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Random forests are among the most popular off-the-shelf supervised learning algorithms.

Despite their well-documented empirical success, however, until recently, few theoretical re-

sults were available to describe their performance and behavior. In this work we push beyond

recent work on consistency and asymptotic normality by establishing rates of convergence

for random forests and other supervised learning ensembles. We develop the notion of gen-

eralized U-statistics and show that within this framework, random forest predictions can

remain asymptotically normal for larger subsample sizes and under weaker conditions than

previously established. Moreover, we provide Berry-Esseen bounds in order to quantify the

rate at which this convergence occurs, making explicit the roles of the subsample size and

the number of trees in determining the distribution of random forest predictions. When

these generalized estimators are reduced to their classical U-statistic form, the rates we es-

tablish are faster than any available in the existing literature. We also provide a consistency

estimate of the variance of random forest and illustrate that quantifying the uncertainty of

random forest is typically more expensive than obtaining the random forest itself.
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1.0 Introduction

The random forest algorithm is a supervised learning tool introduced by [12] that con-

structs many independently randomized decision trees and aggregates their predictions by

averaging in the case of regression or taking a majority vote for classification. Random

forests have been shown to successfully handle high-dimensional and correlated data while

exhibiting appealing properties such as fast and accurate off-the-shelf fitting without the

overfitting issues that often plague related methods. They have been successfully applied in

a variety of scientific fields including remote sensing [2], computational biology [59], stock

price forecasting [48], and forecasting bird migration [21]. In a recent large-scale empirical

study comparing 179 classifiers across the 121 datasets comprising the entire UCI machine

learning repository, [34] found that random forests performed extremely well with 3 of the

top 5 algorithms being some variant of the standard procedure.

Despite their wide-ranging applicability and well-documented history of empirical suc-

cess, establishing formal mathematical and statistical properties for random forests has

proved quite difficult, due in large part to the complex, data-dependent nature of the CART-

splitting criterion [13] traditionally used to construct individual trees. [12] provided the first

such result, demonstrating that the expected misclassification rate is a function of the ac-

curacy of the individual classifiers and the correlation between them. The bound on the

misclassification rate postulated in the work is loose but suggestive in the sense that in-

terplay between these two sets the foundation for understanding the inner-workings of the

procedure. [1] established a limit law for the split location in a regression tree context

with independent Gaussian noise. Further analysis of the behavior of CART-style split-

ting was conducted by [44] who demonstrated an end-cut preference, whereby splits along

non-informative variables are more likely to occur near the edges of the feature space.

A variety of other work has focused on analyzing other properties of random forest en-

sembles or extending the methodology to related problem types. [51] developed the idea

of potential nearest neighbors and demonstrated their relationship to tree-based ensembles.

More recently [52] analyzed the tradeoff between the size of the ensemble and the classi-
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fication accuracy. [8], [6], and [5] studied various idealized versions of random forests and

investigated consistency while [26] proved consistency for a particular type of online forest.

[46] developed the idea of random survival forests and the consistency of such models is

investigated in [45] and [22]. [53] extended random forest estimates to the context of quan-

tile regression and [76] experimented with reinforcement learning trees. For a more detailed

accounting of random-forest-related research, we refer readers to an excellent recent review

by [9].

In recent years, many promising developments have come by considering individual trees

built with subsamples rather than the more traditional bootstrap samples. [71] extended the

infinitesimal jackknife estimates of variance introduced by [31] to produce confidence inter-

vals for subsampled random forest predictions. [63] provided the first consistency result for

Breiman’s original forests, establishing L2 consistency whenever the underlying regression

function is additive. [54] made the connection to infinite-order U-statistics and provided

the asymptotic distributions of random forest predictions. [69] showed that for large ensem-

bles, subsampled random forests are both asymptotically unbiased and Gaussian whenever

individual trees are built according to honesty and regularity conditions.

In this paper, we continue the trend of establishing mathematical properties of random

forests by building on the U-statistic connection made in [54]. As in other recent theoretical

analyses on the topic (e.g. [8, 6, 5, 54, 69]), we adopt a general notion of random forests,

viewing this class of estimators as those producing predictions of the form

RF(x) =
1

N

N∑
i=1

h(x;Zi1, . . . , Zis;ω)

where each Zi1, . . . , Zis denotes a subsample taken without replacement from the available

training data and ω denotes additional randomness injected into the base learner h. In par-

ticular, we do not require that base learners be trees constructed via the CART methodology

as originally proposed in [12]. We establish central limit theorems for such estimators, that,

to our knowledge, cover a broader range of estimators and also allow for faster subsam-

pling rates than established in existing literature. A consistent estimate of the variance of

such estimators are as well provided. More notably, we take a step forward in the theoret-

ical analysis of random forests by providing Berry-Esseen Theorems governing the rate at
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which this convergence takes place by bounding the maximal error of approximation between

the Gaussian distribution and that of the random forest predictions. In establishing these,

we develop the notion of generalized U-statistics which allow for kernels to be incomplete,

randomized, and infinite-order. Importantly, when these estimators are simplified to their

classical U-statistic form, the resulting bounds we provide are faster than any in the existing

literature.

The remainder of this paper is organized as follows. In Chapter 2, we provide additional

background on the random forest algorithm and introduce the notion of generalized U-

statistics. In Chapter 3 we provide a theorem that describes the asymptotic distribution of

these statistics when the rank of the kernel is allowed to grow with n. These distributional

results rely on the behavior of a variance ratio and we conclude Chapter 3 by discussing its

behavior for a variety of base learners. Building on these preliminary results, in Chapter 4,

we provide Berry-Esseen bounds for both complete and incomplete generalized U-statistics.

In Chapter 5, we analyze the properties of the infinitesimal jackknife method and propose a

consistent estimate of the variance of these statistics.
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2.0 Background

Suppose that we have data of the form Z1, . . . , Zn assumed to be independent and iden-

tically distributed (i.i.d.) from some distribution FZ and let θ be some parameter of interest.

Suppose further that there exists an unbiased estimator h of θ that is a function of s ≤ n

arguments and without loss of generality, assume that h is permutation symmetric in those

arguments. The minimum variance unbiased estimator for θ given by

Un,s =

(
n

s

)−1∑
(n,s)

h(Zi1, . . . , Zis) (1)

is a U-statistic as introduced by [38] and [40], where the sum is taken over all
(
n
s

)
subsamples

of size s; we use the (n, s) shorthand for this quantity throughout the remainder of this

paper. Standard elementary examples of U-statistics include sample mean, sample variance

and covariance, and Kendall’s τ -statistic. When both the kernel h and rank s are held fixed,

[40] showed that Un,s tends toward a normal distribution with mean θ and variance s2ζ1/n

where, for any 1 ≤ c ≤ s,

ζc = Cov
(
h(Z1, . . . , Zc, Zc+1, . . . , Zs), h(Z1, . . . , Zc, Z

′
c+1, . . . , Z

′
s)
)

where Z ′c+1, . . . , Z
′
n are i.i.d. from FZ and independent of Z1, . . . , Zn.

Throughout the remainder of this paper, we consider a regression framework where the

data consist of independent pairs of random variables consisting of covariates and a response

Zi = (Xi, Yi) ∈ X × R (i = 1, . . . , n) sampled from a common distribution FZ . Unless

otherwise stated, we assume X = Rp for analytical convenience.

Given some s ≤ n, let Zi1, . . . , Zis denote a subsample of size s and consider a particular

location x ∈ Rp. The prediction at x can be written as hx(Zi1, . . . , Zis) where the function

hx takes the subsampled covariates and responses as inputs, forms a regression estimate,

and outputs the predicted response at x. Throughout the remainder of this paper, we drop
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the subscript x for notational convenience. Repeating this process on N subsamples and

averaging across predictions gives

Un,s,N(x) =
1

N

N∑
i=1

h(Zi1, . . . , Zis)

so that our prediction now takes the form of a U-statistic with kernel h. When all subsamples

are used so that N =
(
n
s

)
, the form is that of a complete U-statistic; whenever a smaller

number of subsamples are utilized, it is incomplete. When the subsample size s grows with

the sample size n, these estimators are considered infinite-order U-statistics as introduced

by [35] and utilized by [54] to establish asymptotic normality of random forests.

In a general supervised learning framework, these kernels can be thought of as base

learners in an ensemble. Decision trees are among the most popular choices of base learners

and are typically built according to the CART criterion. Here, splits in each cell A are

chosen to maximize

L(j, z) =
1

|A|

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1

|A|

n∑
i=1

(Yi − ȲAL1Xj,i<z − ȲAR1Xj,i≥z)
21Xi∈A

across all covariates Xj, 1 ≤ j ≤ p, where z ∈ R, AL = {X ∈ A : Xj < z}, AR = {X ∈

A : Xj ≥ z}, and for any set S, ȲS denotes the average response value for observations

X ∈ S. When trees are built with bootstrap samples, the resulting ensembles produce

bagged estimates as discussed in [11]. The random forest extension of bagging introduced

by [12] inserts additional independent randomness into each tree, typically to determine the

subset of mtry ≤ p features eligible for splitting at each node. The subsampled version of

this procedure thus produces estimates at x of the form

Ũn,s,N,ω(x) =
1

N

N∑
i=1

h(Zi1, . . . , Zis;ω). (2)

5



Note that for each decision tree we consider an i.i.d. sample of randomness ωi but for no-

tational convenience, we refer to this as simply ω for all trees. Furthermore, in a similar

fashion as above, define ζc,ω (c = 1, . . . , s− 1) and ζs as

ζc,ω = Cov
(
h(. . . , Zc, Zc+1, . . . , Zs;ω), h(. . . , Zc, Z

′
c+1, . . . , Z

′
s;ω

′)
)

ζs = Cov (h(. . . , Zc, Zc+1, . . . , Zs;ω), h(. . . , Zc, Zc+1, . . . , Zs;ω))
(3)

and note that ζs is simply the variance of the kernel with randomization parameter ω.

[54] provide asymptotic distributional results for Ũn,s,N,ω with respect to their individual

means that cover all possible growth rates of N with respect to n, though the form of the

result provided has several practical limitations. In particular, the authors require that ζ1,ω

does not approach 0, but for most practical base learners, the correlation between estimators

with only one observation in common should vanish as the subsample size grows. Indeed,

Lemma 1 in Appendix A gives that ζ1,ω ≤ 1
s
ζs,ω ≤ 1

s
ζs so that when ζs is bounded, ζ1,ω → 0 as

s→∞. In very recent work, [61] showed that the same result could be obtained under a more

mild condition. In both results, however, the subsample size is limited to s = o(n1/2) which

can be quite restrictive in practice. In Appendix A, we demonstrate that this limitation

is a result of a reliance on Hájek projections and in fact, whenever such an approach is

taken, there is strong reason to believe that a subsampling rate of s = o(n1/2) is the largest

possible. As later discussed by [69] however, when s is small, it is possible that the squared

bias decays slower than the variance, thereby producing confidence intervals which, when

built according to the stated Gaussian limit distribution, may not cover the true value.

[69] provide an alternative central limit theorem for averages over trees built according to

honesty and regularity conditions. When base learners conform to such conditions and N

is very large, the authors show that the subsampling rate can be improved to s = o(nβ) for

0.5 < β < 1 while retaining consistent estimates.

Motivated by the form of Eq. (2) we now formalize the notion of generalized U-statistics.

Definition 1 (generalized U-statistic). Suppose Z1, . . . , Zn are i.i.d. samples from FZ and

let h denote a (possibly randomized) real-valued function utilizing s of these samples that

6



is permutation symmetric in those s arguments. A generalized U-statistic with kernel h of

order (rank) s refers to any estimator of the form

Un,s,N,ω =
1

N

∑
(n,s)

ρh(Zi1, . . . , Zis;ω) (4)

where ω denotes i.i.d. randomness, independent of the original data. The ρ denote i.i.d.

Bernoulli random variables determining which subsamples are selected and Pr(ρ = 1) =

N/
(
n
s

)
. When N =

(
n
s

)
, the estimator in Eq. (4) is a generalized complete U-statistic and is

denoted as Un,s,ω. When N <
(
n
s

)
, these estimators are generalized incomplete U-statistics.

Let N̂ denote the actual number of subsamples selected. Though it is not practical

to simulate
(
n
s

)
Bernoulli random variables, fortunately, it is equivalent to first simulate

N̂ ∼ Binomial(
(
n
s

)
, N/

(
n
s

)
) and then randomly generate N̂ subsamples without replacement.

Note also that while the number of subsamples N̂ in Eq. (4) is random, it concentrates

around N .

Allowing for the possibility of a randomized kernel is of benefit here as it allows the results

that follow to pertain to the kinds of randomized ensembles often considered in practice. The

randomization parameter ω might, for example, perform some kind of feature subsampling

as is commonly associated with random forests – much further discussion along these lines is

provided in Chapter 3. We stress however that the mere inclusion of such a randomization

parameter is not where the true innovation in our work lies, nor should it be viewed as the

“essential ingredient” in what we refer to as generalized U-statistics. Indeed, in several of the

results that follow, the theoretical details needed to establish them follow a near-identical

recipe regardless of whether the kernel itself takes on additional randomness.

Rather, the real benefit of considering generalized U-statistics lies in the form of the

estimator itself that allows for, in essence, a random weighting to be applied to the kernel

through the use of ρ. Note, for example, that Eq. (4) has a slightly smaller variance than its

fixed counterpart in Eq. (2). As a bit of a preview of what is to follow, note also that in this

generalized form, an incomplete U-statistic can be viewed as merely a complete U-statistic

with a different kernel. It is these kinds of realizations that provide significant benefits

for theoretical analysis by allowing us to view incomplete U-statistics as merely a modified

7



version of its complete form, rather than as an approximation to it that inherits a remainder

term that needs to be controlled. Furthermore, in the complete case, it can be shown that the

variance of the U-statistic can be decomposed into a sum over s terms and that the structure

of the statistic itself shrinks the higher-order terms in that sum. This careful examination

of higher-order terms allows us to not only establish asymptotic normality, but to provide

rates of convergence sharper than any in the existing literature, some of which are based on

fundamental work dating back several decades.

In the literature on classic U-statistics, many results are derived by applying a technique

called the H-decomposition, which allows the statistic to be written as a sum of uncorrelated

terms. Appendix B.1 contains a detailed overview of the classic H-decomposition. The idea

was first introduced by [41], but has analogues in many parts of statistics, most notably in the

analysis of variance in balanced experimental designs; for a more general result, see [27]. To

handle generalized U-statistics, we begin by extending the concept of the H-decomposition

to this more general setting.

Definition 2 (H-decomposition). Suppose that Z1, . . . , Zs are i.i.d. samples from FZ and

h(z1, . . . , zs;ω) is a (possibly randomized) real valued function that is permutation-symmetric

in (z1, . . . , zs). Let hi(z1, . . . , zi) = E[h(z1, . . . , zi, Zi+1, . . . , Zs;ω)]−E[h] for i = 1, . . . , s and

let

h(i) = hi(z1, . . . , zi)−
i∑

j=1

∑
(s,j)

h(j)(zi1, . . . , zij), for i = 1, . . . , s− 1 and

h(s) = h(z1, . . . , zs;ω)−
s−1∑
j=1

∑
(s,j)

h(j)(zi1, . . . , zij).

The H-decomposition of a generalized complete U-statistic is expressed as

Un,s,ω =
s∑
j=1

(
s

j

)(
n

j

)−1∑
(n,j)

h(j)(Zi1, . . . , Zis). (5)

When no extra randomness is injected into h, the above definition reduces to the classic

H-decomposition. Note that the randomness ω is only involved in h(s); for h(1), . . . , h(s−1),

it is marginalized out. Note that because each subsample is associated with an i.i.d. draw

of the randomness ω, each of the h(s) terms in Eq. (5) involves this randomness though this

notation is suppressed in Eq. (5) for readability.
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3.0 Asymptotic Normality

3.1 Asymptotic normality of generalized U-statistics

Before providing the asymptotic distributional results for generalized U-statistics of the

form

Un,s,N,ω =
1

N

∑
(n,s)

ρh(Zi1, . . . , Zis;ω) (6)

we pause to emphasize the value in considering this form of estimator and to distinguish this

generalization from the more classical counterparts considered in recent studies. [54] produce

a central limit theorem for infinite-order U-statistics, but consider randomized kernels only

insofar as establishing that when such randomness is well-behaved, the limiting distributions

are equivalent. More recently, [69] analyzed random forests constructed with all possible

subsamples where the kernel can thus be written in a form where the additional randomness

is marginalized out. Such estimators take the form(
n

s

)−1∑
(n,s)

Eωh(Zi1, . . . , Zis;ω) (7)

so that the kernels themselves are non-random and thus the estimator is simply a complete,

infinite-order U-statistic with kernel g = Eωh(Zi1, . . . , Zis;ω).

While more convenient for theoretical analysis, random forests of the form conceived

in Eq. (7) are not generally utilized in practice, even in small-data settings since, by con-

struction, such a statistic involves building every possible randomized tree on every possible

subsample of the data. In practice, random forests might be loosely seen as a double or nested

Monte Carlo approximation to the estimators in Eq. (7), where one source of approximation

results from using N <
(
n
s

)
subsamples and the other results from estimating the kernel itself

Eωh(Zi1, . . . , Zis;ω) on each subsample. Recent work by [60] provides an analysis of these

kinds of nested approximations.

In practice, however, random forests are nearly always constructed by selecting subsam-

ples at random and pairing each with an independently selected randomization instance ω,

9



which is itself generally assumed to be selected uniformly at random. Generalized U-statistics

therefore provide a direct and accurate representation of such estimators. We begin with a

theorem establishing asymptotic normality for complete generalized U-statistics.

Theorem 1. Let Z1, . . . , Zn be i.i.d. from FZ and Un,s,ω be a generalized complete U-statistic

with kernel h(Z1, . . . , Zs;ω). Let θ = E[h], ζ1,ω = Var(E[h|Z1]) and ζs = Var(h). If s
n

ζs
sζ1,ω
→

0, then
Un,s,ω − θ√
s2ζ1,ω/n

 N(0, 1). (8)

The proof of Theorem 1 is provided in the Appendix B.2. The general strategy is to

find a linear statistic to approximate Un,s,ω, and show that the difference is negligible by

applying the H-Decomposition.

Remark 1. The condition in Theorem 1 that s
n

ζs
sζ1,ω
→ 0 can be replaced by the weaker

condition that s
n
( ζs
sζ1,ω
− 1)→ 0. In practice, this condition can be satisfied by choosing s

to grow slow relative to the variance ratio ζs/sζ1,ω. In particular, whenever the ratio is

bounded, choosing s = o(n) is sufficient. Thus, in establishing asymptotic normality, this

weaker condition may be of minimal consequence. However, in quantifying the finite sample

deviations from normality via the Berry-Esseen Theorems in Chapter 4, this alternative

condition plays an important role in establishing the bounds provided.

Similar results for non-generalized U-statistics have appeared in the recent works dis-

cussed earlier. Theorem 1 in [54] can be modified slightly to provide an analogous result

whenever s2

n
ζs

sζ1,ω
→ 0. A recent result in [61] proceeds along these lines. Both results,

however, could be improved by applying the H-decomposition rather than the Hájek pro-

jection. Similarly, Theorem 3.1 in [69] establishes asymptotic normality for non-generalized,

complete U-statistics whenever the subsample size s grows like nβ for some β < 1. Here

though the authors are concerned only with base learners that take the form of averages

over honest and regular trees and in particular, with controlling the asymptotic bias of the

resulting estimator. Thus, with minor modifications, Theorem 3.1 in [69] could be seen as

something of a corollary to our Theorem 1 above, corresponding to the special case where

the within-kernel randomness is held fixed or marginalized out.

The complete forms of these estimators are almost never utilized in practice due to

10



the computational burden involved with calculating
(
n
s

)
base learners. Thus, armed with the

results for the complete case, we now establish an analogous result for incomplete generalized

U-statistics.

Theorem 2. Let Z1, . . . , Zn be i.i.d. from FZ and Un,s,N,ω be a generalized incomplete U-

statistic with kernel h(Z1, . . . , Zs;ω). Let θ = E[h], ζ1,ω = Var(E[h|Z1]) and ζs = Var(h).

Suppose that E[|h − θ|2k]/E2[|h − θ|k] is uniformly bounded for k = 2, 3 and for all s. If

s
n

ζs
sζ1,ω
→ 0 and N →∞, then

Un,s,N,ω − θ√
s2ζ1,ω/n+ ζs/N

 N(0, 1). (9)

Remark 2. Note that the variance in the theorem above takes a different form than in Theo-

rem 1 but the requirement that s
n

ζs
sζ1,ω
→ 0 remains the same. Indeed, whenever this condition

is satisfied, the complete U-statistic analogue is also asymptotically normal and normality of

the incomplete version can be established as a by-product. However, this condition and more

generally, asymptotic normality of the complete version, is not necessary. In such cases,

choosing a very small ensemble size (e.g. N=o(n/s)) is sufficient. More details and related

results are provided in Appendix B.2 along with the proof of Theorem 2.

Taken together, Theorem 1 and Theorem 2 provide the asymptotic distribution of gen-

eralized U-statistics for all possible growth rates on the number of subsamples N relative to

n. Besides the regularity conditions on the kernel, these results require only that s
n

ζs
sζ1,ω
→ 0.

This condition, similar to the notion of ν-incrementality discussed in [69], is not overly strong

but may appear somewhat arbitrary. In the following subsection we investigate the behavior

of this ratio for a variety of base learners.

3.2 Variance ratio behavior

For a given kernel h, let ĥ be the projection of h onto the linear space. We have that

ĥ =
∑s

i=1 h1(Zi) and thus

Var(h)

Var(ĥ)
=

Var(h)

sVar(E[h|Z1])
=

ζs
sζ1,ω

. (10)
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Since ζs is the overall variance and ζ1,ω can be written as the variance of the expectation of

the kernel conditioning on one argument, we can view the ratio in Eq. (10) as a measure of the

potential influence of one single observation on the output of the kernel. When ζs/sζ1,ω → 1,

h itself is asymptotically linear. More generally though, Theorems 1 and 2 require only that

s
n

ζs
sζ1,ω
→ 0 in order for the generalized U-statistic to be asymptotically normal. Thus, if the

limiting behavior of the variance ratio ζs/sζ1,ω is understood, the subsampling rate can be

chosen to ensure the entire term approaches 0.

For simple kernels such as the sample mean and sample variance, it is straightforward to

show that the limit of this variance ratio is 1, though this can also be shown to hold for more

standard regression estimates such as ordinary least squares; see Appendix B.3 for explicit

calculations. Here we focus our attention more on nearest-neighbor estimators and linear

smoothers as these are more directly relatable to the tree-style base learners often used in

practice.

Proposition 1. Let Z1, . . . , Zs denote i.i.d. pairs of random variables (Xi, Yi) and suppose

Yi = f(Xi) + εi where f is continuous, εi has mean 0 and variance σ2, and the Xi and εi are

independent. Let ϕ denote the standard k-nearest neighbor (kNN) estimator. Then

lim sup
s→∞

ζs
sζ1

≤ c(k)

where

c(k) = 2k/

[
k−1∑
i=0

k−1∑
j=0

(i+ j)!

i!j!

1

2i+j

]
so that c(k) is decreasing in k and 1 < c(k) ≤ 2.

