
 

  

Title Page 

When Phonological Systems Collide:  

The Role of the Lexicon in L2 Phonetic Learning 

 

 

 

 

 

 

 

by 

 

Farrah Neumann 

 

B.A., Florida State University, 2013 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

 

Dietrich School of Arts and Sciences in partial fulfillment 

  

of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2021



 ii 

Committee Page 

UNIVERSITY OF PITTSBURGH 

 

DIETRICH SCHOOL OF ARTS AND SCIENCES 

 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

Farrah Neumann 

 

 

It was defended on 

 

March 25, 2021 

 

and approved by 

 

Matthew Kanwit, Associate Professor, Department of Linguistics 

 

Marta Ortega-Llebaria, Associate Professor, Department of Linguistics 

Seth Wiener, Associate Professor, Department of Modern Languages, Carnegie Mellon 

University 

 

Dissertation Advisor: Melinda Fricke, Assistant Professor, Department of Linguistics 

 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Farrah Neumann 

 

2021 

 

 

 

 

  



 iv 

Abstract 

When Phonological Systems Collide:  

The Role of the Lexicon in L2 Phonetic Learning 

 

Farrah Neumann, PhD 

 

University of Pittsburgh, 2021 

 

 

The acquisition of a sound system is an integral component of second language (L2) 

communication, yet it is one of the most difficult skills to teach and is therefore largely ignored in 

L2 classrooms (Derwing, 2010). In laboratory settings, phonetic training studies have typically 

examined syllables, rather than words, with no referential meaning. Support for this 

decontextualization of the stimuli and the subsequent distributional learning that takes place has 

come from findings that word learning impedes phonetic learning, especially when involving 

minimal pairs (Feldman, Griffiths, Goldwater, & Morgan, 2013; Hayes-Harb & Masuda, 2008). 

This advantage for distributional learning over minimal pair learning, however, has not been 

demonstrated with regard to generalizing to untrained, analogous contexts. 

To investigate the role of the lexicon in L2 phonetic learning, the experiment in this 

dissertation trained participants on an artificial language with a different VOT category boundary 

than that of their first language, English. The experiment featured a between-subjects design in 

which participants were exposed to one of two training conditions. In the explicit, minimal pair-

based condition, participants learned fine-grained VOT differences through voiced-voiceless 

minimal pairs (bilsu/pilsu) that illustrated a VOT category boundary of around 0 ms, providing 

explicit evidence for the phones’ contrasting phonological statuses. The implicit condition served 

to determine whether distributional learning could take place without explicit information from 

minimal pairs. The implicit condition’s lexicon contained no minimal pairs to illustrate a direct 

meaningful relationship between voiced/voiceless pairs of phones (binsu/pilsu). Lexical learning 



 v 

was measured by accuracy scores from the training phases, which took place across five different 

days. Participants’ approximation to the new category boundary was measured by a discrimination 

task.  

Most of the predictors examined showed similar effects in both groups, but the explicit 

condition group alone improved in perceiving prevoicing, providing support for the minimal pair 

(Maye & Gerken, 2000) and noticing (Schmidt, 2012) hypotheses. Both groups successfully 

generalized to analogous contexts, even outperforming the contexts on which they were trained. 

This may be attributable to overtraining and novelty effects. The data suggest that, when invoking 

the lexicon, minimal pairs can help, rather than hinder, L2 phonetic learning. 
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1.0 Background 

A great number of factors present challenges to adult learners acquiring a second language 

(L2). For example, age, motivation, access to education, and a natural aptitude for language 

learning all play a role. This study focuses on L2 phonology, and in particular, the phonetic and 

lexical input that inform it. L2 speech sound learning has received relatively little attention in 

classroom settings (c.f. Derwing & Munro, 2005; Lord, 2005; Nagle, 2017; Pollock, 2020; Saito, 

2018; Schmidt, 2018; Schoonmaker-Gates, 2017; Zampini, 1998) but has seen increased 

consideration in laboratory training studies. These laboratory studies have shed light on the 

effectiveness of such training under a number of different conditions, demonstrating that providing 

high levels of variability – in terms of number of speakers, items, and phonetic environments to 

name a few – leads to increased gains and improved accuracy in both perception and production 

(Bradlow, Pisoni, Yamada, & Tohkura, 1997; Iverson, Hazen, & Bannister, 2005; Logan, Lively, 

& Pisoni, 1991). These gains are not particular to the speakers, items, and environments on which 

participants are trained, however; these improvements have been shown to generalize to analogous 

contexts, pointing to the robust nature of the training (Bradlow et al., 1997; Lively, Logan, & 

Pisoni, 1993; McClaskey, Pisoni, & Carrell 1983; Thomson, 2011, 2012) 

In addition to these strides in high variability phonetic training (HVPT), studies have also 

begun to shed some light on the relationship between phonetics and the L2 lexicon (Curtin, Goad, 

& Pater, 1998; Hayes-Harb, 2007; Hayes-Harb & Barrios, 2019; Hayes-Harb & Masuda, 2008; 

Maye & Gerken, 2000; Pater, 2003). In particular, understanding which lexical items to include 

(or whether to include any at all) in training paradigms in order to best facilitate phonetic learning 

will inform the particulars of how these laboratory studies might eventually come to be applied in 
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other settings, such as the classroom. In attempts to understand the role of the lexicon in L2 

phonetic learning, researchers have explored and compared the efficacy of minimal pair training 

and distributional learning training (Feldman, Griffiths, Goldwater, & Morgan, 2013a; Feldman, 

Myers, White, Griffith, & Morgan, 2013b). Minimal pair learning centers around learners 

acquiring phonetic contrasts by virtue of being exposed to stimuli containing lexical items differing 

in a single sound, whereas distributional learning accounts for learning without necessarily 

incorporating such minimal pairs, which may be unnecessary and at times even disadvantageous. 

Although distributional learning appears to yield more favorable results than minimal pair learning 

in terms of allowing learners to create separate phonological categories (Thiessen, 2007, 2011; 

Feldman et al., 2013a, 2013b), the verdict remains out on which paradigm results in better 

generalization to novel contexts. Although some studies have examined this question, their 

contrasting findings mean that the field has not yet reached a consensus on the matter (Maye & 

Gerken, 2001; McClaskey et al., 1983).  

Given this, the goal of this dissertation is to first examine whether L2 phonetic variables 

(namely voice onset time (VOT)) are more effectively acquired via minimal pair-based or 

distributional training. Additionally, this dissertation examines which of the two types of training 

are more effective tools for training participants to accurately perceive a phoneme with a slight 

phonetic difference in place of articulation (POA) between the first language (L1) and the L2. 

Specifically, /t/ is alveolar in English but is dental in the training language, Numana. Finally, this 

project aims to contribute to the discussion on whether minimal pair or distributional learning 

better facilitate generalization to an untrained POA in an L2 after being trained on an analogous 

contrast in two other POAs. 
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To provide an overview on these topics, this literature review begins by examining the 

phonetic elements to be acquired. Subsequently, I explore studies that have examined L2 speech 

sound training before turning to examine two models of L2 speech perception that help to account 

for their results. Because a great number of the training studies have focused on production instead 

of, or in addition to, perception, which is the primary focus of the current study, in this review of 

the literature I also discuss the relationship between the two modalities. In the following sections, 

I explore distributional learning and minimal pair learning, the role of the lexicon in phonetic 

learning, and learners’ abilities to generalize from learned to analogous elements in an L2. Next, 

implicit and explicit learning and the role of attention are explored before finally turning to the 

research questions that motivate the current study. 

1.1 Phonetic Learning 

This overview will begin by examining an acoustic element that differs between many 

languages, including English and Spanish – voice onset time (VOT). VOT is the interval between 

the release of occlusion of a stop consonant and the onset of vocal fold vibration (Lisker & 

Abramson, 1964). Examining VOT provides a viewpoint of the malleability of the phonetic 

representation of the learner. This malleability can be seen in changes to the production or 

perception of VOT due to exposure to input with differing VOT values. Notably, much of the 

literature on the acquisition of L2 speech perception has focused on cross-linguistic differences in 

VOT. For example, the VOT category boundary of Spanish differs from that of English. Whereas 

English voiceless stops are produced with 30 ms or more of aspiration, Spanish voiceless stops 

have approximately 0 ms (Mora, 2008). Spanish voiced stops are produced with 40 ms or more of 
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prevoicing, or negative VOT, whereas English (phonologically) voiced stops are produced with a 

VOT of approximately 0 (Lisker & Abramson, 1964). Because many languages, such as Spanish, 

divide the VOT continuum differently than English, how and when learners acquire L2 VOT 

perception and production is of great interest because it provides a window onto phonetic 

malleability of the L2 sound system.  

This is not to say that VOT is the only voicing cue to vary cross-linguistically for stop 

consonants. Although VOT is a primary cue used in Spanish, closure duration (Martínez-Celdrán, 

1993; Simonet, 2012) and fundamental frequency are also important secondary voicing cues 

(Dmitrieva, Llanos, Shultz, & Francis, 2015). Fundamental frequency (f0) is a primary voicing 

cue in languages such as Korean, and L2 learners must become aware of differences in the 

individual cues or the ordering of their importance in the L2. Under some circumstances, these 

adjustments to L2 voicing cues can be made with relatively little exposure. Schertz, Cho, Lotto, 

and Warner (2015) examined voicing contrast cues in English by native English speakers and L1 

Korean learners of English. Since the two languages use different cues to discriminate obstruent 

voicing, the authors manipulated VOT and f0 cues, such that in some cases the primary and 

secondary cues provided contradictory evidence for voicing. The Korean listeners attended 

primarily to f0, a primary cue in Korean, whereas English listeners attended primarily to VOT. 

Over the course of the experiment, both groups decreased their reliance on f0 due to its 

contradiction with VOT. This shift occurred even without explicit feedback and in under 100 

exposures to the non-canonical stimuli. Although this moved the Korean listeners away from the 

English group in that they attended less to VOT, these findings contribute to our understanding of 

the rapid perceptual adaptability that has been demonstrated in both the L1 and L2 following 

laboratory training (Escudero, Benders, & Wanrooij, 2011; Iverson, Hazan, & Bannister, 2005; 
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Kondaurova & Francis, 2010; Norris, McQueen, & Cutler, 2003). The current study examines 

changes in the perception of a singular voicing cue – VOT – but it is important to keep in mind 

that additional voicing cues can be essential to discrimination, especially of exemplars with VOTs 

that fall within ambiguous areas of the VOT continuum.  

Studies on longitudinal classroom learning or immersion have examined changes in the 

perception of phonetic variables such as VOT. For example, Zampini (1998) examined the 

perception the VOT of /p/ and /b/ by advanced L2 classroom learners of Spanish over the course 

of a semester. Although some participants approximated native speaker (NS) VOT norms by the 

end of the semester, there was considerable variation between participants. In another longitudinal 

study, Nagle (2017) followed L2 Spanish learners from the second semester until the fourth 

semester of instruction and tested their perception of VOT over five sessions. Only Spanish bilabial 

stops /p/ and /b/ were tested, but the perception of both became more native-like across sessions, 

despite receiving no intervention beyond their regular language classroom input. Like the learners 

in Zampini’s study, however, Nagle’s learners also exhibited high levels of individual variability.  

In a cross-sectional study on the perception of VOT by L2 learners of Spanish, Pollock 

(2020) found that learners could successfully categorize voiced and voiceless pairs by the fourth 

semester of Spanish study, with more native-like perception following with additional semesters 

of study.  

Typically, however, researchers have examined VOT via production rather than perception 

in classroom and immersion studies (Lord, 2005; Nagle, 2017; Saito, 2018 for classroom learning; 

Casillas, 2016; Jacobs, Fricke, & Kroll, 2016; Lord, 2010 for immersion). These production studies 

have found that learners generally do make improvements, but they can vary by program and 

individual and take several weeks to appear. Despite being distinct modalities, changes in 
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production are thought to reflect perceptual learning, with productions stemming from the mental 

representations that also include perception (Bradlow et al., 1997; Casillas, 2016; Flege, 1993). I 

return to this relationship between perception and production in a later section of this literature 

review. 

The input found in either classroom instruction or immersion is generally naturalistic in 

that learners are exposed to natural, non-synthesized speech in a contextualized environment. 

However, because the segments being examined contain cues that participants do not attend to in 

the L1, such as prevoicing, the naturalistic input is not always targeted enough to raise listeners’ 

awareness of those cues. An initial attempt to resolve this was with targeted, low variability 

training in a laboratory setting. Low-variability training involves training learners on a single 

contrast using a single item, minimal pair, or minimal triplet. It also typically involves synthetic 

speech, which is then modified along a continuum of some dimension such as VOT. Pisoni, Aslin, 

Percy, and Hennessy (1982) trained L1 English participants on a three-way voicing contrast using 

a discrimination task, and in doing so, were able to induce categorical perception. Importantly, 

however, the researchers tested only the three training items [ba], [pa], and [pha], and did not test 

for generalization to new items, speakers, or contexts. This is important because following low 

variability training, listeners tend to improve on the contrast or item for which they received 

training, but have difficulty generalizing to new items, speakers, and tasks (see Bradlow, 2008 for 

an overview). Thus, without testing generalization to these novel contexts, the true utility of the 

training remains unclear. 

An additional difficulty with low-variability training paradigms is their frequent 

employment of synthetic stimuli. Strange and Dittmann (1984) trained L1 Japanese learners of 

English on the /r/-/l/ contrast using synthetic stimuli “rock” and “lock”. Although listeners 
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experienced a “slow and effortful” improvement in their discrimination of these items, and in some 

cases were able to transfer these gains to additional task types and some of the 32 additional items 

they were tested on, they were unable to transfer their knowledge to non-synthetic stimuli or other 

phonetic environments (p. 132).   

These problems can be largely ameliorated by high variability phonetic training (HVPT) 

due to its introduction of non-synthetic stimuli and greater variability in the training through 

additional speakers, items, or phonetic environments in the training phase (Bradlow et al., 1997; 

Iverson et al., 2005; Logan et al., 1991). This variability allows HVPT to target general rather than 

stimulus-specific learning. HVPT originated from Logan et al. (1991), who used the same word 

list as Strange and Dittmann (1984) but had better results, which they attributed to training 

participants on five different speakers using natural speech, as well as several different phonetic 

environments. This provided some of the first evidence for the benefit of incorporating high 

variability and natural stimuli in laboratory training paradigms.  

The training phase of HVPT typically mirrors the testing phrase, but additionally includes 

feedback, which directs participants’ attention towards the relevant components of the input 

(Logan et al., 1991). Common tasks include either identification (e.g., Logan et al., 1991, 1993) 

or discrimination (e.g., Aliaga-García & Mora, 2009). For identification, the participant hears an 

aural stimulus and must select between two items (typically graphemes) on the screen. With 

discrimination tasks, participants hear two or more stimuli and are asked to decide whether they 

are the same or different.  

HVPT is thought to be effective because, in exposing learners to multiple exemplars, 

learners must learn to disregard irrelevant acoustic differences and instead attend to the meaningful 

acoustic cues that are consistent across items, speakers, and phonetic contexts. Lively et al. (1993) 
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replicated the study done by Logan et al. (1991) but included an additional variable of number of 

speakers to whom participants were exposed. Participants trained on five different talkers were 

significantly more able to generalize to new talkers in the posttest as compared to participants 

trained on only one talker. By training learners to attend to acoustic cues that remain consistent 

across a variety of speakers, items, or phonetic contexts, HVPT allows learners to extract the 

relevant acoustic information and apply it to more accurately generalize to novel items, speakers, 

and contexts. Another key benefit of the HVPT paradigm is that it induces changes in perception 

remarkably quickly. Alves and Luchini (2017) successfully trained listeners on L2 English VOT 

using HVPT with only three 30-minute training sessions. In fact, the researchers found that not 

only did perceptual training improve participants’ identification, but it also increased the 

production of VOT values towards those of NSs.   

An additional benefit of HVPT over other paradigms is its longer lasting results. Several 

studies have shown that improvements can last for up to six months following training (Lively et 

al., 1994; Thomson, 2012). Beyond only perceptual improvements, Bradlow et al. (1999) showed 

that native Japanese participants also retained improvements in the production of the English /l/-

/r/ contrast three months after completing training.  

Although the HVPT paradigm induces rapid and long-lasting results in training L2 

contrasts, the degree of success depends largely on the type of contrast trained. Aliaga-García and 

Mora (2009) trained Spanish-Catalan bilinguals on English VOT contrasts, /p/ - /b/ and /t/ - /d/ and 

two non-native vowel contrasts, /i:/ - /I/ and /æ/ - /ʌ/ using HVPT. Training consisted of both 

perception and production training tasks and included six two-hour sessions across six weeks. As 

in a number of studies that have trained only perception (e.g., Bradlow et al., 1997, 1999; 

Lambacher et al., 2005; Alves & Luchini, 2017), participants improved both their perception and 
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their production of VOT as a result of training on only one of these modalities. Participants in 

Aliaga-García and Mora’s (2009) study did not improve significantly in either modality for the 

vowel contrasts, however. This finding appears to be consistent across modalities, since perception 

training has been shown to lead to productions that are more accurate for obstruents than for 

sonorants or vowels (for an overview, see Sakai & Moorman, 2018). A great number of studies 

have employed HVPT, and several seminal studies are summarized in Table 1. These studies have 

been selected in order to illustrate the development of HVPT over time, specifically with regard 

to the variables that have been found to make the paradigm particularly effective. Although these 

studies are of European training languages and examine segments, it is important to note that there 

is a large body of existing research on non-European languages as well as suprasegmental features. 

These studies are beyond the scope of the current investigation, however, and for that reason are 

not included here.  

 

Table 1 Summary of Studies that Have Employed HVPT 

Study 

Segments 

Trained 

Methodology Items Findings 

Logan et al. 

(1991) 

/l, r/ Identification 

training with 

feedback over 15 

sessions. Trained on 

5 talkers and tested 

on 1 new one. 

Trained on minimal 

Real English 

minimal pairs 

that did not 

require lexical 

access. 

Better identification 

accuracy with trained 

speakers. Phonetic 

environment also impacted 

results. Small but 

significant improvement in 

identification accuracy 
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pairs using natural 

speech and several 

different phonetic 

environments.  

after training. Provides 

evidence for high 

variability and natural 

stimuli being superior to 

low variability and 

synthetic stimuli, 

especially for 

generalization.  

Lively et al. 

(1993) 

/l, r/ Replication of Logan 

et al. (1991) but 

included two 

different training 

groups – one trained 

on one talker, and 

another trained on 

five. 

Real English 

minimal pairs 

that did not 

require lexical 

access. 

Successful generalization 

to new talkers only for 

group trained on different 

talkers. 

 

Lively et al. 

(1994) 

 

/l, r/ Replication of Logan 

et al. (1991) with 

greater number of 

participants and a 

longitudinal follow 

up.  

 

Real English 

minimal pairs 

that did not 

require lexical 

access. 

Improved identification of 

segments following 

training. Identification 

performance decreased 

slightly after three months. 

After six months, scores 



 11 

were still higher than at 

pretest.  

Bradlow et 

al. (1997)  

/l, r/ Perception training 

using minimal pair 

identification task. 

Forty-five sessions 

over three to four 

weeks. 

Real English 

minimal pairs 

that did not 

require lexical 

access. 

Perception and production 

(especially of /r/) improved 

as a result of perception 

training, including 

generalizing to new words. 

Bradlow, 

Akahane-

Yamada, 

Pisoni, and 

Tohkura 

(1999)  

/l, r/ Replication of 

Bradlow et al. (1997) 

to examine long-term 

retention of trained 

contrast. 

Real English 

minimal pairs 

that did not 

require lexical 

access. 

Training led to improved 

perception and production, 

and results were 

maintained three months 

after training. 

Lambacher, 

Martens, 

Kakehi, 

Marasinghe, 

and Molholt 

(2005)  

/æ, ɑ, ʌ, 

ɔ, ɜ˞/ 

Six sessions of 

identification training 

over six weeks.  

Closed 

English 

syllables 

without 

minimal pairs 

or lexical 

access. 

Perception and production 

improved on trained 

segments. 
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Aliaga-

García & 

Mora (2009)  

/p, b, t, d, 

iː, ɪ, æ, ʌ/  

 

Six sessions training 

both perception and 

production. 

Perception training 

tasks included 

identification, 

discrimination using 

minimal pairs, and 

phonetic 

transcription. 

Real English 

minimal pairs 

that did not 

require lexical 

access. 

Perceptual shift towards 

longer VOT durations 

following training and 

improved discrimination of 

vowel pairs.  

Thomson 

(2012) 

/i, ɪ, e, ɛ, 

æ, ɑ, ʌ, 

o, ʊ, u/ 

Trained participants 

to associate each 

vowel category with 

an image. Eight 

training sessions over 

three weeks. Training 

consisted of 20 

tokens per vowel and 

two talkers. 

Open English 

syllables 

without 

minimal pairs 

or lexical 

access, but 

with a visual 

referent for 

each vowel 

category. 

Improved identification of 

vowels in the trained 

phonetic context. Transfer 

to one novel phonetic 

context but failed to 

transfer to a third. Results 

retained at delayed posttest 

one month after training.  

Thomson 

and 

/i, ɪ, e, ɛ, 

æ, ɑ, ʌ, 

o, ʊ, u/ 

Participants trained 

by having them 

select the IPA 

Trained a 

group on open 

syllables and a 

Training at the syllable 

level was more effective 

than the word level. 
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Derwing 

(2016)  

 

symbol that 

corresponded to the 

vowel in the auditory 

input. Received 

auditory/visual 

feedback. Forty 

training sessions over 

a month. 

group on real 

words to see if 

invoking 

lexicon 

detracts from 

phonetic 

learning. 

