
Constructing Tunable Sentence Simplification Models using Deep Learning

by

Sanqiang Zhao

B.S., Zhengzhou University, China, 2010

M.S., University of Pittsburgh, USA, 2012

Submitted to the Graduate Faculty of

the School of Computing and Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION SCIENCES

This dissertation was presented

by

Sanqiang Zhao

It was defended on

April 23th 2021

and approved by

Dr. Daqing He, School of Information Sciences, University of Pittsburgh

Dr. Wei Xu, School of Interactive Computing, Georgia Institute of Technology

Dr. Paul Munro, School of Information Sciences, University of Pittsburgh

Dr. Konstantinos Pelechrinis, School of Information Sciences, University of Pittsburgh

ii

Constructing Tunable Sentence Simplification Models using Deep Learning

Sanqiang Zhao, PhD

University of Pittsburgh, 2021

Sentence simplification aims to reduce the complexity of a sentence while retaining its

original meaning so that certain individuals can read and understand it. Substitution,

Dropping, Reordering, and Splitting are widely accepted as four important operations

[102]. Recent approaches [102, 88, 90, 53, 94, 98] view the simplification process as a monolin-

gual text-to-text translation, where the translation model learns the operations automatically

from examples of complex-simplified sentence pairs extracted from online resources. In the

current literature, the two publicly available resources commonly used are Wikipedia and

Newsela. However, both resources are limited in several ways, and only contribute to certain

operations. As a result, a model trained on these resources favors those operations and lead

to inadequate simplification. I argue a truly useful sentence simplification system should

simplify a sentence with sufficient operations and even with parameters to enable different

ways of achieving simplifications. Current sentence simplification models, particularly deep

learning models, cannot do both. This dissertation aims to enhance the usefulness of sentence

simplification by exploring two questions: (1) can a sentence be simplified with all suitable

operations? and (2) can a sentence simplification model be equipped with parameters to

enable different styles of sentence simplification?

To answer the above research questions, I identify three research objectives. The first

two objectives focus on addressing the challenges of data shortages. To maximally reduce

the sentence complexity, I aim to improve the sentence simplification system to contribute

comprehensively to all four operations. First, because of the limitation of the resources

I stated above, I introduce an approach to generate a training dataset that will supply or

replace the existing training dataset. Via Back-Translation and heuristics, a training dataset

with less noise that contributes comprehensively to all operations is generated. Second, due

to rich linguistic and simplification resource existed but deep learning model cannot directly

use, I explore several deep learning model architectures that enable my model to integrate

iii

these resources. My third research objective is to address the flexibility in the simplification

style. This is because users in different settings may prefer various forms of simplified

sentences, which are related to different simplification operations. Thus, I explore a deep

learning model architecture that allows the insertion of style-related parameters for different

styles of sentence simplifications.

iv

Table of Contents

1.0 Introduction . 1

1.1 Introduction . 1

1.2 Problem Statement . 2

1.3 Research Questions . 8

1.3.1 RQ1: How to Analyze the Existing Sentence Simplification Corpus . . 8

1.3.2 RQ2: How to Improve Substitution Operation in Sentence Simplification 8

1.3.2.1 RQ2.1 How to Use Back-Translation to Generate a Training

Dataset . 8

1.3.2.2 RQ2.2 How to Integrate with PPDB 8

1.3.3 RQ3: How to Improve Reordering Operation in Sentence Simplification 9

1.3.3.1 RQ3.1 How to Use Back-Translation to Generate a Training

Dataset . 9

1.3.3.2 RQ3.2 How to Use PPDB to Generate a Training Dataset . . 9

1.3.4 RQ4: How to Improve Dropping and Splitting Operations in Sentence

Simplification . 9

1.3.4.1 RQ4.1 How to Use Back-Translation to Generate a Training

Dataset . 9

1.3.4.2 RQ4.2 How to Fuse the Models Trained on Other Corpora . . 9

1.3.5 RQ5: How to Allow the Insertion of Style-related Parameters to Enable

Different Styles of Sentence Simplification 10

1.3.5.1 RQ5.1 How to Enable Different Styles of Sentence Simplification 10

1.3.5.2 RQ5.2 How to Integrate with the Unconditional Language Model 10

1.4 Scope Definition . 10

1.5 Structure . 11

2.0 Background and Related Work . 12

2.1 Sentence Simplification . 12

v

2.1.1 Definition of Operations . 12

2.1.2 Background of Sentence Simplification Models 12

2.1.3 Related Work of Sentence Simplification Models 16

2.1.4 Related Work of Dataset Generation 17

2.1.5 Google’s Neural Machine Translation System 18

2.2 Linguistic and Simplification Resources . 19

2.2.1 PPDB and Simple PPDB . 19

2.2.1.1 Background of PPDB and Simple PPDB 19

2.2.1.2 Related Work of Integrating PPDB or Simple PPDB 21

2.2.2 Unconditional Language Models . 21

2.2.2.1 Background of Unconditional Language Models 21

2.2.2.2 Related Work of Integrating Unconditional Language Models . 22

2.2.3 Other Corpora . 23

2.2.3.1 Sentence Split . 23

2.2.3.2 Sentence Compression . 23

2.3 Enabling Different Styles of Sentence Simplification 24

2.4 Evaluation . 24

3.0 Analyzing the Existing Corpora . 26

3.1 Measurement of Operation . 26

3.1.1 Relevance Measurement . 26

3.1.2 Substitution Measurement . 30

3.1.3 Dropping Measurement . 30

3.1.4 Reordering Measurement . 31

3.1.5 Splitting Measurement . 31

3.2 Analyzing the Existing Training Datasets 33

3.2.1 Relevance Analysis . 35

3.2.2 Substitution Analysis . 41

3.2.3 Dropping Analysis . 42

3.2.4 Splitting Analysis . 42

3.2.5 Reordering Analysis . 47

vi

3.2.6 Summary . 49

4.0 Constructing a new Corpus: SimSim . 51

4.1 Generating Sentence Pairs . 51

4.1.1 Seed Sentence Bank . 51

4.1.2 Back-Translation . 52

4.1.3 Selecting Sentence Pairs Using GPT-2 54

4.2 Simulating Simplification Operations . 59

4.2.1 Simulating Substitution and Reordering 59

4.2.2 Simulating Dropping . 60

4.2.3 Simulating Splitting . 61

4.3 Analysis of SimSim . 61

4.3.1 Relevance Analysis . 61

4.3.2 Substitution Analysis . 70

4.3.3 Dropping Analysis . 70

4.3.4 Splitting Analysis . 70

4.3.5 Reordering Analysis . 70

4.3.6 Conclusion . 70

5.0 Model Design and Experiments for SimSim 76

5.1 Data Pipeline . 76

5.1.1 Tokenization . 76

5.1.2 Integrating with PPDB . 81

5.2 Evaluation . 85

5.2.1 Comparison to Other Models . 85

5.2.2 Ablation Study . 87

5.2.3 Comparison to Other Corpus . 89

6.0 Tunable Sentence Simplification Models 91

6.1 Tunable Sentence Simplification . 91

6.1.1 Policy Gradient . 92

6.1.2 Prefix Constraint . 93

6.2 Tunable Sentence Simplification Models . 94

vii

6.2.1 Tuning the Substitution Rewriting Operation 97

6.2.2 Tuning the Dropping Rewriting Operation 99

6.2.3 Tuning the Splitting Rewriting Operation 101

6.2.4 Tuning the Reordering Rewriting Operation 101

6.3 Syntax-Aware Tunable Sentence Simplification 103

6.4 Evaluation . 110

6.5 Summary . 111

7.0 Discussion and Conclusion . 112

7.1 Achievements . 112

7.2 Discussion . 113

7.2.1 Analyzing the Existing Corpora and the Constructed SimSim 113

7.2.2 Model Design of SimSim . 117

7.2.3 Tunable Sentence Simplification . 118

7.2.4 Summarizing SimSim and Model Design 118

7.3 Future Work . 120

Bibliography . 122

viii

List of Tables

1 Sample from Wikipedia. 3

2 Sample from Newsela. 4

3 Samples of lexical and phrasal paraphrases rules from PPDB 19

4 Samples of syntactic rules from PPDB . 19

5 Sample rules from Lexical Simple PPDB++ . 20

6 Sample rules from Phrasal Simple PPDB++ . 20

7 Sample of dropping measurement . 31

8 Samples from Google Translation System . 32

9 Less correlated samples from Wikipedia. 41

10 Less correlated sample from Newsela. 42

11 Splitting Analysis . 46

12 Sample from GNMT. 53

13 Sample from GNMT. 57

14 Splitting Analysis . 72

15 Sample of Anonymized sentence . 76

16 Samples of Subword Tokenization . 78

17 Sample of tokenization pipeline . 79

18 Sample of Anonymized Complex-Simplified Sentence Pairs 80

19 Performance of different models on the Turk dataset. 86

20 Ablation Study of Encoder-Decoder model on the Turk dataset. 88

21 Ablation Study of Encoder-Decoder model on the ASSET dataset. 88

22 Performance of different Corpora. 90

23 Sample of Influence of Tuning Substitution Rewriting Operation 98

24 Sample of Influence of Tuning Substitution Rewriting Operation 99

25 Sample of Influence of Tuning Dropping Rewriting Operation 100

26 Sample of Influence of Tuning Dropping Rewriting Operation 100

ix

27 Sample of Influence of Tuning Splitting Rewriting Operation 101

28 Sample of Influence of Tuning Splitting Rewriting Operation 102

29 Sample of Influence of Tuning Reordering Rewriting Operation 105

30 Sample of Influence of Tuning Reordering Rewriting Operation 106

31 Sample of Influence of Tuning Reordering Rewriting Operation 106

32 Sample of Influence of Tuning Reordering Rewriting Operation 107

33 Sample of Influence of Tuning Reordering Rewriting Operation 107

34 Sample of Influence of Tuning Reordering Rewriting Operation 108

35 Sample of Influence of Tuning Reordering Rewriting Operation 108

36 Sample of Influence of Tuning Reordering Rewriting Operation 108

37 Sample of Influence of Tuning Reordering Rewriting Operation 109

38 Sample of Influence of Tuning Reordering Rewriting Operation 109

39 Sample of Influence of Tuning Reordering Rewriting Operation 109

40 the Effectiveness of Tuning Rewriting Operations. * denotes p < 0.001 110

41 Failures of GPT-2: Samples come from testing dataset. 114

42 Failures of GPT-2: Samples come from testing dataset. 116

x

List of Figures

1 Overview of Deep Learning Architecture for Sentence Simplification 13

2 Overview of Deep Learning Architecture for Sentence Simplification 14

3 Screenshot of parallel articles for Wikipedia . 27

4 Screenshot of parallel articles for Newsela . 28

5 Dependency Parser Output . 32

6 Dependency Parser Output . 32

7 Relevance Analysis of Using Universal Sentence Encoder (Histogram) 35

8 Relevance Analysis of Using Universal Sentence Encoder (BoxPlot) 36

9 Relevance Analysis of Using Sentence BERT (Histogram) 37

10 Relevance Analysis of Using Sentence BERT (BoxPlot) 38

11 Relevance Analysis of Using BERT Score (Histogram) 39

12 Relevance Analysis of Using BERT Score (BoxPlot) 40

13 Substitution Analysis (Histogram) . 43

14 Substitution Analysis (BoxPlot) . 44

15 Dropping Analysis (Histogram) . 45

16 Dropping Analysis (BoxPlot) . 46

17 Reordering Analysis (Histogram) . 47

18 Reordering Analysis (BoxPlot) . 48

19 GPT-2 Prediction . 56

20 GPT-2 Loss for sample sentences. 58

21 GPT-2 Loss for sample sentences. 59

22 Relevance Analysis of Using Universal Sentence Encoder (Histogram) 62

23 Relevance Analysis of Using Universal Sentence Encoder (BoxPlot) 63

24 Relevance Analysis of Using Sentence BERT (Histogram) 64

25 Relevance Analysis of Using Sentence BERT (BoxPlot) 65

26 Relevance Analysis of Using BERT Score (Histogram) 66

xi

27 Relevance Analysis of Using BERT Score (BoxPlot) 67

28 Substitution Analysis (Histogram) . 68

29 Substitution Analysis (BoxPlot) . 69

30 Dropping Analysis (Histogram) . 71

31 Dropping Analysis (BoxPlot) . 72

32 Reordering Analysis (Histogram) . 73

33 Reordering Analysis (BoxPlot) . 74

34 Overview of Conditional Language Model Guilded By Name Entities 79

35 Overview of Augmented Memory Deep Learning Architecture in Zhao et al.[99] 82

36 Overview of my proposed Augmented Memory Deep Learning Architecture . . . 83

37 Overview of my proposed PPDB Encoder . 84

38 Overview of Architecture of Policy Gradient . 92

39 Overview of Architecture of Prefix Constraint 94

40 Overview of Architecture to Enable Styles of SS In Training 95

41 Overview of Architecture to Enable Styles of SS In Inference 96

42 Dependency Parser Output . 103

43 Dependency Parser Output . 103

44 The Syntax Representation for complex sentence 104

45 The Syntax-Aware Tunable Sentence Simplification 105

xii

1.0 Introduction

1.1 Introduction

Sentence simplification aims to reduce the complexity of a sentence while retaining its

original meaning. It can benefit individuals with low-literacy skills [83] including children,

non-native speakers and individuals with language impairments such as dyslexia [65] and

aphasia [5]. As a result, sentence simplification systems can reduce the reading difficulty and

transform sentences so that they are suitable for certain individuals. Not only human readers

but also natural language processing applications can benefit from sentence simplification.

Such simplification is used as a pre-processor to facilitate parsing or translation tasks. [8]. In

those tasks, complex sentences are considered stumbling blocks to such systems. Recently,

sentence simplification has also been demonstrated to help with summarization [40], sentence

fusion [22], semantic role labeling [81], question generation [29], paraphrase generation [101],

and biomedical information extraction [35].

Reading difficulty stems from either lexical or syntactic complexity. Therefore, sen-

tence simplification can be divided into two categories: lexical simplification and syntactic

simplification. These two categories can be further implemented by a set of operations. sub-

stitution, dropping, reordering, and splitting (samples in Table 1) are widely accepted

as four important operations [102, 98]1. The splitting operation divides a long sentence into

several shorter sentences to reduce the original sentence’s complexity. The dropping opera-

tion further removes unimportant or redundant parts of a sentence to make it more concise.

The reordering operation interchanges the order of parts or components in a sentence to

make its structure and syntax simpler. The substitution operation replaces difficult phrases

or words with simplified synonyms.

This dissertation aims to enhance the usefulness of sentence simplification, with par-

ticular attention to these four operations. More specifically, this dissertation explores two

major questions: (1) can a sentence be simplified with all suitable operations? and (2) Can

1There are other definitions of operation, discussed in 2.1.1.

1

a sentence simplification model support different styles of sentence simplification in which

each style can be composed of a set of operations?

1.2 Problem Statement

Earlier work [81, 72, 37, 32] focuses on individual aspects of the simplification problem.

For example, several systems performed syntactic simplification using rules aimed at sentence

splitting, while others turned to lexical simplification by substituting difficult words with

more common synonyms or paraphrases. They are more rule-based and only focus on certain

aspects of sentence simplification. Recent approaches [102, 88, 90, 53, 94, 98] are more data-

driven. They view the simplification process as a monolingual text-to-text translation, where

the translation model learns operations automatically from examples of complex-simplified

sentence pairs extracted from online resources.

Although earlier researchers focused on rule-based approaches, current deep learning-

based generation models gain better performance in multiple domains [80, 96, 68, 44], in-

cluding sentence simplification [99, 98], most likely because deep learning models can more

easily perceive patterns from large amounts of data. On the contrary, a rule-based approach

always requires a large amount of manpower that cannot scale to a large dataset. Therefore,

this dissertation focuses on deep learning modeling.

In the current literature, two publicly-available, commonly-used resources are Wikipedia

(Table 1) and Newsela (Table 2). However, I found both resources to be limited in several

ways, and only contribute to certain operations among substitution, dropping, reordering,

and splitting. A model trained on these resources favors those few operations and leads to

inadequate simplification.

Table 2 shows sentences in different grade levels (with a lower grade level implying

lower reading difficulty) of the same sentence rewritten by professional editors. Obvious,

reduced grade level results in more substitution (“nationwide” substitute to “in most states”

and “decade” substitutes to “10 years”), dropping (lengths of sentences become shorter),

reordering (the syntactic complexity is reduced) and splitting (the sentence in the 7th-grade

2

Table 1: Sample from Wikipedia.

Source Sentences

Complex The vegetation of the small and narrow islands, encompassed by

the sea, is very luxuriant; including rainforests, sago, rice and the

famous spices - nutmeg, cloves and mace, among others .

simplified (Split-

ting)

The vegetation of the small and narrow islands, with their wet

climate, is very luxuriant. It includes rainforests, sago, rice, and

the famous spices; including nutmeg, cloves, and mace.

Complex The town was officially renamed ” Allentown ” on April 16, 1838,

after years of popular usage.

simplified (Re-

ordering)

The name of the town became ” Allentown ” on April 16 1833

because it was liked by people.

Complex He was elected on may 17, 2005, defeating incumbent mayor James

Hahn, and then re-elected for a second term in 2009.

simplified

(Dropping)

He was elected on may 17, 2005, defeating the mayor in office,

James Hahn .

Complex Admission to Tsinghua is extremely competitive .

simplified (Sub-

stitution)

Admission to Tsinghua is very competitive

3

Table 2: Sample from Newsela.

Grade

Level

Sentences

12 Slightly more fourth-graders nationwide are reading proficiently com-

pared with a decade ago, but only a third of them are now reading well,

according to a new report.

7 Fourth-graders in most states are better readers than they were a decade

ago. But only a third of them actually are able to read well, according

to a new report.

6 Fourth-graders in most states are better readers than they were a decade

ago. But only a third of them actually are able to read well, according

to a new report.

4 Most fourth-graders are better readers than they were 10 years ago. But

few of them can actually read well.

3 Fourth-graders are better readers than 10 years ago. But few of them

read well.

4

is split). By observing this trend, I believe a truly useful sentence simplification system

should simplify a sentence with sufficient operations.

After analyzing two publicly-available, commonly-used resources (i.e. Wikipedia and

Newsela), I summarize the lessons learned and corresponding goals:

1. Both Wikipedia and Newsela are limited in several ways and contribute only to some

operations. Infrequent cases are always treated as noise if they are merely trained using

sentence pairs. As a result, a model trained on these resources favors those operations

and leads to inadequate simplification. I argue that a truly useful sentence simplification

system should simplify a sentence with sufficient operations. Although researchers in

the current literature have introduced a variety of methods to facilitate simplicity, most

methods have no clear definitions of simplicity and what changes are made to a given

complex sentence. Therefore, the first goal of this dissertation aims to enhance the use-

fulness of sentence simplification by exploring the question: can a sentence be simplified

with all suitable operations?

2. Another lesson learned from these two corpora is that excessively focusing on one op-

eration may not be of interest to some users. For example, excessively focusing on the

dropping operation may lose the essential meaning of the original complex sentence,

which is harmful to meaning preservation. Similarly, excessively focusing on substitution

also reduces meaning preservation. For example, “the winner of the Kate Greenaway

medal” is not exactly identical to “the recipient of the Kate Greenaway medal”. There

are different operation contribution rates in both datasets, leading to various styles of

simplified sentences. Users in different settings may prefer various forms of simplified sen-

tences. In a more technical perspective, other resources besides the two corpora, such as

linguistic and simplification resources, may only contribute to certain styles/operations;

this makes integration harder because different resources may conflict with each other.

A model that can be equipped with style-related parameters is critical to integrate with

those resources. Style-related parameters inform the model of what information is im-

portant and relevant. Therefore, the second goal of this dissertation aims to enhance

the usefulness of sentence simplification by exploring another question: can a sentence

simplification model be equipped with style-related parameters to enable different styles

5

of sentence simplification?

In sum, this dissertation aims to enhance the usefulness of sentence simplification by

exploring two questions: (1) can a sentence be simplified with all suitable operations? and

(2) can a sentence simplification model be equipped with style-related parameters to enable

different styles of sentence simplification?

To answer the first question, my objective is to improve each operation individually by

incorporating various resources. Below is a discussion of the resources that I consider to be

particularly useful.

1. To address such challenges as data shortages in Wikipedia and Newsela, I develop an

approach to obtain a new training dataset that will supply or replace the existing training

dataset. Back-translation (namely, using a translation system to translate the non-

English side of the parallel text to get English-English paraphrase pairs) provides a

significant number of parallel sentences. Because the pool of parallel sentences does not

necessarily contribute to sentence simplification, I select sentences pairs that contribute

to certain operations (such as using an existing word mapping databases to recognize

whether a substitution is valid). However, back-translation does not perfectly solve the

data shortages, because (1) the translation system prefers to preserve meaning (generate

a sentence with very similar meaning and structure to original sentence) that leads to

generating a few samples that help to drop operation and splitting operation. (2) The

translation system may generate noise, such as an influent sentence.

