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Abstract 

Computational Benchmarking and Evaluation of 

 

Transition Metal Complexes toward Materials Discovery 

 

Ryan M. Wheat, M.S. 

 

University of Pittsburgh, 2021 

 

 

 

 

The synergy between computational modeling and materials analysis remains an unsolved 

problem, yet there is great potential for accelerating materials discovery. This work reframes the 

cumbersome nature of experimental intuition (trial and error) by shedding light on the utility of 

quantitative data as a promising alternative. With respect to Metal-Organic Frameworks, stability 

considerations are essential to the targeting of materials that not only possess high turnover 

efficiency but are also resistant to degradation. Core computational methods in this work include 

UFF, GFNFF, GFN2, and B97-3c for their extended utility to evaluating transition metal systems. 

From a molecular geometry perspective, GFN2 and B97-3c closely matched experimental bond 

distances for a selected series of 32 transition metal complexes (TMCs) labeled TMC32. In terms 

of electronic energy, bond dissociation was targeted as a means of predicting synthetic tractability 

and expected stability. From a separate set of 30 TMCs labeled TM30, B97-3c single-point 

calculations with UFF optimized geometries provided the highest accuracy. A subset of the tmQM 

dataset, focused solely on complexes with Ni-Cl bonds, supported the argument that GFN2 is 

infeasible for calculating electronic effects in its current state. These studies elevate B97-3c as an 

efficient method that can accelerate efforts to quantify stability in TMCs, with future work focused 

on correlating this data to improve MOF modeling capabilities towards materials discovery. 
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1.0 Introduction 

Reliance on non-renewable energy has led to catastrophic environmental impacts, among 

the most damaging arising from global warming and increases to pollution. This precipice of 

human-made destruction can potentially bring about societal collapse, with economic demand 

bleeding into the already tensioned political ecosystem. Despite the incorporation of non-toxic 

chemical substitutes in manufacturing and introduction of efforts to recycle components, the 

overwhelming reliance on non-renewable energy and its corresponding waste products remains 

unsolved. To address this issue, means of isolating/storing volatile organic compounds (VOCs) 

and replacing the burning of fossil fuels would significantly help mitigate the environmental 

impacts of these VOCs. Metal-Organic Frameworks (MOFs) provide a means to capture and 

sequester VOCs both reversibly and efficiently. Sensitivity to environmental conditions and 

resistance to degradation are two important factors in enhancing utility. 

Computational modeling would provide a means to analyze the reactivity, selectivity, and 

properties of MOFs. However, evaluating the electronic structure of a MOF requires high levels 

of theory attune to that of Density Functional Theory (DFT), perturbation theory, and coupled 

cluster methods, which are intractable for large-scale benchmarking1,2,3. Limitations in 

generalizing the binding modes, intramolecular forces, and electrostatics over an extended area 

yields substantial systematic error. Considering that the bulk of inorganic materials rely on 

reactivity and structural selectivity at or near the metal ion, large-scale analyses of transition metal 

systems could provide insight to the properties of larger materials. This work attempts to leverage 

method accuracy with computational cost as its primary goal, relying on statistical analysis to 

generalize trends for transition metal complexes toward improving future MOF modeling. 
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1.1 Historical Relevance 

Transition metals continue to see persistent utility in sustainable materials engineering, a 

field blossomed from incentivizing the combat of persistent, non-sustainable pollutants. These 

transition metal complexes are not a new technology, with considerable interest in coordination 

complexes dating to the discovery of dye substances used by ancient Egyptians. Among such 

compounds is bright alizarin red, a hydroxyanthraquinone complex chelated to calcium and 

aluminum. A more recent example is the substance Prussian blue (KFe4
III[FeII(CN)6]3), used as a 

paint pigment since the dawn of the 18th century during the Baroque period. Debates regarding the 

underlying structure of these colorful compounds intrigued scientists, with Christian Blømstrand 

and Sophus Jorgensen’s chain theory being the most widely accepted. Alfred Werner challenged 

this theory with ideas of a coordination sphere and spatial ligand arrangements, awarding him the 

1913 Nobel Prize in Chemistry. This ‘standard model’ sheds light on additional aspects for these 

complexes, such as rigidity, hydrophilicity, and crystallinity, all of which crucial to this work. 