A sketch of c(k) for k = 1, ..., 50 is shown in Fig. 3.1. The proof of Proposition 1 is

provided in Appendix B.3. Note that kNN is a nonadaptive linear smoother, the variance

ratio of which is bounded above by a constant. The following result gives an upper bound

for the more general class of all linear smoothers.

Proposition 2. Let Z1, . . . , Zs denote i.i.d. pairs of random variables (Xi, Yi) and suppose

Yi = f(Xi) + εi where f is bounded, ε has mean 0 and variance σ2, and the Xi and εi are

independent. Let

ϕ =
s∑
i=1

w(i, x,X)Yi

12



Figure 3.1: The function of c(k) for k = 1, ..., 50. c(k) is monotonically decreasing as k

increases and bounded with 1 < c(k) ≤ 2.

such that
∑s

i=1w(i, x,X) = 1, where X denotes {Xi}si=1. Then lim sups→∞
ζs/sζ1
s

<∞.

The results above demonstrate that the behavior of the variance ratio is manageable for

k-nearest neighbor base learners and more generally, linear smoothers. Recent work [62, 57]

has sought to draw a connection between these estimators and the CART-style trees utilized

in Breiman’s original random forests. The purely random forest [8] that determines splits

completely at random, for example, is exactly a linear smoother and thus by the above result,

has a variance ratio that behaves like O(s). In work dating back even further, [51] introduced

the concept of potential nearest neighbors (PNNs) and showed that random forests can be

viewed as an adaptively weighted k-PNN method.

Definition 3 ([51]). A sample point Zi = (Xi, Yi) is called a k-potential nearest neighbor

(k-PNN) of a target point x if and only if there are fewer than k sample points other than

Xi in the hyperrectangle defined by x and Xi.

Typically, the number of potential nearest neighbors is much larger than the number
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of nearest neighbors. Existing nearest-neighbor methods, both adaptive and nonadaptive,

predict by selecting and averaging over k points from the set of all k-PNNs. The classical

kNN procedure non-adaptively chooses the k points as those closest to x under some metric

whereas commonly used tree-based methods may have a terminal size bounded by k and

adaptively select points from the k-PNNs based on empirical relationships in the data.

Moving closer to this, consider the base learner that forms a prediction at x by simply

choosing k of the s observations in the subsample uniformly at random and averaging the

corresponding response values. In Appendix B.4, we show that the resulting variance ratio

for this naive estimator is given by

ζs
sζ1

=
s

k
=

1/k · s2

s · 1
.

Now reconsider the kNN base learner. We can view such an estimator as “randomly” selecting

k points from the k-NNs and again predicting by taking the average. In this case, the variance

ratio can be written as

ζs
sζ1

= O(1) = O

(
1/k · k2

s · E[Pr2(X1 ∈ kNN | X1)]

)
.

The form of this result may naturally lead one to conjecture that for any base learner that

predicts by randomly selecting and averaging over points in some set A, the resulting ratio

may have the form
ζs
sζ1

= O

(
1/k · |A|2

s · E[Pr2(X1 ∈ A | X1)]

)
. (11)

Consider then a simple tree-style estimator that predicts at x by sampling k points uniformly

at random from its k-PNNs and averaging the corresponding response values; we refer to

these random potential nearest neighbor estimators as RP trees. The additional difficulty

introduced with RP trees is that the size of this set of potential nearest neighbors is itself

random, though from [51], we know that the expected number of k-PNNs is O(k(log s)p−1)

and so extending our conjecture, we arrive at the following proposition. we have
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Proposition 3. Let Z1, . . . , Zs denote i.i.d. pairs of random variables (Xi, Yi) and suppose

Yi = f(Xi) + εi where f is bounded, ε has mean 0 and variance σ2, and Xi and εi are

independent. Suppose further that that the density of X is bounded away from 0 and infinity

in [0, 1]p. Then for the RP tree estimator, we have

lim sup
s→∞

ζs/sζ1

(log s)2p−2
<∞. (12)

The proof of Proposition 3 is provided in Appendix B.4. Here, asymptotic normality can

be ensured by insisting on the same subsample sizes put forth in [69], namely that s = o(nβ)

for some 0.5 < β < 1.

Calculating the variance ratio for adaptive base learners without imposing specific con-

straints on the base learners and/or data is quite challenging. However, we conclude our

discussion here by noting that the previous calculations offer some encouragement. Given the

k-PNNs of some target point x and considering estimators that predict by averaging over

some subset of these, we showed that for non-adaptive estimators like kNN, the variance

ratio is bounded. On the other hand, when the samples are selected uniformly at random

from all k-PNNs, the variance ratio is on the order of (log s)2p−2. Tree-based estimators,

by definition, predict by averaging over subsets of potential nearest neighbors, though the

particular fashion in which those neighbors are chosen is often data-dependent. If, however,

we are in a common regression setting where the response is regressed on covariates that

contain some signal, then trees may heavily weight only a subset of the potential nearest

neighbors, particularly in directions that can account for some of the variability in the re-

sponse. In such settings, the variance ratio may be approximately of the form in Eq. (11) for

some smaller set S and therefore be smaller than that of RP trees. Since this is not the main

focus of this work, we do not investigate this idea further here but leave further exploration

of the variance ratio behavior as potentially interesting future work.
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4.0 Berry-Esseen Bounds

Given i.i.d. random variables Z1, . . . , Zn with mean µ and variance σ2, the Berry-Esseen

theorem [4, 33] provides a classical result describing the rate of convergence of Sn =
∑

i(Zi−

µ)/σ
√
n to the normal distribution. It states that provided the third moment v3 = E|Z−µ|3

is finite,

sup
z∈R
|Fn(z)− Φ(z)| ≤ Cv3

σ3
√
n

where Fn is the distribution function of Sn, Φ is the distribution function of the standard

normal, and C is a constant independent of n and the Zi. Several authors (e.g. [14, 15, 37, 17])

have since contributed various iterations of Berry-Esseen theorems for U-statistics. In the

following sections, we derive bounds for generalized U-statistics involving n, s,N , and the

moments of the base learner to lend some intuition regarding how these parameters might

be chosen in practice. We utilize the H-decomposition along with novel representations of

U-statistics in order to provide bounds sharper than previously established in the literature

for infinite-order U-statistics as well as first-of-their-kind bounds for generalized U-statistics.

4.1 Bounds for generalized U-statistics

We begin with the following result on generalized, complete U-statistics.

Theorem 3. Suppose that Z1, . . . , Zn are i.i.d. from FZ and that Un,s,ω is a generalized

complete U-statistic with kernel h = h(Z1, . . . , Zs;ω). Let θ = E[h], ζs = Var(h) and ζ1,ω =

E[g2(Z1)], where g(z) = E[h(z, Z2, . . . , Zs;ω)]−θ. Suppose further that ζs <∞ and ζ1,ω > 0,

then

sup
z∈R

∣∣∣∣∣Pr

{
Un,s,ω − θ√
s2ζ1,ω/n

≤ z

}
− Φ(z)

∣∣∣∣∣ ≤ 6.1E|g|3

n1/2ζ
3/2
1,ω

+ (1 +
√

2)

{
s

n

(
ζs
sζ1,ω

− 1

)}1/2

.

A number of important points are worth noting here. First, when s is fixed, the bound has

a rate on the order of 1/
√
n as should be expected since this is the standard rate associated
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with classic (finite-order), complete U-statistics. Additionally, when the randomness ω is

held fixed so that the estimator reduces to an infinite-order U-statistic, this bound is sharper

than that provided in [17], which, to our knowledge, is the sharpest to date in the existing

literature. Specifically, the bound appearing in [17] replaces the term

s

n

(
ζs
sζ1

− 1

)
in the bound above, which is on the order of s/n, with

(s− 1)2ζs
s(n− s+ 1)ζ1

which is on the order of s2/n. An immediate consequence of this tighter bound is that when

kernels are employed such that the resulting terms ζs/sζ1 and E|g|3/ζ3/2
1 are bounded, a

subsampling rate of s = o(n) is sufficient to ensure the bound converges to 0, whereas a rate

of s = o(
√
n) would be required according to the bound given in [17]. This sharper rate we

obtain is ultimately a result of utilizing Lemma 4 together with the H-decomposition. Full

details are provided in Appendix C.2.

Generalized incomplete U-statistics can be viewed as generalized complete U-statistics

with an alternative kernel. Recognizing this fact, we can make use of the H-decomposition

and Lemma 4 given in the appendix to obtain the following bound for incomplete, generalized

U-statistics.

Theorem 4. Suppose that Z1, . . . , Zn are i.i.d. from Fz and that Un,s,N,ω is a generalized

incomplete U-statistic with kernel h = h(Z1, . . . , Zs;ω). Let θ = E[h], ζs = Var(h), and

ζ1,ω = E[g2(Z1)], where g(z) = E[h(z, Z2, . . . , Zs;ω)] − θ. Suppose further that ζs < ∞ and

ζ1,ω > 0. Then

sup
z∈R

∣∣∣∣∣Pr

{
Un,s,N,ω − θ√
s2ζ1,ω/n

≤ z

}
− Φ(z)

∣∣∣∣∣
≤ 6.1E|g|3

n1/2ζ3
1,ω

+ (1 +
√

2)

{
s

n

(
ζs
sζ1,ω

− 1

)}1/2

+

(
1 +

√
1

s

){
n

N
(1− p) ζs

sζ1,ω

}1/2

.
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The proof of Theorem 4 is provided in Appendix C.2. The preceding theorems indicate

that for both infinite-order and generalized U-statistics, when incomplete versions of these

estimators are used, these statistics remain asymptotically as efficient as the complete forms

so long as n = o(N). Comparing Theorems 3 and 4, note that these bounds differ only

by the inclusion of an additional final term in the sum, which is close to 0 in such large-N

settings. However, in small-N settings, this final term can become quite large, leading to a

bound nearing or even exceeding 1, thereby making it of little use. Theorem 5 below provides

improved Berry-Esseen bounds for such small-N settings where relatively few base learners

are employed. To achieve this, rather than writing the estimators as linear statistics plus a

small additional manageable term, we take an alternative approach that views incomplete

U-statistics as complete U-statistics plus a remainder. This strategy is similar to that used

in [20] who recently derived non-asymptotic Gaussian approximation error bounds for high-

dimensional, incomplete U-statistics, but for kernels with fixed (finite) rank. Proofs of the

following results are provided in Appendix C.2.

Theorem 5. Suppose that Z1, . . . , Zn are i.i.d. from FZ and that Un,s,ω,N is a generalized

incomplete U-statistic with kernel h = h(Z1, . . . , Zs;ω). Let θ = E[h], ζs = Var(h), and

ζ1,ω = E[g2(Z1)], where g(z) = E[h(z, Z2, . . . , Zs;ω)] − θ. Suppose further that ζs < ∞ and

ζ1,ω > 0. If E[|h− θ|2k]/E2[|h− θ|k] is uniformly bounded for k = 2, 3 and for all s. Then

sup
z∈R

∣∣∣∣∣Pr

{
Un,s,N,ω − θ√
s2ζ1,ω/n+ ζs/N

≤ z

}
− Φ(z)

∣∣∣∣∣
≤ C

{
E|g|3

n1/2(E|g|2)3/2
+

E|h− θ|3

N1/2(E|h− θ|2)3/2
+

{
s

n

(
ζs
sζ1,ω

− 1

)}1/2

+
( s
n

)1/3
}

for some constant C > 0.

Here we see that when s is fixed, the Berry-Esseen bound is on the order of n−1/3. When

s grows with n, the bound converges to zero as long as s/n → 0 and N → ∞ with some

mild conditions on h.

The fundamental task in producing this result is to show that the convolution of the

two independent sequences approaches a normal distribution. A number of approximations
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are required, though we give a nearly sharp bound on each in order to provide the Berry-

Esseen bound shown. As noted earlier, [20] recently investigated a similar setup for higher-

dimensional kernels assumed to be of fixed rank. In our case, the use of an infinite-order

kernel injected with extra randomness introduces additional technical difficulties, though the

restriction to one-dimensional settings allows us to incorporate more useful concentration

inequalities. Thus, even for kernels assumed to have a fixed, finite rank, the result above is

sharper than that provided in [20] for the one-dimensional setting.

As an additional benefit, we note that the bound above consisting of a four-term sum

contains insightful terms not produced in [20]. In particular, the second term corresponds

to the bound that would be available for an estimator that takes an average of i.i.d. random

variables, while the first term plus the third term gives the bound for the complete infinite-

order U-statistic setting. This leads to the very natural intuition that when N is quite small,

the bound produced is approximately what would be expected by averaging over independent

base learners whereas when N is large, the bound is approximately what we would expect

for a complete infinite-order U-statistic. To see where the fourth and final term (s/n)1/3

comes from, we now delve into the proof details in the following subsection.

4.2 A tighter bound

In order to obtain the previous bounds, we first condition on Z1, . . . , Zn and obtain

a Berry-Esseen bound for the difference between the infinite-order forms of incomplete and

complete U-statistics, Un,s,N−Un,s. The terms involved in this bound are themselves infinite-

order U-statistics with kernels that are power functions of the original kernel h. We make

use of Chebyshev’s inequality to replace those infinite-order U-statistics by their population

mean, the application of which requires no particular assumptions on the tail behavior of the

kernel. This approach, however, leads to the non-optimal term of ( s
n
)1/3. We thus conclude

our discussion on Berry-Esseen Theorems by showing in this final subsection that placing

additional assumptions on the kernel h can allow the application of sharper concentration

inequalities that can therefore allow the term ( s
n
)1/3 to be replaced by ( s

n
)1/2.
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Theorem 6. Suppose that Z1, . . . , Zn are i.i.d. from FZ and that Un,s,N,ω is a generalized

incomplete U-statistic with kernel h = h(Z1, . . . , Zs;ω). Let θ = E[h], ζs = Var(h) and

ζ1,ω = E[g2(Z1)], where g(z) = E[h(z, Z2, . . . , Zs;ω)] − θ. Suppose further that ζs < ∞

and ζ1,ω > 0. If |h − θ|k is sub-Gaussian after standardization with variance proxy that is

uniformly bounded for k = 2, 3 and all s, then

sup
z∈R

∣∣∣∣∣Pr

{
Un,s,N,ω − θ√
s2ζ1,ω/n+ ζs/N

≤ z

}
− Φ(z)

∣∣∣∣∣
≤ C

{
E|g|3

n1/2(E|g|2)3/2
+

E|h− θ|3

N1/2(E|h− θ|2)3/2
+

[
s

n

(
ζs
sζ1,ω

− 1

)]1/2

+
( s
n

)η}
,

where C > 0 is some constant and 0 < η < 1/2.

Note that since there is a trade-off between the probability and concentration bound,

larger η requires a larger n to ensure the above inequality holds. Proof details of Theorem 6

are given in Appendix C.3 for the incomplete infinite-order U-statistic setting; the extension

to generalized incomplete U-statistics follows in an identical fashion.
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5.0 Variance Estimation

5.1 Introduction

It is difficult to overstate the importance and utility of resampling methods and the

bootstrap in particular for determining properties of estimators whenever exact, explicit

sampling distributions cannot be readily determined. Given a sample X1, ..., Xn ∼ FX , a

parameter of interest θ, and an estimator θ̂ = s(X1, ..., Xn), it is often of interest to estimate,

for example, Var(θ̂). Let x = (x1, ..., xn) denote the observed values of the sample so that

for a particular realization, θ̂ = s(x). To provide bootstrap estimate of the variability of the

estimator, we can draw B (re)samples of size n with replacement from {x1, ..., xn} to form

bootstrap samples x∗1, ...,x
∗
B from which we calculate bootstrap estimates θ̂1, ..., θ̂B. The

nonparametric bootstrap variance estimate of θ̂ is then taken as the empirical variance of

θ̂1, ..., θ̂B [28, 31].

Within this context, given the necessity of calculating θ̂1, ..., θ̂B, it is natural to instead

consider the estimator

θ̃B =
1

B

B∑
b=1

θ̂b (13)

as a “bootstrap smoothed” alternative to the original θ̂ [32]. This sort of bootstrap aggre-

gation (bagging) was also proposed by [11] as a means by which predictive variance may be

reduced when each bootstrap sample is used to construct an individual model, frequently a

classification or regression tree.

The standard bootstrap approach – referred to recently as the brute force approach by

[31] – to assessing the variability of θ̃B, though straightforward, is computationally quite

burdensome, requiring several bootstrap replicates of not only the original data, but also

from within the bootstrap samples themselves. This double bootstrap, first proposed in [3],

is especially costly whenever the original statistic T is computationally costly.

A variety of approaches have been suggested to reduce the computational burden of

these sorts of problems. [73] and [23, 24, 25] employ what is now referred to as the fast
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double bootstrap whereby only a single second-level bootstrap sample is collected. [36]

employ such an approach in running Monte Carlo experiments and a more careful analysis is

given in [16]. [65] propose some alternative nonparametric means by which Var(θ̃B) may be

estimated, suggesting also that the number of second-level bootstrap replicates B
′

need only

be a fraction of the original resample size B. In lieu of full bootstrap samples, subsampling, or

m-out-of-n bootstrap sampling, was proposed by [58] and [10]. More recently, [64] proposed

a combination of these approaches, first subsampling and then employing a single second-

level resample. Similarly, [49] proposed the bag of little bootstraps which involves splitting

the original dataset into a number of subsamples and then taking bootstrap samples on each

subset allowing the process to more easily scale by being capable of efficiently running in

parallel.

Though the above approaches can substantially reduce the computational complexity

in estimating the variance of estimators based on resampling procedures, each nonetheless

involves further resampling in order to obtain such an estimate. Recently, motivated by the

problem of taking into account not only the sampling variability but also the variability in

model selection, [31] alleviated this issue by developing an algebraically compact, closed-form

estimator for the variance of a bagged estimate. Instead of additional resampling, Efron’s

proposal required only additional bookkeeping to recall which samples in the original data

appeared how many times in each bootstrap sample. This development was particularly

beneficial in estimating the variance in predictions generated via supervised learning ensem-

bles that are relatively computationally expensive. A number of recent works, for example,

have successfully applied this type of estimator in the context of random forests [72, 70, 75].

Though its final form is algebraically simple, the derivation of Efron’s variance estimator

is fairly involved and may appear somewhat mysterious to many readers. Its development

comes from an application of the original theory for the infinitesimal jackknife involving func-

tional derivatives. Likely as a result, studies rigorously investigating the statistical properties

of this estimator as well as the contexts in which such an estimator would be appropriate are

lacking in the current literature. Efron, for example, notes that the appropriateness of his

nonparametric delta method (infinitesimal jackknife) approach follows from the fact that the

bagged estimates represent a more smooth function of the data. Thus, while clearly an ex-
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tremely significant result in and of itself, these estimates would not appear to apply to more

general resampling schemes wherein such smoothness assumptions may not be reasonable.

In this chapter, we strive to take a step forward both in better understanding the intu-

ition behind this important estimator as well as in understanding it’s statistical properties.

In addition to the infinitesimal jackknife derivation utilized by Efron, we consider two al-

ternative approaches that are a bit more straightforward and easily motivated. The first of

these exploits the important fact that conditional on the observed data, the bagged estimate

in Eq. (13) depends only on the resampling weights. We consider a linear approximation

to this function of bootstrap weights (i.e. standard linear regression) and demonstrate that

this approach exactly reproduces the infinitesimal jackknife results given in [31] whenever

all bootstrap samples are employed. As an additional benefit, this setup motivates a more

general procedure for estimating the variance of any resampled estimate, not just one based

on the bootstrap.

In addition to the linear regression and infinitesimal jackknife approaches, we also con-

sider a classical jackknife motivation and once again demonstrate its equivalence in the full

bootstrap context. Importantly, this alternative representation of the estimator allows us

to explore its asymptotic properties and in particular, the bias. While the variance estima-

tors motivated by the jackknife, infinitesimal jackknife, and linear regression approaches are

shown to be identical when all bootstrap samples are used, they differ in practical settings

when only a randomly selected subsample are employed, suggesting different bias corrections

that might be imposed.

Finally, we derive the form of the infinitesimal jackknife estimate of variance in the U-

statistic regime where the resampling is instead done by subsampling without replacement.

We discover that the variance estimators commonly employed in practice for quantifying the

predictive uncertainty in supervised learning ensembles like random forests are something of

a “pseudo” infinitesimal jackknife in that they differ from the correct form when properly

derived. However, the difference is minor when subsample size is small. We then investigate

the properties of the “pseudo” infinitesimal jackknife and provide a consistent estimate of

the variance of generalized U-statistics.
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5.2 Background of the infinitesimal jackknife (IJ)

Let Dn denote a sample of observed values from real-valued random variables X1, . . . , Xn

from a distribution P. In practice, we are often interested in estimating statistical functionals

– functions of the underlying distribution P, often estimated via the empirical probability Pn.

Denote this statistic as s(X1, . . . , Xn) = f(Pn) and assume that s is permutation symmetric

in these n arguments. These “functions of functions” were first introduced by [68] and today

are a familiar topic of advanced analysis. Any statistic that treats the samples equivalently

can also be viewed as a function of Pn, albeit without always having an explicit form of

f . We can further extend the domain of f to any non-negative functions on X1, . . . , Xn by

defining

f(P) = f(c · P), for any c > 0. (14)

A common task, especially in today’s big data era is to find an appropriate and feasible

means of estimating the variance of f(Pn). Historically, there have been three main methods:

the infinitesimal jackknife [55], influence curves [39, 43], and the delta method [30]. Though

each method was motivated differently, [29] pointed out that the three methods are identical.

We thus refer the common estimator as IJ defined as

IJ =
1

n2

∑
i

D2
i , (15)

where

Di = lim
ε→0

f((1− ε)Pn + εδXi)− f(Pn)

ε
(16)

and δx is the Dirac delta function.

We now briefly review the original derivation of the IJ, following closely the original

construction by [56] and [47]. Let P be the set of all linear combinations of P and an

arbitrary finite number of the δx measures. Let P+ be the the set of positive measures in

P , not including the zero measures and assume f is defined for the probability measures in

P+. As above, extend f to all of P+ by letting f(c · P) = f(P) for all c > 0. Note that

P+ is convex and includes Pn. We now formally define the derivative of f . We say f is

differentiable at G in P+ if there exists a function f ′(G, x), defined at all x in R, with the

following property:
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Definition 4 ( [47]). Let H be any member of P such that G + tH is in P+ for all t in some

intervals 0 ≤ t ≤ tH, tH > 0, so that f(G + tH) is defined for t in this interval. Then for

any such H, f ′(G, x) satisfies

df(G + tH)

dt
|t=0 = lim

t→0

f(G + tH)− f(G)

t
=

∫
f ′(G, x) dH(x). (17)

If H = G, we see that
∫
f ′(G, x) dG(x) = 0 since f(cG) = f(G). On the other hand, if

H = δx −G, we find

lim
t→0

f((1− t)G + tδx)− f(G)

t
=

∫
f ′(G, x) d(δx −G)(x) = f ′(G, x). (18)

Indeed, [39] defined f ′(G, x) by Eq. (18) and has called it the “influence curve”, since it

reflects the influence of f by adding a small mass on G at x. Additionally, the derivative of

f(G + tH) at arbitrary t0 with 0 < t0 < tH is given by

df(G + tH)

dt
|t=t0 =

∫
f ′(G + t0H, x) dH(x). (19)

Now, we assume that f is differentiable, in the sense defined above, at all G in some

convex neighbor of P in P+, such that Pn lies in the neighborhood with probability ap-

proaching one. We now describe the motivation of IJ for answering when we think IJ could

be a sensible estimate of the variance of f(Pn). We parameterize the segment from P to Pn
by P(t) = P + t(Pn − P)for 0 ≤ t ≤ 1. Then if Pn lies in the neighborhood of P, we hope

that

f(Pn)− f(P) = f(P(1))− f(P(0))

=

∫
f ′(P, x) d(Pn − P)(x) + op

(
1

n

)
=

1

n

∑
i

f ′(P, Xi) + op

(
1

n

)
.

