
How oscillations persist through chains of excitable cells and in large

noise-driven excitable systems

by

Derek Orr

B.S. Mathematics, University of Pittsburgh, 2016

B.S. Physics, University of Pittsburgh, 2016

M.S. Mathematics, University of Pittsburgh, 2019

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021



UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Derek Orr

It was defended on

March 16, 2021

and approved by

Dr. Bard Ermentrout, Mathematics, University of Pittsburgh

Dr. Jonathan Rubin, Mathematics, University of Pittsburgh

Dr. David Swigon, Mathematics, University of Pittsburgh

Dr. Hanna Salman, Physics, University of Pittsburgh

ii



Copyright © by Derek Orr

2021

iii



How oscillations persist through chains of excitable cells and in large

noise-driven excitable systems

Derek Orr, PhD

University of Pittsburgh, 2021

Our goal is to understand how excitable cells and oscillatory cells interact with each other

and, ultimately, decide if excitable cells can generate macroscopic oscillations that persist in

these networks. We begin by studying a one-dimensional chain model of this: oscillatory cells

coupled indirectly with excitable cells in between. We have three main systems: OE, OEO,

and OEEO. We show that with the right coupling strength, one can get the two oscillators on

the ends to synchronize (or not synchronize) and the system exhibits m:n locking patterns.

In our second project, we remove the chain constraint and focus on just all-to-all coupled

excitable cells. However, these will not create oscillations alone so we added noise to these

cells so the cells can oscillate randomly in the network. We perform mean-field theory (MFT)

methods on this system and chose Gaussian white noise as well as different heterogeneous

noise distributions. We find that macroscopic oscillations can occur as long as one has the

right set of parameters, the right noise distribution, and/or the right coupling function.

In the final project, we combine the first two projects: we take the noisy excitable cells,

which we know can create oscillations, and we couple each cell to a single oscillator. When

the noise level is zero, this is equivalent to one oscillator and one excitable cell coupled to

each other (our OE model from the first project). Hence, we find m:n locking patterns again.

This last project investigates how large the noise level can become before the m:n locking

patterns become unstable. We notice that using heterogeneous noise allows for the noise

threshold to be larger than when using Gaussian noise.
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1.0 Introduction

We will focus on two types of cells, excitable cells and oscillatory cells or oscillators. Cells,

for our purpose, transfer voltage to other cells to which it is connected. This is referred to

as firing. Coupled oscillators synchronizing, meaning they transfer voltage simultaneously

to each other, is an important and much studied phenomenon. In many analyses of coupled

oscillators, each element is a limit cycle oscillator and techniques such as weak coupling are

applied to study them. However, many systems, such as neurons, have conditional oscillators;

that is, they transfer voltage only when given enough drive.

For an excitable cell, imagine the strength game at your local carnival. Someone is

stepping up, grabs the hammer and hits the base of the strength-o-meter. Nothing happens.

This person does not give enough of an input to cause the bell at the top to ring. Someone

else, perhaps a lot stronger, is up next and they whack the hammer on the base and that

input causes the bell to ring. This input was large enough to cause an output to occur, the

ringing of the bell. Of course, this analogy is not perfect; we must imagine that it takes a

long time for the metal ball to return back to the bottom of the strength-o-meter. So, if

someone else comes and hits the base with the hammer while the ball is still coming down,

nothing will happen no matter how strong they are. This entire process is very similar to

an excitable cell firing. In more mathematical terms, the excitable cell has a unique globally

attracting equilibrium point (the base of the strength-o-meter), but with a sufficiently large

perturbation, it can fire once (bell ringing) before returning to the stable equilibrium. If

the excitable cell keeps receiving input, the cell could fire rhythmically (bell rings every few

seconds). The dynamics of oscillators coupled indirectly via excitable systems remains an

open problem. For example, in the early stages of aggregation of cellular slime molds, each

cell is excitable, but some of the cells become oscillatory and the result is an oscillatory

system that induces the organism to ultimately organize into a slug (see [1]). Within the

smooth muscle of the intestine are a small number of spontaneously active cells (interstitial

cells of Cajal) that are coupled and organized to form waves through the intervening non-

oscillatory cells (see [2, 3]). Interactions between oscillatory and non-oscillatory glial cells
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are thought to underlie synchronization for circadian rhythms (see [4]).

This problem has been studied in the context of all-to-all coupling where each element

is connected to all the other elements. For example, in [5] they couple two populations

of Stuart-Landau equations where one of the populations has a stable equilibrium and the

other is oscillatory and analyze the ensemble dynamics as the relative numbers of active and

inactive elements varies. Similarly, in [6] the authors analyze sinusoidally coupled mixtures

of oscillators and excitable cells where each cell is represented as a scalar phase model. Like

[7], they study the onset of collective synchrony as the ratio of oscillators changes. Others

have used the so-called Ott-Antonsen reduction to study collective dynamics of mixtures of

oscillatory and excitable elements (see [8, 9, 10]).

The previous work on this problem relies on the fact that all elements are globally coupled

to each other. On the other hand, the biological examples we have described are much more

locally coupled; this is the scenario that we focus on in the beginning of this dissertation.

Synchrony between two neurons coupled via passive dendrites has been studied in [11].

Others have broadened this to include “quasi-active" dendrites, though it is still a linear

theory (see [12, 13]). As an initial attempt to understand interactions between oscillators

and excitable systems, we are interested in describing the dynamics between two oscillatory

cells distributed in a simple chain with intervening excitable cells between them. We will

use a one-dimensional model for both the excitable and the oscillatory cells and then show

that similar phenomena hold in more realistic neural models.

There are two broad types of excitability [14]: Class II which occurs for a system near a

sub-critical Hopf bifurcation and Class I, which occurs when there is a saddle-node infinite

cycle (SNIC) bifurcation. The latter type of excitability lends itself to simple one-dimensional

dynamics on a circle [15, 16], thus this will be the type of excitability we will consider in this

dissertation. The simplest version of this excitability takes the form

dy

dt
= 1− b cos(y) =: f(y) (1)

where b ≥ 0 is a parameter and y ∈ [0, 2π) lies on the circle. When b > 1, then (1)

has two equilibria y± = ± arccos(1/b), with y− (“rest state”) asymptotically stable and y+

(“threshold”) unstable. Any initial data y(0) > y+ will traverse the circle before returning to

2



rest
threshold

spiking, firing

refractory

excitable oscillatory

Figure 1: Schematic of an oscillator and an excitable cell. The excitable cell has a threshold

value that must be crossed in order for the cell to fire, whereas the oscillatory cell does not.

rest (the cell will fire). As b decreases to bSN = 1, the two roots merge and then for b < 1,

dy/dt > 0 always and it acts like an oscillator with varying frequency. Henceforth, we will

model the excitable cells by (1) with b > 1. Oscillators are modeled as the simple phase

dynamics,
dx

dt
= ω

where ω > 0 is a natural constant frequency. As with the excitable system, x ∈ [0, 2π)

and lies on the circle. See Figure 1 for a schematic diagram. These cells will have coupling

strengths between them and therefore, it is important to highlight our main model in the first

project, which is two excitable cells linking two oscillatory cells together. Figure 2 shows the

diagram of the coupling between them. This figure will give an idea as to what cee, ceo, and

coe mean throughout the rest of the chapters. Our goal for the first project is to understand

the dynamics of these systems and look at m:n locking regions, where the excitable cell will

fire m times for every n times the oscillator fires.

We can also achieve oscillations with noise-driven excitable cells. Sakaguchi [25] was

among the first to observe that noise plus coupling can induce oscillations in excitable systems

where they performed a bifurcation analysis of a Fourier mode expansion of the associated

Fokker-Planck equation. Neiman and collaborators have further analyzed the underlying

dynamics of this behavior [26, 28, 32, 33] while separation of time scales has also been a

3



Figure 2: Schematic of our main model in the first project: the OEEO system. The param-

eters cee, ceo, and coe represent the coupling strengths shown in the figure.

fruitful approach to this phenomena [29, 31, 34, 35]. Later, we will use a mean-field theory

(MFT) approach to study the effects of heterogeneity in the excitability as well as Gaussian

noise on the emergence of macroscopic oscillations. This approach analyzes the average

response over a globally coupled system rather than each individual oscillator and greatly

reduces the dimensionality, making it attractive for analysis. MFT has a wide variety of

applications to the dynamics of large globally coupled biological and physical systems (see

[25, 33, 35, 36, 37]). We use the technique developed by Ott and Antonsen [38] which

further simplifies the mean-field continuity equations. Their approach has been dubbed the

“Ott-Antonsen ansatz” and it is a very important tool for studying phase oscillations (see

[39, 8, 40, 41]). Our last project extends this one and involves coupling one oscillator to the

system of noisy excitable cells and investigating the m:n locking regimes again and how they

change with the noise level of the excitable cells. We conclude this introductory chapter with

an in-depth outline of this dissertation.

In this dissertation, our goal is to understand how excitable cells and oscillatory cells

interact with each other and, ultimately, decide if excitable cells can generate oscillations

that persist in these networks. We begin by studying a simple oscillatory cell coupled to a

4



simple excitable cell, as stated before, with sinusoidal coupling using a scalar phase model for

each cell. We show that this excitable cell indeed oscillates when connected to the oscillatory

cell and the system exhibits m:n locking patterns depending on the coupling strength. Later,

we move on to two oscillators coupled to the excitable cell but not to each other and after,

we have two excitable cells in between the two oscillatory cells like a chain: OEEO. The

results suggest that with the right amount of coupling strength between these cells, the two

oscillators can be synchronous with each other. We also look into the heterogeneity of the

oscillator frequencies as well as some weak coupling analysis. At the end, we look towards

an infinite chain of excitable cells with an oscillator on each end and we relate our OEEO

system with a Morris-Lecar model.

In our second project, we want to find out if excitable cells can create oscillations without

oscillatory cells being connected to them. Of course, this cannot happen with purely excitable

cells so we consider noisy excitable cells: cells that are, on average, excitable but they can

become oscillatory randomly due to the noise driving them. Instead of a chain, we give them

all-to-all coupling and we have an arbitrarily large number N of excitable cells. This allows

us to perform mean-field theory (MFT) on this system which will help us study this system

as N tends to infinity. We begin with standard Gaussian white noise, dependent on time.

Using the nonlinear Fokker-Planck equation, one can form a system of infinitely many ODEs,

which we truncate to 20 modes. After analyzing this system, one can see that these noisy

excitable cells can indeed generate macroscopic oscillations. Later, we take heterogeneous

noise and find that if the noise distribution is the Cauchy distribution and we have purely

sinusoidal coupling as before, then the excitable cells cannot form macroscopic oscillations

regardless of the noise level. We also take some noise densities which decay faster than the

Cauchy distribution and find that these do produce macroscopic oscillations, similar to the

Gaussian white noise case. Going back to the Cauchy distribution, we can add a cosine term

to the coupling and doing this creates the macroscopic oscillations that we could not find

when we had pure sinusoidal coupling. Lastly in this chapter, we noticed that the bifurcation

diagrams all seem to have a cusp bifurcation and a Takens-Bogdanov bifurcation approach

each other as the noise level goes to 0. So we perform a rescaling analysis and prove that

these two bifurcations do not meet.

5



In the final project, we combine the first two projects: we take the noisy excitable cells,

which we know can create oscillations, and we couple each cell to a single oscillator. When

the noise level is zero, this is similar to just one oscillator and one excitable cell coupled to

each other, which is where we began. So, with the noise level being zero, this will give the

m:n locking regimes that we found in the first project. This last project investigates how

large the noise level can become before the m:n locking patterns become unstable. We found

that using heterogeneous noise allows for the noise threshold to be larger than when using

Gaussian noise.

6



2.0 Chains of excitable cells

2.1 Introduction

We begin with the general form of our excitable cell chain with oscillators on either end:

dx

dt
= ω + d+ coe sin(y1 − x)

dy1

dt
= f(y1) + ceo sin(x− y1) + cee sin(y2 − y1)

dyj
dt

= f(yj) + cee[sin(yj−1 − yj) + sin(yj+1 − yj)]

dyN
dt

= f(yN) + ceo sin(z − yN) + cee sin(yN−1 − yN)

dz

dt
= ω − d+ coe sin(yN − z)

(2)

where j = 2, . . . , N − 1 and f(y) is given in equation (1). Here x, z are oscillators (often

referred to as O cells) with uncoupled frequencies of ω±d and the variables yj are excitable

(referred to as E cells) with b > 1. The coupling strength between cells are positive, that

is ceo, coe, cee > 0. We allow for some heterogeneity in the oscillators via the parameter d,

also positive. While this may seem as a somewhat restricted parameterization for a model,

we note the normal form for a SNIC bifurcation is

dx

dt
= 1− cos(x) +

(
1 + cos(x)

)
p = (1 + p)

(
1− 1− p

1 + p
cos(x)

)
which, after rescaling time, is identical to our model dynamics. For the biophysical simula-

tions, we use the Morris-Lecar model, where each cell obeys

V ′ = I − 4m∞(V )(V − 120)− 8w(V + 84)− 2(V + 60) + Icoup

w′ = 0.3
(
w∞(V )− w

)
/τw(V )

m∞(V ) =
1

2

(
1 + tanh

(
(V + 1.2)/18

))
w∞(V ) =

1

2

(
1 + tanh

(
(V − 12)/17.4

))
τw(V ) = sech

(
(V − 12)/34.8

)
(3)

7



with I = 43 for the oscillators and I = 39 for the excitable cells. Coupling currents, Icoup

have the form g(V̂ − V ) where V̂ is the voltage of the cell to which V is coupled. The

parameter g varies and is provided in the figure captions.

2.2 Results

We first explore one OE pair to see the effects of the oscillator on an excitable unit and

then look at what happens with chains of excitable cells.

2.2.1 OE pair

We start with the simple system

ẋ = ω + coe sin(y − x)

ẏ = f(y) + ceo sin(x− y)
(4)

where we set b = 1.1, ω = 1 and we vary the coupling parameters coe and ceo. This is a

system on a two-dimensional torus and as long as coe < 1, there are no fixed points. Since

this is a flow on a torus and ẋ > 0, we can make a Poincare section along an arbitrary value

x = C which will lead to a one-dimensional map. As the dynamics are in the plane, the map

is monotone and invertible, thus, there is a well defined rotation number

ρ = lim
t→∞

y(t)

x(t)

which is a continuous function of the parameters. When ceo is sufficiently small (e.g., ceo <

(b − 1) is sufficient), then y(t) will just oscillate around y−, the stable rest state, and the

rotation number is 0.

Figure 3 shows the behavior of (4) as the coupling strengths vary. If ceo is small enough,

then the excitable cell will never fire, while for ceo large enough, it will always fire in a 1:1

manner with the oscillator. The inset in the figure shows the rotation number as a function

of ceo at different values of coe. Notice as coe goes to 1, the oscillator slows its frequency to

0 and x becomes nearly constant with sin(y − x) ≈ −1. Thus, ẏ ≈ f(y) + ceo and when ceo

8



exceeds b − 1, ẏ will be positive meaning the excitable cell will fire and when ceo < b − 1,

the excitable cell will not fire. This explains why all the curves in the figure converge at

ceo = b − 1 when coe = 1. At the other extreme, when coe = 0, the rotation number has no

open sets of parameters where there are locking regimes other than 0:1 and 1:1.

We note that if coe ≥ 1, then it is possible to find equilibria in (4). Multiplying the ẏ

equation by coe and the ẋ equation by ceo and adding them results in

ceoω + coe = coeb cos(y).

Thus, fixed points ȳ exist as long as coe > ceoω/(b−1). Furthermore, we also must have that

coe ≥ ω so ẋ can be zero. Thus, there is a critical value of ceo = b−1 where there is a saddle-

node bifurcation with coe = ω. In general, the saddle-node bifurcation is ceo = (b− 1)coe/ω

for coe > ω. We close this section by noting that making b larger shifts the curves in Figure

3 toward higher values of ceo as it takes stronger coupling to induce the excitable cell to fire.

Decreasing the uncoupled frequency of the oscillator from ω = 1 is similar to increasing the

coupling coe as both slow the oscillator down giving the excitable system a better chance at

firing.

2.2.2 OEO chain

The simplest way that two oscillators can interact via an excitable cell is given by

ẋ = ω + d+ coe sin(y1 − x)

ẏ1 = f(y1) + ceo(sin(x− y1) + sin(z − y1))

ż = ω − d+ coe sin(y1 − z).

(5)

We set b = 1.1, ω = 1, d = 0 and varied coe, ceo once again to get a big picture of the

dynamics. Figure 4 shows boundaries for these phase-locked solutions. For most values of

the coupling parameters, the dominant behaviors are 1:1 and 0:1 where the E cell either fires

on every cycle or doesn’t fire at all. Within a narrow sector of parameters, we find the 1:2

phase-locking, where the E cell fires once for every two times the oscillators fire, just like the

OE system. The boundaries of the OEO system are not much different from the OE system,

9



Figure 3: Dynamics of system (4) as the connectivity varies. Below the red (bottom) curve,

the excitable cell does not fire and we call this 0:1-s locking. The “s” stands for “synchrony”

because in later models when we have more than one oscillator, the oscillators will not always

synchronize. Because there is only one oscillator in this system, it is trivially synchronized

with itself. Above the blue (top) curve, the excitable cell fires in a 1:1 manner with the

oscillator. In between, rational and irrational firing patterns occur; the 1:2 locking regime is

illustrated in between the two black (middle) lines. In fact, all m:n lockings will occur for

m ≤ n, however the regions are very small. Inset shows the rotation number for different

values of coe as a function of ceo. In the picture, coe = {0.7, 0.5, 0.3, 0.1} from left to right.

