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Abstract 

A novel in silico method to predict drug PK profile in human and its application to build 

the PBPK model of Hydroxychloroquine for COVID-19 treatment 

 

Jingchen Zhai, MS 

 

University of Pittsburgh, 2021 

 

 

 

 

The first part of this study is to develop a novel protocol to predict the pharmacokinetic 

profiles of a target drug based on the Physiologically based pharmacokinetic (PBPK) model of a 

structurally similar template drug by combining predictions from two software for PBPK 

modeling, the SimCYP simulator and ADMET Predictor. Thirteen drug pairs with Tanimoto 

similarity scores (TS) no less than 0.5 were studied. Three versions (V1, V2 and V3) of models 

using different predicted parameters for the target drug were constructed by replacing the 

corresponding parameters of the template drug step by step with those predicted by ADME 

Predictor for the target drug. Normalized Root Mean Square Error (NRMSE) was introduced for 

the evaluation of the model performance. Overall, for Group I drug pairs (TS ≤ 0.7), V2 and V3 

perform better than V1 in terms of NRMSE; for Group II drug pairs (0.7 < TS ≤ 0.9), V3 

outperforms the V1 and V2 versions. For the two drug pairs belong to Group III (TS > 0.9), V2 

outperforms V1 and V3, suggesting more unnecessary replacement can lower the performance of 

PBPK models. We also investigated how the prediction accuracy of ADMET Predictor as well as 

its collaboration with SimCYP influence the quality of PBPK models constructed using SimCYP. 

Hydroxychloroquine (HCQ) has been proposed as a promising treatment for COVID-19. 

To study the optimum dosing regimens for HCQ on COVID-19 that can balance its therapeutic 

efficacy and cardiac side-effect, we constructed a PBPK model for HCQ based on the method we 

proposed above and deducted the therapeutic window for COVID-19. To enable drug plasma 



 v 

concentration to reach the treatment level at the beginning of the treatment, we proposed to 

administrate HCQ either 600 mg BID or 800 mg BID first. Also, the maintaining dose of 400 mg 

BID or 200 mg TID in the following treatment is found necessary to maintain the drug plasma 

level until the 7th day. Drug concentrations in the heart and lung were also deducted to reflect 

dosing efficacy and to avoid the potential risk of cardiotoxicity. Reduced dosing regimens have 

also been proposed for the elderly and the renal impairment population. 
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1.0 Introduction 

1.1 Current situation under COVID-19 pandemic 

The coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2),[1,2] has caused over 17,592,760 cases within the US 

since January 21, 2020. The disease has claimed death to the 315,260 people[3], and is still ongoing 

because of its high infectivity. Noteworthy, individuals with many common diseases, such as 

cardiac diseases, hypertension, diabetes, and other people who are being treated with ACE2-

increasing drugs, are more susceptible to the SARS-CoV-2[4]. Also, co-morbid tends to worsen 

the patients’ prognosis.[5,6] Thus, a feasible treatment is urgently needed to deal with this severe 

condition. Currently, the only drug with FDA’s approval for emergency use aiming at COVID-19, 

remdesivir,[7] has been reported a lot of side-effects and possesses much debate on its 

efficacy.[8,9] Although a large volume of clinical trials was launched to find potential therapeutic 

regimens,[10] there is still no other therapy for this infectious disease proven to be effective in 

clinical currently. 

Drug repurposing is a very promising method for searching for potential drugs as 

treatments of a newly emerged disease in a short time. Besides remdesivir, a great diversity of 

already proved drugs have been tested for the therapeutic efficacy evaluation in COVID-19 clinical 

treatment, including hydroxychloroquine, chloroquine, ritonavir, lopinavir, and many other 

drugs[11-14]. However, clinical tests and observations for drug efficacy still request much time 

and a large number of patients involved in. Furthermore, without knowing the proper dosing 
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regimens, the drug treatment maybe less efficient and a potential risk due to drug toxicity may 

increase.   

1.2 PBPK modeling techniques in drug development 

Pharmacokinetics is the study of the time courses of a drug administered to the body, which 

includes the processes of absorption, distribution, metabolism and excretion (ADME).[15] 

Usually, it is essential to quantitatively measure the concentration of the drug in plasma at different 

time points in pharmacokinetic (PK) study, for the analysis of drug behavior and dose adjustment. 

In addition to clinical trials which always involved time cost and ethical considerations, the 

“measurement” of concentration profiles under various administration conditions can also be 

achieved by the implementation of Physiologically based pharmacokinetic (PBPK)[16-18] 

modeling with known PK parameters related to drug properties or its ADME profiles. On the other 

hand, computational tools for both PBPK modeling and PK parameter prediction have been 

developed, further reducing experimental cost. Therefore, by virtue of such tools, the quick and 

convenient in silico prediction of drug behavior in human body can be easily performed without 

investing much effort in experiments, informing further studies in drug toxicity, dosing strategy 

and potential drug-drug interactions. As such, this in silico method can be particularly useful in 

preclinical study and can serve as a tool to help select drug candidates which are more likely to 

have desirable PK profiles. 
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1.3 A novel method proposed for predicting drug PK profile 

In this study, we developed a novel method to predict the concentration profile of a target 

compound based on PBPK models constructed using the model of a structurally similar drug which 

serves as the template. Among current software platforms (Table 1), we utilized the SimCYP 

Simulator (V19, Release 1; Shefeld, UK)[19] software to construct PBPK models for a target drug 

by only substituting the predicted ADME parameters of the target drug for those applied by the 

PBPK model of the corresponding template drug. We applied ADMET Predictor (V9.5, 

Simulation Plus),[20,21] a software developed by SimulationPlus Inc. to predict the ADME 

properties of target drugs, which include physiochemical parameters like fraction unbound in 

plasma (Fu) and blood-to-plasma partition ratio (B/P), and ADME input parameters such as the 

volume of distribution (Vd),  Michaelis-Menten constant (Km) and maximal metabolism rate 

(Vmax) of common enzymes. Meanwhile, to better validate our constructed PBPK models as well 

as evaluate the performance of the two software tools, we selected 18 drugs collected by SimCYP 

compound library (including substrates and inhibitors) as the template drugs. In total, 13 drug pairs 

were formed based on their structural similarity. For each pair of drugs, one serves as the template 

and the other as the target drug. For the target drug in a drug pair, we pretended that no PBPK 

model was available for it and new PBPK models were constructed based on the PBPK model of 

the template drug. We tested three protocols by introducing ADME Predictor predicted ADME 

properties into the template PBPK model and evaluated the model performance using the observed 

PK profile of the target drug. The corresponding PBPK models constructed using the three 

protocols, in brief, were called V1, V2 and V3 models, respectively. 
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Table 1 Current software platforms for PK modeling 

Software Availability 

SimCYP Similator Commercially available 

Phoenix WinNonlin Commercially available 
GastroPlus  Commercially available 

NONMEN Commercially available 
PK sim Open source 
Matlab Commercially available 

ADMET Predictor Commercially available 

PKanalix Academic free 

Simulx Academic free 
Monolix Academic free 

 

1.4 PBPK modeling for Hydroxychloroquine 

Since hydroxychloroquine (HCQ) has been nominated by Donald Trump, this drug has 

aroused much attention among the public and underwent a series of in vitro and in vivo tests as a 

potential treatment of COVID-19, with its efficacy reports varying. Chloroquine also received 

much concern because of its highly similar properties to hydroxychloroquine. However, compared 

to chloroquine, hydroxychloroquine has less cardiotoxicity, more solubility, and a higher tolerable 

dose[22-27]. The FDA proved therapeutic dosages of HCQ ranges from 200 mg a day to 800 mg 

as the first dose following by a lower dosage, dosing regimens varying in different diseases as 

treatments, such as Malaria and Rheumatoid arthritis (not include COVID-19), and the mechanism 

of action is still unknown.[28] Although some research claimed that hydroxychloroquine tends to 

show no significant treatment effect along with severe side effects,[29,30] growing evidence 

indicates that the viral load can significantly be inhibited by HCQ with a higher dose such as 600 

mg BID, with the main side effect, QT interval prolongation, occurring only at an extremely high 
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dose. [27,31-35] Thus, it is imperative to study the maximum safe dose of hydroxychloroquine to 

avoid the cardiotoxicity of this drug.  

From previous studies, researchers have attempted to build a PBPK model for HCQ base 

on mice experiments and clinical data.[36] The relationship between drug plasma concentration 

and lung concentration has also been researched based on monkey experiment data.[37] However, 

as a treatment for COVID-19, the administration of HCQ still lacks clinical dosing guidance and 

the relationship between dosing, plasma concentration, and cardiotoxicity is still unknown. What’s 

more, for different special populations taking this drug, such as the elderly population and pregnant 

population, how to adjust their dosing regimens is also unknown.  

In this study, we used in silico method to build the PBPK model of hydroxychloroquine 

and predict the PK profiles of HCQ with a series of dosing regimens. Drug concentration profiles 

in different organs were also predicted based on this PBPK model to speculate drug peak 

concentrations in specific organs, including heart and lung. The drug peak concentration in heart 

should serve as a risk indicator of cardiotoxicity while that in lung can help to predict drug 

treatment efficacy at the COVID-19 targeted organ. According to the currently reported HCQ 

cardiotoxic dose, we deduced a series of dosing regimens that balanced treatment effect and the 

risk of its most severe side effect - prolonged QT interval. Moreover, as a potential treatment for 

pneumonia disease, drug concentration at lung under respective dosage scenarios was also 

predicted. What’s more, for SARS-CoV-2's strong infectious ability and wide susceptible 

populations, we compared the predicted PK profiles between cohorts with different physiology or 

pathology models to come up with adjusted dosing regimens for different populations. 
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2.0 Methods 

2.1 The proposed method to predict drug PK profile  

2.1.1 Drug preparation  

Drugs selected for the construction of in silico PBPK models come from the built-in drug 

database of the SimCYP software. Simplified Molecular-Input Line-Entry System (SMILES)[38] 

strings of all drugs from SimCYP built-in library, including substrates and inhibitors, were 

collected from the DrugBank database (https://www.drugbank.ca/). The SMILES strings of drugs 

were used not only for their structural similarity calculation on a web platform, but also as inputs 

for the generation of their properties using ADMET Predictor.  

2.1.2 Structure similarity calculation  

Tanimoto scoring is a commonly used method to compute the fingerprint-based similarity 

between two compounds.[39] In this study, we applied the maximum common substructure-based 

(MCS) Tanimoto algorithm for the similarity calculation. The Tanimoto score (TS) is defined by 

the function below:[40] 

𝑇𝑆(𝑋, 𝑌) =
𝑁𝑍

𝑁𝑋 + 𝑁𝑌 − 𝑁𝑍
 

Where NX and NY are the numbers of bits in fragment bit-strings of the two compounds, 

and NZ is the intersection set, i.e., the number of common substructures shared by these two 

compounds. TS (X, Y) ranges from 0 to 1, measuring the structural similarity between two 

https://www.drugbank.ca/
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compounds from the lowest to the highest (when the two molecules are identical).  TS scores were 

calculated using ChemMine (https://chemminetools.ucr.edu/similarity) for all combinations of 

drugs in the SimCYP compound database.  