(20)

The third equality is due to the fact that
∫
f ′(G, x) dG(x) = 0. Since the first term on the

right side is a sum of i.i.d. random variables,
√
n(f(Pn)− f(P)) is asymptotic normal with

mean 0 and variance V =
∫

[f ′(P, x)]2 dP(x). Since P is unknown and f ′(P, x) depends on
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both f and P, we generally do not know f ′(P, x) in advance. Thus, we would estimate V by

∫
f
′2(Pn, x) dPn(x) =

1

n

∑
i

[f ′(Pn, Xi)]
2. (21)

Then Var(f(Pn)) can be estimated by 1
n2

∑
[f ′(Pn, Xi)]

2, which is exactly equal to IJ since

Di = f(Pn, Xi).

In summary, to obtain the final estimate of the variance of f(Pn), we actually introduce

two steps of approximation. Eq. (20) approximates f(Pn) by a linear statistic at Pn, whereas

Eq. (21) approximates P by Pn and f ′(P) by f ′(Pn). Obviously, the most questionable parts

are whether f is close to a linear statistic and whether f ′(Pn) is close to f ′(P).

5.3 The infinitesimal jackknife estimate for bootstrap (IJB)

In this section, we focus on a special f induced by bootstrap. Suppose that s(X1, ..., Xn)

is statistic, not necessarily a function of Pn. We take all possible bootstrap samples (X∗1 , ..., X
∗
n),

plug in s to obtain s∗, and then take the average. We call the new statistic the bootstrap

smoothed (bagged) alternative of s and denote it as E∗[s∗], where E∗[·] is the expectation

taken over the bootstrap sampling procedure conditioned on the data. Note that E∗[s∗] is

now a function of Pn. The dependence of f on Pn can be explicitly expressed out as

f(Pn) =

∫
s dPn × · · · × Pn =

∫
s d(Pn)n. (22)

Therefore, f depends on (Pn)n and the dependence roughly exponentially grows with n. By

Berry-Esseen theorem, the distance of Pn and P is at order of 1/
√
n. However, the distance

of (Pn)n and (P)n is just O(1). Therefore, the distance of f(Pn) and f(P) could be large if

f(Pn) depends on Pn exponentially.
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5.3.1 The convergence of three different approaches

We follow three different approaches, including the infinitesimal jackknife method, to

derive an estimate of Var(E∗[s∗]) and show that they are equivalent when all bootstrap

samples are taken.

The infinitesimal jackknife approach Since E∗[s∗] can be viewed as a function of Pn,

estimating Var(E∗[s∗]) = Var(f(Pn)) is a standard problem for the infinitesimal jackknife

method and we call the estimate IJB. By the definition of E∗[s∗], we have

f((1− ε)Pn + εδXi) = n−n
∑ s(X∗1 , . . . , X

∗
n)n!

(w∗1!)(w∗2!) . . . (w∗n!)

[
(1− ε)

∑
k 6=i w

∗
k(1 + (n− 1)ε)w

∗
i
]

= n−n
∑ s(X∗1 , . . . , X

∗
n)n!

(w∗1!)(w∗2!) . . . (w∗n!)
[1 + nε(w∗i − 1)] + o(ε2)

= f(Pn) + εnCov∗(s
∗, w∗i ) + o(ε2),

(23)

where w∗i = #{j : X∗j = Xi}. Thus, by Eq. (16), Di = nCov∗(s
∗, w∗i )) = ncovi and

IJB =
∑
i

cov2
i =

∑
i

Cov2
∗(s
∗, w∗i ). (24)

Eq. (24), following a simple application of the infinitesimal jackknife method, was first derived

by [31]. The author did not discuss how good the estimation is or how bad it could possibly

be. Actually, there has been no general theory answering these questions since the invention

of the infinitesimal jackknife method. One possible reason could be that the process is

quiet abstract. It involves with functional derivatives, which loses probability meaning.

However, we found that we can derive the same estimator from other approaches, getting

rid of functional derivatives. In particular, we have an explicit expression of f ′(P) and a

different interpretation of Cov∗(s
∗, w∗i ).

First, note that E∗[s∗] is a symmetric function of X1, . . . , Xn. Therefore, there exists a

H-decomposition [42] of E∗[s∗]. Let t = E∗[s∗], we have t = E[t]+
∑

j

∑
i1,...,ij

tj(Xi1 , . . . Xij),

where

t1(x1) = E[t|X1 = x1]− E[t]

t2(x1, x2) = E[t|X1 = x1, X2 = x2]− t1(x1)− t1(x2)− E[t]

...

tn(x1, . . . , xn) = t−
n−1∑
j=1

∑
(n,j)

tj(xi1 , . . . , xij)− E[t],

(25)
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where t1, . . . , tn are uncorrelated with mean 0. Let us consider using the linear term lb =

E[t] +
∑

i t1(Xi) as an approximation of t. We know that Var(lb) = n
∫
t21 dP. Since t and P

are unknown, we can not get the exact value of Var(lb), but we could estimate t1 and P and

hence obtain an estimation of Var(lb). Firstly, Pn is at hand a good candidate for estimating

P, and we have ∫
t21 dP ≈

∫
t21 dPn =

1

n

n∑
i=1

t21(Xi). (26)

Secondly, as for t1(X1) = E[t|X1] − E[t], E[·] is again unknown, but we could substitute it

with E∗[·] instead and obtain

t1(X1) = E[t(X1, . . . , Xn)|X1]− E[t]

≈ E∗[t(X1, X
∗
2 , . . . , X

∗
n)]− E∗[t]

= E∗[s∗(X1, X
∗
2 , . . . , X

∗
n)]− E∗[s∗]

= e1 − s0,

(27)

where e1 = E∗[s∗(X1, X
∗
2 , . . . , X

∗
n)] and s0 =

∑
ei/n. Putting all approximations together,

we have

V̂ar(lb) =
∑
i

(ei − s0)2. (28)

Recall how we develop IJ by the infinitesimal jackknife method. We can find that t1 =

f ′(P) - the derivative of f at P. The infinitesimal jackknife method approximates t = f(P) by

f(P)+
∫
f ′(P) dPn, whereas here we approximate t by E[t]+n−1

∑
i t1(Xi). Basically, we show

how the idea behind the infinitesimal jackknife coincides with the idea of linear approximation

by H-Decomposition. Indeed, we will later show that
∑

(ei − s0)2 = IJB unsurprisingly.

Note that the approximation in Eq. (27) might not be good since E[E∗[s∗]|X1]−E[E∗[s∗]] is

substituded by E∗[s∗|X∗1 = X1]−E∗[s∗]. Also, E∗[s∗] might not be close to the linear statistic

lb. Therefore, we suspect that IJB is only appropriate for estimating the Var(E∗[s∗]) for in

limited cases.

The jackknife approach We introduce the jackknife method here and see how it can

motivate us to propose an estimator for Var(E∗[s∗]). Denote t as E∗[s∗]. The delete-1

jackknife samples are selected by taking the original data vector and deleting one observation

from the set. Thus, there are n unique jackknife samples, and the ith jackknife sample vector
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is defined as Dn[i] = (X1, . . . , Xi−1, Xi+1, . . . , Xn). The ith jackknife replicate is defined as

the value of the estimator t(·) evaluated at the i th jackknife sample. The jackknife variance

is then defined by

JK =
n− 1

n

∑
(t(Dn[i])− t̄)2

≈ nVar∗

(∑
i

t(Dn[i]) · 1{Xi is deleted}

)
.

(29)

The idea is that we expect t(Dn[i]) be closed to t(Dn) and thus use the sample variance

t(Dn[i]) to estimate the variance of t(Dn). And since those t(Dn[1]), . . . , t(Dn[n]) are strongly

correlated, we scale the sample variance by n. Note that t =
∫
s(x1, . . . , xn) dPn(x1)× · · · ×

Pn(xn). We can consider fixing the ith position instead of deleting ith sample. Thus we

replace t(Dn[i]) by

t(i,j) =

∫
s(x1, x2, . . . , xi−1, Xj, xi+1, . . . , xn) dPn(x1) · · ·Pn(xi−1)× Pn(xi+1) · · ·Pn(xn)

for 1 ≤ i, j ≤ n and propose

JKB = nVar∗

(∑
j

t(i,j)1{X∗i =Xj}

)
=
∑
j

(ej − s0)2 (30)

as an estimate of the variance of E∗[s∗]. The third equality in Eq. (30) is simply due to the

fact that t(i,j) = ej.

The least squared approach Recall that in the standard approach, B equally weighted

resamples of size n are independently taken from the rows of Dn with replacement. Thus

each weight vector w∗ ∼ Multinomial( 1
n
, . . . , 1

n
). Also note that the specific weight vector

w∗ = 1n corresponding to the case where each original sample in Dn is taken exactly once and

thus, continuing with the notation from the previous section, s(1n) gives the complete (orig-

inal) estimate. Since we are conditioned on Dn, s∗ is essentially a function of (w∗1, . . . , w
∗
n).

Consider the linear space spanned by w∗ = (w∗1, . . . , w
∗
n) and denote the l∗ as the projection

of s(w∗) onto the linear space. We use Var∗(l
∗) as an estimate of Var(E∗[s∗]).

We show that three different ideas converge to an identical variance estimator -IJB,

whenever all bootstrap samples are used.

Theorem 7. Suppose we have data Dn and a statistic s. Let (X∗1 , . . . , X
∗
n) be a general

bootstrap sample of Dn and s∗ = s(X∗1 , . . . , X
∗
n), then
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1. E∗[s∗w∗j ] = ej;

2. l∗ =
∑

j w
∗
jβj, where βj = (ej − s0);

3. Var∗(l
∗) = JKB = IJB.

where ej = E∗[s∗|X∗1 = Xj] and s0 = E∗[s∗].

The proof of Theorem 7 can be found in Appendix D.1. In practice, limited by com-

putational power, we typically don’t have all bootstrap samples. Image that we draw B

times of (X∗1 , X
∗
2 , . . . , X

∗
n) and obtain (X∗b1, . . . , X

∗
bn) for b = 1, . . . , B. For each b, we have

s∗b = s(X∗b1, . . . , X
∗
bn). Consider the bagging estimate s∗ = 1

B

∑B
b=1 s

∗
b . For the variance of s∗,

by law of total variance, we have

Var(s∗) = Var(E[s∗|Dn]) + E[Var(s∗|Dn)]

= Var(E∗[s∗]) +
1

B
E[Var∗(s

∗)].
(31)

The dominant term in Eq. (31) is Var(E∗[s∗]), so the goal is to provide a good estimate of

Var(E∗[s∗]). Now, since we don’t have all bootstrap samples, we can not use IJB directly.

However, we could estimate IJB with finite bootstrap samples. Thus, a natural estimate of

covj is the ĉovj, the sample covariance of (s∗1, . . . , s
∗
B) and (w∗1j, . . . , w

∗
Bj). For ej − s0, s0 can

be estimated as
∑B

b=1 s
∗
b/B. Since ej the expected value of s∗ given X∗i = Xj for i = 1, . . . , n,

thus a natural estimate is the weighted average of the mean of s∗b whereX∗i = Xj. The weights

are the proportion of X∗i = Xj in those B bootstrap samples. After simple calculation, we

find that

êj =
B∑
b=1

w∗bj∑
w∗bj

s∗b , êj − s0 =
B∑
b=1

(
w∗bj∑
w∗bj
− 1

B

)
s∗b . (32)

Lastly, the estimate of Var∗(l
∗) is suggested by V̂ar(l̂), where - l̂ = (l̂1, . . . , l̂B) is the projection

of (s∗1, . . . , s
∗
B) onto the linear space spanned by (w∗1j, . . . , w

∗
Bj) for j = 1, . . . , n and V̂ar(l̂) =

1
B

∑B
b=1(l̂b − ¯̂

l)2 is the sample variance of l̂.
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In summary, we follow three different ideas to obtain IJB, an identical estimation of

Var(E∗[s∗]). The finite sample version of IJB will be different for these three approaches. In

particular, we have

V̂ar(l̂) =
1

B

B∑
b=1

(l̂b − ¯̂
l)2

ĴKB =
n∑
j=1

êj − s0
2

=
n∑
j=1

[
B∑
b=1

(
w∗bj∑
w∗bj
− 1

B

)
s∗b

]2

ÎJB =
n∑
j=1

ĉov2
j =

n∑
j=1

[
1

B − 1

B∑
b=1

(s∗b − s̄∗)(w∗bj − w̄∗j )

]2

.

(33)

ĴKB was also proposed by [74] in the name of “Balanced Variance Estimation Method”. We

would expect that V̂ar(l̂), ĴKB and ÎJB would perform similarly in simulations.

5.3.2 The bias of ÎJB

Given an ensemble of size B, Var(s∗) = Var(E∗[s∗])+E[Var∗(s
∗)]/B. The dominant term

is Var(E∗[s∗]). Therefore, we just need to understand how well ÎJB estimates Var(E∗[s∗]). We

consider the Monte Carlo bias and sampling bias of ÎJB for estimating Var(E∗[s∗]), where ∗

refers to the bootstrap procedure . The sampling bias is considered with respect to variation

of the data, whereas the Monte Carlo bias is considered with respect to bootstrap process

conditioned on the data. We combine those two bias by

ÎJB − Var ∝ E∗[ÎJB]− IJB︸ ︷︷ ︸
Monte Carlo Bias

+E[IJB]− Var︸ ︷︷ ︸
Sampling Bias

. (34)

where ÎJB is given in Eq. (33).

The Monte Carlo bias We first consider the Monte Carlo bias of ÎJB. We have

E∗[ÎJB]− IJB =
∑

j E∗[ĉov2
j ]− cov2

j and E∗[ĉov2
j ]− cov2

j = E∗[ĉov2
j ]− E2

∗[ĉovj] = Var∗(ĉovj).
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Next,

Var∗(ĉovj)

= − B − 2

B(B − 1)
Cov2

∗(s
∗, w∗j ) +

Var∗(s
∗)Var∗(w

∗
j )

B(B − 1)
+

E∗[(s∗ − E∗[s∗])2(w∗j − E∗[w∗j ])]2

B

= − (B − 2)

B(B − 1)
Cov2

∗(s
∗, w∗j ) +

(n− 1)

nB(B − 1)
Var∗(s

∗) +
1

B
E∗[(s∗ − E∗[s∗])2(w∗j − E∗[w∗j ])]2

=
1

B
Var∗

(
(s∗ − E∗[s∗])(w∗j − E∗[w∗j ]

)︸ ︷︷ ︸
I

+
1

B(B − 1)

[
Var∗(s

∗)Var∗(w
∗
j ) + Cov2

∗(s
∗, w∗j )

]︸ ︷︷ ︸
II

.

Note that I is the dominant term and is O(1/B). Essentially, using ĉov2
j to estimate cov2

j is

analogous to using X̄2 to estimate E2[X], which is biased since E[X̄2] = E2[X] + Var(X)/B.

Var(X)/B might not be negligible, especially when B is not large and E[X] is small.

Cov∗(s
∗, w∗j ) is actually small, since s is permutation symmetric and thus the impact of

w∗j on the outcome of s∗ is small. Therefore, a bias correction term is necessary.

Corollary 1. A Monte Carlo bias corrected version of ÎJB is defined as

ÎJ
mc

B = ÎJB −
1

B

∑
j

V̂ar
(
(s∗ − s̄∗)(w∗j − w̄∗j )

)
, (35)

where V̂ar denotes sample variance. The bias correction term is a sum of n terms. When n

is small, V̂ar
(
(s∗ − s̄∗)(w∗j − w̄∗j )

)
would not be minor. If additionally B is not large, then

the bias correction term will be significant.

Remark 3. In recent work, [71] proposed the following Monte Carlo bias corrected ÎJB by

ÎJ
efron

B = ÎJB −
n

B
V̂ar(s∗). (36)

We can see that if Var∗((s
∗ − E∗[s∗])(w∗j − E∗[w∗j ]) is close to Var∗(s

∗ − E∗[s∗])Var∗(w
∗
j −

E∗[w∗j ]) = (1 − 1
n
)Var∗(s

∗ − E∗[s∗]), then Eq. (35) is close to Eq. (36). We will conduct a

simulation to compare Eq. (35) and Eq. (36) in the next section.
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The sampling bias Generally, the bias of IJB for bootstrap is difficult to understand,

largely due to the replicates of bootstrap samples. We already found in Theorem 7 that

IJB =
∑

j(ej − s0)2 = Var∗(l
∗). This observation enables us to move a small step further in

terms of understanding the bias of IJB. First, let’s take a look at how IJB behaves on some

simple examples.

Example 1: sample mean Consider s = s(x1, . . . , xn) = 1
n

∑n
i=1 xi. We have

s∗ =
1

n

n∑
i=1

X∗i , l∗ =
n∑
i=1

n∑
j=1

1X∗i =Xj(ej − s0). (37)

Then E∗[s∗] = 1
n

∑n
i=1 Xi and Var∗(l

∗) = 1
n2

∑n
i=1(Xi − X̄)2. So

Var(E∗[s∗]) = σ2/n, E[Var∗(l
∗)] = (n− 1)σ2/n2. (38)

Thus, we have E[Var∗(l∗)]
Var(E∗[s∗]) = n−1

n
→ 1 as n → ∞. In Figure 5.1, X1, . . . , Xn follow N (0, σ2)

where n = 100 and σ2 = 1. Since we know that Var(E∗[s∗]) = σ2/n , the oracle estimate

would be σ̂2/n, where σ̂2 is the sample variance. The gray dash line is the true value of

Var(E∗[s∗]). We find that ÎJ
mc

B and ÎJ
efron

B are quite close as expected and both perform

well. The original ÎJB seems to be overestimating seriously when B = 100.

IJB IJefron
B IJmc

B oracle

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

IJB IJefron
B IJmc

B oracle
0.6

0.8

1.0

1.2

1.4

1.6

1.8
1e 2

Figure 5.1: Performance of the infinitesimal jackknife and its bias-corrected alternatives on

estimating the variance of the bagged sample mean (left: B = 100, right: B = 1000).
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Example 2: sample variance Consider s =
(
n
2

)−1∑
i<j

(xi − xj)2. We have

E∗[s∗] =
1

n

n∑
i=1

(Xi − X̄)2, Var∗(l
∗) =

1

n2

∑
i

[
(Xi − X̄)2 − 1

n

∑
i

(Xi − X̄)2

]2

. (39)

and then

Var(E∗[s∗]) =

(
n− 1

n

)2 [
µ4

n
− µ2

2

n

n− 3

n− 1

]
= anµ4 − bnµ2

2

(40)

and

E[Var∗(l
∗)] =

1

n
E[XTAX]2, where A = Σ1 −

1

n

∑
i

Σi. (41)

Here Σi = (ei − 1
n
1n)(eTi − 1

n
1Tn ), and ei = (0, . . . , 0, 1, 0, . . . , 0). After a careful calculation,

we obtain

E[Var∗(l
∗)]

=
(n− 1)

n2

[
E(X1 − X̄)4 − E(X1 − X̄)2(X2 − X̄)2]

]
=

(
n− 1

n

)2 [(
n3 − (n− 1)2

n2(n− 1)2
+

n

(n− 1)5

)
µ4 −

(
n2 − 2n+ 3

(n− 1)n2
− 3n2(2n− 3)

(n− 1)5

)
µ2

2

]
= a′nµ4 − b′nµ2

2.

(42)

Thus, we have

a′n
an

= 1 + n2+n−1
n(n−1)2

+ n2

(n−1)5
= 1 + 1

n
+ o( 1

n
) (43)

b′n
bn

= 1 + n+3
n(n−3)

− 3n3(2n−3)
(n−1)4(n−3)

= 1− 5
n

+ o( 1
n
). (44)

Since a′n/an → 1 and b′n/bn → 1 as n → ∞, we have E[Var∗(l∗)]
Var(E∗[s∗]) → 1. IJB is asymptotically

unbiased for estimating the variance of sample variance. Since sample variance is close to

a linear statistic, the result is not surprising. In Figure 5.2, X1, . . . , Xn follow N (0, σ2)

where n = 100 and σ2 = 1. Since we know Var(E∗[s∗]) = 2σ4/n, the oracle estimate

would be 2(σ̂2)2/n, where σ̂2 is the sample variance. The gray dash line is the true value

of Var(E∗[s∗]). We find that ÎJ
mc

B and ÎJ
efron

B are quite close as expected and both perform

well. The original ÎJB seems to suffer the issue of overestimation when B = 100.
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Figure 5.2: Performance of the infinitesimal jackknife and its bias-corrected alternatives on

estimating the variance of the bagged sample variance (left: B = 100, right: B = 1000).

Example 3: sample maximum Consider s = maxiXi, where X1, . . . , Xn are uniformly

distributed between 0 and 1. Then,

Var(E∗[s∗]) =
(n−

∑n
j=1( j−1

n
)n)(1 +

∑n
j=1( j−1

n
)n)

(n+ 1)2(n+ 2)
(45)

and

E[Var∗(l
∗)] =

∑
i[
∑n

j=1( j−1
n

)n −
∑n

j=i+1( j−1
n

)n−1]2

(n+ 1)(n+ 2)
. (46)

The details of the calculation can be found in Appendix D.1. We have

E[Var∗(l
∗)]

Var(E∗[s∗])
=

(n+ 1)
∑

i[
∑n

j=1( j−1
n

)n −
∑n

j=i+1( j−1
n

)n−1]2

(n−
∑

j(
j−1
n

)n)(1 +
∑

j(
j−1
n

)n)

→ c ∈ [0.24, 0.25] as n→∞.

(47)

We can see that IJB is seriously underestimating of Var(E∗[s∗]). E∗[s∗] in this case is not close

to a linear statistic, so IJB should not be expected to perform well. In Figure 5.3, X1, . . . , Xn

follow Unif(0, 1), where n = 100. The dash line is the true value of Var(E∗[s∗]). We don’t

have an oracle estimation for E∗[s∗] this time. We find that ÎJ
mc

B and ÎJ
efron

B are quite close

as expected, but all three suffer the issue of underestimation, even when B = 1000.
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Figure 5.3: Performance of the infinitesimal jackknife and its bias-corrected alternatives on

estimating the variance of the bagged sample maximum (left: B = 100, right: B = 1000).

5.3.3 The consistency of IJB

Generally, how well does IJB = Var∗(l
∗) estimate Var(E∗[s∗])? Recall that the key step

of IJB is essentially approximating E∗[s∗] by lb and estimating Var(lb) by Var∗(l
∗). It turns

out E∗[s∗] ≈ lb is sufficient for IJB to be consistent as shown in the following theorem.

