PBE, molecular dynamics 

(MD) simulations, atomistic Green’s function, harmonic lattice dynamics calculations, and wave 

packet simulations. Despite their great success in understanding the fundamental physics near the 

thermal interface, the simple theoretical models proposed by Landauer and Swartz are still widely 

used especially as the references for experimental measurements. 

1.3.3.1 The original Landauer formula 

As shown in Eq. (1-3), the interfacial resistance is related to the heat flux and the 

temperature drop at the interface. The simple model Landauer proposed, originally for electron 

transport45, assumes two materials are hot and cold heat reservoirs at constant temperatures, 𝑇h 

and 𝑇c, respectively, as shown in Figure 3(a). The net heat flux across the interface is then 

calculated by considering the heat flux in both directions as 

 𝑞𝑥 =
1

𝑁1𝑉1
∑ ℏ𝜔𝑖𝑣𝑖,𝑥𝑓𝑖

eq(𝑇h)𝑡12𝑖

𝑖,𝑣𝑖,𝑥>0

+
1

𝑁2𝑉2
∑ ℏ𝜔𝑖𝑣𝑖,𝑥𝑓𝑖

eq(𝑇c)𝑡21𝑖

𝑖,𝑣𝑖,𝑥<0

 (1-4) 

where 1 and 2 represents different materials, 𝑁 is the number of phonon states and 𝑉 is the volume 

of the unit cell, 𝑣𝑖,𝑥  is the group velocity in the heat transport direction for phonon state 𝑖, 𝑓𝑖
eq

 is 
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the local equilibrium Bose-Einstein distribution for phonon state 𝑖, and 𝑡12 (𝑡21) is the 

transmissivity from material 1 (2) to 2 (1). The transmissivity is a number from zero to unity that 

describes the possibility of the phonon transmitting across the interface and will be introduced in 

section 1.3.3.3. Knowing that the net heat flux should be zero if two materials are at the same 

temperature 𝑇c, we have 

 
1

𝑁1𝑉1
∑ ℏ𝜔𝑖𝑣𝑖,𝑥𝑓𝑖

eq(𝑇c)𝑡12𝑖

𝑖,𝑣𝑖,𝑥>0

+
1

𝑁2𝑉2
∑ ℏ𝜔𝑖𝑣𝑖,𝑥𝑓𝑖

eq(𝑇c)𝑡21𝑖

𝑖,𝑣𝑖,𝑥<0

= 0, (1-5) 

and now Eq. (1-4) can be simplified to 

 𝑞𝑥 =
1

𝑁1𝑉1
∑ ℏ𝜔𝑖𝑣𝑖,𝑥[𝑓𝑖

eq(𝑇h) − 𝑓𝑖
eq(𝑇c)]𝑡12𝑖

𝑖,𝑣𝑖,𝑥>0

. (1-6) 

Assuming a small temperature difference, the term 𝑓𝑖
eq(𝑇h) − 𝑓𝑖

eq(𝑇c) can be expanded to the first 

order Taylor series, and Eq. (1-6) becomes 

 𝑞𝑥 =
1

𝑁1𝑉1
∑ ℏ𝜔𝑖𝑣𝑖,𝑥

𝜕𝑓𝑖
eq

𝜕𝑇
∆𝑇𝑡12𝑖

𝑖,𝑣𝑖,𝑥>0

 (1-7) 

and the interfacial thermal resistance is calculated as 

 𝑅int,E =
∆𝑇

𝑞𝑥
= [

1

𝑁1𝑉1
∑ ℏ𝜔𝑖𝑣𝑖,𝑥

𝜕𝑓𝑖
eq

𝜕𝑇
𝑡12𝑖

𝑖,𝑣𝑖,𝑥>0

]

−1

 (1-8) 

where the subscript E denotes the Landauer formula in the same way as in the literature47. The 

equation can also be written in terms of the material 2 following the same procedure, and the 

interfacial resistance will be the same. This equation calculates the interfacial resistance in a simple 

way and has been widely used for many different systems5,40–42,44,46–49. 
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Figure 3 Schematic of interfacial transport based on (a) Landauer formula and (b) modified Landauer formula. 

 

However, the limitation of Landauer formula is also well-known. It gives a non-zero 

interfacial resistance when the transmissivity 𝑡12 is unity which is true for a perfect crystal without 

thermal interface50. In such case the interfacial resistance should be zero, and the non-zero value 

by Eq. (1-8) is due to the assumption of equilibrium distribution in both materials. This assumption 

ignores all the factors that could lead to a non-equilibrium distribution such as the interfacial 

scattering, the internal phonon scattering, and the complex interplay between them. 

1.3.3.2 The modified Landauer formula 

To replace the crude assumption in original Landauer formula that two materials are held 

at constant temperatures, it is natural to assume a temperature gradient due to internal phonon 

scattering, as shown in Figure 3(b). A modified Landauer formula was proposed by Simons50 and 

generalized by Chen51 and Landry and McGaughey47 to replace the equilibrium Bose-Einstein 

distribution with the bulk distribution which is for an infinitely large sample under a constant 

temperature gradient. The bulk distribution with a commonly used homogenous approximation 

and relaxation time approximation (to be introduced in section 1.4.3) is given as: 

 𝑓𝑖 = 𝑓𝑖
0 − 𝜏𝑖𝐯𝑖

𝜕𝑓𝑖
0

𝜕𝑇

𝑑𝑇

𝑑𝑥
. (1-9) 

Now if we replace the equilibrium distribution in Eq. (1-4) with the bulk distribution for each 

material, and follow the same derivation (note that 𝑑𝑇/𝑑𝑥 is zero in both materials if they are at 
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the same temperature), we end up with the interfacial thermal resistance for the bulk distribution 

as 

 

𝑅int,B = 𝑅int,E [1 −
1

𝑁1𝑉1

1

𝜅1
∑ ℏ𝜔𝑖𝜏𝑖𝑣𝑥,𝑖

2 𝜕𝑓𝑖
eq

𝜕𝑇
𝑡12𝑖

𝑖,𝑣𝑥,𝑖>0

−
1

𝑁2𝑉2

1

𝜅2
∑ ℏ𝜔𝑖𝜏𝑖𝑣𝑥,𝑖

2 𝜕𝑓𝑖
eq

𝜕𝑇
𝑡21𝑖

𝑖,𝑣𝑥,𝑖<0

] 

(1-10) 

where 𝜅 is the bulk thermal conductivity. In the derivation, the diffusive transport is assumed by 

applying 𝑞𝑥 = −𝜅1 (
𝑑𝑇

𝑑𝑥
)

1
= −𝜅2 (

𝑑𝑇

𝑑𝑥
)

2
. 

The modified Landauer formula gives reasonable results between highly similar materials 

with a zero 𝑅int,B when 𝑡12 and 𝑡21 are set to unity which means no thermal interface. The 

interfacial resistance is much smaller than that from the original Landauer formula, and has been 

compared with MD simulations50,49  . It is found that the thermal resistance from the modified 

Landauer formula is significantly less than the MD-predicted values for a Si/Ge interface, and the 

difference is attributed to the inaccuracy of the assumption of bulk phonon distribution on both 

sides of the interface47. The assumption of bulk distribution near the interface is invalid because 

of the non-equilibrium introduced by the interface. When phonons strike the interface and are 

partially (or fully) reflected backwards, the distribution significantly changes into a non-

equilibrium distribution. The modified Landauer formula, although more advanced than the 

original one by considering internal phonon scattering, ignores this non-equilibrium effect which 

can be significant when the reflection of phonons at the interface is frequent.  
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1.3.3.3 Model for interfacial transmissivity 

To calculate the resistance from either the Landauer or the modified Landauer formula, the 

transmissivity (or called transmission coefficient) is needed which describes the probability for 

phonons to across the interface. Two models have been extensively used depending on the 

conditions of the interface: the acoustic mismatch model (AMM) and the diffuse mismatch model 

(DMM). 

The AMM was first proposed by solving the continuum elasticity equations for the acoustic 

transmission and reflection52. In this model, the interface is treated as a specular boundary and the 

resistance comes from the mismatch of acoustic sound speeds between two materials. The 

transmissivity for phonons across the interface, ignoring the complex mode conversions and the 

incident angle, is simply written as 

 𝑡12 =
4𝜌1𝑐1𝜌2𝑐2

(𝜌1𝑐1 + 𝜌2𝑐2)2
 (1-11) 

where 𝜌 is the material mass density and 𝑐 is the speed of sound. The assumption of a specular 

interface is appropriate for long wavelength phonons as they are typically less affected by an 

interface. The AMM has successfully predicted the interfacial resistance at cryogenic temperatures 

below 30 K where long wavelength phonons dominate the thermal transport46. At higher 

temperatures, the AMM fails as the specular reflection or refraction at the interface is not valid 

anymore even for perfect interfaces. Phonons at elevated temperatures experience diffuse 

reflection by the interface, which is well described by the diffuse mismatch model (DMM). 

The DMM has been the most commonly used model since proposed 30 years ago46. The 

model states that phonons experience diffuse scattering at the interface and lose the memory of 

their initial status except the frequency (the assumption of elastic scattering). Thus, the 



 18 

transmissivity from material 1 to 2 is related with that from material 2 to 1, and is a function of 

phonon frequency as 

 𝑡12(𝜔) = 1 − 𝑡21(𝜔). (1-12) 

The detailed balance is applied for each frequency: 

 

𝑡12(𝜔)
1

𝑁1𝑉1
∑ ℏ𝜔𝑖𝑓

eq|𝑣𝑖,𝑥|𝛿(𝜔𝑖 − 𝜔)

𝑖 

= 𝑡21(𝜔)
1

𝑁2𝑉2
∑ ℏ𝜔𝑖𝑓

eq|𝑣𝑗,𝑥|𝛿(𝜔𝑗 − 𝜔)

𝑗

 

(1-13) 

where the 𝛿 function sets the constraint on phonon frequency. The spectral transmissivity is 

calculated as 

 𝑡12(𝜔) =

1
𝑁2𝑉2

∑ |𝑣𝑗,𝑥|𝛿(𝜔𝑖 − 𝜔)𝑗

1
𝑁1𝑉1

∑ |𝑣𝑖,𝑥|𝛿(𝜔𝑖 − 𝜔)𝑖 +
1

𝑁2𝑉2
∑ |𝑣𝑗,𝑥|𝛿(𝜔𝑖 − 𝜔)𝑗

. (1-14) 

The DMM is more accurate than AMM at noncryogenic temperatures or rough interfaces. In these 

cases, the wavelengths of thermal phonons are comparable or shorter than the roughness of the 

interface, thus the phonons are mainly reflected randomly. 

1.3.4 Examining the theory 

1.3.4.1 Large discrepancies between experiments and theories 

The theory of Landauer formula combined with DMM has been widely used for predicting 

interfacial thermal resistance and comparing with experimental measurements5,7,36,38,40,42,44,53–59. 

Some studies have shown good agreements for metal/semiconductor interfaces53,54,59, however, 

they are most likely to be coincident because of the crude assumptions in DMM that ignore the 

complex physics near the interface36. In many other studies, large discrepancies between 
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experimental measurements and the Landauer theory with DMM have been observed for various 

interfaces between metals, metal alloys, metal dioxides, and semiconductors5,40,42,44,56. The 

experimentally measured interfacial resistances are generally several times larger than those 

predicted by the theory. Many efforts have been put to explain the discrepancies focusing on the 

validity of DMM for the interfacial transmissivity. 

1.3.4.2 Validity of DMM 

As discussed in section 1.3.3.3, the DMM requires knowledge of harmonic phonon 

properties. A poor description of phonon dispersion may lead to incorrect transmissivity. One 

explanation for the large difference between theoretical interfacial resistances and the early 

measurements by 3-omega44 and TDTR40 methods is that the Debye model was used for phonon 

dispersion relation, which cannot capture the mode dependent group velocities, especially at high 

temperatures. Although an accurate phonon dispersion can be calculated from first-principles, the 

crude assumptions in the DMM still make it difficult to compare the results with experimental 

measurements directly. Firstly, the DMM ignores complex disorder commonly induced near the 

interface such as segregation of elements and strain field. For a realistic interface, atomic structure 

is rarely crystalline-like due to defects in the material (point defect, grain boundary, etc.) and the 

strain caused by atomic mismatch between two materials. Secondly, only elastic interfacial 

scattering is allowed, and high frequency phonons cannot cross the interface if there are not 

available phonons with the same frequency on the other side. Due to these assumptions in DMM, 

there have been many discussions on the validity and accuracy of the model. 

Past MD studies have shown that considering the realistic atomic structure at the interface 

is important because there exist interfacial phonon modes that are different from bulk phonon 

modes60–62. Gordiz and Henry defined the interfacial phonon modes by comparing the eigen modes 
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near the interface and in the bulk material. They found that 15% of the total conductance for an 

interface between Si and Ge comes from the interfacial modes that are less than 0.1% of the total 

modes. Feng et al.62 distinguished the interfacial and bulk modes in a Si/Ge system by calculating 

local phonon density of states (DOS). By calculating mode contribution to interfacial conductance, 

they found that the interfacial modes enable inelastic scattering for bulk phonon modes in Si and 

Ge by serving as a bridge, and the resulting inelastic transport can contribute more than 50% of 

total conductance. These studies identified the interfacial modes and emphasized the importance 

of them to interfacial thermal conductance. However, these interfacial modes exist only within 

several atomic layers near the interface, which means their influence is limited to several 

angstroms in the bulk materials. For a large system with the size of several micrometers, whether 

the effect of the interfacial modes is still significant is not clear. 

To consider the atomic disorder at the interface, the atomic Green’s function (AGF) has 

been applied to study the phonon transmission across the interface63,64. In AGF, the sample is 

usually divided into two contacts (semi-infinite bulk materials) and one device (the interface with 

realistic atomic structures). Lattice dynamics calculations are performed for the contacts and 

devices to obtain the dynamical matrix, which is then used to calculate the transmission coefficient 

for the interface. The AGF in principle describes the realistic interface as it is and the force 

constants can be calculated from first-principles65, thus it is considered more accurate than DMM. 

There is still assumption made in AGF, for example, the interfacial scattering is limited to elastic 

where the frequency of transmitted phonon does not change, and that there is no anharmonicity in 

bulk materials that introduces internal phonon scattering. It is worth pointing out that an 

anharmonic AGF that considers internal phonon scattering has been recently developed for three-

dimensional interfaces and the interfacial conductance is improved66. 
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Inelastic interfacial scattering has been examined and shown to be less important than other 

mechanisms such as internal phonon scattering. To address the effect of inelastic interfacial 

scattering, Hopkins et al.67,68 proposed models that go beyond the elastic limit and include energy 

exchange among three or more phonons at the interface. These models gave improved agreements 

between calculations and experiments. However, these models do not consider the selection rules 

for momentum conservation for phonon scattering36 and lack physical explanation. Nevertheless, 

the inelastic interfacial scattering has been suggested to be important as a linear increase in 

interfacial conductance with temperature has been observed in both simulations and 

experiments47,69–71. However, it is not clear to distinguish the inelastic interfacial scattering from 

internal phonon scattering which is also inelastic and strengthened by increasing temperature. 

Although inelastic scattering enabled by the interfacial modes was found to be important in 

previous MD simulations61,62, the effect is much weaker than internal phonon scattering in the bulk 

materials72. Wu and Luo72 found that the anharmonicity inside bulk materials has much large 

impact on interfacial conductance than the anharmonicity at a solid-solid interface through MD 

simulations. Murakami et al.73 calculated spectral phonon transmission for two thermal interfaces 

by MD simulations to examine the effect of inelastic interfacial scattering. They concluded that 

the contribution from inelastic channels is severely limited by internal phonon scattering within a 

close distance from the interface. Cheng et al.74 recently measured the conductance for a high-

quality aluminum and sapphire interface and found that elastic interfacial scattering dominates 

other mechanisms on the transport process. 

Internal phonon scattering in the bulk material can also affect the thermal transport across 

an interface. It has been included in the modified Landauer formula50 and is shown to decrease the 

interfacial resistance47,49. The effect of internal phonon scattering has been investigated using 
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AGF66, MD72,73,75,76, and the PBE77. While phonons with frequencies higher than the maximum 

frequency in the other material cannot cross the interface under the assumption of elastic interfacial 

scattering, internal scattering provides additional channels for them77. High frequency phonons 

decay into multiple low frequency phonons through scattering, and these low frequency phonons 

transfer the energy across the interface. As a result, the interfacial resistance is reduced. The 

inelastic nature in internal phonon scattering enables high frequency phonons near the interface to 

travel across the interface, even in DMM or other models where only elastic interfacial scattering 

is allowed. 

1.3.4.3 Non-equilibrium phonons near the interface 

While the validity of DMM has been extensively studied, the Landauer theory and its 

modified version have been widely used with much less doubt. Both of them assume that phonons 

are at local equilibrium throughout the system, following Bose-Einstein distribution and bulk 

distribution, respectively. However, these assumptions fail to describe the non-equilibrium phonon 

distribution near the interface. When phonons transmit through or are reflected by the interface, 

which is referred to as interfacial phonon scattering, their phonon states are randomly redistributed. 

Thus, phonons coming toward the interface and going away from the interface follow different 

distribution, and this difference causes non-equilibrium phenomena. The non-equilibrium has been 

observed in previous studies using solutions to the PBE78,79 and MD simulations62,80–83. A non-

linear temperature profile has been found near the interface as a result of non-equilibrium. It has 

been suggested that different phonon modes can have different local temperatures based on their 

phonon frequencies62,78,80,81, phonon branches62,81,82, or even phonon states62,81. These studies also 

showed that non-equilibrium impedes the thermal transport process, because of a largely reduced 

temperature drop at the interface for acoustic phonons based on their modal temperatures62. A non-
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equilibrium Landauer approach was proposed83 where phonons near the interface have modal 

equivalent equilibrium temperatures that include the effect of phonons coming from the interface. 

They combined this approach with the DMM and obtained interfacial resistance between metals 

and semiconductors that agree well with experimental measurements. These studies provided good 

ways to examine the effect of non-equilibrium. 

However, it is not physically clear if phonons of the same frequency, phonon branch, or 

phonon state should have the same local temperature, which is the assumptions of previous studies. 

Phonons with the same frequency or phonon branch can have quite different internal phonon 

scattering rates due to the requirement of energy and momentum conservations upon scattering, 

thus they may not be relaxed at the same time. Even for phonons with the same phonon states, 

different local spatial positions will lead to different temperatures. More importantly, the concept 

of temperature is only well-defined at thermodynamic equilibrium. When non-equilibrium exists, 

the temperature is usually calculated as a temperature that can lead to the same local internal energy 

in the equilibrium case. While the equivalent temperature may reflect the average thermal property, 

it cannot describe the detailed transport process on a phonon mode basis. Thus, the effect of non-

equilibrium on thermal transport may need to be carefully examined without using the concept of 

equivalent temperature. 

The entropy generation is a good measure of thermal resistance even the system is at non-

equilibrium. For a heat flow �̇� at temperature 𝑇 across a control volume of volume 𝑉 with a small 

temperature difference ∆𝑇 (small deviation from equilibrium), the entropy generation rate can be 

calculated as 
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 �̇� =
1

𝑉
(

�̇�

𝑇
−

�̇�

𝑇 + ∆𝑇
). (1-15) 

With Taylor expansion to the first order, Eq. (1-15) can written as 

 �̇� =
𝑞

𝑇2
(−

𝑑𝑇

𝑑𝑥
). (1-16) 

The entropy generation rate is also a measure of thermal resistance 𝑅 if we use the fact that 

resistance is the ratio of temperature drop and the heat flux: 

 �̇� =
𝐴

𝑉

𝑞2

𝑇2
𝑅 (1-17) 

where 𝐴 is the cross-section area. For diffusive thermal transport in bulk materials with a linear 

temperature profile, Eq. (1-16) gives a constant entropy generation rate, indicating the thermal 

resistance is uniform too. This is true because internal phonon scattering is dominating and not 

dependent on spatial position. For phonon transport across a thermal interface, however, a larger 

thermal resistance near the interface is expected because of additional interfacial scattering. Thus, 

Local entropy generation is a better measure of the effect of non-equilibrium and can directly show 

local thermal resistance. 

