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Utilizing AMI Interval Data and Machine Learning Algorithms to Identify

Distribution System Topology and DER Connectivity

Elizabeth M. Cook, PhD

University of Pittsburgh, 2021

The ongoing deployment of Distributed Energy Resources (DERs), while bringing ben-

efits, introduces significant challenges to the electric utility industry, especially in the dis-

tribution grid. These challenges call for closer monitoring through state estimation, where

real-time topology recovery is the basis for accurate modeling. With the dramatic increase

of the residential photovoltaic (PV) systems (i.e., DER), utilities need to know the loca-

tions of these new assets to manage the unconventional two-way power flow for sustainable

management of distribution grids. Previous methods to maintain the system connectivity

are either based on outdated maps or an ideal assumption of an isolated sub-network for

topology recovery, e.g., within one transformer. This requires field engineers to identify the

association, which is costly and may contain errors. As it has been shown that, historical

records are not always up-to-date.

To solve these problems, a density-based clustering method is proposed that leverage

both voltage domain data from the Advanced Measurement Infrastructure (AMI) and the

geographical space information. The goal of such a method is to efficiently segment data

sets from a large utility customer pool, after which other topology reconstruction methods

can carry over. Specifically, it is shown how to use the voltage data and GIS information to

refine the connectivity within one transformer. To give a guarantee, a theoretic bound for

the proposed clustering method is shown, providing the ability to explain the performance

of the machine learning method. Numerical results on both IEEE test systems and utility

networks show the outstanding performance of the new method. An implementation is also

demonstrated in the field.

In this dissertation, we consider the rich potential of large utility datasets, in which

physical laws are inherently embedded, to identify system information and utilization by

using machine learning algorithms. In order to provide situational awareness and tackle
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practical issues such as limited measurements and un-scalability, we start with proposing a

customized data-driven approach to provide an accurate model for distribution grid control

and planning.
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1.0 Introduction

The power grid has been built and designed over the last 120 years standardizing on the

idea of one-way power flow from the transmission system to the distribution system [34] as

shown in Fig. 1.

Figure 1: Illustration of the Current Power Grid.

Recently, there is a rapidly expanding usage of distributed energy resources (DERs) in

the distribution grids, which is proliferating emerging technologies that ultimately facilitate

renewable energy (i.e., photovoltaic and storage devices). However, with the continuous

growth of DER penetration, the one-way power flow is starting to change direction from

the distribution system to the transmission system, leading to a two-way power flow [21] as

shown in Fig. 2.

Figure 2: Illustration of the Future Power Grid with the Integration of Utility-scaled Re-

newable Generation and DER Interconnections.
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Therefore, Electric Distribution Companies (EDCs) need to have visibility on their dis-

tribution assets to avoid potential risks, e.g., outages and equipment damages, caused by

uncertain two-way power flows. For example, EDCs can use the topology information to run

analyses and troubleshoot the power grid’s real-time operation as well as optimizing planned

work. However, a major challenge for EDCs to gain visibility today is on how to develop

system-wide models of their distribution systems, where an accurate topology is the basis

for improved system-observability and controllability [41,62]. Such modeling challenges exist

because a large portion of the infrastructure pre-dates modern communication methods. As

a result, there is a significant need for topology identification processes within the EDCs. For

topology observability, one idea is to replicate the approaches on the transmission grid. For

example, our partner EDC mainly used electronic document repositories and human effort

to construct the models on transmission grid. Such a model is subsequently maintained and

updated by a human interface based on field measurements to validate or re-estimate the

topology, e.g., chi-square Test for topology error process. These approaches have worked

well for the transmission grid due to fully constructed monitoring systems and relatively

infrequent topology change [12, 24, 31, 59, 66]. For instance, the majority of transmission

changes are planned for weeks, months, or even years, allowing the topology model to be

updated with high accuracy [65]. Unfortunately, the sensor types and numbers are much

fewer in the distribution grid with regular and “unexpected” topology changes [6,58,61], due

to routine but unreported reconfiguration [6,18,39,60], e.g., deliberately changing the radial

topology to a meshed distribution topology in city networks [5,18]. The dramatic increase of

residential DER systems in recent years has accelerated the modernization of the power grid.

With the introduction of DER, the distribution grid is becoming less predictable with the

addition of the intermittent generation, undergoing multiple re-configurations and upgrades

throughout almost each day of operation for many utilities [2,3,64]. When considering ”grid

modernization” the term applies not only to the physical, but also, digital infrastructures

that allow for 2-way power distribution systems. As such, there is a deep need to better

understand the modernization of planning and forecasting tools so that decision-making can

become as flexible as distributed resources themselves. Fortunately, with the deployment

of Advanced Meter Infrastructure (AMI), utilities can employ big data to develop topology
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recovery processes with the little manual effort. AMI data and their GPS coordinates pro-

vide additional information to accurately recover the topology of the grid, e.g., connections

among generation devices (e.g., residential solar panels), load devices (e.g., electric vehicle

charging station), and devices with both generation and load capability (e.g., battery). Util-

ities have to alter their traditional ways of operating and planning to maintain the reliability

and safety of the grid. To accomplish the transformation, utilities have to detect and monitor

all the DER installations in their territory. One challenge flies in the face is that sometimes

the existence of DER systems do not align with the utilities’ records, as such, we can focus

on future predictive tools to better determine the impact of intermittent renewables on grid

reliability. Therefore, there has been significant work done to develop methods to use the

AMI and micro-synchrophasor data to recover the system topology leveraging voltage cor-

relations [6, 58, 61]. In this dissertation, we consider the power of a large amount of data,

where physical laws are inherently embedded. System topology and accuracy is of the ut-

most importance in regards to start understanding the implications of DER. If the system

is not identified and modeled correctly, then a large amount of data cannot be leveraged to

analyze past, current, and future models to make accurate decisions about future infrastruc-

ture needs by minimizing cost and maximizing DER benefits. The overall goal will be to

understand their impact on the grid in short-term and long-term planning cycles.
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1.1 Objective

The key objective of this research is to design data-driven machine learning algorithms

to identify system topology and DER interconnections to provide utilities with secure, fast,

and scalable processing tools for real-time data.

The first area of study is to develop a physically meaningful, clustering method to roughly

separate the data. Second, we use both the voltages and street information to characterize

the data for algorithmic solutions to refine the solution.

The second area of study is to introduce a proposed method to detect customers with

solar or without solar. We explain why solar detection is urgently needed and why the

problem is hard and costly in reality based on our data mining of realistic utility data.

Model the solar detection problem in supervised learning, semi-supervised learning (SSL),

and one-class classification (OCC) setups. So, future researchers can develop relevant tools

based on our problem modeling. And then proposes new SSL and OCC methods based on

autoencoders, greatly boosting the power data representation and learning.

The last area of study will be to perform system planning studies using the current utility

data available and then the additional extracted data from the AMI meters and compare

the results from each to provide insight on the key attributes that are important to ensure

the grid is being planned with minimized cost and maximize DER assets.

4



1.2 Dissertation Organization

This dissertation is organized so that any content can be separated into three primary

categories: literature review, proposed work, and summary of completed work utilized in a

power system analysis.

Section 2 addresses the background literature review, summarizing the differences be-

tween transmission and distribution systems and comparing the availability of a utility dis-

tribution system to the transmission system and how a new framework is emerging among

utilities seeking to plan for DER integration proactively.

Section 3 covers the work in regards to developing a utility data-driven (AMI voltage

data, utility assets GPS, and publicly available GPS) machine-learning algorithm to identify

system topology rapidly and effectively on a distribution system.

Section 4 covers the work in regards to developing a utility data-driven (e.g., AMI kWh

usage data) machine-learning algorithm to analyze solar or non-solar customer usage data.

The algorithm identifies DER interconnections (i.e., solar). This will aid in the implemen-

tation of a proactive DER planning process.

Section 5 provides the results of a conducted hosting capacity analysis (HCA) by using

the deliverable from the two previous initiatives — the first analysis using the existing data

available to the utility planner. The second analysis will use the recovered data from the

AMI meters. Then the two sets of results will be compared by analyzing the results to

determine impact of the optimized location of the DER in regards to cost and potentially

maximize DER benefits.

Section 6 provides an overall conclusion.

5



2.0 Background

As DER increase, electric utility system planning processes must transition from a dis-

crete process to a probabilistic process where multiple time variable analysis is performed

to ensure continued reliability under unknown circumstances. The distribution system cur-

rently experiences higher exposure to outages and switching configurations, which makes

the requirement of having an accurate system model available for planning and operational

purposes. The variability in electrical output from DER impacts the utilities’ ability to

forecast and respond to real-time overloads and regulate voltage within limits. The tasks

mentioned in this research could be utilized to guide the development of a roadmap for devel-

opers/aggregators, EDCs, TOs, RTO/ISO, and others on what the roles and responsibilities

should be and how to share data of DER to ensure accurate system planning forecasts are

developed and utilized. Early planning efforts will enable utilities to minimize the risks and

realize the benefits of a distributed energy future. With the permission of a utility in the

Mid-Atlantic, the research will be able to utilize real utility data to perform system analyses

to provide a public awareness of what the challenges are that a utility faces in regards to

planning and implementing infrastructure and advanced technologies while managing the

unknown forecasts of future DER within a utility’s business model. The utility provides

electric service to more than 5590,000 customers.

This challenge is representative of many utilities in the U.S., but also in broader markets

where generation and T&D have been divided. At the same time, when considering the

need for more resilient power infrastructure and being associated with diversified energy

resources, it is now vital for utilities to understand how they can best manage these new

resources that are put onto their systems. When considering the pressure for continued high-

levels of reliability, it is increasingly vital for utility system operators to be able to understand

and manage the power that comes onto the U.S. grid through DER in the residential and

commercial sectors, specifically. Without doing so, there is an increased risk that utility

system managers will inaccurately manage the grid.
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This is not only a problem for system operators, but also for power market participants

who may find it increasingly challenging to predict system pricing. For optimal grid opera-

tion, they must ensure that 1.) Utilities are able to predict the amount of DER assets coming

online within their systems; 2.) The approximated deviation of existing data/modeling uses

from actual real-time existing data, and 3.) The impact of this deviation/opportunity for

more accurate forecasts and improvements upon current operational costings.

The first section is a summary of the transmission system and design overview for the

current transmission system. The second section is a summary understanding the distribu-

tion system design aspects. The final section provides a comparison of the availability of

a utility distribution system to the transmission system and providing an overview how an

inaccurate system topology could limit the design and maintenance of the existing grid in

regards to the emerging technologies’ impacts.
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2.1 Transmission System Overview

vs. Distribution System Overview

The first step in understanding the difference between transmission and distribution

systems is the fundamental differences between the mathematical equations between the two

designs. The difference between the transmission and distribution power flow equations is

with transmission, and one must consider the phase angle difference between two sources as

the transmission system is connected as a network. However, with the distribution system,

it is a radial system that only has one source that drives the calculations, and therefore,

one does not have to worry about phasor math during its current design state. The first

step will be to state the fundamental make-up and theory of an A.C. transmission line, and

when voltage magnitudes and phase angle information is available between two substations,

the real and reactive power flow can be calculated. Calculating the power flow includes

calculating the M.W. flow on a transmission facility, which is the result of the resistive

component (R) and is in-phase with the load being served. The Mvar flow on a transmission

facility is the result of the reactive component (X). Mvars supply magnetizing current for

inductive loads and charging current for capacitive loads. When calculating the impedance

of a facility on a transmission system, the admittance matrix must be defined. Different

lines have different values for resistance, inductance, and capacitance depending on the

length, conductor spacing, and conductor cross-sectional area. Resistance is the property

of the material that opposes current flow real power or watt losses due to I2R heating.