Theorem 8. If E∗[s∗] = lb + op
(

1
n

)
, then IJB

p−→ Var(E∗[s∗]).

Proof of Theorem 8 is provided in Appendix D.1. As shown in the above examples, for

the cases of sample mean and sample variance, E∗[s∗] ≈ lb and Var∗(l
∗) turns out to be a

good estimate of the variance of E∗[s∗]. For the case of sample maximum, E∗[s∗] 6≈ lb and

Var∗(l
∗) turns out underestimate the variance of E∗[s∗]. The following theorem suggests that

it is necessary for E∗[s∗] to be asymptotic linear to make IJB consistent.

Theorem 9. Let E∗[s∗] be the bootstrap smoothed alternative of s, then

lim
n→∞

E[Var∗(l
∗)]

Var(E∗[s∗])
= 1 ⇐⇒ lim

n→∞
n(1− ρ) = 1, (48)

where ρ is the correlation between e1 and e2 and ei = E∗[s∗|X∗1 = Xi].

Consider the case that s = X̄, which is linear. We obtain that ρ = n2−1
n2+n−1

= 1− 1/n +

o(1/n) and E[Var∗(l
∗)]/Var(E∗[s∗]) = n−1

n
→ 1. We suspect that to make ρ = Cov(e1, e2) =

1− 1/n+ o(1/n), E∗[s∗] requires to be equal to lb + op(1/n).

36



5.4 The pseudo infinitesimal jackknife estimate for U-statistic (s-IJU)

5.4.1 IJ for U-statistic

The idea of the infinitesimal jackknife method can be extended to subsampling without

replacement. In this case, E∗[s∗] is a U-statistic, which is more convenient for theoretical

analysis and also more likely to be close to linear. Here s is a function of k i.i.d. random

variables. The U-statistic can be written as

U =

(
n

k

)−1 ∑
(n,k)

s(Xi1 , . . . , Xik). (49)

How does U depend on Pn, such that U = f(Pn) for some f? The dependence is abstract so

that the subsampling proceeds according to the probabilities determined by Pn. Following

the definition of IJ, we have the following theorem.

Theorem 10. The IJ estimator of the variance of a U-statistic is

IJU =
k2

n2

n∑
j=1

[αej − βs0]2, (50)

where ej = E∗[s∗|X∗1 = Xj], s0 = E∗[s∗] and

α = 1 +
1

n

{
k − 1

2
− 1

k

k−1∑
j=0

j2

(n− j)

}
, β = 1 +

1

k

k−1∑
j=0

j

n− j
.

If we write Var(U) and E[IJU] in terms of V1, . . . , Vk, then the ratio of the coefficients of Vj

in E[IJU] and that in Var(U) is rj, where

rj =
(n− k)2

n2

[
j

1− j/n
α2 +

n

k2(n− k)2
(α− β)2

]
, for j = 1, . . . , k. (51)

Remark 4. If k is fixed, Var(U) is dominated by the V1 term. Since rj → j for j = 1, . . . , k,

IJU is asymptotically unbiased.
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5.4.2 s-IJU for U-statistic

In recent work, [69] proposed another estimate of the variance of U-statistic. Since

U-statistic is just subsampling without replacement, which is just slightly different from

bootstrap, they copied the format of the IJ for bootstrap to U-statistic and obtained∑
j

Cov2
∗(s
∗, w∗j ), (52)

where ∗ refers to the subsampling procedure. However, we would call it the pseudo in-

finitesimal jackknife estimate (s-IJU), since it is not derived from the orgininal definition of

infinitesimal jackknife. A more rigorous motivation for s-IJU is provided as following. Recall

that from the derivative of IJ, we assume that f(Pn) − f(P) = 1
n

∑n
i=1 f

′(P, Xi) + op(1/n),

where the dominated term is a sum of i.i.d. random variables. And we estimate the vari-

ance of f ′(P, Xi) by 1
n

∑n
i=1 f

′2(,Pn, Xi). Now consider that we rewrite f(Pn) − f(P) =∑n
i=1

∑
g(Xi) + op(1/n), where g(Xi) is not necessarily 1

n
f ′(P, Xi). From the theory of U-

statistic, we know that there is a natural candidate for g(Xi), which is the Hájek projection -

E[f(Pn)−f(P)|Xi] = k
n
E[s−E[s]|Xi]. Since Var(

∑
g(Xi)) = k2

n
V1, where V1 = Var(E[s|X1]),

we just need to propose a reasonable estimate V̂1 for V1 and use

k2

n
V̂1 (53)

as an estimate of the variance of U-statistic. Since V1 = E[E[s|X1] − E[s]]2, a natural

candidate for V̂1 would be

1

n

∑
j

(E∗[s∗|X∗1 = Xj]− E∗[s∗])2 =
1

n

∑
j

(ej − s0)2. (54)

It turns out that Eq. (53) is the same as Eq. (52).
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Proposition 4. Let D∗n = (X∗1 , . . . , X
∗
k) be a general subsample of size k of Dn and w∗j =

1Xj∈D∗n, then

Cov∗(s
∗, w∗j ) =

k

n
(ej − s0),

where ∗ refers to the procedure of subsampling without replacement, ej = E∗[s∗|X∗1 = Xj]

and s0 = E∗[s∗]. And then

s-IJU =
∑
j

Cov2
∗(s
∗, w∗j )

=

((
k
1

)(
n
1

))2∑
j

(ej − s0)2.

(55)

Analogous to IJU, we have the following theorem.

Theorem 11. The pseudo infinitesimal jackknife estimate of the variance of a U-statistic

is

s-IJU =
k2

n2

n∑
j=1

[ej − s0]2, (56)

where ej = E∗[s∗|X∗1 = Xj] and s0 = E∗[s∗]. If we write the Var(U) and E[s-IJU] in terms of

V1, . . . , Vk, then the ratio of the coefficients of Vj in E[s-IJU] and that in Var(U) is rj, where

rj =

(
n− k
n

)2
j

1− j/n
, for i = 1, . . . , k. (57)

Note that although our goal is using k2

n
V̂1 to estimate k2

n
V1, E[k

2

n
V̂1] = E[s-IJU] involves

higher order terms with V2, . . . , Vk. This is not what we want, but it is unavoidable since we

are don’t have new data generated from the underlying distribution. If we simply multiply

s-IJU by ( n
n−k )2 n−1

n
as proposed by [69], then only the first term is unbiased, but doubles

the quadratic term, triples the cubic term and etc. This can explain why this estimation is

inflated in practice. In many applications, k is not that small, and thus the higher order terms

of the Var(U) is not negligible, so the effect of rj cannot be ignored. A similar phenomenon

was discovered by [29] for the jackknife estimation of variance.
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5.4.3 The consistency of s-IJU

If k/n → 0, then α → 1 and α − β → 0, and thus IJU → s-IJU. Other than that,

s-IJU looks slighter simpler in format. Due to the nice structure of U-statistic, besides

the bias of s-IJU, we can actually talk about the consistency of s-IJU. Moreover, not only

for the U-statistics, we can even talk about generalized U-statistics - Un,k,N,ω as defined in

Definition 1. Indeed, let eωi =
(
n−1
k−1

)−1∑
s(Xi, . . . , ;ω) and sω0 =

(
n
k

)−1∑
s(. . . ;ω). Note

that each collection of subsamples is paired with an i.i.d. ω. Then the s-IJU is defined as

s-IJωU =
k2

n2

∑
[eωi − sω0 ]2. (58)

Theorem 1 states that if k
n
(ζk/kζ1,ω − 1) → 0, then the complete generalized U-statistic -

Un,k,ω is asymptotic normal with variance of k2

n
ζ1,ω, where ζk = Var(s) and ζ1,ω = V1 =

Var(E[s|X1]). When the same conditions are met, s-IJωU is consistent. In other words, if the

U-statistic is almost linear, then s-IJωU will be consistent, i.e. s-IJωU
p−→ Var(Un,k,ω).

Theorem 12. Let X1, . . . , Xn be i.i.d. from FX and Un,k,ω be a generalized complete U-

statistic with kernel s(X1, . . . , Xk;ω). Let θ = E[s], ζ1,ω = Var(E[s|X1]) and ζk = Var(s). If

k
n
( ζk
kζ1,ω
− 1)→ 0, then

s-IJωU
p−→ Var(Un,k,ω). (59)

Corollary 2. If the conditions in Theorem 12 are held, then

Un,k,ω ± zα/2
n

n− k
√

s-IJωU = Un,k,ω ± zα/2
n

n− k

√∑
Covω∗ (s

∗, w∗i )
2

= Un,k,ω ± zα/2
k

n− k

√∑
(eωi − sω0 )2

(60)

provides an asymptotically valid confidence interval for θ with confidence level 1 − α. The

n
n−k there is for correcting the bias for non-asymptotic situation. Note that Covω∗ (s

∗, w∗i ) can

be defined similarly and Covω∗ (s
∗, w∗i ) = k

n
(eωi − sω0 ).
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However, the complete forms of these estimators are almost never utilized in practice due

to the computational burden involved with calculating
(
n
k

)
base learners. We established the

asymptotic normality for incomplete generalized U-statistics in Theorem 2. We need to

estimate the asymptotic variance of Un,k,N,ω well such that a valid confidence interval can

be conducted. Let

s-IJ†U =
k2

n2

∑
i

[e†i − s
†
0]2, (61)

where

s†0 =
1

N

∑
s(...;ω), e†i =

n

Nk

∑
s(Xi, ...;ω). (62)∑

s(...;ω) denotes the sum of all kernels that builds the incomplete U-statistic, whereas∑
s(Xi, ...;ω) denotes the sum of all kernels that builds the incomplete U-statistic and

includes Xi in their subsamples.

Theorem 13. Let X1, . . . , Xn be i.i.d. from FX and s-IJ†U be as Eq. (61). Let θ = E[s],

ζ1,ω = Var(E[s|X1]) and ζk = Var(s). Then if k
n
( ζk
kζ1,ω
− 1)→ 0 and n

N
ζk

kζ1,ω
→ 0, we have

s-IJ†U
p−→ k2

n
ζ1,ω. (63)

Remark 5. Consideingr the case that 1 < c ≤ ζk/kζ1,ω ≤ C, Theorem 13 states that N � n

is required to make s-IJ†U
p−→ k2

n
ζ1,ω.

Corollary 3. In the literature of random forest,
∑

i Ĉov
2
(s∗, w∗i ) has been proposed to es-

timate the variance of random forest. Actually, s-IJ†U has strong connection to it. Indeed,

s-IJ†U =
k2

n2

∑
i

[e†i − s
†
0]2

=
k2

n2
· n

2

k2

∑
[

1

N
s(...;ω)w∗i −

1

N

∑
s(...;ω)

k

n
]2

=
∑
i

[
1

N

∑
s(...;ω)w∗i −

1

N

∑
s(...;ω)E∗[w∗i ]

]2

≈ N̂2

N2

∑
i

Ĉov
2
(s∗, w∗i )

≈
∑
i

Ĉov
2
(s∗, w∗i ).

(64)

We can show that under the same condition of Theorem 13,
∑

i Ĉov
2
(s∗, w∗i )

p−→ k2

n
ζ1,ω.
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To our knowledge, Corollary 3 is the first set of results to show the consistency of∑
i Ĉov

2
(s∗, w∗i ) in estimating the variance of random forests that built on subsamples.

≪ ≪ ≪𝑛𝑛 /𝑘
N(0,  𝜁 𝑘

𝑁
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𝑛
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𝑁
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𝜁̂𝑘 𝜁̂1,𝜔

Figure 5.4: The distribution of Un,k,N,ω as a function of N . N � n is required to for s-IJ†U

to estimate ζ1,ω consistently.

According to Theorem 2, Un,k,N,ω has different asymptotic distributions bases on the value

of N . When N � n/k, Un,,N,ω ∼ N (0, ζk/N); when N = O(n/k), Un,,N,ω ∼ N (0, k
2

n
ζ1,ω+ ζk

N
)

and when N � n/k and N (0, k
2

n
ζ1,ω). We can estimate ζk simply by calculating the sample

variance of base learners built on non-overlapping subsamples. Base on the above argument,

ζ1,ω can be estimated by s-IJ†U. Therefore, it is guaranteed that

s-IJ†U
p−→ k2

n
ζ1,ω and ζ̂k

p−→ ζk. (65)

Interestingly, if a random forest is built with N decision trees, where N = O(n), then we

can not estimate the variance of the random forest consistently if just use the trees that

build the random forest. We actually need � n many decision trees. This results shed light

on the intuition that it is always more computational intensive to estimate the variance of

ensembles then obtaining the ensemble itself.
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5.4.4 Higher order s-IJU

Recall that Var(U) =
∑k

j=1

(
k
j

)2(n
j

)−1
Vk. In the previous discussion, we assume that the

U-statistic is close to a linear statistic, thus the variance of U-statistic is dominated by its

first order term k2/nV1 and we propose an estimate of V1 accordingly. People might wonder if

the remaining terms are not negligible, can we propose some estimates of Vj for j = 2, . . . , k

and obtain an estimate of Var(U)?

We first consider the results for V2 and extend them to all j, for 3 ≤ j ≤ k in a corollary.

Since V2 = Var(E[s|X1, X2] − E[s|X1] − E[s|X2] + E[s]), a natural estimate for the second

order term in Var(U) -
(
k
2

)(
n
2

)−1
V2 would be((
k

2

)
/

(
n

2

))2∑
i,j

[eij − ei − ej + s0]2, (66)

where eij = E∗[s∗|X∗1 = Xi, X
∗
2 = Xj]. Before analyzing the property of this quantity, it is

interesting to point out its connection to the s-IJU.

Proposition 5. Let D∗n = (X∗1 , . . . , X
∗
k) be a general subsample of Dn and w∗ij = 1Xi,Xj∈D∗n−

k
n
1Xi∈D∗n −

k
n
1Xj∈D∗n + k(k−1)

n(n−1)
, then

Cov∗(s
∗, w∗ij) =

(
k

2

)
/

(
n

2

)
(eij − ei − ej + s0) (67)

where ∗ refers the procedure of subsampling without replacement and eij = E∗[s∗|X∗1 =

Xi, X
∗
2 = Xj]. We call Eq. (66) the second order pseudo-IJ estimator of U-statistics:

s-IJU(2) =
∑
i,j

Cov2
∗(s
∗, w∗ij) =

(
k

2

)2

/

(
n

2

)2∑
i,j

[eij − ei − ej + s0]2. (68)

Note that s-IJU involves the covariance of s∗ and w∗j , the count of the single variable

in a subsample, whereas s-IJU(2) involves the of s∗ and w∗ij, the count of pairs of variables.

Therefore, s-IJU(2) is a natural extension of s-IJU. For notational convenience, we also write

s-IJU as s-IJU(1). Similarly,
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Corollary 4. For d = 1, . . . , k, we define that

s-IJU(d) =
∑
(n,d)

Cov2
∗(s
∗, w∗i1,...,id) =

(
k

d

)2

/

(
n

d

)2 ∑
(n,d)

 d∑
j=0

(−1)d−j
∑
(d,j)

ei1,...,ij

2

, (69)

where w∗i1,...,id =
∑d

j=0(−1)d−j
(n−d+jk−d+j)

(nk)

[∑
(d,j)

∏
w∗ij

]
. The expression for w∗i1,...,id is involved

because we are considering subsampling without replacement. If it is subsampling with re-

placement, then w∗i1,...,id =
∏

(w∗ij − 1).

Like E[s-IJU], E[s-IJU(d)] is a linear combination of the Vjs. We derive E[s-IJU(2)] in the

appendix. The expression for d ≥ 3 can be derived in the same spirit. Let ai =
(
n−i
k−i

)−1
for

i = 0, 1, . . . , d, and define bi for i = 0, 1, . . . , d by

b0 = a0

b1 = a1 − a0 = a1 − b0

...

bd = ad −
(
d

1

)
ad−1 +

(
d

2

)
ad−2 + . . . a0 = ad −

(
d

1

)
bd−1 −

(
d

2

)
bd−2 − · · · − b0.

Let ci = bi
(
n−d
k−i

)
and mi = cd−i for i = 0, . . . , d. Then for j = 1, . . . , k, the coefficient of Vj

in E[s-IJU(d)] is
(
k
d

)2
/
(
n
d

)
λj(d), where

λj(d) =

(
d

0

)(
n− d
j − d

)−1(
m0

(
n− d
j − d

))2

+

(
d

1

)(
n− d

j − d+ 1)

)−1 [
m1

(
k − d+ 1

j − d+ 1

)
−m0

(
k − d

j − d+ 1

)]2

+

(
d

2

)(
n− d

j − d+ 2

)−1 [
m2

(
k − d+ 2

j − d+ 2

)
−
(

2

1

)
m1

(
k − d+ 1

j − d+ 2

)
+m0

(
k − d

j − d+ 2)

)]2

...

+

(
d

d

)(
n− d
j

)−1 [
md

(
k

j

)
−
(

d

d− 1

)
md−1

(
k − 1

j

)
+

(
d

d− 2

)
md−2

(
k − 2

j

)
− . . .

(
d

1

)
m0

(
k − d
j

)]2

.

Putting all together, we have
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Proposition 6. By writing the Var(U) and E[s-IJU] in terms of V1, . . . , Vk, the ratio of the

coefficients of Vj in E[s-IJU(d)] and that in Var(U) is rj(d), where

rj(d) =
λj(d)

(
k
d

)2(n
d

)−1(
k
j

)2(n
j

)−1
, j = 1, . . . , k. (70)

And rj(d) is monotonically increasing w.r.t. j.

Letting n = 20 and k = 10, we plot the curve of rj(d) for to get a glimpse of how

it behaves. We hope rj be close to 1, at least for small j, because the Var(U) should be
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Figure 5.5: A plot of {rj(d)}kj=1, where n = 20 and k = 10. As d increases, the curve of rj

is bending further away the horizontal line.

dominated by the first several terms. From Figure 5.5, it seems like s-IJU(1) performs better

than others. It would be interesting to see whether combining s-IJU(d) for d = 1, . . . , k in

some way outer performs s-IJU(1) or not for future research.
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6.0 Discussion

We establish distributional results for random forest estimators, which take the form of

generalized U-statistics. We showed that under mild regularity conditions, such estimators

tend to a normal distribution so long as s
n

(
ζs

sζ1,ω
− 1
)
→ 0. When kernels are well-behaved,

this thus implies that subsamples may be taken on the order of n while retaining the asymp-

totic normality of the estimator. In practice, we expect that this condition is often most

naturally satisfied by subsampling at a slower rate with s = o(n) and ensuring that the

corresponding variance ratio ζs/sζ1,ω is bounded. In Chapter 3 we showed that the variance

ratio is well-behaved for a number of nearest-neighbor-type base learners. In general though,

such behavior is not well-understood in theory, particularly for adaptive learners. However,

in Chapter 5, we propose consistent estimates of ζ1,ω and ζs. So the behavior of ζs/sζ1,ω can

be understood in simulation. More importantly, we can make predictions with theoretically

supported prediction intervals, shedding insights into the accuracy of our prediction. In

Chapter 4 we provide Berry-Esseen bounds to quantify the proximity of these estimators to

the normal distribution. Theorem 3 provides the sharpest bound to date on this rate for

complete, infinite-order U-statistics, while the bounds that follow are each the first of their

kind.
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Appendix A Proofs in Chapter 2

Here we provide a fuller discussion of the previously established central limit theorems

for randomized, incomplete, infinite-order U-statistics, paying particular attention to the

relationship between the projection method utilized and the resulting subsampling rate nec-

essary in order to retain asymptotic normality. As noted in Chapter 2, [54] provided one

such theorem, but with somewhat strict conditions. First, the authors require that for all

δ > 0,
1

ζ1,ω

∫
|h1(z)|≥δ

√
nζ1,ω

h2
1(z) dP → 0 (n→∞)

where h1(z) = E[h(z, Z2, . . . , Zs;ω)]−θ. Note however that so long as E[h2(Z1, . . . , Zs;ω)] <

∞,

1

ζ1,ω

∫
|h1|≥δ

√
nζ1,ω

h2
1(Z) dP =

∫
∣∣∣∣ h1√

ζ1,ω

∣∣∣∣≥δ√n
(

h1√
ζ1,ω

)2

dP

automatically tends to 0 as n→∞ and thus this condition is redundant for kernels assumed

to have finite second moment.

In Section 2, we noted that there is strong reason to suspect that a subsampling rate of

s = o(n1/2) is the largest possible when the results are established via Hájek projections. We

now elaborate on that point here.

Let S denote the set of all variables of the form
∑n

i=1 gi(Zi) for arbitrary measurable

functions gi : Rd 7→ R with E[g2
i (Zi)] <∞ (i = 1, . . . , n). The Hájek projection of Un,s onto

S is

Ûn,s = θ +
s

n

n∑
i=1

h1(Zi).

Now, by the central limit theorem for i.i.d case, we have
√
nÛn,s/

√
s2ζ1  N(0, 1) and thus

by Theorem 11.2 in [67], to obtain the asymptotic normality of U-Statistic, it is sufficient

to demonstrate that Var(Un,s)/Var(Ûn,s)→ 1. This is straightforward when the rank of the

kernel is fixed but requires more careful attention whenever s is allowed to grow with n. The
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variance of the U-statistic is

Var(Un,s) =

(
n

s

)−1∑
β

∑
β′

Cov(h(Zβ1 , . . . , Zβs), h(Zβ′1 , . . . , Zβ′s))

=

(
n

s

)−1 s∑
j=1

(
s

j

)(
n− s
s− j

)
ζj

=
s∑
j=1

s!2

j!(s− j)!2
(n− s) · · · (n− 2s+ j + 1)

n(n− 1) · · · (n− s+ 1)
ζj

where β indexes subsamples of size s, and the variance of Ûn,s is

Var(Ûn,s) =
s2

n
Var (h1(Z1)) =

s2

n
ζ1.

The variance ratio is then Var(Un,s)/Var(Ûn,s) = (an + bn)/cn, where

an =
s2

n

(n− s) · · · (n− 2s+ 2)

(n− 1) · · · (n− s+ 1)
ζ1,

bn =

(
n

s

)−1 s∑
j=2

(
s

j

)(
n− s
s− j

)
ζj,

cn =
s2

n
ζ1.

Thus, in order for the variance ratio to converge to 1, it suffices to show an/cn → 1 and

bn/cn → 0. To transform these two conditions with respect to s and n, we introduce the

following lemmas.

Lemma 1 ([50]). For 1 ≤ c ≤ d ≤ s, ζs/c ≤ ζd/d.

Lemma 2. Let H(n, s) =
[

(n−s)···(n−2s+2)
(n−1)···(n−s+1)

]
, then s/

√
n→ 0 if and only if H(n, s)→ 1.

Proof. When s/
√
n→ 0, we have

H(n, s) ≥
[
n− 2s+ 2

n− 1

]s−1

= exp

[
(s− 1) log

(
1− 2s− 3

n− 1

)]
≈ exp

[
−2s2

n

]
→ 1.
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If there exists a subsequence {s′} such that s′/
√
n′ ≥ c for some constant c > 0, then

H(n′, s′) ≤
[
n′ − 3s′/2 + 1

n− s′/2

]s′−1

= exp

[
(s′ − 1) log

(
1− s′ − 1

n− s′/2

)]
≈ exp

[
−s
′2

n′

]
< 1.

