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Abstract 

IsAb: a general in silico protocol for antibody design 

 

Tianjian Liang, B.E 

 

University of Pittsburgh, 2021 

 

 

 

 

ABSTRACT 

The design of therapeutic antibodies has attracted a large amount of attention over the past 

ten years. Antibodies are widely used to treat many diseases due to their high efficiency and low 

risk of adverse events. However, the experimental methods of antibody design are time-consuming 

and expensive. Although computational antibody design techniques have had significant advances 

in the past years, there are still some challenges that need to be solved, such as the flexibility of 

antigen structure, the lack of antibody structure data, and the absence of standard antibody design 

protocol. In the present work, we elaborated on an in-silico antibody design protocol for users to 

easily perform computer-aided antibody design. First, the Rosetta web server will be applied to 

generate the 3D structure of query antibodies if there is no structural information available. Then, 

two-step docking will be used to identify the binding pose of an antibody-antigen complex when 

the binding information is unknown. ClusPro is the first method to be used to conduct the global 

docking, and SnugDock is applied for the local docking. Sequentially, based on the predicted 

binding poses, in-silico alanine scanning will be used to predict the potential hotspots (or key 

residues). Finally, computational affinity maturation protocol will be used to modify the structure 

of antibodies to increase their affinity and stability. We also redesigned antibody D44.1 which is 

an anti-hen egg white lysozyme antibody and compared it with previously reported data to 

strengthen the persuasion of IsAb protocol. To further illustrate our proposed protocol, we used an 
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FDA-approved PD-1 checkpoint inhibitors antibody, cemiplimab as an example to showcase a 

step-by-step tutorial. 

Key word: antibody design, protein engineering, protein-protein docking, computer-aided 

antibody protocol 



 vi 

Table of Contents 

PREFACE ..................................................................................................................................... xi 

1.0 INTRODUCTION................................................................................................................... 1 

1.1 Antibody Structure ......................................................................................................... 1 

1.2 Antibody Development ................................................................................................... 3 

1.3 Current Status of Antibody Design ............................................................................... 3 

1.4 The Usage of Computational Antibody Design in Current Diseases ......................... 6 

1.5 Common Techniques in Computational Antibody Design ......................................... 8 

1.5.1 Antibody Modeling ..............................................................................................8 

1.5.2 Affinity Maturation ............................................................................................10 

1.6 Aim ................................................................................................................................. 13 

2.0 MATERIAL AND METHODS ........................................................................................... 14 

2.1 Generating and Preparing the Structures .................................................................. 14 

2.2 Antibody-Antigen Global Docking ............................................................................. 14 

2.3 Antibody-Antigen Local Docking ............................................................................... 15 

2.4 Computational Alanine Scanning and Affinity Maturation ..................................... 16 

2.5 Molecular Dynamics (MD) Simulation and Molecular Mechanics/ Generalized Born 

Surface Area (MM/GBSA) Calculation ............................................................................ 17 

3.0 RESULTS .............................................................................................................................. 18 

3.1 Workflow of Antibody Design Protocol ..................................................................... 18 

3.1.1 Generating and Preparing the Structures .......................................................20 

3.1.2 Antibody-Antigen Global Docking ...................................................................21 



 vii 

3.1.3 Antibody-Antigen Local Docking .....................................................................22 

3.1.4 Computational Alanine Scanning .....................................................................23 

3.1.5 In silico Affinity Maturation .............................................................................24 

3.2 Antibody D44.1 Redesign ............................................................................................. 25 

3.2.1 D44.1 Structure and Binding Pose Generation ...............................................25 

3.2.2 D44.1 Affinity Maturation .................................................................................28 

3.3 Case Study: Cemiplimab Design Procedure .............................................................. 31 

3.3.1 Generating and Preparing the PD-1 and Cemiplimab Structures ................34 

3.3.2 Cemiplimab-PD-1 Global Docking ...................................................................36 

3.3.3 Cemiplimab-PD-1 Local Docking .....................................................................38 

3.3.4 Computational Alanine Scanning for Cemiplimab .........................................43 

3.3.5 In silico Affinity Maturation for Cemiplimab .................................................44 

4.0 CONCLUSION ..................................................................................................................... 48 

APPENDIX .................................................................................................................................. 51 

BIBLIOGRAPHY ....................................................................................................................... 60 



 viii 

List of Tables 

Appendix Table 1 D44.1 local docking top10 I_sc decoys results .......................................... 51 

Appendix Table 2 Comparison of D44.1 redesign results ....................................................... 52 

Appendix Table 3 Model1 local docking top10 I_sc decoys results........................................ 53 

Appendix Table 4 Model2 local docking top10 I_sc decoys results........................................ 54 

Appendix Table 5 PD-1 antibodies and their sequence aligment with cemiplimab ............. 55 

 

 



 ix 

List of Figures 

Figure 1. An illustration of the antibody structure. ................................................................... 2 

Figure 2. The number of approval antibodies and relative publications each year. .............. 4 

Figure 3. Computational antibody design process. .................................................................... 6 

Figure 4. Predicting possible paratopes from database. ......................................................... 15 

Figure 5. The workflow of the IsAb. ......................................................................................... 19 

Figure 6. The crystal structure of HyHEL-5-lysozyme complex. ........................................... 26 

Figure 7. The I_sc vs Irmsd plot of D44.1-lysozyme local docking. ....................................... 27 

Figure 8. Superimposition of modeling and crystallization D44.1-lysozyme structures. ..... 28 

Figure 9. Boxplot of comparison of three metrics between antibody D44.1 control and design 

groups. .............................................................................................................................. 30 

Figure 10. The crystal structure of PD-1 (extracted from PDB:6jbt). ................................... 32 

Figure 11. Superimposition of PD-1 structures from three PD-1/antibody complexes. ....... 33 

Figure 12. Three crystal structures of pembrolizumab, nivolumab, and toripalimab complex 

with PD-1. ........................................................................................................................ 34 

Figure 13. Three most representative PD-1s structures. ......................................................... 35 

Figure 14. Three possible binding poses generated from global docking. ............................. 37 

Figure 15. The I_sc vs Irmsd plot of models1 and 2 local docking. ........................................ 39 

Figure 16. Detailed hydrogen bonds in cemiplimab/PD-1 complex. ...................................... 41 

Figure 17. Hydrophobic interaction in cemiplimab/PD-1 complex........................................ 42 

Figure 18. Score changing of mutated residues on antibody during affinity maturation. ... 44 



 x 

Figure 19. Comparison of MD simulation results between four point mutations and control 

cemiplimab....................................................................................................................... 46 

Figure 20. Comparison of hydrogen bonds between the control and the design groups. .... 47 

Appendix Figure 1. The script of Rosetta relax. ...................................................................... 57 

Appendix Figure 2. The script of Rosetta alanine scanning. .................................................. 57 

Appendix Figure 3. The script of defining antibody-antigen interface.................................. 58 

Appendix Figure 4. The script of Rosetta affinity maturation. .............................................. 58 

Appendix Figure 5. The script of comparing controlled and designed antibody.................. 58 

Appendix Figure 6. The script of per residue energy analysis. .............................................. 59 

Appendix Figure 7. The script of residue energy breakdown analysis. ................................. 59 

 



 xi 

PREFACE 

I sincerely appreciate my advisor Dr. Zhiwei Feng who is an expert in computer-aided drug 

discovery. During the past two years, I studied in Pharmacometrics and Systems Pharmacology 

track, he taught me many things, from study to life. Dr. Feng hold the group meeting once a week. 

He let the group members discussed their projects and help with each other, which taught me the 

importance of teamwork. Dr. Feng also taught me the usage of the basic software and gave me the 

idea when I was stuck in the research. Most importantly, he always encouraged me and gave me 

lots of chance to show my research in front of the other people, which improved my presentation 

skill and made me more confident. 

Also, I would like to express my thanks to Dr. Xiangqun Xie. As the director of 

Computational Chemical Genomics Screening Center (CCGS), he gave me the direction of my 

research. He always provided some latest findings in the scientific area to give us insight for our 

research. 

Meanwhile, I would like to thank my committee member, Dr. Junmei Wang and Dr. Levent 

Kirisci. Dr. Junmei Wang is an expert in molecular dynamics simulation and force field study. The 

Computational and Systems Pharmacology course he taught gave me a general understanding for 

the software I could use in my research. Dr. Levent Kirisci is the professor in Statistical class. I 

have learnt the basic statistical knowledge and constructed the knowledge system from his class, 

which help me a lot in my later study. 

Besides, I want to express my sincere acknowledgement to all the members in CCGS center. 

Especially Maozi Chen who is a programming expert in our center. He developed MCCS program, 

gave me step by step instruction for the basic software usage, and provided me lots of technical 



 xii 

supports. I also want to thank Dr. Lirong Wang, Dr. Terence McGuire, Dr. Jaden Jun, and Dr. 