2.1.3 Validation of PBPK models for drug templates 

We first validated the PBPK models of all selected 18 drugs by utilizing their observed 

data from literature. In detail, we utilized the original built-in models of those drugs in SimCYP 

to run the simulation. In terms of the trial design, the dose regimens, simulation time as well as 

population information including age, weight and health condition were the same as those reported 

in the clinical study of PK measurement. Meanwhile, the parameters of the built-in PBPK model, 

like the drug’s ADME properties, remained the same for all the drugs except for Fluoxetine. As a 

racemate, we adjusted some of its ADME and PK parameters according to the literature to make 

the predicted curve much better fitting the experimental data.[41-43] The key ADME parameters 

predicted by ADME Predictor for the 18 drugs were all listed in Table S1, and the detailed input 

information for Fluoxetine template is shown in Table S2. The observed drug concentration data 

of each template drug was extracted from published concentration-time (C-T) curves using 

WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/). The C-T curves from simulations were 

then overlaid to the observed drug concentrations. The predicted PK profiles of each template 

drug, including the maximal concentration (CMax), the time at which CMax is observed (TMax), and 

area under the curve (AUC), were compared to the observed ones. 

https://chemminetools.ucr.edu/similarity
https://automeris.io/WebPlotDigitizer/
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2.1.4 Evaluation of Inherent differences among software platforms  

The quality of models constructed for target drugs not only affected by the structural 

similarity between the template drug and the target drug, but also relies on the prediction quality 

of ADMET Predictor and how well the collaboration is between the two software. There may be 

some inherent differences among different software platforms, including but not limited to the 

training set data and algorithms for constructing models. More importantly, the prediction 

accuracy of ADMET Predictor for an individual ADME parameter is unknown. Thus, we utilized 

parameters predicted by ADMET Predictor for the 18 drugs to simulate their PK profiles using 

SimCYP and then compared them to those predicted using SimCYP built-in parameters. The 

following ADME parameters predicted by ADMET Predictor were evaluated: molecular weight 

(MW), B/P, fu, the logarithm of the octanol-buffer partition coefficient (log Po:w), acid dissociation 

constant (pKa), human jejunum effective permeability (Peff), Vd, and Cytochrome P450 (CYP) 

metabolism parameters (Km, Vmax or CLint). The values of these ADME parameters for 18 drugs 

are listed in Table S1. 

2.1.5 Model construction for target drugs 

In total, three versions of PBPK models for a target drug were built by modifying the 

models of the template drug: (1) in Version 1 (V1),  only the MW of template drug was changed 

to that of the target one; (2) in Version 2 (V2), in addition to the MW, the physiochemical 

properties, including B/P, fu, log Po:w and pKa of the template drug were replaced by the ones 

predicted of the target drug; (3) in Version 3 (V3), in addition to MW and physiochemical 

properties,  the input parameters for ADME process, including Peff in absorption, Vd in distribution, 
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Cytochrome P450 (CYP) metabolism parameters (Km, Vmax or CLint) of templates were all replaced 

with the calculated ones for the target drug. All the ADME properties of the target drugs are 

predicted by ADMET Predictor, a software tool that can predict over 140 properties based on its 

built-in Quantitative structure-activity relationship (QSPR) models.[44] Information about the 

experimental subjects and the trial design of each target drug during simulations was derived from 

the corresponding clinical reports. 

2.1.6 Evaluation of models for target drugs 

To evaluate the performance of PBPK models with input parameters from ADMET 

Predictor, the experimental data of each drug were overlaid by the simulated C-T curves of this 

drug. To quantitively evaluate how well the experimental and simulated curves are overlaid with 

each other, we calculated the root mean square error (RMSE)[45] of the observed and predicted 

concentrations at different time points. The formula for the RMSE calculation is as follow:   

RMSE=[∑ (𝐶𝑝𝑖 − 𝐶𝑜𝑖)
2/𝑁𝑁

𝑖=1 ]½ 

Where Coi and Cpi represent the observed and predicted drug concentration at the time point 

i. N is the number of time points (N > 1) from the extracted observed data. Specifically, in this 

study, to facilitate the comparison between models for different drugs with various concentration 

scales, we introduced normalized RMSE (NRMSE) to evaluate the performance of PBPK models, 

which is calculated using the following formula: 

NRMSE=
𝑅𝑀𝑆𝐸

𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛
 

Where 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 are the maximum and minimum values among the observed and 

predicted concentrations using all three versions of models. 
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2.2 PBPK modeling for HCQ and optimized dosing regimens for COVID-19 

2.2.1 The PBPK model construction and verification for HCQ 

In this study, a PBPK model for HCQ was developed using SimCYP Simulator. Because 

parameters of some enzyme activity are unavailable in clinical and preclinical reports, we used 

ADMET Predictor 9.5 to predict metabolizing enzyme activity. Meanwhile, the advanced 

compartmental and transit (ACAT) model, which is utilized in the ADMET Predictor software to 

predict drug exposure,[46] shares the most similarity with the advanced dissolution, absorption, 

and metabolism (ADAM) model adopted to analyze drug absorption in SimCYP. Thus, we chose 

the ADAM model to analyze drug distribution during the simulation. A full PBPK model was used 

to analyze drug distribution in the heart and lung. Bellow mentioned “drug organ concentration” 

all refer to heart and lung drug concentration.  

Before building the PBPK model for HCQ, we first calculated the Tanimoto score between 

HCQ and drugs (including substrates and inhibitors) in the SimCYP drug library. Among the 

limited drugs in the SimCYP database with well-built templates, Ciprofloxacin shares the highest 

Tanimoto score with HCQ, 0.3056, thus was selected as a template to construct the HCQ PBPK 

model. Except for available property descriptions of drugs collected from literature reports and 

predicted metabolizing parameters, absent or unclear information of HCQ, including B/P, Fu, and 

the p-gp (ABCB1) transporter were adjusted and compromised with each other within the range 

reported in the literature to fit the clinical reported PK curve of HCQ. [47-56] Details of input 

parameters have been shown in Table 2.  
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Table 2 Input parameters for HCQ PBPK model 

Parameter Input Value 

Physiochemical Properties  

Molecular weight (g/mol) 335.872a 

LogP 3.6b 

pKa 9.67 b 

Blood Binding  

B/P 0.55e 

Fu 0.1 e 

Absorption (ADAM model)  

Peff (10-4cm/s) 2.32 c  

PSA (Å2) 48.39 a 

Distribution (Full PBPK model)  

Vss (L/kg) 18.12 (Method 1)c 

Elimination  

CYP1A2 Vmax: 7.928, Km: 20.777d 

CYP2D6 Vmax: 2.319, km: 14.602 d 

Transporter  

p-gp (ABCB1) Clint: 18 e 

B/P: blood-to-plasma partition ratio. Fu: the fraction of unbound drug in plasma. Peff: human 

jejunum effective permeability. PSA: polar surface area. Vss: volume of distribution at steady state 

using tissue volumes for a population representative of healthy volunteer population. Vmax: 

maximum rate of metabolism (pmol/min/pmol of isoform). Km: Michaelis-Menten constant, 

(μM). a: data from DrugBank. b: data from Pubmed. c: SimCYP Prediction result. d: ADMET 

Predictor prediction result. e: fit clinical curve 

2.2.2 2 Dose regimens for different population and extrapolated drug organ concentration 

With the constructed HCQ model, we conducted a series of simulations to study drug 

plasma levels under different dosage regimens. Combining with the results of HCQ treatment 

aiming at COVID-19 from many clinical trials, we thus extrapolated the safe and effective drug 

plasma concentration level from clinical recommended dosing regimens for the normal population. 

Corresponding organ concentrations of the drug were also predicted under recommended dosages 
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to prevent cardiotoxicity caused by HCQ. Based on simulation results of recommended dosing 

regimens for the virtual healthy population in SimCYP Simulator software, simulations were 

conducted under different virtual populations in SimCYP library and the concentration-time (C-

T) curves for different populations were also predicted. Special populations include GRF (renal 

impairment population, 30 mL/min≤GRF≤60 mL/min), GRFL (renal impairment population, 

GRF≤30 mL/min), MO (morbidly obese population), NEC (geriatric Northern European 

Caucasians population), Obe (obese population), Preg (pregnant population), RA (rheumatoid 

arthritis population) and Norm (healthy volunteers). For renal impairment populations, (morbidly 

or not) obese population, elderly population, and pregnant population, these are most common 

special populations which have different physical conditions from healthy subjects and thus may 

need special adjustment for dosing regimens. The reason the RA population was taken into special 

consideration is that HCQ is a drug proved to treat RA patients, and these patients should have a 

special ADME response to HCQ.[57] To analyze how each dosing regimens affect patient plasma 

and organ drug concentration, the predicted maximum drug concentration during each dosing 

stage, and the corresponding time was compared and analyzed. 
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3.0 Results 

3.1 The proposed method to predict drug PK profile 

3.1.1 Drug pairs selection and validation of PBPK models for drug templates 

13 pairs out of 18 drugs, which have the calculated TS equal to or better than 0.5, were 

selected for the in silico PBPK modeling. Drug pairs with TS below 0.5 were not considered to be 

structurally similar and were excluded in this study. The calculated TS for selected 13 pairs 

(Groups A-M) were listed in Table 3. Since both drugs in a pair will in turn serve as the template 

and target drug for cross-validation, we used X-1 and X-2 to label two drug pair sets, respectively, 

where X can be A to M. 

Table 3 The calculated Tanimoto Coefficient between each pair of drugs 

Group Drug 1 Drug 2 Tanimoto score 

A Bupropion Dextromethorphan 0.50 

B Bufuralol Bupropion 0.52 

C Dextromethorphan Quinidine 0.57 

D Lorazepam Midazolam  0.63 

E Alprazolam Lorazepam 0.65 

F Lorazepam Triazolam 0.69 

G Mephenytoin Phenobarbital 0.74 

H Atomoxetine Fluoxetine 0.78 

I Simvastatin Pravastatin 0.82 

J Triazolam Midazolam 0.84 

K Midazolam Alprazolam 0.88 

L Theophylline Caffeine 0.93 

M Imipramine Desipramine 0.95 

 

The predicted mean plasma concentration-time profiles overlaid with observed data of all 

18 template drugs are shown in Figure 1. Accordingly, Table 4[43,58-73] exhibits the predicted 
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PK parameters (CMax, TMax, AUC) versus observed values. From Table 4, excluding the drugs with 

observed PK parameters all unavailable (Dextromethorphan, Mephenytoin and Fluoxetine), the 

predicted PK parameters of most drugs are within the standard deviation ranges of their observed 

values. The predicted mean values of CMax, TMax and AUC for Theophylline are all slightly beyond 

the margin of error but still within the range of two-fold standard deviation. Overall, as shown in 

Figure 1, the observed C-T profiles are within the 95% Confidence Interval (CI) ranges (the upper 

and lower grey dashed curves) of the simulated C-T curves. Therefore, the PBPK models for the 

template drugs have been well validated. 
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Figure 1 The predicted concentration profiles by SimCYP and observed data of all drugs.  
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Prediction results for all drugs except Fluoxetine are from the original SimCYP template. 

The result for Fluoxetine is from adjusted Fluoxetine template. Upper and lower dashed grey 

curves represent 95 % confidential interval. 

3.1.2 Evaluation of Inherent differences among software platforms 

The predicted PK parameters of the 18 modified drug templates by replacing the ADME 

parameters with those predicted by ADMET Predictor are listed in Table 4. The C-T profiles of 

those 18 drugs are shown in Figure 2. It is demonstrated that Bupropion, Caffeine, and 

Phenobarbital show a very good overlay between the clinical reports and predicted results from 

modified drug templates, with the observed data laying within the confidence interval of the 

predicted curve. As to Fluoxetine, Alprazolam, Quinidine, and Triazolam, although the predicted 

results do not show an excellent overlay with the experimental data, most of the clinical data points 

lays within the confidence interval of the prediction profiles. For Lorazepam, although the 

observed data all at or around the upper confidence interval of the predicted profile, the shape of 

the predicted curve shares a high similarity with that of the observed PK profile. Unfortunately, 

the other drugs do not show very satisfying prediction results, using clinical data points as 

references.  