The line resistance is dependent on conductor material, conductor cross-sectional area, and

conductor length. In a purely resistive circuit, voltage and current are in phase; and the

instantaneous power equaling the product of the two. Reactance is the opposition to current

caused by capacitance and inductors. Reactance causes current to be out-of-phase with

voltages. Inductive reactance (XL) causes the current to lag the voltage, and capacitance

reactance (XC) causes the current to lead the voltage. Loads containing pure inductance or

pure capacitance cause the current to be 90 degrees out of phase with the voltage. Inductance

and capacitance depend on the conductor length, conductor cross-sectional area, and distance

between phase conductors. Capacitive reactance increases as the cross-sectional area of the
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conductor increases and decreases as the conductor spacing increases. Inductive reactance

decreases as the cross-sectional area of the conductor increases and increases as the conductor

spacing increases. To summarize, the total impedance includes the resistance, inductance,

and capacitance and is termed impedance (Z). The reactive component of Z is X and

is made up of inductance and capacitance and is typically greater than the resistive (R)

component of a line. Also, it is noted that reactive components of impedance are greater for

higher voltage lines than for lower voltage lines. As for the power flow on a distribution grid,

it is calculated utilizing only one source simplifying the design as it exists today; however,

there are significant hurdles that must be championed to prepare the distribution grid for

two-way power flow due to the implementation of distributed energy resources (DER).
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2.2 Transmission System Overview

Design and Development Principles

Transmission lines are used to connect generation sources to customer loads. In general,

transmission lines connect the system’s generators to its distribution substations. Trans-

mission lines are also used to interconnect neighboring power systems. Since transmission

power losses are proportional to the square of the load current, high voltages, from 69 kV

to 765 kV, are used to minimize losses. The design and development of the transmission

system are built to ensure it is reliable and robust and to ensure that all critical elements

(e.g., substation, line, transformers, etc.) are protected from any disturbance on the power

system. A disturbance can be anything from a line circuit breaker operating due to planned

maintenance or a line sagging during heavy loading periods into poorly maintained vege-

tation and cause a fault to occur. The system must be planned to continuously serve all

distribution substations to ensure power stays on at the customer level. The transmission

system must be studied to ensure all protective relays will coordinate to any variations in the

power flow, network bus voltages, machine rotor speeds, generator and transmission voltage

regulators, prime mover controls, system loads M.W. and Mvar consumption are all con-

sidered when designing the transmission system. To summarize, design of the transmission

system is to ensure after a disturbance, and the power system remains stable. For instance,

following a disturbance, a power system is stable, then it will reach a new equilibrium point

with the system integrity preserved. All generators and loads are connected through a sin-

gle contiguous transmission system, some generators or loads may be disconnected by the

isolation of the fault or intentional tripping to preserve the continuity of the operation of

the transmission system. If following a disturbance, a power system is unstable, and then

it will result in a run-away or run-down situation. With a progressive increase of angular

separation of generator rotors and/or a progressive decrease of system voltages, an unsta-

ble condition could lead to cascading outages and a shutdown of significant portions of the

power system. As well as ensuring the transmission system is designed to endure multiple

outages planned and unplanned, each transmission system is unique from the perspective

of system design, geography, performance, and load, but there are similarities in how assets
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are evaluated and upgraded. The key objective in developing a reliable grid is to create the

correct balance between the investment required to maintain the reliability on the system

and construct the necessary upgrades to the transmission infrastructure. The evaluation of

degrading asset performance and condition, as well as increased maintenance cost to the

transmission system to determine when it’s appropriate and cost-effective to replace versus

repair. The transmission system is sophisticated and composed of an enormous number of

assets that provide specific functionality and must work in unification with each other in

the operation of the grid. The intricacies and analyses of the system must be broken down

into multiple classifications to ensure the phase angle separation is maintained throughout

the contiguous transmission system due to the varying phenomena and variables of impact.

For instance, power system stability is broken down into three physical natural/main system

parameters: rotor angle stability, frequency stability, and voltage stability. And then, those

system parameters can be studied under different guises such as the size of the disturbance

and then also the period for which it is studied. For example, determining the system’s

small-disturbance rotor angle stability and/or dynamic transient stability are studied within

the microsecond time frame. Frequency stability is reviewed within the micro-second time

frame as well as reviewing it over seconds/minutes. And then lastly, voltage stability is stud-

ied varying the degree of the disturbance and well as looking at the microsecond to minutes

time frame after a disturbance occurs. Each analysis requires power system analysis tools

to be able to run a large number of simulations and data required. To be able to run these

analyses there are multiple software packages currently being utilized by the industry (i.e.,

General Electric (G.E.) Positive Sequence Load Flow (PSLF) and Siemens Power System

Simulator for Engineers (PSS/E) are two dominate software programs used in the industry).

Note the transmission system assets have been deployed over a long period using engineering

principles, design standards, safety codes, and good utility practices that were applicable at

the time of installation and have been exposed to varying operating conditions over their

life [29].
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Therefore, the analysis and focus on the transmission system to ensure it is maintained

and developed has been being studied using commercialized software for over 30 years, and

there are significantly different variables required to understand when determining how to

maintain and develop the transmission grid with reverse power flow taken into consideration.
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2.3 Distribution System Overview

Design and Development Principles

The design and development of the distribution system planning start at the customer

level versus the power plants. The customer load, load type, and load factor determine the

type of distribution system that is required. The customer loads are summed together for

service from the secondary lines that are then connected to the distribution transformer

that steps it up to the primary voltage and runs the feeder back to the substation (source).

The primary distribution system load is then assigned to a substation that steps up to a

transmission voltage. The customer loads technically determine the size and location of the

substations as well as the routing and capacity of the associated transmission and distribu-

tion lines. The design of the distribution grid is an iterative approach. Each step in the

process provides input for the step that follows. Note in this process; the planner is typically

restricted by regulated voltages values, voltages dips, voltage flicker, as well as service relia-

bility. There multitude of factors that also need to be considered, such as the transformers

impedance, insulation levels, availability of spare transformers and mobile substations, and,

most importantly, the rates that are charged to the customers [27].

The distribution planning problem is an attempt to minimize the cost of substations, feeders,

laterals, as well as the cost of losses. Indeed, this collection of requirements and constraints

has put the problem of optimal distribution system planning past a manageable calculation

by a single engineer. Even though the distribution planning power flow equations are much

simpler than transmission as it is a system designed for one-way power flow. The distribu-

tion planning approach will profoundly be altered with the evolution of DERs. The DERs

will bring on an additional layer of challenges, and many of the assumptions upon which

traditional distribution planning relies upon will be changed. DERs are creating two-way

power flows on the distribution system that legacy distribution equipment was not designed

for. DERs are also bewildering conventional load forecast methodologies and muddling the

modeling of distribution feeders by introducing new kinds of generation sources or altering

load profiles.
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Refer to Fig. 3 for a snapshot in regards to the difference between the current methods

used versus the future methods to be studied. The increase is significant and will take the

power of software and machine learning algorithms to help aid in the approach.

Figure 3: Illustration of the Difference Between Current Planning Methods Versus Future

Methods.
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2.4 Emerging Technology Driving the Need for Identification of System

Topology

The transmission system has been under strict regulatory requirements since 2007, after

the fall-out of the 2003 Northeast blackout. After the blackout, the NERC Standards went

from becoming best practices to carry monetary fines. Therefore, the industry as a whole has

collectively worked and collaborated to ensure that the system topology of the transmission

grid is well known and modeled to be able to perform system planning and operational stud-

ies on the networked system. Initiated by the U.S. government, the rapidly expanding usage

of distributed energy resources (DER) have been proliferating to incorporate emerging tech-

nologies that ultimately facilitate renewable energy (i.e., photovoltaic and storage devices).

There is a significant amount of discussion within the electric utilities of when an electric

utility should start to increase their usage of technology and strengthen their bench strength

on how and when to plan for the proliferation of DER especially with a large amount of

emerging technologies that are being introduced at a rapid pace and when the EDC should

buckle down and work on managing the existing aged infrastructure. Industry-wide, EDCs

have not been incentivized to maintain and invest in the distribution system over the last

couple of decades as the reliability and resilience of the distribution power grid was enough,

and load growth of the customer based allowed the investment to occur naturally. However,

with the introduction of DER, Energy Efficiency, and Demand Response, the load growth is

not as prevalent and makes the economics behind investment in technology and new assets

harder to explain to customers.

A review of five utilities there is key drivers, methodology, and tools that are being in-

vestigated to prepare for the proliferation of DER; however, the utilities are at all range of

the spectrum. The key drivers include regulatory compliance and operational necessity. The

methodology that is being investigated is the timeline for DER planning, incentivizing pre-

ferred interconnection locations, and then the cost recovery/rate restructuring. Every utility

is located in a separate geographical and political atmosphere, which drives the differences

as well as the challenges to understand the best path forward.
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Lastly, the toolset that the utilities need most is the visual maps providing preferred in-

terconnection locations, acquiring increased distribution planning software tools that require

the system topology to be modeled, and lastly, how the operations center plan to observe

and manage the DER once it is connected.
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3.0 Data-Driven Machine Learning Algorithms

to Identify System Topology

The ongoing deployment of Distributed Energy Resources (DERs), while bringing ben-

efits, introduces significant challenges to the electric utility industry, especially in the dis-

tribution grid. These challenges call for closer monitoring through state estimation, where

real-time topology recovery is the basis for accurate modeling. Previous methods are either

based on outdated maps or an ideal assumption of an isolated sub-network for topology re-

covery, e.g., within one transformer. This requires field engineers to identify the association,

which is costly and may contain errors.

A density-based clustering method is proposed to solve these problems that leverages

both voltage domain data and the geographical space information. The goal of such a

method is to efficiently segment datasets from a large utility customer pool, after which

other topology reconstruction methods can carry over. Specifically, we show how to use

voltage and GIS information to refine the connectivity within one transformer. We also

show how to improve existing method further for robustness. To give a guarantee, we show

a theoretic bound for our clustering method, providing the ability to explain the performance

of the machine learning method. Numerical results on both IEEE test systems and utility

networks show the outstanding performance of the new method. An implementation is also

demonstrated in the field.

The utility under study herein is an excellent example of an electric distribution company

(EDC) that is in a position to start preparing themselves for the changing of tides in regards

to how the distribution system is planned and operated and why it is crucial for them to have

the tool set and system topology modeled in a power system analysis software platform such

as Eaton’s CYME Power Engineering Software Solutions to analysis the future complicated

planning needs of the distribution system.

However, such approaches usually require narrowing down data beforehand. They will

fail if data pulling from a large number of buses, e.g., 100K-customer network, are given

together with different network devices, e.g., transformers. Even worse, many distribution
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assets do not have any measurement data available. For example, a large portion of network

nodes are probably unmeasured, e.g., transformers, poles, and underground facilities. This

makes the “directly recovered” connectivity among customers meaningless.

For such a purpose, we propose a hierarchical data-driven method to divide the network

to avoid extensive human effort and to prepare the network for subsequent algorithms. Such

a method integrate theoretic approaches, practical challenges, and GIS information to resolve

topology recovery problems robustly against limited measurements and scalability issues [21].

For example, in order to recover the connection between smart meters and transformers, we

perform a comprehensive analysis of the families of clustering methods in the voltage space

and geographical space.

We discover that density-based methods are well-suited for outlier detection while meth-

ods, where the number of clusters is prespecified, are better for associating smart meters to

their parent transformer.

Subsequently, we use both the voltages and street information to characterize the sub-

network for algorithmic solutions. For example, we use the street information to classify

the data into the streets and further classify into segments of a street for long streets.

Furthermore, as Euclidean distance is unable to provide accurate distribution clusters for

utility networks, we used Bing Maps API to compute distance along a street to improve the

association of smart meters to their parent transformers. Our algorithm provides an easy,

fast, and scalable processing tool for real-time data.

Numerical experiments are carried out on the standard distribution test beds, e.g., IEEE

123-bus, and by our partner EDC’s local grid with 10, 000 customers. The result shows

that the proposed method segments the distribution grids accurately and helps to achieve a

highly accurate topology estimate.

First, the research developed a physically meaningful, clustering method to roughly sep-

arate the data. Second, both the voltages and street information was used to to characterize

the data for algorithmic solutions to refine the solution. In which during such a process, it

was observed that the direct application of Euclidean distance contradicts to utility practice

of network planning, so the Bing Maps API was used to obtain the new distance along the

street.

18



3.1 System Model

To define the method for topology clustering, we describe time series voltage data given by

smart meters and their location data. For example, the latitude-longitude pairs in radians

for N smart meters l1, · · · , lN ∈ R2×1 are stored as row vectors in matrix L ∈ RN×2. R

represents the set of real numbers. The voltage time series with T timeslots for N smart

meters v1, · · · ,vN ∈ RT×1 are stored as row vectors in matrix V ∈ RN×T . Therefore, the

combined dataset [L,V] ∈ RN×(T+2) with row vectors x1, · · · ,xN for N smart meters. In

addition to smart meters, there are k transformers forming k clusters of smart meters in the

distribution grid. Cluster(j) represents a vector of indices of all smart meters in the jth

cluster. Due to radial configuration, a smart meter i ∈ {1, · · · , N} is uniquely present in a

cluster j ∈ {1, · · · , k} that is supplied by a common transformer. There exists a many-to-one

mapping f : i→ j.