Information 

about minimal 

pair status was 

not provided. 

Researchers concluded it 

was because participants 

were able to attend to the 

phonetic detail without 

needing to split attention 

between phonetics and the 

lexicon.  

 

Alves & 

Luchini 

(2017) 

/p, t, k/ Three sessions of 

training using an 

identification task 

and six different 

talkers and three 

items. Compared a 

standard training 

group to a group that 

was told explicitly to 

focus on the 

acoustics.  

Real English 

minimal pairs 

that did not 

require lexical 

access. 

Both groups improved in 

identification, but explicit 

group made greater gains 

in production transfer.  
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1.1.1 Generalizing from Learned to Analogous POAs 

A core benefit of HVPT is that participants are trained on a small set of talkers and items 

and yet demonstrate improvement on additional talkers and items to which they have not yet been 

exposed. In addition to examining participants’ abilities to generalize to untrained items and 

talkers, as discussed in the section on HVPT training above, studies have also examined whether 

listeners are capable of generalizing to new phonetic environments. In one such study, Thomson 

(2011) trained listeners on 10 Canadian English vowels in environments following bilabials and 

found that learners were able to successfully generalize improvements to the discrimination of 

vowels that followed alveolar fricatives but not those that followed velar stops. Relatedly, 

Thomson (2012) found that learners correctly generalized the same 10 Canadian English vowels 

from labials to velars, but not to alveolar fricatives.  In other instances, however, generalizability 

to new phonetic environments has not been empirically demonstrated. HVPT did not fully 

facilitate the generalization of /ɹ/-/l/ to different syllable positions for L1 Japanese learners of 

English (Iverson et al., 2005).  

In addition to generalizing to analogous phones, there is also evidence that training can 

facilitate generalization to analogous POAs. For example, Nielsen (2008) used a word naming 

imitation paradigm to demonstrate that participants not only imitated lengthened VOTs, but also 

generalized these VOTs to additional POAs, pointing to participants extracting a more general 

feature rule for voicing from the input. McClaskey et al. (1983) found that after training 

participants on a three-way voicing contrast in bilabials, results also transferred to untrained 

alveolars. Given this, McClaskey et al. concluded that new categories can be created in the lab. 

Importantly, however, participants were informed that they would be listening for new sounds that 

they hadn’t heard in training. Given this, it is difficult to discern whether the researchers would 
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have had the same findings without explicitly prompting participants.  Tremblay, Krause, Carrell, 

& McGee (1997) extended McClaskey et al.’s findings by also including mismatched negativity 

(MMN) responses to measure to what degree results could also be seen neuropsychologically. 

Their stimuli were modeled after McClaskey et al., and they found that training resulted in 

improved identification and discrimination of the trained bilabial and untrained velar contrasts. 

These results were also mirrored in the MMNs, indicating that training resulted in not only 

behavioral, but also neuropsychological shifts.  

In another extension of McClaskey et al. (1983), Maye and Gerken (2001) also explored 

markedness (Eckman, 2008) in relation to participants’ ability to generalize to an analogous POA 

following training on a single POA in an L2. Participants were trained on either velars or dentals 

and then tested on the second, untrained POA. With some POAs being more common than others 

cross-linguistically, the presence of the less common contrast (i.e., velars) typically indicates the 

presence of the more common contrast (i.e., dentals). Maye and Gerken predicted that because of 

the directionality of markedness, participants trained on velars (the marked contrast) should be 

able to generalize to the dentals (unmarked) contrast, but those trained on dentals should have a 

more difficulty generalizing to the marked velar contrast. Maye and Gerken found that training did 

not generalize to the untrained contrast in either case. The authors attribute this difference between 

their results and those of McClaskey et al. to participants not being explicitly told they would be 

generalizing their discrimination to new segments. Without explicit attention being paid, 

participants did not become aware of the new contrast. They also noted that it is also possible that 

training on a single POA is not sufficient for the formation of phonological feature representations, 

such as voicing, that are necessary for abstraction and generalization.  
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Relatedly, researchers have examined generalization through the lens of speakers with 

different accents and pronunciations (Idemaru & Holt, 2020; Kraljic & Samuel, 2007), ambiguous 

phones and lexical contexts (Kraljic & Samuel, 2005, 2006, 2007; Norris et al., 2003), and in 

speech therapy for aphasiacs (Coppens and Patterson, 2017), though these studies have not tended 

to focus on L2 learning and for that reason are not explored in greater depth in this review of the 

literature.  

Pedagogically, the implications of generalization following training are clear – if learners 

are able to analogize to new environments or POAs, it might be possible to conclude that learners 

have acquired a more general, phonological feature. If this turned out to be the case, less time 

could be spent teaching each individual contrast in classroom or laboratory settings. On the other 

hand, if learners do not successfully analogize, time and attention must be devoted to equally 

distributing instruction across phones. From a more theoretical point of view, whether learners 

analogize likely informs the organization of their mental representations. Psychologically valid 

representations of natural classes in the L2 should facilitate generalizability to new phonetic 

environments (Nielsen, 2011). This theoretical account of mental representations is explored 

below with regard to two models of speech perception. 

1.1.2 Models of L2 Speech Sound Learning 

Given the presence of important phonetic and phonological cross-linguistic differences 

such as with VOT described above, several models of speech sound learning have been created to 

attempt to explain the ways in which the learning of speech sounds in a language other than one’s 

L1 can be conceptualized. In this literature review, I discuss two such models: the Speech Learning 

Model (SLM) and the Perceptual Assimilation Model (PAM). 
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 Flege’s SLM was created to account for learning speech sounds in a second language 

(Flege 1988, 1992b, 1995b, 2002, 2003). As opposed to other competing theories invoking the 

notion of critical periods (Lenneberg, 1967), the SLM posits that L2 learners maintain the ability 

to reorganize their perceptual systems across the lifespan (Flege, 1995b; Flege, Munro, MacKay, 

1995). Additionally, the SLM postulates that perceptual difficulty is based on phonetic similarity 

and a perceived equivalence between sounds in the L1 and L2 (Flege, 1995a). L2 phones that are 

similar but not prototypical exemplars of L1 categories should cause more perceptual difficulty 

than sounds that are notably distinct. This is because similar phones assimilate to the existing L1 

category, whereas a new category is created for phones that are perceived as distinct. For example, 

Spanish and English differ in their production of /t/. Whereas Spanish uses a dental POA, the 

English realization is typically alveolar. Whether L2 learners of Spanish learn to accurately 

produce this difference in the L2 depends on whether they can first perceive it as distinct. If not, 

the perceived similarity of the two phones may actually lead to increased long-term inaccuracy in 

production and perception, since learners (wrongly) categorize Spanish and English /t/ as being 

equivalent.  

This perceptual assimilation for similar sounds occurs due to equivalence classification, 

which assumes that listeners identify a wide range of phones as belonging to a particular category 

(Flege, 1987, 1995). This allows listeners to cope with variance in the stimulus, but also creates 

the challenge of forming separate representations for L2 sounds that are assimilated to L1 

categories. The more similar (without being the same) that an L2 sound is to the L1 equivalent, 

the more difficult it will be for a new L2 category to form. A possible result of this is that an L2 

sound may map onto an existing L1 category, effectively merging the L1 and L2 values into an 

intermediate value. Evidence for these shared, modified representations can be found in the 
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compromised VOTs of /t/ of late L1 Spanish - L2 English bilinguals (Flege, 1991). Whereas early 

bilinguals had two distinct representations of /t/ - one for each of their languages as shown by 

distinct VOTs - late bilinguals showed intermediate VOT values that mirrored those of neither 

English nor Spanish monolinguals. Alternatively, the L1 and L2 phones may move away from one 

another in order to become maximally contrastive and allow the listener to maintain separate 

categories for each language, as was the case with the early bilinguals just mentioned (Flege, 1991; 

Flege, Schirru, & MacKay, 2003). 

Whereas the SLM focuses on experienced L2 learners, Best’s (1995) PAM was originally 

meant to account for the perception of non-native speech sounds by naïve listeners, although it has 

since been expanded to also account for L2 learning in a revised model, the PAM-L2 (Best & 

Tyler, 2007). The revised model accounts for learners’ development away from naïve listening 

and toward more native-like perception of L2 contrasts. The model examines pairs of phones (as 

opposed to the single segments dealt with by SLM) and makes predictions about how they 

perceptually assimilate to the existing phonetic and phonological architecture of the L1. Like the 

SLM, the PAM also assumes a shared phonetic space between the L1 and L2. Several mappings 

between the L1 speech sounds and speech sounds of additional languages are presented to attempt 

to conceptualize the ways in which contrasts in an unfamiliar language are assimilated to the L1. 

First, speech sounds – and in particular, contrasting pairs – are described as being either 

categorized or uncategorized. Categorized sounds are classified as such because they are able to 

find a home within the existing L1 categories. Categorized pairs can be further broken down into 

the following types: two-category assimilation, single-category assimilation, and category-

goodness difference.  
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Contrasts of the two-category assimilation type are those that map neatly onto two separate 

L1 categories, thus allowing the listener to maintain a highly accurate ability to discriminate the 

members of the pairs as they would in the L1. For example, L1 English speakers assimilate Zulu 

phonemes /ɮ/ and /ɬ/ to two separate English categories: one of several possible fricatives (such as 

/s/ or /z/) and a lateral (Best, McRoberts & Goodell, 2001). Single-category assimilation occurs 

when two contrasting phones in a new language are mapped onto a single L1 category and both 

are considered equally good representations of that L1 category, resulting in a lower overall ability 

to discriminate the two. For example, in L1 Japanese learners of English /ɹ/ and /l/ both assimilate 

to the L1 category, /r/, resulting in poor discrimination of the contrast (Best & Strange, 1992). The 

final type of categorized sound outlined by the PAM is category-goodness. This is similar to single-

category assimilation, except that the two phones are not equally good representations of the L1 

category to which they have assimilated. Thus, listeners are able to somewhat discriminate the 

contrast on the basis of the goodness of fit. For example, in L1 English learners of Spanish, /r/ and 

/ɾ/ are assimilated as English /ɹ/, but /r/ is a poorer exemplar of /ɹ/ than /ɾ/ (Rose, 2010). 

Uncategorized sounds are those which are perceived as speech sounds but do not assimilate 

to any existing L1 phone, similar to perceiving infant babbling, which sounds speech-like but 

remains foreign (Best, 1995). If only one member of the contrast is uncategorized, the PAM 

predicts good discrimination. If both are uncategorized, the PAM predicts poor discrimination. 

The final type of assimilation outlined by the PAM is non-assimilated, where neither phone is 

perceived as a speech sound at all, such as is the case with African click sounds for English 

speakers (Best, 1995). Non-assimilated contrasts tend to result in good to excellent discrimination 

(Best, 1995).  
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Using these classifications, the PAM provides testable predictions for speech sound 

learning. In the research questions and hypotheses of the current study, I will return to the specific 

predictions made by both the SLM and the PAM. Like the SLM, the PAM posits that the 

mechanisms responsible for phonetic and phonological learning remain intact over the lifespan, 

and therefore that learning of an additional language and its phonological categories can take place 

successfully at any age.  

1.2 The Relationship between L2 Perception and Production 

Following the SLM’s postulation that accurate perception is a necessary (though 

insufficient) element of accurate production (Flege 1992a, 1992b), researchers have sought to 

better understand the relationship between the two modalities. A growing literature has also 

examined improvements in L2 production as a product of perception-only training (for an 

overview, see Sakai & Moorman, 2018). Successful gains in production following no training in 

this modality provide strong evidence for the dependence of production on perception. Bradlow et 

al. (1997) trained L1 Japanese learners of English on the /ɹ/- /l/ perceptual distinction and tested 

them using both identification and production tasks. Participants accurately transferred knowledge 

learned in the perception training to their productions, leading to more accurate productions of the 

contrast.  

Even without training, learners have been shown to develop perception and production in 

tandem. In a longitudinal study following L2 Spanish learners from 2nd semester until 4th semester, 

Nagle (2017) tested the perception and production of VOT over five sessions to examine the 

relationship between the two modalities. In particular, Nagle examined whether this relationship 
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is synchronous (changes in one modality co-occur with changes in the other), time-lagged (changes 

in perception occur systematically prior to equivalent changes in production), or asymptotic (high 

proficiency is required before a relationship between the two modalities emerges). Perception and 

production of Spanish /p/ became more native-like, but /b/ underwent less production change 

despite undergoing perceptual changes, perhaps due to the articulatory difficulty posed by 

prevoicing. These findings suggest that the relationship between perception and production is time-

lagged, with production emerging after perception.  

Additional studies have also shown support for production lagging behind perception. 

Flege (1993) found that L1 Chinese learners of English differed from an L1 English comparison 

group in both perception and production of /t/ - /d/ contrasts but were overall more accurate in 

perception than production. Similarly, Casillas (2016) examined L2 Spanish learners participating 

in a domestic immersion program and found that the VOT of /p/ and /b/ decreased in a target-like 

manner in both modalities, although more immediate shifts occurred in perception.   

Nevertheless, others have failed to identify a relationship between perception and 

production. Zampini (1998) examined the VOT of advanced L2 learners of Spanish in both 

modalities in a non-immersion setting. Although some participants approximated NS VOT norms 

for either perception or production, there was considerable variation between participants. 

Furthermore, no relationship was found between gains in perception and production, as many 

participants improved in one area but not in the other.  

Still other studies have shown support for production leading perception. Such a 

phenomenon manifests as learners producing a contrast that they cannot yet accurately perceive 

(Flege, Bohn, & Jang, 1997; Zampini & Green, 2001). Importantly, Escudero (2007) notes that 



 22 

such findings may be attributed to methodological concerns and therefore should be considered 

with some skepticism.    

Improvements in production via perception-only training are beyond the scope of the 

present work. Nevertheless, the likelihood of a link between the two bears mentioning since a 

significant portion of the literature on training studies – especially those that take place in a 

classroom setting – examines production (Lord, 2005; Nagle, 2017; Saito, 2018 for classroom 

learning; Casillas, 2016; Jacobs, Fricke & Kroll, 2016; Lord, 2010 for immersion). Additionally, 

the SLM’s assertion that inaccurate production is a reflection of inaccurate perception (Flege, 

1977), points to the importance of examining production studies, which can provide critical insight 

into the organization of those participants’ perceptual systems. More specifically, inaccuracies or 

difficulties in L2 production studies may still inform our understanding of where parallel 

perceptual difficulties lie.  

1.3 Distributional and Minimal Pair Learning 

When considering the acquisition of the perception of L2 phones, it is important to consider 

how and why changes in perceiving or producing L1 or L2 phones actually occur. Changes to a 

learner’s mental organization must take place at least in part due to the non-invariance problem. 

This is the idea that the acoustic realization of a single phone can differ greatly depending on 

factors such as speaker, environment, vocal tract size, dialect, etc. (Klatt, 1979; Stokes, Venezia, 

& Hickok, 2019). Learners nevertheless do eventually learn to successfully perceive and 

categorize speech sounds. In part, this ability to learn to cope with a lack of invariance stems from 
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adaptation. Listeners must learn to adapt and to filter out irrelevant information in the stimuli (for 

an overview, see Weatherholtz & Jaeger, 2016).  

Given the immense variability seen even within a single phonemic category, both L1 and 

L2 learners must somehow learn to accurately perceive and categorize the input in the language 

they are learning. Although newborn infants can discriminate the sounds of any of the world’s 

languages, by about 12 months of age this ability is lost and infants show adult-like sensitivity to 

phonemic contrasts of the L1 (Kuhl et al., 2006). For example, at six to eight months of age, 

Japanese and American infants show a similar ability to discriminate between /r/ and /l/. By 10-12 

months of age, however, American infants correctly discriminate /r/ and /l/ at significantly higher 

rates than Japanese infants (74% versus 60%) (Kuhl et al., 2006). Thus, the phonemic status of /r/ 

and /l/ in English and the allophonic status of /r/ and /l/ in Japanese is acquired early on. In 

particular, whether and to what degree word-learning plays a role in phonetic learning is best 

explored by examining two accounts of phonetic learning – distributional and minimal pair-based 

learning. 

1.3.1 Distributional Learning 

Language learning may be a product of distributional learning, a type of bottom-up 

processing in which learners unconsciously analyze the input for patterns. In the case of phonetic 

learning, clusters of exemplars separated by sparsely populated areas of phonetic space indicate 

category boundaries (Olejarczuk, Kapatsinski, & Haayen, 2018). This type of probabilistic 

learning has been captured by exemplar models (Johnson, 1997; Pierrehumbert, 2003) and 

prototype models (Feldman, Griffiths, & Morgan, 2009; Flannagan, Fried, & Holyoak, 1986), 

which both posit that each token contributes to the mental representation equally; the greater 
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number of exemplars of a specific type encountered in the input, the stronger the representation. 

Olejarczuk et al. (2018) provide an alternative account of distributional learning in which they 

emphasize the role of surprise over the role of frequency. Although frequency is said to play a role 

in the acquisition of phonetic categories, frequency as a tool has diminishing returns for higher 

frequency exemplars. Instead, Olejarczuk et al. argue that learners are more highly influenced by 

an unexpected event and update their representations disproportionately more for events that are 

surprising as compared to what was anticipated on the basis of the existing representation.  

Distributional learning better accounts for infant learning as compared to minimal pair 

learning, since infants have limited vocabularies and thus cannot rely on word-learning as a means 

of phonetic learning. It has been proposed that, instead, infants use distributional learning to 

determine the statistical peaks in the phonetic input they are exposed to and use this information 

to inform the creation of phonemic categories in their L1s (Kuhl, 2004; Maye, Werker, & Gerken, 

2002). The native language magnet theory (NLM) set forth by Kuhl (1991) describes how infants 

acquiring their L1s learn to organize their perceptual systems around prototypes. Although tokens 

produced on the periphery may be perceived as being less than ideal members of the category, they 

are still able to be classified as belonging to the category thanks to a magnet effect that attracts 

nearby members of the category. Importantly, this effect takes place in infants prior to learning 

word meanings or phonemic contrasts (Kuhl, 1993).  

There is also evidence that L2 learners incorporate these statistical tendencies in a similar 

way as in L1 acquisition. In studies that have shown this, learners are not provided with meanings 

associated with stimuli, but are rather instructed to simply listen to a stream of input. Maye and 

Gerken (2000), for example, exposed adult participants to either bimodal or unimodal stimuli from 

a /ta/-/da/ (aspirated-unaspirated) continuum. The group that received bimodal input heard four 
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times as many tokens from endpoints of the continuum, whereas the group that received unimodal 

input heard tokens primarily from the center of the continuum. Following exposure to the input, 

participants that had received bimodal input were more accurate in a discrimination task than those 

that had received unimodal input, despite neither group being trained on meaningful minimal pairs. 

Although both groups had heard the tokens from all points of the continuum, hearing the majority 

of the tokens at either end of the continuum for the bimodal group provided stronger evidence for 

the existence of two separate categories (short-lag and aspirated). The unimodal group, on the 

other hand, did hear tokens from the endpoints of the continuum, but much fewer of them, leading 

them to conclude, albeit subconsciously, that these tokens were simply peripheral exemplars of a 

singular phonetic category. This study demonstrated that even without word meanings, learners 

are nonetheless analyzing the input to which they are exposed and using these statistical tendencies 

to inform their mental representations of phonetic and phonological categories. In a similar 

experiment with infants, Maye et al. (2002) also found support for statistical learning via the 

bimodal distribution. Together, Maye and Gerken (2000) and Maye et al. (2002) suggest that L2 

learners still have access to the same phonetic learning mechanisms as infants.  

Importantly, young children acquiring their L1s do not yet have robust vocabularies that 

include minimal pairs before about 12 months of age and yet are still able to perceive essential 

phonemic contrasts (Caselli et al., 1995). This provides additional evidence for a distributional 

account of phonetic learning in children. Adult learners, however, are not necessarily confined by 

a limited lexicon in the way that small children are. Given this, it bears revisiting the role of 

minimal pairs in the word learning and phonetic learning of adult L2 learners. 
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1.3.2 Minimal Pair Learning 

Because exemplars rarely fit the category prototype, learning to group instances of a phone 

with the appropriate phonological category can be a daunting task for language learners. Thus, 

several researchers have posited that phonetic discrimination may be at least partially acquired as 

a result of word learning (Best, 1995; Bisson, Kukona, & Lengeris, 2020; Jusczyk, 1985; Lalonde 

& Werker, 1995; MacKain, 1982; Werker & Pegg, 1992). In this vein, the minimal pair hypothesis 

posits that language learners will begin to attend to phonemic differences between sounds when 

they realize that the two members of a given minimal pair can be used to make a distinction 

between two separate concepts (Maye & Gerken, 2000). A great number of training studies, 

including many of those mentioned above, used a minimal pair-based training paradigm (Aliaga-

García & Mora, 2009; Bradlow et al., 1997, 1999; Curtin et al., 1998; Lively, Logan, & Pisoni, 

1993; Lively et al., 1994; Logan et al., 1991; Pater, 2003; Strange & Dittmann, 1984). This may 

be because, despite some arguments against minimal pair-driven phonetic learning in L1 learners 

(namely the inability to rely on an impoverished lexicon to drive phonetic learning), the same 

dilemmas do not apply to L2 learning, which is frequently centered around vocabulary learning. 