Stability from a transition metal standpoint is considered by the extent of orbital overlap. 

The strengthened binding between transition metals contributes to their materials properties. 

Whereas hardness and resistance to degradation contributes to stability, the ease of electron 

mobility elevates these metals to new heights, allowing for the invention of wiring, telephones, 

and computer devices. Nowadays, transition metals such as chromium, platinum, and gold are 

commonplace for applications such as chrome plating, catalytic converters, and even jewelry, 

among others. Combinations of transition metals yield synergistic materials with enhanced utility. 

Furthermore, we can take advantage of transition metal rigidity and electron mobility while also 

introducing organic ligands to improve flexibility, yielding superior metal-organic based structures 

with adaptable materials applications. 
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1.2 Metal-Organic Frameworks 

The versatility of possible bonding schemes enhances the appeal of metal complexes for 

usage in applications such as water treatment and ceramics4,5. The recently popularized Metal-

Organic Frameworks (MOFs) lie at the junction between solid state chemistry and engineering6,7,8. 

Considerable attention has been drawn to this area of research due to the ease with which rational 

design and high throughput synthesis are capable thanks to the aforementioned transition metal 

complexes as building blocks. Weakly coordinating solvents prepare a template/skeleton for MOF 

crystallization in solution, with conditions such as pressure, humidity, temperature, pH, 

concentration, and reagent stoichiometry affecting the final structure9,10. This incredible selectivity 

is not isolated to MOFs, but as a result, this reduces the design, synthesis, and planning of new 

adsorption-based technologies for gas storage, catalysis, and solar harvesting applications11. 

Despite the vast potential that MOFs can theoretically achieve, there is a caveat: synthetic 

intuition (trial & error) remains essential for synthetic design of new MOF species. Nonetheless, 

traditional ligand field theory provides insight on the ligand exchange rates, and while 

stoichiometric quantities of reagents can be a good first estimate, most systems do not exactly 

abide by this logic. Furthermore, design of multicomponent MOF structures relies on solutions 

containing multiple inorganic and/or organic counterparts, which can be extremely challenging to 

plan without prior experience. There is, however, some sense of restriction as crystalline MOFs 

have a known limited number of possible mathematical morphologies (topologies) that can provide 

blueprints for growing MOFs in solution. Yet, considering the prevalence of isoreticular studies, 

these variants do not necessarily follow the same synthetic conditions or morphology, further 

inhibiting chemical intuition as there are no direct logical correlations between either mechanism. 
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In practice, this bottleneck emerges from poor understanding of the reorganization of 

transition metal nodes into symmetrically placed secondary building units (SBUs), connected by 

extensions of organic ligands (linkers) that help dictate pore size and chemical reactivity. A 

computational perspective would reframe synthesis from a ground-up perspective, instead relying 

on quantitative values rather than synthetic intuition. With the MOF field in its infancy, this work 

focuses on the critical understanding of the tougher-to-calculate inorganic moieties and their 

properties, such as bond order, spatial arrangement of ligands, and energies. This, in turn, will help 

to better define thermal and chemical stability as a foundation for accelerating MOF discovery. As 

a supplement for understanding MOFs, Figure 1 shown below illustrates the skeleton (left) and 

space-filling (right) model of IRMOF-1, otherwise known as MOF-5. The void space in the center 

of the structure is where chemical or physical adsorption can occur. High surface area increases 

the loading efficiency with which selective uptake of molecules (i.e., VOCs) can be performed.  

 

Figure 1 Side-by-side Comparison of MOF-5/IRMOF-1 Unit Cell 
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1.3 Thermal and Chemical Stability 

In the context of this work, “stability” refers to the set of environmental parameters or 

conditions in which a material resists degradation over a defined duration12. For MOFs, exposure 

time is based on both chemical and thermal factors, typically correlated to the reaction conditions 

from which the MOF was synthesized. Additionally, crystallinity heavily contributes to stability 

as tightly packed systems are resistant to chemical attacks. Yet, pore size is inversely proportional 

to interpenetration, contributing to an overall loss in applicability. Thus, an ideal MOF would 

synergistically combine exposure resistance to various conditions and also large macropore void-

space for adsorbates to bind, either for storage or chemical conversion. This sensitive equilibrium 

is crucial, yet it is an unsolved problem for reticular chemists from a quantitative standpoint. 