We were not able to find any bistable regions.
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although it takes smaller values of ceo for the E cell to fire due to it receiving two oscillatory

inputs.

We note that in all choices of (coe, ceo) there was always synchrony between the oscillators

x and z. This is because the excitable cell is receiving two oscillatory inputs, so it is as if

there is only one oscillator coupled to the excitable cell that has twice the coupling strength.

In other words, with x(t) = z(t), equation (5) is identical to (4) with ceo doubled, as one can

see in the figure.

2.2.2.1 Heterogeneity in OEO system

Next, we explore how the change in oscillator frequency affects existence of our phase-

locked solutions. This focuses on parameter d in system (5), which we initially kept at zero.

Rather than vary coe or ceo, we have chosen to co-vary them along the lines shown in Figure

5a as this guarantees that the locking pattern is constant. For each (ceo, coe) parameter

choice, we will increase d from zero to determine when the phase-locking becomes unstable.

This allows us to explore the efficacy of the E cell in coupling the two O cells. From Figure

5b, when the E cell fires, we can see there is a wider range of d values and thus the stability

of the firing phase-locked solutions is less sensitive than the 0:1-s solution. We remark that

there is a “sweet” spot for coupling strength along this line that maximizes the allowable

heterogeneity.

2.2.3 OEEO chain

We move on to two E cells and obtain the equations

ẋ = ω + d+ coe sin(y1 − x)

ẏ1 = f(y1) + cee sin(y2 − y1) + ceo sin(x− y1)

ẏ2 = f(y2) + cee sin(y1 − y2) + ceo sin(z − y2)

ż = ω − d+ coe sin(y2 − z).

(6)
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Figure 4: Dynamics of Eq. (5) as the connectivity varies. Again, below the red (bottom)

curve, the excitable cell does not fire, and above the blue (top) curve, it fires in a 1:1 manner

with the oscillator. In between the black (middle) lines is the 1:2 locking. Similar to the OE

system, we did not find any bistable regions.
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Figure 5: The left figure shows the lines chosen for the OEO chain. These have the form

of (coe, ceo) = (k1, c1) + p(dk, dc) for 0 ≤ p ≤ 1. Light colored dots on the left of each line

correspond to p = 0 and dark colored dots on the right of each line are when p = 1. The

0:1-s line goes from (coe, ceo) = (0.1, 0.15) to (0.95, 0.05). The line between the black curves

goes from (0.1, 0.22) to (0.95, 0.06). Lastly, the line in the 1:1 region on the top goes from

(0.1, 0.3) to (0.95, 0.075). For each curve in the right figure, the labelled region is stable on

the left side of the curve and unstable on the right side of the curve. When d = 0, all phase-

locked solutions are stable. As d increases, some points on those lines may no longer stay in

the phase-locked pattern they were originally in. The curves on the right graph correspond

to the boundary when , for each point (coe, ceo) chosen, the original phase-locked solution

switches from stable to unstable. It is clear that 1:1 remains stable for a wider range of d

values whereas the stability of the 0:1-s region is the most sensitive to changes in d.
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There is now one more parameter, cee, which governs the strength of connectivity between

the two E cells. We will also set ω = 1, d = 0 and restrict the other coupling parameters to

lie in (0, 1). The addition of another E cell makes the dynamics much more complex with

multiple stable attractors.

Figure 6 shows these behaviors for cee = 0.5. Since d = 0, then x = z and y1 = y2 (the

synchronous solution) is invariant under the dynamics of (6) and, in this case, it reduces to

the dynamics of (4). This is why the essential difference between this and Figure 3 is the

boundaries of the 0:1 regions. Additionally, we plotted the 1:3 region where the two excitable

cells fire synchronously once for every three times the two oscillators synchronously fire.

In addition to the synchronous behavior, we also find other stable behavior, where the E

cells do not fire. There appear to be three distinct types of this behavior: synchrony (0:1-s),

anti-phase (0:1-a), and “mixed-state” (0:1-m). This is quite different than the OEO system

where we were unable to find any stable behavior when x and z weren’t synchronized. Anti-

phase exists and is stable throughout the region bounded by the red curve and the magenta

curve. Synchrony between the two oscillators and the two excitable cells without the E cells

firing is stable below the cyan curve. Between the cyan and the magenta curve, we find the

so-called “mixed” state. Figure 7 shows the excitable cells undergoing these three behaviors.

We can best understand the mixed state as follows: Say coe = 0.78 and ceo is at a value below

the cyan curve where there is stable 0:1 synchrony. Increasing ceo (a vertical line in Fig. 6

at coe = 0.78) results in a pitchfork or symmetry-breaking bifurcation where a stable branch

of non-synchronous asymmetric orbits arises with a phase-difference between synchrony and

anti-phase. This is shown in Figure 7d. The magenta and cyan curves in Fig. 6 depict these

pitchfork bifurcations (A zoomed in version near coe = 1 is shown in Figure 9).

Other regions not accounted for include the region below the 1:1 synchrony line and

above anti-phase line and the top 1:2 line. This large space does not have any apparent

phase-locked pattern and appears to be chaotic. We note that this region existed in our

previous models as well. For example, when cee = 0.5, coe = 0.11, ceo = 0.49, Figure 8 shows

z and y2 vs x in panel (a) and a Poincare section through x = 1 in panel (b). We have

crudely estimated the Liapunov exponent to be about 0.04 by computing the slope of the

logarithm of the absolute difference between two trajectories over time. Another observation
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Figure 6: Regions of different phase locking for the OEEO model when cee = 0.5 as a function

of the parameters ceo and coe. Everything above the blue curve is synchrony with y1,2 firing

in 1:1 with x, z. Between the red curve and the magenta curve, x, z fire in anti-phase and

y1,2 do not fire and are not synchronized. Within the black curves, x, z are synchronous and

y1,2 fire in a 1:2 manner. Within the green curves, x, z are synchronous and y1,2 fire in a 1:3

manner. Between the magenta and cyan curves, x, z and y1,2 have a mixed phase-difference

and y1,2 don’t fire. Finally, below the cyan curve, x, z and y1,2 are synchronous and y1,2

don’t fire. In other regions such as coe = 0.11, ceo = 0.49, we have found apparent chaotic

behavior.
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Figure 7: The three types of sub-threshold dynamics for y1,2 with coe = 0.78, cee = 0.5.

In (a), ceo = 0.1, we have 0:1 synchrony. In (b), ceo = 0.13, we have the “mixed” state

which is neither synchronous nor anti-phase. In (c) with ceo = 0.15, we have the anti-phase

state. Lastly, (d) shows the pitchfork (symmetry-breaking) bifurcation diagram showing the

emergence of the mixed state. Begin with the top line in the synchrony branch and as ceo

increases, the line changes from stable periodic orbits (green) to unstable periodic orbits

(blue). While on the bottom line, the anti-phase branch changes from unstable periodic

orbits to stable periodic orbits as ceo increases. In between, there is a region where neither

synchrony nor anti-phase is stable and this is where the mixed state is stable.
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Figure 8: Putative chaos in Eq. (6) when coe = 0.11, ceo = 0.49, cee = 0.5. Picture (a) shows

phase space trajectories of z and y2 vs x. Picture (b) is a Poincare section through x = 1,

the thin dotted green line in panel (a), showing y2 vs z.

we noticed was bistability; the OEEO chain is the smallest chain we have found that exhibits

regions of bistability, that is, the long term dynamics depend on the initial data. Figure 9

shows a zoomed in version of Figure 6. Regions labeled by Greek letters indicate regions of

bistability. Notice that region β actually extends further back all the way to coe = 0, see

Figure 6.

2.2.3.1 Heterogeneity

We can apply similar numerical analyses to the OEEO chain as with the OEO chain and

compare the existence of locked solutions as the oscillator frequencies vary from ω in (6).

However, unlike the OEO chain, we can also investigate bistable regions as well; this will give

us a more direct comparison between which region has a higher threshold for heterogeneity

since in these regions, the parameters can remain the same. First, we look at the 4 long term

dynamics separately. Figures 10a and 10b show the four lines we use for each of the four main

regions: 1:1, 1:2, 1:3, and 0:1-a. Using these, Figure 10c shows the frequency behavior for

each point on the four lines. It is clear that the stability of the 1:1 synchrony region remains

is the least sensitive to changes in the heterogeneity parameter d. Although the 1:2 and 1:3
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Figure 9: Zoomed in picture of Figure 6 showing different regions of bistability. In the region

labeled δ, there is both 1:1 synchrony and 0:1 mixed, while in region α, 1:1 synchrony is

bistable with anti-phase (0:1-a). In regions β and γ, anti-phase behavior coexists with 1:2

and 1:3 locking respectively and regions ν and ω, mixed sub-threshold behavior coexists with

1:2 and 1:3 locking respectively.
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regions are much smaller than the 0:1-a region, their stabilities are less sensitive to changes

in d compared to the stability of the 0:1-a region. This could suggest that the excitable cells

firing plays a key role in maintaining locking as d increases and we could test this by looking

at the stability of the 0:1-s region as the heterogeneity changes. This is similar to what we

saw in the OEO system with Figure 5. Also similar to the OEO system, there is a “sweet”

spot where the system is most tolerant of frequency differences.

We can also look at the regions of bistability. There are two regions we looked into:

when 0:1-a and 1:2 were both stable and when 0:1-a and 1:1 were both stable. Besides the

β region in Figure 9, one can see in Figure 6 that the 0:1-a and 1:2 bistable region does

not break as coe increases. Thus, we used two lines for this region in order to capture as

much range for ceo. Figure 11a shows what happens as d increases from zero. As the first

line moves towards the very narrow region in the middle (near coe=0.4), the 1:2 stability

becomes more sensitive to changes in d and the 0:1-a region becomes less sensitive. Then, as

the second line enters the β region, 1:2 locking allows a bigger range of d before becoming

unstable. The other region of bistability we looked into was the α region in Figure 9. We

can see initially the 1:1 synchrony is more tolerable but as we move down into what was the

δ region, it is the 0:1-a dynamics that are more robust as d increases (see Figure 11b).

2.2.4 Weak coupling analysis

As shown previously, when ceo is small enough, the E cells do not fire and there can be

several types of dynamics including synchrony, anti-phase, and a non-synchronous locked

state (the “mixed” state). Looking back at Figure 6, it appears that in the limit as ceo → 0,

there is an abrupt transition from anti-phase to synchrony as coe crosses a critical value

(around coe = 0.57). We will now address this point using weak coupling analysis. This

method extends to arbitrary length chains but for simplicity, we just perform the analysis
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Figure 10: In the left two figures, we show the lines that we use for the non-bistable regions.

For the 1:1 locking, our parameters go from (coe, ceo) = (0.1, 0.6) to (0.95, 0.2) and for 0:1-

a locking, our parameters go from (0.1, 0.35) to (0.7, 0.15). The second picture shows our

paths for the 1:2 and 1:3 regions. For these, we have our parameters going from (0.1, 0.44) to

(0.8, 0.174) and (0.2, 0.36) to (0.71, 0.19), respectively. In the right figure, we show how large

the heterogeneity parameter d can become for each set of parameters on these lines before

the corresponding phase-locking becomes unstable. The dots on the bottom of this figure

correspond to the beginning of each path and the dots on the top of this figure correspond to

the dots at the end of each path. As our parameter p increases, we increase coe and decrease

ceo according to the orange diagonal lines in (a) and (b). The curves are color-coded to

their respective regions. We can see that the stability for the 1:1 locking is least sensitive to

changes in d and 0:1-a stability is most sensitive despite it having a large stability region.
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Figure 11: Effects of heterogeneity in bistable regions of the OEEO system. The right y-axis

shows the path’s starting and ending points for (coe, ceo). In (a), the first line begins at

(0.15, 0.422) in between the black lines and below the red line in Figure 6 where 0:1-a and

1:2 are bistable, and goes to (0.406, 0.308), where it is very narrow but still bistable. The

second line starts at this point and continues into the β region (see Figure 9) where it ends

at (0.82, 0.167). The black 1:2 line (resp. red 0:1-a line) shows the maximum d can be before

losing stability of the 1:2 (resp. 0:1-a) locking. In (b), we look at a line in the α region (see

Figure 9), where 0:1-a and 1:1 are bistable. When d 6= 0, the 0:1-m region deflates and thus,

the α and δ region become one. Our path goes from (0.836, 0.17) to (0.981, 0.109). The blue

1:1 line (resp. red 0:1-a line) represents the maximum d before 1:1 (resp. 0:1-a) stability is

lost.

21



for the OEEO chain. Let ceo = ε where 0 < ε� 1 is a small parameter and so we have

x′ = 1 + coe sin(y1 − x)

z′ = 1 + coe sin(y2 − z)

y′1 = f(y1) + ε sin(x− y1) + cee sin(y2 − y1)

y′2 = f(y2) + ε sin(z − y2) + cee sin(y1 − y2),

and as a reminder, f(y) = 1 − b cos(y). When ε = 0, the stable solution is y1 = y2 so this

implies we have y1,2 ≡ k = − arccos(1/b). If 0 < coe < 1, there is a T−periodic solution,

U(t), to U ′ = 1− coe sin(U) with U(t+ T ) = U(t) + 2π. Note that

T =

∫ 2π

0

dx

1− coe sin(x)
.

Thus for ε small, we expect that x(t) ≈ k + U(t + θx) where θx is an arbitrary phase shift.

To formalize this argument, we use the method of multiple scales by letting s = t be the fast

time, and τ = εt be the slow time and expand x, z, y1,2 as a power series in ε, e.g.,

x(t) = x0(s, τ) + εx1(s, τ) + . . . ,

y1(t) = y0
1(s, τ) + εy1

1(s, τ) + . . . ,

where we assert each term is T−periodic in s. With this ansatz, in the first order expansion

we see that x0(s, τ) = k + U(s + θx(τ)), z0(s, τ) = k + U(s + θz(τ)), and y1,2 = k where

θx,z(τ) are unknown. In the second order expansion,

∂sx1 + U ′(s+ θx)∂τθx = coe cos(U(s+ θx))[y
1
1 − x1]

∂sz1 + U ′(s+ θz)∂τθz = coe cos(U(s+ θz))[y
1
2 − z1]

∂sy
1
1 = b sin(k)y1

1 + cee(y
1
2 − y1

1) + sin(U(s+ θx))

∂sy
1
2 = b sin(k)y1

2 + cee(y
1
1 − y1

2) + sin(U(s+ θz)),

(7)
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where ∂γ =
∂

∂γ
. The last two equations can be written as

∂

∂s


y1

1

y1
2

 = A


y1

1

y1
2

+


sin
(
U(s+ θx)

)
sin
(
U(s+ θz)

)
 (8)

where

A =


b sin(k)− cee cee

cee b sin(k)− cee

 .

By definition of k, this matrix A has strictly negative eigenvalues and thus there is a unique

periodic solution to (8). Let W = (w1, w2)T be the periodic solution to

∂W

∂s
= AW + (sin(U(s)), 0)T .

Then y1
1(s, τ) = w1(s + θx) + w2(s + θz) and y1

2(s, τ) = w1(s + θz) + w2(s + θx). Now

that we have solved for y1
j , we turn to x1, z1. Consider the linear operator on the space of

differentiable T−periodic functions:

M(s)x := ∂sx+ coe cos(U(s))x.

Since U ′(s) = 1 − coe sin(U(s)), we see that x = U ′(s) is in the nullspace of M . With

the standard L2 inner product, (f, g) =
∫ T

0
f(s)g(s) ds, the operator M(s) has an adjoint,

M∗(s)x = −∂sx+ coe cos(U(s))x with a nullspace, 1/U ′(s). With this notation, the equation

for x1(s, τ) can be written as

M(s+ θx)x1 + U ′(s+ θx)∂τθx = coe cos(U(s+ θx))[w1(s+ θx) + w2(s+ θz)],

M(s+ θz)z1 + U ′(s+ θz)∂τθz = coe cos(U(s+ θz))[w1(s+ θz) + w2(s+ θx)].

Taking the inner product of both sides of the x1 equation with 1/U ′(s + θx), we obtain the

dynamics of θx:
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T∂τθx =

∫ T

0

coe cos(U(s+ θx))

U ′(s+ θx)
[w1(s+ θx) + w2(s+ θz)] ds.

A simple change of variables gives ∂τθx = H(θz − θx) where

H(φ) =
coe
T

∫ T

0

cos(U(s))

U ′(s)
[w1(s) + w2(s+ φ)] ds. (9)

Similarly, ∂τθz = H(θx− θz). Finally, we let φ = θz− θx and use ∂τθz and ∂τθx to obtain the

weak coupling equation:

∂sφ = H(−φ)−H(φ) =: G(φ), (10)

where −G(φ)/2 is the odd part of H(φ). In Figure 12a, we plot G(φ) for coe = 0.5 and

coe = 0.7. When G′(φ) > 0 at the fixed point, the fixed point is unstable and when G′(φ) < 0

at the fixed point, the fixed point is stable. As can be seen from the figure, when coe = 0.5,

synchrony (φ = 0) is unstable and anti-phase (φ = T/2) is stable and the reverse is true for

coe = 0.7.