For correlating these variables, a distribution system is characterized by buses V =

1, 2, · · · , N and by branches E = (i, i′), i, i′ ∈ V . The voltage measurement data at bus i and

time t can be represented as vi(t) = |vi(t)| expj·θi(t), where |vi(t)| ∈ R denotes the magnitude

of the bus instantaneous voltage in per-unit, and θi(t) denotes the phase angle of the voltage

in radian. The measurements in vi are steady-state voltages over a period according to

utility collection speed. We define the problem below.

• Problem: Identify smart meter to transformer connectivity

• Given: Smart meter voltage data and location [V,L],

• Find: The mapping rule f : i→ j.

19



3.2 Clustering Methods for Grid Segmentation

3.2.1 Data Sources

In the past, most topology analyses in the distribution grid assumes to use AMI data

only, e.g., voltages. While this is a good start for better topological understanding, GIS

information is equally important and many utilities have such information for usage. Even

if a utility does not have GIS information on smart meters, we can have the house addresses

or apartment addresses to use. For example, we can convert the addresses into latitudes and

longitudes of the smart meters by using Google Maps API. Therefore, we propose to include

both information from geographical space and the voltage space for topology clustering. In

the next section, we analyze different clustering methods based on the two data sources.

3.2.2 Metric Evaluation for Clustering Algorithm Design

Data clustering requires one to understand how to group a set of objects based on their

similarity of attributes and/or their proximity in the vector space. A key first step is having

that basic knowledge about the data that is being used and then to understand how it is

being used. For data clustering, there are numerous approaches. Therefore, we investigate

the compatibility of of them before using or modifying a method. For these methods, three

categories are popular in the machine learning fields. One is to consider the group properties,

e.g., calculate the sum of distances within each cluster. The second category is to bound the

cluster with a limit, e.g., maximum diameter for clusters. The third category investigates

the importance of cluster “density”, e.g., the number of data points in a neighborhood of

points.

By analyzing their suitability for power distribution data, we analyze the representative

ones from the three classes, namely, K-means for average cluster distance, Balanced Iterative

Reducing and Clustering using Hierarchies (BIRCH) for maximum diameter, and Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) for density [67]. Fig. 4

provides the visual ideas of the three categories.
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Figure 4: Comparison of Three Important Families of Algorithms for Clustering Based on

Both GIS and AMI Data.

3.2.2.1 K-means for Average Distances

One idea for clustering is to consider the average distances for all the members in a

group.

For example, K-Means creates k centroids xj = 1
nj

∑
i∈cluster(j) x

i, where nj is the number

of smart meters in cluster j.

It aims at minimizing the squared error loss, J =
∑k

j=1

∑
i∈cluster(j)(||xi − xj||)2, where

||xi−xj|| is the Euclidean distance between a point xi and centroid xj iterated overall points

in the jth cluster, for all n clusters.

Drawback for Power Data: While such a method can be used for clustering, it is not

good to be directly used in distribution grids. For example, it is quite common for parallel

streets to have their own transformers. However, as the span of the street can be quite long,

the GIS information can give incorrect clustering decision, making the idea of including more

information than voltage to be vulnerable. Even in the voltage space, different locations can

have similar voltage ranges. So, it can confuse the K-means.
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3.2.2.2 BIRCH for Maximum Cluster Distance

Instead of looking at the grouping effects in K-means, one can also bound the extreme

points, where the BIRCH algorithm is well-known.

It requires three parameters, the branching factor Br, the threshold T , and the cluster

count k.

The cluster centers xj = 1
nj

∑
i∈cluster(j) x

i, where nj is the number of smart meters in

cluster j, and the cluster radii Rj =
√

1
nj

∑
i∈cluster(j)(x

i − xj)2 can then be computed for

each cluster.

Every point is assigned to the nearest-center subcluster.

Drawback for Power Data: For distribution systems, the geographical radius can be

different depending on the location of the grid and if the grid is newly planned or if the grid

is in the urban area. For example, both long feeder and short feeder are common in power

domain. Therefore, it is unwise to have a hard limit on the diameter for the GIS space. On

the voltage space, the voltage data can have outliers due to measurement error or due to a

change of operational points. Therefore, such a method is not preferred.

3.2.2.3 DBSCAN for Local Densities

In the two approaches above, the focuses are on either the group property or on the

property of an extreme limit. Another idea is to focus on a subgroup of points and check

how the trend is propagating, which is the third category. For example, DBSCAN includes

a point or not based on two parameters: (1) a neighborhood region specified by the radius ε

and (2) the minimum number of data points minPoints in the neighborhood. The algorithm

counts the data points in the sphere of radius ε around a data point and includes it in the

cluster if it exceeds minPoints.

Advantages for Power Distribution Grids : As the power distribution grid is planned in a

radial structure, the density is relatively predictable in the direction that the grid grows, e.g.,

along the streets. Therefore, a density-based method can provide correct clusters for GIS

information. For voltage, each voltage will have its own dense region. So, working together

with the GIS information can easily boost the performance.
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3.2.3 Proposed Density-Based Method

In this section, we define the proposed algorithm mathematically. First, we define the

distance in both GIS and the voltage space. Then, we show how to evaluate the density.

Finally, we show how to use density to conduct clustering.

3.2.3.1 Distance for GIS Data and for Voltage Data

For GIS data, let l1,12 ∈ L be two latitude-longitude pairs in radians. The distance

in km between them on Earth’s surface is given using the Haversine formula dL(l1, l2) =

6371 · {arccos(sin(l11) sin(l21) + cos (l11) cos (l21) · cos (l22 − l12)} . For the distance in the voltage

domain, we use mutual information to quantify the distance. Specifically, the voltage-

distance between two points v1,v2 ∈ V is defined as dV(v1,v2) = 1
I(v1,v2)

where I(v1,v2)

is the mutual information between v1 and v2. The key idea of mutual information-based

topology analysis in the past is based on using voltage correlation in a probabilistic way [63].

A distribution system typically has a radial structure. Therefore, we can represent the volt-

age data in a graphical model via the joint probability density PV(v2, v3, · · · , vN) = PV(v2) ·

PV(v3|v2) · · ·PV(vN |v2, · · · , vN−1), where we assign the swing bus as bus 1 with a determin-

istic value, which is eliminated from the measurements. Based on such a chain rule, mutual

information can be used for measuring voltage similarity, e.g., in the discrete-time scenario

mutual information is defined as I(v1,v2) =
∑T

i=1

∑T
j=1 p(v1,v2)(v

1
i , v

2
j ) ln

(
p(v1,v2)(v

1
i ,v

2
j )

pv1 (v1i )pv2 (v2j )

)
.

Essentially, it is a weighted sum measuring the averaged similarity between the joint

distribution

p(v1,v2)(v
1
i , v

2
j ) and the products of the individual distributions, pv1(v1

i ) · pv2(v2
j ). For

example, if v1
i and v2

j are independent random variables, p(v1,v2)(v
1
i , v

2
j ) = pv1(v1

i ) · pv2(v2
j ),

making ln
(
p(v1,v2)(v

1
i ,v

2
j )

pv1 (v1i )pv2 (v2j )

)
= 0, showing no connection between buses i and j. On the other

hand, neighboring smart meters sharing a common transformer have similar voltage profiles

resulting in a high mutual information.

Based on the distances in the voltage and GIS domain, the combined distance of two

datapoints x1,x2 ∈ [L,V] is given as d[L,V](x
1,x2) = dL(l1, l2) + dV(v1,v2).

23



3.2.3.2 Evaluate the Density in the Combined Space of GIS and Voltage Data

To define a notion of density in (n+1)-dimensional space [L,V], we first consider the two-

dimensional space L. For arguments sake, consider two points l1, l2 ∈ L. l1 = (l11, l
1
2), l2 =

(l21, l
2
2) in a 2-D space. The Euclidean distance for these two points is d(l1, l2) = [(l11 −

l21)2 + (l12 − l22)2]0.5. If we fix the distances to be less than ε, then we obtain the following:

d(l1, l2) = [(l11− l21)2 + (l12− l22)2]0.5 < ε. Squaring both sides yields: (l11− l21)2 + (l12− l22)2 < ε2.

The equation looks similar to the equation of a circle with radius ε and center is at the point

(l21, l
2
2). Thus, the algorithm counts the data points in the sphere of radius ε around a data

point and includes it as a core point in the cluster if it exceeds minPoints. However, using

Euclidean distance is wrong due to Earth’s spherical shape, and therefore, we use Haversine

distance that gives the distance on the surface of Earth in km.

Definition 1: (ε-neighborhood of a point) The ε-neighborhood of a datapoint x1 ∈

[L,V], denoted by Nr(x
1), is defined by Nr(x

1) =
{
x2 ∈ [L,V] : d[L,V](x

1,x2) < ε
}

.

The ε-neighborhood of a point is a notion of the density of points. If Nr(x
1) > minPoints

then x1 is a core point. The points at the boundary of a cluster may not qualify to be a core

point. For such points, we cluster them with a core point if they are in ε-neighborhood of a

core point.

Definition 2: (Directly density-reachable) A point x2 ∈ [L,V] is directly density-

reachable from a point x1 ∈ [L,V] with respect to (wrt) ε and minPoints, if 1) x2 ∈ Nr(x
1),

and 2) Nr(x
1) ≥ minPoints (x1 is a core point).

Directly density-reachability is not transitive. To ease algorithmic development, we need

a transitive property.

Definition 3: (Density-reachable) A point x2 ∈ [L,V] is density-reachable from a point

x1 ∈ [L,V] wrt ε and minPoints, if there is a sequence of points y1, · · · ,ym ∈ [L,V],y1 =

x2, ym = x1, so that yi+1 is directly density reachable from yi.

Definition 4: (Density-connected) A point x2 is density-connected to a point x1 wrt ε

and minPoints if there is a point x3 such that x2 and x1 are density-reachable from x3.
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According to DBSCAN, two points are in the same cluster if and only if they are den-

sity connected. Density connectedness is a reflexive, symmetric, and transitive property.

Therefore, it is guaranteed to form equivalence classes that are the clusters.

3.2.3.3 Density-based Algorithm

We start with some point, x1, and check if it is a core point by the condition Nr(x
1) ≥

minPoints. Essentially, the distance between x1 and x2 is not the usual Euclidean distance

but the specific Haversine distance. If x1 is a core point, we keep it as a starting point

for the cluster. If x1 is not a core point, we put it in the outliers list and randomly select

another point and repeat the procedure until we find a core point. In such a case, all of

Nr(x
1) are in the same cluster as x1. Next, we individually check each point in Nr(x

1) for

core point. All newly discovered core points are inserted in a queue. Next, we repeat the

same procedure for each core point in the queue, thereby adding new points to the cluster

and the core points queue until the core points queue is empty, making cluster one complete.

Now, we randomly start searching the remaining points for a new core point for the second

cluster and repeat such a process. Algorithm 1 is different from the original DBSCAN [17] as

it considers only the core points. Algorithm 2 is an improved version that is robust against

adversarial noise [26].

Algorithm 1: Improved DBSCAN

Input: X, ε, minpts

1 H := {x ∈ X : |B(x, ε) ∩X)| ≥ minpts}.

2 G := undirected graph with vertices H edge between x, x′ ∈ H if |x− x′| ≤ ε.

3 return connected components of G.
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Algorithm 2: Robust DBSCAN

Input: X, ε, ε̃, minpts

1 H := {x ∈ X : |B(x, ε) ∩X)| ≥ minpts}.

2 D := DBSCAN(X, ε̃, minpts).

3 C := {C ∩H : C ∈ D}.

4 return C.

3.3 Guarantee of the Density-based Algorithm

In this section, we provide a guarantee for the Robust DBSCAN in Algorithm 2 and show

that the algorithm is robust against the addition of new data. In particular, we show that

adding l new utility customers with smart meter voltage and location data to the original

data does not change the original clusters and the cluster assignments to the original points

remain unchanged, i.e., the original points that were clustered together (separate), remain

together (separate) after adding new points.

Assumption 1. For the guarantee, we need the theoretical density f(x) to be differen-

tiable. This suggests that the density should be smooth, and there should be no outliers in

the data. For GIS data, a discontinuous density would mean a single house left alone from

other houses. Typically this is not the scenario in utility service areas. For voltage data, a

discontinuous density would mean an error in smart meter measuring instrument. Usually,

such an outlier can be easily detected by a utility and fixed.

In order to have a mathematical analysis of the density, we need to define superlevel-set

Lf (λ) of the density function f corresponding to a given threshold (level) λ as a set of all

points in the dataset [L,V] with density equal to or greater than the threshold λ. Moreover, if

Assumption 1 holds, the superlevel-sets consist of closed intervals rather than discrete points.