Ying Xue, who are the professors in CCGS center. They taught me many new knowledge from the 

other areas and gave lots of useful advice for my research. Also, I would like to thank the support 

and assistance from my peers during my two-year studies. 

Lastly, as an old saying goes “parents will always be your strong support”. My parents 

fully supported me during my master study, from life to study. I hope I can express my emotion to 

them at any moment. Now, I want to say “thank you” for them. 

I offer my best regards for all of those who gave me a hand during my two-year master 

studies! 

       



 1 

1.0 INTRODUCTION 

1.1 Antibody Structure 

Antibodies are Y-shaped proteins produced by B-cells in plasma and play a significant role 

in the immune system. Antibodies can recognize specific pathogens such as viruses and pathogenic 

bacteria, called antigens. Most of the antibodies have the similar structure (Figure 1) that consists 

of two symmetrical light and heavy chains, which are connected by two disulfide bonds. Classified 

by the heavy chains, antibodies can be divided into five different subtypes. The light chains have 

two types as well. Most of the antibodies used in therapy are IgG, especially IgG4 or IgG1. 

Antibodies use their fab region which is located on the two branches of the Y-shaped proteins to 

recognize and bind antigens. The variable regions are the sites inside the Fab region that contribute 

to the antigen-binding function and are located at the N-terminus of each chain. The hypervariable 

amino acid loops within the variable regions are called complementarity determining regions 

(CDR), and it is formed by six loops from heavy chains and light chains (H1, H2, H3, L1, L2, L3). 

Due to the variability of CDR, changes in this region can cause a significant change in specificity 

or affinity for the target, which makes the CDRs a region of interest for antibody engineering. 

Contrary to the variable regions are the constant regions where the amino acid sequences are 

relatively conserved. The base of the Y-shaped protein, called the Fc region, is composed of two 

heavy chains and plays an important role in antibody bioactivity. The Fc region can recognize 

various cell receptors and complement proteins, which is relative to the antibody’s half-life and 

complement-dependent cytotoxicity (CDC). 
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Figure 1. An illustration of the antibody structure. 

The constant regions are in green, the variable regions are in light-yellow, and the disulfide bonds are 

highlighted in yellow. 
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1.2 Antibody Development 

Due to the high affinity as well as specificity to a wide variety of macromolecules, 

antibodies are widely used in the immunotherapy treatments for cancers, autoimmune diseases, 

inflammatory diseases, and drug abuse, for example, combating synthetic opioid intoxication [1] 

and blocking abused drugs [2]. Moreover, antibodies play an important role in fighting infectious 

viruses, especially current SARS-CoV-2 [3]. Antibodies not only can be applied in COVID-19 

testing [4], but also can neutralize the SARS-CoV-2 virus through targeting the spike protein of 

SARS-CoV-2 [3]. Additionally, antibodies have well-established expressing and purifying 

methods that are highly attractive which enable antibodies to be one of the critical agents in therapy 

[5]. Therefore, antibody therapy has attracted more and more attention in the past years. The 

number of approved antibodies has steady risen (Figure 2) and its market becomes larger [6]. 

Researchers have been working on further improvement of the antibody’s properties, such as 

affinity, stability [7], or decreasing the immunogenicity through antibody rational design. Due to 

these factors, the development of novel antibody design techniques is essential. 

1.3 Current Status of Antibody Design 

Antibody design can be classified into redesign and de novo design [8]. Antibody redesign 

means modifying the structure based on a known antibody structure and its sequence. Since the 

process of redesign is based on the existing antibodies, especially FDA-approved antibodies, it is 

easier to modify antibodies properties without causing severe immunogenicity and the antibodies 

can be applied to clinical usage much faster, which can reduce time and cost. Antibody redesign 
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[8] heavily relies on a native protein or an interface and mainly focuses on engineering the surface 

or interior of the antibody-antigen complex to acquire better affinity or stability of the complex [9, 

10]. In vivo affinity maturation is an essential method to get better properties of an antibody, which 

can increase its affinity several-fold by somatic hypermutation (SHM) during an immune response 

[11]. SHM usually occurs in the Complementarity-determining regions (CDR) of the 

immunoglobulin genes and has a rapid mutation rate [12].  

Figure 2. The number of approval antibodies and relative publications each year. 

Publications number data retrieved from the Web of Science through using key word ‘antibody,’ then the 

function ‘Results Analysis.’ Number of approval antibodies data generated from FDA website. The blue bars 

are the number of FDA approval antibodies. The orange bars are the number of publications regarding 

antibodies. 

However, there are still many limitations on antibody empirical rational design. For 

example, using an X-ray to obtain antibody structure and screening the libraries [13] to optimize 
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the antibody affinity is time-consuming and expensive. Random mutagenesis requires a heavy 

workload. Thus, it is essential to apply alternative strategies to aid in antibody design. 

In recent years, computational methods have been used extensively in drug discovery and 

design, which give rise to the field called computer-aided drug design (CADD). CADD has lots of 

advantages, such as cost reduction by decreasing the number of failures and promoting the success 

rate of the test [14]. As a result, CADD is utilized in drugs development, such as CB2-agonist 

complex generation [15] and SARS-CoV-2 drugs exploration [16]. CADD also plays a key role in 

protein drug design by establishing biological databases such as EMBL [17] 

(https://www.ebi.ac.uk/), setting up sequence searching programs such as BLAST [18], 

developing computational modeling analysis programs such as SWISS-MODEL [19] 

(https://swissmodel.expasy.org/), and initiating ligand selectivity program DOCK [20]. Among 

them, artificial intelligence becomes more and more popular in recent years. Its techniques like, 

machine learning, deep learning have been applied in antibodies discovery and design, due to its 

ability to rationalize and actions that have chance of achieving a specific goal. Computational 

techniques generate testable hypotheses to guide experiments or validation by experiments. In this 

case, it is suitable to use computational techniques to assist with antibody rational design, as 

described in the review by Kuroda and co-workers [21] (Figure 3). 

https://www.ebi.ac.uk/
https://swissmodel.expasy.org/
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Figure 3. Computational antibody design process. 

Step 1: 3D homology modeling of antibody and antigen based on their sequences. Step 2: Construction of the 

antibody-antigen complex by molecular docking. Step 3: Validation of the antibody-antigen complex via the 

experiment. 

1.4 The Usage of Computational Antibody Design in Current Diseases 

Computational antibody design with its advantage is applied in many current diseases drug 

development. For the current COVID-19 crisis, Desautels et al. [22] developed a computational-

experimental platform which generated antibody targets to the SARS-CoV-2 receptor binding 

domain (RBD) based on published neutralizing SARS-CoV-1 antibodies. The computational-
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experimental platform combined data-driven (machine learning), theory-driven, and experiment-

driven approaches and leveraged the strength of each approach while minimizing their limitations. 

Desautels et al. used a machine learning module to propose mutations to the SARS-CoV-1 

antibody (M396) and applied FoldX [23] to calculate the binding free energy of mutated antibodies. 

They also performed additional free energy calculations through Rosetta and molecular dynamics 

simulation, and finally selected 20 antibodies. According to the result, the 20 antibodies ranged 

from baseline free energy of -48.1 kcal/mol to -82.0 kcal/mol. The baseline energy of M396 

combined with SARS-CoV-1 was -52.2 kcal/mol. This result suggested that the predicted antibody 

mutants may bind the SARS-CoV-2 RBD. 

To obtain high-efficiency therapeutic antibodies to address acquired immune deficiency 

syndrome (AIDS), Farhadi et al. [24] used computational methods to improve the affinity of 

Ibalizumab, an CD4 antibody targeting HIV-1. They first employed PyMOL to mutate six amino 

acids located on the VH chain of Ibalizumab which contains key residues for interacting with CD4, 

along with other 19 interacting residues. Then, they applied Chimera 1.10 software [25] to prepare 

CD4 and Ibalizumab. Ibalizumab and CD4 docking simulations were performed through ZDOCK 

server while the docking results were evaluated using Hex docking software [26]. They analyzed 

hydrogen bonds using LigPlot tool [27]. Based on the above calculations, they selected seven 

potential mutants among 720 designed antibodies. Five selected antibodies showed higher energy 

of interactions with CD4 and six of them had more H-bonds with CD4 compared to Ibalizumab. 