Further evidence for this claim comes from Cutler, Weber, and Otake (2006), who used eye-

tracking to examine L1 Japanese learners of English in their perception of the English /l-r/ contrast. 

When instructed to click on a rocket, participants looked towards a locket, but the reverse was not 

true. Weber and Cutler (2004) found similar results for L1 Dutch learners of English, who 

demonstrated an asymmetric perception of vowels. This mismatch of phonetic information with 

the lexicon points to a difference in goodness of fit for either sound, as predicted by PAM (Best, 

1995). For the learners in Weber and Cutler’s study, both English phonemes assimilated to the 

existing Japanese representation, but one was a better representation than the other, which allowed 



 27 

participants to maintain some level of discrimination, albeit asymmetrically. Weber and Cutler’s 

findings also demonstrate that learners do in fact have separate, non-homophonous representations 

for each lexical item. More research is still needed regarding the relationship between phonetic 

and lexical learning. In particular, it remains unclear whether phonetic learning takes place as a 

byproduct of word learning (Best, 1995; Bisson et al., 2020; Jusczyk, 1985; Lalonde & Werker, 

1995; MacKain, 1982; Werker & Pegg, 1992), or whether these two systems are more effectively 

trained separately in the L2 learner (Hayes-Harb & Masuda, 2008; Jarvi, 2008; Thomson & 

Derwing, 2016). 

1.3.3 The Role of the Lexicon in Phonetic Learning 

Whether lexical items are included in a training paradigm may influence the degree to 

which participants’ phonetic representations are affected by the training, providing a better 

understanding of the role of the lexicon in phonetic learning. A number of training studies have 

used real words, but it is important to differentiate between employing lexical items, such as by 

presenting the written form of the word on the screen and evoking lexical access by asking the 

participant to make a connection between a piece of information given in the experiment and the 

corresponding item in the lexicon. In this section, I discuss the role of the lexicon with regard to 

phonetic learning, first with infants before turning to adult learners. 

Regarding infants, Werker and colleagues (Fennell & Werker, 2003; Pater, Stager, & 

Werker, 2004; Stager & Werker, 1997) have used duration of looks toward a visual target as 

evidence of 14-month-old infants having a decreased ability to notice switches from a word to its 

minimal pair as compared to 8-month-old infants who had longer looks during switch trials. Stager 

and Werker (2007) tested both age groups on /b/ - /d/ minimal pair nonce words by habituating the 
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infant to a single word-object combination and then switching the label to its minimal pair. Unlike 

the older infants, the younger infants perceived the difference between minimal pairs, as evidenced 

by longer looks during switch trials. The researchers attribute this difference to the younger infants 

doing a purely discrimination task, whereas the older infants reserved their discrimination of 

phonetic information for word learning tasks. Without a new object to assign a new label to, the 

older infants saw no reason to relearn a label for the original object. These findings were found 

consistently, even when using a variety of phonetic contexts (Pater et al., 2004). When using 

already known minimal pairs (ball and doll), however, the 14-month-olds did notice the switch, 

with longer looks during switch trials (Fennell & Werker, 2003).  

Thiessen (2007) found that training infants on distinct lexical items (dabo and tagu) led to 

improved discrimination between minimal pairs as compared to infants trained directly on minimal 

pairs (dagu and tagu). In Thiessen’s study, these labels were always paired with visual objects, 

which may account for some of the learning. In a follow up experiment though, Thiessen (2011) 

showed that even without visual referents, distinct lexical items are more facilitative for learning 

than minimal pairs, since distinct labels allow learners to experience acquired distinctiveness.  

Rather than being able to focus on the phonetics, when infants are presented with a minimal pair, 

they are forced to devote attentional resources to forming an association between an object and its 

label. This may be due to the additional cognitive and attentional resources required to 

discriminating minimal pairs as compared to pairs of words that are more noticibly distinct. The 

findings of both Thiessen (2007, 2011) and Werker and colleagues (Fennell & Werker, 2003; Pater 

et al., 2004; Stager & Werker; 1997) call into question the assumptions underlying of the minimal 

pair hypothesis, which predicts just the opposite, at least with regard to infant L1 acquisition. 

Specifically, the minimal pair hypothesis predicts that presenting language learners with minimal 
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pairs that illustrate a phonemic contrast should direct their attention to the phonetic cues that 

distinguish the two phones. 

Studies on L2 learning have presented mixed findings regarding the role of the lexicon in 

phonetic learning.  Abramson and Lisker (1970) tested L1 English speakers’ ability to identify 

synthetic stimuli with VOT values that corresponded to Thai, specifically the three-way phonemic 

voiced, voiceless, aspirated bilabial contrasts (/b, p, ph/). They found that participants identified 

voiced and voiceless stimuli as /b/ and aspirated stimuli as /p/ respectively, suggesting that 

participants were better able to perceive aspiration than voicing contrasts, in line with their L1 

categories. Curtin et al. (1998) trained participants on the same Thai three-way contrast but used a 

word learning paradigm to do so. They found that after training, L1 English listeners could better 

perceive voicing contrasts than aspiration contrasts. The researchers attributed this difference in 

perceptual ability to the L1, in which voicing is a phonemic contrast, but aspiration is allophonic. 

They also attributed the discrepancy between their findings and those of Abramson and Lisker to 

their use of lexical items to access the learned Thai phonology. According to this account, 

Abramson and Lisker’s phoneme identification task tapped into surface level phonetics since it did 

not involve the lexicon, where such surface level phonetics are not stored or represented. Curtin et 

al. accounted for these findings by explaining that since English aspiration is only phonetic (and 

therefore not stored in the lexicon), the participants in Abramson and Lisker’s study were able to 

accurately perceived aspiration. On the other hand, Curtin et al. had learners tapping into lexical 

representations through a word learning paradigm. Since these English lexical items are 

unspecified for surface level phonetic variation such as aspiration, listeners were not as sensitive 

to aspiration.  
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In a follow up study to better examine the distinction between lexical and surface 

representations, Pater (2003) used the exact same stimuli and training paradigm as in Curtin et al. 

(1998) but used XAB discrimination tasks in which X could be either a sound or picture (Curtin 

et al. presented sound and picture simultaneously). Pater found the opposite of Curtin et al., in that 

discrimination by L1 English listeners was better for aspiration than for voicing, indicating that 

the Curtin et al. finding is generalizable across differing experimental conditions and that more 

research in the area is still needed.  

Hayes-Harb and Masuda (2008) conducted an experiment in which they trained native 

English speakers on Japanese consonant length contrasts. The training began with a word learning 

phase in which auditory labels for nonce words were assigned to visual objects. Importantly, the 

singleton and geminates formed minimal pairs (/pete/-/pette/). Participants were then tested using 

a matching task, in which they were asked to match the auditory label with the corresponding 

picture, requiring participants to detect differences in consonant length that formed minimal pairs. 

Participants were able to discriminate with high levels of accuracy between members of the 

singleton-geminate minimal pairs, indicating that phonetic learning can occur as a byproduct of 

lexical learning. In a related study, Hayes-Harb and Barrios (2019) examined not only consonant 

singleton / geminate pairs, but also included vowel pairs. Although consonants were correctly 

perceived according to duration, vowels did not show evidence for contrastive encoding. It remains 

unclear the degree to which contrastive encoding of any kind could be generalized to untrained 

contexts, such as novel POAs or speakers, since these generalizations were not included in the 

testing phase of these studies.  

In an additional study that examined differential training at the word versus sound level, 

Thomson and Derwing (2016) used HVPT to train L2 English learners on 10 vowel sounds using 
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either real words or nonsense words consisting of only open syllables.  They found that training at 

the syllable level was more effective than the word level, and concluded it was because participants 

were able to attend to the phonetic detail without needing to split attentional and cognitive 

resources between phonetic information and the lexicon. Additional support for the greater 

efficacy of phonetic learning separate from lexical learning that was reported by Thiessen (2007, 

2011) comes from Jarvi (2008), who discussed at length the mismatch between the frequently 

decontextualized laboratory training and real-world language learning. In an effort to explore the 

role of context – both lexical and semantic – Jarvi tested L1 English learners of Ukrainian on their 

ability to acquire a nonnative phonemic (palatalized versus non-palatalized) contrast using 

nonword minimal pairs. He compared a lexical access task (participants saw an object and heard 

an auditory label of either the object shown or its minimal pair and had to determine if the auditory 

label corresponded to the displayed object) and a no-lexical-access condition (a production-based 

word reading task). The results of the study showed that requiring lexical access led to a decreased 

ability to discriminate the trained contrast, as compared to the no-lexical access task.  

The lexical-distributional hypothesis helps to explain these findings by predicting that 

minimal pairs might, in fact, impede phonetic learning (Feldman et al., 2013a, 2013b). Instead, 

distributional learning without minimal pairs should provide greater evidence for the distinction 

(both phonetic and semantic) between tokens, and therefore non-minimal pairs should lead to the 

creation of separate phonetic category representations. Feldman and colleagues (Feldman et al., 

2013a; Feldman et al., 2009), attempted to model some of the differences between distributional 

learning only and distributional learning with a lexical component, and found evidence to support 

minimal pairs impairing learning since the model occasionally mistakenly identified minimal pairs 

as two tokens of the same word.  



 32 

In an additional test of whether word level information helps to constrain phonetic learning, 

Feldman et al. (2013b) presented vowel sounds [ɑ] and [ɔ] to two groups of native English 

speakers, either in minimal pairs or non-minimal pairs. As predicted by the lexical-distributional 

hypothesis, the non-minimal pair group was better able to differentiate between the vowel sounds 

as a result of receiving input containing these sounds in contrasting words.  Similar to Thiessen 

(2007, 2011), researchers found that both children and adults learned phonetic categories better 

when they were presented within different (non-minimal pair) words, thus concluding that 

phonetic learning may not occur in isolation, but rather is facilitated by the lexicon in that lexical 

items can help learners to associate the distinctiveness of the words and their differing meanings 

with meaningful phonetic contrasts contained by these words. However, this conclusion does not 

hold for minimal pairs, which, without such distinctiveness elsewhere in the word, do not facilitate 

an acquired distinctiveness for fine phonetic detail that distinguishes the members of the pair. 

Overall, invoking the lexicon leads to less effective phonetic learning, presumably as a product of 

greater cognitive demand and split attentional resources (Hayes-Harb & Masuda, 2008; Jarvi, 

2008; Thomson & Derwing, 2016). What’s more, minimal pairs in particular may be especially 

disadvantageous when it comes to phonetic learning (Feldman et al., 2009, 2013a, 2013b; 

Thiessen, 2007, 2011). Taken together, these studies present mounting evidence for the efficacy 

of distributional learning over minimal pair learning.  

1.3.3.1 Sleep Consolidation 

Learning in general – and in particular lexical learning – has been shown to benefit from 

sleep consolidation.  For newly acquired lexical items to experience lexical competition as do 

existing lexical items, a period of sleep must take place. Dumay and Gaskell (2007) taught 

participants new words at either 8 am or 8 pm and tested them on these new lexical items 
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immediately and again 12 hours later. Participants of both groups showed knowledge of 

phonological information of the lexical items immediately, but only those who slept between 

sessions showed evidence of lexical competition. Participants who were tested after 12 waking 

hours, on the other hand, did not show signs of lexical competition for the novel items.   

Others have called into question the importance of sleep consolation, however, positing 

that other paradigms are equally effective. For one, the Hebb (1961) repetition effect describes the 

improved recall experienced by participants exposed to lists with covert repetition as opposed to 

randomly ordered lists. This effect is considered to be implicit, since participants are not aware of 

the repetition in the sequencing, are not asked to learn it, and are not aware that they do learn it. In 

fact, this paradigm has been shown to be so effective that Szmalec, Page, and Duyck (2012) called 

into question the necessity of the previously established role of sleep consolidation. Szmalec et al. 

found that learners experienced lexical competition for words using this implicit means of 

presentation with the simple passing of time, regardless of whether participants had slept. Sobczak 

and Gaskell (2019) compared recognition, recall, and lexical integration by participants trained 

either using the Hebb paradigm or with an explicit phoneme monitoring task containing isolated 

tokens. Sobczac and Gaskell found no benefit for the more implicit Hebb paradigm and therefore 

reiterated the importance of sleep consolidation for lexical integration.  

1.4 Implicit and Explicit Learning 

The constructs of explicit and implicit learning and their relationships to phonetic and 

phonological learning have been discussed briefly in the above sections, but in this section, I return 

to these concepts to further explore this relationship and its importance in L2 learning in greater 
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detail. Researchers differ in what they consider to be the necessary components of implicit and 

explicit learning. Implicit learning was first defined by Reber (1967) as learners in an experimental 

setting making use of statistical tendencies in the input without a willingness to or an awareness 

of doing so. Dekeyser (2008) expands this definition to learning without an awareness of what is 

being learned, regardless of being in an experimental setting. Implicit learning also critically 

involves ‘chunk learning’ over ‘rule learning’ (Ellis, 2015). In summary, it is learning without any 

intention or conscious effort to do so. 

According to Hulstijn (2005), explicit learning is just the opposite – it is “an intentional 

effort to uncover the rules of the system underlying the implicit data”. In other words, learners 

must first be aware that there is a rule to acquire and then must come to recognize what is 

happening in the input, before finally constructing a rule that describes the pattern, resulting in 

knowledge of what has been learned. One thing shared by each of these definitions is the notion 

of awareness, a concept to which I will return in a later section devoted specifically to the role of 

this critical construct. 

Related to implicit and explicit learning is the Declarative/Procedural Model, which makes 

a distinction between knowledge that is verbalizable (declarative) and knowledge that is more 

rapid and automatic (procedural) (for an overview, see Ullman, 2015). Not only do these memory 

types differ in verbal recall and in recall speed, but they also involve important physiological 

differences, with each memory type activating different regions of the brain, providing some 

physical evidence for the observable behavioral differences exhibited by learners engaged in either 

implicit or explicit learning. Declarative memory is associated with the medial temporal lobe, 

hippocampus, and Brodmann’s Areas. Although declarative memory does not solely include 

explicit learning, all explicit learning necessarily takes place within the declarative memory 
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system. Greater attention or explicit instruction tends to result in declarative memory, whereas a 

lack of either, as well as increased complexity, typically results in procedural memory. Procedural 

memory involves only implicit learning and involves the basal ganglia and frontal regions of the 

brain. Declarative and procedural memory complement one another, can inform one another, and 

can interact with one another. Additionally, declarative can become procedural knowledge, a 

process known as proceduralization, through a gradual automatization of the skill (Dekeyser, 

VanPatten, & Williams, 2007).  

Researchers frequently try to invoke explicit learning through explicit instruction, such as 

pointing out patterns or instructing learners to be on the lookout for such patterns in the input. For 

example, phonetic contrasts are often taught in ways that are thought to invoke explicit learning in 

that learners are presented with stimuli that are so inherently decontextualized, devoid of sentential 

or even word context, with the input instead consisting of a single CV syllable or at most a full 

word. This is thought to free up learners’ attention to focus on uncovering the underlying rules 

(Best, McRoberts, & Goodell, 2001; Lively et al., 1993; Strange & Dittmann, 1984). In fact, HVPT 

is thought to be so effective in part due to the decontextualization of the stimuli (Thomson & 

Derwing, 2016). In that way, learners may fully focus their attention on the phonetic variable in 

question without also simultaneously attending to either the lexicon or semantics. Notably, 

however, this makes HVPT inherently different from language acquisition as it would take place 

in a classroom or immersion setting and does not address the degree to which such training might 

be applicable to more meaningful contexts. 

Many have called for an increase in explicit pronunciation training, arguing that increased 

awareness of phonological form gives learners greater awareness of how their own productions 

differ from those of native speakers (Derwing & Munro, 2005; Thomson & Derwing, 2014; 
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Venkatagiri & Levis, 2007). Explicit instruction has been shown to be especially beneficial in 

specific contexts – in particular, pronunciation training. Although the primary focus of this 

dissertation is the examination of the role of implicit and explicit training on perception, it is 

important to recall that the two systems are inherently linked, with production gains reflecting a 

target-like shift in perceptual category representation (Flege, 1987). In a meta-analysis of 77 

studies, Saito and Plonsky (2019) found that pronunciation instruction was most effective when it 

was focused on specific segmental or suprasegmental features, as opposed to global pronunciation 

training. Saito (2011) found that explicit instruction had a significant impact on comprehensibility 

but was less beneficial for accentedness. Gordon, Darcy, and Ewert (2013) trained ESL learners 

on explicit segmental features, explicit suprasegmental features, or a combination of the two 

without explicit instruction. They found that explicit instruction led to greater noticing by the 

learners and thus called for additional explicit phonetic training. Additionally, they found 

significantly better results for explicit instruction on suprasegmentals as compared to segments.  

Such studies on pronunciation training have been carried out both in the classroom and in 

the lab. Studies conducted in a laboratory setting have the benefit of increased control over 

variables, stimuli, and exposure that classroom settings can sometimes lack. A great number of 

laboratory studies have already been reviewed in the section on HVPT, and a number of studies 

have examined the benefit of explicit pronunciation training without necessarily using HVPT to 

do so (Munro & Derwing, 2005). Neri, Mich, Gerosa, and Giuliani (2008) used either in person 

instruction or computer assisted pronunciation training to train 11-year-olds learning English as a 

foreign language. The two groups made comparable improvements, lending support to both 

classroom and laboratory pronunciation training. Although results from studies conducted in the 

lab have shown a successful ability to train participants’ productions of particular phones, these 
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studies do not necessarily share the ecological validity of studies conducted in the classroom.  For 

this reason, a great number of studies examining the role of explicit instruction have also taken 

place in the classroom, as outlined by Lord and Fionda (2014). Couper (2006) supplemented an 

English as a foreign language class with explicit pronunciation instruction on segments. After two 

weeks of training, the training group experienced a significant decrease in error rate, which 

persisted in a delayed posttest. A control group which received only the regular classroom 

instruction did not experience these gains in pronunciation.  

Similarly, Zhang and Yuan (2020) provided explicit pronunciation training of either 

segments or suprasegmentals to L1 Chinese learners of English. Improvements in 

comprehensibility were compared to a control group that received no explicit instruction, but rather 

only the standard classroom instruction.  After eighteen weeks of instruction, both the segmental 

and suprasegmental groups experienced improved comprehensibility in a sentence reading task, 

but only the suprasegmental group improved in a spontaneous speaking task. Lord (2005) found 

that L2 Spanish learners enrolled in a phonetics course improved their pronunciation over the 

course of the semester, providing additional support for the benefits of explicit instruction. 

An important element of both implicit and explicit instruction concerns feedback, which 

has been shown to be effective for target language development (Lyster & Saito, 2010; Mackey & 

Goo, 2007; Russell & Spada, 2006). Saito and Lyster (2012) examined English /ɹ/ production in 

L2 English learners following form-focused instruction with corrective feedback, without 

corrective feedback, and a control group that received neither feedback nor form-focused 

instruction. They found that corrective feedback – and not form-focused instruction – was 

instrumental in leading to improvements in accurate English production of the phone. In this case, 

corrective feedback took the form of recasts, or corrected restatements of a learner’s incorrect 
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utterance (Nicholas, Lightbown, & Spada, 2001), aimed at implicitly drawing participants’ 

attention to the relevant acoustic dimensions of the phone. Although not particularly effective with 

morphosyntactic errors, recasts have been shown to be effective at targeting other areas of 

language acquisition, such as pronunciation errors. Mackey, Gass, and McDonough (2000) 

provided learners with conversational feedback on morphosyntactic, lexical, semantic, and 

phonological errors and later asked participants to reflect on the feedback received. Participants 

reported being aware of receiving feedback targeted at lexical, semantic, and even phonological 

errors, but did not recall receiving morphosyntactic feedback. If awareness of feedback is equated 

as attention, these findings point to the utility of feedback on phonology.  

More explicit forms of feedback have been shown to be even more effective than recasts, 

however (for an overview, see Loewen, 2012 and Loewen & Sato, 2018). Carroll and Swain (1993) 

administered different types of feedback to different participant groups as they were learning 

English dative alternations. They found that explicit, metalinguistic feedback trumped the control 

group (no feedback), as well as more implicit forms of feedback such as recasts or simply being 

told they had made a mistake. Similar results were also found by Ellis, Loewen, and Erlam (2006) 

when training participants on the English past tense -ed morpheme. Although there are, of course, 

decisive differences between phonetic and morphosyntactic learning, these studies provide 

additional support for the role of explicit learning in language learning mechanisms.  

Nevertheless, explicit instruction has not always been shown to be more beneficial than a 

control (implicit) condition. Untutored immigrants also manage to acquire an L2, often without 

instruction, providing further evidence for successful implicit learning (Andersen, 1991; Klein, 

1995; Klein & Dimroth, 2009). Even within classroom settings, implicit instruction can also be 

sufficient for inducing improvements. For example, Kissling (2013) compared a phonetics 
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instruction group and a control group of Spanish L2 learners. Both groups received similar input, 

practice, and feedback, but the phonetic instruction group additionally received explicit instruction 

on the phonetics, phonology, and articulatory gestures involved in the production of Spanish [p, t, 

k, b, d, g, β, ð, ɣ, r, ɾ].  Kissling found a non-significant difference in production between the 

groups at the posttest, suggesting that the targeted nature of input, practice, and feedback is more 

important than explicit phonetic instruction, at least for production. Returning briefly to 

perception, Zampini (1998) and Nagle (2017) both examined the role of implicit learning by 

tracking L2 Spanish learners’ perception of /p/ and /b/ over the course of one or more semesters 

of Spanish language classes without any explicit instruction on the sounds. Recall that some 

participants approximated native VOT norms by the end of the study, albeit with a high amount of 

individual variability. 