1.4 Peierls-Boltzmann equation 

1.4.1 General form 

The Peierls-Boltzmann transport equation (PBE) is the governing equation of phonon flow 

based on the assumption of phonon gas particles. The general form of the PBE is 
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𝜕𝑓𝑖(𝐫, 𝑡)

𝜕𝑡
+ 𝐯𝑖 ∙ ∇𝐫𝑓𝑖(𝐫, 𝑡) = [

𝜕𝑓𝑖(𝐫, 𝑡)

𝜕𝑡
]

scatt

 (1-18) 

where 𝑓𝑖 is the phonon distribution at the phonon state 𝑖, 𝐯𝑖 is the group velocity of phonons at the 

state 𝑖, 𝐫 is the position vector in the three-dimensional real space, and 𝑡 is time. The PBE describes 

the balance of the change of phonon distribution (the first term) due to phonon advection (the 

second term) and phonon scattering (the third term). The advection term represents the change of 

phonon distribution in the real space in the presence of a temperature gradient by allowing phonons 

travel with their velocities. The scattering term describes the change of phonon distribution in the 

reciprocal space due to the scattering among phonon states. The explicit form of the scattering 

term is presented by a full scattering matrix that includes all the scattering events. The full 

scattering matrix is accurate in describing internal phonon scattering but makes the solution to the 

PBE more difficult. A more detailed explanation for the full scattering matrix along with several 

simplifications will be discussed in the following sections. 

1.4.2 Full scattering matrix 

The PBE with a full scattering matrix is written as 

 
𝜕𝑓𝑖(𝐫, 𝑡)

𝜕𝑡
+ 𝐯𝑖 ∙ ∇𝐫𝑓𝑖(𝐫, 𝑡) = ∑ 𝐶𝑖𝑗𝑓𝑗(𝐫, 𝑡)

𝑗

 (1-19) 

where 𝐶𝑖𝑗 is the element of scattering matrix 𝐂 showing the rate of scattering from phonon state 𝑗 

to 𝑖. The scattering matrix can be calculated from first-principles, which will be briefly introduced 

in section 2.1. 

The scattering matrix naturally includes both N- and U-scattering, making it the most 

accurate in describing internal phonon scattering. However, the accuracy comes with the cost of 
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computational effort. The PBE with scattering matrix is an integrodifferential equation, with an 

integral term in the reciprocal space and differential terms in the time and real space domains. The 

solution exists in seven dimensions, which makes it very challenging to solve analytically. The 

equation has been simplified for steady-state phonon transport in an infinitely large sample 

assuming a constant temperature gradient and a small deviation from equilibrium state: 

 𝐯𝑖 ∙ ∇𝐫𝑓𝑖
eq

= ∑ 𝐶𝑖𝑗𝑓𝑗

𝑗

. (1-20) 

The spatial varying phonon distribution in the advection term is replaced with a homogeneous 

distribution. The advection term can be directly calculated, and the equation becomes a 

homogeneous integral equation. The equation has been solved by the iterative method84 and the 

variational method85. 

However, for problems that require spatial resolution of phonon distribution, the 

assumptions mentioned above are not valid and Eq. (1-20) fails for describing the phonon 

transport. Such problems include the phonon transport in the hydrodynamic regime, with phonon 

Poiseuille flow where the heat flux shows a spatial dependence, and second sound where a 

temporally and spatially varying phonon distribution is needed. To solve the PBE with scattering 

matrix without any assumptions, several methods have been developed such as the solution based 

on the eigenstates of the scattering matrix86, the eigendecomposition method87, and the Monte 

Carlo (MC) method88,89. 

1.4.3 Relaxation time approximation 

As the PBE with scattering matrix is difficult to solve, another simplification is made on 

the scattering term called relaxation time approximation (RTA). In RTA, the off-diagonal terms in 
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the scattering matrix are set to zero, eliminating the coupling between different phonon states. As 

a result, the PBE with RTA at steady-state is written as 

 𝐯𝑖 ∙ ∇𝐫𝑓𝑖 = −
𝑓𝑖 − 𝑓𝑖

0

𝜏𝑖
 (1-21) 

where 𝑓𝑖
0 is the equilibrium Bose-Einstein distribution at local temperature 𝑇0, and 𝜏𝑖 is the lifetime 

for phonon state 𝑖. The RTA describes the independent relaxation process of each phonon state 

within the lifetime 𝜏𝑖, which means that the corresponding phonon state exhibits relaxation from 

the non-equilibrium distribution to the equilibrium distribution while all other phonon states are 

kept at equilibrium. The RTA eliminates the integration in the scattering term and can be easily 

solved analytically. It can be seen from Eq. (1-21) that all the scattering processes bring the 

distribution to the equilibrium Bose-Einstein distribution, so there is no distinguish between N- 

and U-scattering. The RTA is a good approximation for phonon transport in materials with low 

thermal conductivity, or at extremely high temperatures where U-scattering is the dominant 

scattering mechanism. For materials with high thermal conductivity or lower dimensionality, the 

RTA is likely to fail because N-scattering becomes important in internal phonon scattering. 

1.4.4 Callaway’s scattering model 

When N-scattering is significant compared to U-scattering, the PBE with RTA cannot 

properly describe phonon transport since N-scattering scatters phonons into the displaced Bose-

Einstein distribution 𝑓disp. Based on this idea, Callaway proposed a scattering model in which N- 

and U-scattering relax the distribution into 𝑓disp and 𝑓0, respectively28. The steady-state PBE with 

Callaway’s scattering model is thus written as 
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 𝐯𝑖 ∙ ∇𝐫𝑓𝑖 = −
𝑓𝑖 − 𝑓𝑖

disp

𝜏𝑖,N
−

𝑓𝑖 − 𝑓𝑖
0

𝜏𝑖,U
 (1-22) 

where 𝜏𝑖,N and 𝜏𝑖,U are the lifetimes for phonon state 𝑖 for N- and U-scattering, respectively. This 

model was developed initially from intuition, but was later proved analytically17. Eq. (1-22) 

provides solution to phonon transport when N-scattering is strong and cannot be ignored, and has 

been solved by a discrete ordinate method26 and a MC simulation90. Despite its success in certain 

situations, the PBE with Callaway’s scattering model is not accurate for a quantitative purpose 

particularly when neither N- nor U-scattering is significantly stronger than the other29,91. 

1.5 Dissertation outline 

This dissertation discusses the fundamental physics of phonon transport in bulk graphitic 

materials characterized by hydrodynamic phonon transport and across thermal interfaces. Chapter 

2 introduces the deviational MC method to solve the PBE. Chapters 3 and 4 focus on the 

hydrodynamic regime in suspended graphene, and Chapter 5 discusses transient hydrodynamic 

phenomenon in graphite. Chapter 6 provides physical understanding of phonon transport between 

crystalline silicon and germanium. 

 Chapter 3 discusses the peculiar temperature and sample width dependences of thermal 

conductivity in suspended graphene. We show that thermal conductivity increases as 𝑇𝛼 where 𝛼 

ranges from 1.89 to 2.49 depending on the sample width at low temperatures, much larger than 

1.68 of the ballistic case. The thermal conductivity has a width dependence of 𝑊1.17 at 100 K, 

clearly distinguished from the sublinear dependence of the ballistic-diffusive regime. These 

peculiar features are explained with a phonon viscous damping effect of the hydrodynamic regime. 
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We derive an expression for the phonon hydrodynamic viscosity from the Peierls-Boltzmann 

equation, and discuss that the phonon viscous damping explains well those peculiar dependences 

of thermal conductivity at 100 K. The phonon viscous damping still causes significant thermal 

resistance when a temperature is 300 K and a sample width is around 1 m, even though the 

hydrodynamic regime is not dominant over other regimes at this condition. 

Chapter 4 proposes a framework to distinguish three phonon transport regimes when none 

of them is dominant. In many cases, the transport cannot be characterized by a single regime, but 

the features of all three regimes – ballistic, hydrodynamic, and diffusive regimes – exist to some 

extent. Here we assess the extent of three regimes by comparing momentum destruction rates by 

three different mechanisms, each of which represents a different regime: diffuse boundary 

scattering without internal phonon scattering (ballistic regime), diffuse boundary scattering 

combined with normal scattering (hydrodynamic regime), and umklapp scattering (diffusive 

regime). We sample distribution functions of ballistic and scattered particles separately, and 

thereby compare the momentum destruction rates by the three different mechanisms. This 

framework helps us identify the major transport characteristics when transport phenomena are 

complex. Using this framework, we also discuss a well-known phenomenon of ballistic-to-

hydrodynamic crossover, called phonon Knudsen minimum. 

Chapter 5 presents the propagation of second sound in bulk graphite. We theoretically 

calculate the dispersion of second sound from wave equations and determine the optimal 

conditions for the propagation of second sound. These conditions include the duration of laser 

pulse, the distance between pump and probe beams, etc. We simulate the heat pulse measurement 

for a 3D crystalline graphite using our MC simulations. We observe strong signal of second sound 

propagation that is clearly different from ballistic and diffusive transport. The evidence of direct 
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propagation of second sound has been shown in solids at cryogenic temperatures but has never 

been experimentally verified at elevated temperatures. Our simulation results are confirmed by 

experimental measurements using a picosecond transient thermoreflectance system. Transient 

lattice cooling is observed in graphite for the first time and provides important insight on 

hydrodynamic transport in graphitic materials. 

Chapter 6 presents our examination of phonon transport across an interface between silicon 

and germanium. We show that both the Landauer formula and its modified version fail for 

interfacial phonon transport due to their assumptions neglecting a strongly non-equilibrium 

distribution near the interface. This non-equilibrium distribution decays with distance from the 

interface and recovers to the bulk phonon distribution at the distance which we define as an 

effective interfacial region. We find that the internal phonon scattering within the interfacial region 

provides an important contribution to the overall interfacial resistance. Our study provides insights 

into large discrepancies between experimentally measured interfacial resistances and those 

calculated from the Landauer formula, which are often found in the literature, thus providing a 

useful way to interpret experimental data. 

At last, Chapter 7 concludes the dissertation and discusses possible future directions for 

continued work. 
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2.0 Methodology 

2.1 Full phonon scattering matrix from first principles 

The first-principles based calculations have demonstrated great success in predicting 

phonon transport in various systems since been proposed more than ten years ago1–3. The harmonic 

and anharmonic phonon properties are described by the second and third order force constants, 

respectively, which can be calculated from density functional theory. This method is well-known 

and documented in many previous studies, and here we briefly introduce the calculation process 

that leads to the full scattering matrix for three-phonon scattering. 

The second and third order interatomic force constants are calculated by density functional 

theory using the Vienna Ab initio Simulation Package92,93 (VASP). The third order force constants, 

𝜙𝑙𝑚𝑛
𝛼𝛽𝛾

, describe the anharmonic interaction among atoms 𝑙, 𝑚, and 𝑛 in 𝛼, 𝛽, and 𝛾 directions, and 

are used to calculate the scattering matrix elements given by 

 𝑉𝑖𝑗𝑘
± = ∑ ∑ 𝜙𝑖𝑗𝑘

𝛼𝛽𝛾 𝐞𝐪,𝑠
𝛼 (𝑖)𝐞±𝐪′,𝑠′

𝛽 (𝑗)𝐞−𝐪′′,𝑠′′
𝛾 (𝑘)

√𝑀𝑙𝑀𝑚𝑀𝑛𝛼𝛽𝛾𝑙𝑚𝑛

 (2-1) 

where 𝑀𝑖 is the atomic mass for atom 𝑙, 𝑒𝐪,𝑠 is the normalized eigenfunction for phonon state 𝑖 

with wavevector 𝐪 and polarization 𝑠. The sign ± represents the coalescence process (+) or the 

decay process (−). The three-phonon scattering rate is then calculated as4 

 Γ𝑖𝑗𝑘
+ =

ℏ𝜋

4

𝑓𝑗
eq

− 𝑓𝑘
eq

𝜔𝑖𝜔𝑗𝜔𝑘
|𝑉𝑖𝑗𝑘

+ |
2

𝛿(𝜔𝑖 + 𝜔𝑗 − 𝜔𝑘) (2-2) 

for coalescence process, and 
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 Γ𝑖𝑗𝑘
− =

ℏ𝜋

4

𝑓𝑗
eq

+ 𝑓𝑘
eq

+ 1

𝜔𝑖𝜔𝑗𝜔𝑘
|𝑉𝑖𝑗𝑘

− |
2

𝛿(𝜔𝑖 − 𝜔𝑗 − 𝜔𝑘) (2-3) 

for decay process. The 𝛿 function ensures energy conservation during the scattering event. 

The phonon scattering rates are then formulated into the scattering matrix 𝐂 to be used in 

the PBE. The element 𝐶𝑖𝑗 describes the rate of phonon state 𝑗 changing to phonon state 𝑖, and is 

calculated by summing up the scattering rates for all the scattering processes for phonon state 𝑖  

that involves phonon state 𝑗. The scattering element 𝐶𝑖𝑗 is written as 

 

𝐶𝑖𝑗 = ∑ {[−𝛤𝑖𝑗𝑘
+ 𝑓𝑖

eq
(𝑓𝑖

eq
+ 1)

𝑓𝑗
eq

(𝑓𝑗
eq

+ 1)
+ 𝛤𝑖𝑗𝑘

+ 𝑓𝑖
eq

(𝑓𝑖
eq

+ 1)

𝑓𝑘
eq

(𝑓𝑘
eq

+ 1)
]

𝑘

+
1

2
[𝛤𝑖𝑗𝑘

− 𝑓𝑖
eq

(𝑓𝑖
eq

+ 1)

𝑓𝑗
eq

(𝑓𝑗
eq

+ 1)
+ 𝛤𝑖𝑗𝑘

− 𝑓𝑖
eq

(𝑓𝑖
eq

+ 1)

𝑓𝑘
eq

(𝑓𝑘
eq

+ 1)
]}. 

(2-4) 

2.2 Deviational Peierls-Boltzmann Equation 

2.2.1 Energy-based PBE 

We solve the energy-based PBE instead of the regular PBE. The energy-based PBE can be 

obtained by multiplying phonon energy, ℏ𝜔, on the both sides of the PBE with the full scattering 

matrix: 

 
𝜕𝑒𝑖(𝐫, 𝑡)

𝜕𝑡
+ 𝐯𝑖 ∙ ∇𝐫𝑒𝑖(𝐫, 𝑡) = ∑ 𝐵𝑖𝑗𝑒𝑗(𝐫, 𝑡)

𝑗

 (2-5) 

where 𝑒𝑖 is the energy distribution function at state 𝑖 defined as ℏ𝜔𝑖𝑓𝑖 and here 𝜔𝑖 is the phonon 

frequency. The matrix 𝐁 is the scattering operator in the energy-based PBE, with the element 𝐵𝑖𝑗 
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defined as 𝐶𝑖𝑗
𝜔𝑖

𝜔𝑗
. An advantage of solving the energy-based PBE is that the total energy is strictly 

conserved in the MC simulation which will be introduced later. If each sampling particle carries 

the same amount of energy, energy conservation can be strictly satisfied by simply conserving the 

total number of particles94. 

2.2.2 Deviational form of the PBE 

As discussed in Section 1.4.2, the integral-differential equation is extremely difficult to 

solve. People have used the stochastic MC method to sample the phonon distribution function over 

reciprocal and real spaces successfully, but the variance of this stochastic method can be very 

large. When the deviation from equilibrium state is small, for example, with small temperature 

gradient in the sample, the variance can be even larger than the result. In this sense, we will lose 

the ability to solve such small deviation problems. 

Here we use the deviational MC method88,94 to solve Eq. (2-5). While the typical MC 

method for solving the PBE samples distribution function95–97, the deviational MC method samples 

the deviation of distribution function from the already known equilibrium distribution88,94. As the 

deviation of distribution is significantly small compared to the distribution, sampling the deviation 

has much reduced stochastic uncertainty compared to sampling the distribution function itself. The 

deviational PBE is developed from Eq. (2-5) and written as 

 
𝜕𝑒𝑖

d(𝐫, 𝑡)

𝜕𝑡
+ 𝐯𝑖 ∙ ∇𝐫𝑒𝑖

d(𝐫, 𝑡) = ∑ 𝐵𝑖𝑗𝑒𝑗
d(𝐫, 𝑡)

𝑗

 (2-6) 

Also, 𝑒d is 𝑒 − 𝑒0 where 𝑒0 is the Bose-Einstein energy distribution defined as ℏ𝜔𝑓0.  
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2.3 Monte Carlo simulation 

The deviational MC scheme will be used with phonon dispersion and scattering matrix that 

are calculated from ab initio lattice dynamics calculations. This does not require any fitting 

parameter and can fully capture the complex scattering mechanisms unlike Callaway’s model. The 

algorithm of the deviational MC method is shown in Figure 4. 

 

Figure 4 MC simulation flow. 

 

The simulation particles are initialized in the sample based on initial conditions. At the 

beginning of each time step, the particles that already exist in the sample or newly generated from 
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boundaries are free to travel with their group velocities. This step is called advection. At the end 

of time step, the positions of the particles are updated, and internal phonon scattering will be 

applied. The particles will also experience boundary/interfacial scattering if their travel across the 

boundaries/interface. This advection-scattering step is repeated until the particle distribution is 

converged. Then the thermal properties will be sampled in small control volumes based on the 

number of particles and their phonon states. 

2.3.1 Defining simulation particles 

The number of phonons in an actual system is huge and beyond the capability of the 

simulation. To reduce the amount of computational cost, the simulation particle is a bundle of 

phonons that are at the same phonon state, as shown in Figure 4. Each simulation particle carries 

the same amount of energy despite the phonon state, which represents the energy that is deviated 

from the energy at equilibrium. The unit deviational energy that each particle carries 𝑒unit
d  can be 

determined by the total energy in the system at equilibrium 𝐸tot and an expected number of 

particles 𝑁part which is an input parameter. For a system with length 𝐿, width 𝑊, and height 𝐻, 

contacting with a hot reservoir at 𝑇h and a cold reservoir at 𝑇c, the total deviational energy is 

 𝐸tot =
1

𝑁𝑉uc
∑ ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
(𝑇h − 𝑇c)

𝑖

𝐿𝑊𝐻. (2-7) 

The number of particles 𝑁part is usually on the order of millions. The deviational energy for each 

particle 𝑒unit
d  is simply 𝐸tot/𝑁part. 



 36 

2.3.2 Initialization 

The deviational MC simulation starts with generating phonon particles based on the initial 

temperature profile in the sample. For example, a linear temperature profile is a good initial guess 

for a heat flow driven by a constant temperature gradient. In this case, the local temperature 𝑇0 at 

any control volume in the real space can be easily calculated. The number of phonon particles for 

the control volume is then 

 𝑁CV,𝑇0
=

1

𝑒unit
d

1

𝑁𝑉uc
∑ ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
𝑖

|𝑇0 − 𝑇eq|𝑉CV. (2-8) 

Assuming that phonons follow the equilibrium Bose-Einstein distribution at 𝑇0, the phonon 

states of the particles can be determined by an accumulation function of ℏ𝜔𝑖
𝜕𝑓𝑖

eq

𝜕𝑇
 through a MC 

algorithm described below: 

(1) For each new particle, generate a random number 𝑅. 