The computational prediction results suggested that the designed antibodies may have higher 

potential targeting HIV-1. 
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1.5 Common Techniques in Computational Antibody Design 

1.5.1 Antibody Modeling 

Antibody modeling is the key process of antibody design, which uses amino acid sequences 

from the antibodies to predict its structures [28]. With antibody modeling techniques, we can 

rationally modify antibody molecules, for example, redesigning smaller antibody fragments, 

improving their stability or affinity for the antigens [29], and engineering fusion proteins to 

enhance their specificity of the cellular targets [30]. Antibody modeling techniques can also help 

to identify epitopes of the antigen-binding sites. Moreover, this technique gives us a deeper 

understanding of the antibody-antigen recognition mechanism, which is essential in the 

humanization of animal-derived antibodies [31]. As mentioned in the introduction, the variable 

regions are the antigen-binding sites of most antibodies. Therefore, antibody modeling focuses on 

the structure of the variable regions. However, the CDRs inside the variable regions are the core 

challenge for computational antibody modeling due to variability across domains. Despite the high 

sequence variability of CDRs, the “canonical structures” of CDR made up of H1, H2, L1, L2, and 

L3 loops in the main chain structure are very similar [32]. The combined mode of residues which 

determines canonical structures have already been discovered. Hence, the researchers can predict 

the canonical structure accurately by aligning an unknown structure to the known structures in the 

database or base on the sequences alone [33]. The H3 loop is more unique than other loops within 

the main chain structure. The conformation of the H3 loop cannot find a suitable catalog in the 

canonical structure due to its highly variable sequence, length, and structure. For these reasons, 

CDR loops, especially the H3 loop, are the core challenge in antibody modeling. 
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The general method to model immunoglobulin is aligning the unknown sequences of each 

variable domain of antibodies to the known structures. Then, using the template domains of known 

structures to decide the framework regions of each domain. The prediction of the H3 loop could 

be made after examining whether the target sequences are similar to the hypervariable loops. The 

side chain is minimized at the end of the process. Long et al. [34] applied a machine learning 

approach (Gradient Boosting Machine [GBM]) to model the antibody. They applied both the GBM 

method and RosettaAntibody in triplicate 10-fold cross-validation of non-H3 CDR loops modeling 

using data from the cluster annotated antibody database PyIgClassify [35]. Their modeling results 

were compared after applying the methods. According to the result, GBM approach (83.4% ± 

0.11%) had higher accuracy than RosettaAntibody (79.0% ± 0.23%). Also, the GBM method could 

reduce the errors in misclassifications of specific cluster membership. Machine learning 

approaches are becoming increasingly relevant to antibody modeling, providing advantages for 

data integration and simplification of feature selection. 

Several researchers have contributed to the modeling process of the H3 loop.  Zhu et al. 

[36] used program Prime, an ab initio method-based tool, to predict the structure of the H3 loop 

through energy calculations and conformational sampling of the program. They predicted 53 

antibodies’ H3 loop, and 70% of root means square deviation (RMSD) of cases they sampled were 

below 2.0 Å. Kuroda et al. [37] proposed new H3-rules based on the rules proposed by Shirai et 

al., which renewed the signals for base identification and the relationship of total length and base 

forms. Yamashita et al. [38] developed a fully automated web service (Kotai Antibody Builder: 

https://bio.tools/kotai_antibody_builder) based on the new H3-rules and tested 11 antibodies’ H3 

loop. Unlike other web services, Kotai Antibody Builder was able to refine the model by using 

fragment assembly and then performed knowledge-based scorings. The result showed that the 

https://bio.tools/kotai_antibody_builder
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Kotai Antibody Builder was better than other web services like Prediction of ImmunoGlobulin 

Structure (PIGS) (http://www.biocomputing.it/pigs/index_single). Furthermore, the average 

RMSD of Kotai Antibody Builder was the same as the semi-automated predictors and is easier to 

operate. Weitzner et al. [39] used the RosettaAntibody algorithm to predict short (8-10 residues) 

and long (11-14 residues) CDR H3 loops. The result showed that the average RMSDs of short H3 

loops were 1.66 ± 0.96 Å and the long loops were 2.77 ± 1.16 Å, which meant RosettaAntibody 

could produce models with high accuracy. Interestingly, Ruffolo et al. [40] used DeepH3, a deep 

residual neural network, to predict orientations and inter-residue distances of antibodies based on 

the light and heavy chain sequences. In order to differentiate the decoy structures from 

RosettaAntibody, the output of DeepH3 is converted to geometric potential. Ruffolo et al. retrieved 

data from SAbDab as the training dataset and collected data from PylgClassify database as a 

benchmark dataset. The result showed that DeepH3 picked worse-, same-, and better-RMSD 

structure (measured by RMSD from the experimental CDR H3 loop structure) for 6, 13, and 30 of 

49 targets from benchmark dataset, with an average RMSD improvement of 0.40 Å. 

1.5.2 Affinity Maturation 

In vivo antibody affinity maturation is the process that increases antibody affinity by Tfh 

cell (Follicular B helper T cells) activation during an immune response [11]. After repeating 

exposures to the same antigens, the antibody will increase its affinity by somatic hypermutation 

(SHM), which occurs on the surface of germinal center B cells and is selected by Tfh cells. The 

affinity of antibody in the secondary response increases several-fold compared to a primary 

response. SHM usually occurs in the CDR of the immunoglobulin genes which has a rapid 

mutation rate [41]. Although the exact mechanism of the SHM is not clear, the researchers still 

http://www.biocomputing.it/pigs/index_single
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modify the antibodies in vitro using the antibody engineering techniques, such as random 

mutations and phage display. In vitro affinity maturation is based on mutation and selection, and 

aims to optimize antibodies with desirable properties [42]. To improve the success rate of mutation, 

it is essential to identify the configuration of the antibody complexes or the paratopes inside the 

antibodies. Hence, combing computational approaches with display technologies is a wise method 

to enhance the efficiency of mutation [43]. 

Based on the single-chain antibodies (scFvs) 2D10 and its antigen DVFYPYPYASGS, 

Poosarla et al. [44] combined computational framework named Optimal Method for Antibody 

Variable region Engineering (OptMAVEn) [45] (https://github.com/maranasgroup) with 

molecular dynamics (MD) simulation to conduct de novo design of scFvs-2D10. They used MD 

simulation to refine scFvs-2D10 which ensures the stability of the antibody-antigen complex. Later 

in silico affinity maturation is performed to accumulate potent mutations to the refined antibodies. 

Also, interaction energies (IEs) and complex were used as the stability metric to select useful 

mutations. The result showed that three of five mutations (scFvs-1, 2, and 4; Kd=8.9, 14.4, and 

23.8 nM) exhibited a higher binding affinity than the scFvs-2D10 (KD=3,7 nM). The result 

supported the potency of OptMAVEn in silico antibody affinity maturation. Currently, Cannon et 

al. [46] developed a novel computational method with the help of alanine scanning mutations and 

combination with in silico complex to drive in silico affinity maturation when the crystal structure 

of antibody-antigen complex was not available and the wild-type antibody had strong Kd in the 

nanomolar range. The murine protein CCL20 and its binder AB1 acted as an example since they 

had strong Kd in the nanomolar range. Cannon et al. first used Antibody-Builder [47] to generate 

antibody structure and obtained antigen’s nuclear magnetic resonance (NMR) structure from the 

protein data bank. Docking between antigen and antibody was performed by ZDOCK 

https://github.com/maranasgroup
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(http://zdock.umassmed.edu/), and RDOCK [48] was used to refine the result. Subsequently, they 

conducted experimental site-directed mutagenesis and in silico alanine scanning simultaneously. 

The results were combined to identify important residues involved in antibody-antigen binding 

which could refine the docking of the complex. Under the guidance of results gained previously, 

they redocked the antibody to antigen, then transmitted the results to in silico affinity maturation. 

The mutagenesis was performed by three in silico algorithms, Discovery Studio 2016, Schrödinger 

Biologics Suite 2016–3 (https://www.schrodinger.com/glide), and Rosetta separately. They 

integrated the results from three algorithms and obtained 20 potential variants. After the ELISAs 

(enzyme-linked immunosorbent assay) experiment, two of the mutants showed improvement in 

binding dissociation constant when compared with AB1. Cannon et al. also conducted an in vitro 

study which discovered the two mutants with improved Kd property and with a 2-fold and 4-fold 

decrease in IC50. These results suggested that these novel computational methods could improve 

the affinity maturation of antibody design. 

In addition to computational methodology, machine learning methods were also applied to 

improve the antibody affinity. Liu et al. [49] presented a high-capacity machine learning approach, 

named Ens-Grad, which can design CDR of human IgG without the known antigen structure 

through sufficiently modeling the biophysics of antibody-target interaction. Liu et al. used 

ranibizumab as an example and attempted to develop a new CDR-H3 sequence with better affinity 

for ranibizumab. They optimized the antibody sequence by employing a gradient-based 

optimization framework from an ensemble of neural networks in Ens-Grad. The result indicated 

that the sequences designed by machine learning method had equivalent or superior affinity for 

ranibizumab than the candidate from different phage display panning experiments. The best result 

from machine learning method had an EC50 of 0.29nM. 

http://zdock.umassmed.edu/
https://www.schrodinger.com/glide
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1.6 Aim 

Currently, most of the antibody design tools are separately and there are no comprehensive 

antibody design protocols which can give instruction for users from the beginning to the end. It 

requires users to spend a lot of time to figure out a complete workflow of antibody design. Besides, 

there are still some challenges regarding computational methods that need to be addressed. In some 

circumstances, the 3D structures of antibodies are unavailable which limits the binding information 

of an antibody-antigen complex. Another challenge is the flexibility of antigens, some loops may 

be invisible, while others may appear. In addition, most of the antibody design web servers are 

commercial, which means that the users need to pay for the design work. 