Overall, however, language teachers are not confident in their ability to implement 

pronunciation teaching (Nagle, Sachs, Zárate-Sández, 2020). It is perhaps for this reason that 

teachers have not, for the most part, prioritized explicit pronunciation teaching in the classroom, 

instead providing feedback only when related to comprehensibility, and relying on learners to 

mostly implicitly acquire information about L2 speech sounds (Huensch, 2019).  

Since L2 immersion is often assumed to be the most likely setting for naturalistic 

improvement (Flege, 1998), it follows that most production studies involving implicit learning 

have taken place in immersion settings. In fact, learners have been shown to improve in various 

phonological realms including intonation (Henriksen, Geeslin, & Willis, 2010) and awareness of 

phonotactics (Díaz-Campos, 2004; Face, 2018, 2021; Lord, 2010). Additionally, L1 production 

has also been shown to be sensitive to L2 input in an immersion setting, with learners’ L1 VOT 

moving towards that of the L2 target (Chang, 2012; Chang, 2013). Time spent studying abroad in 
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Spain has been shown to increase learners’ awareness of the dialect-specific variant /θ/ (Ringer, 

Hilfinger, 2012), as well as an increase in the pronunciation of the variant, even without any 

explicit pronunciation instruction (Willis, Geeslin, & Henriksen, 2009; c.f. George, 2013). 

Similarly, Schmidt (2018) found that Spanish learners with two semesters of classroom study or 

less perceived aspirated-/s/ according to the closest English category, /h/. However, participants 

who had studied for a greater number of semesters or spent time abroad showed a perceptual 

movement towards native speaker perception of aspirated-[s] as an allophonic form of /s/. 

Importantly, however, this finding was only true for those who had spent time abroad in a place 

where the target dialects used aspirated-[s]. Those who had studied abroad in [s]-preserving 

dialects did not share this advantage. Of particular relevance to the current study, immersion has 

also been found to significantly improve learners' perception of voicing in the L2. In one case, L1 

English learners' perceptual boundary for the /p-b/ contrast in Spanish shifted towards Spanish 

following only two weeks of domestic immersion (Casillas, 2016). 

It is important to consider the ways in which explicit and implicit learning interact and 

contribute to the overall acquisition of L2 phonetics and phonology. Rather than viewing one as 

superior to the other, the literature suggests that both implicit and explicit learning are essential. 

In the present investigation, explicit and implicit learning are conceptualized and operationalized 

as minimal pair and non-minimal pair learning respectively. Minimal pairs in this study are 

presented during the training phases to participants in the explicit condition since minimal pairs 

on either side of the VOT category boundary provide explicit evidence that the phones contrast. In 

the implicit condition, distributional learning takes place without additional information from 

minimal pairs since no minimal pairs exist in the training that could illustrate a direct meaningful 

relationship between voiced/voiceless pairs of phones. Rather, learners must implicitly infer the 
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lower VOT category boundary from the non-minimal pair items. In a similar vein, Hayes-Harb 

(2007) trained participants in either an explicit lexical condition, which included minimal pairs 

(pot-cot), or an implicit statistical condition, in which participants heard only non-contrastive pairs 

(pot-calm). An additional group received both lexical and statistical input. The group that received 

both lexical and statistical training experienced the most improved perception on the 

discrimination task, pointing to the importance of both implicit and explicit learning.    

Further evidence that some minimum level of both implicit and explicit learning is 

necessary for learners’ improvements in production comes from Lord (2010), who examined 

learners who had received explicit phonetic instruction prior to immersion followed by implicit 

learning via a study abroad program. She found that the combination of the implicit and explicit 

learning was most impactful, with neither one being as beneficial in isolation.  

Unfortunately for researchers, an attempt to provide implicit or explicit instruction does 

not necessarily equate to implicit or explicit learning on the part of the student or participant. This 

creates a challenge for assessing what is actually happening in the mind of the learner as a product 

of either implicit or explicit instruction, since there is no guarantee that such instruction translates 

to learning of the same type. One solution is to simply ask learners about their strategies for 

learning in a retrospective verbal report (see Rebuschat, 2013 for an overview). However, learners 

are not always fully aware of the ways in which they have learned, since task performance and 

verbalization have been shown to belong to different cognitive systems (Berry & Dienes, 1993), 

and therefore can result in inaccurate reporting (Williams, 2005).  

Explicit learning is typically operationalized by learners’ explanations of patterns, whereas 

implicit learning is generally examined through procedural incorporation of said patterns in their 

productions. A resulting difficulty of examining explicit versus implicit instruction is the lack of 
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parallelism between the two; learners exposed to implicit instruction have the possibility for 

forming an explicit rule, but explicit instruction cannot yield implicit learning, which by definition 

requires a lack of formation of such a rule. Given this, it is important that researchers be mindful 

of this divide between implicit and explicit learning, as well as between instruction and learning, 

and carefully interpret results of studies which aim to measure implicit or explicit learning as a 

product of implicit or explicit instruction.  

1.5 The Role of Attention 

 A final critical factor in L2 perceptual acquisition for the current study is the role of 

attention. Tomlin and Villa (1994) explored attention using three separate systems – alertness, 

orientation, and detection – with each one involving a greater role of consciousness than the last. 

Evidence for these systems was then provided by Leow (1998). First, alertness involves a general 

readiness to modulate attentional resources toward a stimulus. Importantly Tomlin and Villa note 

that alertness is not necessarily related to – and may in fact be inversely related to – accuracy and 

is therefore of minimal importance to SLA.  

The second system of attention, orientation, involves the commitment of attentional 

resources to a stimulus and importantly, away from other stimuli. Accordingly, the ways in which 

stimuli are presented can impact the degree to which learners orient themselves toward a stimulus. 

Evidence for such orientation comes from differences in stimuli presentation using either 

exogenous or endogenous orienting. Exogenous orienting involves the attraction of attention 

through an external stimulus, such as a flash of light or explicit feedback. Endogenous orienting, 

on the other hand, allows participants to orient their attention towards a stimulus through goals or 
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expectations, as with presenting varying types of instructions for the same set of stimuli. Guion 

and Pederson (2007) trained participants on Hindi stop consonant contrasts and told different 

groups to attend either to meaning or sound but were otherwise presented with the same stimuli. 

The meaning-attending group experienced greater improvements on a semantics test and the sound 

attenuating group improved more as measured by a phonetic discrimination task of the Hindi 

dental and retroflex contrast, demonstrating that endogenous orienting through varying the 

instructions given was enough to significantly sway participants’ perception, although notably 

only for the most difficult contrast; easier to learn contrasts did not reflect group differences. In a 

similar study, Pederson and Guion-Anderson (2010) trained groups by orienting them towards 

either consonants or vowels using the same set of Hindi stimuli. Only the consonant-oriented group 

improved their perception of Hindi consonants from pretest to posttest. Similarly, Alves and 

Luchini (2017) used HVPT to train L1 Spanish learners of English on word initial stop consonants. 

They compared a standard training group to a group that was told explicitly to focus on the 

acoustics, and found that both groups improved in identification of the stop consonants, but the 

explicit group made greater gains in production transfer. 

Finally, the third system of attention, detection, is the noticing, awareness, and processing 

of a particular variable within the speech signal. Detection is the system of attention responsible 

for the intake of input. The strong form of the noticing hypothesis stated that input cannot become 

intake unless it is attended to by the learner (Schmidt, 1990), but this claim has since been 

attenuated such that the weak form of the hypothesis posits that noticing is, at the very least, 

facilitative of learning (Schmidt, 1994, 1995, 2001, 2012). Relatedly, attention need not 

necessarily be thought of as a dichotomy, but rather can be considered to exist along a continuum 

(Leow, 2000). Recent studies have attempted to operationalize attention, especially using eye 
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tracking methodologies. For example, Godfroid and Schmidtke (2013) operationalized attention 

as a participant’s ability to recall a novel word from a previous task at the post-test. Additionally, 

Brusnighan and Folk (2012) found that increased reading time on sentences led to higher accuracy 

at defining novel words in the target sentences at the posttest. Noticing is different still from 

understanding; noticing refers to consciousness of specific instances whereas understanding refers 

to a more global generalization of awareness across instances.  

Other conceptualizations of noticing have been put forward to attempt to explain the 

phenomenon, including the Modular Online Growth and Use of Language (MOGUL) framework, 

which posits that learners become aware of mental representations and those representations with 

higher activation levels are more likely to be noticed (Truscott & Smith, 2004, 2011). Additionally, 

working memory has been cited as a contributor to noticing (Mackey, Philp, Egi, Fujii, & Tasumi, 

2002; Trofimovich, Ammar, & Gatbonton, 2007). 

Linguistic variables that are more perceptually salient are naturally more likely to be 

detected or noticed by learners (Henrichsen, 1984; Schmidt & Frota, 1986). In fact, attention has 

been shown to improve phonetic learning in studies where listeners were trained to notice and rely 

more heavily on particular acoustic cues and direct their attention to dimensions not previously 

relied upon (Christensen & Humes, 1997; Francis & Nusbaum, 2002). Novel stimuli are typically 

more perceptually salient, thus producing novelty effects in studies with infants such as an increase 

in sucking speed (Mehler et al., 1988) or looks toward a visual target (Dietrich, Swingley, & 

Werker, 2007). Adults have also been shown to be biased towards novel stimuli, and in particular 

with novel stimuli embedded within stimuli with which the listener has become accustomed 

(Folstein, Van Petten, & Rose, 2008; Yang, Chen, & Zelinsky, 2009), a phenomenon described by 

Johnston and colleagues as novel popout (Hawley, Johnston, & Famham, 1994; Johnston, Hawley, 
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& Farnham, 1993; Johnston, Hawley, Plewe, Elliott, & DeWitt, 1990; cf. Christie & Klein, 1996).  

1.6 Research Questions 

1.6.1  Gap in the Literature 

Despite the large body of existing research explored throughout this literature review, no 

study to my knowledge has examined the connections among implicit and explicit learning, the 

lexicon, and the outcomes of phonetic training. More specifically, the degree to which phonetic 

learning occurs as an implicit byproduct of lexical learning is not yet fully understood. Without 

this understanding, it is difficult to make recommendations with confidence for classroom 

instruction, despite the importance of perception (and consequently production) on the teaching of 

L2 speech sounds. Additionally, it is crucial for educators to have a better sense of the degree to 

which individual contrasts need to be taught, or whether analogy can be relied on after teaching a 

handful of exemplar contrasts. Given this, the current study seeks to examine whether 

generalization to an analogous POA is facilitated more by implicit or explicit training within an 

HVPT paradigm. Additionally, this dissertation seeks to provide a deepened understanding of the 

relationship between phonetic learning and lexical learning using a training paradigm that reflects 

naturalistic or classroom-based second language acquisition to a greater degree than many of the 

decontextualized HVPT studies that have come before.  
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1.6.2 Research Questions 

Therefore, in light of this gap in the literature, the current study is guided by the following 

research questions and predictions, which are presented separately below: 

1. What is the role of minimal pair words in phonetic training?  

The answer to this question can also shed light on the issue of explicit versus implicit 

instruction, since explicit evidence for a lowered VOT category boundary can be provided 

through minimal pairs. In the implicit, non-minimal pair condition, learners must rely 

entirely on distributional learning, since no minimal pairs exist in the training that could 

illustrate a direct meaningful relationship between voiced/voiceless pairs of phones. 

Rather, learners must implicitly infer the lower VOT category boundary from the non-

minimal pair items. 

2. Do articulatory differences between the L1 and L2 (i.e., alveolar  dental /t/) facilitate or 

impede trainability? To what degree do the SLM and the PAM account for these 

differences? 

3. Do learners generalize to untrained phones (/k, g/) differently following either explicit or 

implicit training of analogous phones?  

1.6.3 The Current Study 

To attempt to address each of these research questions, the current study uses a word 

learning HVPT paradigm to train participants on an artificial language that has a lower VOT 

category boundary than does participants’ L1, English. By using two different lexical conditions, 

the present investigation is able to explore the question of whether or not using minimal pairs 
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provides any benefit to these learners with regard to learning to discriminate tokens across a lower 

VOT category boundary. 

Participants are trained on 24 lexical items designed to present evidence for the lower VOT 

category boundary using bilabial and dental POAs. Since the /t/ - /d/ contrast in the training 

language, Numana, is dental unlike its alveolar English counterpart, this difference in POA may 

affect the learnability of the contrast, depending on the theoretical stance taken. This idea will be 

explored in greater depth in the following section, along with the rationale for using an artificial 

language. Finally, after being trained on bilabial and dental POAs, participants will be tested on a 

novel, velar POA in order to examine their ability to generalize to analogous contexts as a function 

of the type of training received. 

1.6.4 Predictions 

Based on the lexical-distributional hypothesis, which predicts that minimal pairs should 

actually impede the learning and perception of separate phonetic categories, it was predicted that 

the implicit group would more quickly and accurately acquire the novel VOT category boundary 

on which they were trained (Thiessen, 2007, 2011; Feldman et al., 2013a, 2013b). The explicit 

group, with attention directed towards both word meaning and towards the novel, lower VOT 

category boundary, was expected to encounter the type of cognitive overload that has led 

researchers to report the hindrance of using minimal pairs in their previous experiments (Feldman 

et al., 2013a, 2013b; Hayes-Harb & Masuda, 2008; Jarvi, 2008). On the other hand, directing 

attention towards the category boundary, as in the explicit group, is more likely to result in 

participants noticing the novel Numana VOT. Since noticing is a prerequisite for acquisition 

(Schmidt, 1990, 1994, 1995, 2001, 2012), this phonological awareness could then also lead to 
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improved perception. Without such awareness being required of the implicit group, lesser gains 

were predicted by the noticing hypothesis. Given this, the paradigm of the current study will shed 

light on both the lexical-distributional hypothesis and the noticing hypothesis.  

Regarding the second research question, the SLM and the PAM offer contrasting 

predictions. The SLM predicts that the participants of the current study (who are necessarily “late 

learners” of Numana) will have difficulty creating separate Numana categories with lower VOT 

boundaries. In the case of discriminating between prevoiced – short-lag stops in Numana, the SLM 

predicts that both will be perceived as English voiced stops, making discrimination of any of the 

three contrasts challenging for Numana learners.  

Although clear predictions can be made regarding the shift in VOT category boundary, it 

is less clear what to expect regarding participants’ perception of the change in POA from alveolar 

to dental. Specifically, it is unclear whether this change in POA should result in equivalence 

classification, especially since previous studies have not addressed this shift in POA through the 

lens of the SLM. The SLM predicts that for sounds that undergo equivalence classification, 

accurate perception – and in this case, discrimination – of sounds that are not exactly equivalent 

in the L1 and L2 will be more challenging than if L2 phones are not perceived as equivalent to 

sounds with an assumed preexisting an L1 category match.  If equivalence classification does take 

place, and dental stops are assimilated to the English alveolar category, dentals should experience 

identical improvements in perception and discrimination as bilabials, since the differing 

dental/alveolar POAs will likely lead to an assimilation of Numana dentals to the existing English 

alveolar category (Flege, 1995). If the current study finds that dentals are, in fact, slower to 

experience improvement than bilabial stops, this will provide evidence against equivalence 
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classification taking place, since this would suggest that learners were more aware of a distinction 

between the representation that informs their expectations and the actual stimuli heard.  

The PAM, on the other hand, predicts single category assimilation for the Numana /p/ - /b/, 

/t/ - /d/, and /k/ - /g/ contrasts, since all would likely be perceived as belonging to the English 

voiced category. However, given that the Numana /t/ - /d/ contrast is dental, it will be assimilated 

to English alveolar /t/ - /d/ - albeit a less good version of either. All in all, the PAM does not predict 

any difference in ease of learnability of any of these three contrasts, since all should assimilate as 

single category. In summary, an equivalent improvement on both POAs would provide support for 

the PAM, while a difference between the bilabial and dental stops would be consistent with 

differential equivalence classification according to the SLM.  

The third research question asked about the ability of each of the groups to take the 

information learned in the training phrase and apply it to a new contrast (velar stop consonants) in 

the subsequent testing phase, as was demonstrated in McClaskey et al. (1983) and Nielsen’s (2008) 

studies. It was predicted that the minimal pair group, which was predicted to gain more 

phonological awareness from the training phases, would therefore be better able to generalize new 

information regarding the location of the VOT category boundary and apply it to an analogous 

phone (Schmidt, 1990, 1994, 1995, 2001, 2012). Further support for phonological awareness 

facilitating learning comes from the discrepancy in findings between McClaskey et al.’s study and 

Maye and Gerken’s (2001) study, as described earlier. In short, the participants of McClaskey et 

al.’s study were able to generalize to an untrained POA, whereas Maye and Gerken’s participants 

could not, which Maye and Gerken attributed to the verbal prompting that took place only in 

McClaskey et al.’s study. Although neither group of the current study will receive explicit verbal 

prompting, the study’s design, for which the explicit group alone will see side-by-side 
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presentations of minimal pair objects, is in many regards a non-verbal equivalent of an explicit 

prompt, meant to raise participants of the explicit group’s phonological awareness.  The implicit 

group, without such phonological awareness, was not predicted to be able to generalize to 

analogous phones with as much accuracy.  
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2.0 Methodology 

The current study employs a word learning methodology to examine participants' 

perception of phonetic information and their reorganization of the existing phonological system, 

as speech perception is necessarily related to the recognition of not only sounds, but words and the 

meanings they convey (Broersma & Cutler, 2011). Participants were trained on an artificial 

language, Numana. The motivation for training on an artificial language rather than an existing 

natural language is so that participant’s exposure to the language and its variation could be 

controlled (Curtin et al., 1998; Gomez & Gerken, 1999). Furthermore, artificial languages have 

been shown to provide an ecologically valid window through which researchers can examine the 

learning of natural languages (Moreton & Pater, 2012).  

Training learners on lexical items provides more contextualization and ecologically valid 

instruction than is found, for example, in training paradigms that use isolated CV syllables. Also, 

because orthography has been shown to interact with L2 phonology (Bassetti, 2008), this study 

does not use graphemic representations of any of the phones examined. Although the instructions 

were presented in the participants’ L1, beyond that, the focus of the study was on L2 speech 

perception alone. Training learners on lexical items allowed this study to test their perception of 

the phones contained within these items. Importantly, although learners’ focus was on vocabulary 

acquisition, much like in a naturalistic L2 context, the input that they received in word learning 

also provides evidence for a lowered VOT category boundary (relative to English). 
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2.1 Numana 

Although Numana is based loosely on Spanish, only phones that are both phonemic and 

roughly articulatorily equivalent in the L1, English, were included in the phonetic inventory of the 

language. For that reason, /m, n, s, l, tʃ / were included, but Spanish /ɲ, r, ɾ/ were excluded. Given 

the research questions, which address the perception of VOT, this requirement was not held for 

the target phones, /p, t, k, b, d, g/, which complete the consonant inventory of Numana. Four 

vowels /e, i, o, u/ were also included. The full consonant and vowel inventories can be seen in 

Tables 2 and 3 respectively.  

 

Table 2 Numana Consonant Inventory 

 

Table 3 Numana Vowel Inventory 

VOWELS Front 
 

Back 

Closed i 
  

u 

Closed-mid e 
  

o 

 

CONSONANTS Bilabial Dental Alveolar Postalveolar Velar 

Plosive p b t̪ d̪ 
     

k ɡ 
 

Nasal 
 

m 
   

n 
      

Fricative 
    

s 
       

Lateral 
     

l 
      

Affricate 
      

tʃ 
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Whereas English voiceless stops are produced with 30 ms or more of aspiration, Numana 

voiceless stops have between 0 and 20 ms of aspiration. Numana voiced stops are produced with 

20-40 ms of prevoicing, or negative VOT, whereas English voiced stops are typically produced 

with a VOT of approximately 0 (Lisker & Abramson, 1964). Thus, the phonetic overlap between 

Numana voiceless and English voiced stops results in an area of ambiguity in this 0-20 ms range. 

Participants were trained on lexical items with voiced /b, d, g/ with a VOT of -20, -30, or -40 ms 

and voiceless /p, t, k/ with a VOT of 0, 10, or 20 ms. They were then tested on items with five 

steps along the VOT continuum: -40 ms, -20 ms, 0 ms, 20 ms, and 40 ms. Table 4 below provides 

a summary of English and Numana prevoiced, short-lag, and aspirated stops and their phonological 

categorizations in each language.  

Table 4 VOT Continuum of English and Numana 

Full Prevoicing Some 

Prevoicing 

Short-lag Some 

Aspiration 

Full Aspiration 

-40 ms VOT -20 ms VOT 0 ms VOT 20 ms VOT 40 ms VOT 

Numana Voiced /b d g/ Numana Voiceless /p t k/ 

English Voiced /b d g/ English Voiceless /p t k/ 

Although this VOT category boundary does bear many similarities to Spanish, by 

examining VOT devoid of the sociophonetic variation present in the alternation in many Spanish 

dialects (Corral & Wiedemann, 2009; Solon, Linford, & Geeslin, 2018), this study provides a more 

controlled view of the boundary and its learners’ approximation to it, independent of other 

linguistic or social factors. For example, VOT is known to differ in duration depending on POA 
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in many languages, with velar stops having longer VOTs than alveolar stops, for example (Lisker 

& Abramson, 1964). One variable that will be maintained from Spanish, however, is the dental 

POA for the stops /t/ and /d/. This subtle difference in POA between Numana dentals and English 

alveolars could present either a benefit or an additional challenge to learners. For this reason, I 

examine whether learners can adjust their VOT category boundary and whether they can do so 

using a POA that only approximately mirrors that of their L1.  