To quantitatively measure the deviation of predicted concentration profiles from the 

experimental data, the difference between observed and predicted values are evaluated by NRMSE 

(Table 4). The lower the NRMSE value is, the smaller the difference between the predicted and 

experimental concentration profile is, i.e., the better performance the created model for the drug 

is. The top three drugs, Caffeine, Phenobarbital, and Bupropion, all have very small NRMSE 

values, which is consistent with the fact that the simulated C-T curves are well overlaid with the 



 17 

experimental data points as shown in Figure 2. Interestingly, the NRMSE values of Fluoxetine 

(0.41), Alprazolam (0.28), Quinidine (0.53), and Triazolam (0.29) are quite different, even though 

the simulated C-T curves of the four drugs are relatively satisfactory.  Taken together, both the 

overlay of simulated C-T curves with the measured C-T data points and NRMSE should be used 

to evaluate the quality of the predicted ADME parameters by ADMET predictor. Overall, the 

predicted ADME parameters by ADMET Predictor can produce satisfactory C-T curves using 

SimCYP simulator for about half of the tested drugs.   

 

 

Table 4 The comparison between predicted and observed PK profiles of all drugs 

Drug name Dosage Pred/Obs TMax (h) CMax (ng/mL) AUC (ng/mL∙h) 

Bupropion  150 mg 

Pred 2.16 61.62 721.88 

Pred_v 1.86 71.84 614.66 

Obs[69] (1.30, 5.10) (34.00, 118.00) (486.00, 1518.00) 

Dextromethorphan 60 mg 

Pred 1.56 13.13 195.70 

Pred_v 2.69 162.33 3594.67 

Obs[68] NA NA NA 

Bufuralol  15 mg 

Pred 1.49 55.62 386.06 

Pred_v 1.75 18.66 151.83 

Obs[70] (1.84, 2.74) (56.00, 72.00) (270.00, 430.00) 

Quinidine  400 mg  

Pred 1.16 1904.52 11632.95 

Pred_v 1.66 2183.40 18988.42 

Obs[71] (0.36, 2.54) (1330.00, 2070.00) (3800.00, 14860.00) 

Lorazepam 2 mg 

Pred 1.92 18.24 240.28 

Pred_v 2.08 32.98 531.29 

Obs[67] (0.50, 6.00)  (15.80, 25.60) (197.20, 268.80) 

Midazolam  7.5 mg 

Pred 0.60 39.97 99.77 

Pred_v 0.87 39.58 383.67 

Obs[66] (0.22, 1.21) (25.90, 80.20) (64.00, 163.70)  

Alprazolam  0.8 mg 

Pred 1.23 12.22 193.14 

Pred_v 2.16 7.74 327.10 

Obs[65] (0.70, 2.30) (8.20, 14.40) (173.20, 291.60) 
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Table 4 (continued) The comparison between predicted and observed PK profiles of all drugs 

Drug name Dosage Pred/Obs TMax (h) CMax (ng/mL) AUC (ng/mL∙h) 

Triazolam  0.25 mg 

Pred 0.72 2.34 13.94 

Pred_v 1.47 1.80 24.95 

Obs[64] (0.35, 2.15) (1.70, 4.30) NA 

Mephenytoin  100 mg 

Pred 0.61 265.55 2576.76 

Pred_v 0.36 299.34 584.59 

Obs[63] NA NA NA 

Phenobarbital  216 mg 

Pred 2.07 5235.78 660577.85 

Pred_v 4.03 4977.22 930922.01 

Obs[62] 2.00 5100.00 NA 

Fluoxetine* 20 mg 

Pred 4.36 6.50 186.21 

Pred_v 2.68 13.89 291.07 

Obs[43] NA NA NA 

Atomoxetine  20 mg 

Pred 1.25 169.56 1390.42 

Pred_v 1.84 35.78 486.50 

Obs[61] (0.50, 1.55) (106.16, 178.16) NA 

Simvastatin  10 mg 

Pred 1.20 2.11 7.03 

Pred_v 1.20 24.03 78.42 

Obs[60] (1.00, 1.40) (2.60, 4.60) (7.40, 14.78) 

Pravastatin  20 mg 

Pred 0.96 40.60 130.36 

Pred_v 1.56 130.85 489.70 

Obs[60] (1.00, 1.20) (30.80, 42.20) (92.00, 126.80) 

Theophylline 100 mg 

Pred 0.75 2589.22 29614.81 

Pred_v 0.62 1897.37 10003.06 

Obs[59] (1.38, 1.82) (1727.91, 2036.31)  (21499.55, 24439.65)  

caffeine  100 mg 

Pred 1.18 2540.84 13709.29 

Pred_v 1.50 2114.02 12859.90 

Obs[58] (0.33, 2.00) (1598.00, 2280.00) (10700.00, 24438.00) 

Imipramine  50 mg 

Pred 3.03 25.37 250.72 

Pred_v 3.64 83.87 1082.01 

Obs[72] (2.80, 3.80) (20.90, 36.90) NA 

Desipramine 50 mg 

Pred 5.42 13.56 264.97 

Pred_v 6.25 50.66 1042.14 

Obs[73] (2.00, 10.00) (12.1, 20.1) (211.60, 413.20) 
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Pred: Predicted drug PK parameters from the unchanged SimCYP drug template (except 

Fluoxetine). Pred_v: Predicted drug PK parameters using SimCYP with input parameters from 

ADMET Predictor. Obs: drug PK parameter reported by clinical research. For Fluoxetine 

especially, the SimCYP drug template is modified to enable the predicted profile to fit the clinically 

reported curve. 
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Figure 2 The predicted concentration profiles using SimCYP drug template with input parameters from 

ADMET Predictor and observed data of all drugs 

 Upper and lower dashed grey curves represent 95 % confidential interval 
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Table 5 Calculated NRMSE between predicted results by modified drug template and experimental 

concentration profiles of drugs 

Name NRMSE 

Caffeine 0.13 

Phenobarbital 0.22 

Bupropion 0.26 

Alprazolam 0.28 

Theophylline 0.29 

Triazolam 0.29 

Midazolam 0.29 

Bufuralol 0.36 

Atomoxetine 0.40 

Fluoxetine 0.41 

Mephenytoin 0.48 

Imipramine 0.51 

Simvastatin 0.52 

Pravastatin 0.53 

Quinidine 0.53 

Lorazepam 0.53 

Desipramine 0.70 

Dextromethorphan 0.93 

3.1.3 Predicted concentration profiles for the in silico PBPK models 

The C-T profiles predicted by all three versions (Versions 1, 2, and 3) of PBPK models are 

shown in Figure 3. The NRMSE value is also calculated to measure the difference between 

observed and predicted values of three versions respectively and summarized in Table 5. The table 

cell is colored in green if the NRMSE value of V1, V2, or  V3 is lower than 0.2. In the following, 

we grouped all the 13 drug pairs / 26 drug pair sets into three groups according to their Tanimoto 

scores for the sake of discussion. 

Group I (TS ≤ 0.7). Six drug pairs, A-F, belong to this group. According to Table 5, the 

performance of the three protocols does not show an obvious pattern for Group I. The V1, V2 and 

V3 have two (A-1 and D-1), five (A-1, A-2, D-1, D-2 and F-1) and three (B-2, C-2 and D-2) pair 
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sets in green table cells, respectively. Most of those pair sets also exhibit a good overlay between 

experimental data points and prediction curves as shown in Figure 3, indicating the collaboration 

between SimCYP and ADMET Predictor is good. For the other groups from A-1 to F-2, all the 

three protocols have NRMSE values larger than 0.2 and the simulated C-T curves do not overlay 

with the experimental data points well. Interestingly, for D-2 drug pair set, though the NRMSE of 

the V2 model is the lowest, the predicted C-T curve by the V3 model has a better shape fitting the 

observed data as shown in Figure 3. This phenomenon is caused by the deviation of the first data 

point from the predicted curve of V3, which caused its NRMSE is larger than that of V2. When 

this outlier is eliminated and the NRMSE value is recalculated, V3 became the best for this pair 

set (NRMSE are now 0.57, 0.16 and 0.06 for the V1, V2 and V3 protocols, respectively).   

Group II (0.7 < TS ≤ 0.9). This group contains 5 drug pairs, G-K. As shown in Table 6,  

most drug pair sets have at least one version with an NRMSE value lower than 0.2, except H-1 

and I-2. It is worthy to mention that the NRMSE value of I-2 is only 0.21 and the predicted C-T 

curve exhibits a good consistency with experimental data (Figure 3). The failure of H-1 model is 

likely caused by using problematic ADME parameters predicted by ADMET Predictor for the 

target drug. The “collaboration” between the two software should not be a problem for this drug 

pair since the NRMSE values of H-2 are very low for both the V2 and V3 models, which are 0.08 

and 0.02 for the two models correspondingly. As shown in Table 6, the V3 version models 

apparently outperform the V1 and V2 models for most drug pair sets, as 7 out of 10 V3 models 

have NRMSE values lower than 0.2, while none of V1 models and 2 V2 models have their NRMSE 

values lower than 0.2. Interestingly, for drug pair set J-2, the V2 and V3 models have highly similar 

performance with good prediction result as shown in Figure 3; however, for K-2, all of the three 
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model versions do not exhibit satisfying prediction (Figure 3), even though the NRMSE values of 

the V1 and V2 models are equal to or lower than the cutoff.  

Group III (TS > 0.9). This group contains 2 drug pairs, L and M. As shown in Table 6, 

most models have satisfactory NRMSE values. For L-1 and L-2 drug pair sets, the predicted 

profiles of the V2 and V3 models are very close to the clinical data points. Interestingly, for M-1 

and M-2 drug pair sets, the performance of the V3 models is very poor. Drug pair M has a structural 

similarity with the Taminoto score of 0.95, interestingly, the V3 models perform poorly while the 

V1 and V2 models have not only satisfactory NRMSE values, but also very well-overlayed C-T 

curves with measured data points. This phenomenon may be explained by the prediction error by 

ADMET Predictor and error caused by the inherent difference between the two software can be 

compensated by the small difference of the ADME parameters between the template and target 

drugs. Indeed, the NRMSE values of the two drugs in drug pair M, 0.51 and 0.70, are very large 

(Table 6).  
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Table 6  Calculated NRMSE between predicted (three versions) and experimental concentration profiles of 

drugs in each group 

Group-

Drug 

NRMSE (Different versions vs 

Obs) 
Target 

drug 

NRMSE 

Template 

drug 

NRMSE 

Tanimoto 

score 
V1 V2 V3 

A-1 0.14 0.13 0.49 0.26 0.93 0.50 

A-2 0.26 0.19 0.50 0.93 0.26 0.50 

B-1 0.44 0.49 0.49 0.36 0.26 0.52 

B-2 0.67 0.49 0.07 0.26 0.36 0.52 

C-1 0.64 0.34 0.31 0.93 0.53 0.57 

C-2 0.68 0.67 0.13 0.53 0.93 0.57 

D-1 0.14 0.16 0.48 0.53 0.29 0.63 

D-2 0.61 0.16 0.19 0.29 0.53 0.63 

E-1 0.22 0.32 0.35 0.28 0.53 0.65 

E-2 0.43 0.56 0.35 0.53 0.28 0.65 

F-1 0.24 0.19 0.33 0.53 0.29 0.69 

F-2 0.88 0.28 0.27 0.29 0.53 0.69 

G-1 0.94 0.94 0.04 0.48 0.22 0.74 

G-2 0.58 0.56 0.14 0.22 0.48 0.74 

H-1 0.56 0.56 0.52 0.40 0.41 0.78 

H-2 0.44 0.08 0.02 0.41 0.40 0.78 

I-1 0.49 0.36 0.04 0.52 0.53 0.82 

I-2 0.34 0.38 0.21 0.53 0.52 0.82 

J-1 0.43 0.57 0.14 0.29 0.29 0.84 

J-2 0.45 0.13 0.12 0.29 0.29 0.84 

K-1 0.69 0.67 0.06 0.29 0.28 0.88 

K-2 0.20 0.15 0.38 0.28 0.29 0.88 

L-1 0.34 0.06 0.12 0.29 0.13 0.93 

L-2 0.22 0.19 0.17 0.13 0.29 0.93 

M-1 0.08 0.10 0.66 0.51 0.70 0.95 

M-2 0.13 0.15 0.40 0.70 0.51 0.95 
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Figure 3 The predicted concentration profiles of three versions and observed data of all predicted drugs 

Each template drug has a pound sign at the end. 
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3.2 PBPK Modeling for HCQ and optimized dosing regimens as a potential treatment for 

COVID-19 

3.2.1 The PBPK model for HCQ 

The PK profile predicted by the model we built for HCQ was shown in Figure 4. The 

simulated TMax under 200 mg HCQ sulfate is 3.46 h, compared with FDA guidance of 3.26 h and 

literature report ranging from 2 - 4.5 h, respectively.[28,48,74]  Simulated CMax reported a value 

of 207.41 ng/ml, while the literature report CMax is 188-427 ng/ml when the same dose was 

applied.[48] The clinical time-concentration profile of HCQ data was also extracted from literature 

and overlayed in Figure 4,[48] with all the data points located within the confidence intervals. The 

good alignment of our model and clinical data proves the reliability of our PBPK model.  