The concept of superlevel-set will be useful in Assumption 2 (curvature). Usually, the shape

of a density function has one or more overlapping bell curves or some flat regions. Therefore,

if we have two levels λ and λ′ such that 0 < λ ≤ λ′ < ‖f‖∞, where ‖f‖∞ represents the

peak density, then the Superlevel-set for level λ′ is a subset of the Superlevel-set for level λ.
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Mathematically, Lf (λ
′) ⊆ Lf (λ).

Given a continuous set A, if we “trim” set A from all sides of the boundary by a depth

δ, the remaining set is called the δ-interior of A. For example, in Fig. 5a, we can “trim”

Lf (λ) from its boundary by a depth g to make it a subset of Lf (λ
′). Such a concept is also

useful for Assumption 2.

To provide a guarantee for robustness of density-based clustering, we need the density

function to decay around the cluster boundaries so that the clusters are salient enough to

be detected. Simply, we need no flat regions in the density curve. Flat regions in density

curve can be avoided in the following way. For Fig. 5a, assume g is an increasing linear

function of (λ′ − λ) and assume for all 0 < λ ≤ λ′ < ‖f‖∞, where ‖f‖∞ represents the

peak density, we have Lf (λ) � g(|λ− λ′|) ⊆ Lf (λ
′). This is because there is no flat region

in Fig. 5a. However, for Fig. 5b, if we set λ and λ′ just below and above the flat region, we

do not obtain Lf (λ)� g(|λ− λ′|) ⊆ Lf (λ
′) due to the flat region. Assumption 2 below gives

a formal description of this concept.

Assumption 2 (Curvature). There exists Cβ > 0 and β > 0 such that the following

holds. For any 0 < λ < λ′ < ‖f‖∞, we have Lf (λ)�g(|λ− λ′|) ⊆ Lf (λ
′) where g(r) = Cβ ·rβ.

(a) A Non-Flat Distribution Satisfies As-
sumption 2.

(b) A Flat Distribution Does Not Satisfy As-
sumption 2.

Figure 5: Examples of Distributions Based on Assumption 2.

In voltage domain, a density function satisfying Assumption 2 means that the voltage

distances (inverse of the mutual information) gradually increase as we move from the center

of clusters (houses supplied by the same transformers) to external areas. This assumption

ensures that the density function is not flat.
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Moreover, this assumption forces sufficient density decay around the superlevel sets so

that the superlevel sets are salient and can be detected easily [26].

We can introduce a slightly different density estimator concept than Nr(x) i.e., to keep

the number of points k fixed and adjusting the radius rk(x) to enclose k nearest neighbor

points with the sphere called the k-NN density estimator. A lot of literature is based on this

approach, formally defined as fk(x) := k
n·vD·rk(x)D

, where vD is the volume of a unit ball in

d[L,V], rk(x) is the adjusted radius of the sphere to enclose k points. vD ·rk(x)D is the volume

of the sphere with radius rk(x), and k
vD·rk(x)D

is the number of points per unit volume. In

order to remove the effect of the total number of points n, we divide it by n. Once we have

the required assumptions and definitions, now we can go ahead with the proof.

3.3.1 Guarantee of Original Smart Meters Belonging to the Same Cluster after

the Addition of l More Smart Meters

We now show robustness guarantees on the core points returned by Algorithm 2. In

particular, we show that adding l new utility customers with smart meter voltage and location

data to the original data does not change the original clusters. The cluster assignments to

the original points remain unchanged i.e., the original points that were clustered together

(separate), remain together (separate) after adding new points. That is, when running

Algorithm 2 on [L,V] vs running it on [L′,V′] with l additional samples, any new core

points that appear will be near the original core points.

The k-NN density estimation error can be given by a probabilistic bound between the

true density f(x) and the k-NN density estimation fk(x). Such a bound can be used to

identify the upper bound of the theoretical density given the k-NN density estimation via

density-based clustering. The upper bound of the true density can be used to provide a

guarantee for core points. For measuring fk(x), if k is very small, it can lead to estimation

errors due to less samples within the sphere, reducing the estimation accuracy. Therefore,

to provide a confidence level (1 − δ) for the bound, one needs to have a lower bound on k.

The lower bound on k is directly related to the sample size n. Moreover, k is directly related

to the confidence level (1− δ). Lemma 1 directly follows from Lemma 3 and 4 of [11,26].
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Lemma 1. (k-NN density estimation accuracy). Let 0 < δ < 1. Suppose that f

satisfies Assumption 1. Then the following holds for some constants C and Cl depending on

f . Suppose k satisfies k ≥ Cl · log( 1
δ2

) · log n. Then with probability of at least 1 − δ, the

following holds:

supx∈[L,V] |f(x)− fk(x)| ≤
(

log(δ−1
√

logn)√
k

+
(
k
n

) α
D

)
.

Lemma 1 provides the limit to the error in the k-NN estimator accuracy fk(x). Indeed,

the range of error is directly related to the confidence level (1 − δ). Also, a greater sample

size n can lead to greater error if k is small since the number of points within the sphere

will be even smaller as compared to the total sample size n. Moreover, higher degree of

continuity α of the density function will result in lower error.

From Assumption 1, we have that the density function is continuous. Moreover, from

Assumption 2, we have that the density function has a curvature and is never flat. Fur-

thermore, using Lemma 1, we have that the true density will not be much different than

measured by DBSCAN. Therefore, the new l points will lie close to the original clusters. In

fact, using the above three arguments, we can calculate the probabilistic maximum extension

r̃ from the original DBSCAN clusters. Therefore, the new clusters C ′ will be bounded by

the original clusters extended by the distance r̃ with a confidence of 1− δ. The lower bound

on k remains the same as Lemma 1, however, the total number of points becomes (n+ l).

Lemma 2. Suppose that Assumptions 1 and 2 hold. There exists constants Cl and C

depending on f such that the following holds. Let 0 < δ < 1 and k satisfy k ≥ Cl · log( 1
δ2

) ·

log(n+l), and ε̃ > ε > 0. Let C and C ′ be the core points returned by Algorithm 2 when run on

[L,V] and [L′,V′], respectively. With probability at least 1−δ, the following holds: C ′ ⊂ C⊕r̃,

where ⊕ denotes a tube around a set (i.e. A ⊕ r := {x ∈ [L,V] : infa∈A |x− a| ≤ r}), and

there exist r̃ <∞. We do not give proof of Lemma 2. It follows from Assumptions 1 and 2,

and Lemma 1 [26]. The result C ′ ⊂ C ⊕ r̃ suggests that the new points lie within the tube of

thickness r̃ around the original clusters. Therefore, if the edges of the original clusters are at

a distance 2ε̃+ 2r̃, then there will not be any original clusters merging to form one cluster.

Moreover, if r̃ < ε̃, then the new points will not create outliers or form separate clusters.

Theorem 1. Suppose that conditions of Lemma 2 hold. Let C, C ′ be the output of

Algorithm 2 on [L,V] and [L′,V′], respectively and define the minimum inter-cluster distance
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of the returned clusters R := minC1,C2∈C,C1 6=C2 minx1∈C1,x2∈C2
d[L,V](x

1,x2). If additionally,

the following holds: r̃ ≤ ε̃ ≤ 1
2
R − r̃, then |C| = |C ′| (i.e. the number of clusters does not

change) and there exists a one-to-one mapping of the clusters σ : C → C ′ such that C ⊂ σ(C)

for all C ∈ C (i.e. original clusters are preserved).

Proof. Note that all the points appearing in a cluster of C will also appear in some cluster

of C ′. By Lemma 1, we have that any newly appearing points in C ′ will be at a distance

of at most r̃ from a point appearing originally in C, mathematically C ′ ⊂ C ⊕ r̃. From the

assumption ε̃ ≥ r̃, we have that the radius hyperparameter for DBSCAN is lesser than r̃,

then such new points will become reconnected to the same cluster in C since they will be

present in the sphere of radius r̃. Finally, from the assumption ε̃ ≤ 1
2
R− r̃, we have that the

original clusters are separate by more than 2ε̃+ 2r̃, this means that no two distinct clusters

in C will become merged in C ′.

Table 1: Summary of the Voltage Data Provided by the Partner Utility.

Type
Raw voltage

Cleaned voltage
Phase A Phase C

Total number 8, 975× 8, 640 = 77, 544, 000 394× 8, 640 = 3, 404, 160 3, 442× 8, 640 = 29, 738, 880

Unique mac addresses 8, 975 394 3, 442

Starting time 2016/7/22 4:05:00 2016/7/22 4:05:00 2016/7/22 4:05:00

Ending time 2016/8/21 4:00:00 2016/8/21 4:00:00 2016/8/21 4:00:00

Units Volt Volt Volt
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3.4 Numerical Validation

3.4.1 Data Description

The simulations are implemented on the IEEE PES distribution networks for IEEE

benchmark systems, such as 8-bus and 123-bus systems. We also implement our algorithm

on an utility grid. For benchmark systems, feeder bus is selected as the slack bus. The

historical data have been preprocessed by the MATLAB Power System Simulation Package

(MATPOWER) and OpenDSS. To simulate the power system behavior in a more realistic

pattern, the load profiles from Pacific Gas and Electric Company (PG&E) and “ADRESCon-

cept” Project of Vienna University of Technology [25] are adopted as the real power profile

in the subsequent simulation. PG&E load profile contains hourly real power consumption

of 123, 000 residential loads in the North California, USA. “ADRES-Concept” Project load

profile contains real and reactive powers profile of 30 houses in Upper-Austria. The data were

sampled every second over 14 days. Transformers’ GPS coordinates were added manually

according to power domain knowledges, e.g., from our partner utility grid.

For the utility grid, it is a mid-sized northeast system that includes approximately

600, 000 customers, 7, 200 miles of overhead conductors, 250, 000 poles, 108, 000 transform-

ers, 4, 500 miles of cable, 1, 000 sectionalizers, 400 capacitors, and 500 network protectors.

A sample of 10, 000 customers AMI voltage data was used as well as the nearby transform-

ers’ GPS coordinates, and the GPS coordinates of the poles. A summary of the voltage

information is shown in Table 1.

3.4.2 Robust Clustering

3.4.2.1 Validation on IEEE-123 Test Case System

The IEEE 123-bus system is separated into two random clusters, as shown in Fig. 6. As

the IEEE 123-bus system does not provide any GPS coordinates of the nodes, we estimate

the location coordinates using the image of the test feeder. The system is disconnected at

a bus to create two separate subsystems. The bus location that we choose does not impact
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the exercise; therefore, one could choose any part of the system to create subsystems. For

this example, the system was split evenly between bus 67 and 68 to provide an even split.

On each subsystem, we run load flow analysis on 500 scenarios to generate an example AMI

voltage dataset over a typical load cycle, similar to what the utility provided us. Coupled

with “GPS coordinates” explained in the setup, we run the clustering algorithms multiple

times, changing the hyperparameters for each algorithm to better understand the advantages

and disadvantages of each algorithm investigated.

Figure 6: Network Partition. The IEEE 123-Bus System Was Used to Understand the

Different Dynamics of the Three Clustering Algorithms for Illustration Purposes.

Fig. 7 gives an example of each clustering method on the same dataset, where our pro-

posed algorithm has its algorithm in Fig. 7c. By comparing this figure with the other two

on the left, we can see that only our method is clustering consistantly. We observe this

throughout our simluation on different loads and topology, showing the power of integrated

design of machine learning method with the needs considered in power systems.
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(a) Result of Birch clustering algo-
rithm.

(b) Result of Kmeans clustering
algorithm.

(c) Result of DBSCAN clustering
algorithm with voltage mutual in-
formations.

Figure 7: Comparison of the Three Clustering Algorithms Using Voltage and GIS Informa-

tion on a IEEE-123 Bus Test Feeder.

3.4.2.2 Validation on Real Utility System

As our utility partner provides GIS information, we also use real GIS data to validation.

For example, we show part of the reuslts for six different algorithms, with and without

GIS information. For the first five subplots, either the voltage information was not used

efficiently or the GIS informaiton was not included. We observe that our proposed method

with results in Fig. 8f is the best among all combinations since it can merge the voltage mutual

information and ground distance, while other methods including Kmeans and BIRCH cannot

directly use the voltage mutual informations.
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(a) Result of BIRCH Clustering Algorithm
Using Voltage Information Only.

(b) Result of K-means clustering algorithm
using Voltage information Only.

(c) Result of K-means Clustering Algorithm
using GIS Information Only.

(d) Result of BIRCH Clustering Algorithm
Using Voltage and GIS Information.

(e) Result of K-means clustering algorithm
using Voltage and GIS information.

(f) Result of DBSCAN clustering algorithm
using Voltage and GIS information.

