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Abstract 

Analyzing Deep Learning Techniques in Accelerated Clinical Brain Magnetic Resonance 

Imaging for Multiple Sclerosis 

 

Ashika Mani, MS 

 

University of Pittsburgh, 2021 

 

 

Abstract 

 

Background: Magnetic resonance imaging (MRI) scans are routine clinical procedures for 

monitoring people with multiple sclerosis (MS). Accelerated MRI scan time is motivated by 

patient discomfort, timely scheduling, and financial burden associated with conventional MRI 

scans. 

Objective: We examined the application of a deep learning (DL) model in restoring the 

image quality of accelerated clinical brain MRI scans for MS.  

Methods: We acquired fast 3D T1w BRAVO and fast 3D T2 FLAIR MRI sequences 

alongside conventional scans. Using a subset of the scans, we trained the DL model to generate 

images from fast scans with quality similar to the conventional scans and then applied the model 

to the remaining scans. We calculated clinically relevant T1w volumetrics (normalized brain 

volume, normalized thalamic volume, normalized gray matter volume, and normalized white 

matter volume) for all scans. We performed paired t-tests for conventional, fast, and fast with DL 

for these volumetrics, and fit repeated measures linear mixed-effects models to test for differences 

in correlations between volumetrics and clinically relevant patient-reported outcomes. We 

performed equivalence tests to compare fast scans with DL and conventional scans to examine 

equivalence in image quality as well as equivalence in association with patient-reported clinical 

outcomes.  



v 

Results: We found statistically significant differences between conventional scans and fast 

scans with DL for all T1w volumetrics. There was no difference in the extent to which the key 

volumetrics and clinical outcomes are correlated between fast scans with DL and conventional 

scans, but there was not sufficient evidence to prove that the correlations were equivalent.  

Conclusion: There is currently no evidence to support that fast scans with DL produce 

images of equivalent quality to conventional scans. However, fast scans with DL have the potential 

to inform clinically relevant outcomes in MS.  

Public health significance: Limited research has been done regarding the application of 

deep learning models to improve the image quality of accelerated scans in clinical brain MRIs for 

people with multiple sclerosis. The results of this analysis can inform practitioners as to how to 

further incorporate and improve on MRIs utilizing deep learning.   
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1.0 Introduction 

Multiple Sclerosis (MS) is a chronic neurological disease that affects 2.3 million people 

worldwide and causes symptoms such as loss of vision, loss of balance, fatigue, memory and 

concentration problems, among others1. Routine magnetic resonance imaging (MRI) scans are 

vital to monitoring disease activity and progress in those with MS2. Generally, people with MS 

undergo brain MRI scans every six months to 2 years. Most people undergo MRI scans yearly, 

with factors such as changes to treatment and disease severity changing the scan frequency. Longer 

MRI scan times contribute to patient discomfort, increased motion and reduced image quality, 

delays in scheduling and potentially high medical cost— which is a significant driver of the 

financial burden for patients with MS3. Therefore, accelerating the MRI scans could benefit those 

with MS and generally improve access to essential diagnostic imaging. However, these accelerated 

MRI scans pose a challenge due to diminished image quality (e.g., contrast to noise ratio, 

resolution). To our knowledge, there has been no research on comparing these accelerated MRI 

scans to conventional MRI scans to see if they produce equivalent images. 

Artificial intelligence approaches seek to address the loss of MRI quality in accelerated 

scans. Deep learning (DL) models, such as convolutional neural networks (CNNs), enhance MRI 

quality of the accelerated scans without compromising relevant image information passed through 

each layer4-7. Deep learning has been utilized in a variety of imaging applications, such as brain 

segmentation, stroke imaging, breast cancer, imaging in oncology, and medical ultrasounds8.  

Research on CNNs is rapidly increasing and is considered to be pioneered by Yang et. al. at the 

2016 Conference on Neural Information Processing Systems. In recent years, CNNs have been 

utilized in MRI scans for MS, but are still not widely used in clinical practice9. CNNs show 
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comparable capability in regards to MS lesion segmentation, which is paramount to accurately 

diagnosing and developing a treatment plan in those with MS, and often greater adaptability to the 

inherent class imbalance that comes with some of the most successful supervised learning 

algorithms such as Random Forests (a supervised segmentation method based on voxel-wise 

classifiers)10. Class imbalance refers to issues that arise in the training datasets, particularly in 

medical image classification where certain types of diseases only appear in a small portion of the 

dataset. Deep back-projection network (DBPN) is a class of CNN that utilizes an iterative up- and 

down- sampling layers, providing a mechanism to aid in self-correction of errors using back-

projection11. We are not aware of an application of DBPN or any other deep leaning models on 

MRI scans in the MS population thus far. In this study, we evaluated the clinical application of a 

DL model based on DBPN that employed noise-reducing and sharpness-enhancing functions.  

Normalized brain volume, normalized thalamic volume, normalized gray matter volume, 

and normalized white matter volume are all known to inform neurological disability in MS. 

Clinically relevant patient reported outcomes such as Patient Determined Disease Steps (PDDS) 

and Multiple Sclerosis Rating Scale-Revised (MSRS-R) are common measures to assess gait 

impairment and symptomatic burden, respectively. There have not been previous studies that have 

explored the correlation between these clinical outcomes with brain volume measurements. It is 

known that brain volume correlates with and predicts future disability12. This premise motivates 

the importance of understanding the relationship between the correlations of volumetric measures 

and clinical outcomes between conventional scans and accelerated MRI scans that utilize deep 

learning methods.   

This thesis aims to assess MRI scans enhanced with DL to see if they produce images of 

equivalent quality in the MS population by comparing normalized volumetric measures. 
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Additionally, we will assess whether the DL model improves the quality of accelerated MRI scans 

to the extent that the key volumetrics preserve their correlation with clinically relevant 

neurological outcomes comparable to the benchmark conventional MRI scans.  
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2.0 Methods 

2.1 Data Source 

Participants were recruited from a clinic-based, prospective MS cohort study (Prospective 

Investigation of Multiple Sclerosis in the Three Rivers Region, PROMOTE) based in the 

Pittsburgh region. The Institutional Review Board of the University of Pittsburgh approved this 

study and all participants completed the informed consent process.  

2.2 MRI Acquisition 

One hundred fifteen participants underwent routine clinical brain MRI studies on a GE 

Discovery MR750 3T scanner between September 2018 and January 2020. In addition to the 

institutional protocol that includes the standard (or conventional) 3D T1-weighted (T1w) 

BRAVO (FE/PE/SE: 220x220x126, scan time 2:57), 3D T2 FLAIR (FE/PE/SE: 256x224x240, 

scan time 6:40) and other routine clinical sequences, we acquired an accelerated (or fast) 3D 

T1w BRAVO (FE/PE/SE: 220x128x64, scan time 1:13) and an accelerated (or fast) 3D T2 

FLAIR (FE/PE/SE: 256x128x120, scan time 2:17) within the same MRI exam.  

We obtained the results from the deep learning (DL) model based on DBPN11 to enhance 

the image quality for the fast sequences through the use of the software SubtleMRTM ( 

https://subtlemedical.com/usa/subtlemr/).  The DL model input the fast sequences and generated 

high resolution images similar to that of the conventional sequences. The output of the DL model 

https://subtlemedical.com/usa/subtlemr/


 5 

had twice the slices as that of the input. We trained the DL model with the first 15 scans, with 

images from the conventional sequences. A L1 loss was applied in training to measure the 

difference between the DL output and conventional scans. The L1 loss function is also known as 

the least absolute deviations (LAD), and it minimizes the sum of the absolute differences 

between the target value and the estimated values. We applied image pre-processing, including 

image registration13 , bias field correction14, and image normalization to the training data. We 

implemented the proposed DL model in TensorFlow and trained on an NVIDIA V100 GPU with 

an ADAM optimizer15. After training, we applied the DL model to the remaining 100 scans for 

evaluation. 

2.3 MRI Analysis 

The overall workflow is shown in Figure 1. T1w volumetric measures were prioritized for 

this study. First, we examined raw T1w images for: (1) voluntary or involuntary patient movement 

during image acquisition that could decrease the accuracy of the scan (4 out of 108); (2) 

acquisitions in the wrong phase encoding orientation (magnetic gradient field applied right to left 

rather than left to right) (7 out of 108); and (3) missing scans (1 out of 108).  Nine patients 

participated in a second MRI during the duration of the study. We used the Freesurfer software 

version 6.0 (http://surfer.nmr.mgh.harvard.edu/) and then estimated the volumes of 96 sets of T1w 

MR images. Volumetric analysis included the following regions: total brain volume, total 

thalamus, total cerebral gray matter, total cerebral white matter and intracranial volumes. These 

regions make up the MRI metrics that will be discussed later. We then extracted the volumes from 

http://surfer.nmr.mgh.harvard.edu/
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the automatic segmentation file “aseg” and then normalized them by the individual intracranial 

volume. All of the normalized volumes are unitless.  

 

 

 

 
Figure 1 Flowchart summarizing the image processing method 

2.4 Covariates 

The variables utilized for analysis included age at first scan, sex, race, ethnicity, disease 

duration in years, relapsing form of multiple sclerosis (RMS) status, standard-efficacy treatment 

status, and high-efficacy treatment status. Sex refers to the genotypical sex of the patient (male or 
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female). Race information was collected for all patients and people were classified as Caucasian 

if they were of European origin. Patients were classified into two categories for ethnicity, Non-

Hispanic and Hispanic, where Hispanic includes anyone from a Spanish-speaking background. 