From Figure 6, it appears that the synchrony and anti-phase boundary meet at exactly

the same point on the coe axis. This means synchrony and anti-phase change stability at

the same point for this choice of parameters. Stability of synchrony (resp. anti-phase)

is lost when G′(0) (resp. G′(T/2)) changes from negative to positive. Denote m(s) =

cos(U(s))/U ′(s) so from the definition of G(φ):

G′(0) = −2coe
T

∫ T

0

m(s)w′2(s) ds

G′(T/2) = −2coe
T

∫ T

0

m(s)w′2(s− T/2) ds.

Changing s to s−T/2 in the second integral and using the observation m(s+T/2) = −m(s)

due to the symmetry of the function sin(x), this shows that G′(T/2) = −G′(0), so that

synchrony and anti-phase swap their stability at the same value of coe independent of any

other parameters. In Figures 12b and 12c, we also show how the critical coe value varies as

b or cee changes. If we change the coupling function between the O and the E cells to some

more general odd periodic function, say sin(x) + a sin(2x), then the symmetry of m(s) is

gone and the branches for synchrony and anti-phase will not meet at a point as ceo → 0.
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Figure 12: The top figure shows G(φ) as a function of φ. The different graphs describe the

flipped behavior for coe = 0.5 and coe = 0.7. In figures (b) and (c), we see how the critical

coe value varies with cee and b. For coe > c∗oe (resp. coe < c∗oe), synchrony is stable (resp.

unstable) and anti-phase is unstable (resp. stable). The black dots in the bottom two graphs

signify the parameters we have used: b = 1.1 and cee = 0.5. The dashed line in figure (c) is

the vertical axis.
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2.2.5 OEEEO and beyond

For chains with 3 or more E cells between the O cells, it is possible to have only the E

cells that are coupled to the O cells fire, while the E cells in the middle of the chain fail to

fire. For example, Figure 13a shows an OEEEO system where the middle E cell fires and

gives rise to 1:2 locking between the oscillators and the excitable cells, while in panel (b),

with the same parameters, the middle cell y2 does not fire and the O cells fire in 1:1 with

the outermost E cells.

So far, we have seen that for small chains where all the E cells fire, the only stable solution

is synchrony and it is robust to small changes in the relative frequencies of the O cells. Let

us now consider a long chain of E cells terminated by two O cells acting as pacemakers.

Consider the isolated E chain with no oscillators. If we suppose that the coupling between

the E cells is strong enough, then one expects that initiating the first E cell in the chain to

fire will result in a traveling wave that propagates down the chain. If at some time after

the first E cell is excited, we initiate a wave at the other end, we expect the two waves to

collide somewhere in the middle of the chain and they could annihilate completely. This

means that the last E cell and first E cell are “unaware” the other E cell fired. If we put

the two oscillators on the ends, it seems to imply that the oscillators will not synchronize;

rather they can maintain any phase-difference. For example, consider

x′ = ωx + coe sin(y1 − x)

y′1 = f(y1) + ceo sin(x− y1) + cee sin(y2 − y1)

y′j = f(yj) + cee sin(yj−1 − yj) + cee sin(yj+1 − yj)

y′100 = f(y100) + ceo sin(z − y100) + cee sin(y99 − y100)

z′ = ωz + coe sin(y100 − z)

for j = 2, . . . , 99. For this section, we set coe = 0.7, ceo = 2, cee = 3 and b = 1.1. Figure 14a

shows a simulation when ωx = ωz = 1 for four different initial conditions. The left panel

shows us that the two oscillators lock but the phase-difference between x and z varies each

time. The right panel shows why this happens: waves initiated at the end points collide in the

middle and, thus, cannot alter the timing of their opposite oscillators. However, if we make
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Figure 13: Example of bistability in an OEEEO chain. The parameters are coe = 0.75, ceo =

0.25, and cee = 0.18. In (a), x = z, and y1 = y3 and y2 (the middle excitable cell) also fires

all in synchronous 1:2. In (b), the outer y1,3 fire with the O cells in 1:1 but the middle E cell
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the long-time behavior of the two oscillators for 4 different initial data; right is a space-time

plot. The frequences are equal (ωx = ωz) and they are able to maintain any phase difference.

(b) Same as (a) but ωx = 1.1, ωz = 0.9; a fixed 1:1 locking always occurs. (c) Same as (a),

but ωx = 1.5, ωz = 0.5 and a 1:2 locking occurs.
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one oscillator faster than the other, then the point of intersection of the waves moves toward

the slower oscillator as the fast oscillator dictates the frequency and becomes a pacemaker.

Figure 14b shows this with ωx = 1.1 and ωz = 0.9. Once there is a single phase-locked

solution, there appears to be a unique attractor. Increasing the frequency difference further

(Figure 14c) leads to 1:2 locking where x goes 2 cycles and the rest of the medium goes 1

cycle. Differences in the frequencies of the oscillators allow for the timing information to

propagate down the chain and lock the oscillators.

2.2.6 Biophysical models

In this chapter, we have used a one-dimensional model for excitability that is equivalent

to the normal form for a general system near a saddle-node infinite cycle bifurcation (SNIC).

A simple and well-known neural model that has a SNIC is the Morris-Lecar (ML) model

given in the beginning of this chapter. Thus, we turn our attention to this model and look at

the OEEO system. Similar to equation (6), we hold cee = 0.1 and vary (coe, ceo) to compare

this ML model to the dynamics of equation (6).

Figure 15a shows the regions of stability as we vary (coe, ceo) for the ML model. This

figure was created by following bifurcation points using AUTO in XPP (see [17]), and then

combining the two-parameter data and tracing the curves using splines. We show a number

of different regions, but this is by no means exhaustive. We compare this figure to Figures 6

and 9. We first note that as in the simple phase model, the largest regions correspond to 1:1

synchronous locking and 0:1 locking in either synchrony, mixed, or anti-phase for increasing

values of ceo. A notable difference from the phase model is the large region of 2:3-m in the

ML system. Interestingly, the O cells do not synchronize, but operate in the mixed phase

mode. Another difference is that the region of 1:2-s is somewhat limited in the ML model

when compared to the phase model. We have labeled three different regions, α, β, δ in which

there is bistability, similar to the phase model in Figure 9. For example, in region β there

is bistability between 1:2-s and 0:1-a. Both regions α, δ have bistability between 1:1-s and

0:1. However, due to the existence of the large 2:3-m region, there is actually tristability

with the 2:3-m state. The 2:4-s state occurs via a period doubling bifurcation of the 1:2-s
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Figure 15: (a) Regions of stability for the ML model as constructed from a bifurcation

analysis. Stable locking regions are delineated by colored lines with arrows pointing to the

boundaries. The symbols s,m, a correspond to the oscillators being synchronous, mixed, or

anti-phase. There are many regions of multistability; three are marked α, β, δ corresponding

to the regions in Fig. 9. Markers correspond to parameters for the time series shown in

b-e. Values of (coe, ceo) correspond to the markers in (a). (b) 0:1-m, (0.4, 0.05); (c) 2:3-m,

(0.5, 0.057); (d) 2:4-m, (0.63, 0.05); (e) 2:4-s, (0.1, 0.065). In (e), Vx = Vz and Vy1 = Vy2 so

they overlap.
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state (the upper curve in the 1:2-s region). The 0:1-m state also loses stability via a period-

doubling bifurcation as coe increases (shown by the gold C-shaped region on the right side of

the 0:1-m region). Like the phase model, all of the locked oscillatory regions terminate as a

stable fixed point emerges when coe is large enough. This region is labeled 0:0. Figures 15b-e

show representative voltage traces in some of the different regions indicated by the markers

in panel (a).

In summary, we have seen that the simple phase model for interacting oscillatory and

excitable cells is a fair predictor of the qualitative dynamics of biophysical networks of

coupled oscillator and excitable cells. In particular, the latter undergo many of the same

bifurcations and transitions between states as well as having similar regions of bistability.

2.3 Discussion

Throughout this project, we have studied some simple networks in which a pair of oscilla-

tors is indirectly coupled to active nonlinear elements, namely excitable systems. We showed

several distinct qualitative behaviors that include in-phase, anti-phase, and mixed-phase syn-

chronization both when the excitable cells fired and did not fire. We also found some regimes

of seemingly chaotic dynamics in between phase-locked regions. With the smallest of chains,

bistability between the phase-locked regions was impossible; however, if the chain increases

in length, many bistable regions can appear. We found that when the excitable cells were

silent, that is they operate in the subthreshold regime, the interactions between the two

oscillators could be analyzed through weak coupling analysis and was amenable to averaging

methods and phase reduction. Further, when the excitable cells were active, the ability to

phase-lock is more robust to changes in the oscillator frequencies than when the excitable

cells were silent. We also saw that for very long chains of excitable cells, a small difference in

the intrinsic frequency of the oscillators is more conducive to rapid and stable phase-locking

than if the oscillators were identical. While this may seem counterintuitive, one can regard it

as a case when the faster oscillator becomes the “leader” and thus the excitable cells and the

slower oscillator are effectively forced. The slow oscillator gets overpowered in the rhythm.
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We also showed that the simple phase models that formed the bulk of the chapter shared

similar qualities and structure with the Morris-Lecar model, a standard biophysical model

for a neuron.

Similar work has been done in [64] where they perform a bifurcation analysis between two

coupling parameters to look at the bursting behavior in a network of excitable neurons; they

also perform weak coupling analysis. Additionally, [65] also investigated rhythm generation

between pacemaker neurons in the pre-Bötzinger complex. However, both of these works were

with synaptic coupling rather than diffusive coupling. There are many unanswered questions

that remain after this chapter. Here, we looked at one-dimensional chains; however, a more

biologically realistic scenario would involve a small number of oscillators embedded in a two-

dimensional network of excitable cells. Indeed, this is a geometry more akin to the examples

that motivated this work in the Introduction. Further, one may want to introduce all-to-all

coupling between the excitable cells instead of chain-coupling. This is one of the things we do

in the next chapter; we also make the excitable cells noisy, a much more realistic approach.
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3.0 Oscillations through noise-driven excitable cells

3.1 Introduction

In the previous project, we considered a chain of excitable cells connecting two oscillatory

cells at the ends. We found that the oscillatory cells, depending on the coupling strength,

could be in snychrony or out of synchrony. Synchronization of coupled cells can lead to

oscillations which are used to transfer and modulate signals throughout most living systems.

Noise and heterogeneity are major characteristics of most physical and biological systems,

thus, there has been a long time interest in how noise affects oscillatory dynamics ([18, 19,

20, 21]). Many biological systems (such as cardiac cells [22], neurons [23], and other cells

[24]) are not intrinsically oscillatory, rather, they are excitable. That is, as discussed earlier,

they have a globally stable rest state and a “threshold”, and if the threshold is exceeded,

there is an amplification of voltage, calcium, or some other quantity, before returning to

rest. However, when coupled and driven with noise or heterogeneity, they can often produce

synchronized oscillations and other behavior [25, 26, 27, 28, 29, 30, 31].

We will use excitable cells which are all-to-all coupled phase models with a sinusoidal

interaction function of the phase-differences (Kuramoto model). We start by considering

external Gaussian noise, also called dynamic noise, where the noise depends on time (see

[37, 42, 43, 44]). We initially apply mean field theory (MFT) and study the probability

density related to our N-cell system to find regions in parameter space where there are oscil-

lations. We also investigate other ways to reduce the dimension of this model by truncating

it further based on cumulants (see [45]). After this, we employ heterogeneous noise, noise

that is independent of time and also labelled “quenched” noise in the physics community,

which has been studied in other places in math biology (see [46, 47, 48, 49]). We show

that the commonly used Cauchy distribution will never give rise to macroscopic oscillations

for our coupled excitable system. For other distributions which we describe later, we do

find parameters for our system that generate macroscopic oscillations. We remark on the

similarities and differences between these distributions as well. In all of the cases that we

33



investigate, the transition to oscillations and their subsequent loss appear to occur via the

same mechanism. Thus we perform a rescaling analysis, letting the heterogeneity/noise go

to zero, which then simplifies the dynamics and shows the universality of these transitions.

Lastly, we change the coupling of our model by adding a cosine term and doing this creates

oscillations into the once non-oscillatory Cauchy distribution model.

3.2 Results

We will focus our analysis on the following simple model for a coupled excitable medium

with N cells:

u̇j = µ− cos(uj) +
cee
N

N∑
k=1

H(uk − uj)+ηj + ξj(t), uj(t) ∈ S1 = [0, 2π). (11)

Here cee > 0 and H(u) is the coupling function which has the form H(u) = sin(u). The

additive term ηj is heterogeneous zero-mean noise and ξj(t) is independent zero mean Gaus-

sian noise with 〈ξj(t)ξk(s)〉 = 2σ2δjkδ(t − s). Typically, 0 < µ < 1 so that in absence of

coupling, there is a stable rest state with u− = − arccos(µ) and an unstable fixed point at

u+ = arccos(µ). If the initial data points are slightly past u+, then u(t) grows until it reaches

2π+u−. In the coupled system, noise can cause one or more of the uj to cross this threshold.

The coupling can induce other cells to cross threshold and thus induce a chain reaction that

could lead to a synchronous explosion of activity. In the case of heterogeneous noise, for

some of the cells, µ+ηj > 1, so that in absence of coupling, they will spontaneously oscillate

and then the coupling could induce the others to oscillate. There is a balance in the coupling

strength, noise, and excitability. If the coupling is too weak, the cells that escape from rest

are unable to pull the other cells along while if it is too strong, the cells will be pinned

to the mean state which is at rest. Our goal is to analyze the conditions under which the

coupling and noise/heterogeneity balance out enough to generate macroscopic synchronous

oscillations in the limit as N →∞.
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3.2.1 Gaussian noise

We begin with Gaussian noise, ηj = 0, and use the approach of [25]:

u̇j = µ− cos(uj) +
cee
N

N∑
l=1

sin(ul − uj) + ξj(t) (12)

where ξj(t) represents time dependent Gaussian noise with mean 0 and variance 2σ2 as

explained above. By taking the limit as N →∞,

lim
N→∞

cee
N

N∑
l=1

sin(ul − uj) = I(t, u) = cee

∫ π

−π
sin(v − u)F (t, v) dv

where F (t, u) is the probability density for the phase u at time t, and satisfies the nonlinear

Fokker-Planck equation (FPE):

∂

∂t
F (t, u) = − ∂

∂u

(
F (t, u)

(
µ− cos(u) + I(t, u)

))
+ σ2 ∂

2

∂u2
F (t, u) (13)

as shown in [25, 43, 45]. We further add the conditions that F (t, u) is 2π-periodic in u and

is normalized on [−π, π]. Because F (t, u) is periodic, we may assume

F (t, u) =
1

2π

( ∞∑
n=0

an(t) cos(nu) +
∞∑
n=1

bn(t) sin(nu)

)
=

1

2π

∑
n∈Z

ρn(t)e−inu

with ρ0 = 1 and ρ−n = ρ∗n. By plugging the Fourier expansion into Eq (13) and equating

terms, we find

dρn
dt

= n

(
iµρn −

i

2

(
ρn−1 + ρn+1

)
− cee

2

(
ρ∗1ρn+1 − ρ1ρn−1

)
− nσ2ρn

)
.

Letting ρn = rne
iθn , we have equations for the amplitude and phase:
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ṙn =
n

2

(
rn+1 sin(θn+1 − θn) + rn−1 sin(θn−1 − θn)+

ceer1

(
rn−1 cos(θn−1 + θ1 − θn)− rn+1 cos(θn+1 − θ1 − θn)

))
− n2σ2rn

θ̇n = nµ− n

2rn

(
rn+1 cos(θn+1 − θn) + rn−1 cos(θn−1 − θn)−

ceer1

(
rn−1 sin(θn−1 + θ1 − θn)− rn+1 sin(θn+1 − θ1 − θn)

))
(14)

with r0 = 1 and θ0 = 0. By setting ρn = 0, ∀ n > 20, we can numerically analyze the

resulting truncated system to investigate if oscillations occur when µ < 1.

Figure 16 summarizes the behavior when σ2 is fixed (in this case to 0.15) while cee and

µ are varied. The oscillatory behavior is organized around 2 codimension-two bifurcations.

First, there is a Takens-Bogdanov (TB) bifurcation (labeled (i)) where the curve of Hopf

bifurcations (HB, in blue) meets with the left-hand curve of fold bifurcations (red). Emerging

from the TB is a curve of homoclinic bifurcations (in green) that terminates on the right fold

(red/purple) at point labeled (ii). This is called a non-central saddle-node homoclinic [50] or

a saddle-node loop [51]; we will abbreviate it DH (degenerate homoclinic) for simplicity. In

the upper part of the right-hand fold, above the DH there is a transition to periodic orbits

via a saddle-node infinite cycle bifurcation (SNIC) and below the DH, oscillations continue

from the branch that emanates from the HB. There is a cusp (labeled (iii)), however, this

plays no role in the oscillations. Oscillations are found in regions C, E and F. The number of

fixed points and their stabilities are shown in the schematic Figure 17. In region A, there is a

single globally stable fixed point; in B, there are two stable fixed points that are separated by

a saddle-point; in C, there is bistability between a stable fixed point and a small amplitude

limit cycle which arises due to the Hopf bifurcation bordering region B. In region D, there is

a single stable fixed point and two unstable fixed points. Region E contains oscillations and

is reached from D via a SNIC bifurcation, from C via a fold, and from A via a HB. Above

region E is region F, where there are still oscillations, although these oscillations are slightly

different and pertain to the winding number (see Fig. 18). If one were to look at the system
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Figure 16: Two-parameter diagram for system (14) with σ2 = 0.15. In region A, there is a

single stable fixed point. As cee increases into region B, a stable and an unstable fixed point

are formed. The blue line is a Hopf bifurcation and limit cycles emerge in region C. As cee

continues to increase, the limit cycle undergoes a homoclinic bifurcation and vanishes in D.