Hence, we combined powerful antibody engineering protocols together to propose a free 

in silico antibody design protocol-IsAb to address these challenges and provide detail instruction 

for the users from the beginning to the end. IsAb mainly focus on antibody redesign which 

modifies the antibodies properties based on existing antibodies. Thus, the operation of IsAb can 

facilitate the design of antibodies and potentially accelerate the development process. 

The first step of our protocol is to use RosettaAntibody to solve the problem of unavailable 

3D structures of antibodies. Then, RosettaRelax is applied to minimize the energy of protein 

structures by making the input conformations closer to the bound state and increase the accuracy 

of docking. To address the lack of binding information, the protocol will suggest performing two-

step docking, including the global and local dockings. After acquiring the binding conformation, 

alanine scanning is applied to predict the hotspots (or key residues) of the antibody. Finally, 

computational affinity maturation is conducted to improve the properties of the existing antibody. 

To give step-by-step instruction, we went through this protocol using cemiplimab design as an 

example. 
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2.0 MATERIAL AND METHODS 

2.1 Generating and Preparing the Structures 

3D structures of an antigen or an antibody can be downloaded from the Protein Data Bank 

(https://www.rcsb.org/). Then PyMol can be used to extract the 3D structures of an antigen from 

its antigen-antibody (not the target antibody) complex. For antibodies whose 3D structures were 

unavailable, their Fv sequence was obtained from IMGT (http://www.imgt.org/) and submitted to 

ROSIE (https://rosie.graylab.jhu.edu/) to construct antibody 3D models. The RosettaAntibody 

function [50-54] in ROSIE was used to model the 3D structure of the antibody. For the modeling 

results, we chose the “Grafted-Relaxed-Model” provided by the web server, in which the “Grafted-

Relaxed-Model” was relaxed during the modeling process. For structures of the antigen, we 

applied a Rosetta relax protocol (“relax.static.linuxgccrelease”) for preparations (Appendix 

Figure 1). Finally, we selected the lowest score decoy among the ten output results as the relaxed 

structure. 

2.2 Antibody-Antigen Global Docking 

We submitted the antibody Fv sequence to an antibody paratopes prediction database 

developed by Robin et al. [55] to predict the possible paratopes on the antibody (Figure 4). We 

chose the residues whose ΔΔG was larger than 1kcal/mol as possible paratopes. The global 

docking for an antibody-antigen was performed by ClusPro (https://cluspro.bu.edu/login.php), in 

https://www.rcsb.org/
http://www.imgt.org/
https://rosie.graylab.jhu.edu/
https://cluspro.bu.edu/login.php
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which the “Antibody Mode” in ClusPro [56-61] was selected for antibody docking. In the 

“Attraction and Repulsion” section, we input the possible paratopes predicted by the database 

developed by Robin et al. to the “attraction” box to increase the docking accuracy. 

 

Figure 4. Predicting possible paratopes from database. 

The top figure is the input surface of the database. The figure below is the output result of the database. 

 

2.3 Antibody-Antigen Local Docking 

SnugDock [62] function (https://rosie.graylab.jhu.edu/snug_dock) on ROSIE was used to 

refine the possible binding poses generated from global docking. Then we chose “thorough mode” 

to perform the local docking and accepted the docking result based on whether the local docking 

formed a docking funnel. Once the docking was completed, we picked the lowest I_sc decoy. The 

https://rosie.graylab.jhu.edu/snug_dock
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antibody sequence was compared to other antibodies to discover possible binding poses of the 

antibody-antigen complex. The sequence alignment was performed by EMBL “Clustal Omega” 

server (https://www.ebi.ac.uk/services). 

2.4 Computational Alanine Scanning and Affinity Maturation 

Rosetta alanine scanning protocol (AlaScan.xml, https://github.com/Kortemme-Lab/ddg/) 

was used to predict the possible hotspots (or key residues) on the antibody (Appendix Figure 2). 

The interface cutoff value was 5 Å. We excluded residues with ΔΔG lower than 1 kcal/mol for the 

result.  

The computational affinity maturation was performed by affinity maturation protocol 

generated from Dr. Jens Meiler’s lab website. We first used “define_interface.py” to prepare a 

residue file (resfile) (Appendix Figure 3). Resfile is used to define which interface residues should 

be mutated. Then, we applied affinity maturation protocol (design.xml, 

http://www.meilerlab.org/index.php/rosetta-tutorials) to modify the antibody (Appendix Figure 

4). Next, the scripts in Rosetta common were applied to analyze the results. The script of 

“compare_design_to_control.py” was utilized to analyze different metrics comparisons between 

the control and the design group (Appendix Figure 5). The residue energy breakdown of the 

control and the design group was calculated by the script of “per_residue_energies” and 

“residue_energy_breakdown” (Appendix Figures 6, 7). Lastly, we calculated the residues energy 

changing during the mutation and made the energy changing plot. 

https://www.ebi.ac.uk/services
https://github.com/Kortemme-Lab/ddg/
http://www.meilerlab.org/index.php/rosetta-tutorials
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2.5 Molecular Dynamics (MD) Simulation and Molecular Mechanics/ Generalized Born 

Surface Area (MM/GBSA) Calculation 

Four systems of cemiplimab-PD-1 with mutation at cemiplimab (H: G100A, N101G, 

I102T, and Y103A) were used to perform molecular dynamics (MD) simulation. These systems 

were put in a 0.15M NaCl solution with a cubic water box. The same force fields or parameters 

[63-65] described in our previous publications [66-69] were applied to both the cemiplimab and 

PD-1 receptors and water molecules (TIP3P model). MD simulation was carried out using the 

AMBER18 [70] software package. The MD system was first relaxed by a set of minimizations that 

removed possible steric clashes. There were three phases for the subsequent NPT (constant particle 

number, pressure, and temperature) MD simulations: the relaxation phase (0.2 nanoseconds for 

each temperature from 50 to 250 K at a step of 50 K), the equilibrium phase (5 nanoseconds, 298 

K), and the sampling phase (50 nanoseconds). Integration of the equations of motion was 

conducted at a time step of 1 fs for the relaxation phase and 2 fs for the equilibrium and sampling 

phases. 

100 snapshots were evenly selected from the sampling phase (40-50 ns) for MM/GBSA 

binding free energy decomposition analysis. For each MD snapshot, the molecular mechanical 

(MM) energy (EMM) and the MM/GBSA solvation free energy were calculated without further 

minimization [71, 72]. The interaction energies between each residue and its ligand were 

calculated with the solvent effect being taken into account using a MM/GBSA solvation model 

[73]. 
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3.0 RESULTS 

3.1 Workflow of Antibody Design Protocol 

The proposed procedure of in silico antibody design protocol is described in Figure 5. 

Briefly, the first step is to obtain the structures of both antibody and antigen, which can be 

downloaded from the Protein Data Bank.  Users who already have the antibody’s structures can 

jump directly to the third step. Otherwise, users need to retrieve the antibody sequence from IMGT. 

Step 2, the RosettaAntibody web server is used for antibody modeling. The RosettaAntibody will 

help users generate the antibody structure through its sequence and output a relaxed structure. Step 

3, RosettaRelax protocol is applied to refine the structures of antibody and antigen. RosettaRelax 

uses rosetta force-field to make simple all-atom refinement of structures, driving a starting 

structure towards its native state and improving docking accuracy. Step 4, the antibody is docked 

to the antigen. If the binding information between the antibody and the antigen is available, the 

user can jump to the fifth step. With limited structural information, the antibody and the antigen 

structures can be submitted to ClusPro to perform global docking. The ten most populated clusters 

will be outputted as the results, which give users several possible binding poses of the antibody-

antigen complex. Step 5, based on the global docking results, a local refined docking is carried out 

by SnugDock, which allows flexibility of interfacial side chains and CDR loops. SnugDock refines 

the possible binding poses and outputs the final antibody-antigen complex. Step 6, based on the 

refined antibody-antigen complex, alanine scanning is performed: (1) it first mutates the residues 

on antibody and antigen interface to alanine, then (2) it calculates the residues’ energy change 

during the mutation to find out the hotspots on the antibody, which can facilitate the following 
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antibody design or give insight into future studies. Step 7, antibody affinity maturation protocol is 

applied to design the antibody. Based on the Rosetta scoring function, the antibody affinity 

maturation protocol will lead to a result of the best mutated antibody that has better affinity and 

stability than the original one. All the code (relaxation, alanine scanning, affinity maturation, 

define interface, compare control to design, and residue calculation) used in IsAb protocol was 

modified by us to suit the specific project. 

 

Figure 5. The workflow of the IsAb. 

Generation of the structure from protein data bank and modeling the antibody structure by 

RosettaAntibody. Relaxing antibody and antigen structures and performing two steps docking. Global and 
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local dockings were performed by ClusPro and SnugDock. After generating final binding pose, Rosetta 

alanine scanning was utilized to predict hotspots on the antibody. Finally, in silico affinity maturation was 

used to design the antibody and improve its properties. 