Disease duration refers to the length of time between the date of the first symptoms to the date of 

the first MRI. RMS includes people with relapsing-remitting MS (RRMS) and clinically-isolated 

syndrome (CIS). Standard-efficacy treatment included the drugs Aubagio, Avonex, Betaseron, 

Copaxone/glatopa, Extavia, Gilenya, Mayzent, Novandrone, Plegridy, Rebif, Tecfidera, Vumerity, 

Zeposia, and Zinbryta. High-efficacy treatment included the drugs Lemtrada, Mavenclas, Ocrevus, 

Rituxan, and Tysabri. We also used two clinically relevant patient-reported outcomes of 

neurological function in people with Multiple Sclerosis. The first is Patient Determined Disease 

Steps (PDDS) which assessed the gait impairment, ranging from 0 to 8 defined by the North 

American Research Consortium on Multiple Sclerosis (NARCOMS) Registry. They define the 

levels of the PDDS scale in order as: normal, mild disability, moderate disability, gait disability, 

early cane, late cane, bilateral support, wheelchair/scooter, and bedridden16-18. The second is the 

Multiple Sclerosis Rating Scale-Revised (MSRS-R), which assessed the MS symptom burden 

across eight domains: walking, using arms and hands, vision, speech, swallowing, cognition, 

sensation, and bowel and bladder control19,20. Each domain had a sub-score ranging from 0 (no 

symptoms) to 4 (severe disability) for a maximum total score of 32. Interviews were conducted 

through the online platform PatientsLikeMe21. 
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2.5 Statistical Analysis 

All analyses were completed using R version 4.0.322. For all tests, a two-sided P-value less 

than 0.0125 was indicative of statistical significance as we used the Bonferroni Correction method 

to obtain this significance level (0.05/4 = 0.0125), given the four different volumetric measures 

being tested. For descriptive variables, we expressed continuous data as mean and standard 

deviation (SD) or medians and interquartile ranges, and categorical data as frequencies and 

percentages.   

2.5.1 Paired T-Tests 

In order to assess the impact of scan type on volume measure, we first performed paired t-

tests to pairwise compare the three types of MRI scans (conventional, fast, fast with DL) for the 

four volumetric measures: normalized brain volume (NBV), normalized thalamic volume (NThV), 

normalized gray matter volume (NGMV) and normalized white matter volume (NWMV). To help 

quantify the changes and compare them between the four volumetrics we calculated the mean 

percentage difference between each MRI method.  This was calculated for each of the four 

volumetric measures by taking the mean volumetric measure for the first method and subtracting 

the mean volumetric measure of second method and dividing it by the second method *100.  

2.5.2 Paired TOST Equivalence Tests 

In order to examine equivalence in image quality, we performed equivalence tests to 

compare conventional MRI scans and fast scans with DL for the same four MRI metrics: 
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normalized brain volume, normalized thalamic volume, normalized gray matter volume, and 

normalized white matter volume. Equivalence tests are recommended when the goal is to compare 

different conditions, which are type of scans in this case. Traditional difference-based tests such 

as t-tests are used to make claims about differences in population means. Generally, if the null 

hypothesis is not rejected in these tests, researchers use that to conclude equivalence of population 

means. When using these traditional tests, equivalence of population means will usually be found 

when studies are under-powered and thus it is suggested to use tests of equivalence23. We used the 

two one-sided tests (TOST) approach for equivalence testing, first proposed by Schuirmann24. This 

method involves decomposing the null hypothesis and alternative hypothesis into two sets of one-

sided hypotheses. The TOST procedure can be used to statistically reject the presence of effects 

large enough to be considered worthwhile25. Because the two variables of interest were measured 

on the same subject, we utilized a paired version of this test. The null hypothesis (H0) and 

alternative hypothesis (H1) then become:  

 

𝐻0: 𝜇𝐷  ≤  −𝜀 𝑜𝑟 𝜇𝐷  ≥  𝜀 

𝐻1 : − 𝜀 <  𝜇𝐷  <  𝜀 

Equation 1 

 

𝜇𝐷 represents the mean of the differences between the two variables and 𝜀 represents the 

margin of equivalence. The package ‘equivalence’ in R was used to perform the TOST equivalence 

tests26. Normally, the margin of equivalence is chosen based on a known prior clinically relevant 

value. We did not have that in this case, so we utilized the putative placebo strategy proposed by 

Wiens27. This putative placebo strategy involves using a decimal fraction of the mean difference 

between the active control (conventional scan) and putative placebo (fast scan) for the equivalence 

margin. As our aim was to compare the test condition (fast with DL) with the active control, we 
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utilized a .1 decimal fraction of the mean difference between the active control and the putative 

placebo to maintain a conservative estimate of the true difference. Fast scans with DL would be 

equivalent to conventional scans if they differed by less than 10% of the observed difference 

between fast scans and conventional scans.  

2.5.3 Repeated Measures Linear Mixed-Effects Models 

To measure the association between clinical measures PDDS and MSRS-R and the four 

MRI metrics, we developed separate repeated measures multivariate linear mixed-effects models 

using R and the package ‘lme4’28. A random subject effect was included in the models with the 

type of MRI conducted as the between-subject factor. The four respective volume measurements 

for the MRI metrics formed the dependent variables. We included an interaction term between the 

clinical measures (PDDS and MSRS-R) tested and the type of MRI as a fixed effect in our model, 

with the conventional MRI type as the reference point. The interaction terms quantified (1) 

differences in associations with clinical measures between fast scans and conventional scans, and 

(2) differences in associations with clinical outcomes between fast scans with DL and conventional 

scans. We also included age, sex, race/ethnicity, disease duration in years, clinical type, standard-

efficacy treatment status, and high-efficacy treatment status as fixed effects in the model, to 

measure the contribution on the association between the two clinical metrics and four MRI metrics. 

For each of the MRI metrics, we created models with two clinical measures as outcomes: PDDS 

and MSRS-R.  
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 𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗 = 𝛽0 +  𝛽1𝑡𝑦𝑝𝑒𝑗  + 𝛽2𝑃𝐷𝐷𝑆𝑖 + 𝛽3 𝑡𝑦𝑝𝑒𝑗 ∗ 𝑃𝐷𝐷𝑆𝑖  +  𝑎𝑔𝑒𝑖 + 𝑠𝑒𝑥𝑖

+ 𝑛𝑜𝑛ℎ𝑖𝑠𝑤ℎ𝑖𝑡𝑒𝑖 + 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑𝑢𝑟𝑖 + 𝑅𝑀𝑆𝑖 + 𝑠𝑡𝑎𝑛𝑖 + ℎ𝑖𝑔ℎ𝑖

+ 𝜁𝑖 + 𝜖𝑖𝑗 

Equation 2 

 

 𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗 = 𝛽0 +  𝛽1𝑡𝑦𝑝𝑒𝑗  + 𝛽2𝑀𝑆𝑅𝑆𝑖 + 𝛽3 𝑡𝑦𝑝𝑒𝑗 ∗ 𝑀𝑆𝑅𝑆𝑖 + 𝑎𝑔𝑒𝑖 +  𝑠𝑒𝑥𝑖

+ 𝑛𝑜𝑛ℎ𝑖𝑠𝑤ℎ𝑖𝑡𝑒𝑖 + 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑𝑢𝑟𝑖 + 𝑅𝑀𝑆𝑖 + 𝑠𝑡𝑎𝑛𝑖  +  ℎ𝑖𝑔ℎ𝑖

+ 𝜁𝑖 + 𝜖𝑖𝑗 

Equation 3 

 

Where: 

𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗 = brain volume measurement for subject i with scan type j 

j = 1 Conventional Scan 

j = 2 Fast scan 

j = 3 Fast scan with DL  

𝑃𝐷𝐷𝑆𝑖  = PDDS for subject i  

𝑀𝑆𝑅𝑆𝑖  = MSRS-R for subject i 

𝑎𝑔𝑒𝑖  = age (at first scan) in years for subject i 

𝑠𝑒𝑥𝑖  = sex (1 if female, 0 if male) for subject i 

𝑛𝑜𝑛ℎ𝑖𝑠𝑤ℎ𝑖𝑡𝑒𝑖 = race/ethnicity (1 if Non-Hispanic European descent, 0 if not) 

𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑𝑢𝑟𝑖  = disease duration (in years) for subject i  

𝑅𝑀𝑆𝑖  = clinical type of MS (1 if relapsing clinical type, 0 if not) for subject i 

𝑠𝑡𝑎𝑛𝑖 = standard-efficacy treatment status (1 if standard treatment, 0 if not)  

ℎ𝑖𝑔ℎ𝑖 = high-efficacy treatment status (1 if standard treatment, 0 if not) 

𝜁𝑖  = random intercept for subject i  

𝜖𝑖𝑗  = error term for subject i with scan type j  

Assuming:  



 12 

𝜁𝑖~N(0, ψ) 

𝜖𝑖𝑗 ~ 𝑁(0, 𝜃) 

Predicted residuals and random intercepts were plotted to check normality according to the model 

assumptions.  

2.5.4 Multivariate TOST Equivalence Tests on Interaction Terms 

Once the linear mixed-effects models were obtained, we compared the associations with 

patient-reported clinical outcomes between conventional MRIs and fast scans with DL. We were 

interested in applying an equivalence test on the interaction terms between the clinical outcomes 

and the type of scan to see if the associations themselves were equivalent. We used the TOST 

approach, developing a test that simultaneously tested both null hypotheses that state that the 

estimated difference between the mean of fast scans with DL and conventional is ≤ - 𝜀 or  ≥ 𝜀 

based on equivalence tests for linear regression models proposed by Mascha29.  