In E, there are also limit cycles; however, opposed to C, these are globally stable. From E to

D, there is a SNIC bifurcation and region D contains three fixed points, similar to B. Lastly,

region F also contains oscillations, see Fig. 18 for more information. The four black dots

correspond to the points taken for Fig. 19.
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Figure 17: Schematic of the dynamics and transitions of the noisy excitable system overlayed

on a zoomed-in simplified version of Figure 16, excluding region F. Filled circles (resp.

triangles, squares) are fixed points with no unstable modes (resp. 1, 2). Boxes indicate

bifurcations: F, fold; HC, homoclinic; HB, Hopf bifurcation; SNIC, saddle-node infinite

cycle.
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in Cartesian coordinates instead of polar coordinates, there would be no bifurcation between

region E and region F.

Figure 19 shows the behavior of Eq. (12) for N = 4000 cells, µ = 0.94 and σ2 = 0.15 for

different values of cee. We will denote the Kuramoto order parameter by OP, given as

OP =
1

N

∣∣∣∣∣
N∑
j=1

eiuj

∣∣∣∣∣
which is known to be a good measure of synchronization (see [40]). In Fig. 19, we also plot

OP for different values of cee, shown by the dots in Fig. 16. Taking cee = 0.90, we are in

region A, far from the HB and the OP shows noisy deviations around a stable fixed point;

cee = 1.04 is above the HB curve in region E and shows high frequency noisy oscillations;

cee = 1.35 is in region F and we can see the cells are traversing all angles 0 to 2π, and this

point is close to the SNIC curve and shows clear low frequency oscillations; cee = 1.5 is in

region D and again shows nearly constant behavior (stable fixed point) where most cells are

pinned near a fixed point. The raster plots show the associated behavior of all 4000 cells

for each of these four values of cee. We note that the fixed point cases with the lowest and

highest coupling are qualitatively different; this can be seen in the rasters. In the case of

weaker coupling (cee = 0.9), the dynamics are dominated by the noise and each cell fires

nearly independently; the result is very asynchronous behavior and a low order parameter

(near 0.8). With strong coupling (cee = 1.5), the cells are mainly pinned to the mean phase,

θ̄, satisfying θ̄ = 2π − cos−1(µ̄). In this case, the order parameter is high (roughly 0.95) but

there are no oscillations; the cells are “synchronized” at the rest state.

The OP is nothing more than the amplitude of the first Fourier component of the density,

F (t, u), so that oscillations in the OP imply oscillations in the density. As can be seen from

the rasters, oscillations in F correspond to synchronous firing of the excitable cells (shown in

the rasters as times in which the units pass through π). To better illustrate the dynamics of

individual cells in the different regimes, we compute the probability that a cell is at u = π:

F (t, π) = 1 + 2
∞∑
n=1

(−1)nrn,

and plot it in Fig. 20 for the four regimes shown in Fig. 19. This allows us to distinguish

whether the macroscopic oscillations correspond to synchronous groups of cells firing (going
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Figure 18: The top left figure is a schematic diagram with parameters in region E, shown

in the complex plane. The red dot represents the value of (a1, b1) and this point rotates

around the circle as time increases. The black arrow is the vector from the origin to this red

point. As the red dot rotates around the limit cycle, the arrow moves as well, changing its

magnitude and its direction. The bottom left figure shows the magnitude and direction of

the arrow as the red dot rotates around the limit cycle. Fixing µ, as cee increases, we enter

region F, whose schematic is shown in the top right picture. Now the limit cycle contains

the origin and because of this, the black arrow rotates around the entire complex plane, as

can be seen in the bottom right figure. We can see from the top figures that no bifurcation

appears to occur; the limit cycle is simply getting larger as the unstable fixed point (shown

in orange) changes. However, from the bottom two figures, one might say that there is a

bifurcation occurring between region E and region F. In reality, there is merely a difference

in the winding number. Region E has limit cycles with winding number 0 and region F has

limit cycles with winding number 1.
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Figure 19: Dynamics of the finite system (N = 4000) of coupled excitable cells using Eq.

(12) for µ = 0.94, σ2 = 0.15, and different values of coupling strength, cee. The Kuramoto

order parameter, OP = (1/N)
∣∣∣∑j exp(iuj)

∣∣∣ is plotted. Raster plots for each of the 4000

cells are also plotted at the different values of cee and are labeled by the regions A, E, F, D

in Figure 16. These rasters correspond to the black dots shown in that figure.
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Figure 20: The probability that an oscillator is at u = π as a function of time for the same

parameters as in Fig. 19. One can see qualitatively how the fixed points differ for cee small

and cee large as well as how F (t, π) changes when there are oscillations.

through a complete cycle in phase space) rather than groups of cells making small oscillations

around their fixed points. We see from the figure that at low coupling values, cee = 0.90, there

is a nonzero probability that any given cell crosses π but these crossings are asynchronous

with no macroscopic rhythm. For the two intermediate coupling strengths, cee = 1.04, 1.35,

the probability of crossing π varies in time and is periodic with high peaks in F . We note

that at the stronger coupling value, the probability of a cell being at π is close to zero for

a long stretch of time with brief bouts where the cells fire. This is evident from the raster

plots in Fig. 19 for cee = 1.35. Finally, at the large coupling strength, cee = 1.5, there are no

synchronous firings and the cells are pinned near rest; the probability of any cell being at π

is very close to zero. In the remainder of the chapter, we will use the order parameter as a

surrogate for macroscopic oscillations rather than F (t, π), mainly because it will turn out to

be a key variable in the reduction of the network to a low dimensional system.

Fig. 16 remains qualitatively the same as we change the level of noise; this is shown in

Fig. 21 where we vary the value of σ2. As the noise decreases, the cusp point (intersection

of the two red curves) appears to limit to µ = 1.
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Figure 21: Two-parameter diagram for Eq. (14) with different noise levels. From top to

bottom, the lines touching the cee-axis correspond to σ2 = {0.15, 0.12, 0.09, 0.06, 0.03}. As

the noise goes to zero, region C shrinks and the cusp appears to approach µ = 1. We find

this to be a common trend for the other systems later in the chapter.

3.2.1.1 FPE truncation

We have approximated the solutions to Eq. (13) by a finite number of mode equations

by setting all modes to zero above n = 20. This is a very simple form of moment closure as

one can interpret ρn as the expected value of e−inu (the nth circular moment). A few natural

questions arise: (1) did we use enough modes? (2) If so, how few are enough to capture the

primary dynamics (e.g. the cusp and the TB point)? (3) Are there better ways to truncate

the equations?

To answer the first question, we consider a different way to approximate Eq. (13); we

discretize the PDE using centered differences and compute the bifurcation equations for the

resulting system of ODEs. Fig. 22A shows a comparison between the 20 mode truncation

(used in this section) and the discretization of the PDE, wherein we discretized the PDE

into 100 bins. The two plots overlap almost perfectly. This shows that our truncation to 20

modes is not too little at least at the level of noise used in this example (σ2 = 0.15).

Let us consider questions 2 and 3. Sakaguchi [25] needed 4 modes to obtain the TB
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bifurcation using the simple moment closure that ρk = 0 for k > M . This leads to 8 real

ODEs. Suppose that we consider just modes 1 and 2. The equation for ρ2 involves ρ3 so

we need to express ρ3 in terms of ρ1, ρ2. The simplest truncation is to just set ρ3 = 0. We

have found that this approximation does not work very well and often leads to unbounded

behavior, so this is not discussed further. The approximation ρ3 = ρ3
1 motivated by the so-

called Ott-Antonsen ansatz (see Section 3.2.2, following) gives the cusp bifurcation and the

TB but also has period doubling regimes, other fold bifurcations, other Hopf bifurcations and

unbounded areas as well (computations not shown). Recently [45] have suggested that using

cumulants rather than moments gives better results. Thus, we will give a brief introduction

to cumulants. Define the moment generating function for ρn as

G(k, t) =
∞∑
n=0

ρn(t)
kn

n!
,

with ρ0 = 1. Then the cumulants are defined by

Ψ(k, t) = k
∂

∂k
ln
(
G(k, t)

)
=
k

G

∂G

∂k
=
∞∑
n=1

χn(t)kn.

Using the last equality, we can say

∞∑
n=0

ρn+1
kn+1

n!
=

(
∞∑
n=0

ρn
kn

n!

)(
∞∑
n=1

χnk
n

)
.

Thus, cumulants can be obtained recursively through

χ1 = ρ1 , χn =
ρn

(n− 1)!
−

n−1∑
m=1

χmρn−m
(n−m)!

, n > 1

or for an explicit formula, one may use incomplete Bell polynomials. For completeness, we

list the first few cumulants:

χ1 = ρ1 χ2 = ρ2 − ρ2
1 χ3 =

1

2

(
ρ3 − 3ρ2ρ1 + 2ρ3

1

)
.

In the standard Ott-Antonsen model, shown later, χn = 0, ∀n > 1 or equivalently, ρn = ρn1 .

Here we will assume χn = 0, ∀n > 2, meaning ρ3 = 3ρ2ρ1 − 2ρ3
1. This provides a more
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accurate model on the order of O(σ4) (see [45]). If we do this, our first two mode equations

become

ρ̇1 = iµρ1 −
i

2

(
1 + ρ2

)
− cee

2

(
ρ∗1ρ2 − ρ1

)
− σ2ρ1

ρ̇2 = 2iµρ2 − iρ1

(
1 + 3ρ2 − 2ρ2

1

)
− ceeρ1

(
3ρ2ρ

∗
1 − 2ρ2

1ρ
∗
1 − ρ1

)
− 4σ2ρ2.

(15)

Letting ρ1(t) = r(t)eiθ(t) and ρ2(t) = s(t)eiφ(t), we find

ṙ = −σ2r − 1

2

(
sin(θ)− ceer

)
+
s

2

(
sin(φ− θ)− ceer cos(φ− 2θ)

)
θ̇ = µ− 1

2r

(
cos(θ) + s cos(φ− θ)

)
− cees

2
sin(φ− 2θ)

ṡ = −4σ2s+ 3rs
(

sin(θ)− ceer
)

+ r
(

sin(θ − φ)− 2r2 sin(3θ − φ)
)

+

ceer
2(1 + 2r2) cos(2θ − φ)

φ̇ = 2µ− r

s

(
cos(θ − φ) + 3s cos(θ)− 2r2 cos(3θ − φ)

)
+
ceer

2

s
(1 + 2r2) sin(2θ − φ).

(16)

Figure 22B shows the two-parameter bifurcation structure for the cumulant approximation

along with that of the 20 mode truncation for σ2 = 0.15. The two plots are qualitatively

similar with the same cusp, TB, and homoclinic structures. The difference is seen mostly in

the shape of the curves of Hopf bifurcation as the noise decreases; in the cumulant model,

they tend to curve quite a bit to the left before terminating at their TB points. Figure 23

goes on to show this and it should be compared to Fig. 21; qualitatively the pictures are the

same with a TB, cusp, and DH all occurring at each noise level.

One can also look at these models by fixing the excitability µ and plotting σ2 with cee.

We show this in Fig 24. With fixed excitability, one can see there is a cone-shaped region

where the right values of σ2 and cee will give rise to macroscopic oscillations. In this section,

we have shown that there is a particular dynamical structure to systems of coupled excitable

cells driven by Gaussian noise. In the next several sections, we show that this is a universal

phenomenon and does not depend on the nature of the noise.
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Figure 22: Two parameter diagram for two approximations of Eq. (13) with σ2 = 0.15. (A)

Comparison between the 20 mode truncation (Eq. (14)) and the discretization of the FPE

(Eq. (13)) into 100 bins, which are given square markers and are lighter colored. There

is no discernible difference. (B) Comparison of the 20 mode truncation and the 2 mode

truncation with cumulant closure. The cumulant closure model has curves in lighter colors

and the 20-mode truncation is higher on the cee-axis with darker colors.
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Figure 23: Two parameter diagram for the cumulant closure with different noise levels,

σ2 = {0.15, 0.12, 0.09, 0.06, 0.03}. Compare this to Fig. 21. One strange difference is when

the noise goes to zero, the HB curve becomes more eccentric and begins at the TB by going

back in µ then dipping to a minimum before leaving at µ = 1.
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Figure 24: Two parameter diagram for the cumulant closure with fixed excitability µ = 0.94.

The regions are the same as in Figure 16 and regions E and F have been merged as the

difference is unnecessary here. If there is a higher noise level, there must be a higher coupling

strength in order for oscillations to form.

3.2.2 Ott-Antonsen ansatz

We obtained Fig. 16 by approximating the solutions to the Fokker-Planck equation (13)

and then analyzing the dynamics of a finite number of Fourier modes. We also looked at a

low-dimensional truncation and found qualitatively similar behavior. However, if instead of

Gaussian noise, we consider frozen or heterogeneous noise (that is, the noise is taken from

some distribution but is constant in time), then it is possible to write down an equation

for the Fourier modes which can be low dimensional for certain choices of distributions by

utilizing the Ott-Antonsen ansatz. We now describe this procedure.

Consider a globally coupled population of excitable cells uj, given by

u̇j = ωj − cos(uj) +
cee
N

N∑
l=1

sin(ul − uj) (17)

where ωj is taken from a distribution with density function g(ω). Our goal is to study the

behavior of these cells as N → ∞. An approach is to use mean field theory (MFT) and

define the complex order parameter
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z(t) = lim
N→∞

1

N

N∑
j=1

eiuj .

With this, we can look at the asymptotic behavior of z(t) to study the asymptotic behavior

of our original system as they will coincide with each other (note that in section 3.2.1,

OP = |z|). Developing a differential equation for z(t) will greatly reduce the dimension of

our system as well. As in Eq. (13), we can write down an equation for the probability density

function, F (u, ω, t), which gives the density at time t of phase u that has fixed frequency ω:

∂F

∂t
+

∂

∂u

(
F (u, ω, t)u̇

)
= 0 (18)

where

u̇ = ω − 1

2
eiu − 1

2
e−iu +

cee
2i
ze−iu − cee

2i
zeiu

and

z(t) =

∫ 2π

0

∫ ∞
−∞

F (u, ξ, t)eiu dξ du. (19)

To get the u̇ equation, we have used the fact that

lim
N→∞

1

N

N∑
j=1

sin(u− uj) =

∫ 2π

0

∫ ∞
−∞

sin(u− v)F (v, ω, t) dω dv,

written sin(u) in terms of complex exponentials, and used Eq. (19). Since F is periodic in

u and the density of the uncoupled frequencies is known, we write

F (u, ω, t) =
g(ω)

2π

(
1 +

∞∑
n=1

αn(ω, t)e−inu + αn(ω, t)einu
)
. (20)

Because u̇ contains only terms in e±iu, there is an attracting manifold [38] on which αn(ω, t) =

α1(ω, t)n ≡ α(ω, t)n. This assumption on the Fourier coefficients is called the Ott-Antonsen

ansatz and we will be exploiting it now through most of this chapter. One sees immediately

that

z(t) =

∫ ∞
−∞

α(ω, t)g(ω) dω (21)

so we only need a differential equation for α(ω, t). Using Eqs (18) and (20) and grouping

coefficients of e−iu, we arrive at

∂α

∂t
− iωα +

i

2
+
i

2
α2 +

cee
2
α2z − cee

2
z = 0. (22)
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Note that we have reduced the continuity PDE to an infinite set of ordinary differential

equations for α(ω, t), indexed by ω ∈ C, that are coupled via the term (21). However, if the

density g(ω) has poles in the complex plane, then we can often compute the integral (21)

using residue theory (this was the crucial observation of [38]). We first consider the Cauchy

distribution as that results in the simplest mean-field model and then we consider several

other densities which lead to richer dynamics that are similar to those in section 3.2.1. So,

suppose

g(ω) := g0(ω) =
1

π

∆

(ω − µ)2 + ∆2

with ∆ > 0 measuring the spread of g0 and µ is the center of g0. With this, we can evaluate

the integral formula for z(t) using contour integrals and the residue theorem. To stay away

from the origin, we must integrate around the upper half of the complex plane. Doing this

gives z(t) = α(µ+ i∆, t) and plugging this into (22),

ż = (−∆ + iµ)z − i

2
z2 − i

2
− cee

2
z2z +

cee
2
z. (23)

Let z(t) = r(t)eiθ(t) and so

ṙ = −r∆− 1− r2

2

(
sin(θ)− ceer

)
θ̇ = µ− 1 + r2

2r
cos(θ).