In the following section, we select several key steps to illustrate the detailed procedures in 

our protocol. 

3.1.1 Generating and Preparing the Structures 

Before performing antibody docking, we need to have structures of both antigen and 

antibody. In this step, we can obtain the 3D structure of an antigen from the Protein Data Bank. 

To generate the 3D structure of an antibody, we need to find out its sequence from the IMGT 

database.  

After retrieving the sequence, we used RosettaAntibody to construct the Fv region of the 

antibody. RosettaAntibody models the antibody structure in two main steps. First, the BLAST-

based method is used to search homologous templates for framework regions and CDR loops for 

the input sequences. Then, RosettaAntibody inserts the template CDRs onto template frameworks 

and optimizes side chains of all residues in the model. In the second step, RosettaAntibody 

performs a low-resolution and a high-resolution phase. In the low-resolution phase, the candidate 

conformation of the CDR H3 loop will be found by cyclic coordinate descent and fragment 

assembly [74]. The high-resolution phase will repeatedly optimize and minimize the side chains 

[75]. Also, the orientation of heavy and light chains and backbone torsion angles of CDR will be 

modified. After the second step, it will generate one thousand potential structures. 
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According to experimental results [76] of the protein-protein interaction, the protein-

protein docking always experiences backbone conformational changes to obtain minimum-energy 

conformation in the correct binding site [77, 78]. Therefore, there are several angstroms of root-

mean-square deviation (RMSD) of their bound structures compared with the unbound state (the 

unbound state is easy to access, so users may use the unbound state as input structure in most of 

the time). Moreover, the protein docking accuracy relies on the quality of input structures. The 

closer the starting structure is to the bound state, the higher will be the likelihood of success will 

be [79]. Therefore, we implemented Rosetta relax protocol (FastRelax) [80] to lower the energy 

of the starting structure and made the antibody or antigen structures closer to their native state. 

FastRelax is composed of several rounds of energy minimization in torsion angle space 

and all atoms are repacking while ramping up the van der Waals repulsive weights. This can deal 

with clashes caused by large repulsive forces and avoid the protein unfolding. In the repacking 

step, side-chain conformations are randomly chosen from a rotamers library by Monte Carlo 

simulated annealing run [81]. 

3.1.2 Antibody-Antigen Global Docking 

Before antibody-antigen docking, the binding information of the antibody and antigen is 

essential. The best way to access this information is to perform global docking. Global docking 

assumes a spherically general structure of proteins and rotates the ligand protein around the 

receptor protein. It randomizes the starting position of unbound proteins in every run and outputs 

possible binding poses of the antibody-antigen complex. 

ClusPro is a protein docking server that can conduct the antibody-antigen docking. At the 

beginning of the antibody-antigen docking, a Fast Fourier Transform (FFT) correlation approach 
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[82] based docking program PIPER [83] is used to conduct a rigid-body docking step. During 

rigid-body docking, the antigen moves around the antibody, and their interaction energy is 

calculated by FFTs. These results will provide 1000 lowest energy docked structures. Specifically, 

to address the problem of asymmetry between two sides of the antibody and the antigen interface 

[84], ClusPro integrates ADARS, which is the asymmetric DARS-type [85] potential in the energy 

function of PIPER. After docking, ClusPro calculates the pairwise interface root mean square and 

uses it to cluster retained conformations. Lastly, the CHARMM potential is used to minimize the 

energy of structures by removing the steric crash and to output the structures at the centers of the 

ten most populated clusters [86]. 

3.1.3 Antibody-Antigen Local Docking 

To refine the results from global docking, local docking is performed. RosettaDock [87] is 

one of the best local docking methods, which consists of a Monte Carlo-based multi-scale docking 

algorithm. The algorithm allows both intramolecular and interfacial flexibility in the antibody 

during docking with high accuracy. Built on RosettaDock, SnugDock is a specific algorithm for 

antibody docking, and it incorporates the sampling characteristic of RosettaAntibody. 

SnugDock runs local docking in two stages: a low-resolution stage and a high-resolution 

stage. During the low-resolution stage, SnugDock adds to RosettaDock by additionally perturbing 

and minimizing the CDR H2 and H3 loops. In the high-resolution phase, the algorithm will 

randomly choose one trail among the five in a move set with indicated frequencies. The move set 

is composed of 1,2) rigid body minimization and transformation of VL, VH, or antibody-antigen 

orientation; 3,4) minimization and perturbation of CDR H2 and H3 loops; and 5) gradient-based 

minimization of the CDRs H1, L1, L2, and L3 backbones. Before each minimization and Monte 
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Carlo decoy acceptance decision, the high-resolution stage will pack sidechains. After that, 

SnugDock will sort decoys by interface score and output docked complex. 

To evaluate docking performance and structural accuracy, we followed the measurement 

rules defined by Rosetta and used its metrics [88]. Due to the energetic differences within small 

backbone changes during local docking, it is difficult to capture total energy accurately. Interface 

score (intermolecular energy/I_sc) [89] can provide the best measurement of the structure as the 

metric to analyze the result of local docking. I_rmsd is defined as interface root mean square 

deviation of heavy atoms in the interface residues between the reference structure (input structure) 

and result structure, which describes the atomic accuracy of the interface between the two 

structures. According to the Critical Assessment of Protein Interactions (CAPRI) [90], a decoy 

with I_rmsd<1.0 Å is defined as high quality, 1.0 Å<I_rmsd<2.0 Å is defined as medium quality, 

and 2.0 Å< I_rmsd< 4 Å is defined as acceptable quality. Thus, the decoy with an I_rmsd value 

lower than 4 Å will be referred to as the “near-native” structure, which means that the decoy has 

high structural accuracy. The most robust evaluation of success in a docking result is the presence 

of a “docking funnel”, in which the “near-native” decoy (low I_rmsd) has lower energy (low I_sc) 

than non-native decoys [80]. In this case, we created an “I_sc versus I_rmsd” plot to count the 

number of decoys with an I_rmsd value lower than 4 Å among the top five I_sc (N5) and identified 

a docking simulation which has a docking funnel if it had N5 >=3. 

3.1.4 Computational Alanine Scanning 

To predict energetically important residues [91] in antibody-antigen interfaces, 

computational alanine scanning protocol [92] is a great choice. Alanine scanning protocol 

automatically defines interface residues of the complex and conducts in silico alanine mutations 
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on the interface. After mutation, the protocol uses free energy function to calculate the wild type 

(original complex) and mutated complex’s ΔG energy separately. Then the difference of ΔG 

between wild type and mutated complex is calculated. Finally, the protocol outputs the predicted 

changes in binding free energy (ΔΔGbinding) for all alanine mutations. Since we were under the help 

of alanine scanning protocol developed by Kortemme et al., according to their definition, residues 

whose ΔΔGbinding was greater than 1 kcal/mol could be the hotspots [92]. Their experiments proved 

that the protocol they developed and the criteria they defined were reliable in accurately predicting 

hotspots. Therefore, we followed the ΔΔG definition set up by Kortemme et al. According to the 

classification, hotspots and neutral residues were defined as ΔΔGbinding more or less than 1 kcal/mol 

during the alanine mutation, respectively [93]. 

3.1.5 In silico Affinity Maturation 

Computational antibody affinity maturation protocol can theoretically increase the affinity 

of an antibody to an antigen. First, an in silico affinity maturation method needs to be assigned to 

a mutated site on the antibody-antigen complex. Then, a rotamer library will be used to explore 20 

amino acids at each position [94]. The backbone will experience a small change [95] during 

sidechain sampling. The sampling step will generate different types of mutations, and the 

mutations are scored by the Rosetta score function REF2015 [96]. The output structure decision is 

based on the Metropolis criterion to output the best-mutated structure, which has better affinity 

and stability among other mutations. 

In the following section, to test the reliability of IsAb, we applied it to redesign anti-

lysozyme monoclonal antibody D44.1 and compared our designed results with the previously 

reported data. 
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3.2 Antibody D44.1 Redesign 

3.2.1 D44.1 Structure and Binding Pose Generation 

The D44.1 sequence was generated from the IMGT database (sequence number: 1mlc), 

and the RosettaAntibody function was used to obtain its 3D structure. The RMSD value between 

modeling D44.1 and crystal one (PDB: 1mlc) was 0.342 Å. A lysozyme structure was generated 

from the protein data bank (PDB: 1mlc). After minimizing the lysozyme structure through 

RosettaRelax, D44.1 and lysozyme structures were submitted to ClusPro. The paratopes were 

predicted through the database developed by Robin et al. Combining literature research [97] and 

the Immune Epitope Database (IEDB) epitope prediction result [98], we chose residues 41-51 and 

66-71 of lysozyme as our epitopes. Both possible paratopes and epitopes were entered into ClusPro 

to increase the docking accuracy. After sequence comparison with other lysozyme antibodies, we 

noticed that the D44.1 heavy chain and light chain sequence shared 84.5% and 58.1% similarity 

with HyHEL-5 sequence, respectively. Therefore, we speculated that the binding pose of D44.1-
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lysozyme may be similar to HyHEL-5-lysozyme (Figure 6). We chose the pose that 

 

Figure 6. The crystal structure of HyHEL-5-lysozyme complex. 