(2) Find the phonon state 𝑖 that satisfy 

 ∑ ℏ𝜔𝑘

𝜕𝑓𝑘
eq

𝜕𝑇

𝑖−1

𝑘=1

≤ 𝑅 < ∑ ℏ𝜔𝑘

𝜕𝑓𝑘
eq

𝜕𝑇

𝑖

𝑘=1

 (2-9) 

where 𝑘 loops over all the phonon states. The sign of unit energy that each particle carries will be 

determined by the local temperature in the control volume: if it is larger than the global equilibrium 

temperature, the particles carry positive energy, otherwise they carry negative energy. The 

particles with a positive energy contribute to the distribution larger than the equilibrium case, and 

those with a negative energy contribute to the distribution smaller than the equilibrium case. 

It is worth mentioning that the initial temperature profile can be chosen arbitrarily 

depending on the system. The simulation would speed up if the initial condition is a good guess 
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for the steady-state condition. The initialization, however, is not mandatory for the simulation. The 

system can also start from an empty state and phonon particles will come from the boundaries. 

2.3.3 Advection 

At the beginning of each time step, the advection is applied for all particles in the system, 

including particles generated from boundaries (which will be discussed in section 2.3.4.2). This 

step corresponds to the left terms of Eq. (2-6), 

 
𝜕𝑒𝑖

d(𝐫, 𝑡)

𝜕𝑡
+ 𝐯𝑖 ∙ ∇𝐫𝑒𝑖

d(𝐫, 𝑡) = 0, (2-10) 

which describes the ballistic motion of phonon particles by updating the position of each particle 

at phonon state 𝑖 during the time step ∆𝑡, 

 𝐫𝑖(𝑡 + ∆𝑡) = 𝐫𝑖(𝑡) + 𝐯𝑖∆𝑡. (2-11) 

The new position of the particle will be used for calculating local thermal properties at the current 

time step 𝑡 + ∆𝑡. 

2.3.4 Phonon scattering 

The scattering step is applied after the advection. The phonon particles experience internal 

phonon scattering due to anharmonicity, and boundary scattering when they come across the 

boundaries. 
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2.3.4.1 Internal phonon scattering 

Internal phonon scattering is described by the scattering term on the right side of the 

deviational form of PBE with the full scattering matrix 

 
𝜕𝑒𝑖

d(𝐫, 𝑡)

𝜕𝑡
= ∑ 𝐵𝑖𝑗𝑒𝑗

d(𝐫, 𝑡)

𝑗

. (2-12) 

To implement the system of ordinary differential equations into a particle simulation with 

discretized time space, we follow the procedures proposed by Colin D. Landon98. The change of 

phonon energy distribution during the given time interval is described with a matrix 𝐏: 

 𝐏(∆𝑡) = 𝑒𝐁∆𝑡 = ∑
∆𝑡𝑘

𝑘!
𝐁𝑘

∞

𝑘=0

. (2-13) 

The matrix 𝐏 is defined such that the phonon energy distribution in the future time step is 

related to the distribution in the current time step as 

 𝑒𝑖
d(𝑡 + ∆𝑡) = ∑ 𝑃𝑖𝑗(∆𝑡)𝑒𝑗

d(𝑡)

𝑗

 (2-14) 

where 𝐫 of the distribution function is dismissed since internal scattering does not change the 

spatial position of phonons. Eq. (2-14) is not adequate to be simulated using a stochastic method 

because 𝐏 is a matrix with elements that can be negative or larger than unity. To describe the 

dynamics of transition between phonon states, we need to reform 𝑃𝑖𝑗(∆𝑡) to scattering probabilities 

that range from 0 to 1. First, we note that because of energy conservation, we have 

 
∑ 𝑃𝑖𝑗(∆𝑡)

𝑖,𝑃𝑖𝑗≥0

+ ∑ 𝑃𝑖𝑗(∆𝑡)

𝑖,𝑃𝑖𝑗<0

= 1. 
(2-15) 

We then define column normalization parameters as 

 𝑝𝑗
+ = ∑ |𝑃𝑖𝑗(∆𝑡)|

𝑖,𝑃𝑖𝑗≥0

, (2-16) 
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 pj
− = ∑ |𝑃𝑖𝑗(∆𝑡)|

𝑖,𝑃𝑖𝑗<0

, (2-17) 

 𝑝𝑗 = ∑|𝑃𝑖𝑗(∆𝑡)|

𝑖 

. (2-18) 

It is trivial to find that 

 𝑝𝑗
+ = 1 − ∑ 𝑃𝑖𝑗(∆𝑡)

𝑖,𝑃𝑖𝑗<0

= 1 + 𝑝𝑗
−, (2-19) 

 𝑝𝑗 = 𝑝𝑗
+ + 𝑝𝑗

− = 1 + 2𝑝𝑗
−. (2-20) 

Now Eq. (2-14) can be written as 

 𝑒𝑖
d(𝑡 + ∆𝑡) = ∑

𝑃𝑖𝑗(∆𝑡)

𝑝𝑗
𝑝𝑗𝑒𝑗

d(𝑡)

𝑗

. (2-21) 

The first term in the summation 𝑃𝑖𝑗(∆𝑡)/𝑝𝑗 describes the change from phonon state 𝑗 to 𝑖 with the 

probability of |𝑃𝑖𝑗(∆𝑡)|/𝑝𝑗. If 𝑃𝑖𝑗(∆𝑡) < 0, it comes with a sign change. For the second term 𝑝𝑗, 

we apply Eq. (2-20) and use the same expansion on 𝑝𝑗
−: 

 

𝑒𝑖
d(𝑡 + ∆𝑡) = ∑

𝑃𝑖𝑗(∆𝑡)

𝑝𝑗
(1 + 2𝑝𝑗

−)𝑒𝑗
d(𝑡)

𝑗

 

= ∑
𝑃𝑖𝑗(∆𝑡)

𝑝𝑗
(1 +

2𝑝𝑗
−

𝑝𝑗
𝑝𝑗) 𝑒𝑗

d(𝑡)

𝑗

 

= ∑
𝑃𝑖𝑗(∆𝑡)

𝑝𝑗
(1 +

2𝑝𝑗
−

𝑝𝑗
(1 + 2𝑝𝑗

−)) 𝑒𝑗
d(𝑡)

𝑗

 

= ∑
𝑃𝑖𝑗(∆𝑡)

𝑝𝑗
(1 +

2𝑝𝑗
−

𝑝𝑗
+ (

2𝑝𝑗
−

𝑝𝑗
)

2

𝑝𝑗) 𝑒𝑗
d(𝑡)

𝑗

 

=∙∙∙ 

(2-22) 

and so on. Finally, we come to a power series 
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 𝑒𝑖
d(𝑡 + ∆𝑡) = ∑ sgn[𝑃𝑖𝑗(∆𝑡)]

|𝑃𝑖𝑗(∆𝑡)|

𝑝𝑗
[1 + ∑ (

𝑝𝑗
−

𝑝𝑗
)

𝑛

2𝑛

∞

𝑛=1

] 𝑒𝑗
d(𝑡)

𝑗

 (2-23) 

where sgn is a sign function. 

The power series can be stochastically simulated by implementing the following algorithm: 

For a sampling particle in phonon state 𝑗, 

(1) Generate a random number 𝑅. 

(2) Find the phonon state 𝑖 satisfying 

 ∑
|𝑃𝑘𝑗|

𝑝𝑗

𝑖−1

𝑘=1

≤ 𝑅 < ∑
|𝑃𝑘𝑗|

𝑝𝑗

𝑖

𝑘=1

. (2-24) 

The phonon state 𝑖 can be found with a probability of |𝑃𝑖𝑗(∆𝑡)|/𝑝𝑗. Then, change the particle state 

from 𝑗 to 𝑖, and change the sign of energy the particle carries according to sgn[𝑃𝑖𝑗(∆𝑡)]. 

(3) If sgn[𝑃𝑖𝑗(∆𝑡)] is negative in the step (2), which occurs with a probability of 𝑝𝑗
−/𝑝𝑗, 

we simulate the term with the first order in 𝑝𝑗
−/𝑝𝑗 in Eq. (2-23). In this case, we simply generate 

two sampling particles in state 𝑗. The steps from (1) to (3) are applied for these two particles. The 

terms with second and higher order in 𝑝𝑗
−/𝑝𝑗 in Eq. (2-23) can be recursively simulated during this 

process. 

2.3.4.2 Boundary scattering 

The boundary scattering is also applied if phonon particles travel out of the real space 

domain. Different boundary conditions are implemented in the simulation corresponding to 

various situations in experiments. 

2.3.4.2.1 Periodic heat flux 

When a sample is large enough and the boundaries can be neglected, the transport is 

essentially a one-dimensional problem. For an infinitely large sample, phonon distribution is 
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spatially uniform. A periodic boundary condition of heat flux94,97 is used in the heat transport 

direction. For other two directions, fully specular reflections are applied for each particle 

representing infinitely long sample in these directions. 

A single control volume is used for the real space sampling, with two boundaries in the 

heat transport direction assigned with different temperatures 𝑇h and 𝑇c. The temperature difference 

is the driving force for the system and a source for new phonon particles. Phonon particles come 

out of the boundaries at assigned temperatures with the time step 𝑑𝑡. The number of new phonon 

particles is calculated by 

 𝑁source =
1

𝑒unit
d

1

𝑁𝑉uc
∑ ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
𝑖

(𝑇h − 𝑇c)|𝑣𝑖,𝑥|∆𝑡𝑊 (2-25) 

where 𝑊 is the sample width. These new particles will have random positions, and the phonon 

state for each particle will be determined in the same procedure as described in Section 2.3.2. For 

a particle with positive velocity in the heat transport direction, the sign of energy it carries will be 

positive; otherwise, it will be negative. This ensures energy conservation with no extra energy 

added to the system, while maintaining the expected heat flux. The newly generated particles will 

then travel along with other existing particles. 

At the boundaries with periodic heat flux condition, the deviation of the phonon 

distribution from local equilibrium is periodic. This is achieved by, besides generating new 

particles from boundaries, moving periodically the existing particles94. When phonon particles hit 

the periodic boundaries within a time step, the position on the boundary will be recorded and the 

remaining time will be calculated. Then they will reenter the system through the boundary on the 

other side at the same position and travel for the remaining time. 
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2.3.4.2.2 Isothermal 

Isothermal boundaries are used for a system attached with heat reservoirs at fixed 

temperatures 𝑇h and 𝑇c. When a particle hits the isothermal boundaries, it is absorbed by the 

boundaries and discarded in the simulation. The boundaries also constantly emit phonon particles 

following the equilibrium Bose-Einstein distribution at the wall temperature. For a hot reservoir at 

temperature 𝑇h higher than the reference temperature 𝑇eq, the number of particles generated is 

 𝑁wall,hot =
1

𝑒unit
d

1

𝑁𝑉uc
∑ ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
𝑖,𝑣𝑖�̂�wall>0

(𝑇h − 𝑇eq)𝑣𝑖�̂�wall∆𝑡𝑊 (2-26) 

where �̂�wall is the inward normal vector for the wall and 𝑣𝑖�̂�wall > 0 ensures the generated particle 

is coming into the sample. Similarly, for a cold reservoir at temperature 𝑇c lower than the reference 

temperature 𝑇eq, the number of particles generated is 

 𝑁wall,cold =
1

𝑒unit
d

1

𝑁𝑉uc
∑ ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
𝑖,𝑣𝑖�̂�wall>0

(𝑇eq − 𝑇c)𝑣𝑖�̂�wall∆𝑡𝑊. (2-27) 

The phonon state of each particle will be determined in the same procedure as described in Section 

2.3.2, but with an accumulation function of ℏ𝜔𝑖
𝜕𝑓𝑖

eq

𝜕𝑇
𝑣𝑖�̂�wall. The particles will be randomly placed 

on the boundaries and then travel into the sample in the next time step.  

2.3.4.2.3 Adiabatic 

Adiabatic boundaries reflect all the incident phonon particles, not allowing energy transfer 

across the boundaries. The boundary reflection can be fully specular, fully diffuse, and partially 

specular, depending on the situation. 
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Specular reflection represents an infinitely long sample in that direction or a perfectly 

smooth boundary. When a phonon particle hit the boundary, its phonon state will be changed from 

state 𝑖 to state 𝑗 which satisfy 

 𝑣𝑖�̂�wall = −𝑣𝑗�̂�wall (2-28) 

with all other phonon properties between 𝑖 and 𝑗 remain the same. 

For fully diffuse scattering, an incident particle is reflected by the boundary with the 

traveling direction randomized. The boundaries absorb all incident particles and emit the same 

number of particles with random velocities. Specifically, the diffuse boundary is divided into many 

subsegments. During each time step, the number of particles that hit each subsegment of the 

boundary is recorded. At the beginning of next time step, each subsegment will emit the same 

number of particles randomly sitting on the boundary. Their phonon states will be determined 

through the same procedure as described in Section 2.3.2, with their traveling directions pointing 

into the sample. 

A partially specular reflecting boundary is the combination of specular and diffuse 

boundaries. For a boundary with roughness, phonon particles with different wavelengths will 

experience the boundary scattering differently. A rough edge of the boundary is likely to scatter 

small/large wavelength phonons diffusely/specularly. Whether a specific phonon mode will 

experience diffuse or specular boundary scattering is determined by Ziman’s formula99,100 

 𝑝(𝜆) = exp (−
16𝜋2𝜂2

𝜆2
) (2-29) 

where 𝜆 is phonon wavelength, 𝜂 is boundary roughness, and the specularity 𝑝 suggests diffuse 

(𝑝 = 0) or specular (𝑝 = 1) boundary scattering. 

It is worth pointing out here that the boundary condition, whether specular or diffuse 

reflection, can have a significant effect on the overall phonon transport. We would like to prove 
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here that fully diffuse boundary scattering is valid for thermal transport in suspended graphene. 

For the roughness of graphene, previous experimental study101 has shown that the cleaved edges 

of mechanically exfoliated single-layer graphene exhibit a roughness of 3 nm. With this roughness, 

we plot the specularity with phonon wavelength in Figure 5. It is shown that all the phonon modes 

in our study will experience fully diffuse boundary scattering. 

 

Figure 5 Accumulated thermal conductivity (left y-axis) and specularity of boundary scattering (right y-axis) 

as a function of phonon wavelength. The boundary scattering for phonons that carry most of the heat is diffuse, 

even with a very smooth edge (roughness of 0.1 nm). 

 

Now even if we change the roughness to 0.1 nm, assuming an ideal case with almost perfect 

edges, we see that for phonons with wavelengths smaller than 3 nm, fully diffuse boundary 

scattering is completely correct. To study the effect of this boundary roughness on thermal 

transport, we calculate the accumulated thermal conductivity with respect to phonon wavelength, 

as shown in Figure 5. It is clear that phonons with wavelengths less than 3 nm carry almost all the 

heat. This shows that fully diffuse boundary scattering is a reasonable assumption for suspended 

graphene, which will be used in Chapter 3 and 4. 
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2.3.5 Cancellation of particles 

At every time step in the simulation, new phonon particles will be generated from the 

temperature gradient, the boundaries, and internal phonon scattering. Even though some existing 

particles will hit the isothermal boundaries and be discarded, it cannot balance out the number of 

generated particles, and the total number of particles in the simulation will continue to grow and 

go beyond the limit imposed by available memory. The growth of number of particles is controlled 

by a cancellation step. The cancellation of particles is based on the idea that two phonon particles 

with the same phonon state, same spatial position, but opposite sign of energy, will have the exactly 

opposite contribution to heat flow. Thus, these two phonon particles can be both discarded without 

affecting the phonon transport. In this way the total number of particles can be largely reduced, 

and the system will be stable. 

The cancellation is performed at the end of each time step, before the sampling of thermal 

properties. First, the number of particles in every spatial control volume, at every phonon state, 

and for positive and negative signs of energy, will be counted and recorded. Two phonon particles 

that have opposite sign of energy, but the same other attributes, will form a pair. Then pairs of 

particles will be randomly chosen and deleted. It should be noted that the cancellation of particles 

diminishes the difference of spatial phonon distribution within the control volume, so the size of 

control volume should be similar to the average phonon mean free path to avoid losing local 

information of phonon distribution. Also, the cancellation is time consuming and will slow down 

the simulation, so the frequency of this step should be adjusted considering both the stability and 

speed of the simulation. 
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2.3.6 Sampling of thermal properties 

The spatial dependent thermal properties in phonon transport are calculated based on 

phonon distribution in control volumes in the space domain. In our deviational scheme for particle 

transport, the deviational temperature in a control volume is 

 𝑇d =
1

𝑉CV𝐶v
∑ sgn(𝐸𝑖)𝑒unit

d

𝑁pp

𝑖=1

 (2-30) 

where 𝑉CV is the volume of the control volume, 𝑁pp is the number of phonon particles in the control 

volume, and sgn(𝐸𝑖) is the sign of energy that a particle carries. Similarly, the heat flux along 𝑥 

direction in the control volume is 

 𝑞𝑥 =
1

𝑉CV
∑ sgn(𝐸𝑖)𝑒unit

d 𝑣𝑖,𝑥

𝑁pp

𝑖=1

. (2-31) 

Note that the sampling can be performed at every time step so that transient phenomena are 

captured, or over multiple time steps for steady-state sampling. 

2.3.7 Validations  

The proposed deviational MC method for solving the PBE has been validated against 

analytic solution of the PBE with the assumption of single mode relaxation time88,94. The validation 

from the previous studies includes the transient 1D ballistic phonon transport and steady-state 

phonon transport in thin films. We use the same algorithm except for the scattering process as we 

employ a full scattering matrix. 
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2.3.7.1 Infinitely large graphene at steady-state 

In order to validate our MC method employing a full scattering matrix, we calculate 

thermal conductivity in an infinitely large sample using MC method (𝜅MC) and compare the 

thermal conductivity value to the thermal conductivity obtained from the full-iterative method 

(𝜅iterative). The full-iterative method has been widely used to study high thermal conductivity 

materials in recent studies1–4,102–104. In Figure 6, we show the schematic of computational domain, 

which represents the infinitely large sample. In Figure 7, we compare 𝜅MC and 𝜅iterative in a wide 

range of temperature. As can be seen, 𝜅MC is identical to 𝜅iterative, validating the MC algorithm of 

scattering with a full scattering matrix. 

 

Figure 6 Schematic of computational domain representing an infinitely large sample. Reproduced with 

permission from [16]. Copyright 2019 American Physical Society. 
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Figure 7 Thermal conductivity for an infinitely large graphene at different temperatures calculated from MC 

simulation and iterative solution. The error bars for MC results are smaller than the width of line. Reproduced 

with permission from [16]. Copyright 2019 American Physical Society. 

2.3.8 Phonon transport across an interface 

The MC method is also used to simulate phonon transport between different materials with 

the knowledge of phonon transmissivity across the interface. The MC algorithm for interfacial 

phonon transport is similar to that for phonon transport in bulk materials, with a few changes at 

the interface and boundaries. Firstly, phonons scattered by the interface will change the phonon 

state that is described by the DMM. Secondly, for simulating semi-infinite system on each side of 

the interface, the periodic heat flux boundary condition discussed in section 2.3.4.2.1 cannot be 

implemented because phonons in one material cannot directly enter into the other material. To 

simulate infinitely large system, phonons generated at the boundaries will follow the bulk phonon 

distribution rather than the local equilibrium distribution, and the temperature gradient needed for 

the bulk distribution is determined through a self-consistent algorithm. 
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2.3.8.1 Scattering at the interface 

In the MC simulation, when phonons hit the interface during their advection, they will be 

scattered by the interface. The interfacial scattering could allow the phonon to transmit across the 

interface, or be reflected back, depending on the transmissivity. The transmissivity is a function of 

phonon frequency and calculated through the DMM as shown in Eq. (1-14). Since the DMM 

assumes elastic scattering, the frequency of the transmitting phonon should not be changed. 