Now, we can transform the conditions on an, bn and cn into conditions on n and s. Note

that

an/cn = H(n, s)

and

bn/cn =

(
n− 1

s− 1

)−1
{
s−1∑
j=1

1

j + 1

(
s− 1

j

)(
(n− 1)− (s− 1)

(s− 1)− j

)
ζj+1

ζ1

}

=

(
n− 1

s− 1

)−1
{
s−1∑
j=1

(
s− 1

j

)(
(n− 1)− (s− 1)

(s− 1)− j

)
ζj+1

(j + 1)ζ1

}

≥ 1−
[

(n− s) · · · (n− 2s+ 2)

(n− 1) · · · (n− s+ 1)

]
= 1−H(n, s).

Due to Lemma 2, s/
√
n → 0 is the necessary condition for bn/cn → 0 and an/cn → 1.

Thus, if we utilize the Hájek projection and follow the above approach in establishing that

the variance ratio converges to 1, there is no apparent way to relax the condition that

s/
√
n → 0. On the other hand, the H-decomposition we use in Chapter 3 provides a finer

approach and a better method for comparing the variance of Un,s and Ûn,s thereby allowing

for a faster subsampling rate to be employed.
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Appendix B Proofs in Chapter 3

B.1 H-decomposition

Distributional results for U-statistics are typically established via projection methods

whereby some projection Û is shown to be asymptotically normal with |U − Û | → 0 in prob-

ability. The most popular projections are the Hájek projection and the H-decomposition.

We show in Appendix A that the approach of Hájek projection always requires s/
√
n→ 0

undesirably. Alternatively, the H-decomposition provides a representation of U-statistics in

terms of sums of other uncorrelated U-statistics of rank 1, . . . , s. The form of this decom-

position presented here is derived by [41]. We illustrate those techniques in the setting of

the original U-statistic Un,s for simplicity and then extend them to the generalized complete

U-statistic Un,s,ω. Let

hc(z1, . . . , zc) = E[h(z1, . . . , zc, Zc+1, . . . , Zs)]− θ,

and define kernels h(1), h(2), . . . , h(s) of degree 1, . . . , s recursively as

h(1) = h1(z1)

h(2) = h2(z1, z2)− h1(z1)− h1(z2)

... (71)

h(s) = hs(z1, . . . , zs)−
s−1∑
j=1

∑
(s,j)

h(j)(zi1, . . . , zij).

These kernel functions have many important and desirable properties, a sample of which are

enumerated in the following proposition.

Proposition 7 ([50]). For h(j), j = 1, . . . , s defined as above, we have

1. For c = 1, . . . , j − 1, E[h(j)(z1, . . . , zc, Zc+1, . . . , Zj)] = 0.

2. E[h(j)(Z1, . . . , Zj)] = 0.

3. Let j < j′ and S1 and S2 be a j-subset of {Z1, . . . , Zn} and a j′-subset of {Z1, . . . , Zn}

respectively, then Cov(h(j)(S1), h(j′)(S2)) = 0.
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4. Let S1 6= S2 be two distinct j-subsets of {Z1, . . . , Zn}, then Cov(h(j)(S1), h(j′)(S2)) = 0.

h = h(Z1, . . . , Zn) can be written as h =
∑s

j=1

∑
(s,j) h(Zi1, . . . , Zij) and the expression

of Un,s now follows easily as

Un,s − θ =

(
n

s

)−1∑
(n,s)

hs(Zi1, . . . , Zis)

=

(
n

s

)−1∑
(n,s)


s∑
j=1

∑
(s,j)

h(j)(Zi1, . . . , Zij)


=

s∑
j=1

(
n

s

)−1∑
(n,s)

∑
(s,j)

h(j)(Zi1, . . . , Zij)

=
s∑
j=1

(
s

j

)
H(j)
n

where H
(j)
n =

(
n
j

)−1∑
(n,j) h

(j)(Zi1, . . . , Zij) is itself a U-statistic, the usefulness of which

lies in the fact that H
(j)
n (j = 1, . . . , n) are uncorrelated and the terms in H

(j)
n are also

uncorrelated. Because of the properties above, the variance of the kernel is

Var(h) = Var


s∑
j=1

∑
(s,j)

h(j)(Zi1, . . . , Zij)

 =
s∑
j=1

(
s

j

)
Vj (72)

where Vj = Var(h(j)(Zi1, . . . , Zij)). Similarly, the variance of the U-statistic can be written

as

Var(Un,s) = Var

{
s∑
j=1

(
s

j

)
H(j)
n

}
=

s∑
j=1

(
s

j

)2(
n

j

)−1

Vj. (73)

Note that the first-order term sH
(1)
n is exactly the same as in the Hájek projection Ûn,s, but

the H-decomposition provides a convenient alternative representation of U-statistics as well

as their variance. In Chapter 3, we exploit this fact to derive a tighter and more general

central limit theorem for generalized U-statistics.
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B.2 Proofs of asymptotic normality

Proof of Theorem 1: The generalized complete U-statistic and the base learner can

be written in terms of the new kernel functions h(1), . . . , h(s) defined in relation to the H-

decomposition. Let Vi,ω = Var(h(i)) for i = 1, . . . , s− 1, Vs = Var(h(s)) and define

Vs,ω = Var

hs(Z1, . . . , Zs)−
s−1∑
j=1

∑
(s,j)

h(j)(Zi1, . . . , Zij)

 .

These new kernels h(1), . . . , h(s) still retain the desirable properties in Proposition 7. Thus,

similar to Eq. (72), Eq. (73), we have the following expressions for the variance of the kernel

and generalized U-statistic:

Var(h) = ζs =
s−1∑
j=1

(
s

j

)
Vj,ω + Vs,

Var(Ûn,s,ω) =
s2

n
V1,ω =

s2

n
ζ1,ω, (74)

Var(Un,s,ω) =
s−1∑
j=1

(
s

j

)2(
n

j

)−1

Vj,ω +

(
n

s

)−1

Vs.

The sequence Ûn,s,ω/
√
s2ζ1,ω/n converges weakly to N(0, 1) by the central limit theorem

since Ûn,s,ω = s
n

∑n
i=1 h1(Zi) is a sum of i.i.d. random variables for each s, which satisfies

Lindeberg’s condition automatically. From Eq. (74), we have

Var(Un,s,ω)

Var(Ûn,s,ω)
=

(
s2

n
V1,ω

)−1
{
s−1∑
j=1

(
s

j

)2(
n

j

)−1

Vj,ω +

(
n

s

)−1

Vs

}

≤ 1 +

(
s2

n
V1,ω

)−1
s2

n2

{
s−1∑
j=2

(
s

j

)
Vj,ω + Vs

}

≤ 1 +
s

n

ζs
sζ1,ω

→ 1.

(75)

Thus by Theorem 11.2 in [67], we obtain Un,s,ω−θ√
s2ζ1,ω/n

 N(0, 1).
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Proof of Theorem 2: Without loss of generality, let θ = 0 and observe that

Un,s,N,ω =
1

N

∑
(n,s)

ρh(Zi1, . . . , Zis;ω)

= Un,s,ω +
1

N

∑
(n,s)

(ρ− p)h(Zi1, . . . , Zis;ω)

= An +Bn

where An and Bn are uncorrelated and Var(Bn) = d2
n,S,N = (1− p)ζs/N .

First, consider the case that p = N/
(
n
s

)
6→ 0. Since s

n
ζs

sζ1,ω
→ 0, by Theorem 1 we have

An/
√
s2ζ1,ω/n N(0, 1). Moreover, we have

Var(Bn)

Var(An)
→ N−1(1− p)ζs

s2ζ1,ω/n
≤ n2

Ns2
· s
n

ζs
sζ1,ω

→ 0.

Thus Un,s,N,ω/
√
s2ζ1,ω/n→ N(0, 1), implying Eq. (9).

Now suppose p→ 0 and define

φAn+Bn(t) = E

[
exp

(
it

(
s2ζ1,ω

n
+
ζs
N

)−1/2

(An +Bn)

)]

= E

[
exp

(
it

(
s2ζ1,ω

n
+
ζs
N

)−1/2

An

)

E

[
exp

(
it

(
s2ζ1,ω

n
+
ζs
N

)−1/2

Bn

)
| Z1, . . . , Zn;ω

]]
= E

[
φ̂An(t)φ̂Bn(t)

]
.

The strategy is to show that φ̂Bn(t) is well behaved and then show that φAn+Bn → e−t
2/2.

Note that U2 =
(
n
s

)−1∑
(n,s) h

2(Zi1, . . . , Zis;ω) is a complete U-statistic with kernel h2. For

any ε > 0, by Chebyshev’s inequality, we have

P
{
|U2 − E[h2]| ≥ εE[h2]

}
≤ s

n

E[h4]

ε2E2[h2]
≤ s

n

C

ε2
,

which indicates that U2/ζs(= U2/E[|h|2])
p−→ 1. U3/E[|h|3]

p−→ 1 also holds by a similar ar-

gument, where U3 =
(
n
s

)−1∑
(n,s) |h(Zi1, . . . , Zis;ω)|3. Let D = {U2/E[h2] ∈ [1− δ, 1 + δ]} ∩

{U3/E[|h|3] ∈ [1− δ, 1 + δ]}. Then for any δ, ε > 0, D holds with probability at least 1−ε for

n sufficiently large. Let d̂n,s,N = [(1− p)U2/N ]1/2 and consider Bn/d̂n,s,N | Z1, Z2, . . . , Zn;ω,
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which is a sum of independent random variables. Thus, to establish asymptotic normality,

it suffices to check the Lyapounov’s condition. We have

L =

(
n
s

)−1∑
(n,s,) |h|3((

n
s

)−1∑
(n,s) |h|2

)3/2

1− 2p+ 2p2√
N(1− p)

=
1− 2p+ 2p2√
N(1− p)

U3

U
3/2
2

.

Thus, as N →∞ and p→ 0,

L ≤ 1 + δ

(1− δ)3/2

E[|h|3]

E3/2[|h|2]

1− 2p+ 2p2√
N(1− p)

→ 0

uniformly with respect to Z1, . . . , Zn and ω over D and hence we have

E
[
exp

(
iuBn/(d̂n,s,N)

)
| Z1, . . . , Zn;ω

]
→ e−

u2

2

uniformly over any finite interval of u and uniformly with respect to Z1, . . . , Zn and ω over

D. Letting the interval be [0, t
√

(1 + δ)], we have∣∣∣∣φ̂Bn(t)− exp

(
t2

2

(
(1− p) · ζs/N

s2ζ1,ω/n+ ζs/N

)
ζ−1
s U2

)∣∣∣∣
=

∣∣∣∣∣E
[

exp

(
t

(
(1− p) · ζs/N

s2ζ1,ω/n+ ζs/N

)1/2

(ζ−1
s U2)1/2 ·Bn/d̂n,s,N

)
| Z1, . . . , Zn;ω

]

− exp

(
−t

2

2

(
(1− p) · ζs/N

s2ζ1,ω/n+ ζs/N

)
ζ−1
s U2

)∣∣∣∣ ≤ ε.

over D for n, N sufficiently large. Now, let

φB(t) = exp

(
−t

2

2

(
(1− p) · ζs/N

s2ζ1,ω/n+ ζs/N

))
.

Then by the uniform continuity of ex over any finite interval, there exists δ′ = O(δ) such

that ∣∣∣∣exp

(
−t

2

2

(
(1− p) · ζs/N

s2ζ1,ω/n+ ζs/N

)
ζ−1
s U2

)
− φB(t)

∣∣∣∣ ≤ δ′

over D. Finally, for n and N sufficiently large, we have∣∣∣φ̂Bn(t)− φB(t)
∣∣∣ 1D ≤ (ε+ δ′)1D. (76)

Next, consider φ̂An . Since An/
√
s2ζ1,ω/n N(0, 1) by Theorem 1, then

E
[
exp

(
iuAn/

√
s2ζ1,ω/n

)]
→ e−

u2

2
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uniformly over any finite interval of u. Let the interval be [0, t], then for n sufficiently large,

we have∣∣∣∣∣E
[

exp

(
it

(
s2ζ1,ω/n

s2ζ1,ω/n+ ζs/N

)1/2

· An/
√
s2ζ1,ω/n

)]
− e

− t
2

2

s2ζ1,ω/n

s2ζ1,ω/n+ζs/N

∣∣∣∣∣ ≤ ε

Let φA(t) = e
− t

2

2

s2ζ1,ω/n

s2ζ1,ω/n+ζs/N and consequently, we have∣∣∣E [φ̂An(t)
]
− φA(t)

∣∣∣ ≤ ε. (77)

Combining Eq. (76) and Eq. (77) gives

|φAn+Bn(t)− φA(t)φB(t)| =
∣∣∣E [φ̂A(t)φ̂Bn(t)

]
− φA(t)φB(t)

∣∣∣
≤
∣∣∣E [φ̂An(t)φB(t)1D

]
− φA(t)φB(t)

∣∣∣∣∣∣E [φ̂An(t)
(
φ̂Bn(t)− φB(t)

)
1D

]∣∣∣+ ε

≤
∣∣∣E [φ̂An(t)φB(t)1D

]
− φA(t)φB(t)

∣∣∣+ (ε+ δ′) + ε

≤
∣∣∣E [φ̂An(t)1D

]
− φA(t)

∣∣∣+ 2ε+ δ′ (78)

≤
∣∣∣E [φ̂An(t)

]
− φA(t)

∣∣∣+
∣∣∣E [φ̂An(t)1Dc

]∣∣∣+ 2ε+ δ′

≤ ε+ ε+ 2ε+ δ′

= 4ε+ δ′.

Moreover, we have

φA(t)φB(t) = exp

(
−t

2

2

[
s2ζ1,ω/n

s2ζ1,ω/n+ ζs/N
+

((
1− N(

n
s

)) · ζs/N

s2ζ1,ω/n+ ζs/N

)])

= e−
t2

2 · exp

(
−t

2

2

[
N(
n
s

) ζs/N

s2ζ1,ω/n+ ζs/N

])
→ e−

t2

2

which implies that for n, N sufficiently large, we have∣∣∣φA(t)φB(t)− e−
t2

2

∣∣∣ ≤ ε. (79)

Combining Eq. (78) and Eq. (79) yields that φAn+Bn(t)→ e−
t2

2 , which implies Eq. (9).
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Following the statement of Theorem 2 in the main text, we remarked that the form of

the result provided included the condition that s
n

ζs
sζ1,ω
→ 0, which thus implies that the

complete analogue of the incomplete U-statistic is also asymptotically normal, but that such

a condition is not necessary. We elaborate on this point here by providing an alternative

result.

Theorem 14. Let Z1, . . . , Zn be i.i.d. from FZ and Un,s,N,ω be a generalized incomplete U-

statistic with kernel h = h(Z1, . . . , Zs;ω). Let θ = E[h] and ζs = Var(h). Suppose that

E[|h− θ|2k]/E2[|h− θ|k] is uniformly bounded for k = 2, 3 and for s. Then

1. Un,s,N,ω − θ = An +Bn, where Bn = N−1
∑

(n,s)(ρ− p)(h(Zi1, . . . , Zis;ω)− θ) and An =

Un,s,ω − θ, If s/n→ 0 and N →∞ with p = N/
(
n
s

)
→ 0, then

Bn√
ζs/N

 N(0, 1). (80)

2. In addition to the conditions in 1, If Var(An)/Var(Bn)→ 0, then

Un,s,N,ω − θ√
ζs/N

 N(0, 1). (81)

Proof. For 1, without loss of generality, let θ = 0. Observe that

Un,s,N,ω =
1

N

∑
(n,s)

ρh(Zi1, . . . , Zis;ω)

=
1

N

∑
(n,s)

(ρ− p)h(Zi1, . . . , Zis;ω) + Un,s,ω

= Bn + An,

where An and Bn are uncorrelated, and Var(Bn) = d2
n,S,N = (1 − p)ζs/N . First, U2 =(

n
s

)−1∑
(n,s) h

2(Zi1, . . . , Zis;ω) is a complete U-statistic with kernel h2. For any ε > 0, by

Chebyshev’s inequality, we have

Pr
{∣∣U2 − E[h2]

∣∣ ≥ εE[h2]
}
≤ s

n

E[h4]

ε2E2[h2]
≤ s

n

C

ε2
,
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which indicates that U2/ζs(= U2/E[|h|2])
p−→ 1. Let D2 = {ζ−1

s U2 ∈ [1− δ, 1 + δ]}. Thus for

any δ, ε > 0, for n sufficiently large, Pr(D2) ≥ 1− ε. Let d̂n,s,N = [(1− p)U2/N ]1/2. Then

φBn(t) = E [exp (itBn/dn,s,N)]

= E [E [exp (itBn/dn,s,N) | Z1, . . . , Zn;ω]]

= E
[
E
[
exp

(
it(ζ−1

s U2)1/2 ·Bn/d̂n,s,N

)
| Z1, . . . , Zn;ω

]]
.

Bn/d̂n,s,N | Z1, Z2, . . . , Zn;ω is a sum of independent random variables and thus in order to

establish asymptotic normality it suffices to check the Lyapounov’s condition. We have

L =

(
n
s

)−1∑
(n,s) |h|3((

n
s

)−1∑
(n,s) |h|2

)3/2

1− 2p+ 2p2√
N(1− p)

=
1− 2p+ 2p2√
N(1− p)

U3

U
3/2
2

where U3 =
(
n
s

)−1∑
(n,s) |h(Zi1, . . . , Zis;ω)|3. Since E[h6]/E2[|h|3] ≤ C, by a similar argument

as for U2, D3 = {U3/E[|h|3] ∈ [1− δ, 1 + δ]} holds with probability at least 1 − ε. Then as

N →∞ and p→ 0,

L ≤ 1 + δ

(1− δ)3/2

E[|h|3]

E3/2[|h|2]

1− 2p+ 2p2√
N(1− p)

→ 0

uniformly with respect to Z1, . . . , Zn and ω over D2 ∩ D3. Note that distance between the

characteristic function Bn/d̂n,s,N and a standard normal distribution can be controlled by L.

Thus with probability at least 1− 2ε,

E
[
exp

(
iuBn/(d̂n,s,N)

)
| Z1, . . . , Zn;ω

]
→ e−

u2

2

uniformly over any finite interval of u and uniformly with respect to Z1, . . . , Zn and ω over

D2 ∩D3. Letting the interval be [t
√

(1− δ), t
√

(1 + δ)], we have∣∣∣E [exp
(
it(ζ−1

s U2)1/2 ·Bn/(d̂n,s,N)
)
| Z1, . . . , Zn;ω

]
− e−

t2

2
ζ−1
s U2

∣∣∣ ≤ ε
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over D2 ∩D3 for N sufficiently large. Therefore,∣∣∣φBn(t)− e−
t2

2

∣∣∣ ≤ E
[∣∣∣E [exp

(
it(ζ−1

s U2)1/2 ·Bn/d̂n,s,N

)
| Z1, . . . , Zn;ω

]
− e−t2/2

∣∣∣]
≤ E

[(∣∣∣E [exp
(
it(ζ−1

s U2)1/2 ·Bn/d̂n,s,N

)
| Z1, . . . , Zn;ω

]
− e−

t2

2
ζ−1
s U2

∣∣∣
+
∣∣∣e− t22 ζ−1

s U2 − e−
t2

2

∣∣∣) 1D2∩D3

]
+ 4ε

≤ E
[(
ε+

∣∣∣e− t22 ζ−1
s U2 − e−

t2

2

∣∣∣) 1D2∩D3

]
+ 4ε

≤ (ε+ δ′) + 4ε.

Since ε and δ can be arbitrarily small, we have φBn(t)→ e−
t2

2 and thus Bn/dn,s,N  N(0, 1),

which implies Eq. (80) since N/
(
n
s

)
→ 0.

For 2, Var(An)/Var(Bn)→ 0 implies that Var(An/
√
ζs/N) = o(1). Thus, we have

Un,s,N,ω√
ζs/N

=
Bn√
ζs/N

+ op(1),

which implies Eq. (81) by applying Slutsky’s theorem.

Part 1 of Theorem 14 gives that Bn, the difference between the incomplete and complete

generalized U-statistics, is asymptotically normal under quite weak conditions so long as the

number of subsamples N grows slower than
(
n
s

)
. In particular, no specialized conditions on

the resulting variance or variance ratio are required. In Part 2, to establish asymptotic nor-

mality of the generalized incomplete U-statistic itself, we do not require the original condition

on the variance ratio given in Theorem 2, though we do require that Var(An)/Var(Bn)→ 0.

Such a condition remains difficult to verify for general kernels, but can always be satisfied,

for example, by taking N = o(n/s). Indeed, note that

s2

n
ζ1,ω ≤ Var(An) ≤ s

n
ζs,

and Var(Bn) = (1 − p)ζs/N , thus a sufficient condition for (ζs/N)−1/2An = op(1) to hold

is letting N = o(n/s). Thus, asymptotic normality for incomplete U-statistics can be es-

tablished without requiring normality of the complete version and in particular, without

requiring the specialized condition on the variance ratio discussed at length in Chapter 3.
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B.3 Simple base learner variance ratios

We now provide explicit calculations for the variance ratios corresponding to the various

base learners discussed in Chapter 3. We begin with simple examples where base learners

take the form of a sample mean, sample variance, and least squares estimators.

Example 1 (Sample Mean). Suppose Z1, . . . , Zs are i.i.d. random variables with mean µ

and let h = Z̄, then
ζs
sζ1

=
Var (

∑s
i=1 Zi/s)

sVar (Z1/s+ (s− 1)µ/s)
= 1. (82)

Eq. (82) holds for any estimators that can be written as a sum of i.i.d. random variables.

In such cases, since ĥ = h, nothing is lost after projecting.

Example 2 (Sample Variance). Suppose Z1, . . . , Zs are i.i.d. random variables with variance

σ2 and fourth central moment µ4 and consider the sample variance h =
(
n
2

)−1∑
i<j(Zi−Zj)2.

Then as s→∞,
ζs
sζ1

= 1 +
2

(s− 1)
· σ4

µ4 − σ4
→ 1.

The kernel h can be written as h =
∑s

i=1
(Zi−Z̄)2

s−1
≈
∑s

i=1
(Z2
i −µ2)

s−1
. Since Z̄ is much more

stable than Zi, h is close to a sum of i.i.d random variables.

Example 3 (OLS Estimator). Let Z1, . . . , Zs denote i.i.d. pairs of random variables (Xi, Yi)

and Yi = XT
i β + εi. Suppose that εi has mean 0 and variance σ2, and εi is independent of

Xi. Let h = (XTX)−1XTY be the ordinary least squares (OLS) estimator of β. Then as

s→∞,

(sζ1)−1ζs → I,

where I is the identity matrix.

Proof. Let β̂ = GXTY be the OLS estimator, where G = (XTX)−1, then ζs = Var(β̂) =

E[G]σ2. Since Xi and εi are independent, we have E[β̂ | X1, Y1] = β + E1[G]X1 · ε, where E1

takes the expectation conditioning on X1. Then,

ζ1 = Var
(
E[β̂ | X1, Y1]

)
= E[E1[G]X1X

T
1 E1[G]]σ2.
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According to law of large numbers,1
s

∑s
i=1XiX

T
i

a.s.−−→ Σ as s→∞ where E[XiX
T
i ] = Σ, and

then for Σ−1 = Ω,

s · E[(XTX)−1] = E

(1

s

s∑
i=1

XiX
T
i

)−1
→ Ω.

