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The Potential for 3D Depth Cameras to Automatically Evaluate Independent Wheelchair 

Transfer Techniques 

Lin Wei, MS 

University of Pittsburgh, 2021 

 

 

Wheelchair users rely heavily on their upper extremities to complete common but essential 

activities of daily living such as getting in and out of bed, and transferring to a toilet, a shower, 

and a car seat. The use of good transfer mechanics to avoid pain and injury is important for 

wheelchair users when performing transfers. The Transfer Assessment Instrument (TAI), is a tool 

developed to evaluate the transfer technique and help clinicians and users to recognize deficits in 

the technique. However, there are some limitations when therapists use the TAI as an assessment 

tool. These barriers decrease the usability of the TAI in clinical settings. An artificial intelligence 

system that can automatically score the TAI may potentially reduce the barriers associated with 

TAI’s usability. We aim to develop a system that can watch a patient transfer and allow for 

automating the TAI using marker-less motion capture technology and machine learning algorithms 

that classify the motions into proper and improper techniques.  

Machine learning algorithms were developed and trained using data from 91 full-time 

wheelchair users to predict proper (low risk) and improper (high risk) wheelchair transfer 

techniques in accordance with eleven TAI item scores. The transfer data was split into training set 

(80%) and testing set (20%). The training set was used for classifier selection and model tuning. 

The test set was excluded from all training processes. Three k-nearest neighbors (KNN) and eight 

random forest classifiers were selected for 11 TAI items based on model performance. The area 
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under the receiver operating characteristic curves (AUCs) are .83 to .99 for the training set and.79 

to .94. for the test set. In order to avoid the false positive case (i.e. participant performed improper 

technique but the transfer is labelled as a proper transfer by the classifier), we tuned the models to 

achieve high precision. The precisions of the models are .87 to .96, and the recalls are .61 to .93.   

 For a system to automate the scoring of the TAI the system must also be able to distinguish 

the “setup phase” and “lift phase” of the transfer. On the TAI 4.0, items 1 to 6 are in the wheelchair 

setup skill group and Items 7 to 15 are in the body setup and flight/landing skill groups. In order 

to extract the features of each item, the motion data during the transfer needs to be separated into 

a setup phase and lift phase. We applied and compared a biomechanical variable based threshold 

method and an ML algorithm to automatically distinguish the time frames of the transfer phases. 

For the threshold method, the peaks observed in the linear displacement and velocity of one joint 

center marked by the Kinect, SPINE_BASE, were used for phase delineation. For the ML method, 

we trained a KNN classifier using 35 features from 81 participant’s transfer data recorded by 

Kinect. Using the KNN model, each time frame of the transfer was labeled as belonging to either 

the “setup” or “lift” phase. After further applying a filter algorithm, the method was used to identify 

the start and end timepoints of the transfer phases. We found that the ML method had less error in 

identifying the phase times but the threshold method spends less computational time in identifying 

the points. Although the threshold errors were larger this method had higher accuracy for 

predicting the TAI scores for items 10, 11, 12, 13, 14, 15 (lift phase items).  The ML method had 

higher accuracy for predicting the TAI scores for items 1, 2 and 7 (wheelchair and body setup 

items). For items 8 and 9, the two methods showed equal performance.  The ML method tended 

to undershoot the end phase times of the lift phase so it’s possible that tuning the algorithms to 
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include more of the lift phase data could increase the accuracies of the TAI item scores that deal 

with the lift phase biomechanics. This will continue to be an area of future work.  

Due to the discontinuation of the Kinect v2, we aimed to find another 3D depth sensor that 

could track full body motion for future research. The Intel® RealSense has superior technical 

properties in relation to the Kinect v2 and has shown excellent performance for tracking facial and 

hand motions in previous studies.  Although Intel did not make a full body joint tracking algorithm 

for the sensor at the time of our study, a 3rd party one (NuitrackTM) was available that can be used 

with a variety of 3D sensor models including RealSense. This solution enabled us to create the 

same biomechanical features with the RealSense as we had created with the Kinect to quantify 

transfer technique. To further understand the potential for RealSense to be used as a viable 

substitute sensor for capturing wheelchair technique biomechanics, we compared the measurement 

properties of the two sensors. We assessed intra-rater reliability for each sensor, and evaluated the 

inter-rater reliability and agreements between the Kinect and RealSense with 30 wheelchair users 

who performed multiple independent transfers (150 trials total). The study found that the Kinect 

had higher intra-rater reliability than the RealSense for measuring four key kinematic variables 

related to the wheelchair transfer technique. For the agreement analysis, more than 95% of the data 

points fell within ±1.96 standard deviation of the mean differences. However, the inter-rater 

reliability between two sensors was poor. The low reliability of the RealSense may be due to the 

lack of robustness of the 3rd party algorithm for skeletal tracking of sitting postures and in general 

in comparison to the more extensively tested and developed Kinect SDK. Intel just recently 

introduced a full body skeletal tracking model for their sensors.  It’s possible that this version of 

the RealSense SDK may help increase the reliability for future applications.  
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Packaging these outcomes together into a user-friendly system could aid therapists and 

patients in identifying harmful motions and learning proper evidence-based transfer practices. 

After using a 3D Depth Cameras to watch a wheelchair transfer, the system would be able evaluate 

the TAI more reliably than a therapist rater would and generate objective feedback to the users. 

Therefore, the results of the current study could increase the usability and feasibility of TAI in a 

clinical setting. 
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1.0  Introduction 

 

 

In the United States, there were approximately 294,000 persons with spinal cord injury (SCI) 

in 2020, and 17,810 new cases occur each year [1]. Over 3.6 million Americans aged 15 and over 

used a wheelchair in 2010 [2]. Wheelchair users rely heavily on their upper extremities to complete 

common but essential activities of daily living such as getting in and out of bed, transferring to a 

toilet or a shower, and transferring in and out of a car. Manual wheelchair users will perform on 

average 14 to 18 transfers a day, which are extremely physically demanding and can lead to upper 

extremity pain and injury [3, 4]. Research shows that the prevalence of upper extremity pain, 

specifically shoulder pain, in wheelchair users ranges between 31 and 73 percent [5]. 

Unfortunately, shoulder pain leads to decreased quality of life and participation in physical activity 

[6].  

The use of good transfer mechanics to avoid pain and injury is important for wheelchair 

users when performing transfers. The Transfer Assessment Instrument (TAI), is a tool developed 

to evaluate independent transfer technique and help clinicians and users to recognize deficits in 

technique. Research has shown that wheelchair users who received high scores on the TAI had 

significantly decreased forces and moments on the upper arm joints while performing transfers to 

and from different surfaces [7]. However, there are some limitations when therapists use the TAI 

as an assessment tool. The therapists need time for training to learn and practice the tool. Moreover, 

they have to score all the items while they are watching a patient’s transfer. Even with training and 

practice, results of some items may be influenced by the rater’s subjective interpretation. These 

barriers decrease the usability of the TAI in clinical settings.  



  2 

An artificial intelligence system that can automatically score the TAI may potentially reduce the 

barriers associated with TAI’s usability. We aim to develop a system that can watch a patient 

transfer and allow for automating the TAI using marker-less motion capture technology and 

machine learning algorithms that classify the motions into proper and improper techniques. Ideally 

the system would be able evaluate the TAI more reliably than a therapist rater would and generate 

objective feedback to the users. Therefore, the results of the current study could increase the 

usability and feasibility of TAI in a clinical setting.  

 

 

 

1.1 Prevalence of Upper Extremities Pain and Injuries in Wheelchair Users 

 

 

Shoulder pain is the most common secondary impairment in the upper limbs reported in 

the wheelchair user population [8]. A review summarized eighteen studies from 1985 to 2001 

documenting the prevalence of upper limb injuries in people with spinal cord injury and reported 

that around 30–60% of wheelchair users experience upper extremity pain at the shoulder, 22–45% 

at the elbow, and 40–66% at the wrist [9]. In 2004, Gironda and colleagues conducted a study with 

the largest sample size (around 770 subjects) to date and found that 531 (69%) patients with 

paraplegia reported current upper limb pain, and that the shoulder pain was most severe during 

wheelchair-related mobility and transportation activities [10].  

The high prevalence of shoulder pain and injury in wheelchair users is believed to be due to 

overuse of the glenohumeral joint, especially during propulsion and transfers [11-14]. The 
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extrinsic and the intrinsic factors leading to shoulder injury can be exacerbated by overuse [14]. 

Intrinsic factors are factors associated with degeneration of the tendon. The mechanisms that 

originate “within” the tendons include age-related degeneration, poor vascularity, and changing of 

the mechanical properties of the tensile tissue. Extrinsic factors of the rotator cuff tendinopathy 

are defined as factors that cause compression of the rotator cuff tendons that originate “outside” 

of the tendon. These mechanisms include the compression (or shear) of the tendon within the 

subacromial space from anatomical or biomechanical abnormalities, as well as the compression of 

tendon posteriorly between the humerus and glenoid rim [14, 15].  

The main cause of shoulder pain among manual wheelchair users is tendinopathy of the 

shoulder, especially of rotator cuff tendons [16]. The incidence of shoulder tendinopathy in 

wheelchair users is four times higher than that of ambulatory individuals (63% vs.15%) [17]. 

Akbar and colleagues reported that rotator cuff tears were present in 49% of wheelchair users, 70% 

of which were full thickness and all involved the supraspinatus [18]. Other pathologies, such as 

glenohumeral instability, biceps tendinitis, capsulitis, acromioclavicular joint degeneration, and 

distal clavicle osteolysis were also reported [8, 19-21].  

At the elbow prevalence of ulnar mononeuropathy in spinal cord injury varies between 22 

percent and 45 percent. At the wrist, the most common problem is carpal tunnel syndrome in 

wheelchair users with paraplegia. The prevalence is between 50% to 73% [22-25]. 
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1.2 Wheelchair Transfer and Secondary Injuries 

 

Wheelchair users rely heavily on their upper extremities to complete common but essential 

activities of daily living such as getting in and out of bed, transferring to a toilet or a shower, and 

transferring in and out of a car. For persons who are unable to bear weight through their legs, the 

majority of the force involved in lifting the body is placed upon the joints in the upper extremities 

[26]. During the performance of transfers, the loading on the upper extremity joints is greater than 

any other wheelchair related activity [27]. Excessive forces acting at the shoulder during transfers 

can lead to the development of shoulder impingement, posterior instability, capsulitis, and 

tendinitis [8, 19]. Also, repetitive shoulder motion and improper movements may cause muscle 

imbalance around the shoulder. Additionally, high superior forces generated during transfers are 

believed to contribute to pain and secondary impairments at the elbow [28]. The extreme wrist 

extension angles and forces generated during transfers may increase the pressure within the carpal 

tunnel and lead to median nerve compression which exacerbates carpal tunnel syndrome [23, 29].  

Chronic shoulder pain is most evident during transfers, pressure relief, and wheelchair propulsion 

[30]. During wheelchair transfer, the shoulder is often placed in a position with a combination of 

flexion, abduction, and internal rotation. Large anterior force and flexion moment are generated 

on both leading and trailing arms [27]. This position causes the glenohumeral head to shift closer 

to the acromion’s undersurface, and has been identified as a critical factor for impingement of 

subacromial soft tissue [21]. Moreover, overstress causes impingement of the tendons and 

diminished blood supply. Inflammatory changes, mechanical impingement, or soft-tissue or bony 

injury will be more progressive when the causative motion occurs at high frequency without 

sufficient time for healing. Properties of disorganized tissue in tendon would be exacerbated in 
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combination with repetitive tensile loading induced with daily activities such as lifting, pulling, or 

the strain incurred with the follow through of activities of daily living [14].  

 

 

 

1.3 Biomechanics of the Wheelchair Sitting Pivot Transfer 

 

 

Shoulder pain and injuries are believed to be associated with large joint reaction forces and 

moments during transfers [4, 8, 28]. However, it is difficult to directly measure the joint reaction 

force and the moments during the transfer without significant invasive procedures. Joint forces 

and moments are therefore indirectly estimated using inverse dynamics analysis, which use the 

anatomical movements (kinematics) to back calculate joint reaction forces and moments (kinetics). 

Using these analyses, it is possible to explore the kinematics that may lead to injury-inducing 

kinetics. Extreme combinations of shoulder flexion, internal rotation, and abduction are known to 

create high internal joint forces and are difficult to avoid during transfers [27]. Systematically 

varying leading hand placement and trunk position during the transfer has been shown to generate 

different joint forces and moments at the upper limb joints [31]. Using certain transfer skills (e.g. 

placing both feet on the floor, using head-hips maneuver to pivot the body, using proper handgrip 

techniques) has been shown to reduce loading across the wrists, elbows and shoulders [32].  
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1.4 Transfer Assessment Instrument – An Evaluation Tool for Determining Quality of 

Transfer 

 

 

Using proper transfer technique can reduce the loading on the upper arm joints and help 

protect wheelchair users from developing injury and pain [4, 33]. The TAI is a tool used by 

clinicians and therapists to assess transfer quality and identify problems in wheelchair transfers 

which can cause increased forces on upper extremity joints [34, 35]. The TAI is based on clinical 

practice guidelines, current knowledge in the literature, and best clinical practices related to 

transfers.  The TAI measures multiple components of a transfer including proper setup of the 

wheelchair and body positioning during transfers. The tool is a series of yes or no questions that 

evaluate both the wheelchair user’s overall technique and any weak component skills within the 

transfer [34, 35]. Higher TAI scores represent better wheelchair transfer technique [35]. In the 

previous studies, we demonstrated that individuals who score highly on the TAI have lower 

mechanical loading at the shoulder, elbow and wrist in different transfer configurations [4, 7]. 

Therefore, wheelchair users who learn to perform transfers that are consistent with a high TAI 

score may reduce their risk of upper extremity injury and pain by decreasing the joint loading 

during the transfer.  

The TAI has been used successfully in research to evaluate proper transfer technique. It 

also has been approved that there are limitations in its use for knowledge translation and 

application in a clinical setting. Firstly, clinicians need to become familiar with the TAI items to 

know if their patient’s transfer was performed correctly or not for each item. The training materials 

initially developed for clinicians to learn how to use the TAI required significant time to review. 
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The newest version, TAI 4.0, refined the item statements and aimed to decrease time to administer 

and need for review of training materials. However, even with these modifications, the intra-rater 

reliability of the wheelchair setup items is only on the moderate level (ICC = .44 to .55). The inter-

rater reliability of the body setup items (ICC = .65 to .72) is also lower than other items [36]. The 

body mechanics and some setup items are very difficult to evaluate because the therapist needs to 

watch multiple movements for different items within 0.5 to 1 second during the lifting phase of 

the transfer. Secondly, according to our interviews in multiple rehabilitation institutions and 

hospitals, many therapists agreed that the TAI is great tool to identify specific deficits of patient’s 

techniques but takes too long to perform in the clinic. Thirdly, although the wheelchair may 

improve the transfer technique after a web-based training addressed by the TAI, it still needs the 

investigators familiar with TAI to manually evaluate the quality of the transfer [37].Thus, the tool 

is currently used in research but has not yet been widely adopted into clinical practice. An 

automated system that can accurately and objectively observe transfer motions and report the TAI 

outcomes without requiring users to undergo extensive training could be of great benefit to 

therapists and patients with SCI in the future.  

 

 

 

1.5 Marker-less Motion Capture 

 

 

Marker-less motion capture systems have been widely used in full-body skeletal tracking, 

facial features recognition, and hand/finger gestural tracking and has found broad application in 
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the video gaming community and sports, wellness, and healthcare fields. The types of systems 

range from high-end indoor/outdoor image-based motion capture systems such as the SIMI, to low 

cost, portable 3D depth sensors such as the Kinect and RealSense. Wearable sensor technologies 

(e.g. Inertial Measurement Units (IMU)) can also provide monitoring and feedback to wheelchair 

users on general activity and motion techniques [38-41], and techniques known to cause injuries 

[42, 43].  A 3D depth sensor has total freedom of movement without the need to hold or wear any 

sensors or markers on the body during the transfer task thus the setup time. The sensor is also much 

cheaper than the other options and can provide more detailed motion tracking data (e.g. x, y, z 

coordinate positions of joint centers) than IMUs which provide relative segment orientations. 

Barbareschi and colleagues used a chest mounted IMU and built a Support vector machine (SVM) 

model to predict three item scores of the TAI 3.0: head-hip relationship, flight phase, and landing 

phase. The performance of the models ranged between 76% to 80% accuracy which is lower than 

the accuracies we have found so far in our preliminary analyses with the Kinect2 sensor [44]. One 

possible reason for the lower accuracies with IMUs might be the limitation of the number of 

features that can be extracted from them. Moreover, it is very difficult to evaluate all the items on 

TAI by a single IMU sensor since transfer motions are complex and involve multiple body 

segments. The body skeletal functions of a 3D depth camera can simultaneously track multiple 

joints on all the body segments.  
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1.6 3D Depth Sensors in Research 

 

 

A variety of 3D depth sensors are available on the market and are supported with different 

platforms, such as Windows, Android and Linux (Table 1). The sensor can create 3D maps of 

anatomical landmarks for patient size assessments without using multiple cameras [45]. The two 

most common ones found in the literature include the Microsoft Kinect v1 and v2 and Intel 

RealSense. The Kinect is the first mass produced, three-dimensional (3D) depth sensing camera 

that possessed a price point making it available to almost any consumer. It consists of an infrared 

(IR) light projector, an IR camera, a RGB video camera, and microphones. One of the most 

powerful aspects of the Kinect is the ability to automatically identify anatomical landmarks in 

close to real-time using artificial intelligence. The Kinect sensor v1.8 detects and records the body 

surface with depth and RGB data recorded from the cameras then applies an algorithm of 

triangulation to automatically identify the location of joint centers of the body in the 3-D space. In 

2014, Microsoft released a new version of Kinect for Xbox One with 60% wide-angle time-of-

flight camera. The Kinect v2 measures the time it takes a light source to bounce back from a 

reflected target, and given that the speed of light is constant, the distance to the objects surface can 

be calculated. Using this different time-of-flight method, the Kinect v2 creates a depth map which 

promised increased resolution and accuracy. The Microsoft SDK for the Kinect provides the 

algorithms for full body skeleton tracking. The v2 sensor can be used to detect and record 25 joint 

centers (compared to 20 joint centers from the v1.8) of the body in X, Y, and Z dimensions at 30 

Hz sampling frequency, and has been shown to be a reliable and valid tool for tracking body 

motions and human posture [46-50].  
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The official full-body tracking software development kit (SDK) provided by Microsoft 

allows investigators to develop a program for their needs.  As a result, the Kinect v2 has become 

widely used in academic research to track upper and lower body motions in various biomechanics 

and rehabilitation applications [46-49, 51]. The Kinect has also become an integral part of some 

industrial commercial software applications such as Jintronix [52] and VERA released by 

Reflexion Health [53], which utilize motions captured by the Kinect for therapeutic gaming and 

functional assessments.  

Microsoft announced the discontinuation of Kinect v2 in 2017 and released a new version 

Azure Kinect DK (Kinect DK) in 2019. The new SDK is supposed to retain the full body tracking 

function. However, the skeletal tracking algorithm of the new Kinect DK and the outputted raw 

data differ from the Kinect v2 [54]. Moreover, research related to classification of body skeletal 

motion with the Kinect DK is not well developed. An alternative solution that has been used is the 

Open Natural Interaction (OpenNI) framework which provides a library of body tracking 

algorithms that are compatible with various sensors. The Intel RealSense series has been used in 

several clinical research applications, however, work related to human motion classification is not 

as extensive as the Kinect in the published literatures due to only the hand gestures and movement 

tracking function being supported by the Intel official SDK [55-58]. One study by Mistry et al. 

developed an approach to translate sign language by using the hand motion data recorded by the 

RealSense [59]. They recorded 26,000 signs of English alphabet from 10 professional signers and 

labeled the data into 26 letters. Learning 90 features such as degrees rotation, flexion of each finger 

and hand openness, the performances of the model were 92.1% and 95.0% by applying CNN and 

SVM, respectively.  
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Table 1. Commercially available 3D depth sensors 

 Price Range RGB image Depth image 
Physical 

Dimensions 

Kinect V2 $100 0.5 – 4.5m 1920x1080, 30 FPS 512x424, 30 FPS 250x66x67 mm 

Azure Kinect 

DK 
$299 

0.5 – 

5.46m 
3840x2160, 30 FPS 

640x576, 30 FPS 

1024x1024, 15 FPS 
203x39x126 mm 

RealSense D435 $179 0.11 – 10m 1920x1080, 30 FPS 
1280x720, up to 90 

FPS 
90x25x25 mm 

RealSense D415 $149 0.2 – 10m 1920x1080, 30 FPS 
1280x720, up to 90 

FPS 
99x20x23 mm 

Xtion 2 $598 0.8 – 3.5m 

2592x1944, 15 FPS 

1920x1080, 30 FPS 

1280x720, 60 FPS 

640x480, 30 FPS 110x35x35 mm 

Vico VR $249 0.5 – 4.5m N/A 640x480, 30 FPS 220x120x50 mm 

TVico $280 0.6 – 8m 1280x720, 30 FPS 640x480, 30 FPS 172x63x56 mm 

Occipital 

Structure 
$499 0.4 – 3.5m iOS camera resolution 

640x480, 30 FPS 

320x240, 60 FPS 
119.2x28x29 mm 

Orbbec Persee $240 0.4 – 8m 1280x720, 30 FPS 
640x480, 16 bit, 30 

FPS 
172x63x56 mm 

Leap Motion $100 
0.025 – 

0.6m 
N/A 20 to 200+ FPS 76x30x17 mm 

 

 

 

1.7 3D Depth Sensing Applications in Rehabilitation Science and Human Motion 

Evaluation 

 

 

Many studies have developed the Kinect for assessment of balance and postural control [60-

64], dynamic balance tests [65], fall prevention [66, 67], and stroke rehabilitation [68-71]. Tan et 

al. reported that the Kinect can measure habitual gait speed and timed-up-and-go variables of the 

motor and Postural Instability and Gait Difficulty (PIGD) subscales under the Unified Parkinson’s 

Disease Rating Scale (UPDRS). Clark et al. also showed that the Kinect can be a reliable tool for 

the current clinical gait assessments to evaluate step length, foot swing velocity, gait speed, and 

other variables associated with trunk balance during walking trials of patients with stroke [72]. 
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Some studies showed that the Kinect has the ability to discriminate between populations with 

different clinical conditions. For example, Dolatabadi et al. used the Kinect and k-nearest 

neighbors (k-NN) and dynamic time warping (DTW) algorithms to correctly classify a gait pattern 

into healthy subjects and patients who previously had a stroke with 96% accuracy [73]. Leightley 

and colleagues showed that the Kinect can be used to evaluate a clinically validated assessment of 

sit-to-stand techniques and differentiate groups of master athletes, healthy old people, and young 

adults [74].  