 𝐻0: 𝜇3 − 𝜇1 ≤  −𝜀 𝑜𝑟 𝜇3 −  𝜇1  ≥  𝜀  

𝐻1 : − 𝜀 <  𝜇3 − 𝜇1  <  𝜀  
Equation 4 

In this case, 𝜇3 − 𝜇1 represents the mean difference between fast scans with DL volume and 

conventional scans volume relative to the clinical outcome. Unlike equivalence tests, 

noninferiority tests aim to test that the fast scan with DL perform no worse than the conventional 

scan. The hypotheses null hypothesis (H0) and alternative hypothesis (H1) for a noninferiority test 

then become 

 𝐻0: 𝜇3 −  𝜇1 ≤  −𝜀  

𝐻1:  𝜇3 − 𝜇1  >  −𝜀 

Equation 5 

The test statistic for a non-inferiority test follows below: 
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 𝜇3̂− 𝜇1̂+𝜀 

√𝑆𝑝(
1

𝑛3
+

1

𝑛1
)
 where 𝑆𝑝 =  √

(𝑛3−1)𝑠3
2+ (𝑛1−1)𝑠1

2 

𝑛3+𝑛1−2
 Equation 6 

It is important to note that the equivalence test is the intersection of two non-inferiority trials, thus 

resulting in the following test statistics: 

 𝜇3̂− 𝜇1̂+ 𝜀 

√𝑆𝑝(
1

𝑛3
+

1

𝑛1
)
  and 

𝜇3̂− 𝜇1̂− 𝜀 

√𝑆𝑝(
1

𝑛3
+

1

𝑛1
)
 

Equation 7 

In order to claim equivalence we must test the first test statistic to see if it is > 𝑇𝑛3+𝑛1−2,1−𝛼 and 

the second test statistic to see if it is < 𝑇𝑛3+𝑛1−2,1−𝛼 Further reducing the test statistics, the 

denominators simply become the estimated standard error of the difference and the numerators 

represent the coefficients in the regression model to become:  

 𝛽3̂+ 𝜀 

𝑆�̂�𝛽3̂

  > 𝑇𝑛3+𝑛1−2,1−𝛼 and 
𝛽3̂− 𝜀 

𝑆�̂�𝛽3̂

 <  𝑇𝑛3+𝑛1−2,1−𝛼 Equation 8 

𝛽3 represents the coefficient for the interaction term between the clinical outcome and scan type 

from the linear mixed-effects model that we generated. If either test fails to reject the null 

hypothesis, we fail to reject the equivalence test. If both reject the null hypothesis, we can conclude 

that they are equivalent. Again, because we had no known prior clinical correlation, we used a 

fraction of .1 of the fixed effect estimate between fast scans and conventional scans for the 

equivalence margin. We tested for equivalence between fast scans with DL and conventional scans 

within the linear mixed-effects model framework. 



 14 

3.0 Results 

3.1 Study Sample 

After the 19 scans with quality control failure were excluded, this study had 87 unique 

patients with Multiple Sclerosis. Table 1 displays the demographic characteristics of these patients. 

There were a total of 96 MRI scans. Nine patients had two MRIs occurring on separate days. The 

mean age of this population was 47 years. Most participants were women (70.2%) and of Non-

Hispanic European descent (80.5%). Most participants (86.2%) had the relapsing clinical type of 

MS. The mean Patient Disease Determined Steps (PDDS) was 1.7 and the median Multiple 

Sclerosis Rating Scale-Revised (MSRS-R) was 4, with mostly mild physical disability and 

symptoms. The mean disease duration (interval between the date of MRI and date of first 

symptoms) in years was 15 years. Most participants (72.4%) received some treatment at the time 

of the MRI, while 5.7% of participants received high-efficacy treatment. In those who received 

treatment, only one treatment regimen was utilized through the course of this study. 

Table 1 Patient Characteristics 

  
Total 
(N=87) 

Age (years), Mean ± SD  46.8 ± 13.3 

Men, n (%) 26 (29.8) 

European-descent, n (%)  73 (83.9) 

Non-Hispanic, n (%)  84 (96.6) 

Non-Hispanic European descent, n (%)  70 (80.5) 

PDDS, Mean ± SD 1.7 ± 1.8 

MSRS-R, Median (IQR) 4 (2-9) 

RMS, n (%) 75 (86.2) 

Disease Duration (years), Mean ± SD 14.9 ± 19.3 
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No Treatment, n (%) 24 (27.6) 

High-efficacy Treatment, n (%) 5 (5.7) 

3.1.1 MRI Volumetric Measures 

Table 2 shows the mean and variability of the various MRI metrics. Due to normalization, 

all volumes have no unit. Normalized brain volume averaged approximately 0.74 using 

conventional scans (sd = 0.036) and fast scans (sd = 0.031). Average normalized brain volume was 

slightly lower using fast scans with DL at about 0.73. Normalized thalamic volume averaged about 

0.009 (sd = 0.001) for all three MRI methods. Normalized gray matter volume had the highest 

average in conventional scans, followed by fast scans with deep learning (DL), and fast scans. 

Normalized white matter volume had the highest average in fast scans, followed by fast scans with 

DL and conventional scans. 

Table 2 Summary Statistics (mean ± SD) of MRI Metrics by each MRI Method 

 Conventional 

N=96 

Fast 

N=96 

Fast with DL 

N=96 

Normalized Brain Volume  0.745  ± 0.036 0.738 ± 0.031 0.732 ± 0.03 

Normalized Thalamic Volume 0.0086 ± 0.0010 0.0085 ± 0.0010 0.0088 ± 0.0011 

Normalized Gray Matter Volume 0.415 ± 0.026 0.376 ± 0.026 0.397 ± 0.024 

Normalized White Matter Volume 0.291 ± 0.027 0.323 ± 0.031 0.296 ± 0.026 

 

Figure 1 shows the distributions of the various MRI metrics by each of the three MRI 

methods. Generally, most distributions were unimodal and symmetric. The outlier present in the 

fast scan for the normalized white matter volume measurement (Figure 2 (D)) was investigated 

but the other volume measurements for normalized brain volume, normalized thalamic volume, 
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and normalized gray matter in that scan were within the standard range. Thus, we decided to keep 

that fast scan in the tests we performed.  

 

A. Normalized Brain Volume (NBV) 

 

B. Normalized Thalamic Volume (NThV) 
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C. Normalized Gray Matter Volume (NGMV) 

 

D. Normalized White Matter Volume (NWMV) 

Figure 2 Distribution of Volumetric Measures by MRI metric and scan type 
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3.2 Comparison of MRI Methods for Volumetric Measures 

3.2.1 Paired T-Tests 

Figure 3 shows representative images of the three MRI acquisition techniques: 

conventional, fast scan, and fast scan with DL. Axial refers to the horizontal scan that occurs 

parallel to the ground and goes from the head to the feet. Coronal refers to the scan that occurs 

perpendicular to the ground and goes from the front to the back of the body. Sagittal is also 

perpendicular to the ground but instead scans the middle of the brain. The conventional scan took 

2:57 minutes in total acquisition time, while both the fast scan and fast scan with DL took 1:13 

minutes. Paired t-tests indicated a true difference in mean volumes among these methods (Table 

3) . Paired t-tests comparing fast scans with conventional scans were significant for NBV, 

NThV, NGMV, and NWMV (p=0.0006, p=0.01, p<0.0001, and p<0.0001, respectively). 

Similarly, paired t-tests comparing fast scans with DL and conventional scans were significant 

for NBV, NThV, NGMV, and NWMV (p<0.0001, p=0.002, p<0.0001 and p<0.0001, 

respectively). Compared to the conventional scans, the mean percentage difference in volumes 

for NBV, NThV, NGMV, and NWMV for fast scans with DL were -1.789%, 2.265%, -4.273%, 

and 1.478%, respectively. Lastly, paired t-tests comparing fast scans with DL and fast scans were 

significant for NBV, NThV, NGMV, and NWMV (p=0.0004, p<0.0001, p<0.0001, and 

p<0.0001, respectively).  
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Figure 3 Representative images of MRI scan methods 

 
Table 3 Paired Differences for Volume Measures across MRI methods 

 

Fast v. 
Conventional 

 
Mean of the 

Differences 

+SD 

 
Mean 

Percentage 

Difference 

Fast v. 
Conventional 

 
P-values 

Fast with DL v. 
Conventional 

 
Mean of the 

Differences 

+SD 

 
Mean 

Percentage 

Difference 

Fast with DL 

v. 
Conventional 

 
P-values 

Fast with DL v. 
Fast 

 
Mean of the 

Differences 

+SD 

 
Mean 

Percentage 

Difference 

Fast with 

DL v. 
Fast 

 
P-values 

NBV 
-0.007 ± 0.02 

 
-0.905% 

0.0006* 
-0.013 ± 0.02 

 
-1.789% 

<0.0001* 
-0.006 ± 0.02 

 
-0.892% 

0.0004* 

NThV 
-0.0002 ± 0.0006 

 
-1.641% 

0.01* 
0.0002 ± 0.0006 

 
2.265% 

0.002* 
0.0004 ± 0.0005 

 
3.971% 

<0.0001* 

NGMV 
-0.039 ± 0.01 

 
-9.345% 

<0.0001* 
-0.018 ± 0.01 

 
-4.273% 

<0.0001* 
0.022 ± 0.01 

 
5.595% 

<0.0001* 

NWMV 
0.031 ± 0.02 

 
10.874% 

<0.0001* 
0.004 ± 0.01 

 
1.478% 

<0.0001* 
-0.026 ± 0.02 

 
-8.475% 

<0.0001* 

Where * indicates statistical significance at 𝜶 = 0.0125 
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3.2.2 Paired TOST Equivalence Tests 

To determine whether fast scans with DL performed at a level comparable to that of 

conventional scans, we performed a series of paired two one-sided tests (TOST) equivalence tests. 

A 0.1 decimal fraction of the mean difference between fast and conventional scans was used as 

the margin of equivalence (epsilon) for the paired TOST equivalence tests. The results of the 

equivalence tests between fast scans with DL and conventional scans shown in Table 4 

demonstrated no statistical significance for all four T1 volumetric measures: NBV, NThV, NGMV, 

and NWMV. Thus, with the margins specified, fast scans with DL and conventional scans provided 

statistically nonequivalent results for all four volumetric measures. For NBV and NGMV, fast 

scans with DL generally had lower volumes than conventional scans, while for NThV and NWMV, 

fast scans with DL had higher volumes than conventional scans. 