2. To resolve the limitation of back-translation and also supply more resources, another set

of resources may be useful are:

a. To mitigate the limitations of back-translation, I discover existed corpora in other

tasks can help the dropping and splitting operations. Finally, I find that corpora

in sentence compression and sentence split tasks. The sentence compression corpus

is used to train a model that can shorten a sentence, which helps the dropping

operation. The sentence split corpus is used to train a model that can split a long

sentence, which assists the splitting operation.

b. To reduce influent sentence noise introduced by back-translation, I use an uncon-

6

ditional language model to validate the fluency of a sentence. The unconditional

language model calculates the probability distribution of a text sequence. Uncondi-

tional language models always prefer commonly-used words and sentence structures,

which always indicate lower reading difficulty.

c. PPDB is a database containing lexical and paraphrase rules, which are presented

as a mapping from a complex word or phrase to a simplified one. Although the

mapping is not in sentence form, the database provides rich information on how to

conduct substitution.

To answer the second of the above questions, my objective is to allow the insertion of a

style-related parameter to enable various styles of sentence simplification.

Users with different settings may prefer various forms of simplified sentences. For ex-

ample, simplified sentences in Wikipedia and Newsela are two different styles. In order to

fulfill different user preferences, I design a deep learning model architecture that allows the

insertion of style-related parameters for different styles of sentence simplification.

Another reason for enabling various styles of sentence simplification is that the above

resources mostly focus on certain operations, and different resources, which may conflict with

each other. For example, the sentence splitting corpus provides information regarding how to

perform sentence splitting operations but makes the model ignore lexical simplification. To

maximally reduce the sentence complexity, a model that simplifies a sentence with sufficient

operations is required. One option is cascading models, but this is sub-optimal for a few

reasons. (1) The simplification process will go through multiple models, and one failure in

the middle will result in overall failure. (2) The number of models grows as new resources

are included. (3) It may force inaccurate simplification. A sentence split model attempts to

split every sentence no matter whether it is suitable. Therefore, it is necessary to create a

single model that performs all suitable operations. To achieve this aim, I design a style that

contains all suitable operations and makes the model generate such a style.

7

1.3 Research Questions

Based on the above description of my research objectives, I will study the following main

research questions in this dissertation. Each research question is then divided into several

small sub-questions.

1.3.1 RQ1: How to Analyze the Existing Sentence Simplification Corpus

I quantify each operation and analyze the problems of the current sentence simplification

corpus. The two publicly-available sentence simplification corpora commonly used in the

current literature are limited in several ways and only contribute to certain operations. As

a result, a model trained on these resources favors those operations and leads to inadequate

simplification. The model does not fulfill the goal of useful sentence simplification. This

issue prompts me to investigate the approaches to improving each operation individually.

1.3.2 RQ2: How to Improve Substitution Operation in Sentence Simplification

1.3.2.1 RQ2.1 How to Use Back-Translation to Generate a Training Dataset

I use back-translation to generate sentence pairs. Then I select pairs containing a re-

placement that matches PPDB’s mapping rules. Such pairs contribute to substitution.

1.3.2.2 RQ2.2 How to Integrate with PPDB

To further improve the performance, I also integrate the PPDB into the sentence simpli-

fication model itself. The expectation is to make the model aware of substitutions explicitly,

in addition to learning the substitutions implicitly from the data.

8

1.3.3 RQ3: How to Improve Reordering Operation in Sentence Simplification

1.3.3.1 RQ3.1 How to Use Back-Translation to Generate a Training Dataset

I use back-translation to generate sentence pairs, selecting pairs where the syntax com-

plexity of the translated sentence is lower than the original sentence. Such pairs contribute

to substitution.

1.3.3.2 RQ3.2 How to Use PPDB to Generate a Training Dataset

To provide more variant sentence pairs that contribute to the reordering operation, I also

employ a syntactic mapping rule in PPDB to obtain more data.

1.3.4 RQ4: How to Improve Dropping and Splitting Operations in Sentence

Simplification

1.3.4.1 RQ4.1 How to Use Back-Translation to Generate a Training Dataset

I use back-translation to generate sentence pairs and select pairs that contribute to the

dropping and splitting operations. Pairs with shorter translated sentences contribute to the

dropping operation. Pairs with a larger number of translated sentences contribute to the

splitting operation.

1.3.4.2 RQ4.2 How to Fuse the Models Trained on Other Corpora

Based on my initial experiment and due to the limitation of back-translation, in which

the generates sentence prefers to preserve meaning, the back-translation is less helpful to the

dropping and splitting operations. This issue prompts me to investigate other alternative

corpora. However, different corpora may conflict with each other; for example, a sentence

split corpus aims to split a sentence but ignores the substitution. To resolve this issue, I

introduce an approach to fuse the models that are trained on the different corpora.

9

1.3.5 RQ5: How to Allow the Insertion of Style-related Parameters to Enable

Different Styles of Sentence Simplification

1.3.5.1 RQ5.1 How to Enable Different Styles of Sentence Simplification

Users in different settings may prefer various forms of simplified sentences, which are re-

lated to various simplification operations. Therefore, a deep learning model architecture that

allows the insertion of style-related parameters for different styles of sentence simplification

is critical.

1.3.5.2 RQ5.2 How to Integrate with the Unconditional Language Model

The unconditional language model calculates the probability distribution of a text se-

quence. Language models always prefer commonly-used words or sentence structures. Commonly-

used words and sentence structures always indicate lower reading difficulty. Therefore, I

believe that the unconditional language model indirectly contributes to all of the opera-

tions. This prompts me to study how the unconditional language model help the sentence

simplification.

1.4 Scope Definition

In this dissertation, I make the following assumptions to define the scope of my study.

1. Although previous research focused on rule-based approaches, current deep learning

based generation models achieve better performance in multiple domains [80, 96, 68, 44]

including sentence simplification [99, 98]. On the contrary, a rule-based approach always

requires a large amount of manpower that cannot scale to a large dataset. Therefore, I

believe that focusing on a deep learning based approach is appropriate.

2. Siddharthan [72] states that the sentence simplification can benefit certain types of read-

ers with external simplification rewriting operations. For example, conceptual simplifica-

tion (where the content, as well as the form, are simplified) benefits child-aged readers.

10

This dissertation focuses on four major simplification rewriting operations: dropping,

substitution, reordering, and splitting, all of which benefit a large number of people with

reduced literacy.

1.5 Structure

This section will discuss the overall structure of this dissertation. Chapter 1 introduces

the research problem statement and specifies the research questions. Chapter 2 introduces

background information (including model and data preprocessing) and related research.

Chapter 3 analyzes the existing sentence simplification corpus. And Chapter 4 focuses on

constructing a new training corpus based on the analysis. Chapter 5 further evaluates model

performance using my constructed corpus. Chapter 6 explains the solution of intensifying

the model by allowing multiple styles of sentence simplification. Finally, Chapter 7 made a

conclusion and discuss benefits and weaknesses of each components.

11

2.0 Background and Related Work

2.1 Sentence Simplification

2.1.1 Definition of Operations

Reading difficulty stems either from either lexical or syntactic complexity. Sentence sim-

plification can, therefore, be classified into two types: lexical simplification and syntactic

simplification. These two types of simplification can be further implemented by a set of

simplification rewriting operations. Splitting, dropping, reordering, and substitution

are widely accepted as important simplification rewriting operations [102, 98]. Although

there are some other definitions of operations, they tend to be highly similar. For example,

Xu et al. [94, 18] state that sentence simplification can be achieved by three major types of

operations: splitting, deletion, and paraphrasing, with the paraphrasing operation including

reordering, lexical substitutions, and syntactic transformations. Reordering and syntactic

transformations are similar operations, classified as “reordering” in this dissertation. Wood-

send et al.[88] state that sentence simplification includes deletion, substitution, insertion,

and reordering. However, “insertion” refers to the insertion of functional words; therefore,

it is classified as “reordering” in this dissertation.

2.1.2 Background of Sentence Simplification Models

My deep learning architecture is a conditioned language model. In a regular (uncondi-

tioned) language model, each token wt is conditioned on the previous tokens. The probability

of a sequence of words P(w1, w2, ...wn) is calculated, as in Equation 1.

P(w1, w2, ...wn) =P(wn|w1, w2, ...wn−1)P(wn−1|w1, w2, ...wn−2)....

P(w2|w1)P(w1)
(1)

In a conditional language model, additional context c is added, as in Equation 15. Each

12

token wt in the sentence is conditioned on previous ones along with the context c.

P(w1, w2, ...wn|c) =P(wn|w1, w2, ...wn−1, c)P(wn−1|w1, w2, ...wn−2, c)....

P(w2|w1, c)P(w1|c)
(2)

Figure 1: Overview of Deep Learning Architecture for Sentence Simplification

As seen in in Figure 1, there are three major modules. The “Encoder” encodes a complex

sentence into a machine-readable representation. A “Decoder” encodes previously generated

words in a simplified sentence into a machine-readable representation. An attention module

connects representations encoded from the “Encoder” and “Decoder”. The complex sen-

tence “it had a population of 1369 in the 2001 Census .” is encoded into a list of hidden

states {eh1, eh2, eh3,eh13} via the module “Encoder”. Similarly, the “Decoder” mod-

ule encodes the previous generated words “in 2001 , there were 1369” into hidden states

{dh1, dh2, dh3,dh7}. An attention module [47] combines the list of hidden states hidden

states {eh1, eh2, eh3,eh13} into context vector c7 (the figure focuses on the generation of

the seventh word) via Equation 3. When generating the next word in a simplified sen-

tence, the “Decoder” considers two pieces of (1) context vector c, which encodes informa-

tion in the complex sentence and (2) the hidden states of the previously generated words

13

{dh1, dh2, dh3,dh7}, which helps generate a fluent sentence.

c7 =
∑
i

(αi ∗ ehi)

αi =
ei∑
j ej

ej = exp(ehj ∗ dh7)

(3)

Previously, both the “Encoder” and “Decoder” can be implemented using a recur-

rent neural network model, such as RNN/LSTM [52]. Zhao et al. [99] demonstrated the

Transformer[80] achieves better performance. Therefore, I focus on implementing the “En-

coder” and “Decoder” using Transformer.

Figure 2: Overview of Deep Learning Architecture for Sentence Simplification

The details of the architecture are illustrated in Figure 2, which describes the same

sentence simplification process as in Figure 1.

Each word is represented as a trainable word embedding via a function emb(). Positional

encoding (PE) [80] is added to each word embedding for the purpose of injecting information

about the relative or absolute position of the tokens in the sentence. The word embedding

14

list is sent to the “Encoder”. The “Encoder” (bottom right corner of Figure 2) is a stack of

L identical layers (I set L = 6). Each layer has two sub-layers: one layer is for multi-head

self-attention and the other is a fully connected feed-forward neural network. The multi-head

self-attention layer encodes the output from the last layer into hidden state ehs,l (step s and

layer l) as shown in Equation 4, where αenc
s′,l indicates the attention distribution over step s′

and layer l. Each hidden state summarizes the hidden states in the last layer through the

multi-head attention function a()[80]. The hidden states of the last layer of the “Encoder”

are represented as {eh1, eh2, eh3,eh13}.

The “Decoder” (top right corner of Figure 2) also consists of a stack of L identical layers

(I set L = 6). Along with the same two sub-layers as those in the “Encoder”, the “Decoder”

inserts another multi-head attention sub-layer aiming to attend to the encoder outputs. The

bottom multi-head self-attention sub-layer plays the same role as the one in the “Encoder”,

where the hidden state dhs,l is computed by Equation 5. The above multi-head attention

sub-layer is used to find relevant information from “Encoder” outputs. Through the same

mechanism, context vector cs,l (step s and layer l) is computed by Equation 6. The hidden

states of the last layer of the “Decoder” are represented as {dh1, dh2, dh3,dh7}. Via

Equation 7, each hidden state of the “Decoder” is projected into a vector with vocabulary

size and such a vector is used to predict a word (using argmax). The predicted word is sent

to the “Decoder” of the next time step.

ehs,l =
∑
s′

αenc
s′,l ehs′,l−1, αenc

s′,l =a(ehs,l, ehs′,l−1)
1 (4)

dhs,l =
∑
s′

αdec
s′,ldhs′,l−1, αdec

s′,l =a(dhs,l, cs′,l−1)
2 (5)

cs,l =
∑
s′

αdec2
s′,l ehs′ , αdec2

s′,l =a(dhs,l, es′) (6)

predicted word = argmax(softmax(dh7 ∗Wproj + bproj))

softmax(e) =
exp(e)∑
i exp(ei)

(7)

15

2.1.3 Related Work of Sentence Simplification Models

Earlier work [81, 72, 37, 32] concentrate on individual aspects of the simplification prob-

lem. For example, there are several systems that only perform syntactic simplification using

rules geared towards sentence splitting. Others perform lexical simplification by substituting

difficult words with more common synonyms or paraphrases.

Recent approaches [102, 88, 90, 53, 94, 98] view the simplification process as a monolin-

gual text-to-text translation, where the translation model automatically learns operations

from examples of complex-simplified sentence pairs extracted from online resources.

For statistical machine translation models, Zhu et al.[102] propose a tree-based sentence

simplification model, drawing inspiration from statistical machine translation. Woodsend et

al.[88] use quasi-synchronous grammar and integer programming to score simplification rules.

Wubben er al.[90] propose a two-stage model, PBMT-R. A standard phrase-based machine

(PBMT) model was trained on complex-simplified sentence pairs, and K-best generations

from PBMT were re-ranked based on measurements of dissimilarity from a complex sentence.

A hybrid proposed by Narayan et al.[53] is also a two-stage model combining deep semantics

and machine translation framework. Zhang et al.[98] argue that the RNN/LSTM model

generates sentences without sufficient capability for simplification. They propose DRESS

and DRESS-LS, which employ reinforcement learning to reward simpler outputs. SBMT-

SARI [94] and DMASS/DESS [99] achieve the 2nd state-of-the-art performance by employing

an external knowledge base to promote simplification. Pointer+Ent+Par [27] argued that a

good simplified sentence is supposed to be also be logically entailed by its original complex

sentence. Therefore, they introduced pointer network for performing copy mechanism, at

the same time, they enhanced the entailment and paraphrasing capabilities via multi-task

learning by combining auxiliary tasks of entailment and paraphrase generation. NTS+SARI

[55] focused on the decoding algorithm, and fine-tuned beam search targeting at high SARI.

NSELSTM-S [82] utilized an augmented memory to automatically encode more information

in their model. ACCESS [51] proposed a controllable text simplification model that allows

explicit ways for users to manipulate and update simplified outputs. Their motivation is

similar to mine, but they only focus on the superficial attributes of control, such as sentence

16

length. In addition, the limited attributes in the current publicly available data sets reduces

the freedom of their control capabilities.

2.1.4 Related Work of Dataset Generation

The idea of generating a training dataset via back-translation is inspired by automatically

generating or discovering paraphrase corpora or parallel texts and they use such methods to

learn sentence embeddings.

Many methods have been developed to generate or find paraphrases. Barzilay et al. [3]

extracted paraphrases from multiple translations of the same source material. Lin et al. [45]

discovered paraphrases by applying a Dependency parser. Dolan et al. [15, 16] discovered

articles from multiple news sources. William et al. [12] aligned sentences from standard and

Simple English Wikipedia. Xu et al. [93] followed a similar alignment approach but targeted

Newsela. Xu et al. [95, 92] discovered paraphrases from crowdsourcing. Suzuki et al.[74]

obtained paraphrases from applying diverse machine translation systems to translate a single

source sentence. Bannard et al.[2] and Ganitkevitch et al.[24] used methods in statistical

machine translation to discover lexical and phrasal paraphrases in parallel text. However,

most previous methods generate or discover paraphrases at the phrase level and cannot be

extended to large data sets.

Chao et al. [33] improved the quality and quantity of complex-simplified sentence pairs in

the training dataset by introducing a novel neural conditional random field (CRF) alignment

model. This model not only uses the sequential nature of sentences in parallel documents but

also uses the big pre-trained language model to capture semantic similarity. They believe

that existing alignment algorithms use surface-level similarity measures, such as the Jaccard

coefficient or the cosine distance of the TF-IDF vector, the paraphrase and the context of

surrounding sentences cannot be captured. Instead, their CRF alignment model, which is

capable to capture deep-level similarity feature, can extract higher quality aligned sentence

pairs from parallel documents. However, I found that due to the limitation of available text

in the parallel document, the contribution to those rewriting operation is still limited and I

am seeking for generative approach to construct higher quality dataset.

17

My approach is most similar to [86, 85]. They used a neural machine translation system

to translate the non-English side of parallel text, resulting in English-English paraphrase

pairs. Thus, this method is more easily extended to large data sets due to a large amount of

machine translation data. Schwenk et al.[67] and Sennrich et al.[69] improved the target side

quality of machine translation by introducing monolingual data obtained by back-translation.

Hu et al. [31] followed the same approach to obtain English-English paraphrases pairs.

Additionally, to enhance the diversity and adequacy of paraphrases pairs, they used heuristic

methods to select the most useful pairs. The heuristic they used is a group of constraints,

such as PPDB constraints and, morphological variants. I follow a similar approach to [86,

85] given a complex English sentence and by using another language as a pivot, I employ

a neural machine translation system to translate the sentence to the pivot language and

translate back. I then use several heuristics to select sentence pairs that contribute to

certain simplification rewriting operations. Below, I will discuss the translation system used

in this dissertation.

2.1.5 Google’s Neural Machine Translation System

Google’s Neural Machine Translation system (GNMT) [89, 80] is an end-to-end transla-

tion system employing a deep learning architecture similar to that of Figure 2. Compared

to the previous phrase-based translation system, it shows the GNMT can achieve roughly a

60% reduction in translation errors on several popular language pairs evaluated by humans.

In addition, more studies demonstrate that that neural machine translation generally pro-

duces fluent sentences [28, 78, 79, 77]. Therefore, I use GNMT as a base machine translation

system to generate data.

18

2.2 Linguistic and Simplification Resources

2.2.1 PPDB and Simple PPDB

2.2.1.1 Background of PPDB and Simple PPDB

The PPDB (i.e. Paraphrase Database) [24, 59] is an automatically constructed collection

of paraphrases. It is built by discovering lexical and phrasal paraphrases from a large amount

of parallel text, obtained from statistical machine translation (Table 3).

In addition to the lexical and phrasal paraphrases, PPDB also provides syntactic para-

phrases (Table 4), which is helpful for syntactic simplification and reordering operation.

Table 3: Samples of lexical and phrasal paraphrases rules from PPDB

Source Target

situated existed

situated sited

situated relocated

situated accommodated

situated instituted

Table 4: Samples of syntactic rules from PPDB

Source Target

the manner in which {NN, 1} the way {NN, 1}

{NNP, 1} s population the people of {NNP, 1}

Due to the manner in which PPDB is constructed, the paraphrase mapping is not nec-

essarily a simplification mapping. Pavlick et al. [58] trained a supervised model to associate

simplification scores with each mapping pair. By truncating the pair with low simplification

scores, a subset of PPDB referred to as Simple PPDB, is released. Simple PPDB refers to a

paraphrase knowledge base for simplification. It contains 4.5 million paraphrase rules, each of

19

which provides a mapping from a complex word or phrase to simplified ones. More recently,

Maddela et al. [49] released a new version of Simple PPDB, termed Simple PPDB++ (Table

5 and 6). Simple PPDB++ is trained on a corpus of human-rated word complexity lexicon

with the help of a neural readability ranking model. Simple PPDB++ includes 10 million

simplifying paraphrase rules, including lexical (Table 5) and phrasal paraphrases (Table 6).

Each rule in the Simple PPDB++ contains a mapping rule along with its simplification score

and paraphrase score, in which the simplification score represents the relative complexity of

a target word or phrase and the paraphrase score indicates the meaning preservation of the

mapping. A low simplification score implies that the target words in the rules are not easily

understood, while a low paraphrase score implies that the meaning is not preserved. In this

dissertation,I combined simple PPDB and PPDB to improve the recall rate.