However, due to the fact that the harmonic properties of phonons and the discretization of 

reciprocal space in two different materials are not necessarily the same, a certain phonon frequency 

may not exist in both materials. Thus, instead of using a 𝛿 function as in Eq. (1-14) to ensure 

energy conservation at each frequency, the frequency domain is discretized into many frequency 

bins for each material in the MC simulation. In addition, a Gaussian function is used to eliminate 

the large difference between frequency bins. The Gaussian function is 

 𝐺(|𝜔𝑖 − 𝜔0|, 𝜎) =
1

√2𝜋𝜎
exp (−

|𝜔𝑖 − 𝜔0|2

2𝜎2
) (2-32) 

where 𝜔0 is the maximum frequency for each frequency bin, and 𝜎 is a broadening factor. The 

frequencies for phonons before and after interfacial scattering may not be exactly the same, but 

they will be most likely be in the same frequency bin as described by the Gaussian function. To 

determine the proper value of 𝜎, we calculate the transmissivity from Si to Ge with different 𝜎, as 

shown in Figure 8. The 𝑑𝜔 is the size of frequency bin, and Figure 8(a) shows the transmissivity 

when energy conservation is enforced within frequency bins without the Gaussian broadening. A 

value of 2𝑑𝜔 for 𝜎 is chosen such that the transmissivity is a smooth function of frequency and 

also contains local details when 𝜎 is small. 
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Figure 8 Transmissivity from Si to Ge with different broadening factor in the Gaussian function. 

 

With the Gaussian function, the detailed balance in Eq. (1-13) is modified as 

 

𝑡12(𝜔)
1

𝑁1𝑉1
∑ ℏ𝜔𝑖𝑓

eq|𝑣𝑖,𝑥|𝐺(|𝜔𝑖 − 𝜔0|, 𝜎)

𝑖 

= 𝑡21(𝜔)
1

𝑁2𝑉2
∑ ℏ𝜔𝑖𝑓

eq|𝑣𝑗,𝑥|𝐺(|𝜔𝑖 − 𝜔0|, 𝜎)

𝑗

 

(2-33) 

for energy conservation in MC simulation with coarse mesh in the reciprocal space. The spectral 

transmissivity for each frequency bin with maximum frequency 𝜔0 is then 

 

𝑡12(𝜔0)

=

1
𝑁2𝑉2

∑ ℏ𝜔𝑗𝑓𝑗
BE|𝑣𝑥,𝑗|𝐺(|𝜔𝑗 − 𝜔0|, 𝜎)𝑗

1
𝑁1𝑉1

∑ ℏ𝜔𝑖 𝑓𝑖
BE|𝑣𝑥,𝑖|𝐺(|𝜔𝑖 − 𝜔0|, 𝜎)𝑖 +

1
𝑁2𝑉2

∑ ℏ𝜔𝑗𝑓𝑗
BE|𝑣𝑥,𝑗|𝐺(|𝜔𝑗 − 𝜔0|, 𝜎)𝑗

. 
(2-34) 

Although the energy conservation may not be satisfied for a single event of interfacial scattering, 

for a large number of phonons the total energy is well conserved. The algorithm for interfacial 

scattering is further explained below. 
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When a phonon hits the interface, a random number 𝑅 will be generated and compared to 

the phonon’s transmissivity 𝑡. If 𝑅 is less than or equal to 𝑡, the phonon will transmit across the 

interface and join the other material; otherwise, it will be reflected back into the same material. 

After interfacial scattering, the phonon state will be randomly determined due to the fact that 

phonons are scattered diffusely. To determine the new phonon state of the scattered phonon, we 

firstly count all the phonon states that satisfy two requirements: 1) the phonon state should be in 

the same material as the scattered phonon if it is reflected, and in the other material if the scattered 

phonon is transmitted, and 2) the phonon state should have the same/opposite sign of velocity in 

the heat transport direction as the scattered phonon if it is transmitted/reflected. A summation of 

absolute value of modal heat flux with the Gaussian function for all available states will be 

calculated as 

 𝑄total = ∑ ℏ𝜔𝑖  𝑓𝑖
BE|𝑣𝑖,𝑥|𝐺(|𝜔𝑖 − 𝜔0|, 𝜎)

𝑖

 (2-35) 

where 𝜔0 is the maximum frequency of the frequency bin that the incoming phonon lies in, and 

𝑣𝑖,𝑥 is the velocity for state 𝑖 with the correct sign. Then a random number 𝑅 will be generated, 

and the scattered phonon will be assigned the phonon state 𝑖 satisfying 

 ∑
ℏ𝜔𝑘  𝑓𝑘

BE|𝑣𝑘,𝑥|𝐺(|𝜔𝑘 − 𝜔0|, 𝜎)

𝑄total

𝑖−1

𝑘=1

< 𝑅 ≤ ∑
ℏ𝜔𝑘  𝑓𝑘

BE|𝑣𝑘,𝑥|𝐺(|𝜔𝑘 − 𝜔0|, 𝜎)

𝑄total

𝑖

𝑘=1

. (2-36) 

The time that the scattered phonon spent to hit the interface will also be accounted, and the phonon 

continues to travel for the remaining time after the scattering process. 

2.3.8.2 Bulk phonon distribution at the boundaries 

To simulate semi-infinite materials on both sides of the interface, the temperature inside 

each boundary will vary and follow the same temperature gradient as in the material, rather than 
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being constant as in the isothermal boundary. This means that the boundaries are virtual extensions 

of the system. When phonons hit the boundaries, they will be absorbed in the same way as hitting 

isothermal boundaries. The boundaries also emit phonons into the system with the bulk 

distribution, not the local equilibrium Bose-Einstein distribution. The bulk distribution for heat 

transport along 𝑥 direction can be calculated from an iterative solution4 of Eq. (1-20) as 

 𝑓𝑖,bulk = 𝑓𝑖
0 − 𝐅𝑥,𝑖

𝜕𝑓𝑖
0

𝜕𝑇

𝑑𝑇

𝑑𝑥
 (2-37) 

where 𝐅 represents the deviation from equilibrium with the dimension of length. The number of 

phonon particles coming out from the hot and cold boundary during the timestep is then calculated 

as 

 

𝑁wall,hot,bulk =
1

𝑒unit
d

1

𝑁1𝑉uc1
∑ ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
𝑖,𝑣𝑖�̂�wall>0

[(𝑇h − 𝑇eq)

+ (−
𝑑𝑇

𝑑𝑥
)

1
(𝐅𝑥,𝑖 + 𝑣𝑖,𝑥∆𝑡)] 𝑣𝑖�̂�wall∆𝑡𝑊, 

(2-38) 

 

𝑁wall,cold,bulk =
1

𝑒unit
d

1

𝑁2𝑉uc2
∑ ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
𝑖,𝑣𝑖�̂�wall>0

[(𝑇eq − 𝑇c)

+ (−
𝑑𝑇

𝑑𝑥
)

2
(𝐅𝑥,𝑖 + 𝑣𝑖,𝑥∆𝑡)] 𝑣𝑖�̂�wall∆𝑡𝑊 

(2-39) 

where subscript 1 and 2 represents material 1 and material 2, respectively. The state for each 

phonon particle coming out of the boundary is determined as the same procedure in Section 2.3.2, 

but with an accumulation function of 

 ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
|𝑣𝑥𝑖

| |𝑇h − 𝑇eq + (−
𝑑𝑇

𝑑𝑥
)

1
(𝐅𝑥,𝑖 + 𝑣𝑥𝑖

∆𝑡)| (2-40) 

for hot boundary with material 1, and 
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 ℏ𝜔𝑖

𝜕𝑓𝑖
eq

𝜕𝑇
|𝑣𝑥𝑖

| |𝑇eq − 𝑇c + (−
𝑑𝑇

𝑑𝑥
)

2
(𝐅𝑥,𝑖 + 𝑣𝑥𝑖

∆𝑡)| (2-41) 

for cold boundary with material 2. 

2.3.8.3 Self-consistent algorithm 

To calculate the accumulation function in Eqs. (2-40) and (2-41), the temperature gradient 

in each material should be known. For semi-infinite materials, the thermal conductivity should 

recover to bulk value because the effect of the interface is negligible, and the temperature gradient 

can be calculated with the heat flux in the system. However, the heat flux is unknown prior to the 

MC simulation. Assuming an initial temperature gradient for the boundaries to start the simulation, 

the temperature gradient in the system may be different after the simulation. Thus, an iteration for 

a self-consistent result is needed to obtain the converged heat flux and temperature gradient. 

To start with, the temperature gradient in one of the boundaries, for example, the cold 

boundary, is set to be (𝑇h − 𝑇c)/𝐿 where 𝐿 is the total length of the system, then the temperature 

gradient in the hot boundary can be determined by Fourier’s law knowing that the thermal 

conductivities in two materials are bulk values and that the heat flux is a constant. The heat flux in 

the boundaries (reservoirs) is then obtained as 

 𝑞res = 𝜅1 (−
𝑑𝑇

𝑑𝑥
)

1,b
= 𝜅2 (−

𝑑𝑇

𝑑𝑥
)

2,b
 (2-42) 

and denoted as 𝑞res. The subscript b means the temperature gradient in the boundary. The system 

(device) will start with the heat flux of 𝑞res but then reach steady state with a heat flux 𝑞dev. If the 

system is small and quasi-ballistic effect is strong, 𝑞dev will be much different from 𝑞res, 

otherwise, if the system is large enough to fully recover to diffusive phonon transport at the 

boundary, 𝑞dev will be similar to 𝑞res. After the first iteration is finished, 𝑞res will be set to 𝑞dev, 
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and the temperature gradient at each boundary will be recalculated under the new 𝑞res, and the 

MC simulation will start again with the new boundary conditions. A factor 𝑠 will then be calculated 

as 𝑞dev/𝑞res and compared to unity. If |𝑠 − 1| ≤ 5%, then the simulation is considered converged, 

and the heat flux and temperature imposed in the reservoirs are consistent. 
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3.0 Role of hydrodynamic viscosity on phonon transport in suspended graphene 

When phonon transport is in the hydrodynamic regime, the thermal conductivity exhibits 

peculiar dependences on temperatures (𝑇) and sample widths (𝑊). These features were used in the 

past to experimentally confirm the hydrodynamic phonon transport in three-dimensional bulk 

materials. Suspended graphene was recently predicted to exhibit strong hydrodynamic features in 

thermal transport at much higher temperature than the three-dimensional bulk materials, but its 

experimental confirmation requires quantitative guidance by theory and simulation. Here we 

quantitatively predict those peculiar dependences using the MC solution of the PBE with an ab 

initio full three-phonon scattering matrix. Thermal conductivity is found to increase as 𝑇𝛼 where 

𝛼 ranges from 1.89 to 2.49 depending on a sample width at low temperatures, much larger than 

1.68 of the ballistic case. The thermal conductivity has a width dependence of 𝑊1.17 at 100 K, 

clearly distinguished from the sublinear dependence of the ballistic-diffusive regime. These 

peculiar features are explained with a phonon viscous damping effect of the hydrodynamic regime. 

We derive an expression for the phonon hydrodynamic viscosity from the PBE, and discuss that 

the phonon viscous damping explains well those peculiar dependences of thermal conductivity at 

100 K. The phonon viscous damping still causes significant thermal resistance when a temperature 

is 300 K and a sample width is around 1 m, even though the hydrodynamic regime is not dominant 

over other regimes at this condition. 
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3.1 Background 

Graphene has extremely high thermal conductivity and thus has a great potential for 

thermal management applications.  Past experimental studies11,12 show that the thermal 

conductivity is around 4000 W/m-K (up to 5300 W/m-K) at room temperature for suspended 

graphene, and can still be as high as 600 W/m-K when graphene is supported by a substrate. This 

high thermal conductivity is explained by graphene’s large Debye temperature resulted from the 

small atomic mass of carbon and strong carbon-carbon bonding3. The high Debye temperature 

leads to large group velocity of acoustic phonon modes. In addition, phonons are predominantly 

populated near the center of the first Brillouin zone, leading to weak U-scattering. Both features 

together can cause strong N-scattering and its rate is larger than that of U-scattering by at least one 

order of magnitude102. The hydrodynamic regime is thus considered another important regime of 

phonon transport in suspended graphene13,14. 

As discussed in section 1.2.2.2, phonon Poiseuille flow is a peculiar phenomenon in 

hydrodynamic regime. A noteworthy difference between the phonon Poiseuille flow and the 

common diffusive phonon flow governed by the Fourier’s law is the mechanism of thermal 

resistance. While U-scattering directly cause thermal resistance in the diffusive flow, the thermal 

resistance in the phonon Poiseuille flow is due to viscous effects. The viscous effects occur when 

the drift velocity has a spatial gradient due to boundaries.  In the Poiseuille flow, phonons exhibit 

a maximum drift velocity at the center of a sample and a minimum drift velocity at the boundaries 

due to diffuse boundary scattering. With the spatial gradient of drift velocity from the center to the 

boundaries, the momentum of phonons is transferred through many N-scattering processes and 

finally destroyed by the diffuse boundary scattering, leading to thermal resistance. 
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The phonon Poiseuille flow has been theoretically studied19,24 and experimentally 

confirmed by observing a peculiar temperature dependence of thermal conductivity that increases 

faster than ballistic case20. For example, thermal conductivity of solid He was observed to follow 

8T  trend while the thermal conductivity of ballistic limit should follow 
3T . For suspended 

graphene, it has not been discovered yet if graphene exhibits a temperature dependence of thermal 

conductivity that is significantly different from ballistic case so that the Poiseuille flow can be 

clearly observed in experiment. Here, we quantitatively discuss the details of the phonon Poiseuille 

flow in suspended graphene by solving the PBE with a full scattering matrix from first-principles. 

3.2 Failure of homogeneous boundary scattering 

The homogenous approximation eliminates the differentiation in the advection term. It is 

valid when the sample size is infinitely large or the spatial variation of the distribution function 

due to the diffuse boundary scattering is small enough to be ignored. In order to include the 

reduction of thermal conductivity due to the classical size effect, the boundary scattering rate is 

often calculated with a simple relation102,105: 

 𝜏𝐵
−1 =

2𝑣𝑦

𝑊
 (3-1) 

where 𝑣𝑦 is the group velocity of phonon in the normal direction to the boundary. Then, the 

calculated boundary scattering rate is added to the diagonal terms of the scattering matrix. 

Although the homogenous boundary scattering model can qualitatively predict the decreasing 

thermal conductivity as a sample size decreases, its assumption is not valid when phonon 

distribution significantly varies in space. In the phonon Poiseuille flow, we expect that the 
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distribution function along the normal direction to the temperature gradient is significant. This is 

because U-scattering, which provides spatially uniform momentum sink and thus causes uniform 

distribution function, is weaker than diffuse boundary scattering. Therefore, the homogenous 

approximation cannot be used for the hydrodynamic regime. 

3.3 Phonon hydrodynamic viscosity from momentum balance equation 

The momentum transfer through N-scattering to the boundaries combined with the diffuse 

boundary scattering, i.e., viscous damping effect, is the major source of thermal resistance in the 

hydrodynamic regime. Therefore, it would be interesting to define the phonon hydrodynamic 

viscosity which represents the rate of momentum transfer at a given drift velocity gradient. Here 

we derive the expression for the phonon hydrodynamic viscosity and the momentum balance 

equation from the PBE with Callaway’s scattering model. We assume that the MFP of N-scattering 

is much smaller than the characteristic sample size. The displaced Bose-Einstein distribution with 

the deviation from global temperature ∆𝑇 is 

 
𝑓𝑖

disp
=

1

exp [
ℏ(𝜔𝑖 − 𝑞𝑖,𝑥 ∙ 𝑢𝑥)

𝑘B(𝑇 + ∆𝑇)
] − 1

 
(3-2) 

and can be linearized as 

 𝑓𝑖
disp

= 𝑓𝑖
eq

+
ℏ𝜔𝑖

𝑘B𝑇
𝑇′𝑓𝑖

eq
(𝑓𝑖

eq
+ 1) +

ℏ

𝑘B𝑇
𝑓𝑖

eq
(𝑓𝑖

eq
+ 1)𝑞𝑖,𝑥 ∙ 𝑢𝑥 (3-3) 

by assuming 𝑞𝑖,𝑥 ∙ 𝑢𝑥 ≪ 𝜔𝑖, and 𝑇′ = ∆𝑇/𝑇 ≪ 1 where 𝑇′ is the ratio of temperature difference 

to the equilibrium temperature. The momentum balance equation can be derived by multiplying 
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𝑞𝑥 on the both sides of the PBE with Callaway’s scattering model, as in Eq. (1-22), and integrate 

over the first Brillouin zone. The resulting equation is: 

 ∑ 𝑞𝑖,𝑥𝑣𝑖,𝑥

𝑑𝑓𝑖

𝑑𝑥𝑖
+ ∑ 𝑞𝑖,𝑥𝑣𝑖,𝑦

𝑑𝑓𝑖

𝑑𝑦𝑖
= ∑ −𝑞𝑖,𝑥

𝑓𝑖 − 𝑓𝑖
0

𝜏𝑖,U𝑖
. (3-4) 

The first and second terms on the left side represent the flux along 𝑥 and 𝑦 directions, respectively, 

of 𝑥 direction momentum in a two-dimensional material. Note that the momentum change due to 

scattering in the right-hand side includes only U-scattering because N-scattering conserves total 

momentum. 

The distribution function 𝑓𝑖 can be found by solving Eq. (1-22) with the following 

approximation: 

 ∇𝐫𝑓𝑖 ≈ ∇𝐫𝑓𝑖
disp

, (3-5) 

which corresponds to the first order in Chapman-Enskog expansion of gas kinetics theory106 and 

is also called the mean free time approximation. This approximation is valid if the phonon MFP is 

much smaller than the characteristic length of a sample. Applying the mean free time 

approximation to Eq. (1-22) gives 

 𝐯𝑖 ∙ ∇𝐫𝑓𝑖
disp

= −
𝑓𝑖 − 𝑓𝑖

disp

𝜏𝑖,N
−

𝑓𝑖 − 𝑓𝑖
0

𝜏𝑖,U
. (3-6) 

Inserting the solution of Eq. (3-6) into Eq. (3-4) and assuming the fully developed flow case 

𝑑𝑢𝑥/𝑑𝑥 = 0 gives 

 
𝑑𝑇′

𝑑𝑥
= 𝜇ph

𝜕2𝑢𝑥

𝜕𝑦2
− 𝛽𝑢𝑥 (3-7) 

where 

 𝜇ph =
∑ 𝑞𝑖,𝑥

2 𝑣𝑖,𝑦
2 𝑓𝑖

eq
(𝑓𝑖

eq
+ 1)𝜏𝑖,N𝑖

∑ 𝑞𝑖,𝑥𝑣𝑖,𝑥𝑓𝑖
eq

(𝑓𝑖
eq

+ 1)𝜔𝑖𝑖

, (3-8) 
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 𝛽 =
∑ 𝑞𝑖,𝑥

2 𝑓𝑖
eq

(𝑓𝑖
eq

+ 1)𝜏𝑖,U
−1

𝑖

∑ 𝑞𝑖,𝑥𝑣𝑖,𝑥𝑓𝑖
eq

(𝑓𝑖
eq

+ 1)𝜔𝑖𝑖

. (3-9) 

Here we assume 𝜏𝑖,N
−1 ≫ 𝜏𝑖,U

−1. Equation (3-7) can be understood as a momentum balance of 

phonon system: the phonon system gains net momentum from the temperature gradient in the left-

hand side and the gained momentum is either spatially distributed by the viscous effect represented 

by phonon viscosity (𝜇ph) or destroyed by U-scattering represented by 𝛽. A similar equation was 

provided elsewhere13 without derivation. Note that the momentum balance equation in the previous 

work13 includes |𝐯|2 in the viscosity, but it should be corrected to 𝑣𝑦
2. The thermal conductivity 

can then calculated by solving Eq. (3-7) with an assumption of zero drift velocity at the boundary 

so called no-slip boundary condition and the assumption of negligible U-scattering13: 

 𝜅drift =
ℏ2

𝑘B𝑁𝑉

∑ 𝜔𝑖𝑞𝑖,𝑥𝑣𝑖,𝑥𝑓𝑖
eq

(𝑓𝑖
eq

+ 1)𝑖

𝜇ph𝑇2
𝑊2. (3-10) 

3.4 Characteristics of phonon Poiseuille flow 

3.4.1 Temperature dependence of thermal conductivity 

The temperature dependence of thermal conductivity is different for all three regimes of 

phonon transport. The thermal conductivity in the diffusive regime decreases with temperature due 

to the increased rates of U-scattering. In the ballistic regime, thermal conductivity follows the trend 

of the ballistic thermal conductance, 𝐶v𝑣, where 𝐶v is the volumetric specific heat and 𝑣 is the 

phonon group velocity. The ballistic thermal conductance of three-dimensional Debye crystal 

increases as 𝑇3, since the phonon group velocity is a constant and the specific heat increases with 
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𝑇3 at temperatures below the Debye temperature. However, in the hydrodynamic regime, thermal 

conductivity was found to increase with temperature faster than the ballistic case19,20,24. This 

unique temperature dependence in the hydrodynamic regime was used to experimentally confirm 

the steady-state hydrodynamic flow of phonons. In the past study, the thermal conductivity of solid 

He increases as 𝑇8 at low temperature, much different from the 𝑇3 trend of the ballistic case107. 