The structure is retrieved from PDB 1bql. Light chain colored with cyan, heavy chain colored with green, and 

lysozyme colored with pink. 

was similar to HyHEL-5-lysozyme complex (PDB: 1bql) among the top ten global docking results. 

Then, SnugDock was applied to refine the decoys from global docking. A docking funnel was 

formed in the local docking results, which meant local docking was successful (Figure 7). The 

lowest I_sc decoy among the top 5 I_sc results was picked as the final docking pose of the D44.1-

lysozyme complex. The RMSD value of predicted D44.1-lysozyme and its crystal structure (PDB: 
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1mlc) was 0.967 Å, indicating that the predicted binding pose could be utilized in the later step 

(Figure 8, Appendix Table 1). 

 

Figure 7. The I_sc vs Irmsd plot of D44.1-lysozyme local docking. 

The orange dots are the top10 I_sc decoys. The local docking result of D44.1-lysozyme complex, five decoys 

Irmsd among top10 I_sc are smaller than 4 Å and forms docking funnel. 
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Figure 8. Superimposition of modeling and crystallization D44.1-lysozyme structures. 

The structure in cyan is crystal D44.1-lysozyme (PDB: 1mlc). The structure in green is modeling D44.1-

lysozyme complex. 

3.2.2 D44.1 Affinity Maturation 

Once we got the D44.1-lysozyme structure, we applied Rosetta affinity maturation protocol 

to design the D44.1 and compared the result with Lippow et al.’s works [99]. Lippow et al. had 

proposed 9 potential CDR residues point mutations, and the experiment had proved that 6 of them 

could increase D44.1-lysozyme complex binding affinity. Since IsAb focused on interface residues 

and not all the CDR residues located on the interface, the residues we mutated were little different 
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from Lippow et al. For our results, 5 of the positions we mutated were the same as Lippow et al. 

Among the 5 positions, 3 of them (L: N92A, H: T28D, T31A) have the same mutation with the 

reported data. Within three mutations, T31A has been proved by the experiment that it could not 

enhance binding affinity. In our prediction, N92A and T28D both could lower the total score of 

the complex. Meanwhile, N92A could increase the affinity and stability of the structure (both 

binding density and energy were 1.01 folds lower than the original one), which was the same as 

experimental results. Moreover, N92A was the best mutation validated by the experiment. We 

performed double mutation at positions L: N32, N92. The IsAb affinity maturation result was L: 

N32A, N92A, which had one mutation that was the same as Lippow et al.’s work (N32G, N92A) 

(Appendix Table 2). From Figure 9a, we found that because the score of most design models 

were close to each other, the average score value of the design group was lower than that of the 

control group, indicating that the structure of the design group may be more energetics-favorable 

than that of the control group. The binding density was negatively correlated with binding affinity 

[100]. Based on Figure 9b, we noticed that the average binding density value of the design group 

was lower than that of the controlled, which specified that the designed complex may have better 

binding affinity than the controlled. From Figure 9c, we could see that the average binding energy 

of the control group was higher than that of the design group, which could draw the conclusion 

that the design group had better stability. The outcome that IsAb designed D44.1 had better affinity 

was consistent with previously reported data. The work we have done indicated that the IsAb 

protocol could overlap with better antibody designs and showed the reliability of our protocol. 
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Figure 9. Boxplot of comparison of three metrics between antibody D44.1 control and design groups. 

(a) Comparison of total score between D44.1 control and design groups. (b) Comparison of binding density 

between D44.1 control and design groups. (c) Comparison of binding energy between D44.1 control and 

design groups. 
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3.3 Case Study: Cemiplimab Design Procedure 

Cemiplimab is an FDA proved PD-1 checkpoint inhibitor (Figure 10) used to treat 

cutaneous squamous cell carcinoma (cSCC). However, cemiplimab does not have a published 3D 

crystal or cryo-EM structure. Moreover, the structures of PD-1 resolved in different conditions 

reveal substantial flexibility (Figure 11). According to research, PD-1 C’D, N, and FG loops may 

experience huge changes during interactions with different antibodies. C’D and N loop are too 

flexible to be resolved. For example, when binding with pembrolizumab [101] (Figure 12a), the 

PD-1 N loop is missing, and the C’D loop dominantly affects the binding affinity of the complex. 

However, when binding with nivolumab [102] (Figure 12b), the C’D loop becomes invisible, and 

N loop dominates the binding affinity with nivolumab. The C’D and N loops are both invisible 

when binding with toripalimab [103] (Figure 12c). On the other hand, most literature about 

cemiplimab focuses on clinical data, which means that the interaction information is limited. 

Therefore, the cemiplimab example is under the extreme situation where the antibody has no 

structure and no binding information. 
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Figure 10. The crystal structure of PD-1 (extracted from PDB:6jbt). 

The colored loops are the important loops on PD-1. N loop marked as red, FG loop marked as cyan, BC loop 

marked as yellow, C’D loop marked as purple. 
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Figure 11. Superimposition of PD-1 structures from three PD-1/antibody complexes. 

(a) PD-1/toripalimab (purple), PD-1/pembrolizumab (cyan), and PD-1/nivolumab (green). When binding 

to different antibodies, some PD-1 C’D and N loops are invisible. (b) Comparison of the PD-1 FG 

loop from the complex structures. The PD-1 FG loop shifts 8.6 Å on the binding to toripalimab, 

pembrolizumab, or nivolumab. 
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Figure 12. Three crystal structures of pembrolizumab, nivolumab, and toripalimab complex with PD-1. 

Light chain colored with cyan, heavy chain colored with green, and PD-1 colored with pink. (a) Crystal 

structure of pembrolizumab/PD-1 complex. (b) Crystal structure of nivolumab/PD-1 complex. (c) Crystal 

structure of toripalimab/PD-1 complex. 

3.3.1 Generating and Preparing the PD-1 and Cemiplimab Structures 

For the construction of the cemiplimab-PD1 complex, there is not much information about 

the binding between cemiplimab and PD-1. First, we collected the crystal structures of PD-1-

antibody complex from the protein data bank and generated three representative PD-1 structures, 

named PD1v1, PD1v2, and PD1v4 (Figure 13), by extracting the structures from their complexes 

(PDB: 5wt9, 5ggs, and 6jbt). We then docked these three PD-1s to cemiplimab, respectively. 

Taken docking convenience and mechanism of antigen-antibody binding into consideration, we 

used the antibody Fv region to dock with PD-1s. PyMol was used to extract the crystal structure 

of PD-1 from its complex. Cemiplimab’s Fv sequence was obtained from IMGT and submitted to 

ROSIE. The RosettaAntibody function was used to model the 3D structure of cemiplimab. For the 

modeling results, we chose the “Grafted-Relaxed-Model” provided by the web server, in which 
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the “Grafted-Relaxed-Model” was relaxed during the modeling process. We applied Rosetta relax 

protocol (“relax.static.linuxgccrelease”) for the preparation of the antigen structure. We selected 

the lowest score decoy among the ten output results as the relaxed structure. 

 

Figure 13. Three most representative PD-1s structures. 

(a) PD1v1 structure was extracted from PD-1/nivolumab complex. (b) PD1v2 structure was extracted from 

PD-1/pembrolizumab complex. (c) PD1v4 structure was extracted from PD-1/toripalimab complex. RMSD 

value between PD1v1 and PD1v2 is 0.445 Å. RMSD value between PD1v1 and PD1v4 is 0.395 Å. RMSD value 

between PD1v2 and PD1v4 is 0.393 Å. 

If the crystal structures of proteins are available, the web server can directly relax the 

crystal structure and skip the modeling step. In some situations, antigens like PD-1 experience 

huge changes during the interaction with antibodies (structure missing or appearing). In this case, 

users can do the literature search to conclude the representative structure types of the antigen, then 

input these structures to docking, and determine the conformation by analyzing the results in later 

steps. For convenience, we carried out the modeling and docking by the web server in this case 

study. The RosettaAntibody and SnugDock functions can also be conducted on Rosetta software. 
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If Rosetta software is used, it can implement an ensemble of the ten lowest-scoring structures 

obtained from antibody modeling as the input. For protein relaxation, KIC protocol [104] or 

molecular dynamic (MD) simulation [105] is also an alteration method. Except Rosetta, there are 

some other databases that can provide antibodies information like sequence and structure data or 

help users to model a 3D structure of antibodies. For example, the abYsis [106] and abYbank [107] 

functions in Antibodies database can provide antibodies information for the users and help them 

to analyze the sequence information. At the same time, users can use abYmod function in the 

database to generate an accurate 3D structure of antibodies. The other powerful database is 

SAbDab [108, 109] which contains antibodies data and modeling function. All these databases can 

help the user to obtain basic resources of antibodies engineering. 