Table 5: Sample rules from Lexical Simple PPDB++

Source Target Simplification

Score

Paraphrase

Score

situated located 1.100474 3.42205

situated implanted 1.010248 3.29858

situated stationed 1.001779 3.33203

Table 6: Sample rules from Phrasal Simple PPDB++

Source Target Simplification

Score

Paraphrase

Score

situated in located in 1.063261 3.91841

situated in set up at 1.107658 3.69714

situated in based in 0.958551 3.78694

20

2.2.1.2 Related Work of Integrating PPDB or Simple PPDB

The format of the substitution mapping rule only reveals which word or phrase is a

simplified version of a given complex word or phrase. Because the applying rule is context

dependent, direct replacement is not an optimal solution. This issue prompts researchers to

investigate how to integrate Simple PPDB into their models.

In the sentence simplification domain, Xu et al. [94] used PPDB paraphrase rules as

one of their features in statistical machine translation models. My previous approach [99]

used Simple PPDB rules in the neural sentence simplification model. I allocated an external

memory for Simple PPDB rules and employed an attention module to select suitable rules

to generate a simplified sentence. One drawback of this method is that it is limited to the

rules that appear in the training dataset. However, Simple PPDB contains more rules. This

prompts me to investigate a better approach of integrating with Simple PPDB.

2.2.2 Unconditional Language Models

2.2.2.1 Background of Unconditional Language Models

Unlike the conditional language models discussed in Section 2.1.2, unconditional lan-

guage models provide a probability distribution over a sequence of text (Equation 1). The

unconditional language model, covering many language aspects, plays an important role in

boosting the fluency of generation models, which prompts researchers to integrate language

models into sentence simplification models (conditional language models).

Research on the unconditional language model has a long history and only the most

popular and recent unconditional language models are included in this dissertation. Un-

conditional language models are typically left-to-right, which is the same way a sentence is

generated. However, if each word in a sentence can only see the context to its left, it clearly

loses a great deal of information.

For left-to-right unconditional language models, TransformerXL [13] revises the “De-

coder” in the Transformer architecture to enable learning dependency beyond a fixed length.

GPT [61] and GPT2 [62] employe “Decoder” in the Transformer architecture with much

21

deeper layers and multi-task objectives. GPT-CAS [14] propose Coordinate Architecture

Search (CAS) to search an effective deep learning architecture of the unconditional language

model. In their results, the Transformer network, with the addition of the LSTM sublayer,

is shown to be an effective unconditional language model architecture.

For bidirectional unconditional language models, ELMo [60] uses bidirectional LSTM

and multiple objectives for language modeling. BERT [14], followed GPT [61] and employed

deep bidirectional Transformer architecture that results in better performance. In this dis-

sertation, for bidirectional unconditional language models, I focus on BERT because they

have released the pre-trained models (it being particularly expensive to train from scratch)

and also achieve good performance.

2.2.2.2 Related Work of Integrating Unconditional Language Models

Gulcehre et al.[26] propose shallow fusion. This integrates the unconditional language

model by changing the decoding objective (Equation 8), in which Pulm(y|x) represents the

probability generated from the unconditional language model and Pclm(y|x) represents the

probability generated from the conditional language model. Shallow fusion also uses a hy-

perparameter λ to coordinate the probabilities from the two language models.

ŷ = argmax log Pclm(y|x) + λlog Pulm(y|x) (8)

Unlike the above work, which only integrates an unconditional language model in the

testing time, Sriram et al.[73] propose cold fusion, which trains the conditional language

model first. They then include the pre-trained unconditional language model as a fixed part

of the network. They argue that this approach allows the conditional language model to use

its model capacity to condition the source sentence because the language aspect is already

covered by the pre-trained unconditional language model. Furthermore, their model also

includes a gating network which learns to regulate the contributions of the unconditional

language model at each time step. Fan et al. [17] modified cold fusion by merging the two

language models, resulting in better performance. Devlin et al.[14] treated the unconditional

language model as a tool for a second-stage refinement process after the conditional language

22

model predicts the sequence. The benefit of such a two-stage model is that it mitigates

the left-to-right constraint because, in the second stage, the entire generated sequence is

visible by the refinement process. Zhang et al. [98] employed reinforcement learning (policy

gradient) [87] and used perplexity from the unconditional language model as a reward to

promote simpler output. Unlike the above methods, the unconditional language model is

not combined with the conditional language model in each time step but instead rewards

the entire sentence.

2.2.3 Other Corpora

2.2.3.1 Sentence Split

Sentence splitting is the task of breaking down a long sentence into shorter ones that

together convey the same meaning.

The WebSplit corpus [54] was constructed by matching sentences in the WebNLG corpus

[25]. However, as argued by Botha et al. [4], the WebSplit is sub-optimal because the

sentences are (1) often unnatural and (2) not diverse. They proposed to extract sentence

split pairs by mining Wikipedia’s edit history and released a sentence split dataset called

WikiSplit. It contains one million naturally-occurring sentence rewrites, providing 60 times

more distinct split examples and a 90 times larger vocabulary than the WebSplit corpus.

2.2.3.2 Sentence Compression

Knight et al. [41] mined a small parallel compression corpus by automatically aligning

abstracts to sentences in articles. Filippova et al. [21, 20] extracted a deletion-based com-

pression corpus by aligning news titles to the first sentences in the articles. Clarke et al.

[10, 11] released two manually-created compression corpora for deletion-based compression.

However, the size of these two manually-created corpora is too small. Toutanova et al.[76]

provide a large manually-created corpus constructed by Amazon Mechanical Turk workers.

23

2.3 Enabling Different Styles of Sentence Simplification

Enabling different styles of sentence simplification requires a controller to manage model

generation according to a certain style. The objective of controlling generation is to solve

the problem of unequal distribution of the training data and users’ objectives. For example,

based on training corpus distribution, a model may be likely to generate a long sentence

even though users prefer a shorter sentence. The controlling model allows control over the

style of a generated sentence and would force the model to generate a short sentence.

Kikuchi et al.[38] controlled the length of a generated summary in a sentence summa-

rization task by feeding a label that indicates an intended output length in addition to the

source input. Sennrich et al.[71] introduced a method termed side constraints, which pro-

vides a style-related parameter in the source sentence to control of honorifics in the neural

machine translation task. The side prefix is also used for multiple domains, such as control-

ling meta-textual information [84], user personality [43], topic[9] and domain[42]. Johnson

et al.[34] employed the side constraints framework for multilingual translation. Ficler et al.

[19] followed the side constraints approach and found they could control multiple linguistic

style aspects. [75] compared prefix constraints and side constraints, arguing that prefix con-

straints are more flexible. Niu et al. [56] used a similar approach as the prefix constraints

to control politeness in a dialogue generation system. Celikyilmaz et al. [6] employed prefix

constraints to control multiple style aspects for neural text summarization.

Reinforcement learning is another approach to controlling generation. In this method,

the model rewards a user-preferred style. Niu et al.[56] used reinforcement learning to control

the level of politeness. Zhang et al. [98] employed three rewards to represent simpler outputs,

such as rewards for simplicity, relevance, and fluency.

2.4 Evaluation

I report the results of an experiment with two metrics that are widely used in the liter-

ature of sentence simplification: SARI (System output Against References and against the

24

Input sentence) [94] and FKGL (Flesch–Kincaid Grade Level) [39].

FKGL computes sentence length (number of words) and word length (number of syl-

lables) as a way of measuring a sentence’s simplicity. A lower value of FKGL indicates a

simpler sentence.

However, FKGL measures the simplicity of a sentence without considering ground truth

simplification references, and it insufficiently correlates with human judgment [94], so I use an

additional metric, SARI. SARI computes the arithmetic mean of N-grams (N includes 1,2,3

and 4) F1-score of three rewrite operations: addition, deletion, and keeping. Specifically,

it rewards addition operations where a word in the generated simplified sentence does not

appear in the original sentence but is mentioned in the reference sentences. It also rewards

kept or deleted words in both the simplified sentence and the reference sentences. [94]

demonstrates that multi-reference SARI correlates most strongly to human judgment in

sentence simplification tasks.

25

3.0 Analyzing the Existing Corpora

In this section, I introduce the methods used to measure each simplification rewriting

operation. Based on that proposed measurement, I analyze the two traditional, publicly-

available commonly-used resources, Wikipedia and Newsela. I also analyze the two recently

published resources, Wiki-Auto and Newsela-Auto. After the analysis, existing training

corpora contains poorly aligned sentence pairs. These poorly aligned sentence pairs result

from either poor algorithmic extraction from parallel articles or articles that are not very

parallel. In addition, existing training corpora are also limited in several ways and contribute

to only some operations. Infrequent cases are always treated as noise if they are merely

trained using sentence pairs. The analysis results prompt me to develop research questions

in the next chapters.

3.1 Measurement of Operation

Currently, most measurements are done by humans, and these measurements are con-

centrated on small development/test data sets. However, it is difficult to ask humans to

measure the entire training data set. Also because of the measurements are straightforward,

which makes automatically measurement possible. In this section, I introduce the automatic

methods for measuring each simplified rewrite operation.

3.1.1 Relevance Measurement

Most existing datasets are collected from paired complex-simplified articles. Figure 3

and 4 show screenshots of parallel articles from Wikipedia and Newsela respectively. For

the screenshot of paralleled articles for Wikipedia, I put the first paragraph of the “Machine

Learning” article from Wikipedia (top) and Simple Wikipedia (bottom). Because two ver-

sions of Wikipedia are created separately, it is difficult to extract aligned complex-simplified

26

sentence pairs. For the screenshot of parallel articles from Newsela, I put an article written

by an editor for different grade levels. The article on the left is for grade 9, and the one on

the right is for grade 3. Because Newsela editors create paired articles in the document level,

some sentences in the left article are misaligned sentences from the article on the right.

As shown above, due to various reasons, sentence pairs can be poorly aligned. To rewrite

a text in a different readability level, editors may drastically reconstruct its words, sentences,

or even paragraphs. In consequence, sentences in paraphrased articles may not accurately

pair with the original ones. The misalignment can become even worse when sentences are

automatically extracted and aligned with simple lexical-based features such as Jaccard simi-

larity [102, 93]. The misalignment can come from poorly performed extraction and alignment

algorithms and from a poorly aligned article itself, as shown in Figures 3 and 4.

Figure 3: Screenshot of parallel articles for Wikipedia

Such less-aligned sentence pairs confuse the model. My earlier experiment found that

such noise seriously affects the readability of model prediction sentences. The relevance of

the sentence pairs needs to be measured to assess the influence of this noise.

Measuring the relevance of two sentences is complex, and there are multiple relevance

measurement models based on different configurations. “Universal Sentence Encoder”[7] is

an earlier sentence embedding model trained on a large variant of natural language process-

ing (NLP) tasks and corpora. “Sentence BERT” [64] fine-tuned the bidirectional encoder

representations from transformers (BERT) method so that its sentence embedding contains

27

Figure 4: Screenshot of parallel articles for Newsela

28

information from both word embedding and sentence embedding.

Both models aim to encode sentences into a single embedding vector that specifically

transfers learning to other NLP tasks. The model is efficient and results in accurate per-

formance on diverse transfer tasks, including semantic textual similarity tasks. Because the

model is trained on a large variant of NLP tasks and corpora, I believe that the gener-

ated embedding is accurate and helpful for sentence encoding and can decide whether two

sentences are correlated sufficiently.

Given a complex sentence scomp and a simplified sentence ssimp, the model encodes them

into veccomp and vecsimp, respectively. Then, I calculate the cosine similarity c(veccomp,

vecsimp) (Equation 12), which indicates the “semantic” similarity between scomp and ssimp.

Although the sentence structure and word usage in scomp and ssimp are quite different, they

still have a high c(veccomp, vecsimp) score. Therefore, I use the c(veccomp, vecsimp) score as

an indicator to check whether scomp and ssimp are correctly aligned.

c(veccomp, vecsimp) =
veccomp vecsimp

||veccomp|| ||veccomp||
(9)

Different from both “Universal Sentence Encoder” and “Sentence BERT,” the BERT

Score [97] computes a similarity score at the token level. More specifically, the score is

calculated by comparing each token in the complex sentence with each token in the simplified

sentence. The BERT score computes the precision and recall for each word in the complex

and simplified sentence and uses the F1 score as an indicator to check whether scomp and

ssimp are correctly aligned.

Recall =
1

|comp|
∑

i⊂comp

max(veccompivecsimpj) (10)

Precision =
1

|simp|
∑

j⊂simp

max(veccompivecsimpj) (11)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(12)

I used the above three methods to measure relevance in the following analysis. A higher

value indicates a higher relevance, and a lower value indicates a lower reference. Lower

29

relevance is always due to poorly aligned sentence pairs. However, extremely high relevance

also indicates poor simplification.

3.1.2 Substitution Measurement

Substitution means replacing difficult phrases or words with simplified synonyms. It

plays a central role in reducing reading difficulty.

To measure substitution, I adopt the paraphrase database (PPDB) as discussed in Section

2.2.1.1. PPDB provides substitution mapping rules that can help to check whether sentence

pairs contain a valid substitution.

Given a complex sentence scomp and a simplified sentence ssimp, I examine each n-gram (n

includes 1,2 and 3) in scomp. If any n-gram is included as a complex form in PPDB, I check

whether the simplified form is in ssimp (and also check that its complex form does not occur

in ssimp). In this way, I can validate that there is at least one substitution in the sentence

pairs scomp and ssimp. Thus, I compute the ratio of words in the complex sentences replaced

by PPDB to measure the substitution rewriting operation.

3.1.3 Dropping Measurement

Dropping refers to removing unimportant or redundant parts of a sentence to make it

more concise.

To measure dropping, I adopt an edit-distance algorithm [36]. A drop in a sentence may

come from substitution (a substitution is composed of a drop and an insertion). By feeding

PPDB into the edit-distance algorithm, the shortest edit distance is calculated between two

sentences scomp and ssimp (Table 7). The shortest edit distance path represents the sequence

of edit actions that change from scomp to ssimp, and the list of edit actions includes adding,

deleting, replacing, and keeping. Similarly, I compute the ratio of words from complex

sentences that are removed to measure the dropping rewriting operation.

30

Table 7: Sample of dropping measurement

Source Sentences

Complex Many programs are limited to parents , or are tied to work .

Simplified Many programs are only for parents .

Edit KEEP:Many, KEEP:programs, KEEP:are, ADD:only, ADD:for,

DEL:limited, DEL:to, KEEP:parents, DEL:,, DEL:or, DEL:are,

DEL:tied, DEL:to, DEL:word, KEEP:.

3.1.4 Reordering Measurement

Reordering indicates the interchanging of parts or components in a sentence to simplify

its structure and syntax.

To measure the reordering, I compare the syntax and sentence structure in scomp and

ssimp. More specifically, I must check whether the relationships among words have changed.

Following Xu et al.’s [93] method to analyze syntax patterns, I use a dependency parser

[57] to extract relationships for each word and compute its signature. As seen in Table

8, given the original sentence “It had a population of 1,369 in the 2001 Census” and the

translated sentence “In 2001, there were 1,369 inhabitants,” I generate the signature for each

sentence using a dependency parser. The signature is a set of relationships from each word,

including a head word, a relationship, and a tail word. For example, “in
pobj−−→ 2001” shows

that the relation from “in” to “2001” is “pobj” (the object of a preposition). I then calculate

the Jaccard similarity (Equation 13) for two sets of signatures.

J(sign1, sign2) =
|sign1 ∩ sign2|
|sign1 ∪ sign2| (13)

3.1.5 Splitting Measurement

The splitting operation divides a long sentence into several shorter sentences to reduce

the complexity of the original sentence.

31

Table 8: Samples from Google Translation System

Original It had a population of 1,369 in the 2001 Census .

Signature in
pobj−−→ 2001, had

dobj−−→ population, population
prep−−→ of, population

prep−−→ in,

Translated In 2001, there were 1,369 inhabitants .

Signature in
pobj−−→ 2001, were

prep−−→ in, were
expl−−→ there, were

attr−−→ 1,369,

Figure 5: Dependency Parser Output

Figure 6: Dependency Parser Output

32

Measuring the splitting is straightforward. Given a complex sentence scomp and a sim-

plified sentence ssimp, I can compare the number of sentences on each side. If the sentences

on the complex is larger than the sentences on the simplified side, I treat current sentence

pairs as contributing to the splitting rewriting operation.

More specifically, I use an NLP toolkit Spacy [30] to preprocess scomp and ssimp, which

reveals how many sentences are in scomp and ssimp. If the number of sentences in ssimp is

larger than the number in scomp, I mark the sentence pairs as contributing to the splitting

operation. The measurement of the splitting operation is a boolean value that indicates

whether the complex sentence will be split.

3.2 Analyzing the Existing Training Datasets

This section analyzes existing training datasets, including Wikipedia, Newsela, Wiki-

Auto, and Newsela-Auto. At the first glance, existing training corpora contains poorly

aligned sentence pairs. Furthermore, existing training corpora are also limited in several ways

and contribute to only some operations. The analysis prompts me to study the remaining

research questions.

Wikipedia is the first data corpus of interest to researchers. Simple English Wikipedia

1 and English Wikipedia 2 are two versions of English Wikipedia. Articles on the Simple

English Wikipedia are usually simpler than articles on English Wikipedia and typically only

provide basic information. The basic presentation style in Simple English Wikipedia makes

it an ideal choice for beginners learning English. As a result, researchers have collected

aligned articles from English Wikipedia and Simple English Wikipedia and found alignment

sentences in aligned articles [102].

However, as Xu et al.[93] indicate, the aligned sentences from English Wikipedia and

Simple English Wikipedia are sub-optimal because (1) they are prone to automatic sentence

alignment errors, (2) they contain a large proportion of inadequate simplifications, and (3)

1https://simple.wikipedia.org
2https://www.wikipedia.org

33

they generalize poorly to other text genres. Therefore, they argue that focusing on Wikipedia

limits simplification research. Xu et al. introduce a new simplification dataset, Newsela 3.

Newsela is a teaching content platform that enhances reading participation and education

for each topic. Newsela also provides articles that have been rewritten four times for different

grades by Newsela’s professional editors. This work forms a parallel corpus that allows for

the alignment of sentences at different reading levels. In contrast to Simple Wikipedia, which

was created without a well-defined objective, Newsela is intended to help teachers prepare

curricula that match the English language skills required at each grade level.

Jiang et al.[91] argued existing complex-simplified sentence pairs from the above two

corpora fail to capture paraphrases and the context of surrounding sentences because those

pairs were extracted with the help of lexical-based features, such as the Jaccard coefficient or

the cosine distance of term frequency-inverse document frequency (TF-IDF) vectors. Instead,

they created a small, high-quality, manually annotated, sentence-aligned corpus: Newsela-

Manual with 50 article sets and Wiki-Manual with 500 article pairs. Then, they trained a

neural CRF model, equipped with a BERT as a base model, to capture semantic similarity

and leverage the similar order of content. Using such a model, they constructed two large

corpora, Wiki-Auto and Newsela-Auto. Experiments show the Wiki-Auto and Newsela-Auto

perform better than previous alignment approaches.

For reference, Xu et al. [94] provide a validation and test dataset called Turk. In the

Turk dataset, eight simplified reference sentences for each complex sentence are used as a

factual basis, and all these sentences are generated by Amazon Mechanical Turk workers.

The Turk dataset contains 2,000 data samples for validation and 356 samples for testing.

Turk is a reliable data set because (1) it is human-generated, and (2) each complex sentence

has multiple, equally good simplified forms.

Fernando et al. [1] argued Turk put most of its attention on the lexical simplification. In

their work, they extended the Turk dataset by asking Amazon Mechanical Turk workers to

write simplified sentences to maximize sentence rewriting operations. Their dataset, ASSET,

extended the Turk dataset with the same complex sentences and provided ten simplified

reference sentences for each complex sentence.

3https://newsela.com

34

In the following, I treat Turk and ASSET as references because both are written by

humans and provide multiple simplified sentences. I analyze the current training corpora,

including Wikipedia, Newsela, Wiki-Auto and Newsela-Auto, based on these references.

3.2.1 Relevance Analysis

Figure 7: Relevance Analysis of Using Universal Sentence Encoder (Histogram)

Figure 7, 9, 11 (Histogram) and 8, 10, 12 (BoxPlot) show the distribution of relevance

simplification rewriting operation measurement for all the datasets. Both Turk and ASSET

have strong relevance scores, and almost all the sentence pairs are above 0.9 similarity scores.

The ASSET relevance score is slightly lower than that of Turk because sentence pairs in

35

Figure 8: Relevance Analysis of Using Universal Sentence Encoder (BoxPlot)

36

Figure 9: Relevance Analysis of Using Sentence BERT (Histogram)

37

Figure 10: Relevance Analysis of Using Sentence BERT (BoxPlot)

38

Figure 11: Relevance Analysis of Using BERT Score (Histogram)

39

Figure 12: Relevance Analysis of Using BERT Score (BoxPlot)

40

ASSET contain more rewriting operations.