2.1.1 Lexical Items of Numana 

For each of the two training conditions, 24 lexical items comprised the training stimuli, 

each corresponding to a picture of a nonce object taken from the Novel Object and Unusual Name 

(NOUN) Database (Horst & Hour, 2016). The NOUN objects are provided in Appendix A and 

were selected for their novelty in that participants would not have an existing L1 word onto which 

they could map the object, thus avoiding unintended word association. The 24 phonological forms 

were carefully designed to train learners to be sensitive to Numana’s VOT category boundary of 

approximately 0 ms, while at the same time avoiding teaching any additional unintended rules or 

patterns. The phonological grammar is shown using a finite state automaton in Figure 1 below. In 

it, the phototactically legal combinations of segments are visualized. Each of the Numana lexical 

items begins with one of the consonants at the start position, accepts a vowel at the second state, 

and another consonant at the third state, At that point, the fourth state permits an optional consonant 

cluster, or alternatively allows for bypassing this consonant and instead allows the final vowel at 

the fifth state.  
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Figure 1 Finite State Automoton of Numana Phonology 

The two conditions differed slightly in their lexical items, as described below, but in either 

case, were made up of three types: bilabial-initial, dental-initial, and distractors. Velar items were 

not included in the training phases but were tested at pretest and posttest to measure the degree to 

which training on bilabial and dental items facilitated generalizability. Thus, the bilabial-initial 

and dental-initial items (referred to collectively from here on as ‘critical items’) provided evidence 

for Numana’s lower VOT category boundary. Distractors existed to balance the segment and 

syllable frequencies and to prevent participants from becoming aware of the purpose of the 

experiment.  

Critical items differed between the two conditions such that explicit items were made up 

of voiced and voiceless minimal pairs (i.e. /penso/ and /benso/). This was not the case for the 

implicit condition (i.e. /pelso/ and /benle/), although the same number of segments and their 

distribution across the items overall was held constant across conditions.  Both testing and training 

items are shown below in Tables 5 and 6.  
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Table 5 Explicit Condition Items 

 Training 

Items 

Generalized Testing Items Novel Testing Items 

Bilabial-initial penso, benso tenso, denso, kenso, genso pilse, bilse, tilse, dilse, 

kilse, gilse 

pilsu, bilsu tilsu, dilsu, kilsu, gilsu  

posle, bosle tosle, dosle, kosle, gosle 

pultʃi, bultʃi tultʃi, dultʃi, kultʃi, gultʃi 

Dental-initial tomse, domse pomse, domse, komse, gomse 

tenme, denme penme, denme, kenme, genme 

tunso, dunso punso, bunso, kunso, gunso 

timlu, dimlu pimlu, bimlu, kimlu, gimlu 

Distractors netʃu  

noli 

memi 

lime 

none 

tʃulo 

tʃuso 

misu 
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Table 6 Implicit Condition Items 

 Training 

Items 

Generalized Testing Items Novel Testing Items 

Bilabial-initial pelso, benle telso, delso, kelso, gelso 

tenle, denle, kenle, genle 

pilse, bilse, tilse, dilse, 

kilse, gilse 

pilsu, binsu tilsu, dilsu, kilsu, gilsu 

tinsu, dinsu, kinsu, ginsu 

 

posle, boltʃi tosle, dosle, kosle, gosle 

toltʃi, doltʃi, koltʃi, goltʃi 

pulsu, bultʃi tulsu, dulsu, kulsu, gulsu 

tultʃi, dultʃi, kultʃi, gultʃi 

Dental initial tensu, denmi pensu, bensu, kensu, genus 

penmi, benmi, kenmi, genmi 

timtʃo, dimne pimtʃo, bimtʃo, kimtʃo, gimtʃo 

pimne, bimne, kimne, gimne 

tonse, donlu ponse, bomse, komse, gomse 

ponlu, bomlu, komlu, gomlu 

tunmi, dumso punmi, bunmi, kunmi, gunmi 

pumso, bumso, kumso, gumso 

Distractors netʃu  

suli 

memi 

lime 

none 

tʃulo 

liso 

misu 

 

All critical items were CVCCV and all distractors were CVCV. This was done to include 

syllabic variety in the training items. Importantly, the stimuli were balanced such that all 
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consonants appeared in all consonant-permitting positions. Vowels were also balanced in both 

syllable positions and across items types. In other words, both groups had critical items that 

contained the same number of occurrences of each vowel in the first syllable and in the second 

syllable. The same was true of the distractors for the two groups. The only exception was for 

bilabials and dentals, which appeared in word initial position only in order to provide greater 

control over the phonetic environment. Otherwise, every effort was made to balance each segment 

for overall frequency and the frequency of the neighboring vowel. 

2.1.2 Stimuli Construction 

Stimuli were recorded by five trained linguists, two men and three women, in a sound-

attenuated booth using a high-quality microphone and Praat phonetics software at a 44,100 Hz 

sampling rate. Pre-voiced, short-lag, and aspirated versions of each item were read three times 

from a list that was randomized for each speaker. One woman speaker (Woman 1) was used in 

pretest, training, and post-test portions of the experiment. The training was composed of Woman 

1 from the pretest, one additional woman, and two men speakers. For the post-test, Woman 1 and 

a third, novel woman’s voice were included to test for the effect of a familiar versus a novel 

speaker. Table 7 provides a brief summary of the tasks in which all five speakers appeared.  
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Table 7 Summary of Speakers 

Pretest Training Post-test 

Woman 1 Woman 1 Woman 1 

 Woman 2 Woman 3 

 Man 1  

 Man 2  

2.1.3 Acoustic Properties of Stimuli 

Recorded stimuli were acoustically manipulated using Praat to ensure that their VOTs fell 

within a specified range: -40, -30, -20, 0, 10, 20, and 40 ms. Specifically, the VOT of the short-lag 

tokens was modified to be exactly 0 ms. To create an aspirated token, aspiration was taken from 

an aspirated token and spliced onto the short-lag token at the first zero-crossing after the stop burst. 

The duration of the aspiration of this token was then modified to be either 10, 20, or 40 ms. The 

same procedure was followed with prevoicing to create the prevoiced tokens; prevoicing was taken 

from a prevoiced token, spliced onto the last zero-crossing before the stop burst of a short-lag 

token with exactly 0 ms of voicing, and then the prevoicing was modified to be 40, 30, and 20 ms 

in duration (of negative VOT).  

2.2 Participants 

Participants (n=44) were randomly assigned to one of two training conditions, implicit 

(n=23) and explicit (n=21). All were L1 English speakers and had no more than two years of 
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experience learning foreign languages other than American Sign Language. Information about the 

participants is summarized in Table 8 below. Participants were recruited from undergraduate 

courses and from flyers posted around the university.  Participants were compensated $40 at the 

completion of all five sessions. 

 

Table 8 Summary of Participant Language History 

Implicit (n=23) Explicit (n=21) 

16 women, 7 men 13 women, 8 men 

Avg. Age (years) = 21.00 (SD=3.65) Avg. Age (years) = 20.68 (SD=2.69) 

Avg. Years Experience Studying Spanish = 

1.19 (SD=1.09) 

Avg. Years Experience Studying Spanish = 

1.41 (SD=1.36) 

2.3 Experiment Procedure 

Learners participated in five training sessions spread across five days. In all cases, all five 

sessions were completed within two weeks. Prior to coming into the lab, participants completed a 

language history questionnaire. Participants who met the desired criteria were invited to 

participate. On the first day in the lab, prior to training, participants completed the pretest, 

composed of two tasks. The first, an imitation task, presented participants with an auditory 

stimulus and asked that they repeat it as accurately as possible. Imitation items in the pretest 

included items that were similar to the training items, but no training items were included. These 

were created by combining attested sounds taken from the training set in a novel, phonotactically 

grammatical order (for example, training items ‘posle’, ‘pultʃi’ and ‘benso’ were recombined into 
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imitation item ‘polso’). Twenty-four items were included, and the task took approximately two 

minutes to complete. An imitation task was selected in order to avoid bias from orthography. 

Although the data from this imitation task will not be analyzed within this dissertation, later 

analyses will explore the role of purely perceptual training on production (for an overview, see 

Sakai & Moorman, 2018).  

The second pretest task was an AX discrimination task. The pre-training location of 

participants’ VOT category boundary was examined by asking participants to decide whether each 

AX auditory pair contained the same word twice or two different words. For each trial, words A 

and X were spoken by Woman 1. Participants completed a three-item supervised practice block to 

confirm their understanding of the task before continuing. An item parallel in structure to (but not 

present in) the critical training words (refer to Tables 5 and 6 above) was presented at five locations 

along the VOT category boundary:  -40 ms, -20 ms, 0 ms, 20 ms, 40 ms. Each of the five VOTs 

was paired in the following way: -40/-40, -40/-20, -40/0, -40/20, -40/40, such that each AX pair 

was presented forwards (AX) and backwards (XA), resulting in 25 trials for each item.  

These same 25 items were tested with all three POAs by substituting the critical segment 

of the testing item to test bilabials, dentals, and velars on the same rhyme word. This resulted in 

75 trials in total, and the task required approximately 5 minutes to complete.  

For the training, occurring over the course of five days, participants completed three 

training phases on each day.  Phase A was an exposure phrase, during which nonce visual objects 

from the NOUN database (Horst & Hout, 2016) were presented in turn in conjunction with a 

corresponding auditory stimulus. Throughout the training phases, the auditory stimuli were 

randomly distributed among VOT productions at 0, 10, or 20 ms for the voiceless and -20, -30, or 

-40 ms for the voiced stimuli. Participants were instructed to study the labels of the objects and 
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were informed that they would be tested on them later. Participants’ attention was not explicitly 

drawn to VOT at any point during the first training phase. All objects and their labels were 

presented once in a random order in block one and then again in a different random order in block 

two. With 24 training items and distractors each presented twice, there were a total of 48 exposures, 

which required approximately 10 minutes to complete.  

After all lexical items were presented with their auditory labels twice, participants began 

training Phase B, the first of two two-alternative forced-choice tasks. In this phase, participants 

were presented with two visual objects on the screen and heard one auditory stimulus from the set 

of 24 to which they had been exposed in Phase A. Their task was to select the object that 

corresponded to the stimulus that they heard. For example, Figure 2 provides a visualization of the 

training task. Two objects are pictured; the left object was labeled “penso” and the object on the 

right was “timlu”. Participants heard either “penso” or “timlu” and were asked to select the 

appropriate object.   

 

 

Figure 2 Example of Training Task 
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Within this phase, all object pairs were non-minimal pairs. The intent was for learners in 

both conditions to continue to acquire labels for each of the visual objects, without an explicit 

focus on VOT. At this stage, it was expected that participants in the explicit condition would 

assume that some of the minimal pair labels of the objects were homophonous. For example, 

participants whose VOT category boundary is around 20 ms as might be expected for native 

English speakers, may assume that [penso] (0 ms) and [benso] (-40 ms) were homophones rather 

than minimal pair words.  The nonce object associated with each of the 24 critical lexical items 

was presented four total times within this training phase. Twice it appeared as the left picture and 

twice as the right picture.  This object was the target of the auditory stimulus once per position on 

the screen. In other words, participants heard each lexical item spoken aloud two times within this 

training block. Additionally, participants received feedback, which is described in detail below, 

providing additional exposures to the lexical items. Given that each of the 24 items was presented 

twice, this phase required approximately eight minutes. On testing days, when sessions were 

considerably longer due to other tasks, this training phase ran as described above. On training-only 

days (days 2-4), however, this phase was set to double the number of trials, and therefore required 

approximately 16 minutes.  

It was expected that participants in the explicit condition would incorrectly deduce that 

VOT voiced/voiceless minimal pairs were homophones based on their training in Phase B. Thus, 

in the final training task, Phase C, these VOT minimal pairs were presented to learners in the 

explicit condition only in a more explicitly contrasting way. Rather than pairing non-minimal pairs 

as was done in Phase B, in Phase C each visual object was presented with the visual object of its 

corresponding minimal pair. In other words, participants heard [penso] and were asked to select 

between the objects that correspond to [penso] and [benso]. The purpose of this task was to force 
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participants in the explicit condition to attend to the fine-grained phonetic differences between the 

minimal pairs, and in doing so, it was expected that participants would lower their VOT category 

boundary in the direction of the Numana boundary. Importantly, however, this minimal pair, 

phonetically explicit pairing of Phase C only occurred for the critical stimuli and not for the 

distractors, which did not form minimal pairs.  

In the implicit condition, items were not (and could not be) presented in minimal pair form. 

Identical to Phase B in number of trials, this phase took approximately 8 or 16 minutes, depending 

on the training day. For Phases A, B and C, the voices of the four speakers used in the training 

tasks (two men and two women) were selected randomly for each trial on each training day. In this 

way, participants were exposed to all four voices in the greatest number of contexts. In addition, 

the VOT of the voiced and voiceless stimuli varied randomly within each category, with voiced 

segments having either -40, -30, or -20 ms of voicing, and voiceless segments having either 0, 10, 

or 20 ms of aspiration.  

As noted above, both Phases B and C provided participants with feedback regarding their 

performance on each trial. Following Iverson and Evans (2007), for correct responses, participants 

saw a green box appear (as shown in Figure 3), framing the object they correctly selected, and then 

heard a repetition of the auditory stimulus.  
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Figure 3 Feedback for 'Correct' Responses 

Incorrect responses resulted in an auditory repetition of the target lexical item, with the 

correct object framed in green, followed by a red box framing their incorrect selection and an 

auditory rendition of it, and then finally a return to the auditory rendition and green frame of the 

object they should have selected. A portion of this feedback sequence for incorrect responses is 

shown in Figure 4. 

 

Figure 4 Feedback for 'Incorrect' Responses 
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 Training phases A-C were repeated each day, for a total of five times per phase. Following 

participants’ completion of five days of training, a post-test was administered on the fifth day. The 

post-test was composed of the repetition of the imitation and discrimination tasks from the pretest. 

In addition to testing the trained items and the generalized POAs, an untrained item for both the 

bilabial-initial and dental-initial condition was tested in the same manner. Although the untrained 

items were novel, they matched the trained items in terms of syllable structure and segment co-

occurrence. In other words, no new syllables or segments were presented, but the order in which 

the familiar syllables were combined resulted in novel words. Generalization to a novel speaker 

was also assessed and as such, a new speaker, Woman 3, as well as the speaker from the pretest 

and training, Woman 1, were included in this task. These total 750 trials, broken into three blocks, 

required approximately 45 minutes to complete. 

Participants also repeated the imitation task from the pretest but the words used were not 

repeated. Instead, participants were tested on a sampling of training items (one minimal pair from 

each POA outlined above) as well as the same items analogized to either bilabial or dental and 

velar POAs. Phones other than stop consonants were included in the imitation stimuli list and will 

be analyzed in future studies but will not be reported here. Like in the pretest, the imitation task 

contained 24 total items and required approximately two minutes to complete.  

Finally, participants completed a brief questionnaire targeting their experience with the 

study and the strategies they could identify that they used to learn the Numana words. This 

questionnaire required no more than five minutes to complete. All tasks were administered using 

E-Prime version 3.0. 

In total, day one including both the pretest and training phases lasted approximately 35 

minutes. Days two through four consisted of only training phases A-C, and phases B and C were 
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twice the duration of day one. Thus, days two, three, and four required approximately 30 minutes, 

but participants did tend to finish more quickly as they became more and more accurate with the 

tasks and less feedback on trials was required. Day 5, including training, post-tests, and the exit 

questionnaire required approximately 90 minutes. The tasks for each phase and day are 

summarized in Table 9. 

 

Table 9 Procedure Summary 

Sessions Phase: Tasks Phones Approximate 

Time 

1 Pretest:  Imitation 

Discrimination 

[p, t, k, b, d, g] 2 minutes 

10 minutes 

1-5 Training A:  Exposure to items - presentation only [p, b, t, d] 10 minutes 

1-5 Training B: Two alternative forced choice (2AFC) 

task with no minimal pairs + Feedback 

[p, b, t, d] 8 minutes on 

sessions 1 & 5 

16 minutes on 

sessions 2-4 

1-5 Training C:  2AFC task + Feedback; Explicit group 

with minimal pairs, Implicit group with 

no minimal pairs  

[p, b, t, d] 8 minutes on 

sessions 1 & 5 

16 minutes on 

sessions 2-4 

5 Post-Test Discrimination 

Imitation 

Exit Questionnaire 

[p, t, k, b, d, g] 45 minutes 

2 minutes 

3 minutes 
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3.0 Results 

Results of the current study are separated first into results from the training phases B and 

C, presented as accuracy scores during each of the five training days. Following accuracy scores, 

I present the results of the discrimination tasks given at the pre- and posttests and discuss the 

changes that occurred across test times as a function of group, training condition, and additional 

linguistic variables.  

3.1 Accuracy 

Accuracy of lexical decisions (correctly identifying which of two visual objects 

corresponded to the auditory stimulus they heard for any given trial) at each training session was 

calculated by including only the critical items (i.e., excluding distractors) and is summarized with 

mean and standard deviation values in Tables 10 and 11 below. Recall that data were not collected 

for Training A, since this task was presentation only and participants did not log any responses.  

  

Table 10 Mean (SD) Accuracy for Training B 2AFC Task 

 Session 1 Session 2 Session 3 Session 4 Session 5 

Implicit .887 (.109) .952 (.119) .971 (.090) .980 (.092) .970 (.109) 

Explicit .853 (.097) .950 (.089) .972 (.102) .980 (.084) .966 (.108) 
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Table 11 Mean (SD) Accuracy for Training C 2AFC Task 

 Session 1 Session 2 Session 3 Session 4 Session 5 

Implicit .880 (.121) .927 (.138) .949 (.158) .931 (.161) .950 (.163) 

Explicit .692 (.043) .814 (.087) .889 (.090) .921 (.091) .906 (.160) 

 

In analyzing the factors that best predicted participants’ accuracy, the current study 

followed Barr, Levy, Scheepers, and Tily (2013) in using nested model comparisons to determine 

which grouping factors significantly improved model fit. First, Training B 2AFC responses were 

examined using a baseline generalized linear mixed effects model that examined accuracy as a 

function of session with a random intercept for subject. A random intercept for item did not 

converge, but recall that the items in both groups were matched for segment and syllable frequency 

across conditions. The addition of group as a fixed effect did not significantly improve the model 

fit (χ2 (1) = 1.143, n.s.). Thus, the final model for the Training B 2AFC task examined accuracy as 

a function of session and included a random intercept for subject.  

Significant differences in accuracy were found between Session 1 and Session 2 (ß=0.970, 

z=6.574, p<.001) and between Session 2 and Session 3 (ß=0.702, z=3.866, p<.001), with accuracy 

improving in later sessions. The difference between Session 3 and Session 4 approached 

significance (ß=0.441, z=1.933, p=.053), again with participants improving their accuracy scores 

in the later session. That being said, the difference between Session 4 and Session 5 was significant 

(ß=-0.495, z=-2.100, p<.05), in that participants were less accurate at Session 5 than at Session 4. 

Nested models were also used to compare accuracy across groups and training sessions for 

Training C. A baseline model examined accuracy as a function of session and included a random 

intercept for subject. Again, a random intercept for item did not converge. The addition of group 

as a fixed effect significantly improved the model fit (χ2 (7) = 17.704, p<.001). A significant 
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difference between groups was found such that the implicit group was more accurate than the 

explicit group overall (ß=1.072, z=4.501, p<.001). Significant differences were also found between 

Session 1 and Session 2 (ß=0.773, z=8.494, p<.001), between Session 2 and Session 3 (ß=0.652, 

z=6.392, p<.001), and between Session 3 and Session 4 (ß=0.238, z=2.021, p<.05). No significant 

difference was found between Session 4 and Session 5 (ß=-0.067, z=-0.469, n.s.).  

Difference scores were also calculated for each group to attempt to compare the efficacy 

of the training that each group received.  These scores were calculated by subtracting the score at 

Session 1 from the score at Session 5. Greater gains in accuracy should be reflected in higher 

difference scores. Mean difference scores and standard deviations for each group for Training in 

Phases B and C are presented below in Table 12. 

 

Table 12 Difference Scores for Training B and C TACF Tasks 

 Training B 2AFC Difference Score Training C 2AFC Difference Score 

Implicit 0.076 (.068) 0.070 (.082) 

Explicit 0.143 (.141) 0.232 (.096) 

 

To compare Difference Scores across groups for either training task, a linear fixed effects 

model with Difference Score as a function of group was used. A random intercept for subject was 

not included in the model, since each subject was represented in the data by exactly one Difference 

Score. There were no significant differences between groups for the Training B 2AFC task (ß=-

0.067, t=-1.303, n.s.), which was the same for both groups. For the Training C 2AFC task recall 

that only the explicit group saw the side-by-side presentation of objects whose labels were minimal 

pairs. For this task, the explicit group had significantly higher difference scores than the implicit 

group (ß=-0.163, t=-4.482, p<.001.). In other words, the explicit group experienced more 
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improvement over the course of the training. Models comparing the effectiveness of Training B 

and Training C 2AFC tasks for any one group were not run, since participants in either group 

completed both, meaning that it is impossible to separate the effects that one training had on the 

accuracy results of the other.  