For the experimental confirmation of the phonon Poiseuille flow in graphene, it would be 

important to see if the thermal conductivity of graphene exhibits a peculiar temperature 

dependence that is clearly distinguished from the ballistic case. 

In Figure 9, we show the temperature dependence of thermal conductivity in suspended 

graphene from the MC simulation. The dashed lines serve as an eye guide for the ballistic transport. 

Note that the ballistic thermal conductance in graphene increases as 𝑇1.68, different from the three-

dimensional Debye crystal case108. This is because graphene has a flexural acoustic phonon branch 

that has a quadratic dispersion relation in a two-dimensional space. In Figure 9, it is observed that 

thermal conductivity increases with temperature faster than that of the ballistic transport in the 

temperature range from 50 to 100 K. The temperature dependence of thermal conductivity in this 

temperature range varies from 𝑇1.89 to 𝑇2.49 for different widths, which is clearly distinguished 

from the trend of 𝑇1.68 of the ballistic case. When the temperature is higher than 100 K, the thermal 

conductivity decreases with temperature due to the increased U-scattering rate. 
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Figure 9 Temperature dependence of thermal conductivity for different sample widths. The dashed lines 

represent the exponential fit of the results. Thermal conductivity increases faster than the ballistic case as 

temperature increases, indicating phonon Poiseuille flow. The exponent of temperature is obtained by fitting the data 

from 50 K to 80 K (5 m and 10 m) and from 50 K to 60 K (50 m). Reproduced with permission from [89]. 

Copyright 2018 American Physical Society. 

 

This peculiar temperature dependence can be explained, as discussed in section 1.2.2.2, by 

the kinetic theory combined with a simple random walk theory19,24. Here we propose that it can 

also be explained by the momentum balance equation (Eq. (3-7)) and the concept of phonon 

hydrodynamic viscosity. The phonon hydrodynamic viscosity is inversely proportional to the N-

scattering rate according to Eq. (3-8), meaning that a momentum transfer rate decreases as N-

scattering becomes stronger. This observation agrees with the aforementioned random walk 

picture. With higher N-scattering rate, the boundary can be more effectively screened and the 

momentum transfer rate to the boundary becomes less. Therefore, if the viscous damping effect is 

the major contributor to thermal resistance, strong N-scattering can decrease thermal resistance. In 

Figure 10, we present the phonon hydrodynamic viscosity of suspended graphene that is calculated 

with phonon dispersion and scattering rates from the first principles calculation. The phonon 

100 100050 200 400
103

104

105

106

Temperature [K]

T
h
e
rm

a
l 
C

o
n
d
u
c
tiv

it
y
 [
W

/m
-K

]

W=5mm

W=10mm~T2.49 

~T2.03 

~T1.89 

W=50mm



 63 

hydrodynamic viscosity decreases with temperature because N-scattering rate is increased. Thus, 

the thermal conductivity should exhibit a steep increase with temperature if the viscous damping 

effect significantly contributes to the total thermal resistance. We show the temperature 

dependence of thermal conductivity (Eq. (3-10)) in Figure 10. The calculated thermal conductivity 

from the momentum balance equation increases approximately as 𝑇2, similar to our MC results 

shown in Figure 9. 

 

Figure 10 Temperature dependence of phonon viscosity and thermal conductivity. The phonon viscosity 

decreases with temperature, resulting in thermal conductivity increasing with temperature faster than the ballistic 

case. The exponent of temperature is obtained by fitting the data in the temperature range from 50 to 100 K. 

Reproduced with permission from [89]. Copyright 2018 American Physical Society. 

 

It should be noted from Eq. (3-10) that thermal conductivity is inversely proportional to 

hydrodynamic viscosity. As viscosity decreases, viscous damping becomes smaller and thermal 

conductivity can be larger, as shown in Figure 10. Equation (3-10) also indicates that thermal 

conductivity should have the same exponent value of temperature regardless of widths. This 

contradicts to our results from MC solution shown in Figure 9. It is observed in Figure 9 that 

different widths result in different values of exponent; the exponent value increases with the width. 
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The exponent value from our MC simulation depends on the width because the no-slip boundary 

condition assumed in Eq. (3-10) is not completely satisfied in the actual cases. The normalized 

heat flux profile in Figure 11 shows non-zero heat flux near the boundaries. The heat flux near the 

boundaries becomes larger as the width becomes smaller. 

 

Figure 11 Normalized heat flux profile at 50 K, for sample widths of 5, 10, and 50 m. The displacements near 

the boundaries are not zero and increase as the width decreases. The non-zero displacements indicate slip boundary 

condition. Reproduced with permission from [89]. Copyright 2018 American Physical Society. 

 

This slip boundary condition occurs due to a ballistic effect. In the limit of very strong N-

scattering and very short MFP of N-scattering, the displacement near the boundary should 

approach to zero. However, if MFP of N-scattering is not much smaller than the width, the 

displacement can be larger than zero, due to the contributions of phonons travelled without 

scattering from the center of a sample where the displacement is large. The slip displacement 

reduces the viscous damping effect by flattening the heat flux profile. This can lead to smaller 

exponent value of temperature in the thermal conductivity shown in Figure 9. 
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The role of viscous damping effect in thermal resistance can also be found from the shape 

of heat flux profile. The heat flux profile shape is almost uniform when U-scattering is the major 

source for the thermal resistance as U-scattering can occur at any place of a sample. However, 

when the viscous damping by N-scattering is important, the heat flux profile varies in space and 

the momentum transfer along the drift velocity gradient can occur. In Figure 12(a), we present the 

profiles of local thermal conductivity, i.e., heat flux per temperature gradient, at 100 K and 300 K. 

At 300 K, the local thermal conductivity is almost constant in the entire cross-section, indicating 

that the direct destroy of momentum by U-scattering is the largest contributor to the total thermal 

resistance. At 100 K, the local thermal conductivity nearly follows the parabolic shape that is 

observed in molecular Poiseuille flow. Due to the drift velocity gradient, momentum can be 

transferred to the wall through many N-scattering events. In this case, the thermal resistance is 

mostly due to the viscous damping effect, as also can be seen from the peculiar temperature 

dependence of thermal conductivity shown in Figure 9. 
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Figure 12 Local thermal conductivity profile from the MC simulation under different conditions. (a) 100 K 

and 300 K for 10 µm wide sample, (b) sample widths of 10 µm and 50 µm at 100 K, and (c) sample widths of 0.1 

µm, 1 µm, and 10 µm at 300 K. Reproduced with permission from [89]. Copyright 2018 American Physical Society. 

3.4.2 Sample width dependence of thermal conductivity 

All three transport regimes exhibit different behavior of thermal conductivity changes as 
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thermal conductivity does not change with a width. In contrast, thermal conductivity in the 

hydrodynamic regime increases superlinearly with a sample width13,25,26,108. In the ideal 

hydrodynamic regime where there is no U-scattering and a sample size is much larger than the 

MFP of N-scattering, thermal conductivity should increase as 𝑊2. This can be easily shown from 

the random walk picture or the momentum balance equation (Eq. (3-7)), assuming there is no U-

scattering. However, with the existence of U-scattering, thermal conductivity would follow the 

trend of 𝑊𝛼 where 𝛼 is less than 2. 

In Figure 13, we present the dependence of thermal conductivity on sample widths from 

our MC simulation. At 300 K, thermal conductivity depends on sample widths very weakly; the 

width dependence is 𝑊0.17 in the range of width from 1 to 5 µm. For widths larger than 5 µm, the 

thermal conductivity is almost the same as the thermal conductivity of infinitely large sample. This 

suggests that the momentum destroy by U-scattering is stronger than the viscous damping effect 

at 300 K. 
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Figure 13 Sample width dependence of thermal conductivity at 100 K and 300 K. The dashed lines represent 

the thermal conductivities for an infinitely large sample. The black solid line represents the ballistic case, where 

thermal conductivity is linearly proportional to a width. The thermal conductivity at 100 K superlinearly increases 

with a width, indicating the significant hydrodynamic regime. Reproduced with permission from [89]. Copyright 

2018 American Physical Society. 

 

In contrast, the thermal conductivity at 100 K clearly shows a superlinear increase with a 

width; the dependence is 𝑊1.17 in the range of widths from 1 to 10 µm. As a width is further 

increased, the width dependence is weaker, showing a sublinear dependence. The transition from 

the strong dependence 𝑊1.17 to the weak dependence 𝑊0.56 at 100 K can be explained by the 

relative strength of viscous damping and U-scattering. At a fixed temperature, the thermal 

resistance by U-scattering is constant regardless of widths. However, the viscous damping effect 

varies with sample widths. From the momentum balance equation, the momentum transfer rate is 

proportional to hydrodynamic phonon viscosity and the gradient of drift velocity. As a width 

increases, the gradient of drift velocity is decreased, making the viscous damping effect smaller. 

When a width is between 1 and 10 µm, the viscous damping effect is relatively stronger than the 

momentum destruction by U-scattering, giving the superlinear dependence of thermal conductivity 
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on widths. However, as the width further increases, the viscous damping effect decreases, and the 

transport regime becomes closer to the diffusive limit. This behavior can be also seen in the local 

thermal conductivity profile shown in Figure 12(b). When the width is 10 µm, the local thermal 

conductivity has nearly parabolic profile shape, indicating that the viscous damping is the major 

source of thermal resistance. However, when a width is 50 µm, the local thermal conductivity 

profile is flattened and the momentum transfer to the wall is relatively insignificant compared to 

the 10 µm case. 

3.5 Transition from hydrodynamic to diffusive regimes 

We have focused on the peculiar behaviors of thermal conductivity at 100 K where the 

hydrodynamic regime is dominant over other regimes. Although 300 K case does not exhibit the 

peculiar behaviors of temperature and width dependent thermal conductivity of the hydrodynamic 

regime, the MFP of N-scattering is still significantly smaller than those of U-scattering as shown 

in Figure 14. This suggests that N-scattering and the resulting viscous damping may still play an 

important role in the thermal transport. 
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Figure 14 Comparison of MFPs of N- and U-scatterings at 300 K. The filled circles are for U-scattering and the 

void circles are for N-scattering. Reproduced with permission from [89]. Copyright 2018 American Physical 

Society. 

 

In Figure 15, we compare the thermal conductivity values from two different methods. One 

is from our MC solution where we consider the spatial variation of phonon distribution and solve 

the PBE in both real and reciprocal spaces (hereafter 𝜅MC represents the thermal conductivity 

values from MC solution). The other is from the iterative solution where we ignore the spatial 

variation of phonon distribution and assume a simple homogenous boundary scattering102 

(hereafter 𝜅homo represents the thermal conductivity values from the homogenous boundary 

scattering) . This comparison was reported in recent two papers26,109 and the difference between 

the two methods was used to explain the friction effects in the relaxon framework86. Here we use 

the conventional phonon concept to explain the difference. In the homogenous boundary scattering 

model (Eq. (3-1)), the boundary scattering acts like a momentum sink that is homogenously 

distributed in space, and its rate is based on the assumption of ballistic transport to the boundary. 

Therefore, the homogenous boundary scattering model cannot capture the viscous damping effect 
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that occurs due to many N-scattering events and the gradient of drift velocity. As the homogenous 

boundary scattering assumes that the phonon particles directly see the boundary, it overestimates 

thermal resistance compared to the actual case where the boundary is screened by many N-

scattering events. 

 

Figure 15 Comparison of thermal conductivity values with different boundary scattering models. Solid line is 

for spatially non-homogenous boundary scattering by MC simulation, and dashed line is for spatially homogenous 

boundary scattering. The difference between them shows the significance of the viscous damping effect. 

Reproduced with permission from [89]. Copyright 2018 American Physical Society. 
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indicates that the viscous damping effect can still play an important role at 300 K, even though the 

transport is not clearly in the hydrodynamic regime but in between the hydrodynamic and diffusive 

limits. 

The phonon distribution and heat flux profile also support that the viscous damping effect 

is still important at 300 K. For the hydrodynamic viscosity to be well defined, a collective motion 

of phonon particles with the same drift velocity is necessary. We show in Figure 16 that the phonon 

particles at 300 K form a clear collective motion. The slope in Figure 16 represents the drift 

velocity of each phonon state. It is clear that all phonon modes, regardless of phonon wavevector 

and polarization, exhibit the same drift velocity in the phonon states with small wavevectors which 

contribute the most of heat flux. In addition, the local thermal conductivity profile in Figure 12(c) 

also indicates that viscous damping effect can be significant at 300 K when a width is around 1 

µm. The local thermal conductivity profile in this case exhibits a large gradient along the width-

direction, indicating that the viscous damping effect can be significant. However, when a width is 

0.1 µm or 10 µm, the local thermal conductivity profile is almost uniform, and the viscous damping 

effect is almost negligible. 
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Figure 16 Deviation of phonon distribution from equilibrium case from MC simulation of the PBE. The 

phonon distribution is sampled at the center of 1 µm wide sample at 300 K. The slope between two adjacent phonon 

states (circles) represent the drift velocity at the phonon state. Reproduced with permission from [89]. Copyright 

2018 American Physical Society. 
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hydrodynamic regime. Our calculation results can be used to guide future experimental studies to 

confirm the phonon Poiseuille flow. 

The peculiar behaviors of thermal conductivity are qualitatively explained with the concept 

of phonon hydrodynamic viscosity. We derived a momentum balance equation from the PBE using 

the Callaway’s scattering model to separate N- and U-scatterings and defined the phonon 

hydrodynamic viscosity. It is found that the hydrodynamic viscous damping is a significant 

contributor to thermal resistance at 100 K where the hydrodynamic regime is dominant. The 

viscous damping effect still plays an important role in thermal transport when the temperature is 

300 K and the width is around 1 µm, even though the transport regime in this condition is not 

clearly hydrodynamic but in a transition between the hydrodynamic and diffusive regimes. 
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4.0 Crossover of ballistic, hydrodynamic, and diffusive regimes in suspended graphene 

Many of past studies on hydrodynamic phonon transport have focused on the cases where 

the hydrodynamic regime is significantly stronger than other regimes such that hydrodynamic 

features can be clearly observed. However, this often requires stringent conditions of temperature 

and sample size. In many cases, the transport cannot be characterized by a single regime, but the 

features of all three regimes – ballistic, hydrodynamic, and diffusive regimes – exist to some 

extent. Here we assess the extent of three regimes by comparing momentum destruction rates by 

three different mechanisms, each of which represents a different regime: diffuse boundary 

scattering without internal phonon scattering (ballistic regime), diffuse boundary scattering 

combined with N-scattering (hydrodynamic regime), and U-scattering (diffusive regime). We 

solve the PBE with an ab initio full scattering matrix using the deviational MC method. We sample 

distribution functions of ballistic and scattered particles separately, and thereby compare the 

momentum destruction rates by the three different mechanisms. Using this framework, we discuss 

a well-known phenomenon of ballistic-to-hydrodynamic crossover, called phonon Knudsen 

minimum. 

4.1 Background 

The strong hydrodynamic regime has been discussed using two representative phenomena: 

phonon Poiseuille flow13,14,19,20,24,26,89,110,111 and second sound13,14,19,22,34,112. However, in many 

practical situations when the conditions for the strong hydrodynamic regime are too stringent to 
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be met, the transport is in the crossover of different regimes. In these cases, the features from all 

three regimes – the ballistic, hydrodynamic, and diffusive regimes – can coexist. The transport 

phenomena then become complicated and not easy to understand. A map of three transport regimes 

in the temperature and sample size space was often determined by comparing mode-averaged MFP 

with sample size13,14,19,113. For example, Guyer and Krumhansl suggested a condition for the 

phonon Poiseuille flow as 

 𝜆N ≪ 𝑅 ≪ √𝜆N𝜆U (4-1) 

where 𝜆N and 𝜆U are mode-averaged MFPs of N- and U-scattering19. The 𝑅 is a characteristic 

sample size, e.g., the diameter of a rod for three-dimensional materials. If 𝑅 is much smaller than 

𝜆N, the transport is ballistic; if 𝑅 is much larger than 𝜆N𝜆U, the transport is diffusive. However, the 

MFPs of N- and U-scattering often have an extensively wide range with respect to phonon 

frequency, causing an overlap with each other in some cases. In addition, the criteria are useful 

only when the characteristics of one regime are significantly stronger than those from other 

regimes and cannot properly describe a transition across two different regimes. The three 

parameters (𝜆N, 𝑅, and 𝜆N𝜆U) are often in the similar order, and thus the transport regime has the 

characteristics of all three regimes in many cases. Then, the transport phenomena cannot be 

described by a single transport regime, and the detailed understanding of such cases is still lacking. 

For the cases where the transport features from all three regimes coexist, it is desired that 

we can quantitatively measure the extent of all three regimes. For this purpose, we can check the 

momentum balance of a phonon system. Regardless of its transport regime, phonons are driven by 

a temperature gradient. In other words, the phonon system gains a net momentum from a 

temperature gradient. When the phonon flow is at steady state, the momentum gain is balanced 

with momentum destruction by three mechanisms, each of which represents a different regime: 
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the diffuse boundary scattering without internal phonon scattering (ballistic regime), the diffuse 

boundary scattering combined with N-scattering (hydrodynamic regime), and U-scattering 

(diffusive regime). Analyzing the momentum balance is directly relevant to understanding thermal 

transport phenomena when the hydrodynamic regime contributes to the actual phonon transport. 

In an ideal hydrodynamic regime where phonons exhibit a collective motion, the heat flux is 

linearly proportional to the net momentum of the phonon system. 

We quantitatively measure the momentum destruction rates by the aforementioned three 

mechanisms in suspended graphene. An advantage of MC simulation is that we can sample 

distribution functions for scattered and unscattered particles separately114. By doing so, we can 

quantitatively show the contributions of thermal conductivity and momentum destruction rate from 

the three regimes. 