The Kinect has also been used in human movement pattern classification and motion 

evaluation. Protopapadakis and colleagues used the joint center data and multiple machine learning 

algorithms to identify six types of dance poses [75]. Plantard et al. computed the Rapid Upper 

Limb Assessment (RULA) scores based on the Kinect skeleton data [76, 77]. The RULA was 

developed to investigate the exposure of individual workers to risk factors associated with work-

related upper limb disorders [78]. Similar to the TAI, the RULA breaks down a motion task into 

different components and is evaluated by watching the subject’s joint angles and position of his/her 

upper extremities and trunk. The RULA entails a trained rater who watches the task and provides 

a posture rating based on the observed shoulder angles of motion, wrist and forearm positioning, 

and trunk twisting and bending. However, some studies also reported that the main weakness of 

RULA is related to the fair level of inter-rater reliability (ICC<0.5) [79, 80]. Following the 

outcome measures of the RULA as the gold standard, Manghisi and colleagues developed a real-

time software tool based on the Kinect v2 to autoscore the RULA and evaluate the upper extremity 

musculoskeletal disorder risk factors in workplaces [81].  
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1.8 Significance 

 

 

Transfer-related pain and injury can adversely affect the quality of life of wheelchair users.  

Many studies reported that the pain is a major factor of functional decline and low quality of life 

in individuals with SCI [82, 83]. This lesser quality of life manifests itself as a loss of autonomy 

and a decreased ability to participate in society [84-87]. Dalyan et al. documented a significant 

association between employment status and upper limb pain, with unemployment higher and full-

time employment lower in individuals with upper limb pain than those without pain (21.4% vs. 

7.1% and 20% vs. 45.2%, respectively) [88].  

Proper transfer technique helps wheelchair users to prevent and reduce the risk of upper 

arm pain and injuries. However, education on proper transfer technique is not well disseminated 

and therapists have limited time to work with wheelchair users to develop their skills. A marker-

less motion capture sensor combined with an artificial intelligence algorithm that can automate the 

assessment process may be helpful for clinicians and wheelchair users in identifying their deficits 

and in learning proper transfer technique.  

This study fills a gap that exists between research and the practical clinical application of 

the TAI. The results of this work will support a background algorithm for an automatic transfer 

evaluation system that provides real-time feedback to both therapists and patients. Also, we aim 

to show that our models will be robust to the type of 3D depth sensors so that they will still be 

useful should a specific brand of sensor become obsolete. The system will ultimately be used to 
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identify problems with transfers and provide guidance on corrective strategies aimed at preserving 

upper limb function. Most wheelchair users with upper limb pain or injury do not seek medical 

attention or tend to seek conservative treatment for their problems [89, 90]. Unfortunately, 

common treatments such as anti-inflammatories are generally unsuccessful. Moreover, most 

wheelchair users are not willing to undergo surgical treatment because they rely heavily on their 

upper extremities to perform activities of daily living.  Recovery from surgery would require that 

they rest their arms to heal like able-bodied patients which would require them to rely on others to 

support daily mobility and functions. Therefore, it is critical for a wheelchair user to preserve their 

upper extremity function through increased awareness and preventative strategies such as by using 

evidence-based proper transfer techniques to reduce the risk of injury. As a result, patients with 

SCI and the healthcare system will benefit from reduced healthcare costs associated with treating 

transfer related pain, overuse injuries, and personal care assistance.  

 

 

 

1.9 Thesis Objectives 

 

 

The first objective of this dissertation work (specific aim 1 and aim 2) was to develop 

machine learning models for classifying proper and improper transfer technique using input from 

the Kinect v2. However, as Microsoft recently announced discontinuation of the Kinect v2 a 

second objective of this study was to explore using an alternative sensor on the market that can 

provide motion tracking.  Specific aim 3 was to test the feasibility of a surrogate motion capture 
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sensor available on the market (Intel’s RealSense) for measuring key variables of transfer 

evaluation.  
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2.0  Automating the Clinical Assessment of Independent Wheelchair Sitting Pivot 

Transfer Techniques 

 

 

 

2.1 Abstract 

 

This chapter has been published in Topics in Spinal Cord Injury Rehabilitation. Full citation: Wei 

L, Chung CS, Koontz AM. Automating the Clinical Assessment of Independent Wheelchair Sitting 

Pivot Transfer Techniques. Topics in Spinal Cord Injury Rehabilitation, 2021, Permission was 

obtained for use.  

Introduction: Using proper transfer technique can help to reduce forces and prevent secondary 

injuries. However, current assessment tools rely on the ability to subjectively identify harmful 

movement patterns.   

Objective: The purpose of the study was to determine the accuracy of using a low-cost markerless 

motion capture camera and machine learning methods to evaluate the quality of independent 

wheelchair sitting pivot transfers. We hypothesized that the algorithms would be able to discern 

proper (low risk) and improper (high risk) wheelchair transfer techniques in accordance with 

component items on the Transfer Assessment Instrument (TAI).  

Methods: Transfer motions of 91 full-time wheelchair users were recorded and used to develop 

machine learning classifiers that could be used to discern proper from improper technique.  The 

data were labeled using the TAI item scores. Motion variables from the Kinect were inputted as 
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the features. Random forests and K-nearest neighbors algorithms were chosen as the classifiers. 

Eighty percent of the data were used for model training and hyperparameter turning. The validation 

process was performed using 20% of the data as the test set.  

Results: The area under the receiver operating characteristic curve of the test set for each item was 

over 0.79. After adjusting the decision threshold, the precisions of the models were over 0.87, and 

the model accuracies over 71%.  

Conclusions: The results show promise for the objective assessment of the transfer technique 

using a low cost camera and machine learning classifiers.   

Key Words: Wheelchair Biomechanics, Skeletal Tracking, Machine Learning, Activities of Daily 

Living, Feature Engineering and Feature Selection, Motion capture 

 

 

 

2.2 Introduction 

 

 

Using proper transfer mechanics can help protect wheelchair users from developing upper 

limb pain and injury. The Transfer Assessment Instrument (TAI) [36] is a tool that was developed 

to evaluate transfer technique and help clinicians and users recognize deficits in technique. 

Research has shown that wheelchair users who received high scores on the TAI had significantly 

decreased forces and moments on the upper arm joints while performing transfers to and from 

different surfaces [7]. However, there are some shortcomings with using the tool in clinical practice.  

A therapist needs to be familiar with the 15 items and be aware of what to look for so when he or 
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she watches the transfer, which can occur very quickly, the TAI can be scored. Even with training 

and practice, results are influenced by the rater’s subjective interpretation of the wheelchair setup 

and body movements. The TAI has low to moderate intra-rater reliability (ICC=.44 to .64) for 

wheelchair setup items and moderate inter-rater reliability of the body setup items (ICC=.65 to .72)  

[36]. These issues decrease the reliability and usability of the TAI in clinical settings.  

Transfer techniques have been objectively quantified using high-tech methods such as 3D 

motion capture systems (e.g Vicon) [91-93]. These systems however are expensive, require 

technical backgrounds or expertise to use and are not readily available in many SCI clinics where 

transfers would typically be assessed.  Recently the use of marker-less 3D depth sensors to detect 

and quantify movement patterns have emerged as potential surrogates to these higher-tech methods 

and for applications that may not need the highest level of accuracy that higher-tech methods can 

provide.  Depth sensors allow for creating 3D maps of a human body and to identify anatomical 

landmarks (e.g. joint center locations) using a small portable low-cost camera and artificial 

intelligence [94]. Many studies have used the Microsoft Kinect for the clinical assessment of 

balance and postural control [60-65], fall prevention [66, 67], and stroke rehabilitation [68-71]. 

Some studies have also shown that the Kinect can discriminate between populations with different 

clinical conditions. For example, Dolatabadi et al. used the Kinect and k-nearest neighbors (k-NN) 

and dynamic time warping (DTW) algorithms to correctly differentiate the gait patterns of 

unimpaired participants and persons with a stroke with 96% accuracy [73]. Leightley and 

colleagues showed that the Kinect can be used to evaluate sit-to-stand techniques and differentiate 

between groups of master athletes, healthy older people, and young adults [74]. 

The potential to use the Kinect to accurately and reliably quantify transfer motions has 

been recently studied [36].  A study comparing transfer motions recorded using the Vicon and 
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first-generation Kinect v1 sensor found good to excellent test-retest reliability (ICC ≥ 0.71) and 

upper limb and trunk range of motion trajectories that were similar between the two systems (cross-

correlation coefficients ranging from 0.71 to 0.97) [95]. In a follow-up study the Kinect 2 sensor 

was able to discern differences in movement variables among unimpaired individuals who were 

trained to use proper technique and three variations of improper transfer technique [96].  This study 

aims to determine Kinect v2’s ability to discern differences between proper and improper 

movement patterns among individuals who routinely perform transfers.  We hypothesize that the 

Kinect 2 and supporting machine learning (ML) algorithms will be able to achieve an area under 

the receiver operating characteristic curve (AUC) of at least 0.80 and precision of at least 0.90 for 

each prediction model, values that were felt would yield high clinical acceptability.  Our long-term 

goal is to develop a system that can watch a transfer and automate the TAI scores in real-time. 

Ideally the system would produce TAI scores with a higher level of reliability and objectivity than 

the current method of assessment.  Such as system may help to reduce therapist burden and 

facilitate easier and more reliable transfer assessments in clinical settings. 

 

 

 

2.3 Methods 

 

 

2.3.1 Participants 
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Participants were recruited through research registries, local SCI clinics and rehabilitation 

hospitals, and at organized recreational sport events. The inclusion criteria were 1) have 

discernable neurological impairment affecting both lower extremities or persons with transfemoral 

or transtibial amputation of both lower extremities who do not use prostheses during transfers, 2) 

at least one-year post-injury or diagnosis, 3) able to independently transfer to/from a wheelchair 

without human assistance or assistive devices, 4) use a wheelchair for the majority of mobility 

(over 40 hours/week), and over the age of 18 years. Participants were excluded if they had 1) 

current or recent history of pressure sores in the last year, 2) history of seizures or angina, or 3) 

were able to stand unsupported. 

 

2.3.2 Study Protocol 

 

2.3.2.1 Experimental Setup 

A Kinect v2 sensor was positioned two meters in front of the participants, 70 centimeters 

above the floor, and centered between the wheelchair and the bench (Figure 1). A custom graphical 

user interface (GUI) was programed in C# using Visual Studio 2012, .NET Framework 4.0, and 

the Kinect for Windows SDK to collect the 3D joint center position data in a Cartesian coordinate 

system from the Kinect sensor. The sampling frequency was 30Hz.  
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Figure 1. Experimental setup of wheelchair, bench and Kinect. The coordinate system follows the right-hand 

rule 

 

2.3.2.2 Transfer Protocol and Evaluation 

All wheelchair users used their own chairs for the testing and were instructed to perform a 

transfer to a tub bench (70cm x 55cm) in a habitual way. Before data collection, the participants 

were provided an opportunity to adjust the position between their wheelchairs and the bench and 

also practiced the transfers to familiarize themselves with the setup. Participants were asked to 

transfer up to five times to and from the wheelchair and a level-height bench.  A subset of the 

participants (31 out of 91) also performed five non-level transfers 3 inches higher or lower 

(randomly assigned) relative to the wheelchair seat. The order of level and non-level was decided 

by a random number sequence. Up to three clinicians who were experienced in scoring the TAI 
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evaluated and scored each trial. The participants were asked to sit on the bench for 5 to 10 seconds 

before they transferred back. A transfer board was provided for the participants who requested it 

for the transfer. The participant was informed that they could request a break or discontinue the 

study at any time. Digital video was recorded during all transfers to allow for review and resolution 

of potential discrepancies in expert scoring if necessary. Opportunities for the participants to rest 

were built into the protocol. Approximately 3-5 minutes of rest time between trials and the 

participants were allowed to take more time to rest until they were ready for the next trials.  

 

2.3.2.3 Data Labeling 

The TAI 4.0 scores after consensual agreement among raters and video reviews were used 

as the gold standard (true outcome) for labeling the data [36]. The TAI breaks down a transfer into 

multiple components and evaluates each one independently. The 15 items are classified into three 

subdomains: wheelchair setup (4 items), body setup (9 items), and flight/landing (2 items). Items 

are scored “yes” (1 point) when the participant performs the specified skill correctly and “no” (0 

points) when the participant performs the skill incorrectly. A (.5) partial credit is allowed for items 

6, 7, 10 and 11. However, because partial credit means there is room for improvement, partial 

credit techniques were assigned ‘0’ points so that the ML algorithm would flag them as improper 

techniques. Combining the items scores from all items gives a total score on a continuous scale (0 

being worst to 10 being best) that provides an overall measure of transfer performance. Each TAI 

item has specific movement characteristics (e.g. features) related to the outcomes (e.g. proper or 

improper technique). Items 1, 2, 7 and 8 pertain to the body position during the setup phase (just 

before transfer), and items 9, 10, 11, 12, 13, 14 and 15 pertain to the biomechanics in the lift phase.  

The time frames that define the setup and lift phase were manually (visually) identified for each 
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of these transfers using the videos captured by the Kinect RGB camera (Figure 2). Separate ML 

models were developed to predict the outcome of each TAI item. Item 3, 4, 5, and 6 are not 

included in this study because they cannot be identified by the Kinect.     

 

Figure 2. Phases of a subject transferring from a wheelchair to a bench. a: start of the setup phase, b: transition 

point between the setup phase and the lift phase, c: end of the lift phase 

 

2.3.2.4 Features 

Universal features were applied to all items and were comprised of joint motion angles 

(Table 2, 3). Maximum, minimum, range of motion, and average values of each feature were 

calculated over the time windows of the setup phase and the lift phase. In additional to the universal 

features, we designed specific features for each item based on the item statements. These specific 

features consisted of selected displacements, velocities, accelerations, jerks, triangle areas between 

three joint centers at the hand, and anthropometric variables (Table 4).  
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Table 2. a) Skeleton position detected by Kinect relative to the human body [54], and b) Body Segment 

Vectors. The joint centers defined by the Kinect sensor 

*Trunk Anterior is calculated as the cross product of the trunk and shoulder across vectors.  Thus, it is a 

vector that starts at their chest and points out to the front 

a) 

 

 

 

 

 

 

 

 

 

 

 

b) 
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Body Segment Vectors Kinect Joint Center 

Trunk SPINE_SHOULDER 

SPINE_MID 

Shoulder Across SHOULDER_RIGHT 

SHOULDER_LEFT 

Trunk Anterior* Cross product of: 

TRUNK and Shoulder 

Across 

Upper Arm SHOULDER 

ELBOW 

Forearm ELBOW 

WRIST 

Shoulder to Wrist SHOULDER 

WRIST 

Hand WRIST 

HAND 

Thigh HIP 

KNEE 

Hip Across HIP_RIGHT 

HIP_LEFT 

Head Hip Head 

Spine Base 
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Table 3. Universal biomechanics features for all TAI items. Maximum, minimum, range of motion, and average 

values of each feature are calculated over the lift or the setup phase durations and applied to the models 

Universal Feature Definition 

Shoulder Plane of Elevation 

Angle 

Angle between Trunk Anterior vector and Upper Arm vector, projected on 

transverse plane 

Shoulder to Wrist Angle  Angle between Trunk Anterior vector and Shoulder to Wrist vector, projected on 

transverse plane 

Shoulder Elevation  Angle between Trunk vector and Upper Arm vector 

Elbow Flexion  Angle between Upper Arm vector and Forearm vector 

Wrist Flexion Angle between Forearm vector and Hand vector 

Trunk Flexion  Angle between Trunk vector and Thigh vector 

Trunk Twist Angle between Shoulder Across vector and Hip Across vector 

Trunk Bending in Transverse Angle between Shoulder Across vector and Hip Across vector, projected on 

transverse plane 

Trunk Bending in Frontal Angle between Shoulder Across vector and Hip Across vector, projected on 

frontal plane 
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Table 4. Specific features for each TAI item. a: from the joint center HIP_LEFT to the HIP_RIGHT, b: from 

the joint center SHOULDER_LEFT to the SHOULDER_RIGHT 

TAI Item  Related feature Definition 

1. Distance between 

wheelchair and the 

targeted surface is 

less than 3 inches 

Spine Base 

Displacement in X  

Displacement of the SPINE_BASE in X direction during the 

lift phase 

Spine Mid 

Displacement in X 

Displacement of the SPINE_MID in X direction during the lift 

phase 

Spine Shoulder 

Displacement in X 

Displacement of the SPINE_SHOULDER in X direction 

during the lift phase 

Neck Displacement in 

X 

Displacement of the SPINE_NECK in X direction during the 

lift phase 

Head Displacement in 

X 

Displacement of the SPINE_HEAD in X direction during the 

lift phase 

2. The angle between 

wheelchair and the 

targeted surface is 0-

19 degrees for power 

wheelchair, or 20-45 

degrees for manual 

wheelchair 

Starting Hip Angle Angle between the global X and a Hip vectora at the start of 

the setup phase 

End Hip Angle Angle between the global X and a Hip vector at the end of the 

setup phase 

Starting Shoulder 

Angle 

Angle between the global X and a shoulder vectorb at the start 

of the setup phase 

End Shoulder Angle Angle between the global X and a shoulder vector at the end 

of the setup phase 

7. Feet are on the 

floor or the targeted 

surface  

Left / Right Knee 

Displacement 

Displacement of the RIGHT / LEFT_KNEE during the setup 

phase 

Left / Right Ankle 

Displacement 

Displacement of the RIGHT / LEFT_ANKLE during the setup 

phase 

Left / Right Foot 

Displacement 

Displacement of the RIGHT / LEFT_FOOT during the setup 

phase 
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8. Scooting hips to 

the front of the seat, 

at least 1/3 of thigh is 

off the surface 

 

Spine Base 

Displacement in Y 

Displacement of the SPINE_BASE in Y direction during the 

lift phase 

Right / Left Hip 

Displacement in Y 

Displacement of the HIP_RIGHT/LEFT in Y direction during 

the lift phase 

Spine Base 

Displacement 

Displacement of the SPINE_BASE during the setup phase 

Right / Left Hip 

Displacement 

Displacement of the HIP_RIGHT/LEFT during the setup 

phase 

9. Leading Hand 

position before 

transfer 

Leading Forearm 

Length 

The average length between ELBOW to WRIST during 

transfer 

Leading Upper Length The average length between SHOUDLER to ELBOW during 

transfer 

10. Push off hand 

grips armrest, wheel, 

frame, cushion or 

surface edge 

Push off Handgrip 

Area 

Triangle area between HAND_TIP, THUMB, and HAND on 

the push off side 

11. Leading hand 

grips armrest, wheel, 

frame, cushion or 

surface edge 

Leading Handgrip Area Triangle area between HAND_TIP, THUMB, and HAND on 

the leading side 

12. Leading Hand 

position after transfer 

No specific features for this item 

13. During transfer, 

trunk is leaning 

forward, away from 

the targeted surface 

Trunk Angle at Y Axis Angle between global Y (vertical-axis) and Head Hip vector 
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14. Flight movement 

is in one smooth and 

fluid motion 

&  

15. No excessive 

movement occurred 

(no loss of balance) 

after landing 

Velocity, Acceleration, 

and Jerk at 

SPINE_BASE, 

SPINE_MID, 

SPINE_SHOULDER, 

NECK, and HEAD 

Linear velocity, acceleration, jerk at SPINE_BASE, 

SPINE_MID, SPINE_SHOULDER, NECK, and HEAD 

during the lift phase. Maximum, minimum, range of motion, 

and average values of each feature are calculated. Totally 60 

features are computed.  