However, the distribution of other training corpora differs significantly. Most of the low

relevance is because of less correlated sentence pairs. Tables 10 and 9 show samples of less

correlated pairs from Newsela and Wikipedia, respectively. These less correlated samples

confuse the model and teach the model to generate irrelevant simplified sentences. As I

mentioned before, to rewrite a text in a different readability level, editors may drastically re-

construct its words, sentences, or even paragraphs. In consequence, sentences in paraphrased

articles may not accurately pair with the original ones. It is difficult to extract high-quality

sentence pairs like TURK and ASSET. This challenge becomes even more daunting when

sentences are automatically extracted and aligned with simple features. Therefore, I believe

the most important thing is to construct a corpus equipped with strongly correlated and

complex simplified sentence pairs.

Table 9: Less correlated samples from Wikipedia.

Source Sentences

Complex Dudley went straight out of college to work as a teacher in 1880.

simplified Dudley worked as a teacher .

Complex La Sauve is a commune in the Gironde department in Aquitaine in south-

western France .

simplified It is found in the region Aquitaine in the Gironde department in the

southwest of France .

3.2.2 Substitution Analysis

Figure 13 (Histogram) and 14 (BoxPlot) show the distribution of substitution rewriting

measurement for different corpora. Higher substitution indicates more words in the complex

sentence are replaced, which indicates simpler outputs. Turk and ASSET outperform most

of the training corpora. The sentence pairs in the current, publicly available training corpora

substitute a short amount of words, especially for the Newsela dataset. However, Newsela-

Auto performs slightly better than Turk and ASSET.

41

Table 10: Less correlated sample from Newsela.

Source Sentences

Complex Retired players Dave Christian , Reed Larson and William Bennett filed

a class action lawsuit in federal court on Tuesday alleging that the league

has promoted fighting and downplayed the risk of head injuries that come

from it .

simplified They filed a lawsuit .

Complex He is the executive director of georgiacarry.org , a group that pushed for

the bill passage .

simplified He is with georgiacarry.org .

3.2.3 Dropping Analysis

Figure 15 (Histogram) and 16 (BoxPlot) show dropping rewriting distribution for dif-

ferent corpora. A higher value indicates more words in the complex sentence are dropped.

However, many dropped words remove much information, which leads to a significant infor-

mation loss in the simplified sentence. A small number of dropped words indicates insufficient

simplification, which is less helpful for reducing the sentence complexity. Therefore, I treat

two human-written datasets as references and compare these references with other datasets.

Wiki, Wiki-Auto and Newsela-Auto drop more words, and only Newsela has a similar dis-

tribution of dropped words to the referenced dataset.

3.2.4 Splitting Analysis

Table 11 shows the ratio of samples contributing to splitting simplification rewriting

operation. I expect a certain amount of the sample to contribute to splitting operations so the

model can learn to split a long sentence. ASSET, a dataset created by Amazon Mechanical

Turk workers with certain requirements, contains 30 percent of the corpus that contributes

to splitting rewriting operations, which indicates such a splitting rewriting operation cannot

42

Figure 13: Substitution Analysis (Histogram)

43

Figure 14: Substitution Analysis (BoxPlot)

44

Figure 15: Dropping Analysis (Histogram)

45

Figure 16: Dropping Analysis (BoxPlot)

Table 11: Splitting Analysis

Corpus Split Ratio

Wikipedia 0.102

Newsela 0.002

Wiki-Auto 0.009

Newsela-Auto 0.016

Turk 0.044

ASSET 0.310

46

be ignored. However, not all the training corpora have enough samples that teach the model

to perform splitting. 4

3.2.5 Reordering Analysis

Figure 17: Reordering Analysis (Histogram)

Figure 17 (Histogram) and 18 (BoxPlot) shows distribution of reordering simplification

rewriting measurements for different corpora. A lower value indicates more sentence struc-

4Using regular expression sentence splitter (the regular expression: (?<! .̇)(?<! [A− Z][a− z])̇(?<= |̇))
may be too strict to split sentences. I found the ratio of split sentences are lower than the result from user
study conducted by [33] based on a small subset of data. But it is impossible for me to conduct user studies
for all training datasets.

47

Figure 18: Reordering Analysis (BoxPlot)

48

ture changes. Like the analysis of dropping operation, a large amount of sentence structure

change leads to a noisy or less correlated simplified sentence. A small amount of sentence

structure change indicates insufficient simplification, which is less helpful for reducing the

sentence complexity.

I treat two human-written datasets as references and compare these references with

other datasets. The training corpora, Wiki, Newsela, Wiki-Auto, and Newsela-Auto, differ

considerably from Turk and ASSET.

3.2.6 Summary

Based on the above analysis, I summarize three important aspects of the findings regard-

ing the current publicly available training corpora, Wiki, Newsela, Wiki-Auto, and Newsela-

Auto, by comparing them with two human-generated corpora, Turk and ASSET.

1. All training corpora contains a certain amount of poorly aligned sentence pairs. These

poorly aligned sentence pairs result from either poor algorithmic extraction from parallel

articles or articles that are not very parallel. Although Wiki-Auto and Newsela-Auto are

equipped with an advanced alignment algorithm that uses multiple NLP technologies and

has trained a large amount of data, such a problem is tough to avoid if extracting sentence

pairs from existing parallel articles. This work prompts me to investigate constructing

a training dataset on the sentence level and avoid extracting sentence pairs from the

available articles. In this way, I can relieve the problem of poorly aligned sentence pairs

from extraction algorithms and poor parallel articles.

2. All training corpora are limited in several ways and contribute to only some operations.

Infrequent cases are always treated as noise if they are merely trained using sentence

pairs. As a result, a model trained on these resources favors those operations that lead

to inadequate simplification. At the same time, the splitting operation is largely ignored

by all the training corpora. A model trained on these resources may completely ignore

splitting. This work prompts me to investigate different approaches, either by generating

a training dataset that contributes to those operations or relying on existing linguistic

and simplification resources, to improve different operations in the sentence simplification

49

systems.

3. Excessively focusing on one operation may not be of interest to some users. The different

operation contribution rates in these two datasets lead to different styles of simplified

sentences. Users in different settings may prefer various forms of simplified sentences.

This work prompts me to investigate an approach that allows for the insertion of a

style-related parameter to enable different styles of sentence simplification.

50

4.0 Constructing a new Corpus: SimSim

4.1 Generating Sentence Pairs

All the training corpora are limited in several ways and contribute to only some opera-

tions. Infrequent cases are always treated as noise if they are merely trained using sentence

pairs. As a result, a model trained on these resources favors those operations, leading to in-

adequate simplification. Furthermore, discrepancies between training and testing data may

cause models to generalize poorly.

Therefore, my first goal is to create a training corpus automatically and focus on the

four simplification operations. Generating pairs of sentences is a prerequisite. The first

demand of such pairs of sentences is semantically related.

The crux of training a well-generalizing simplification model is to teach it the essential

skills for simplifying sentences. Thus, I propose to refine existing training pairs and construct

novel ones by simulating various simplification transformations. I can use the current para-

phrase system to work toward this goal. One of the most reliable systems is the large-scale

machine translation system.

4.1.1 Seed Sentence Bank

Before performing back-translation, I build a collection of seed sentences, based on which

I will perform a series of simulations and build new training pairs for simplification. To

compare the existing training corpora, I re-use the sentences in Wikipedia and Newsela

and treat them in my seed sentence bank. More specifically, I used complex sentences

from Wikipedia and Newsela. Besides, I found some simplified sentences are still useful in

Simple Wikipedia, I also incorporated a subset of simplified sentences in Wikipedia if their

correlation score is higher than a threshold. In the following steps, all the simulations will

be based on the seed sentence bank.

51

4.1.2 Back-Translation

Due to various reasons discussed in the previous chapter, it is difficult to extract complex-

simplified sentence pairs from existing online resources to meet the requirements of strong

semantic relevance. Instead, the existing powerful paraphrase models provide an alternative

way to generate sentence pairs. In this section, I use the back-translation approach to

generate sentence pairs that mitigate the problems with current training corpora.

Back-translation uses a translation system to translate the non-English side of a parallel

text to obtain English-English paraphrase pairs [67, 69], and I follow a similar approach. I

use multiple languages as a pivot and translate a given complex sentence into a sentence with

a pivot language. I then translate that sentence back into English using the same translation

system. I highlight three benefits of adopting back-translation for generating paraphrased

sentences:

1. Given results of prior works [86], back-translation can ensure a basic level of alignment

between sentences;

2. Because back-translation will impose certain language changes to the original text, I can

collect a diverse set of candidate sentences by using different systems and pivot languages;

3. I can scale the size of the training dataset by applying this method on large text corpora,

even in different languages. It imposes language diversity during translation, and trivial

details may change, but the gist remains untouched.

To support more diverse outputs, in which more diverse outputs have higher probabil-

ity and support more simplification rewriting operations, I select GNMT (Google’s Neural

Machine Translation System) as the translation system because (1) it is free and high qual-

ity, and (2) it supports 103 languages. Theoretically, given one complex sentence, back-

translation via GNMT provides 103 high-quality, semantically related, paraphrased sen-

tences.

I use GNMT to translate each sentence into 103 pivot languages, then translate them

back to English. By doing this, I collect a pool of sentence pairs. One sample is shown in

Table 12. Given the original sentence,

It is situated at the coast of the Baltic sea, where it encloses the city of Stralsund.

52

Back-translation via both Chinese and Greek as pivot languages provides the simplest

outputs. Output through Chinese as the pivot language simplifies the preposition and output

via Greek as the pivot language simplifies the words “situated” and “’coast.” The other

outputs are sub-optimal; the output using Italian as pivot language generates a less fluent

sentence.

Table 12: Sample from GNMT.

Pivot Sentences

Original It is situated at the coast of the Baltic sea , where it encloses the city of

stralsund .

Chinese It is located on the coast of the Baltic Sea and surrounds the city of

Stralsund .

Greek It is located on the shores of the Baltic Sea, where it encloses the city of

Stralsund .

Italy It is located on the Baltic Sea coast, where the city of Stralsund is located

.

Japanese It is located on the Baltic Sea coast and surrounds the city of Stralsund

.

Hindi It is situated on the banks of the Baltic sea, where it surrounds the town

of Stralsund .

As shown above, the pool of paired sentences does not necessarily consist of complex-

simplified sentence pairs. Translation requires conveying a complete semantic sense of a given

sentence via another language; such a process does not guarantee the translated sentence is

a simplified sentence. To make sure the sentence pairs are helpful to improve readability, I

focus on selecting sentence pairs using Generative Pre-trained Transformer 2 (GPT-2).

53

4.1.3 Selecting Sentence Pairs Using GPT-2

After collecting the pool of sentence pairs, I use the unconditional language model tool to

verify the sentence pairs are complex-simplified sentence pairs. The unconditional language

model is trained in an unsupervised approach by feeding a huge amount of text data. In this

way, similar to GNMT, the model gives a higher score to the most commonly-used sentences,

and such commonly-used sentences are always simpler. Such an unconditional language

model is more effective than the GNMT because the unconditional language mode does not

have a constraint to convey the complete semantic sense of a given sentence compared to

GNMT.

More specifically, I use GPT-2, a large-scale unconditional language model that can gen-

erate coherent text paragraphs, achieve the most advanced performance on many language

modeling benchmarks, and perform basic reading comprehension, machine translation, ques-

tion answering, and summary operations without task-specific training. Besides the data

strategy, GPT-2 is a large, transformer-based unconditional language model with 1558 mil-

lion parameters. The GPT-2 was trained simply to predict the next word in a huge amount

of text from the Internet. As shown in Figure 19, GPT-2 appends a special token “BOS” at

the beginning of the sentence and uses this sentence as the input of the GPT-2 model. The

output is the original sentence. In this way, the input and output sentences are shifted by

one token. For each token, GPT-2 predicts the next token giving all previous tokens. Figure

19 shows the prediction of the last three tokens of the sentence “Admission to Tsinghua is

competitive.” When GPT-2 learns to predict each token in the sentence, it observes the

information of previous tokens. For example, when predicting the word “competitive,” the

GPT-2 observes the previous tokens “admission to Tsinghua is” and learns to predict the

next token.

Regarding the dataset that GPT-2 used, human filter the dataset choices to emphasize

the diversity of content and preserve the text quality. For example, they only considered a

web page if the person who recommended it on Reddit had at least three karma. Such a

data filtering metric can be thought of as a heuristic indicator for data quality. In this way,

users can be certain that the data (1) is the focus of a diverse domain of content, (2) fit most

54

user interests and (3) is of higher data quality.

Such a large model trained with a high-quality training dataset will be able to capture

diverse genres of text.

To quantitatively validate the level of the sentence is commonly-seen, I average the

negative log-likelihood loss of predicting each token in the sentence and call it the “GPT-2

loss.” A lower loss value indicates the sentence is commonly seen, whereas a higher loss

indicates a rarely seen sentence.

Table 13 shows the loss for the sentences listed in Table 12. Simplified sentences always

achieved a lower GPT-2 loss.

Therefore, I use GPT-2 to validate the sentence pairs as complex-simplified pairs. More

specifically, if the loss of the paraphrased (back-translated) sentence is smaller than the

original sentence, I treat it as complex-simplified sentence pairs. For the pool of paired sen-

tences, I filter out the pairs with a larger GPT-2 loss for the paraphrased (back-translation)

sentence.

Figure 20 shows a sample of GPT loss per token for sentences “It is situated at the coast

of the Baltic sea, where it encloses the city of Stralsund” and “It is located on the Baltic

Sea coast and surrounds the city of Stralsund”. The GPT-2 losses of the first two tokens

are the same for the two sentences; however, the GPT-2 loss of the token “located” is much

smaller than that of the token “situated.” The different tokens also affect the GPT-2 loss

of the following tokens. For example, the GPT-2 loss of “coast” in the second sentence is

smaller than that in the first sentence. It may be because the phrase “located on the coast”

is more frequent than “situated at the coast.”

Among all 103 candidate languages, I select the one with the lowest GPT-2 score as

the target sentence to form a training pair. Particularly, if GPT-2 score deems the back-

translated sentence is less natural than the original one, it will be discarded. In this way, I

construct the first version training corpus and call it SimSim, for “simulate simplification.”

Though the sentence pairs constructed in the previous section are well-aligned, they can

hardly be used for training a simplification model because all essential simplification opera-

tions are not distilled in the data. I perform the following steps to simulate each simplification

operation individually and to distill those simplification operations into our data.

55

Figure 19: GPT-2 Prediction

56

Table 13: Sample from GNMT.

Pivot Sentences GPT-2

Loss

Original It is situated at the coast of the Baltic sea , where it

encloses the city of stralsund .

3.8020

Chinese It is located on the coast of the Baltic Sea and surrounds

the city of Stralsund .

2.8642

Greek It is located on the shores of the Baltic Sea, where it

encloses the city of Stralsund .

2.8379

Italy It is located on the Baltic Sea coast, where the city of

Stralsund is located .

2.9493

Japanese It is located on the Baltic Sea coast and surrounds the

city of Stralsund .

3.1864

Hindi It is situated on the banks of the Baltic sea, where it

surrounds the town of Stralsund .

3.0487

57

Figure 20: GPT-2 Loss for sample sentences.

58

4.2 Simulating Simplification Operations

The previous pipeline reduces the misalignment error and makes sure the sentence pairs

in my dataset are strongly semantically correlated, then the second demand of such

pairs of sentences are simulating four simplification rewriting operations.

4.2.1 Simulating Substitution and Reordering

Figure 21: GPT-2 Loss for sample sentences.

I propose to apply the paraphrasing rules from the PPDB to simulate the substitutions

and impose substitution transformations into the paraphrased pairs. However, simply re-

placing words that appear in the PPDB is not practical because substitution operations

59

should be context-dependent. Meanwhile, the number of options for replacing each token is

huge, and most of them are not practical for the current sentence.

To reduce the number of options of applied rules, I filter out the rules not used in the

103 paraphrased pairs and only focus on a subset of rules as candidates. For example, table

3 shows “situated” can be replaced by three candidate words “located,” “implanted,” and

“stationed” from the PPDB. The three options need to be applied based on the context sen-

tence containing the word “situated.” Given the paraphrased pairs from back-translations as

shown in Table 13, I only find the token “located” is presented in the paraphrased sentences.

Therefore, I filter out the other two options, “implanted” and “stationed,” and focus on the

replaced target “located” for the token “situated.” As shown in Figure 21, my pipeline first

extracts the paraphrased sentence S* with the lowest score as the target sentence. Then I

apply all the processed PPDB rules to the target sentence S* to form S**. To ensure the

applied rules are proper, I use GPT-2 again to evaluate the quality of sentences after apply-

ing rules. For example, I apply the rule coast → shore to the sentence “It is located on the

coast of the Baltic Sea and surrounds the city of Stralsund.” Then, I compare the GPT-2

scores of the original sentence and replaced the sentence (“It is located on the shore of the

Baltic Sea and surrounds the city of Stralsund”). If the GPT-2 score improves after the sub-

stitution, I will accept this transformation and form a new data pair. In this way, I simulate

substitution rewriting operation, and this pipeline improves the substitution operation for

the SimSim.

4.2.2 Simulating Dropping

To distill the dropping operation into the data, I follow the previous approach [41] and

augment the data by randomly removing certain functional phrases from the simplified sen-

tence. To study the Turk and ASSET validation dataset, I find that prepositional, adjective

or adverb phrases are the most common phrases that are dropped. This dropped behavior

does not significantly change the meaning of the original sentence. Therefore, I randomly

removed these phrases during training, and I expect the model can learn to drop words

appropriately.

60

4.2.3 Simulating Splitting

I find back-translation rarely paraphrases a sentence by splitting it into multiple shorter

ones. I think that proper splitting transformation can help improve the readability by recon-

structing the structure of a sentence. To incorporate the splitting operation into our data,

I include Wikisplit [4] in our dataset. The Wikisplit dataset is constructed automatically

based on the Wikipedia revision history, and it can serve as a useful resource for models to

learn the splitting operation. I put Wikisplit sentence pairs in the seed bank and apply the

above process on the target-side sentences to mix the splitting transformation with other

operations.

4.3 Analysis of SimSim

By simulating different operations with the above process, I present the second version of

SimSim for text simplification. In total, it contains 1676k complex-simplified sentence pairs,

which is significantly larger than previous datasets. In this section, I analyze SimSim and

compare all the measurements in the previous chapters to the existing training datasets.

4.3.1 Relevance Analysis

Figure 22, 24 and 26 (Histogram) and 23, 25 and 27 (BoxPlot) show the distribution of

relevance rewriting operation for all the previous training corpora including SimSim. SimSim

achieves the highest relevance score, especially for the relevance score computed by BERT

Score. This is mostly because SimSim is constructed by back-translation, which avoids

misalignment error from extraction and alignment algorithms and poorly aligned articles.

The back-translation approach significantly improves relevance measurement.

61

Figure 22: Relevance Analysis of Using Universal Sentence Encoder (Histogram)

62

Figure 23: Relevance Analysis of Using Universal Sentence Encoder (BoxPlot)

63

Figure 24: Relevance Analysis of Using Sentence BERT (Histogram)

64

Figure 25: Relevance Analysis of Using Sentence BERT (BoxPlot)

65

Figure 26: Relevance Analysis of Using BERT Score (Histogram)

66

Figure 27: Relevance Analysis of Using BERT Score (BoxPlot)

67

Figure 28: Substitution Analysis (Histogram)

68

Figure 29: Substitution Analysis (BoxPlot)

69

4.3.2 Substitution Analysis

Figure 28 (Histogram) and 29 (BoxPlot) show the distribution of substitution rewriting

operations for comparing SimSim to other training datasets. By simulating the substitu-

tion operation and adding PPDB transformation information into SimSim, I found SimSim

achieves a similar distribution to that of Turk and ASSET. However, Newsela-Auto, which

substitute more words, performs better in substitution operation.One of my future jobs is

to treat Newsela-Auto as part of the seed sentence bank to further improve substitution

operation.

4.3.3 Dropping Analysis

Figure 30 (Histogram) and 30 (BoxPlot) show the distribution of dropping rewriting

operations for comparing SimSim to other training datasets. By simulating the dropping

operation, I found SimSim achieves a most similar distribution to that of Turk and ASSET.

4.3.4 Splitting Analysis

Table 14 shows the ratio of samples contributing to splitting rewriting operation. SimSim

contains 39.9 percent of sentence pairs contributing to splitting writing operations. I believe

SimSim contains a sufficiently large number of samples to teach the model how to split.

4.3.5 Reordering Analysis

Figure 17 (Histogram) and 18 (BoxPlot) show reordering rewriting distribution for dif-

ferent corpora. Like simulating the substitution rewriting operation, after simulating the

reordering rewriting operation, SimSim achieves a most similar distribution to that of Turk

and ASSET.