Thus, sζs → Ω. Furthermore, we have

sG | X1 =

(
1

s

[
X1X

T
1 +

∑
i 6=1

XiX
T
i

])−1 ∣∣∣∣∣X1
a.s.−−→ Ω

and

s2 · ζ1/σ
2 = E

[
E1[G]X1X

T
1 E1[G]

]
= E

[
E1[sG] ·X1X

T
1 · E1[sG]

]
→ Ω · Σ · Ω

= Ω.

Hence, ζ1 is of order s−2 and (sζ1)−1ζs → I.

Here again, note that h =
∑s

i=1(XTX)−1XiYi, which is still close to a sum of i.i.d. ran-

dom variables. These three examples suggest that perhaps for many common base learners,

ζs is of order s−1 and ζ1 of order s−2; essentially, each individual observation explains roughly

s−1 times the variance of the base learner.

Proof of Proposition 1: Denote the kNN estimator at x as ϕ(x). Let Ai denote the

event that X1 is the ith closest point to the target point x and B = ∪ki=1Ai. First, by the

continuity of f at x, we have Var(ϕ(x))→ σ2/k as s→∞. Let X∗1 , . . . , X
∗
k be the k-NNs of

x. Then

E[ϕ(x) | X1, Y1] =
1

k
E

[
1B

[
Y1 +

k∑
i=2

Y ∗i

]
+ 1Bc

[
k∑
i=1

Y ∗i

]
| X1, Y1

]

=
ε1
k
E[1B | X1] +

1

k

[
k∑
i=1

f(X∗i ) | X1

]
,
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and thus Var(E[ϕ(x)|X1, Y1]) ≥ σ2

k2
E[Pr2(B|X1)]. Next,

E[Pr2(B|X1)] = E[(
k∑
i=1

Pr(Ai | X1))2]

=
k∑
i=1

k∑
j=1

E [Pr(Ai | X1)Pr(Aj | X1)]

=
1

2s− 1

k∑
i=1

k∑
j=1

(
s−1
i−1

)(
s−1
j−1

)(
2s−2
i+j−2

)
=
V (k, s)

2s− 1
, (83)

where V (k, s) =
∑k−1

i=0

∑k−1
j=0

[
(s−1
i )(s−1

j )
(2s−2
i+j )

]
. We have

V (k) = lim
s→∞

V (k, s)

=
k−1∑
i=0

k−1∑
j=0

(i+ j)!

i!j!

1

2i+j

=
2k−2∑
c=0

∑
i+j=c,0≤i,j≤k−1

(i+ j)!

i!j!

1

2i+j
.

We can obtain k ≤ V (k) < 2k − 1 by simply observing that

k−1∑
c=0

∑
i+j=c

c!

i!j!

1

2c
≤ V (k) ≤

2k−2∑
c=0

∑
i+j=c

c!

i!j!

1

2c
.

Thus,

lim sup
s→∞

ζs
sζ1

= lim sup
s→∞

Var(ϕ(x))

sVar(E[ϕ(x)|X1, Y1])

≤ lim sup
s→∞

2s− 1

s

k

V (k, s)

= c(k),

(84)

and 1 < c(k) <= 2.

Note that Proposition 1 holds without imposing any conditions on the regression func-

tion f or the distribution of X. To see why, note from the proof that both ζs and ζ1 can

each be decomposed into two terms, one of which comes from the variation of the regression

function while the other is due to the variation of the noise. Here, since k is fixed, the
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term involving the variation in the regression function is small relative to the noise term for

large s. When k grows with s, more care must be taken in assessing the contribution of the

regression function. [7] (Theorem 15.3) discuss the convergence rate of the variance of kNN

estimators. This result could potentially enable results to be established for more general

nearest neighbor estimators where the number of neighbors k is permitted to grow with s,

though we do not explore this further here.

Proof of Proposition 2: First let ϕ̃ =
∑s

i=1w(i, x,X)f(Xi) and note that

Var(ϕ) = sE[w2(1, x,X)]σ2 + Var (ϕ̃)

≤ σ2 + ||f ||∞/4.
(85)

Next, E[ϕ | X1, ε1] = E [ϕ̃ | X1] + ε1E [w(1, x,X) | X1], and thus

Var(E[ϕ | X1, ε1]) = Var (E [ϕ̃ | X1]) + σ2E
[
E2 [w(1, x,X) | X1]

]
≥ σ2E

[
E2[w(1, x,X) | X1]

]
≥ σ2E2[w(1, x,X)]

= σ2/s2.

(86)

Therefore,

lim sup
s→∞

ζs
sζ1

1

s
= lim sup

s→∞

sσ2E[w2(1, x,X)] + Var(ϕ̃)

s2 (σ2E[E2[w(1, x,X)) | X1]] + Var(E[ϕ̃ | X1]))
(87)

≤ σ2 + ||f ||2∞/4
σ2

<∞.

We emphasize that the inequalities in Eq. (85) and Eq. (86) are generally quite loose in order

to cover the worst case scenario. As seen in Proposition 1, the order of ζ1 can indeed be s−1

rather than s−2. Nonetheless, Proposition 2 indicates that s/
√
n→ 0 is sufficient to ensure

that s
n
ζs
sζ1
→ 0.
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B.4 Variance ratios of RP trees

Finally, we turn to the analysis for RP trees, which form predictions by taking a sample

uniformly at random from the potential nearest neighbors and averaging the corresponding

response values. We begin with a simpler result for base learners that take a naive random

average across k response values selected uniformly at random from the entire dataset.

Example 4 (Naive Random Average). Let Z1, . . . , Zs denote i.i.d. pairs of random variables

(Xi, Yi). For any target point x, let ϕ(x) denote the estimator that forms a prediction by

simply selecting k sample points uniformly at random (without replacement) and averages

the selected response values, so that we can write ϕ(x) = 1
k

∑s
i=1 ξiYi, where

ξi =

1, ith sample is selected

0, ith sample is not selected.

Then ζs = Var(Y1)/k and ζ1 = (Var(Y1))/s2, so that ζs/sζ1 = s/k.

Note in the above example that when k is fixed, s/
√
n → 0 is sufficient to ensure that

s
n
ζs
sζ1
→ 0. However, when k is assumed to grow with n, the subsample size s can grow more

quickly. In the adaptive case, where w(i, x,X) may depend on {Yi}si=1, tree estimators with

small terminal node sizes may look less like a linear statistic and in turn may have a larger

variance ratio. However, as discussed, for non-adaptive estimators like kNN, the ratio is

bounded by a constant. In this way, well-behaved tree predictors can be seen as similar to

kNN and are still more easily controlled than RP trees.

We turn now to the proving Proposition 3, namely that for base learners that are RP

trees,

lim sup
s→∞

ζs/sζ1

(log s)2d−2
<∞.

Proof of Proposition 3: Denote the RP tree by T and the set of k-PNNs by Ξ. We have

Var(T ) = Var(T̃ ) + σ2/k ≤ σ2/k + ||f ||2∞/4.
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where T̃ is the RP tree prediction in the noiseless case. Let |Ξ| denote the number of k-PNNs

of x, then

E[T | Z1] = ε1E
[

1

|Ξ|
1X1∈Ξ | X1

]
+ E

[
T̃ | X1

]
.

Since Ξ is independent of ε, we have Var(E[T | Z1]) ≥ σ2E [E2[S1 | X1]], where S1 = 1
|Ξ|1X1∈Ξ.

Note that E[S1] = E [
∑s

i=1 Si] /s = 1/s , and thus we have Var(E[T | Z1]) ≥ σ2/s2. Further-

more, we have

E[S1|Z1] = Pr1(X1 ∈ Ξ)E1

[
1

|Ξ|
| X1 ∈ Ξ

]
=

k−1∑
i=0

(
s− 1

i

)
ui(1− u)s−1−i · E1

[
1

|Ξ|
| X1 ∈ Ξ

]
= I · II,

(88)

where Pr1(·) = Pr(· | X1),E1 = E(· | X1), u = Pr1(Xi ∈ R) and R is the hyperrectangle

defined by x and X1. Conditioning on X1 ∈ Ξ, define the conditional probability function

of (X2, . . . , Xs) - Pr1(· | X1 ∈ Ξ) as P̃r1. For I,

I2 =

[
k−1∑
i=0

(
s− 1

i

)
ui(1− u)s−1−i

]2

=
k−1∑
i=0

k−1∑
j=0

(
s− 1

i

)(
s− 1

j

)
ui+j(1− u)2s−2−i−j,

thus

E[I2] =
k−1∑
i=0

k−1∑
j=0

(
s− 1

i

)(
s− 1

j

)
E
[
ui+j(1− u)2s−2−i−j]

=
k−1∑
i=0

k−1∑
j=0

(
s−1
i

)(
s−1
j

)(
2s−2
i+j

) E
[

ui+j(1− u)2s−2−i−j

B(i+ j + 1, 2s− 1− i− j)

]

=
1

2s− 1
·
k−1∑
i=0

k−1∑
j=0

(
s−1
i

)(
s−1
j

)(
2s−2
i+j

) G(i, j), (89)

where u = Pr1(Xi ∈ R) ∈ (0, 1). If u ∼ Uniform(0, 1), then G(i, j) = 1 and Eq. (89)

reduces to Eq. (83). Let the probability density function of u be p(u), and the probability

density function of beta distribution with shape parameters α and β be g(u, α, β), then

G(i, j) =
∫ 1

0
g(u, α, β)p(u) du, where α = i + j, β = s− 1− α. Since i + j <= 2k − 2, when
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s→∞, g(u, α, β) is almost singular at u = 0. Moreover, we can find that at around u = 0,

p(u) ≥ 1. Thus, there exists some c1 > 0 such that G(i, j) ≥ c1. Therefore, we have

E[I2] ≥ c1

2s− 1
V (k, s), V (k, s) =

k−1∑
i=0

k−1∑
j=0

[(
s−1
i

)(
s−1
j

)(
2s−2
i+j

) ]
. (90)

For II, by Jensen’s Inequality, we have II = Ẽ1 [1/|Ξ|] ≥ 1/Ẽ1[|Ξ|], and then

E[E2[S1|X1]] ≥ E
[
I2 · 1

Ẽ2
1|Ξ|

]
. (91)

Ẽ1|Ξ| is just the expected number of k-PNNs conditioning on X1 ∈ Ξ, or equivalently given

that there are at most k−1 sample points in R. [51] showed that E[|Ξ]| is of order k(log s)p−1

when the probability density function of the features is bounded away from 0 and∞ in [0, 1]p.

Since k-PNN depends only on the relative distance, it can be shown that exists some c2 > 0

such that

Ẽ1[|Ξ|] ≤ c2E[|Ξ|], for X1 ∈ [0, 1]p. (92)

Note that V (k, s) ≥ k. Combining Eq. (90), Eq. (91) and Eq. (92), we have

lim sup
s→∞

ζs/sζ1

(log s)2p−2
≤ lim sup

s→∞

(σ2/k + ||f ||2∞/4)(log s)2−2p

s
(
c1
V (k,s)
2s−1

· c−2
2 (k(log s)p−1)−2 · σ2

) <∞, (93)

thus achieving what was claimed in Proposition 3.
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Appendix C Proofs in Chapter 4

C.1 Introduction to Lemma 4

In many cases of interest, a statistic T can be written as a linear statistic plus a man-

ageable term. [17] used the K-function approach derived from Stein’s method [66] to build a

random concentration inequality for linear statistics. This inequality is an extension of the

usual concentration inequalities but the bounds can be random. The authors then apply this

randomized concentration inequality to provide a Berry-Esseen bound for T as in Lemma 4.

For completeness, we begin with a brief discussion of this inequality and its derivatives.

Let Z1, . . . , Zn be independent random variables and T be a statistic of the form

T = T (Z1, . . . , Zn) = W + ∆

where

W =
n∑
i=1

gn,i(Zi), and ∆ = ∆(Z1, . . . , Zn)

for some functions gn,i and ∆. Note here that W is linear and thus T takes the form of a

linear statistic plus a remainder. Let ξi = gn,i(Zi) and assume that

E[ξi] = 0 (i = 1, . . . , n) and
n∑
i=1

Var(ξi) = 1. (94)

The following randomized concentration inequality can be used to establish uniform

Berry-Esseen bounds on T with optimal asymptotic rates.

Lemma 3 ([17]). Let δ > 0 satisfying

n∑
i=1

E [|ξi|min(δ, |ξi|)] ≥ 1/2. (95)

Then for any real-valued random variables ∆1 and ∆2,

Pr(∆1 ≤ W ≤ ∆2) ≤ 4δ + E|W (∆2 −∆1)|

+
n∑
i=1

[E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|]
(96)

whenever ξi is independent of (W − ξi,∆1,i,∆2,i).
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For completeness, we replicate the proof of Eq. (96) originally given in [17]. The spirit

of the proof is to replace bounding the probability by bounding the expectation of some

functions.

Proof. Let

fa,b(w) =


−1

2
(b− a)− δ, w < a− δ

w − 1
2
(a+ b), a− δ ≤ w ≤ b+ δ

1
2
(b− a) + δ, w > b+ δ

and let

K̂i(t) = ξi{1−ξi≤t≤0 − 10<t≤−ξi}, K̂(t) =
n∑
i=1

K̂i(t).

Since ξi and f∆1,i,∆2,i
(W − ξi) are independent for 1 ≤ i ≤ n , we have

E [Wf∆1,∆2(W )] =
n∑
i=1

E [ξi(f∆1,∆2(W )− f∆1,∆2(W − ξi))]

+
n∑
i=1

E
[
ξi(f∆1,∆2(W − ξi)− f∆1,i,∆2,i

(W − ξi))
]

= H1 +H2

where

H1 =
n∑
i=1

E
[
ξi

∫ 0

−ξi
f ′∆1,∆2

(W + t) dt

]
=

n∑
i=1

E
[∫ ∞
−∞

f ′∆1,∆2
(W + t)K̂i(t) dt

]
≥ E

[∫
|t|≤δ

f ′∆1,∆2
(W + t)K̂(t) dt

]
≥ E

[
1∆1≤W≤∆2

∫
|t|≤δ

K̂(t) dt

]
= E

[
1∆1≤W≤∆2

n∑
i=1

|ξi|min(δ, ξi)

]
≥ H1,1 −H1,2

and where

H1,1 = Pr(∆1 ≤ W ≤ ∆2)
n∑
i=1

E [|ξi|min(δ, ξi)] ≥ 1/2Pr(∆1 ≤ W ≤ ∆2)
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and

H1,2 = E

∣∣∣∣∣
n∑
i=1

[|ξi|min(δ, ξi)− E [|ξi|min(δ, ξi)]]

∣∣∣∣∣ ≤ Var

(
n∑
i=1

|ξi|min(δ, ξi)

)1/2

≤ δ.

For H2, we have

|f∆1,∆2(w)− f∆1,i,∆2,i(w)| ≤
1

2
|∆1 −∆1,i|+

1

2
|∆2 −∆2,i|

which then yields

|H2| ≤
1

2
(E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|) .

It follows from the definition of fa,b that

|f∆1,∆2(w)| ≤ 1

2
(∆2 −∆1) + δ.

Hence,

Pr(∆1 ≤ W ≤ ∆2) ≤ 2E [Wf∆1,∆2(W )] + 2δ +
n∑
i=1

[E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|]

≤ E|W (∆2 −∆1)|+ 2δE|W |

+ 2δ +
n∑
i=1

[E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|]

≤ E|W (∆2 −∆1)|+ 4δ +
n∑
i=1

[E|ξi(∆1 −∆1,i)|+ E|ξi(∆2 −∆2,i)|] .

Now, for any estimator of the form T = W + ∆, we can write

−Pr(z − |∆| ≤ W ≤ z) ≤ Pr(T ≤ z)− Pr(W ≤ z) ≤ Pr(z ≤ W ≤ z + |∆|).

Applying Eq. (96) to these bounds, we arrive at the following lemma.
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Lemma 4 ([17]). Let ξ1, . . . , ξn be independent random variables satisfying Eq. (94), W =∑n
i=1 ξi and T = W + ∆. Let ∆i be a random variable such that ξi and (W − ξi,∆i) are

independent. Then for any δ satisfying Eq. (95), we have

sup
z∈R
|Pr(T ≤ z)− Pr(W ≤ z)| ≤ 4δ + E|W∆|+

n∑
i=1

E|ξi(∆−∆i)|.

In particular,

sup
z∈R
|Pr(T ≤ z)− Pr(W ≤ z)| ≤ 2(β2 + β3) + E|W∆|+

n∑
i=1

E|ξi(∆−∆i)| (97)

and

sup
z∈R
|Pr(T ≤ z)− Φ(z)| ≤ 6.1(β2 + β3) + E|W∆|+

n∑
i=1

E|ξi(∆−∆i)| (98)

where

β2 =
n∑
i=1

E[|ξ2
i |1|ξi|>1] and β3 =

n∑
i=1

E[|ξ3
i |1|ξi|≤1].

Note that since
∑n

i=1 E [ξ2
i ] = 1, if δ > 0 satisfies

n∑
i=1

E
[
ξ2
i 1|ξi|≥δ

]
<

1

2

then Eq. (95) holds. In particular, when the ξi are standardized i.i.d. random variables,

then δ must be on the order of 1/
√
n. Furthermore, note that when β2 + β3 ≤ 1 and

4δ ≤ 2(β2 + β3), then Eq. (95) is automatically satisfied and thus Eq. (97) is immediate.

Eq. (98) is obtained by combining Eq. (97) and the sharp Berry-Esseen bound of the sum of

independent random variables in [19].
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C.2 Berry-Esseen bounds for generalized U-statistics

Proof of Theorem 3: We provide the proof for Un,s, the extension to Un,s,ω follows in

the same fashion with the only difference being in the H-decomposition. Without loss of

generality, let θ = 0. Observe that

Un,s =
s∑
j=1

(
s

j

)
H(j)
n =

s

n

n∑
i=1

g(Zi) +
s∑
j=2

(
s

j

)
H(j)
n ,

where g(z) = E[h(z,X2, . . . , Zn)] and H
(j)
n =

(
n
j

)−1∑
(n,j) h

(j)(Zi1, . . . , Zij). Let

∆ =

√
n

s2ζ1

s∑
j=2

(
s

j

)
H(j)
n

and for l ∈ {1, . . . , n}, let

∆l = ∆−
√

n

s2ζ1

(
n

j

)−1∑
S
(l)
j

h(j)(Zi1, . . . , Zij) (99)

where S
(l)
j denotes the collection of all subsets of variables of size j that include the lth

observation. The choice of ∆l plays key role in deciding Berry-Esseen bound. The closer ∆l

is to ∆, the tighter the bound in Eq. (98). We have√
n

s2ζ1

Un,s = W + ∆ (100)

where W =
∑n

i=1 ξi with ξi = g(Zi)/
√
nζ1. For each i ∈ {1, . . . , n}, the random variable

W − ξi and ∆i are functions of Zj, j 6= i. Therefore ξi is independent of (W − ξi,∆i). By

the Cauchy-Schwarz inequality, we have

E[|W∆|] ≤
√
E|W |2 ·

√
E|∆|2 =

√
E|∆|2

and

n∑
i=1

E[|ξi(∆−∆i)|] ≤

√√√√ n∑
i=1

E[ξ2
i ] ·

√√√√ n∑
i=1

E|∆−∆i|2 ≤
√
nmax(

√
E|∆−∆i|2).
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Observing the terms on the right, we have

s2ζ1

n
E|∆|2 = Var

{
s∑
j=2

(
s

j

)
H(j)
n

}

=
s∑
j=2

(
s

j

)2(
n

j

)−1

Vj

≤ s2

n2
(ζs − sζ1).

Similarly, we have

s2ζ1

n
E|∆−∆i|2 = Var


s∑
j=2

(
s

j

)(
n

j

)−1∑
Sij

h(j)(Zi1, . . . , Zij)


=

s∑
j=2

(
s

j

)2(
n

j

)−2(
n− 1

j − 1

)
Vj

=
s∑
j=2

(
s

j

)2(
n

j

)−1
j

n
Vj

≤ 2s2

n3

s∑
j=2

(
s

j

)
Vj

≤ 2s2

n3
(ζs − sζ1).

Note that

β2 + β3 =
n∑
i=1

E

[∣∣∣∣g(Zi)√
nζ1

∣∣∣∣2 1|g(Zi)|≥
√
nζ1

]
+

n∑
i=1

E

[∣∣∣∣g(Zi)√
nζ1

∣∣∣∣3 1|g(Zi)|≤
√
nζ1

]

≤ 1

n1/2

E|g|3

ζ
3/2
1

.

Finally, by applying Lemma 4, we obtain

sup
z∈R

∣∣∣∣∣Pr

{
Un,s√
s2ζ1/n

≤ z

}
− Φ(z)

∣∣∣∣∣ ≤ 6.1E|g|3

n1/2ζ
3/2
1

+ (1 +
√

2)

{
s

n

(
ζs
sζ1

− 1

)}1/2

.

Proof of Theorem 4: We provide a bound for incomplete, infinite-order U-statistics.

An analogous result for generalized incomplete U-statistics Un,s,N,ω can be established by
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applying the extended form of the H-decomposition. As eluded to earlier, an incomplete

U-statistic can be written as

Un,s,N =
1

N

∑
(n,s)

ρh(Zi1, . . . , Zis) (101)

where ρ ∼ Bernoulli(p) and p = N/
(
n
s

)
. Note however that Eq. (101) can also be written as

Un,s,N =
1

p


(
n

s

)−1∑
(n,s)

ρh(Zi1, . . . , Zis)

 =
1

p
U∗n,s

so that the incomplete U-statistic now takes the form of a scaled, generalized complete U-

statistic. We thus now consider U∗n,s and can then easily extend the results to Un,s,N . First,

note that the variance terms ζ∗c for c = 1, . . . , s of U∗n,s are different from those of Un,s in

Eq. (1). For c = 1, . . . , s− 1, we have

ζ∗c = Cov(ρh(Z1, . . . , Zc, Zc+1, . . . , Zs), ρ
′h(Z1, . . . , Zc, Z

′
c+1, . . . , Z

′
n)) = p2ζc

and

ζ∗s = Cov(ρh(Z1, . . . , Zs), ρh(Z1, . . . , Zs)) = pζs.

The H-decomposition will also be different. Here, we have

h(1)∗ = E[ρh | Z1] = ph(1)

h(2)∗ = E[ρh | Z1, Z2]− E[ρh|Z1]− E[ρh | Z2] = ph(2)

...

h(s)∗ = ρh− p
s−1∑
j=1

∑
(s,j)

h(j)(Zi1, . . . , Zij)

where the h appearing in the earlier form is replaced here by ρh. These kernels still retain

the desirable properties laid out in Proposition 7. Furthermore, we have

V ∗j = p2Vj (j = 1, . . . , s− 1)

and

V ∗s = p
s∑
j=1

(
s

j

)
Vj − p2

s−1∑
j=1

(
s

j

)
Vj = p2Vs + p(1− p)ζs.
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Thus,

U∗n,s =
s−1∑
j=1

(
s

j

)
H(j)∗
n +H(s))∗

n

=
s−1∑
j=1

(
s

j

)
pH(j)

n +

(
n

s

)−1∑
(n,s)

h(s)∗(Zi1, . . . , Zis)

= psH(1)
n + p

s−1∑
j=2

(
s

j

)
H(j)
n +

(
n

s

)−1∑
(n,s)

h(s)∗(Zi1, . . . , Zis)

and the decomposition of Un,s,N is

Un,s,N = sH(1)
n +

s−1∑
j=2

(
s

j

)
H(j)
n +

1

N

∑
(n,s)

h(s)∗(Zi1, . . . , Zis) = sH(1)
n + ∆.