 

 

 

2.3.4.5 Model Performance Evaluation 

The data were divided into three sets: a training set (80% of transfer trials) used to learn 

model parameters and to build the cost functions, a validation set (20% of training data set) used 

to search the best hyper-parameters of the classifier, and a test set (20% of transfer trials) used to 

assess model performance. A 5-fold cross-validation was applied between the training set and the 

validation set to tune the models. The AUC and confusion matrixes with true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) individually for each TAI item were 

generated. During the feature selection process, the training set’s AUC and the average accuracy 

and standard deviation (STD) of the cross-validation were calculated. For the test set, each model's 

AUC, model accuracy, false discovery rate (FDR, (
(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)+(𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
)), precision and 

recall were computed. The random forest classifier (RF) and K nearest neighbors classifier (KNN) 

were selected for item models as they showed the best performance after initially testing 16 

supervised ML classifiers (see Appendix C.).  The details of the feature engineering processes are 

shown below: 



  30 

1) Input the universal features and specific features for each item as potential predictors of 

each classification model 

2) Find and remove correlated features: 

a. Compute absolute values of the coefficient matrix using all the features 

b. Determine a group of features that have a Spearman’s correlation coefficient greater 

than .9 

c. Select one feature from each group of correlated features and discard the rest  

3) Train a preliminary model with the selected features from the previous step 

a. Scale features via Z-score normalization 

b. Use Python “GridSearchCV” function from the Scikit-learn library to find the best 

hyper-parameters for the classifier. 20% of data from the training set is split as the 

validation set.  

c. Compute the AUC using both training set and test set data, and the confusion matrix 

using the test set data 

4) Determine the number of features by permutation feature importance: 

a. Permute (shuffle) the values of each feature from the observations 

b. Re-evaluate model performance by AUC for training set 

c. Determine the feature importance by the dropped performance 

d. Keep features that have high permutation importance and re-build a training model 

using the selected features. 20% of data from the training set is split as the validation 

set to search the best hyper-parameters (Table 5). The model aims to achieve 

approximate or better AUC to the preliminary model at step 3) 

5) Evaluate the model performance 
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a. Compute the AUC for both training set and test set, and mean and standard 

deviation of accuracy from the training set 

b. Tune the decision threshold of the classifier to achieve a better precision score, aim 

to achieve that the false discovery rate is less than .10 and the precision is greater 

than .90 

c. Compute the confusion matrix, accuracy, FDR, precision and recall using the test 

set data 

 

Table 5. Hyper-parameters of each item classifier 

Item Classifier Hyper-parameters 

1. WC distance KNN leaf_size=5, n_jobs=-1, n_neighbors=2, p=1 

2. WC angle RF class_weight=None,criterion='gini',max_depth=15, max_features='log2', 

min_samples_split=2, n_estimators=50 

7. Feet down RF class_weight=None,criterion='entropy', max_depth=15, 

max_features='auto', min_samples_split=3, n_estimators=50 

8. Scooting forward RF class_weight='balanced',criterion='gini', max_depth=3, 

max_features='auto', min_samples_split=3, n_estimators=300 

9. L-hand position 

(before) 

RF class_weight='balanced',criterion='entropy', max_depth=3, 

max_features='auto', min_samples_split=2, n_estimators=200 

10. Push-off hand 

handgrip 

KNN leaf_size=5, n_jobs=-1, n_neighbors=4, p=1 

11. L-hand handgrip KNN leaf_size=5, n_jobs=-1, n_neighbors=4, p=1 

12. L-hand position 

(after) 

RF class_weight='balanced',criterion='entropy', max_depth=3, 

max_features='sqrt', min_samples_split=3, n_estimators=50 

13. Body leaning RF class_weight='balanced',criterion='entropy', max_depth=3, 

max_features='sqrt', min_samples_split=3, n_estimators=50 
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14. Flight RF class_weight='balanced',criterion='entropy', max_depth=3, 

max_features='sqrt', min_samples_split=10, n_estimators=200 

15. Landing RF class_weight='balanced',criterion='entropy', max_depth=3, 

max_features='sqrt', min_samples_split=10, n_estimators=50 

Key: KNN: k-nearest neighbors, L-hand: leading hand, RF: random forest, WC: wheelchair. 

 

 

 

2.4 Results 

 

 

2.4.1 Participants Demographics 

 

 Seventy-nine men and 12 women with an average age of 54.9 years (standard deviation 

(STD)=10.0) contributed a total of 591 transfer trials for the analysis.  The group performed on 

average of 15.4 transfers (STD=6.9, self-reported) per day. Thirty-three (36%) were African 

Americans, 37 (41%) were Caucasian, 11 (14%) were Hispanic, three were Asian, two denoted 

mixed race, and five did not answer the question. Seventy-four participants (82%) used a manual 

wheelchair.  Sixty-six (73%) had a spinal cord injury, 15 (16%) had an amputation, 7 (8%) had 

multiple sclerosis, and others included Guillain barre (n=2) and traumatic brain injury (n=1).   The 

deficit rates of the TAI item scores ranged from 14% (not scooting forward) to 55% (not leaning 

the trunk forward) (see Table 6).  

 

 

 



  33 

Table 6. Cases of proper and improper transfer technique based on TAI item scores for the 91 wheelchair users 

in the database 

TAI item 

Total 

trials 

Proper 

cases % 

improper 

cases % 

1. Wheelchair distance 591 413 (70) 178 (30) 

2. Wheelchair angle 586 375 (64) 211 (36) 

7. Place feet down 581 354 (61) 227 (39) 

8. Scooting forward 591 443 (75) 148 (25) 

9. Leading hand position (before) 581 482 (83) 99 (17) 

10. Push off handgrip 580 342 (59) 238 (41) 

11. Leading handgrip 580 336 (58) 244 (42) 

12. Leading hand position (after) 591 526 (89) 65 (11) 

13. Body leaning 591 420 (71) 171 (29) 

14. Flight phase 591 402 (68) 189 (32) 

15. Landing phase 591 419 (79) 172 (21) 

 

 

2.4.2 Model Performance  

 

 The AUC of the training set models ranged from .83 to.99 (Table 7). The average 

accuracy from cross-validation ranged from 72% to 88%. After tuning the decision thresholds of 

the classification models, the AUC of the test sets were between .79 to .94, the accuracies 71% to 

92%, FDR .04 to .13, precisions .90 to .96, and recalls .61 to .95. The average AUCs of the test 

sets were .86, .89 and .85 for the subdomains of wheelchair setup, body setup, and flight items, 

respectively.  All item models met our hypothesis (the AUC is greater than .80 and the precision 

is greater than .90) except for item 7, placing feet on the ground during the setup phase 
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(precision=.87), and item 15, keeping balance while landing on the surface (AUC=.79). More 

details of the ML training processes and the test set confusion matrix can be found in the “Model 

training process and results of each TAI 4.0 item” section of the Supplemental Materials.   
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Table 7. Summary of the TAI item model performance in the training set and test set 
 Feature: Training Set Test Set (after decision thresholds adjustment) 

TAI 

Phase 

Item Classifier # of Feature 

selected 

Top 3 Important Features AUC Mean of CV 

Accuracy 

STD AUC Accuracy False Discovery 

Rate 

Precision Recall 

P
h
as

e 
I 

W
h
ee

lc
h
ai

r 
S

et
u
p

 

1 WC distance KNN 26 Average of leading-side shoulder POE angle  

Maximum of leading-side shoulder elevation 

angle  

Minimum of trailing-side shoulder-to-Wrist 
vector elevation angle 

0.96 81% 2% 0.81 71% 0.04 0.96 0.61 

2 WC angle RF 14 Shoulder-across angle at initial position 

Minimum of trunk flexion angle 

Minimum of trailing-side shoulder elevation 

angle 

0.99 87% 4% 0.90 90% 0.09 0.91 0.93 

P
h
as

e 
II

 

B
o
d
y
 S

et
u
p

 

7 Feet down RF 29 Average of leading-side elbow flexion angle  

Maximum of trunk leaning angle 

Maximum of trailing-side shoulder POE angle  

0.99 78% 3% 0.85 71% 0.13 0.87 0.63 

8 Scooting 

forward 

RF 27 Minimum of trailing-side shoulder elevation 

angle 
Minimum of leading-side shoulder elevation 

angle 

Vertical displacement of spine-base during lift 

phase 

0.96 80% 3% 0.87 82% 0.10 0.90 0.84 

9 L-hand 
position 

(before) 

RF 27 Shoulder elevation angle at initial position 
Average of shoulder POE angle 

Maximum of elbow flexion angle 

0.96 84% 5% 0.94 92% 0.04 0.96 0.95 

P
h
as

e 
II

I 

F
li

g
h
t 

10 Push-off 

hand 

handgrip 

KNN 38 Average of hand grip area 

Shoulder POE angle at initial position 

Shoulder-to-Wrist vector POE angle at initial 
position 

0.97 72% 3% 0.82 77% 0.08 0.92 0.67 

11 L-hand  

handgrip 

KNN 35 Average of wrist flexion angle 

Maximum of hand grip area 

Minimum of trunk flexion angle 

0.95 76% 3% 0.87 75% 0.09 0.91 0.63 

12 L-hand 

position  

(after) 

RF 23 Minimum of shoulder POE angle 

Average of shoulder-to-Wrist vector elevation 

angle 

Average of shoulder POE angle 

0.98 88% 2% 0.85 86% 0.05 0.95 0.89 

13 Body leaning RF 9 Maximum of trunk leaning angle 
Average of trunk leaning angle 

Trunk flexion angle at initial position 

0.94 80% 3% 0.89 81% 0.06 0.94 0.78 

14 Flight RF 40 Average of leading-side elbow flexion angle 

Leading-side Shoulder-to-Wrist vector POE 

angle at initial position 
Average of SPINE_SHOULDER velocity 

0.95 73% 3% 0.87 82% 0.09 0.91 0.83 

15 Landing RF 33 Maximum of SPINE_SHOULDER velocity  

Minimum of leading-side wrist flexion angle 

Minimum of trailing-side wrist flexion angle 

0.83 80% 2% 0.79 81% 0.09 0.91 0.83 

Key: AUC: area under receiver operating characteristic curve, CV: cross-validation, KNN: k-nearest neighbors, L-hand: leading hand, POE: plane of elevation, RF: random forest, 

STD: standard deviation, WC: wheelchair. 
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2.5 Discussion 

 

 

 The goal of this study was to determine if Kinect measured transfer motions and ML 

algorithms could be used to predict TAI item scores.   Model performance was tested on 20% of 

the data that was not used to train and tune the model. Thus, the performance outcomes provide an 

idea of how good the models would be in predicting the TAI scores for new ‘unseen’ transfers. 

This study also included one of the largest sample sizes used in an ML modeling application in 

human movement biomechanics (median = 40 subjects [97]).  The wheelchair users tested were 

also diverse in terms of gender, the types and levels of disabilities, races represented, and 

wheelchairs used (e.g. manual and power).  These factors all help to strengthen the modeling 

approaches and allow for greater generalizability and prediction success. 

The results show that the model predictions across all TAI items have accuracies that range 

from 71% to 92%.  The results for body leaning (item 13: 81%) and smooth landing (item 15: 81%) 

are better than a recent study that attempted to predict TAI outcomes from accelerometer data [98]. 

In this previous study a single chest worn accelerometer was used to predict two items that scored 

the head hips relationship and landing based on the previous TAI 3.0 version with accuracies of 

75.9% and 79.9%. Items pertaining to wheelchair setup and arm positioning could not be modeled 

in their study and there were not enough improper cases in the dataset to model the item related to 

controlled flight.   Unlike accelerometry a depth sensor can quantify static positioning and motion 

to a finer level of detail (e.g. linear and angular displacements and ranges of motions of body 

segments) which may explain in part the differences between studies.  However, a depth sensor 

requires that person perform the movements within its field of view.  This works well when 
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performing assessments in a set area or space like a rehabilitation clinic, but the sensor isn’t a 

wearable and therefore can’t go with the person and assess their transfer techniques during free-

living.   It may be possible with a wearable inertial measurement unit sensor (IMU) to measure 

more items on the TAI and with greater accuracy than accelerometry but based on our results and 

the types of features that were found to be important in predicting TAI scores it may require that 

multiple sensors be attached to the arms and trunk to obtain the necessary angles, displacements, 

etc.  This may be impractical if the goal of the system is to monitor real world transfers as 

compliance with wearing multiple sensors would be an issue for many wheelchair users [99].   

Most studies report overall accuracy as a main outcome for judging model performance 

however imbalanced data between the proper and improper cases can bias this parameter [97].  In 

this study several items had more proper than improper cases. The AUC unlike the accuracy 

outcome is not affected by imbalanced data. All of our models achieved AUCs over .80 except for 

item 15 (AUC=.79). Although the item 15 model fell slightly short of our AUC goal, other 

outcomes of the test set may be acceptable (accuracy=81%, precision=0.91, recall=0.83). In 

clinical practice, it is more detrimental to diagnose a false-positive TAI score (e.g. saying that the 

person is doing it right when they are doing it wrong) than to diagnose a false-negative TAI score 

(e.g. saying that the person is wrong when they are doing it right). Thus, the decision threshold of 

the model was tuned to achieve high precision and to minimize the false-positive TAI scores and 

FDR. To aid the predictions in catching persons who are using improper technique, we tuned the 

model to achieve precisions that are over .90. The FDR for item 15 after adjusting the decision 

threshold is 0.09 in the test set. This means that the current model could misjudge 9% of transfer 

trials as proper if they were improper but would be much more likely to classify an improper 

landing correctly. However, we felt that erring on the side of classifying a proper one as an 
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improper one would be more clinically acceptable than scoring an improper landing as a proper 

one as the ultimate goal of our model development is to develop a system to identify deficits and 

train individuals on how to perform, or reinforce using proper transfer skills. 

In this study, we not only aimed to achieve high model performance, but also were 

interested in feature interpretation. Thus, we did not select the “black box” models, such as 

artificial neural network (ANN) or convolutional neural network (CNN), and automatic feature 

extraction techniques, such as principal component analysis (PCA). These classifiers and training 

methods might generate high model performance but produce features (principal components that 

can represent most information of imputed features, or “node” in the hidden layer of the neural 

network) that are difficult to interpret or not informative with respect to the item score outcomes. 

For example, if a model scores with high confidence that a patient is using improper transfer 

technique based on the motion data but offers no insight into the specific features related to 

patient’s body movements and position, it is unclear how this knowledge could be used to improve 

the patient’s wheelchair skills. 

 The item 1 asks the rater to observe the distance between the wheelchair front edge and the 

transfer surface. The item is scored “1” if the distance of the gap is less than 3 inches. It would be 

scored “.5” when the gap is three to five inches and scored “0” when the gap is over 5 inches. In 

this study we sorted the trials that had a gap over three inches as improper technique and labeled 

these trials “0” in our database. We assumed that the subjects would have different joint angles 

movements of their upper extremities between the proper and improper groups. We also assumed 

that subjects who score “0” should create more horizontal displacements in the trunk joint centers 

than the subjects who scored “1”, thus we added five more features related to the trunk 

displacements along the horizontal axis. After the model was trained (AUC=.81, Accuracy=71%, 
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FDR=.04, precision=.96, recall=.61), the most important features selected by the model are the 

features related to both leading and trailing side shoulder. The trunk displacement features are also 

selected in the model, but they are less important than joint angle features.  

 To score the item 2, the rater needs to judge the angle between the subject’s wheelchair 

and the side edge of the transfer surface when the participant places the wheelchair and prepares 

to transfer (see appendix). If the subject is using manual wheelchair, he would be scored a “1” only 

if the angle between 20 to 45 degrees. If the subject is using a power wheelchair, he would be 

scored “1” only if the angle is between 0 to 19 degrees. None of our participants placed their 

wheelchair over 45 degrees. However, in this study we aimed to build a model that can classify 

two positions (“0-19 degrees” and “20-45 degrees”) of the wheelchair setup. Thus, we labeled the 

group 0-19 degrees as “0” and 20-45 degrees as “1”. We created a Hip Across and Shoulder Across 

vector parallel to the subject’s coronal plane and computed the angle between the global X-axis 

(Figure 1) and these two vectors at the time frames at the beginning and end of the setup phase and 

used these angles as the specific features. After the feature selection, we found the most important 

feature was using the Shoulder Across vector at the beginning of the setup phase. The other specific 

features of the item 2 might be eliminated due to the high correlation between them. The model 

has high performance (AUC=.90, Accuracy=90%, FDR=.09, precision=.91, recall=.93), and show 

that these features have the ability to distinguish two different sets of wheelchair angles through 

the random forest classifier.  

 To meet the requirement of the item 7, a manual wheelchair user would need to a place 

both feet on the ground before he transfers to the bench. Power wheelchair users are allowed to 

place their feet on the footplate. In the TAI, the subject would be scored “.5” if he places only one 

foot on the ground. Here we labelled the transfer as “0” for the subjects who did not place both 
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feet on the ground, whether or not they used a manual or power wheelchair. In the future work that 

the algorithm could be expanded to power wheelchair users by applying a decision tree method. 

The displacements of the joint centers at the lower body segments during the setup phase, such as 

the KNEE, the ANKLE, and the FOOT, were calculated and inputted as the specific features for 

the item 7. However, the feature importance of these features is very low. It might be due to the 

“occlusion” effect that objects such as the wheelchair frame, wheels, and side guards have on 

infrared reflections and Kinect’s ability to accurate detect the positions of lower body joint centers 

when the subject is seated in the wheelchair. Thus, we only achieved moderate model performance 

on item 7 (AUC=.85, Accuracy=71%, FDR=.13, precision=.87, recall=.63). However, for our 

long-term goal developing a system that can watch a transfer and automate the TAI scores in real 

time, this is an item that is more obvious for therapists to score and may not need to be autoscored 

or supplemented by Kinect evaluation.  

Item 8 focuses on hips scooting during the setup phase. The subject needs to scoot his hips 

to the front of the seat, with at least 1/3 of thigh off the surface. During our first attempt at feature 

engineering, we attempted to use the displacements of the HIP_RIGHT, the HIP_LEFT, and the 

SPINE_BASE during the setup phase as the specific features and the universal features to train the 

model. However, these specific features were not selected, and the model performance of the test 

set was very low. We noticed that if the wheelchair user did not scoot forward, he would need to 

lift his buttocks over the wheel during the transfer. Therefore, we added the features that represent 

the displacements of these three joints during the lift phase but only in the vertical direction (Y-

axis). We assumed that the participants who did not scoot forward and transfer above the wheel 

should generate higher vertical displacements of the HIP_RIGHT, the HIP_LEFT, and the 

SPINE_BASE. After adjusting the selected features, the model performance increased (AUC=.87, 
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Accuracy=82%, FDR=.10, precision=.90, recall=.84), and the vertical displacement of the 

SPINE_BASE is the third most important feature of the trained model.  

 Both items 9 and 12 deal with the leading hand position during the transfer. For item 9, the 

proper technique suggests that the leading hand should not be placed behind the hip before the 

transfer. After the transfer (while the wheelchair user is already on the bench), the item 12 suggests 

that the distance between the leading hand and hip should not be over than 6 inches. We achieved 

the desired model performance (AUC=.85, Accuracy=86%, FDR=.05, precision=.90, recall=.84) 

for item 12 when using only the universal features. However, during our first attempt to train the 

item 9 model with the same features as item 12, the performance is fair. Thus, we added two 

features (length of the leading-side forearm and upper arm) for item 9, because we noticed that for 

persons with shorter arms, they needed to lean their trunk forward and use larger shoulder POE 

and elevation angles to reach a proper hand position than a person with longer arms.  The most 

important features of items 9 and item 12 are related to the shoulder joint movement. After adding 

the specific features to item 9, the model achieved very good performance (AUC=.94, 

Accuracy=92%, FDR=.04, precision=.96, recall=.85). 

 To score items 10 and 11, the clinician needs to observe the push-off hand and leading 

hand position and handgrip during the lift phase, respectively. The TAI suggests that the subject 

should grip the surface edge, wheelchair armrest, frame, or wheel during the transfer rather than 

make a fist or place a flat hand on the surface. The subject can score “0.5” if he bends his fingers 

and places his hand on the surface. In the current database, we had the highest deficit rate of item 

10 and 11 than any other items. Only 59% and 58% of the total trials were using proper techniques 

(or scored “1”). The Kinect SDK provides the joint center position of the HAND_TIP, the HAND, 

and the THUMB. We used their coordinates to calculate the triangle area between the three joints. 
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We assumed that the subject who performed the proper handgrip should have a larger triangle area 

than the subject who made a fist or bent their fingers. The hand area feature was the most important 

feature for item 10 and the second most important feature for item 11. However, the performances 

of the item 10 and 11 models only achieved moderate level (AUC=.82, Accuracy=77%, FDR=.08, 

precision=.92, recall=.67; AUC=.87, Accuracy=75%, FDR=.09, precision=.91, recall=.63, 

respectively). These features might also be affected by Kinect’s ability to accurately detect the 

joint centers when the hand is in contact with a surface. 

Item 13 suggests that the subject should lean their trunk forward, and away from the surface 

he was transferring to while transferring between surfaces. This body motion technique is often 

referred to as the “head-hip relationship”, a motion strategy used for generating momentum for the 

lift phase. In the universal features we defined the trunk flexion angle using the angle between the 

trunk vector and the thigh vector. However, this feature might be affected by the height of 

wheelchair cushion, and the Kinect occlusion. To overcome these limitations, we generated 

another set of features by computing the angle between the trunk vector and the global Y vector 

and applied them as the specific features for item 13. The model reached the desired performance 

of the test set (AUC=.89, Accuracy=81%, FDR=.06, precision=.94, recall=.78) by using only nine 

features.  
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2.6 Limitations 

 

 

The data labeling was based on the TAI which is typically scored after visual observation 

of the movement patterns and is subject to rater subjectivity and interpretation.  To increase the 

reliability of the TAI score we video recorded each transfer and used these videos in accordance 

with the in- person scores to resolve any conflicts.  For the data splitting process, we randomly 

separated all the trials into either a training, validation or testing set. This may impact the 

generalizability of our model results and the ability to make accurate predictions on new data since 

data generated from the same participant could have been used in more than one of the datasets 

[97]. It will be important to continue to test and adapt the models as new data becomes available. 