4.3.6 Conclusion

As shown in the above analysis, SimSim demonstrates (1) a closer distribution on multiple

dimensions to the human-annotated Turk and ASSET dataset than the others, suggesting

70

Figure 30: Dropping Analysis (Histogram)

71

Figure 31: Dropping Analysis (BoxPlot)

Table 14: Splitting Analysis

Corpus Split Ratio

Wikipedia 0.102

Newsela 0.002

Wiki-Auto 0.009

Newsela-Auto 0.016

Turk 0.044

ASSET 0.310

SimSim 0.399

72

Figure 32: Reordering Analysis (Histogram)

73

Figure 33: Reordering Analysis (BoxPlot)

74

that SimSim may serve as a better dataset for training automatic models; (2) a sufficiently

large number of samples to teach the model how to perform certain operations, such as

substitution and splitting.

These analyses simply compare the distribution of different simplification operation mea-

surements. The model may behave differently. Therefore, in the following sections, I concen-

trate on model designs to further improve applying these simplification rewriting operations.

75

5.0 Model Design and Experiments for SimSim

This section focuses on designing a model and conducting experiments for SimSim.

5.1 Data Pipeline

5.1.1 Tokenization

After tokenizing SimSim, the dataset contained 885,263 unique words, with most lower

frequency words being name entities. Therefore, following [98], I tagged and anonymized

name entities using a special token with the format NE@N, where NE includes { PER-

SON, LOCATION, ORGANIZATION, NUMBER } and N indicates the N th distinct NE

entity type. As Table 15 shows, the sentence “It is situated at the coast of the Baltic sea

, where it encloses the city of Stralsund” was changed to “It is located on the coast of

LOCATION@1 and surrounds the city of LOCATION@2” by replacing the location name

entities with anonymized name entity tags. I did not believe the pipeline would affect sen-

tence simplification because I rarely needed to substitute name entities in complex sentences.

Furthermore, I found that anonymizing name entities substantially simplified the model op-

timization because the model did not need to learn the semantic meaning of those name

entities.

Table 15: Sample of Anonymized sentence

Sentences

Original It is situated at the coast of the Baltic sea , where it

encloses the city of stralsund .

Anonymized Sentence It is located on the coast of the LOCATION@1 and

surrounds the city of LOCATION@2 .

After anonymizing the name entities, the dataset was reduced to 157,424 unique words,

76

indicating a word count much smaller than the original. However, this vocabulary size

remained too large for a deep learning model for several reasons:

1. Unrecognized Name Entities: I used Stanford CoreNLP Name Entities Recognizer tools

[50] to tag and anonymize name entities. However, the recall performance of such tools is

imperfect, especially given the fact that new name entities appear every day, precluding

any guarantee that all name entities will be correctly tagged.

2. Misspelled Words: Misspelled words are infrequent. For example, the word “tranformed”

does not exist in the English language; the correct spelling is “transformed,” which

requires inserting a single letter into the misspelled word. I expected the model to

understand such words by checking for misspelled words automatically.

3. Composite Words: Words can comprise a combination of frequently used words. For

example, “grapefruit-flavored” comprises three frequently used words: “grape,” “fruit,”

and “flavored.” I expected the model to be able to learn word compositions.

4. Other infrequent words: Some rarely used words, for example, “macropedia,” are found

infrequently but can be easily understood by checking elements such as the root and

suffix; in the case of “macropedia,” they are “macro” and “pedia.”

Based on this analysis, I expected the tokenization to understand word composition.

Following [51], I used subword tokenization [70] for this study’s vocabulary. Based on the

intuition that various word classes can be translated using units smaller than words––for

instance, names, compounds, cognates, and loanwords––the subword tokenizer splits words

into subwords, which are then defined by another vocabulary.

The subword vocabulary is learned through an unsupervised approach based on a large

corpus, usually Wikipedia. When training the subword vocabulary, users provide an expected

vocabulary size, and the byte pair encoding (BPE) [23] algorithm optimizes a subword

vocabulary that tokenizes the provided corpus into the smallest number of subwords. That

is, rather than explicitly checking English suffixes, prefixes, and roots, subword tokenization

checks word units using a data-driven approach. This subword embedding in this work

produced a total of 30,522 subwords.

77

Table 16: Samples of Subword Tokenization

Word Tokenized Subwords

tranform tran ##form

grapefruit-flavored grape, ##fr, ##uit, -, flavor, ##ed

macropedia macro, ##ped, ##ia

allentown allen, ##town

alaaeldin ala, ##ael, ##din

19801230 1980, ##12, ##30

Table 16 shows samples of subword tokenization. 1 Although the word “tranform” is

misspelled, its subword units “tran” and “##form” enable understanding. Meanwhile, the

composite word “grapefruit-flavored” and the infrequently used word “macropedia” can also

be split into meaningful subword units. Additionally, subword tokenization is useful for

unrecognized name entities. For example, location name entities, such as “allentown,” and

person name entities, “alaaeldin,” can also be split into smaller subword units to enable

understanding. Notably, even a number such as “19801230” can be segmented meaningfully

to be recognized as a date.

As Table 17 shows, for each sentence, I used the subword tokenizer to tokenize sentences

into sequences of subword units, with each word unit represented by its index in the subword

vocabulary.

Tagging and anonymizing name entities in SimSim does not guarantee that name enti-

ties in a simplified sentence will exist in the complex sentence. Table 18 shows how name

entities can differ between complex and simplified sentences as a result of incorrect GNMT

translation. For example, GNMT confuses “MacFarlane” and “McFarlane,” two spellings

of a person’s name entity. Due to the different spellings, the name entities recognizer tool

treats them as two individual name entities. The mismatched name entities in the training

1The table only shows sampled subword tokenization. Some words in this table are replaced with certain
name entity tags.

78

Table 17: Sample of tokenization pipeline

Sentences

Original It is situated at the coast of the Baltic sea , where it

encloses the city ofstralsund .

Anonymized Sentence It is situated at the coast of the LOCATION@1 , where

it encloses the city LOCATION@2 .

Subword Tokenized Sen-

tence

it is situated at the coast of the location@1 where it en

##cl ##oses the city location@2 .

Subword Tokenized Index 1068, 1062, 3406, 1071, 1055, 2080, 1056, 1055, 151, 69,

1132, 1068, 3428, 19512, 26513, 1055, 1162, 152, 71

Figure 34: Overview of Conditional Language Model Guilded By Name Entities

79

data confuse the model, leading it to generate name entities that did not exist in the complex

sentence.

Table 18: Sample of Anonymized Complex-Simplified Sentence Pairs

Sentences

Complex Sentence MacFarlane also has a character on Family Guy named

after Hartman : named Dr. Elmer Hartman .

Anonymized Complex Sen-

tence

person3 also has a character on family guy named after

person1 : named dr. person2 .

Simplified Sentence McFarlane ’s Family Guy has a character by the name

of Hartman : Dr. Elmer Hartman .

Anonymized Simplified Sen-

tence

person0 ’s family guy has a character by the name of

person1 : dr. person2 .

Mapping McFarlane → PERSON0

Hartman → PERSON1

Elmer Hartman → PERSON2

MacFarlane → PERSON3

To avoid having the model generate nonexistent name entities, I extended the condi-

tional language model introduced in Section 2.1.2 and proposed name entities to guide the

conditional language model. As Figure 34 demonstrates, I input a list of name entities tags

into the model to guide it to generate only name entities existing in the simplified sentence.

The decoder observed the information from the complex sentences and information from the

name entities tag list using the same attention mechanism. Accordingly, the model learned

to copy the name entities tag in the name entities tag list into the simplified sentence. At

the inference stage, I used the name entities list to replace name entities in the complex sen-

tence; thus, the model would only generate name entities existing in the complex sentence

and would not generate nonexistent name entities.

80

5.1.2 Integrating with PPDB

Although SimSim already simulated a substitution rewriting operation, the sentence sim-

plification model itself inferred such substitutions from the dataset. This section introduces

a deep learning model architecture based on Transformer, which, as discussed in Section

2.1.2, allows the simplification model to be explicitly aware of substitution.

First, I preprocessed PPDB, as described in Section 2.2.1.1. For each complex sentence

in the corpus, I extracted candidate rules and ranked them according to their simplification

scores. The following paragraphs discuss the integration of mapping rules into deep learning

models.

The format of the substitution mapping rule only reveals which word or phrase is the

simplified version of a given complex word or phrase, meaning that it cannot directly in-

tegrate into a differential deep learning model. Additionally, direct replacement is not an

optimal solution because the application rule is context-dependent, prompting researchers

to investigate other approaches to integrating PPDB into deep learning models.

My previous model [99] proposed using external memory to integrate PPDB mapping

rules into deep learning models (Figure 35). Augmented memory is a collection of key-value

pairs for each PPDB mapping rule, with the key denoting the context and the value denoting

the output. In my implementation, augmented memory training is divided into two stages.

The first stage aims to update the augmented memory. Each time the model predicts

a word recognized by PPDB (for example, if the model predicts the word “winner” and

PPDB recognizes “winner” as a simplified form of “recipient”), it updates the key-value pair

in the augmented memory. I use a hidden state for the second multi-head attention (first

layer) as the key because hidden states encode information about both complex sentences

and generate a simplified sentence. Then, I update the augmented memory using the final

hidden state of the “Decoder” as the value.

The second stage aims to combine the augmented memory with the model prediction.

After the augmented memory is updated, a “Combiner” merges the information from the

“Decoder” with the augmented memory to make a word prediction. I use a feed-forward

neural network to implement the “Combiner.”

81

Figure 35: Overview of Augmented Memory Deep Learning Architecture in Zhao et al.[99]

82

However, there are two major drawbacks to this approach.

1. The augmented memory requires the context of each mapping rule to be encoded explic-

itly, therefore the memory can only store the mapping rules that occur in the training

dataset.

2. Due to the format of key-value pairs in the augmented memory, both of which are single

vectors, the memory can only effectively model the mapping rules with a single word in

a simplified form. However, there are many mapping rules in Simple PPDB for which

the simplified form is a phrase (i.e., it contains more than one word).

Figure 36: Overview of my proposed Augmented Memory Deep Learning Architecture

To resolve these drawbacks, I propose the new augmented memory deep learning archi-

tecture depicted in Figure 36. Rather than encoding the context explicitly, this approach

83

Figure 37: Overview of my proposed PPDB Encoder

uses another “Encoder” with the same structure as that for complex sentences; this encodes

candidate words extracted from candidate mapping rules. As such, a simplified word that

may not occur in the mapping rules of the training dataset can still be encoded. I insert

another multi-head attention sub-layer in the “Decoder” to obtain information from the

augmented memory.

Employing this architecture, I presume that the “Decoder” can coordinate information

from three sources: (1) words in complex sentences, (2) words in mapping rules recognized

by Simple PPDB, and (3) words that were previously generated in the simplified sentence.

Finally, the “Decoder” predicts a word after coordinating information from these sources.

Another benefit of this architecture is that it enhances the flexibility of encoding words in

the mapping rules. The details of the augmented memory are presented in Figure 37, demon-

strating that separating words with different mapping rules requires learning the embedding

of a separator |||. This allows a phrase to be encoded, with different phrases separated by

|||. As the words are ranked according to their simplicity score, I also learned positional em-

bedding for the nth position (n ranges 1–15). This enabled the model to pay more attention

to higher-ranked words.

84

5.2 Evaluation

5.2.1 Comparison to Other Models

This section enumerates recently published baselines with high SARI.

• PBMT-R [90] Phrase-based machine translation system that re-ranks candidates, fa-

voring dissimilar candidates based on their Levenshtein distance to the complex sen-

tences.

• SBMT-SARI [53] Syntax-based machine translation model integrated with PPDB [59]

and finetuned towards SARI.

• DRESS-LS [98] Encoder-Decoder model trained with reinforcement learning, rewarding

higher SARI candidates.

• DMASS+DCSS [99] Encoder-Decoder model integrating with PPDB [59] by allocating

augmented memory.

• NTS+SARI [55] Encoder-Decoder model revising the beam search to favor high SARI.

• NSELSTM-S [82] Encoder-Decoder model with memory-augmented Neural Semantic

Encoder, finetuned towards SARI.

• ACCESS [51] Encoder-Decoder model focusing on controlling several attribute candi-

dates for promoting high SARI. This model previously achieved the best score.

• DMASS2 My best performed model, which is an Encoder-Decoder model integrating

with PPDB by allocating augmented memory and training using the SimSim dataset as

discussed in previous section.

Table 19 compares the performance of several recently published models.

Due to the fact that SARI is the most reliable metric for the sentence simplification task

[94], I would like to focus on a more detailed discussion regarding SARI results. To further

examine SARI, the impact of F1 scores for three operations used to calculate SARI scores

is discussed in this section.

DMASS2 demonstrated state-of-the-art SARI performance, which benefited from cor-

rectly adding words through our created corpus SimSim emphasizing the simulation of sub-

stitution.

85

Table 19: Performance of different models on the Turk dataset.

Model FKGL
Factors in FKGL

SARI
F1 for operations of SARI Rule Utilization

WLen SLen Add Delete Keep Prec Recall F1

NTS-SARI 9.05 1.35 22.38 37.51 3.36 38.46 70.71 15.58 8.40 10.14

PBMT-R 8.35 1.30 22.08 38.56 5.73 36.93 73.02 22.32 10.44 13.16

SBMT-SARI 7.49 1.18 23.50 39.96 5.97 41.43 72.51 27.46 19.01 20.09

DRESS-LS 6.92 1.35 16.76 37.27 2.82 42.21 66.78 9.54 4.76 5.89

NSELSTM-S - - - 36.88 - - - - - -

EditNTS 7.30 1.35 18.94 38.22 3.36 39.15 72.13 10.60 4.78 6.18

DMASS+DCSS 8.04 1.29 21.64 40.45 5.72 42.23 73.41 32.93 19.88 22.41

ACCESS 6.50 1.26 18.58 41.87 7.28 46.07 72.58 28.06 14.38 17.13

DMASS2 8.41 1.30 22.22 43.07 12.43 44.75 72.02 74.63 58.32 62.03

ACCESS represents a previous state-of-the-art model in terms of SARI score, which uses

a controlling approach to bias model prediction to better fit human needs. Its developers

introduced several metrics to reduce the complexity of words and sentences, forcing the model

to generate sentences with less complex words and sentences. The goal of this approach

appears similar to the simulating simplification operation, with this simulation taking place

at the model level, which is more effective. However, this method does not integrate external

knowledge, resulting in lower SARI. The next chapter introduces our control approach.

SBMT-SARI achieves a high F1 score for adding words and integrates external knowledge

bases, performing well in terms of correctly adding new words but performing poorly at

choosing to delete or keep words. By analyzing its predictions, SBMT-SARI acts aggressively

to substitute as many words as possible, which can produce inaccurate simplifications.

PBMT-R behaves similarly to SBMT-SARI, acting aggressively to substitute as many

words as possible by re-ranking candidates and preferring dissimilar model predictions based

on Levenshtein distance to complex sentences. Such preferences lead to selecting sentences

with more substitutions.

DMASS+DCSS uses a PPDB integration method similar to DMASS2; however, as ana-

86

lyzed in the previous chapter, the Wikilarge training dataset performs simplification opera-

tions poorly; this leads the DMASS+DCSS to perform not as well as DMASS2.

Rule utilization computes the precision, recall, and F1 for certain PPDB rules ap-

plied during model prediction, including whether they are applied. Both DMASS2 and the

DMASS+DCSS model perform well in terms of rule utilization due to PPDB integration. As

previously discussed, SBMT-SARI acts aggressively to substitute as many words as possible

in the sentence. Such aggressive behavior promotes relatively high recall performance but

diminishes precision and F1 performance.

FKGL measures the simplicity of a sentence by its sentence length (WLen) and aver-

age word length (WLen). However, because this measurement does not consider ground

truth simplification references, a high FKGL may be counteracted by a loss of information

and readability. Therefore, FKGL and two of its factors––WLen and SLen––are treated as

supplementary metrics.

ACCESS achieves the best FKGL performance because its controlling approach forces the

model to generate short sentences. For ACCESS, sentence length is a factor controlling model

prediction. At the inference stage, it controls various factors to generate short sentences.

Notably, DRESS-LS also performs well in terms of FKGL, with its policy gradient used to

reword shorter sentences, thus producing lower FKGL scores.

Using an integrated external knowledge base, both SBMT-SARI and DMASS2 can gen-

erate shorter words to simplify sentences. However, DMASS2 performs worse in terms of

FKGL. This is because SimSim is constructed by back-translation, which is not effective at

generating short sentences. I attempted to resolve this by simulating a dropping operation,

however, improvements were limited, as discussed in the next sections.

5.2.2 Ablation Study

This section enumerates models trained on our dataset SimSim in different stages. For

ablation study, I compared the performance of these models.

• Stage 1 As discussed in Section 4.1, the initial stage involved the dataset being con-

structed purely by the back-translation approach.

87

Table 20: Ablation Study of Encoder-Decoder model on the Turk dataset.

Model FKGL
Factors in FKGL

SARI
F1 for operations of SARI Rule Utilization

WLen SLen Add Delete Keep Prec Recall F1

EncDec-Stage 1 8.85 1.34 22.12 36.33 4.53 32.79 71.66 0.68 0.68 0.68

EncDec-Stage 2 8.83 1.32 22.60 40.15 7.52 38.64 74.32 20.28 10.39 12.46

EncDec-Stage 3 8.31 1.30 22.03 41.07 8.33 41.97 72.89 27.85 16.62 19.07

DMASS2-Stage 4 8.41 1.30 22.22 43.07 12.43 44.75 72.02 74.63 58.32 62.03

• Stage 2 As discussed in Section 4.1, the second stage involved the dataset being con-

structed using the back-translation approach, enabling the translation of complex sen-

tences into 103 simplified sentences, before using GPT-2 to select the most fluent sen-

tence.

• Stage 3 As discussed in Section 4.2, the third stage involved the dataset being further

improved by simulating four simplification operations.

• Stage 4 As discussed in Section 5.1.2, the fourth stage involved explicit integration with

PPDB by adding external memory.

Figure 20 and 21 show the model’s performance using the SimSim dataset at Stage 1,

Stage 2, Stage 3 and Stage 4. SARI and rule utilization, except for FKGL, improved gradu-

Table 21: Ablation Study of Encoder-Decoder model on the ASSET dataset.

Model FKGL
Factors in FKGL

SARI
F1 for operations of SARI Rule Utilization

WLen SLen Add Delete Keep Prec Recall F1

EncDec-Stage 1 8.85 1.34 22.12 49.34 17.10 66.48 64.44 15.11 7.58 8.97

EncDec-Stage 2 8.83 1.32 22.60 52.20 19.34 69.89 67.38 20..56 11.15 13.70

EncDec-Stage 3 8.31 1.30 22.03 52.37 19.18 71.01 66.92 29.67 18.21 20.84

DMASS2-Stage 4 8.41 1.30 22.22 52.47 12.43 72.35 65.56 44.32 34.00 35.65

88

ally from Stage 1 to Stage 4. Improvement by further simulations of simplifications was lim-

ited. Investigation revealed that, although I had simulated operations into the dataset which

contributed further to the simplification operations, the deep learning model would average

the contributions of the entire training dataset, weakening contributions to simplification op-

erations. For example, although simulating substitution and reordering operations enabled

simplifying word usage and sentence structure for some sentences, a considerable number

of sentences were missing this simulation because of the limitations of back-translation and

GPT2. While simulating a dropping operation randomly removes prepositional phrases, it

does not guarantee that all prepositional phrases in the training dataset will be removed.

Nonetheless, this remains superior to human-written sentences because humans will not

simplify each part of a sentence.

My finding of the model trained by a dataset purely constructed by back-translation

is similar to related works. Sentence pairs provided by back-translation are not necessarily

complex-simplified sentence pairs, which leads to poor performance in sentence simplification

evaluation.

The improvement of the models in Stage 4 compared to Stage 3 was significant. For Stage

4, I revised the model to explicitly check the candidate words contributing to substitution

operations, significantly improving the substitution operation. As shown in Table 20, the

improvement is reflected by scores for both SARI and rule utilization. However, the FKGL

performance did not improve because substitutions do not shorten sentences.

5.2.3 Comparison to Other Corpus

Table 22 compares baseline model performances using recently published training datasets.

Wiki-Auto was constructed by aligning sentences in the Complex and Simple Wikipedia us-

ing a neural CRF model featuring a BERT as a base model. Different traditional alignment

approaches using lexical-level features, such as the Jaccard coefficient or the cosine dis-

tance of TF-IDF vectors, enabled this approach to capture semantic similarity and leverage

similarly ordered content. Consequently, Wiki-Auto features much more cleanly aligned

complex-simplified sentence pairs.