 

Table 4 Paired TOST Equivalence Tests for Fast with DL vs. Conventional MRI 

 Means of 

Differences 

Between Fast 

with DL and 

Conventional  

TOST  

Lower 

Bounds 

(95%) 

TOST 

Upper 

Bounds 

(95%) 

Mean 

Difference 

Between Fast 

and 

Conventional 

Epsilon 

(Decimal 

Fraction of 

Mean 

Difference 

Between Fast 

and 

Conventional) 

P-values for 

equivalence 

between Fast 

with DL and 

Conventional 

NBV -0.013 -0.016 -0.010 0.007 0.0007 (.1) 1.000 

NThV 0.0002 0.00009 0.0003 0.0002 0.0002 (.1) 0.998 

NGMV -0.018 -0.020 -0.016 0.039 0.004 (.1) 1.000 

NWMV 0.004 0.003 0.006 0.031 0.003 (.1) 0.882 
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3.3 MRI-Clinical Correlations Comparisons 

3.3.1 Repeated Measures Multivariate Linear Mixed-Effects Model - Patient Disease 

Determined Steps 

We investigated the association between the four MRI metrics and the clinically relevant 

patient-reported outcomes. We examined the association with physical and gait impairment using 

the clinical measure of Patient Disease Determined Steps (PDDS). Age, sex, race/ethnicity, disease 

duration in years, RMS clinical type status, standard-efficacy treatment status, and high-efficacy 

treatment status were used as covariates in the model. Interaction terms were included between the 

clinical measure (PDDS) and the type of MRI scan as a fixed effect in our model, with conventional 

scan as the reference group. Table 5 shows the estimates of the fixed effects and p-values for each 

of the four linear mixed-effects models.  

PDDS was a statistically significant predictor in all models indicating that each one-point 

increase in PDDS is associated with lower volumetric measures for each of the four MRI metrics. 

For NBV, standard-efficacy treatment status was a statistically significant predictor when 

controlling for the other variables in the model (estimate=-0.03, p=0.003). For NGMV, age at first 

scan was a statistically significant predictor of volume (estimate=-0.0008, p=0.0003). For NWMV, 

standard-efficacy treatment status was a statistically significant predictor of volume  (estimate=      

-0.02, p=0.003). The interaction term between fast scans and conventional scans was statistically 

significant for NBV, indicating a difference in the association between NBV with PDDS when 

comparing fast scans to conventional scans. The interaction terms between fast scans with DL and 

conventional scans were not statistically significant for any of the four MRI metrics indicating no 
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difference in the association between volumetric measures and PDDS when comparing fast scans 

with DL to conventional scans. 

 

Table 5 Linear Mixed-Effects Model with Conventional MRI scan as Baseline and Interaction with PDDS 

Variable NBV NThV NGMV NWMV 

 Estimate 

(SE) 

P-value Estimate 

(SE) 

P-value Estimate 

(SE) 

P-value Estimate 

(SE) 

P-value 

Intercept 0.8 (.02) <0.0001* 0.01 

(.0006) 

<0.0001* 0.5 (.01) <0.0001* 0.3 (.02) <0.0001* 

Fast -0.01 

(.002) 

<0.0001* -0.0003 

(.00008) 

0.005* -0.04 

(.001) 

<0.0001* 0.03 

(.002) 

<0.0001* 

Fast with DL -0.01 

(.002) 

<0.0001* 0.0002 

(.00008) 

0.007* -0.02 

(.001) 

<0.0001* 0.003 

(.002) 

0.079 

PDDS -0.007 

(.002) 

0.0006* -0.0002 

(.00006) 

0.004* -0.004 

(.001) 

0.004* -0.005 

(.002) 

0.007* 

Age (at first 

scan) 

-0.0003 

(.0003) 

0.279 -0.00002 

(.000009) 

0.035 -0.0008 

(.0002) 

0.0003* 0.0003 

(.0003) 

0.289 

Standard-

Efficacy 

Treatment 

-0.03 

(.008) 

0.003* -0.0006 

(.0002) 

0.016 -0.004 

(.006) 

0.489 -0.02 

(.007) 

0.003* 

Fast x PDDS  0.003 

(.001) 

0.002* 0.00007 

(.00003) 

0.025 0.001 

(.0006) 

0.111 0.002 

(.0008) 

0.019 

Fast with DL 

x  PDDS  

0.002 

(.001) 

0.098 0.000008 

(.00003) 

0.790 0.001 

(.0006) 

0.040 0.0006 

(.0008) 

0.460 

Where x indicates that there is an interaction between the two variables and * indicates statistical significance at 𝜶 = 0.0125 

 

3.3.2 Repeated Measures Multivariate Linear Mixed-Effects Model - Multiple Sclerosis 

Rating Scale-Revised 

We also examined the association of the volume measures with the MS symptom burden 

using the clinically relevant patient-reported outcome of MSRS-R. Age, sex, race/ethnicity, 

disease duration in years, RMS clinical type status, standard-efficacy treatment status, and high-

efficacy treatment status were used as covariates in the model. Interaction terms were included 

between the clinical measure (MSRS-R) and the type of MRI scan as a fixed effect in our model, 
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with conventional scan as the reference group. Table 6 shows the estimates of the fixed effects and 

p-values for each of the four linear mixed-effects models. For NBV, standard-efficacy treatment 

status was a statistically significant predictor when controlling for the other variables in the model 

(estimate=-0.03, p=0.002). For NThV, age at first scan (estimate=-0.00003, p=0.003)  and 

standard-efficacy treatment status (estimate=-0.0007, p=0.011) were statistically significant 

predictors of volume. For NGMV, age at first scan was a statistically significant predictor of 

volume (estimate=-0.0009, p<0.0001). For NWMV, standard-efficacy treatment status was a 

statistically significant predictor of volume (estimate=-0.02, p=0.002). The interaction terms 

between fast scans and conventional scans were not statistically significant for any of the four MRI 

metrics indicating no statistically significant difference in the association between volumetric 

measures and MSRS-R when comparing fast scans to conventional scans. The interaction terms 

between fast scans with DL and conventional scans were not statistically significant for any of the 

four MRI metrics indicating no statistically significant difference in the association between 

volumetric measures and MSRS-R when comparing fast scans with DL to conventional scans. 

 

Table 6 Linear Mixed-Effects Model with Conventional MRI scan as Baseline and Interaction with MSRS-R 

Variable NBV NThV NGMV NWMV 

 Estimate 

(SE) 

P-value Estimate 

(SE) 

P-value Estimate 

(SE) 

P-value Estimate 

(SE) 

P-value 

Intercept 0.8 (.02)  <0.0001* 0.01 

(.0006) 

<0.0001* 0.5 (.01) <0.0001* 0.3 (.02) <0.0001* 

Fast -0.01 

(.003) 

<0.0001* -0.0003 

(.00008) 

0.0006* -0.04 

(.002) 

<0.0001* 0.03 

(.002) 

<0.0001* 

Fast with DL -0.01 

(.003) 

<0.0001* 0.0001 

(.00008) 

0.247 -0.02 

(.002) 

<0.0001* 0.004 

(.002) 

0.110 

MSRS-R  -0.001 

(.0006) 

0.032 -0.00004 

(.00002) 

0.044 -0.0009 

(.0004) 

0.057 -0.0008 

(.0006) 

0.142 

Age (at first 

scan) 

-0.0005 

(.0003) 

0.055 -0.00003 

(.000008) 

0.003* -0.0009 

(.0002) 

<0.0001* 0.00009 

(.0002) 

0.710 

Sex 0.002 

(.007) 

0.827 0.00003 

(.0002) 

0.907 0.006 

(.005) 

0.254 -0.006 

(.007) 

0.396 
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Non-Hispanic 

white 

0.005 

(.005) 

0.414 0.0001 

(.0002) 

0.473 0.001 

(.004) 

0.766 0.003 

(.005) 

0.576 

Disease 

Duration 

-0.0004 

(.0002) 

0.063 -0.000005 

(.000006) 

0.408 -0.00007 

(.0001) 

0.630 -0.0003 

(.0002) 

0.077 

Clinical Type 

RMS 

0.008 

(.01) 

0.494 0.00002 

(.0004) 

0.966 0.006 

(.008) 

0.445 0.005 

(.01) 

0.614 

Standard-

Efficacy 

Treatment 

-0.03 

(.008) 

0.002* -0.0007 

(.0003) 

0.011* -0.005 

(.006) 

0.381 -0.02 

(.007) 

0.002* 

High-Efficacy 

Treatment 

-0.02 

(.01) 

0.052 -0.0008 

(.0003) 

0.009* -0.007 

(.007) 

0.321 -0.02 

(.009) 

0.072 

Fast x  

MSRS-R  

0.0007 

(.0003) 

0.023 0.00002 

(.00001) 

0.026 0.0003 

(.0002) 

0.103 0.0004 

(.0003) 

0.183 

Fast with DL 

x  MSRS-R  

0.0003 

(.0003) 

0.298 0.00002 

(.00001) 

0.071 0.0002 

(.0002) 

0.303 0.0001 

(.0003) 

0.618 

Where x indicates that there is an interaction between the two variables and * indicates statistical significance at 𝜶 = 0.0125 

3.3.3 Multivariate TOST Equivalence Tests on Interaction Terms 

To test the equivalence in associations between fast scans with DL and conventional scans 

with the clinical measures PDDS and MSRS-R, we performed a series of TOST equivalence tests 

on the interaction terms between the fast with DL volumetric measures and the clinical measures. 

Table 7 shows the results of these TOST equivalence tests. All equivalence tests were not 

statistically significant, indicating that the associations between fast scan with DL and 

conventional scan volumes with the clinical measures tested were not equivalent.  