Microsoft announced the discontinuation of Kinect v2 in 2017 and released a new version 

Azure Kinect DK (Kinect DK) in 2019. The new SDK is supposed to retain the full body tracking 

function however, the skeletal tracking algorithm of the new Kinect DK and the outputted raw data 

are very different than the Kinect v2 [54]. Moreover, research related to classification of body 

skeletal motion with the Kinect DK is not well developed. The Intel RealSense series is another 

type of depth sensor that has been used in several clinical research applications, however, work 

related to human motion classification is not as extensive as the Kinect in the published literature 

due to only the hand gestures and movement tracking function being supported by the Intel official 

SDK [55-58]. 
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2.7 Conclusions 

 

 

Our study demonstrates the potential of using a low-cost, portable camera and the 

developed ML models to facilitate autoscoring of the TAI. Our future plan is to embed the 

developed algorithms into a user-friendly graphic user interface that allows therapists to perform 

transfer assessments more easily and produce results that support training and education on proper 

transfer technique. Identifying transfer deficits early and more effectively may help reduce the 

prevalence of secondary injuries among wheelchair users.  
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3.0  Comparing Two Automated Methods to Detect Sitting Pivot Transfer Phases 

 

 

 

3.1 Introduction 

 

 

Using proper transfer technique can reduce the loading on the upper arm joints and help 

protect wheelchair users from developing injury and pain [4, 33]. The TAI is a 15 item scale used 

by clinicians and therapists to assess transfer quality and identify problems in wheelchair transfers 

which can cause increased forces on upper extremity joints [34, 35]. The TAI is based on clinical 

practice guidelines, current knowledge in the literature, and best clinical practices related to 

transfers.  The TAI measures multiple different components of a transfer including proper setup 

of the wheelchair and body positioning during transfers. The tool is a series of yes or no questions 

that evaluate both the wheelchair user’s overall technique and any weak component skills within 

the transfer [34, 35]. Higher TAI scores represent better wheelchair transfer technique [35]. 

Individuals who score highly on the TAI have lower mechanical loading at the shoulder, elbow 

and wrist in different transfer configurations [4, 7]. Therefore, wheelchair users who learn to 

perform transfers that are consistent with a high TAI score may reduce their risk of upper extremity 

injury and pain by decreasing the joint loading during the transfer.  

While the TAI has been used successfully in research to evaluate proper transfer technique, 

there are limitations in its use for knowledge translation and application in a clinical setting. Firstly, 

clinicians need to become familiar with the TAI items to know if their patient’s transfer was 
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performed correctly or not for each item. The intra-rater reliability of the wheelchair setup items 

is only on the moderate level (ICC = .44 to .55). The inter-rater reliability of the body setup items 

(ICC = .65 to .72) is also lower than other items [36]. The body mechanics and some setup items 

are very difficult to evaluate because the therapist needs to watch multiple movements for different 

items within 0.5 to 1 second during the lifting phase of the transfer. Secondly, according to our 

interviews in multiple rehabilitation institutions and hospitals, many therapists agreed that the TAI 

is great tool to identify specific deficits of patient’s techniques but takes too long to perform in the 

clinic. Thus, the tool is currently used in research but has not yet been widely adopted into clinical 

practice. An automated system that can accurately and objectively observe transfer motions and 

report the TAI outcomes without requiring users to undergo extensive training could be of great 

benefit to therapists and patients with SCI in the future.  

The potential to use the Kinect to accurately and reliably quantify transfer motions has 

been recently studied [36, 95]. The Kinect v2 sensor was able to discern differences in movement 

variables among unimpaired individuals who were trained to use proper technique and three 

variations of improper transfer technique [96]. In our previous studies, we demonstrated that the 

Kinect v2 and supporting machine learning (ML) models achieved an area under the receiver 

operating characteristic curve (AUC) of at least 0.79 and precision of at least 0.87 for the prediction 

classifiers of 11 TAI items [100]. Our long-term goal is to develop a system (Transkinect) that can 

watch a transfer and automate the TAI scores in real-time. Such as system may help to reduce 

therapist burden and facilitate easier and more reliable transfer assessments in clinical settings. 

The TAI item scores are evaluated by the relative components of the wheelchair transfer. 

On the TAI 4.0, Items 1 to 9 are in the wheelchair setup skill group and items 10 to 15 are in the 

flight and landing motion skill groups. For a system to automate the scoring of the TAI, the system 
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must also be able to differentiate the “setup phase” and the flight and landing or “lift phase” of the 

transfer. In other words, in order to generate the features of the ML prediction classifiers of each 

TAI item (TAI-classifiers) [100], a process is needed to separate the lift phase from a time series 

motion capture data of a wheelchair transfer. Desroches and colleagues reported a threshold-based 

method to define the transfer phases by using a marker-based motion capture system and force 

sensor data [101]. However, we aim to automate scoring of the TAI using only the Kinect (motion 

data) to minimize the amount of instrumentation needed to recognize proper from improper 

technique.  

To predict TAI scores using the TAI ML classifiers developed in prior work, the features 

based on the setup and the lift phases are computed. Any errors caused by mis-labelling the transfer 

phase could vary the features and then effect the accuracy of the predicted outcomes. The objective 

of this study was to compare two methods to automate detection of the setup and lift phases, a 

slightly modified version of the threshold method [101] versus a ML algorithm both using only 

the motion data from the Kinect v2. Both methods will be used to mark the start and end timepoints 

of the lift phase. After the start point of the lift phase is marked, the setup phase is defined as a 

duration between the beginning of the transfer trial and the start point of the lift phase (see Method 

section for more details). The aims of our study were to:  

Aim 1: To determine the overall accuracy of each method in predicting the start and end points of 

lifting phases.    

Hypothesis 1:  Using timepoints marked by visual delineation as the gold standard, we 

hypothesized that the ML method would find start and end points of lift phase that were closer to 

the gold standard points than the threshold method.   

Aim 2: To evaluate the accuracy of each method in predicting the TAI item scores.  
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Hypothesis 2:  Using the true outcomes of the TAI-classifiers as the baseline, we hypothesized that 

the ML method would have higher accuracy in predicting TAI item scores than the threshold 

method for each item.  

 

 

 

3.2 Methods 

 

 

3.2.1 Participants 

 

Participants were recruited through research registries, local SCI clinics and rehabilitation 

hospitals, and at organized recreational sport events. They signed consent forms approved by the 

Department of Veterans Affairs Institutional Review Board. The inclusion criteria were 1) have 

discernable neurological impairment affecting both lower extremities or persons with transfemoral 

or transtibial amputation of both lower extremities who do not use prostheses during transfers, 2) 

at least one-year post-injury or diagnosis, 3) able to independently transfer to/from a wheelchair 

without human assistance or assistive devices, 4) use a wheelchair for the majority of mobility 

(over 40 hours/week), and over the age of 18 years. Participants were excluded if they had 1) 

current or recent history of pressure sores in the last year, 2) history of seizures or angina, or 3) 

were able to stand unsupported. 
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3.2.2 Study Protocol 

 

3.2.2.1 Experimental Setup 

A Kinect v2 sensor was positioned two meters in front of the participants, 70 centimeters 

above the floor, and centered between the wheelchair and the bench (Figure 3). A custom graphical 

user interface was programed in C# using Visual Studio 2012, .NET Framework 4.0, and the 

Kinect for Windows SDK to collect the 3D joint center position data in a Cartesian coordinate 

system from the Kinect sensor. The sampling frequency was 30Hz.  

 

Figure 3. Experimental setup of wheelchair, bench and Kinect. The coordinate system follows the right-hand 

rule.  
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3.2.2.2 Transfer Protocol and Evaluation 

All wheelchair users used their own chairs for the testing and were instructed to perform a 

transfer to a tub bench (70cm x 55cm) in a habitual way. Before data collection, the participants 

were provided an opportunity to adjust the position between their wheelchairs and the bench and 

also practiced the transfers to familiarize themselves with the setup. Participants were asked to 

transfer up to five times from the wheelchair to a level-height bench. Up to three raters who were 

experienced in scoring the TAI evaluated and scored each trial. The raters each had more than 2 

years’ experience in performing clinical research of wheelchair transfers. The participants were 

asked to sit on the bench for 5 to 10 seconds before they transferred back. After the participants 

transferred back to the wheelchair, the investigator would instruct the participants to start the next 

transfer. A transfer board was provided for the participants who requested it for the transfer. 

Opportunities for the participant to rest were built into the protocol. Participants could request a 

break or discontinue the study at any time. Digital video was recorded during all transfers to allow 

for review and resolution of potential discrepancies in expert scoring if necessary. 

 

3.2.3 Data Analysis 

 

Only the trials transferring from the wheelchair to the bench were analyzed in this study. 

The phases (start/end points) of the setup and the lift phases were determined using three methods: 

visual (gold standard), threshold, and ML. 

 

3.2.3.1 Visual Method of Phase Delineation 

The videos recorded during each subject’s transfer by the Kinect RGB camera were 
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reviewed and used as the gold standard data of the transfer phases timeline. The “setup phase” was 

defined as the period when the subject was ready for the transfer trial (beginning of the video file), 

to a time point right before the subject lifts their buttocks from the sitting surface. The “lift phase” 

was defined as starting from the end of setup phase to the first time frame when the subject lands 

on the target surface (Figure 4).  

 

 

Figure 4. Phases of a subject transfer from a wheelchair to a level-height bench. a: start of the setup phase, the 

participant is sitting on the wheelchair; b: transition point between the setup phase and the lift phase, the 

participant is about to lift his body from the wheelchair seat; c: end of the lift phase, the participant landed on 

the bench.  

 

 

3.2.3.2 Threshold Method of Phase Delineation 

Linear velocity and displacement in the X-axis of the SPINE_BASE (Figure 5), a joint 

center marker of the Kinect SDK, was chosen to define the beginning and the end of the lift phase, 

because all the subjects have a similar pattern of the time-series data in these two parameters 

through a transfer trial.  

- Beginning of lift phase: 
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One negative peak value is observed in time-series data of the SPINE_BASE linear resultant 

velocity in all subjects. The beginning of the lift phase is determined as the last frame that the 

velocity is less than 0.01 m/s before the peak occurs (Figure 6a). 

- End of lift phase:  

The end of the lift phase is determined when the SPINE_BASE reaches the maximum 

displacement after the beginning of the lift-phase (Figure 6b).  

 

Figure 5.  Skeleton position detected by Kinect relative to the human body [94]  
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(a)             (b) 

Figure 6. (a) Determine the beginning of the lift phase by evaluating linear velocity of SPINE_BASE, (b) 

Determine the end of the lift phase by evaluating displacement in the X direction of SPINE_BASE 

 

 

3.2.3.3 Machine Learning Method of Phase Delineation 

- Database:  

Data collected from 95 transfers performed by 95 wheelchair users (52,777 time frames, 

about 30 minutes) was analyzed.  

- Labeling: 

The videos recorded during each subject’s transfer by the Kinect RGB camera were 

reviewed as the “ground truth” of the transfer phases. The timelines of the Kinect motion data were 

synchronized with the timeline of the video files. Time frames in a transfer trial were manually 

labelled as either setup or lift phase. 

- Features:  

The Kinect v2 can track 25 skeleton joint centers in 30 Hz (Figure 5). Each frame’s linear 

displacements, velocity, acceleration, jerk of the X, Y, Z coordinates of the SPINE_BASE, 

SPINE_MID, SPINE_SHOULDER, and HEAD, were calculated as the features of the ML model. 
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Other features, such as shoulder plane of elevation angles, shoulder abduction/adduction angles, 

elbow, wrist and trunk flexion angle on both arms were computed from the joint center data (see 

2.3.2.4 Feature, universal features, page 22). There was a total of 35 features imputed into the 

feature engineering analysis.  

- Training Approaches: 

The data were divided into three sets: a training set (80% of transfer trials) used to learn 

model parameters and to build the cost functions, a validation set (20% of training data set) used 

to search the best hyper-parameters of the classifier, and a test set (20% of transfer trials) used to 

assess model performance. A 5-fold cross-validation was applied between the training set and the 

validation set to tune the models. The K nearest neighbors classifier (KNN) was selected for item 

models as it showed the best performance after initially testing 16 supervised ML classifiers (see 

Appendix D). The number of the features was determined by the recursive feature elimination 

with cross validation analysis. Feature engineering, model training, and cross validation were 

practiced by applying the Scikit-learn python library. For the test set, the model's area under the 

receiver operating characteristic curve (AUC), and model accuracy were computed to report the 

model performance. 

- Timepoints: 

After applying the trained KNN model to a time series data of a transfer trial, each time 

frame would be labeled as either “1” (lift phase) or “0” (setup phase). To enhance the accuracy of 

the ML prediction method another program was applied as a filter to remove mislabeled frames. 

The program started out by searching the first frame that had six consecutive frames that were 

predicted as “1”. This frame would be marked as the beginning of the lift phase. Then the program 
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searched for the next six consecutive frames labeled as “0”. This frame would be marked as the 

end of the lift phase (Figure 7). 

 

 

 

(a) 

 

(b) 

Figure 7. Example showing how to mark the start (a) and end (b) frame of lift phase by applying the machine 

learning (ML) algorithm. Each time frame from a transfer is labeled by the trained KNN classifier as “1” (lift 

phase) and “0” (setup phase). a) A frame (#110) is marked as the beginning of lift phase if the following six 

frames are all predicted as “1”, b) A frame (#161) is marked as the end of lift phase if the following six frames 

are all predicted as “0”. 

 

 

 3.2.3.4 TAI Score Predictions  

Using the timepoints marked by the visual, threshold, and ML methods, the 11 item TAI-

classifiers developed in previous work were applied to predict the TAI item scores (see Chapter 
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2.0, page 15). The time points and the joint center data served as the inputs to a program coded in 

MATLAB R2020a to calculate the features for the TAI-classifiers [100]. The TAI predicted 

outcomes are generated after applying these features to the TAI-classifiers.  

 

 

 

 

 

3.2.4 Statistical Analysis 

 

3.2.4.1 Aim 1: To determine the overall accuracy of each method in predicting the start and 

end points of lifting phases 

Fifty trials performed by a randomly selected ten wheelchair users from our database were 

analyzed for the main outcomes of this study. The average and standard deviation (STD) of the 

start and end timepoints of the lift phase from five transfers performed by each participant was 

computed. Time = 0 indicated the initiation of the transfer (i.e. the start point of the setup phase). 

In order to examine the errors of timepoint marking for the two sensors, a mean of differences of 

the start/end lift phase timepoints between each automated method and visual method was 

computed:  

𝑀𝐷 = ∑
𝑥𝑖−𝑥𝑔

𝑛

𝑛

𝑖=1
  (1) 

, where MD is the mean of differences; n is sample size; i indicates the trial number, xi is each 

subject’s start or end timepoint (in seconds) marking by the threshold or ML methods, 𝑥𝑔 is the 

timepoints marked by the visual method. An absolute value of the MD (AMD) was also calculated 
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to examine the scalar of differences (ignores if the timepoint is marked before or after the gold 

standard): 

𝐴𝑀𝐷 = ∑
|𝑥𝑖−𝑥𝑔|

𝑛

𝑛

𝑖=1
  (2) 

Histograms of the MDs and AMDs for all transfers were created. The Bland-Altman plots were 

used to investigate the agreement between the visual and the TH method, and between the visual 

and the ML method. The “agreement” in this study is the characteristic that describes how close 

the two measurements are. The infimum (inf) and supremum (sub) of the agreement will be set as: 

𝑖𝑛𝑓 = 𝑀𝐷 − 1.96 ×  𝑆𝑇𝐷, (3a) 

𝑠𝑢𝑏 = 𝑀𝐷 + 1.96 ×  𝑆𝑇𝐷,  (3b) 

 

3.2.4.2 Aim 2: To evaluate the accuracy of each method in predicting the TAI item scores 

The 50 trials performed by the randomly selected ten wheelchair users were excluded from 

the ML training and model tuning process. To generate the predicted TAI outcomes, we applied 

the TAI-classifiers for 11 TAI items. Each model generates a dichotomized (Yes/No) predicted 

item score. The accuracies of each TAI-classifier item ranges from 71% to 92% [100]. Using the 

TAI scores rated by the clinicians as the true outcome and comparing with the predicted scores 

from the visual method, all the true positive and true negative trials were identified and used as the 

“baseline” trials for testing the accuracy of the two methods. The false positive and false negative 

trials scored by the TAI-classifiers were eliminated from the analysis.  The accuracy of the 

threshold or ML method in predicting the TAI scores was defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇

𝐵𝐿
× 100% (4) 

where BL is the number of baseline trials; T is the number of trials correctly scored (i.e. the 

predicted TAI scores matched the BL) by applying the timepoints from the threshold method or 
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the ML method.  

 

3.3 Results 

 

 

3.3.1 Participants 

 

 The demographics of the ten wheelchair users who were randomly selected from the 

database of 81 participants and used to examine the accuracy of the threshold and ML methods are 

shown in Table 8.   

 

Table 8. Participant demographics 

P Disability Gander Ethnic WC Age Year Transfer TAI 

1 SCI, T4 complete Male Caucasian Manual 44 2 10 5.5 

2 Amputation, left leg Male African American Power 57 2 10 1.8 

3 SCI, T10 complete Female Hispanic Manual 48 22 24 6.4 

4 Amputation, below knee Male African American Power 61 13 12 8.2 

5 SCI, C5-6, incomplete Male African American Power 70 11 14 5.5 

6 Amputation, below knee Male Caucasian Power 47 24 8 4.0 

7 SCI, T12 incomplete Male Caucasian Manual 57 14 4 7.3 

8 SCI, L incomplete Male (no answer) Manual 62 27 6 9.1 

9 Amputation, below knee Male Caucasian Manual 69 13 4 8.2 

10 Poliomyelitis Female Hispanic Power 55 48 9.5 4.5 

        Mean 57.0 17.6 10.2 6.0 

        STD 8.9 13.6 5.9 2.2 
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Key: P, participant number; WC, wheelchair type; Year, years using wheelchairs; Transfer, times of transfer per day 

(self-reported); TAI, total TAI scores (average of item scores multiply 10, “yes” scores 1 and “no” scores 0); STD, 

standard deviation.  

 

 

3.3.2 KNN Model performance  

 Seventy-six participants’ transfer data were split into the training set and 19 participants’ 

data were split into of the test set. The model was tuned to the achieve the best performance of 

AUC (n_neighbors=5, p=1, leaf_size=25) by only using the training set data. The average accuracy 

of the validation set was .97 (STD = .00146), and the AUC of the tuned training set was .99. Each 

data (~13,987 frames) in the test set were predicted by KNN model as “setup” or “lift” phase. The 

AUC of the test set was.99. The confusion matrix of test set is shown in the Table 9.  

 

Table 9. The confusion matrix of the test set of the machine learning methods KNN model 

  Predicted phase 

  Setup Lift 

T
u
re

 

p
h
as

e 

Setup 10107 98 

Lift 163 3619 

 

 

3.3.3 Start/End timepoints of lift phase (Aim 1) 

Table 10 shows each participant’s mean start/end timepoints of the lift phase over the five 

trials. The average duration of the lift phase in our database is 2.45 seconds.  
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Table 10. Means and STDs of each participant’s start and end timepoints marked by visual, TH, and ML 

method. The values indicate when (in seconds) the participant started the lift phase of transfer after the trial 

began (timepoint = 0) 

 Start time point of lift phase (unit: sec.) End time point of lift phase (unit: sec.) 

P Visual TH ML Visual TH ML 

 Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

1 10.13 3.39 9.87 3.59 8.34 3.50 11.09 3.81 11.04 3.52 10.27 2.89 

2 2.16 0.76 2.43 0.55 2.75 0.83 3.93 0.72 5.55 2.20 3.85 0.46 

3 4.38 1.70 6.31 1.51 8.44 3.76 7.24 1.71 8.73 2.59 9.15 3.77 

4 4.07 1.16 3.67 0.84 4.06 1.11 4.83 1.27 5.39 1.43 4.61 0.83 

5 7.99 4.02 11.29 2.98 7.57 2.94 11.17 3.50 16.33 4.39 9.41 3.06 

6 3.70 1.07 4.85 1.81 2.70 1.00 4.81 1.02 6.75 1.65 4.43 2.30 

7 4.09 1.10 3.40 1.96 2.72 1.43 7.13 1.36 8.85 1.52 5.69 2.82 

8 2.01 0.81 2.59 1.23 2.44 0.97 4.01 0.91 5.23 1.53 3.95 1.14 

9 1.12 0.86 1.34 1.17 1.29 0.73 3.55 0.69 3.50 0.74 3.37 0.81 

10 2.33 1.96 6.37 1.89 3.34 2.95 8.51 2.98 9.84 4.46 6.72 2.82 

Key: P, participant number; TH, threshold method; ML, machine learning method; STD, standard deviation.  

 

 

For the start timepoint of the lift phase, the MD with the threshold method was 1.01 

(STD=1.99, median=0.42) second and the ML method was 0.17 (STD=1.96, median=0.07) second, 

in comparison with the visual method. For the end timepoints, the MD between the threshold 

method was 1.49 (STD=1.92, median=0.58) second and the ML method was -0.48 (STD=1.96, 
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median=0.13) second, in comparison with the visual method. The histograms for all transfers 

(n=50) are shown in Figure 8 and 9.  