(24)

Notice if we integrated around the lower half of the complex plane, then the −r∆ would

be replaced by +r∆ and the magnitude of the order parameter would be larger than 1,

which cannot happen by the definition of z(t). Recall that we are interested in whether the

combination of noise and coupling is sufficient to drive an excitable network into coherent

oscillations. Thus, we are interested in whether or not Eq. (24) has any kind of periodic

behavior for 0 < µ < 1, which is the excitable regime. For this planar system there are

two ways that oscillations can emerge: (1) Hopf bifurcation or (2) drift oscillations via a

saddle-node, meaning θ̇ > 0 for all time. In what follows, we show that neither of these

can occur and more, proving that a Cauchy density cannot produce macroscopic oscillations

when the mean µ is in the excitable range.
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3.2.2.1 Analysis of eq. (24)

We begin by showing there is a positively invariant region.

Lemma 3.2.1 If r0 ∈ (0, 1), then r(t) ∈ (0, 1) for all time.

Proof. If r0 = 1, ṙ < 0 so r(t) decreases. Now let r = εs. Then we have

εṡ = −εs∆− 1− ε2s2

2

(
sin(θ)− εcees

)
εθ̇ = εµ− 1 + ε2s2

2s
cos(θ).

Rescale time and let τ = t/ε, so we have

ds

dτ
= −εs∆− 1− ε2s2

2

(
sin(θ)− εcees

)
dθ

dτ
= εµ− 1 + ε2s2

2s
cos(θ).

(25)

To get an understanding of the system, let ε = 0. Thus,

ds

dτ
= −1

2
sin(θ)

dθ

dτ
= − 1

2s
cos(θ)

(26)

and so

ds

dθ
= s tan(θ) =⇒

∫
ds

s
=

∫
tan(θ) dθ =⇒ log(s) = − log(| cos(θ)|) + C

=⇒ s(θ) = e− log(| cos(θ)|)eC = K| sec(θ)| = s0

∣∣∣∣cos(θ0)

cos(θ)

∣∣∣∣
assuming s(θ0) = s0. This shows that when s0 > 0, s stays positive as long as θ 6= π/2

or 3π/2. When θ = 3π/2, this is an invariant set where ṡ > 0 and hence, this angle does

not need further investigation. However, when θ = π/2, this is an invariant set with ṡ < 0
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and this passes through the line s = 0 into the negative s region. However, in the original

lemma, we are asserting that ε > 0 strictly and what is happening above is only a limiting

case. Our task is to prove that for any initial condition (s0, θ0) with s0 > 0, ∃ ε > 0 such

that s(t) > 0 for all time. And, by taking the limit as ε → 0, we have shown that for each

initial condition (s0, θ0) with θ0 6= π/2 and s0 > 0, there exists an ε small enough such that

s will remain positive for all time. Now we will prove this is also the case for θ = π/2. Let

ε > 0 and θ = π/2:

ds

dτ
= −εs∆− 1− ε2s2

2

(
1− εcees

)
dθ

dτ
= εµ.

(27)

Hence, θ will increase away from π/2 in some infinitesimal time. Since we are also beginning

with s0 > 0, s will initially decrease for sufficiently small ε but this will also happen in some

infinitesimal time. So s will remain positive. Now, we have a new initial condition (s1, θ1)

with θ1 > π/2 and s1 > 0. So we can take ε small enough and use the same logic above to

show that s will remain positive. So even when θ0 = π/2, we are able to show that s stays

positive for all time. �

Now we will prove there are no oscillations for this system. There are three ways for

oscillations to exist in this system: one could emerge via a Hopf bifurcation, there could be

a drift oscillation or there could be some ambient oscillation surrounding a fixed point that

never goes away, that is, it exists for any choice of parameters. The outline of the proof will

be as follows: we will first prove there are no Hopf bifurcations for any choice of parameters

and then show there can be no drift oscillation for 0 < µ < 1. The only remaining option is

an ambient oscillation. So, for contradiction, we will suppose there is already an oscillation

in our system that never vanishes; this oscillation must exist for any parameters we choose.

We will show for one set of parameters, there is only one fixed point in (r, θ) ∈ (0, 1)×(0, 2π)

and it is stable. Thus, no oscillation exists for this set of parameters which would imply there

is no ambient oscillation and so, no oscillations exist for any set of parameters.

Theorem 3.2.2 ∀ cee,∆ > 0, and 0 < µ < 1, there is no Hopf bifurcation.
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Proof. Letting ṙ = θ̇ = 0, we have

cos(θ) =
2µr

1 + r2
sin(θ) = ceer −

2∆r

1− r2
.

And so,

( 2µr

1 + r2

)2

+
(
ceer −

2∆r

1− r2

)2

= 1 (28)

must be satisfied. The Jacobian matrix is given by

J(r, θ) =


−∆− r(ceer − sin(θ)) +

cee
2

(1− r2) −1

2
(1− r2) cos(θ)

1− r2

2r2
cos(θ)

1 + r2

2r
sin(θ)


and if we evaluate this at the fixed point,

J =


−∆− 2∆r2

1− r2
+
cee
2

(1− r2) −µr(1− r
2)

1 + r2

µ(1− r2)

r(1 + r2)

cee
2

(1 + r2)− ∆(1 + r2)

1− r2

 .

Define the trace of J as T (r) and the determinant as D(r). We see

T (r) = cee −
2∆(1 + r2)

1− r2

and

D(r) =

(
cee
2

(1−r2)−∆(1 + r2)

1− r2

)(
cee
2

(1+r2)−∆(1 + r2)

1− r2

)
+

(
µr(1− r2)

1 + r2

)(
µ(1− r2)

r(1 + r2)

)

=
1

4

(
T (r)− ceer2

)(
T (r) + ceer

2
)

+
µ2(1− r2)2

(1 + r2)2
.

We will show that if T (r) = 0 then D(r) < 0. Setting T (r) = 0, the determinant equation

and (28) become
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D(r) = −1

4
c2
eer

4 +
µ2(1− r2)2

(1 + r2)2
, 4µ2r2 + c2

eer
6 = (1 + r2)2

respectively. Solving for c2
eer

4/4 in the second equation and plugging it into the determinant

equation, we have

D(r) = −(1 + r2)2

4r2
+ µ2 +

µ2(1− r2)2

(1 + r2)2
=

2µ2(1 + r4)

(1 + r2)2
− (1 + r2)2

4r2

=
8µ2r2(1 + r4)− (1 + r2)4

4r2(1 + r2)2
= −

(
8r2(1 + r4)(1− µ2) + (1− r2)4

4r2(1 + r2)2

)
< 0

since 0 < µ < 1. Thus, there are no Hopf bifurcations. �

Theorem 3.2.3 ∀ ∆, cee > 0, there are no oscillations provided 0 < µ < 1.

Proof. First, notice θ̇ = 0 will always have a solution because θ = arccos
( 2µr

r2 + 1

)
is

well-defined since 0 < µ < 1. So θ cannot travel around the circle completely without hitting

a nullcline (i.e., no drift oscillations). And because there is no Hopf bifurcation, the only

way for an oscillation to occur is if one has been surrounding a fixed point ∀ ∆, cee > 0 and

0 < µ < 1. In particular, we can choose cee,∆, µ and if there are no oscillations for this

particular choice, then there will be no oscillations for any choice. We will begin by showing

this system has at least one fixed point. Motivated by Eq (28), define

M(r) :=
4µ2r2

(1 + r2)2
+ r2

(
cee −

2∆

1− r2

)2

− 1

and notice that the number of solutions toM(r) = 0 for r ∈ (0, 1) corresponds to the number

of fixed points in this system. We can see lim
r→1+

M(r) =∞ and M(0) = −1. Since it is clear

M(r) is continuous on (0, 1), by the intermediate value theorem, there will always be at

least one fixed point in our system. If we can find a set of parameters where this is the only

fixed point in the system and we can prove this fixed point is stable, then we have found one

instance where there are no oscillations in our system. Thus, this would prove there are no

oscillations for any choice of parameters. We choose µ = 0.5, cee = 1, and ∆ = 0.5. Then a

fixed point must satisfy M0(r) = 0 where
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M0(r) =
r2

(1 + r2)2
+

r6

(1− r2)2
− 1.

Computing the derivative, one finds

M ′
0(r) =

2r
(
r8(1− r4) + 6r8 + 4r6 + 5r4 + (1− 2r2)2

)
(1− r4)3

> 0

since r ∈ (0, 1). Thus, there is only one fixed point. Now we must prove it is stable. For

these parameters, the trace and determinant are

T0(r) = 1− 1 + r2

1− r2
=
−2r2

1− r2

and

D0(r) =
1

4

(
T0(r)− r2

)(
T0(r) + r2

)
+

(1− r2)2

4(1 + r2)2
,

respectively. Obviously T0(r) < 0 and

T0(r) + r2 =
−r2(1 + r2)

1− r2
< 0

which means D0(r) > 0, hence this fixed point is stable. So we have found one case where

this system has a stable fixed point and so it cannot have oscillations. So, this concludes the

entire proof and shows that there are no oscillations in this system for cee > 0,∆ > 0 and

0 < µ < 1. �

Summary: In this section we have shown that there are no macroscopic oscillations

when Eq. (17) is in the excitable regime, coupling is purely sinusoidal, and the frequencies

follow the Cauchy distribution. From here, there are two ways that we might vary the model

equations. First, we could consider a different class of densities, say, with a faster decay than

1/ω2, since it may be that the “fat tails” in the density create too much noise for oscillations

to exist. Another possibility is to change the coupling from sin(u) to sin(u) + b(1− cos(u))

which adds some even terms and does not violate the assumptions needed to make the OA
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reduction. In the next two sections, we show that either of these assumptions is sufficient to

enable macroscopic oscillations when 0 < µ < 1.

We add the remark that in the first model (14), if we truncated the model even further

to ρ2 = ρ2
1, we arrive at the system (24) with ∆ = σ2. Because of this, it is more sensible to

compare ∆ to σ2 instead of σ when looking at future parameter diagrams in the chapter.

3.2.3 Changing g(ω)

We consider two functionally related densities to that of the Cauchy density, both of

which decay like 1/ω4 and thus have thinner tails. In both cases, the dimensionality of the

system is doubled and the analysis is somewhat limited. Nevertheless, we will be able to

show that, with these new densities, the behavior is very similar to that of section 3.2.1.

First, consider

g(ω) = g1(ω) :=

√
2

π

∆3

(ω − µ)4 + ∆4
.

Using the residue theorem (see Appendix A.1), we evaluate Eq. (21) as

z(t) =
1− i

2
r(t)eiθ(t) +

1 + i

2
s(t)eiφ(t),

where

ṙ = −
√

2

2
r∆− 1− r2

2

(
sin(θ)− cee

2
r − cee

2
s cos(φ− θ) +

cee
2
s sin(φ− θ)

)
θ̇ = µ+

√
2

2
∆− 1 + r2

2r

(
cos(θ) +

cee
2
r − cee

2
s cos(φ− θ)− cee

2
s sin(φ− θ)

)
ṡ = −

√
2

2
s∆− 1− s2

2

(
sin(φ)− cee

2
s− cee

2
r cos(θ − φ)− cee

2
r sin(θ − φ)

)
φ̇ = µ−

√
2

2
∆− 1 + s2

2s

(
cos(φ)− cee

2
s+

cee
2
r cos(θ − φ)− cee

2
r sin(θ − φ)

)
.

(29)

Like the Gaussian case in section 3.2.1, for a given level of noise and excitability, the coupling

strength has to be in a range that is neither too small (cannot overcome noise) or too large

(pinned to the rest state). Fig. 25A shows the two-parameter diagram with µ along the
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Figure 25: Behavior of Eq. (29) for different values of excitability µ and coupling cee when

∆ = 0.27. Regions and colors as in Fig. 16. In the second figure, from top to bottom, the

lines that intersect the cee-axis correspond to ∆ = {0.27, 0.21, 0.15, 0.09, 0.03}. Again, as the

noise decreases the region between the homoclinic and Hopf lines also decreases.

x−axis and the coupling, cee along the y−axis. As with Fig. 16, there are 2 codimension-

two bifurcations that separate the dynamics. The behavior in each of these regions is the

same as the beginning model, shown in Fig. 17.

In Figure 25B, we decrease the noise and again, as with Fig. 21, the structure of the

bifurcation diagram remains. One key feature is as ∆ tends to 0, the Takens-Bogdanov and

cusp bifurcation appear to join and form a degenerate codimension-three bifurcation, similar

to the Gaussian noise. Later, when we perform a rescaling analysis of this system, we will

see that, in fact, the two points do remain separated. Similar to the white noise scenario,

one can also fix the excitability of the system (see Figure 26). Here, we needed to choose a

higher excitability value so we chose µ = 0.98. Again, we see the cone structure comprising

of regions E and F. Notice how even though we are fixed at a higher excitability level, one

actually needs a higher level of noise and coupling strength to get oscillations.

Lastly, we introduce another tractable density, which appears to have characteristics of
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Figure 26: Two parameter diagram for the fourth power density with fixed excitability

µ = 0.98. The regions are the same as in Figure 16 and regions E and F have been merged

as the difference is again unnecessary here. Similar to Fig 24, if there is a higher noise level,

there must be a higher coupling strength in order for oscillations to form.

both our previous densities:

g(ω) = g2(ω) :=
2

π

∆3(
(ω − µ)2 + ∆2

)2 .

This function has the same decay as g1(ω) but also has a more peaked density near ω = 0

like g0(ω). Figure 27 shows all three densities; the function g1(ω) both decays more quickly

and has a more uniform density near ω = 0, thus it is not clear which property of the density

allows for synchronization.

Similar to the other densities, we can evaluate equation (21) using the residue theorem

albeit with a double pole this time. We obtain the following modified set of polar equations

(see Appendix A.2 for details):

57



4 2 0 2 4

ω

0.00

0.25

0.50

0.75

g(
ω
)

Figure 27: The three densities considered for heterogeneous noise. In these plots, µ = 0 and

∆ = 1. The bottom dashed curve is the original Cauchy density g0(ω). The middle dotted

graph is g1(ω), and the top solid graph is g2(ω). As one can see, g1(ω) is more flat at 0 but

its tails have the same behavior as g2(ω).
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ṙ = −r∆− 1− r2

2

(
sin(θ)− cees cos(φ− θ)

)
θ̇ = µ− 1 + r2

2r

(
cos(θ)− cees sin(φ− θ)

)
ṡ = s(r sin(θ)−∆) + r(∆− cees2) cos(θ − φ)− r2

2
sin(2θ − φ)

+
cee
2
s
(
1 + r2 cos(2θ − 2φ)

)
− 1

2
sin(φ)

φ̇ = µ+
r

s
(∆− cees2) sin(θ − φ)− r cos(θ) +

r2

2s
cos(2θ − φ)

+
cee
2
r2 sin(2θ − 2φ)− 1

2s
cos(φ).

(30)

We note that r(t) plays a similar role here as in Eq. (24); it is magnitude of α(ω, t) evaluated

at the double pole. Once again, we are also able to find oscillatory solutions for µ < 1 that are

robust in cee and ∆. This system exhibits very similar dynamics to the previous situations.

The key difference is region F begins at lower values of cee in this scenario. Similar to Figs

21 and 25, as the noise decreases, the cusp bifurcation tends towards µ = 1. The main

difference between Figs 25 and 28 is that, although these figures show the same noise, the

cusp bifurcation occurs for larger µ in the latter.

We conclude this section with a summary of the coupling induced transitions of Eqs. (29)

and (30) as this has been the emphasis in several papers such as [28, 29, 31]. Consider a

point with µ close to 1 (slightly to the right of the cusps in Figs. 25 and 28) and cee near 0.

In this case, there is a single stable fixed point that represents asynchronous behavior (such

as seen in Fig. 19, cee = 0.90) where r is small and the oscillators behave independently. As

cee increases, we cross the HB and small amplitude macroscopic oscillations emerge. As cee

increases further, the right fold curves are approached and the oscillation frequency decreases

but the amplitude increases. Finally, the fold is crossed (a reverse SNIC bifurcation) and

there is a single stable fixed point representing the pinned state (c.f. Fig. 19, cee = 1.5).

Thus, as with the Gaussian noise case, variation in the excitability that decays sufficiently

fast leads to the ability of an on average excitable system to generate coherent oscillations

when the coupling is neither too weak nor too strong.
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Figure 28: Two-parameter diagram for Eq. (30) at fixed values of ∆. (Left) ∆ = 0.27; the

lines and regions are exactly comparable to Figs 16 and 25A. One can see the cusp bifurcation

occurs for smaller cee and larger µ than in Fig. 25A. (Right) From top to bottom, the lines

touching the cee-axis correspond to ∆ = {0.27, 0.21, 0.15, 0.09, 0.03}, the same noise values

as Fig. 25B. We also remark that this plot has the same ranges for µ and cee as in Fig. 25B

for easy comparison.
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3.2.4 Rescaling analysis

We want to investigate what happens as ∆ goes to 0, since it appears the cusp bifurcation

and the Takens-Bogdanov bifurcation meet. We show that this is in fact not the case. One

can see that as ∆ approaches 0 in each model above, r and s approach 1 and θ and φ approach

0. Further, from the previous cascading diagrams, cee approaches 0 and µ approaches 1.

Numerical continuation allows us to guess the proper scaling of the phases, amplitudes and

parameters as ∆→ 0. Thus, we take ∆ = ε2 and

r = 1 + εr1 +O(ε2) s = 1 + εs1 +O(ε2)

θ = εθ1 +O(ε2) φ = εφ1 +O(ε2)

cee = εc1 +O(ε2) µ = 1 + εµ1 + ε2µ2 +O(ε3)

as the perturbations for our other parameters. In both models, we found µ1 = 0. Plugging

these into (29) and grouping orders of ε, we find

ṙ1 = −
√

2

2
− r1(c1 − θ1)

θ̇1 = µ2 +

√
2

2
+

1

2
θ2

1 −
1

2
c1(r1 + θ1 − s1 − φ1)− 1

2
r2

1

ṡ1 = −
√

2

2
− s1(c1 − φ1)

φ̇1 = µ2 −
√

2

2
+

1

2
φ2

1 −
1

2
c1(r1 − θ1 − s1 + φ1)− 1

2
s2

1.