 

Figure 4 Validation of HCQ model within 3 days (left) and 7 days (right).  

The green curve represents the mean value of the simulated virtual subjects and the grey 

curves represent the 90% confidence interval. The yellow dots represent the clinical reported 200 

mg HCQ PK data 
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3.2.2 Simulation on different dosage regimens ranging from COVID treatment effective 

dose to cardiotoxicity dose 

According to the FDA guidance and a series of clinical reports, dosage regimens ranging 

from 200mg, 400mg, 600mg, and 800mg multiple times a day. We first studied the drug plasma 

concentration fluctuation caused by different dosage regimens but the same total dosage amount, 

including 400 mg, 600 mg, and 800 mg within a day. As shown in Figure 5, under the circumstance 

of the same dosing load a day, multiple times of drug administration can help to maintain the 

stability of drug plasma concentration. From the peak concentration between one administration 

of the drug and the valley concentration before the next, the dosage regimen of 200mg TID shows 

the smallest drug plasma fluctuation, followed by 400mg BID. As a result, these dosing regimens 

are very suitable for maintaining the drug level after drug concentration has already reached the 

treatment level.  

 

Figure 5 Drug plasma concentration under different dosage regimens, with each regimen colored with a 

different color 

From most of the clinical data reported till now,[31-33,75-78] it is concluded that the 

treatment of more than 400 mg BID will show significant efficacy on the 5th day, while the 
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treatment of more than 600 mg BID for 5 to 7 days tends to result in the side effect of QT interval 

prolongation, which is the most important and severe side effect of this treatment. Continuous 800 

mg BID is of high risk to cause severe cardiotoxicity during long-term treatment. Most clinical 

report with detailed evaluation for different dosage regimens lasts for 7 days.  Since one aim of 

our study is to work out the optimized dose regimens, which is ensured with both treatment 

efficacy and circumvention of cardiotoxicity, we assumed that the peak blood concentration of 400 

mg BID at the 5th day (C1 = 1280 ng/ml) is the value of the lowest effective dosing and the 

maximum concentration within 7 days (C2 = 1550 ng/ml) is that able to, in the most extent, avoid 

the significant QT interval prolongation. Meanwhile, the peak blood concentration for 600 mg BID 

treatment patients at the first-time drug administration on day 5 (C3 = 1930 ng/ml) is considered 

to be less safe but acceptable (Figure 6.) It is also shown that compared to lower dosing regimens, 

600 mg BID can elevate drug plasma concentration to the level of C1 on the second day and C2 

on the third day, while 800 mg BID enables drug plasma concentration to reach a level very close 

to C1 at the first day and exceed C2 at the second day. Thus, 600 mg BID and 800 mg BID serve 

as the beginning dose should help drug plasma concentration of patients reach effective treatment 

level faster than lower dosing regimens.  

 

Figure 6 The predicted drug plasma C-T curved for a series of dosing regimens reported in clinical trials.  

The horizontal dash lines represent the drug concentration level of C1, C2, and C3 
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3.2.3 Predicted PK profile for proposed dosing regimens 

A series of dosing regimens designed have been shown in Table 7, using a higher dose as 

the beginning dose and a lower dose for maintaining plasma drug level. The simulation results of 

diverse dosing regimens are shown in Figures 7 and 8.  

Table 7 A series of dosing regimens proposed in this study  

 

For each regimen, the same dose is represented by the same color, for example, 200 mg 

BID colored in light green is applied to Day2 to Day7 for Regimen 1. 
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Figure 7 The time course of plasma drug concentration for Regimens 1-8 which administer 600 mg BID for 

first 1-3 days.  

(a) Regimens 1, 2, 5, 6, and 7; (b) Regimens 3, 4, and 8 

As shown in Figure 7, to start with 600 mg BID for the first two or three days (Regimens 

2,4,6,7, and 8) is important for the drug plasma concentration to elevate rapidly at the beginning 

stage of drug treatment. For those dosage regimens, drug plasma levels can reach the C1 level on 

Day 2, while the drug plasma level reaches C1 on Day 5 for Regimen 3. Although the regimens of 

loading 600 mg BID on Day 1 and reduced dosage in the following days were (Regimens 1, 3, and 

5) also proposed by some researchers, none of them can elevate drug plasma concentration to C1, 

the minimum effective drug plasma level, within the first three days. Thus, the administration of 
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600 mg BID for the first two or three days is strongly recommended.  With regard to drug safety, 

Regimens 7 and 8, which administrate 600 mg BID for the first three days, drug plasma 

concentration can reach C2 on Day 3, but the maximum drug plasma level is still far below C3, 

the concentration at which significant QT interval prolongation may occur.   

Interestingly, Regimens 2 and 6, which have doses of 600 mg BID for the first two days 

followed by doses of 200 mg BID or TID thereafter, cannot maintain the minimum effective 

treatment drug level after the first two days. Regimen 7, which applies 600 mg BID for the first 

three days followed by 200 mg TID afterward, cannot keep the plasma drug concentration within 

the effective treatment range either. On the contrary, the predicted curves of Regimens 4 and 8 

show very promising results. With a starting dose of 600 mg BID for the first two or three days 

followed by 400 mg BID, drug plasma concentration can reach C1 on the second day and maintain 

a concentration level mainly between C1 and C2 in the following days. As soon as the two 

regimens are compared, Regimen 8 has slightly higher drug plasma concentrations than Regimen 

4, is therefore more suitable for patients with much severer symptoms. It is pointed out that the 

maximum plasma concentrations of two regimens only slightly exceed C2, indicating their risk of 

causing cardiotoxicity is very low.  
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Figure 8 The time course of drug plasma concentration for Regimens 9-16 which administer 800 mg BID for 

first 1-3 days.  

(a) Regimens 9, 11, and 13; (b) Regimens 10, 12, 14, 15, and 16 

The time course of plasma concentration for dosing regimens starting with 800 mg BID 

were shown in Figure 8. Compared to the dosing regimens with starting doses of 600 mg BID on 

Day 1, starting doses of 800 mg BID can elevate drug plasma concentration close to C1 on the first 

day of the drug treatment. If the same doses are given in Day 2, the maximum concentration 

exceeds C2 in Day 2, and most plasma drug concentrations are between C1 and C2. In contrast, if 

lower doses are given in Day 2, as for Regimens 9, 11, and 13, the plasma drug concentrations 

cannot reach C1 level if the daily doses are only 200 mg BID or TID. Even daily doses of 400 mg 
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BID are administered (Regimen 11), the plasma drug concentrations cannot reach the effective 

treatment zone in the first three days. 

As illustrated in Figure 8b, Regimens 12, 14, 15, and 16 have more promising C-T curves. 

All these drug regimens have 800mg BID on Day 2. For Regimen 16, the predicted drug plasma 

concentration is the highest among all the regimens. However, the peak values in this curve exceed 

the C2 multiple times, which may lead to a higher risk of causing severe cardio side effects. On 

the other hand, Regimen 10 is also problematic as the plasma drug concentration cannot reach C1 

level after Day 2. Thus, Regimens 12, 14, and 15 are more appropriate to treat patients without 

severe symptoms. All the three regimens share very similar drug plasma concentration-time 

courses and the drug plasma concentration is well-maintained around C1 from Day 3 to Day 7.  

3.2.4 Application of promising dosing regimens to special populations 

We have selected six promising dosing regimens (Table 7) according to their time course 

of the plasma drug concentration. All the six regimens, Recommendations A to F, can well 

maintain their plasma drug concentration between C1 and C2 most time from Day 1 to Day 7. In 

the following, we conducted simulations for eight special populations. Moreover, the drug 

concentration-time courses in heart and lung were also predicted. 

3.2.4.1 Recommendation A: Regimen 4 (600 mg BID for two days, followed by 400 mg BID) 

As the C-T curves shown in Figure 9, the drug concentration levels are gradually elevated 

during the 7 days’ treatment period for both the healthy volunteers and patients of special 

populations. The two renal impairment populations have extremely high drug concentrations in 

both blood and organs, followed by the elderly population and RA patients. Both renal impairment 
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populations and the elderly reach C3 on Day 4, indicating an increased risk leading to 

cardiotoxicity. The simulation curve of RA patients also shows an obvious elevation of drug 

concentration in both plasma and organs compared to healthy volunteers, but only occurs on Day 

7. Thus, this regimen is acceptable for RA patients but not recommended. RA patients with heart 

diseases should better avoid this regimen. Pregnant and obese populations do not have much 

difference in plasma and organ concentration according to the simulation results, while pregnancy 

will lead to a little bit higher plasma and organ drug concentration. Overall, the C-T curves for 

Pregnant and obese subjects exhibit promising efficacy and acceptable risk from the prediction 

results, therefore, this dosing regimen might also be suitable for these two populations. Morbidly 

obese subjects tend to show no treatment effect as the predicted curve is below the C1 horizontal 

line during all the treatment periods. The predicted CMax and TMax during the first two days and the 

following 5 days are listed in Table S4. 

 

Figure 9 Predicted drug concentration profiles for different populations in plasma, heart, and lung under 

recommended dosing Regimen 4 
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3.2.4.2 Recommendation B: Regimen 8 (600 mg BID for three days, followed by 400 mg 

BID) 

Similar to Regimen 4, drug plasma and organ concentrations during the first three days 

keep increases and become more stable with a small growth, as shown in Figure 10 and listed in 

Table S5. Except for renal imparted subjects and elder subjects which still show a greatly elevated 

drug concentration in plasma and organs, the prolonged 600 mg BID dosing in Day 3 also results 

in the drug plasma concentration of RA patients reaching the C3 level one day earlier. Which is 

also similar to Regimen 4, pregnant and normal obese populations do not show an apparent 

difference compared to the simulation results of healthy volunteers, indicating this dosing regimen 

can be applied to these two populations. The predictive C-T curve of the morbidly obese population 

still shows a slightly lower concentration level but very close to C1. Therefore, Regimen 8 may be 

applicable to this population after a slight increase in the drug dose based on patients’ weights. 
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Figure 10 Predicted drug concentration profiles for different populations in plasma, heart, and lung under 

recommended dosing Regimen 8 

3.2.4.3 Recommendation C: Regimen 14 (800 mg BID for two days, followed by 200 mg 

TID) 

The simulation results for all the populations are shown in Figure 11 and summarized in 

Table S6. The maximum drug concentrations in plasma and organs occur on Day 2 for all 

populations except for the two renal impairment populations for which the maximum drug 

concentrations occur on the last day of the treatment period. Similar to Regimens 4 and 8, the drug 

concentrations are above the C3 level in the last days of the treatment period. The C-T profile of 

Regimen 14 is more promising than Regimens 4 and 8 for the elder population as the plasm drug 

concentration only slightly exceed the C3 level only in the last two days. However, this regimen 

is not recommended for the elder population due to drug concentrations exceed the recommended 
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safety level. The drug plasma concentrations for the RA population are between C2 and C3. For 

other populations except for the morbidly obese population, the drug plasma concentrations are 

around C1 after Day 3. In summary, Regimen 14 may be applied to the RA, pregnant and obese 

populations, however, the patients’ cardio condition should be carefully monitored when the 

maximum drug concentration occurs on Day 2.  