 

  

 

(a)           (b) 

Figure 8. Histograms of the start timepoint differences between (a) TH and visual methods and (b) ML and 

visual methods between for each transfer (n=50) 

 

  

(a)           (b) 

Figure 9. Histograms of the end timepoint differences between (a) TH and visual methods and (b) ML and 

visual methods between for each transfer (n=50). 
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For the start timepoint of the lift phase, the AMD with the threshold method was 1.42 

(STD=1.72, median=0.68) seconds and the ML method was 1.30 (STD=1.46, median=0.77) 

seconds, in comparison with the visual method. For the end timepoints, the AMD between the 

threshold method was 1.58 (STD=1.85, median=0.58) second and the ML method was 1.21 

(STD=1.61, median=0.50) seconds, in comparison with the visual method. The histograms (n=50) 

are shown in Figure 10 and 11. The Bland-Altman plots for the agreement of the start and end time 

points between the visual and TH methods, and between visual and ML methods are shown in 

Figure 12 and 13. 

 

 

(a)           (b) 

Figure 10. Histograms of the start timepoint differences (absolute values) between (a) TH and visual methods 

and (b) ML and visual methods between for each transfer (n=50) 

 

 



 

63 

(a)           (b) 

Figure 11. Histograms of the end timepoint differences (absolute values) between (a) TH and visual methods 

and (b) ML and visual methods between for each transfer (n=50) 

 

 

 

(a)      (b) 

Figure 12. Bland-Altman plots for the start time points marked by using the (a) TH and visual methods and 

(b) ML and visual methods (n=50) 

 

 

(a)      (b) 
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Figure 13. Bland-Altman plots for the end time points marked by using the (a) TH and visual methods and 

(b) ML and visual methods (n-50) 

 

3.3.4 Transfer Quality Evaluation (aim2) 

 The average accuracy of the threshold method is slightly higher than the ML method for 

predicting TAI scores (91% vs 88%) (Table 11). For some items related to the setup phase (item 

1, 2, 7) and trunk flexion (item 13), the ML method generated a more accurate outcome. However, 

the threshold method had higher accuracy of the items related to the lift phase (item 10, 11, 12, 14, 

15). The two methods have the same accuracy to item 8 (scooting forward) and item 9 (leading 

hand position before transfer).  

 

 

 

Table 11. Accuracy of the TAI predicted outcomes after applying the threshold and the machine learning 

timepoint marking methods 

 TAI item N Method Accuracy 

Wheelchair 

Setup 
item 1 WC distance 44 

TH 95% 

ML 98% 

item 2 WC angle 43 

TH 91% 

ML 93% 

Body 

Setup 
item 7 Feet down 39 

TH 95% 

ML 97% 

item 8 Scooting forward 33 

TH 91% 

ML 91% 

item 9 L-hand position (before) 38 

TH 92% 

ML 92% 
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Flight 

item 10 Push-off hand handgrip 35 

TH 92% 

ML 84% 

item 11 L-hand handgrip 34 

TH 88% 

ML 75% 

item 12 L-hand position (after) 49 

TH 100% 

ML 92% 

item 13 Body leaning 39 

TH 85% 

ML 87% 

item 14 Flight 48 

TH 85% 

ML 81% 

item 15 Landing 47 

TH 81% 

ML 72% 

 

Average  

TH 91% 

 ML 88% 

Key: N, number of transfer trials correctly scored by the TAI-classifiers out of 50 trials performed by the 10 

participants; TH, threshold method; ML, machine learning method.  

 

 

 

3.4 Discussion 

 

 

Applying an automated method that can extract the setup and lifting phase timing is an 

essential step to developing an automated TAI scoring system. In this study we compared two 

automated methods, one based on salient peaks in the motion data recorded during the transfer and 

one based on ML methods. Provided that the features used in our TAI-classifiers are not solely 
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based on these time points but rather the data that lies in between them it’s possible that even if 

the timepoints are mis-labelled, the approaches could still yield accurate TAI scores, thus we aimed 

to explore not just the mean differences in setup and lift phase timings but the resultant predictions 

in the TAI scores.  

 The MD of the start/end points are 1.01 and 1.49 seconds for the TH method, 0.17 and -

0.48 seconds for ML method. The positive and negative values mean that the method either 

overestimated (positive) or underestimated (negative) the timepoints on average.   The histograms 

(Figure 8 and 9) show that most timepoints marked by the TH and ML methods are within  1 

second of the gold standard points. However, the errors of underestimating and overestimating can 

cancel each other out. For example, if the time differences compared to the gold standard of two 

trials are -2.00 and +2.00 seconds with method A, and -0.5 and +1 second with method B, the MD 

of method A is 0, and MD of method B is 0.25. In this case, method A would appear to outperform 

method B yet method B is actually better than method A for these data.   

 Thus, alternatively we calculated the AMDs to further examine the accuracy of the TH and 

ML methods. The AMD is the absolute value of the average variance between the gold standard 

and the TH/ML methods, thus it accounts for the variance from both from underestimating and 

overshooting the targets. The AMD of the start/end points were 1.42 and 1.58 second for the TH 

method, 1.30 and 1.21 seconds for ML method. The data distribution and outliers are similar for 

the two methods (Figure 10 and 11).  

The ML method showed less error in phase identification (lower MDs and AMDs than the 

TH method) but achieved slightly lower overall accuracy (88%) in the TAI score predictions. The 

flight item (item 10 to 15) also has lower accuracy (72% - 92%) while applying the ML method. 

The decreased accuracy might be due to the ML method underestimating the end of the lift phase 
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by an average of 0.48 seconds. The TH method has less underestimating error (Figure 13a; notice 

that almost all dots are above horizontal line equal to zero) compared to the ML method (Figure 

13b). These results illustrate that the ML method might end the lift phase earlier then the gold 

standard for several trials. As noted offsets in the start and end points of the lift phase could change 

the values of features and then vary the predicted outcomes of the TAI-classifier. Underestimated 

end timepoints of the end of the lift phase might acutely alter the features of the TAI-classifier 

related to the lift phase (e.g. the maximum, minimum, range of motion, and average joint angles) 

since the data only includes a portion of the lift phase duration. Tuning the model of the ML 

method to achieve higher recall (increasing the possibility that the model labels the setup phase 

frames as the lift phase) could reduce the underestimating the end of the lift phase. Further studies 

are needed to understand how much the specific features change with regard to phase timing.  

Moreover, since both methods are not 100% perfect for all items, the decreased accuracy is 

potentially added error onto the errors associated with the TAI classifiers. Future studies that 

investigate the tolerance of timepoints mis-labelling for each TAI-classifier are needed.  

One specific defect of the threshold method that we noticed is mis-identifying the phases 

when a wheelchair user performs multiple ‘scoots’ to complete the transfer. According to our 

database, this transfer technique occurs more often with power wheelchair users than manual 

wheelchair users. In this study, participant 1 and 10 were scooting multiple times to transfer from 

their power wheelchair to the bench. The AMD of the threshold method in the two participants are 

approximately 3.5 seconds, and the ML method error is 1.2 seconds. Thus an ML method could 

be a better approach to use for evaluating power wheelchair users. 

Another factor to consider in addition to the accuracy of the TAI score predictions is the 

computation time. The threshold method uses only two kinematic variables, linear velocity and 
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displacement of one joint center to identify the start and end frames of the lift phase. In comparison, 

35 features/variables need to be computed for the ML method.  In addition to computing the 

features, the ML method needs to perform multiple post-processing steps before identifying the 

time frame. Using the ML method requires 60-120 seconds (Intel i9 3.1GHz CPU with 32GB 

memory) more than the threshold method to generate the TAI predicted scores. As a result, the 

threshold method is less computationally expensive. This factor may need to be considered in the 

development of an automated TAI scoring system.  

   

 

 

3.5 Limitation 

 

 

One limitation of this study is that a small sample size (n=10 wheelchair users) was used 

to evaluate the accuracy of the TAI score prediction. The results may not generalize to the broader 

wheelchair user population or other variants of transfer technique. Another possible limitation was 

that a visual (video) method was used as the gold standard to identify start and end points of the 

lift phase. This was the best method available to us given that we lacked a fully instrumented setup 

(e.g. force plates or sensors) which would have provided more accurate information on the “ground 

truth” of the time points [101]. To support recruiting a large enough sample for training the ML 

models, participants were recruited and the study protocol was conducted outside of the lab at 

several organized recreational events and it was not possible to transfer our fully instrumented lab 
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setup to these environments for the data collection.  However recent work does support the use of 

video methods for enhancing the reliability and validity of TAI scoring [102].  

 

 

 

 

 

 

3.6 Conclusion 

 

 

 To automate a real-time TAI score using computer methods requires identifying when the 

setup and lift phases of the transfer occur.  Our research tested two possible ways to do this using 

only motion data recorded by the Kinect sensor during transfers. The ML method had less error in 

phase identification but has lower accuracy in TAI score prediction and took longer to process.  

Tuning the model of the ML methods to have higher recall (avoiding cases of ending the lift phase 

too early) may increase the accuracies of the predicted TAI outcomes. Further research is needed 

to study the overall accuracies associated with combining the automated phase identification 

methods with the TAI classifiers that have been developed to predict TAI item scores.   
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4.0  Comparison of Two Depth Cameras for Capturing Upper Body Motions During 

Wheelchair Transfers 

 

 

 

4.1 Introduction 

 

 

In the United States, there were approximately 282,000 persons with spinal cord injury 

(SCI) in 2016 and 12,500 new cases occur each year [103]. Over 3.6 million Americans aged 15 

and over used a wheelchair in 2010 [2]. Wheelchair users (WUs) rely heavily on their upper 

extremities to complete common but essential activities of daily living such as getting in and out 

of bed, transferring to a toilet or a shower, and transferring in and out of a car. Manual WUs will 

perform on average 14 to 18 transfers a day, which are extremely physically demanding and can 

lead to upper extremity pain and injury [3, 4]. Research shows that the prevalence of upper 

extremity pain, specifically shoulder pain, in WUs ranges between 31 and 73 percent [5]. 

Unfortunately, shoulder pain leads to decreased quality of life and participation in physical activity 

[6].  

The Transfer Assessment Instrument (TAI) was developed to evaluate the quality of 

sitting-pivot wheelchair transfer techniques and identify any deficits in component skills [36]. 

Higher scores on the TAI (e.g. using better hand/arm and trunk positions to perform transfers) 

translate to less mechanical loading on the upper extremities joints [4]. The TAI measures many 

different components of a transfer including proper setup of the wheelchair and body positioning 
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during transfers. Using proper transfer technique can reduce the loading on the upper arm joints 

and help protect WUs from developing injury and pain [4, 33]. Previous work has shown that the 

Microsoft Kinect, a portable inexpensive markerless 3D depth motion sensor, can be used to 

distinguish proper and improper wheelchair transfer techniques [31, 96, 104-106]. A 3D depth 

sensor allows total freedom of movement without the need to hold or wear any sensors or markers 

on the body during the transfer task thus reducing setup time and effort. A 3D depth camera is also 

cheaper than other forms of motion capture and can provide more detailed motion tracking data 

(e.g. x, y, z coordinate positions of joint centers) in comparison to other portable sensors (e.g. 

inertial measurement units (IMUs) which provide relative segment orientations--raw position data 

are possible but post-processing methods are required). For these reasons, many researchers have 

developed clinical applications with the Kinect for assessment of balance and postural control [60-

64], dynamic balance tests [65], fall prevention [66, 67], and upper extremity motor and functional 

recovery [68-71] . 

Microsoft discontinued the Kinect v2 sensor in 2017.  After some time had passed the 

company eventually introduced Microsoft Azure a more compact and technologically advanced 

3D depth sensor. In addition, there are many other alternative 3D depth sensors on the market. The 

Intel® RealSense™ D435 for example, is a higher resolution depth camera than the Kinect v2. The 

Intel RealSense series has been used in several clinical research applications, however, work 

related to human motion classification is not as extensive as the Kinect in the published literature 

due to only the hand gestures and movement tracking function being supported by the Intel official 

SDK [55-58]. Due to the discontinuation of the Kinect v2, which was originally used to develop 

our algorithms for detecting proper from improper technique, we aimed to investigate if the Intel 

RealSense could be used as potential surrogate sensor as the Azure was still in production at the 
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time of this study. The Intel RealSense series has been used in several clinical research applications, 

however, work related to human motion classification is not as extensive as the Kinect in the 

published literatures [55-58]. One study by Mistry et al. developed an approach to translate sign 

language by using the hand motion data recorded by the RealSense [59].  

In this study we aimed to compare the performance of the RealSense D435 sensor to the 

Kinect v2 for tracking wheelchair transfer motions.  We hypothesized that the RealSense-measured 

motion variables would be statistically repeatable within subjects over five transfer trials (intra-

rater reliability > 0.8) and that the repeatability would be similar between the Kinect and the 

RealSense for each variable (intra-class correlation coefficient (ICC) differences < 0.1) 

(Hypothesis A).  In addition, we expected that the motions measured by the RealSense would relate 

to those measured by the Kinect (inter-rater reliability > 0.8) and be within the range of 95% limits 

of agreement as the mean difference plus and minus 1.96 times the standard deviation of the 

differences (Hypothesis B).  

 

 

 

4.2 Methods 

 

 

4.2.1 Participants 

 

The study was approved by the Department of Veterans Affairs Institutional Review Board. 

The participant recruitment and the testing were conducted at the National Veterans Wheelchair 
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Games (NVWG) in 2019. All participants provided informed consent prior to participating in any 

research activities. The inclusion criteria were 1) have discernable neurological impairment 

affecting both lower extremities or persons with transfemoral or transtibial amputation of both 

lower extremities and who do not use prostheses during transfers, 2) at least one-year post-injury 

or diagnosis, 3) able to independently transfer to/from a wheelchair without human assistance or 

assistive devices, 4) use a wheelchair for the majority of mobility (over 40 hours/week), and over 

the age of 18 years. Participants were excluded if they had 1) current or recent history of pressure 

ulcers in the last year, 2) history of seizures or angina, or 3) were able to stand unsupported. 

 

4.2.2 Study Protocol 

 

4.2.2.1 Motion Sensors and Experimental Setup 

The Kinect v2 sensor was positioned two meters in front of the participants, 70 centimeters 

above the floor, and centered between the wheelchair and the bench. A custom software program 

was created using Windows Kinect SDK to collect the 3D joint center position data. A graphical 

user interface (GUI) was programed in C# using Visual Studio 2012, .NET Framework 4.0, and 

the Kinect for Windows SDK to collect the 3D joint center position data in a Cartesian coordinate 

system from the Kinect system. The RealSense D435 camera was positioned in a similar proximity 

in front of the participant (Figure 14) in accordance with the manufacturer specifications for 

camera placement [107] and was operated by a third-party NuitrackTM SDK released by the 3DiVi 

Inc. Each sensor was connected to its own computer. The raw data of the two sensors were saved 

as a .csv (comma separated value) file, with columns of joint-centers position data, in rows indexed 

by time in milliseconds, also referred to as frames. The sampling frequency was 30Hz for both 
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sensors. The two sensor’s data were synchronized to start and end simultaneously by using the 

timestamps data.  

 

 

Figure 14.  Experimental setup of the Kinect and the RealSense. The coordinate system follows the right-hand 

rule for both sensors.  

 

4.2.2.1 Transfer Protocol 

After informed consent, participants completed a general questionnaire.  Then the 

participant's wheelchair was positioned next to a level-height bench (70cm x 55cm) based on their 

transfer preferences. The bench was placed on the participant’s left-hand side. The participants 
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were asked to transfer from their wheelchair to a level-height bench. The participant repeated the 

transfer up to five times for a maximum total of 10 transfers. Approximately 3-5 minutes of rest 

time was provided between trials and the participants were allowed to take more time to rest until 

they were ready for the next trials. 

 

4.2.3 Data Analysis 

 

4.2.3.1 Key Variables 

The Kinect v2 tracks the 3D positions of 25 skeleton joint centers at 30 Hz [94, 108]. 

Similarly, using the Nuitrack SDK, the RealSense tracks the 3D positions of 19 joints in a global 

coordinate system [109] (Figure 15). Four key kinematic variables related wheelchair transfer 

biomechanics [4] and the TAI [100] were analyzed. All the variables are computed from the “lift 

phase” of the transfer motion time series data which was determined using the video files 

synchronized with the time frames to the Kinect and RealSense (see 3.2.3 Data Analysis). The 

key variables included: 

- SPINE_BASE/WAIST displacement in the horizontal direction (DSBW): X-axis 

component displacement of SPINE_BASE (Kinect) and WAIST (RealSense) 

- Average plane of elevation angle on the leading side shoulder (LPOE): The average value 

of left shoulder horizontal flexion/extension during the transfer [110]. We used the joint 

centers at the left shoulder and left elbow to create a vector that represents the upper arm, 

and used the SPINE_SHOULDER/COLLAR and the joint center of the left shoulder to 

create another vector. The LPOE is determined as the angle between the two vectors 

projected onto the transverse plane 
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- Average elevation angle on the leading side shoulder (LE): The average value of the left 

shoulder elevation angle during the transfer. The LE is determined by the angle between a 

trunk vector (from SPINE_SHOULDER/COLLAR to SPINE_BASE/WAIST) and the 

upper arm vector (from LEFT SHOUDLER to LEFT ELBOW) 

- Average trunk flexion angle (TF):  The average value of the trunk flexion angle during the 

transfer. The TF is determined as the angle between a trunk vector (from 

SPINE_BASE/WAIST to SPINE_SHOULDER/COLLAR) and a normal vector 

perpendicular to the transverse plane 

 

  

Figure 15. a) Skeleton position detected by Kinect relative to the human body [94], b) Joint center map in the 

Nuitrack SDK [109] 
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4.2.3.2 Statistical Analysis 

All the statistical analysis was performed using SPSS 26 (Chicago, IL). For the Hypothesis 

a, the intra-rater reliability for the Kinect and the RealSense was calculated using ICC3,1 (two-way 

mixed effects model with absolute agreement for a single measure) for the five repeated trials.  

For the Hypothesis b, the inter-rater reliability between the Kinect and the RealSense were 

calculated using ICC2,1 (two-way random effects model with absolute agreement for a single 

measure) [111]. In this study, repeatability was characterized as excellent (ICC>0.8), good (ICC 

0.6–0.79), moderate (ICC 0.4–0.59), fair (ICC 0.2– 0.39) or poor (ICC<0.2). To test agreement 

between the key variables (i.e. DSBW, LPOW, LE, and TF) measured by the Kinect and the 

RealSense, the Bland-Altman plots were used. The “agreement” in this study is the characteristic 

that describes how close the two measurements are. The infimum (inf) and supremum (sub) of the 

agreement will be set as: 

𝑖𝑛𝑓 = 𝑚 − 1.96 ×  𝑆𝑇𝐷,  

𝑠𝑢𝑏 = 𝑚 + 1.96 ×  𝑆𝑇𝐷,  (1) 

where m is the mean of differences of both measures (Kinect and RealSense) and STD is standard 

deviation. Based on the Gaussian hypothesis, if the 95% of the data are within the range between 

the inf and sub, it is valid to affirm that the two methods are interchangeable [112].  

 

 

 

4.3 Results 
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4.3.1 Participant 

 Twenty-six men and 4 women with an average age of 56.6 years (standard deviation 

(STD)=11.8) contributed a total of 150 transfer trials for the analysis.  The group performed on 

average of 13.0 transfers (STD=10.9, self-reported) per day. Participants had 16.8 years 

(STD=5.76) experience in using wheelchairs and used their wheelchair for 13.2 hours (STD=5.76) 

per day. Nine (30%) were African Americans, 12 (40%) were Caucasian, three (10%) were 

Hispanic, two were Asian, and one denoted mixed race, and three did not answer the question. 

Twenty-three participants (77%) used a manual wheelchair. Nineteen (63%) had a spinal cord 

injury, six (20%) had an amputation, two (7%) had multiple sclerosis, and others included Guillain 

barre (n=1), traumatic brain injury (n=1), and poliomyelitis (n=1).    

 

4.3.2 Intra-Rater (Sensor) Reliability 

 

 The ICCs of the intra rater reliability for the Kinect and RealSense are shown in the Table 

12. The Kinect has higher reliability (ICC = .60 - .82) than the RealSense (ICC = .25 - .70) for the 

four key variables. Both Kinect and RealSense have high reliability for the TF (ICC = .75, 95%CI 

= .63 - .85; ICC.70, 95%CI = .56 -.82). The DSBW has the largest difference in ICCs between the 

two sensors (difference = .57).  
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Table 12. Intra rater reliability (ICC3,1) of the Kinect and the RealSense (n=30) 

 Kinect RealSense 

ICC Difference 

Variables ICC 95%CI ICC 95%CI 

DSBW .82 .72 - .90 .25 .11 - .44 .57 

LPOE .81 .71 - .89 .60 .44 - .75 .21 

LE .60 .44 - .75 .38 .22 - .57 .22 

TF .75 .63 - .85 .70 .56 - .82 .05 

Key: ICC, intra-class correlation coefficient; 95%CI, 95% confidence interval, DSBW, SPINE_BASE/WAIST 

displacement in horizontal direction; LPOE, average plane of elevation angle on the leading side shoulder; LE, average 

elevation angle on the leading side shoulder; TF, average trunk flexion angle. 