Now, because we have rewritten the incomplete U-statistic as a linear term plus a remainder,

we can follow the same general strategy as in the complete case above in applying Lemma 4.

In particular, let

∆−∆i =
s−1∑
j=2

(
s

j

)(
n

j

)−1∑
S
(i)
j

h(j)(Zi1, . . . , Zij) +
1

N

∑
S
(i)
s

h(s)∗(Zi1, . . . , Zis),

where S
(i)
j denotes the collection of all subsets of size j that include the ith observation. Then

E|∆|2 =
s−1∑
j=2

(
s

j

)2(
n

j

)−1

Vj +
1

N2

(
n

s

)
V ∗s

=
s∑
j=2

(
s

j

)2(
n

j

)−1

Vj +
1

N
(1− p)ζs,

and

E|∆−∆i|2 =
s∑
j=2

(
s

j

)2(
n

j

)−1
j

n
Vj +

1

N2

(
n− 1

s− 1

)
V ∗s

=
s∑
j=2

(
s

j

)2(
n

j

)−1
j

n
Vj +

s

n

1

N
(1− p)ζs

and thus
n

s2ζ1

E|∆2| ≤ s

n

[
ζs
sζ1

− 1

]
+

n

Ns
(1− p) ζs

sζ1

so that
n∑
i=1

n

s2ζ1

E|∆2
i | ≤

2s

n

[
ζs
sζ1

− 1

]
+
n

N
(1− p) ζs

sζ1

.
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The result follows by applying Lemma 4.

Proof of Theorem 5: We begin with a bound for incomplete, infinite-order U-statistics.

The extension of this result to the generalized setting and can be derived in the same fashion.

First rewrite Eq. (101) as

Un,s,N =
1

N

∑
i

ρih(Zi) (102)

where ρi ∼ Bernoulli(N/
(
n
s

)
) are i.i.d. and Zi = (Zi1, . . . , Zis) denotes a subsample with

index i and the sum is taken over all subsamples. We can rewrite Un,s,N in Eq. (102) as a

complete U-statistic Un,s plus some manageable term. We have

Un,s,N =

(
n

s

)−1∑
i

h(Zi) +
1

N

∑
i

(ρi − p)h(Zi)

= Un,s +
(√

1− p
) 1

N

∑
i

ρi − p√
1− p

h(Zi)

= An +
(√

1− p
)
Bn

= Wn.

(103)

Since we already know the limiting behavior of An, it remains only to control Bn. Note that

Pr
(√

nWn ≤ z
)

= Pr

{
√
NBn ≤

z√
αn(1− p)

−

√
N

1− p
An

}

where αn = n/N . Conditioning on Z1, . . . , Zn, An can be treated as a constant and we have

√
NBn | Z1, . . . , Zn =

(
n

s

)− 1
2 ∑

i

[
(ρl − p)√
p(1− p)

]
h(Zi) | Z1, . . . , Zn. (104)

Now,
√
NBn | Z1, . . . , Zn is a sum of independent random variables with variance U2, where

U2 =

(
n

s

)−1∑
i

h2(Zi). (105)

Let

ξi =
(p(1− p))−1/2(ρi − p)h(Zi)√∑

i h
2(Zi)

, ai =
h(Zi)√∑
i h

2(Zi)
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then ∑
i

a2
i = 1 and ξi = ai

[
(ρi − p)√
p(1− p)

]
.

Applying the Berry-Esseen bound in [18] for independent random variables, we have

sup
z∈R

∣∣∣Pr
(√

NBn ≤ z | Z1, . . . , Zn

)
− Φ

(
z/
√
U2

)∣∣∣ ≤ 4.1(β2 + β3), (106)

where β2 =
∑

i E
[
|ξi|21|ξi|≥1

]
and β3 =

∑
i E
[
|ξi|31|ξi|≤1

]
. Next, we show that (β2 + β3)

can be uniformly bounded by a small number with high probability and in the rare case

when (β2 + β3) is large, trivially, we have
∣∣∣Pr
(√

NBn ≤ z | Z1, . . . , Zn

)
− Φ

(
z/
√
U2

)∣∣∣ ≤ 2.

Indeed,

β2 + β3 ≤
∑
i

E|ξi|3

=


(
n
s

)−1∑
i |h(Zi)|3((

n
s

)−1∑
i |h(Zi)|2

)3/2

 ·
(
n

s

)− 1
2

[
2p2 − 2p+ 1(
p(1− p)

)1/2

]

=
U3

U
3/2
2

(
n

s

)−1 [
1− 2p

(p(1− p))1/2

]
,

(107)

where U3 =
(
n
s

)−1∑
i |h(Zi)|3. The terms of U2 and U3 are both complete U-statistics and

as such, should be concentrated around their expectations. Let

κ1 =
E|h|4

(E|h|2)2
, κ2 =

E|h|6

(E|h|3)2

and recall that κ1, κ2 are uniformly bounded by our assumption. Let ν2 = E|h|2(= ζs),

δ2 = ( s
n
)ην2, where η > 0. Then by Chebyshev’s inequality, we have

Pr (|U2 − ν2| ≥ δ2) ≤ s/n · Var (|h|2)

δ2
2

=
( s
n

)1−2η

(κ1 − 1).

A similar inequality holds for |U3−ν3| and therefore with probability of at least 1−π, where

π = c0( s
n
)1−2η for some constant c0 > 0, we have

∣∣∣∣U3

U2

∣∣∣∣ =

∣∣∣∣∣∣∣
U3

ν3

U
3/2
2

ν
3/2
1

· ν3

ν
3/2
2

∣∣∣∣∣∣∣ ≤


ν3+δ3
ν3

(ν2−δ2)3/2

ν
3/2
2

 ν3

ν
3/2
2

≤ c1
ν3

ν
3/2
2

,
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where c1 =
{

1+( s
n

)η

(1−( s
n

)η)3/2

}
. Hence, combining this with Eq. (134), with probability of at least

1− π, we have

β2 + β3 ≤ c1
ν3

ν
3/2
2

(
n

s

)− 1
2
{

1− 2p+ 2p2

(p(1− p))1/2

}
≤ c1

ν3

ν
3/2
2

N−
1
2

{
1− 2p+ 2p2

(1− p)1/2

}
≤ c1c2

ν3

ν
3/2
2

N−
1
2 ,

where c2 = 1−2p+2p2

(1−p)1/2 . The next step is to substitute U2 by ζs by applying Lemma 5 stated

below.

Lemma 5.

lim
a→1+

sup
z∈R

∣∣∣∣Φ(az)− Φ(z)

a− 1

∣∣∣∣ <∞. (108)

We obtain

sup
z∈R

∣∣∣Φ(z/√U2

)
− Φ

(
z/
√
ζs

)∣∣∣ ≤ c3|
√
ζs ∧

√
U2|−1|

√
U2 −

√
ζs|

≤ c3|ζs ∧ U2|−1|U2 − ζs|.

Since we already derived that with probability of at least 1− π , |U2 − ζs| ≤ δ2, and thus

sup
z∈R

∣∣∣Φ(z/√U2

)
− Φ

(
z/
√
ζs

)∣∣∣ ≤ c3
δ2

ζs − δ2

= c3

(
s
n

)η
1−

(
s
n

)η .
Next, since An is a complete U-statistic, by Theorem 3, we have

sup
z∈R

∣∣Pr
(√

nAn ≤ z
)
− Pr (YA ≤ z)

∣∣ ≤ ε2 (109)

where ε2 = 6.1E|g|3

n1/2ζ
3/2
1

+ (1 +
√

2)
{
s
n

(
ζs
sζ1
− 1
)}1/2

and YA ∼ N(0, s2ζ1). Lastly,

Pr
(√

nWn ≤ z
)

= E

[
Pr

{
√
NBn ≤

z√
αn(1− p)

−

√
N

1− p
An | Z1, . . . , Zn

}]

≤ Pr

{
YB ≤

z√
αn(1− p)

−

√
N

1− p
An

}
+ ε1

= Pr
{√

nAn ≤ z −
√
αn(1− p)YB

}
+ ε1
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where YB ∼ N(0, ζs) is independent of Z1, . . . , Zn and ε1 = 4.1

{
c1c2

ν3

ν
3/2
2

N−1/2 + c3
( sn)

η

1−( sn)
η

}
+

2π. Now, conditioning on YB, we have

Pr
{√

nAn ≤ z −
√
αn(1− p)YB | YB

}
≤ Pr

{
YA ≤ z −

√
αn(1− p)YB | YB

}
+ ε2.

Combining Eq. (106) and Eq. (109), we conclude that

Pr
{√

nWn ≤ z
}
≤ Pr

{
YA ≤ z −

√
αn(1− p)YB

}
+ ε1 + ε2

= Pr
{
YA +

√
αn(1− p)YB ≤ z

}
+ ε1 + ε2

≤ Pr
{
YA + α1/2

n YB ≤ z
}

+ ε1 + ε2 + ε3.

By Lemma 5, we have

ε3 ≤ c3

(
s2ζ1 + αn(1− p)ζs

)−1
αnpζs

= c3

(
s2ζ1 + αn(1− p)ζs

)−1
(
n

s

)−1

nζs

≤ c3 min

{
p(1− p)−1,

n/s(
n
s

) ζs
sζ1

}
.

Thus, in summary,

sup
z∈R

∣∣∣Pr
{√

N(Un,s,N) ≤ z
}
− Pr {YW ≤ z}

∣∣∣ ≤ ε1 + ε2 + ε3

where

ε1 = 2c0

( s
n

)1−2η

+ 4.1

{
c1c2

ν3

ν
3/2
2

N−1/2 + c3

(
s
n

)η
1−

(
s
n

)η
}

ε2 =
6.1E|g|3

n1/2ζ
3/2
1

+ (1 +
√

2)

{
s

n

(
ζs
sζ1

− 1

)}1/2

ε3 = c3 ·min

{
p(1− p)−1,

n/s(
n
s

) ζs
sζ1

}

and YW ∼ N(0, s2ζ1/n + ζs/N). Note that ε1 and ε2 dominate because of the
(
n
s

)
in the

denominator of ε3 and thus the above bound can be simplified as

ε1 + ε2 + ε3 ≤ C

{
E|g|3

n1/2(E|g|2)3/2
+

E|h|3

N1/2(E|h|2)3/2

+

{
s

n

(
ζs
sζ1

− 1

)}1/2

+
( s
n

)1/3
}
.
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Proof of Lemma 5: Let f(z) = Φ(az) − Φ(z), then f ′(z) = 1√
2π

(
ae−a

2z2/2 − e−z2/2
)

.

Solving f ′(z) = 0, we get z2(a) = log(a)
(a2−1)/2

. Then

lim
a→1+

sup
z∈R

∣∣∣∣Φ(az)− Φ(z)

a− 1

∣∣∣∣ = lim
a→1+

∣∣∣∣Φ(az(a))− Φ(z(a))

a− 1

∣∣∣∣
= lim

a→1+
|Φ′(az(a))(az(a))′ − Φ′(z(a))z′(a)| .

(110)

According to the Taylor expansion of log(a) at a = 1, we have z2(a) = 2
a+1

(
1− a−1

2
+ . . .

)
=

1 + o(a− 1). Therefore, lima→1+ z
2(a) = 1 and lima→1+ z

′(a) = −1
2
, thus we have

lim
a→1+

sup
z∈R

∣∣∣∣Φ(az)− Φ(z)

a− 1

∣∣∣∣ =
e−1/2

√
2π

<∞ (111)

as desired.

C.3 Discussion on a tighter bound

Here we provide a sketch of the proof of Theorem 6. Let m = bn/sc and define

V (Z1, Z2, . . . , Zn) =
1

m

m−1∑
j=0

h(Zj·s+1, Zj·s+2 . . . , Zj·s+s).

The general form of a complete U-statistic in Eq. (1) can be rewritten as

Un,s =
1

n!

∑
β∈Sn

V (Zβ1,β2,...,βn)

where Sn consists of all permutations of (1, 2, . . . , n). Now, suppose that (h − θ)/σ is sub-

Gaussian with variance proxy v2, where σ2 = Var(h), then by definition, we have

E [exp(λ(h− θ))] ≤ exp

{
λ2σ2v2

2

}
, λ ∈ R (112)
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and hence we have

Pr(Un,s − θ > t) ≤ exp(−λt)E[exp (λ(Un,s − θ))]

≤ exp(−λt)
∑
β∈Sn

1

n!
E[exp (λ(V (Zβ1 , Zβ2 , . . . , Zβn)− θ))]

= exp(−λt)E[exp (λ(V − θ))] (113)

≤ exp

{
− mt2

2σ2v2

}
, t > 0.

The second inequality in Eq. (113) is due to Jensen’s inequality and the last inequality is due

to Hoeffding inequality. Observe that Pr (Un,s − θ < t) follows in the same manner (recall

that Eq. (112) holds for all λ ∈ R), and we get

Pr (|Un,s − θ| ≥ t) ≤ 2 exp

{
− mt2

2σ2v2

}
. (114)

Let t = m−ησ where 0 < η < 1/2. Then with probability at least 1−2 exp
(
− 1

2v2
(bn/sc)1−2η

)
,

|Un,s − θ| ≤ (bn/sc)−ησ. Therefore if |h − θ|2 and |h − θ|3 are sub-Gaussian after being

standardized, we can then apply Eq. (114) in the proof of Theorem 5 to obtain the improved

result.
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Appendix D Proofs in Chapter 5

D.1 IJB for bootstrap

Proof of Theorem 7:

1. By definition,

E∗[s∗w∗j ] =
∑

w∗1+···+w∗n=n

p(w∗1, . . . , w
∗
n)s(X∗1 , . . . , X

∗
n)w∗j

=
∑
w∗j≥1

w∗1+···+w∗n=n

(n− 1)!

w∗1 . . . ((w
∗
j − 1)!) · · · (w∗n)!

1

nn−1
s(X∗1 , . . . , X

∗
n)

= E∗[s(X∗1 , . . . , X∗n)|X∗1 = Xj]

= ej.

2. Conditioned on the data, X∗1 , . . . , X
∗
n are i.i.d. Consider the Hájek projection of s∗, and

we have ∑
i

(E∗[s∗|X∗i ]− E∗[s∗]) =
∑
i

∑
j

(E∗[s∗|X∗i = Xj]− E∗[s∗])1{X∗i =Xj}

=
∑
i

∑
j

(ej − s0)1{X∗i =Xj}

=
∑
j

∑
i

(ej − s0)1{X∗i =Xj}

=
∑
j

w∗j (ej − s0),

which is a linear function of w∗j for j = 1, . . . , n and thus l∗ =
∑

j w
∗
j (ej − s0).

3. By 1, IJB =
∑

j Cov2
∗(s
∗, w∗j ) =

∑
j(E∗[s∗w∗j ] − E∗[s∗]E∗[w∗j ])2 =

∑
j(ej − s0 · 1)2. By 2,

we have Var∗(l
∗) = Var∗(

∑
j w
∗
j (ej − s0)) =

∑
j(ej − s0)2. Thus, Var∗(l

∗) = JKB = IJB.
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Calculations for sample maximum: Consider s = maxiXi, where X1, . . . , Xn are

uniformly distributed. The joint distribution density function of the two order statistics

X(i) < X(j) is Thus we have

Cov(X(i), X(j)) =
i(n− j + 1)

(n+ 1)2(n+ 2)
, E[X(i)X(j)] =

i(j + 1)

(n+ 1)(n+ 2)
. (115)

Note that

E∗[s∗] = s0 =
n∑
I=1

X(i)p
n
i ,

where pni = qni − qni−1 and qni =
(
i
n

)n
for i = 1, . . . n. Thus,

Var(E∗[s∗]) = vTCov(u)v, (116)

where u = (X(1), · · · , X(n)) and v = (pn1 , · · · , pnn). Let

ẽi =
n∑

j=I+1

X(j)p
n−1
j +X(i)q

n−1
i , where qn−1

i =

(
i

n

)n−1

.

We have Var∗(l
∗) =

∑n
I=1(ei − s0)2 =

∑n
I=1(ẽi − s0)2. Thus,

E[Var∗(l
∗)] =

∑
(vi − v)TE[uuT ](vi − v), (117)

where vi = (· · · , 0, · · · , qn−1
i , · · · , pn−1

j · · · ) and V = (vi − v). Let

A = Cov(u) =
[

i(n+1−j)
(n+1)2(n+2)

]
ij
, B = E[uuT ] =

[
i(j+1)

(n+1)(n+2)

]
ij
, (118)

then E[Var∗(l∗)]
Var(E∗[s∗]) = VTBV

vTAv
. Next, we have

vTAv = =
1

(n+ 1)2(n+ 2)

∑
i

∑
j

pni p
n
j i(n+ 1− j)

=
1

(n+ 1)2(n+ 2)

(∑
i

i · pni

)(∑
j

(n− j + 1)pnj

)

=
1

(n+ 1)2(n+ 2)

(∑
i

i · pni

)(
n+ 1−

∑
i

i · pni

)
=

1

(n+ 1)2(n+ 2)
(n−

∑
j

(
j − 1

n
)n))(1 +

∑
j

(
j − 1

n
)n))

(119)
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by the fact that
n∑
i=1

i · pni =
n∑
i=1

iqni −
n−1∑
i=0

(i+ 1)qni = n−
n−1∑
i=0

qni . (120)

Next, let en = [1, 2 · · · , n]T , then

VTBV =
VTen · (eTn + 1Tn )V

(n+ 1)(n+ 2)

=
VTen · eTnV

(n+ 1)(n+ 2)

=
1

(n+ 1)(n+ 2)

∑
i

[
(n−

n−1∑
j=I

(
j

n
)n−1)− (n−

n−1∑
j=0

(
j

n
)n)

]2

=
1

(n+ 1)(n+ 2)

∑
i

[
n∑
j=1

(
j − 1

n
)n −

n∑
j=i+1

(
j − 1

n
)n−1

]2

.

(121)

In summary, we have

E[Var∗(l
∗)]

Var(E∗[s∗])
=

(n+ 1)
∑

i[
∑n

j=1( j−1
n

)n −
∑n

j=i+1( j−1
n

)n−1]2

(n−
∑

j(
j−1
n

)n)(1 +
∑

j(
j−1
n

)n)

→ c ∈ [0.24, 0.25] as n→∞.

(122)

Proof of Theorem 8: By the assumption, E∗[s∗] = lb + 1
n
rb, where lb = 1

n

∑
E[E∗[s∗]|Xi]

and rb = op(1). Denote ϕ(Xi) = E[E∗[s∗]|Xi], then

Var∗(l
∗) =

∑
(E∗[s∗|X∗1 = Xi]− E∗[s∗])2

=
∑

(E∗[E∗[s∗]|X1 = Xi, X
∗
2 , . . . , X

∗
n]− E∗[s∗])2

=
∑

(E∗[
1

n

∑
ϕ(Xi) +

1

n
rb|X1 = Xi, X

∗
2 , . . . , X

∗
n]− 1

n

∑
ϕ(Xi) +

1

n
rb)

2

=
1

n2

∑
(ϕ(Xi)− ϕ̄+ E∗[rb|X1 = Xi, X

∗
2 , . . . , X

∗
n]− rb)2

(123)

Since rb is permutation symmetric, 1
n

∑
E∗[rb|X1 = Xi, X

∗
2 , . . . , X

∗
n] = E[rb|X∗1 , . . . , X∗n] = rb.

Thus, E∗[rb|X1 = Xi, X
∗
2 , . . . , X

∗
n] for i = 1, . . . , n are i.i.d. and are also op(1). Therefore,

Var∗(l
∗) =

1

n2

∑
(ϕ(Xi)− ϕ̄)2 + op(1)

p−→ Var(E∗[l∗])

→ Var(E∗[s∗]),

(124)

which implies that IJB is consistent.
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Proof of Theorem 9: Note that E[Var∗(l
∗)] = (n − 1)E[e2

1 − e1e2] and Var(E∗[s∗]) =

1
n
Var(e1) + n−1

n
Cov(e1, e2). Let ρ = Cov(e1, e2)/Var(e1), we have

E[Var∗(l
∗)]/Var(E∗[s∗]) =

(n− 1)(1− ρ)

1/n+ (n− 1)/n · ρ

= n
1− ρ

1/(n− 1) + ρ
.

(125)

Let f(ρ) = n(1−ρ)
1/(n−1)+ρ

, we have

f(ρ) = n

(
−1 +

1

1− (n− 1)/n · (1− ρ)

)
= n(−1 +

1

1− r
)

= n
(
−1 + 1 + r + r2 + r3 + . . .

)
(|r| < 1)

= n(r + r2 + r3 + . . . ) (|r < 1|),

(126)

where r = (n− 1)/n · (1− ρ). Therefore, only if r = 1
n

+ o( 1
n
), then f(ρ(r))→ 1 as n→∞.

In particular,

r =
1

n
+ o(

1

n
) ⇐⇒ 1− ρ =

1

n
+ o(

1

n
). (127)

Hence limn→∞ f(ρ) = 1 if and only if limn→∞ n(1 − ρ) = 1. Thus, IJB is an asymptotic

unbiased estimation of Var(E∗[s∗]) if and only if 1− ρ = 1/n+ o(1/n).

D.2 IJU and s-IJU for U-statistic

Proof of Theorem 10: In sampling without replacement, the probability of (x1, . . . , xk)

being selected is
∑

i1,...,ik

Pn(xi1 )

1
× Pn(xi2 )

1−Pn(x1)
× · · · × Pn(xik )

1−
∑k−1
j=1 Pn(xij)

, x1, . . . xk ∈ Dn and are distinct

0, otherwise.

(128)
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Note that any subsampling with a general re-weighting scheme can be derived similarly.

Consider f((1− ε)Pn + εδXi) and let δ = 1− ε. We first provide the probability of obtaining

(x1, . . . , xk). If Xi 6∈ (x1, x2, . . . , xk), then

p(x1, x2, . . . , xn) = p0 =

[
δ

n
· δ

(n− δ)
· · · δ

(n− (k − 1)δ)

]
× k!. (129)

If Xi ∈ (x1, . . . , xk), then p(x1, x2, . . . , xk) = p1 =
∑k−1

i=0 qi, where

q0 =
[

(n−(n−1)δ)
n

· 1
n−1
· · · 1

n−k+1

]
× (k − 1)!

q1 =
[
δ
n
· n−(n−1)δ

n−δ · 1
n−2
· 1
n−k+1

]
× (k − 1)!

...

qk−1 =
[
δ
n

δ
n−δ · · ·

δ
n−(k−2)δ

· n−(n−1)δ
n−(k−1)δ

]
× (k − 1)!.