 

Figure 11 Predicted drug concentration profiles for different populations in plasma, heart, and lung under 

recommended dosing Regimen 14. 

3.2.4.4 Recommendation D: Regimen 12 (800 mg BID for two days, followed by 400 mg 

BID) 

The prediction results are shown in Figure 12 and listed in Table S7 for dosing Regimen 

12 among different special populations. This regimen also shows impracticability for the two renal 

impairment populations and the elder population, as it has extremely high plasma and organ drug 

concentrations at the last stage of the treatment. The RA population also shows high drug 



 38 

concentration in organs, with the predicted drug level being close to that of the elder population. 

For the pregnant population, the maximum drug concentration in plasma is between C2 and C3, a 

recommended concentration level when patients need a higher dosing regimen for treatment. The 

obese population has the simulation results showing the daily plasma drug concentration ranging 

between C1 and C2 since Day 2, revealing the promising treatment effect and dosing safety of this 

regimen for this population. Similarly, the predicted plasma drug concentration for the morbidly 

obese population is below but very close to C1. In summary, the pregnant, morbidly obese, and 

obese population show good stability during the drug concentration maintenance stage (from Day 

3 to Day 7), suggesting that this regimen can be applied to these three populations. For the 

morbidly obese population, the dose may be slightly elevated based on a patient's body weight to 

achieve a better treatment effect. 

 

Figure 12 Predicted drug concentration profiles for different populations in plasma, heart, and lung under 

recommended dosing Regimen 12  
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3.2.4.5 Recommendation E: Regimen 15 (800 mg BID for two days + 400 mg BID for one 

days + 200 mg TID) 

From the predicted C-T profiles shown in Figure 13 and PK parameters summarized in 

Table S8, this regimen is still not recommended for the two renal impairment populations because 

of significant drug accumulation in plasma and organs. Most of the predicted curves for the elderly 

population and RA subjects reside between the C2 and C3 horizontal lines. Especially, considering 

that the elderly tend to have a cardiac problem and the predicted curve of the elder population is 

close to the C3 level, this dosing regimen is only recommended to elderly patients with severe 

symptoms. Unlike the plasma curves, the predicted organ concentrations for the elderly and PA 

populations are nearly the same (Figure 13b and 13c). For the pregnant population, the predicted 

drug concentrations in plasma and organs are slightly higher than obese and healthy populations 

in the first three days, but the drug levels are nearly the same since Day 4. Overall, this regimen 

has a similar characteristics as Regimen 12 (Figure 12) except that the stable drug concentrations 

are slightly lower. Thus, it may be used to treat pregnant women with mild symptoms. Last, the 

prediction results do not show a satisfying treatment effect for morbidly obese subjects. 
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Figure 13 Predicted drug concentration profiles for different populations in plasma, heart, and lung under 

recommended dosing Regimen 15 

3.2.4.6 Recommendation F: Regimen 16 (800 mg BID for two days + 400 mg BID for two 

days + 200 mg TID) 

As shown in Figure 14 and listed in Table S9, renal impairment and elder subjects have 

plasma drug concentrations exceed C3 since Day 2, indicating an extremely high risk of 

cardiotoxicity for the three populations. Other populations except for MO exhibit stable drug 

plasma and organ concentrations within both the effective treatment and safe ranges during the 

maintenance stage of the treatment period (the last five days).  As to CMax observed in Day 2, it is 

slightly higher than C3 for the RA population, a little bit lower than C3 for the pregnant 

populations.  Compared to Regimen 15, the drug concentrations in both plasma and organs are 
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kept at a higher level since Day 4. Again, the predicted result is not likely to show treatment effect 

for the morbidly obese population. 

 

Figure 14 Predicted drug concentration profiles for different populations in plasma, heart, and lung under 

recommended dosing Regimen 16 

3.2.4.7 Adjusted dosing regimens for renal impairment populations 

The above-mentioned prediction results demonstrate that the renal impairment populations 

tend to have extensive drug accumulation in both plasma and organs especially in the treatment 

stage which aims to maintain stable drug concentrations. Thus, we ran simulations for the rest 10 

regimens with smaller administrated dosage (Regimens 1, 2, 3, 5, 6, 7, 9, 10, 11, and 13), of which 

the prediction results are shown in Figure S1 for GRF population and Figure S2 for GRFL 

population. According to the curves of these dosing regimens, drug administration of 800 mg BID 

within one day (such as Regimens 10 and 13) or  600 mg BID on Days 1 & 2 (such as Regimens 
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2 and 7) can elevate drug plasma concentration to C2. Moreover, the administration of 800 mg 

drug in Day 1 (Regimen 10) and the administration of 600 mg drug in Days 1 & 2 (Regimens 2 

and 7) exhibit a high probability of drug plasma concentration reaching and beyond C3. Moreover, 

the plasma concentrations are increased gradually after Day 2, suggesting a high cardiac risk to 

the renal impairment patients. Here we adjusted the dosing regimens with reduced dosages for the 

two renal impairment populations (Table 8). The predicted PK profiles are shown in Figure 15 

and PK parameters summarized in Table S10.  The maintenance dose of 200 mg/day since Day 4 

keeps the drug concentration in both plasma and organs around C1, successfully avoiding the 

consequence of increasing drug level in previously proposed regimens. Moreover, Regimen GR1 

which begins with 600 mg BID is recommended to patients with cardio diseases or moderate 

symptoms, because the gradually elevated drug concentration enables the careful monitoring of 

side effects. On the contrary, Regimen GR2 which begins with 800 mg BID is more suitable for 

patients with severer conditions who urgently need rapidly increased drug concentration. The 

predicted curves for two renal impairment populations share a high similarity as illustrated in 

Figure 15. 
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Figure 15 Predicted drug concentration profiles for two renal impairment populations in plasma, heart, and 

lung under two adjusted dosing regimens 

Table 8 Regimens for the elder population and two renal impairment populations 

 

3.2.4.8 Adjusted dosing regimens for the elder population 

Similar to the renal impairment population, the elder population also has more drug 

accumulation in both plasma and organs than the healthy population. As the simulation results are 

shown in Figure S3, 800 mg BID enables drug concentration to reach C2 in plasma on Day 2 
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(Regimen 10 and 13) while 600 mg BID for the first two days can elevate drug plasma 

concentration to C2 on Day 2 (Regimen 2 and 7), which is similar to the renal impairment 

population. However, the drug accumulation in the elder population is less severe compared to the 

renal impairment populations. Thus, two reduced dosing regimens are also proposed as listed in 

Table 8. The simulation results for the two revised regimens are shown in Figure 16 and listed in 

Table S11. For the elder population, we not only minimized the cardiac risk by reducing dosages, 

but also shortened the duration of the first stage of the treatment so that drug concentration can 

reach effective treatment level rapidly. It is shown that all the three regimens, NR1, NR2 and NR3 

have similar C-T profiles. NR1 and NR2  which start with 600 mg BID are recommended to elderly 

patients with cardiac diseases, while NR3 which begins with 800 mg BID at the first stage is 

recommended to patients with less severe COVID-19 symptoms. 

 

Figure 16 Predicted drug concentration profiles for the elder population in plasma, heart, and lung under two 

adjusted dosing regimens 
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4.0 Discussion 

4.1 A New Approach for In Silico Prediction of Oral Drug Concentration Profiles in 

Human for Drug Candidates Lack Experimental Pharmacokinetic Data 

In this study, we developed a novel approach to construct in silico PBPK models for target 

drugs lack experimental ADME and other PK parameters using an established PBPK model of a 

structurally similar drug as the model template. We used 18 drugs which formed 13 drug pairs (A-

M) and 26 drug pair sets (each drug in a pair serves the template and target roles alternatively) to 

evaluate three ADME parameter substitution protocols, which are corresponding to three versions 

of PBPK models. The performance of the in silico PBPK models was critically evaluated using 

experimental PK profiles and parameters.  

4.1.1 The practical guidance on selecting a suitable drug template 

We attempted to obtain guidance on selecting a suitable template drug for a given target 

drug. We focused on using structural similarity to select the template drugs. It is found that drug 

pairs with Tanimoto score higher than 0.70 (Groups II and III) tend to show better predict 

performance among the three versions compared with drug pairs that with Taminoto score lower 

than 0.70 (Group I). It is obvious that the higher structural similarity of two drugs within a drug 

pair should contribute to the higher possibility of good prediction results. After comparing the 

model performance of all three versions of models, we developed the following guidance: for 

Group I drug pairs, V2 or V3 is recommended; for Group II drug pairs, V3 is recommended; and 
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for Group III drug pairs, V2 is recommended. Following this practical guidance, 16 out of 26 drug 

pair sets have NRMSE values lower than 0.2, the threshold of recognizing a good PBPK model. 

Nevertheless, the prediction accuracy of ADMET Predictor and how much inherent difference 

between it and SimCYP are also very crucial factors that affect the model performance. From the 

evaluation of the error caused by combining the two software, the prediction accuracy of each 

modified drug template varied from each other, which shows the influence of the introduced error 

can have great difference for different drugs. Thus, the selection of substitution strategy should 

consider the NRMSE values of both template and target drugs. Unfortunately, in practice, only 

NRMSE of the template drug is known. An algorithm that can predict the NRMSE value of an 

arbitrary compound is therefore needed to further improve the practical guidance.  