Because the explicit task was inherently more difficult than the implicit task for Training 

C TACF task where minimal pairs were used for the explicit group only, it follows that scores at 

all sessions (and especially at Session 1) were lower than the implicit scores for the same sessions. 

Given this, comparing Differences Scores does not accurately reflect the efficacy of the training 

received by either group. For that reason, Relative Improvement scores were calculated by 

subtracting the score at Session 1 from 1.0, to indicate change relative to the amount of room to 

improve each group had at Session 1. Then, Difference Scores were divided by Room to Improve 

scores. 

  

Difference Score = Session 5 Score – Session 1 Score 

Room to Improve Score = 1.0 - Session 1 Score  

Relative Improvement Score = Difference Score / Room to Improve Score 

 

This measure then indicates the amount of improvement relative to how much 

improvement was possible. Mean Relative Improvement scores and standard deviations are 

summarized in Table 13 below.  
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Table 13 Relative Improvement Scores (SD) for Training B and C 2AFC Tasks 

Group Training B Relative 

Improvement Score 

Training C Relative 

Improvement Score 

Implicit .477 (.344) .568 (.653) 

Explicit .645 (.885) .760 (.240) 

 

To compare Relative Improvement scores across groups for either Training task, a linear 

fixed effects model with Relative Improvement as a function of group was used. A random 

intercept for subject was not included in the model, since each subject was represented in the data 

by exactly one Relative Improvement score. There were no significant differences between groups 

for Training B (ß=0.167, t=0.508, n.s.) or for Training C (ß=-0.192, t=-1.022, n.s.) 2AFC tasks. 

Models comparing the effectiveness of either task for any one group were not run, since 

participants in either group completed both, meaning that it is impossible to separate the effects 

that one training had on the accuracy results of the other.  

Although these Relative Improvement scores help to visualize the improvement within the 

window of possible improvement, it is important to bear in mind that as participants approached 

ceiling levels of accuracy, there was less room for improvement overall. This is especially true for 

the implicit group who were at 88% and 89% accuracy at Session 1 for Training B and C 2AFC 

tasks respectively. It follows that it is more challenging for learners to continue to make gains as 

they approach ceiling levels of accuracy.  

It is also noteworthy that both groups performed most accurately for the Training B 2AFC 

task on Day 4, with a slight decrease in accuracy occurring on Day 5. A similar pattern is found 

for the Training C 2AFC task, with the implicit group demonstrating their highest levels of 

accuracy on Day 3 and the explicit group on Day 4.  
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3.2 Discrimination 

Next, I turn to discrimination data that were collected at the pretest and posttest for AX 

pairs. Due to small token counts in the pretest, the predictors of interest could not all be included 

in a single model, so several different models were fit, each with one to two variables. In this way, 

cells of at least 10 for each participant for each comparison were maintained, and pertinent 

interactions between variables were still able to be examined.  

Participants’ accuracy of ‘same’/’different’ responses were converted into d’ scores in 

order to take into account both the participants’ sensitivity to the actual differences between the 

AX pairs, as well as their false alarm rate, or their bias to indicate a difference where there is none. 

d’ scores of zero indicate responses at chance levels of accuracy. Scores of 1 represent accuracy 

levels of approximately 70%. Overall, higher d’ scores indicate higher accuracy and less false 

alarms.  

The following variables will be discussed in detail: the absolute value of the change in 

VOT between stimuli A and X, the direction of change between the VOT of the two stimuli, the 

relationship between the stimuli A and X with regards to category boundary and voicing, and the 

relationship between the stimuli A and X with regards to category boundary and ambiguity. 

Additionally, variables related to analogy will be discussed, namely speaker, item, and POA. 

Finally, interactions between speaker and item, item and POA, and speaker and POA will be 

examined.  
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3.2.1 Absolute Change in AX 

To analyze sensitivity to the differences in various amounts of change in VOT between 

AX pairs, a linear mixed effects model was used to examine d’ scores as a function of the absolute 

difference in VOT between AX pairs, test time, an interaction between the absolute difference and 

test time, and included a random intercept for subject. Here and throughout the results section, 

random intercepts cannot be included for item, since d’ scores average over all items. Recall, 

however, that items were controlled for by design. No significant difference between groups was 

found at the pretest (ß=-0.144, t=-0.912, n.s.), so it was not included in the final model. There were 

significant differences between trials in which AX differed by 20 ms as compared to 40 ms 

(ß=0.755, t=10.662, p<.001), as compared to 60 ms (ß=1.231, t=17.381, p<.001), and as compared 

to 80 ms (ß=1.392, t=19.658, p<.001). There was also a significant difference between trials 

differing by 40 ms as compared to 60 ms (ß=0.465, t=6.465, p<.001) and as compared to 80 ms 

(ß=0.637, t=8.928, p<.001). Finally, there was a significant difference between trials with a 60 ms 

difference as compared to 80 ms (ß=0.172, t=2.396, p<.05). In all cases, an increased duration 

difference between A and X stimuli led to increased d’s, or a greater ability to differentiate.   

There was a significant difference between test times, with posttest d’ scores being higher 

overall (ß=0.462, t=4.770, p<.001). No significant difference was found between the groups’ 

responses at posttest with respect to the absolute difference between AX stimuli (ß=0.027, 

t=0.165, n.s.). Significant differences were found between trials differing by 20 ms as compared 

to 40 ms (ß =0.792, t=11.248, p<.001), as compared to 60 ms (ß =1.404, t=19.936, p<.001), and 

as compared to 80 ms (ß =1.740, t=24.712, p<.001).  There were also significant differences 

between trials differing by 40 ms as compared to 60 ms (ß=0.611, t=8.689, p<.001) and 80 ms 
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(ß=0.948, t=13.464, p<.001). Again, in all cases, increased duration of change in VOT between 

stimuli A and X resulted in increased sensitivity as indexed by d’ scores.  

There was also a significant interaction between the absolute change between A and X and 

test time, such that the change between test times was significantly greater for trials differing by 

80 ms as compared to 20 ms (ß=0.348, t=2.541, p<.05) and as compared to 40 ms (ß=0.311, 

t=2.272, p<.05). The d’ scores as a function of the absolute difference (in ms of VOT) between 

stimuli A and X is represented in Figure 5 below. As in each of the plots below, the independent 

variable being examined – in this case, absolute difference – is represented on the x-axis, and d’ 

scores are represented on the on the y-axis. Higher d’ scores indicate increased sensitivity to the 

differences between the stimuli for each of the two groups.  

All together, these results indicate that AX pairs that are further apart on the VOT 

continuum are more identifiable as distinct. This finding simply points to the stimuli being 

perceived as they were intended by design. Overall, these results also show significant 

improvements across test times, suggesting that the training paradigm employed was successful in 

increasing accuracy at identifying distinct AX pairs as being distinct.  
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Figure 5 d’ Scores for the Absolute Difference between A and X 

3.2.2 Direction of Change of AX 

 In a second model, the direction of change between the VOT of A and X stimuli was 

examined. Again, a linear mixed effects model was used with d’ scores as a function of the 

direction of change in VOT between AX pairs, test time, and an interaction between the two. The 

model also included group and a random intercept for subject. No significant difference was found 

between groups at the pretest (ß= -0.086, t= -0.588, n.s.) or the posttest (ß= -0.105, t= -0.749, n.s.), 

however there was a significant difference between increase and decrease trials at the posttest for 
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implicit condition (ß= 0.208, t=5.628, p<.001) that was not found for the explicit group (ß= -0.023, 

t=-0.658, n.s.). As shown in Figure 6, both groups responded overall more accurately when the 

direction of change between A and X stimuli was an increase (ß=0.319, t=6.591, p<.001). 

 

 

Figure 6 d’ Scores for the Direction of Change between VOT of A and X Stimuli 

 

There was a significant difference between test times, with higher d’ scores at the posttest 

(ß=-0.598, t=-7.976, p<.001). There was also a significant interaction between the direction of 

change between the VOT of A and X stimuli and test time such that less change across test times 

occurred for trials in which the change from A to X was an increase (ß=0.224, t=2.122, p<.05). 
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The rationale for participants’ differentiated responses to AX pairs on the basis of the direction of 

change is beyond the scope of the current study’s research questions.  

3.2.3 Category Boundary and Voicing 

Next, the relationship between the stimuli A and X with regards to category boundary and 

voicing was examined. Trials were coded with regard to the category and voicing as being either 

‘Across’, ‘Within Voiced’, ‘Within Voiceless’, or ‘Within Aspiration’.  Specifically, ‘Within 

Voiced’ trials were those for which both A and X had either 20 or 40 ms of prevoicing (-40/-40, -

20/-20, -40/-20, -20/-40). ‘Within Voiceless’ trials were those for which either A or X had 0 ms of 

aspiration and the other stimuli had either zero, 20, or 40 ms of aspiration (0/0, 0/20, 20/0, 40/0, 

0/40). ‘Across’ trials were those that straddled the (0 ms) VOT category boundary and those that 

compared 0 ms tokens to prevoiced tokens (-40/40, 40/-40, 20/-40, -40/20, -20/20, -20/40, 20/-40, 

20/-20, 40/-20, -40/0, 0/-40, 0/-20, -20/0). Finally, ‘Within Aspiration’ trials were those with either 

20 or 40 ms of aspiration for both A and X stimuli (40/40, 40/20, 20/40, 20/20). Sum coding was 

used to code this variable, since none of the levels were a baseline against which to compare the 

others.  

A third linear mixed effects model was employed, with d’ scores as a function of the 

categorization type, test time, an interaction between the two, and included a random intercept for 

subject. There was no significant difference between groups at pretest with regard to this 

categorization variable (ß=0.114, t=0.661, n.s.). There was a significant difference between Within 

Voiced trials and the overall average d’ score (ß=0.077, t=2.201, p<.05), with these trials being 

overall significantly higher than the average of all trials. No significant differences were found 
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between the overall average d’ score and the Across trials (ß=-0.045, t=-1.294, n.s.) or the Within 

Voiceless trials (ß=0.033, t=0.944, n.s.).  

No significant difference between groups was found at the posttest (ß=-0.055, t=-0.393, 

n.s.). There were, however, significant differences between the overall average d’ score and the d’ 

scores for Within Voiced (ß=-0.149, -4.699, p<.001) and Within Voiceless trials (ß=0.188, 

t=5.927, p<.001) such that d’ scores were lower than average for Within Voiced trials, and higher 

than average for Within Voiceless trials. There was also a significant difference between test times, 

with higher d’ scores at posttest (ß=0.534, t=5.764, p<.001).  

There was also a significant interaction between this categorization variable and test time 

such that Within Voiced trials improved significantly less across test times as compared to Across 

trials (ß=-0.274, t=-2.099, p<.05). Additionally, there was more change across test times in d’ 

scores for Within Voiceless trials than for Within Voiced trials (ß=0.382, t=2.919, p<.01). Finally, 

an interaction between categorization and test time bordered on significance such that Within 

Aspiration trials improved marginally more than Within Voiced trials across test times (ß=0.250, 

t=1.911, p=0.057). These results are shown in Figure 7. 

 



 80 

 

Figure 7 d’ Scores for Boundary / Voicing Categorization 

 

The Within Voiced category is among the most interesting findings of the current study 

thus far. The implicit group did not improve significantly across test times for trials of this type 

(ß=0.139, t=1.050, n.s.), but the explicit group did (ß=0.563, t=8.658, p<.001). This finding that 

the explicit training alone led to an improvement in discrimination within the prevoiced portion of 

the continuum provides direct evidence for the effectiveness of the training using minimal pairs.  
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3.2.4 Category Boundary and Ambiguity 

Trials were also coded for the relationship between A and X stimuli with regard to their 

relationship to the category boundary and ambiguity. Levels of this categorization variable 

included ‘Across Ambiguous’, ‘Within Ambiguous’, ‘Within Unambiguous’, and ‘Across 

Unambiguous’. These pairs were categorized in a similar way to the previous categorization 

variable with regard to ‘across’ and ‘within’. Additionally, however, ambiguity was taken into 

account such that trials for with either A or X (but not both) had 0 ms of VOT were classified as 

ambiguous. Accordingly, ‘Across Ambiguous’ trials contained the following AX pairs: -40/0, 0/-

40, 0/-20, -20/0. ‘Across Unambiguous’ trials contained -40/40, 40/-40, 20/-40, -40/20, -20/20, -

20/40, 20/-20, 40/-20 pairs. ‘Within Ambiguous’ trials were those with AX pairings of 40/0, 0/20, 

0/40, 20/0. Finally, ‘Within Unambiguous’ trials were the following AX pairs: 40/40, 40/20, 20/40, 

20/20, -40/-40, -20/-20, 0/0, -40/-20, -20/-40.  

Unlike with the previous categorization variable, this variable was treatment coded, with 

Within Unambiguous as the base level, given its approximation to a ‘Same’ classification.   

An additional linear mixed effects model examined d’ scores as a function of the 

categorization type, test time, and included a random intercept for subject. At the pretest, there was 

no significant difference between groups (ß=-0.024, t=-0.159, n.s.), so this variable was not 

included in the model. Significant differences were found between Within Unambiguous and 

Across Ambiguous trials with Across Ambiguous trials being responded to significantly less 

accurately (ß=-0.822, t=-11.360, p<.001). Participants were also less accurate in responding to 

Within Ambiguous trials than they were with Within Unambiguous trials (ß=-0.257, t=-3.545, 

p<.001). When compared to Within Unambiguous trials, participants were significantly more 

accurate, however, in responding to Across Unambiguous trials (ß=0.024, t=2.813, p<.01). Across 
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Ambiguous trials were responded to significantly less accurately than Within Ambiguous trials 

(ß=0.566, t=7.814, p<.001) and than Across Unambiguous trials (ß=1.027, t=14.173, p<.001). 

Finally, Within Ambiguous trials were responded to significantly less accurately than Across 

Unambiguous trials (ß=-0.461, t=-6.358, p<.001). Notably, Across Ambiguous (when set as the 

intercept) is significantly different from zero (ß=0.563, t=6.488, p<.001).  

Again, at the posttest, there was no significant difference between groups (ß=-0.007, t=-

0.048, n.s.). Significant differences were found, though, between Within Unambiguous and Across 

Ambiguous trials (ß=-0.828, t=11.608, p<.001), with higher d’ scores for Within Unambiguous. 

Across Unambiguous d’ scores were significantly higher than Within Unambiguous trials 

(ß=0.496, t=6.956, p<.001). There was also a significant difference between Across Unambiguous 

and Across Ambiguous (ß=1.324, t=18.564, p<.001). Significant differences were found between 

Across Unambiguous and Within Unambiguous trials (ß=1.028, t=14.173, p<.001), and between 

Across Unambiguous and Within Ambiguous trials (ß=0.566, t=7.814, p<.001). In each case, 

Across Unambiguous trials were responded to more accurately than other trial types. No 

significant difference was found difference between Within Ambiguous and Within Unambiguous 

trials (ß=-0.018, t=-0.246, n.s.).  

As compared to the pretest, d’s were significantly higher overall at the posttest (ß=-703, 

t=-7.538, p<.001). A significant interaction was found between test time and categorization such 

that Across Ambiguous (ß=0.297, t-2.257, p<.05) and Within Unambiguous trials (ß=0.292, 

t=2.221, p<.05) improved significantly less across test times than Across Unambiguous trials. A 

marginally significant interaction was found between Across Ambiguous and Within Ambiguous 

trials and test time, such that Within Ambiguous trials improved marginally more from pretest to 

posttest (ß=-0.244, t=-1.855, p=0.065).  An additional marginally significant interaction was 
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found, such that marginally more gains were made for Within Ambiguous trials as compared to 

Within Unambiguous trials (ß=0.239, t=1.819, p=0.070). These results are shown in Figure 8.  

 

Figure 8 d’ Scores for Boundary / Ambiguity Categorization 

3.2.5 Speaker 

Next, d’ scores as a function of whether the speaker of the trial was a new speaker (not 

heard at the pretest or during training) or a familiar speaker (heard at the pretest and during 
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training) was examined using a linear mixed effects model that examined d’ scores as a function 

of speaker and test time, and included a random intercept for subject. 

 

Figure 9 d’ Scores for New versus Familiar Speaker 

 

As shown in Figure 9, with regards to speaker, groups were not significantly different at 

the pretest (ß=-0.008 t=-0.057, n.s.) or the posttest (ß=-0.068, t=-0.507, n.s.) and thus were not 

included in the final model. At the posttest, both groups were significantly more accurate at 

discriminating tokens produced by the new speaker as compared to the familiar speaker (ß=0.290, 

t=10.129, p<.001). For both groups, d’ scores were significantly higher following training, both 

for tokens produced by the new speaker (ß=0.659, t=8.985, p<.001) as well as by the familiar 

speaker (ß=0.986, t=9.768, p<.001). That the new speaker was perceived with higher accuracy by 
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both groups than the speakers on which they were trained is an unexpected finding that will be 

explored in depth in the discussion section.  

3.2.6 Item 

Whether the item of a given trial was familiar to the participant from the training phases 

was also examined using a linear mixed effects model that examined d’ scores as a function of 

item. The model included test time and item as fixed effects, and included a random intercept for 

subject. 

 

 

Figure 10 d’ Scores for Trained versus Untrained Items 
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Groups were not significantly different at the pretest (ß=-0.041, t=-0.362, n.s.) or posttest 

(ß=-0.081, t=-0.592, n.s.) so they were not included in the final model. As shown in Figure 10, 

there was, however, a significant difference between test times, with improved d’ scores at the 

posttest (ß=0.136, t=3.823, p<.001). There was also a significant difference between trained and 

new posttest items, with higher d’ scores for the untrained items for both groups (ß=0.178, t=5.046, 

p<.001). Although this finding that new items were responded to more accurately than trained 

items at the posttest is surprising, it is consistent with the finding for speaker.  

3.2.7 POA 

Next, the role of each of the three POAs on participants’ accuracy in discrimination was 

examined. The model used was an additional linear mixed effects model that examined d’ scores 

as a function of POA and test time, and included a random intercept for subject. These variables 

can be visualized below in Figure 11.  

 



87 

Figure 11 d’ Scores for POA by Group 

 There were no significant differences between groups at pretest (ß=-0.078, t=-0.576, n.s.) 

or posttest (ß=0.032, t=0.272, n.s.), so groups have been combined in Figure 12 below 

and differences between the different POAs will be discussed in greater detail without including 

group as a variable. For this same reason, group was not included in the final model.  
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Figure 12 d’ Scores for POA with Groups Combined 

 

At the pretest, bilabial trials were responded to significantly more accurately than dental 

trials (ß=0.130, t=2.330, p<.05), and dental trials more accurately than velar trials (ß=0.232, 

t=4.144, p<.001). Bilabial trials were also responded to more accurately than velar trials (ß=0.362, 

t=6.474, p<.001). Overall, the two groups showed significant improvement across test times (ß=-

0.068, t=-2.051, p<.05). 

At the posttest, bilabial trials were still responded to more accurately than dental trials (ß=-

0.090, t=-2.554, p<.05), but velar trials improved substantially (ß=-0.382, t=-8.995, p<.001), 
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yielding higher d’ scores at the posttest than dental (ß=0.226, t=6.411, p<.001) and bilabial 

(ß=0.236, t=3.857, p<.001) trials. The other POAs did not improve from pretest to posttest as 

substantially as did the velar trials; bilabial trials improved marginally (ß=0.114, t=1.947, 

p=0.058) and dental trials did not improve significantly (ß=0.066, t=1.271, n.s.). With velars 

improving more than bilabials and dentals, this finding again demonstrates that untrained features 

improved more than trained features, a pattern that will be explored in detail in the discussion.  

3.2.8 Speaker and Item  

In addition to the models mentioned above which included a single predictor in addition to 

group and/or test time, the interaction between specific variables was also examined. To begin, 

item and speaker as well as the interaction between the two will be discussed. The lmer model 

employed examined d’ scores as a function of speaker, item, an interaction between speaker and 

item, and test time, and included a random intercept for subject. 
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Figure 13 d’ Scores for Item and Speaker Faceted by Group 

As can be seen above in Figure 13, no significant differences existed between groups at the 

pretest (ß=-0.041, t=-0.342, n.s.) or posttest (ß=-0.009, t=-0.072, n.s.). Given the lack of 

differences between groups at either test time, group is omitted from the model, and the plot in 

Figure 14 below illustrates this omission to instead emphasize the changes that occurred from 

pretest to posttest. 
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Figure 14 d’ Scores for Item and Speaker with Groups Collapsed 

 

D’ scores for untrained items produced by a new speaker improved significantly from 

pretest to posttest (ß=0.284, t=7.198, p<.001). Significant differences between new and familiar 

speakers for trained items (ß=0.189, t=3.557, p<.001), as well as for untrained items (ß=0.239, 

t=6.576, p<.001) were also found. There was a significant interaction at the posttest between 

speaker and training, with higher d’ scores for items that were both untrained and produced by the 

new speaker (ß=-0.178, t=-2.686, p<.01).  
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3.2.9 POA and Item  

Next, POA and item and the interaction between the two were examined. The model that 

was used examined d’ scores as a function of POA, item, an interaction between POA and item, 

group, and test time, and included a random intercept for subject. Overall, there were no significant 

differences between groups at the pretest (ß=-0.090, t=-0.695, n.s.) or posttest (ß=-0.022, t=-0.19, 

n.s.) with regards to POA and item, as shown in Figure 15. For the dental items, however, there 

was a significant interaction between groups and training. The implicit group responded 

significantly more accurately to untrained than trained dental items at the posttest (ß=-0.166, t=-

3.535, p<001.). The explicit group, on the other hand, responded with similar accuracy to untrained 

items at both test times (ß=-0.167, t=-1.408, n.s.).  
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Figure 15 d’ Scores for Item and POA Faceted by Group 

 

Overall, d’ scores calculated for POA and item worsened following training (ß=0.123, 

t=2.511, p<.05). Both the explicit (ß=0.092, t=1.584, n.s.) and implicit (ß=-0.022., t=-0.226, n.s.) 

groups experienced a decreased sensitivity to dental items they were trained on. The same was true 

for bilabial items, though only for the explicit group (ß=0.132, t=2.094, p<.05). There was no 

significant change for bilabial items across test times for the implicit group (ß=0.120, t=1.45, n.s.).  