However, there are various known qualitative factors that affect stability. 

MOF applications may require some form of solvent exchange within adsorbable pores or 

exposure to non-inert conditions. Low valent transition metals, such as Zn2+, are susceptible to 

aqua ligand exchange leading to hydrolysis. Higher valence metals, like Cr3+, have enhanced 

stability from high steric hindrance, reducing ligand competition. In this way, highly charged 

transition metals form a ligand shield around themselves, both enhancing structural rigidity while 

also reinforcing chemical stability. Chemically stable MOFs are sometimes synthesized under 

acidic conditions with modulators, reducing the presence of metal-oxide or metal-hydroxide side 

products13. Substituting carboxylic end groups with imidazole and incorporating alkyl alcohols 

during synthesis have shown to strengthen metal-ligand bonds and increase hydrophobicity, 

respectively14,15. Modifying the organic linker to a polycarboxylic variant provides more structural 

stability stemming from additional connectivity16, but modification of the underlying crystal 

structure through alterations is possible. 
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From a thermodynamic perspective, increasing energy to the system affects degradation in 

several stages. Heating drives off residual solvent locked in pores, then as temperature increases, 

solvated molecules coordinated to the metal node are removed, leading to open metal sites that are 

susceptible to chemical attack. Linkers are last to dissociate yielding degradation of the framework, 

as bond enthalpy between metals and polydentate ligands surpasses solvent coordination. These 

effects are correlated to chemical stability, as MOF susceptibility to degradation accelerates even 

in relatively inert atmospheric conditions from oxidation. In a closed system, the ligand exchange 

rates are amplified by dissociated solvent molecules rebinding to open metal sites. 

The MOF free energy is heavily dependent on crystal packing and topology, although solid 

defects are prime candidates for cascading degradation. Shear planes between unit cells present a 

synthetic challenge, as this reduces structural integrity. Deformation or reorganization of the 

metal-organic framework occurs simultaneously with molecular / structural changes, eventually 

yielding metal-organic powder at a temperature threshold. Many of the rules in chemical stability 

apply to thermal stability as well. Stable, highly valent oxidation state subunits with greater 

degrees of nuclearity are favorable over discrete building units. One exception is infinite rod 

building units, like that of MOF-74, which possess impressive stability in inert, heated conditions 

even with divalent cations17. Such discoveries are pivotal for expanding avenues for applications. 

Considering the depth with which MOF stability is based, quantitative studies would have 

a pronounced effect on improving MOF modeling from a computational standpoint. Such a feat is 

intractable for a single body of work, and as such the goal is to evaluate the suitability of modern 

computational methods for analyzing geometries and energies for transition metal complexes, as 

this would provide a means to consider large-scale benchmarking of complexes. In turn, this would 

yield a vast set of quantitative data to provide context for MOF stability. 
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1.4 Force Field Optimization 

With respect to transition metal complexes, force-field optimization persistently is the most 

tractable form of computation available. At the classical level of theory, force-field codes such as 

UFF approximate the electronic energy with fitted parameters and molecular descriptors such as 

bond order, electrostatic forces, and atomic charges18. This significantly accelerates calculations. 

Harmonic and Morse oscillator approximations are essential for calculating bonding 

energies, and force constant selection contributes to the evaluation of molecular geometry. The 

bonding and nonbonding energy terms intend to capture point-charge electrostatics, van der Waals 

forces, and inversion characteristics. Overall, this approach maintains a classical perspective by 

only considering elemental composition, connectivity, and hybridization in parameter evaluation. 

Extending the scope of what is captured in the electronic energy can be achieved one of 

two ways: (1) introducing new terms to the energy expression or (2) updating parameters and 

force-constants to capture a wider set of structures. Both are accounted for with Grimme’s recent 

GFN force-field (GFN-FF)19. Introduced here are updated charge models, parameters fitted to a 

B97-3c functional, extended non-covalent binding schemes, and three-body bond corrections. 