3.3.2 Cemiplimab-PD-1 Global Docking 

Since there is no experimental data for Cemiplimab-PD-1 complex, we first used global 

docking to generate the epitopes information and possible binding poses. To increase the accuracy 

of global docking, we submitted cemiplimab sequence into the paratopes prediction database 

developed by Robin et al. [55] to predict the possible paratopes on the antibody. From the results 

shown in the paratope prediction database, we chose the residues whose energy contribution was 

larger than 1kcal/mol as possible paratopes. Then, we input three possible PD-1s structures and 

predicted paratopes in ClusPro to perform global docking. The three criteria from the literature 

concluded that the PD-1 FG loop would form hydrogen bonds with antibodies, the C’D or N loop 

would form hydrogen bonds with antibodies when they appeared, and the antibodies structure 

would not experience a significantly change during docking. Following these criteria, we selected 

possible binding poses from the top 10 score decoys. Each docking trait will select one possible 
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binding pose as the local docking input. A total of three results were selected and named as 

models1, 2, and 3 (Figure 14), respectively. 

 

Figure 14. Three possible binding poses generated from global docking. 

(a) Model1 is from PD1v1 structure docking result. (b) Model2 is from PD1v2 structure docking result. 

(c) Model3 is from PD1v4 structure docking result. 

Global docking is used when binding information of the antibody-antigen is not clear. If 

the paratopes and the epitopes are already known, the starting pose for local docking can be built 

by PyMol. The information of paratopes and epitopes can be acquired from experiments, such as 

point mutation, epitopes mapping, and alanine scanning. For virtual methods, Parapred [110], 

Antibody i-patch [111], the webservers like Immune Epitope Database and Analysis Resources 

(IEDB), and Robetta [112] are available methods to predict paratopes and epitopes. Although the 
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information of paratopes and epitopes is not essential for global docking, and global docking can 

be performed without this information, it can improve the docking accuracy if provided in the 

docking process. The more accurate the prediction of paratopes and epitopes is, the better-quality 

the local docking starting conformation will have. In the cemiplimab case, instead of only relying 

on the docking score, we used the criteria concluded from the literature to filter global docking 

results, which was more precise in picking the right conformation for the complex. The screening 

criteria can be obtained from the reporting experiments such as key residues. The binding rules of 

an antibody-antigen complex can be obtained by comparing the binding structure of the antigen 

with different antibodies if there is no experimental data available. In some situations, the antigen 

may be a novel one and does not have an existing antibody. In this case, we suggest users choose 

the top rank complex as the global docking result. 

3.3.3 Cemiplimab-PD-1 Local Docking 

To refine the results from global docking, the SnugDock function in ROSIE web server 

was used to conduct local docking. The criteria to accept the docking result was that local docking 

formed a docking funnel (N5 >3). If the docking was successful and the lowest I_sc decoy met the 

three criteria mentioned in the global docking step, then the lowest I_sc decoy will be the final 

local docking result. Following these rules, models1 and 2 both had three decoys among the five 

top I_sc decoys that were better than acceptable quality (Figure 15a, b). However, N5 of model3 

was smaller than three, meaning that the local docking of model3 failed. To sum up, local dockings 

of models1 and 2 were successful, and we filtered one possible binding pose from the results of 

models1 and 2, respectively (Appendix Tables 3, 4). 
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Figure 15. The I_sc vs Irmsd plot of models1 and 2 local docking. 
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The orange dots are the top10 I_sc decoys. (a) The local docking result of model1, seven decoys Irmsd among 

top10 I_sc are smaller than 4 Å and forms docking funnel. (b) The local docking result of model2, eight 

decoys Irmsd among top10 I_sc are smaller than 4 Å and forms docking funnel. 

We compared the sequence of cemiplimab with published PD-1 antibodies structure. The 

result showed that the sequence of cemiplimab shared a high similarity to nivolumab (PDB: 5wt9), 

including 64% similarity on light chain and 76% similarity on heavy chain, especially its HCDR3 

which shared a higher sequence similarity than with the other PD-1 antibodies (Appendix Table 

5). According to the report, heavy chain has a higher binding frequency and contributes higher 

energy to the binding with antigen [55]. Model1 binding pose was similar with nivolumab-PD-1 

binding pose. Therefore, we chose Model1 as our final binding pose.  

Structural analysis revealed that PD-1 BC, N, FG, DE loops were involved in the 

interaction with cemiplimab. The complex interface included 9 hydrogen bonds. Unlike binding 

to nivolumab, PD-1 N loop did not act as a dominating role in binding with cemiplimab. Instead, 

the BC loop contributed lots of hydrogen bonds in the interaction with cemiplimab (3 out of 9). 

The residues of the BC loop (N58, T59, S60) formed three hydrogen bonds with cemiplimab 

HCDR1 (N31) and HCDR3 (N101) (Figure 16). Although the N loop did not act as a dominant 

role in binding, it still contributed many hydrogen bonds (3 out of 9). One residues of N loop (R30) 

formed three hydrogen bonds with heavy chain (CDR2 D57, and framework region Y59) (Figure 

16). Figure 16 shows that heavy chain N31 and N101 formed two hydrogen bonds with PD-1, 

respectively. From the calculation of each residue energy contribution, we knew that the residues 

Y59, D57, and N31 from heavy chain made a large energy contribution (-3.697 kcal/mol, -2.721 

kcal/mol, -2.118 kcal/mol) to the cemiplimab-PD-1 complex. Also, the hydrogen bonds between 

Y59, D57, N31 on cemiplimab and R30, N58/N102 on PD-1 were strong, with a distance of 2.6 



 41 

Å, 2.9/3.0 Å, and 3.4/3.0 Å, respectively. In addition, PD-1 FG and DE loops contributed to the 

remaining hydrogen bonds. FG loop (S127) formed one hydrogen bond with HCDR3 (N101), and 

DE loop formed two hydrogen bonds with HCDR1 (N31, T28). On the other hand, P28 on N loop 

and R104 on BC loop made strong hydrophobic interactions (-1.946 kcal/mol and -2.152 kcal/mol) 

with LCDR3 and HCDR1 (Figure 17). 

 

Figure 16. Detailed hydrogen bonds in cemiplimab/PD-1 complex. 

Red dash line is hydrogen bond. The square frames show the detailed interactions between N, BC loops and 

cemiplimab. 
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Figure 17. Hydrophobic interaction in cemiplimab/PD-1 complex. 

Blue dash line is hydrophobic interaction (C-C). The distances between PD-1 P28/LCDR N93 and PD-1 

R104/HCDR N31 are short. 

There are several sources that can be used as inputs for local docking, such as the crystal 

structure of proteins, the ensemble of the ten lowest scores of RosettaAntibody homology models, 

or the Web Antibody Modeling (WAM) model [113]. The crystal structure may be the best one as 
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an input among these sources. No matter what methods are used to get the input structure, the 

closer the input structure is to the native one, the better the docking result is expected. For docking 

result filtering in the cemiplimab example, sequence alignment assisted in the prediction of 

possible final binding poses of the complex. Under some situations, there may be various types of 

docking results (the antigen binds to different locations on antibodies, or the antigen binds to the 

same location with different binding poses). In this case, the sequence alignment may be a choice 

to determine the final pose. The target antibody interaction pose may be similar to other antibodies 

that share high similarity in sequence. Besides, as we mentioned previously, the heavy chain plays 

an important role in an antibody-antigen interaction. So, we suggest that sequence similarity of 

heavy chain can be the priority during the sequence alignment, especially the alignment in the 

CDR region. 

3.3.4 Computational Alanine Scanning for Cemiplimab 

Computational alanine scanning was used to predict hotspots on cemiplimab/PD-1 

interface. The interface cutoff value was defined as 5 Å. After alanine scanning, we obtained 

ΔΔGbinding of several interface residues. According to the classification, hotspots and neutral 

residues were defined as ΔΔGbinding more or less than 1 kcal/mol during the alanine mutation, 

respectively [93]. Therefore, we found two hotspots, ASN101 and ILE102, located on HCDR3, 

and their ΔΔGbinding were 1.799 and 1.552 kcal/mol, respectively. Mutation to Ala made N101 lose 

two hydrogen bonds, which may be responsible for the large binding energy change. On the 

contrary, I102 did not form any hydrogen bond with PD-1 but still accounted for the great change 

of the energy. This means I102 may have contributed to the stability of the complex. 
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3.3.5 In silico Affinity Maturation for Cemiplimab 

Based on the knowledge of hotspots on cemiplimab, the in silico mutation was performed 

by following the protocol of antibody affinity maturation. We first tried to mutate the interface 

residues to 20 proteinogenic amino acids. 17 residues on the cemiplimab had been mutated, 

including 11 from the heavy chain and 6 from the light chain. To view the results clearly, we 

calculated the score changing of mutated residues. Figure 18 shows that the mutations of Y103A, 

I102T, G100D, and F27S had the highest changes of each residue score among the heavy chain.