4.1.2 Another possible method to evaluate the prediction results of the three versions 

There is also another method to evaluate the prediction results of V1, V2 and V3, which is 

the fold-error in the AUC of the three predict versions compared to the clinical data.  However, 

the fold-error in the AUC can only show the difference between the total area under the prediction 

curve and the literature reported PK curve without delineating the concrete shapes of curves. On 

the contrary, the shape of the predicted drug C-T curve can be reflected by the difference between 

predicted and observed drug concentration at each time point when using RMSE as an evaluation 

method. Furthermore, the variation of the dosages can contribute to great RMSE discrepancy 

among drugs. For this reason, we normalized RMSE to eliminate the influence of dosages on 

RMSE value. The utilization of NRMSE can help to reduce the false-positive rate. 
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4.1.3 The perspective of applying in silico PBPK modeling for compounds lack 

experimental ADME and PK properties 

SimCYP simulator is advanced software with well-constructed drug PK models in its built-

in drug library, with each drug template containing comprehensive drug parameters. It can 

intuitively show simulated drug C-T curves contributed by these parameters under different trail 

designs. On the other hand, ADMET Predictor can predict a lot of PK parameters of an input 

compound based on its structural information without giving additional information. However, 

constructing a drug PK model needs full-scaled PK parameters and some of them cannot be 

predicted reasonably. Out of this consideration, we can partially rely on the PK parameters of 

another compound which shares high structural similarity with the unknown target compound.  In 

this study, we put forward a novel approach to build PBPK models for a target drug which is in 

lack of measured ADME and other PK parameters using the PBPK model of a template drug which 

is structurally similar to the target drug. Also, we proposed overall guidance on selecting a suitable 

template drug and using its PBPK model as the model template. The success of this computational 

approach depends on two important factors, the availability of high quality PBPK model for the 

template compound and the accuracy and consistency of the ADME and PK parameters predicted 

by ADME Predictor software for the target drug. Thus, the performance of the two software can 

greatly contribute to the experiment results of our study. As a calculator of ADMET properties for 

compounds, the prediction results of drug properties may not be close enough to the real state, 

leading to errors when constructing drug models. Additionally, not all the ADME/PK properties 

can be calculated with the current version of ADME Predictor.  For example, the prediction of 

metabolism in ADMET Predictor is only limited to 5 commonly used enzymes (CYP1A2, 

CYP2D6, CYP2C9, CYP2C19 and CYP3A4), and the prediction results of the transporters related 



 48 

to the drug can only be reported qualitatively rather than quantitively. On the other hand, there are 

currently 70 established compounds in SimCYP’s drug libraries (including both the substrate 

library and the inhibitor library) and the libraries are still under development. We tested 18 

compounds which shared structural similarity, and this study will replenish as more clinically 

validated PBPK models or related parameters for in-use drugs are available. Also, the utilization 

of Tanimoto score also has limitations. The calculated structural similarity between two 

compounds is based on smile strings, while not all structural components of a compound serve as 

functional parts.  Weighted Tanimoto Coefficient for 3D structure similarity has been proposed by 

a study.[79] However, the weight allocation for different functional groups among compound 

series still needs further research.  

Nevertheless, we have proposed a practical approach to generate PBPK models for a 

compound lack of experimental ADME/PK properties. This model can serve as the initial version 

of the PBPK models for the target compound, and its performance can be improved using the 

measured PK profiles and properties in the future. The computational protocol introduced in this 

work may have great applications in selecting drug leads to enter the drug optimization phase or 

drug candidates to enter preclinical studies. 

4.2 Simulation on different dosage regimens ranging from COVID treatment effective dose 

to cardiotoxicity dose 

In this study, the explored dosages include 200 mg, 400 mg, 600 mg, and 800 mg of HCQ 

by oral administration. This is because the most common available dosage form of HCQ is 200 

mg HCQ sulfate (equivalent to 155 mg base). As an approved drug which is most commonly used 
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to treat Malaria and Rheumatoid Arthritis, the administration of a single-dose no larger than 800 

mg is approved by FDA guidance.[80] To serve as a feasible treatment aiming at COVID-19, 

continuous dosage lower than 200 mg BID has been reported as no treatment effect, while 5 to 7 

days’ treatment dosing higher than 600 mg BID has been reported with a significantly improved 

treatment effect along with the elevated risk of QT prolongation side-effect. Especially, up to 5 

days’ treatment dosing of 800 mg BID was reported to have an extremely high risk to introduce 

QT-prolongation cardiotoxicity. During our research, we assumed that HCQ possesses treatment 

effect within therapeutic window according to its original treatment effect for other diseases and 

optimized dosing regimens to balance drug treatment efficacy and the risk of cardiac toxicity, and 

finally came out 6 recommended dosing regimens for normal patients. Based on the simulated C-

T curves in plasma and lung and heart, we provided recommendations on dosage regimens for 

seven special populations.  

Considering the situation that current hospital resources are in short, large amounts of 

patients will have to stay at home and follow the instructions of doctors instead of residing in 

hospitals to accept real-time monitoring and care. Thus, whether it is convenient for patients to 

follow doctors’ directions is also taken into consideration during recommending dosing regimens 

to outpatients. Since taking medicine every eight hours a day is less practicable than taking 

medicines only twice a day for outpatients, regimens with 200 mg TID might not be suitable for 

them. On the contrary, in-hospital patients are more likely to have scheduled treatment on time. 

Thus, although Regimens 12, 15, and 16 have the maintenance dose of 200 mg TID at the end of 

the dosing schedule, it is still very practicable for in-hospital patients.  

According to the prediction results for the two renal repairment populations and elder 

population, the drug accumulation in these subjects is much more significant than in healthy 
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subjects, resulting in an elevated drug level during the 7-day HCQ treatment period, which is very 

likely to cause severe side effects especially cardiotoxicity to patients. Thus, apart from the 

recommended 6 regimens, we specially design some reduced dosing regimens for those special 

populations.  RA patients also have a higher accumulation of drugs compared to the healthy 

population. However, the predicted C-T curves of Regimen 15 for the RA population and the elder 

population are still below the C3 horizontal line and the drug levels in plasma and organs are well 

maintained during the 7-day treatment period. Interestingly, drug in the heart and lung tend to 

show more similar concentration level among RA patients and the elder population for different 

dosing regimens, although drug plasma concentrations of the elder population are always 

apparently higher than RA patients. It is reported that ABCB1 transporter, which is a key 

transporter of HCQ, was overexpressed on RA patients,[81] which means RA patients are more 

likely to suffer from cardiotoxicity side effects than the elder population under the same drug 

plasma level. The pregnancy and normal obese population only show a very small difference 

compared to healthy patients from the prediction results, and the drug concentration fluctuation 

pattern in both plasma and organs of these two special populations is very similar to that of the 

healthy population. For morbidly obese subjects, all the regimens recommended for the healthy 

population are unlikely to have a satisfactory treatment effect. Thus, it is recommended that the 

dosing level should be elevated based on their body weight when designing dosing regimens for 

this special population.  

One thing that catches our attention is that the time for drug concentration peak in plasma 

is very close to that in lung. As a potential treatment targeting at COVID-19, the correlation 

between peak and valley of drug level in plasma and lung makes drug plasma concentration a fine 

indicator of drug lung concentration level. Another thing that also important is that the predicted 
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drug heart concentration is much higher than that in plasma. Although this is consistent with some 

literature reports that heart concentration of HCQ should be much higher than plasma drug 

level,[82] our PBPK model may not accurately predict the heart concentration. The PBPK model 

can be further improved by collecting more experimental PK and clinical data as well as measured 

PBPK parameters. For example, there are two main transporters, SLCO1A2 and ABCB1 for HCQ. 

[52,53] However, only the parameter of ABCB1 can be modified in SimCYP Simulator software. 

In addition, the measured parameters for CYP enzymes are also not available and we relyed on the 

ADMET Predictor module in the Simulations-Plus software package to predict CYP parameters. 

Thus, the prediction precision of ADMET is also a key factor that affects the quality of our PBPK 

model for HCQ. For transporter parameters and blood binding parameters, we can only estimate 

the ranges for different parameters according to a variety of literature reports, and adjusting and 

compromising them to make predicted C-T curve be overlayed with clinical reported C-T profiles 

to the most extent. Moreover, the reliability of our prediction inevitably depends on the 

performance of the SimCYP software itself. Nevertheless, we tried to build a full PBPK model for 

HCQ to predict drug concentration in plasma, heart, and lung under different dosing regimens. 

Encouragingly, the predicted C-T curves can very well reproduce the measured plasma drug 

concentration at different time points as well as measured PK parameters. The importance of our 

work is not only to report possible drug levels in different organs for different populations, but 

also to design special population-dependent dosage regimens to maximize treatment effect and 

minimize possible cardiac toxicity at the same time. Although some difference between prediction 

and real circumstance exists, the simulation results can still uncover many mysteries during the 

clinical administration of HCQ as a treatment of COVID-19, which include the relationship of C-

T profiles between different populations, the relationship of absorption and elimination lag time 
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between plasma and organs, and the fluctuation of organ drug level under different dosing 

regimens.  Moreover, the sudden interest in HCQ has resulted in a shortage of treatment for its 

original aims, including malaria and autoimmune disease.[83] For individuals that lack practicable 

HCQ dosing regimens aiming at COVID-19, a treatment that well balances efficient treatment and 

safety must be found. Meanwhile, for those COVID-19 patients who may be suitable for HCQ 

treatment, we hope this study provides guidance on choosing suitable dosing regimens.  
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5.0 Conclusions 

5.1 An approach to predict oral drug concentration profiles for drug candidates lack 

experimental PK data 

In this work, we have introduced and tested a novel computational protocol to develop in 

silico PBPK model for a compound lack of measured ADME/PK properties and PK profiles. The 

general idea is to choose a proper PBPK model as the template, when the corresponding 

compound, the template drug, is structurally similar to the target drug. For the target drug, we 

calculated the ADME properties using ADMET Predictor of SimulationPlus. We have come out 

with an overall guidance using this method to build PBPK models for an arbitrary drug. First of 

all, the structural similarity between the template and the target drug is very important, thus 

template drugs which have the highest structural similarity to the target drug should be first 

considered; second, once the target drug is selected, the ADME parameter substitution protocol is 

selected based on the Tanimoto score (TS) between the target and template drugs. If TS is equal 

to or smaller than 0.7, V2 or V3 protocol is recommended; if TS is larger than 0.7 but smaller than 

or equal to 0.9, V3 protocol is suggested; and if TS is larger than 0.9, V2 is recommended. 

Following this guidance, more than 60% (16 out of 26) of the PBPK models have satisfactory 

performance. It is emphasized that this method highly relies on the collaboration between SimCYP 

and ADMET Predictor as well as the prediction accuracy of ADMET Predictor. The NRMSE 

values of the template and target drugs can guide us to select proper substitution protocol. If the 

NRMSE values are small, one can select a protocol with many ADME parameters being 

substituted, such as V3; however, if the NRMSE values are large, adopting V2 or V1 protocols 
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can minimize the error due to the poor “collaboration” between the two software. Unfortunately, 

the NRMSE value of the target drug is unknown in practice. A tool which can predict this NRMSE 

parameter is thus needed to further improve this method. While future experimental work is 

definitely needed to further improve the model performance, our novel approach proposed in this 

work can help identify drug candidates with favorable PK profiles, reducing experimental cost and 

providing insight in drug discovery and development. 

5.2 PBPK modeling HCQ and proposed dosing regimens for healthy population and special 

populations as a potential treatment for COVID-19 

In this study, we successfully constructed a PBPK model for HCQ which helps to predict 

drug PK profiles based on clinical PK information. A series of dosing regimens for the treatment 

of COVID-19 were designed and the time courses of drug concentrations in plasma and organs for 

both the healthy population and the special populations were predicted. Two regimens, one 

administrates 600 mg BID for the first two days followed by 400 mg BID (Regimen 4, 

Recommendation A) and the other administrates 600 mg BID for the first three days followed by 

400 mg BID (Regimen 8, Recommendation B), are recommended to the healthy population, the 

pregnant population, and obese population, for which the drug concentration levels well fall within 

the effective treatment ranges and do not incur apparent cardiac toxicity. 800 mg BID for the first 

two days and 200 mg TID (Regimen 14, Recommendation C) is applicable to not only the healthy 

population, but also the RA, pregnant and obese populations. The maximum drug concentration 

during this regimen tends to appear on Day 2, which should be carefully monitored during the 

period. 800 mg BID for the first two days following by 400 mg BID (Regimen 12, 
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Recommendation D) can be considered by the healthy population, the pregnant population and the 

obese population. Regimen 15, which administrates drug 800 mg BID for the first two days, 

followed by 400 mg BID for one day, and 200 mg TID for the rest (Recommendation E) has the 

most versatile applicability, which can be considered by the elder population, RA population 

pregnant population, healthy population and obese population. however, the side effect caused by 

the drug regimen still needs carefully monitored on Day 2. Regimen 16 (Recommendation F) is 

similar to Regimen 15, but is not recommended for the elder population. The predicted drug plasma 

concentration of the morbidly obese population is always exhibiting little treat efficiency but good 

stability, which implies an increase of treatment dose based on a patient’s body weight may be 

necessary to achieve better treatment effect. For the renal impairment population and elder 

population, we recommend the specially designed dosage regimens for them (Regimens GR1, 