Interestingly, both groups made the most gains with velar items, the one POA on which 

they were not trained. These gains were significant for both the explicit (ß=-0.319., t=-6.273., 

p<.001) and the implicit (ß=-0.444., t=-6.696, p<.001) groups. This led to a significant interaction 

between POA and training, with higher d’ scores at the posttest for velar items as compared to 
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other POAs (ß=-0.512., t=-6.868, p<.001). There was also a significant interaction between POA 

and training at posttest such that trained dental items were responded to with higher accuracy than 

trained bilabial items, with the reverse being true for untrained items (ß=0.367, t=5.469, p<.001). 

A three-way interaction between groups at the posttest, POA, and training was found. The 

implicit group responded less accurately to untrained items as compared to the explicit group (ß=-

0.326., t=-5.505, p<.001).  At the same time, the implicit group responded significantly more 

accurately to trained bilabial items as compared to the explicit group (ß=0.436, t=7.370, p<.001). 

3.2.10 Speaker & POA 

Finally, the interaction between speaker and POA were examined using an lmer model that 

examined d’ as a function of POA, speaker, an interaction between the two, group, test time, and 

included a random intercept for subject. The only significant difference between groups with 

regards to speaker and POA stemmed from an interaction between group and speaker when 

examining velar tokens only. The implicit group responded significantly more accurately to the 

new speaker for these velar items at the posttest than did the explicit group for the same type of 

items (ß=0.329, t=2.462, p<.05). Otherwise, there were overall no significant differences between 

groups at pretest (ß=-0.091, t=-0.685, n.s.) or posttest (ß=0.020, t=-0.179, n.s.) with regards to 

speaker and POA, as shown in Figure 16.  
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Figure 16 d’ Scores for Speaker and POA Faceted by Group 

 

Thus, groups have been collapsed in subsequent analyses of these variables, as in Figure 

17. There was a significant difference at the pretest between bilabial and dental (ß=-0.130, t=-

2.330, p<.05), between dental and velar (ß=0.232, t=4.414, p<.001), and between bilabial and 

velar (ß=-0.362, t=-6.474, p<.001) trials.  
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Figure 17 d’ Scores for Speaker and POA with Groups Collapsed 

 

At the posttest for trials spoken by the familiar speaker, there was a significant difference 

in accuracy between dental and velar trials, with higher d’ scores for velar trials (ß=-0.133, t=-

2.467, p<.05). For these same trials, there was no significant difference between bilabial and dental 

trials (ß=-0.081, t=-1.509, n.s.), nor between bilabial and velar trials (ß=0.052, t=0.958, n.s.). 

There were also significant differences between different POAs at the posttest for new 

speaker trials. In particular, bilabial trials spoken by the new speaker were responded to more 

accurately than were dental trials (ß=-0.096, t=-2.095, p<.05). Similarly, velar trials led to higher 

d’ scores than dental trials (ß=-0.328, t=-7.160, p<.001) and than bilabial trials (ß=0.232, t=5.064, 

p<.001).  
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In summary, the results of the discrimination task as described above seem to indicate that 

participants improved overall as a result of either type of training, providing evidence for the 

statistical distributional learning hypothesis, but only improved in their perception of prevoicing 

in the explicit condition, providing greater support for the minimal pair hypothesis. What’s more, 

for the three types of analogy examined – item, speaker, and POA – participants at the posttest 

tended to perform better for analogous trials as compared to trials and conditions on which they 

were trained. In the discussion section, I consider some explanations for this finding, as well as 

possible implications.  
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4.0 Discussion and Conclusions 

The experiments presented in this dissertation examined perceptual adjustments to a novel 

VOT category boundary following training using a word learning paradigm through which 

participants were exposed to either implicit (distributional) training or explicit (minimal pair) 

training. Accuracy data from the training phases also allowed the current study to examine lexical 

acquisition through the lens of two different lexicons – one with minimal pairs (explicit) and 

another without (implicit). From this data, it was found that when participants were asked to listen 

to a word and select the visual object that corresponded, when choosing between non-minimal 

pairs, participants approached ceiling levels of accuracy very quickly, typically within the first 

three training sessions. When participants in the explicit group were asked to choose between 

objects represented by minimal pairs, thus invoking phonetic knowledge in addition to lexical 

knowledge, their accuracy scores suffered, lagging behind the implicit group by about two training 

sessions.   

The phonetic discrimination tasks in the pretest and posttest allowed the present 

investigation to delve into questions regarding phonetic learning, and, in particular, examine 

sensitivity to phonetic cues as a product of HVPT and different learning conditions. Although there 

were few differences in performance between the different training conditions, one important 

difference did emerge – the explicit group alone improved in their ability to use prevoicing to 

inform their perception. Additionally, both groups showed robust ability to generalize to novel 

items, a novel speaker, and a novel POA. In fact, these generalizations were so robust that both 

groups performed higher when presented with novel components as compared to the components 

on which they were trained. Explanations for this unexpected finding will be explored in depth 
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below. To do so, lexical learning will be examined first, before then turning to phonetic learning 

and the relationship between the two. 

4.1 Lexical Learning 

First, to examine lexical learning in the current study, accuracy scores were calculated for 

Training Phase B and Training Phase C on all five days of training. During Training B, both groups 

heard the name of an object, were presented with two visual objects on the screen, and were asked 

to decide which of the two objects corresponded to the auditory stimulus. During Training B, 

neither group saw visual representations of minimal pair items presented side by side, in essence 

allowing participants to focus on more global properties of the lexical items rather than on fine-

grained phonetic cues. The results presented in the results section reflect the critical items only, 

with distractor items removed. It is, however, still important to understand any differences in 

accuracy between critical and distractor items. No significant difference was found between the 

distractors and the critical items during Training B 2AFC task for the implicit group, suggesting 

that the critical items themselves were not more difficult overall than the distractors. Nevertheless, 

at Session 1, the explicit group did demonstrate greater difficulty with critical items as compared 

to distractor items. Since the implicit group was not impacted in the same way, this difference 

presumably stems from the existence of minimal pairs in the explicit group’s lexicon, even when 

the corresponding images are not presented side by side. Previous studies on the effects of 

neighborhood density on word learning have instead found higher neighborhood density to have a 

facilitatory effect on word learning in the long term (Storkel, Armbruster, & Hogan, 2006; Storkel, 

Bontempo, & Pak, 2014). This difference in the findings of Storkel and colleagues and those of 
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the present investigation likely stems from the current study’s manipulations of VOT such that, 

without training, minimal pairs were likely to be perceived as homophonous. Overall, however, 

the lack of difference between critical items and distractors became especially apparent for both 

groups in the later days of training as participants approached ceiling rates of accuracy for both 

item sets, as can be seen in Figure 18 below. 

 

 

Figure 18 Training B 2AFC Task Critical vs Distractor Items 
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The results from the Training B 2AFC task illustrated that at Session 1, the explicit group 

had a lower overall accuracy rate with the critical items presumably as a result of the existence of 

minimal pairs in the lexicon. Given this, it came as little surprise that the explicit group also had 

lower accuracy than the implicit group at Training C, which homed in on phonetic learning for the 

explicit group through the side-by-side presentation of pictures whose labels were minimal pairs. 

This difference between groups was to be expected, since identifying the corresponding minimal 

pair was a much more difficult task than that of the implicit group, whose task was effectively a 

repetition of Training B. This difficulty is also reflected in the explicit group’s lower scores for 

critical items as compared to distractor items, a difference that was far less pronounced in the 

implicit group. Given the nature of the task, this difficulty for the explicit group in the Training C 

2AFC task can be attributed to difficulty with perceiving a novel, lower VOT category boundary. 

There is little reason to assume that the implicit group was better equipped to perceive this 

boundary; rather, it follows that this information was not evoked by the task of selecting between 

non-minimal pairs objects.  
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Figure 19 Training C 2AFC Task Critical vs Distractor Items 

 

As in Training B, however, the differences between groups at the Training C 2AFC task 

were most pronounced at the earlier training sessions, particularly 1-3, and were mitigated in later 

sessions, as shown in Figure 19 above.  Interestingly, ceiling effects are reached around Session 

4, but then accuracy scores dipped at Session 5, suggesting that participants may have been 

overtrained. This result was surprising, given the extensive literature on HVPT, which frequently 

employs a far greater number of training sessions and for which overtraining has not been reported 

(Logan et al., 1991; Lively et al., 1993, 1994; Bradlow et al., 1997, 1999; Thomson & Derwing, 
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2016, etc.). This difference between the current study and those that have come before may to 

some degree be attributed to the length of the posttest. Previous studies have reported posttest 

durations of thirty minutes or less. Therefore, it remains possible that the attention of the 

participants of the current study had waned before the completion of the task. Even so, however, 

it remains the case that participants also performed significantly worse on the fifth day of training 

as compared to the day before, so inattention due to a long posttest is only one factor among many 

to explain overtraining. 

Previous research has examined overtraining through the lens of the color-word 

contingency learning paradigm (Schmidt, Crump, Cheesman, & Besner, 2007), in which 

participants are presented with words written in different colors. Words that are most frequently 

presented in a consistent color show an effect of decreased reaction times and increased 

contingency effects, both suggesting that overtraining resulted in a more established relationship 

between a word and its associated color (Schmidt, De Houwer, & Moors, 2020). These results are 

generally positive and facilitative, but the opposite was found when the color contingency was 

removed during a counterconditioning phase in which words were reassigned to new colors. To 

my knowledge, however, research on overtraining has not demonstrated any such negative effects 

as were found in the current study. Since no such counterconditioning took place in the present 

study, another explanation is needed. In a later section of this discussion, I present evidence for 

the roles of attention and saliency as leading factors for this drop off in accuracy rates in the later 

training sessions. 

Due to the differing natures of the lexicons in the two groups in term of the presence or 

absence of minimal pairs, the task required by the explicit group was inherently more difficult, as 

reflected by overall lower accuracy scores. Given this, it is challenging to assess the relative 
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effectiveness of either training paradigm using accuracy scores alone. The explicit group had a 

more difficult task to complete and therefore had lower initial scores, allowing for more room to 

improve overall, whereas the implicit group reached ceiling levels of accuracy much more quickly. 

Given these differences, relative improvement scores could be a more accurate indicator of which 

training paradigm was most effective for lexical learning. Recall that relative improvement scores 

represent the amount of improvement made as a proportion of the amount of improvement 

possible, and were calculated using the formula below: 

 

Difference Score = Session 5 Score – Session 1 Score 

Room to Improve Score = 1.0 - Session 1 Score  

Relative Improvement Score = Difference Score / Room to Improve Score 

 

Higher relative improvement scores were found for the explicit group for both phases 

Training B and Training C 2AFC tasks, providing some evidence for the effectiveness of the 

paradigm. It is important to recall, however, that as the implicit group approached ceiling levels of 

accuracy, it became more and more difficult for this group to improve their score by the same 

amount as the explicit group.  Future studies might address this limitation by including a third 

training condition that includes minimal pairs in the lexicon but does not present them side by side 

as is done with the explicit group in Training C. Such an inclusion would allow researchers to 

disentangle the difference in lexicons from the difference in object presentations in the training 

phases.  

Although the explicit group generally performed poorer as measured by the accuracy 

scores for Training C, this was expected, given the more difficult nature of the task assigned. In 
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the next section, I address the question of whether this increased difficulty associated with the 

Training C 2AFC explicit task was transferred into increased gains in phonetic learning. 

4.1.1 The Role of Feedback 

Participants in the current study received feedback for each trial of the 2AFC tasks. Recall 

that for correct responses, participants saw a green box appear framing the object they correctly 

selected, and then heard a repetition of the auditory stimulus. For incorrect responses, participants 

heard an auditory repetition of the target lexical item, saw the correct object framed in green, 

followed by a red box framing their incorrect selection and an auditory rendition of it, and then 

finally a heard the auditory rendition of the object they should have selected, with an 

accompanying green frame around the object. 

A primary consideration with regard to feedback is its effect on explicitness. Although the 

implicit group was considered to be receiving implicit input due to the lack of minimal pairs that 

could provide any explicit evidence of the location of the VOT category boundary, this group did 

still receive targeted feedback. This feedback was inherently somewhat explicit in that participants' 

attention was being drawn to the stimuli, making the implicit condition somewhat less than purely 

implicit. However, it was necessary to provide feedback to both groups; otherwise, it would have 

been impossible to discern whether any differences between groups were a product of the lexical 

items themselves or the presence or absence of feedback.  

An additional consideration with regard to feedback is that of frequency. Because the 

explicit group’s 2AFC tasks were more difficult due to the presence of minimal pairs, the explicit 

group selected the incorrect object more often than the implicit group, and therefore experienced 

the incorrect feedback sequence more frequently. Although the feedback sequence was identical 
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for the two training conditions, this resulted in the explicit group having overall more exposure to 

the stimuli, since the incorrect sequence provided two tokens of the correct word and one token of 

the incorrect word whereas the correct sequence provided only one token of the correct word.  

Finally, in addition to raising the question of whether the explicit group’s improvement 

was due to a difference in the frequency of exposure between the two groups, it is also important 

to consider the role of error-driven learning. Recall that error-driven learning posits that learning 

is more likely to occur as a function of surprise or prediction error than simply due to the 

distribution of the input (Olejarczuk et al., 2018). The incorrect feedback sequence presented in 

the current study was likely an unexpected event that could serve to update the category 

representations being formed. Given this, additional exposures to the incorrect feedback sequence 

may have ultimately led the explicit group to greater gains from pretest to posttest with regard to 

lexical learning. It is also possible that error-driven learning may have accounted for the explicit 

group’s improvement in discriminating prevoicing. This and other phonetic variables will be 

explored in the upcoming section.  

4.2 Phonetic Learning 

To examine phonetic learning, the current study examined the results from the 

discrimination task given as the pretest and posttest on sessions 1 and 5 respectively. Participants 

heard two aural stimuli and were asked to decide whether they were the same word or two different 

words. Their responses informed the degree to which their VOT boundaries for Numana shifted 

as a result of the five days of training completed between pretest and posttest.  
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4.2.1 The Role of Attention in Distributional vs Minimal Pair Learning 

The first research question asked about the role of minimal pairs in learning to perceive the 

lower Numana VOT category boundary. Both the explicit minimal pair group and the implicit non-

minimal pair group were exposed to the same number of items and segments and were simply 

given different tasks regarding lexical identification. Overall, there were no significant differences 

between implicit and explicit groups at the pretest. Both groups improved substantially as a result 

of the training tasks, but contrary to predictions, groups were not significantly different from one 

another at the posttest according to most measures.  

One important difference between groups, however, was found in the d’ scores for the 

‘Within Voiced’ category, as is shown in Figure 20. The implicit group did not improve 

significantly at identifying a difference when one existed within the prevoiced portion of the 

continuum across test times (ß=0.139, t=1.050, n.s.), whereas the explicit group did (ß=0.563, 

t=8.658, p<.001). In essence, participants in the explicit group improved their ability to perceive 

prevoicing as a useful cue for distinguishing prevoiced tokens.  Although the implicit condition 

was meant to attend to the prevoicing throughout the course of their training, this wasn’t strictly 

necessary in order to distinguish between items given that there were no minimal pairs. Therefore, 

the group remained unaware of prevoicing’s utility as a cue for voicing, even after five training 

sessions.  
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Figure 20 d’ Scores for ‘Within Voiced’ Items 

 

Because this difference in training resulted in the improved perception of prevoicing for 

the minimal pair group only, this study provides support for the noticing hypothesis (Schmidt, 

1990, 1994, 1995, 2001, 2012) and the minimal pair hypothesis (Maye & Gerken, 2000). 

Schmidt’s (1990, 1994, 1995, 2001, 2012) noticing hypothesis states that noticing facilitates input 

being converted into intake. Learners in this study who were not made explicitly aware of 

prevoicing as a meaningful voicing cue did not notice it and therefore did not intake this 

information, despite being flooded with input containing it.  Attention is thus a crucial component 

of both phonetic, and consequently, lexical learning. Although the greater difficulty of the explicit 

task did appear to draw participants’ attention towards particular acoustic cues (namely 
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prevoicing), it did not appear to hold participants’ attention insofar as maintaining interest in the 

task. This can be seen in the dips in accuracy scores by both groups at Session 5.  

This study’s findings contradict the predictions of the lexical-distributional hypothesis, 

which states that minimal pairs should impede the learning of new phonetic categories (Feldman 

et al., 2013a, 2013b). Feldman et al. (2013b) exposed participants to one of two training conditions. 

In the minimal pair condition, participants listened to input containing pseudoword minimal pairs 

in the training phase. The non-minimal pair group listened to input consisting of only non-minimal 

pair pseudowords. Participants were only told that they would be listening to words and would 

later be asked questions about the sounds in the language. Then, in the testing phase, participants 

completed a discrimination task that evaluated their ability to perceive fine grained phonetic 

differences between minimal pair stimuli. They found that learners were more able to perceive 

phonetic differences when contrasting vowels were consistently presenting in differential lexical 

contexts. Contrary to Feldman et al.’s findings and the lexical-distributional hypothesis, the 

participants of the current study were more successful at homing their attention into the relevant 

acoustic cue that differentiated the members of each minimal pair. Without such attention being 

focused, the implicit group of the present investigation did not learn to attend to prevoicing over 

the course of the five training sessions. The findings of the current study differ from those of 

Feldman et al., and reasons for the differences in our findings will be discussed in greater depth 

below.  

That being said, the implicit group still improved on the perception of other variables such 

as discriminating “Across” and “Within Voiceless” trails, so there is still some argument to be 

made for the effectiveness of distributional learning. Importantly, individual phonetic variables 

and the ways in which they interact with the L1 appear to be more or less susceptible to particular 
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types of training. This is in line with the contradictory findings of Curtin et al. (1998), who on the 

one hand found that participants experienced greater improvements in perceiving prevoicing, 

whereas on the other Pater (2003) and Abramson and Lisker (1970) found that participants instead 

improved on aspiration when the type of training was tweaked. As a result, the most effective type 

of training may be contingent on the particular phonetic variable in question.    

Although the implicit group did not match the explicit group in their improvement in the 

perception of prevoicing, the improvement of perceiving other independent variables, such as 

discrimination among within-category short-lag and within-category aspirated stops as well as 

between-category tokens did provide some evidence for phonetic learning, nonetheless. In 

particular, the implicit groups’ improvement of such measures seems to have occurred as a 

byproduct of word learning, since participants were not required to focus on the phonetics in order 

to learn the labels of the objects in their purely distributional condition. In these cases, explicit 

attention to the onset and to the VOT, specifically, were not necessary components of either word 

learning or of perceiving fine grained phonetic differences in VOT between non-prevoiced tokens. 

This provides some weak support for the distributional learning of phonetic variables such as VOT 

and for the implicit learning of phonetics in L2 learners more generally. Despite the implicit 

learning of phonetics having taken place to some degree in this study, only particular acoustic cues 

seem to have been trainable in this way; prevoicing, at least within five training sessions, proved 

resistant to implicit training.   

Interestingly (and anecdotally), participants of the implicit group frequently expressed that 

their training tasks were a fun challenge and enjoyed reporting their accuracy rates to me after each 

training session. The explicit group, on the other hand, regularly expressed their frustrations with 

the task. I suspected that this difficulty was an important component of what would eventually lead 
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this group to greater gains. This type of desirable difficulty is thought to cause a variable to be 

more difficult to learn initially, but leads to greater long-term retention (Bjork, 1994). In this case, 

desirable difficulty does seem to have amounted to greater improvements in the explicit group as 

compared to the implicit group, at least regarding the perception of prevoicing.   

4.2.2 Models of L2 Speech Perception 

The second research question asked to what degree the PAM and the SLM could account 

for any difference in trainability between bilabial and dental phones, and whether this difference 

would be impacted by the type of training received by the two groups. Recall that both the bilabial 

and dental stop consonants taught in Numana differed from English by virtue of having a lower 

VOT category boundary. Additionally, the Numana /t/ - /d/ contrast differed from that of English 

in that Numana was dental and English is alveolar. The PAM predicted single category 

assimilation for each contrast, since both phones were predicted to be perceived as the English 

voiced component of either pair. The SLM made a similar prediction with regard to the perception 

of voicing, but additionally predicted that the differences in POAs could lead to differential 

difficulty for dental and bilabial items, depending on whether equivalence classification would 

lead to dental stops assimilating to the English alveolar representations (Flege, 1987, 1995). 