89

Table 22: Performance of different Corpora.

Model FKGL
Factors in FKGL

SARI
F1 for operations of SARI Rule Utilization

WLen SLen Add Delete Keep Prec Recall F1

Wiki-Auto 7.67 1.35 19.0 39.64 5.18 41.61 72.13 1.01 1.35 1.13

SimSim 8.31 1.30 22.03 41.07 8.33 41.97 72.89 1.58 2.03 1.69

However, given the limitations of Complex and Simple Wikipedia, the simplification is not

sufficient: Wiki-Auto’s contributions to simplification operations remain limited, leading to

significantly worse SARI and rule utilization performance than when using SimSim. However,

Wiki-Auto performed better for FKGL because sentences in Wiki-Auto are generally short.

As discussed, due to SimSim back-translation construction, complex and simplified sentences

are always similar in length.

90

6.0 Tunable Sentence Simplification Models

In the last chapter, I proved that the model DMASS2 trained by SimSim achieves the best

SARI score. The improvement is reflected mostly in the adding (substituting) of simplified

words. Although I introduced a dropping simulation operation into the SimSim construction,

the model simply averages all simplification operations that still perform poorly in generating

a short sentence.

On the other hand, depending on the setting, users may prefer various forms of simplified

sentences related to different simplification operations. Therefore, a deep-learning model ar-

chitecture that allows the insertion of style-related parameters for different styles of sentence

simplification is critical. For example, excessive focus on the dropping operation may lose

the essential meaning of the original complex sentence, which is harmful to meaning preser-

vation; however, some users prefer such a style of sentence simplification. On the contrary,

a slight dropping operation and additional splitting do not harm meaning preservation, and

they generate another option for sentence simplification.

Therefore, in this chapter, I construct a tunable sentence-simplification model by allowing

for the insertion of style-related parameters. This model allows users to provide style-related

features, and it can generate certain sentence styles based on user input. The style-related

features can be connected to the four simplification rewriting operations.

6.1 Tunable Sentence Simplification

To enable tunable sentence generation in a general NLP (natural language processing)

domain, two approaches can be applied: policy gradient [63] and prefix constraint [75].

The policy gradient method uses a reinforcement learning approach and treats user-

provided, style-related features as the rewards. After training, the policy gradient prefers to

generate a sentence that favors user-preferred styles.

Meanwhile, the prefix constraint adds a restriction (i.e., a constraint) to the model. The

91

constraint is a user-provided, style-related feature, and the model learns the dependency

between the ground truth sentence and the constraints. In the inference stage, users can

tune the constraints to generate a sentence that favors user-preferred styles.

6.1.1 Policy Gradient

Figure 38: Overview of Architecture of Policy Gradient

Figure 38 shows how the reward is computed using the policy gradient method. In this

method, the model tries to compare two sentences—the sample sentence and the baseline

sentence—and compute the reward.

The baseline sentence indicates the standard performance of the text-simplification sys-

92

tem. The base style score is always computed using a generated sentence from greedy search

[66] or by averaging existing scores from a collection of generated sentences [63].

The sample sentence refers to the sentence explored by the model through multinomial

sampling. When generating each word, instead of selecting the word with the highest prob-

ability, the sampling algorithm explores an alternative sentence. The sample style score is

computed based on this sentence.

The policy gradient algorithm compares two sentences and computes the reward by

subtracting two scores.

If the sample sentence is a successful exploration that generates a higher style score, the

reward is positive. If the exploration is not successful, the reward is negative. The reward

is then applied to determine weights for the objective function, and the optimization favors

generation with a higher style score.

However, this approach has several weaknesses:

1. The sentence exploration is not stable because of a large vocab size. In my experiment,

most of the sample sentences are not readable.

2. The reward favors certain simplification rewriting operations without considering the

sentence readabilities. Due to the limitations of sentence exploration, a sample sentence

contributes to certain simplification rewriting operations, but unreadable sentences are

still rewarded during the training.

3. Because the style score is treated as a reward, and because the policy gradient method

uses rewards to reassign weights for the objective function, such tuning occurs during the

training stage. Each time the user needs to change the style, it is necessary to re-train

the model.

Due to these limitations of using policy gradient methods to tune to sentence styles, I

will also try to use prefix constraint methods.

6.1.2 Prefix Constraint

As shown in Figure 39, the prefix constraint method places an additional token, “style

score,” in front of the sentence. Because of the association between the style score and

93

Figure 39: Overview of Architecture of Prefix Constraint

the ground truth sentence, the model becomes aware of the dependency between these two

sentences via the self-attention mechanism.

Compared to the policy gradient model, there are several benefits to the prefix constraint

method:

1. Sentence generation is more stable because there is no need to sample words. Generation

in prefix constraint needs to consider both the language model and association with the

style score.

2. Because the syntax score is used in the generation stage, it is not necessary to re-train

the model if the user needs to change the style.

6.2 Tunable Sentence Simplification Models

This approach is also helpful for constructing a truly useful sentence simplification system

that can perform all suitable operations. Because either generated data or existing linguistic

and simplification resources may only apply to certain operations, and different resources

94

may conflict with each other, a style featuring maximized performance for each operation is

ideal for reducing sentence complexity.

Figure 40: Overview of Architecture to Enable Styles of SS In Training

Inspired by prefix constraint [71] methods, I use style-related embedding to instruct the

model as to which style it needs to generate (upper right corner of Figure 40).

Style-related embedding is a vector that encodes the style of a simplified sentence. Each

style is encoded into a scalar value, as discussed in the previous section. To make the style-

related embedding compatible with the deep-learning architecture, I tiled it to be the same

size as the hidden state. For example, style-related values of {0.1, 0.5, 0.3, 0.9} would be

tiled as {0.1, 0.1, 0.5, 0.5, 0.3, 0.3, 0.9, 0.9} if the size of the hidden state were 8. The

style-related embedding is fed into multi-head attention.

In the training stage, when the ground truth simplified sentence is visible, I can cal-

culate the style-related embedding and feed it to the model. The model will learn the

dependency between the values in style-related embedding and the behavior of generation.

In the testing/inference stage, the user can provide style-related values and put them into

the style-related embedding; the model will then generate a sentence according to the user

95

input.

For some style-related values, such as sentence length, it is hard for users to provide

a global requirement for all simplified sentences. The ideal length of a simplified sentence

may depend on the particular complex sentence. Therefore, to improve user convenience,

I instruct a linear regressor to predict the ideal length of a simplified sentence. Thus, in

training time, the linear regressor learns to predict the length of the simplified sentence. In

testing/inference time, users are free to scale the predicted length (e.g., by a multiple of 0.8).

I followed the teacher-forcing approach to optimize the model. For each word in the

sentence, I used the ground truth sentence from a prior time step as input and the current

word as output for prediction. When predicting each word, the model will consider the

following three pieces of information:

1. The complex sentence

2. The simplified sentence in the prior time step

3. The style-related embedding

Figure 41: Overview of Architecture to Enable Styles of SS In Inference

96

In the inference stage, users are allowed to change the style-related embedding. As

shown in Figure 41, one option is to provide a scale vector indicating a multiplier applied to

style-related embedding. For example, a scale greater than 1.0 always promotes the current

style, and a scale less than 1.0 reduces the current style. In the real use case, we can tune

these style scores by referencing certain development datasets to obtain appropriate sentence

simplification styles.

In the next sections, I will introduce the details of tuning styles that contribute to each

simplification rewriting operation.

6.2.1 Tuning the Substitution Rewriting Operation

To promote the substitution rewriting operation, I use the substitution measurement

mentioned in Section 3.1.2. Thus, I compute the ratio of words in the complex sentences

that have been replaced by PPDB and treat the ratio as the style-related parameters to the

substitution-rewriting operation.

Table 23 and 24 show typical examples of the different sentences generated by tuning the

substitution rewriting operations. Inhibiting substitution always reduces the substitution of

words in the simplified sentence and generates sentences similar to the complex sentence.

Promoting substitution improves the substitution of words in the simplified sentence.

Because my model is integrated with PPDB, generation with no tuning already works well.

Further tuning to favor the substitution rewriting operation will be prone to error. In the first

example, the model substituted the word “able-bodied” to “canbodied” because it noticed

the word “can” could be substituted for “able.” In the second example, the model substituted

“award” for “medal.”

It is not difficult to tune word usage in sentence generation. In fact, there are studies

to tune word usage in other NLP domains [100]. Therefore, my confidence in tuning the

substitution of the sentence simplification system is high.

97

Table 23: Sample of Influence of Tuning Substitution Rewriting Operation

Style Sentences

Complex Sentence jeddah is the principal gateway to mecca , islam ’s holiest

city , which able-bodied muslims are required to visit at

least once in their lifetime .

No Tuning jeddah is the main gateway to islam ’s holiest city ,

which allows able-bodied muslims to visit at least once

in their lifetime .

Promoting Substitu-

tion

jeddah is the main gateway to islam ’s holiest city that

canbodied muslims must visit at least once during their

lifetime .

Inhibiting Subsitution jeddah is the principal gateway to mecca , islam ’s holiest

city , which able-bodied muslims are required to visit at

least once in their lifetime .

98

Table 24: Sample of Influence of Tuning Substitution Rewriting Operation

Style Sentences

Complex Sentence since 2000 , the recipient of the kate greenaway medal

has also been presented with the colin mears award to

the value of $ 5000 .

No Tuning since 2000 , the winner of the kate greenaway medal has

also been given with the colin mears award to the value

of $ 5000 .

Promoting Substitu-

tion

since 2000 , the winner of the kate greenaway medal has

also been given with the colin mears medal of $ 5000 .

Inhibiting Substitu-

tion

since 2000 , the recipient of the kate greenaway medal

has also been presented with the colin mears award to

the value of the number of 5000 .

6.2.2 Tuning the Dropping Rewriting Operation

To promote the dropping rewriting operation, I used the measurement mentioned in

Section 3.1.3.

Table 27 and 28 show typical examples of the different sentences generated by tuning

the dropping rewriting operation. Different levels of promoting this operation drop different

numbers of words. Because my prefix constraint is soft, the generated sentence is always

readable. Notably, most of the dropping operation removes prepositional, adjectival, and

adverbial phrases. These are learned from SimSim in simulated dropping, which is discussed

in Section 4.2.2. Because of this, compared with earlier works that generate short sentences,

my tuning of the dropping rewriting operation has a smaller chance of deleting important

information from the sentence.

It is also not difficult to tune sentence length in sentence generation. There are studies

to tune sentence length in other NLP domains [46]. Therefore, my confidence in tuning the

99

Table 25: Sample of Influence of Tuning Dropping Rewriting Operation

Style Sentences

Complex Sentence jeddah is the principal gateway to mecca , islam ’s holiest

city , which able-bodied muslims are required to visit at

least once in their lifetime .

No Tuning jeddah is the main gateway to islam ’s holiest city ,

which allows able-bodied muslims to visit at least once

in their lifetime .

Promoting Dropping jeddah is the main gateway to mecca , the most holy

city in islam ,able-bodied muslims are required to visit

at least once .

Further Promoting

Dropping

jeddah is the main gateway to mecca , the most holy

city in islam .

Table 26: Sample of Influence of Tuning Dropping Rewriting Operation

Style Sentences

Complex Sentence since 2000 , the recipient of the kate greenaway medal

has also been presented with the colin mears award to

the value of $ 5000 .

No Tuning since 2000 , the winner of the kate greenaway medal has

also been given with the colin mears award to the value

of $ 5000 .

Promoting Dropping since 2000 , the winner of the kate greenaway medal has

also been given the colin mears award to $ 5000 .

Further Promoting

Dropping

since 2000 , the winner has also been given the colin

mears award .

100

dropping of the sentence simplification system is high.

6.2.3 Tuning the Splitting Rewriting Operation

To promote the splitting rewriting operation, I used the measurement mentioned in

Section 3.1.5. The measurement of the splitting rewriting operation is a Boolean value that

indicates whether the complex sentence is split.

Table 27: Sample of Influence of Tuning Splitting Rewriting Operation

Style Sentences

Complex Sentence jeddah is the principal gateway to mecca , islam ’s holiest

city , which able-bodied muslims are required to visit at

least once in their lifetime .

No Tuning jeddah is the main gateway to islam ’s holiest city ,

which allows able-bodied muslims to visit at least once

in their lifetime .

Promoting Splitting jeddah is the main gateway to mecca , the holiest city

in islam . able-bodied muslims are required to visit at

least once in their lifetime .

Table 27 and 28 show typical examples of the varied sentences generated by tuning the

splitting rewriting operation. After promoting this operation, the model split the sentence

into two or more short sentences. Similar to before, the styles of sentence splitting are learned

from the Wikisplit data set, which, in turn, are learned from SimSim in simulating splitting,

as discussed in Section 4.2.3.

6.2.4 Tuning the Reordering Rewriting Operation

As in reordering simplification rewriting operations, I used the measurement mentioned

in Section 3.1.4 to promote my reordering rewriting operation. However, I found the model

generated similar sentences when promoting the reordering rewriting operations.

101

Table 28: Sample of Influence of Tuning Splitting Rewriting Operation

Style Sentences

Complex Sentence since 2000 , the recipient of the kate greenaway medal

has also been presented with the colin mears award to

the value of $ 5000 .

No Tuning since 2000 , the winner of the kate greenaway medal has

also been given with the colin mears award to the value

of $ 5000 .

Promoting Splitting since 2000 , the winner of the kate greenaway medal

has also been given the colin mears award . the kate

greenaway medal was given to the value of $ 5000 .

After analyzing the reason for this, I found that the model was unaware of the syntax of

the generated sentence. The sentence simplification model works via a statistical approach

in which the model predicts the probabilities:

P(w1, w2, ...wn|wcomplex, style) =P(wn|w1, w2, ...wn−1, wcomplex, style)

P(wn−1|w1, w2, ...wn−2, wcomplex, style)....

P(w2|w1, wcomplex, style)P(w1|wcomplex, style)

(14)

As shown in the above formula, wcomplex indicates the words in the complex sentence

and style indicates the style-related parameters. The model predicts next-word probabilities

based on the complex sentence and style-related parameters and selects the word with the

highest probability during generation.

This setting applies to shallow styles, such as word usage and sentence length, because it

is easier to model P(w1, w2, ...wn|wcomplex, style), but the model is not aware of the syntac-

tical functionality of each word during generation. Therefore, it is necessary to add syntax

information to the probabilities by modeling P(w1, w2, ...wn|wcomplex, style, syntax).

102

6.3 Syntax-Aware Tunable Sentence Simplification

In this section, I introduce my syntax-aware tunable sentence simplification model. As

discussed in the previous section, the model needs to be aware of the syntactical information

to tune the reordering simplification rewriting operation.

Figure 42: Dependency Parser Output

Figure 43: Dependency Parser Output

As mentioned in Section 3.1.4, I use a dependency parser [57] and treat the results as

the representation of syntax. Figure 42 and 43 show the dependency parser results for a

complex-simplified sentence pair. For both of them, the syntax representations follow a

hierarchical structure starting with a “ROOT” (the words “had” in Figure 42 and “were” in

Figure 43) and follow different paths to different words with certain syntactical functions.

103

To make such hierarchical structures compatible with deep-learning models, I stack the

syntactical roles of each word for the complex sentence, as shown in Figure 44. The syntax

representation of the complex sentence is a stack of syntactical roles on different levels. For

example, the syntactical role for word “1,369” on the first level is dobj because “1,369” is

the direct object of “had.” Then, the syntactical role for “1,369” on the second level is prep

because “1,369” has a prepositional relationship with the word “population.” In this work,

I only encode syntactical roles from the first two levels into the model.

Figure 44: The Syntax Representation for complex sentence

The model learns a syntax token embedding and feeds the sum of token embedding and

syntax token embedding into the Transformer Encoder, as shown in Figure 45. In this way,

the model is aware of the syntax information of the complex sentence.

To produce syntax-aware sentence generation, I revised the Transformer Decoder to

interleave generated syntax role token and word token. In Figure 45, the model first generates

the syntax role tokens and then generates word tokens based on those syntax role tokens.

In this way, the current model predicts the following probabilities:

P(s1, w1, s2, w2, ...sn, wn|wcomplex, style) =P(wn|w1, w2, ...wn−1, s1, s2, ...sn−1, wcomplex, style)....

P(wn−1|w1, w2, ...wn−2, s1, s2, ...sn−2, wcomplex, style)....

P(w2|w1, s1, wcomplex, style)P(w1|wcomplex, style)

(15)

104

Figure 45: The Syntax-Aware Tunable Sentence Simplification

Table 29: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence there he died six weeks later , on january january 888 .

Promoting Reordering he died six weeks later , on january 13 , 888 .

Further Promoting

Reordering

he died on january 13 , 888 , six weeks after his death .

105

Table 30: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence each version of the license is given a distinguishing ver-

sion number .

Promoting Reordering each version of the license is given a distinct number .

Further Promoting

Reordering

there is a distinct version number for each version of the

license .

Table 31: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence new south wales ’s largest city and capital is sydney .

Promoting Reordering the biggest city and capital of the new south wales region

is sydney .

Further Promoting

Reordering

sydney is the biggest city and capital of the new south

wales .

106

Tables 29, 30, and 31 show typical examples of the different sentences generated by

tuning the reordering rewriting operation. The different levels that facilitate this operation

update the sentence structure to different levels. Similar to before, a slight promotion of

reordering rewriting operations can improve the readability of complex sentences. However,

excessive promotion of the rewrite operation will bring greater risks.

Table 32: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence small value inductors can also be built on integrated

circuits using the same processes that are used to make

transistors .

Promoting Reordering it is also possible to build small-value inductors on in-

tegrated circuits using the same processes used to make

transistors .

Table 33: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence therefore , these pdfs can not be distributed without

further manipulation if they contain images .

Promoting Reordering therefore , it is not possible to distribute these pdfs with-

out further manipulation if they contain images .

Unlike tuning the substitution, dropping, and splitting rewriting operations, tuning the

reordering rewriting operation can update the complex sentence in different ways, some of

which are overlapped with other rewriting operations. Here, I enumerate different types of

reordered sentences:

1. Adding a Clause: As shown in Tables 32 and 33, the reordered sentence adds a clause

by moving the keyword “possible” to the front to make it clearer.

107

Table 34: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence new south wales ’s largest city and capital is sydney .

Promoting Reordering sydney is the biggest city and capital of the new south

wales .

Table 35: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence origin irmo was chartered on christmas eve in 1890 in

response to the opening of the columbia , newberry and

laurens railroad .

Promoting Reordering in 1890 , the origin irmo was chartered on christmas eve

. this is a response to the opening of the columbia ,

newberry and laurens railway .

Table 36: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence these attacks may have been psychological in origin

rather than physical .

Promoting Reordering these attacks may have been of psychological origin , not

of physical origin .

108

Table 37: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence the britannica was primarily a scottish enterprise , as

symbolised by its thistle logo , the floral emblem of scot-

land .

Promoting Reordering the britannica was primarily a scottish enterprise . it

was symbolized by the coat of arms .

Table 38: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence alessandro (” sandro ”) mazzola (born 8 november

1942) is an italian former football player .

Promoting Reordering mazzola is a former football player .

Table 39: Sample of Influence of Tuning Reordering Rewriting Operation

Style Sentences

Complex Sentence as of 2000 , the population was 89,148 .

Promoting Reordering as of 2000 , the city had a population .

109

2. Updating the Order: As shown in Tables 34 and 35, the reordered sentence moves the

word “sydney” to the beginning, which is a more natural expression.

3. Substitution: As shown in Table 36, the reordered sentence replaces “rather than’ with

“not of,” a simpler expression. It overlaps with the substitution rewriting operation

because sometimes the replacement phrase is also a change in sentence structure.

4. Splitting: As shown in Table 37, the reordered sentence split the long sentence into two

shorter sentences. It overlaps with the splitting rewriting operation because sometimes

the splitting is also a change in sentence structure.

5. Dropping: As shown in Table 38, the reordered sentence removes unimportant com-

ponents from a complex sentence. It overlaps with the dropping rewriting operation

because sometimes the dropping is also a change in sentence structure.

6. Adding: As shown in Table 39, the reordered sentence adds the subject “city.” Although

it may have nothing to do with this complex sentence, the word “city” makes the sentence

clearer by providing more context.

6.4 Evaluation

This section evaluates the effectiveness of my tuning models in the sentence simplification

system.

Table 40: the Effectiveness of Tuning Rewriting Operations. * denotes p < 0.001

Style Pearson Correlation

Substitution 0.90*

Dropping 0.99*

Reordering 0.96*

Regarding the substitution, dropping, and reordering rewriting operations, I calculated

the Pearson correlation between the tuning scale and the specified rewriting operation mea-

surement. As shown in Table 40, they all significantly correlated with the tuning scales.