Figure 8: Comparison of the Three Clustering Algorithms Using Voltage and GIS Informa-

tion on a Sample in our Partner Utility.
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3.4.3 Overall Accuracy

To evalute the accuracy, we conduct our algorithm throughout the utility territory in Fig.

8. For methodology, we compare our algorithm with respect to a mutual information method

with Chow-Liu algorithm, the BIRCH method, and the k-means method. The results are

displayed in Fig. 9, where the proposed method has an accuracy of near 95% over a large

number of buses. The result is also quite robust, if the bus number continues to grow.

Figure 9: Accuracy of Various Algorithms for the Whole Utility Areas.

3.4.4 Field Deployment

To deploy our method, we need to assign addresses to poles to reverse-geocode each pole,

which requires purchasing Google Maps API. Another method is to find the house nearest to

a pole and assign its address to the pole. Since poles are near to the houses, the error in the

latter method is small, which does not significantly affect the results. Once all poles have

addresses, we can select the poles lying in the cluster if their nearest house lies in the cluster.

With the parent transformer, poles and the smart meters belonging to the same cluster,

we can use a minimum spanning tree to connect them to obtain the overhead secondary

connections.
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Minimum spanning tree works by connecting the houses with the poles and transformers

by minimizing the total length of wire. Such an algorithm is correct as houses are usually

supplied from their nearest poles, and also the distribution system has a tree structure.

For underground secondary distribution, there are no poles and we directly connect

the transformers to the houses. This is correct as there are mostly separate wires from

transformers to all customers so that a wire break affects a single smart meter. Moreover,

it is simpler to replace individual wires rather than an underground tree structure of wires.

It will be cumbersome for utilities to recover one street at a time; hence, we scaled the

algorithm. For any area, large or small, the algorithm will automatically process the data

and recover the topology. Fig. 10 shows all the recovered areas together. It is obtained by

directly running the algorithm on the sets of data, without any human intervention.

With such a setup, Fig. 10 shows our deployment of our algorithm in the utility and we

display the topology recovered based on our algorithm. This visualization shows that such

an algorithm is suitable for large scale topology recovery.

Figure 10: Figure Shows Examples of the Topology Recovered for the Utility.
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3.5 Conclusion

Electric utilities typically do not have an accurate distribution system topology readily

available. With the advent of DERs, the electric utility faces challenges in the distribution

grid. These challenges need greater visibility of their distribution system circuits through

state estimation, where real-time topology recovery is the basis for modeling. Previous

methods are based on either outdated maps or use voltage information only. This paper

resolves this challenge by accurately clustering the topology. Specifically, we propose a

density-based clustering method that leverages both voltage and geographical space data.

And we show how to use GIS information with voltage information to refine the connectivity

within one transformer. Finally, we not only show how to improve our method, but also

provide an explainable theoretical bound. The proposed method is validated on the IEEE-

123 bus system and the real system from our partner utility.
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4.0 Data-Driven Machine Learning Algorithms

To Identify DER Interconnections

With increasing renewable penetration in the distribution grids, distributed energy re-

sources (DERs) are becoming a “trouble maker” for sub-transmission grid and distribution

grid monitoring and control. For example, a different locational configuration of DERs within

the power system can drastically impact generation and load forecast models, especially if

utilities are unaware of the DER information (as in private home rooftop solar). Therefore

this body of work is an essential aspect of being able to have more situational awareness

and information about the assets that are connected to the grid. The work being proposed

for this research topic is to utilize the system topology identification work and then layer

on top the information of where and who has generation connected on the Distribution grid

regularly. There are two use cases: 1) identify all customers that at one point installed solar

arrays on their property and submitted an application however as time passed the solar ar-

rays are no longer being used, or they are no longer connected to the property and 2) identify

any solar connected customers that did not follow the utility process to register their solar

arrays. Fig. 11 is an example of the utility space and what is their biggest concern to date

which visually shows the importance of understanding which assets are in-service and can

provide generation.

Currently, some utilities employ data for their service territory, developing a plan by

reviewing each distribution circuit individually, as the system was designed and built for

one-way power flows. The use of load curves and excel spreadsheets are some basic tool-sets

that are utilized, and the planning process only incorporates 2-4 extreme load curves as a

part of their planning process when developing their system re-enforcement plan to ensure

capacity in the 5, 10-year forecast. An example approach is shown in Fig. 12 while such

an incremental analysis, it does require tremendous time and cost to understand the system

infrastructure one by one therefore, determining an alternative approach for system planning

will be greatly beneficial.
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Figure 11: Most Significant Challenges to Supporting a High-Penetration of DER [10].

Figure 12: Illustration of Using a Top Down Approach for System Planning Studies.

In this second pillar of research topic, we consider the power of a large amount of data,

where physical laws are inherently embedded. To start understanding the implications of

DER a large amount of data will be leveraged to analyze past, current, and future models

to make accurate decisions about future infrastructure needs by minimizing cost and max-

imizing DER benefits., this study will investigate the different ways that AMI data can be

utilized to analyze the impacts of a generation device (e.g., residential solar panels), a load

device (e.g., electric vehicle charging station), and then one type of device that can serve as

a generator and load (e.g., battery). One hindrance utilities have is that not all customers
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will or are required to report their new interconnected generation or load device. Therefore,

it is crucial for the utility to be able to monitor customer usage trends to be able to identify

already connected solar, EV charging stations or battery to better prepare for the future

reliability of the whole distribution grid. With the increased amount of information avail-

able distribution planners will be able to build more statistically precise forecast shapes and

perform more accurate load allocations. The next step in the planning process would be to

able to use multiple system attributes in regards to the customer usage side and design the

future plans using a bottom up aggregation as shown in Fig. 13.

Figure 13: Illustration of Using a Bottom up Aggregation for Future System Planning Stud-

ies.

With the increase in installations of residential photovoltaic (PV) systems, it is important

for utilities to gain visibility of solar panels [13,14]. This is because the increasing PV systems

not only create sustainable and green energy for human society but also build a new type

of assets for utilities. To better evaluate the benefits and create new revenues, utilities

need to know the locations of these new components to manage the unconventional two-way

power flow for sustainable management of distribution grids. For example, detecting and

monitoring all the active PV installations in a utility’s territory allow the utility to perform

accurate hosting capacity analysis (HCA). With HCA, utilities determine the amount of

additional distributed energy resources (DERs) that can be “hosted” on the distribution

system at a given location and at a given time, without threatening grid safety, reliability,

or power quality [51].

Unfortunately, we do not know whether a customer has solar panels or not for sure.

Some information can also vary as time passes by. Even worse, some of the solar panel
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installations took place without permissions [28]. While a utility can form a team to manually

update historical records on active solar locations, it is costly and hard to ensure the solar

location are accurate all the time. Without knowing where solar panels are actively producing

power, the system operation is prone to over-voltage, back-feeding through substations, or

even damage system equipment such as transformers, voltage regulators, and customers’

appliances. Therefore, utilities are in need of new methods for providing real-time renewable

locations to better plan infrastructure and grid operation.

In the past, a lot of work relies on manual validation on locational information of PV

for DER analysis [1, 8, 9, 14]. As manual checks are not scalable, there is work to automate

the localization process. For example, [35, 38, 56] propose to use unmanned aerial vehicle

(UAV) with different cameras, such as HD cameras, thermal cameras, and the infrared

cameras. The goal is to localize different panels and their conditions for fault detection and

maintenance. However, these methods typically work on solar farms and it is hard to send

UAV across different utilities, which can be geographically large. Therefore, instead of taking

photos, [19] and [4] propose to use satellite images to detect solar panels. However, satellite

images include many areas without solar systems and there are similar objects that can

be incorrectly identified as solar panels. Even worse, such satellite-based approach can not

identify active solar users, as there are solar users, who discontinued the solar generation.

Luckily, there are smart meter data available. So, [68] aims to detect the solar panels

behind the meter data. It uses a change-point detection algorithm to screen out abnormal

usage data. However, change-point detection can identify changes that are not due to solar

behaviors.

One key drawback of change-point detection is due to its unsupervised nature and sim-

plicity of using any change-point. While we demonstrate in this paper that supervised

learning can achieve good performance, such learning requires adequate labels of the inputs

and outputs [50]. This is insufficient because a utility may not be able to afford the cost and

time for obtaining and maintaining a lot of the labels for solar and non-solar users [22, 47].

Therefore, we propose to use semi-supervised learning (SSL) by only requiring a small part

of the labeled data from both classes [44,69]. When the utility only has labels on one class,

e.g., non-solar users, we propose to use one-class classification (OCC) [46,48].
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During the implementation, the direct application of SSL and OCC have relatively low

accuracy, as the power system has a high dimensionality in data. For example, each user

represents one point in the classification problem, but the user data is the result of vectorizing

a long time-series data that can last several days for a clear pattern [20, 42, 53]. Besides, as

residential customers have diversified user behaviors, the data of each class lives in a highly

non-linear surface [44].

For resolving the issue of dimensionality, one can use principal component analysis,

but it is a linear decomposition method [45]. Therefore, we propose to solve the issue

of dimensionality and nonlinear representation together by designing new SLL and OCC

methods based on autoencoders. Constructed by the two deep neural networks of an encoder

and a decoder, an autoencoder is capable of providing a universal approximation of nonlinear

and low dimensional space while de-noising [23,30,43,57].

Finally, we use the known public and utility solar data arrays to validate the proposed

methods. We use both accuracy and F1 score to measure the performance against baseline

results. The baseline results were based off of common SSL and OCC methods as well

as including common supervised learning methods. Such experiment shows enhanced solar

usage detection when compared to the traditional methods. In summary, the contributions

of the work are:

1. The work explains why solar detection is urgently needed and why the problem is hard

and costly in reality based on our data mining of realistic utility data.

2. The work models the solar detection problem in supervised learning, semi-supervised

learning (SSL), and one class-classification (OCC) setups. Future researchers can develop

relevant tools based on our problem modeling.

3. The work proposes new SSL and OCC methods based on autoencoders, greatly boosting

the power data representation and learning.

4. The work not only validates the methods based on the publicly available synthetic data

set but also success with real utility data.
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The rest of this section is structured as follows. Section II shows the feasibility of solar

detection via data mining. Section III formulates the solar panel detection problem with

limited labels. Section IV and Section V show the enhanced SSL and OCC via autoencoder.

Section VI provides numerical results, and Section VII concludes the paper.
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4.1 Differences between Solar + Non-solar Users

The problem of solar detection via utility data is not widely analyzed. One concern is

that the solar users and the non-solar users are hard to tell from each other. For example,

it is hard to tell whether solar exists behind a meter if the solar user has a relatively small

solar generation when compared to the household usage.

4.1.1 Proof of Feasibility with Realistic Data

To validate this difficulty and provide the reason that differentiation is possible, we

conduct data mining over realistic data from our partner utility with 600, 000 meters from

a major U.S. city. The meter data range from June 1st, 2019 to June 30th, 2019 which have

a one-hour interval between each reading was used for this exercise. We will show that the

data is separable no matter how we sample the data, which will be our foundation for the

next sections.

To obtain an easy visualization, we use the popular principal component analysis (PCA)

tool to visualize the magnitude of eigenvalues of our data in Fig. 14. As the y-coordinate

is by taking a log, we can see that only the first few eigenvectors matter and most of the

eigenvectors are noises. To illustrate further, we map the data into 2-D and 3-D space in Fig.

15, where we can see that there is a boundary where two different behaviors are separable.

4.1.2 Proof of Feasibility with Synthetic Data

As the data is coming from one specific utility, we also conduct a constructive test to see

how robust is this differentiation capability seen from realistic data. For this purpose, we

test noise levels to mimic randomness in the residential customers and the environment. As

the solar behavior is relatively stable, e.g., generation increases with sunrise and decreases

with sunset, we compare two different signals by adding different levels of noises. Specific,

we add noises to square waves to represent the electricity usage of the customers who never

report their installation of solar panels and sinusoidal waves to represent those with solar

panels. We then add different noises to the signal to approximate different users.
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Figure 14: Results from a Popular Principal Component Analysis Tool to Visualize the

Magnitude our Data’s Eigenvalues Magnitudes.

Figure 15: Visualizations of the Principal Components Showing a Boundary Between the

Two Different Behaviors Allowing the Data to be Separable.

The synthetic data will be directly fed into typical classifiers such as support vector

machine (SVM) and logistic regression to see if accuracy can be preserved with different

noise levels.
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Fig. 16 presents an example of the data set with different level of noises, the noise level

increases from top to bottom. Although it becomes more difficult for us to determine the

class of the data, Table 2 shows the classification results is still high when the noise level is

much higher than signal level.

Figure 16: Illustration of an Example of the Data Set with Different Level of Noises to

Approximate Different Users, the Noise Level Increases from Top to Bottom.