(31)

Similarly, for (30), the rescaled equations are

ṙ1 = −r1(c1 − φ1)− s1(φ1 − θ1)

θ̇1 = µ2 −
1

2
φ2

1 + φ1θ1 − r1s1 +
1

2
s2

1

ṡ1 = −1− s1(c1 − φ1)

φ̇1 = µ2 +
1

2
φ2

1 − c1(φ1 − θ1)− 1

2
s2

1.

(32)
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Figure 29 (left and right) shows the numerical analysis of the rescaled equations respectively.

We can now clearly see that the cusp and the Takens-Bogdanov points remain well-separated

as ∆→ 0 and there is no codimension-three bifurcation. .

3.2.5 Changing the coupling

In the previous section, we considered purely sinusoidal coupling between the excitable

units, that is, calling H(φ) the coupling function, we let H(φ) = sin(φ). The coupling

function should, in general, satisfy H(φ + 2π) = H(φ) as the phase space is the circle.

Secondly, we assume H(0) = 0 since if H(0) is non-zero, we can incorporate this into the

parameter µ. Finally, we want H ′(0) > 0 since we want to encourage synchronization. A

single odd Fourier mode (e.g. sin(φ)) can accomplish this. However, in many other studies,

the appearance of an even term in the coupling function can have strong qualitative effects

on the dynamics ([52, 53, 54]). So, we add a simple even term to the coupling function such

that the above constraints hold and further, one for which the OA ansatz can still apply.

Hence, we now consider the case where H(φ) = sinφ+ b(1− cosφ) :

u̇i = ωi − cos(ui) +
cee
N

N∑
j=1

(
sin(uj − ui) + b

(
1− cos(uj − ui)

))
where b is an extra parameter. We remark that this is equivalent to taking H(φ) = sin(φ+

γ)− sin(γ). Letting N →∞ and applying the OA reduction with the Cauchy distribution,

we arrive at

ṙ = −r∆− 1− r2

2

(
sin(θ)− ceer

)
θ̇ = µ+

ceeb

2
(1− r2)− 1 + r2

2r
cos(θ).

(33)

We use the Cauchy distribution because, with purely sinusoidal coupling, the Cauchy dis-

tribution model had no oscillations. However, for b > 0, there indeed are oscillations in this

system as can be seen in Fig. 30 where we have set b = 0.5. The two parameter diagram
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Figure 29: Two-parameter diagram with the rescaled equations, (31) on the left and (32) on

the right. The lines and regions are exactly comparable to Figure 16. One can see µ2 < 0

which makes sense because µ is approaching 1 from below. In the right-hand system, the

equations turn out so nicely that one can actually prove the Takens-Bogdanov point occurs

at (µ2, c1) = (−2/9, 4/3) and at the TB, one has (r1, θ1, s1, φ1) = (−1/2, 5/6,−1, 1/3). We

show this in Appendix A.3.
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is essentially identical to the ones that we have previously encountered with oscillations be-

tween the blue and green curves and to the right of the purple curve and above the blue

curve.

Next, as in the previous cases, we can do a rescaling analysis in the limit as ∆ → 0 for

non-zero b to see if the TB point and cusp point meet. Again, we have ∆ = ε2 and

r = 1 + εr1 +O(ε2) θ = εθ1 +O(ε2)

cee = εc1 +O(ε2) µ = 1 + ε2µ2 +O(ε3)

and so the rescaled equations become

ṙ1 = −1− r1(c1 − θ1)

θ̇1 = µ2 +
1

2
θ2

1 − bc1r1 −
1

2
r2

1.
(34)

We now have a simple planar quadratic system whose behavior is much easier to analyze

than Eq. (33). Indeed, we can find both the Takens-Bogdanov point, (µTB, cTB), and the

cusp point, (µcusp, ccusp), for this system. For notational simplicity, we drop the subscripts

in (34). The Jacobian matrix at an equilibrium point is

J(r, θ) =


θ − c r

−r − bc θ

 .

For a Hopf bifurcation, it is necessary that the trace vanish and the determinant be positive.

The trace vanishes when θ = c/2 which implies r = −2/c from ṙ = 0. Setting θ̇ = 0 and

solving for µ we have

µH =
16− c4 − 16bc2

8c2
.

Furthermore, the determinant,

DH =
16− c4 − 8bc2

4c2

must be positive. Since, we want to be in the excitable range where µH < 0, we require

that b > 0. One would have to compute the normal form coefficients to determine if this
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Figure 30: On the left is the bifurcation diagram for system (33) with b = 0.5 and ∆ = 0.27.

We see the same regions as in Figure 25A. On the right is the cascade diagram for system

(33) with b = 0.5. From top to bottom, the lines touching the cee-axis correspond to

∆ = {0.27, 0.21, 0.15, 0.09, 0.03}, just as the other figures. Again, as the noise decreases, the

homoclinic and Hopf bifurcation line get closer to each other. One difference is for fixed ∆,

cee is larger and µ is smaller than the previous cascades.
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was a generic Hopf bifurcation; we will not do that calculation. Numerically, the bifurcation

appears to be supercritical. To find the TB point, we set DH = 0 and thus obtain

µTB(b) = −b, cTB(b) = 2

√
−b+

√
b2 + 1

or

cTB(µ) = 2

√
µ+

√
µ2 + 1.

Since µTB(b) = −b, the TB point occurs in the excitable range when b > 0 and so, for low

noise, there will always be oscillations for b > 0. Unfortunately, we were not able to find the

fold and Hopf bifurcations for fixed b, however, with some algebra, we can find the curve of

cusp bifurcations given below:

ccusp(µ) =

√√√√√2

D +

√
(2µ−D)

(
(D + µ)2 + 9

)
D

,
where

D = D(µ) = sgn(µ)
√
µ2 − 3 + 3(1 + µ2)2/3.

The derivation of this cusp curve as well as some algebraic facts are given in Appendix

A.4. Notice ccusp is in terms of µ; we weren’t able to solve for µcusp and ccusp in terms of

b specifically. The bifurcation diagrams for different values of b are plotted in Figure 31 as

well as the dotted black curves that represent the curve of cusps and TB points. We can

clearly see that for any b > 0, the cusp and TB points are well-separated. As a final remark,

we note that we derived equations similar to Eqs. (29) and (30) for the case when b 6= 0.

We have found no qualitative differences from the b = 0 case and suspect oscillation regimes

remain robust for any b ∈ R, even for b large and negative. In conclusion, we have shown

that by either changing the form of the coupling or the decay of the heterogeneity, we are

able to obtain oscillatory behavior in globally coupled excitable cells when the coupling and

noise lie within a certain range.
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Figure 31: The figure shows the bifurcation diagram for system (34) with different values of b.

From top-right to bottom-left, the clusters of graphs correspond to b = {0.1, 0.3, 0.5, 1.0, 2.0}.

We also have plotted the curve of TB curves and cusp curves for b ≥ 0. The curves clearly

show that the TB point and cusp point remain well-separated as the noise tends to zero.

When b = 0, the TB curve begins at (µ2, c1) = (0, 2) and the cusp curve begins in the

excitable range at (µ2, c1) =
(

3−3/2, 4(3−3/4)
)
. As b increases, the TB and cusp points move

to the left and down, with the TB point continuing off to (−∞, 0) and the cusp point getting

infinitesimally close to (−
√

3, 0).
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3.3 Discussion

In this chapter, we described a number of paths to synchronous oscillations in a globally

coupled network of excitable elements that were driven either by Gaussian noise or by het-

erogeneous noise. There were essentially three parameters of interest: the mean degree of

excitability µ, the coupling strength cee, and the strength of the noise ∆ or σ2. When a cell

is in the excitable regime, noise is required to drive it to fire and coupling is necessary to

drive others to fire. If the noise and coupling are in right region, then macroscopic oscilla-

tions emerge as seen in Fig. 19. In order to better understand this phenomenon, we let the

number of cells grow to infinity and described a series of mean-field models. For Gaussian

noise, we derived a Fokker-Planck equation and from this arose a finite set of equations for

the Fourier modes. We showed that macroscopic oscillations existed and were organized

around 2 codimension-two bifurcations: the Takens-Bogdanov (TB) and the non-central

saddle-node homoclinic (DH). We also considered a highly reduced version of our first model

that considered only the first two Fourier modes and used a recently devised moment-closure

assumption. This system also had the same dynamics and transitions as the coupling and

excitability varied. We remark that this moment-closure result [45] could also have hetero-

geneous noise and this could be explored more but we don’t expect the qualitative behavior

to change.

In the case of heterogeneous noise, where parameters are taken from a distribution,

there is an exact mean-field reduction and we explored the behavior, first with the Cauchy

distribution (section 3.2.2), and then with some different distributions whose tails decayed

faster. In the former case, we obtained a planar dynamical system with the order parameter

and its phase angle and showed that there are no macroscopic oscillations possible. However,

with the other two distributions, the fourth power and the double root, we were able to find

oscillations and had essentially the same dynamics as in the Gaussian noise case. With the

Cauchy distribution, we used a more general coupling function that was still amenable to

the OA reduction and from this, we were able to recover the same bifurcation structure as

in the other models. Finally, in the case of the heterogeneous noise models, we were able to

perform a rescaling analysis in the limit of narrow spread of heterogeneity and this analysis
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again showed the underlying organizing dynamics.

There are several ways one could extend the present work. Here we have considered

a single population of cells that are on average excitable. Many biological systems contain

mixtures of cells that are spontaneously active (pacemakers) so one could use similar methods

to consider systems with, say, two populations of cells whose means are such that they are

oscillatory on average. We could then look at various types of interactions such as m:n-

locking between the oscillatory and excitable populations [55]. We could also look into one

population with a mean in the oscillatory range and one with a mean in the excitable range

and see if there can be macroscopic oscillations in both populations. In the simplest such

scenario, we could just periodically force all the cells in Eq. (11) and explore how the

heterogeneity in the excitable cells disrupts the different locking regimes; we do something

similar to this in our last project. Another more ambitious extension of the present work is to

assume that the network is not globally connected but rather distributed in space. Coombes

and Byrne [56] as well as others [57] have described methods for extending the OA approach

to spatially distributed networks. Then, we might expect to see the spontaneous generation

of waves in addition to synchrony. Lastly, one could explore different noise distributions and

discover necessary or sufficient conditions on the noise distributions that would guarantee a

group of all-to-all sinusoidally coupled excitable cells to generate oscillations.
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4.0 Coupling one oscillator to each noise-driven excitable system

4.1 Introduction

Combining our first and second projects together, we will end this dissertation with

coupling the noisy excitable cells from the second project with one oscillator. Doing this

creates m:n locking as in the first project. In this last chapter, we will examine the stability

of each m:n locking regime as a function of the noise’s variance, either σ2 or ∆. We find sets

of lines in each m:n region and analyze how noisy the excitable cells can become until the

oscillator can no longer create the m:n locking.

4.2 Gaussian

We begin as we did with project 2, with the standard model using Gaussian noise. We

have

u̇i = µ− cos(ui) + ceo sin(x− ui) +
cee
N

N∑
j=1

sin(uj − ui) + ξi(t)

ẋ = 1 +
coe
N

N∑
j=1

sin(uj − x)

(35)

where ξi(t) represents Gaussian white noise with mean 0 and variance 2σ2. The continuous

version of these equations are as in the previous chapter and the probability density function,

denoted by F (t, u), satisfies the nonlinear diffusion equation

∂

∂t
F (t, u) = − ∂

∂u

(
F (t, u)

(
µ− cos(u) + ceo sin(x− u) + cee

∫ π

−π
sin(v − u)F (t, v) dv

))
+ σ2 ∂

2

∂u2
F (t, u).
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We may again assume

F (t, u) =
1

2π

∑
n∈Z

ρn(t)e−inu

with ρ0 = 1 and ρ−n = ρ∗n. By plugging this in to the Fokker-Planck equation and using

system (35), we find

dρn
dt

= n

(
iµρn −

i

2

(
ρn−1 + ρn+1

)
− cee

2

(
ρ∗1ρn+1 − ρ1ρn−1

)
− ceo

2

(
e−ixρn+1 − eixρn−1

)
− nσ2ρn

)
ẋ = 1 +

coe
2i

(
ρ1e
−ix − ρ∗1eix

)
.

(36)

Letting ρn = rne
iθn , we arrive at

ṙn = −n2σ2rn +
n

2

(
rn+1 sin(θn+1 − θn) + rn−1 sin(θn−1 − θn)

+ ceer1

(
rn−1 cos(θn−1 + θ1 − θn)− rn+1 cos(θn+1 − θ1 − θn)

)
+ ceo

(
rn−1 cos(θn−1 + x− θn)− rn+1 cos(θn+1 − x− θn)

))

θ̇n = nµ− n

2rn

(
rn+1 cos(θn+1 − θn) + rn−1 cos(θn−1 − θn)

− ceer1

(
rn−1 sin(θn−1 + θ1 − θn)− rn+1 sin(θn+1 − θ1 − θn)

)
− ceo

(
rn−1 sin(θn−1 + x− θn)− rn+1 sin(θn+1 − x− θn)

))
ẋ = 1 + coer1 sin(θ1 − x)

(37)

with r0 = 1 and θ0 = 0. By taking ρn = 0, ∀ n > 20, we can analyze this system to

investigate the stability of m:n locking. In the rest of this chapter, we choose µ = 0.9 and

cee = 0.5; our goal is to vary ceo and coe, similar to our first project.

Figure 32 shows the different locking patterns that we found for σ2 = 0.01. We could

not make σ2 = 0 since this 20-mode truncation approximation is not valid as σ2 tends to
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Line endpoints (coe, ceo) for each region

1:2 locking (0.02, 0.50) −→ (0.42, 0.313) −→ (0.94, 0.118)

1:3 locking (0.02, 0.426) −→ (0.40, 0.282) −→ (0.94, 0.115)

1:4 locking (0.06, 0.38)→ (0.3, 0.296)→ (0.56, 0.216)→ (0.88, 0.131)

Table 1: Line starting and ending points for system (37). These ordered pairs are plotted in

top graph of Fig 32.

zero. The figure is very similar those in the first project; one can see we have 1:1 locking,

1:2 locking, and 0:1 locking. However, we have also added the smaller 1:3 and 1:4 locking

regions since we will study these as well. We wish to study the robustness of each m:n

locking regime so we decide to take sets of lines in each of the regions and study each point

(coe, ceo) on these sets of lines. To ensure we are able to study the entire length of the region,

including low coe values and high coe values, we were forced to choose 2 lines in the 1:2 and

1:3 locking regimes and 3 lines in the 1:4 locking regime since the regions are so narrow.

Table 1 gives the endpoints for each of the 7 lines. The lower graphs of Figure 32 show the

vertical distance of the respective line to the respective region’s border.

Next, we parameterize each line with parameter t for 0 < t < 1. For each point on these

lines, we have started with σ2 = 0.01 and our goal is to increase σ2 until the respective

locking becomes unstable, similar to a subsection in the first project. Figure 33 shows this;

the y-axis is the variable p with p = 0 denoting the beginning of each group of lines and p = 1

denoting the end of each group of lines. The colored dots depict when one line changes to

the next line in the same locking regime. One can see that the lowest sensitivity to changes

in σ2 occurs at the transition points between these lines. Looking back to the lower three

graphs in Fig. 32, these transition points roughly occur when the lines are closer to the

bottom border of their region than to the top border. This suggests that when the noise

level increases, the region’s top border deteriorates first, allowing for any (coe, ceo) value close

to the bottom border to remain stable in the region for a longer range of σ2.
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Figure 32: The top figure shows the regions of stability depending on coe and ceo for cee = 0.5,

µ = 0.9 and σ2 = 0.01. For (coe, ceo) values above the blue curve, 1:1 locking is stable, between

the black curves, 1:2 locking is stable, between the green curves, 1:3 locking is stable, between

the purple curves, 1:4 locking is stable, and for (coe, ceo) values below the red curve, 0:1-s

locking is stable. There are also small yellow regions in the 1:3 and 1:4 locking regimes where

we found 2:6 and 2:8 locking, respectively. The sets of lines we chose are also shown on this

graph, with the dots representing the endpoints of each line; their (coe, ceo) coordinates are

given in the previous table and in the three graphs beneath the main figure. The lower three

graphs show the projection of each region on their respective lines; this gives an idea of how

far away these lines are from the edges of the region they lie in. The y-axis, ∆h, represents

the vertical distance from the respective line to the respective region’s border.
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Figure 33: Threshold values for σ2 in system (37). These curves represent the noise value

where the respective locking switches from stable to unstable. It appears σ2 has the largest

threshold at the transition points between the lines. The yellow region is where the 1:2

locking becomes unstable and a period doubling bifurcation occurs, where 2:4 locking is

stable. If one keeps increasing σ2, the period doubling region vanishes and 1:2 locking is

once again stable for a short while.
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4.3 Cumulants

Beginning with system (36), we can make use of the cumulant closure reduction instead

of the arbitrary 20 mode truncation. So, we take ρ3 = 3ρ1ρ2−2ρ3
1 and our equations become

ρ̇1 = iµρ1 −
i

2

(
1 + ρ2

)
− cee

2

(
ρ∗1ρ2 − ρ1

)
− ceo

2

(
e−ixρ2 − eix

)
− σ2ρ1

ρ̇2 = 2iµρ2 − ρ1

(
i− ceeρ1 − ceoeix

)
−
(
iρ1 + cee|ρ1|2 + ceoρ1e

−ix)(3ρ2 − 2ρ2
1

)
− 4σ2ρ2

ẋ = 1 +
coe
2i

(
ρ1e
−ix − ρ∗1eix

)
.