 

Table 7 Multivariate Equivalence Tests for Conventional Scans and Fast Scans with DL 

 Measure Tested Estimated 

Difference between 

Fast and 

Conventional (SE) 

Estimated 

Difference between 

Fast with DL and 

Conventional (SE) 

P-values for 

Equivalence 

between Fast with 

DL and 

Conventional using 

fraction of .1  

NBV 

PDDS  0.0031 (.001) 0.0016 (.001) 0.080 

MSRS-R  0.0007 (.0003) 0.0003 (.0003) 0.197 

NThV 
PDDS  0.00007 (.00003) 0.000008 (.00003) 0.486 
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MSRS-R  0.00002 (.00001) 0.00002 (.00001) 0.048 

NGMV 

PDDS  0.0010 (.0006) 0.0013 (.0006) 0.023 

MSRS-R  0.0003 (.0002) 0.0002 (.0002) 0.181 

NWMV 

PDDS 0.0020 (.0008) 0.0006 (.0008) 0.302 

MSRS-R  0.0004 (.0003) 0.0001 (.0003) 0.351 
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4.0 Discussion 

This analysis aimed to assess the equivalence of quality in images between conventional 

MRI scans and MRI scans enhanced with deep learning (DL) in a cohort of multiple sclerosis 

patients and explore the equivalence of quality in images between conventional MRI scans and 

MRI scans enhanced with deep learning (DL) in a cohort of multiple sclerosis patients. We found 

that an accelerated MRI scan utilizing a deep learning model did not preserve the image quality 

observed in a conventional MRI scan. The correlation between the volumetric metrics and 

clinically relevant outcomes in people with multiple sclerosis was preserved in fast scans with DL. 

However, we found that the correlation between the volumetric metrics and clinically relevant 

outcomes were not equivalent. To our knowledge, this is the first report of deep learning 

application to improve the image quality of accelerated scans in clinical brain MRIs for people 

with multiple sclerosis.  

There are direct clinical implications of the acceleration of MRI scans, particularly for 

conditions such as MS where disease monitoring using MRI scans is the standard of care. Methods 

such as compressed sensing and parallel imaging methods aim to reconstruct higher quality images 

from smaller amounts of raw MRI data30-32. There is still a concern for clinical practicality due to 

long reconstruction times and poor image quality, however33. Deep learning methods started to 

address these issues by incorporating different types of CNN structure3-6. These methods reduce 

scan time by under-sampling k-space in raw MRI data and then they reconstruct a higher-quality 

image using novel DL models. Unlike feed-forward approaches, deep back-projection network 

utilizes error feedback to self-correct at multiple layers of the neural network. It helps to improve 

image quality through sharpness-enhancement of legion volume and noise elimination11. To our 
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knowledge, this study is a novel application of deep back-projection network to clinical brain MRIs 

for MS. 

Despite the differences in volumetric metrics between fast scans with DL and conventional 

scans, the correlations between the key volumetrics and clinical outcomes did not differ according 

to the repeated measures linear mixed-effects models. This suggests that there was either an offset 

in the values caused by the different scan types or the calculated volumetric differences were too 

small to impact the MRI-clinical outcome correlations. Though the coefficients from the mixed-

effects models proved that there was no difference in correlations, we found that the correlations 

between fast scans with DL and conventional scans with the clinical outcomes were not equivalent. 

There have not been previous studies that have explored the correlation between these clinical 

outcomes with brain volume measurements. A few covariates were statistically significant in the 

model, specifically: age at first scan, standard-efficacy treatment status, and high-efficacy 

treatment status. There are no previous studies that looked at the effect of treatment type on brain 

volume measurements. One study looked at the changes in brain volume over time in patients with 

MS and found that age, sex, frequency of ongoing inflammation, multiple sclerosis clinical type, 

and randomized treatment assignment did not have any effect on brain volume34. This is consistent 

with our findings in regards to sex and multiple sclerosis clinical type in the linear mixed-effects 

models.  

There were limitations to this study. The study had a modest sample size, limiting the 

power of some of the statistical analyses. This is particularly evident in the equivalence tests, where 

the sample size needed to achieve a particular power level is dependent on the equivalence 

margin35. The apparent disagreement between the traditional test and equivalence test for the MRI-

clinical outcome correlations may be due to this lack of adequate sample size. The study population 
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is quite representative of the population with MS, so our conclusions are not limited by that in any 

way. Second, we did not have any prior clinical information to help inform the equivalence 

margins chosen for the equivalence tests.  

In conclusion, we demonstrated the clinical application of a deep learning model utilizing 

deep back-projection networks to restore the image quality of accelerated MRI scans for MS. 

Shortened MRI scans improve patient comfort and satisfaction while reducing issues introduced 

by involuntary motion that often occurs in the latter portion of a prolonged MRI study. Utilizing 

shortened scans would enable efficient utilization of MRI resources by reducing unnecessary wait 

time and improving access to clinical imaging for diagnostic and monitoring purposes, not only 

for people with MS but also for other patient populations. However, we found that fast scans with 

DL do not produce images of equivalent quality to conventional scans. We also found that the 

correlations between the key volumetrics and clinical outcomes did not differ between fast scans 

with DL and conventional scans but there was not sufficient evidence to prove that the correlations 

are equivalent. We anticipate future studies that test the ability of MRI scans utilizing DL models 

to replace conventional MRI scans36,37.  
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Appendix A R Code 

```{r setup, include=FALSE} 

library(stringr) 

library(readxl) 

library(tidyverse) 

library(skimr) 

library(knitr) 

library(equivalence) 

library(pastecs) 

MRIdata <- read_excel("Batch1-4_20200420.xlsx",sheet=1) 

i <- c(8:48)       

MRIdata[ , i] <- apply(MRIdata[ , i], 2,            # Specify 

own function within apply 

                    function(x) as.numeric(as.character(x))) 

MRIdata<-MRIdata[-c(97:124),-c(11:36)] 

MRIUniq <- MRIdata[!duplicated(MRIdata$`Patient ID`), ] 

clin <- read_excel("Subtle_metadata_updated.xls",sheet=1) 

clinUniq <- clin[!duplicated(clin$`Patient ID`), ] 

clinical<-merge(x =MRIUniq, y = clinUniq, by="Patient ID") 

clinical$amb<-ifelse(clinical$`PDDS Median`>=4, 1, 0) 

clinical$higheff<-

ifelse(clinical$Treatment==(c(13,15,11,16,17)), 1, 0) 

clinical$cau<-ifelse(clinical$Race=="Caucasian", 1, 0) 

clinical$nonhis<-ifelse(clinical$Ethnicity=="Non-

Hispanic"|clinical$Ethnicity=="Non-hispanic", 1, 0) 

clinical$nonhiswhite<-ifelse((clinical$Ethnicity=="Non-Hispanic" 

| clinical$Ethnicity=="Non-

hispanic")&(clinical$Race=="Caucasian"), 1, 0) 

clinical$types <- ifelse(clinical[,35]==1,1,0) 

clinical$notreat <- ifelse(clinical$Treatment==99,1,0) 

clinicalamb <- clinical[which(clinical$amb==1), ] 

clinicalnoamb <- clinical[which(clinical$amb==0), ] 

``` 

 

```{r} 

options(scipen=999) 

histogram(clinical$`PDDS Median`) 

summarytab<-stat.desc(clinical, basic=F) 

summary(clinical$`PDDS Median`) 

summary(clinicalnoamb$`PDDS Median`) 

summary(clinicalamb$`PDDS Median`) 

sd(clinical$`PDDS Median`) 

sd(clinicalnoamb$`PDDS Median`) 
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sd(clinicalamb$`PDDS Median`) 

summary(clinical$`Age (at first scan)`) 

summary(clinicalnoamb$`Age (at first scan)`) 

summary(clinicalamb$`Age (at first scan)`) 

sd(clinical$`Age (at first scan)`) 

sd(clinicalnoamb$`Age (at first scan)`) 

sd(clinicalamb$`Age (at first scan)`) 

summary(clinical$`MSRS-R Median`) 

summary(clinicalnoamb$`MSRS-R Median`) 

summary(clinicalamb$`MSRS-R Median`) 

summary(clinical$`Disease Duration (date of MRI - date of first 

symptoms), years`) 

summary(clinicalnoamb$`Disease Duration (date of MRI - date of 

first symptoms), years`) 

summary(clinicalamb$`Disease Duration (date of MRI - date of 

first symptoms), years`) 

sd(clinical$`Disease Duration (date of MRI - date of first 

symptoms), years`) 

sd(clinicalnoamb$`Disease Duration (date of MRI - date of first 

symptoms), years`) 

sd(clinicalamb$`Disease Duration (date of MRI - date of first 

symptoms), years`) 

summarytabamb<-stat.desc(clinicalamb,basic=F) 

summarytabnoamb<-stat.desc(clinicalnoamb,basic=F) 

table(clinical$Sex) 

table(clinicalnoamb$Sex) 

table(clinicalamb$Sex) 

prop.table(table(clinical$Sex)) 

prop.table(table(clinicalnoamb$Sex)) 

prop.table(table(clinicalamb$Sex)) 

table(clinical$Race) 

table(clinicalnoamb$Race) 

table(clinicalamb$Race) 

prop.table(table(clinical$Race)) 

prop.table(table(clinicalnoamb$Race)) 

prop.table(table(clinicalamb$Race)) 

table(clinical$nonhis) 

table(clinicalnoamb$nonhis) 

table(clinicalamb$nonhis) 

prop.table(table(clinical$nonhis)) 

prop.table(table(clinicalnoamb$nonhis)) 

prop.table(table(clinicalamb$nonhis)) 

table(clinical$types) 

table(clinicalnoamb$types) 

table(clinicalamb$types) 

prop.table(table(clinical$types)) 

prop.table(table(clinicalnoamb$types)) 
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prop.table(table(clinicalamb$types)) 

table(clinical$notreat) 

table(clinicalnoamb$notreat) 

table(clinicalamb$notreat) 

prop.table(table(clinical$notreat)) 

prop.table(table(clinicalnoamb$notreat)) 

prop.table(table(clinicalamb$notreat)) 

table(clinical$higheff) 

table(clinicalnoamb$higheff) 

table(clinicalamb$higheff) 

prop.table(table(clinical$higheff)) 

prop.table(table(clinicalnoamb$higheff)) 

prop.table(table(clinicalamb$higheff)) 

table(clinical$nonhiswhite) 

table(clinicalnoamb$nonhiswhite) 

table(clinicalamb$nonhiswhite) 

prop.table(table(clinical$nonhiswhite)) 

prop.table(table(clinicalnoamb$nonhiswhite)) 

prop.table(table(clinicalamb$nonhiswhite)) 