 

4.3.3 Inter-Rater (Sensor) Reliability and Agreement 

 

 The inter-rater reliability between the Kinect and RealSense is shown in the Table 13. The 

LPOE and TF have moderate reliability (ICC = .52, 95%CI = .01 - .73; ICC = 0.51, 95%CI = .18 

- .70). DSBW and LE have low reliability (ICC = .13, 95%CI = .03 - .29; ICC = 0.17, 95%CI = .03 

- .35). The Bland-Altman plots for the agreement between sensors are shown in Figure 16.  
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Table 13. Inter rater reliability (ICC2,1) between the Kinect and the RealSense (n=30) 

Variables (unit) ICC 95%CI  Mean  STD 

DSBW (mm) .25 .11 - .55 

Kinect 

RealSense 

863 

751 

542 

596 

LPOE (deg) .57 .07 – .84 

Kinect 

RealSense 

86.99 

79.28  

11.51 

9.96 

LE (deg) .13 .10 - .40 

Kinect 

RealSense 

45.77  

36.15  

8.67 

9.27 

TF (deg) .63 .06 - .85 

Kinect 

RealSense 

27.79  

21.86  

10.51 

8.22 

Key: ICC, intra-class correlation coefficient; 95%CI, 95% confidence interval, DSBW, SPINE_BASE/WAIST 

displacement in horizontal direction; LPOE, average plane of elevation angle on the leading side shoulder; LE, average 

elevation angle on the leading side shoulder; TF, average trunk flexion angle; STD, standard deviation; deg, degree.  
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       (a) DSBW              (b) LPOE 

 

        (c) LE               (d) TF 

Figure 16. Bland-Altman plots for the agreement between Kinect and RealSense (n=150 transfers). LPOE, 

average plane of elevation angle on the leading side shoulder; LE, average elevation angle on the leading side 

shoulder; TF, average trunk flexion angle; STD, standard deviation; deg, degree 
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4.4 Discussion 

 

 

 Using proper wheelchair technique to transfer between two sitting surfaces is critical to 

avoiding secondary injury. Obtaining key biomechanical factors extracted from a marker-less 

motion capture sensor can provide a tool for rehabilitation clinicians to gauge the injury-risk of 

body motions. Our research team has demonstrated that the Kinect v2 has the ability to recognize 

at risk body motions during independent sitting pivot transfers [96, 100, 104]. The Intel RealSense 

depth sensor could be a solution for Kinect v2’s discontinuation because the full-body tracking 

SDK is available providing similar 3D joint center locations as the Kinect. In this study, we 

computed and compared some key kinematic variables related to the quality of the wheelchair 

transfer and reported the intra-rater, inter-rater reliability, and limits of agreement from the Kinect 

and the RealSense. These methods could similarly be used to evaluate the performance of other 

3D depth sensor models as well. 

The quality of wheelchair transfer techniques can be evaluated by multiple components 

related to wheelchair setup, body setup, and flight movements using the latest version of the TAI 

4.0 [36]. The kinematic variables related to the upper extremities and trunk motion have high 

correlation with joint force and moment at shoulder, elbow and wrist during the transfer [4, 113]. 

Learning to align the upper limb and trunk motions with TAI principles can reduce upper limb 

joint forces and moments [33]. In our previous studies we applied kinematic variables as the 

features of machine learning classifiers to predict TAI scores [100]. The DSBW is a feature that is 

important for identifying if the person uses the correct wheelchair distance between transfer 

surfaces (TAI 4.0 item 1), scoots forward to the edge of the sitting area before transfer (item 8), 
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and has good body balance during flight (item 14, 15). The DSBW is also useful for detecting 

when the lift phase of the transfer process occurs which is required for the application of the TAI 

prediction classifiers (see 3.2.3.2 Threshold Method of Phase Delineation, page 51). The LPOE 

and LE are important for identifying correct technique related to positioning of the arm (items 9, 

11, 12). The TF is a key feature for measuring correct trunk leaning motion (item 13).  Using this 

movement pattern can reduce the upper extremities joint loading during transfer [4, 36, 100].  

We examined the intra-rater reliability of the Kinect and RealSense by analyzing the five 

repeated trials performed by the same participant. Some intra trial variability is expected because 

the individuals could have varied their technique for each transfer. However, because both sensors 

are watching the same transfers, the variation from the participants would have been controlled for 

in the analysis. Thus, the intra-rater reliability from the repeated transfers provides an indication 

of how reliable the sensors are relative to each other in detecting the motions. The intra-rater 

reliability was assessed by ICC3,1 and the 95% CI are also reported as suggested from previous 

studies [111, 114]. Although there was variance of body movement between transfers, the Kinect’s 

intra-rater reliability was good to excellent for the four key variables (ICC > .6). All the lower 

boundaries of 95% confidence interval (95% CI) are greater than .63 except for the LE (95%CI 

= .44 - .75). However, the RealSense’s intra-rater reliability was only fair (DSBW and LE, ICC 

>.2) to good (LPOE and TF, ICC >.6).   

In addition to repeatability of the sensors, we were also interested in the agreement and 

correlations of the variables measured by the Kinect and RealSense. We conducted the inter-rater 

reliability and the agreement analysis using ICC2,1 and Bland-Altman plot. For the agreement 

analysis, more than 95% of the data points fell within ±1.96 standard deviation of the mean 

differences (Figure 16). These results suggest that the values of the variables measured by the two 
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sensors are close. However, the mean of differences between the two sensors for the four key 

variables are non-zero and all negative (DSBW, -80.34 mm; LPOE, -8.03 degree; LE, -8.69 degree; 

TF, -5.56 degree, Figure 16), indicating that RealSense overestimates the displacements and angles 

relative to the Kinect. The plots also show that three variables related to the joint angles (i.e. LPOE, 

LE, TF) have similar variability in agreements. The similar LOA’s indicated that the STD of the 

means differences are close.  

Harkel et al. using the RealSense SDK demonstrated high reliability for static facial 

tracking when compared to gold standard measures using the 3dMD imaging system [115]. The 

SDK was used to label 14 facial landmarks. The average intra- (ICC= .83) and inter-rater reliability 

(ICC=.80) of the facial landmarks was high for the RealSense. Because the hardware specifications 

of RealSense (e.g. resolution) are better than that of the Kinect 2 suggests that the errors may be 

due to either the data acquisition process and/or the body joint tracking algorithms that were used 

in our current study.  However, as noted until recently there was no Intel specific skeletal tracking 

algorithm and we are not aware of any studies that have reported the reliability of body tracking 

motion data for the RealSense. Instead we used a 3rd party product’s algorithms to obtain the joint 

centers.  In comparison, the Kinect SDK algorithms are based on several years of development 

and as a result are likely to be more robust for joint center detection than the 3rd party option.  

Using multiple RealSense sensors to simultaneously record a motion trial may also increase 

the reliability. Labuguen and colleagues used three synchronized RealSense sensors to record the 

freestyle popping motion capture data of a professional dancer [116]. In comparison with a marker-

based motion capture system, the results showed that the errors of the body joint movement were 

less than 150 mm except for the wrists and elbows. Using multiple sensors theoretically increases 



 

85 

the sampling frequency, thus it may help to reduce errors and increase the RealSense’ reliabilities 

for detecting full body motion. 
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4.5 Limitation 

  

 

Intel® released the skeleton tracking SDK in 2020 and it supports tracking of 18 joints and 

multiple subjects simultaneously [117]. The RealSense SDK was not available when we conducted 

the study. Using the new skeleton tracking SDK may increase the reliability of the RealSense. Due 

to the NuitrackTM having a less robust joint center tracking algorithm than the Kinect SDK likely 

introduced some errors with regards to reliability and agreement between the two sensors. Further 

study is needed using the new SDK and different 3D depth sensors.  

 

 

 

4.6 Conclusion 

 

 

The Microsoft Kinect can be a useful tool for evaluating the quality of independent 

wheelchair sitting pivot transfers. However, finding an alternative 3D depth sensor is critical due 

to the discontinuation of the Kinect v2. The Intel RealSense series has been used in several clinical 

research applications, however, the body of work has been limited to tracking facial and upper 

extremity motion. Using a 3rd party SDK designed to work with a variety of 3D depth sensors to 

support the skeleton tracking function, we found the intra-rater reliability and inter-rater reliability 

of the RealSense to be fair for tracking the body movements during wheelchair transfers. The 
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newly released SDK by Intel may help increase the reliability of using RealSense in future 

applications.  
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5.0  Conclusion 

 

 

Transfers are the gateway to independence among individuals with spinal cord injury who 

rely on wheelchairs for mobility. Lifting and moving the body between surfaces using only the 

arms however can result in excessive upper limb joint loading, pain and injuries. Using proper 

transfer technique can help reduce forces and prevent secondary injuries however current 

assessment tools rely on the ability to subjectively identify harmful movement patterns.  Using a 

low-cost markerless motion capture camera and machine learning (ML) methods can evaluate the 

quality of independent wheelchair sitting pivot transfers and may serve as a tool that could be used 

to assist clinicians and patients with identifying deficits in technique.  

Our study demonstrates the potential of using the Microsoft Kinect and the developed ML 

models to facilitate autoscoring of the Transfer Assessment Instrument (TAI). The ML algorithms 

trained from 91 full-time wheelchair users are able to evaluate proper (low risk) and improper 

(high risk) wheelchair transfer techniques in accordance with the eleven TAI item scores 

independently. The transfer data was split into training set (80%) and testing set (20%). The 

training set was used for classifier selection and model tuning. The test set was excluded from all 

training processes. Three k-nearest neighbors (KNN) and 8 random forest classifiers were selected 

for each TAI item. The area under the receiver operating characteristic curves (AUCs) are .83 

to .99 for the training set and.79 to .94. for the test set. In order to avoid the false positive case (i.e. 

participant performed improper technique but the transfer is labelled as a proper transfer by the 

classifier), we tuned the models to achieve high precision. The precisions of the models are .87 

to .96, and the recalls are .61 to .93. The future plan aims to embed the developed algorithms into 
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a user-friendly graphic user interface that allows therapists to perform transfer assessments more 

easily and produce results that support training and education on proper transfer technique. 

The TAI item scores are evaluated by the relative components of the wheelchair transfer. 

For a system to automate the scoring of the TAI the system it must also be able to distinguish the 

“setup phase” and “lift phase” of the transfer. On the TAI 4.0, items 1 to 6 are in the wheelchair 

setup skill group and Items 7 to 15 are in the body setup and flight/landing skill groups. In order 

to extract the features of each item, the motion data during the transfer needs to be separated into 

a setup phase and lift phase. We defined the “setup phase” as the period when the subject starts 

moving their body for transfer preparation, to a time point right before the subject lifts their 

buttocks from the sitting surface. The “lift phase” was defined as starting from the end of setup 

phase to the first time frame when the subject lands on the target surface. We applied and compared 

a biomechanical variable based threshold method and an ML algorithm to automatically 

distinguish the time frames of the transfer phases. For the threshold (TH) method, the peaks 

observed in the linear displacement and velocity of one joint center marked by the Kinect, 

SPINE_BASE, were used for phase delineation. For the ML method, we trained a KNN classifier 

using 35 features from the Kinect data. Using the KNN model, each time frame of the transfer was 

labeled as belonging to either the “setup” or “lift” phase. After further applying a filter algorithm, 

the method was used to identify the start and end timepoints of the transfer phases. We found that 

the ML method had less error in identifying the phase times but the threshold method spends less 

computational time in identifying the points. Although the threshold errors were larger this method 

had higher accuracy for predicting the TAI scores for items 10, 11, 12, 13, 14, 15.  The ML method 

had higher accuracy for predicting the TAI scores for items 1, 2 and 7. For items 8 and 9, the two 

methods showed equal performance.  Because the ML method tended to undershoot the end phase 
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times it’s possible that tuning the algorithms to include more of the lift phase data could increase 

the accuracies of the TAI item scores that rely more heavily on the lift versus setup phase 

biomechanics.  

Due to the discontinuation of the Kinect v2 in 2017, we aimed to find another 3D depth 

sensor that could track full body motion for future research. The Intel® RealSense could be an ideal 

surrogate sensor because the RealSense has superior technical properties relative to the Kinect v2 

and has shown excellent performance for tracking facial and hand motions in previous studies.  

Although Intel did not make a full body joint tracking algorithm for the sensor at the time of our 

study, a 3rd party one was available that can be used with a variety of 3D sensor models (e.g. 

NuitrackTM). This solution enabled us to create the same biomechanical features with the 

RealSense as we had created with the Kinect to quantify transfer technique. To further understand 

the potential for RealSense to be used as a substitute sensor for capturing wheelchair technique 

biomechanics, we compared the measurement properties of the two sensors. We assessed intra-

rater reliability for each sensor, and evaluated the inter-rater reliability and agreements between 

the Kinect and RealSense. The study found that the Kinect had higher intra-rater reliability than 

the RealSense for measuring four key kinematic variables related to the wheelchair transfer 

technique. For the agreement analysis, more than 95% of the data points fell within ±1.96 standard 

deviation of the mean differences. However, the inter-rater reliability between two sensors was 

poor. The low reliability of the RealSense may be due to the lack of robustness of the 3rd party 

algorithm for skeletal tracking of sitting postures and in general in comparison to the more 

extensively tested and developed Kinect SDK. Using the current (2020) version of the RealSense 

SDK for skeletal tracking may help increase the reliability for future applications. 

 



 

91 

5.1 Future Works 

 

 

 To improve the generalizability of the TAI classifiers, refining the data splitting method 

during the training process is necessary. In our current protocol, each individual did five transfer 

trials with each surface. The transfer data was randomly split into the training and test set by trial. 

Thus, the five transfers performed by the same wheelchair user might be split into both training 

and test set (e.g. three to the training set and two to the test set). Due to the similarity of the motion 

pattern from the same individual, the training set might “see” the data form the test set and decrease 

the model generalizability [97]. Splitting the data by the individuals is a better strategy to assess 

the generalizability. All the trials from the same subject should be in the same set. Thus, the data 

in the test set would be “new data” to examine the model performance. 

Future work may also include collecting more transfer trials to refine the ML of the TAI 

scoring for each item and the phase time distinguishing algorithms. A dataset that includes not 

only a sufficient sample size but also various types of wheelchair users and transfer motions can 

increase the performance of predicting TAI outcomes. Currently, all partial credits (0.5) are labeled 

as improper techniques for the TAI-classifiers. For the items allowed to be scored “0.5”, a new 

model can be trained by labeling three outcomes (i.e. 0, 0.5, 1). This approach needs sufficient 

data for each label. For some items the deficit rates among wheelchair users might be very low 

[36, 118]. As a result, it may be difficult to collect enough improper and partial credits cases from 

the wheelchair user population. One possible solution is to use “pseudo-patients” (e.g. able-bodied 

participants who are trained to perform the specific partial credit transfer techniques) to enlarge 

the sample size. Moreover, the ML practitioner can also apply over-sampling or down-sampling 

strategies to overcome the limitation with imbalanced labeling datasets.  



 

92 

Not all TAI 4.0 items were evaluated using the TAI-classifiers. Items that are related to the 

participant’s transfer habits (e.g. item 16 which asks if they always lead with the same arm or if 

they alternate arms when they transfer) and assistive technology use (items 17 and 18) were not 

included. Other items such as locking the wheelchair or turning it off before transfer (item 3), 

removing the armrest (item 4) and clothing/sides guards (item 5) before transfer were excluded. 

Transferring to a level surface if it is possible (item 6) was also excluded due to the protocol design. 

The items 3, 4, 5 and 6 have the highest inter-rater reliability (ICC=.94) [36] and therefore are 

more easily observed by raters than some of the items that involve interpreting the body motions. 

In order to evaluate these items, the motion pattern and related kinematic variables (i.e. specific 

joint angles, displacements) would need to show differences between the proper and improper 

techniques. However, some differences may not occur during the setup or lift phases defined in 

this study. For example, the participant may lock the brakes of the wheelchair before the 

investigators start observing or recording a transfer trial using the Kinect. Motion data before the 

wheelchair setup (i.e. pre-setup phase) may be important to collect in the future and investigated 

to identify potential features that can be used to predict these items. 

The TransKinect project aims to apply the current study outcomes to the clinical setting. 

Packaging these outcomes together into a user-friendly system could aid therapists and patients in 

identifying harmful motions and learning proper evidence-based transfer practices. The graphical 

user interface (GUI) of the TransKinect is designed to highlight the items which are easier and 

those that are more difficult to evaluate by the therapists. For the future plan, firstly we aim to 

collect feedback from clinicians on usability of the system. We also aim to understand how much 

error (false positive cases) of the ML model can be accepted by clinicians. Secondly, the system 

will be refined following the feedback and tested in a lab-controlled environment to further 
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understand the system’s usability and validity. Clinician raters will use both the TransKinect and 

TAI to evaluate the wheelchair users’ transfers. The ML models may be further refined using the 

new collected data. Thirdly and lastly, we aim to conduct a field trial with the TransKinect in 

multiple clinical settings to explore its utility, practicality and effectiveness as a clinical tool. Using 

a simple 3D Depth Camera to watch a wheelchair transfer and produce a score in real-time could 

provide a valuable evaluation and education tool for evaluating and training proper technique. 

Patients in the clinic who are assessed with TransKinect will receive their results and education on 

proper technique.  Afterwards the quality of their transfers will be revaluated by follow-up 

TransKinect assessments. A feature to compare side by side the pre and post training assessment 

reports has been built into the TransKinect application per feedback from initial expert therapist 

review of the application to facilitate comparisons in client performance between assessments. 

It may be possible to extend the current work to evaluate assisted or dependent transfers. 

An evaluation tool similar to the TAI has been developed for dependent transfers which evaluates 

proper and improper caregiver techniques (e.g. Caregiver Assisted Transfer Technique Instrument). 

However, the tool is still undergoing validity and reliability which is required before it can be used 

for data labelling. In lieu of the tool it may be possible to label the data based on a biomechanical 

analysis of the caregiver techniques (e.g. identifying techniques that cause loading at the lumber 

spine to exceed certain levels or the lifting index set by the National Institute for Occupational 

Safety and Health (NIOSH)) [119].  Assuming a solid gold standard could be identified then pilot 

studies would be needed to determine whether the 3D depth motion sensor(s) can detect 

differences in caregiver assisted transfer kinematic variables between the proper and improper 

techniques. If so then the same methods we employed for item model training and time-series 

phase delineation could be used to develop and test ML classifiers for predicting the quality of 
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dependent transfer techniques.  Refined algorithms could further be implemented in a similar 

platform as TransKinect for evaluating caregiver techniques in the future. 
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Appendix A. General Questionnaire for Wheelchair Users 

 

 

DEMOGRAPHICS AND TRANSFER ACTIVITIES: 

 

Age:       
 

Type of disability    

If SCI, at what level (please indicate)?  Incomplete / Complete (Circle 

One) Approximate month/day/year of onset or diagnosis     

Gender  Race   
 

Handedness     
 

How long have you used a wheelchair?   / months/yrs 
 

How many hours a day do you spend in  your wheelchair?  hours 

 

Make of wheelchair (ie, Quickie, TiLite, Invacare):     
 

Model of wheelchair (i.e., Q7, Aero, etc):    
 

Arm rests  YES  NO  Are they removable?  YES 

 NO Foot rest type   Fixed 

 Removable 

How many level transfers do you do each day on average?      
 

How many non-level transfers do you do each day on average?    
 