(38)

Letting ρ1(t) = r(t)eiθ(t) and ρ2(t) = s(t)eiφ(t), we find

ṙ = −σ2r − 1

2

(
sin(θ)− ceer − ceo cos(x− θ)

)
+
s

2

(
sin(φ− θ)− ceer cos(φ− 2θ)− ceo cos(φ− x− θ)

)
θ̇ = µ− 1

2r

(
cos(θ) + s cos(φ− θ)− ceo sin(x− θ)

)
− s

2r

(
ceer sin(φ− 2θ) + ceo sin(φ− x− θ)

)
ṡ = −4σ2s+ 3rs

(
sin(θ)− ceer − ceo cos(θ − x)

)
+ ceer

2(1 + 2r2) cos(2θ − φ)

− 2r3
(

sin(3θ − φ)− ceo cos(3θ − x− φ)
)

+ r
(

sin(θ − φ) + ceo cos(θ + x− φ)
)

φ̇ = 2µ− r

s

(
cos(θ − φ)− ceo sin(θ + x− φ)

)
+
ceer

2

s
(1 + 2r2) sin(2θ − φ)

− 3r
(

cos(θ) + ceo sin(θ − x)
)

+
2r3

s

(
cos(3θ − φ) + ceo sin(3θ − x− φ)

)
ẋ = 1 + coer sin(θ − x)

(39)

Using the cumulant moment reduction, we are able to begin our noise at σ2 = 0. Doing this,

we arrive at s = r2 = 1, φ = 2θ and

θ̇ = µ− cos(θ) + ceo sin(x− θ)

ẋ = 1 + coe sin(θ − x)
(40)
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Line endpoints (coe, ceo) for each region in all systems where noise is zero

1:2 locking (0.07, 0.47) −→ (0.50, 0.29) −→ (0.96, 0.116)

1:3 locking (0.12, 0.399) −→ (0.50, 0.26) −→ (0.93, 0.1255)

1:4 locking (0.16, 0.361)→ (0.38, 0.285)→ (0.62, 0.212)→ (0.90, 0.1335)

Table 2: Line starting and ending points with σ2 = 0 in system (39). Later, we use these

lines when ∆ = 0 for the OA systems.

which is equivalent to our first system in the beginning of the second chapter. Hence Figure

34, which plots the m:n locking regimes, will be nearly identical to Figure 3 from the begin-

ning; the only difference is here, we use µ = 0.9 which translates to b = 10/9 rather than

b = 11/10 from the second chapter. Also in this new figure, we have added the 1:3 and the

1:4 locking region. Since the noise can begin at zero, we can use different sets of lines than

before. These new lines are given in Table 2 and shown in Figures 34 and 35.

Again, we plan to increase σ2 from 0 until the m:n locking becomes unstable; Figure

36 shows this. The colored dots again denote the transitions between the lines. This figure

strongly resembles that of the 20-mode truncation, where the transition points between lines

are when the noise threshold is at its largest. If one looks back to Figure 35, the transition

points are again roughly where the line is closer to the bottom border than to the top border.

We believe proximity to the borders influences maximum noise threshold, as well as many

other factors.
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Figure 34: Regions of stability depending on coe and ceo, for fixed cee = 0.5, µ = 0.9 and

σ2 = 0 in system (39). Regions are the same as in Fig 32. Later, we use this same Figure

for the heterogeneous noise models.
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Figure 35: Each graph shows the vertical distance between the borders of each region and

the respective line, as before. Notice the endpoints of the line again appear closer to the

bottom border than to the top border, especially in the lines for the 1:3 and 1:4 locking.

This is due to the curved shape of each of these regions. Lastly, since these figures were

made with σ2 = 0, we will have the same lines for the case of hetergeneous noise regardless

which noise distribution g(ω) we choose.
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Figure 36: Threshold values of σ2 for system (39). The dots mark the transition points

between the lines. The same trend is happening here as in Fig 33: σ2 is largest at the

transition points between the lines. One difference we will see later is the magnitude of the

noise threshold; when we use heterogeneous noise, the noise threshold will be much larger

than the Gaussian or dynamic noise we are using here.
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4.4 Ott-Antonsen ansatz

Moving on, we again consider one population of excitable cells ui coupled with one

oscillator, all given by

u̇i = ωi − cos(ui) +
cee
N

N∑
j=1

sin(uj − ui) + ceo sin(x− ui)

ẋ = 1 +
coe
N

N∑
j=1

sin(uj − x)

but with ωi chosen from a density function g(ω); this is the heterogeneous noise scenario. Ap-

plying the same analysis and Ott-Antonsen ansatz as before, we arrive at a similar equation

to (22):

∂α

∂t
= iωα− i

2

(
1 + α2

)
+
cee
2

(
z − α2z

)
+
ceo
2

(
eix − α2e−ix

)
, (41)

where z(t) is once again

z(t) = lim
N→∞

1

N

N∑
j=1

eiuj =

∫ 2π

0

∫ ∞
−∞

F (u, ξ, t)eiu dξ du =

∫ ∞
−∞

α(ω, t)g(ω) dω.

We begin with

g(ω) := g0(ω) =
1

π

∆

(ω − µ)2 + ∆2

with ∆ measuring the spread of g0 and µ is the center of g0. Similar to before, z(t) =

α(µ+ i∆, t). Lastly, the equation for ẋ only requires the addition formula for sin(x) and the

definition of z(t). Plugging this in,

ż = (−∆ + iµ)z − i

2
z2 − i

2
+
cee
2
z
(
1− zz

)
+
ceo
2

(
eix − z2e−ix

)
ẋ = 1 +

coe
2i

(
e−ixz − eixz

)
.

(42)

Let z(t) = r(t)eiθ(t) and so
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ṙ = −r∆− 1− r2

2

(
sin(θ)− ceer − ceo cos(x− θ)

)
θ̇ = µ− 1 + r2

2r

(
cos(θ)− ceo sin(x− θ)

)
ẋ = 1 + coer sin(θ − x).

(43)

When ∆ = 0, we arrive at system (40) so we are able to use the same sets of lines for

this model. Later, this will be true for systems (43) and (45) as well. Figure 37 shows

the threshold values for the standard Cauchy noise distribution. Notice with heterogeneous

noise, the x−axis has a much greater range than when Gaussian noise was used. Also, we

notice that when ∆ increases and the stability for m:n locking is lost, 0:1 locking becomes

stable. We give a sketch proof of this below.

Conjecture: For ∆ large, system (43), has globally stable 0:1 locking for 0 < ceo < 1.

Proof (idea). As ∆→∞, r → 0 from the ṙ equation and hence, ẋ = 1 meaning x(t) = t.

Also for the θ̇ equation, we need cos(θ) = ceo sin(t− θ), which implies

tan(θ) =
ceo sin(t)− 1

ceo cos(t)

Plotting this as an implicit function of θ shows that θ(t) is not firing for 0 < ceo < 1. �
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Figure 37: Threshold noise level for ∆ in system (43). The dots mark the transition between

each line. For each line, the stability of the lockings appear to have a higher sensitivity to

changes in ∆ near the endpoints, where the points are closer to the region’s bottom border

(see Fig 35), and appear to have low sensitivity to changes in ∆ in the middle of each line,

when the points are closer to the region’s top border.
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4.5 Changing g(ω)

We also look at the same noise distributions as earlier, starting with the fourth power:

g(ω) = g1(ω) :=

√
2

π

∆3

(ω − µ)4 + ∆4
.

As before, we arrive at

z(t) =

∫ ∞
−∞

α(ω, t)g(ω) dω = γz1 + γz2

where z1 = α(µ+ eiπ/4∆, t), z2 = α(µ− e−iπ/4∆, t) and γ =
1− i

2
. Plugging these into (41),

we find

ż1 = i(µ+ eiπ/4∆)z1 −
i

2
z2

1 −
cee
2
z2

1(γz1 + γz2)− i

2
+
cee
2

(γz1 + γz2) +
ceo
2

(
eix − z2

1e
−ix)

ż2 = i(µ− e−iπ/4∆)z2 −
i

2
z2

2 −
cee
2
z2

2(γz1 + γz2)− i

2
+
cee
2

(γz1 + γz2) +
ceo
2

(
eix − z2

2e
−ix)

ẋ = 1 +
coe
2i

(
e−ix

(
γz1 + γz2

)
− eix

(
γz1 + γz2

))
.

(44)

Writing z1(t) = r(t)eiθ(t) and z2(t) = s(t)eiφ(t), we see

ṙ = −
√

2

2
r∆− 1− r2

2

(
sin(θ)− ceo cos(x− θ)− cee

2
r − cee

2
s cos(φ− θ) +

cee
2
s sin(φ− θ)

)
θ̇ = µ+

√
2

2
∆− 1 + r2

2r

(
cos(θ)− ceo sin(x− θ) +

cee
2
r − cee

2
s cos(φ− θ)− cee

2
s sin(φ− θ)

)
ṡ = −

√
2

2
s∆− 1− s2

2

(
sin(φ)− ceo cos(x− φ)− cee

2
s− cee

2
r cos(θ − φ)− cee

2
r sin(θ − φ)

)
φ̇ = µ−

√
2

2
∆− 1 + s2

2s

(
cos(φ)− ceo sin(x− φ)− cee

2
s+

cee
2
r cos(θ − φ)− cee

2
r sin(θ − φ)

)
ẋ = 1 +

coe
2

(
r
(

sin(θ − x)− cos(θ − x)
)

+ s
(

sin(φ− x) + cos(φ− x)
))

(45)
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Figure 38 shows how large ∆ can be for each point on each line in system (45) before the

phase-locked solution is unstable. In the 1:4 graph, the threshold appears to be largest at

the transition points between the lines. Similar to other remarks, these endpoints are closer

to the bottom boundary of the 1:4 region than the top boundary, as is shown in Fig 35.

And lastly, we consider

g(ω) = g2(ω) :=
2

π

∆3(
(ω − µ)2 + ∆2

)2 .

Using the steps shown in the Appendix and earlier, with y(t) = α(µ+ i∆, t), we have

ẏ = iµy −∆y − y2

2

(
i+ ceez + ceoe

−ix)− i

2
+
cee
2
z +

1

2
ceoe

ix

ż = iµz −∆(z − y)− yz
(
i+ ceez + ceoe

−ix)+
y2

2

(
i+ ceez + ceoe

−ix)
− i

2
+
cee
2
z +

1

2
ceoe

ix

ẋ = 1 +
coe
2i

(
e−ixz − eixz

)
.

(46)

Letting y(t) = r(t)eiθ(t) and z(t) = s(t)eiφ(t), we arrive at

ṙ = −r∆− 1− r2

2

(
sin(θ)− ceo cos(x− θ)− cees cos(φ− θ)

)
θ̇ = µ− 1 + r2

2r

(
cos(θ)− ceo sin(x− θ)− cees sin(φ− θ)

)
ṡ = −s∆ + rs

(
sin(θ)− ceo cos(θ − x)

)
− r2

2

(
sin(2θ − φ)− ceo cos(2θ − x− φ)

)
+ r
(
∆− cees2

)
cos(θ − φ) +

cee
2
s
(

1 + r2 cos(2θ − 2φ)
)
− 1

2

(
sin(φ)− ceo cos(x− φ)

)
φ̇ = µ− r

(
cos(θ) + ceo sin(θ − x)

)
+
r2

2s

(
cos(2θ − φ) + ceo sin(2θ − x− φ)

)
+
r

s
(∆− cees2) sin(θ − φ) +

cee
2
r2 sin(2θ − 2φ)− 1

2s

(
cos(φ)− ceo sin(x− φ)

)
ẋ = 1 + coes sin(φ− x).

(47)

We found that the maximum threshold of ∆ in this section was overall similar to the threshold

when we used g(ω) = g1(ω) and this is shown in Figure 39.
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Figure 38: Noise threshold for ∆ in system (45). One can see it is quite different from using

the Cauchy distribution and has some strange behavior, especially in the 1:3 region. As ∆

is allowed to increase, the 1:3 locking is disrupted by region X, where 0:3 locking is stable.

Then, as ∆ keeps increasing, 1:3 becomes stable again for a little while.
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Figure 39: Threshold values for ∆ in system (47). We can remark on its similarities to the

previous figure. Region Y is also a region where 1:3 locking is lost and 0:3 locking becomes

stable.

To reiterate, the systems that used g0(ω), g1(ω), and g2(ω) had the same sets of lines.

Because of this, we are able to compare the noise threshold for ∆ for each density g(ω), given

a specific m:n locking regime. We do this in Figs 40, 41 and 42 where, in each figure, the

graph with no markers represents the Cauchy distribution, the graph with arrow markers

represents the fourth power distribution, and the graph with circular markers represents the

double root distribution.
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Figure 40: Comparing 1:2 locking for the heterogeneous noise systems. On the left is the

vertical distance from the respective 1:2 line to each 1:2 boundary and on the right is the

noise threshold for ∆ for each of the three probability distributions. Notice how the noise

threshold all three distributions generally decreases as we move down the 1:2 region in Fig

34. This will be slightly different when comparing the 1:3 and 1:4 locking patterns. Also,

the Cauchy distribution will always have a lower noise threshold than the fourth power and

double root distributions.
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Figure 41: Comparing 1:3 locking for the heterogeneous noise systems. The fourth power

and the double root distribution share many similar qualities: both have a 0:3 locking region

and both are roughly constant for the first line then steadily decrease for the second line.

For the Cauchy distribution, the maximum threshold appears to be in the middle of each

line, unlike the other two distributions.
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Figure 42: Comparing 1:4 locking for the heterogeneous noise systems. The fourth and

double distributions are nearly identical, both peaking at the transition endpoints, whereas

the Cauchy distribution looks the same as that in Figure 41, with peaks near the midpoints

of each line.
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4.6 Discussion

In this final section, we coupled each system of noisy excitable cells with one oscillator in

order to recreate the m:n locking regimes that we had in the first project. However, unlike

our first project, we had an extra parameter with these systems: the noise level of our noise

distribution. We began with Gaussian white noise and truncated our system to 20 modes

as before. We also started our noise at σ2 = 0.01 since, as σ2 tends to zero, the 20-mode

truncation is no longer valid. At this noise level, we varied ceo and coe and found different

phase-locked solutions between the group of excitable cells and the single oscillator. To

examine how large we could make σ2, we set lines in each of the regions and for each point

on the line, we increased σ2 to see how large the noise level could become before instability

occurred. Later, we performed the same analysis on the cumulant equations, where we could,

in fact, take σ2 = 0. Afterwards, we moved on to heterogeneous noise where we had three

noise distributions: g0(ω) (Cauchy), g1(ω) (fourth), or g2(ω) (double). We set ∆ = 0 in

each of these models, noticed it had the same simplified bifurcation diagram as the cumulant

model; thus, we used those lines for the analysis here. Comparing phase-locked solutions

to each other, ∆ had the potential to be largest when dealing with the 1:2 locking and the

smallest when dealing with the 1:4 locking. Comparing noise distributions, the range for

∆ was largest with the faster decaying distributions and smallest when using the Cauchy

distribution. We suspect this is because the Cauchy distribution does not decay fast enough

and thus, it is easier for the m:n locking to become unstable.

Studying populations of coupled oscillatory and excitable cells is a common topic, as

we pointed out earlier (see [5, 6, 7, 8]); however, few networks, such as those involving

circadian rhythm, will just use one oscillatory cell (also see [58]). As one can see, this is

a clear extension of our second project but there could be many other extensions. One is

to periodically force the excitable cells, rather than couple them with the oscillator (see

[59, 60, 31, 61, 62, 63]). Another extension that was mentioned previously was to have two

populations of cells. This can be done by letting g(ω) be a bimodal distribution, where one

peak is in the excitable range and the other peak is in the oscillatory range. And notice that

when the variance of the oscillatory population tends to infinity, it simplifies to our second
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project and when the variance of the oscillatory population tends to 0, we return to our

third project, with a few minor differences. These bimodal distributions could have different

density functions for the different populations as well and the Ott-Antonsen ansatz can still

be used.
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5.0 Conclusions

In this dissertation, our goal was to understand how excitable cells and oscillatory cells

interact with each other and, ultimately, decide if excitable cells could generate oscillations.