110

Dropping may be the easiest style to tune because the model only needs to learn when to

stop generation. With the help of the syntax-aware tunable sentence simplification model,

the effectiveness of tuning the reordering rewriting operation is also high. Due to the limi-

tation of available PPDB rules, tuning the substitution effect will be slightly worse. For the

splitting operation, I force the model to split complex sentences and the model split 98.61

% of the sentences.

However, I found that the tuning style is not helpful in improving SARI because it is

difficult to find a combination of tuning parameters (scale) that achieves a significantly better

SARI score. This finding conflicts with the conclusion of ACCESS [51]. In their work, they

use a WikiLarge dataset, and tuning may exclude the noisy sentence. But noisy sentences

are rare in SimSim, so the tuning has hardly improved in my case. Another limitation is my

linear regressors are not accurate enough to provide appropriate style scores. Such limitation

makes tuning towards better SARI harder.

6.5 Summary

With the help of syntax-aware tunable sentence simplification, the experiment shows

that my tunable sentence simplification model is effective for all four simplification rewriting

operations. My syntax-aware tunable sentence simplification model can determine different

types of sentence structure simplification, particularly reordering operations.

111

7.0 Discussion and Conclusion

7.1 Achievements

In this work, I explored sentence simplification through four simplification rewriting op-

erations: substitution, dropping, reordering, and splitting [102, 98]. The substitution

operation replaces difficult phrases or words with simplified synonyms. The dropping oper-

ation removes unimportant or redundant parts of a sentence to improve conciseness. The

reordering operation reorders components to simplify sentence structure and syntax. The

splitting operation divides a long sentence into several shorter sentences to reduce the orig-

inal sentence’s complexity. My dissertation focused on these four operations; the remaining

work is based on the four rewriting operations.

I designed measurements to analyze the existing training datasets and determined that

all of the datasets (1) contain a number of poorly aligned sentence pairs, (2) are limited

in several ways and contribute to only some operations, and (3) excessively focus on one

operation that may not be of interest to some users. These conclusions prompted me to

construct my own dataset SimSim.

The initial SimSim is constructed with back translation and the unconditional language

model GPT-2. Then, SimSim is further improved for the substitution simplification rewriting

operation with the help of PPDB. The WikiSplit dataset is used to enhance SimSim for the

splitting simplification rewriting operation. The dropping simplification rewriting operation

of SimSim is also improved using the rule-based approach by randomly removing words.

The dataset analysis shows that SimSim demonstrates (1) a closer distribution on multiple

dimensions to the human-annotated Turk and ASSET dataset than the others, suggesting

that SimSim may serve as a better dataset for training automatic models; and (2) a sufficient

number of samples to teach the model certain operations, such as substitution and splitting.

Although some noise was introduced from the data construction, I introduced my model

design to reduce the influence of fault from data construction. The experiment shows that

models trained by SimSim achieve state-of-the-art performance regarding SARI. My ablation

112

studies also demonstrate the way constructing SimSim improves the performance gradually.

However, those simplification simulations also have certain limitations due to the limited

resources available online, especially for dropping operations.

Due to the limitations of the back translation, the model occasionally neglected certain

simplification rewriting operations (such as name entities guilded sentence simplification

model). This shortcoming prompted me to explore tunable sentence simplification models.

My initial tunable sentence simplification model worked well except for tuning the reordering

operation; however, encoding syntax information into the model improved its effectiveness.

With the help of syntax-aware tunable sentence simplification, the experiment shows that

a tunable model is effective for all four simplification rewriting operations. My model can

determine different types of sentence structure simplification, particularly reordering opera-

tions.

The sections that follow discuss limitations and future work.

7.2 Discussion

7.2.1 Analyzing the Existing Corpora and the Constructed SimSim

As discussed in Section 3.1.1, the relevance analysis indicates that all existing corpora

contain a certain number of poorly aligned sentence pairs resulting from edits intended to

rewrite a text for a different readability level, which may drastically reconstruct its words,

sentences, or even paragraphs. Consequently, sentences in paraphrased articles may not

accurately pair with the original sentences. The misalignment may worsen when sentences

are automatically extracted and aligned with simple lexical-based features such as Jaccard

similarity. The misalignment can come from poorly performed extraction and alignment

algorithms or from a poorly aligned article itself. Such misalignment error is unavoidable if

extracting from existing one-line resources due to limited resources. My approach collects

sentence pairs in another way, namely, using existing paraphrase systems to generate simpli-

fied sentences. There are different choices of such paraphrase systems: In this work, I used

113

Google Neural Machine Translation and a back-translation approach to rewrite a text at

the sentence level. Although this method provided me strongly aligned sentence pairs, the

changes from paraphrased sentences are limited. Most of the sentence pairs contributed to

substitution and reordering operations; a limited number of pairs contributed to dropping

and splitting rewriting operations. Therefore, the improvement from my data at stage 1

and 2 is smaller as shown in Secion 5.2.2. One of my future works will check multiple para-

phrase systems to generate varying sentence pairs to include more rewriting operations in

the data. One related work [48] trained separate models for splitting and dropping rewriting

operations.

In this work, I explored several approaches to further edit generated sentence pairs to

include more rewriting operations.

Substitution analysis results indicate more words will be substituted because substitution

always results in a simpler output. I found the SimSim performs slightly better than other ex-

isting corpora except for Newsela-Auto. The inferior performance of SimSim is because GPT-

2 fails to capture multiple substitution mapping. GPT-2 evaluates a text at the sentence

level and may neglect a substituted word or phrase. Table 41 shows one example from the

testing dataset that GPT-2 assigned a low loss to a clearly complex sentence. The sentence

pairs contain three substitution mappings, including flexible→moveable, hollow→empty, and

interior→insides. Future work will involve fine-tuning GPT-2 with human-provided, aligned

sentence pairs to encourage consideration of the substitution mapping that would result in

GPT-2 assigning a loss in similar situations. Additionally, I will consider putting Newsela-

Auto into the seed sentence bank to further improve substitution rewriting operations.

Table 41: Failures of GPT-2: Samples come from testing dataset.

Sentences GPT-2 Loss

Complex Bone marrow is the flexible tissue found in the

hollow interior of bones .

3.0145

Simplified Bone marrow is the moveable tissue found in the

empty insides of bones .

3.7665

114

Splitting analysis results indicate the number of sentence pairs contributing to the split-

ting operation is large enough that the model can learn how to split. I introduced WikiSplit

into my seed sentence bank to simulate the splitting operation. As a result, SimSim con-

tains 39.9 % sentence pairs, which I believe is enough to teach the model splitting. The

high ratio of the split sentences is due to the WikiSplit dataset in the seed sentence bank.

The WikiSplit dataset is constructed by checking edit history to learn how humans split a

long sentence. Unlike the dataset constructed by back-translation, the dataset is written

by Wikipedia users, reflecting a natural way to split a long sentence. However, the dataset

only contributes to splitting and somehow reordering operations. It is necessary to explore

other simulating rewriting operation approaches to maximize the contribution of rewriting

operations for this dataset.

To simulate the dropping operation, I randomly remove certain functional phrases from

the complex sentence, such as prepositional, adjective, or adverb phrases. These deletions

are safe because removing these functional phrases will not change the sentence significantly,

even though it may not be the preferred method if considerable modification is required.

Another reason for a few large dropping in SimSim dataset is due to GPT-2. Table 42

suggests that GPT-2 may be likely to assign a low loss for a long sentence because it contains

common words to lower the averaged GPT-2 loss. This is contradictory to the goal of sentence

simplification. As I indicated before, fine-tuning of GPT-2 is needed. My initial approach was

similar in that I simulated splitting operations by introducing a sentence compression dataset

into the seed sentence bank. However, the performance was inferior because the model drops

words aggressively. Future work will include combining two dropping approaches to enable

different styles of dropping operations.

I did not determine an effective method for simulating reordering operations. The model

learns to reorder words mostly from back-translation and the WikiSplit dataset. Unlike

the other three rewriting operations, there is no consensus about which types of sentence

structure are simpler. Some reordering examples in Section 6.3 are not widely accepted. I

will explore better approaches to simulate and evaluate reordering operations.

Summarizing the simulation of rewriting operations is novel and important because while

there are numerous NLP resources available online for other tasks, many only contribute to

115

Table 42: Failures of GPT-2: Samples come from testing dataset.

Sentences GPT-2 Loss

Complex You may add a passage of up to five words as a

Front-Cover Text, and a passage of up to 25 words

as a Back-Cover Text, to the end of the list of

Cover Texts in the Modified Version.

1.6899

Simplified In the Modified Version you may add 25 words to

the front and back covers.

4.3446

Complex Bankers from ShoreBank, a community develop-

ment bank in Chicago, helped Yunus with the offi-

cial incorporation of the bank under a grant from

the Ford Foundation.

3.8089

Simplified Yumus gained help to incorporate the bank from

ShoreBank and the Ford Foundation.

5.7520

116

certain rewriting operations. As far as I know, there are no substantial written resources

for this task. Therefore, using existing resources and simulate them to the four rewriting

operations is helpful.

7.2.2 Model Design of SimSim

Due to the large vocabulary size for SimSim, it is necessary to use subword tokenization

and name entities recognition pipeline. My initial experiment demonstrated an extremely

slow optimization, and the model never fully converged without this pipeline. The reason

is that the model takes time to learn the meaning of different named entities. However, I

argue that this is unnecessary for the sentence simplification system because the model could

copy the same name entities into a simplified sentence. Therefore, in the data pipeline, I

combine the subword tokenization and named entities replacement. This step is helpful for

optimization. Some recent works, such as [51], describe good performance after using sub-

word tokenization with a small subword vocabulary and without a named entity recognizer.

However, because my dataset SimSim was large and contained many named entities, the

name entity recognizer was indispensable.

In my model design, I have named-entities guild sentence simplification and PPDB guild

sentence simplification. The goal of such model design is to reduce the influence of fault

from data construction. Such model design should be ignored if a better data construction

approach is introduced in the future.

The experimental results show that the model trained by SimSim significantly outper-

forms other models regarding the SARI. The better performance is primarily due to adding

factors in computing SARI. However, the deleting factor has an inferior performance. The

good performance is also due to the nature of the testing dataset. The TURK dataset fo-

cuses more on substitution rewriting operations [1] and less on other rewriting operations,

which is why there is less improvement for the ASSET dataset. Although I simulated drop-

ping operations, the model simply averages the contributions of the entire training dataset,

weakening the contributions to simplification operations. However, accurate measurement

of contributions can be improved by tunable sentence simplification.

117

7.2.3 Tunable Sentence Simplification

Tunable sentence simplification provides users with flexibility. On the user side, it allows

the user to provide input to tune the style of the simplified sentence. On the model side, it

allows for simplified sentence generation from imperfect data through the full contribution of

four rewriting operations. Therefore, the tunable sentence simplification is helpful to make

model generation fully contribute to four rewriting operations.

Although the model can easily understand and tune most styles, there may be some

deep features, such as sentence structure, that the model is not familiar with, leading to

poor tunable sentence simplification performance. Thus, simply encoding this information

into the model can resolve the failure. With the help of the syntax-aware tunable sentence

simplification, all four rewriting operations are effective in tuning.

Conversely, over-tuning sentences could generate unreadable text. For example, if signif-

icant dropping operations are suggested, the model will drop the complex sentence entirely.

My future work will involve reducing the possibility of generating unreadable sentences with

unpredictable user inputs and exploring ways to automatically tune the styles based on a

sample dataset.

Finally, while my styles are strongly correlated with four rewriting operations, additional

styles may further improve sentence readability. For example, a relevance style score can

be used to avoid generating unreadable sentences. ACCESS [51] explores different styles

with different datasets to tune their sentence generation for a better SARI. In their work,

they used normalized character-level Levenshtein similarity to filter out the less-correlated

sentence pairs. My tunable sentence simplification model has a similar goal to the ACCESS

[51] but achieves different results. Although we used different data and style definitions,

resolving the conflicts is crucial. In the future, I will explore more simplification styles to

improve sentence readability.

7.2.4 Summarizing SimSim and Model Design

Although SimSim is constructed in a way that results in fewer misalignments and simu-

lates four simplification rewrite operations, it still has limitations.

118

The benefit of back translation is to provide large numbers of strongly aligned sentence

pairs. Because SimSim is bigger than any of the existing publicly available training data sets

and covers more text domains, I believe that a model trained by SimSim could generalize well

to different situations. Additionally, SimSim contains far fewer misaligned sentence pairs so

a model based on it is less likely to generate an unreadable sentence.

However, the changes made in the sentence pairs generated from back translation are

limited. In my experience, back translation provides a sentence with a significant amount of

substitution but performs poorly on other rewrite operations. With further simulation of the

substitution rewrite operation, it is possible to merge substitution mapping from multiple

back-translated sentences to maximize the potential of the substitution rewrite operation.

Due to the incorporation of the WikiSplit dataset, the process of splitting and rephrasing

is also well simulated. Therefore, SimSim performs well in both substitution and split-and-

rephrase operations. But it is less effective at simulating word dropping and reordering

rewrite tasks.

Although I can simulate dropping by randomly removing certain functional words from

the sentence, in most cases, the dropping is limited to deleting a few words. Also, I didn’t

determine an effective method for simulating reordering operations. Furthermore, GPT-2

fails to capture a simplified sentence with dropping and reordering rewrite operations due to

the limitations in the way sentence pairs are validated.

In summary, SimSim contains strongly aligned sentence pairs and contributes significantly

to substitution and split operations. However, it performs poorly on dropping and reordering

rewriting operations. In my future work, I will focus more on dropping and reordering rewrite

operations.

If high-quality sentence pairs are provided, the model design is, in a way, irrelevant. In

this dissertation, my first goal for the model was to reduce the number of faults caused by

the data construction. For example, the use of name entities to guide sentence simplification

reduces the number of mismatched name entities in sentence pairs. Tunable sentence sim-

plification aims to generate a sentence with a style that is different from that of the training

data to maximize the simplification of the rewrite operations. My second goal was to make

this model easier to optimize.

119

7.3 Future Work

In this section, I summarize my plans for future work on this model.

• Because GPT-2 fails to capture multiple substitution mapping and mistakenly favors

longer sentences as shown in Table 41 and 42, future work will involve fine-tuning GPT-

2 with human-provided, aligned sentence pairs (such as Wiki-Manual[33]) to encourage

consideration of multiple factors in the sentence-simplification task. The fine-tuned GPT-

2, as a high-quality, complex-simple sentence pairs validation tool, is a prerequisite of all

the rest of my work.

• For split rewriting operation, WikiSplit, constructed by checking edit history to learn

how humans split a long sentence, provides a good resource to teach the model how to

split. As SimSim performs poorly on dropping and reordering rewrite operations, I need

to explore more resources for improving its ability to handle these tasks as well.

• Back translation inhibits the generation of diverse paraphrased sentences. In my future

research, I will explore multiple paraphrase systems to generate varied sentence pairs

to include more rewrite operations in the data. In a related study, [48] researchers

trained separate models for splitting and dropping rewrite operations to produce diverse

sentences for multiple rewrite operations.

• Tunable sentence simplification is another issue that must be addressed. Overtuning

sentences generates unreadable text. For example, if significant dropping operations are

suggested, the model will drop complex sentences entirely. Future work will involve

reducing the possibility of generating unreadable sentences when user inputs are un-

predictable and exploring ways to automatically tune the styles based on a referenced

dataset.

• In my tunable sentence-simplification simulation, the rewriting styles are strongly cor-

related with four rephrasing operations. Adding additional rewriting styles may further

improve sentence readability. A related study, [51], explores different rewriting styles,

used with different datasets, to tune sentence generation for a better SARI. Normalized

character-level Levenshtein similarity was used to filter out the less-correlated sentence

120

pairs. In the future, I will explore simplification styles other than the four rewrite oper-

ations to improve sentence readability.

121

Bibliography

[1] Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benôıt
Sagot, and Lucia Specia. Asset: A dataset for tuning and evaluation of sen-
tence simplification models with multiple rewriting transformations. arXiv preprint
arXiv:2005.00481, 2020.

[2] Colin Bannard and Chris Callison-Burch. Paraphrasing with bilingual parallel cor-
pora. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 597–604. Association for Computational Linguistics, 2005.

[3] Regina Barzilay and Kathleen R McKeown. Extracting paraphrases from a parallel
corpus. In Proceedings of the 39th annual meeting of the Association for Computa-
tional Linguistics, 2001.

[4] Jan A Botha, Manaal Faruqui, John Alex, Jason Baldridge, and Dipanjan Das. Learn-
ing to split and rephrase from wikipedia edit history. arXiv preprint arXiv:1808.09468,
2018.

[5] John A Carroll, Guido Minnen, Darren Pearce, Yvonne Canning, Siobhan Devlin, and
John Tait. Simplifying text for language-impaired readers. In EACL, pages 269–270,
1999.

[6] Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. Deep communi-
cating agents for abstractive summarization. arXiv preprint arXiv:1803.10357, 2018.

[7] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal
sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[8] Raman Chandrasekar, Christine Doran, and Bangalore Srinivas. Motivations and
methods for text simplification. In Proceedings of the 16th conference on Computa-
tional linguistics-Volume 2, pages 1041–1044. Association for Computational Linguis-
tics, 1996.

[9] Wenhu Chen, Evgeny Matusov, Shahram Khadivi, and Jan-Thorsten Peter. Guided
alignment training for topic-aware neural machine translation. arXiv preprint
arXiv:1607.01628, 2016.

122

[10] James Clarke and Mirella Lapata. Models for sentence compression: A comparison
across domains, training requirements and evaluation measures. In Proceedings of
the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, pages 377–384. Association
for Computational Linguistics, 2006.

[11] James Clarke and Mirella Lapata. Global inference for sentence compression: An inte-
ger linear programming approach. Journal of Artificial Intelligence Research, 31:399–
429, 2008.

[12] William Coster and David Kauchak. Simple english wikipedia: a new text simplifi-
cation task. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies: short papers-Volume 2, pages
665–669. Association for Computational Linguistics, 2011.

[13] Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V
Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[15] Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of the
20th international conference on Computational Linguistics, page 350. Association for
Computational Linguistics, 2004.

[16] William B Dolan and Chris Brockett. Automatically constructing a corpus of senten-
tial paraphrases. In Proceedings of the Third International Workshop on Paraphrasing
(IWP2005), 2005.

[17] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation.
arXiv preprint arXiv:1805.04833, 2018.

[18] Lijun Feng. Text simplification: A survey. The City University of New York, Tech.
Rep, 2008.

[19] Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural lan-
guage generation. arXiv preprint arXiv:1707.02633, 2017.

123

[20] Katja Filippova, Enrique Alfonseca, Carlos A Colmenares, Lukasz Kaiser, and Oriol
Vinyals. Sentence compression by deletion with lstms. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 360–368,
2015.

[21] Katja Filippova and Yasemin Altun. Overcoming the lack of parallel data in sentence
compression. 2013.

[22] Katja Filippova and Michael Strube. Sentence fusion via dependency graph compres-
sion. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 177–185. Association for Computational Linguistics, 2008.

[23] Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38,
1994.

[24] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. Ppdb: The
paraphrase database. In HLT-NAACL, pages 758–764, 2013.

[25] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini.
Creating training corpora for nlg micro-planning. In 55th annual meeting of the As-
sociation for Computational Linguistics (ACL), 2017.

[26] Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi
Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual
corpora in neural machine translation. arXiv preprint arXiv:1503.03535, 2015.

[27] Han Guo, Ramakanth Pasunuru, and Mohit Bansal. Dynamic multi-level multi-task
learning for sentence simplification. arXiv preprint arXiv:1806.07304, 2018.

[28] Wei He, Zhongjun He, Hua Wu, and Haifeng Wang. Improved neural machine trans-
lation with smt features. In Thirtieth AAAI conference on artificial intelligence, 2016.

[29] Michael Heilman and Noah A Smith. Question generation via overgenerating transfor-
mations and ranking. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH
PA LANGUAGE TECHNOLOGIES INST, 2009.

[30] M Honnibal. Introducing spacy, 2003.

124

[31] J Edward Hu, Rachel Rudinger, Matt Post, and Benjamin Van Durme. Parabank:
Monolingual bitext generation and sentential paraphrasing via lexically-constrained
neural machine translation. arXiv preprint arXiv:1901.03644, 2019.

[32] Kentaro Inui, Atsushi Fujita, Tetsuro Takahashi, Ryu Iida, and Tomoya Iwakura.
Text simplification for reading assistance: a project note. In Proceedings of the sec-
ond international workshop on Paraphrasing-Volume 16, pages 9–16. Association for
Computational Linguistics, 2003.