Table 2: Classification Accuracy (acc) of Different Noise Levels, Which is Normalized with

Signal Level.

Classification SVM Logistic Noise

(Linear Kernel) Regression Level

Training/Test Acc 100% 100% N (0, 1.0)

Training/Test Acc 100% 100% N (0, 4.0)

Training/Test Acc 100% 100% N (0, 7.0)

Training/Test Acc 100%, 99% 100%, 99.33% N (0, 12.0)
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4.2 Problem Definition

The last section shows the feasibility based on rough visualization and supervised learning

of abundant but synthetic data. However, the reality at utilities is that the knowledge of

highly accurate labels, solar users and non-solar users can be quite limited. In some utilities,

they may have only one class of labels and do not have the time and money to manually

label more. Therefore, we define the following two problems based on the scarcity of labels

in a data set.

4.2.1 Semi-Supervised Learning (SSL) Problem

• Problem: Solar panel detection via SSL

• Given:

– Labeled electricity usage data: (Xm,ym) = {(xi, yi)}mi=1, where m is the number of

meter data which have labels showing whether the customer has solar panels or not.

– Unlabeled electricity usage data: Xn = {xj}m+n
j=m+1, where n is the number of meter

data which do not have labels, usually n� m.

• Goal:

– Find the optimal mapping rule of fSLL so that ŷSLL = f ∗SLL({(xi, yi)}ni=1, {xj}m+n
j=m+1).
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4.2.2 One-Class Classification (OCC) Problem

• Problem: Solar panel detection via OCC

• Given:

– Electricity usage data: Xp = {xi}pi=1 which have indicators yp = {yi}pi=1 = +1 that

they belong to the same class, where p is the number of meter data, 1 is a vector

whose elements are all equal to 1.

– Electricity usage data: Xq = {xi}p+qi=p+1 which have indicators yq = {yi}p+qi=p+1 = −1

referring to all the other unknown classes, where q is the number of meter data, 1 is

a vector whose elements are all equal to 1.

• Goal:

– Find the optimal mapping rule of fOCC so that ŷOCC = f ∗OCC({(xi, yi)}pi=1, {xi}
p+q
i=p+1).
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4.3 Deep Semi-Supervised Learning

One of the major issues of directly using SSL method from computer science domain

is due to the high dimensionality of power data and the need of nonlinear representation.

Therefore, we propose to integrate the autoencoder (AE) into the proposed deep SSL method,

where we show the expectation-maximization (EM) algorithm below so that we can properly

illustrate the AE part afterwards.

4.3.1 Conventional Semi-Supervised Learning Method

EM algorithm relies on mixture models and is a popular way to solve SSL problems and

the methods have lots of successful applications in different fields, such as image processing

and data classification tasks [33, 37, 54]. As defined in Section 4.2.1, Equation (1) denotes

the electricity usage data and their correlated labels. Equation (2) denotes electricity usage

data without labels.

(Xm, Ym) = {(xi, yi)}mi=1
(1)

Xn = {xj}m+n
j=m+1

(2)

We let the labels only take binary values (0 or 1), labels with a value of 0 represent

the customers who do not have solar panels and labels with a value of 1 represent the

customers who have solar panels. Based on this setting, we assume we know the labels

ŷSLL = {yj}m+n
j=m+1, we are able to compute the likelihood of all the data with respect to the

underlying parameters Θ, to be shown in Equation (3).

P (Xm,ym, Xn, ŷSLL|Θ) =
m∏
i=1

P (xi, yi|Θ)
m+n∏
j=m+1

P (xj, yj|Θ) (3)

The EM algorithm iteratively fixes the value of Θ and ŷSLL to find a suboptimal solution

of the maximization of the log-likelihood function over all the data. Specifically, for the tth

iteration and in the expectation (E) step, Θt is fixed and the EM algorithm optimizes a lower
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bound given by the expected log-likelihood Q(Θ|Θt) in Equation (4).

Q(Θ|Θt) = EŷSLL|Xm,ym,Xn,Θt [logP (Xm,ym, Xn, ŷSLL|Θ)] (4)

In the maximization (M) step, the algorithm maximizes Q(Θ|Θt) with respect to Θ given in

Equation (5). Although the parameters Θ may be highly correlated, the above procedure

faces high computational cost as Θ has high dimensionalities [20].

Θ(t+1) = argmax
Θ

Q(Θ|Θt) (5)

4.3.2 Autoencoder (AE) in a SSL Setup

The electricity usage data in the high dimensional space not only have a lot of noises,

but also have a highly nonlinear user behavior, therefore we propose to use AE. An AE

constitutes an encoder that compresses the original data to a code and then a decoder

which reconstructs the data from the code, as shown in Fig. 17. The encoder can be used

to reduce the dimension of the data, help the similarity calculation, and extract the most

representative information. There is a variety of AEs proposed in previous researches, such as

sparse AE [43], denoising AE [57], variational AE [30], and long-short term memory AE [23].

Figure 17: Block Diagram of an AE which Constitutes an Encoder that Compresses the

Original Data to a Code and then a Decoder Which Reconstructs the Data from the Code.

To explain the general concept of the AE, we will not add the subscripts of the input

and output data that are specific for our problem setup. An AE tries to minimize the error
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between the input data x and the reconstructed output x̂. The reconstruction loss is often

determined by the square error and is defined in Equation (6).

z = fe(Wex + be),

L(x, x̂) = ‖x− x̂‖2 = ‖x− fd(Wdz + bd)‖2,
(6)

where We is the weight matrix between the input vector x and the latent representation

vector z, Wd is the weights matrix between the hidden representation vector z and output

vector x̂. fe and fd are the activation functions, be is the bias vector of the encoder, and bd

is the bias vector of the decoder.

To combine AE with EM, we propose to first input data into an AE to create the latent

representation z, shown in Fig. 18. Then, z with its associated labels y is fed into a

Gaussian mixture model for EM. When EM iteratively finds the solution of maximizing the

log-likelihood function, the label of the unlabeled data comes out naturally. The complete

structure is shown in Fig. 19.

Figure 18: An Example of AE for Power Data.

4.3.3 Steps of the Proposed Algorithm

Let the representation Zm = {zi}mi=1 coming from the AE be the hidden representations

of the labeled data whose labels are ym = {yi}mi=1. Let the representation Zn = {zj}m+n
j=m+1

coming from the AE be the hidden representations of the unlabeled data whose estimated

labels are ŷSSL = {yj}m+n
j=m+1. We will assume that labels can only take binary values (0 or 1).
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Figure 19: Block Diagram of the Proposed Deep Semi-Supervised EM Approach.

Based on this setting, assume we know the labels ŷSSL, we are able to compute the likelihood

of the whole data set with respect to the underlying parameters Θ given in Equation (7).

P (Zm,ym, Zn, ŷSLL|Θ) =
m∏
i=1

P (zi, yi|Θ)
m+n∏
j=m+1

P (zj, yj|Θ) (7)

For the tth iteration and in the expectation (E) step, Θt is fixed and the EM algorithm

optimizes a lower bound given by the expected log-likelihood given in Equation (8). In the

maximization (M) step, the algorithm maximizes Q(Θ|Θt) with respect to Θ.

Q(Θ|Θt) = EŷSLL|Zm,ym,Zn,Θt [logP (Zm,ym, Zn, ŷSLL|Θ)]

=
∑
ŷSLL

P (ŷSLL|Zm,ym, Zn,Θ
t) logP (Zm,ym, Zn, ŷSLL|Θ)

=
m∑
i=1

logP (yi, zi|Θ) +
m+n∑
j=m+1

∑
yj∈{0,1}

P (yj|zj,Θt) logP (yj, zj|Θ)

=
m∑
i=1

logP (yi, zi|Θ) +
m+n∑
j=m+1

∑
yj∈{0,1}

rjyj logP (yj, zj|Θ)

(8)

In the last line of the equation, we define rj0 = P (yj = 0|zj,Θt), rj1 = P (yj = 1|zj,Θt),

which are our current estimates for the probabilities of each of the labels in the unlabeled
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examples. Therefore, in the E step, we compute probabilities rj0 and rj1 for all the unlabeled

data based on the current Θt. In the M step, we maximize the expected log-likelihood (the

last term of Equation (8)) for all the data.
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4.4 Deep One-Class Classification

When the labeled data are so limited at a utility that only one class of the labels can

be obtained, e.g., only the labels of some non-solar users. In such a case, it is impossible to

create a classification boundary between two classes like SSL.

4.4.1 Conventional One-Class Classification (OCC) Method

Therefore, one-class classification aims to regularize the descriptive loss, popular in su-

pervised learning and SSL, with an additional loss on compactness. The idea is to evaluate

the compactness of data with known labels and with nearby data to form a group, while

looking for distinct boundaries that can separate the data into two or more groups. For

example, support vector data description (SVDD) is one of the OCC solvers. SVDD tries

to define the compactness of the targeted class by constructing a hypersphere, wrapped in

a compactness matrix. SVDD defines a hypersphere with center c and radius r > 0 which

gathers as many observations from one class as possible in the feature space with the help

of the kernel function φk [55]. The radius measures the compactness of the data, the smaller

the radius, the more compact the data. The primal problem of SVDD is defined in Equation

(9).

min
r,c,ζi

r2 +
1

νn

∑
i

ξi

s.t. ‖φk(xi)− c‖2 ≤ r2 + ξi, ξi ≥ 0, ∀i,
(9)

where the slack variable ξi is introduced to allow a soft margin and the regularization pa-

rameter ν controls the relative importance of the volume of the sphere and the penalties

ξi.

The descriptiveness of the data are maintained in the constraints. Solving the minimiza-

tion problem given in Equation (9) by using Lagrange multipliers, we can derive that the

center c of the sphere should be a linear combination of some important input data. These

input data have a significant influence on the construction of the sphere by describing the

boundary of the sphere and are called support vectors.
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4.4.2 Proposed Deep OCC Method

SVDD often has poor computational efficiency and scalability due to the structure and

manipulation of the matrices and SVDD is prone to failure when the data set is extremely

large and the dimension of the data is extremely high. Thus, substantial feature engineering

is needed [49]. This makes power data in high dimension hard to capture diversified nonlinear

user behavior and remove noise.

Therefore, we propose to use the hidden layers of autoencoder (AE) to extract the nonlin-

ear features for one-class classification. For example, Fig. 20 provides a visual representation

of AE’s ability of representing highly nonlinear customer data in low dimensional space for

our utility data set. The top left figure is the non-solar data plotted in a 3-D plane, whereas

the bottom left figure is the solar data.

Figure 20: Illustration Comparing PCA Reconstruction versus an Autoencoder for Non-solar

(blue) and Solar (orange) Data Set.

The two middle plots top and bottom is the representation of the solar and non-solar

data, respectively reconstructed using principal component analysis (PCA). And the right

top and bottom figure is the data set reconstructed using an AE and plotted in a 3-D plane.

The figure is to provide clarity on the ability of the AE to retain the information more

accurately than the PCA. As shown the PCA is not able to reconstruct the data as well as

the autoencoder (AE) therefore providing evidence of the high accuracy and advantage to
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Figure 21: Block Diagram of the Proposed Deep SVDD Approach.

using an AE over a PCA to reconstruct the high-dimensional data for purposes of identifying

between solar and non-solar data. The AE can map the original data to a denser area which

helps to construct the compactness description of the targeted class. This enhances the

design of the OCC. Hence, why the AE will be used in the design for the new proposed

method.

The architecture is shown in Fig. 21, where the extracted learned hidden features Zp

for labeled data and Zq for unlabeled data are fed into the SVDD. Combining the extracted

learned hidden features with their labels, the SVDD is able to determine the labels of the

unlabeled data. The objective of the problem is to solve Equation (9) after replacing xi with

zi.
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4.5 Numerical Validation

With the proposed methods in the last two sections, we will validate the performance in

this section. The algorithms used are the deep semi-supervised expectation-maximization

(Deep-EM) algorithm and deep support vector data description (Deep-SVDD) of this paper.

We use both public data sets and the utility data sets to conduct our experiments with tra-

ditional common semi-supervised learning and one-class classification algorithms. Principal

component analysis is also used when necessary for consistency. As a baseline to our result,

we also include the results of supervised learning in our experiments with accurate labeled

data sets.