Electrostatics are accounted for with an electronegativity equilibration model. Changing from a 

point-charge method (UFF) to one based on variationally treated charge density fluctuations gives 

a refined electrostatic picture, thus making this force-field (GFN-FF) partially polarizable. 

Additionally, GFN-FF gives explicit focus to both hydrogen-bonding (EHB) and halogen-bonding 

(EXB), included to capture dipole-dipole interactions. All of these factors would be advantageous 

for modeling inorganic complexes, as the properties of the central transition metal persistently and 

dynamically change to accommodate ligand exchange rearrangements in solution. 
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1.5 Approximate Density Functional Theory Methods 

As a preface to this section, we consider here the tight binding approximation to Density 

Functional Theory (DFTB)20. An orbital representation is variationally derived and then used to 

make linear combinations, forming Kohn-Sham (KS) orbitals. This replaces the tedious derivation 

of calculating the Hamiltonian and overlap matrices, but is itself non-self-consistent, representing 

only a zeroth order solution. Instead, core electrons are frozen in favor of only considering density 

fluctuations around the valence space. The Hamiltonian is broken into approximate electrostatic, 

exchange-correlation, and dispersion terms, requiring the calculation of parameter free gradients, 

integrals, and a variational algorithm to retrieve a minimum energy solution. 

By comparison, the recently developed semi-empirical tight binding GFNn-xTB21 prepared 

by Grimme’s group accelerates this approach by reintroducing fitted parameters alongside an 

iterative extended-Hückel calculation. Three variations exist for GFNn-xTB methods: GFN0, 

GFN1, and GFN2. Numerical increments correlate with enhanced electronic accuracy, with GFN2 

performing better than GFN1 and GFN0. This work focuses solely on GFN2, a method that 

inherently relies on element-specific parameters for evaluating monopole, dipole, and quadrupole. 

Multipole moments are then utilized to approximate both isotropic and anisotropic effects. GFN2 

incorporates the D4 dispersion correction scheme, featuring both a three-body correction and 

Becke-Johnson (BJ) damping, to enhance long-range intermolecular effects, pivotal for non-

covalent interactions22. Cumulative atomic dipole and traceless quadrupole moments define 

anisotropy, included to extend the intermolecular nonbonding regime through enhanced 

descriptions of electronic density fluctuations around weakly coordinating elements. These factors 

make GFN2 an attractive method for analyzing transition metal systems by enhancing descriptions 

of bonding and non-bonding interactions for ground state geometries. 
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Despite success with tight-binding DFT, no corrections to the electron correlation term are 

included, essentially ignoring spin polarization. In this work, Becke’s 1997 (B97) generalized 

gradient approximation (GGA) functional is used with Grimme’s D3 dispersion correction scheme 

and an Axilrod-Teller-Muto (ATM) three-body term, referred to as B97-3c23. This revised 

functional incorporates semi-empirical parameterization and removal of Fock exchange to 

accelerate calculations. The density dependent exchange-correlation functional is formally based 

on the uniform electron gas (UEG) model to derive local energy densities, with correction factors 

implemented to achieve a balance between flexibility and generality without over-fitting. Finally, 

a modified diffuse basis set (def2-mTZVP) consists of edits to polarization parameters for lighter 

elements (H-Ar) to improve intermolecular force descriptions and reduce computational time. 

Justification for this method is given by low mean deviations in metal-ligand bond lengths and 

bond dissociation enthalpies for transition metal complexes compared to experimental results24. 
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2.0 Dataset Selection and Software 

In benchmarking energies for transition metal complexes (TMCs), this work will use Becke 

and Johnson’s 2009 study as a basis for comparing the above-mentioned methods to experimental 

results25. Bond dissociation enthalpy calculations are reported for a series of 30 neutral close shell 

3d transition metal complexes with small- to moderate- sized ligands which will be labelled TM30. 