Do you use an assistive device (e.g., transfer board or lift) with any of your daily 

transfers? YES  /  NO, if YES, please list:    
 

Have you ever received formal training on how to transfer?    YES____NO  

If YES, please list:                                                                                               

approximately how many hours of training?  Hours 

 

Additional Comments: 
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Appendix B. Transfer Assessment Instrument 4.0  
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Appendix C. Model training process and results of each TAI 4.0 item 

 

 

 

Item 1 Wheelchair Distance 

 

 

The KNN classifier was chosen for the item 1 model (Figure A1a). Four hundred and 

seventy-two trials were split into the training set and 119 trials were into the test set. The transfer 

technique deficit rate was 30%. Eighty-five features were selected into the feature engineering 

process and 26 of them were applied into the final model (Figure A1b). For the model from the 

training set, the AUC was .98, and the mean accuracy from CV was 75% (STD = 3%). After tuning 

the model decision threshold, the test set AUC was .85, and precision was .96. Figure A1c shows 

the ROC curve, and the relationship between precision, recall when adjusting decision threshold 

of the outcomes from the test set.   
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Figure A1a. Model perforce of each classifier for item 1 
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Figure A1b. Feature selection and training process of item 1 model 
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Figure A1c. ROC curve, and relationship between precision, recall and decision threshold values of the item 1 

model 
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Item 2 Wheelchair Angle 

 

 

The random forest classifier was chosen for the item 2 model (Figure A2a). Four hundred 

and sixty-eight trials were split into the training set and 118 trials were into the test set. The transfer 

technique deficit rate was 36%. Eighty-four features were selected into the feature engineering 

process and 14 of them were applied into the final model (Figure A2b). For the model from the 

training set, the AUC was .99, and the mean accuracy from CV was 87% (STD = 4%). After tuning 

the model decision threshold, the test set AUC was .90, and precision was .91. Figure A2c shows 

the ROC curve, and the relationship between precision, recall when adjusting decision threshold 

of the outcomes from the test set.   
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Figure A2a. Model perforce of each classifier for item 2 
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Figure A2b. Feature selection and training process of item 2 model 
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Figure A2c. ROC curve, and relationship between precision, recall and decision threshold values of the item 2 

model 
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Item7 Feet Placement 

 

 

The random forest classifier was chosen for the item 7 model (Figure A3a). Four hundred 

and sixty-four trials were split into the training set and 117 trials were into the test set. The transfer 

technique deficit rate was 39%. Eighty-nine features were selected into the feature engineering 

process and 29 of them were applied into the final model (Figure A3b). For the model from the 

training set, the AUC was .99, and the mean accuracy from CV was 78% (STD = 3%). After tuning 

the model decision threshold, the test set AUC was .85, and precision was .87. Figure A3c shows 

the ROC curve, and the relationship between precision, recall when adjusting decision threshold 

of the outcomes from the test set.   
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Figure A3a. Model perforce of each classifier for item 7 
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Figure A3b. Feature selection and training process of item 7 model 
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Figure A3c. ROC curve, and relationship between precision, recall and decision threshold values of the item 7 

model 
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Item 8 Hip Scooting 

 

 

The random forest classifier was chosen for the item 8 model (Figure A4a). Four hundred 

and sixty-two trials were split into the training set and 119 trials were into the test set. The transfer 

technique deficit rate was 25%. Eighty-six features were selected into the feature engineering 

process and 27 of them were applied into the final model (Figure A4b). For the model from the 

training set, the AUC was .96, and the mean accuracy from CV was 80% (STD = 3%). After tuning 

the model decision threshold, the test set AUC was .87, and precision was .90. Figure A4c shows 

the ROC curve, and the relationship between precision, recall when adjusting decision threshold 

of the outcomes from the test set.   
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Figure A4a. Model perforce of each classifier for item 8 
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Figure A4b. Feature selection and training process of item 8 model 
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Figure A4c. ROC curve, and relationship between precision, recall and decision threshold values of the item 8 

model 
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Item 9 Leading Arm Position before Transfer 

 

 

The random forest classifier was chosen for the item 9 model (Figure A5a). Four hundred 

and sixty-four trials were split into the training set and 117 trials were into the test set. The transfer 

technique deficit rate was 17%. Sixty-eight features were selected into the feature engineering 

process and 27 of them were applied into the final model (Figure A5b). For the model from the 

training set, the AUC was .96, and the mean accuracy from CV was 84% (STD = 5%). After tuning 

the model decision threshold, the test set AUC was .94, and precision was .96. Figure A5c shows 

the ROC curve, and the relationship between precision, recall when adjusting decision threshold 

of the outcomes from the test set.   
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Figure A5a. Model perforce of each classifier for item 9 
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Figure A5b. Feature selection and training process of item 9 model 
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Figure A5c. ROC curve, and relationship between precision, recall and decision threshold values of the item 9 

model 
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Item 10 Push-off Handgrip 

 

 

The KNN classifier was chosen for the item 10 model (Figure A6a). Four hundred and 

sixty-four trials were split into the training set and 116 trials were into the test set. The transfer 

technique deficit rate was 41%. Seventy features were selected into the feature engineering process 

and 38 of them were applied into the final model (Figure A6b). For the model from the training 

set, the AUC was .97, and the mean accuracy from CV was 72% (STD = 3%). After tuning the 

model decision threshold, the test set AUC was .82, and precision was .92. Figure A6c shows the 

ROC curve, and the relationship between precision, recall when adjusting decision threshold of 

the outcomes from the test set.   
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Figure A6a. Model perforce of each classifier for item 10 
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Figure A6b. Feature selection and training process of item 10 model 
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Figure A6c. ROC curve, and relationship between precision, recall and decision threshold values of the item 10 

model 
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Item 11 Leading Handgrip 

 

 

The KNN classifier was chosen for the item 11 model (Figure A7a). Four hundred and 

sixty-four trials were split into the training set and 116 trials were into the test set. The transfer 

technique deficit rate was 42%. Seventy features were selected into the feature engineering process 

and 35 of them were applied into the final model (Figure A7b). For the model from the training 

set, the AUC was .95, and the mean accuracy from CV was 76% (STD = 3%). After tuning the 

model decision threshold, the test set AUC was .87, and precision was .91. Figure A7c shows the 

ROC curve, and the relationship between precision, recall when adjusting decision threshold of 

the outcomes from the test set.   
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Figure A7a. Model perforce of each classifier for item 11 
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Figure A7b. Feature selection and training process of item 11 model 
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Figure A7c. ROC curve, and relationship between precision, recall and decision threshold values of the item 11 

model 
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Item 12 Leading Hand Position after Transfer 

 

 

The random forest classifier was chosen for the item 12 model (Figure A8a). Four hundred 

and seventy-two trials were split into the training set and 119 trials were into the test set. The 

transfer technique deficit rate was 11%. Eighty features were selected into the feature engineering 

process and 23 of them were applied into the final model (Figure A8b). For the model from the 

training set, the AUC was .98, and the mean accuracy from CV was 88% (STD = 2%). After tuning 

the model decision threshold, the test set AUC was .85, and precision was .95. Figure A8c shows 

the ROC curve, and the relationship between precision, recall when adjusting decision threshold 

of the outcomes from the test set.   
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Figure A8a. Model perforce of each classifier for item 12 
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Figure A8b. Feature selection and training process of item 12 model 
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Figure A8c. ROC curve, and relationship between precision, recall and decision threshold values of the item 12 

model 
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Item 13 Trunk Leaning 

 

 

The random forest classifier was chosen for the item 13 model (Figure A9a). Four hundred 

and seventy-two trials were split into the training set and 119 trials were into the test set. The 

transfer technique deficit rate was 29%. Thirty-one features were selected into the feature 

engineering process and 9 of them were applied into the final model (Figure A9b). For the model 

from the training set, the AUC was .94, and the mean accuracy from CV was 80% (STD = 3%). 

After tuning the model decision threshold, the test set AUC was .89, and precision was .94. Figure 

A9c shows the ROC curve, and the relationship between precision, recall when adjusting decision 

threshold of the outcomes from the test set.   
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Figure A9a. Model perforce of each classifier for item 13 
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Figure A9b. Feature selection and training process of item 13 model 
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Figure A9c. ROC curve, and relationship between precision, recall and decision threshold values of the item 13 

model 
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Item 14 Flight 

 

 

The random forest classifier was chosen for the item 14 model (Figure A10a). Four hundred 

and seventy-two trials were split into the training set and 119 trials were into the test set. The 

transfer technique deficit rate was 32%. One-hundred and seventy-five features were selected into 

the feature engineering process and 40 of them were applied into the final model (Figure A10b). 

For the model from the training set, the AUC was .95, and the mean accuracy from CV was 73% 

(STD = 3%). After tuning the model decision threshold, the test set AUC was .87, and the precision 

was .91. Figure A10c shows the ROC curve, and the relationship between precision, recall when 

adjusting decision threshold of the outcomes from the test set.   
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Figure A10a. Model perforce of each classifier for item 14 
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Figure A10b. Feature selection and training process of item 14 model 
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Figure A10c. ROC curve, and relationship between precision, recall and decision threshold values of the item 14 

model 
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Item 15 Landing 

 

 

The random forest classifier was chosen for the item 15 model (Figure A11a). Four hundred 

and seventy-two trials were split into the training set and 119 trials were into the test set. The 

transfer technique deficit rate was 21%. One-hundred and seventy-five features were selected into 

the feature engineering process and 33 of them were applied into the final model (Figure A11b). 

For the model from the training set, the AUC was .83, and the mean accuracy from CV was 80% 

(STD = 2%). After tuning the model decision threshold, the test set AUC was .79, and the precision 

was .91. Figure A11c shows the ROC curve, and the relationship between precision, recall when 

adjusting decision threshold of the outcomes from the test set. 
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Figure A11a. Model perforce of each classifier for item 15 
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Figure A11b. Feature selection and training process of item 15 model 
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Figure A11c. ROC curve, and relationship between precision, recall and decision threshold values of the item 15 

model 
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Appendix D. Model Perforce of Each Classifier for the Machine Learning Method  

 

 

 

 

Figure D1. Model perforce of each classifier for the machine learning method (Chapter 3, Section 

3.2.3.3 Machine Learning Method of Phase Delineation) 

  



 

148 

Bibliography 

 

 

1. Facts and Figures at a Glance, N.S.C.I.S. Center, Editor. 2020: Birmingham, AL: 

University of Alabama at Birmingham. 

2. Americans With Disabilities. 2010; Available from: 

http://www.census.gov/prod/2012pubs/p70-131.pdf. 

3. Hogaboom, N.S., L.A. Worobey, and M.L. Boninger, Transfer Technique Is Associated 

With Shoulder Pain and Pathology in People With Spinal Cord Injury: A Cross-Sectional 

Investigation. Arch Phys Med Rehabil, 2016. 97(10): p. 1770-6. 

4. Tsai, C.Y., N.S. Hogaboom, M.L. Boninger, and A.M. Koontz, The relationship between 

independent transfer skills and upper limb kinetics in wheelchair users. Biomed Res Int, 

2014. 2014: p. 984526. 

5. Cooper, R.A., M.L. Boninger, S.D. Shimada, and B.M. Lawrence, Glenohumeral joint 

kinematics and kinetics for three coordinate system representations during wheelchair 

propulsion. Am J Phys Med Rehabil, 1999. 78(5): p. 435-46. 

6. Gutierrez, D.D., L. Thompson, B. Kemp, S.J. Mulroy, N. Physical Therapy Clinical 

Research, R. Rehabilitation, and D. Training Center on Aging-Related Changes in 

Impairment for Persons Living with Physical, The relationship of shoulder pain intensity 

to quality of life, physical activity, and community participation in persons with 

paraplegia. J Spinal Cord Med, 2007. 30(3): p. 251-5. 

7. Tsai, C.Y., M.L. Boninger, S.R. Bass, and A.M. Koontz, Upper-limb biomechanical 

analysis of wheelchair transfer techniques in two toilet configurations. Clin Biomech 

(Bristol, Avon), 2018. 55: p. 79-85. 

8. Finley, M.A. and M.M. Rodgers, Prevalence and identification of shoulder pathology in 

athletic and nonathletic wheelchair users with shoulder pain: A pilot study. J Rehabil Res 

Dev, 2004. 41(3B): p. 395-402. 

9. Paralyzed Veterans of America Consortium for Spinal Cord, M., Preservation of upper 

limb function following spinal cord injury: a clinical practice guideline for health-care 

professionals. J Spinal Cord Med, 2005. 28(5): p. 434-70. 

10. Gironda, R.J., M.E. Clark, B. Neugaard, and A. Nelson, Upper limb pain in a national 

sample of veterans with paraplegia. J Spinal Cord Med, 2004. 27(2): p. 120-7. 

11. Pentland, W.E. and L.T. Twomey, Upper limb function in persons with long term 

paraplegia and implications for independence: Part I. Paraplegia, 1994. 32(4): p. 211-8. 

12. Kulig, K., S.S. Rao, S.J. Mulroy, C.J. Newsam, J.K. Gronley, E.L. Bontrager, and J. 

Perry, Shoulder joint kinetics during the push phase of wheelchair propulsion. Clin 

Orthop Relat Res, 1998(354): p. 132-43. 

13. Neer, C.S., Anterior acromioplasty for the chronic impingement syndrome in the 

shoulder. 1972. J Bone Joint Surg Am, 2005. 87(6): p. 1399. 

14. Fu, F.H., C.D. Harner, and A.H. Klein, Shoulder impingement syndrome. A critical 

review. Clin Orthop Relat Res, 1991(269): p. 162-73. 

15. Seitz, A.L., P.W. McClure, S. Finucane, N.D. Boardman, 3rd, and L.A. Michener, 

Mechanisms of rotator cuff tendinopathy: intrinsic, extrinsic, or both? Clin Biomech 

(Bristol, Avon), 2011. 26(1): p. 1-12. 

http://www.census.gov/prod/2012pubs/p70-131.pdf


 

149 

16. Dyson-Hudson, T.A. and S.C. Kirshblum, Shoulder pain in chronic spinal cord injury, 

Part I: Epidemiology, etiology, and pathomechanics. J Spinal Cord Med, 2004. 27(1): p. 

4-17. 

17. Akbar, M., G. Balean, M. Brunner, T.M. Seyler, T. Bruckner, J. Munzinger, T. Grieser, 

H.J. Gerner, and M. Loew, Prevalence of rotator cuff tear in paraplegic patients 

compared with controls. J Bone Joint Surg Am, 2010. 92(1): p. 23-30. 

18. Akbar, M., M. Brunner, G. Balean, T. Grieser, T. Bruckner, M. Loew, and P. Raiss, A 

cross-sectional study of demographic and morphologic features of rotator cuff disease in 

paraplegic patients. J Shoulder Elbow Surg, 2011. 20(7): p. 1108-13. 

19. Campbell, C.C. and M.J. Koris, Etiologies of shoulder pain in cervical spinal cord injury. 

Clin Orthop Relat Res, 1996(322): p. 140-5. 

20. Yanai, T., F.K. Fuss, and T. Fukunaga, In vivo measurements of subacromial 

impingement: substantial compression develops in abduction with large internal rotation. 

Clin Biomech (Bristol, Avon), 2006. 21(7): p. 692-700. 

21. Dany Gagnon, A.M.K., Sara J. Mulroy, Debbie A. Nawoczenski, Emelie Butler-

Forslund, Anna Granstrom, Sylvie Nadeau, and a.M.L. Boninger, Biomechanics of Sitting 

Pivot Transfers Among Individuals with a Spinal Cord Injury: A Review of the Current 

Knowledge. Top Spinal Cord Inj Rehabil, 2009. 15(2): p. 33-58. 

22. Davidoff, G., R. Werner, and W. Waring, Compressive mononeuropathies of the upper 

extremity in chronic paraplegia. Paraplegia, 1991. 29(1): p. 17-24. 

23. Sie, I.H., R.L. Waters, R.H. Adkins, and H. Gellman, Upper extremity pain in the 

postrehabilitation spinal cord injured patient. Arch Phys Med Rehabil, 1992. 73(1): p. 

44-8. 

24. Burnham, R.S. and R.D. Steadward, Upper extremity peripheral nerve entrapments 

among wheelchair athletes: prevalence, location, and risk factors. Arch Phys Med 

Rehabil, 1994. 75(5): p. 519-24. 

25. Akbar, M., S. Penzkofer, M.A. Weber, T. Bruckner, M. Winterstein, and M. Jung, 

Prevalence of carpal tunnel syndrome and wrist osteoarthritis in long-term paraplegic 

patients compared with controls. J Hand Surg Eur Vol, 2014. 39(2): p. 132-8. 

26. Fliess-Douer, O., Y.C. Vanlandewijck, and L.H. Van der Woude, Most essential wheeled 

mobility skills for daily life: an international survey among paralympic wheelchair 

athletes with spinal cord injury. Arch Phys Med Rehabil, 2012. 93(4): p. 629-35. 

27. Gagnon, D., S. Nadeau, L. Noreau, P. Dehail, and F. Piotte, Comparison of peak shoulder 

and elbow mechanical loads during weight-relief lifts and sitting pivot transfers among 

manual wheelchair users with spinal cord injury. J Rehabil Res Dev, 2008. 45(6): p. 863-

73. 

28. Koontz, A.M., P. Kankipati, Y.S. Lin, R.A. Cooper, and M.L. Boninger, Upper limb 

kinetic analysis of three sitting pivot wheelchair transfer techniques. Clin Biomech 

(Bristol, Avon), 2011. 26(9): p. 923-9. 

29. Keir, P.J., R.P. Wells, D.A. Ranney, and W. Lavery, The effects of tendon load and 

posture on carpal tunnel pressure. J Hand Surg Am, 1997. 22(4): p. 628-34. 

30. Sinnott, K.A., P. Milburn, and H. McNaughton, Factors associated with thoracic spinal 

cord injury, lesion level and rotator cuff disorders. Spinal Cord, 2000. 38(12): p. 748-53. 

31. Kankipati, P., M.L. Boninger, D. Gagnon, R.A. Cooper, and A.M. Koontz, Upper limb 

joint kinetics of three sitting pivot wheelchair transfer techniques in individuals with 

spinal cord injury. J Spinal Cord Med, 2015. 38(4): p. 485-97. 



 

150 

32. Tsai, C.-Y., M.L. Boninger, J. Hastings, R.A. Cooper, L. Rice, and A.M. Koontz, 

Immediate Biomechanical Implications of Transfer Component Skills Training on 

Independent Wheelchair Transfers. Archives of physical medicine and rehabilitation, 

2016. 97(10): p. 1785-92. 

33. Tsai, C.Y., M.L. Boninger, J. Hastings, R.A. Cooper, L. Rice, and A.M. Koontz, 

Immediate Biomechanical Implications of Transfer Component Skills Training on 

Independent Wheelchair Transfers. Arch Phys Med Rehabil, 2016. 97(10): p. 1785-92. 

34. McClure, L.A., M.L. Boninger, H. Ozawa, and A. Koontz, Reliability and validity 

analysis of the transfer assessment instrument. Arch Phys Med Rehabil, 2011. 92(3): p. 

499-508. 

35. Tsai, C.Y., L.A. Rice, C. Hoelmer, M.L. Boninger, and A.M. Koontz, Basic psychometric 

properties of the transfer assessment instrument (version 3.0). Arch Phys Med Rehabil, 

2013. 94(12): p. 2456-64. 

36. Worobey, L.A., C.K. Zigler, R. Huzinec, S.K. Rigot, J. Sung, and L.A. Rice, Reliability 

and Validity of the Revised Transfer Assessment Instrument. Top Spinal Cord Inj Rehabil, 

2018. 24(3): p. 217-226. 

37. Worobey, L.A., S.K. Rigot, N.S. Hogaboom, C. Venus, and M.L. Boninger, Investigating 

the Efficacy of Web-Based Transfer Training on Independent Wheelchair Transfers 

Through Randomized Controlled Trials. Arch Phys Med Rehabil, 2018. 99(1): p. 9-16 

e10. 

38. French B, S.A., Siewiorek D, Ambur V, Tyamagundlu D, Classifying Wheelchair 

Propulsion Patterns with a Wrist Mounted Accelerometer, in Proc ICST 3rd Int Conf 

Body Area Netw. 2008, ICST (Institute for Computer Sciences, Social-Informatics and 

Telecommunications Engineering): Brussels, Belgium. p. 1–20. 

39. Garcia-Masso, X., P. Serra-Ano, L.M. Garcia-Raffi, E.A. Sanchez-Perez, J. Lopez-

Pascual, and L.M. Gonzalez, Validation of the use of Actigraph GT3X accelerometers to 

estimate energy expenditure in full time manual wheelchair users with spinal cord injury. 

Spinal Cord, 2013. 51(12): p. 898-903. 

40. Garcia-Masso, X., P. Serra-Ano, L.M. Gonzalez, Y. Ye-Lin, G. Prats-Boluda, and J. 

Garcia-Casado, Identifying physical activity type in manual wheelchair users with spinal 

cord injury by means of accelerometers. Spinal Cord, 2015. 53(10): p. 772-7. 

41. Learmonth, Y.C., D. Kinnett-Hopkins, I.M. Rice, J.L. Dysterheft, and R.W. Motl, 

Accelerometer output and its association with energy expenditure during manual 

wheelchair propulsion. Spinal Cord, 2016. 54(2): p. 110-4. 

42. Hiremath, S.V., S.S. Intille, A. Kelleher, R.A. Cooper, and D. Ding, Detection of physical 

activities using a physical activity monitor system for wheelchair users. Med Eng Phys, 

2015. 37(1): p. 68-76. 

43. Holloway C, H.B., Barbareschi G, Nicholson S, Hailes S, Street rehab: Linking 

accessibility and rehabilitation, in 2016 38th Annu Int Conf IEEE Eng Med Biol Soc. 

2016, EMBC 2016. p. 3167–3170. 

44. Barbareschi G, H.C., Bianchi-Berthouze N, Sonenblum S, Sprigle S, Use of a Low-Cost, 

Chest-Mounted Accelerometer to Evaluate Transfer Skills of Wheelchair Users During 

Everyday Activities: Observational Study. JMIR Rehabil Assist Technol, 2018. 5(2 

e11748). 



 

151 

45. Cook, T.S., G. Couch, T.J. Couch, W. Kim, and W.W. Boonn, Using the Microsoft 

Kinect for patient size estimation and radiation dose normalization: proof of concept and 

initial validation. J Digit Imaging, 2013. 26(4): p. 657-62. 

46. Xu, X., R.W. McGorry, L.S. Chou, J.H. Lin, and C.C. Chang, Accuracy of the Microsoft 

Kinect for measuring gait parameters during treadmill walking. Gait Posture, 2015. 

42(2): p. 145-51. 

47. Clark, R.A., Y.H. Pua, A.L. Bryant, and M.A. Hunt, Validity of the Microsoft Kinect for 

providing lateral trunk lean feedback during gait retraining. Gait Posture, 2013. 38(4): p. 

1064-6. 

48. Clark, R.A., Y.-H. Pua, C.C. Oliveira, K.J. Bower, S. Thilarajah, R. McGaw, K. Hasanki, 

and B.F. Mentiplay, Reliability and concurrent validity of the Microsoft Xbox One Kinect 

for assessment of standing balance and postural control. Gait & posture, 2015. 42(2): p. 

210-3. 

49. Kiselev, J., M. Haesner, M. Govercin, and E. Steinhagen-Thiessen, Implementation of a 

home-based interactive training system for fall prevention: requirements and challenges. 

J Gerontol Nurs, 2015. 41(1): p. 14-9. 

50. Reither, L.R., M.H. Foreman, N. Migotsky, C. Haddix, and J.R. Engsberg, Upper 

extremity movement reliability and validity of the Kinect version 2. Disabil Rehabil Assist 

Technol, 2018. 13(1): p. 54-59. 