 

Figure 18. Score changing of mutated residues on antibody during affinity maturation. 
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(a) The score changing of mutated residues on cemiplimab heavy chain. (b) The score changing of mutated 

residues on cemiplimab light chain. 

On the other hand, the mutations of N93Y and F32K had the highest changes of per residue score 

on the light chain. Interestingly, most of the mutation residues were located on the 

complementarity determining region of cemiplimab. This result was consistent with the 

phenomenon that major mutagenesis during in vivo somatic hypermutation mainly accumulates in 

the CDR and the framework regions [114]. We chose residues that had the highest score changing 

to perform the point mutation. Because the HCDR3 region played an important role in binding, 

the residues on H3 formed major hydrogen bonds, and their energy changing was high, we decided 

to perform point mutation for residues H: Y103, I102, N101, and G100. The residues were mutated 

on H chain at cemiplimab: G100A, N101G, I102T, and Y103A, and the results predicted by our 

protocol showed that both mutations had a better total score, binding affinity, and stability than 

the original one. To validate these predictions, we conducted the molecular dynamics (MD) 

simulation and the MM/GBSA calculations for these four mutations. The RMSD of MD simulation 

result was 2.8 Å. Figure 19 shows that three mutations including G100A (total binding energy: -

173.29 kcal/mol), N101G (total binding energy: -197.49 kcal/mol), and Y103A (total binding 

energy: -195.27 kcal/mol), improved the binding energy of cemiplimab (total binding energy: -

159.68 kcal/mol), while I102T (total binding energy: -97.15 kcal/mol) decreased the total binding 

energy of cemiplimab. Interestingly, our results showed that these three systems had better 
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electrostatic properties than that of the original cemiplimab. 

 

Figure 19. Comparison of MD simulation results between four point mutations and control cemiplimab. 

The binding energy (ΔG) and other energy terms are compared between four point mutations G100A 

(purple), N101G (cyan), I102T (light yellow), Y103A (green), and control (pink). 

For the N101G and Y103A, their thermodynamic and van der Waals energy were lower than that 

of the control group. But G100A had higher conformational entropy change and van der Waals 

energy than that of the controlled, which meant G100A mutation allowed cemiplimab to form 

strong van der Waals interaction with PD-1. From the structural analysis, we found that the N101G 
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mutation lost two hydrogen bonds (Figure 20). The overlap of IsAb prediction result from the MD 

simulation proved that our protocol was reliable. 

 

Figure 20. Comparison of hydrogen bonds between the control and the design groups. 

Red dash line is hydrogen bond. The hydrogen bonds mainly change in mutation N101G. 

 

  



 48 

4.0 CONCLUSION 

In the present work, we developed an in silico antibody design protocol, IsAb. The protocol 

first used RosettaAntibody to model the 3D structure of antibodies. Then, global docking was used 

to generate the possible binding poses when lacking binding information. Subsequently, 

SnugDock was applied to refine the antibody-antigen complex and generate a final binding pose. 

In addition, alanine scanning was used to predict the hotspots on the antibody, which will facilitate 

affinity maturation and future study. Finally, computational affinity maturation was used to 

improve affinity and stability of the antibody.  

To validate our protocol, we applied IsAb to redesign antibody D44.1 and compared the 

prediction result with reported data. According to the comparison, IsAb could overlap the better 

designs with experimental data, which increased the reliability of IsAb. 

In the cemiplimab design case study, we used RosettaAntibody to generate the 3D structure 

of cemiplimab. Due to the lack of binding information of the cemiplimab-PD-1 complex, two steps 

docking was applied to predict possible binding poses of the complex. With the binding pose, 

alanine scanning was used to predict the hotspots on the antibody. Based on the prediction hotspots, 

we conducted in silico affinity maturation to modify the antibody. According to our prediction and 

MD simulation results, the designed cemiplimab theoretically had better affinity and stability than 

the original one. Thus, IsAb protocol like other computational tools including our Virus-CKB [16] 

and MCCS [115] algorithms may be used to redesign FDA-approved antiviral antibodies for the 

potential treatment of COVID-19.  

In comparing with other software programs that were reported to design antibodies, IsAb 

has its advantage. For example, OptMAVEn-2.0 developed by Chowdhury et al. [116] is a de novo 
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design of antibody variable regions. They obtained six antibody parts from the Modular Antibody 

Parts (MAPs) database to create framework antibody and cluster a set of MAPs parts with an 

antigen position that will not cause steric clash with the framework antibody. Then, they output 

the lowest interaction energy in each cluster as the results. Two subsequent software in the 

antibody design area were Rosetta Antibody Design (RAbD) by Adolf-Bryfogle et al. [117] and 

AbDesign by Lapidoth et al. [118] These two methods are similar, they both cluster antibodies 

sequence and structural fragments. At the same time, they applied Rosetta to implement docking, 

repacked the sidechain to optimize the structure of the antibody-antigen complex, and built new 

antibodies that have new backbones and sequences. However, AbDesign and RAbD both require 

existing antibody-antigen complexes. In most of the cases, the antibody-antigen complex may not 

be available, which limits the usage of these software. IsAb provides solutions to common 

problems during antibody design, such as the unavailability of a 3D structure of antibodies or 

binding information. Different from previous methods, IsAb focuses on antibody redesign that 

mainly optimizes the antibody sequence. Since the whole antibody structure does not change 

significantly, it is less likely for the designed antibodies to cause immunogenicity, which they can 

be progressed to clinical trial faster.  In addition, unlike other protocols, IsAb provides a 

comprehensive tutorial for the antibody design from the beginning to the end, gives future insight 

for the antibody engineering, and allows the users from other research areas to easily use it to 

facilitate their research. 

However, our protocol cannot automatically conduct antibody design, and the affinity 

maturation protocol can be improved to solve the problem of trade-off between affinity and 

stability in a better way. In the future, we will address these challenges and refine our protocol. 
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We also want to integrate the antibodies data and IsAb protocol to create a one-stop webserver and 

design antibodies automatically for the input antigens. 
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APPENDIX 

Appendix Table 1 D44.1 local docking top10 I_sc decoys results 

No. Irmsd I_sc 

1 3.002 -9.1 

2 5.688 -8.87 

3 4.895 -8.666 

4 3.974 -8.529 

5 2.44 -8.286 

6 8.999 -8.176 

7 8.56 -7.983 

8 2.691 -7.952 

9 3.998 -7.89 

10 5.731 -7.832 
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Appendix Table 2 Comparison of D44.1 redesign results 

 IsAb Lippow et al. 

Single point mutation 
H: T28D T31A S57L 

L: N32A N92A 

H: T28D T31A/V S57V/A T58D K65D 

L: N32G N92A 

Double combination mutation (L32)A (L92)A (L32)G (L92)A 
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Appendix Table 3 Model1 local docking top10 I_sc decoys results 

No. Irmsd I_sc 

1 13.202 -7.704 

2 2.843 -7.506 

3 0.921 -6.884 

4 5.735 -6.861 

5 2.292 -6.696 

6 3.079 -6.648 

7 3.917 -6.638 

8 2.738 -6.628 

9 1.579 -6.558 

10 10.627 -6.551 
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Appendix Table 4 Model2 local docking top10 I_sc decoys results 

No. Irmsd I_sc 

1 1.279 -9.359 

2 1.459 -9.154 

3 10.944 -8.207 

4 2.364 -7.852 

5 13.57 -7.727 

6 1.38 -7.616 

7 1.446 -7.576 

8 1.229 -7.51 

9 1.578 -7.488 

10 2.165 -7.401 
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Appendix Table 5 PD-1 antibodies and their sequence aligment with cemiplimab 

Antibody name PDB ID Structure 

Light chain 

similarity with 

Cemiplimab 

Heavy chain 

similarity with 

Cemiplimab 

GY 14 6J14 

 

56% 47% 

GY 15 6J15 

 

56% 48% 

Tislelizumab 7BXA 

 

56% 52% 

mAb059c 6K0Y 

 

74% 53% 

MW11-h317 6JJP 

 

57% 77% 
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Nivolumab 5WT9 

 

64% 76% 

Pembrolizumab 5GGS 

 

63% 52% 

Toripalimab 6JBT 

 

56% 51% 
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Appendix Figure 1. The script of Rosetta relax. 

 

 

 

 

Appendix Figure 2. The script of Rosetta alanine scanning. 
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Appendix Figure 3. The script of defining antibody-antigen interface. 

 

 

 

 

Appendix Figure 4. The script of Rosetta affinity maturation. 

 

 

 

 

Appendix Figure 5. The script of comparing controlled and designed antibody. 
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Appendix Figure 6. The script of per residue energy analysis. 

 

 

 

 

Appendix Figure 7. The script of residue energy breakdown analysis. 
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