GR2, NR1, NR2, and NR3) which not only achieves good treatment effect, but also avoids over-

accumulation of drug in plasma and organs which increases the risk of HCQ treatment for COVID-

19. 
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Appendix A Supplementary 

Appendix A.1 Supplementary Tables 

Table S1 Input parameters for 18 drugs (predicted by ADMET Predictor) 

Drug name 
Molecular 

Weight 
Acidic pKa Basic pKa LogP B/P Fu 

Alprazolam 308.772 None 3.01; 0.93; -0.62 2.629 0.781 9.271 

Bufuralol 261.366 None 9.09 3.256 0.966 39.663 

Bupropion 239.747 None 7.98 3.196 1.059 38.072 

Caffeine 194.194 None 2.24 -0.153 1.08 83.508 

Desipramine 266.389 None 9.67; 2.60 4.39 0.933 10.898 

Dextromethorphan 271.405 None 8.91 3.806 1.096 26.993 

Imipramine 280.416 None 8.96; 2.24 4.872 0.891 9.584 

Lorazepam 321.164 11.16 1.61 2.361 0.789 9.533 

Mephenytoin 218.257 11.32 None 1.423 0.825 42.713 

Midazolam 325.775 None 4.57; 0.84 3.563 0.782 6.613 

Pravastatin 424.538 4.92 None 2.184 0.662 9.645 

Quinidine 324.425 None 7.95; 3.87 2.653 0.892 26.042 

Simvastatin 418.577 None None 4.981 0.76 8.237 

Theophylline 180.167 9.36 2.11 -0.138 1.088 82.434 

Triazolam 343.217 None 2.85; 0.87; -0.90 3.142 0.77 7.565 

Phenobarbital 232.24 11.19; 7.58 None 1.628 0.763 21.378 

Atomoxetine 255.362 None 9.72 3.766 0.87 19.76 

Fluoxetine* 309.333 None 9.82 4.388 0.882 15.89 
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Table S1 (Continued). Input parameters for 18 drugs (predicted by ADMET Predictor) 

 

  

Drug name 

ADME 

Vss 
Peff 

(cm/s∙104) 

CYP1A2 CYP2C9 

Km (μM) 

Vmax 

(nmol/min/ 

nmol) Km (μM) 

Vmax  

(nmol/min/ 

nmol) 

Alprazolam 1.386 5.519 7.194 1.128 12.44 0.125 

Bufuralol 3.196 2.15 56.575 69.834 43.441 15.42 

Bupropion 5.212 4.209 29.549 57.021 37.056 16 

Caffeine 0.511 4.013 43.551 0.792 15287 0.757 

Desipramine 9.332 4.288 183.854 10.225 46.471 0.56 

Dextromethorphan 4.691 5.037 NonSubstrate NonSubstrate NonSubstrate NonSubstrate 

Imipramine 9.578 5.423 239.273 18.989 26.007 0.216 

Lorazepam 0.804 4.015 NonSubstrate NonSubstrate 10.637 0.588 

Mephenytoin 0.979 3.803 114.202 318.486 339.284 0.264 

Midazolam 1.861 7.545 6.206 1.235 3.376 0.157 

Pravastatin 0.299 1.068 NonSubstrate NonSubstrate 30.616 3.361 

Quinidine 2.258 2.209 NonSubstrate NonSubstrate 19.873 1.352 

Simvastatin 0.815 3.832 NonSubstrate NonSubstrate NonSubstrate NonSubstrate 

Theophylline 0.542 2.927 155.108 2.753 22167.33 1.797 

Triazolam 1.451 6.125 9.895 1.567 5.843 0.136 

Phenobarbital 0.642 2.554 NonSubstrate NonSubstrate 536.686 0.652 

Atomoxetine 4.783 4.194 12.552 4.879 31.643 32.1 

Fluoxetine 10.662 2.707 NonSubstrate NonSubstrate 14.75 15.112 
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Table S1 (Continued). Input parameters for 18 drugs (predicted by ADMET Predictor) 

All the parameters for Fluoxetine were input to build its adjusted template model. When 

serving as the target drug, Atomoxetine was predicted based on the adjusted Fluoxetine template. 

  

Drug name 

ADME 

CYP2C19 CYP2D6 CYP3A4 

Km (μM) 

Vmax 

(nmol/min/ 

nmol) Km (μM) 

Vmax  

(nmol/min/ 

nmol) Km (μM) 

Vmax 

(nmol/min/ 

nmol) 

Alprazolam 53.743 0.517 NonSubstrate NonSubstrate 72.727 7.186 

Bufuralol 26.629 45.725 3.196 4.816 NonSubstrate NonSubstrate 

Bupropion 32.699 171.573 1.247 0.128 554.231 0.786 

Caffeine 967.276 1.584 NonSubstrate NonSubstrate 191.235 1.809 

Desipramine 47.202 92.572 2.977 22.246 47.667 2.676 

Dextromethorphan 9.964 10.616 11.393 14.084 64.946 4.797 

Imipramine 39.11 20.748 14.145 19.579 68.448 5.232 

Lorazepam NonSubstrate NonSubstrate NonSubstrate NonSubstrate 114.62 6.113 

Mephenytoin 52.298 0.943 219.547 1.595 255.08 9.131 

Midazolam 37.194 0.445 NonSubstrate NonSubstrate 46.268 8.63 

Pravastatin NonSubstrate NonSubstrate NonSubstrate NonSubstrate NonSubstrate NonSubstrate 

Quinidine NonSubstrate NonSubstrate 30.321 6.922 79.661 12.611 

Simvastatin NonSubstrate NonSubstrate NonSubstrate NonSubstrate 1.86 2.577 

Theophylline NonSubstrate NonSubstrate NonSubstrate NonSubstrate 157.732 2.632 

Triazolam NonSubstrate NonSubstrate NonSubstrate NonSubstrate 63.494 5.927 

Phenobarbital 54.67 0.493 NonSubstrate NonSubstrate NonSubstrate NonSubstrate 

Atomoxetine 83.696 122.706 1.02 12.218 126.224 6.291 

Fluoxetine 32.43 59.172 0.468 1.459 144.748 9.54 
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Table S2 Modified parameters predicted by ADMET Predictor for Fluoxetine template. 

Parameter Input Value 

Physiochemical Properties  

LogP 4.05* 

pKa 9.82 (Monoprotic Base)** 

Blood Binding  

B/P 0.94* 

Fu 0.1589** 

Absorption (ADAM model)  

Peff (10-4cm/s) 2.707** 

Distribution (Full PBPK model)  

Vss (L/kg) 20* 

Elimination  

CYP2C9 Vmax: 15.112, Km: 14.75** 

CYP2C19 Vmax: 59.172, km: 32.43** 

CYP2D6 Vmax: 1.459, Km: 0.468** 

CYP3A4 Vmax: 9.54, km: 144.748** 

B/P: blood-to-plasma partition ratio. Fu: the fraction of unbound drug in plasma. Peff: human 

jejunum effective permeability. Vss: volume of distribution at steady state using tissue volumes for 

a population representative of healthy volunteer population. Vmax: maximum rate of metabolism 

(pmol/min/pmol of isoform). Km: Michaelis-Menten constant, (μM). *: data from DrugBank. **: 

ADMET Predictor prediction result.  
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Table S3 Predicted PK parameters by SimCYP Simulator of each group. 

  

  

  

V1 V2 V3 

TMax 

(h) 

CMax 

(ng/mL) 

AUC 

(ng/mL.h) 

TMax 

(h) 

CMax 

(ng/mL) 

AUC 

(ng/mL.h) 

TMax 

(h) 

CMax 

(ng/mL) 

AUC 

(ng/mL.h) 

A-1 1.56 32.83 489.24 1.57 34.70 543.78 1.09 134.80 1029.77 

A-2 2.05 27.26 301.76 1.92 23.64 220.52 1.69 51.44 368.52 

B-1 1.81 11.50 90.49 1.45 7.78 41.83 2.16 8.89 52.77 

B-2 1.56 599.76 4987.74 1.20 480.26 2894.68 2.04 111.93 902.70 

C-1 1.16 285.58 1745.00 1.43 135.74 997.00 1.31 118.71 907.86 

C-2 1.50 84.44 673.03 1.70 102.08 861.95 1.28 1455.19 9744.15 

D-1 0.60 24.14 73.21 0.48 13.52 25.17 0.77 75.75 447.09 

D-2 1.56 69.79 903.96 1.09 25.88 267.20 0.37 59.60 228.05 

E-1 1.92 7.39 115.82 1.92 5.72 113.98 0.36 11.88 82.52 

E-2 1.13 28.82 391.50 1.33 30.50 541.49 1.13 26.58 342.62 

F-1 0.72 18.73 112.33 0.96 20.96 187.37 1.20 27.27 340.55 

F-2 1.56 2.45 33.74 1.08 1.26 15.46 0.37 2.69 13.64 

G-1 3.17 2629.04 57296.38 3.17 2629.02 57294.61 0.74 235.49 620.85 

G-2 2.06 352.27 11977.41 2.07 655.13 29764.21 2.06 4833.39 847522.37 

H-1 4.34 6.51 121.20 4.23 5.64 103.68 2.52 13.66 130.62 

H-2 1.25 178.63 1565.18 0.72 68.62 234.49 1.72 10.84 189.81 

I-1 0.84 23.50 69.71 0.48 22.17 67.13 1.08 3.51 7.11 

I-2 1.33 4.01 14.42 1.32 0.88 2.99 0.88 49.64 87.57 

J-1 0.63 1.35 4.17 0.50 0.88 1.81 0.86 1.89 17.23 

J-2 0.72 74.37 421.55 0.37 38.06 272.29 0.37 34.57 226.19 

K-1 0.98 159.28 1845.88 1.33 139.77 2466.26 0.89 32.66 194.88 

K-2 0.50 25.10 73.42 0.50 13.87 25.13 0.77 37.94 354.16 

L-1 1.24 3822.30 33567.68 1.23 2180.61 18538.33 2.16 1768.43 13202.95 

L-2 0.75 2468.92 14595.42 0.64 2374.07 12320.61 0.56 1898.85 7753.21 

M-1 5.62 13.53 550.05 6.43 17.61 896.25 8.03 57.56 3596.48 

M-2 2.83 25.33 380.99 3.23 29.20 490.96 2.83 54.77 776.18 
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Table S4 The predicted maximum drug concentration and the corresponding time during two dosing periods 

of dosing regimen 4 

Day1-day2 

 Plasma Heart Lung 

 Time Concentration Time Concentration Time Concentration 

GRF 39.41 1685.07 40.32 29041.93 39.41 11306.71 

GRFL 39.58 1613.70 40.42 29047.19 39.61 11146.25 

MO 40.52 965.84 41.19 16485.73 40.52 6414.31 

NEC 39.11 1654.06 40.12 27936.67 39.14 10947.48 

Obe 39.78 1212.68 40.59 20563.74 39.82 8025.06 

Preg 38.88 1422.82 39.45 24277.97 38.88 9454.71 

RA 39.25 1531.09 39.95 28453.55 39.28 10831.63 

  38.94 1299.25 39.68 21551.62 38.94 8490.04 

Day3-day7 

 Plasma Heart Lung 

 Time Concentration Time Concentration Time Concentration 

GRF 159.23 2763.04 160.10 47857.05 159.23 18540.60 

GRFL 159.40 2787.99 160.24 50367.36 159.43 19253.22 

MO 160.04 1205.13 160.74 20591.75 160.07 8001.40 

NEC 158.89 2439.52 159.84 41349.35 158.93 16136.77 

Obe 159.40 1608.47 160.21 27324.13 159.40 10643.39 

Preg 158.69 1731.06 159.23 29580.97 158.69 11500.58 

RA 159.10 2059.87 159.80 38455.56 159.10 14578.19 

Norm 158.76 1651.28 159.50 27448.87 158.76 10779.77 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 
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Table S5 The predicted maximum drug concentration and the corresponding time during two dosing periods 

of dosing regimen 8 

Day1-day3 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 63.37 2177.50 64.28 37600.27 63.37 14611.64 