In our first project, we began with a 1-dimensional chain model of one oscillator connected

to one excitable cell and later extended this by adding another oscillator at the other end of

the excitable cell and then adding another excitable cell in the middle of the chain. We found

that this system exhibits m:n locking, where the excitable cells fire m times for every n times

the oscillators fire. We also varied the oscillator frequencies and studied how this affected

the stability of these m:n locking regions. Lastly with our OEEO model, we performed weak

coupling analysis and the method of multiple time scales to prove the 0:1 anti-phase locking

and the 0:1 synchrony locking meet as the parameter ceo → 0. With two excitable cells

in the middle, both had the same steady state behavior (both fired or both did not fire),

however, extending this beyond two inner excitable cells does not guarantee this, as we saw

in the OEEEO model, even if you have the same parameters but different initial conditions.

We also studied an OEO chain with an arbitrary number of E cells and connected this with

traveling waves. Lastly, we looked into the Morris-Lecar model and used these dynamics in

our OEEO system to retrieve our familiar m:n locking regions.

In our second project, we wanted to implement noise in our excitable cells, as this is a

more realistic approach. Without oscillators to help, the excitable cells will not fire; however,

if they have noise added, some excitable cells will begin to fire randomly. We must make

sure that the noise has mean 0 so our excitable cells will be, on average, excitable. We

studied both dynamic and heterogeneous noise and found that both types of noise could

produce macroscopic oscillations. Using all-to-all coupling rather than chain-coupling, we

took advantage of the Fokker-Plank equation and mean field theory methods to develop

a finite number of differential equations for our model. Beginning with dynamic noise,

noise that depends on time, we used Gaussian white noise and a moment closure, and we

found there are regions of parameters where the excitable cells are, on average, excitable

and the system exhibits oscillatory behavior. We also looked towards cumulant closure
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rather than moment closure and found that we can achieve the same dynamics with a much

smaller sized system. Next, we studied heterogeneous noise, which does not depend on time.

Because this was all-to-all coupled, we again used the Fokker-Plank equation as well as the

Ott-Antonsen ansatz, which assumes the Fourier coefficients of F (t, u) are powers of n. By

doing this, we arrive at a much simpler system of equations. However, we had to choose

the density distribution from which the noise originated and as a consequence, we needed

the densities to be easily integrated, preferably using the residue theorem. So we chose the

Cauchy distribution and two fourth-power decaying distributions, which we have been calling

“fourth power” and “double root” distributions. With the Cauchy distribution, under purely

sinusoidal coupling, we were able to prove there were no oscillations for this noisy excitable

system, for any parameters we choose. However, both the fourth power and the double root

distributions had oscillatory behavior and had structure very similar to the moment closure

and cumulant closure models when we used Gaussian noise. This structure comprised of two

curves of fold bifurcations which met at a cusp point, a Hopf bifurcation which met one of

the fold curves at a Takens-Bogdanov (TB) point, and a curve of homoclinic bifurcations

which began at the TB point and continued to the other fold curve, where it met at a

degenerate homoclinic (DH) point. As we decreased the noise in each model, we noticed

that all three points, but specifically the TB point and cusp point, approached each other

as well as the coupling went to 0 and the average excitability parameter µ approached 1.

So, we performed a rescaling analysis to analyze if these points remain well-separated in the

limit as ∆ → 0 and found that they indeed remained separated. Afterwards, we modified

our coupling function to include a cosine term. Once we did this, the Cauchy distribution

exhibited macroscopic oscillations, similar to the other two densities. Lastly, we performed

a rescaling analysis on this model and found that the three bifurcation points still remained

well-separated.

In our third and final project, we extended our models to include the coupling of one

oscillator and, in doing so, we can once again get m:n locking dependent on the parameters

ceo and coe, similar to the OE model from the first project. Now we have an extra parameter

we did not have before: the noise level, σ2 or ∆, depending on the type of noise. Hence,

we began with zero or small noise to make our system resemble an OE system as much as
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possible, then in each of the m:n locking regions, we studied sets of lines and for each point

on these lines, we increased the noise threshold and studied how it affected the stability of the

m:n locking region. This is similar to a subsection in our first project, where we varied the

oscillator frequencies along similar lines. One thing to notice is the fourth power and double

root density distributions have a larger tolerance for noise than the Cauchy distribution.

Also, the heterogeneous noise models have a larger noise tolerance than the dynamic noise

models.

In all, oscillators coupled with excitable cells have the ability to produce macroscopic

oscillations and phase-locking patterns. And, from the second project, as long as the ex-

citable cells are driven by some noise, oscillations can also persist. The third project, which

introduced one oscillatory cell, can give insight to networks focused on the cardiac system,

however there, cells are more locally coupled rather than globally coupled. Still, if we relax

our assumptions in this project, we can find more promising and realistic results. These the-

oretical approaches are paramount to understanding how neurons interact with each other

in the real world.
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Appendix

A.1 Residue theory for g1(ω)

To arrive at Eq (29), we use the residue theorem and take the contour around the upper

half of the complex plane to get

z(t) =

∫ ∞
−∞

α(ω, t)g(ω) dω = 2πi
∆3
√

2

π

(
lim

ω→µ+eiπ/4∆

(ω − µ− eiπ/4∆)α(ω, t)

(ω − µ)4 + ∆4

+ lim
ω→µ−e−iπ/4∆

(ω − µ+ e−iπ/4∆)α(ω, t)

(ω − µ)4 + ∆4

)

= 2πi
∆3
√

2

π

(
α(µ+ eiπ/4∆, t) lim

ω→µ+eiπ/4∆

1

4(ω − µ)3

+ α(µ− e−iπ/4∆, t) lim
ω→µ−e−iπ/4∆

1

4(ω − µ)3

)

= i

√
2

2

(
e−3iπ/4α(µ+ eiπ/4∆, t)− e3iπ/4α(µ− e−iπ/4∆, t)

)
.

And so we find z(t) = γz1 + γz2 where z1 = α(µ + eiπ/4∆, t), z2 = α(µ − e−iπ/4∆, t) and

γ = i

√
2

2
e−3iπ/4 =

1− i
2

. Plugging these into (22), we see

ż1 = i(µ+ eiπ/4∆)z1 −
i

2
z2

1 −
cee
2
z2

1(γz1 + γz2)− i

2
+
cee
2

(γz1 + γz2)

ż2 = i(µ− e−iπ/4∆)z2 −
i

2
z2

2 −
cee
2
z2

2(γz1 + γz2)− i

2
+
cee
2

(γz1 + γz2).
(48)

Writing z1(t) = r(t)eiθ(t) and z2(t) = s(t)eiφ(t), we separate real and complex parts and arrive

at (29).
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A.2 Residue theory for g2(ω)

The main difference in deriving (30) is that there is a pole of order 2 instead of order 1.

Again taking the contour around the upper half of the complex plane, we see

z(t) =

∫ ∞
−∞

α(ω, t)g(ω) dω = 2πi
2∆3

π

(
lim

ω→µ+i∆

∂

∂ω

[
(ω − µ− i∆)2α(ω, t)(

(ω − µ)2 + ∆2
)2

])

= 4∆3i lim
ω→µ+i∆

∂

∂ω

[
α(ω, t)

(ω − µ+ i∆)2

]
= lim

ω→µ+i∆

(
4∆3i

(ω − µ+ i∆)2

∂α

∂ω
(ω, t)− 8∆3iα(ω, t)

(ω − µ+ i∆)3

)

and so

z(t) = −i∆∂α

∂ω
(µ+ i∆, t) + α(µ+ i∆, t) (49)

where
∂α

∂ω
(µ+ i∆, t) =

∂α

∂ω
(ω, t)

∣∣∣∣
ω=µ+i∆

. Taking the derivative with respect to time on both

sides and then using (22), we get

ż(t) = −i∆ ∂

∂ω

(
∂α

∂t
(ω, t)

)∣∣∣∣
ω=µ+i∆

+
∂α

∂t
(µ+ i∆, t)

= −i∆ ∂

∂ω

(
iα(ω, t)ω − i

2
− i

2
α2(ω, t)− cee

2
α2(ω, t)z +

cee
2
z

)∣∣∣∣
ω=µ+i∆

+ i(µ+ i∆)α(µ+ i∆, t)− i

2
− i

2
α2(µ+ i∆, t)− cee

2
α2(µ+ i∆, t)z +

cee
2
z.

Let y = y(t) = α(µ+ i∆, t). Then we have

ż = −i∆
(
i(µ+ i∆)

∂α

∂ω
(µ+ i∆, t) + iy − iy ∂α

∂ω
(µ+ i∆, t)− ceeyz

∂α

∂ω
(µ+ i∆, t)

)
+ (iµ−∆)y − i

2
− i

2
y2 − cee

2
y2z +

cee
2
z
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= −i∆∂α

∂ω
(µ+ i∆, t)

(
iµ−∆− iy − ceeyz

)
+ iµy − i

2
− i

2
y2 − cee

2
y2z +

cee
2
z

= (z − y)(iµ−∆− iy − ceeyz) + iµy − i

2
− i

2
y2 − cee

2
y2z +

cee
2
z

where we used (49). The equation for ẏ uses equation (22) and so, putting them together,

ẏ = iµy −∆y − i

2
y2 − i

2
− cee

2
y2z +

cee
2
z

ż = iµz −∆z + ∆y − iyz +
i

2
y2 − ceeyzz +

cee
2
y2z − i

2
+
cee
2
z.

(50)

As before, letting y(t) = r(t)eiθ(t) and z(t) = s(t)eiφ(t), we arrive at (30).

A.3 Takens-Bogdanov point for the rescaling analysis with g2(ω)

We will show the TB point for the rescaling analysis with the double root distribution

occurs at (µ2, c1) = (µ, c) = (−2/9, 4/3). With this information, we can also find the fixed

point values (r1, θ1, s1, φ1) = (r, θ, s, φ) = (−1/2, 5/6,−1, 1/3). We begin by rewriting the

rescaling equations for the double root distribution with the subscripts omitted:

ṙ = −r(c− φ)− s(φ− θ)

θ̇ = µ− 1

2
φ2 + φθ − rs+

1

2
s2

ṡ = −1− s(c− φ)

φ̇ = µ+
1

2
φ2 − c(φ− θ)− 1

2
s2.

(51)

We also know that r < 0, s < 0, and c > 0. Denote J as the Jacobian of this system and let

f(λ) := det(J−λI) where I is the identity matrix. By the definition of the Takens-Bogdanov

point, we require f(0) = f ′(0) = 0. To get started, we write the Jacobian matrix below:
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J :=


φ− c s θ − φ r − s

−s φ s− r θ − φ

0 0 φ− c s

0 c −s φ− c

 .

Now, f(λ) will be as follows:

f(λ) = det


φ− c− λ s θ − φ r − s

−s φ− λ s− r θ − φ

0 0 φ− c− λ s

0 c −s φ− c− λ



= (φ− c− λ)

(
(φ− c)

(
(φ− c− λ)2 + s2

)
+ c
(
s(s− r)− (θ − φ)(φ− c− λ)

))
+ s

(
s
(

(φ− c− λ)2 + s2
)

+ c
(
s(θ − φ)− (r − s)(φ− c− λ)

))

=
(
s2 + (φ− c− λ)2

)(
s2 + (φ− c− λ)2 + c(φ− c− λ)

)
− c(θ − φ)

(
(φ− c− λ)2 − s2

)
+ 2sc(s− r)(φ− c− λ).

Further, we also need to be at a fixed point so ṙ = θ̇ = ṡ = φ̇ = 0. From the ṡ equation, we

know φ− c = 1/s and by subtracting the φ̇ equation from the θ̇ equation, we can rearrange

and find θ − φ = s2(r − s). Plugging these into f(λ) yields

f(λ) =
(
s2+(1/s−λ)2

)(
s2+(1/s−λ)2+c(1/s−λ)

)
−cs2(r−s)

(
(1/s−λ)2−s2+2/s2−2λ/s

)
.

Setting f(0) = 0 and f ′(0) = 0, we arrive at

(
s2 + 1/s2

)(
s2 + 1/s2 + c/s

)
− cs2(r − s)

(
3/s2 − s2

)
= 0 (52)
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and

(−4/s)
(
s2 + 1/s2

)
− c
(
s2 + 3/s2

)
+ 4cs(r − s) = 0, (53)

respectively. In (53), we can solve and find

cs2(r − s) = s2 + 1/s2 +
cs

4

(
s2 + 3/s2

)
.

With this, the left hand side of (52) becomes

(
s2 + 1/s2

)(
s2 + 1/s2 + c/s

)
−
(
s2 + 1/s2 +

cs

4

(
s2 + 3/s2

))(
3/s2 − s2

)

=
(
s2 + 1/s2

)(
s2 + 1/s2 − 3/s2 + s2

)
− cs

4

(
9/s4 − s4 − 4− 4/s4

)

=
(

2 + 2/s4
)

(s4 − 1) +
c

4s3

(
s8 + 4s4 − 5

)
= (s4 − 1)

(
2 + 2/s4 +

c

4s3
(s4 + 5)

)
.

Hence, we have

(s4 − 1)(cs5 + 8s4 + 5cs+ 8) = 0 (54)

as our new equation. Now we will modify equation (53). We know θ − φ = s2(r − s) and

using ṙ = 0, we get r = s2(φ − θ). Combining these, we find that r =
s5

s4 + 1
. So (53) can

be modified to

(−4/s)
(
s2 + 1/s2

)
− c
(
s2 + 3/s2

)
− 4cs2

s4 + 1
= 0.

Solving for c will yield

c = − 4(s4 + 1)2

s(s8 + 8s4 + 3)
. (55)

Supposing s4 6= 1 in (54), then we must have c = −8(s4 + 1)

s(s4 + 5)
. However, this equation and

equation (55) never intersect. Thus, s4 = 1, and since s < 0, we have s = −1. This implies

c = 4/3 from (55) and from earlier formulas, r = −1/2, φ = c + 1/s = 1/3 and θ = 5/6.

Finally, using the φ̇ or θ̇ equation, one finds µ = −2/9.
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A.4 Cusp curve for the rescaling analysis with the Cauchy distribution

We begin the proof of ccusp(µ) by eliminating the subscripts in (34) as before. Since the

cusp occurs at a fixed point, ṙ = θ̇ = 0 and so θ = c + 1/r. Thus, θ̇ = −ṙ/r2. Solving for ṙ

and using (34), we have

ṙ = −r2
(1

2
(c+ 1/r)2 − 1

2
r2 − bcr + µ

)
=

1

2

(
r4 + 2bcr3 − (c2 + 2µ)r2 − 2cr − 1

)
=:

1

2
f(r).

Now that θ has been eliminated from the system of equations, we can work with f(r) alone.

At the cusp bifurcation specifically, we know that f(r) = f ′(r) = f ′′(r) = 0. So we have

three equations:

r4 + 2bcr3 − (c2 + 2µ)r2 − 2cr − 1 = 0 (56)

2r3 + 3bcr2 − (c2 + 2µ)r − c = 0 (57)

6r2 + 6bcr − (c2 + 2µ) = 0. (58)

Our task is to eliminate r and b. Begin by multiplying (57) by 2r and subtracting it from

(56). Also, multiply (57) by r and subtract off (56). Respectively, we arrive at

−3r4 − 4bcr3 + (c2 + 2µ)r2 − 1 = 0 (59)

r4 + bcr3 + cr + 1 = 0. (60)

Next, multiply (58) by 2r2 and add it to three times (59) and multiply (58) by r2 and

subtract it from six times (60). This results in our two main equations with b removed:

3r4 + (c2 + 2µ)r2 − 3 = 0 (61)

(c2 + 2µ)r2 + 6cr + 6 = 0. (62)
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Now we solve for r2 in (61) and we set it equal to the square of the solution for r in (62).

Keeping in mind that r is negative, we find

−(c2 + 2µ) +
√

(c2 + 2µ)2 + 36

6
=

(
−3c+

√
3c2 − 12µ

c2 + 2µ

)2

.

Distributing the right hand side and putting the radicals on one side, one has

(c2 + 2µ)2
√

(c2 + 2µ)2 + 36 + 36c
√

3c2 − 12µ = 72(c2 − µ) + (c2 + 2µ)3.

Squaring both sides and simplifying yet again by putting the radicals on one side, we see

2c
√

(c2 + 2µ)2 + 36
√

3c2 − 12µ = 3c4 + 12(3− µ2).

We square both sides one last time and notice this is a fourth order polynomial in c2, and

we can use the quartic formula to obtain ccusp(µ), given in the chapter. It is important to

note the coefficient of c6 is zero once you square both sides, which will greatly simplify the

curve equation. Lastly, even though we cannot find µcusp and ccusp in terms of a general b,

we list some properties for
(
µcusp(b), ccusp(b)

)
:

1.
(
µcusp(1), ccusp(1)

)
= (−1/2, 1)

2.
(
µcusp(0), ccusp(0)

)
=
(

3−3/2, 4(3−3/4)
)
≈ (0.19245, 1.75477)

3. µcusp(b∗) = 0 when b∗ = 1
3

√
2
√

3− 3 ≈ 0.227083 and ccusp(b
∗) = 4

√
12(2
√

3− 3) ≈

1.5362

4. lim
b→∞

(µcusp(b), ccusp(b)) = (−
√

3, 0)

5. ccusp ∼ 1/b and µcusp +
√

3 ∼ 1/b for b large.
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