4.5.1 Data Preparation

The public UMass Smart* data set [52] used in this study contains everyday electricity

load profiles, extracted from dataset named “Apartment dataset”, from 114 single-family

apartments in June 1st, 2015 and to June 30th, 2015 with 15-minute interval between each

pair of readings. We take the average of the data to scale the original data to one-hour

interval. Therefore, the total number of time indices used in the study is 696, corresponding

29 days. The solar generation data, comes from another dataset named “Solar panel dataset”

in the same public data repository, which documents the solar generation data for 50 rooftop

solar panels with one-minute interval between each pair of readings. We select 39 solar

generation profiles as the other profiles had bad data such as near zero values. Then, we

combine them with the aforementioned 114 load profiles to create the electricity usage of the

solar users. To mimic the unbalanced data set, we add a number of different noises to the

114 load profiles to create the profiles for non-solar customers for diversity, when compared

to 39 solar customers. For example, as the results are similar, we show the case when we

add four different noises to the 114 load profiles, leading to 456 non-solar profiles.

The utility data set used in this study corresponds to a set of everyday electricity usage

readings from around 600, 000 meters from a U.S. city from June 1st, 2019 to June 30th,

2019 with a one-hour interval between each reading. The total number of time indices used
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in the study is 696, corresponding 29 days. Around 1, 973 customers have installed solar

panels. Their smart meter readings come from the net meters, which record the household

electricity consumption and the PV generation as a whole. The rest of the approximately

598, 000 customers we assume never reported their installations of the solar panels therefore

label them as non-solar, we then randomly select 20, 000 from this data set to conduct this

study.

To eliminate the influence of different scales of the data, we use min-max normalization

methods to scale the data between 0 and 1 throughout the paper.

4.5.2 Performance Metrics

To evaluate binary classification several statistical rates are available to measure perfor-

mance (i.e., accuracy, F1, recall, or precision). For this work we use the accuracy and F1

score as our performance measurements. Accuracy is used when the true positives (TP ) and

true negatives (TN) are important and the data set’s class distribution is similar. F1 score

is used when the False Negatives (FN) and False Positives (FP ) are critical and the data

set is unbalanced. These metrics are defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
,

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1 =
2× Precision×Recall
Precision+Recall

.

(10)

We use the F1 score, since our data set will most likely have an imbalanced class which

will take the precision and recall rate into account which cares for both the majority class

and the minority class [40]. We will also use the accuracy metric even though accuracy

can be biased when the amount of members in different classes are unbalanced, e.g., the

non-solar users are much more than solar users for some utilities. For example, if non-solar

users are 99 times more than the solar, a naive algorithm to achieve high accuracy of 99%

is simply to label all the customers in the testing set with a non-solar label. We include the

accuracy performance metric to observe considering that the synthetic data may not always

be imbalanced and therefore should be available to observe any differences.
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4.5.3 Baseline of Supervised Learning for Deep SLL and OCC

As a reference for SLL and OCC, we conduct simulations for different supervised learning

methods [7, 15, 32, 36]. As the results are similar, we show the the result of support vector

machine (SVM) and logistic regression (LR) in Fig. 22. The figure shows that when the

provided information is little and the data set is unbalanced, the supervised learning method

tends to overfit the data and thus results in bad F1 score. A relative high projection

dimension helps to improve accuracy and F1 score and indicates that more supervision and

more information ensure better results. Finally, Fig. 22 also shows that result of the public

data set and the utility data set are similar, which is also the case for SSL and OCC. So, we

will focus on one dataset for the rest of the visualization work.

Figure 22: The Supervised Learning Results of the Public Data Set and the Utility Data

Set.

4.5.4 Feature Numbers for Linear and Nonlinear Representation

To understand how many features are needed in nonlinear representation learning of

autoencoder, we plot the results in terms of the two performance metrics in Fig. 23, where

we also show results of linear representation of PCA for comparison. In the sub-figures,

We try to ensure the consistency in the setups for all the learning processes. For the deep

semi-supervised learning (SSL) method, we choose to use the first 50 solar data and first
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50 non-solar data as the labeled data, all the other 1923 solar data and 19, 950 non-solar

data as the unlabeled data. The proposed deep SSL method takes all the labeled data and

the unlabeled data and infers the labels for the unlabeled data. For the deep one-class

classification (OCC) method, we keep the same setup by using the first 50 non-solar data

as the given class and all the rest data being unknown classes. The proposed deep OCC

method interpret the labels for the rest of the 21, 923 data based on the 50 non-solar data.

For the deep SSL method, as can be seen from Fig. 23a, when we increase the dimen-

sion of the projected principal components, the F1 score and the accuracy increase with a

little fluctuation and reach the optimal and finally decrease. The optimal value is reached

when we choose 6 projected components. Also shown in Fig. 23b, when we increase the

dimension of the hidden representations we extracted, the F1 score and the accuracy reach

the optimal with a little fluctuation and finally decrease. The optimal value is reached when

a 9-dimensional hidden representation is used. Comparing to the results of using principal

component analysis (PCA), the results of the autoencoder (AE) are much better, especially

for the F1 score, which has a more than 10% increase. This also shows that although the

accuracy of using PCA and AE is always above 95%, the true performance for the classifi-

cation for the minor class may not be as good as it seems and F1 score successfully distinct

the performance.

For the deep OCC method, as shown in Fig. 23c, the accuracy and the F1 score first

increase to the peak and then decrease. The optimal value is reached when an 8-dimensional

hidden representation is used. The deep OCC has a reasonable performance reduction in

both accuracy and F1 score, it’s acceptable because less information is provided. All afore-

mentioned results indicate that a relatively low dimension is enough for learning. Higher-

dimensional components may contain information that is harmful to the results, i.e., noises

and bad data, so the results guide us to experiment on a dimension between 5 to 12 as the

representations of the original data. The results also indicate that as PCA is a linear trans-

formation of the input space aiming to find the directions that have higher variances, the

projected data have low or close to zero correlation with each other. However, the electricity

usage data used in our simulation are highly nonlinear and the features which are different

timestamps are correlated with each other. The AE has the advantages of capturing the
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(a) The Data after PCA to the Semi-Supervised EM Algorithm. The Red Dot shows the
Optimal F1 Score and Accuracy is Reach when we Choose 6 Projected Components

(b) The Hidden Representations to the Semi-Supervised EM Algorithm. The Red Dot
Shows the Optimal F1 Score and Accuracy is Reached when we Choose 9 Latent Rep-
resentations.

(c) The Hidden Representations to the SVDD. The Red Dot Shows the Optimal F1
Score and Accuracy is Reach when we Choose 8 latent representations.

Figure 23: The Optimal Dimension for Each Method.
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complex relationship between the features and the nonlinearities of the data. The AE has

such abilities due to the introduction of the nonlinear activation function and by propagating

the gradient, the AE automatically learns the parameters.

4.5.5 Performance Improvements for Deep SSL and Deep OOC

To better visualize the performance boost of the proposed methods, we plot all the results

together in Fig. 24. These results include supervised learning, SSL, OCC, with and without

autoencoder components. The left graph illustrates the comparison of accuracy where the

right graph is the F1 score. The dashed green line shows the performance of the supervised

learning method based on support vector machine with radial basis functional (RBF) kernel.

The dashed orange and navy line are the results of the classic SSL and classic OCC methods

when using the projected data based on principal component analysis (PCA), respectively.

The solid orange and navy line are the performance of the proposed deep SSL and deep

OCC methods when using the hidden representations extracted from the autoencoder (AE),

respectively.

Figure 24: Illustration Providing the Comparison Between the Accuracy and F1 Score of

the Study Results Between the Baseline Supervised Learning, the Proposed Deep SSL and

Deep OCC Methods Utilizing the Projected Data of the PCA and the Hidden Representation

Extracted from the AE.
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For the three dashed lines, we can observe that the accuracy of supervised learning is

always higher than the accuracy than the SSL and the accuracy of SSL is always higher than

OCC, if we use the projected data after PCA. We also obtain a similar conclusion for the

F1 score by ignoring the projection to 2 principal components. The results confirms that

more information guarantees better performance.

Next, we focus on the performance of the proposed deep SSL method, which is shown

by the orange dash line and the orange solid line in the figure. The performance curves first

increase and then decrease as we increase the dimensionality of the projected data, either

from PCA or AE. We conclude that a relative low dimension, from 5 to 12 is enough to

summarize the characteristics of electricity usage. The figure also shows that the accuracy

has a clear improvement with the help of the AE and the F1 score has a huge boost of more

than 10%. The result indicates that supervised learning tends to overfit the data when given

limited information. The unlabeled data helps to improve the performance by providing

more complete information on the distribution of the data.

Finally, we look at the performance of the regular OCC and the proposed deep OCC,

which are shown by the navy dash line and the navy solid line in the figure. The performance

curves first increase and then decrease as we increase the dimensionality of the projected data,

either from PCA or AE. While the performance of using the projected principal components

has a sharp decline when the dimensionality of the projected data increases, the performance

of using the hidden representations from the AE remains stable. This indicates that the

nonlinear transformation of the AE guarantees the OCC method to find a good hypersphere

in regardless of the dimensionality. The performance of the proposed OCC is slightly worse

than the supervised learning in terms of the accuracy, which is acceptable as the provided

information is much less.

Overall, the proposed methods with the assistance of the AE show to provide greater

accuracy and F1 scores than the supervised learning and merely using the principal compo-

nents from PCA.
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4.5.6 Computational Time

Table 3: The Average Computation Time for All the Methods.

Method Supervised SSL SSL OCC OCC

learning (PCA) (AE) (PCA) (AE)

Average
0.3 s 354.0 s 215.6 s 716.6 s 878.3 s

computation time

Table 3 shows the average computation time for each method based on a CPU Intel(R)

Xeon(R) CPU E5-2687W v4 @ 3.00GHz and 64 GB memory. As can be observed from the

table, the performance boosts come with a cost of computation time. For example, the AE

accelerates the speed of the SSL method but slows down the speed of the OCC method,

which is possibly because the AE maps the data to [−1, 1] and saves the computation cost.

However, the OCC method has to compute the relative distance of the data, so the AE

cannot do much to the computation time. However, the analysis of this work is offline, so

the needed computational time is feasible.

In summary, the solar detection is urgently needed and is hard and costly to maintain

accurate utility databases with current methods. Electric Distribution Companies need to

have visibility of these assets to avoid potential risks of two-way power flow, e.g., outages and

equipment damages. In this paper, we proposed a deep semi-supervised learning and a deep

one-class classification approach to detect residential PV systems under different scenarios.

The proposed methods use the extracted features from the autoencoder and combine them

with the original label information to predict the labels for the rest of the data. The proposed

methods have been validated on a utility data set and a publicly available data set and have

shown their effectiveness and robustness towards the solar panel detection problem.

64



5.0 Comparative Analysis of System Planning Studies

Once the system topology and DER interconnections are known, the next step is to

understand the varying impacts additional DER will have on the current infrastructure. We

will examine the feasibility and effectiveness of the current industrial methods for determining

feeder upgrades. With the dramatic increase of the residential photo-voltaic (PV) systems,

EV charging stations, and/or any distributed generation, utilities need to know the locations

of these new components to manage the unconventional two-way power flow for sustainable

management of distribution grids. And as stated above, historical records are not up-to-

date. It is costly to repeatedly check active DER locations; therefore, this work is pivotal

for utilities and other third parties.

Consequently, we will provide insight into the impacts of using the new data-driven

topology recovery and awareness methods that were developed to ensure the holistic system

perspectives of the granular load is modeled as well as the DER location data. The result of

the study can then refine the method of upgrading the current system, delay the unnecessary

upgrade, and expedite urgent upgrade, significantly saving utilities’ budgets.
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5.1 Overview of CYME Power Engineering Software and

Benefits to Utilizing AMI Data

With the additional accessibility of the AMI data, the full system model can be verified

and confirmed more readily with access to the secondary grid’s system loads (i.e., AMI op-

erational data). Refer to Fig. 25 for an overview of the circuit model within the engineering

software. Refer to Fig. 26 to visualize the individual load model components that need to

be adjusted to ensure the accuracy of real-time scenarios. Each individual triangle repre-

sents a system’s pole-top transformer. With the work from the topology reconstruction, the

meter-to-meter-to-transformer data is available for modeling purposes providing the inputs

to define the model with more granularity and overall accuracy. Refer to Fig. 27, which

is a screenshot of the CYME software providing the user the opportunity to either adjust

the load curves by a global scenario or to input a data file with all of the associated trans-

formers identified load cycle to capture the full range of the customers’ usage. Lastly, refer

to Fig. 28 providing additional granular access to the data to ensure that the model has

the most accurate inputs that can be taken from the AMI usage data once the meter-to-

meter-to-transformer relationship is known from utilizing the AMI voltage data. This work

is important to determine the results on the ability of not just the main feeder to handle a

certain threshold of DER but each individual lateral and customer transformer.