GRFL 63.54 2111.53 64.38 38064.00 63.57 14584.72 

MO 64.38 1189.75 65.05 20318.28 64.38 7901.16 

NEC 63.07 2090.42 64.04 35356.76 63.07 13833.67 

Obe 63.67 1510.47 64.48 25633.00 63.71 9995.95 

Preg 62.83 1736.42 63.37 29648.63 62.83 11538.40 

RA 63.20 1885.74 63.91 35100.19 63.24 13341.96 

Norm 62.90 1594.45 63.64 26473.98 62.90 10416.37 

Day4-day7 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 159.20 2902.85 160.10 50287.19 159.23 19478.78 

GRFL 159.40 2934.09 160.24 53013.31 159.40 20262.18 

MO 160.00 1252.50 160.68 21402.10 160.00 8315.83 

NEC 158.89 2553.73 159.84 43291.39 158.89 16891.93 

Obe 159.37 1676.43 160.17 28480.92 159.40 11093.09 

Preg 158.66 1797.05 159.23 30710.85 158.69 11938.90 

RA 159.10 2148.71 159.77 40122.27 159.10 15207.35 

Norm 158.76 1717.85 159.47 28558.10 158.76 11213.89 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 
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Table S6 The predicted maximum drug concentration and the corresponding time during two dosing periods 

of dosing regimen 14 

Day1-day2 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 39.41 2249.67 40.32 38773.87 39.45 15095.14 

GRFL 39.58 2154.68 40.46 38786.24 39.62 14883.00 

MO 40.39 1277.36 41.06 21781.90 40.39 8479.04 

NEC 39.11 2208.87 40.12 37308.93 39.14 14619.62 

Obe 39.65 1571.62 40.46 26590.57 39.68 10391.02 

Preg 38.88 1899.93 39.45 32419.76 38.88 12625.17 

RA 39.25 2046.23 39.95 38028.34 39.28 14476.10 

Norm 38.94 1734.96 39.68 28780.25 38.98 11337.29 

Day3-day7 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 162.69 2445.39 163.53 42398.73 162.69 16409.35 

GRFL 162.86 2498.87 163.63 45173.57 162.86 17255.99 

MO 50.00 1046.85 50.53 17887.54 50.00 6950.55 

NEC 162.39 2100.63 163.23 35628.83 162.39 13892.67 

Obe 50.03 1277.70 50.64 21678.93 50.03 8450.27 

Preg 49.96 1483.36 50.47 25359.27 49.96 9857.63 

RA 162.66 1730.98 163.30 32362.16 162.69 12251.80 

Norm 162.32 1351.45 162.99 22475.06 162.32 8819.68 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 
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Table S7 The predicted maximum drug concentration and the corresponding time during two dosing periods 

of dosing regimen 12 

Day1-day2 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 39.41 2249.67 40.32 38773.87 39.45 15095.14 

GRFL 39.58 2154.68 40.46 38786.24 39.62 14883.00 

MO 40.39 1277.36 41.06 21781.90 40.39 8479.04 

NEC 39.11 2208.87 40.12 37308.93 39.14 14619.62 

Obe 39.65 1571.62 40.46 26590.57 39.68 10391.02 

Preg 38.88 1899.93 39.45 32419.76 38.88 12625.17 

RA 39.25 2046.23 39.95 38028.34 39.28 14476.10 

Norm 38.94 1734.96 39.68 28780.25 38.98 11337.29 

Day3-day7 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 159.20 3011.65 160.10 52177.75 159.20 20208.71 

GRFL 159.37 3053.59 160.21 55176.33 159.40 21087.04 

MO 159.84 1248.37 160.54 21315.48 159.87 8285.17 

NEC 158.86 2631.33 159.84 44609.61 158.89 17404.67 

Obe 159.26 1616.70 160.04 27420.02 159.26 10689.13 

Preg 158.66 1825.74 159.23 31201.37 158.69 12129.25 

RA 159.06 2206.30 159.77 41202.94 159.10 15615.18 

Norm 158.73 1751.89 159.47 29124.43 158.76 11435.58 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 
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Table S8 The predicted maximum drug concentration and the corresponding time during three dosing 

periods of dosing regimen 15 

Day1-day2 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 39.41 2249.67 40.32 38773.87 39.45 15095.14 

GRFL 39.58 2154.68 40.46 38786.24 39.62 14883.00 

MO 40.49 1342.68 41.06 22990.67 40.52 8929.18 

NEC 39.28 2106.65 40.02 35655.06 39.28 13925.49 

Obe 39.78 1619.52 40.59 27463.21 39.82 10717.40 

Preg 38.88 1899.93 39.45 32419.76 38.88 12625.17 

RA 39.25 2046.23 39.95 38028.34 39.28 14476.10 

Norm 38.94 1740.53 39.68 28886.88 38.94 11381.21 

Day3 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 63.17 2162.63 64.08 37414.48 63.20 14512.87 

GRFL 63.34 2117.95 64.18 38235.69 63.37 14629.76 

MO 51.34 1224.09 51.95 20976.04 51.37 8141.18 

NEC 50.64 1948.63 51.37 33007.82 50.67 12881.62 

Obe 50.90 1490.03 51.68 25285.41 50.90 9861.96 

Preg 50.47 1690.49 51.01 28875.15 50.47 11233.77 

RA 50.80 1836.95 51.48 34234.93 50.80 12996.79 

Norm 50.50 1540.91 51.24 25618.57 50.54 10073.18 

Day4-day7 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 162.69 2513.02 163.50 43574.44 162.69 16863.18 

GRFL 162.83 2569.98 163.63 46461.49 162.86 17747.04 

MO 74.76 1062.97 75.37 18222.29 74.79 7069.30 

NEC 162.42 1939.85 163.13 32906.24 162.42 12819.20 

Obe 162.59 1372.82 163.33 23326.17 162.59 9083.97 

Preg 74.26 1455.34 74.79 24887.82 74.26 9670.36 

RA 162.66 1772.92 163.30 33149.20 162.66 12548.79 

Norm 162.29 1403.57 162.99 23372.45 162.32 9168.29 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 
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Table S9 The predicted maximum drug concentration and the corresponding time during three dosing 

periods of dosing regimen 16 

Day1-day2 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 39.35 2297.73 40.15 39719.37 39.38 15437.99 

GRFL 39.58 2154.68 40.46 38786.24 39.62 14883.00 

MO 40.49 1342.68 41.06 22990.67 40.52 8929.18 

NEC 39.11 2208.87 40.12 37308.93 39.14 14619.62 

Obe 39.65 1571.62 40.46 26590.57 39.68 10391.02 

Preg 38.88 1899.93 39.45 32419.76 38.88 12625.17 

RA 39.14 1986.77 39.78 36810.39 39.18 14009.43 

Norm 38.94 1734.96 39.68 28780.25 38.98 11337.29 

Day3-day4 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 87.19 2395.72 87.96 41569.36 87.23 16096.81 

GRFL 87.43 2355.83 88.27 42547.92 87.43 16271.27 

MO 51.34 1224.09 51.95 20976.04 51.37 8141.18 

NEC 86.92 2193.93 87.86 37180.00 86.92 14515.26 

Obe 87.33 1459.59 88.10 24750.52 87.33 9651.30 

Preg 86.69 1695.30 87.26 28972.93 86.69 11264.30 

RA 87.02 1772.32 87.60 32919.68 87.02 12495.58 

Norm 86.76 1579.95 87.50 26267.32 86.79 10316.93 

Day5-day7 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

GRF 162.69 2541.73 163.40 44169.19 162.69 17077.29 

GRFL 162.83 2645.94 163.60 47837.34 162.86 18271.56 

MO 98.78 1098.82 99.39 18836.60 98.78 7307.27 

NEC 162.36 2216.24 163.23 37595.50 162.39 14657.09 

Obe 98.52 1327.12 99.25 22523.18 98.55 8776.00 

Preg 98.25 1509.21 98.78 25809.08 98.28 10027.64 

RA 162.59 1629.86 163.16 30320.76 162.59 11492.42 

Norm 162.29 1419.41 162.96 23607.98 162.32 9262.82 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 
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Table S10 The predicted maximum drug concentration and the corresponding time during three dosing 

periods of adjusted dosing regimen for the two renal impairment population 

GR1 (GRFL) 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

Day1-Day2 39.51 1566.68 40.22 28073.30 39.51 10776.66 

Day3 50.64 1381.43 51.31 24804.88 50.67 9502.08 

Day4-Day7 75.23 1385.23 75.94 24893.62 75.26 9527.23 

GR1 (GRF) 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

Day1-Day2 39.35 1621.14 40.12 27781.00 39.35 10820.87 

Day3 50.53 1407.72 51.21 24190.23 50.53 9395.78 

Day4-Day7 75.06 1387.06 75.84 23859.07 75.10 9257.70 

GR2 (GRFL) 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

0-36h (1.5 d) 27.55 1748.91 28.26 31311.80 27.55 12030.55 

36-72 h 38.44 1452.58 39.04 26079.72 38.44 9991.86 

72-168 h 75.26 1446.13 75.94 25990.92 75.26 9946.02 

GR2 (GRF) 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

0-36h (1.5 d) 27.38 1822.69 28.16 31201.57 27.38 12166.46 

36-72 h 38.30 1488.07 38.94 25569.37 38.30 9932.15 

72-168 h 75.06 1443.20 75.84 24828.46 75.10 9632.38 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 

  



 68 

Table S11 The predicted maximum drug concentration and the corresponding time during three dosing 

periods of adjusted dosing regimen for the elder population 

NR1 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

Day1-Day2 39.48 1651.75 40.32 27922.31 39.48 10933.66 

Day3 63.00 1715.87 63.84 29043.59 63.00 11354.35 

Day4-Day7 158.76 1610.98 159.60 27321.48 158.76 10654.24 

NR2 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

0-60 h (2.5 d) 51.24 1879.47 52.08 31776.97 51.24 12439.18 

60-168 h 62.16 1630.82 63.00 27629.53 62.16 10790.07 

NR3 

  Plasma Heart Lung 

  Time Concentration Time Concentration Time Concentration 

0-36h (1.5 d) 26.88 1875.80 28.56 31636.81 26.88 12413.85 

36-168 h 158.76 1532.55 159.60 25986.39 158.76 10135.37 

GRF: renal impairment population, 30 mL/min≤GRF≤60 mL/min, GRFL: renal 

impairment population, GRF≤30 mL/min, MO: morbidly obese population, NEC: geriatric 

Northern European Caucasians population, Obe: obese population, Preg: pregnant population, RA: 

rheumatoid arthritis population and Norm: healthy volunteers. 
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Appendix A.2 Supplementary Figures 

 

Figure S1 Predicted drug concentration profiles for the renal impairment population (GRF) in plasma under 

Regimens 1, 2, 3, 5, 6, 7, 9, 10, 11 and 13. 
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Figure S2 Predicted drug concentration profiles for the renal impairment population (GRFL) in plasma 

under Regimens 1, 2, 3, 5, 6, 7, 9, 10, 11 and 13. 
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Figure S3 Predicted drug concentration profiles for the elder population (NEC) in plasma under Regimens 1, 

2, 3, 5, 6, 7, 9, 10, 11 and 13. 
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