51. Dehbandi, B., A. Barachant, D. Harary, J.D. Long, K.Z. Tsagaris, S.J. Bumanlag, V. He, 

and D. Putrino, Using Data From the Microsoft Kinect 2 to Quantify Upper Limb 

Behavior: A Feasibility Study. IEEE J Biomed Health Inform, 2017. 21(5): p. 1386-1392. 

52. Jintronix. 2019; Available from: http://www.jintronix.com. 

53. Reflexion Health. 2019; Available from: https://reflexionhealth.com. 

54. Microsoft. Azure Kinect body tracking joints. Available from: 

https://docs.microsoft.com/en-us/azure/kinect-dk/body-joints. 

55. Baldominos, A., Saez, Y., and del Pozo, C.G., An approach to physical rehabilitation 

using state-of-the-art virtual reality and motion tracking technologies. Procedia 

Computer Science, 2015. 64: p. 10-16. 

56. Ferche, O., Moldoveanu, A., and Moldoveanu, F., Evaluating Lightweight Optical Hand 

Tracking for Virtual Reality Rehabilitation. Romanian Journal of Human-Computer 

Interaction, 2016. 9(2). 

57. Marina A. Cidota, S.G.L., Paul Dezentje, Paulina J. M. Bank, Heide K. Lukosch, Rory 

M. S. Clifford, Serious Gaming in Augmented Reality using HMDs for Assessment of 

Upper Extremity Motor Dysfunctions. i-com, 2016. 15(2): p. 155-169. 

58. Chhor, J., Gong, Y., and Rau, P.L., Breakout: Design and Evaluation of a Serious Game 

for Health Employing Intel RealSense, in InInternational Conference on Cross-Cultural 

Design, Springer, Editor. 2017. p. 531-545. 

59. Jayan Mistry, B.I., An Approach to Sign Language Translation using the Intel RealSense 

Camera, in 10th Computer Science and Electronic Engineering Conference. 2018, IEEE. 

60. Clark, R.A., Y.H. Pua, K. Fortin, C. Ritchie, K.E. Webster, L. Denehy, and A.L. Bryant, 

Validity of the Microsoft Kinect for assessment of postural control. Gait Posture, 2012. 

36(3): p. 372-7. 

61. Galen, S.S., V. Pardo, D. Wyatt, A. Diamond, V. Brodith, and A. Pavlov, Validity of an 

Interactive Functional Reach Test. Games Health J, 2015. 4(4): p. 278-84. 

http://www.jintronix.com/
https://reflexionhealth.com/
https://docs.microsoft.com/en-us/azure/kinect-dk/body-joints


 

152 

62. Shih, M.C., R.Y. Wang, S.J. Cheng, and Y.R. Yang, Effects of a balance-based 

exergaming intervention using the Kinect sensor on posture stability in individuals with 

Parkinson's disease: a single-blinded randomized controlled trial. J Neuroeng Rehabil, 

2016. 13(1): p. 78. 

63. Dehbandi, B., A. Barachant, A.H. Smeragliuolo, J.D. Long, S.J. Bumanlag, V. He, A. 

Lampe, and D. Putrino, Using data from the Microsoft Kinect 2 to determine postural 

stability in healthy subjects: A feasibility trial. PLoS One, 2017. 12(2): p. e0170890. 

64. Eltoukhy, M.A., C. Kuenze, J. Oh, and J.F. Signorile, Validation of Static and Dynamic 

Balance Assessment Using Microsoft Kinect for Young and Elderly Populations. IEEE J 

Biomed Health Inform, 2018. 22(1): p. 147-153. 

65. Galna, B., G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, and L. Rochester, Accuracy of 

the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease. 

Gait Posture, 2014. 39(4): p. 1062-8. 

66. Gabel, M., R. Gilad-Bachrach, E. Renshaw, and A. Schuster, Full body gait analysis with 

Kinect. Conf Proc IEEE Eng Med Biol Soc, 2012. 2012: p. 1964-7. 

67. Stone, E.E. and M. Skubic, Capturing habitual, in-home gait parameter trends using an 

inexpensive depth camera. Conf Proc IEEE Eng Med Biol Soc, 2012. 2012: p. 5106-9. 

68. Saposnik, G., M. Levin, and G. Outcome Research Canada Working, Virtual reality in 

stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke, 2011. 

42(5): p. 1380-6. 

69. Bo, A.P.L., M. Hayashibe, and P. Poignet, Joint angle estimation in rehabilitation with 

inertial sensors and its integration with Kinect. Conference proceedings : Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society IEEE 

Engineering in Medicine and Biology Society Annual Conference, 2011. 2011: p. 3479-

83. 

70. Da Gama, A., P. Fallavollita, V. Teichrieb, and N. Navab, Motor Rehabilitation Using 

Kinect: A Systematic Review. Games for health journal, 2015. 4(2): p. 123-35. 

71. Pastor, I., H.A. Hayes, and S.J.M. Bamberg, A feasibility study of an upper limb 

rehabilitation system using Kinect and computer games. Conference proceedings : 

Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society IEEE Engineering in Medicine and Biology Society Annual Conference, 2012. 

2012: p. 1286-9. 

72. Clark, R.A., S. Vernon, B.F. Mentiplay, K.J. Miller, J.L. McGinley, Y.H. Pua, K. 

Paterson, and K.J. Bower, Instrumenting gait assessment using the Kinect in people living 

with stroke: reliability and association with balance tests. J Neuroeng Rehabil, 2015. 12: 

p. 15. 

73. Dolatabadi, E., B. Taati, and A. Mihailidis, Automated classification of pathological gait 

after stroke using ubiquitous sensing technology. Conf Proc IEEE Eng Med Biol Soc, 

2016. 2016: p. 6150-6153. 

74. Leightley, D. and M.H. Yap, Digital Analysis of Sit-to-Stand in Masters Athletes, Healthy 

Old People, and Young Adults Using a Depth Sensor. Healthcare (Basel), 2018. 6(1). 

75. Eftychios Protopapadakis, A.G., Anastasios Doulamis, Nikos Grammalidis, FOLK 

DANCE PATTERN RECOGNITION OVER DEPTH IMAGES ACQUIRED VIA KINECT 

SENSOR, in The International Archives of the Photogrammetry. 2017: Nafplio, Greece. 



 

153 

76. Plantard, P., E. Auvinet, A.S. Pierres, and F. Multon, Pose estimation with a Kinect for 

ergonomic studies: evaluation of the accuracy using a virtual mannequin. Sensors 

(Basel), 2015. 15(1): p. 1785-803. 

77. Plantard, P., H.P.H. Shum, A.S. Le Pierres, and F. Multon, Validation of an ergonomic 

assessment method using Kinect data in real workplace conditions. Appl Ergon, 2017. 

65: p. 562-569. 

78. McAtamney, L. and E. Nigel Corlett, RULA: a survey method for the investigation of 

work-related upper limb disorders. Appl Ergon, 1993. 24(2): p. 91-9. 

79. Robertson, M., B.C. Amick, 3rd, K. DeRango, T. Rooney, L. Bazzani, R. Harrist, and A. 

Moore, The effects of an office ergonomics training and chair intervention on worker 

knowledge, behavior and musculoskeletal risk. Appl Ergon, 2009. 40(1): p. 124-35. 

80. Dockrell, S., E. O'Grady, K. Bennett, C. Mullarkey, R. Mc Connell, R. Ruddy, S. 

Twomey, and C. Flannery, An investigation of the reliability of Rapid Upper Limb 

Assessment (RULA) as a method of assessment of children's computing posture. Appl 

Ergon, 2012. 43(3): p. 632-6. 

81. Manghisi, V.M., A.E. Uva, M. Fiorentino, V. Bevilacqua, G.F. Trotta, and G. Monno, 

Real time RULA assessment using Kinect v2 sensor. Appl Ergon, 2017. 65: p. 481-491. 

82. Lundqvist, C., A. Siosteen, C. Blomstrand, B. Lind, and M. Sullivan, Spinal cord 

injuries. Clinical, functional, and emotional status. Spine (Phila Pa 1976), 1991. 16(1): p. 

78-83. 

83. Gerhart, K.A., E. Bergstrom, S.W. Charlifue, R.R. Menter, and G.G. Whiteneck, Long-

term spinal cord injury: functional changes over time. Arch Phys Med Rehabil, 1993. 

74(10): p. 1030-4. 

84. Lundqvist, C., A. Siosteen, C. Blomstrand, B. Lind, and M. Sullivan, Spinal cord 

injuries. Clinical, functional, and emotional status. Spine, 1991. 16(1): p. 78-83. 

85. Gerhart, K.A., E. Bergstrom, S.W. Charlifue, R.R. Menter, and G.G. Whiteneck, Long-

term spinal cord injury: functional changes over time. Archives of physical medicine and 

rehabilitation, 1993. 74(10): p. 1030-4. 

86. Rintala, D.H., P.G. Loubser, J. Castro, K.A. Hart, and M.J. Fuhrer, Chronic pain in a 

community-based sample of men with spinal cord injury: prevalence, severity, and 

relationship with impairment, disability, handicap, and subjective well-being. Arch Phys 

Med Rehabil, 1998. 79(6): p. 604-14. 

87. Mortenson, W.B., W.C. Miller, C.L. Backman, and J.L. Oliffe, Association between 

mobility, participation, and wheelchair-related factors in long-term care residents who 

use wheelchairs as their primary means of mobility. J Am Geriatr Soc, 2012. 60(7): p. 

1310-5. 

88. Dalyan, M., D.D. Cardenas, and B. Gerard, Upper extremity pain after spinal cord injury. 

Spinal Cord, 1999. 37(3): p. 191-5. 

89. Alm, M., H. Saraste, and C. Norrbrink, Shoulder pain in persons with thoracic spinal 

cord injury: prevalence and characteristics. J Rehabil Med, 2008. 40(4): p. 277-83. 

90. Brose, S.W., M.L. Boninger, B. Fullerton, T. McCann, J.L. Collinger, B.G. Impink, and 

T.A. Dyson-Hudson, Shoulder ultrasound abnormalities, physical examination findings, 

and pain in manual wheelchair users with spinal cord injury. Arch Phys Med Rehabil, 

2008. 89(11): p. 2086-93. 



 

154 

91. Koontz, A.M., Y.S. Lin, P. Kankipati, M.L. Boninger, and R.A. Cooper, Development of 

custom measurement system for biomechanical evaluation of independent wheelchair 

transfers. J Rehabil Res Dev, 2011. 48(8): p. 1015-28. 

92. Gagnon, D., S. Nadeau, P. Desjardins, and L. Noreau, Biomechanical assessment of 

sitting pivot transfer tasks using a newly developed instrumented transfer system among 

long-term wheelchair users. J Biomech, 2008. 41(5): p. 1104-10. 

93. Gagnon, D., S. Nadeau, L. Noreau, J.J. Eng, and D. Gravel, Trunk and upper extremity 

kinematics during sitting pivot transfers performed by individuals with spinal cord injury. 

Clin Biomech (Bristol, Avon), 2008. 23(3): p. 279-90. 

94. Microsoft. Available from: https://msdn.microsoft.com/en-

us/library/microsoft.kinect.jointtype.aspx. 

95. Xu, X. and R.W. McGorry, The validity of the first and second generation Microsoft 

Kinect for identifying joint center locations during static postures. Appl Ergon, 2015. 49: 

p. 47-54. 

96. Lin Wei, T.B., Hyun Ka, Alicia M. Koontz, Evaluating Wheelchair Transfer Technique 

by Microsoft Kinect, in International Seating Symposium. 2017: Nashville, TN. 

97. Halilaj, E., A. Rajagopal, M. Fiterau, J.L. Hicks, T.J. Hastie, and S.L. Delp, Machine 

learning in human movement biomechanics: Best practices, common pitfalls, and new 

opportunities. J Biomech, 2018. 81: p. 1-11. 

98. Barbareschi, G., C. Holloway, N. Bianchi-Berthouze, S. Sonenblum, and S. Sprigle, Use 

of a Low-Cost, Chest-Mounted Accelerometer to Evaluate Transfer Skills of Wheelchair 

Users During Everyday Activities: Observational Study. JMIR Rehabil Assist Technol, 

2018. 5(2): p. e11748. 

99. van den Berg-Emons, R.J., A.A. L'Ortye, L.M. Buffart, C. Nieuwenhuijsen, C.F. 

Nooijen, M.P. Bergen, H.J. Stam, and J.B. Bussmann, Validation of the Physical Activity 

Scale for individuals with physical disabilities. Arch Phys Med Rehabil, 2011. 92(6): p. 

923-8. 

100. Wei, L.C., C. S.; Koontz, A. M., Automating the Clinical Assessment of Independent 

Wheelchair Sitting Pivot Transfer Techniques. Topics in Spinal Cord Injury 

Rehabilitation (under review), 2021. 

101. Desroches, G., D. Gagnon, S. Nadeau, and M.R. Popovic, Effects of sensorimotor trunk 

impairments on trunk and upper limb joint kinematics and kinetics during sitting pivot 

transfers in individuals with a spinal cord injury. Clin Biomech (Bristol, Avon), 2013. 

28(1): p. 1-9. 

102. Worobey, L.A., S.K. Rigot, M.L. Boninger, R. Huzinec, J.H. Sung, K. DiGiovine, and 

L.A. Rice, Concurrent Validity and Reliability of the Transfer Assessment Instrument 

Questionnaire as a Self-Assessment Measure. Arch Rehabil Res Clin Transl, 2020. 2(4): 

p. 100088. 

103. Spinal Cord Injury Facts and Figures at a Glance. J Spinal Cord Med, 2014. 37(3): p. 

355-6. 

104. Lin Wei, H.W.K., Chung-Ting Tsai, and Alicia M. Koontz, Can the Kinect detect 

differences between proper and improper wheelchair transfer techniques?, in 

Proceedings of the Rehabilitation Engineering and Assistive Technology Society of North 

America Conference. 2016: Washington, D.C. 

https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx


 

155 

105. Hwang, S., C.Y. Tsai, and A.M. Koontz, Feasibility study of using a Microsoft Kinect for 

virtual coaching of wheelchair transfer techniques. Biomed Tech (Berl), 2017. 62(3): p. 

307-313. 

106. Nicholas Sallinger, L.W., Sarah Bass, Hyun Ka, Alicia Koontz, Real Time Transfer 

Technique Assessment Using the Kinect2 Sensor, in Proceedings of the Rehabilitation 

Engineering and Assistive Technology Society of North America Conference. 2018: 

Arlington, VA. 

107. Intel®. Intel® RealSense™ Depth Camera D435. 2021; Available from: 

https://www.intelrealsense.com/depth-camera-d435/. 

108. Jamhoury, L. Understanding Kinect V2 Joints and Coordinate System. 2018; Available 

from: https://medium.com/@lisajamhoury/understanding-kinect-v2-joints-and-

coordinate-system-4f4b90b9df16. 

109. Nuitrack: Overview. 2019; Available from: 

(https://download.3divi.com/Nuitrack/doc/Overview_page.html). 

110. Wu, G., F.C. van der Helm, H.E. Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. 

Nagels, A.R. Karduna, K. McQuade, X. Wang, F.W. Werner, B. Buchholz, and B. 

International Society of, ISB recommendation on definitions of joint coordinate systems 

of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist 

and hand. J Biomech, 2005. 38(5): p. 981-992. 

111. Koo, T.K. and M.Y. Li, A Guideline of Selecting and Reporting Intraclass Correlation 

Coefficients for Reliability Research. J Chiropr Med, 2016. 15(2): p. 155-63. 

112. Lopez, N., E. Perez, E. Tello, A. Rodrigo, and M.E. Valentinuzzi, Statistical Validation 

for Clinical Measures: Repeatability and Agreement of Kinect-Based Software. Biomed 

Res Int, 2018. 2018: p. 6710595. 

113. Lin Wei, C.-Y.T., and Alicia M. Koontz, The Relationship between Joint Ranges of 

Motion and Joint Kinetics during Sitting Pivot Wheelchair Transfers, in Proceedings of 

the Rehabilitation Engineering and Assistive Technology Society of North America 

Conference. 2018. 

114. Portney, L.G., Foundations of clinical research : applications to evidence-based 

practice. 2020, F.A. Davis,: Philadelphia. p. 1 online resource. 

115. Harkel, T.C.T., S. Vinayahalingam, K. Ingels, S.J. Berge, T.J.J. Maal, and C.M. 

Speksnijder, Reliability and Agreement of 3D Anthropometric Measurements in Facial 

Palsy Patients Using a Low-Cost 4D Imaging System. IEEE Trans Neural Syst Rehabil 

Eng, 2020. 28(8): p. 1817-1824. 

116. R. T. Labuguen, S.B.N., T. Kogami, W. E. M. Ingco and T. Shibata, Performance 

Evaluation of Markerless 3D Skeleton Pose Estimates with Pop Dance Motion Sequence, 

in Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 

2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). 

2020: Kitakyushu, Japan. p. 1-7. 

117. Intel®. Skeleton Tracking SDK for Intel® RealSense™ Depth Cameras. 2021; Available 

from: https://www.intelrealsense.com/skeleton-tracking/. 

118. Koontz, A.M., C.Y. Tsai, N.S. Hogaboom, and M.L. Boninger, Transfer component skill 

deficit rates among Veterans who use wheelchairs. J Rehabil Res Dev, 2016. 53(2): p. 

279-94. 

119. The National Institute for Occupational Safety and Health (NIOSH). 2018 May 25, 2018; 

Available from: https://www.cdc.gov/niosh/. 

https://www.intelrealsense.com/depth-camera-d435/
https://medium.com/@lisajamhoury/understanding-kinect-v2-joints-and-coordinate-system-4f4b90b9df16
https://medium.com/@lisajamhoury/understanding-kinect-v2-joints-and-coordinate-system-4f4b90b9df16
https://download.3divi.com/Nuitrack/doc/Overview_page.html
https://www.intelrealsense.com/skeleton-tracking/
https://www.cdc.gov/niosh/


 

156 

 

 


	Preface
	1.0  Introduction
	1.1 Prevalence of Upper Extremities Pain and Injuries in Wheelchair Users
	1.2 Wheelchair Transfer and Secondary Injuries
	1.3 Biomechanics of the Wheelchair Sitting Pivot Transfer
	1.4 Transfer Assessment Instrument – An Evaluation Tool for Determining Quality of Transfer
	1.5 Marker-less Motion Capture
	1.6 3D Depth Sensors in Research
	1.7 3D Depth Sensing Applications in Rehabilitation Science and Human Motion Evaluation
	1.8 Significance
	1.9 Thesis Objectives

	2.0  Automating the Clinical Assessment of Independent Wheelchair Sitting Pivot Transfer Techniques
	2.1 Abstract
	2.2 Introduction
	2.3 Methods
	2.3.1 Participants
	2.3.2 Study Protocol
	2.3.2.1 Experimental Setup
	2.3.2.2 Transfer Protocol and Evaluation
	2.3.2.3 Data Labeling
	2.3.2.4 Features
	2.3.4.5 Model Performance Evaluation


	2.4 Results
	2.4.1 Participants Demographics
	2.4.2 Model Performance

	2.5 Discussion
	2.6 Limitations
	2.7 Conclusions

	3.0  Comparing Two Automated Methods to Detect Sitting Pivot Transfer Phases
	3.1 Introduction
	3.2 Methods
	3.2.1 Participants
	3.2.2 Study Protocol
	3.2.2.1 Experimental Setup
	3.2.2.2 Transfer Protocol and Evaluation

	3.2.3 Data Analysis
	3.2.3.1 Visual Method of Phase Delineation
	3.2.3.2 Threshold Method of Phase Delineation
	3.2.3.3 Machine Learning Method of Phase Delineation
	3.2.3.4 TAI Score Predictions

	3.2.4 Statistical Analysis
	3.2.4.1 Aim 1: To determine the overall accuracy of each method in predicting the start and end points of lifting phases
	3.2.4.2 Aim 2: To evaluate the accuracy of each method in predicting the TAI item scores


	3.3 Results
	3.3.1 Participants
	3.3.2 KNN Model performance
	3.3.3 Start/End timepoints of lift phase (Aim 1)
	3.3.4 Transfer Quality Evaluation (aim2)

	3.4 Discussion
	3.5 Limitation
	3.6 Conclusion

	4.0  Comparison of Two Depth Cameras for Capturing Upper Body Motions During Wheelchair Transfers
	4.1 Introduction
	4.2 Methods
	4.2.1 Participants
	4.2.2 Study Protocol
	4.2.2.1 Motion Sensors and Experimental Setup
	4.2.2.1 Transfer Protocol

	4.2.3 Data Analysis
	4.2.3.1 Key Variables
	4.2.3.2 Statistical Analysis


	4.3 Results
	4.3.1 Participant
	4.3.2 Intra-Rater (Sensor) Reliability
	4.3.3 Inter-Rater (Sensor) Reliability and Agreement

	4.4 Discussion
	4.5 Limitation
	4.6 Conclusion

	5.0  Conclusion
	5.1 Future Works

	Appendix A. General Questionnaire for Wheelchair Users
	Appendix B. Transfer Assessment Instrument 4.0
	Appendix C. Model training process and results of each TAI 4.0 item
	Item 1 Wheelchair Distance
	Item 2 Wheelchair Angle
	Item7 Feet Placement
	Item 8 Hip Scooting
	Item 9 Leading Arm Position before Transfer
	Item 10 Push-off Handgrip
	Item 11 Leading Handgrip
	Item 12 Leading Hand Position after Transfer
	Item 13 Trunk Leaning
	Item 14 Flight
	Item 15 Landing

	Appendix D. Model Perforce of Each Classifier for the Machine Learning Method
	Bibliography