Accurate descriptions of bond geometry are tested with the TMC32 dataset, motivated from a 

similar study by Grimme’s group that gave promising results for both B97-3c and GFN2. Both 

datasets are similar in construction, although relatively small in size. As such, this work also 

includes a nickel subset of the tmQM dataset, which comprises some 86,000 complexes borrowing 

from structures reported in the Cambridge Structural Database (CSD)26. For GFN2 and GFN-FF, 

version 6.3.0 of the xTB program was used. Separately, GFN2 version 6.1.4 was used in the 

original publication of the tmQM dataset. Avogadro version 1.2.0 was used to perform UFF 

optimizations on the TMCs using OpenBabel version 2.3.027,28. Also, ORCA version 4.0.2 was 

used to perform DFT calculations with the B97-3c functional29,30. 
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3.0 Computational Results 

3.1 Bond Enthalpy Calculations 

Enthalpies are reported as an average over the number of ligands per complex, with 

fragments assessed as radicals. Methods with the slash “/” nomenclature refers to geometry 

optimizations with the first method and single-point evaluations with the second (i.e., GFNFF / 

B97-3c → GFNFF geometry optimization followed by B97-3c single-point calculation). Both 

Figures 2 and 3 illustrate how well each computational method compared to experimental gas-

phase findings. The bar graph is separated by transition metal, with data coming from an average 

over all respective complexes. Both mean absolute deviation and standard deviation are shown in 

Figure 4 for all six methods. 

 

Figure 2 Mean Deviations of BDE from Experimental Values 1 
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Figure 3 Mean Deviations of BDE from Experimental Values 2 

 

 

Figure 4 Statistical Analysis for BDE Deviations from Experimental Values 
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The classically based analysis of complexes from TM30 with force-field optimized 

geometries were sufficient as a first approximation, driving down deviated errors with the B97-3c 

single point calculations as shown in Figure 3. Yet, B97-3c is necessary to extract accurate 

energies, illustrated in Figure 2 by the higher deviation in BDE for GFN2 and GFNFF when 

compared to B97-3c calculations. The significant standard deviation for GFN2/B97-3c in Figure 

4 can be attributed to two particular complexes: Ti(η5-C5H5)2(Cl)2 and TiO2 (Appendix A). 

Excluding these two complexes, the standard deviation decreases to 14.94 kcal/mol. An 

unprecedented result, the accuracy of the B97-3c functional for calculating BDE is sensitive to 

geometry distortions from equilibrium, with UFF and GFNFF providing good representations. 

Parameterization typically restricts at least some generality, as over-fitting leads to non-

transferability for analyzing diverse datasets. Both GFN2 and GFN-FF methods are curated to 

accommodate a variety of broad applications, yet focus was shifted away from dissociation 

enthalpies, instead emphasized on ground-state geometries. GFN2 is more predictable in that all 

transition metals in Figure 2 having positive mean deviations. GFN-FF meanwhile is sporadic by 

comparison, a logical conclusion given that explicit isotropic and anisotropic polarizabilities in 

GFN2 enhance descriptions of electron diffusivity in these complexes. 
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3.2 Bond Distance Analysis 

Initial findings with B97-3c and GFN2 show accurately approximated metal-ligand bond 

lengths for 32 transition metal complexes. With the same TMC32 dataset, both UFF and GFNFF 

are assessed. Results in Figure 5 illustrate the average, mean deviation, and standard deviation 

with respect to experimentally found bond lengths, derived from corresponding crystal structures. 

In total, 50 bond lengths make up the dataset, with some complexes having been repeated to assess 

different ligands. For example, the complex Fe(η5-C5H5)(CO)3 is presented twice, once as a Fe-

CO bond and another time as Fe-C5H5. 

 

Figure 5 Bond Distance Analysis from TMC32 Dataset 
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The results in Figure 5 contradict the bond enthalpies in Figure 3, with UFF and GFNFF 

providing trial structures that, despite being inaccurate, produced accurate bond enthalpies with 

B97-3c single-point calculations. Theoretically, accurate geometries and energies are correlated, 

with higher levels of theory providing more accurate results. It is clear that force-field methods 

provide poor molecular geometries, given that they miss on crucial non-covalent interactions that 

methods like GFN2 and B97-3c incorporate explicitly. Yet, the extent of parameterization for 

force-field methods provides a much-needed tradeoff, mitigating computational resources at the 

cost of accuracy. The B97-3c functional appears to overbind bonding interactions, observed from 

the 10-20 kcal/mol deviation in enthalpy upon optimizing geometries (Figure 2). Yet, force-field 

methods tend to undermine bonding,  balancing out B97-3c when used as a single-point method, 

indirectly increasing accuracy for this specific dataset.  The worse performance of both GFN2 and 

GFN-FF variants with B97-3c single point rests on the accuracy with which bond distances are 

assessed, ultimately increasing the bond enthalpy deviations as a result. This further supports the 

“averaging out” hypothesis, given that the poor performance of UFF for bond distances would 

shift the enthalpy deviation down, in this case getting closer to experimental values.  