4.2 Defining ballistic and scattered particles 

In this work, we divide phonon particles into scattered and ballistic particles depending on 

whether a particle has experienced internal phonon scattering (scattered) or not (ballistic). In the 

MC simulation, each particle carries a label indicating ballistic or scattered. All particles generated 

from initialization, temperature gradient, or diffuse boundary scattering are labeled as ballistic 

particles as they did not experience internal phonon scattering. The diagonal terms of the matrix P 

represent the case where neither N- nor U-scattering occurs during ∆𝑡 and thus the phonon state is 

not changed. Therefore, upon an internal phonon scattering, the energy distribution function for 

the ballistic particles can be updated with 
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 𝑒𝑖,ballistic
d (𝑡 + ∆𝑡) = 𝑃𝑖𝑖(∆𝑡)𝑒𝑖,ballistic

d (𝑡) (4-2) 

which describes a ballistic particle at 𝑡 remains as ballistic at 𝑡 + ∆𝑡. The energy distribution 

function of scattered particles can be updated with 

 𝑒𝑖,scattered
d (𝑡 + ∆𝑡) = ∑ 𝑃𝑖𝑗(∆𝑡)𝑒𝑗,ballistic

d (𝑡)

𝑗≠𝑖

+ ∑ 𝑃𝑖𝑗(∆𝑡)𝑒𝑗,scattered
d (𝑡)

𝑗

. (4-3) 

The first term includes off-diagonal terms of 𝐏 representing scattering. The second term is the 

contribution from scattered particles at 𝑡 regardless of whether those particles experienced 

scattering or not during the time from 𝑡 to 𝑡 + ∆𝑡. Simply speaking, if a particle that is labeled as 

ballistic does not change its phonon state after 𝑡, it remains as ballistic. If a particle is determined 

to change its state, it is labeled as scattered. The ballistic and scattered distributions are calculated 

at each time step, by counting the number of particles for each label. 

The local heat flux at 𝐫 from the ballistic and scattered particles can be expressed as 

 𝑞𝛼,𝑥
′′ (𝐫) =

1

𝑁𝑉
∑ ℏ𝜔𝑖𝑓𝛼,𝑖(𝐫)𝑣𝑖,𝑥

𝑖

 (4-4) 

where 𝛼 indicates ballistic or scattered label. The local heat flux can be calculated by summing the 

heat fluxes of all particles in a small grid volume. Then, the local thermal conductivity, 𝜅𝛼,𝑥𝑥(𝐫), 

can be simply found as −𝑞𝛼,𝑥
′′ (𝐫)/∇𝐫𝑇. 

For the momentum balance analysis, we would need to calculate the wall shear stress, 

which can be defined as the rate of momentum destruction by the diffuse boundary scattering per 

given time and area. The wall shear stress at the bottom wall (𝑦 = 0) can be expressed as 

 𝜏𝛼(𝑦 = 0) =
1

𝑁𝑉
∑ 𝑞𝑖,𝑥𝑣𝑖,𝑦𝑓𝛼,𝑖(𝑦 = 0)

𝑖,𝑣𝑖,𝑦<0

. (4-5) 

The wall shear stress in our MC simulation can be calculated by summing the 𝑥 direction 

momentum of particles that cross the boundary during a given time interval. 
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A schematic of sample geometry and thermal gradient direction is shown in Figure 17. The 

sample is infinitely long in 𝑥 direction. In this case, the phonon distribution function is invariant 

along the 𝑥 direction except for the change due to a temperature gradient. Therefore, our boundary 

conditions at 𝑥 = 0 and 𝑥 = 𝐿 are97 

 𝑒(𝑥 = 0) = 𝑒(𝑥 = 𝐿) +
𝑑𝑒0

𝑑𝑇
𝐿∇𝑥𝑇. (4-6) 

For the top and bottom boundaries at 𝑦 = 0 and 𝑦 = 𝑊, an adiabatic boundary condition with 

complete diffuse boundary scattering is applied. The time, real, and reciprocal space domains are 

discretized. The time step is chosen such that it is smaller than the minimum lifetime of the 

phonons with frequencies below 𝑘B𝑇/ℏ. The real-space domain is discretized uniformly into 20 

control volumes along 𝑦 direction and one control volume with a length of 10 nm along 𝑥 direction 

where a temperature gradient of 1000 K/m is applied. A 4040 grid is used to sample the reciprocal 

space. It was confirmed that the calculation results reasonably converge with respect to all 

discretization variables. 

 

Figure 17 A schematic picture of an infinitely long graphene sample for MC simulation. Reproduced with 

permission from [16]. Copyright 2019 American Physical Society. 
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4.3 Decomposition of thermal conductivity 

In Figure 18, we show the total and decomposed thermal conductivity values with respect 

to sample width at 100 K. Both contributions from the ballistic and scattered particles increase 

with increasing sample width, but the dominant contributor differs for different sample width. At 

small width below 100 nm, the ballistic contribution is much larger than the scattered contribution 

since internal phonon scattering is very weak compared to the diffuse boundary scattering. In the 

mid-range of sample width, the ballistic and scattered contributions have a crossover, indicating 

that the dominant transport regime is changed from ballistic to non-ballistic regimes. As width 

increases further and becomes larger than 1 m, most of the heat flux comes from the scattered 

particles. 

 

Figure 18 Ballistic and scattered particles contribution to total thermal conductivity with respect to sample 

width at 100 K. Reproduced with permission from [16]. Copyright 2019 American Physical Society. 
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shows the transition of transport regimes. However, for large sample width, there still exists a need 

to distinguish between the hydrodynamic and diffusive regimes. 

4.4 Decomposition of shear stress 

A fundamental difference between the hydrodynamic and diffusive regimes lies in the 

momentum conservation upon a phonon-phonon scattering process. In an ideal hydrodynamic 

regime where N-scattering is the only internal scattering mechanism, the total phonon momentum 

is always conserved upon internal phonon scattering; however, the total phonon momentum in an 

ideal diffusive regime is destroyed upon internal phonon scattering. Therefore, analyzing phonon 

momentum can serve as a basis to distinguish between the hydrodynamic and diffusive regimes. 

The 𝑥 direction momentum (Φ𝑥) of the phonon system can be defined as the sum of the momentum 

of all phonon states, i.e., 

 Φ𝑥 =
1

𝑁𝑉
∑ 𝑞𝑖,𝑥𝑓𝑖

𝑖

. (4-7) 

Phonon flow is driven by a temperature gradient, creating a net phonon momentum (Φ̇∇𝑇,𝑥). 

If we assume a steady-state phonon flow, the momentum creations should be balanced with 

momentum destructions by the direct diffuse boundary scattering without internal phonon 

scattering (ballistic, Φ̇B,𝑥), the diffuse boundary scattering combined with N-scattering 

(hydrodynamic, Φ̇H,𝑥), or internal U-scattering (diffusive, Φ̇D,𝑥). The momentum balance can be 

expressed as 

 Φ̇∇𝑇,𝑥 = Φ̇B,𝑥 + Φ̇H,𝑥 + Φ̇D,𝑥. (4-8) 
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The momentum gain from a temperature gradient, Φ̇∇𝑇,𝑥, for the computational domain shown in 

Figure 17 can be found as 

 Φ̇∇𝑇,𝑥 =
𝑊𝛿

𝑁𝑉
∑ 𝑞𝑖,𝑥𝑣𝑖,𝑥

𝜕𝑓𝑖
eq

𝜕𝑇
𝐿(−∇𝑥𝑇)

𝑖

 (4-9) 

where 𝛿 is the thickness of graphene assumed as 0.335 nm. The ballistic and hydrodynamic 

momentum destructions, Φ̇B,𝑥 and Φ̇H,𝑥, can be calculated based on the wall shear stress from the 

ballistic and scattered particles as follows: 

 Φ̇B,𝑥 = 𝐿𝛿(𝜏ballistic,𝑦=0 + 𝜏ballistic,𝑦=𝐿), (4-10) 

 Φ̇H,𝑥 = 𝐿𝛿(𝜏scattered,𝑦=0 + 𝜏scattered,𝑦=𝐿). (4-11) 

Then, the momentum destruction due to internal U-scattering, Φ̇D,𝑥, is simply calculated as 

Φ̇∇𝑇,𝑥 − Φ̇B,𝑥 − Φ̇H,𝑥 from the momentum balance in Eq. (4-8). 

In Figure 19, we show the momentum balance as width increases. The black line represents 

the momentum destruction rate by the wall shear stress of both ballistic and scattered particles 

(Φ̇B,𝑥 + Φ̇H,𝑥), calculated from the MC solution of the PBE. The green dashed line shows the 

momentum gain from a temperature gradient, Φ̇∇𝑇,𝑥, from Eq. (4-9). When sample width is small 

and less than 3 m, the momentum destructions by the wall shear stress are equal to the momentum 

gains from a temperature gradient, indicating that all the momentum gains from a temperature 

gradient are dissipated by the wall shear stress and that the internal momentum destruction by U-

scattering is negligible. Therefore, for width less than 3 m, the diffusive regime can be ignored, 

and the actual transport regime is ballistic or hydrodynamic. In order to distinguish between the 

ballistic and hydrodynamic regimes, we separate the ballistic and scattered particles. When width 

is smaller than 100 nm, the ballistic contribution is dominant, indicating a strong ballistic regime. 

For width between 100 nm and 500 nm, the scattered contribution gradually increases, showing a 
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smooth transition from the ballistic to hydrodynamic regimes. For width from 500 nm to 3 m, 

the scattered contribution is dominant and the major mechanism of thermal resistance in this width 

range is the diffuse boundary scattering combined with N-scattering, namely the viscous 

damping89. Again, as Φ̇B,𝑥 + Φ̇H,𝑥 is equal to Φ̇∇𝑇,𝑥 and Φ̇D,𝑥 is negligible, most of the internal 

phonon scattering processes that particles experience are N-scattering type in this width range. 

When width is further increased and larger than 3 m, Φ̇B,𝑥 + Φ̇H,𝑥 deviates from Φ̇∇𝑇,𝑥. The 

difference between Φ̇B,𝑥 + Φ̇H,𝑥 and Φ̇∇𝑇,𝑥 represents the momentum destruction by U-scattering 

according to the momentum balance in Eq. (4-8). From the width of 3 m, U-scattering starts to 

cause thermal resistance and the importance of the diffusive regime gradually increases as width 

increases. 

 

Figure 19 The momentum balance at 100 K. The difference between the green and black lines represents the 

momentun distruction by U-scattering. Reproduced with permission from [16]. Copyright 2019 American Physical 

Society. 
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In Figure 20, we show the rates of momentum destruction, Φ̇B,𝑥, Φ̇H,𝑥, and Φ̇D,𝑥 normalized 

by Φ̇∇𝑇,𝑥 at different temperatures. In Figure 20(a), the ballistic regime is strong for width below 

100 nm, while the hydrodynamic regime is significant in a range of width from 300 nm to 10 m. 

With sample width increasing, the ballistic-hydrodynamic-diffusive transition is clearly shown in 

Figure 20(a). At higher temperatures shown in Figure 20(b) and Figure 20(c), U-scattering 

becomes stronger, making the diffusive regime stronger than the 100 K case. The significance of 

the hydrodynamic regime is thus weakened. The hydrodynamic regime is significant only for a 

narrow window of sample width or is not strong in the entire range of sample width depending on 

temperature. For example, at 200 K shown in Figure 20(b), the hydrodynamic regime accounts for 

more than 50 % of total momentum destructions in a width range from 300 nm to 500 nm, which 

is narrower than that at 100 K. When temperature is 300 K as shown in Figure 20(c), the 

hydrodynamic regime is not important for any sample width. 
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Figure 20 Normalized momentum destruction rates at different temperatures, (a) 100 K, (b) 200 K, and (c) 

300 K. Dark blue, yellow, and light blue represent the ballistic, hydrodynamic, and diffusive regimes, respectively. 

Reproduced with permission from [16]. Copyright 2019 American Physical Society. 
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The four-phonon scattering was recently predicted to be important for graphene using the 

optimized Tersoff potential115. The momentum analysis to study the behavior of transport regime 

crossover can be applicable regardless of the type of phonon scattering and is valid with four-

phonon scattering. However, the inclusion of four-phonon scattering would reduce the MFPs of 

N- and U-scattering from the three-phonon scattering only case, thereby changing the length scale 

where the crossover occurs shown in Figure 20. 

4.5 Transition from ballistic to hydrodynamic regimes 

The Knudsen minimum is a representative phenomenon of ballistic-to-hydrodynamic 

transition. Molecular Knudsen minimum was reported by Knudsen116 around a century ago and 

had been debated for its existence until the Boltzmann transport equation for molecules was 

carefully solved in 1960s117. Phonon Knudsen minimum was observed at extremely low 

temperatures118,119 and its existence in graphite at much higher temperatures was recently predicted 

using ab initio phonon dispersion and scattering rates27. Phonon Knudsen minimum can be found 

in the dimensionless thermal conductivity defined as 

 𝜅∗ =
𝜅𝑇

𝐶𝑣0𝑊
 (4-12) 

where 𝐶 is the energy density in phonon hydrodynamics such that 𝐶𝑢𝑥 is the heat flux where 𝑢𝑥 

is the drift velocity120. The 𝑣0 is an average group velocity. The dimensionless thermal 

conductivity is defined such that it only depends on Knudsen number and its physical meaning is 

a space-averaged dimensionless drift velocity at a given dimensionless temperature gradient. 
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4.5.1 Semi-analytic solution of the PBE with the Callaway’s scattering model 

The dimensionless thermal conductivity can be calculated from a semi-analytic solution of 

the PBE. A similar solution for the Boltzmann equation of molecules can be found in literature117, 

and it was recently applied for phonons in graphite27. A difference between phonons and molecules 

is that phonons experience momentum-destroying scattering (U-scattering). For our derivation, we 

use the Callaway’s scattering model which can be understood as the Bhatnagar-Gross-Krook 

scattering model of the molecule system with an additional momentum-destroying scattering term. 

For the sake of simplicity, the detailed derivation is not discussed here, but can be found in the 

supplementary information of our recent study16. 

4.5.2 Phonon Knudsen minimum 

In Figure 21, we present the dimensionless thermal conductivity for a Debye phonon 

dispersion from the semi-analytic solution of the PBE16. When there is no U-scattering, i.e., 

𝜏N/𝜏U = 0 where 𝜏N
−1 and 𝜏U

−1 represent the N- and U-scattering rates, respectively, the 

dimensionless thermal conductivity has a minimum point around Kn = 1, so called phonon 

Knudsen minimum. For 𝜏N/𝜏U = 0.1, the dimensionless thermal conductivity exhibits a slow 

decrease when inverse Knudsen number is below 5, but then rapidly decreases, leaving no 

minimum point. As U-scattering rate is further increased, the dimensionless thermal conductivity 

is converged to the Fuchs-Sondheimer solution8,121 which assumes all scattering events destroy the 

net momentum described by the RTA. 
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Figure 21 The dimensionless thermal conductivity with respect to inverse Knudsen number assuming a Debye 

phonon dispersion model. ‘FS’ refers to the Fuchs-Sondheimer solution of the PBE assuming no N-scattering. 

Reproduced with permission from [16]. Copyright 2019 American Physical Society. 

 

In Figure 22, we present the thermal conductivity normalized by sample width (𝜅/𝑊), 

similar to the dimensionless thermal conductivity defined in Eq. (4-12), for suspended graphene 

at different temperatures. At 100 K, the normalized thermal conductivity exhibits phonon Knudsen 

minimum when width is around 1 m, similar to the case without U-scattering in Figure 21. 

However, when width becomes larger than 10 m, the 𝜅/𝑊 decreases, implying the significant 

effect of U-scattering on thermal transport. At 200 K, the 𝜅/𝑊 slowly decreases for width from 

100 to 500 nm, but then rapidly decreases without a minimum point, similar to the case of 𝜏N/𝜏U =

0.1 in Figure 21. At 300 K, the 𝜅/𝑊 rapidly decreases for the entire width range. 
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Figure 22 Thermal conductivity normalized by graphene sample width at 100, 200, and 300 K. Reproduced 

with permission from [16]. Copyright 2019 American Physical Society. 

 

In Figure 23, we decompose 𝜅/𝑊 into the ballistic and scattered contributions to further 

understand Knudsen minimum and the crossover of ballistic, hydrodynamic, and diffusive 

regimes. At 100 K in Figure 23(a), the thermal conductivity is mostly from ballistic particles for 

width below 300 nm, similar to the momentum balance shown in Figure 20(a). From 300 nm to 

10 m, the scattered contribution is much larger than the ballistic contribution. The scattered 

contribution of 𝜅/𝑊 increases with width, and this behavior is particularly significant for width 

from 1 to 10 m. The increasing trend of the scattered 𝜅/𝑊 indicates that the hydrodynamic 

regime is much more significant than the diffusive regime89, which also agrees well with the 

momentum balance in Figure 20(a). Due to the strong hydrodynamic behavior, the total 𝜅/𝑊 

increases with width, leaving a minimum point at 1 m. When width is larger than 10 m, the 

scattered 𝜅/𝑊 decreases with width, which agrees well with the momentum balance in Figure 

20(a) showing that the diffusive regime becomes significant at 10 m. 
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Figure 23 Normalized thermal conductivity contributions from the ballistic and scattered particles at 100, 200 

and 300 K. For (d-f), the y-axis is in log scale and W-1 dependence is shown as the dotted line for eye-guide. 

Reproduced with permission from [16]. Copyright 2019 American Physical Society. 

 

At 200 K shown in Figure 23(b), the hydrodynamic behavior exists, but not as significant 

as the 100 K case. For width from 100 to 500 nm, the scattered 𝜅/𝑊 increases with width, 

indicating that the hydrodynamic regime still plays an important role in this width range. This can 

also be confirmed from the momentum balance in Figure 20(b) showing significant hydrodynamic 

regime in the same width range. However, the increasing behavior of the scattered 𝜅/𝑊 is less 

significant than the 100 K case, mainly due to larger U-scattering rates. From Figure 20(b), the 

momentum destruction by U-scattering already exists for width below 500 nm at 200 K, while it 

is negligible at 100 K. This results in a slower increase of the scattered 𝜅/𝑊, and Knudsen 

(a) (b) (c)

(d) (e) (f)
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minimum cannot be observed at 200 K. For width from 500 nm to 3 m, the normalized thermal 

conductivity is mostly due to the scattered particles, but it does not follow 𝑊−1 dependence which 

represents constant thermal conductivity and strong diffusive regime (Figure 23(e)). This shows 

that the transport is not fully diffusive, and the hydrodynamic regime cannot be neglected. When 

width is larger than 3 m, the normalized thermal conductivity follows 𝑊−1, showing the fully 

diffusive regime where the thermal conductivity is a constant regardless of sample width. When 

temperature is 300 K (Figure 23(c) and (f)), the hydrodynamic features are further weakened. The 

normalized thermal conductivity does not show increasing behavior with width for any width 

larger than 100 nm. When width is larger than 1 m, the dimensionless thermal conductivity is 

mostly due to the scattered particles, and it follows 𝑊−1 trend of the fully diffusive regime. 