Although it was not clear whether equivalence classification would take place, equal 

improvements with dentals as for bilabials would provide evidence for it in fact doing so. On the 

other hand, if participants experienced more improvement for bilabial items than dental items, this 

would suggest that equivalence classification had not taken place for the dentals and that 

participants were aware of the difference in POA and used this awareness to inform a separate 

Numana dental POA. 
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No significant differences between groups were found at either test time with regard to 

POA, so it can be concluded that the type of training provided did not have an impact on 

participants’ bias towards classifying phones as being similar to or the same as their existing L1 

representations. Both groups responded more accurately to bilabial trials than dental trials at both 

test times. However, the accuracy of responses to trials of both POAs improved by about the same 

amount from pretest to posttest, which suggests that similar methods of forming and maintaining 

mental representations were used for both phones. Since there is no reason to believe that a new 

representation was created for bilabials, it can consequently be concluded that no new 

representation was created for dentals. Instead, this finding is in agreement with equivalence 

classification and suggests that Numana /t/ was likely classified according to the existing English 

alveolar representation. It also suggests that the established representation was a strong enough fit 

that the training provided was not enough to impose a new, separate Numana dental category. If 

this were not the case and the phone were perceptibly distinct from English, one might expect 

greater differentiation between bilabials and dentals at the posttest, with more accurate responses 

for bilabial items overall.  

In any case, the discrimination of the contrasts of all three POAs improved for the 

participants of both training conditions, as was predicted by both models, and affirms that the 

phonological system remains malleable across the lifespan. Although native-like perception (of 

course suspending the disbelief that such a thing could exist for Numana) would not necessarily 

be expected, perceptual shifts towards the lower VOT category boundary target are seen.  
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4.3 Generalization and Analogy 

In addition to the prediction that both groups would improve their perception of the trained 

bilabials and dentals, it was also predicted that groups would experience improvements – although 

to a lesser degree than the trained items – on an untrained place of articulation. Participants’ ability 

to do so would indicate not only their ability to learn to perceive a new VOT category boundary 

but would crucially indicate their ability to extract and generalize phonological feature 

representations such as voicing.  

Perhaps the most surprising finding of this study was that participants generalized to velars 

to a degree that far surpassed the POAs on which they were trained. This finding is largely in 

contrast with Maye and Gerken (2001), who, recall, trained participants by having them listen to 

either a unimodal or bimodal distribution of one of two possible POAs - dental or velar. After the 

training phase, participants were then tested their ability to generalize to the untrained contrast 

using a discrimination task. The group trained on dentals was expected to have more difficulty 

generalizing to the more marked velars, but ultimately Maye and Gerken were unable to induce 

generalization in either group, regardless of markedness or whether participants were trained on a 

unimodal or bimodal distribution. That participants of the current study were able to generalize to 

such a significant degree speaks to the efficacy of the training paradigm used, irrespective of 

condition. The findings of the current study are much more in line with those of McClaskey et al. 

(1983), who found that training participants on bilabial items resulted in generalization to an 

untrained place of articulation. Participants in McClaskey et al.’s study were prompted that they 

should be listening for something new in the posttest. In the case of the current study, such 

generalization to untrained POAs can take place even without explicitly prompting participants 

and directing their attention towards the analogous stimuli. 
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One explanation as for why velar items were responded to with such high accuracy at the 

posttest could be that velars have the least ambiguous cues to POA, with formant transitions, a 

compact concentration of energy, and strong stop bursts. While these acoustic cues may have 

provided some assistance for participants, their scores at the pretest do not support this explanation. 

At the pretest, velar items were by far the most challenging POA and were responded to by both 

groups significantly less accurately than both dentals and bilabials.   

Given this, a more plausible explanation for the stark contrast between trained and 

untrained POAs at the posttest is a novelty effect that comes from overtraining. This is consistent 

with the finding that accuracy scores fell at Session 5 of the identification task comprising Phase 

B and Phase C of training, as well as with other variables of generalization measured by the 

discrimination task. In addition to the untrained POA, the untrained speaker and untrained items 

were both responded to more accurately at the posttest than their trained counterparts. What’s 

more, the explicit group actually was slightly less able to discriminate between trained items at the 

posttest than untrained items at the pretest. By all other accounts though, participants improved in 

their perception and discrimination of the items, which again supports the explanation that 

participants’ attention had waned by the end of the fifth training session. Hearing a new item, a 

new speaker, or a new POA was enough to raise their attention, even momentarily, and allow them 

to implement the phonological feature rule they had learned in training and apply it to the novel 

items, consistent with the novel popout phenomenon described by Johnston and (Hawley et al., 

1994; Johnston et al., 1990, 1993). 

That participants generally – and counterintuitively – more accurately perceived voicing 

differences for untrained variables suggests that the task at hand was not challenging enough to 

warrant all five training sessions, or perhaps that participants needed an additional cognitive 
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challenge such as solving math problems at the same time as their training tasks (e.g., 

Engonopulos, Sayeed, & Demberg, 2013). The rapidness of these results should not be entirely 

surprising given the reported success of HVPT at inducing perceptual changes remarkably quickly. 

Recall that Alves and Luchini (2017) trained participants in only three thirty-minute sessions and 

Schertz et al. (2015) induced perceptual changes in under 100 exposures to the stimuli. Despite 

this, the current study is the first HVPT study to my knowledge to report an effect of overtraining 

resulting in a decreased accuracy for the trained stimuli. An important difference between this 

study and others in the literature is the current study’s use of a discrimination task. Previous studies 

have typically used identification or categorization tasks, and these have typically required less 

time than the discrimination task used in the current study. There were two main advantages to 

using a discrimination task: first, to avoid orthography (otherwise it was expected that participants 

would have been biased towards selecting the voiced member of each contrast due to influence 

from English), and second, to provide a more sensitive test of phonetic cue learning. One result of 

using discrimination rather than categorization, however, was that the task simply took a long time 

to complete (around 45 minutes). Although the task was divided into three blocks in an effort to 

ease the burden of testing, the length of the task did lead to an overall decrease in d’ scores from 

Block 1 to Block 2 (ß=-0.136, t=-2.948, p<.01), but no additional significant decrease from Block 

2 to Block 3 (ß=0.040, t=0.875, n.s.). This effect was equal for both training conditions, with no 

significant difference across groups (ß=-0.090, t=0.637, n.s.).  

That discrimination decreased over the course of the testing session suggests that 

participants may have become bored or disengaged, an effect which may also have been 

exacerbated by overtraining on the contrast. Discrimination (d’) scores for dental and bilabial items 

may have been higher had they been recorded during Session 4, at the peak of participants’ lexical 



 116 

accuracy (as measured by Training B and Training C 2AFC tasks) and before attention appears to 

have fallen. Evidence for this comes from Coppens and Patterson (2017), who state that 

“generalization cannot be expected if the treatment itself is unsuccessful. Furthermore, if 

application of a treatment protocol yields significant improvement, the success of generalization 

is always of a lesser extent (quantitatively)”.  Additionally, Dickey and Yoo (2010) state that the 

rate of generalization is necessarily slower than the rate of acquisition of trained items. If these 

statements are taken to be true, accuracy to bilabial and dental trials must have been artificially 

lowered as a result of an attentional mechanism, or otherwise velar trials must have improved as a 

function of some process other than generalization.  

Nevertheless, that the participants were overtrained still speaks to the ability of the tasks 

used to effectively train the lexical items and phonetic variable of interest. Given this, it is apparent 

that the participants of this study were able to generalize beyond the variability in speakers, items, 

and POAs to apply a phonological feature of voicing in Numana. 

It is worth noting that there were no significant differences between training conditions 

with regards to participants’ ability to generalize to a new POA. This provides some additional 

support for the validity of distributional learning; the minimal pair group did not have an apparent 

advantage at generalizing to an untrained POA; participants of the implicit group were equally 

able to synthesize a phonological rule for voicing given the implicit presentation of the stimuli. It 

is important to keep in mind, however, that as L1 English speakers, participants were well poised 

to generalize to a velar POA. This POA is not new to participants, only new to them as listeners 

of Numana. 
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4.4 The Role of the Lexicon in L2 Phonetic Learning 

An important contribution of the current study is the examination of the role of the lexicon 

in adult L2 phonetic learning. By examining the accuracy scores and the discrimination data 

together, the present investigation is able to comment on whether and how lexical learning informs 

phonetic learning. Understanding the degree to which phonetic learning and lexical learning are 

linked is integral to creating effective training paradigms for adult learners and for making 

recommendations for pedagogy.  

Overall, the current study did not find a pervasive effect of training condition on 

participants’ ability to discriminate along the VOT continuum. Recall, however, that one important 

exception emerged, which was that the minimal-pair group alone learned to accurately perceive 

and discriminate prevoiced tokens. Since both groups were exposed to the same number of items 

and the same distribution of segments and varied only in the presence and presentation of minimal 

pairs, this suggests that the minimal pairs were, in fact, the catalyst for this change.  

The lexical-distributional hypothesis predicted that minimal pairs would impair phonetic 

learning since learners may mistakenly identify minimal pairs as homophonous or as two tokens 

of the same word. Instead, distributional learning without minimal pairs should have provided 

greater evidence for a phonetic and semantic distinction between tokens, and therefore non-

minimal pairs should better facilitate the creation of separate phonetic category representations 

(Feldman et al., 2009, 2013a, 2013b).  Given this hypothesis and the existing research supporting 

it, it was therefore predicted that the implicit, distributional learning group would more quickly 

and accurately acquire the novel VOT on which they were trained. The explicit group, with 

attention directed towards both word meaning and towards the novel, lower VOT category 

boundary was expected to encounter the type of cognitive overload that has led researchers to 
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report the hindrance of using minimal pairs in their previous experiments (Feldman et al., 2009, 

2013a, 2013b). Taken one step further, previous literature has found that invoking the lexicon in 

any sense is detrimental to the creation of new phonetic categories, since attentional resources are 

then split between phonetic and lexical mechanisms (Hayes-Harb & Masuda, 2008; Jarvi, 2008; 

Thomson & Derwing, 2016).  

 Meanwhile, the minimal pair hypothesis posits that language learners should begin to 

attend to phonemic differences between sounds once they realize that the two contrasting phones 

of a given minimal pair can be used to make a distinction between two separate concepts (Maye 

& Gerken, 2000). It follows that the simplest way to ensure that learners come to this realization 

is to present the members side by side and highlight the semantic distinction by invoking the 

lexicon. This study’s support for the minimal pair hypothesis comes in contrast to the predictions 

made at the start of the investigation, as well as in contrast to the literature that states that minimal 

pairs are disadvantageous to phonetic category formation (Feldman et al., 2009, 2013a, 2013b). 

Studies that have previously sought to compare minimal pair and distributional learning 

have found little to no evidence for the benefit of minimal pairs. For example, Maye and colleagues 

(Maye & Gerken, 2000; Maye et al., 2002) compared the two hypotheses by exposing participants 

to either bimodal or unimodal stimuli along a continuum. Participants were simply exposed to a 

stream of aural stimuli but were not presented with any visual correlates or other methods for 

invoking the lexicon. In this distributional paradigm, participants were successfully able to classify 

the stimuli as belonging to one category in the unimodal group and two distinct categories in the 

bimodal group. Additionally, Feldman et al. (2013b) trained adult participants on a uniform 

distribution of either a non-minimal pair corpus or a minimal pair corpus.  They too found a 

positive effect of differentiation of context on participants’ ability to learn to perceive new vowel 
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categories, providing further support for the lexical-distributional hypothesis. Through this 

presentation of solely auditory stimuli, participants in the studies presented above (Feldman et al., 

2013b; Maye & Gerken, 2000; Maye et al., 2002) were implicitly exposed to minimal pairs in the 

bimodal condition but did not have word meanings to help orient participants to this distribution. 

An important difference between the findings of these previous studies and those of the current 

study is the current study’s use of pictures to provide evidence of the existence of distinct lexical 

items. Providing a forced choice between visual objects provides additional evidence that the 

words likely aren’t homophonous, and that the auditory stimulus should only apply to one of the 

pictures displayed. An additional difference between previous studies and the current one is the 

current study’s use of feedback throughout the learning process for both groups. The 

improvements across sessions on the lexical identification training tasks (Phase B and Phase C) 

may to at least some degree reflect testing effects such as feedback and repetition, since 

participants completed the Phase B and Phase C task on all five training sessions.  

The formation of this link between the aural stimuli and the lexicon appears to be a strong 

driver for the formation of phonetic categories and helps to explain why the findings of the current 

study differ so greatly from the findings presented above from previous studies. A number of 

studies have found evidence for syllable-level training over word-level training, or non-lexical 

word-level training (such as reading from a word list or using nonce words without a corresponding 

referent) over invoking the lexicon and have therefore suggested phonetic training without the 

additional cognitive demand of juggling word meanings (Hayes-Harb & Masuda, 2008; Jarvi, 

2008; Thomson & Derwing, 2016). The current study provides some nuance for this 

recommendation. While the data presented cannot address the particular dichotomy of lexical 

versus non-lexical learning, in cases where the lexicon is invoked – as was always the case in this 
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study – minimal pair training has been shown to be more effective than a more implicit, 

distributional condition that does not include minimal pairs.   

Taken together, the lexicon does appear to be important in phonetic learning, but 

knowledge of word meanings – at least for adults – is critical for the formation of separate phonetic 

categories. Without semantic information, minimal pairs may hinder phonetic learning by 

suggesting to learners that minimal pairs are simply homophonous or various tokens of the same 

word as was predicted by the lexical-distributional hypothesis. With semantic information, 

minimal pairs home participants’ attention into the relevant acoustic variables that are necessary 

for creating a phonemic contrast, as predicted by the minimal pair hypothesis and the noticing 

hypothesis.   

4.5 Pedagogical Implications 

The data of the current study contribute to a clearer understanding of the role of the lexicon 

in L2 phonetic learning and in particular provide evidence for the utility of minimal pairs for 

drawing learners’ attention towards a phonemic contrast that might otherwise be overlooked. 

Although this study was conducted in a laboratory, there are still valuable lessons to be learned 

and applied to the language classroom.   

Whether minimal pairs are a necessary component of the curriculum appears to depend on 

the nature of the variable being acquired. For lexical learning more broadly, the current study 

found few differences between the implicit and explicit groups, suggesting that minimal pairs were 

not necessarily integral, although they did initially impede word learning. The same is true for 

learning to generalize to new words, speakers, and POAs. Importantly, learners of both groups 
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were able to generalize to velar items despite receiving no training on them, which provides 

promising evidence for learners’ ability to generalize to analogous contexts without needing to 

train every POA in the target language, at least in cases where the L1 has a similar phonological 

inventory from which learners can draw their L2 representations. What’s more, learners were able 

to generalize to a more marked POA than the ones on which they were trained, suggesting that the 

generalization is in fact quite robust, even after relatively few training sessions. Teachers, 

therefore, may not need to devote classroom time to teaching every individual contrast. More 

implicit instruction may in fact be sufficient for many linguistic variables, but explicit minimal 

pair-based instruction does appear to be important for teaching phonetics when the contrast is 

within-category in the L1 but phonemic in the L2. Without minimal pairs, learners may not devote 

the necessary cognitive resources and attention to the phonetic variable in order for the input to 

become intake and contribute to learners’ perception. It seems that simply hearing minimal pairs 

in and of itself is not necessarily sufficient, however, to induce this perceptual shift. Rather, the 

minimal pairs must have meanings assigned in order to invoke the lexicon. Additionally, feedback 

and side-by-side presentation of the minimal pairs may have also attributed to learning in the 

current study, although without comparison conditions for these particular variables, the degree to 

which each of these elements facilitated learning remains an empirical question.  

Although minimal pairs may not be necessary for all phonetic variables, the data of the 

current study did not find evidence that they were in any way disadvantageous. By no measure did 

the implicit group significantly outperform the explicit group in the discrimination task. 

Additionally, despite some initial slowness in lexical acquisition, both groups reached accuracy 

rates of above 90% by the final training session. Given this, in combination with a number of calls 

for explicit instruction (Derwing & Munro, 2005; Gordon et al., 2013; Thompson & Derwing, 
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2014; Venkatagiri & Levis, 2007), it follows that minimal pairs may be an important component 

of explicitly directing learners’ attention towards linguistic variables being taught, at least for 

matters of speech perception.  

The good news is that the recommendation to incorporate meaningful minimal pairs is a 

natural addition to classrooms, and in many cases is already present. The training paradigm used 

could also be very easily adapted for language learning apps or Computer Assisted Language 

Learning so that learners could practice with vocabulary and undergo perception training 

simultaneously. This electronic means of delivery also provides the benefit of the ease of 

incorporating the high variability of speakers that can be more challenging in a language classroom 

with only one teacher. These implementations of the paradigm are relatively simple by design – 

this training procedure was developed with real life language learning in mind. Although this study 

took place in a laboratory, it was designed to be as ecologically valid as possible through its use 

of meaningful word learning and consistent correct/incorrect feedback. HVPT has been said to be 

as effective as it is due to being devoid of meaningful context and lexical access, but this study 

shows that learning can still take place without stripping these important components from the 

input. Future HVPT studies will do well to also incorporate meaning and context and to not shy 

away from implementing lexical access and especially minimal pairs, since with this study there 

is now greater support for the imperative role of the lexicon in phonetic learning.  

It is worth noting that the aforementioned recommendations are based on changes to a 

singular and particular phonetic variable, VOT. Moreover, the recommendations are specific to 

training participants to perceive the prevoiced portion of the VOT continuum, which is used in 

English, especially when speaking emphatically, but is not used phonemically to distinguish 

between words. Given this, participants were not learning to listen for an entirely new phonetic 
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cue. Whether the findings and resulting recommendations of the present investigation would hold 

with additional phonetic variables is an empirical question. A number of variables may influence 

this, including the type of phonetic variable and its status in the L1 of the learner.  

Cues varying along another acoustic dimension, such as F0 or other spectral contrasts, may 

or may not follow these learning patterns. Nevertheless, I expect that the general learning 

mechanisms that aided in the improved perception of prevoicing over the course of the experiment 

are the same ones that would aid in the learning of whichever acoustic cue were being trained. 

Given this, feedback, real word stimuli with referential meaning, and minimal pair presentations 

are likely still all beneficial for phonetic learning in general.  

4.6 Limitations and Future Directions 

Despite its contributions, this study was limited in its lack of inclusion of a third training 

condition with a lexicon that contains minimal pairs but does not present them side by side as was 

done in the current study’s Training C 2AFC task. This control group would help to further 

understand whether learning still takes place due to the simple existence of minimal pairs in the 

lexicon, or whether it was their presentation side by side that directed learners’ attention to them. 

I hypothesize that such a group would struggle to attend to the lower VOT category boundary 

without a side-by-side presentation of the minimal pair object, since, as predicted by the lexical 

distributional hypothesis, participants may simply assume the labels of these objects were simply 

homophonous. The setup of the current study left little doubt for the participants that there was a 

correct and incorrect answer; this would not have been possible given homophones.  
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It also remains to be seen whether the two training conditions result in differential 

production results. Although production data were collected, they were not analyzed for the 

purposes of this dissertation but will be explored moving forward. It stands to reason that the 

explicit group, having demonstrated an improved ability to perceive prevoicing, may also be better 

situated to more accurately produce prevoicing as well. This hypothesis is supported by Sakai and 

Moorman (2018), but it still warrants investigation with this particular set of sounds and this 

particular training paradigm. 

As alluded to above, this study is somewhat limited in its ability to generalize to phonetic 

acquisition more broadly, given the inclusion of a single type of phonetic learning – VOT. 

Recommendations for classroom instruction are based off of the data of the current study, which 

solely examined learners’ perception of the VOT category boundary in an L2. It is important to 

keep in mind that while these findings may speak to more widespread linguistic processes and 

language acquisition mechanisms, there is no concrete evidence that phonetic variables beyond 

VOT would respond to training in the same way or within the same number of exposures. Future 

studies will do well to continue to explore the trainability of additional phonetic variables. 

Additionally, the same study could be replicated to examine the efficacy of training on learners 

who have differential levels of experience learning languages with differing VOT boundaries, such 

as Spanish. The current study examined only learners with minimal or no experience with 

languages with a similar VOT category boundary to Numana. Perhaps, though, learners with 

intermediate or advanced levels of foreign language instruction would be better positioned to 

convert the input from the study into intake that would have a bearing on their perception, or 

perhaps would be able to make more effective use of the training of the implicit condition.  
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Finally, though importantly, it would not necessarily be expected to see global or fixed 

shifts to the participants’ phonological systems after only five training sessions, especially when 

examining naïve learners. Instead, the results outlined in this study likely indicate a superficial 

perceptual shift towards a particular acoustic cue – in this case prevoicing or lack thereof. Whether 

participants could incorporate this information meaningfully in contexts larger than a single word 

or even in a production task remains to be seen. Nevertheless, this study has illustrated that 

participants can be trained to notice perception and incorporate it into their prevoicing in a 

relatively short amount of training under particular lexical conditions. 

4.7 Conclusion 

In conclusion, the present investigation examined the efficacy of two distinct vocabulary 

training conditions for instantiating adult L2 phonetic learning: minimal pair-based training, and 

purely distributional training. The experiment examined the effect of these conditions on the 

perception of a fine-grained phonetic variable, VOT, that differed between the training language 

and the participants’ L1. This research adds to our understanding of the role of minimal pairs in 

phonetic learning, as well as the role of attention in generalizing to analogous contexts. The data 

suggest that, when invoking the lexicon, minimal pairs can help, rather than hinder, phonetic 

learning in an L2. The results of the current study also revealed that attention and the lexicon are 

both crucial components of both phonetic and lexical learning.  
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