``` 

```{r} 

mean(MRIdata$T2LV_Conv, na.rm = TRUE) 

sd(MRIdata$T2LV_Conv, na.rm = TRUE) 

 

mean(MRIdata$NBV_Conv, na.rm = TRUE) 

sd(MRIdata$NBV_Conv, na.rm = TRUE) 

 

mean(MRIdata$NBV_Subtle, na.rm = TRUE) 

sd(MRIdata$NBV_Subtle, na.rm = TRUE) 

mean(MRIdata$NBV_SubtleMR, na.rm = TRUE) 

sd(MRIdata$NBV_SubtleMR, na.rm = TRUE) 

 

mean(MRIdata$NThV_Conv, na.rm = TRUE) 

sd(MRIdata$NThV_Conv, na.rm = TRUE) 

mean(MRIdata$NThV_Subtle, na.rm = TRUE) 

sd(MRIdata$NThV_Subtle, na.rm = TRUE) 

mean(MRIdata$NThV_SubtleMR, na.rm = TRUE) 

sd(MRIdata$NThV_SubtleMR, na.rm = TRUE) 

 

mean(MRIdata$NGMV_Conv, na.rm = TRUE) 

sd(MRIdata$NGMV_Conv, na.rm = TRUE) 

mean(MRIdata$NGMV_Subtle, na.rm = TRUE) 

sd(MRIdata$NGMV_Subtle, na.rm = TRUE) 

mean(MRIdata$NGMV_SubtleMR, na.rm = TRUE) 

sd(MRIdata$NGMV_SubtleMR, na.rm = TRUE) 

 

mean(MRIdata$NWMV_Conv, na.rm = TRUE) 
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sd(MRIdata$NWMV_Conv, na.rm = TRUE) 

mean(MRIdata$NWMV_Subtle, na.rm = TRUE) 

sd(MRIdata$NWMV_Subtle, na.rm = TRUE) 

mean(MRIdata$NWMV_SubtleMR, na.rm = TRUE) 

sd(MRIdata$NWMV_SubtleMR, na.rm = TRUE) 

 

((mean(MRIdata$T2LV_Subtle, na.rm = TRUE) - 

mean(MRIdata$T2LV_Conv, na.rm = TRUE))/ mean(MRIdata$T2LV_Conv, 

na.rm = TRUE)) * 100 

(mean(MRIdata$T2LV_Subtle, na.rm = TRUE) - 

mean(MRIdata$T2LV_Conv, na.rm = TRUE)) 

   

((mean(MRIdata$NBV_Subtle, na.rm = TRUE) - 

mean(MRIdata$NBV_Conv, na.rm = TRUE))/ mean(MRIdata$NBV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NBV_Subtle, na.rm = TRUE) - mean(MRIdata$NBV_Conv, 

na.rm = TRUE) 

((mean(MRIdata$NThV_Subtle, na.rm = TRUE) - 

mean(MRIdata$NThV_Conv, na.rm = TRUE))/mean(MRIdata$NThV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NThV_Subtle, na.rm = TRUE) - 

mean(MRIdata$NThV_Conv, na.rm = TRUE) 

((mean(MRIdata$NGMV_Subtle, na.rm = TRUE) - 

mean(MRIdata$NGMV_Conv, na.rm = TRUE))/mean(MRIdata$NGMV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NGMV_Subtle, na.rm = TRUE) - 

mean(MRIdata$NGMV_Conv, na.rm = TRUE) 

((mean(MRIdata$NWMV_Subtle, na.rm = TRUE) - 

mean(MRIdata$NWMV_Conv, na.rm = TRUE))/mean(MRIdata$NWMV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NWMV_Subtle, na.rm = TRUE) - 

mean(MRIdata$NWMV_Conv, na.rm = TRUE) 

# (Fast - conventional)/conventional * 100 

 

((mean(MRIdata$T2LV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$T2LV_Conv, na.rm = TRUE))/ mean(MRIdata$T2LV_Conv, 

na.rm = TRUE)) * 100 

(mean(MRIdata$T2LV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$T2LV_Conv, na.rm = TRUE)) 

 

((mean(MRIdata$NBV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NBV_Conv, na.rm = TRUE))/ mean(MRIdata$NBV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NBV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NBV_Conv, na.rm = TRUE) 
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((mean(MRIdata$NThV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NThV_Conv, na.rm = TRUE))/mean(MRIdata$NThV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NThV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NThV_Conv, na.rm = TRUE) 

 

((mean(MRIdata$NGMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NGMV_Conv, na.rm = TRUE))/mean(MRIdata$NGMV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NGMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NGMV_Conv, na.rm = TRUE) 

 

((mean(MRIdata$NWMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NWMV_Conv, na.rm = TRUE))/mean(MRIdata$NWMV_Conv, 

na.rm = TRUE)) * 100 

mean(MRIdata$NWMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NWMV_Conv, na.rm = TRUE) 

 

((mean(MRIdata$T2LV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$T2LV_Subtle, na.rm = TRUE))/ 

mean(MRIdata$T2LV_Subtle, na.rm = TRUE)) * 100 

(mean(MRIdata$T2LV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$T2LV_Subtle, na.rm = TRUE)) 

 

((mean(MRIdata$NBV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NBV_Subtle, na.rm = TRUE))/ 

mean(MRIdata$NBV_Subtle, na.rm = TRUE)) * 100 

abs(mean(MRIdata$NBV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NBV_Subtle, na.rm = TRUE)) 

 

((mean(MRIdata$NThV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NThV_Subtle, na.rm = 

TRUE))/mean(MRIdata$NThV_Subtle, na.rm = TRUE)) * 100 

mean(MRIdata$NThV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NThV_Subtle, na.rm = TRUE) 

 

((mean(MRIdata$NGMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NGMV_Subtle, na.rm = 

TRUE))/mean(MRIdata$NGMV_Subtle, na.rm = TRUE)) * 100 

mean(MRIdata$NGMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NGMV_Subtle, na.rm = TRUE) 

 

((mean(MRIdata$NWMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NWMV_Subtle, na.rm = 

TRUE))/mean(MRIdata$NWMV_Subtle, na.rm = TRUE)) * 100 

mean(MRIdata$NWMV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NWMV_Subtle, na.rm = TRUE) 
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``` 

```{r} 

median(MRIdata$NBV_Conv, na.rm = TRUE) 

IQR(MRIdata$NBV_Conv, na.rm = TRUE) 

median(MRIdata$NBV_Subtle, na.rm = TRUE) 

IQR(MRIdata$NBV_Subtle, na.rm = TRUE) 

median(MRIdata$NBV_SubtleMR, na.rm = TRUE) 

IQR(MRIdata$NBV_SubtleMR, na.rm = TRUE) 

median(MRIdata$NThV_Conv, na.rm = TRUE) 

IQR(MRIdata$NThV_Conv, na.rm = TRUE) 

median(MRIdata$NThV_Subtle, na.rm = TRUE) 

IQR(MRIdata$NThV_Subtle, na.rm = TRUE) 

median(MRIdata$NThV_SubtleMR, na.rm = TRUE) 

IQR(MRIdata$NThV_SubtleMR, na.rm = TRUE) 

median(MRIdata$NGMV_Conv, na.rm = TRUE) 

IQR(MRIdata$NGMV_Conv, na.rm = TRUE) 

median(MRIdata$NGMV_Subtle, na.rm = TRUE) 

IQR(MRIdata$NGMV_Subtle, na.rm = TRUE) 

median(MRIdata$NGMV_SubtleMR, na.rm = TRUE) 

IQR(MRIdata$NGMV_SubtleMR, na.rm = TRUE) 

median(MRIdata$NWMV_Conv, na.rm = TRUE) 

IQR(MRIdata$NWMV_Conv, na.rm = TRUE) 

median(MRIdata$NWMV_Subtle, na.rm = TRUE) 

IQR(MRIdata$NWMV_Subtle, na.rm = TRUE) 

median(MRIdata$NWMV_SubtleMR, na.rm = TRUE) 

IQR(MRIdata$NWMV_SubtleMR, na.rm = TRUE) 

``` 

Paired t-tests for NBV 

```{r} 

t.test(MRIdata$NBV_Subtle,MRIdata$NBV_Conv, paired=TRUE) 

mean(MRIdata$NBV_Subtle-MRIdata$NBV_Conv,na.rm=TRUE) 

(mean(MRIdata$NBV_Subtle, na.rm = TRUE) - mean(MRIdata$NBV_Conv, 

na.rm = TRUE)) 

sd(MRIdata$NBV_Subtle-MRIdata$NBV_Conv,na.rm=TRUE) 

t.test(MRIdata$NBV_SubtleMR,MRIdata$NBV_Conv, paired=TRUE) 