4.6 Conclusions 

We have discussed the crossover of the ballistic, hydrodynamic, and diffusive regimes of 

phonon transport by decomposing the heat flow and wall shear stress into the ballistic and scattered 

particles contributions. This decomposition framework is applied in our deviational MC simulation 

of the PBE, where the phonon particles are labeled as scattered or ballistic depending on whether 

they have experienced internal phonon scattering or not. Using this framework, we compare three 

different momentum destruction mechanisms, and thus measure the significance of all three 

regimes in a wide range of temperature and sample width. Based on the relative contribution from 

each transport regime, we could clearly distinguish between the ballistic, hydrodynamic, and 

diffusive regimes, as well as the transition among these regimes. The characteristic of the transition 

between the ballistic and hydrodynamic regimes is shown through phonon Knudsen minimum. 
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The proposed decomposition framework would be useful to analyze the significance of all three 

regimes in high thermal conductivity materials. 
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5.0 Transient lattice cooling by propagation of second sound in graphite 

Hydrodynamic features have been theoretically predicted and experimentally observed in 

graphite at temperatures around 100 K27,35. Here, we show the evidence of second sound in 

graphite through our deviational MC simulation of the transient PBE. We report a clear 

propagation of second sound followed by significant lattice cooling that is not possible in ballistic 

or diffusive transport. Our simulation results are experimentally verified by a picosecond pump-

probe thermalreflectance measurements. Such lattice cooling has not been reported in recent 

measurements but is consistence with both hydrodynamic transport theory and prior heat-pulse 

measurements of second sound in bulk sodium fluoride. 

5.1 Background 

Recently, the second sound was observed at temperatures above 100 K in a highly oriented 

pyrolytic graphite sample using a transient grating experiment35. The measurement detected the 

diffraction signal from a thermal expansion grating and observed a shift of the peak thermal 

expansion. This is an unusual feature caused by the second sound. However, their measurements 

only suggest relative thermal expansion difference between different locations without detailed 

information of the actual temperature change. In addition, this experiment is different from the 

direct heat-pulse measurement that clearly showed the propagation of second sound and a possible 

lattice cooling effect33. 
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Observing the transient propagation of second sound using the heat-pulse measurement is 

still meaningful as it provides the direct evidence and additional insights on second sound in 

graphite. The experimental measurement, however, is extremely difficult because prior knowledge 

of the dispersion and attenuation of second sound is needed. The requirement of strong wave signal 

and weak damping leads to the stringent conditions required for second sound to occur. On one 

hand, the inverse of the duration of the pulse that creates the thermal excitation should be smaller 

than U-scattering rates such that U-scattering is not able to significantly destroy the net 

momentum. The length of the sample should be much less than U-scattering MFP for minimum 

damping. On the other hand, the pulse should be frequent enough so that N-scattering is strong 

enough to form collective motion between phonons and phonons do not travel with their own 

group velocities. The sample should be long enough for the wave to complete at least one period. 

5.2 Dispersion and attenuation of second sound 

The speed, frequency, and wavelength of second sound can be derived from the momentum 

and energy balance equations from the PBE13,15,112. Here we follow the same method to calculate 

the propagation and attenuation of second sound in graphite. We start with the transient PBE with 

Callaway’s scattering model: 

 
𝜕𝑓𝑖

𝜕𝑡
+ 𝐯𝑖 ∙ ∇𝐫𝑓𝑖 = −

𝑓𝑖 − 𝑓𝑖
disp

𝜏𝑖,N
−

𝑓𝑖 − 𝑓𝑖
0

𝜏𝑖,U
. (5-1) 

Multiplying the phonon momentum ℏ𝑞𝑖,𝑥 and energy ℏ𝜔𝑖 on both sides of Eq. (5-1) and sum over 

all phonon states, we obtain 
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𝜕 ∑ 𝑞𝑖,𝑥𝑓𝑖𝑖

𝜕𝑡
+ ∑ 𝑞𝑖,𝑥𝐯𝑖 ∙ ∇𝐫𝑓𝑖

𝑖
= ∑ −𝑞𝑖,𝑥

𝑓𝑖 − 𝑓𝑖
0

𝜏𝑖,U𝑖
 (5-2) 

for momentum balance, and 

 
𝜕 ∑ 𝜔𝑖𝑓𝑖𝑖

𝜕𝑡
+ ∑ 𝜔𝑖𝐯𝑖 ∙ ∇𝐫𝑓𝑖

𝑖
= 0 (5-3) 

for energy balance. The right side of Eq. (5-2) does not contain the term due to N-scattering 

because the momentum is conserved upon N-scattering. The right side of Eq. (5-3) is zero because 

energy is always conserved upon scattering. Using the solution to Eq. (5-1) and assuming the plane 

wave for displacement and temperature fields, as described in detail in the previous study112, the 

dispersion and relaxation length of second sound in graphite can be calculated, as shown in Figure 

24(a) and (c).  

 

Figure 24 The propagation and attenuation of second sound in graphite at 100 K. (a) The dispersion relation of 

second sound. (b) Theoretical speed of second sound. (c) The relaxation length of second sound. 

 

The real and imaginary frequencies in Figure 24(a) represent the dispersion and attenuation 

of a pulse, respectively. The imaginary frequency is caused by U-scattering and viscous damping 

effect and is the lower limit of second sound frequency. For the best condition for second sound 

to occur, the frequency should be chosen where there is the largest gap between real and imaginary 

frequencies. For example, as shown in Figure 24(a), second sound frequency of 1 GHz would be 

the optimal choice, corresponding to a pulse duration of 1 ns. Under this frequency, the wavevector 
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and wavelength of second sound are also determined. From the dispersion relation, the speed of 

second sound can be calculated, as shown in Figure 24(b) at different temperatures. The sample 

length should also be properly chosen to avoid significant damping of second sound. In Figure 

24(c) we show the relaxation length as a function of second sound wavevector. The relaxation 

length is calculated based on the speed of second sound and the imaginary part of second sound 

frequency. For a given second sound wavevector, the sample length should lie between the 

wavelength and relaxation length to ensure the propagation of second sound and the minimum 

damping. 

5.3 Monte Carlo simulation of second sound 

To provide theoretical guidance and verification of the pico-second pump-probe thermal 

reflectance measurements, we perform our MC simulation of the propagation of second sound in 

bulk graphite. We solve the transient deviational PBE with a full scattering matrix with inputs of 

phonon dispersion and scattering matrix from first-principles calculations. Our MC simulations 

are performed under the same experimental setup and conditions, the details of which can be found 

in the recent study122. 

5.3.1 Sample geometry and boundary conditions 

The sample geometry and the boundary conditions are shown in Figure 25. The sample 

thickness was chosen to be 1 μm, which is much larger than the thermal penetration depth of 200 

nm estimated from the heat diffusion equation. For the front, left, and top surfaces of the sample, 
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thermally adiabatic boundary condition was applied. The adiabatic surfaces reflect incoming 

phonons specularly, so only one quarter of the experimental setup is needed because of the 

symmetry in the in-plane transport. For the entire sample, the phonon distribution was initialized 

with the equilibrium Bose-Einstein distribution at a homogenous ambient temperature. The sample 

was discretized into 20203 control volumes in the real-space domain. The first Brillouin zone 

of reciprocal space was discretized with a 25255 grid. The time space was discretized with a 

time interval of 7, 5, and 3 ps at 80, 100, and 150 K, respectively. 

 

 

Figure 25 Schematic of a 3D graphite sample with thickness of 1 μm for the MC simulation. One quarter of the 

experimental setup is simulated, with adiabatic boundaries for the front, left, and top surfaces. The back, right, and 

bottom surfaces are at constant ambient temperature. 

5.3.2 Simulation details 

The first-principles calculations were performed using the Vienna Ab initio Simulation 

Package92,93,123. We used the projector-augmented-wave pseudopotentials and local density 

approximation for exchange-correlation energy functional. The van der Waals interaction was 

included with a non-local correlation functional, optB88-vdW124,125. The cutoff energy of the plane 

20 µm
20 µm
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wave basis is 520 eV. The crystal structure was relaxed with a 242410 grid for sampling 

electronic states (k points) in the first Brillouin zone. The second order force constants were 

calculated by density functional perturbation theory with 552 supercells. The third order force 

constants were calculated by a real space supercell approach with 442 supercells and 886 

grid of k points, with a cut-off distance to the fifth nearest neighbor. The phonopy126 and 

thirdorder.py4 packages were also used in the calculations of second and third order force 

constants, respectively. 

The heating by the pump laser which has a ring-shape was simulated by applying heat 

source to the control volumes for the time duration of actual laser (400 ps). The intensity of heat 

source follows the Gaussian distribution with the same full width at half maximum (FWHM) value 

as the pump beam used in the experiment (6 μm) along the in-plane direction. In the process of 

heating, phonons were generated following the equilibrium Bose-Einstein distribution at local 

temperature. The time-and-space-dependent phonon distribution function was calculated to sample 

the local temperature change. The temporal temperature change at the dot-shape probe beam was 

collected by averaging the local temperatures weighted by a Gaussian function with a FWHM of 

6 μm, which is the same as the actual probe beam used in the experiment. 

5.3.3 Comparison in different transport regimes 

To validate our MC simulation and show the evidence of second sound, we first simulate 

the response of the system to the laser heating in ballistic, hydrodynamic, and diffusive regimes, 

as shown in Figure 26. The ballistic responses (blue lines) are obtained by the MC simulation 

without including internal phonon scattering, while the real cases with scattering are shown in red 

lines. For the diffusive responses (orange lines), we use the Ansys-Fluent package that solves the 
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2D heat conduction equation. One quarter of the ring-shape heating is simulated, and the temporal 

temperature response is collected at the center of the ring. 

 

Figure 26 Temporal temperature responses in different transport regimes at 150 K (a) and 100 K (b). 

 

At both temperatures, the ballistic responses show three clear peaks, corresponding to 

phonons with different branches due to the dispersive nature of phonon dispersion in graphite. The 

ballistic peaks are wide and have long tails because of phonons with small group velocities. The 

diffusive responses show the strong damping of the temperature pulse, featured by a slow decay 

of temperature with a very long tail. This is more significant at higher temperatures, as shown in 

Figure 26(a). At 150 K, U-scattering dominants and destroys any net momentum, and the transport 

is in diffusive regime. This can be seen by the excellent agreement between the temperature 

evolution from the MC simulation when internal phonon scattering is considered (red line) and the 

diffusive response (orange line). However, at 100 K, a single peak is observed with a well-defined 

width, different from either ballistic or diffusive signals, as shown in Figure 26(b). This single 

peak indicates the collective motion and is the direct evidence of the propagation of second sound. 
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5.4 Transient lattice cooling at adiabatic center 

The propagation of second sound in a highly oriented pyrolytic graphite is recently 

experimentally observed using a picosecond transient thermoreflectance system122. In the 

experiment, a ring-shape pump laser is applied for a duration of 400 ps, and the temporal 

temperature response at the center of ring-shape pump laser is recorded by a dot-shape probe laser. 

The experimental observed thermoreflectance signals at different ambient temperatures are shown 

in Figure 27. Above 150 K, the thermoreflectance signal exhibits an ordinary thermal decay that 

is expected for diffusive phonon transport since the signal first arises to the peak and then relaxes 

to the ambient temperature. As the temperature is decreased to 120 K, a positive peak temperature 

rise is followed by a negative temperature peak. The negative peak becomes clear when the 

ambient temperature is decreased further to 80 K. The negative temperature peak suggests lattice 

cooling, which cannot occur in either ballistic or diffusive transport. In both ballistic and diffusive 

regimes, the pulse heating only increases the lattice temperature. In hydrodynamic regime when 

phonon momentum is conserved, the temperature field will fluctuate between positive and negative 

displacement, leading to the transient lattice cooling. 
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Figure 27 Second sound signal from experiments and simulations at 80, 100, and 150 K. 

 

To better understand the experimental observation, we simulate the same experimental 

conditions as explained in section 5.3.2. The simulation results are also shown in Figure 27 as the 
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red lines. At 80 K, the negative temperature peak is also observed in the MC simulation, and 

qualitatively agrees with the experimental observation. The evolution of temperature profile at 80 

K is plotted in Figure 28. As shown in Figure 28(a-b), the local temperature peak by the ring-shape 

heat pulse propagates toward the center within 2.1 ns after the heating. At 3.5 ns, the temperature 

peak merges at the center in Figure 28(c), and then propagates outward in Figure 28(d). The 

negative temperature peak occurs near the center following the outgoing positive peak as shown 

in Figure 28(e). The evolution of the temperature profile is summarized in Figure 28(f) to show 

the clear fluctuation of temperature field at the center upon the arrival and departure of the 

temperature peak.  

 

Figure 28 Snapshots of temperature profile on the top surface of the graphite sample at 80 K. 

 

The experimental setup that has a ring-shape pump with a probe at the center is similar to 

that of the NaF measurement where the probe beam is located at the thermally adiabatic 

boundary33. In our case, the center can be considered thermally adiabatic boundary due to the 
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symmetry. In the previous study on NaF and our current results, the negative temperature peak 

occurs after the second sound pulse is reflected by thermally adiabatic boundary. The thermally 

adiabatic boundary is an important condition for the lattice cooling to occur. In comparison, we 

simulate the offset measurement where the pump and probe beams are separated by a distance 

without any thermally adiabatic boundary. As shown in Figure 29, for different distances between 

pump and probe beams, the lattice cooling cannot be observed. 

 

Figure 29 MC results of the offset measurement with different distances between the pump and probe beams. 

5.5 Conclusion 

The dispersion and attenuation of second sound in graphite is theoretically calculated. By 

solving the transient PBE with full scattering matrix using the deviational MC simulation, the 

propagation of second sound is clearly observed. The temperature response in second sound is 

different from the responses in ballistic regime where dispersive peaks occur and in diffusive 

regime where the peak slowly decays. Both our simulation and a picosecond thermoreflectance 

measurement reveal that the pulse heating can create lattice cooling near the adiabatic boundary. 
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In the hydrodynamic phonon transport regime in graphite, the heat source can propagate over a 

distance of several micronmeters before being reflected by the adiabatic boundary, resulting in 

lattice cooling. Such lattice cooling has not been reported in recent measurements on graphite and 

provides more insights on phonon hydrodynamics in graphitic materials. 
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6.0 Significant interfacial resistance from the scattering of non-equilibrium phonons  

In this Chapter, we turn our focus from hydrodynamic phonon transport to interfacial 

thermal resistance. We present our examination of phonon transport across an interface between 

silicon and germanium by solving the PBE with inputs from first principles. The phonon 

distribution is solved in both real and reciprocal spaces, and the local interfacial effects are well 

captured. By calculating local entropy generation, we find that internal phonon scattering among 

the phonons at non-equilibrium near the interface provides an important contribution to the overall 

interfacial resistance. The significant contribution from these non-equilibrium phonons may 

explain the widely reported difference in interfacial resistance between measurements and the 

Landauer theory in various systems. We also find that the effect of non-equilibrium is not only at 

the close proximity to the interface but can be extended to a distance way larger than the specific 

heat averaged phonon MFP, which suggests that the assumption of a single interface needs to be 

reconsidered when the system size is small. 

6.1 Method for evaluating the non-equilibrium 

The non-equilibrium has usually been observed through the temperature profile near the 

interface where local temperature becomes non-linear. The non-linear temperature profile has been 

mostly observed in MD simulations62,80–83, but is also clearly shown by solving the PBE with RTA 

using ab initio inputs77. In Figure 30, we present the temperature profile for a Si/Ge interface from 
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our deviational MC solution to the PBE with ab inito full scattering matrix. The non-linear 

temperature is significant on Ge side at all temperatures. 

 

Figure 30 Temperature profiles for a Si/Ge system with length of 200 nm. The non-linear feature is clearly 

observed. 

 

The temperature, however, is not a good measurement of non-equilibrium because it is not 

well-defined in this situation. The effective temperature calculated here only shows the total 

internal energy but does not give any information about phonon distribution function. Phonons can 

have different distribution functions while the local temperatures are the same. The non-

equilibrium should be evaluated by looking directly at phonon distribution. Here we propose two 

methods to quantify the non-equilibrium: evaluating the symmetry of phonon distribution function 

and calculating local entropy generation. 
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6.1.1 Symmetry of phonon distribution function 

Phonons follow bulk distribution as in Eq. (2-37) when internal scattering is frequent 

enough. The deviation of bulk distribution 𝑓𝑖
bulk from local equilibrium distribution 𝑓𝑖

0 is 

 𝑓𝑖
bulk − 𝑓𝑖

0 = 𝐅𝑖

𝜕𝑓𝑖
0

𝜕𝑇
(−∇𝐱𝑇) (6-1) 

with 

 𝐅𝑖 = 𝜏𝑖(𝐯𝑖 + Δ𝑖) (6-2) 

where 𝜏𝑖 is the total scattering rate for phonon state 𝑖, 𝜏𝑖𝐯𝑖 is the phonon MFP under RTA, and Δ𝑖 

is the measure of deviation from the RTA solution with the dimension of velocity4. Considering 

heat transport along 𝑥 direction, the deviation from local equilibrium should be symmetric for +𝑥 

and −𝑥 directions because of the symmetry of phonon dispersion. Namely, we have 

 𝑓𝑖,𝑣𝑥,𝑖>0
bulk − 𝑓𝑖,𝑣𝑥,𝑖>0

0 = − (𝑓𝑖,𝑣𝑥,𝑖<0
bulk − 𝑓𝑖,𝑣𝑥,𝑖<0

0 ). (6-3) 

This symmetry of deviation from local equilibrium is a characteristic of bulk phonon distribution. 

For phonons at non-equilibrium near the interface, their phonon states are randomly determined 

due to the nature of diffuse scattering upon transmission and reflection, and this symmetry cannot 

be satisfied. Thus, Eq. (6-3) can be used as a measure of non-equilibrium of the actual phonon 

distribution. 

Directly calculating Eq. (6-3) on a modal basis using MC method, however, would 

introduce large stochastic error due to the limited number of phonon particles that are tracked. 

Instead, we calculate the total heat flux due to the deviation from local equilibrium for +𝑥 and −𝑥 

directions separately. The heat flux representing the deviation of distribution from local 

equilibrium is calculated as 
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 𝑞𝑥,dev
+ =

1

𝑁𝑉uc
∑ ℏ𝜔𝑖𝑣𝑥,𝑖(𝑓𝑖,𝑥 − 𝑓𝑖,𝑥

0 )

𝑖,𝑣𝑥,𝑖>0

 (6-4) 

for +𝑥 direction, and 

 𝑞𝑥,dev
− =

1

𝑁𝑉uc
∑ ℏ𝜔𝑖𝑣𝑥,𝑖(𝑓𝑖,𝑥 − 𝑓𝑖,𝑥

0 )

𝑖,𝑣𝑥,𝑖<0

 (6-5) 

for −𝑥 direction. Note that subscript 𝑥 for 𝑓 and 𝑞 means the dependence on spatial position. The 

𝑞𝑥,dev
+  and 𝑞𝑥,dev

−  are both positive and different from the conventional heat flux calculated based 

on actual phonon distribution, as shown in Figure 31 as solid lines. 

 

  

Figure 31 Schematic of heat flux of deviation of distribution from local equilibrium. The red/blue shaded area 

represents the heat flux along +𝒙 /−𝒙 direction. The red and blue lines represent the heat flux based on actual 

phonon distribution along +𝒙 and −𝒙 direction, respectively. 

 

The dashed line represents the heat flux from local equilibrium distribution and is thus 

symmetric. The red (𝑞𝑥,dev
+ ) and blue (𝑞𝑥,dev

− ) shaded area should be equal for bulk phonon 
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distribution. Adding 𝑞𝑥,dev
+  and 𝑞𝑥,dev

−  together will lead to the same net heat flux in the system 

because the heat flux from 𝑓𝑖
0 in two directions will be cancelled out. To define the similarity 

between the actual distribution and the bulk distribution, a parameter that evaluates 𝑞𝑥,dev
+  and 

𝑞𝑥,dev
−  is calculated as 

 |𝛿𝑞sym,𝑥| =
|𝑞𝑥,dev

+ − 𝑞𝑥,dev
− |

𝑞𝑥,dev
+ + 𝑞𝑥,dev

−  (6-6) 

and is a function of spatial position 𝑥. For every control volume in the spatial domain, |𝛿𝑞sym,𝑥| 

can be calculated based on local distribution functions. A large value of |𝛿𝑞sym,𝑥| indicates that 

the distribution is far away from the bulk one and at non-equilibrium, while a small value would 

suggest the bulk distribution. 