3.3 Bond Stretch Behavior 

Unrelaxed bond distance scans were completed for complexes in the TMC32 dataset, with 

Figures 6, 7, and 8 shown to illustrate the relationship between bond order and distance for both 

GFN2 and B97-3c methods. Starting structures were derived from B97-3c geometry optimization. 

These complexes were selected to because of their well-known bonding arrangements as well as 

the features present in the following plots. 
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Figure 6 Bond Order vs. Mn-C5H5 Bond Deviation (Mn(η5-C5H5)(CO)3) 

 

 

Figure 7 Bond Order vs. Co-NO Bond Deviation (Co(CO)3(NO)) 
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Figure 8 Bond Order vs. Cu-CN Bond Deviation (CuCN) 
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3.4 Bond Order Analysis 

To further illustrate the bond length discrepancy, both GFN2 and B97-3c were evaluated 

for 462 Nickel complexes from the tmQM dataset. These complexes feature Chloride ligands that 

have a relatively high calculated bond order with Nickel compared to other ligands. 

 

Figure 9 Dependence of Bond Order on Bond Distance for Ni-Cl Complexes 
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Figure 10 Correlation Plot between B97-3c and GFN2 for Ni-Cl Complexes 
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4.0 Conclusions 

The restricted utility of qualitatively based synthetic intuition toward the design of new 

materials remains a bottleneck for research and development. In the context of MOFs, long term 

stability from a chemical and thermal standpoint are crucial when targeting industrial applications. 

Computational modeling holds promise toward evaluating ideal environmental and synthetic 

conditions, although the inefficiency of modern methods for calculating large framework systems 

remains an issue. Instead, the presented computational approach postulates the utility of modeling 

MOF components, specifically transition metal systems, as a means to approach the study of 

stability from a quantitative standpoint. 

Tabulated results illustrate the potential with which B97-3c and GFN2 have for analysis of 

transition metal complexes. GFN2 is a reasonable method for evaluating molecular geometries at 

the ground state in some respects, but the sporadic bond order results shown in Figure 9 and the 

weak correlation to B97-3c given in Figure 10 are troublesome, hindering this method from 

accurately analyzing stability factors for mechanistic analyses. Considering that MOF formation 

hinges on solvent/ligand exchange, bond stretching and shrinking are important factors, yet GFN2 

is insensitive in both regimes when compared to B97-3c. An unanticipated side effect, geometry 

optimization with UFF followed by B97-3c single-point calculations provide more accurate 

enthalpies than optimization with B97-3c alone. The potential for UFF/B97-3c as outlined requires 

more benchmarking validation including the tmQM dataset. Additional work could target the 

efficacy of improving GFN2 by means of updated parameters focused on MOF components, 

especially for systems where transition metals are binding to aromatic ligands. 
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Appendix A Geometric Depictions of Ti(η5-C5H5)2(Cl)2 and TiO2 

Two complexes from the TM30 dataset significantly increased the mean enthalpic 

deviation for the GFN2/B97-3c method when compared to experimental values, as depicted in 

Figure 3: Ti(η5-C5H5)2(Cl)2 and TiO2. This deviation is attributed to poor geometry optimizations 

of structures at the GFN2 level, as shown below in Appendix Figure 1 when compared to 

structures optimized with the B97-3c method, given in Appendix Figure 2. 

 

 

Appendix Figure 1 GFN2 Depictions of Ti(η5-C5H5)2(Cl)2 (Left) and TiO2 (Right) 

 

 

Appendix Figure 2 B97-3c Depictions of Ti(η5-C5H5)2(Cl)2 (Left) and TiO2 (Right) 
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