5.1.1 Circuit Model Development

To begin any study, a model must be developed in a platform where multiply scenarios

and contingencies can be processed and ran. One software that is being utilized in the

industry is Eaton’s CYME power engineering software solutions. The connectivity of a

circuit model was created from the utility data provided, such as the transformer rating,

fuse rating, recloser size, and conductor type, which was obtained from the utility circuit

maps. The substation all the way to the high-side voltage of the distribution transformers

where the secondary connections (to the meters) are totaled to represent the customer load

at each connection. The connectivity model was built utilizing the utility GIS pole and
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Figure 25: Depiction of a Real-utility Distribution Circuit Modeled in CYME Software.

transformer data to construct the main structure of the model.

Currently, the models are built and verified by limited data and outdated maps, causing

uncertainty in the results. However, with the utilization of the machine learning algorithms,

the models can be reversed engineered by utilizing the AMI voltage data to identify system

topology, identify the DER interconnections, and then build the model in the CYME soft-

ware. Fig. 30 is an example of a radial distribution feeder that was developed in CYME,

and Fig. 31 is an example voltage dataset that was used to build a model with the exist-

ing available data. The voltage data available to verify the model is the equipment at the

substation breaker as well as the intelligent pole top devices that are labeled “ERXXX” in

Fig. 31 as illustrated, providing an example of the limited data available for the study. And

provide insight onto the importance of having more granular data available to the utility to

better represent the grid and grid’s current capabilities.
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Figure 26: Depiction of a Real-utility Distribution Circuit Modeled in CYME Software

(Zoom-in to Depict Load Models).

5.1.2 High-Level Summary of Analyses Ran During a Hosting Capacity Anal-

ysis

In this project, we aimed at answering the questions of “what now” and “what if” for

situational awareness. The goal is to provide a model based on existing architecture and

the expertise of a distribution system planning engineers. For “what now”, we would like to

know the overloaded area as well as the voltage profile and the stresses of a feeder, so that

a timely upgrade is executed only in the area that has a need. For this purpose, we need to

know the state of the system, where the topology is the foundation.

The following is a summary of screening metrics that are utilized for a hosting capacity

analysis: over voltage, under voltage, voltage deviation, thermal loading, additional fault

current, protection reach, synthetic tripping, unintentional islanding, and reverse power

flow.

Traditional distribution feeders are designed based on radial conditions with power flow-
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Figure 27: Illustration of the Graphical GUI Representing the Ability to Breakdown the

Load Modeling by Individual Transformers.

Figure 28: Further Illustration Providing the Capability to Input the Granularity
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ing from the substation to load along a feeder which results in a voltage drop. If DER is not

located appropriately the voltage can rise above acceptable limits, especially during light

load conditions therefore, the maximum generation (discharging DER) capacity that can be

installed on each node before reaching any over voltage condition is calculated.

The opposite is true during peak loading conditions exasperating the voltage drop along

the feeder resulting in under voltage conditions. And finally, the voltage deviation is calcu-

lated in regards to the maximum DER available on the circuit before adversely impacting

the voltage regulation set points and equipment. Another study performed in determining

the maximum generation of the DER discharging before the specified thermal loading limit

is reached on the circuit.

Another consideration to consider is that the distribution circuits often have several pro-

tective devices connected, such as circuit breakers, reclosers, fuses, etc. When the available

fault current along a feeder changes, the coordination of protective devices may also be im-

pacted. Another analysis is performed, and the percent change in fault current greater than

the screening criteria are flagged as a concern to ensure the additional DER does not impact

the existing protection coordination.

The last area of study during a hosting capacity analysis is determining the amount of

DER installed, which will create a deviation in the substation breakers’ fault current that

will be higher than the specified protection reduction of reach in the breaker fault current

and the calculations are done to determine the amount the DER that is installed at each

point on the feeder that would generate a zero sequence sympathetic fault current which

would cause sympathetic tripping due to back-feed of the DER’s short-circuit contributions.

This study also determines the maximum generation capacity that can be installed on each

node before generating any reverse power flow in the circuit. It is anticipated the limit will be

near the minimum load for the circuit since the primary concern is the reverse flow through

the breaker at the substation.

Refer to Fig. 29 lists the screening metrics used to flag potential concerns with the

addition of the DER based on guidance from [16].

The following is the approach used for the hosting capacity analysis for this circuit to

provide insight on the importance of having an accurate load model.
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Figure 29: Listing of the Screening Metrics Used to Flag Potential Concerns with DER

Interconnection Based on Guidance from [16].

5.2 Overall Approach for Performing a Hosting Capacity Analysis on a Circuit

Base cases were created to bound the results of the simulations under different loading

conditions based on historical data representing overall peak and minimum loading conditions

for the circuit. The model has 10,000+ customers being represented each having a different

unique consumption behaviors therefore it is important to review the response of the circuits

performance under 100,000+ scenarios scaling the load under various levels and various levels

of DER penetrations. The base case scenarios set are a percentage of the peak loading and

light loading to bound the results.

• Heavy Load (30% of connected kVA)

• Light Load (10% of connected kVA)

The study is to determine the upper bounds when looking into the future, so the specific

location and rating for the DER is not known. Therefore, cases are examined looking at

numerous (e.g., thousands) potential DER location and ratings.
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Figure 30: Depiction of a Real-Utility Distribution Circuit Modeled in CYME Software.

For instance, the following is to be examined in this analysis:

• Large (three-phase) and small (single-phase) DER distributed throughout the feeder
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Figure 31: Example Data-Set for a Real-Utility Substation Breaker which are Currently

Limited to System Planners.

• Centralized (large three-phase) DER at various locations throughout the feeder

For the hosting capacity analysis, the EPRI DRIVE module was used to screen for any

potential concerns in the circuit.

5.2.1 Results

Refer to Fig. 32 and Fig. 33 which are the tabulated results after running the various

hosting capacity studies on the circuit modeled. The results are a summation of all 10,000+

scenarios that are run using the CYME EPRI Drive tool.

It was shown that depending on how the individual loads varied point to point would

provide a various significant changes to the results. Therefore it became very apparent

that having the foundation of the study, i.e. circuit model loading scaled and verified using

AMI metered data which provides a granular look at the whole circuits loading instead of a

conservative broad brush approach across the whole circuit’s loading based only on the feeder

head data. The results depending on which criteria was ranked changed as the DER was

varied across the circuit in large and small distribution as well as centralized connections.

An accurate model will have a significant impact on the utilities awareness of what can and
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can not be connected to the grid and ultimately what mitigation needs if any are available

to continue to connect DER throughout the distribution grid. With the data available only

at the breaker and pole-top switches it limits the utilities ability to provide DER capacity to

the laterals and different locations providing an easier transition and interconnection process

to all customers that wish to connect to the grid.

Figure 32: Illustration of the Results of the Study under Light Load Conditions Modeling

10% of the Peak Load.
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Refer to Fig. 34 as a visual representation of the results measuring the quantitative

results against the metrics as shown in Fig. 29.

Figure 33: Illustration of the Results of the Study under Peak Load Conditions Modeling

30% of the Peak Load.

The results also show the impact of adding an additional 650 kW to the base case as am

example of how the results change if a utility was unaware of all of their DER connections.

The additional 650 kW causes a change in the overall capacity of the circuit to ”host” DER.

Reiterating again, the importance of having a verified and accurate model for all laterals as

well as the main feeder of the distribution circuit.
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Figure 34: Visual Depiction of Hosting Capacity Results Comparing no DER versus 650 kW

Added Throughout Circuit.

5.3 Additional Benefits to an Accurate Topology Model

and Hosting Capacity Analyses Capabilities

Such a topology estimator can not only let people know where the trouble is in an event,

e.g., an outage but also speed up the repairing process, e.g., sectionalizing the problematic

location, phase correction. It will also provide a comprehensive knowledge of potential

voltage violations, e.g., houses near the secondary transformer have higher voltages, and

secondary transformers close to the primary transformers have higher voltages. Also, the

transformer aging speed can be calculated by forecasting the customer usage in an area,

for which we will also use the topology information to estimate the potential usage of the

transformer soon.

Finally, this project can show insights into how to operate with increasing intermittent

generation of solar sites, providing a guideline to supervise the future installation. For
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example, we can use the topology to calculate the hosting capacity of a feeder, and the

utility will obtain knowledge about the optimal locations of placing the voltage regulators

in the distribution grid with a fast-evolving pattern, due to solar panels and EVs.

Specifically, with surging renewable penetration, electric vehicle usage, and increasing

power usage in some areas, the grid is aging much faster, and it is essential to gather

necessary information for both the planning and operating purposes. To obtain such a

situational awareness, existing data in the system serves as an economical and viable way

to conduct data analytics rather than hiring expensive consultant companies and upgrading

all the components in a utility at once.
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6.0 Conclusion

Transmission and distribution (T&D) systems, although they connect as an integrated

system, have actually been planned, designed, and operated very differently. Transmission

systems have been designed in a network configuration allowing for two-way power flow.

Distribution systems are designed radially, allowing for one-directional power flow. Because

of these traditional design approaches and higher penetration levels of DER, there must be

increased coordination in managing the power flow on existing infrastructure in the US.

To plan and operate the T&D system, T&D planners/operators must collect and share

validated data across the transmission-distribution interface that includes a multitude of

stakeholders. These stakeholders include developers/aggregators, Electric Distribution Com-

panies’ (EDCs), Transmission Owners’ (TOs), Regional Transmission Operators/ Indepen-

dent System Operators (RTO/ISO), state regulators, and the Federal Energy Regulatory

Commission (FERC). Understanding the transmission-distribution interface was not an is-

sue when power generation was only connected to the transmission system. These variable

locations of DER within the power system will drastically impact generation and load fore-

cast models, especially if utilities are unaware of the DER (as in private home rooftop solar).

RTO/ISO, TOs, and EDCs (e.g., electric utility) presently base all of their system plan-

ning forecasts on historical data. As DER is a newer, realizable technology for the electric

utility, there is no DER historical data for the planners/operators to utilize.

The increase in DER systems not only create sustainable and green energy for the human

society, but also build a new type of assets for distribution utilities. To better evaluate

the benefits and create new revenues, utilities need to know the locations of these new

components to manage the unconventional two-way power flow for sustainable management

of distribution grids.

For example, detecting and monitoring all the active PV installations in a utility’s ter-

ritory allow the utility to perform accurate hosting capacity analyses (HCA). With HCA,

utilities determine the amount of additional Distributed Energy Resources (DER) that can

be “hosted” on the distribution system at a given time and at a given location, without
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threatening grid safety, reliability, or power quality [51].

Therefore utilities must be prepared for the rapidly proliferating industry and redefine

their existing forecasting tools which the first step in any software analysis tool is the iden-

tification of the topology and the ability to consistently and frequently monitor the changes

that are made on the distribution grid. The research herein has provided a methodology to

enhance the operation team’s ability to analyze and understand the impacts of any array of

DER penetration.

6.1 Research Directions and Applications

Two journal papers were submitted for publication for the first two areas of research.

The future direction to take this research is to continue to understand and develop additional

methods to help aid the transition of the current power grid to the future grid (i.e., data

utility grid).

Operational data from the AMI meters will be requiring more and more software and

additional machine learning algorithms to maintain the relational and non-relational data to

support business processes and event processing. An operational data management solution

will be required to organize the collection of data that may consist in multiple formats and be

stored in various forms. The methods developed in these projects can evolve and continue to

support the need to identify the relational and non-relational data for utilities and external

third-party stakeholders for the benefit of the holistic grid.

For today’s electric utility, an intelligent and connected infrastructure has unleashed

a tidal wave of operational data that can be used to improve operational efficiency, meet

customer demands, and anticipate risks to reliability. This will be required to maintain

the safe, reliable, and affordable grid to serve all of society. With the combination of data

management and analytics the power industry will be able to continue to take a system-wide

view of the current operations, allowing them to run more efficiently and at a lower costs

with less fossil fuel dependencies. A single view of operational data across the utility will

provide a trusted source of operational data used to make decisions, used to support and
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expedite various business processes, and map all of the data to all business units to provide

actionable insights for all stakeholders. This is where this project and additional projects

developed from our learning’s will fit in and contribute to the evolution of the future power

grid.

80



Bibliography
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[60] Yang Weng, Rohit Negi, and Marija D Ilić. Historical data-driven state estimation for
electric power systems. In International Conference on Smart Grid Communications,
pages 97–102. IEEE, 2013.

[61] Yang Weng and Ram Rajagopal. Probabilistic baseline estimation via gaussian pro-
cess. In Power & Energy Society General Meeting, pages 1–5. IEEE, 2015.

86



[62] Allen J Wood, Bruce F Wollenberg, and Gerald B Sheblé. Power generation, opera-
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