[33] Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu. Neural crf
model for sentence alignment in text simplification. In Proceedings of the Association
for Computational Linguistics (ACL), 2020.

[34] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.
Google’s multilingual neural machine translation system: Enabling zero-shot transla-
tion. Transactions of the Association for Computational Linguistics, 5:339–351, 2017.

[35] Siddhartha Jonnalagadda and Graciela Gonzalez. Sentence simplification aids protein-
protein interaction extraction. arXiv preprint arXiv:1001.4273, 2010.

[36] Dan Jurafsky and James H Martin. Speech and language processing, volume 3. Pearson
London, 2014.

[37] Nobuhiro Kaji, Daisuke Kawahara, Sadao Kurohash, and Satoshi Sato. Verb para-
phrase based on case frame alignment. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pages 215–222. Association for Computa-
tional Linguistics, 2002.

[38] Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura, and Manabu
Okumura. Controlling output length in neural encoder-decoders. arXiv preprint
arXiv:1609.09552, 2016.

[39] J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom.
Derivation of new readability formulas (automated readability index, fog count and
flesch reading ease formula) for navy enlisted personnel. Technical report, Naval
Technical Training Command Millington TN Research Branch, 1975.

[40] Kevin Knight and Daniel Marcu. Statistics-based summarization-step one: Sentence
compression. AAAI/IAAI, 2000:703–710, 2000.

125

[41] Kevin Knight and Daniel Marcu. Summarization beyond sentence extraction: A
probabilistic approach to sentence compression. Artificial Intelligence, 139(1):91–107,
2002.

[42] Catherine Kobus, Josep Crego, and Jean Senellart. Domain control for neural machine
translation. arXiv preprint arXiv:1612.06140, 2016.

[43] Jiwei Li, Michel Galley, Chris Brockett, Georgios P Spithourakis, Jianfeng Gao,
and Bill Dolan. A persona-based neural conversation model. arXiv preprint
arXiv:1603.06155, 2016.

[44] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky.
Adversarial learning for neural dialogue generation. arXiv preprint arXiv:1701.06547,
2017.

[45] Dekang Lin and Patrick Pantel. Discovery of inference rules for question-answering.
Natural Language Engineering, 7(4):343–360, 2001.

[46] Yizhu Liu, Zhiyi Luo, and Kenny Zhu. Controlling length in abstractive summariza-
tion using a convolutional neural network. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 4110–4119, 2018.

[47] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[48] Mounica Maddela, Fernando Alva-Manchego, and Wei Xu. Controllable text simpli-
fication with explicit paraphrasing. arXiv preprint arXiv:2010.11004, 2020.

[49] Mounica Maddela and Wei Xu. A word-complexity lexicon and a neural readability
ranking model for lexical simplification. arXiv preprint arXiv:1810.05754, 2018.

[50] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. The stanford corenlp natural language processing
toolkit. In Proceedings of 52nd annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60, 2014.

[51] Louis Martin, Benôıt Sagot, Eric de la Clergerie, and Antoine Bordes. Controllable
sentence simplification. arXiv preprint arXiv:1910.02677, 2019.

126

[52] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudan-
pur. Recurrent neural network based language model. In Eleventh annual conference
of the international speech communication association, 2010.

[53] Shashi Narayan and Claire Gardent. Hybrid simplification using deep semantics and
machine translation. In the 52nd Annual Meeting of the Association for Computational
Linguistics, pages 435–445, 2014.

[54] Shashi Narayan, Claire Gardent, Shay B Cohen, and Anastasia Shimorina. Split and
rephrase. arXiv preprint arXiv:1707.06971, 2017.

[55] Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto, and Liviu P Dinu. Exploring
neural text simplification models. In Proceedings of the 55th annual meeting of the
association for computational linguistics (volume 2: Short papers), pages 85–91, 2017.

[56] Tong Niu and Mohit Bansal. Polite dialogue generation without parallel data. Trans-
actions of the Association of Computational Linguistics, 6:373–389, 2018.

[57] Joakim Nivre, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D Manning, Ryan T McDonald, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, et al. Universal dependencies v1: A multilingual treebank collection. In
LREC, 2016.

[58] Ellie Pavlick and Chris Callison-Burch. Simple ppdb: A paraphrase database for
simplification. In The 54th Annual Meeting of the Association for Computational
Linguistics, page 143, 2016.

[59] Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin Van Durme, and
Chris Callison-Burch. Ppdb 2.0: Better paraphrase ranking, fine-grained entailment
relations, word embeddings, and style classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), vol-
ume 2, pages 425–430, 2015.

[60] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv
preprint arXiv:1802.05365, 2018.

[61] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. URL https://s3-us-west-2. amazon-

127

aws. com/openai-assets/research-covers/languageunsupervised/language understand-
ing paper. pdf, 2018.

[62] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. URL https://openai.
com/blog/better-language-models, 2019.

[63] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence
level training with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

[64] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[65] Luz Rello, Clara Bayarri, Azuki Gòrriz, Ricardo Baeza-Yates, Saurabh Gupta, Gau-
rang Kanvinde, Horacio Saggion, Stefan Bott, Roberto Carlini, and Vasile Topac.
Dyswebxia 2.0!: more accessible text for people with dyslexia. In Proceedings of
the 10th International Cross-Disciplinary Conference on Web Accessibility, page 25.
ACM, 2013.

[66] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava Goel.
Self-critical sequence training for image captioning. In CVPR, volume 1, page 3, 2017.

[67] Holger Schwenk. Investigations on large-scale lightly-supervised training for statistical
machine translation. In International Workshop on Spoken Language Translation
(IWSLT) 2008, 2008.

[68] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summariza-
tion with pointer-generator networks. arXiv preprint arXiv:1704.04368, 2017.

[69] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine trans-
lation models with monolingual data. arXiv preprint arXiv:1511.06709, 2015.

[70] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

[71] Rico Sennrich, Barry Haddow, and Alexandra Birch. Controlling politeness in neural
machine translation via side constraints. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 35–40, 2016.

128

[72] Advaith Siddharthan. A survey of research on text simplification. ITL-International
Journal of Applied Linguistics, 165(2):259–298, 2014.

[73] Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and Adam Coates. Cold fu-
sion: Training seq2seq models together with language models. arXiv preprint
arXiv:1708.06426, 2017.

[74] Yui Suzuki, Tomoyuki Kajiwara, and Mamoru Komachi. Building a non-trivial para-
phrase corpus using multiple machine translation systems. In Proceedings of ACL
2017, Student Research Workshop, pages 36–42, 2017.

[75] Shunsuke Takeno, Masaaki Nagata, and Kazuhide Yamamoto. Controlling target
features in neural machine translation via prefix constraints. In Proceedings of the 4th
Workshop on Asian Translation (WAT2017), pages 55–63, 2017.

[76] Kristina Toutanova, Chris Brockett, Ke M Tran, and Saleema Amershi. A dataset
and evaluation metrics for abstractive compression of sentences and short paragraphs.
2016.

[77] Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu, and Hang Li. Context gates
for neural machine translation. Transactions of the Association for Computational
Linguistics, 5:87–99, 2017.

[78] Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, and Hang Li. Neural machine
translation with reconstruction. In Thirty-First AAAI Conference on Artificial Intel-
ligence, 2017.

[79] Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Modeling coverage
for neural machine translation. arXiv preprint arXiv:1601.04811, 2016.

[80] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[81] David Vickrey and Daphne Koller. Sentence simplification for semantic role labeling.
Proceedings of ACL-08: HLT, pages 344–352, 2008.

[82] Tu Vu, Baotian Hu, Tsendsuren Munkhdalai, and Hong Yu. Sentence simplification
with memory-augmented neural networks. arXiv preprint arXiv:1804.07445, 2018.

129

[83] Willian Massami Watanabe, Arnaldo Candido Junior, Vińıcius Rodriguez Uzêda, Re-
nata Pontin de Mattos Fortes, Thiago Alexandre Salgueiro Pardo, and Sandra Maria
Alúısio. Facilita: reading assistance for low-literacy readers. In Proceedings of the
27th ACM international conference on Design of communication, pages 29–36. ACM,
2009.

[84] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and
Steve Young. Semantically conditioned lstm-based natural language generation for
spoken dialogue systems. arXiv preprint arXiv:1508.01745, 2015.

[85] John Wieting and Kevin Gimpel. Paranmt-50m: Pushing the limits of para-
phrastic sentence embeddings with millions of machine translations. arXiv preprint
arXiv:1711.05732, 2017.

[86] John Wieting, Jonathan Mallinson, and Kevin Gimpel. Learning paraphrastic sen-
tence embeddings from back-translated bitext. arXiv preprint arXiv:1706.01847, 2017.

[87] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[88] Kristian Woodsend and Mirella Lapata. Learning to simplify sentences with quasi-
synchronous grammar and integer programming. In Proceedings of the conference
on empirical methods in natural language processing, pages 409–420. Association for
Computational Linguistics, 2011.

[89] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

[90] Sander Wubben, Antal Van Den Bosch, and Emiel Krahmer. Sentence simplification
by monolingual machine translation. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1, pages 1015–1024.
Association for Computational Linguistics, 2012.

[91] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In International Conference on Machine
Learning, pages 2048–2057, 2015.

130

[92] Wei Xu, Chris Callison-Burch, and Bill Dolan. Semeval-2015 task 1: Paraphrase and
semantic similarity in twitter (pit). In Proceedings of the 9th international workshop
on semantic evaluation (SemEval 2015), pages 1–11, 2015.

[93] Wei Xu, Chris Callison-Burch, and Courtney Napoles. Problems in current text sim-
plification research: New data can help. Transactions of the Association of Compu-
tational Linguistics, 3(1):283–297, 2015.

[94] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch.
Optimizing statistical machine translation for text simplification. Transactions of the
Association for Computational Linguistics, 4:401–415, 2016.

[95] Wei Xu, Alan Ritter, Chris Callison-Burch, William B Dolan, and Yangfeng Ji. Ex-
tracting lexically divergent paraphrases from twitter. Transactions of the Association
for Computational Linguistics, 2:435–448, 2014.

[96] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image cap-
tioning with semantic attention. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4651–4659, 2016.

[97] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with bert. arXiv preprint arXiv:1904.09675,
2019.

[98] Xingxing Zhang and Mirella Lapata. Sentence simplification with deep reinforcement
learning. arXiv preprint arXiv:1703.10931, 2017.

[99] Sanqiang Zhao, Rui Meng, Daqing He, Saptono Andi, and Parmanto Bambang. Inte-
grating transformer and paraphrase rules for sentence simplification. arXiv preprint
arXiv:1810.11193, 2018.

[100] Sanqiang Zhao, Piyush Sharma, Tomer Levinboim, and Radu Soricut. Informative im-
age captioning with external sources of information. arXiv preprint arXiv:1906.08876,
2019.

[101] Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. Application-driven statistical para-
phrase generation. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 2-Volume 2, pages 834–842. Association for Computational
Linguistics, 2009.

131

[102] Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. A monolingual tree-based
translation model for sentence simplification. In Proceedings of the 23rd international
conference on computational linguistics, pages 1353–1361. Association for Computa-
tional Linguistics, 2010.

132

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Sample from Wikipedia.
	2. Sample from Newsela.
	3. Samples of lexical and phrasal paraphrases rules from PPDB
	4. Samples of syntactic rules from PPDB
	5. Sample rules from Lexical Simple PPDB++
	6. Sample rules from Phrasal Simple PPDB++
	7. Sample of dropping measurement
	8. Samples from Google Translation System
	9. Less correlated samples from Wikipedia.
	10. Less correlated sample from Newsela.
	11. Splitting Analysis
	12. Sample from GNMT.
	13. Sample from GNMT.
	14. Splitting Analysis
	15. Sample of Anonymized sentence
	16. Samples of Subword Tokenization
	17. Sample of tokenization pipeline
	18. Sample of Anonymized Complex-Simplified Sentence Pairs
	19. Performance of different models on the Turk dataset.
	20. Ablation Study of Encoder-Decoder model on the Turk dataset.
	21. Ablation Study of Encoder-Decoder model on the ASSET dataset.
	22. Performance of different Corpora.
	23. Sample of Influence of Tuning Substitution Rewriting Operation
	24. Sample of Influence of Tuning Substitution Rewriting Operation
	25. Sample of Influence of Tuning Dropping Rewriting Operation
	26. Sample of Influence of Tuning Dropping Rewriting Operation
	27. Sample of Influence of Tuning Splitting Rewriting Operation
	28. Sample of Influence of Tuning Splitting Rewriting Operation
	29. Sample of Influence of Tuning Reordering Rewriting Operation
	30. Sample of Influence of Tuning Reordering Rewriting Operation
	31. Sample of Influence of Tuning Reordering Rewriting Operation
	32. Sample of Influence of Tuning Reordering Rewriting Operation
	33. Sample of Influence of Tuning Reordering Rewriting Operation
	34. Sample of Influence of Tuning Reordering Rewriting Operation
	35. Sample of Influence of Tuning Reordering Rewriting Operation
	36. Sample of Influence of Tuning Reordering Rewriting Operation
	37. Sample of Influence of Tuning Reordering Rewriting Operation
	38. Sample of Influence of Tuning Reordering Rewriting Operation
	39. Sample of Influence of Tuning Reordering Rewriting Operation
	40. the Effectiveness of Tuning Rewriting Operations. * denotes p < 0.001
	41. Failures of GPT-2: Samples come from testing dataset.
	42. Failures of GPT-2: Samples come from testing dataset.

	List of Figures
	1. Overview of Deep Learning Architecture for Sentence Simplification
	2. Overview of Deep Learning Architecture for Sentence Simplification
	3. Screenshot of parallel articles for Wikipedia
	4. Screenshot of parallel articles for Newsela
	5. Dependency Parser Output
	6. Dependency Parser Output
	7. Relevance Analysis of Using Universal Sentence Encoder (Histogram)
	8. Relevance Analysis of Using Universal Sentence Encoder (BoxPlot)
	9. Relevance Analysis of Using Sentence BERT (Histogram)
	10. Relevance Analysis of Using Sentence BERT (BoxPlot)
	11. Relevance Analysis of Using BERT Score (Histogram)
	12. Relevance Analysis of Using BERT Score (BoxPlot)
	13. Substitution Analysis (Histogram)
	14. Substitution Analysis (BoxPlot)
	15. Dropping Analysis (Histogram)
	16. Dropping Analysis (BoxPlot)
	17. Reordering Analysis (Histogram)
	18. Reordering Analysis (BoxPlot)
	19. GPT-2 Prediction
	20. GPT-2 Loss for sample sentences.
	21. GPT-2 Loss for sample sentences.
	22. Relevance Analysis of Using Universal Sentence Encoder (Histogram)
	23. Relevance Analysis of Using Universal Sentence Encoder (BoxPlot)
	24. Relevance Analysis of Using Sentence BERT (Histogram)
	25. Relevance Analysis of Using Sentence BERT (BoxPlot)
	26. Relevance Analysis of Using BERT Score (Histogram)
	27. Relevance Analysis of Using BERT Score (BoxPlot)
	28. Substitution Analysis (Histogram)
	29. Substitution Analysis (BoxPlot)
	30. Dropping Analysis (Histogram)
	31. Dropping Analysis (BoxPlot)
	32. Reordering Analysis (Histogram)
	33. Reordering Analysis (BoxPlot)
	34. Overview of Conditional Language Model Guilded By Name Entities
	35. Overview of Augmented Memory Deep Learning Architecture in Zhao et al.zhao2018integrating
	36. Overview of my proposed Augmented Memory Deep Learning Architecture
	37. Overview of my proposed PPDB Encoder
	38. Overview of Architecture of Policy Gradient
	39. Overview of Architecture of Prefix Constraint
	40. Overview of Architecture to Enable Styles of SS In Training
	41. Overview of Architecture to Enable Styles of SS In Inference
	42. Dependency Parser Output
	43. Dependency Parser Output
	44. The Syntax Representation for complex sentence
	45. The Syntax-Aware Tunable Sentence Simplification

	1.0 Introduction
	1.1 Introduction
	1.2 Problem Statement
	1.3 Research Questions
	1.3.1 RQ1: How to Analyze the Existing Sentence Simplification Corpus
	1.3.2 RQ2: How to Improve Substitution Operation in Sentence Simplification
	1.3.2.1 RQ2.1 How to Use Back-Translation to Generate a Training Dataset
	1.3.2.2 RQ2.2 How to Integrate with PPDB

	1.3.3 RQ3: How to Improve Reordering Operation in Sentence Simplification
	1.3.3.1 RQ3.1 How to Use Back-Translation to Generate a Training Dataset
	1.3.3.2 RQ3.2 How to Use PPDB to Generate a Training Dataset

	1.3.4 RQ4: How to Improve Dropping and Splitting Operations in Sentence Simplification
	1.3.4.1 RQ4.1 How to Use Back-Translation to Generate a Training Dataset
	1.3.4.2 RQ4.2 How to Fuse the Models Trained on Other Corpora

	1.3.5 RQ5: How to Allow the Insertion of Style-related Parameters to Enable Different Styles of Sentence Simplification
	1.3.5.1 RQ5.1 How to Enable Different Styles of Sentence Simplification
	1.3.5.2 RQ5.2 How to Integrate with the Unconditional Language Model

	1.4 Scope Definition
	1.5 Structure

	2.0 Background and Related Work
	2.1 Sentence Simplification
	2.1.1 Definition of Operations
	2.1.2 Background of Sentence Simplification Models
	2.1.3 Related Work of Sentence Simplification Models
	2.1.4 Related Work of Dataset Generation
	2.1.5 Google’s Neural Machine Translation System

	2.2 Linguistic and Simplification Resources
	2.2.1 PPDB and Simple PPDB
	2.2.1.1 Background of PPDB and Simple PPDB
	2.2.1.2 Related Work of Integrating PPDB or Simple PPDB

	2.2.2 Unconditional Language Models
	2.2.2.1 Background of Unconditional Language Models
	2.2.2.2 Related Work of Integrating Unconditional Language Models

	2.2.3 Other Corpora
	2.2.3.1 Sentence Split
	2.2.3.2 Sentence Compression

	2.3 Enabling Different Styles of Sentence Simplification
	2.4 Evaluation

	3.0 Analyzing the Existing Corpora
	3.1 Measurement of Operation
	3.1.1 Relevance Measurement
	3.1.2 Substitution Measurement
	3.1.3 Dropping Measurement
	3.1.4 Reordering Measurement
	3.1.5 Splitting Measurement

	3.2 Analyzing the Existing Training Datasets
	3.2.1 Relevance Analysis
	3.2.2 Substitution Analysis
	3.2.3 Dropping Analysis
	3.2.4 Splitting Analysis
	3.2.5 Reordering Analysis
	3.2.6 Summary

	4.0 Constructing a new Corpus: SimSim
	4.1 Generating Sentence Pairs
	4.1.1 Seed Sentence Bank
	4.1.2 Back-Translation
	4.1.3 Selecting Sentence Pairs Using GPT-2

	4.2 Simulating Simplification Operations
	4.2.1 Simulating Substitution and Reordering
	4.2.2 Simulating Dropping
	4.2.3 Simulating Splitting

	4.3 Analysis of SimSim
	4.3.1 Relevance Analysis
	4.3.2 Substitution Analysis
	4.3.3 Dropping Analysis
	4.3.4 Splitting Analysis
	4.3.5 Reordering Analysis
	4.3.6 Conclusion

	5.0 Model Design and Experiments for SimSim
	5.1 Data Pipeline
	5.1.1 Tokenization
	5.1.2 Integrating with PPDB

	5.2 Evaluation
	5.2.1 Comparison to Other Models
	5.2.2 Ablation Study
	5.2.3 Comparison to Other Corpus

	6.0 Tunable Sentence Simplification Models
	6.1 Tunable Sentence Simplification
	6.1.1 Policy Gradient
	6.1.2 Prefix Constraint

	6.2 Tunable Sentence Simplification Models
	6.2.1 Tuning the Substitution Rewriting Operation
	6.2.2 Tuning the Dropping Rewriting Operation
	6.2.3 Tuning the Splitting Rewriting Operation
	6.2.4 Tuning the Reordering Rewriting Operation

	6.3 Syntax-Aware Tunable Sentence Simplification
	6.4 Evaluation
	6.5 Summary

	7.0 Discussion and Conclusion
	7.1 Achievements
	7.2 Discussion
	7.2.1 Analyzing the Existing Corpora and the Constructed SimSim
	7.2.2 Model Design of SimSim
	7.2.3 Tunable Sentence Simplification
	7.2.4 Summarizing SimSim and Model Design

	7.3 Future Work

	Bibliography