6.1.2 Local entropy generation 

As discussed in section 1.3.4.3, for phonons with bulk distribution, the entropy generation 

due to internal scattering is a constant, while for phonons at non-equilibrium near the interface, it 

will be increased because of additional interfacial scattering. Thus, calculating local entropy 

generation is a good measure of non-equilibrium. The rate of local entropy generation due to 

scattering is calculated as99 

 𝑆�̇� = −
1

𝑇0𝑁𝑉
∑ 𝜙𝑖,𝑥𝑓𝑖,𝑥

̇

𝑖

 (6-7) 

where subscript 𝑥 denotes spatial position along heat transport direction, and 𝜙𝑖,𝑥 is the measure 

of deviation of phonon distribution for phonon state 𝑖 from local equilibrium defined as 
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 𝑓𝑖,𝑥 = 𝑓𝑖,𝑥
0 − 𝜙𝑖,𝑥

𝜕𝑓𝑖
0

𝜕ℏ𝜔𝑖
. (6-8) 

To evaluate 𝑆�̇� in our MC simulation, we calculate 𝑓𝑖,𝑥 from 

 𝑓𝑖,𝑥 =
𝑒𝑖,𝑥

d

ℏ𝜔𝑖
+ 𝑓𝑖

eq
 (6-9) 

where 𝑒𝑗,𝑥
d  is the local deviational energy distribution for phonon state 𝑗. The 𝑓𝑖,𝑥

̇  is the rate of 

change of phonon distribution due to scattering, and can be calculated through full scattering 

matrix as 

 𝑓𝑖,𝑥
̇ =

1

ℏ𝜔𝑖
∑ 𝐵𝑖𝑗𝑒𝑗,𝑥

d

𝑗

. (6-10) 

At steady-state, 𝑒𝑖,𝑥
d  is extracted from MC simulation for each phonon state 𝑖 and each control 

volume in the spatial domain, and local entropy generation rate can be calculated. 

6.2 Effective interfacial region with strong non-equilibrium 

We first quantify the non-equilibrium near the interface between Si and Ge by calculating 

|𝛿𝑞sym,𝑥| from Eq. (6-6), as shown in Figure 32. Near the interface, |𝛿𝑞sym,𝑥| is high for both Si 

and Ge, indicating significant non-equilibrium distribution. This is due to interfacial scattering, 

including transmission and reflection at the interface, that randomly alters the phonon distribution. 

Moving away from the interface, internal phonon scattering recovers the non-equilibrium 

distribution to the bulk distribution, and |𝛿𝑞sym,𝑥| decreases. On Si side, |𝛿𝑞sym,𝑥| decreases 

slower with distance from the interface than on Ge side, which is expected because phonons in Si 
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have larger MFPs than those in Ge, and a longer distance is needed for frequency internal phonon 

scattering. 

 

Figure 32 Evaluation of symmetry of deviation of phonon distribution from local equilibrium. 

 

While |𝛿𝑞sym,𝑥| on Ge side decreases faster, the values are much larger than those on Si 

side. This is because the incoming heat flux from Ge is largely reflected by the interface. In Figure 

33, we show the spectral heat flux together with transmissivity for both materials. The spectral 

heat flux is calculated assuming bulk phonon distribution. It is expected that the major heat flux 

comes from relatively low frequency acoustic phonons, but the transmissivity has drastic change 

for different frequencies. In Ge, phonons with frequency below 3 THz have generally low 

transmissivities, while those with frequency between 3 to 6 THz have large transmissivities. The 

difference in transmissivity comes from the relative phonon DOS between Si and Ge as seen in 

the DMM. Comparing Figure 33(b) and (d), it is clear to see that major heat carriers in Ge are not 

likely to transmit across the interface due to small transmissivity but have a high chance of being 

reflected back. The reflection changes a significant portion of 𝑞𝑥,dev
−  to 𝑞𝑥,dev

+ , leading to a large 

asymmetry between them and thus large values of |𝛿𝑞sym,𝑥|. On Si side, most heat carried by low 
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frequency phonons is transmitted across the interface, thus the ratio of 𝑞𝑥,dev
−  and 𝑞𝑥,dev

+  is not 

changed significantly, and |𝛿𝑞sym,𝑥| is small. 

 

Figure 33 Spectral heat flux from bulk phonon distribution and transmissivity for Si (a,c) and Ge (b,d). 

Dashed lines are for dividing different frequencies based on transmissivity. 

 

The system size of 200 nm in Figure 32 is too small for the distribution to recover to bulk 

distribution at the boundaries. We also calculate |𝛿𝑞sym,𝑥| for larger systems as shown in Figure 

34. As expected, the data at the same position for different lengths are on top of each other, which 

indicates that the local phonon distribution is the same, and that there is no size effect as the 

boundaries generate phonons with bulk distribution. Significant non-equilibrium near the interface 

is observed in both materials. The decay of the non-equilibrium effect with the distance from the 

interface is clear and shows that the non-equilibrium is limited within a certain range, which we 
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define as the effective interfacial region. To estimate the size of interfacial region, we first fit the 

data for the largest length in each material with an exponential function 

 |𝛿𝑞sym,𝑥| = 𝐴exp(𝐵𝑥int) + 𝐶 (6-11) 

where 𝑥int is not the position but the distance from the interface, 𝐴, 𝐵, and 𝐶 are constants. We 

then define the edge of interfacial region as the position when |𝛿𝑞sym,𝑥| is decreased to 10% of the 

value at the interface, which indicates the non-equilibrium effect is negligible. As an estimation, 

the size of effective interfacial region is around 500 nm on Si side, and around 300 nm on Ge side. 

 

Figure 34 Quantification of non-equilibrium for systems with different lengths. 

 

Highly non-equilibrium phonon distribution near the interface leads to large entropy 

generation upon internal phonon scattering. The local entropy generation rate calculated by Eq. 

(6-7) is shown in Figure 35. Near the boundaries, entropy generation rate is constant and agrees 

well with the entropy generation from bulk thermal conductivity when phonons follow bulk 

distribution, which will be called bulk entropy generation. Moving toward the interface, entropy 
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generation rate increases on both sides, and reaches the maximum near the interface. This increase 

indicates that there is additional resistance from internal phonon scattering. The additional 

resistance comes from phonons that are at non-equilibrium due to interfacial scattering. The non-

equilibrium is most significant in close proximity to the interface, resulting in the largest local 

entropy generation rate. The position when local entropy generation rate is the same as the bulk 

entropy generation is similar to the size of effective interfacial region on each side, around several 

hundreds of nanometers. The same trend observed in both Figure 34 and Figure 35 validates our 

calculations and clearly shows significant non-equilibrium near the interface. 

 

Figure 35 Local entropy generation rate. The horizontal dashed lines are bulk entropy generation values assuming 

internal phonon scattering with bulk distribution. 

 

The effect of temperature on the non-equilibrium is also studied and summarized in Figure 

36 and Figure 37. The |𝛿𝑞sym,𝑥| and local entropy generation rate in both figures show the same 

behaviors as the cases at 300 K, but the estimated size of effective interfacial region decreases at 
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significant even at a high temperature like 1000 K, where the average phonon MFP is much smaller 

than the system size. This suggests that the average phonon MFP is not a good measure of the size 

of effective interfacial region. 

 

Figure 36 Quantification of non-equilibrium for systems with different lengths at (a) 500, (b) 700, and (c) 

1000 K. 

 

 

Figure 37 Local entropy generation rate at (a) 500, (b) 700, and (c) 1000 K. 

 

To better understand the range of non-equilibrium, we calculate the accumulated thermal 

conductivity as a function of phonon MFP along the heat transport direction, as shown in Figure 

38. The estimated size of effective interfacial region ranges from 200 to 500 nm for both Si and 

Ge at temperatures from 300 to 1000 K, which is larger than MFPs of phonons that contribute 

around 50% of total heat flow. These results demonstrate the importance of the interface when 

considering the size effect of the system. Usually the quasi-ballistic effect is the major concern 
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when determining the system size. However, here we show that even when internal phonon 

scattering is strong, there are also size effects brought by the interface due to the non-equilibrium. 

 

Figure 38 Accumulated thermal conductivity as a function of phonon MFP for (a) Si and (b) Ge at different 

temperatures. 

6.3 Interfacial thermal resistance from MC 

6.3.1 Total interfacial resistance assuming bulk thermal conductivity 

Non we examine how the non-equilibrium near the interface affect the interfacial 

resistance. In Figure 39 we show the temperature profiles for different systems at 300, 500, 700, 

and 1000 K. The temperature drop at the interface is clearly observed in all cases. To calculate the 

temperature difference at the interface directly from the temperature profile in MC simulation is 

difficult because an accurate quantification of local temperature close to the interface needs lots of 

sampling points in the spatial domain. Also, the temperature itself is ill-defined with high non-

equilibrium near the interface. Instead, we calculate the temperature drop based on the temperature 

profiles assuming bulk thermal conductivities in both materials, as the blue dashed lines shown in 
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Figure 39. These temperature profiles suggest diffusive phonon transport and are clearly different 

from the actual temperature profiles from the MC simulation near the interface. The deviation 

again indicates the non-equilibrium nature near the interface. 

 

Figure 39 Temperature profiles for the Si/Ge interface from MC. The blue dashed lines are the temperature 

profiles with bulk thermal conductivities. 

 

The calculated interfacial resistances based on the temperature profiles assuming bulk 

thermal conductivity is denoted as 𝑅𝜅bulk
 and shown in Figure 40 as the red circles. The interfacial 

resistances remain constant at different temperatures. Calculating the interfacial resistance 

assuming the bulk thermal conductivity is similar to the method in experiments where bulk thermal 

conductivities are used for the fitting process5,40,42,44. Nevertheless, it is much more complicated 

in the experimental measurements when all the imperfections at the interface are included. 
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Figure 40 Interfacial thermal resistance from Landauer, modified Landauer, and MC. 

 

We compare 𝑅𝜅bulk
 with the predictions from the original Landauer formula and its 

modified version, as described in sections 1.3.3.1 and 1.3.3.2. The large difference between 

Landauer formula and its modified version comes from the fact that bulk distribution leads to a 

larger heat flux than that of equilibrium distribution under the same temperature difference, and 

has been reported in previous studies47,49,50. The bulk distribution is the result of internal phonon 

scattering which has been shown to largely reduce interfacial resistance77. The scattering among 

high frequency and low frequency phonons provides channels for high frequency phonons in Si to 

cross the interface which otherwise is impossible under the assumption of elastic interfacial 

scattering. However, when phonon distribution deviates from the bulk distribution, the interfacial 

resistance is significantly increased by the non-equilibrium. In Figure 40, 𝑅𝜅bulk
 is even larger than 

the resistance predicted by the original Landauer formula. The fact that Landauer formula leads to 

a much different interfacial resistance has been reported by many experimental studies, as 

discussed in section 1.3.4.1. The real atomistic structure at the interface in experiments may 

increase the interfacial resistance and make it harder to explain by a simple theory, but our MC 
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simulation uses the same assumption of perfect crystalline structure and the transmissivity 

provided by the DMM. Thus, the large discrepancy between 𝑅𝜅bulk
 and the Landauer prediction 

suggests the insufficiency of the theory, and that there are mechanisms at the interface not being 

described by the current theory. 

6.3.2 Significant contribution from non-equilibrium phonons 

To explain the large difference between 𝑅𝜅bulk
 and Landauer prediction, we decompose 

the total interfacial resistance into the direct resistance at the interface and the resistance caused 

by internal phonon scattering. The resistance from internal phonon scattering with bulk distribution 

is reflected as the temperature gradient within the material and is already excluded from 𝑅𝜅bulk
 

which is calculated based on the temperature profile that is extrapolated to the interface using bulk 

thermal conductivity and heat flux. Thus, 𝑅𝜅bulk
 can be decomposed as 

 𝑅𝜅bulk
= 𝑅int + 𝑅neq (6-12) 

where 𝑅int is the resistance directly at the interface and 𝑅neq is the resistance from internal phonon 

scattering with non-equilibrium distribution. Since 𝑅neq cannot be calculated from the temperature 

profile, we turn to the local entropy generation rate in Figure 35. As Eq. (1-17) in section 1.3.4.3 

shows, the entropy generation is directly related to thermal resistance. While the area under the 

bulk entropy generation (horizontal dashed lines) suggests the resistance from bulk distribution, 

𝑅neq can be calculated from the area between the actual entropy generation rate (symbols) and the 

bulk values. The resistance at the interface, 𝑅int, is then obtained from Eq. (6-12).  

The values of 𝑅int and 𝑅neq at different temperatures are shown in Figure 41, with 𝑅neq 

contributed from both Si and Ge. Surprisingly, 𝑅neq is comparable to 𝑅int and has significant 
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contribution (around 50%) to the total interfacial resistance. This contribution from non-

equilibrium phonons has been ignored in Landauer theory and has not been quantified before. In 

Figure 41, we show that by adding it to the resistance at the interface, the overall interfacial 

resistance is 1.5 times larger than that predicted from original Landauer theory. The non-

equilibrium contribution explains the gap between Landauer theory and experiments, and the total 

interfacial resistance matches better with experimental measurements. 

 

Figure 41 Decomposition of total interfacial resistance from MC. The contribution from non-equilibrium 

phonnos is significant. 

6.4 Conclusions 

The phonon transport across a Si/Ge interface is studied by solving the PBE with the 

deviational MC method. The Landauer formula and its modified version are examined. These 

theories fail to capture the non-equilibrium near the interface due to interfacial scattering. The 
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find that this contribution is surprisingly significant and can explain the large discrepancy between 

the Landauer theory and experiments. By quantifying the non-equilibrium, we find that the effect 

of complex interplay between interfacial scattering and internal phonon scattering can be quite far 

from the interface. Our studies provide insights on interpreting experimental measurements and 

emphasize the influence of interface on phonon transport when the system size is small. 
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7.0 Summary and future directions 

7.1 Summary 

In this dissertation, using a deviational MC method to solve the PBE with ab initio full 

scattering matrix, we simulate the phonon transport in all seven dimensions (three in reciprocal 

space domain, three in real space domain, and one in time domain) without any empirical 

parameter. We have provided a better understanding of the fundamental physics of phonon 

transport in bulk graphitic materials and across a thermal interface between semiconductors.  

Chapters 3 to chapter 5 discussed different transport phenomena of the hydrodynamic 

phonon transport in suspended graphene and graphite. Chapter 3 studied the peculiar temperature 

and sample width dependences of thermal conductivity in suspended graphene, a characteristic of 

phonon Poiseuille flow. We showed that thermal conductivity increases with temperature much 

faster than that of the ballistic case. The thermal conductivity has a superlinear width dependence 

at 100 K, clearly distinguished from the sublinear dependence of the ballistic-diffusive regime. 

These peculiar features were explained with a phonon viscous damping effect of the hydrodynamic 

regime. Our findings provided important guidance on experimental measurements and insights 

into detailed mechanisms in phonon hydrodynamics. 

Chapter 4 proposed a framework to quantify the contribution of each phonon transport 

regime in real cases where the the features of all three regimes exist to some extent. We assessed 

the extent of three regimes by comparing momentum destruction rates by three different 

mechanisms, each of which represents a different regime: diffuse boundary scattering without 

internal phonon scattering (ballistic regime), diffuse boundary scattering combined with normal 
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scattering (hydrodynamic regime), and umklapp scattering (diffusive regime). This framework 

helps us identify the major transport characteristics when transport phenomena are complex. We 

also discussed phonon Knudsen minimum, a unique phenomenon of ballistic-to-hydrodynamic 

crossover. 

Chapter 5 presented another characteristic of hydrodynamic phonon transport, which is the 

propagation of second sound, in bulk graphite. The dispersion and attenuation of second sound 

were theoretically calculated from wave equations, and the optimal conditions for the propagation 

of second sound were determined. We simulated the heat-pulse measurement for a 3D crystalline 

graphite using our MC simulations and observed strong signal of second sound propagation that 

is clearly different from ballistic and diffusive transport. The evidence of direct propagation of 

second sound has been shown in solids at cryogenic temperatures but has never been 

experimentally verified at elevated temperatures. In our simulation, transient lattice cooling was 

observed in graphite for the first time and confirmed by experimental measurements using a 

picosecond transient thermoreflectance system. These findings provided important evidence on 

hydrodynamic transport in graphitic materials. 

In chapter 6, the Landauer theory for phonon transport across an interface between silicon 

and germanium was examined. We showed that both the Landauer formula and its modified 

version underestimate interfacial resistance due to the fact that they ignore a strong non-

equilibrium distribution near the interface. We quantified the non-equilibrium by evaluating the 

symmetry of phonon distribution and calculating local entropy generation rate. We defined an 

effective interfacial region, beyond which the non-equilibrium distribution recovers to the bulk 

phonon distribution. The internal phonon scattering within the interfacial region provided an 

important contribution to the overall interfacial resistance. Our study revealed the disadvantages 
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of Landauer theory and could help explain the large discrepancies between experimentally 

measured interfacial resistances and those calculated from the Landauer formula, thus providing a 

useful way to interpret experimental data. 

7.2 Future directions 

The dominance of hydrodynamic phonon transport in graphitic materials suggests a new 

way for thermal design and manipulation of heat flow in nanodevices with these materials. Yet the 

difficulty in fabricating high quality samples of suspended graphene or bulk graphite without 

surface contamination hinders the application of phonon hydrodynamics. Recently, hydrodynamic 

regime has been observed in other three-dimensional materials like strontium titanate110 and bulk 

black phosphorus111, but at low temperatures with a small temperature window. The recent 

discoveries of the ultrahigh thermal conductivity in boron arsenide127–129 and boron nitride130 

suggest the possibility of hydrodynamic regime in these materials. Exploring new materials in 

which hydrodynamic phonon transport can occur is still very important for both fundamental 

understanding and thermal applications, especially in bulk materials at high temperatures. 

The capability of our MC solver for the time and space dependent PBE with ab initio full 

scattering matrix makes it suitable to simulate non-diffusive phonon transport in samples with any 

dimension and any geometry. This is very useful for simulating and explaining experimental 

measurements in small time and length scales. For heat transport with varying temperature filed in 

time and space, for example, transient and spatial heating in thermoreflectance measurements, 

phonon distribution in all seven dimensions is needed to accurately describe the transport process. 

This is impossible in traditional macroscopic solution of heat conduction, and hard to achieve for 
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other methods that solve the PBE without simplifying the scattering term. Thus, our MC 

simulation, with such power, can be used to solve these problems. 

Another interesting direction is to study the effect of N-scattering on interfacial transport. 

Internal phonon scattering has been shown to be important for a Si/Ge interface by providing 

additional channels for high frequency phonons in Si side to transfer energy to low frequency 

phonons and then cross the interface. The internal phonon scattering in the system, however, is 

mainly U-scattering as N-scattering is very weak. It is known that N-scattering does not directly 

cause thermal resistance but can redistribute phonons. When combined with interfacial scattering, 

the redistribution by N-scattering may affect phonon transport across the interface. Such effect can 

be studied in the interface between silicon and diamond where N-scattering is significant. 

Our current MC simulation is only for phonon transport, but the method can be extended 

to include electron transport because they are both governed by Boltzmann equations. While the 

simulation of electron transport in metals may be less of interest, the thermal transport across a 

metal/semiconductor interface is pretty important because such interface exists widely in 

thermoreflectance measurements. An accurate solution to Boltzmann equation would provide 

insights into the mechanisms of the transport process and help with the thermal design of the 

interface. 
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