(mean(MRIdata$NBV_SubtleMR, na.rm = TRUE) - 

mean(MRIdata$NBV_Conv, na.rm = TRUE)) 

mean(MRIdata$NBV_SubtleMR-MRIdata$NBV_Conv,na.rm=TRUE) 

sd(MRIdata$NBV_SubtleMR-MRIdata$NBV_Conv,na.rm=TRUE) 

t.test(MRIdata$NBV_SubtleMR,MRIdata$NBV_Subtle, paired=TRUE) 

mean(MRIdata$NBV_SubtleMR-MRIdata$NBV_Subtle,na.rm=TRUE) 

sd(MRIdata$NBV_SubtleMR-MRIdata$NBV_Subtle,na.rm=TRUE) 

``` 

NThV 

```{r} 

t.test(MRIdata$NThV_Subtle,MRIdata$NThV_Conv, paired=TRUE) 

mean(MRIdata$NThV_Subtle-MRIdata$NThV_Conv,na.rm=TRUE) 
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sd(MRIdata$NThV_Subtle-MRIdata$NThV_Conv,na.rm=TRUE) 

t.test(MRIdata$NThV_SubtleMR,MRIdata$NThV_Conv, paired=TRUE) 

mean(MRIdata$NThV_SubtleMR-MRIdata$NThV_Conv,na.rm=TRUE) 

sd(MRIdata$NThV_SubtleMR-MRIdata$NThV_Conv,na.rm=TRUE) 

t.test(MRIdata$NThV_SubtleMR,MRIdata$NThV_Subtle, paired=TRUE) 

mean(MRIdata$NThV_SubtleMR-MRIdata$NThV_Subtle,na.rm=TRUE) 

sd(MRIdata$NThV_SubtleMR-MRIdata$NThV_Subtle,na.rm=TRUE) 

``` 

 

NGMV 

```{r} 

t.test(MRIdata$NGMV_Subtle,MRIdata$NGMV_Conv, paired=TRUE) 

mean(MRIdata$NGMV_Subtle-MRIdata$NGMV_Conv,na.rm=TRUE) 

sd(MRIdata$NGMV_Subtle-MRIdata$NGMV_Conv,na.rm=TRUE) 

t.test(MRIdata$NGMV_SubtleMR,MRIdata$NGMV_Conv, paired=TRUE) 

mean(MRIdata$NGMV_SubtleMR-MRIdata$NGMV_Conv,na.rm=TRUE) 

sd(MRIdata$NGMV_SubtleMR-MRIdata$NGMV_Conv,na.rm=TRUE) 

t.test(MRIdata$NGMV_SubtleMR,MRIdata$NGMV_Subtle, paired=TRUE) 

mean(MRIdata$NGMV_SubtleMR-MRIdata$NGMV_Subtle,na.rm=TRUE) 

sd(MRIdata$NGMV_SubtleMR-MRIdata$NGMV_Subtle,na.rm=TRUE) 

``` 

NWMV 

```{r} 

t.test(MRIdata$NWMV_Subtle,MRIdata$NWMV_Conv, paired=TRUE) 

mean(MRIdata$NWMV_Subtle-MRIdata$NWMV_Conv,na.rm=TRUE) 

sd(MRIdata$NWMV_Subtle-MRIdata$NWMV_Conv,na.rm=TRUE) 

t.test(MRIdata$NWMV_SubtleMR,MRIdata$NWMV_Conv, paired=TRUE) 

mean(MRIdata$NWMV_SubtleMR-MRIdata$NWMV_Conv,na.rm=TRUE) 

sd(MRIdata$NWMV_SubtleMR-MRIdata$NWMV_Conv,na.rm=TRUE) 

t.test(MRIdata$NWMV_SubtleMR,MRIdata$NWMV_Subtle, paired=TRUE) 

mean(MRIdata$NWMV_SubtleMR-MRIdata$NWMV_Subtle,na.rm=TRUE) 

sd(MRIdata$NWMV_SubtleMR-MRIdata$NWMV_Subtle,na.rm=TRUE) 

``` 

```{r} 

library(ggpubr) 

p1 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NBV_Conv)) + scale_x_continuous(name = 

"Conventional") 

p2 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NBV_Subtle)) + scale_x_continuous(name = 

"Fast") 

p3 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NBV_SubtleMR)) + scale_x_continuous(name 

= "Fast with DL") 

ggarrange(p1,p2,p3, nrow = 1) 

``` 
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```{r} 

p1 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NThV_Conv)) + scale_x_continuous(breaks = 

c(0.006, 0.008, 0.010, 0.012), name = "Conventional") 

p2 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NThV_Subtle)) + scale_x_continuous(name = 

"Fast") 

p3 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NThV_SubtleMR)) + 

scale_x_continuous(breaks = c(0.006, 0.008, 0.010, 0.012), name 

= "Fast with DL") 

ggarrange(p1,p2,p3, nrow = 1) 

``` 

 

```{r} 

p1 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NGMV_Conv)) + scale_x_continuous(name = 

"Conventional") 

p2 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NGMV_Subtle)) + scale_x_continuous(name = 

"Fast") 

p3 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NGMV_SubtleMR)) + scale_x_continuous(name 

= "Fast with DL") 

ggarrange(p1,p2,p3, nrow =1 ) 

``` 

 

```{r} 

p1 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NWMV_Conv)) + scale_x_continuous(name = 

"Conventional") 

p2 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NWMV_Subtle)) + scale_x_continuous(name = 

"Fast") 

p3 = ggplot(data=MRIdata) + 

  geom_histogram(aes(x=NWMV_SubtleMR)) + scale_x_continuous(name 

= "Fast with DL") 

ggarrange(p1,p2,p3, nrow=1) 

``` 

 

```{r,include=FALSE,cache=TRUE} 

library(readxl) 

library(tidyverse) 

library(skimr) 

library(knitr) 

library(equivalence) 
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MRIdata <- read_excel("Batch1-4_20200420.xlsx",sheet=1) 

i <- c(8:48)       

MRIdata[ , i] <- apply(MRIdata[ , i], 2,            # Specify 

own function within apply 

                    function(x) as.numeric(as.character(x))) 

MRIdata<-MRIdata[,-c(11,15)] 

``` 

 

## NBV Equivalence tests - Conv vs SubtleMR {#Sig9md} 

```{r} 

md = abs(mean(MRIdata$NBV_Subtle - MRIdata$NBV_Conv, na.rm = 

TRUE)) 

md 

tost(MRIdata$NBV_SubtleMR, MRIdata$NBV_Conv, epsilon = .1*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NBV_SubtleMR, MRIdata$NBV_Conv,  epsilon = .2*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NBV_SubtleMR, MRIdata$NBV_Conv,epsilon = .3*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NBV_SubtleMR, MRIdata$NBV_Conv, epsilon = .4*md, 

paired = T, var.equal = F, conf.level = 0.95) 

``` 

 

## NThV Equivalence tests - Conv vs SubtleMR {#Sig10md} 

 

```{r} 

md = abs(mean(MRIdata$NThV_Subtle - MRIdata$NThV_Conv, na.rm = 

TRUE)) 

md 

tost(MRIdata$NThV_SubtleMR, MRIdata$NThV_Conv, epsilon = .1*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NThV_SubtleMR, MRIdata$NThV_Conv,  epsilon = .2*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NThV_SubtleMR, MRIdata$NThV_Conv,epsilon = .3*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NThV_SubtleMR, MRIdata$NThV_Conv, epsilon = .4*md, 

paired = T, var.equal = F, conf.level = 0.95) 

``` 

 

## NGMV Equivalence tests - Conv vs SubtleMR {#Sig11md} 

 

```{r} 

md = abs(mean(MRIdata$NGMV_Subtle - MRIdata$NGMV_Conv, na.rm = 

TRUE)) 

md 

.1*md 
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tost(MRIdata$NGMV_SubtleMR, MRIdata$NGMV_Conv, epsilon = .1*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NGMV_SubtleMR, MRIdata$NGMV_Conv,  epsilon = .2*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NGMV_SubtleMR, MRIdata$NGMV_Conv,epsilon = .3*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NGMV_SubtleMR, MRIdata$NGMV_Conv, epsilon = .4*md, 

paired = T, var.equal = F, conf.level = 0.95) 

``` 

 

## NWMV Equivalence tests - Conv vs SubtleMR {#Sig12md} 

 

```{r} 

md = abs(mean(MRIdata$NWMV_Subtle - MRIdata$NWMV_Conv, na.rm = 

TRUE)) 

md 

 

t.test(MRIdata$NWMV_Subtle, MRIdata$NWMV_Conv, paired=TRUE) 

tost(MRIdata$NWMV_SubtleMR, MRIdata$NWMV_Conv, epsilon = .1*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NWMV_SubtleMR, MRIdata$NWMV_Conv,  epsilon = .2*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NWMV_SubtleMR, MRIdata$NWMV_Conv,epsilon = .3*md, 

paired = T, var.equal = F, conf.level = 0.95) 

tost(MRIdata$NWMV_SubtleMR, MRIdata$NWMV_Conv, epsilon = .4*md, 

paired = T, var.equal = F, conf.level = 0.95) 

``` 

 

```{r,include=FALSE} 

library(readxl) 

library(tidyverse) 

library(skimr) 

library(knitr) 

library(tidyr) 

library(lmerTest) 

library(car) 

library(plyr) 

library(PowerTOST) 

library(interactions) 

MRIdata <- read_excel("Batch1-4_20200420.xlsx",sheet=1) 

i <- c(8:48)       

MRIdata[ , i] <- apply(MRIdata[ , i], 2,            

                    function(x) as.numeric(as.character(x))) 

MRIdata<-MRIdata[-c(97:124),-c(11:36)] 

clin <- read_excel("Subtle_metadata_updated.xls",sheet=1) 

clin$amb<-ifelse(clin$`PDDS Median`>=4, 1, 0) 
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clin$sexbin<-ifelse(clin$Sex=="Female", 1, 0) #1 if female, 0 

male 

clin$nonhiswhite<-ifelse((clin$Ethnicity=="Non-Hispanic" | 

clin$Ethnicity=="Non-hispanic")&(clin$Race=="Caucasian"), 1, 0) 

#1 if non-hispanic european descent, 0 other 

clin<-plyr::rename(clin, c("Age (at first scan)" = "age", 

"Disease Duration (date of MRI - date of first symptoms), 

years"="dur")) 

clin$types <- ifelse(clin[,14]==1,1,0) # 1 if RRMS and 0 other 

clin$standard <- 

ifelse(clin$Treatment==1|clin$Treatment==2|clin$Treatment==3|cli

n$Treatment==4|clin$Treatment==5|clin$Treatment==6|clin$Treatmen

t==18|clin$Treatment==7|clin$Treatment==8|clin$Treatment==9|clin

$Treatment==10|clin$Treatment==19|clin$Treatment==20|clin$Treatm

ent==14,1,0) # 1 if standard efficacy 0 if other 

clin$high <- 

ifelse(clin$Treatment==16|clin$Treatment==17|clin$Treatment==15|

clin$Treatment==13|clin$Treatment==11,1,0)# 1 if high efficacy 0 

if other 

clinical<-merge(x =MRIdata, y = clin, by="Patient ID") 

clin_long <- gather(clinical, type, volume, 

T2LV_Conv:NWMV_SubtleMR, factor_key=TRUE) 