Thus,

f((1− ε)Pn + εδXi) =
∑
i1,...ik

s(Xi1 , . . . , Xik)(p01i 6∈{i1,...,,ik} + p11i∈{i1,...,,ik}).

By definition, the IJ of U-statistic is

IJU = lim
ε→0

f((1− ε)Pn + εδXi)− f(Pn)

ε

= lim
δ→1

f(δPn + (1− δ)δXi)− f(Pn)

1− δ
.

(130)

We have
1

p
p′0(δ)|δ=1 = −

[
0

n
+

1

n− 1
+ · · ·+ k − 1

n− (k − 1)

]
− k,

1

p
q′j|δ=1 = −

[
0

n
+

1

n− 1
+

2

n− 2
+ · · · j

n− j

]
+ (n− j − 1), j = 0, . . . , k − 1,

and thus
1

p
p′0(δ)|δ=1 = −

[
0

n
+

1

n− 1
+ · · ·+ k − 1

n− (k − 1)

]
− k,
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and
1

p
p′1 =

1

p

k−1∑
j=0

q′j|δ=1

=
1

k

k−1∑
j=0

[
(n− j − 1)−

[
0

n
+

1

n− 1
+

2

n− 2
+ · · · j

n− j

]]
= −1

k

[
0 · k
n

+
1 · (k − 1)

n− 1
+ · · ·+ (k − 1) · 1

n− (k − 1)

]
− k + 1

2
+ n.

Putting all together, we have

lim
δ→1

f(δPn + (1− δ)δXi)− f(Pn)

1− δ
. =

∑
(n,k)

(p′01w∗i =0 + p′11w∗i =1)s(Xi1 , . . . , Xik)

=
∑
(n,k)

p

[
p′0
p

+ (
p′1
p
− p0

p

′
)w∗i

]
s(Xi1 , . . . , Xik)

=
k

n
(
p′1
p
− p′0

p
)ei +

p′0
p
s0,

(131)

where ei = E∗[s∗|X∗1 = Xi] and s0 = E∗[s∗]. Note that ∗ refers to the procedure of subsam-

pling without replacement. The infinitesimal jackknife estimate is

IJU =
1

n2

n∑
j=1

[
k

n
(
p′1
p
− p′0

p
)ej +

p′0
p
s0

]2

.

=
k2

n2

n∑
j=1

[
p′1 − p′0
np

ej +
p′0
kp
s0

]2

=
k2

n2

n∑
j=1

[αej + βs0]2

(132)

where

α = (p′1 − p′0)/(np) = 1 +
1

n

{
k − 1

2
− 1

k

k−1∑
j=0

j2

(n− j)

}
, (133)

and

β = −p′0/(kp) = 1 +
1

k

k−1∑
j=0

j

n− j
. (134)

We now derive E[IJU]. We can use the Hoeffding decomposition to rewrite U-statistic as

a sum of many uncorrelated terms, so that the variance of the U-statistic can be written as
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a linear combination of the variance of those terms correspondingly. Interestingly, αej + βs0

can be decomposed similarly. Indeed,

(αe1 − βs0)

= −β
(
n

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1)

+

(
α · (k − 1)!

(n− 1) . . . (n− k + 1)
− β · (k − 1)!k

n · · · (n− k + 1)

)∑
s(Xi1 , . . . , Xik ; ∃1)

= −(1− k

n
)β

(
n− 1

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1)

+ (α− k

n
β)

(
n− 1

k − 1

)−1∑
s(Xi1 , . . . , Xik ; ∃1)

= −(1− k

n
)β ·

k∑
j=1

(
k

j

)(
n− 1

j

)−1∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1)

+ (α− k

n
β)

k−1∑
j=1

(
k − 1

j

)(
n− 1

j

)−1∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1)

+ (α− k

n
β)

k∑
j=1

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij ;∃1)

:= An +Bn,

(135)

where

An =
k∑
j=1

[
(α− k

n
β)

(
k − 1

j

)
− (1− k

n
)β

(
k

j

)](
n− 1

j

)−1∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1)

and

Bn = (α− k

n
β)

k∑
j=1

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij).

Thus,

Var(An) =
k∑
j=1

[
(
k

j
− 1)α + (

k

n
− k

j
)β

]2(
k − 1

j − 1

)2(
n− 1

j

)−1

Vj (136)

and

Var(Bn) = (α− k

n
β)2

k∑
j=1

(
k − 1

j − 1

)2(
n− 1

j − 1

)−1

Vj (137)
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where Vj = Var(s(j)). Since An and Bn are uncorrelated, we have

E
[
(αe1 − βs0)2

]
= Var(An) + Var(Bn)

=
k∑
j=1

(
k − 1

j − 1

)2
[[

(
k

j
− 1)α + (

k

n
− k

j
)β

]2(
n− 1

j

)−1

+ (α− k

n
β)2

(
n− 1

j − 1

)−1
]
Vj

=
k∑
j=1

(
k − 1

j − 1

)2

Λ(j)Vj,

where Λ(j) =

[[
(k
j
− 1)α + ( k

n
− k

j
)β
]2 (

n−1
j

)−1
+ (α− k

n
β)2
(
n−1
j−1

)−1
]
, for j = 1, · · · , k.

Therefore,

E[IJU] =
k2

n2

∑
E[(αej − βs0)2]

=
k2

n

k∑
j=1

(
k − 1

j − 1

)2

Λ(j)Vj.
(138)

Recall that

Var(U) =
k∑
j=1

(
k

j

)2(
n

j

)−1

Vj. (139)

We consider the ratio of the coefficient of Vj in E[IJU] and that in Var(U) and obtain

rj =
k2

n
Λ(j)

(
k − 1

j − 1

)2(
k

j

)−2(
n

j

)
=
k2

n

j2

k2
Λ(j)

(
n

j

)
=

(n− k)2

n2

[
j

1− j/n
α2 +

n

k2(n− k)2
(α− β)2

] (140)

for j = 1, . . . , k.
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Proof of Proposition 4:

Cov∗(s
∗, w∗j ) =

∑
w∗1+···+w∗n=k

p(w∗1, . . . , w
∗
n)[s∗ − s0]w∗j

=
∑

w∗1+···+w∗n=k

p(w∗1, . . . , w
∗
n)s∗w∗j −

k

n
s0

=
k

n

∑
w∗j=1,w∗1+···+w∗n=k

(k − 1)!

(n− 1) · · · (n− k + 1)
s∗ − k

n
s0

=
k

n
[E∗[s(X∗1 , . . . , X∗k)|X∗1 = Xj]− s0]

=
k

n
(ej − s0).

(141)

It follows that s-IJ =
∑n

j=1 Cov2
∗(s
∗, w∗j ) = k2

n2

∑
(ej − s0)2.

Proof of Theorem 11: Similar to the calculation for IJU, we have

E
[
(ej − s0)2

]
=

(
n− k
n

)2 k∑
j=1

(
k − 1

j − 1

)2
[(

n− 1

j

)−1

+

(
n− 1

j − 1

)−1
]
Vj.

Next,

E[s-IJU] =
k2

n2

∑
E[(ej − s0)2]

k2

n

(
n− k
n

)2 k∑
j=1

(
k − 1

j − 1

)2
[(

n− 1

j

)−1

+

(
n− 1

j − 1

)−1
]
Vj.

(142)

Since Var(U) =
∑k

j=1

(
k
j

)2(n
j

)−1
Vj, we have

rj =
k2

n

(
n− k
n

)2(
k − 1

j − 1

)2
[(

n− 1

j

)−1

+

(
n− 1

j − 1

)−1
](

k

j

)−2(
n

j

)
=

(
n− k
n

)2
j2

n

[
2 +

j

n− j
+
n− j
j

]
=

(
n− k
n

)2
j2

n
· n2

(n− j)j

=

(
n− k
n

)2
j

1− j/n
, j = 1, . . . , k.

(143)
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Proof of Theorem 12: For simplicity, we first ignore the extra randomness ω. According

to the H-decomposition,

s-IJU =
k2

n2

(n− k)2

n2

n∑
i=1

[
k∑
j=1

−
(
k − 1

j − 1

)(
n− 1

j

)−1∑
s(j)(Xi1 , . . . , Xij ; 6 ∃i)

+

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij ;∃i)

]2

=
k2

n2

(n− k)2

n2

n∑
i=1

[
− 1

n− 1

n∑
j 6=i

s(1)(Xi) + s(1)(Xi) +
k2

n2

k∑
j=2

(
k − 1

j − 1

)(
n− 1

j

)−1

∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1) +

(
k − 1

j − 1

)(
n− 1

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij ;∃1)

]2

=
k2

n2

(n− k)2

n2

n∑
i=1

[
s(1)(Xi) + Ti

]2
.

(144)

We already know that s(1)(Xi) and Ti are uncorrelated. After some calculation, we find that

E[(s(1)(Xi))
2] = V1

E[T2
i ] =

1

n− 1
V1 +

k∑
j=2

(
k − 1

j − 1

)2
[(

n− 1

j

)−1

+

(
n− 1

j − 1

)−1
]
Vj,

then

E[T2
i ] ≈

1

n− 1
V1 +

k∑
j=2

(
k − 1

j − 1

)2(
n− 1

j − 1

)−1

Vj

=
1

n− 1
V1 +

k∑
j=2

j

k

(
k − 1

j − 1

)(
n− 1

j − 1

)−1 [(
k

j

)
Vj

]
.

≤ 1

n− 1
V1 +

2

n

k∑
j=2

(
k

j

)
Vj.

=
1

n− 1
ζ1 +

2k

n
(ζk − kζ1).

(145)

Let L = E[(s(1)(Xi))
2] and R = T2

i ]. Since k
n
( ζk
kζ1
− 1)→ 0,

R/L ≤ 2/n(ζk − kζ1)

ζ1

+
1

n− 1
→ 0. (146)
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Therefore, s(1)(Xi) dominates Ti and thus

s-IJU
p−→ k2

n2

(n− k)2

n2

n∑
i=1

[s(1)(Xi)]
2

p−→ k2

n

(n− k)2

n2
E[s(1)(Xi)]

2

→ k2

n
ζ1.

(147)

Note that the extra ω does not bring more technical difficulty since structure of the

U-statistic is unchanged. Similarly, let

eωi =

(
n− 1

k − 1

)−1∑
s(Xi, . . . , ;ω), and sω0 =

(
n

k

)−1∑
s(. . . ;ω). (148)

Note that each subsample is paired with an i.i.d. ω. For

s-IJωU =
k2

n2

∑
[eωi − sω0 ]2, (149)

it can be decomposed the same way as Eq. (144). Thus, we have s-IJωU
p−→ k2

n
ζ1,ω.

Proof of Theorem 13: Let first first ignore the extra randomness-ω for simplicity. By the

definition of generalized U-statistic, the incomplete U-statistic can be viewed as a complete

U-statistic with a different kernel s†(Xi1 , . . . , Xik) = ρ
p
s(Xi1 , . . . , Xik), so that

Un,k,N =
1

N

∑
ρs(Xi1 , . . . , Xik)

=

(
n

k

)−1∑ ρ

p
s(Xi1 , . . . , Xik)

:= U†n,k

(150)

ρ
p

can be viewed as ω. Consider the H-decomposition of U†n,k, we have V †j = Vj for j =

1, . . . , k − 1 and V †k = Vk + 1−p
p
ζk. Similar to Eq. (144), we have

s-IJ†U =
k2

n2

n∑
i=1

[e†i − s
†
0]2

=
k2

n2

(n− k)2

n2

n∑
i=1

[
s(1)(Xi) + T†i

]2
(151)
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where s(1)(x) = E[s(x,X2, . . . , Xk)]. Note that

E[(s(1)(X1))2] = V †1 = V1

E[(T†i )
2] =

1

n− 1
V †1 +

n

k2

k∑
j=2

j

1− j/n

(
k
j

)2(
n
j

) V †j
=

1

n− 1
V1 +

n

k2

k∑
j=2

j

1− j/n

(
k
j

)2(
n
j

) Vj +
n

k2

k

1− k/n
1

N
(1− p)ζk

:= L + R + M,

(152)

where M = 1
1−k/n

n
Nk

(1− p)ζk. Since k
n
( ζk
kζ1
− 1)→ 0, R/L→ 0 by Eq. (146). Next, we have

M/L =

1
1−k/n

n
Nk

(1− p)ζk
ζ1

≤ 1

1− k/n
· n
N

ζk
kζ1

≈ n

N

ζk
kζ1

→ 0.

(153)

Therefore, s-IJ†U
p−→ k2

n
(n−k)2

n2

∑
i[s

(1)(Xi)]
2 p−→ k2

n
V1. Again, the extra randomness only results

in an extended version of H-decomposition. Everything above can be directly applied to

Un,k,N,ω.

D.3 Discussion on extensions

Estimating the variance of U-statistic when k = O(n): In application, we might

choose k be a fraction of n such that we obtain a more accurate model in spite of loosing

the ability to do statistical inference. Since when k = c · n, typically we no longer have

the asymptotic normality of of Un,k,N,ω. Nonetheless, we still want estimate its variance

well so that we can apply other looser concentration inequalities like Chybeshev’s inequality,
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Hoeffding inequality and Berstein’s inequality, to provide useful confidence intervals. Recall

that

Var(Un,k,N) =
k∑
j=1

(
k
j

)(
n
j

)(k
j

)
Vk +

1

N
(1− p)ζk

=
k∑
j=1

(
k
j

)(
n
j

)(k
j

)
Vk +

1

N
(1− p)

k∑
j=1

(
k

j

)
Vk

=
k∑
j=1

((
k
j

)(
n
j

) +
1

N
(1− p)

)(
k

j

)
Vk

≈
k∑
j=1

((
k
j

)(
n
j

) +
1

N

)(
k

j

)
Vk.

(154)

The higher order terms are not negligible. It seems like that there is no way to estimate

V1, even asymptotically. Therefore it’s not possible to estimate the variance of Un,k,N unless

s(X1, . . . , Xk) itself is almost linear, i.e. ζk/kV1 → 1.

Proof of Proposition 5:

(e1,2 − e1 − e2 + s0)

=
∑

w∗1=1,w∗2=1,w∗1+···+w∗n=k

(k − 2)!

(n− 2) · · · (n− k)
s∗ −

∑
w∗1=1,w∗1+···+w∗n=k

(k − 1)!

(n− 1) · · · (n− k)
s∗

−
∑

w∗2=1,w∗1+···+w∗n=k

(k − 1)!

(n− 2) · · · (n− k)
s∗ +

∑
w∗1+···+w∗n=k

k!

n · · · (n− k)
s∗

=
∑

w∗1+···+w∗n=k

n(n− 1)

k(k − 1)

(
n

k

)−1

(w∗1)(w∗2)s∗ −
∑

w∗1+···+w∗n=k

n

k

(
n

k

)−1

(w∗1)s∗

−
∑

w∗1+···+w∗n=k

n

k

(
n

k

)−1

(w∗2)s∗ +
∑

w∗1+···+w∗n=k

(
n

k

)−1

s∗

=
∑(

n

k

)−1(
n(n− 1)

k(k − 1)
w∗1w

∗
2 −

n

k
w∗1 −

n

k
w∗2 + 1

)
s0

=
n(n− 1)

k(k − 1)

∑(
n

k

)−1(
w∗1w

∗
2 −

k − 1

n− 1
w∗1 −

k − 1

n− 1
w∗2 +

k(k − 1)

n(n− 1)

)
s0.

(155)

Thus, ∑
i,j

Cov2
∗(s
∗, w∗ij) =

((
k
2

)(
n
2

))2∑
i,j

(e1,2 − e1 − e2 + s0)2. (156)
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Proof of Proposition 6: Recall that

Un,k − θ =

(
n

k

)−1 ∑
(n,k)

s(Xi1 , . . . , Xik)

=

(
n

k

)−1 ∑
(n,k)


k∑
j=1

∑
(k,j)

s(j)(Xi1 , . . . , xij)


=

k∑
j=1

(
n

k

)−1 ∑
(n,k)

∑
(k,j)

s(j)(Xi1 , . . . , Xij)

=
k∑
j=1

(
k

j

)∑
s(j)(Xi1 , . . . , Xij)

The second order term is
(
k
2

)(
n
2

)−1∑
i<j s

(2)(Xi, Xj). Consider eij = E∗[s∗|X∗1 = X1, X
∗
2 =

X2], then

(e1,2 − e1 − e2 + s0) =

(
n

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1, 6 ∃2)

+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1
)∑
∃1,∃2

s(Xi1 , . . . , Xik)

−

((
n− 1

k − 1

)
−
(
n

k

)−1
)∑

s(Xi1 , . . . , Xik ;∃1, 6 ∃2)

−

((
n− 1

k − 1

)
−
(
n

k

)−1
)∑

s(Xi1 , . . . , Xik ; 6 ∃1∃2)

= I + II + III + IV.

We have

I =

(
n

k

)−1(
n− 2

k

)(
n− 2

k

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1, 6 ∃2)

=

(
n

k

)−1(
n− 2

k

) k∑
j=1

(
k

j

)(
n− 2

j

)−1∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2).

(157)
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and

II = −

((
n− 1

k − 1

)−1

−
(
n

k

)−1
)∑

s(Xi1 , . . . , Xik ; ∃1, 6 ∃2)

= −

((
n− 1

k − 1

)−1

−
(
n

k

)−1
)(

n− 2

k − 1

)(
n− 2

k − 1

)−1∑
s(Xi1 , . . . , Xik ;∃1, 6 ∃2)

= −

((
n− 1

k − 1

)−1

−
(
n

k

)−1
)(

n− 2

k − 1

)[k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1

∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2) +

k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij ; ∃1, 6 ∃2)

]
.

Similarly, we have

III = −

((
n− 1

k − 1

)−1

−
(
n

k

)−1
)∑

s(Xi1 , . . . , Xik ; 6 ∃1,∃2)

= −

((
n− 1

k − 1

)−1

−
(
n

k

)−1
)(

n− 2

k − 1

)(
n− 2

k − 1

)−1∑
s(Xi1 , . . . , Xik ; 6 ∃1,∃2)

= −

((
n− 1

k − 1

)−1

−
(
n

k

)−1
)(

n− 2

k − 1

)[k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1

∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2) +

k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
s(j)(Xi1 , . . . , Xij ; 6 ∃1,∃2)

]
,

and

IV =

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1
)∑

s(Xi1 , . . . , Xik ;∃1,∃2)

=

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1
)(

n− 2

k − 2

)[k−2∑
j=1

(
k − 2

j

)(
n− 2

j

)−1

∑
s(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)

+
k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1∑
s(Xij, . . . , Xij;∃1, 6 ∃2)

+
k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1∑
s(Xij, . . . , Xij; 6 ∃1,∃2)

+
k∑
j=2

(
k − 2

j − 2

)(
n− 2

j − 2

)−1∑
s(Xi1 , . . . , Xij ;∃1,∃2)

]
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In conclusion, we have I + II + III + IV = A + B + C + D, where A,B,C,D are uncor-

related.

A =

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1
)(

n− 2

k − 2

)
k∑
j=2

(
k − 2

j − 2

)(
n− 2

j − 2

)−1∑
s(Xi1 , . . . , Xij ;∃1,∃2),

(159)

B = −

((
n− 1

k − 1

)
−
(
n

k

)−1
)(

n− 2

k − 1

)
[

k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
s(Xi1 , . . . , Xij ;∃1, 6 ∃2)

]

+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1
)(

n− 2

k − 2

)
[
k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1∑
s(Xij, . . . , Xij;∃1, 6 ∃2)

]
,

(160)

C = −

((
n− 1

k − 1

)
−
(
n

k

)−1
)(

n− 2

k − 1

)
[

k∑
j=1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1∑
s(Xi1 , . . . , Xij ; 6 ∃1,∃2)

]

+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1
)(

n− 2

k − 2

)
k−1∑
j=1

(
k − 2

j − 1

)(
n− 2

j − 1

)−1∑
s(Xij, . . . , Xij; 6 ∃1,∃2) ,

(161)
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and

D =

(
n

k

)−1(
n− 2

k

) k∑
j=1

(
k

j

)(
n− 2

j

)−1∑
s(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)

−

((
n− 1

k − 1

)
−
(
n

k

)−1
)(

n− 2

k − 1

)
[
k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1∑
s(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)

]

−

((
n− 1

k − 1

)
−
(
n

k

)−1
)(

n− 2

k − 1

)
[
k−1∑
j=1

(
k − 1

j

)(
n− 2

j

)−1∑
s(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)

]

+

((
n− 2

k − 2

)−1

− 2

(
n− 1

k − 1

)−1

+

(
n

k

)−1
)(

n− 2

k − 2

)
·[

k−2∑
j=1

(
k − 2

j

)(
n− 2

j

)−1∑
s(Xi1 , . . . , Xij ; 6 ∃1, 6 ∃2)

]
.

(162)

Let C2 =
((

n−2
k−2

)−1 − 2
(
n−1
k−1

)−1
+
(
n
k

)−1
) (

n−2
k−2

)
= (n−k)2+(n−k)

n(n−1)
, C1 =

((
n−1
k−1

)−1 −
(
n
k

)−1
) (

n−2
k−1

)
=

(n−k)2

n(n−1)
and C0 =

(
n
k

)−1(n−2
k

)
= (n−k)(n−k−1)

n(n−1)
= (n−k)2−(n−k)

n(n−1)
, then

Var(A) =
k∑
j=2

(
n− 2

j − 2

)−1(
C2

(
k − 2

j − 2

))2

Vj

=
k∑
j=2

(
n− 2

j − 2

)−1(
C2

(
k − 2

j − 2

))2

Vj,

(163)

Var(B) =
k−1∑
j=1

(
n− 2

j − 1

)
·

(
−C1

(
k − 1

j − 1

)(
n− 2

j − 1

)−1

+ C2

(
k − 2

j − 1

)(
n− 2

j − 1

)−1
)2

Vj

+

(
n− 2

k − 1

)−1(
−C1

(
k − 1

k − 1

))2

Vk

=
k∑
j=1

(
n− 2

j − 1

)−1(
−C1

(
k − 1

j − 1

)
+ C2

(
k − 2

j − 1

))2

Vj,

(164)

Var(B) = Var(C), (165)
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and

Var(D) =
k−2∑
j=1

(
n− 2

j

)−1(
C0

(
k

j

)
− 2C1

(
k − 1

j

)
+ C2

(
k − 2

j

))
+

+

(
n− 2

k − 1
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C0

(
k

k − 1

)
− 2C1

(
k − 1
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n− 2
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)
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k
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k∑
j=1

(
n− 2

j

)−1(
C0

(
k

j

)
− 2C1

(
k − 1

j

)
+ C2

(
k − 2

j

))
Vj.

(166)

Therefore, the E[s-IJU(2)] =
(
k
j

)2
/
(
n
2

)∑k
j=1 λj(2)Vj, where

λj(2) =

(
n− 2

j − 2

)−1(
C2

(
k − 2

j − 2

))2

+ 2

(
n− 2

j − 1

)−1(
−C1

(
k − 1

j − 1

)
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(
k − 2

j − 1

))2

+

(
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j

)−1(
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(
k

j

)
− 2C1

(
k − 1

j

)
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(
k − 2
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))2

.

(167)

97



Bibliography

[1] Moulinath Banerjee and Ian W. McKeague. Confidence sets for split points in decision
trees. Ann. Statist., 35(2):543–574, 04 2007.
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