``` 

# NBV 

 

## Linear model with PDDS (continuous) as a predictor variable  

 

```{r,echo=FALSE} 

NBVmod2 <-lmer(volume ~ type * `PDDS Median` + age+ sexbin + 

nonhiswhite + dur + types + standard + high + (1 | `Patient ID`) 

, data=NBV) 

summary(NBVmod2) 

plot_model(NBVmod2, type='diag') 

plot(resid(NBVmod2), NBVmod2@frame[["volume"]]) 

``` 

 

```{r, echo=FALSE} 

linearHypothesis(NBVmod2, c("typeNBV_SubtleMR:`PDDS Median`")) 

linearHypothesis(NBVmod2, c("typeNBV_Subtle:`PDDS Median`")) 

linearHypothesis(NBVmod2, c("typeNBV_SubtleMR:`PDDS Median`-

.1*typeNBV_Subtle:`PDDS Median`"),test="F")/2 

linearHypothesis(NBVmod2, c("typeNBV_SubtleMR:`PDDS 

Median`+.1*typeNBV_Subtle:`PDDS Median`"),test="F")/2 

linearHypothesis(NBVmod2, c("typeNBV_SubtleMR:`PDDS Median`-

.1*typeNBV_Subtle:`PDDS Median`"), test="F") 

pt(sqrt(1.977), 226, lower.tail=F) 
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linearHypothesis(NBVmod2, c("typeNBV_SubtleMR:`PDDS 

Median`+.1*typeNBV_Subtle:`PDDS Median`"), test="F") 

pt(-sqrt(3.5399), 226, lower.tail=T) 

``` 

 

## Linear model with MSRS-R as a predictor variable  

 

```{r,echo=FALSE} 

NBVmsrsmod <-lmer( volume ~ type * `MSRS-R Median` + age+ sexbin 

+ nonhiswhite + dur + types+ standard+high + (1 | `Patient ID`) 

, data=NBV) 

summary(NBVmsrsmod) 

plot_model(NBVmsrsmod, type='diag') 

``` 

 

```{r, echo=FALSE} 

linearHypothesis(NBVmsrsmod, c("typeNBV_SubtleMR:`MSRS-R 

Median`")) 

linearHypothesis(NBVmsrsmod, c("typeNBV_Subtle:`MSRS-R 

Median`")) 

linearHypothesis(NBVmsrsmod, c("typeNBV_SubtleMR:`MSRS-R 

Median`-.1*typeNBV_Subtle:`MSRS-R Median`"))/2 

linearHypothesis(NBVmsrsmod, c("typeNBV_SubtleMR:`MSRS-R 

Median`+.1*typeNBV_Subtle:`MSRS-R Median`"))/2 

``` 

# NThV 

 

## Linear model with PDDS (continuous) as a predictor variable  

 

```{r,echo=FALSE} 

NThVmod2 <-lmer( volume ~ type * `PDDS Median` + age+ sexbin + 

nonhiswhite + dur + types + standard+high + (1 | `Patient ID`) , 

data=NThV) 

summary(NThVmod2) 

plot_model(NThVmod2, type='diag') 

``` 

 

```{r, echo=FALSE} 

linearHypothesis(NThVmod2, c("typeNThV_SubtleMR:`PDDS Median`-

.1*typeNThV_Subtle:`PDDS Median`"))/2 

linearHypothesis(NThVmod2, c("typeNThV_SubtleMR:`PDDS 

Median`+.1*typeNThV_Subtle:`PDDS Median`"))/2 

``` 

 

```{r} 

interact_plot(NThVmod2, pred = `PDDS Median`, modx = type) 

``` 
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## Linear model with MSRS-R as a predictor variable  

 

```{r,echo=FALSE} 

NThVmsrsmod <-lmer( volume ~ type * `MSRS-R Median` + age+ 

sexbin + nonhiswhite + dur + types+ standard+high + (1 | 

`Patient ID`) , data=NThV) 

summary(NThVmsrsmod) 

plot_model(NThVmsrsmod, type='diag') 

``` 

 

```{r, echo=FALSE} 

linearHypothesis(NThVmsrsmod, c("typeNThV_SubtleMR:`MSRS-R 

Median`-.1*typeNThV_Subtle:`MSRS-R Median`"))/2 

linearHypothesis(NThVmsrsmod, c("typeNThV_SubtleMR:`MSRS-R 

Median`+.1*typeNThV_Subtle:`MSRS-R Median`"))/2 

linearHypothesis(NThVmsrsmod, c("typeNThV_SubtleMR:`MSRS-R 

Median`-.1*typeNThV_Subtle:`MSRS-R Median`"),test="F")/2 

linearHypothesis(NThVmsrsmod, c("typeNThV_SubtleMR:`MSRS-R 

Median`-.1*typeNThV_Subtle:`MSRS-R Median`"),test="F")/2 

linearHypothesis(NThVmsrsmod, c("typeNThV_SubtleMR:`MSRS-R 

Median`-.1*typeNThV_Subtle:`MSRS-R Median`"), test="F") 

pt(sqrt(2.78), 226, lower.tail=F) 

linearHypothesis(NThVmsrsmod, c("typeNThV_SubtleMR:`MSRS-R 

Median`-.1*typeNThV_Subtle:`MSRS-R Median`"), test="F") 

pt(-sqrt(2.78), 226, lower.tail=T) 

``` 

 

```{r} 

interact_plot(NThVmsrsmod, pred = `MSRS-R Median`, modx = type) 

``` 

# NGMV 

 

## Linear model with PDDS (continuous) as a predictor variable  

 

```{r,echo=FALSE} 

NGMVmod2 <-lmer( volume ~ type * `PDDS Median` + age+ sexbin + 

nonhiswhite + dur + types + standard+high + (1 | `Patient ID`) , 

data=NGMV) 

summary(NGMVmod2) 

plot_model(NGMVmod2, type='diag') 

``` 

 

```{r} 

interact_plot(NGMVmod2, pred = `PDDS Median`, modx = type) 

``` 
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```{r, echo=FALSE} 

linearHypothesis(NGMVmod2, c("typeNGMV_SubtleMR:`PDDS Median`-

.1*typeNGMV_Subtle:`PDDS Median`"))/2 

linearHypothesis(NGMVmod2, c("typeNGMV_SubtleMR:`PDDS 

Median`+.1*typeNGMV_Subtle:`PDDS Median`"))/2 

``` 

 

## Linear model with MSRS-R as a predictor variable  

 

```{r,echo=FALSE} 

NGMVmsrsmod <-lmer( volume ~ type * `MSRS-R Median` + age+ 

sexbin + nonhiswhite + dur + types + standard+high + (1 | 

`Patient ID`) , data=NGMV) 

summary(NGMVmsrsmod) 

plot_model(NGMVmsrsmod, type='diag') 

``` 

 

```{r, echo=FALSE} 

linearHypothesis(NGMVmsrsmod, c("typeNGMV_SubtleMR:`MSRS-R 

Median`-.1*typeNGMV_Subtle:`MSRS-R Median`"))/2 

linearHypothesis(NGMVmsrsmod, c("typeNGMV_SubtleMR:`MSRS-R 

Median`+.1*typeNGMV_Subtle:`MSRS-R Median`"))/2 

``` 

# NWMV 

 

## Linear model with PDDS (continuous) as a predictor variable  

 

```{r,echo=FALSE} 

NWMVmod2 <-lmer( volume ~ type * `PDDS Median`+ age+ sexbin + 

nonhiswhite + dur + types+ standard+high + (1 | `Patient ID`) , 

data=NWMV) 

summary(NWMVmod2) 

plot_model(NWMVmod2, type='diag') 

``` 

 

```{r, echo=FALSE} 

linearHypothesis(NWMVmod2, c("typeNWMV_SubtleMR:`PDDS Median`-

.1*typeNWMV_Subtle:`PDDS Median`"))/2 

linearHypothesis(NWMVmod2, c("typeNWMV_SubtleMR:`PDDS 

Median`+.1*typeNWMV_Subtle:`PDDS Median`"))/2 

``` 

## Linear model with MSRS-R as a predictor variable  

 

```{r,echo=FALSE} 
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NWMVmsrsmod <-lmer( volume ~ type * `MSRS-R Median` + age+ 

sexbin + nonhiswhite + dur + types + standard+high+ (1 | 

`Patient ID`) , data=NWMV) 

summary(NWMVmsrsmod) 

plot_model(NWMVmsrsmod, type='diag') 

``` 

 

```{r, echo=FALSE} 

linearHypothesis(NWMVmsrsmod, c("typeNWMV_SubtleMR:`MSRS-R 

Median`-.1*typeNWMV_Subtle:`MSRS-R Median`"))/2 

linearHypothesis(NWMVmsrsmod, c("typeNWMV_SubtleMR:`MSRS-R 

Median`+.1*typeNWMV_Subtle:`MSRS-R Median`"))/2 

``` 
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